1 1.48 andvar /* $NetBSD: ixgbe_common.c,v 1.48 2025/02/17 22:56:46 andvar Exp $ */ 2 1.14 msaitoh 3 1.1 dyoung /****************************************************************************** 4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause 5 1.1 dyoung 6 1.42 msaitoh Copyright (c) 2001-2020, Intel Corporation 7 1.1 dyoung All rights reserved. 8 1.14 msaitoh 9 1.14 msaitoh Redistribution and use in source and binary forms, with or without 10 1.1 dyoung modification, are permitted provided that the following conditions are met: 11 1.14 msaitoh 12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice, 13 1.1 dyoung this list of conditions and the following disclaimer. 14 1.14 msaitoh 15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright 16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the 17 1.1 dyoung documentation and/or other materials provided with the distribution. 18 1.14 msaitoh 19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its 20 1.14 msaitoh contributors may be used to endorse or promote products derived from 21 1.1 dyoung this software without specific prior written permission. 22 1.14 msaitoh 23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE. 34 1.1 dyoung 35 1.1 dyoung ******************************************************************************/ 36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/ 37 1.1 dyoung 38 1.31 msaitoh #include <sys/cdefs.h> 39 1.48 andvar __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.48 2025/02/17 22:56:46 andvar Exp $"); 40 1.31 msaitoh 41 1.1 dyoung #include "ixgbe_common.h" 42 1.1 dyoung #include "ixgbe_phy.h" 43 1.6 msaitoh #include "ixgbe_dcb.h" 44 1.6 msaitoh #include "ixgbe_dcb_82599.h" 45 1.1 dyoung #include "ixgbe_api.h" 46 1.1 dyoung 47 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 48 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 49 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 50 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 51 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 52 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 53 1.3 msaitoh u16 count); 54 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 55 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 56 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 57 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 58 1.1 dyoung 59 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 60 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 61 1.3 msaitoh u16 *san_mac_offset); 62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 63 1.3 msaitoh u16 words, u16 *data); 64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 65 1.3 msaitoh u16 words, u16 *data); 66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 67 1.3 msaitoh u16 offset); 68 1.1 dyoung 69 1.1 dyoung /** 70 1.38 msaitoh * ixgbe_init_ops_generic - Inits function ptrs 71 1.38 msaitoh * @hw: pointer to the hardware structure 72 1.1 dyoung * 73 1.38 msaitoh * Initialize the function pointers. 74 1.1 dyoung **/ 75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw) 76 1.1 dyoung { 77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac; 79 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 80 1.1 dyoung 81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic"); 82 1.1 dyoung 83 1.1 dyoung /* EEPROM */ 84 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic; 85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */ 86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) { 87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic; 88 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic; 89 1.3 msaitoh } else { 90 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic; 91 1.3 msaitoh eeprom->ops.read_buffer = 92 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic; 93 1.3 msaitoh } 94 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic; 95 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic; 96 1.1 dyoung eeprom->ops.validate_checksum = 97 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic; 98 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic; 99 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic; 100 1.1 dyoung 101 1.1 dyoung /* MAC */ 102 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic; 103 1.1 dyoung mac->ops.reset_hw = NULL; 104 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic; 105 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic; 106 1.1 dyoung mac->ops.get_media_type = NULL; 107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL; 108 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic; 109 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic; 110 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic; 111 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic; 112 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie; 113 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync; 114 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync; 115 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic; 116 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic; 117 1.1 dyoung 118 1.1 dyoung /* LEDs */ 119 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic; 120 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic; 121 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic; 122 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic; 123 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic; 124 1.1 dyoung 125 1.1 dyoung /* RAR, Multicast, VLAN */ 126 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic; 127 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic; 128 1.1 dyoung mac->ops.insert_mac_addr = NULL; 129 1.1 dyoung mac->ops.set_vmdq = NULL; 130 1.1 dyoung mac->ops.clear_vmdq = NULL; 131 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic; 132 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic; 133 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic; 134 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic; 135 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic; 136 1.1 dyoung mac->ops.clear_vfta = NULL; 137 1.1 dyoung mac->ops.set_vfta = NULL; 138 1.3 msaitoh mac->ops.set_vlvf = NULL; 139 1.1 dyoung mac->ops.init_uta_tables = NULL; 140 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic; 141 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic; 142 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic; 143 1.1 dyoung 144 1.1 dyoung /* Flow Control */ 145 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic; 146 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic; 147 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg; 148 1.1 dyoung 149 1.1 dyoung /* Link */ 150 1.1 dyoung mac->ops.get_link_capabilities = NULL; 151 1.1 dyoung mac->ops.setup_link = NULL; 152 1.1 dyoung mac->ops.check_link = NULL; 153 1.6 msaitoh mac->ops.dmac_config = NULL; 154 1.6 msaitoh mac->ops.dmac_update_tcs = NULL; 155 1.6 msaitoh mac->ops.dmac_config_tcs = NULL; 156 1.1 dyoung 157 1.1 dyoung return IXGBE_SUCCESS; 158 1.1 dyoung } 159 1.1 dyoung 160 1.1 dyoung /** 161 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation 162 1.6 msaitoh * of flow control 163 1.6 msaitoh * @hw: pointer to hardware structure 164 1.6 msaitoh * 165 1.6 msaitoh * This function returns TRUE if the device supports flow control 166 1.6 msaitoh * autonegotiation, and FALSE if it does not. 167 1.4 msaitoh * 168 1.4 msaitoh **/ 169 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 170 1.4 msaitoh { 171 1.6 msaitoh bool supported = FALSE; 172 1.6 msaitoh ixgbe_link_speed speed; 173 1.6 msaitoh bool link_up; 174 1.4 msaitoh 175 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc"); 176 1.4 msaitoh 177 1.6 msaitoh switch (hw->phy.media_type) { 178 1.6 msaitoh case ixgbe_media_type_fiber_fixed: 179 1.8 msaitoh case ixgbe_media_type_fiber_qsfp: 180 1.6 msaitoh case ixgbe_media_type_fiber: 181 1.45 msaitoh /* flow control autoneg block list */ 182 1.14 msaitoh switch (hw->device_id) { 183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP: 184 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N: 185 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP: 186 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N: 187 1.14 msaitoh supported = FALSE; 188 1.14 msaitoh break; 189 1.14 msaitoh default: 190 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); 191 1.14 msaitoh /* if link is down, assume supported */ 192 1.14 msaitoh if (link_up) 193 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ? 194 1.14 msaitoh TRUE : FALSE; 195 1.14 msaitoh else 196 1.14 msaitoh supported = TRUE; 197 1.14 msaitoh } 198 1.14 msaitoh 199 1.14 msaitoh break; 200 1.14 msaitoh case ixgbe_media_type_backplane: 201 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI) 202 1.14 msaitoh supported = FALSE; 203 1.6 msaitoh else 204 1.6 msaitoh supported = TRUE; 205 1.6 msaitoh break; 206 1.6 msaitoh case ixgbe_media_type_copper: 207 1.6 msaitoh /* only some copper devices support flow control autoneg */ 208 1.6 msaitoh switch (hw->device_id) { 209 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM: 210 1.6 msaitoh case IXGBE_DEV_ID_X540T: 211 1.8 msaitoh case IXGBE_DEV_ID_X540T1: 212 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS: 213 1.8 msaitoh case IXGBE_DEV_ID_X550T: 214 1.10 msaitoh case IXGBE_DEV_ID_X550T1: 215 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T: 216 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T: 217 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T: 218 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L: 219 1.6 msaitoh supported = TRUE; 220 1.6 msaitoh break; 221 1.6 msaitoh default: 222 1.6 msaitoh supported = FALSE; 223 1.6 msaitoh } 224 1.4 msaitoh default: 225 1.6 msaitoh break; 226 1.4 msaitoh } 227 1.6 msaitoh 228 1.6 msaitoh return supported; 229 1.4 msaitoh } 230 1.4 msaitoh 231 1.4 msaitoh /** 232 1.38 msaitoh * ixgbe_setup_fc_generic - Set up flow control 233 1.38 msaitoh * @hw: pointer to hardware structure 234 1.4 msaitoh * 235 1.38 msaitoh * Called at init time to set up flow control. 236 1.4 msaitoh **/ 237 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw) 238 1.4 msaitoh { 239 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS; 240 1.4 msaitoh u32 reg = 0, reg_bp = 0; 241 1.4 msaitoh u16 reg_cu = 0; 242 1.8 msaitoh bool locked = FALSE; 243 1.4 msaitoh 244 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic"); 245 1.4 msaitoh 246 1.8 msaitoh /* Validate the requested mode */ 247 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 248 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED, 249 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 250 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 251 1.4 msaitoh goto out; 252 1.4 msaitoh } 253 1.4 msaitoh 254 1.4 msaitoh /* 255 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the 256 1.4 msaitoh * default flow control setting, so we explicitly set it to full. 257 1.4 msaitoh */ 258 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default) 259 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full; 260 1.4 msaitoh 261 1.4 msaitoh /* 262 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the 263 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If 264 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa. 265 1.4 msaitoh */ 266 1.4 msaitoh switch (hw->phy.media_type) { 267 1.8 msaitoh case ixgbe_media_type_backplane: 268 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */ 269 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp); 270 1.8 msaitoh if (ret_val != IXGBE_SUCCESS) 271 1.8 msaitoh goto out; 272 1.8 msaitoh 273 1.14 msaitoh /* fall through - only backplane uses autoc */ 274 1.5 msaitoh case ixgbe_media_type_fiber_fixed: 275 1.8 msaitoh case ixgbe_media_type_fiber_qsfp: 276 1.4 msaitoh case ixgbe_media_type_fiber: 277 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 278 1.8 msaitoh 279 1.4 msaitoh break; 280 1.4 msaitoh case ixgbe_media_type_copper: 281 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 282 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu); 283 1.4 msaitoh break; 284 1.4 msaitoh default: 285 1.4 msaitoh break; 286 1.4 msaitoh } 287 1.4 msaitoh 288 1.4 msaitoh /* 289 1.4 msaitoh * The possible values of fc.requested_mode are: 290 1.4 msaitoh * 0: Flow control is completely disabled 291 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames, 292 1.4 msaitoh * but not send pause frames). 293 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but 294 1.4 msaitoh * we do not support receiving pause frames). 295 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled. 296 1.4 msaitoh * other: Invalid. 297 1.4 msaitoh */ 298 1.4 msaitoh switch (hw->fc.requested_mode) { 299 1.4 msaitoh case ixgbe_fc_none: 300 1.4 msaitoh /* Flow control completely disabled by software override. */ 301 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 302 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) 303 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 304 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE); 305 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper) 306 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 307 1.4 msaitoh break; 308 1.4 msaitoh case ixgbe_fc_tx_pause: 309 1.4 msaitoh /* 310 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is 311 1.4 msaitoh * disabled by software override. 312 1.4 msaitoh */ 313 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE; 314 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 315 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) { 316 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 317 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 318 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) { 319 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE; 320 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 321 1.4 msaitoh } 322 1.4 msaitoh break; 323 1.4 msaitoh case ixgbe_fc_rx_pause: 324 1.4 msaitoh /* 325 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is 326 1.4 msaitoh * disabled by software override. Since there really 327 1.4 msaitoh * isn't a way to advertise that we are capable of RX 328 1.4 msaitoh * Pause ONLY, we will advertise that we support both 329 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall 330 1.4 msaitoh * through to the fc_full statement. Later, we will 331 1.4 msaitoh * disable the adapter's ability to send PAUSE frames. 332 1.4 msaitoh */ 333 1.4 msaitoh case ixgbe_fc_full: 334 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */ 335 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 336 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) 337 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 338 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE; 339 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper) 340 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 341 1.4 msaitoh break; 342 1.4 msaitoh default: 343 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 344 1.6 msaitoh "Flow control param set incorrectly\n"); 345 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG; 346 1.4 msaitoh goto out; 347 1.4 msaitoh break; 348 1.4 msaitoh } 349 1.4 msaitoh 350 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) { 351 1.4 msaitoh /* 352 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY; 353 1.4 msaitoh * the MAC will advertise clause 37 flow control. 354 1.4 msaitoh */ 355 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 356 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 357 1.4 msaitoh 358 1.4 msaitoh /* Disable AN timeout */ 359 1.4 msaitoh if (hw->fc.strict_ieee) 360 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 361 1.4 msaitoh 362 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 363 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 364 1.4 msaitoh } 365 1.4 msaitoh 366 1.4 msaitoh /* 367 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane 368 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register. 369 1.4 msaitoh * 370 1.4 msaitoh */ 371 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) { 372 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART; 373 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked); 374 1.8 msaitoh if (ret_val) 375 1.8 msaitoh goto out; 376 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 377 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) { 378 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 379 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu); 380 1.4 msaitoh } 381 1.4 msaitoh 382 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 383 1.4 msaitoh out: 384 1.4 msaitoh return ret_val; 385 1.4 msaitoh } 386 1.4 msaitoh 387 1.4 msaitoh /** 388 1.38 msaitoh * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 389 1.38 msaitoh * @hw: pointer to hardware structure 390 1.1 dyoung * 391 1.38 msaitoh * Starts the hardware by filling the bus info structure and media type, clears 392 1.38 msaitoh * all on chip counters, initializes receive address registers, multicast 393 1.38 msaitoh * table, VLAN filter table, calls routine to set up link and flow control 394 1.38 msaitoh * settings, and leaves transmit and receive units disabled and uninitialized 395 1.1 dyoung **/ 396 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 397 1.1 dyoung { 398 1.4 msaitoh s32 ret_val; 399 1.1 dyoung u32 ctrl_ext; 400 1.14 msaitoh u16 device_caps; 401 1.1 dyoung 402 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic"); 403 1.1 dyoung 404 1.1 dyoung /* Set the media type */ 405 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw); 406 1.1 dyoung 407 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */ 408 1.1 dyoung 409 1.1 dyoung /* Clear the VLAN filter table */ 410 1.1 dyoung hw->mac.ops.clear_vfta(hw); 411 1.1 dyoung 412 1.1 dyoung /* Clear statistics registers */ 413 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw); 414 1.1 dyoung 415 1.1 dyoung /* Set No Snoop Disable */ 416 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 417 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 419 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 420 1.1 dyoung 421 1.1 dyoung /* Setup flow control */ 422 1.4 msaitoh ret_val = ixgbe_setup_fc(hw); 423 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) { 424 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val); 425 1.14 msaitoh return ret_val; 426 1.14 msaitoh } 427 1.14 msaitoh 428 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */ 429 1.14 msaitoh switch (hw->mac.type) { 430 1.14 msaitoh case ixgbe_mac_82599EB: 431 1.14 msaitoh case ixgbe_mac_X550EM_x: 432 1.14 msaitoh case ixgbe_mac_X550EM_a: 433 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps); 434 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR) 435 1.14 msaitoh hw->need_crosstalk_fix = FALSE; 436 1.14 msaitoh else 437 1.14 msaitoh hw->need_crosstalk_fix = TRUE; 438 1.14 msaitoh break; 439 1.14 msaitoh default: 440 1.14 msaitoh hw->need_crosstalk_fix = FALSE; 441 1.14 msaitoh break; 442 1.14 msaitoh } 443 1.1 dyoung 444 1.1 dyoung /* Clear adapter stopped flag */ 445 1.1 dyoung hw->adapter_stopped = FALSE; 446 1.1 dyoung 447 1.14 msaitoh return IXGBE_SUCCESS; 448 1.1 dyoung } 449 1.1 dyoung 450 1.1 dyoung /** 451 1.38 msaitoh * ixgbe_start_hw_gen2 - Init sequence for common device family 452 1.38 msaitoh * @hw: pointer to hw structure 453 1.1 dyoung * 454 1.1 dyoung * Performs the init sequence common to the second generation 455 1.1 dyoung * of 10 GbE devices. 456 1.1 dyoung * Devices in the second generation: 457 1.38 msaitoh * 82599 458 1.38 msaitoh * X540 459 1.1 dyoung **/ 460 1.35 msaitoh void ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 461 1.1 dyoung { 462 1.1 dyoung u32 i; 463 1.1 dyoung u32 regval; 464 1.1 dyoung 465 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2"); 466 1.27 msaitoh 467 1.1 dyoung /* Clear the rate limiters */ 468 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) { 469 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 470 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 471 1.1 dyoung } 472 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 473 1.1 dyoung 474 1.1 dyoung /* Disable relaxed ordering */ 475 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) { 476 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 477 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 478 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 479 1.1 dyoung } 480 1.1 dyoung 481 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) { 482 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 483 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 484 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 485 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 486 1.1 dyoung } 487 1.1 dyoung } 488 1.1 dyoung 489 1.1 dyoung /** 490 1.38 msaitoh * ixgbe_init_hw_generic - Generic hardware initialization 491 1.38 msaitoh * @hw: pointer to hardware structure 492 1.1 dyoung * 493 1.38 msaitoh * Initialize the hardware by resetting the hardware, filling the bus info 494 1.38 msaitoh * structure and media type, clears all on chip counters, initializes receive 495 1.38 msaitoh * address registers, multicast table, VLAN filter table, calls routine to set 496 1.38 msaitoh * up link and flow control settings, and leaves transmit and receive units 497 1.38 msaitoh * disabled and uninitialized 498 1.1 dyoung **/ 499 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 500 1.1 dyoung { 501 1.1 dyoung s32 status; 502 1.1 dyoung 503 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic"); 504 1.1 dyoung 505 1.1 dyoung /* Reset the hardware */ 506 1.1 dyoung status = hw->mac.ops.reset_hw(hw); 507 1.1 dyoung 508 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) { 509 1.1 dyoung /* Start the HW */ 510 1.1 dyoung status = hw->mac.ops.start_hw(hw); 511 1.1 dyoung } 512 1.1 dyoung 513 1.14 msaitoh /* Initialize the LED link active for LED blink support */ 514 1.14 msaitoh if (hw->mac.ops.init_led_link_act) 515 1.14 msaitoh hw->mac.ops.init_led_link_act(hw); 516 1.14 msaitoh 517 1.14 msaitoh if (status != IXGBE_SUCCESS) 518 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status); 519 1.14 msaitoh 520 1.1 dyoung return status; 521 1.1 dyoung } 522 1.1 dyoung 523 1.1 dyoung /** 524 1.38 msaitoh * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 525 1.38 msaitoh * @hw: pointer to hardware structure 526 1.1 dyoung * 527 1.38 msaitoh * Clears all hardware statistics counters by reading them from the hardware 528 1.38 msaitoh * Statistics counters are clear on read. 529 1.1 dyoung **/ 530 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 531 1.1 dyoung { 532 1.1 dyoung u16 i = 0; 533 1.1 dyoung 534 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic"); 535 1.1 dyoung 536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS); 537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC); 538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC); 539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC); 540 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550) 541 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC); 542 1.1 dyoung for (i = 0; i < 8; i++) 543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i)); 544 1.1 dyoung 545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC); 546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC); 547 1.44 msaitoh if (hw->mac.type == ixgbe_mac_X550EM_a) 548 1.44 msaitoh IXGBE_READ_REG(hw, IXGBE_LINK_DN_CNT); 549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC); 550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC); 551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 552 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) { 553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 555 1.1 dyoung } else { 556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC); 557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 558 1.1 dyoung } 559 1.1 dyoung 560 1.1 dyoung for (i = 0; i < 8; i++) { 561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 563 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) { 564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 566 1.1 dyoung } else { 567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 569 1.1 dyoung } 570 1.1 dyoung } 571 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) 572 1.1 dyoung for (i = 0; i < 8; i++) 573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64); 575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127); 576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255); 577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511); 578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023); 579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522); 580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC); 581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC); 582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC); 583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC); 584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL); 585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH); 586 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL); 587 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH); 588 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB) 589 1.3 msaitoh for (i = 0; i < 8; i++) 590 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC); 592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC); 593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC); 594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC); 595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC); 596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC); 597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC); 598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL); 599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH); 600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR); 601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT); 602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64); 603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127); 604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255); 605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511); 606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023); 607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522); 608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC); 609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC); 610 1.1 dyoung for (i = 0; i < 16; i++) { 611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 613 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) { 614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 619 1.1 dyoung } else { 620 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 621 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 622 1.1 dyoung } 623 1.1 dyoung } 624 1.1 dyoung 625 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) { 626 1.3 msaitoh if (hw->phy.id == 0) 627 1.3 msaitoh ixgbe_identify_phy(hw); 628 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, 629 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i); 630 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, 631 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i); 632 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, 633 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i); 634 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, 635 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i); 636 1.3 msaitoh } 637 1.3 msaitoh 638 1.1 dyoung return IXGBE_SUCCESS; 639 1.1 dyoung } 640 1.1 dyoung 641 1.1 dyoung /** 642 1.38 msaitoh * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 643 1.38 msaitoh * @hw: pointer to hardware structure 644 1.38 msaitoh * @pba_num: stores the part number string from the EEPROM 645 1.38 msaitoh * @pba_num_size: part number string buffer length 646 1.1 dyoung * 647 1.38 msaitoh * Reads the part number string from the EEPROM. 648 1.1 dyoung **/ 649 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 650 1.3 msaitoh u32 pba_num_size) 651 1.1 dyoung { 652 1.1 dyoung s32 ret_val; 653 1.1 dyoung u16 data; 654 1.1 dyoung u16 pba_ptr; 655 1.1 dyoung u16 offset; 656 1.1 dyoung u16 length; 657 1.1 dyoung 658 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic"); 659 1.1 dyoung 660 1.1 dyoung if (pba_num == NULL) { 661 1.1 dyoung DEBUGOUT("PBA string buffer was null\n"); 662 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT; 663 1.1 dyoung } 664 1.1 dyoung 665 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 666 1.1 dyoung if (ret_val) { 667 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 668 1.1 dyoung return ret_val; 669 1.1 dyoung } 670 1.1 dyoung 671 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 672 1.1 dyoung if (ret_val) { 673 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 674 1.1 dyoung return ret_val; 675 1.1 dyoung } 676 1.1 dyoung 677 1.1 dyoung /* 678 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which 679 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number 680 1.1 dyoung * and we can decode it into an ascii string 681 1.1 dyoung */ 682 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) { 683 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n"); 684 1.1 dyoung 685 1.1 dyoung /* we will need 11 characters to store the PBA */ 686 1.1 dyoung if (pba_num_size < 11) { 687 1.1 dyoung DEBUGOUT("PBA string buffer too small\n"); 688 1.1 dyoung return IXGBE_ERR_NO_SPACE; 689 1.1 dyoung } 690 1.1 dyoung 691 1.1 dyoung /* extract hex string from data and pba_ptr */ 692 1.1 dyoung pba_num[0] = (data >> 12) & 0xF; 693 1.1 dyoung pba_num[1] = (data >> 8) & 0xF; 694 1.1 dyoung pba_num[2] = (data >> 4) & 0xF; 695 1.1 dyoung pba_num[3] = data & 0xF; 696 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF; 697 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF; 698 1.1 dyoung pba_num[6] = '-'; 699 1.1 dyoung pba_num[7] = 0; 700 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF; 701 1.1 dyoung pba_num[9] = pba_ptr & 0xF; 702 1.1 dyoung 703 1.1 dyoung /* put a null character on the end of our string */ 704 1.1 dyoung pba_num[10] = '\0'; 705 1.1 dyoung 706 1.1 dyoung /* switch all the data but the '-' to hex char */ 707 1.1 dyoung for (offset = 0; offset < 10; offset++) { 708 1.1 dyoung if (pba_num[offset] < 0xA) 709 1.1 dyoung pba_num[offset] += '0'; 710 1.1 dyoung else if (pba_num[offset] < 0x10) 711 1.1 dyoung pba_num[offset] += 'A' - 0xA; 712 1.1 dyoung } 713 1.1 dyoung 714 1.1 dyoung return IXGBE_SUCCESS; 715 1.1 dyoung } 716 1.1 dyoung 717 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 718 1.1 dyoung if (ret_val) { 719 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 720 1.1 dyoung return ret_val; 721 1.1 dyoung } 722 1.1 dyoung 723 1.1 dyoung if (length == 0xFFFF || length == 0) { 724 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n"); 725 1.1 dyoung return IXGBE_ERR_PBA_SECTION; 726 1.1 dyoung } 727 1.1 dyoung 728 1.1 dyoung /* check if pba_num buffer is big enough */ 729 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) { 730 1.1 dyoung DEBUGOUT("PBA string buffer too small\n"); 731 1.1 dyoung return IXGBE_ERR_NO_SPACE; 732 1.1 dyoung } 733 1.1 dyoung 734 1.1 dyoung /* trim pba length from start of string */ 735 1.1 dyoung pba_ptr++; 736 1.1 dyoung length--; 737 1.1 dyoung 738 1.1 dyoung for (offset = 0; offset < length; offset++) { 739 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 740 1.1 dyoung if (ret_val) { 741 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 742 1.1 dyoung return ret_val; 743 1.1 dyoung } 744 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8); 745 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 746 1.1 dyoung } 747 1.1 dyoung pba_num[offset * 2] = '\0'; 748 1.1 dyoung 749 1.1 dyoung return IXGBE_SUCCESS; 750 1.1 dyoung } 751 1.1 dyoung 752 1.1 dyoung /** 753 1.38 msaitoh * ixgbe_read_pba_num_generic - Reads part number from EEPROM 754 1.38 msaitoh * @hw: pointer to hardware structure 755 1.38 msaitoh * @pba_num: stores the part number from the EEPROM 756 1.1 dyoung * 757 1.38 msaitoh * Reads the part number from the EEPROM. 758 1.1 dyoung **/ 759 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) 760 1.1 dyoung { 761 1.1 dyoung s32 ret_val; 762 1.1 dyoung u16 data; 763 1.1 dyoung 764 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic"); 765 1.1 dyoung 766 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 767 1.1 dyoung if (ret_val) { 768 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 769 1.1 dyoung return ret_val; 770 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) { 771 1.1 dyoung DEBUGOUT("NVM Not supported\n"); 772 1.1 dyoung return IXGBE_NOT_IMPLEMENTED; 773 1.1 dyoung } 774 1.1 dyoung *pba_num = (u32)(data << 16); 775 1.1 dyoung 776 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); 777 1.1 dyoung if (ret_val) { 778 1.1 dyoung DEBUGOUT("NVM Read Error\n"); 779 1.1 dyoung return ret_val; 780 1.1 dyoung } 781 1.34 msaitoh *pba_num |= (u32)data; 782 1.1 dyoung 783 1.1 dyoung return IXGBE_SUCCESS; 784 1.1 dyoung } 785 1.1 dyoung 786 1.1 dyoung /** 787 1.38 msaitoh * ixgbe_read_pba_raw 788 1.38 msaitoh * @hw: pointer to the HW structure 789 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image 790 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words 791 1.38 msaitoh * @max_pba_block_size: PBA block size limit 792 1.38 msaitoh * @pba: pointer to output PBA structure 793 1.5 msaitoh * 794 1.38 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL. 795 1.38 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL. 796 1.5 msaitoh * 797 1.5 msaitoh **/ 798 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 799 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size, 800 1.5 msaitoh struct ixgbe_pba *pba) 801 1.5 msaitoh { 802 1.5 msaitoh s32 ret_val; 803 1.5 msaitoh u16 pba_block_size; 804 1.5 msaitoh 805 1.5 msaitoh if (pba == NULL) 806 1.5 msaitoh return IXGBE_ERR_PARAM; 807 1.5 msaitoh 808 1.5 msaitoh if (eeprom_buf == NULL) { 809 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 810 1.5 msaitoh &pba->word[0]); 811 1.5 msaitoh if (ret_val) 812 1.5 msaitoh return ret_val; 813 1.5 msaitoh } else { 814 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 815 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 816 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 817 1.5 msaitoh } else { 818 1.5 msaitoh return IXGBE_ERR_PARAM; 819 1.5 msaitoh } 820 1.5 msaitoh } 821 1.5 msaitoh 822 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 823 1.5 msaitoh if (pba->pba_block == NULL) 824 1.5 msaitoh return IXGBE_ERR_PARAM; 825 1.5 msaitoh 826 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf, 827 1.5 msaitoh eeprom_buf_size, 828 1.5 msaitoh &pba_block_size); 829 1.5 msaitoh if (ret_val) 830 1.5 msaitoh return ret_val; 831 1.5 msaitoh 832 1.5 msaitoh if (pba_block_size > max_pba_block_size) 833 1.5 msaitoh return IXGBE_ERR_PARAM; 834 1.5 msaitoh 835 1.5 msaitoh if (eeprom_buf == NULL) { 836 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1], 837 1.5 msaitoh pba_block_size, 838 1.5 msaitoh pba->pba_block); 839 1.5 msaitoh if (ret_val) 840 1.5 msaitoh return ret_val; 841 1.5 msaitoh } else { 842 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] + 843 1.8 msaitoh pba_block_size)) { 844 1.5 msaitoh memcpy(pba->pba_block, 845 1.5 msaitoh &eeprom_buf[pba->word[1]], 846 1.5 msaitoh pba_block_size * sizeof(u16)); 847 1.5 msaitoh } else { 848 1.5 msaitoh return IXGBE_ERR_PARAM; 849 1.5 msaitoh } 850 1.5 msaitoh } 851 1.5 msaitoh } 852 1.5 msaitoh 853 1.5 msaitoh return IXGBE_SUCCESS; 854 1.5 msaitoh } 855 1.5 msaitoh 856 1.5 msaitoh /** 857 1.38 msaitoh * ixgbe_write_pba_raw 858 1.38 msaitoh * @hw: pointer to the HW structure 859 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image 860 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words 861 1.38 msaitoh * @pba: pointer to PBA structure 862 1.5 msaitoh * 863 1.38 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL. 864 1.38 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL. 865 1.5 msaitoh * 866 1.5 msaitoh **/ 867 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 868 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba) 869 1.5 msaitoh { 870 1.5 msaitoh s32 ret_val; 871 1.5 msaitoh 872 1.5 msaitoh if (pba == NULL) 873 1.5 msaitoh return IXGBE_ERR_PARAM; 874 1.5 msaitoh 875 1.5 msaitoh if (eeprom_buf == NULL) { 876 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2, 877 1.5 msaitoh &pba->word[0]); 878 1.5 msaitoh if (ret_val) 879 1.5 msaitoh return ret_val; 880 1.5 msaitoh } else { 881 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 882 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0]; 883 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1]; 884 1.5 msaitoh } else { 885 1.5 msaitoh return IXGBE_ERR_PARAM; 886 1.5 msaitoh } 887 1.5 msaitoh } 888 1.5 msaitoh 889 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 890 1.5 msaitoh if (pba->pba_block == NULL) 891 1.5 msaitoh return IXGBE_ERR_PARAM; 892 1.5 msaitoh 893 1.5 msaitoh if (eeprom_buf == NULL) { 894 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1], 895 1.5 msaitoh pba->pba_block[0], 896 1.5 msaitoh pba->pba_block); 897 1.5 msaitoh if (ret_val) 898 1.5 msaitoh return ret_val; 899 1.5 msaitoh } else { 900 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] + 901 1.5 msaitoh pba->pba_block[0])) { 902 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]], 903 1.5 msaitoh pba->pba_block, 904 1.5 msaitoh pba->pba_block[0] * sizeof(u16)); 905 1.5 msaitoh } else { 906 1.5 msaitoh return IXGBE_ERR_PARAM; 907 1.5 msaitoh } 908 1.5 msaitoh } 909 1.5 msaitoh } 910 1.5 msaitoh 911 1.5 msaitoh return IXGBE_SUCCESS; 912 1.5 msaitoh } 913 1.5 msaitoh 914 1.5 msaitoh /** 915 1.38 msaitoh * ixgbe_get_pba_block_size 916 1.38 msaitoh * @hw: pointer to the HW structure 917 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image 918 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words 919 1.38 msaitoh * @pba_data_size: pointer to output variable 920 1.38 msaitoh * 921 1.38 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM 922 1.38 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical 923 1.38 msaitoh * EEPROM device. 924 1.5 msaitoh * 925 1.5 msaitoh **/ 926 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf, 927 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size) 928 1.5 msaitoh { 929 1.5 msaitoh s32 ret_val; 930 1.5 msaitoh u16 pba_word[2]; 931 1.5 msaitoh u16 length; 932 1.5 msaitoh 933 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size"); 934 1.5 msaitoh 935 1.5 msaitoh if (eeprom_buf == NULL) { 936 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 937 1.5 msaitoh &pba_word[0]); 938 1.5 msaitoh if (ret_val) 939 1.5 msaitoh return ret_val; 940 1.5 msaitoh } else { 941 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 942 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 943 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 944 1.5 msaitoh } else { 945 1.5 msaitoh return IXGBE_ERR_PARAM; 946 1.5 msaitoh } 947 1.5 msaitoh } 948 1.5 msaitoh 949 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) { 950 1.5 msaitoh if (eeprom_buf == NULL) { 951 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0, 952 1.5 msaitoh &length); 953 1.5 msaitoh if (ret_val) 954 1.5 msaitoh return ret_val; 955 1.5 msaitoh } else { 956 1.5 msaitoh if (eeprom_buf_size > pba_word[1]) 957 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0]; 958 1.5 msaitoh else 959 1.5 msaitoh return IXGBE_ERR_PARAM; 960 1.5 msaitoh } 961 1.5 msaitoh 962 1.5 msaitoh if (length == 0xFFFF || length == 0) 963 1.5 msaitoh return IXGBE_ERR_PBA_SECTION; 964 1.5 msaitoh } else { 965 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */ 966 1.5 msaitoh length = 0; 967 1.5 msaitoh } 968 1.5 msaitoh 969 1.5 msaitoh if (pba_block_size != NULL) 970 1.5 msaitoh *pba_block_size = length; 971 1.5 msaitoh 972 1.5 msaitoh return IXGBE_SUCCESS; 973 1.5 msaitoh } 974 1.5 msaitoh 975 1.5 msaitoh /** 976 1.38 msaitoh * ixgbe_get_mac_addr_generic - Generic get MAC address 977 1.38 msaitoh * @hw: pointer to hardware structure 978 1.38 msaitoh * @mac_addr: Adapter MAC address 979 1.38 msaitoh * 980 1.38 msaitoh * Reads the adapter's MAC address from first Receive Address Register (RAR0) 981 1.38 msaitoh * A reset of the adapter must be performed prior to calling this function 982 1.38 msaitoh * in order for the MAC address to have been loaded from the EEPROM into RAR0 983 1.1 dyoung **/ 984 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 985 1.1 dyoung { 986 1.1 dyoung u32 rar_high; 987 1.1 dyoung u32 rar_low; 988 1.1 dyoung u16 i; 989 1.1 dyoung 990 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic"); 991 1.1 dyoung 992 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 993 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 994 1.1 dyoung 995 1.1 dyoung for (i = 0; i < 4; i++) 996 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8)); 997 1.1 dyoung 998 1.1 dyoung for (i = 0; i < 2; i++) 999 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8)); 1000 1.1 dyoung 1001 1.1 dyoung return IXGBE_SUCCESS; 1002 1.1 dyoung } 1003 1.1 dyoung 1004 1.1 dyoung /** 1005 1.38 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info 1006 1.38 msaitoh * @hw: pointer to hardware structure 1007 1.38 msaitoh * @link_status: the link status returned by the PCI config space 1008 1.1 dyoung * 1009 1.38 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure 1010 1.1 dyoung **/ 1011 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status) 1012 1.1 dyoung { 1013 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac; 1014 1.1 dyoung 1015 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown) 1016 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express; 1017 1.1 dyoung 1018 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) { 1019 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1: 1020 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1; 1021 1.1 dyoung break; 1022 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2: 1023 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2; 1024 1.1 dyoung break; 1025 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4: 1026 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4; 1027 1.1 dyoung break; 1028 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8: 1029 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8; 1030 1.1 dyoung break; 1031 1.1 dyoung default: 1032 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown; 1033 1.1 dyoung break; 1034 1.1 dyoung } 1035 1.1 dyoung 1036 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) { 1037 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500: 1038 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500; 1039 1.1 dyoung break; 1040 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000: 1041 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000; 1042 1.1 dyoung break; 1043 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000: 1044 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000; 1045 1.4 msaitoh break; 1046 1.1 dyoung default: 1047 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown; 1048 1.1 dyoung break; 1049 1.1 dyoung } 1050 1.1 dyoung 1051 1.1 dyoung mac->ops.set_lan_id(hw); 1052 1.6 msaitoh } 1053 1.6 msaitoh 1054 1.6 msaitoh /** 1055 1.38 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info 1056 1.38 msaitoh * @hw: pointer to hardware structure 1057 1.6 msaitoh * 1058 1.38 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to 1059 1.38 msaitoh * store this data within the ixgbe_hw structure. 1060 1.6 msaitoh **/ 1061 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 1062 1.6 msaitoh { 1063 1.6 msaitoh u16 link_status; 1064 1.6 msaitoh 1065 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic"); 1066 1.6 msaitoh 1067 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */ 1068 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS); 1069 1.6 msaitoh 1070 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status); 1071 1.1 dyoung 1072 1.1 dyoung return IXGBE_SUCCESS; 1073 1.1 dyoung } 1074 1.1 dyoung 1075 1.1 dyoung /** 1076 1.38 msaitoh * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 1077 1.38 msaitoh * @hw: pointer to the HW structure 1078 1.1 dyoung * 1079 1.38 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps 1080 1.38 msaitoh * the port value if requested, and set MAC instance for devices that share 1081 1.38 msaitoh * CS4227. 1082 1.1 dyoung **/ 1083 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 1084 1.1 dyoung { 1085 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus; 1086 1.1 dyoung u32 reg; 1087 1.14 msaitoh u16 ee_ctrl_4; 1088 1.1 dyoung 1089 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie"); 1090 1.1 dyoung 1091 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 1092 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 1093 1.14 msaitoh bus->lan_id = (u8)bus->func; 1094 1.1 dyoung 1095 1.1 dyoung /* check for a port swap */ 1096 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 1097 1.1 dyoung if (reg & IXGBE_FACTPS_LFS) 1098 1.1 dyoung bus->func ^= 0x1; 1099 1.14 msaitoh 1100 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */ 1101 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) { 1102 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4); 1103 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >> 1104 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT; 1105 1.14 msaitoh } 1106 1.1 dyoung } 1107 1.1 dyoung 1108 1.1 dyoung /** 1109 1.38 msaitoh * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 1110 1.38 msaitoh * @hw: pointer to hardware structure 1111 1.1 dyoung * 1112 1.38 msaitoh * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 1113 1.38 msaitoh * disables transmit and receive units. The adapter_stopped flag is used by 1114 1.38 msaitoh * the shared code and drivers to determine if the adapter is in a stopped 1115 1.38 msaitoh * state and should not touch the hardware. 1116 1.1 dyoung **/ 1117 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 1118 1.1 dyoung { 1119 1.1 dyoung u32 reg_val; 1120 1.1 dyoung u16 i; 1121 1.1 dyoung 1122 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic"); 1123 1.1 dyoung 1124 1.1 dyoung /* 1125 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching 1126 1.1 dyoung * the hardware 1127 1.1 dyoung */ 1128 1.1 dyoung hw->adapter_stopped = TRUE; 1129 1.1 dyoung 1130 1.1 dyoung /* Disable the receive unit */ 1131 1.8 msaitoh ixgbe_disable_rx(hw); 1132 1.1 dyoung 1133 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */ 1134 1.19 knakahar /* 1135 1.19 knakahar * XXX 1136 1.19 knakahar * This function is called in the state of both interrupt disabled 1137 1.19 knakahar * and interrupt enabled, e.g. 1138 1.19 knakahar * + interrupt disabled case: 1139 1.30 msaitoh * - ixgbe_stop_locked() 1140 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here 1141 1.19 knakahar * - ixgbe_stop_adapter() 1142 1.19 knakahar * - hw->mac.ops.stop_adapter() 1143 1.19 knakahar * == this function 1144 1.19 knakahar * + interrupt enabled case: 1145 1.19 knakahar * - ixgbe_local_timer1() 1146 1.19 knakahar * - ixgbe_init_locked() 1147 1.19 knakahar * - ixgbe_stop_adapter() 1148 1.19 knakahar * - hw->mac.ops.stop_adapter() 1149 1.19 knakahar * == this function 1150 1.19 knakahar * Therefore, it causes nest status breaking to nest the status 1151 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must 1152 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr(). 1153 1.19 knakahar */ 1154 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back); 1155 1.1 dyoung 1156 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */ 1157 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR); 1158 1.1 dyoung 1159 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */ 1160 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++) 1161 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 1162 1.3 msaitoh 1163 1.3 msaitoh /* Disable the receive unit by stopping each queue */ 1164 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) { 1165 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 1166 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE; 1167 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH; 1168 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 1169 1.1 dyoung } 1170 1.1 dyoung 1171 1.3 msaitoh /* flush all queues disables */ 1172 1.3 msaitoh IXGBE_WRITE_FLUSH(hw); 1173 1.3 msaitoh msec_delay(2); 1174 1.3 msaitoh 1175 1.1 dyoung /* 1176 1.45 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E primary 1177 1.1 dyoung * access and verify no pending requests 1178 1.1 dyoung */ 1179 1.45 msaitoh return ixgbe_disable_pcie_primary(hw); 1180 1.1 dyoung } 1181 1.1 dyoung 1182 1.1 dyoung /** 1183 1.38 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity. 1184 1.38 msaitoh * @hw: pointer to hardware structure 1185 1.14 msaitoh * 1186 1.38 msaitoh * Store the index for the link active LED. This will be used to support 1187 1.38 msaitoh * blinking the LED. 1188 1.14 msaitoh **/ 1189 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw) 1190 1.14 msaitoh { 1191 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac; 1192 1.14 msaitoh u32 led_reg, led_mode; 1193 1.14 msaitoh u8 i; 1194 1.14 msaitoh 1195 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1196 1.14 msaitoh 1197 1.14 msaitoh /* Get LED link active from the LEDCTL register */ 1198 1.14 msaitoh for (i = 0; i < 4; i++) { 1199 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i); 1200 1.14 msaitoh 1201 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) == 1202 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) { 1203 1.14 msaitoh mac->led_link_act = i; 1204 1.14 msaitoh return IXGBE_SUCCESS; 1205 1.14 msaitoh } 1206 1.14 msaitoh } 1207 1.14 msaitoh 1208 1.14 msaitoh /* 1209 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use 1210 1.14 msaitoh * known MAC defaults. 1211 1.14 msaitoh */ 1212 1.14 msaitoh switch (hw->mac.type) { 1213 1.14 msaitoh case ixgbe_mac_X550EM_a: 1214 1.14 msaitoh case ixgbe_mac_X550EM_x: 1215 1.14 msaitoh mac->led_link_act = 1; 1216 1.14 msaitoh break; 1217 1.14 msaitoh default: 1218 1.14 msaitoh mac->led_link_act = 2; 1219 1.14 msaitoh } 1220 1.14 msaitoh return IXGBE_SUCCESS; 1221 1.14 msaitoh } 1222 1.14 msaitoh 1223 1.14 msaitoh /** 1224 1.38 msaitoh * ixgbe_led_on_generic - Turns on the software controllable LEDs. 1225 1.38 msaitoh * @hw: pointer to hardware structure 1226 1.38 msaitoh * @index: led number to turn on 1227 1.1 dyoung **/ 1228 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 1229 1.1 dyoung { 1230 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1231 1.1 dyoung 1232 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic"); 1233 1.1 dyoung 1234 1.14 msaitoh if (index > 3) 1235 1.14 msaitoh return IXGBE_ERR_PARAM; 1236 1.14 msaitoh 1237 1.1 dyoung /* To turn on the LED, set mode to ON. */ 1238 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index); 1239 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 1240 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1241 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 1242 1.1 dyoung 1243 1.1 dyoung return IXGBE_SUCCESS; 1244 1.1 dyoung } 1245 1.1 dyoung 1246 1.1 dyoung /** 1247 1.38 msaitoh * ixgbe_led_off_generic - Turns off the software controllable LEDs. 1248 1.38 msaitoh * @hw: pointer to hardware structure 1249 1.38 msaitoh * @index: led number to turn off 1250 1.1 dyoung **/ 1251 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 1252 1.1 dyoung { 1253 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1254 1.1 dyoung 1255 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic"); 1256 1.1 dyoung 1257 1.14 msaitoh if (index > 3) 1258 1.14 msaitoh return IXGBE_ERR_PARAM; 1259 1.14 msaitoh 1260 1.1 dyoung /* To turn off the LED, set mode to OFF. */ 1261 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index); 1262 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 1263 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1264 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 1265 1.1 dyoung 1266 1.1 dyoung return IXGBE_SUCCESS; 1267 1.1 dyoung } 1268 1.1 dyoung 1269 1.1 dyoung /** 1270 1.38 msaitoh * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 1271 1.38 msaitoh * @hw: pointer to hardware structure 1272 1.1 dyoung * 1273 1.38 msaitoh * Initializes the EEPROM parameters ixgbe_eeprom_info within the 1274 1.38 msaitoh * ixgbe_hw struct in order to set up EEPROM access. 1275 1.1 dyoung **/ 1276 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 1277 1.1 dyoung { 1278 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 1279 1.1 dyoung u32 eec; 1280 1.1 dyoung u16 eeprom_size; 1281 1.1 dyoung 1282 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic"); 1283 1.1 dyoung 1284 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) { 1285 1.1 dyoung eeprom->type = ixgbe_eeprom_none; 1286 1.1 dyoung /* Set default semaphore delay to 10ms which is a well 1287 1.1 dyoung * tested value */ 1288 1.1 dyoung eeprom->semaphore_delay = 10; 1289 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */ 1290 1.3 msaitoh eeprom->word_page_size = 0; 1291 1.1 dyoung 1292 1.1 dyoung /* 1293 1.1 dyoung * Check for EEPROM present first. 1294 1.1 dyoung * If not present leave as none 1295 1.1 dyoung */ 1296 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1297 1.1 dyoung if (eec & IXGBE_EEC_PRES) { 1298 1.1 dyoung eeprom->type = ixgbe_eeprom_spi; 1299 1.1 dyoung 1300 1.1 dyoung /* 1301 1.1 dyoung * SPI EEPROM is assumed here. This code would need to 1302 1.1 dyoung * change if a future EEPROM is not SPI. 1303 1.1 dyoung */ 1304 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 1305 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT); 1306 1.1 dyoung eeprom->word_size = 1 << (eeprom_size + 1307 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT); 1308 1.1 dyoung } 1309 1.1 dyoung 1310 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE) 1311 1.1 dyoung eeprom->address_bits = 16; 1312 1.1 dyoung else 1313 1.1 dyoung eeprom->address_bits = 8; 1314 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: " 1315 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size, 1316 1.3 msaitoh eeprom->address_bits); 1317 1.1 dyoung } 1318 1.1 dyoung 1319 1.1 dyoung return IXGBE_SUCCESS; 1320 1.1 dyoung } 1321 1.1 dyoung 1322 1.1 dyoung /** 1323 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 1324 1.38 msaitoh * @hw: pointer to hardware structure 1325 1.38 msaitoh * @offset: offset within the EEPROM to write 1326 1.38 msaitoh * @words: number of word(s) 1327 1.38 msaitoh * @data: 16 bit word(s) to write to EEPROM 1328 1.3 msaitoh * 1329 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method 1330 1.3 msaitoh **/ 1331 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1332 1.3 msaitoh u16 words, u16 *data) 1333 1.3 msaitoh { 1334 1.3 msaitoh s32 status = IXGBE_SUCCESS; 1335 1.3 msaitoh u16 i, count; 1336 1.3 msaitoh 1337 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic"); 1338 1.3 msaitoh 1339 1.3 msaitoh hw->eeprom.ops.init_params(hw); 1340 1.3 msaitoh 1341 1.3 msaitoh if (words == 0) { 1342 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT; 1343 1.3 msaitoh goto out; 1344 1.3 msaitoh } 1345 1.3 msaitoh 1346 1.3 msaitoh if (offset + words > hw->eeprom.word_size) { 1347 1.3 msaitoh status = IXGBE_ERR_EEPROM; 1348 1.3 msaitoh goto out; 1349 1.3 msaitoh } 1350 1.3 msaitoh 1351 1.3 msaitoh /* 1352 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy 1353 1.3 msaitoh * initialization. It is worth to do that when we write large buffer. 1354 1.3 msaitoh */ 1355 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) && 1356 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 1357 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset); 1358 1.3 msaitoh 1359 1.3 msaitoh /* 1360 1.3 msaitoh * We cannot hold synchronization semaphores for too long 1361 1.3 msaitoh * to avoid other entity starvation. However it is more efficient 1362 1.3 msaitoh * to read in bursts than synchronizing access for each word. 1363 1.3 msaitoh */ 1364 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1365 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1366 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1367 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 1368 1.3 msaitoh count, &data[i]); 1369 1.3 msaitoh 1370 1.3 msaitoh if (status != IXGBE_SUCCESS) 1371 1.3 msaitoh break; 1372 1.3 msaitoh } 1373 1.3 msaitoh 1374 1.3 msaitoh out: 1375 1.3 msaitoh return status; 1376 1.3 msaitoh } 1377 1.3 msaitoh 1378 1.3 msaitoh /** 1379 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 1380 1.38 msaitoh * @hw: pointer to hardware structure 1381 1.38 msaitoh * @offset: offset within the EEPROM to be written to 1382 1.38 msaitoh * @words: number of word(s) 1383 1.38 msaitoh * @data: 16 bit word(s) to be written to the EEPROM 1384 1.3 msaitoh * 1385 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the 1386 1.38 msaitoh * EEPROM will most likely contain an invalid checksum. 1387 1.3 msaitoh **/ 1388 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1389 1.3 msaitoh u16 words, u16 *data) 1390 1.3 msaitoh { 1391 1.3 msaitoh s32 status; 1392 1.3 msaitoh u16 word; 1393 1.3 msaitoh u16 page_size; 1394 1.3 msaitoh u16 i; 1395 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 1396 1.3 msaitoh 1397 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang"); 1398 1.3 msaitoh 1399 1.3 msaitoh /* Prepare the EEPROM for writing */ 1400 1.3 msaitoh status = ixgbe_acquire_eeprom(hw); 1401 1.3 msaitoh 1402 1.3 msaitoh if (status == IXGBE_SUCCESS) { 1403 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1404 1.3 msaitoh ixgbe_release_eeprom(hw); 1405 1.3 msaitoh status = IXGBE_ERR_EEPROM; 1406 1.3 msaitoh } 1407 1.3 msaitoh } 1408 1.3 msaitoh 1409 1.3 msaitoh if (status == IXGBE_SUCCESS) { 1410 1.3 msaitoh for (i = 0; i < words; i++) { 1411 1.3 msaitoh ixgbe_standby_eeprom(hw); 1412 1.3 msaitoh 1413 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */ 1414 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, 1415 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI, 1416 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS); 1417 1.3 msaitoh 1418 1.3 msaitoh ixgbe_standby_eeprom(hw); 1419 1.3 msaitoh 1420 1.3 msaitoh /* 1421 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded 1422 1.3 msaitoh * in the opcode 1423 1.3 msaitoh */ 1424 1.3 msaitoh if ((hw->eeprom.address_bits == 8) && 1425 1.3 msaitoh ((offset + i) >= 128)) 1426 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1427 1.3 msaitoh 1428 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */ 1429 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode, 1430 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS); 1431 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1432 1.3 msaitoh hw->eeprom.address_bits); 1433 1.3 msaitoh 1434 1.3 msaitoh page_size = hw->eeprom.word_page_size; 1435 1.3 msaitoh 1436 1.3 msaitoh /* Send the data in burst via SPI*/ 1437 1.3 msaitoh do { 1438 1.3 msaitoh word = data[i]; 1439 1.3 msaitoh word = (word >> 8) | (word << 8); 1440 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16); 1441 1.3 msaitoh 1442 1.3 msaitoh if (page_size == 0) 1443 1.3 msaitoh break; 1444 1.3 msaitoh 1445 1.3 msaitoh /* do not wrap around page */ 1446 1.3 msaitoh if (((offset + i) & (page_size - 1)) == 1447 1.3 msaitoh (page_size - 1)) 1448 1.3 msaitoh break; 1449 1.3 msaitoh } while (++i < words); 1450 1.3 msaitoh 1451 1.3 msaitoh ixgbe_standby_eeprom(hw); 1452 1.3 msaitoh msec_delay(10); 1453 1.3 msaitoh } 1454 1.3 msaitoh /* Done with writing - release the EEPROM */ 1455 1.3 msaitoh ixgbe_release_eeprom(hw); 1456 1.3 msaitoh } 1457 1.3 msaitoh 1458 1.3 msaitoh return status; 1459 1.3 msaitoh } 1460 1.3 msaitoh 1461 1.3 msaitoh /** 1462 1.38 msaitoh * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 1463 1.38 msaitoh * @hw: pointer to hardware structure 1464 1.38 msaitoh * @offset: offset within the EEPROM to be written to 1465 1.38 msaitoh * @data: 16 bit word to be written to the EEPROM 1466 1.1 dyoung * 1467 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the 1468 1.38 msaitoh * EEPROM will most likely contain an invalid checksum. 1469 1.1 dyoung **/ 1470 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1471 1.1 dyoung { 1472 1.1 dyoung s32 status; 1473 1.1 dyoung 1474 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic"); 1475 1.1 dyoung 1476 1.1 dyoung hw->eeprom.ops.init_params(hw); 1477 1.1 dyoung 1478 1.1 dyoung if (offset >= hw->eeprom.word_size) { 1479 1.1 dyoung status = IXGBE_ERR_EEPROM; 1480 1.1 dyoung goto out; 1481 1.1 dyoung } 1482 1.1 dyoung 1483 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 1484 1.3 msaitoh 1485 1.3 msaitoh out: 1486 1.3 msaitoh return status; 1487 1.3 msaitoh } 1488 1.3 msaitoh 1489 1.3 msaitoh /** 1490 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 1491 1.38 msaitoh * @hw: pointer to hardware structure 1492 1.38 msaitoh * @offset: offset within the EEPROM to be read 1493 1.38 msaitoh * @data: read 16 bit words(s) from EEPROM 1494 1.38 msaitoh * @words: number of word(s) 1495 1.3 msaitoh * 1496 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method 1497 1.3 msaitoh **/ 1498 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1499 1.3 msaitoh u16 words, u16 *data) 1500 1.3 msaitoh { 1501 1.3 msaitoh s32 status = IXGBE_SUCCESS; 1502 1.3 msaitoh u16 i, count; 1503 1.3 msaitoh 1504 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic"); 1505 1.3 msaitoh 1506 1.3 msaitoh hw->eeprom.ops.init_params(hw); 1507 1.3 msaitoh 1508 1.3 msaitoh if (words == 0) { 1509 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT; 1510 1.3 msaitoh goto out; 1511 1.3 msaitoh } 1512 1.3 msaitoh 1513 1.3 msaitoh if (offset + words > hw->eeprom.word_size) { 1514 1.3 msaitoh status = IXGBE_ERR_EEPROM; 1515 1.3 msaitoh goto out; 1516 1.3 msaitoh } 1517 1.3 msaitoh 1518 1.3 msaitoh /* 1519 1.3 msaitoh * We cannot hold synchronization semaphores for too long 1520 1.3 msaitoh * to avoid other entity starvation. However it is more efficient 1521 1.3 msaitoh * to read in bursts than synchronizing access for each word. 1522 1.3 msaitoh */ 1523 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1524 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1525 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1526 1.3 msaitoh 1527 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 1528 1.3 msaitoh count, &data[i]); 1529 1.3 msaitoh 1530 1.3 msaitoh if (status != IXGBE_SUCCESS) 1531 1.3 msaitoh break; 1532 1.3 msaitoh } 1533 1.3 msaitoh 1534 1.3 msaitoh out: 1535 1.3 msaitoh return status; 1536 1.3 msaitoh } 1537 1.3 msaitoh 1538 1.3 msaitoh /** 1539 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 1540 1.38 msaitoh * @hw: pointer to hardware structure 1541 1.38 msaitoh * @offset: offset within the EEPROM to be read 1542 1.38 msaitoh * @words: number of word(s) 1543 1.38 msaitoh * @data: read 16 bit word(s) from EEPROM 1544 1.3 msaitoh * 1545 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method 1546 1.3 msaitoh **/ 1547 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1548 1.3 msaitoh u16 words, u16 *data) 1549 1.3 msaitoh { 1550 1.3 msaitoh s32 status; 1551 1.3 msaitoh u16 word_in; 1552 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1553 1.3 msaitoh u16 i; 1554 1.3 msaitoh 1555 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang"); 1556 1.3 msaitoh 1557 1.3 msaitoh /* Prepare the EEPROM for reading */ 1558 1.1 dyoung status = ixgbe_acquire_eeprom(hw); 1559 1.1 dyoung 1560 1.1 dyoung if (status == IXGBE_SUCCESS) { 1561 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1562 1.1 dyoung ixgbe_release_eeprom(hw); 1563 1.1 dyoung status = IXGBE_ERR_EEPROM; 1564 1.1 dyoung } 1565 1.1 dyoung } 1566 1.1 dyoung 1567 1.1 dyoung if (status == IXGBE_SUCCESS) { 1568 1.3 msaitoh for (i = 0; i < words; i++) { 1569 1.3 msaitoh ixgbe_standby_eeprom(hw); 1570 1.3 msaitoh /* 1571 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded 1572 1.3 msaitoh * in the opcode 1573 1.3 msaitoh */ 1574 1.3 msaitoh if ((hw->eeprom.address_bits == 8) && 1575 1.3 msaitoh ((offset + i) >= 128)) 1576 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1577 1.3 msaitoh 1578 1.3 msaitoh /* Send the READ command (opcode + addr) */ 1579 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1580 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS); 1581 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1582 1.3 msaitoh hw->eeprom.address_bits); 1583 1.3 msaitoh 1584 1.3 msaitoh /* Read the data. */ 1585 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1586 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8); 1587 1.3 msaitoh } 1588 1.1 dyoung 1589 1.3 msaitoh /* End this read operation */ 1590 1.1 dyoung ixgbe_release_eeprom(hw); 1591 1.1 dyoung } 1592 1.1 dyoung 1593 1.1 dyoung return status; 1594 1.1 dyoung } 1595 1.1 dyoung 1596 1.1 dyoung /** 1597 1.38 msaitoh * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1598 1.38 msaitoh * @hw: pointer to hardware structure 1599 1.38 msaitoh * @offset: offset within the EEPROM to be read 1600 1.38 msaitoh * @data: read 16 bit value from EEPROM 1601 1.1 dyoung * 1602 1.38 msaitoh * Reads 16 bit value from EEPROM through bit-bang method 1603 1.1 dyoung **/ 1604 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1605 1.3 msaitoh u16 *data) 1606 1.1 dyoung { 1607 1.1 dyoung s32 status; 1608 1.1 dyoung 1609 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic"); 1610 1.1 dyoung 1611 1.1 dyoung hw->eeprom.ops.init_params(hw); 1612 1.1 dyoung 1613 1.1 dyoung if (offset >= hw->eeprom.word_size) { 1614 1.1 dyoung status = IXGBE_ERR_EEPROM; 1615 1.1 dyoung goto out; 1616 1.1 dyoung } 1617 1.1 dyoung 1618 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1619 1.3 msaitoh 1620 1.3 msaitoh out: 1621 1.3 msaitoh return status; 1622 1.3 msaitoh } 1623 1.3 msaitoh 1624 1.3 msaitoh /** 1625 1.38 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1626 1.38 msaitoh * @hw: pointer to hardware structure 1627 1.38 msaitoh * @offset: offset of word in the EEPROM to read 1628 1.38 msaitoh * @words: number of word(s) 1629 1.38 msaitoh * @data: 16 bit word(s) from the EEPROM 1630 1.3 msaitoh * 1631 1.38 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1632 1.3 msaitoh **/ 1633 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1634 1.3 msaitoh u16 words, u16 *data) 1635 1.3 msaitoh { 1636 1.3 msaitoh u32 eerd; 1637 1.3 msaitoh s32 status = IXGBE_SUCCESS; 1638 1.3 msaitoh u32 i; 1639 1.3 msaitoh 1640 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic"); 1641 1.3 msaitoh 1642 1.3 msaitoh hw->eeprom.ops.init_params(hw); 1643 1.3 msaitoh 1644 1.3 msaitoh if (words == 0) { 1645 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT; 1646 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1647 1.3 msaitoh goto out; 1648 1.3 msaitoh } 1649 1.3 msaitoh 1650 1.3 msaitoh if (offset >= hw->eeprom.word_size) { 1651 1.3 msaitoh status = IXGBE_ERR_EEPROM; 1652 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1653 1.3 msaitoh goto out; 1654 1.3 msaitoh } 1655 1.3 msaitoh 1656 1.3 msaitoh for (i = 0; i < words; i++) { 1657 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1658 1.3 msaitoh IXGBE_EEPROM_RW_REG_START; 1659 1.3 msaitoh 1660 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1661 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1662 1.1 dyoung 1663 1.3 msaitoh if (status == IXGBE_SUCCESS) { 1664 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1665 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA); 1666 1.3 msaitoh } else { 1667 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n"); 1668 1.3 msaitoh goto out; 1669 1.1 dyoung } 1670 1.1 dyoung } 1671 1.3 msaitoh out: 1672 1.3 msaitoh return status; 1673 1.3 msaitoh } 1674 1.1 dyoung 1675 1.3 msaitoh /** 1676 1.38 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1677 1.38 msaitoh * @hw: pointer to hardware structure 1678 1.38 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad 1679 1.38 msaitoh * 1680 1.38 msaitoh * Discover EEPROM page size by writing marching data at given offset. 1681 1.38 msaitoh * This function is called only when we are writing a new large buffer 1682 1.38 msaitoh * at given offset so the data would be overwritten anyway. 1683 1.3 msaitoh **/ 1684 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1685 1.3 msaitoh u16 offset) 1686 1.3 msaitoh { 1687 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1688 1.3 msaitoh s32 status = IXGBE_SUCCESS; 1689 1.3 msaitoh u16 i; 1690 1.3 msaitoh 1691 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic"); 1692 1.3 msaitoh 1693 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1694 1.3 msaitoh data[i] = i; 1695 1.1 dyoung 1696 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1697 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1698 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1699 1.3 msaitoh hw->eeprom.word_page_size = 0; 1700 1.3 msaitoh if (status != IXGBE_SUCCESS) 1701 1.3 msaitoh goto out; 1702 1.1 dyoung 1703 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1704 1.3 msaitoh if (status != IXGBE_SUCCESS) 1705 1.3 msaitoh goto out; 1706 1.1 dyoung 1707 1.3 msaitoh /* 1708 1.3 msaitoh * When writing in burst more than the actual page size 1709 1.3 msaitoh * EEPROM address wraps around current page. 1710 1.3 msaitoh */ 1711 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1712 1.1 dyoung 1713 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.", 1714 1.3 msaitoh hw->eeprom.word_page_size); 1715 1.1 dyoung out: 1716 1.1 dyoung return status; 1717 1.1 dyoung } 1718 1.1 dyoung 1719 1.1 dyoung /** 1720 1.38 msaitoh * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1721 1.38 msaitoh * @hw: pointer to hardware structure 1722 1.38 msaitoh * @offset: offset of word in the EEPROM to read 1723 1.38 msaitoh * @data: word read from the EEPROM 1724 1.1 dyoung * 1725 1.38 msaitoh * Reads a 16 bit word from the EEPROM using the EERD register. 1726 1.1 dyoung **/ 1727 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1728 1.1 dyoung { 1729 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1730 1.3 msaitoh } 1731 1.3 msaitoh 1732 1.3 msaitoh /** 1733 1.38 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1734 1.38 msaitoh * @hw: pointer to hardware structure 1735 1.38 msaitoh * @offset: offset of word in the EEPROM to write 1736 1.38 msaitoh * @words: number of word(s) 1737 1.38 msaitoh * @data: word(s) write to the EEPROM 1738 1.3 msaitoh * 1739 1.38 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1740 1.3 msaitoh **/ 1741 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1742 1.3 msaitoh u16 words, u16 *data) 1743 1.3 msaitoh { 1744 1.3 msaitoh u32 eewr; 1745 1.3 msaitoh s32 status = IXGBE_SUCCESS; 1746 1.3 msaitoh u16 i; 1747 1.1 dyoung 1748 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic"); 1749 1.1 dyoung 1750 1.1 dyoung hw->eeprom.ops.init_params(hw); 1751 1.1 dyoung 1752 1.3 msaitoh if (words == 0) { 1753 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT; 1754 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1755 1.3 msaitoh goto out; 1756 1.3 msaitoh } 1757 1.3 msaitoh 1758 1.1 dyoung if (offset >= hw->eeprom.word_size) { 1759 1.1 dyoung status = IXGBE_ERR_EEPROM; 1760 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1761 1.1 dyoung goto out; 1762 1.1 dyoung } 1763 1.1 dyoung 1764 1.3 msaitoh for (i = 0; i < words; i++) { 1765 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1766 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1767 1.3 msaitoh IXGBE_EEPROM_RW_REG_START; 1768 1.3 msaitoh 1769 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1770 1.3 msaitoh if (status != IXGBE_SUCCESS) { 1771 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n"); 1772 1.3 msaitoh goto out; 1773 1.3 msaitoh } 1774 1.1 dyoung 1775 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1776 1.1 dyoung 1777 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1778 1.3 msaitoh if (status != IXGBE_SUCCESS) { 1779 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n"); 1780 1.3 msaitoh goto out; 1781 1.3 msaitoh } 1782 1.3 msaitoh } 1783 1.1 dyoung 1784 1.1 dyoung out: 1785 1.1 dyoung return status; 1786 1.1 dyoung } 1787 1.1 dyoung 1788 1.1 dyoung /** 1789 1.38 msaitoh * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1790 1.38 msaitoh * @hw: pointer to hardware structure 1791 1.38 msaitoh * @offset: offset of word in the EEPROM to write 1792 1.38 msaitoh * @data: word write to the EEPROM 1793 1.1 dyoung * 1794 1.38 msaitoh * Write a 16 bit word to the EEPROM using the EEWR register. 1795 1.1 dyoung **/ 1796 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1797 1.1 dyoung { 1798 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1799 1.1 dyoung } 1800 1.1 dyoung 1801 1.1 dyoung /** 1802 1.38 msaitoh * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1803 1.38 msaitoh * @hw: pointer to hardware structure 1804 1.38 msaitoh * @ee_reg: EEPROM flag for polling 1805 1.1 dyoung * 1806 1.38 msaitoh * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1807 1.38 msaitoh * read or write is done respectively. 1808 1.1 dyoung **/ 1809 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1810 1.1 dyoung { 1811 1.1 dyoung u32 i; 1812 1.1 dyoung u32 reg; 1813 1.1 dyoung s32 status = IXGBE_ERR_EEPROM; 1814 1.1 dyoung 1815 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done"); 1816 1.1 dyoung 1817 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1818 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ) 1819 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1820 1.1 dyoung else 1821 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1822 1.1 dyoung 1823 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1824 1.1 dyoung status = IXGBE_SUCCESS; 1825 1.1 dyoung break; 1826 1.1 dyoung } 1827 1.1 dyoung usec_delay(5); 1828 1.1 dyoung } 1829 1.6 msaitoh 1830 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS) 1831 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING, 1832 1.6 msaitoh "EEPROM read/write done polling timed out"); 1833 1.6 msaitoh 1834 1.1 dyoung return status; 1835 1.1 dyoung } 1836 1.1 dyoung 1837 1.1 dyoung /** 1838 1.38 msaitoh * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1839 1.38 msaitoh * @hw: pointer to hardware structure 1840 1.1 dyoung * 1841 1.38 msaitoh * Prepares EEPROM for access using bit-bang method. This function should 1842 1.38 msaitoh * be called before issuing a command to the EEPROM. 1843 1.1 dyoung **/ 1844 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1845 1.1 dyoung { 1846 1.1 dyoung s32 status = IXGBE_SUCCESS; 1847 1.1 dyoung u32 eec; 1848 1.1 dyoung u32 i; 1849 1.1 dyoung 1850 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom"); 1851 1.1 dyoung 1852 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) 1853 1.3 msaitoh != IXGBE_SUCCESS) 1854 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC; 1855 1.1 dyoung 1856 1.1 dyoung if (status == IXGBE_SUCCESS) { 1857 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1858 1.1 dyoung 1859 1.1 dyoung /* Request EEPROM Access */ 1860 1.1 dyoung eec |= IXGBE_EEC_REQ; 1861 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1862 1.1 dyoung 1863 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1864 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1865 1.1 dyoung if (eec & IXGBE_EEC_GNT) 1866 1.1 dyoung break; 1867 1.1 dyoung usec_delay(5); 1868 1.1 dyoung } 1869 1.1 dyoung 1870 1.1 dyoung /* Release if grant not acquired */ 1871 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) { 1872 1.1 dyoung eec &= ~IXGBE_EEC_REQ; 1873 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1874 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n"); 1875 1.1 dyoung 1876 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1877 1.1 dyoung status = IXGBE_ERR_EEPROM; 1878 1.1 dyoung } 1879 1.1 dyoung 1880 1.1 dyoung /* Setup EEPROM for Read/Write */ 1881 1.1 dyoung if (status == IXGBE_SUCCESS) { 1882 1.1 dyoung /* Clear CS and SK */ 1883 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1884 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1885 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 1886 1.1 dyoung usec_delay(1); 1887 1.1 dyoung } 1888 1.1 dyoung } 1889 1.1 dyoung return status; 1890 1.1 dyoung } 1891 1.1 dyoung 1892 1.1 dyoung /** 1893 1.38 msaitoh * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1894 1.38 msaitoh * @hw: pointer to hardware structure 1895 1.1 dyoung * 1896 1.38 msaitoh * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1897 1.1 dyoung **/ 1898 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1899 1.1 dyoung { 1900 1.1 dyoung s32 status = IXGBE_ERR_EEPROM; 1901 1.1 dyoung u32 timeout = 2000; 1902 1.1 dyoung u32 i; 1903 1.1 dyoung u32 swsm; 1904 1.1 dyoung 1905 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore"); 1906 1.1 dyoung 1907 1.1 dyoung /* Get SMBI software semaphore between device drivers first */ 1908 1.1 dyoung for (i = 0; i < timeout; i++) { 1909 1.1 dyoung /* 1910 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be 1911 1.1 dyoung * set and we have the semaphore 1912 1.1 dyoung */ 1913 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1914 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) { 1915 1.1 dyoung status = IXGBE_SUCCESS; 1916 1.1 dyoung break; 1917 1.1 dyoung } 1918 1.1 dyoung usec_delay(50); 1919 1.1 dyoung } 1920 1.1 dyoung 1921 1.3 msaitoh if (i == timeout) { 1922 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore " 1923 1.3 msaitoh "not granted.\n"); 1924 1.3 msaitoh /* 1925 1.3 msaitoh * this release is particularly important because our attempts 1926 1.3 msaitoh * above to get the semaphore may have succeeded, and if there 1927 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore 1928 1.3 msaitoh * bits to free the driver to make progress 1929 1.3 msaitoh */ 1930 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw); 1931 1.3 msaitoh 1932 1.3 msaitoh usec_delay(50); 1933 1.3 msaitoh /* 1934 1.3 msaitoh * one last try 1935 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be 1936 1.3 msaitoh * set and we have the semaphore 1937 1.3 msaitoh */ 1938 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1939 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI)) 1940 1.3 msaitoh status = IXGBE_SUCCESS; 1941 1.3 msaitoh } 1942 1.3 msaitoh 1943 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1944 1.1 dyoung if (status == IXGBE_SUCCESS) { 1945 1.1 dyoung for (i = 0; i < timeout; i++) { 1946 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1947 1.1 dyoung 1948 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */ 1949 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI; 1950 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm); 1951 1.1 dyoung 1952 1.1 dyoung /* 1953 1.1 dyoung * If we set the bit successfully then we got the 1954 1.1 dyoung * semaphore. 1955 1.1 dyoung */ 1956 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1957 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI) 1958 1.1 dyoung break; 1959 1.1 dyoung 1960 1.1 dyoung usec_delay(50); 1961 1.1 dyoung } 1962 1.1 dyoung 1963 1.1 dyoung /* 1964 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore 1965 1.1 dyoung * was not granted because we don't have access to the EEPROM 1966 1.1 dyoung */ 1967 1.1 dyoung if (i >= timeout) { 1968 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING, 1969 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n"); 1970 1.1 dyoung ixgbe_release_eeprom_semaphore(hw); 1971 1.1 dyoung status = IXGBE_ERR_EEPROM; 1972 1.1 dyoung } 1973 1.1 dyoung } else { 1974 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING, 1975 1.6 msaitoh "Software semaphore SMBI between device drivers " 1976 1.6 msaitoh "not granted.\n"); 1977 1.1 dyoung } 1978 1.1 dyoung 1979 1.1 dyoung return status; 1980 1.1 dyoung } 1981 1.1 dyoung 1982 1.1 dyoung /** 1983 1.38 msaitoh * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1984 1.38 msaitoh * @hw: pointer to hardware structure 1985 1.1 dyoung * 1986 1.38 msaitoh * This function clears hardware semaphore bits. 1987 1.1 dyoung **/ 1988 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1989 1.1 dyoung { 1990 1.1 dyoung u32 swsm; 1991 1.1 dyoung 1992 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore"); 1993 1.1 dyoung 1994 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1995 1.1 dyoung 1996 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1997 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1998 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1999 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2000 1.1 dyoung } 2001 1.1 dyoung 2002 1.1 dyoung /** 2003 1.38 msaitoh * ixgbe_ready_eeprom - Polls for EEPROM ready 2004 1.38 msaitoh * @hw: pointer to hardware structure 2005 1.1 dyoung **/ 2006 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 2007 1.1 dyoung { 2008 1.1 dyoung s32 status = IXGBE_SUCCESS; 2009 1.1 dyoung u16 i; 2010 1.1 dyoung u8 spi_stat_reg; 2011 1.1 dyoung 2012 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom"); 2013 1.1 dyoung 2014 1.1 dyoung /* 2015 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The 2016 1.1 dyoung * EEPROM will signal that the command has been completed by clearing 2017 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within 2018 1.1 dyoung * 5 milliseconds, then error out. 2019 1.1 dyoung */ 2020 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 2021 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 2022 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS); 2023 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 2024 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 2025 1.1 dyoung break; 2026 1.1 dyoung 2027 1.1 dyoung usec_delay(5); 2028 1.1 dyoung ixgbe_standby_eeprom(hw); 2029 1.11 msaitoh } 2030 1.1 dyoung 2031 1.1 dyoung /* 2032 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V 2033 1.1 dyoung * devices (and only 0-5mSec on 5V devices) 2034 1.1 dyoung */ 2035 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 2036 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n"); 2037 1.1 dyoung status = IXGBE_ERR_EEPROM; 2038 1.1 dyoung } 2039 1.1 dyoung 2040 1.1 dyoung return status; 2041 1.1 dyoung } 2042 1.1 dyoung 2043 1.1 dyoung /** 2044 1.38 msaitoh * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 2045 1.38 msaitoh * @hw: pointer to hardware structure 2046 1.1 dyoung **/ 2047 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 2048 1.1 dyoung { 2049 1.1 dyoung u32 eec; 2050 1.1 dyoung 2051 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom"); 2052 1.1 dyoung 2053 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2054 1.1 dyoung 2055 1.1 dyoung /* Toggle CS to flush commands */ 2056 1.1 dyoung eec |= IXGBE_EEC_CS; 2057 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2058 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2059 1.1 dyoung usec_delay(1); 2060 1.1 dyoung eec &= ~IXGBE_EEC_CS; 2061 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2062 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2063 1.1 dyoung usec_delay(1); 2064 1.1 dyoung } 2065 1.1 dyoung 2066 1.1 dyoung /** 2067 1.38 msaitoh * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 2068 1.38 msaitoh * @hw: pointer to hardware structure 2069 1.38 msaitoh * @data: data to send to the EEPROM 2070 1.38 msaitoh * @count: number of bits to shift out 2071 1.1 dyoung **/ 2072 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 2073 1.3 msaitoh u16 count) 2074 1.1 dyoung { 2075 1.1 dyoung u32 eec; 2076 1.1 dyoung u32 mask; 2077 1.1 dyoung u32 i; 2078 1.1 dyoung 2079 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits"); 2080 1.1 dyoung 2081 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2082 1.1 dyoung 2083 1.1 dyoung /* 2084 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM 2085 1.1 dyoung * one bit at a time. Determine the starting bit based on count 2086 1.1 dyoung */ 2087 1.1 dyoung mask = 0x01 << (count - 1); 2088 1.1 dyoung 2089 1.1 dyoung for (i = 0; i < count; i++) { 2090 1.1 dyoung /* 2091 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a 2092 1.1 dyoung * "1", and then raising and then lowering the clock (the SK 2093 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is 2094 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then 2095 1.1 dyoung * raising and then lowering the clock. 2096 1.1 dyoung */ 2097 1.1 dyoung if (data & mask) 2098 1.1 dyoung eec |= IXGBE_EEC_DI; 2099 1.1 dyoung else 2100 1.1 dyoung eec &= ~IXGBE_EEC_DI; 2101 1.1 dyoung 2102 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2103 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2104 1.1 dyoung 2105 1.1 dyoung usec_delay(1); 2106 1.1 dyoung 2107 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec); 2108 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec); 2109 1.1 dyoung 2110 1.1 dyoung /* 2111 1.1 dyoung * Shift mask to signify next bit of data to shift in to the 2112 1.1 dyoung * EEPROM 2113 1.1 dyoung */ 2114 1.1 dyoung mask = mask >> 1; 2115 1.11 msaitoh } 2116 1.1 dyoung 2117 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */ 2118 1.1 dyoung eec &= ~IXGBE_EEC_DI; 2119 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2120 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2121 1.1 dyoung } 2122 1.1 dyoung 2123 1.1 dyoung /** 2124 1.38 msaitoh * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 2125 1.38 msaitoh * @hw: pointer to hardware structure 2126 1.38 msaitoh * @count: number of bits to shift 2127 1.1 dyoung **/ 2128 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 2129 1.1 dyoung { 2130 1.1 dyoung u32 eec; 2131 1.1 dyoung u32 i; 2132 1.1 dyoung u16 data = 0; 2133 1.1 dyoung 2134 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits"); 2135 1.1 dyoung 2136 1.1 dyoung /* 2137 1.1 dyoung * In order to read a register from the EEPROM, we need to shift 2138 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 2139 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading 2140 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the 2141 1.1 dyoung * "DI" bit should always be clear. 2142 1.1 dyoung */ 2143 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2144 1.1 dyoung 2145 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 2146 1.1 dyoung 2147 1.1 dyoung for (i = 0; i < count; i++) { 2148 1.1 dyoung data = data << 1; 2149 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec); 2150 1.1 dyoung 2151 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2152 1.1 dyoung 2153 1.1 dyoung eec &= ~(IXGBE_EEC_DI); 2154 1.1 dyoung if (eec & IXGBE_EEC_DO) 2155 1.1 dyoung data |= 1; 2156 1.1 dyoung 2157 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec); 2158 1.1 dyoung } 2159 1.1 dyoung 2160 1.1 dyoung return data; 2161 1.1 dyoung } 2162 1.1 dyoung 2163 1.1 dyoung /** 2164 1.38 msaitoh * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 2165 1.38 msaitoh * @hw: pointer to hardware structure 2166 1.38 msaitoh * @eec: EEC register's current value 2167 1.1 dyoung **/ 2168 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2169 1.1 dyoung { 2170 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk"); 2171 1.1 dyoung 2172 1.1 dyoung /* 2173 1.1 dyoung * Raise the clock input to the EEPROM 2174 1.1 dyoung * (setting the SK bit), then delay 2175 1.1 dyoung */ 2176 1.1 dyoung *eec = *eec | IXGBE_EEC_SK; 2177 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2178 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2179 1.1 dyoung usec_delay(1); 2180 1.1 dyoung } 2181 1.1 dyoung 2182 1.1 dyoung /** 2183 1.38 msaitoh * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 2184 1.38 msaitoh * @hw: pointer to hardware structure 2185 1.38 msaitoh * @eec: EEC's current value 2186 1.1 dyoung **/ 2187 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2188 1.1 dyoung { 2189 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk"); 2190 1.1 dyoung 2191 1.1 dyoung /* 2192 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then 2193 1.1 dyoung * delay 2194 1.1 dyoung */ 2195 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK; 2196 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2197 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2198 1.1 dyoung usec_delay(1); 2199 1.1 dyoung } 2200 1.1 dyoung 2201 1.1 dyoung /** 2202 1.38 msaitoh * ixgbe_release_eeprom - Release EEPROM, release semaphores 2203 1.38 msaitoh * @hw: pointer to hardware structure 2204 1.1 dyoung **/ 2205 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 2206 1.1 dyoung { 2207 1.1 dyoung u32 eec; 2208 1.1 dyoung 2209 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom"); 2210 1.1 dyoung 2211 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2212 1.1 dyoung 2213 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */ 2214 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 2215 1.1 dyoung 2216 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2217 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 2218 1.1 dyoung 2219 1.1 dyoung usec_delay(1); 2220 1.1 dyoung 2221 1.1 dyoung /* Stop requesting EEPROM access */ 2222 1.1 dyoung eec &= ~IXGBE_EEC_REQ; 2223 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2224 1.1 dyoung 2225 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 2226 1.1 dyoung 2227 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */ 2228 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay); 2229 1.1 dyoung } 2230 1.1 dyoung 2231 1.1 dyoung /** 2232 1.38 msaitoh * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 2233 1.38 msaitoh * @hw: pointer to hardware structure 2234 1.8 msaitoh * 2235 1.38 msaitoh * Returns a negative error code on error, or the 16-bit checksum 2236 1.1 dyoung **/ 2237 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 2238 1.1 dyoung { 2239 1.1 dyoung u16 i; 2240 1.1 dyoung u16 j; 2241 1.1 dyoung u16 checksum = 0; 2242 1.1 dyoung u16 length = 0; 2243 1.1 dyoung u16 pointer = 0; 2244 1.1 dyoung u16 word = 0; 2245 1.1 dyoung 2246 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic"); 2247 1.1 dyoung 2248 1.1 dyoung /* Include 0x0-0x3F in the checksum */ 2249 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 2250 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) { 2251 1.1 dyoung DEBUGOUT("EEPROM read failed\n"); 2252 1.8 msaitoh return IXGBE_ERR_EEPROM; 2253 1.1 dyoung } 2254 1.1 dyoung checksum += word; 2255 1.1 dyoung } 2256 1.1 dyoung 2257 1.1 dyoung /* Include all data from pointers except for the fw pointer */ 2258 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 2259 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) { 2260 1.8 msaitoh DEBUGOUT("EEPROM read failed\n"); 2261 1.8 msaitoh return IXGBE_ERR_EEPROM; 2262 1.8 msaitoh } 2263 1.8 msaitoh 2264 1.8 msaitoh /* If the pointer seems invalid */ 2265 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0) 2266 1.8 msaitoh continue; 2267 1.8 msaitoh 2268 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) { 2269 1.8 msaitoh DEBUGOUT("EEPROM read failed\n"); 2270 1.8 msaitoh return IXGBE_ERR_EEPROM; 2271 1.8 msaitoh } 2272 1.8 msaitoh 2273 1.8 msaitoh if (length == 0xFFFF || length == 0) 2274 1.8 msaitoh continue; 2275 1.1 dyoung 2276 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) { 2277 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) { 2278 1.8 msaitoh DEBUGOUT("EEPROM read failed\n"); 2279 1.8 msaitoh return IXGBE_ERR_EEPROM; 2280 1.1 dyoung } 2281 1.8 msaitoh checksum += word; 2282 1.1 dyoung } 2283 1.1 dyoung } 2284 1.1 dyoung 2285 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum; 2286 1.1 dyoung 2287 1.8 msaitoh return (s32)checksum; 2288 1.1 dyoung } 2289 1.1 dyoung 2290 1.1 dyoung /** 2291 1.38 msaitoh * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 2292 1.38 msaitoh * @hw: pointer to hardware structure 2293 1.38 msaitoh * @checksum_val: calculated checksum 2294 1.1 dyoung * 2295 1.38 msaitoh * Performs checksum calculation and validates the EEPROM checksum. If the 2296 1.38 msaitoh * caller does not need checksum_val, the value can be NULL. 2297 1.1 dyoung **/ 2298 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 2299 1.3 msaitoh u16 *checksum_val) 2300 1.1 dyoung { 2301 1.1 dyoung s32 status; 2302 1.1 dyoung u16 checksum; 2303 1.1 dyoung u16 read_checksum = 0; 2304 1.1 dyoung 2305 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic"); 2306 1.1 dyoung 2307 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do 2308 1.1 dyoung * not continue or we could be in for a very long wait while every 2309 1.1 dyoung * EEPROM read fails 2310 1.1 dyoung */ 2311 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum); 2312 1.8 msaitoh if (status) { 2313 1.8 msaitoh DEBUGOUT("EEPROM read failed\n"); 2314 1.8 msaitoh return status; 2315 1.8 msaitoh } 2316 1.1 dyoung 2317 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw); 2318 1.8 msaitoh if (status < 0) 2319 1.8 msaitoh return status; 2320 1.1 dyoung 2321 1.8 msaitoh checksum = (u16)(status & 0xffff); 2322 1.1 dyoung 2323 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 2324 1.8 msaitoh if (status) { 2325 1.1 dyoung DEBUGOUT("EEPROM read failed\n"); 2326 1.8 msaitoh return status; 2327 1.1 dyoung } 2328 1.1 dyoung 2329 1.8 msaitoh /* Verify read checksum from EEPROM is the same as 2330 1.8 msaitoh * calculated checksum 2331 1.8 msaitoh */ 2332 1.8 msaitoh if (read_checksum != checksum) 2333 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM; 2334 1.8 msaitoh 2335 1.8 msaitoh /* If the user cares, return the calculated checksum */ 2336 1.8 msaitoh if (checksum_val) 2337 1.8 msaitoh *checksum_val = checksum; 2338 1.8 msaitoh 2339 1.1 dyoung return status; 2340 1.1 dyoung } 2341 1.1 dyoung 2342 1.1 dyoung /** 2343 1.38 msaitoh * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 2344 1.38 msaitoh * @hw: pointer to hardware structure 2345 1.1 dyoung **/ 2346 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 2347 1.1 dyoung { 2348 1.1 dyoung s32 status; 2349 1.1 dyoung u16 checksum; 2350 1.1 dyoung 2351 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic"); 2352 1.1 dyoung 2353 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do 2354 1.1 dyoung * not continue or we could be in for a very long wait while every 2355 1.1 dyoung * EEPROM read fails 2356 1.1 dyoung */ 2357 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum); 2358 1.8 msaitoh if (status) { 2359 1.1 dyoung DEBUGOUT("EEPROM read failed\n"); 2360 1.8 msaitoh return status; 2361 1.1 dyoung } 2362 1.1 dyoung 2363 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw); 2364 1.8 msaitoh if (status < 0) 2365 1.8 msaitoh return status; 2366 1.8 msaitoh 2367 1.8 msaitoh checksum = (u16)(status & 0xffff); 2368 1.8 msaitoh 2369 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); 2370 1.8 msaitoh 2371 1.1 dyoung return status; 2372 1.1 dyoung } 2373 1.1 dyoung 2374 1.1 dyoung /** 2375 1.38 msaitoh * ixgbe_validate_mac_addr - Validate MAC address 2376 1.38 msaitoh * @mac_addr: pointer to MAC address. 2377 1.1 dyoung * 2378 1.38 msaitoh * Tests a MAC address to ensure it is a valid Individual Address. 2379 1.1 dyoung **/ 2380 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr) 2381 1.1 dyoung { 2382 1.1 dyoung s32 status = IXGBE_SUCCESS; 2383 1.1 dyoung 2384 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr"); 2385 1.1 dyoung 2386 1.1 dyoung /* Make sure it is not a multicast address */ 2387 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) { 2388 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR; 2389 1.1 dyoung /* Not a broadcast address */ 2390 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) { 2391 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR; 2392 1.1 dyoung /* Reject the zero address */ 2393 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && 2394 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) { 2395 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR; 2396 1.1 dyoung } 2397 1.1 dyoung return status; 2398 1.1 dyoung } 2399 1.1 dyoung 2400 1.1 dyoung /** 2401 1.38 msaitoh * ixgbe_set_rar_generic - Set Rx address register 2402 1.38 msaitoh * @hw: pointer to hardware structure 2403 1.38 msaitoh * @index: Receive address register to write 2404 1.38 msaitoh * @addr: Address to put into receive address register 2405 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index 2406 1.38 msaitoh * @enable_addr: set flag that address is active 2407 1.1 dyoung * 2408 1.38 msaitoh * Puts an ethernet address into a receive address register. 2409 1.1 dyoung **/ 2410 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 2411 1.3 msaitoh u32 enable_addr) 2412 1.1 dyoung { 2413 1.1 dyoung u32 rar_low, rar_high; 2414 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 2415 1.1 dyoung 2416 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic"); 2417 1.1 dyoung 2418 1.1 dyoung /* Make sure we are using a valid rar index range */ 2419 1.1 dyoung if (index >= rar_entries) { 2420 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2421 1.6 msaitoh "RAR index %d is out of range.\n", index); 2422 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT; 2423 1.1 dyoung } 2424 1.1 dyoung 2425 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */ 2426 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq); 2427 1.1 dyoung 2428 1.1 dyoung /* 2429 1.1 dyoung * HW expects these in little endian so we reverse the byte 2430 1.1 dyoung * order from network order (big endian) to little endian 2431 1.1 dyoung */ 2432 1.1 dyoung rar_low = ((u32)addr[0] | 2433 1.3 msaitoh ((u32)addr[1] << 8) | 2434 1.3 msaitoh ((u32)addr[2] << 16) | 2435 1.3 msaitoh ((u32)addr[3] << 24)); 2436 1.1 dyoung /* 2437 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits, 2438 1.1 dyoung * so save everything except the lower 16 bits that hold part 2439 1.1 dyoung * of the address and the address valid bit. 2440 1.1 dyoung */ 2441 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2442 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2443 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 2444 1.1 dyoung 2445 1.1 dyoung if (enable_addr != 0) 2446 1.1 dyoung rar_high |= IXGBE_RAH_AV; 2447 1.1 dyoung 2448 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 2449 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2450 1.1 dyoung 2451 1.1 dyoung return IXGBE_SUCCESS; 2452 1.1 dyoung } 2453 1.1 dyoung 2454 1.1 dyoung /** 2455 1.38 msaitoh * ixgbe_clear_rar_generic - Remove Rx address register 2456 1.38 msaitoh * @hw: pointer to hardware structure 2457 1.38 msaitoh * @index: Receive address register to write 2458 1.1 dyoung * 2459 1.38 msaitoh * Clears an ethernet address from a receive address register. 2460 1.1 dyoung **/ 2461 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 2462 1.1 dyoung { 2463 1.1 dyoung u32 rar_high; 2464 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 2465 1.1 dyoung 2466 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic"); 2467 1.1 dyoung 2468 1.1 dyoung /* Make sure we are using a valid rar index range */ 2469 1.1 dyoung if (index >= rar_entries) { 2470 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2471 1.6 msaitoh "RAR index %d is out of range.\n", index); 2472 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT; 2473 1.1 dyoung } 2474 1.1 dyoung 2475 1.1 dyoung /* 2476 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits, 2477 1.1 dyoung * so save everything except the lower 16 bits that hold part 2478 1.1 dyoung * of the address and the address valid bit. 2479 1.1 dyoung */ 2480 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2481 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2482 1.1 dyoung 2483 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 2484 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2485 1.1 dyoung 2486 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */ 2487 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 2488 1.1 dyoung 2489 1.1 dyoung return IXGBE_SUCCESS; 2490 1.1 dyoung } 2491 1.1 dyoung 2492 1.1 dyoung /** 2493 1.38 msaitoh * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 2494 1.38 msaitoh * @hw: pointer to hardware structure 2495 1.1 dyoung * 2496 1.38 msaitoh * Places the MAC address in receive address register 0 and clears the rest 2497 1.38 msaitoh * of the receive address registers. Clears the multicast table. Assumes 2498 1.38 msaitoh * the receiver is in reset when the routine is called. 2499 1.1 dyoung **/ 2500 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 2501 1.1 dyoung { 2502 1.1 dyoung u32 i; 2503 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 2504 1.1 dyoung 2505 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic"); 2506 1.1 dyoung 2507 1.1 dyoung /* 2508 1.1 dyoung * If the current mac address is valid, assume it is a software override 2509 1.1 dyoung * to the permanent address. 2510 1.1 dyoung * Otherwise, use the permanent address from the eeprom. 2511 1.1 dyoung */ 2512 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) == 2513 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) { 2514 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */ 2515 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2516 1.1 dyoung 2517 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ", 2518 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1], 2519 1.3 msaitoh hw->mac.addr[2]); 2520 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2521 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]); 2522 1.1 dyoung } else { 2523 1.1 dyoung /* Setup the receive address. */ 2524 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n"); 2525 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", 2526 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1], 2527 1.3 msaitoh hw->mac.addr[2]); 2528 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2529 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]); 2530 1.1 dyoung 2531 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 2532 1.14 msaitoh } 2533 1.14 msaitoh 2534 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */ 2535 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 2536 1.1 dyoung 2537 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0; 2538 1.1 dyoung 2539 1.1 dyoung hw->addr_ctrl.rar_used_count = 1; 2540 1.1 dyoung 2541 1.1 dyoung /* Zero out the other receive addresses. */ 2542 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1); 2543 1.1 dyoung for (i = 1; i < rar_entries; i++) { 2544 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 2545 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 2546 1.1 dyoung } 2547 1.1 dyoung 2548 1.1 dyoung /* Clear the MTA */ 2549 1.1 dyoung hw->addr_ctrl.mta_in_use = 0; 2550 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2551 1.1 dyoung 2552 1.1 dyoung DEBUGOUT(" Clearing MTA\n"); 2553 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++) 2554 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 2555 1.1 dyoung 2556 1.1 dyoung ixgbe_init_uta_tables(hw); 2557 1.1 dyoung 2558 1.1 dyoung return IXGBE_SUCCESS; 2559 1.1 dyoung } 2560 1.1 dyoung 2561 1.1 dyoung /** 2562 1.38 msaitoh * ixgbe_add_uc_addr - Adds a secondary unicast address. 2563 1.38 msaitoh * @hw: pointer to hardware structure 2564 1.38 msaitoh * @addr: new address 2565 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index 2566 1.1 dyoung * 2567 1.38 msaitoh * Adds it to unused receive address register or goes into promiscuous mode. 2568 1.1 dyoung **/ 2569 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 2570 1.1 dyoung { 2571 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 2572 1.1 dyoung u32 rar; 2573 1.1 dyoung 2574 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr"); 2575 1.1 dyoung 2576 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", 2577 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); 2578 1.1 dyoung 2579 1.1 dyoung /* 2580 1.1 dyoung * Place this address in the RAR if there is room, 2581 1.1 dyoung * else put the controller into promiscuous mode 2582 1.1 dyoung */ 2583 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) { 2584 1.1 dyoung rar = hw->addr_ctrl.rar_used_count; 2585 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 2586 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar); 2587 1.1 dyoung hw->addr_ctrl.rar_used_count++; 2588 1.1 dyoung } else { 2589 1.1 dyoung hw->addr_ctrl.overflow_promisc++; 2590 1.1 dyoung } 2591 1.1 dyoung 2592 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n"); 2593 1.1 dyoung } 2594 1.1 dyoung 2595 1.1 dyoung /** 2596 1.38 msaitoh * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses 2597 1.38 msaitoh * @hw: pointer to hardware structure 2598 1.38 msaitoh * @addr_list: the list of new addresses 2599 1.38 msaitoh * @addr_count: number of addresses 2600 1.38 msaitoh * @next: iterator function to walk the address list 2601 1.38 msaitoh * 2602 1.38 msaitoh * The given list replaces any existing list. Clears the secondary addrs from 2603 1.38 msaitoh * receive address registers. Uses unused receive address registers for the 2604 1.38 msaitoh * first secondary addresses, and falls back to promiscuous mode as needed. 2605 1.1 dyoung * 2606 1.38 msaitoh * Drivers using secondary unicast addresses must set user_set_promisc when 2607 1.38 msaitoh * manually putting the device into promiscuous mode. 2608 1.1 dyoung **/ 2609 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list, 2610 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next) 2611 1.1 dyoung { 2612 1.1 dyoung u8 *addr; 2613 1.1 dyoung u32 i; 2614 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; 2615 1.1 dyoung u32 uc_addr_in_use; 2616 1.1 dyoung u32 fctrl; 2617 1.1 dyoung u32 vmdq; 2618 1.1 dyoung 2619 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic"); 2620 1.1 dyoung 2621 1.1 dyoung /* 2622 1.1 dyoung * Clear accounting of old secondary address list, 2623 1.1 dyoung * don't count RAR[0] 2624 1.1 dyoung */ 2625 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; 2626 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use; 2627 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0; 2628 1.1 dyoung 2629 1.1 dyoung /* Zero out the other receive addresses */ 2630 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1); 2631 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) { 2632 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0); 2633 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0); 2634 1.1 dyoung } 2635 1.1 dyoung 2636 1.1 dyoung /* Add the new addresses */ 2637 1.1 dyoung for (i = 0; i < addr_count; i++) { 2638 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n"); 2639 1.1 dyoung addr = next(hw, &addr_list, &vmdq); 2640 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq); 2641 1.1 dyoung } 2642 1.1 dyoung 2643 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) { 2644 1.1 dyoung /* enable promisc if not already in overflow or set by user */ 2645 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2646 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n"); 2647 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2648 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE; 2649 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2650 1.1 dyoung } 2651 1.1 dyoung } else { 2652 1.1 dyoung /* only disable if set by overflow, not by user */ 2653 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2654 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n"); 2655 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2656 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE; 2657 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2658 1.1 dyoung } 2659 1.1 dyoung } 2660 1.1 dyoung 2661 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n"); 2662 1.1 dyoung return IXGBE_SUCCESS; 2663 1.1 dyoung } 2664 1.1 dyoung 2665 1.1 dyoung /** 2666 1.38 msaitoh * ixgbe_mta_vector - Determines bit-vector in multicast table to set 2667 1.38 msaitoh * @hw: pointer to hardware structure 2668 1.38 msaitoh * @mc_addr: the multicast address 2669 1.38 msaitoh * 2670 1.38 msaitoh * Extracts the 12 bits, from a multicast address, to determine which 2671 1.38 msaitoh * bit-vector to set in the multicast table. The hardware uses 12 bits, from 2672 1.38 msaitoh * incoming rx multicast addresses, to determine the bit-vector to check in 2673 1.38 msaitoh * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 2674 1.38 msaitoh * by the MO field of the MCSTCTRL. The MO field is set during initialization 2675 1.38 msaitoh * to mc_filter_type. 2676 1.1 dyoung **/ 2677 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 2678 1.1 dyoung { 2679 1.1 dyoung u32 vector = 0; 2680 1.1 dyoung 2681 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector"); 2682 1.1 dyoung 2683 1.1 dyoung switch (hw->mac.mc_filter_type) { 2684 1.1 dyoung case 0: /* use bits [47:36] of the address */ 2685 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 2686 1.1 dyoung break; 2687 1.1 dyoung case 1: /* use bits [46:35] of the address */ 2688 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 2689 1.1 dyoung break; 2690 1.1 dyoung case 2: /* use bits [45:34] of the address */ 2691 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 2692 1.1 dyoung break; 2693 1.1 dyoung case 3: /* use bits [43:32] of the address */ 2694 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 2695 1.1 dyoung break; 2696 1.1 dyoung default: /* Invalid mc_filter_type */ 2697 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n"); 2698 1.1 dyoung ASSERT(0); 2699 1.1 dyoung break; 2700 1.1 dyoung } 2701 1.1 dyoung 2702 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */ 2703 1.1 dyoung vector &= 0xFFF; 2704 1.1 dyoung return vector; 2705 1.1 dyoung } 2706 1.1 dyoung 2707 1.1 dyoung /** 2708 1.38 msaitoh * ixgbe_set_mta - Set bit-vector in multicast table 2709 1.38 msaitoh * @hw: pointer to hardware structure 2710 1.38 msaitoh * @mc_addr: Multicast address 2711 1.1 dyoung * 2712 1.38 msaitoh * Sets the bit-vector in the multicast table. 2713 1.1 dyoung **/ 2714 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 2715 1.1 dyoung { 2716 1.1 dyoung u32 vector; 2717 1.1 dyoung u32 vector_bit; 2718 1.1 dyoung u32 vector_reg; 2719 1.1 dyoung 2720 1.1 dyoung DEBUGFUNC("ixgbe_set_mta"); 2721 1.1 dyoung 2722 1.1 dyoung hw->addr_ctrl.mta_in_use++; 2723 1.1 dyoung 2724 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr); 2725 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector); 2726 1.1 dyoung 2727 1.1 dyoung /* 2728 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated 2729 1.1 dyoung * like an array of 4096 bits. We want to set bit 2730 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is 2731 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The 2732 1.1 dyoung * register is determined by the upper 7 bits of the vector value and 2733 1.1 dyoung * the bit within that register are determined by the lower 5 bits of 2734 1.1 dyoung * the value. 2735 1.1 dyoung */ 2736 1.1 dyoung vector_reg = (vector >> 5) & 0x7F; 2737 1.1 dyoung vector_bit = vector & 0x1F; 2738 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 2739 1.1 dyoung } 2740 1.1 dyoung 2741 1.1 dyoung /** 2742 1.38 msaitoh * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 2743 1.38 msaitoh * @hw: pointer to hardware structure 2744 1.38 msaitoh * @mc_addr_list: the list of new multicast addresses 2745 1.38 msaitoh * @mc_addr_count: number of addresses 2746 1.38 msaitoh * @next: iterator function to walk the multicast address list 2747 1.38 msaitoh * @clear: flag, when set clears the table beforehand 2748 1.1 dyoung * 2749 1.38 msaitoh * When the clear flag is set, the given list replaces any existing list. 2750 1.38 msaitoh * Hashes the given addresses into the multicast table. 2751 1.1 dyoung **/ 2752 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, 2753 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next, 2754 1.3 msaitoh bool clear) 2755 1.1 dyoung { 2756 1.1 dyoung u32 i; 2757 1.1 dyoung u32 vmdq; 2758 1.1 dyoung 2759 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic"); 2760 1.1 dyoung 2761 1.1 dyoung /* 2762 1.1 dyoung * Set the new number of MC addresses that we are being requested to 2763 1.1 dyoung * use. 2764 1.1 dyoung */ 2765 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count; 2766 1.1 dyoung hw->addr_ctrl.mta_in_use = 0; 2767 1.1 dyoung 2768 1.1 dyoung /* Clear mta_shadow */ 2769 1.3 msaitoh if (clear) { 2770 1.3 msaitoh DEBUGOUT(" Clearing MTA\n"); 2771 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2772 1.3 msaitoh } 2773 1.1 dyoung 2774 1.1 dyoung /* Update mta_shadow */ 2775 1.1 dyoung for (i = 0; i < mc_addr_count; i++) { 2776 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n"); 2777 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); 2778 1.1 dyoung } 2779 1.1 dyoung 2780 1.1 dyoung /* Enable mta */ 2781 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++) 2782 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2783 1.1 dyoung hw->mac.mta_shadow[i]); 2784 1.1 dyoung 2785 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0) 2786 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2787 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2788 1.1 dyoung 2789 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n"); 2790 1.1 dyoung return IXGBE_SUCCESS; 2791 1.1 dyoung } 2792 1.1 dyoung 2793 1.1 dyoung /** 2794 1.38 msaitoh * ixgbe_enable_mc_generic - Enable multicast address in RAR 2795 1.38 msaitoh * @hw: pointer to hardware structure 2796 1.1 dyoung * 2797 1.38 msaitoh * Enables multicast address in RAR and the use of the multicast hash table. 2798 1.1 dyoung **/ 2799 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2800 1.1 dyoung { 2801 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2802 1.1 dyoung 2803 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic"); 2804 1.1 dyoung 2805 1.1 dyoung if (a->mta_in_use > 0) 2806 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2807 1.3 msaitoh hw->mac.mc_filter_type); 2808 1.1 dyoung 2809 1.1 dyoung return IXGBE_SUCCESS; 2810 1.1 dyoung } 2811 1.1 dyoung 2812 1.1 dyoung /** 2813 1.38 msaitoh * ixgbe_disable_mc_generic - Disable multicast address in RAR 2814 1.38 msaitoh * @hw: pointer to hardware structure 2815 1.1 dyoung * 2816 1.38 msaitoh * Disables multicast address in RAR and the use of the multicast hash table. 2817 1.1 dyoung **/ 2818 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2819 1.1 dyoung { 2820 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2821 1.1 dyoung 2822 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic"); 2823 1.1 dyoung 2824 1.1 dyoung if (a->mta_in_use > 0) 2825 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2826 1.1 dyoung 2827 1.1 dyoung return IXGBE_SUCCESS; 2828 1.1 dyoung } 2829 1.1 dyoung 2830 1.1 dyoung /** 2831 1.38 msaitoh * ixgbe_fc_enable_generic - Enable flow control 2832 1.38 msaitoh * @hw: pointer to hardware structure 2833 1.1 dyoung * 2834 1.38 msaitoh * Enable flow control according to the current settings. 2835 1.1 dyoung **/ 2836 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2837 1.1 dyoung { 2838 1.1 dyoung s32 ret_val = IXGBE_SUCCESS; 2839 1.1 dyoung u32 mflcn_reg, fccfg_reg; 2840 1.1 dyoung u32 reg; 2841 1.1 dyoung u32 fcrtl, fcrth; 2842 1.4 msaitoh int i; 2843 1.1 dyoung 2844 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic"); 2845 1.1 dyoung 2846 1.4 msaitoh /* Validate the water mark configuration */ 2847 1.4 msaitoh if (!hw->fc.pause_time) { 2848 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2849 1.4 msaitoh goto out; 2850 1.4 msaitoh } 2851 1.4 msaitoh 2852 1.4 msaitoh /* Low water mark of zero causes XOFF floods */ 2853 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2854 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2855 1.4 msaitoh hw->fc.high_water[i]) { 2856 1.4 msaitoh if (!hw->fc.low_water[i] || 2857 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) { 2858 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n"); 2859 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2860 1.4 msaitoh goto out; 2861 1.4 msaitoh } 2862 1.4 msaitoh } 2863 1.4 msaitoh } 2864 1.4 msaitoh 2865 1.1 dyoung /* Negotiate the fc mode to use */ 2866 1.14 msaitoh hw->mac.ops.fc_autoneg(hw); 2867 1.1 dyoung 2868 1.1 dyoung /* Disable any previous flow control settings */ 2869 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2870 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2871 1.1 dyoung 2872 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2873 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2874 1.1 dyoung 2875 1.1 dyoung /* 2876 1.1 dyoung * The possible values of fc.current_mode are: 2877 1.1 dyoung * 0: Flow control is completely disabled 2878 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames, 2879 1.1 dyoung * but not send pause frames). 2880 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but 2881 1.1 dyoung * we do not support receiving pause frames). 2882 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled. 2883 1.1 dyoung * other: Invalid. 2884 1.1 dyoung */ 2885 1.1 dyoung switch (hw->fc.current_mode) { 2886 1.1 dyoung case ixgbe_fc_none: 2887 1.1 dyoung /* 2888 1.1 dyoung * Flow control is disabled by software override or autoneg. 2889 1.1 dyoung * The code below will actually disable it in the HW. 2890 1.1 dyoung */ 2891 1.1 dyoung break; 2892 1.1 dyoung case ixgbe_fc_rx_pause: 2893 1.1 dyoung /* 2894 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is 2895 1.1 dyoung * disabled by software override. Since there really 2896 1.1 dyoung * isn't a way to advertise that we are capable of RX 2897 1.1 dyoung * Pause ONLY, we will advertise that we support both 2898 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will 2899 1.1 dyoung * disable the adapter's ability to send PAUSE frames. 2900 1.1 dyoung */ 2901 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE; 2902 1.1 dyoung break; 2903 1.1 dyoung case ixgbe_fc_tx_pause: 2904 1.1 dyoung /* 2905 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is 2906 1.1 dyoung * disabled by software override. 2907 1.1 dyoung */ 2908 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2909 1.1 dyoung break; 2910 1.1 dyoung case ixgbe_fc_full: 2911 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */ 2912 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE; 2913 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2914 1.1 dyoung break; 2915 1.1 dyoung default: 2916 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 2917 1.6 msaitoh "Flow control param set incorrectly\n"); 2918 1.1 dyoung ret_val = IXGBE_ERR_CONFIG; 2919 1.1 dyoung goto out; 2920 1.1 dyoung break; 2921 1.1 dyoung } 2922 1.1 dyoung 2923 1.1 dyoung /* Set 802.3x based flow control settings. */ 2924 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF; 2925 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2926 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2927 1.1 dyoung 2928 1.1 dyoung 2929 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2930 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2931 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2932 1.4 msaitoh hw->fc.high_water[i]) { 2933 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; 2934 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2935 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2936 1.4 msaitoh } else { 2937 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2938 1.4 msaitoh /* 2939 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx 2940 1.4 msaitoh * switch is enabled we must set the high water mark 2941 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows 2942 1.8 msaitoh * the Tx switch to function even under heavy Rx 2943 1.8 msaitoh * workloads. 2944 1.4 msaitoh */ 2945 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576; 2946 1.4 msaitoh } 2947 1.4 msaitoh 2948 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2949 1.1 dyoung } 2950 1.1 dyoung 2951 1.1 dyoung /* Configure pause time (2 TCs per register) */ 2952 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001; 2953 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++) 2954 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2955 1.1 dyoung 2956 1.4 msaitoh /* Configure flow control refresh threshold value */ 2957 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2958 1.1 dyoung 2959 1.1 dyoung out: 2960 1.1 dyoung return ret_val; 2961 1.1 dyoung } 2962 1.1 dyoung 2963 1.1 dyoung /** 2964 1.38 msaitoh * ixgbe_negotiate_fc - Negotiate flow control 2965 1.38 msaitoh * @hw: pointer to hardware structure 2966 1.38 msaitoh * @adv_reg: flow control advertised settings 2967 1.38 msaitoh * @lp_reg: link partner's flow control settings 2968 1.38 msaitoh * @adv_sym: symmetric pause bit in advertisement 2969 1.38 msaitoh * @adv_asm: asymmetric pause bit in advertisement 2970 1.38 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement 2971 1.38 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement 2972 1.1 dyoung * 2973 1.38 msaitoh * Find the intersection between advertised settings and link partner's 2974 1.38 msaitoh * advertised settings 2975 1.1 dyoung **/ 2976 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2977 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2978 1.1 dyoung { 2979 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) { 2980 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED, 2981 1.6 msaitoh "Local or link partner's advertised flow control " 2982 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n", 2983 1.6 msaitoh adv_reg, lp_reg); 2984 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED; 2985 1.6 msaitoh } 2986 1.1 dyoung 2987 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2988 1.4 msaitoh /* 2989 1.4 msaitoh * Now we need to check if the user selected Rx ONLY 2990 1.4 msaitoh * of pause frames. In this case, we had to advertise 2991 1.4 msaitoh * FULL flow control because we could not advertise RX 2992 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to 2993 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames. 2994 1.4 msaitoh */ 2995 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) { 2996 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full; 2997 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n"); 2998 1.4 msaitoh } else { 2999 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause; 3000 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n"); 3001 1.4 msaitoh } 3002 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 3003 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 3004 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause; 3005 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); 3006 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 3007 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 3008 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause; 3009 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); 3010 1.4 msaitoh } else { 3011 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none; 3012 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n"); 3013 1.4 msaitoh } 3014 1.4 msaitoh return IXGBE_SUCCESS; 3015 1.4 msaitoh } 3016 1.1 dyoung 3017 1.4 msaitoh /** 3018 1.38 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 3019 1.38 msaitoh * @hw: pointer to hardware structure 3020 1.4 msaitoh * 3021 1.38 msaitoh * Enable flow control according on 1 gig fiber. 3022 1.4 msaitoh **/ 3023 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 3024 1.4 msaitoh { 3025 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 3026 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3027 1.1 dyoung 3028 1.1 dyoung /* 3029 1.4 msaitoh * On multispeed fiber at 1g, bail out if 3030 1.4 msaitoh * - link is up but AN did not complete, or if 3031 1.4 msaitoh * - link is up and AN completed but timed out 3032 1.1 dyoung */ 3033 1.4 msaitoh 3034 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 3035 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 3036 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { 3037 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n"); 3038 1.1 dyoung goto out; 3039 1.6 msaitoh } 3040 1.1 dyoung 3041 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 3042 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 3043 1.1 dyoung 3044 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 3045 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 3046 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE, 3047 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE, 3048 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE); 3049 1.1 dyoung 3050 1.1 dyoung out: 3051 1.1 dyoung return ret_val; 3052 1.1 dyoung } 3053 1.1 dyoung 3054 1.1 dyoung /** 3055 1.38 msaitoh * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 3056 1.38 msaitoh * @hw: pointer to hardware structure 3057 1.1 dyoung * 3058 1.38 msaitoh * Enable flow control according to IEEE clause 37. 3059 1.1 dyoung **/ 3060 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 3061 1.1 dyoung { 3062 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links; 3063 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3064 1.1 dyoung 3065 1.1 dyoung /* 3066 1.1 dyoung * On backplane, bail out if 3067 1.1 dyoung * - backplane autoneg was not completed, or if 3068 1.1 dyoung * - we are 82599 and link partner is not AN enabled 3069 1.1 dyoung */ 3070 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS); 3071 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) { 3072 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n"); 3073 1.1 dyoung goto out; 3074 1.6 msaitoh } 3075 1.1 dyoung 3076 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) { 3077 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 3078 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) { 3079 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n"); 3080 1.1 dyoung goto out; 3081 1.6 msaitoh } 3082 1.1 dyoung } 3083 1.1 dyoung /* 3084 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve 3085 1.1 dyoung * local flow control settings accordingly 3086 1.1 dyoung */ 3087 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3088 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 3089 1.1 dyoung 3090 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 3091 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 3092 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 3093 1.1 dyoung 3094 1.1 dyoung out: 3095 1.1 dyoung return ret_val; 3096 1.1 dyoung } 3097 1.1 dyoung 3098 1.1 dyoung /** 3099 1.38 msaitoh * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 3100 1.38 msaitoh * @hw: pointer to hardware structure 3101 1.1 dyoung * 3102 1.38 msaitoh * Enable flow control according to IEEE clause 37. 3103 1.1 dyoung **/ 3104 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 3105 1.1 dyoung { 3106 1.1 dyoung u16 technology_ability_reg = 0; 3107 1.1 dyoung u16 lp_technology_ability_reg = 0; 3108 1.1 dyoung 3109 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 3110 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3111 1.1 dyoung &technology_ability_reg); 3112 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP, 3113 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3114 1.1 dyoung &lp_technology_ability_reg); 3115 1.1 dyoung 3116 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 3117 1.1 dyoung (u32)lp_technology_ability_reg, 3118 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 3119 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 3120 1.1 dyoung } 3121 1.1 dyoung 3122 1.1 dyoung /** 3123 1.38 msaitoh * ixgbe_fc_autoneg - Configure flow control 3124 1.38 msaitoh * @hw: pointer to hardware structure 3125 1.1 dyoung * 3126 1.38 msaitoh * Compares our advertised flow control capabilities to those advertised by 3127 1.38 msaitoh * our link partner, and determines the proper flow control mode to use. 3128 1.1 dyoung **/ 3129 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 3130 1.1 dyoung { 3131 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3132 1.4 msaitoh ixgbe_link_speed speed; 3133 1.4 msaitoh bool link_up; 3134 1.1 dyoung 3135 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg"); 3136 1.1 dyoung 3137 1.1 dyoung /* 3138 1.4 msaitoh * AN should have completed when the cable was plugged in. 3139 1.4 msaitoh * Look for reasons to bail out. Bail out if: 3140 1.4 msaitoh * - FC autoneg is disabled, or if 3141 1.4 msaitoh * - link is not up. 3142 1.1 dyoung */ 3143 1.6 msaitoh if (hw->fc.disable_fc_autoneg) { 3144 1.39 msaitoh /* TODO: This should be just an informative log */ 3145 1.39 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION, 3146 1.39 msaitoh "Flow control autoneg is disabled"); 3147 1.1 dyoung goto out; 3148 1.6 msaitoh } 3149 1.1 dyoung 3150 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); 3151 1.6 msaitoh if (!link_up) { 3152 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down"); 3153 1.1 dyoung goto out; 3154 1.6 msaitoh } 3155 1.1 dyoung 3156 1.1 dyoung switch (hw->phy.media_type) { 3157 1.4 msaitoh /* Autoneg flow control on fiber adapters */ 3158 1.5 msaitoh case ixgbe_media_type_fiber_fixed: 3159 1.8 msaitoh case ixgbe_media_type_fiber_qsfp: 3160 1.1 dyoung case ixgbe_media_type_fiber: 3161 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL) 3162 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw); 3163 1.4 msaitoh break; 3164 1.4 msaitoh 3165 1.4 msaitoh /* Autoneg flow control on backplane adapters */ 3166 1.1 dyoung case ixgbe_media_type_backplane: 3167 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw); 3168 1.1 dyoung break; 3169 1.1 dyoung 3170 1.4 msaitoh /* Autoneg flow control on copper adapters */ 3171 1.1 dyoung case ixgbe_media_type_copper: 3172 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw)) 3173 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw); 3174 1.1 dyoung break; 3175 1.1 dyoung 3176 1.1 dyoung default: 3177 1.1 dyoung break; 3178 1.1 dyoung } 3179 1.1 dyoung 3180 1.4 msaitoh out: 3181 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) { 3182 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE; 3183 1.4 msaitoh } else { 3184 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE; 3185 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode; 3186 1.3 msaitoh } 3187 1.1 dyoung } 3188 1.1 dyoung 3189 1.6 msaitoh /* 3190 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion 3191 1.6 msaitoh * @hw: pointer to hardware structure 3192 1.6 msaitoh * 3193 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register. 3194 1.6 msaitoh * 3195 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for 3196 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than 3197 1.6 msaitoh * 800 = 80 millisec. 3198 1.6 msaitoh */ 3199 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw) 3200 1.6 msaitoh { 3201 1.6 msaitoh s16 devctl2; 3202 1.6 msaitoh u32 pollcnt; 3203 1.6 msaitoh 3204 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2); 3205 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK; 3206 1.6 msaitoh 3207 1.6 msaitoh switch (devctl2) { 3208 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms: 3209 1.6 msaitoh pollcnt = 1300; /* 130 millisec */ 3210 1.6 msaitoh break; 3211 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms: 3212 1.6 msaitoh pollcnt = 5200; /* 520 millisec */ 3213 1.6 msaitoh break; 3214 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s: 3215 1.6 msaitoh pollcnt = 20000; /* 2 sec */ 3216 1.6 msaitoh break; 3217 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s: 3218 1.6 msaitoh pollcnt = 80000; /* 8 sec */ 3219 1.6 msaitoh break; 3220 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s: 3221 1.6 msaitoh pollcnt = 34000; /* 34 sec */ 3222 1.6 msaitoh break; 3223 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */ 3224 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */ 3225 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */ 3226 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */ 3227 1.6 msaitoh default: 3228 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */ 3229 1.6 msaitoh break; 3230 1.6 msaitoh } 3231 1.6 msaitoh 3232 1.6 msaitoh /* add 10% to spec maximum */ 3233 1.6 msaitoh return (pollcnt * 11) / 10; 3234 1.6 msaitoh } 3235 1.6 msaitoh 3236 1.1 dyoung /** 3237 1.45 msaitoh * ixgbe_disable_pcie_primary - Disable PCI-express primary access 3238 1.38 msaitoh * @hw: pointer to hardware structure 3239 1.1 dyoung * 3240 1.45 msaitoh * Disables PCI-Express primary access and verifies there are no pending 3241 1.45 msaitoh * requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable 3242 1.45 msaitoh * bit hasn't caused the primary requests to be disabled, else IXGBE_SUCCESS 3243 1.45 msaitoh * is returned signifying primary requests disabled. 3244 1.1 dyoung **/ 3245 1.45 msaitoh s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw) 3246 1.1 dyoung { 3247 1.3 msaitoh s32 status = IXGBE_SUCCESS; 3248 1.6 msaitoh u32 i, poll; 3249 1.8 msaitoh u16 value; 3250 1.1 dyoung 3251 1.45 msaitoh DEBUGFUNC("ixgbe_disable_pcie_primary"); 3252 1.1 dyoung 3253 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */ 3254 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 3255 1.3 msaitoh 3256 1.45 msaitoh /* Exit if primary requests are blocked */ 3257 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) || 3258 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr)) 3259 1.1 dyoung goto out; 3260 1.1 dyoung 3261 1.45 msaitoh /* Poll for primary request bit to clear */ 3262 1.45 msaitoh for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) { 3263 1.3 msaitoh usec_delay(100); 3264 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 3265 1.3 msaitoh goto out; 3266 1.1 dyoung } 3267 1.1 dyoung 3268 1.3 msaitoh /* 3269 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet 3270 1.45 msaitoh * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine 3271 1.45 msaitoh * of this need. The first reset prevents new primary requests from 3272 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any 3273 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset 3274 1.3 msaitoh * again to clear out any effects they may have had on our device. 3275 1.3 msaitoh */ 3276 1.45 msaitoh DEBUGOUT("GIO Primary Disable bit didn't clear - requesting resets\n"); 3277 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 3278 1.1 dyoung 3279 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550) 3280 1.10 msaitoh goto out; 3281 1.10 msaitoh 3282 1.1 dyoung /* 3283 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have 3284 1.1 dyoung * transactions pending. 3285 1.1 dyoung */ 3286 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw); 3287 1.6 msaitoh for (i = 0; i < poll; i++) { 3288 1.3 msaitoh usec_delay(100); 3289 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 3290 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr)) 3291 1.8 msaitoh goto out; 3292 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 3293 1.3 msaitoh goto out; 3294 1.1 dyoung } 3295 1.1 dyoung 3296 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING, 3297 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n"); 3298 1.45 msaitoh status = IXGBE_ERR_PRIMARY_REQUESTS_PENDING; 3299 1.1 dyoung 3300 1.1 dyoung out: 3301 1.1 dyoung return status; 3302 1.1 dyoung } 3303 1.1 dyoung 3304 1.1 dyoung /** 3305 1.38 msaitoh * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 3306 1.38 msaitoh * @hw: pointer to hardware structure 3307 1.38 msaitoh * @mask: Mask to specify which semaphore to acquire 3308 1.1 dyoung * 3309 1.38 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified 3310 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash) 3311 1.1 dyoung **/ 3312 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3313 1.1 dyoung { 3314 1.6 msaitoh u32 gssr = 0; 3315 1.1 dyoung u32 swmask = mask; 3316 1.1 dyoung u32 fwmask = mask << 5; 3317 1.6 msaitoh u32 timeout = 200; 3318 1.6 msaitoh u32 i; 3319 1.1 dyoung 3320 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync"); 3321 1.1 dyoung 3322 1.6 msaitoh for (i = 0; i < timeout; i++) { 3323 1.1 dyoung /* 3324 1.6 msaitoh * SW NVM semaphore bit is used for access to all 3325 1.6 msaitoh * SW_FW_SYNC bits (not just NVM) 3326 1.1 dyoung */ 3327 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw)) 3328 1.1 dyoung return IXGBE_ERR_SWFW_SYNC; 3329 1.1 dyoung 3330 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3331 1.6 msaitoh if (!(gssr & (fwmask | swmask))) { 3332 1.6 msaitoh gssr |= swmask; 3333 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3334 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw); 3335 1.6 msaitoh return IXGBE_SUCCESS; 3336 1.6 msaitoh } else { 3337 1.6 msaitoh /* Resource is currently in use by FW or SW */ 3338 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw); 3339 1.6 msaitoh msec_delay(5); 3340 1.6 msaitoh } 3341 1.1 dyoung } 3342 1.1 dyoung 3343 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */ 3344 1.6 msaitoh if (gssr & (fwmask | swmask)) 3345 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask)); 3346 1.1 dyoung 3347 1.6 msaitoh msec_delay(5); 3348 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC; 3349 1.1 dyoung } 3350 1.1 dyoung 3351 1.1 dyoung /** 3352 1.38 msaitoh * ixgbe_release_swfw_sync - Release SWFW semaphore 3353 1.38 msaitoh * @hw: pointer to hardware structure 3354 1.38 msaitoh * @mask: Mask to specify which semaphore to release 3355 1.1 dyoung * 3356 1.38 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified 3357 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash) 3358 1.1 dyoung **/ 3359 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3360 1.1 dyoung { 3361 1.1 dyoung u32 gssr; 3362 1.1 dyoung u32 swmask = mask; 3363 1.1 dyoung 3364 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync"); 3365 1.1 dyoung 3366 1.1 dyoung ixgbe_get_eeprom_semaphore(hw); 3367 1.1 dyoung 3368 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3369 1.1 dyoung gssr &= ~swmask; 3370 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3371 1.1 dyoung 3372 1.1 dyoung ixgbe_release_eeprom_semaphore(hw); 3373 1.1 dyoung } 3374 1.1 dyoung 3375 1.1 dyoung /** 3376 1.38 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path 3377 1.38 msaitoh * @hw: pointer to hardware structure 3378 1.3 msaitoh * 3379 1.38 msaitoh * Stops the receive data path and waits for the HW to internally empty 3380 1.38 msaitoh * the Rx security block 3381 1.3 msaitoh **/ 3382 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw) 3383 1.3 msaitoh { 3384 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000 3385 1.3 msaitoh 3386 1.3 msaitoh int i; 3387 1.3 msaitoh int secrxreg; 3388 1.3 msaitoh 3389 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic"); 3390 1.3 msaitoh 3391 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3392 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 3393 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3394 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 3395 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 3396 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 3397 1.3 msaitoh break; 3398 1.3 msaitoh else 3399 1.3 msaitoh /* Use interrupt-safe sleep just in case */ 3400 1.17 msaitoh usec_delay(10); 3401 1.3 msaitoh } 3402 1.3 msaitoh 3403 1.3 msaitoh /* For informational purposes only */ 3404 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL) 3405 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security " 3406 1.3 msaitoh "path fully disabled. Continuing with init.\n"); 3407 1.3 msaitoh 3408 1.3 msaitoh return IXGBE_SUCCESS; 3409 1.3 msaitoh } 3410 1.3 msaitoh 3411 1.3 msaitoh /** 3412 1.38 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read 3413 1.38 msaitoh * @hw: pointer to hardware structure 3414 1.38 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken 3415 1.38 msaitoh * @reg_val: Value we read from AUTOC 3416 1.8 msaitoh * 3417 1.38 msaitoh * The default case requires no protection so just to the register read. 3418 1.8 msaitoh */ 3419 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val) 3420 1.8 msaitoh { 3421 1.8 msaitoh *locked = FALSE; 3422 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3423 1.8 msaitoh return IXGBE_SUCCESS; 3424 1.8 msaitoh } 3425 1.8 msaitoh 3426 1.8 msaitoh /** 3427 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write 3428 1.8 msaitoh * @hw: pointer to hardware structure 3429 1.8 msaitoh * @reg_val: value to write to AUTOC 3430 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by 3431 1.38 msaitoh * previous read. 3432 1.8 msaitoh * 3433 1.8 msaitoh * The default case requires no protection so just to the register write. 3434 1.8 msaitoh */ 3435 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked) 3436 1.8 msaitoh { 3437 1.8 msaitoh UNREFERENCED_1PARAMETER(locked); 3438 1.8 msaitoh 3439 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val); 3440 1.8 msaitoh return IXGBE_SUCCESS; 3441 1.8 msaitoh } 3442 1.8 msaitoh 3443 1.8 msaitoh /** 3444 1.38 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path 3445 1.38 msaitoh * @hw: pointer to hardware structure 3446 1.3 msaitoh * 3447 1.38 msaitoh * Enables the receive data path. 3448 1.3 msaitoh **/ 3449 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw) 3450 1.3 msaitoh { 3451 1.14 msaitoh u32 secrxreg; 3452 1.3 msaitoh 3453 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic"); 3454 1.3 msaitoh 3455 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3456 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 3457 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3458 1.3 msaitoh IXGBE_WRITE_FLUSH(hw); 3459 1.3 msaitoh 3460 1.3 msaitoh return IXGBE_SUCCESS; 3461 1.3 msaitoh } 3462 1.3 msaitoh 3463 1.3 msaitoh /** 3464 1.38 msaitoh * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 3465 1.38 msaitoh * @hw: pointer to hardware structure 3466 1.38 msaitoh * @regval: register value to write to RXCTRL 3467 1.1 dyoung * 3468 1.38 msaitoh * Enables the Rx DMA unit 3469 1.1 dyoung **/ 3470 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 3471 1.1 dyoung { 3472 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic"); 3473 1.1 dyoung 3474 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN) 3475 1.8 msaitoh ixgbe_enable_rx(hw); 3476 1.8 msaitoh else 3477 1.8 msaitoh ixgbe_disable_rx(hw); 3478 1.1 dyoung 3479 1.1 dyoung return IXGBE_SUCCESS; 3480 1.1 dyoung } 3481 1.1 dyoung 3482 1.1 dyoung /** 3483 1.38 msaitoh * ixgbe_blink_led_start_generic - Blink LED based on index. 3484 1.38 msaitoh * @hw: pointer to hardware structure 3485 1.38 msaitoh * @index: led number to blink 3486 1.1 dyoung **/ 3487 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 3488 1.1 dyoung { 3489 1.1 dyoung ixgbe_link_speed speed = 0; 3490 1.1 dyoung bool link_up = 0; 3491 1.8 msaitoh u32 autoc_reg = 0; 3492 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3493 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS; 3494 1.8 msaitoh bool locked = FALSE; 3495 1.1 dyoung 3496 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic"); 3497 1.1 dyoung 3498 1.14 msaitoh if (index > 3) 3499 1.14 msaitoh return IXGBE_ERR_PARAM; 3500 1.14 msaitoh 3501 1.1 dyoung /* 3502 1.1 dyoung * Link must be up to auto-blink the LEDs; 3503 1.1 dyoung * Force it if link is down. 3504 1.1 dyoung */ 3505 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); 3506 1.1 dyoung 3507 1.1 dyoung if (!link_up) { 3508 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3509 1.8 msaitoh if (ret_val != IXGBE_SUCCESS) 3510 1.8 msaitoh goto out; 3511 1.5 msaitoh 3512 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3513 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU; 3514 1.8 msaitoh 3515 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3516 1.8 msaitoh if (ret_val != IXGBE_SUCCESS) 3517 1.8 msaitoh goto out; 3518 1.8 msaitoh 3519 1.3 msaitoh IXGBE_WRITE_FLUSH(hw); 3520 1.1 dyoung msec_delay(10); 3521 1.1 dyoung } 3522 1.1 dyoung 3523 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index); 3524 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index); 3525 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3526 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 3527 1.1 dyoung 3528 1.5 msaitoh out: 3529 1.5 msaitoh return ret_val; 3530 1.1 dyoung } 3531 1.1 dyoung 3532 1.1 dyoung /** 3533 1.38 msaitoh * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 3534 1.38 msaitoh * @hw: pointer to hardware structure 3535 1.38 msaitoh * @index: led number to stop blinking 3536 1.1 dyoung **/ 3537 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 3538 1.1 dyoung { 3539 1.8 msaitoh u32 autoc_reg = 0; 3540 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3541 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS; 3542 1.8 msaitoh bool locked = FALSE; 3543 1.1 dyoung 3544 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic"); 3545 1.1 dyoung 3546 1.14 msaitoh if (index > 3) 3547 1.14 msaitoh return IXGBE_ERR_PARAM; 3548 1.14 msaitoh 3549 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3550 1.8 msaitoh if (ret_val != IXGBE_SUCCESS) 3551 1.8 msaitoh goto out; 3552 1.1 dyoung 3553 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU; 3554 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3555 1.1 dyoung 3556 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3557 1.8 msaitoh if (ret_val != IXGBE_SUCCESS) 3558 1.8 msaitoh goto out; 3559 1.5 msaitoh 3560 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index); 3561 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index); 3562 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 3563 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3564 1.1 dyoung IXGBE_WRITE_FLUSH(hw); 3565 1.1 dyoung 3566 1.5 msaitoh out: 3567 1.5 msaitoh return ret_val; 3568 1.1 dyoung } 3569 1.1 dyoung 3570 1.1 dyoung /** 3571 1.38 msaitoh * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 3572 1.38 msaitoh * @hw: pointer to hardware structure 3573 1.38 msaitoh * @san_mac_offset: SAN MAC address offset 3574 1.38 msaitoh * 3575 1.38 msaitoh * This function will read the EEPROM location for the SAN MAC address 3576 1.38 msaitoh * pointer, and returns the value at that location. This is used in both 3577 1.38 msaitoh * get and set mac_addr routines. 3578 1.1 dyoung **/ 3579 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 3580 1.3 msaitoh u16 *san_mac_offset) 3581 1.1 dyoung { 3582 1.6 msaitoh s32 ret_val; 3583 1.6 msaitoh 3584 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset"); 3585 1.1 dyoung 3586 1.1 dyoung /* 3587 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are 3588 1.1 dyoung * available. 3589 1.1 dyoung */ 3590 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, 3591 1.6 msaitoh san_mac_offset); 3592 1.6 msaitoh if (ret_val) { 3593 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3594 1.6 msaitoh "eeprom at offset %d failed", 3595 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR); 3596 1.6 msaitoh } 3597 1.1 dyoung 3598 1.6 msaitoh return ret_val; 3599 1.1 dyoung } 3600 1.1 dyoung 3601 1.1 dyoung /** 3602 1.38 msaitoh * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 3603 1.38 msaitoh * @hw: pointer to hardware structure 3604 1.38 msaitoh * @san_mac_addr: SAN MAC address 3605 1.38 msaitoh * 3606 1.38 msaitoh * Reads the SAN MAC address from the EEPROM, if it's available. This is 3607 1.38 msaitoh * per-port, so set_lan_id() must be called before reading the addresses. 3608 1.38 msaitoh * set_lan_id() is called by identify_sfp(), but this cannot be relied 3609 1.38 msaitoh * upon for non-SFP connections, so we must call it here. 3610 1.1 dyoung **/ 3611 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3612 1.1 dyoung { 3613 1.1 dyoung u16 san_mac_data, san_mac_offset; 3614 1.1 dyoung u8 i; 3615 1.6 msaitoh s32 ret_val; 3616 1.1 dyoung 3617 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic"); 3618 1.1 dyoung 3619 1.1 dyoung /* 3620 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are 3621 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here. 3622 1.1 dyoung */ 3623 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3624 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3625 1.1 dyoung goto san_mac_addr_out; 3626 1.1 dyoung 3627 1.1 dyoung /* make sure we know which port we need to program */ 3628 1.1 dyoung hw->mac.ops.set_lan_id(hw); 3629 1.1 dyoung /* apply the port offset to the address offset */ 3630 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3631 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3632 1.1 dyoung for (i = 0; i < 3; i++) { 3633 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset, 3634 1.6 msaitoh &san_mac_data); 3635 1.6 msaitoh if (ret_val) { 3636 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3637 1.6 msaitoh "eeprom read at offset %d failed", 3638 1.6 msaitoh san_mac_offset); 3639 1.6 msaitoh goto san_mac_addr_out; 3640 1.6 msaitoh } 3641 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data); 3642 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 3643 1.1 dyoung san_mac_offset++; 3644 1.1 dyoung } 3645 1.6 msaitoh return IXGBE_SUCCESS; 3646 1.1 dyoung 3647 1.1 dyoung san_mac_addr_out: 3648 1.6 msaitoh /* 3649 1.6 msaitoh * No addresses available in this EEPROM. It's not an 3650 1.6 msaitoh * error though, so just wipe the local address and return. 3651 1.6 msaitoh */ 3652 1.6 msaitoh for (i = 0; i < 6; i++) 3653 1.6 msaitoh san_mac_addr[i] = 0xFF; 3654 1.1 dyoung return IXGBE_SUCCESS; 3655 1.1 dyoung } 3656 1.1 dyoung 3657 1.1 dyoung /** 3658 1.38 msaitoh * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM 3659 1.38 msaitoh * @hw: pointer to hardware structure 3660 1.38 msaitoh * @san_mac_addr: SAN MAC address 3661 1.1 dyoung * 3662 1.38 msaitoh * Write a SAN MAC address to the EEPROM. 3663 1.1 dyoung **/ 3664 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3665 1.1 dyoung { 3666 1.6 msaitoh s32 ret_val; 3667 1.1 dyoung u16 san_mac_data, san_mac_offset; 3668 1.1 dyoung u8 i; 3669 1.1 dyoung 3670 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic"); 3671 1.1 dyoung 3672 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */ 3673 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3674 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3675 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR; 3676 1.1 dyoung 3677 1.1 dyoung /* Make sure we know which port we need to write */ 3678 1.1 dyoung hw->mac.ops.set_lan_id(hw); 3679 1.1 dyoung /* Apply the port offset to the address offset */ 3680 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3681 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3682 1.1 dyoung 3683 1.1 dyoung for (i = 0; i < 3; i++) { 3684 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8); 3685 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]); 3686 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data); 3687 1.1 dyoung san_mac_offset++; 3688 1.1 dyoung } 3689 1.1 dyoung 3690 1.6 msaitoh return IXGBE_SUCCESS; 3691 1.1 dyoung } 3692 1.1 dyoung 3693 1.1 dyoung /** 3694 1.38 msaitoh * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 3695 1.38 msaitoh * @hw: pointer to hardware structure 3696 1.1 dyoung * 3697 1.38 msaitoh * Read PCIe configuration space, and get the MSI-X vector count from 3698 1.38 msaitoh * the capabilities table. 3699 1.1 dyoung **/ 3700 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 3701 1.1 dyoung { 3702 1.4 msaitoh u16 msix_count = 1; 3703 1.4 msaitoh u16 max_msix_count; 3704 1.4 msaitoh u16 pcie_offset; 3705 1.4 msaitoh 3706 1.4 msaitoh switch (hw->mac.type) { 3707 1.4 msaitoh case ixgbe_mac_82598EB: 3708 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 3709 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 3710 1.4 msaitoh break; 3711 1.4 msaitoh case ixgbe_mac_82599EB: 3712 1.4 msaitoh case ixgbe_mac_X540: 3713 1.8 msaitoh case ixgbe_mac_X550: 3714 1.8 msaitoh case ixgbe_mac_X550EM_x: 3715 1.14 msaitoh case ixgbe_mac_X550EM_a: 3716 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 3717 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 3718 1.4 msaitoh break; 3719 1.4 msaitoh default: 3720 1.4 msaitoh return msix_count; 3721 1.4 msaitoh } 3722 1.1 dyoung 3723 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic"); 3724 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset); 3725 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr)) 3726 1.8 msaitoh msix_count = 0; 3727 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 3728 1.4 msaitoh 3729 1.4 msaitoh /* MSI-X count is zero-based in HW */ 3730 1.4 msaitoh msix_count++; 3731 1.4 msaitoh 3732 1.4 msaitoh if (msix_count > max_msix_count) 3733 1.4 msaitoh msix_count = max_msix_count; 3734 1.1 dyoung 3735 1.1 dyoung return msix_count; 3736 1.1 dyoung } 3737 1.1 dyoung 3738 1.1 dyoung /** 3739 1.38 msaitoh * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address 3740 1.38 msaitoh * @hw: pointer to hardware structure 3741 1.38 msaitoh * @addr: Address to put into receive address register 3742 1.38 msaitoh * @vmdq: VMDq pool to assign 3743 1.1 dyoung * 3744 1.38 msaitoh * Puts an ethernet address into a receive address register, or 3745 1.38 msaitoh * finds the rar that it is already in; adds to the pool list 3746 1.1 dyoung **/ 3747 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 3748 1.1 dyoung { 3749 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; 3750 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND; 3751 1.1 dyoung u32 rar; 3752 1.1 dyoung u32 rar_low, rar_high; 3753 1.1 dyoung u32 addr_low, addr_high; 3754 1.1 dyoung 3755 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic"); 3756 1.1 dyoung 3757 1.1 dyoung /* swap bytes for HW little endian */ 3758 1.1 dyoung addr_low = addr[0] | (addr[1] << 8) 3759 1.1 dyoung | (addr[2] << 16) 3760 1.1 dyoung | (addr[3] << 24); 3761 1.1 dyoung addr_high = addr[4] | (addr[5] << 8); 3762 1.1 dyoung 3763 1.1 dyoung /* 3764 1.1 dyoung * Either find the mac_id in rar or find the first empty space. 3765 1.1 dyoung * rar_highwater points to just after the highest currently used 3766 1.1 dyoung * rar in order to shorten the search. It grows when we add a new 3767 1.1 dyoung * rar to the top. 3768 1.1 dyoung */ 3769 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) { 3770 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); 3771 1.1 dyoung 3772 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0) 3773 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) { 3774 1.1 dyoung first_empty_rar = rar; 3775 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) { 3776 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); 3777 1.1 dyoung if (rar_low == addr_low) 3778 1.1 dyoung break; /* found it already in the rars */ 3779 1.1 dyoung } 3780 1.1 dyoung } 3781 1.1 dyoung 3782 1.1 dyoung if (rar < hw->mac.rar_highwater) { 3783 1.1 dyoung /* already there so just add to the pool bits */ 3784 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq); 3785 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { 3786 1.1 dyoung /* stick it into first empty RAR slot we found */ 3787 1.1 dyoung rar = first_empty_rar; 3788 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3789 1.1 dyoung } else if (rar == hw->mac.rar_highwater) { 3790 1.1 dyoung /* add it to the top of the list and inc the highwater mark */ 3791 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3792 1.1 dyoung hw->mac.rar_highwater++; 3793 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) { 3794 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR; 3795 1.1 dyoung } 3796 1.1 dyoung 3797 1.1 dyoung /* 3798 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0) 3799 1.1 dyoung * remains cleared to be sure default pool packets will get delivered 3800 1.1 dyoung */ 3801 1.1 dyoung if (rar == 0) 3802 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0); 3803 1.1 dyoung 3804 1.1 dyoung return rar; 3805 1.1 dyoung } 3806 1.1 dyoung 3807 1.1 dyoung /** 3808 1.38 msaitoh * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 3809 1.38 msaitoh * @hw: pointer to hardware struct 3810 1.38 msaitoh * @rar: receive address register index to disassociate 3811 1.38 msaitoh * @vmdq: VMDq pool index to remove from the rar 3812 1.1 dyoung **/ 3813 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3814 1.1 dyoung { 3815 1.1 dyoung u32 mpsar_lo, mpsar_hi; 3816 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 3817 1.1 dyoung 3818 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic"); 3819 1.1 dyoung 3820 1.1 dyoung /* Make sure we are using a valid rar index range */ 3821 1.1 dyoung if (rar >= rar_entries) { 3822 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3823 1.6 msaitoh "RAR index %d is out of range.\n", rar); 3824 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT; 3825 1.1 dyoung } 3826 1.1 dyoung 3827 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3828 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3829 1.1 dyoung 3830 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr)) 3831 1.8 msaitoh goto done; 3832 1.8 msaitoh 3833 1.1 dyoung if (!mpsar_lo && !mpsar_hi) 3834 1.1 dyoung goto done; 3835 1.1 dyoung 3836 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 3837 1.1 dyoung if (mpsar_lo) { 3838 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3839 1.37 msaitoh mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3840 1.1 dyoung } 3841 1.1 dyoung if (mpsar_hi) { 3842 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3843 1.37 msaitoh mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3844 1.1 dyoung } 3845 1.1 dyoung } else if (vmdq < 32) { 3846 1.1 dyoung mpsar_lo &= ~(1 << vmdq); 3847 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 3848 1.1 dyoung } else { 3849 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32)); 3850 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 3851 1.1 dyoung } 3852 1.1 dyoung 3853 1.1 dyoung /* was that the last pool using this rar? */ 3854 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 && 3855 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index) 3856 1.1 dyoung hw->mac.ops.clear_rar(hw, rar); 3857 1.1 dyoung done: 3858 1.1 dyoung return IXGBE_SUCCESS; 3859 1.1 dyoung } 3860 1.1 dyoung 3861 1.1 dyoung /** 3862 1.38 msaitoh * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 3863 1.38 msaitoh * @hw: pointer to hardware struct 3864 1.38 msaitoh * @rar: receive address register index to associate with a VMDq index 3865 1.38 msaitoh * @vmdq: VMDq pool index 3866 1.1 dyoung **/ 3867 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3868 1.1 dyoung { 3869 1.1 dyoung u32 mpsar; 3870 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries; 3871 1.1 dyoung 3872 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic"); 3873 1.1 dyoung 3874 1.1 dyoung /* Make sure we are using a valid rar index range */ 3875 1.1 dyoung if (rar >= rar_entries) { 3876 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3877 1.6 msaitoh "RAR index %d is out of range.\n", rar); 3878 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT; 3879 1.1 dyoung } 3880 1.1 dyoung 3881 1.1 dyoung if (vmdq < 32) { 3882 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3883 1.1 dyoung mpsar |= 1 << vmdq; 3884 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 3885 1.1 dyoung } else { 3886 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3887 1.1 dyoung mpsar |= 1 << (vmdq - 32); 3888 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 3889 1.1 dyoung } 3890 1.1 dyoung return IXGBE_SUCCESS; 3891 1.1 dyoung } 3892 1.1 dyoung 3893 1.1 dyoung /** 3894 1.38 msaitoh * This function should only be involved in the IOV mode. 3895 1.38 msaitoh * In IOV mode, Default pool is next pool after the number of 3896 1.38 msaitoh * VFs advertized and not 0. 3897 1.38 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] 3898 1.38 msaitoh * 3899 1.38 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address 3900 1.38 msaitoh * @hw: pointer to hardware struct 3901 1.38 msaitoh * @vmdq: VMDq pool index 3902 1.4 msaitoh **/ 3903 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) 3904 1.4 msaitoh { 3905 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index; 3906 1.4 msaitoh 3907 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac"); 3908 1.4 msaitoh 3909 1.4 msaitoh if (vmdq < 32) { 3910 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq); 3911 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3912 1.4 msaitoh } else { 3913 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3914 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32)); 3915 1.4 msaitoh } 3916 1.4 msaitoh 3917 1.4 msaitoh return IXGBE_SUCCESS; 3918 1.4 msaitoh } 3919 1.4 msaitoh 3920 1.4 msaitoh /** 3921 1.38 msaitoh * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 3922 1.38 msaitoh * @hw: pointer to hardware structure 3923 1.1 dyoung **/ 3924 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 3925 1.1 dyoung { 3926 1.1 dyoung int i; 3927 1.1 dyoung 3928 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic"); 3929 1.1 dyoung DEBUGOUT(" Clearing UTA\n"); 3930 1.1 dyoung 3931 1.1 dyoung for (i = 0; i < 128; i++) 3932 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 3933 1.1 dyoung 3934 1.1 dyoung return IXGBE_SUCCESS; 3935 1.1 dyoung } 3936 1.1 dyoung 3937 1.1 dyoung /** 3938 1.38 msaitoh * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 3939 1.38 msaitoh * @hw: pointer to hardware structure 3940 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter 3941 1.38 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if 3942 1.22 msaitoh * vlanid not found 3943 1.22 msaitoh * 3944 1.1 dyoung * 3945 1.38 msaitoh * return the VLVF index where this VLAN id should be placed 3946 1.1 dyoung * 3947 1.1 dyoung **/ 3948 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass) 3949 1.1 dyoung { 3950 1.14 msaitoh s32 regindex, first_empty_slot; 3951 1.14 msaitoh u32 bits; 3952 1.1 dyoung 3953 1.1 dyoung /* short cut the special case */ 3954 1.1 dyoung if (vlan == 0) 3955 1.1 dyoung return 0; 3956 1.1 dyoung 3957 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we 3958 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the 3959 1.14 msaitoh * VLVF that contain our VLAN 3960 1.14 msaitoh */ 3961 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0; 3962 1.14 msaitoh 3963 1.14 msaitoh /* add VLAN enable bit for comparison */ 3964 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN; 3965 1.14 msaitoh 3966 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty 3967 1.14 msaitoh * slot found along the way. 3968 1.14 msaitoh * 3969 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 3970 1.14 msaitoh */ 3971 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) { 3972 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 3973 1.14 msaitoh if (bits == vlan) 3974 1.14 msaitoh return regindex; 3975 1.14 msaitoh if (!first_empty_slot && !bits) 3976 1.1 dyoung first_empty_slot = regindex; 3977 1.1 dyoung } 3978 1.1 dyoung 3979 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty 3980 1.14 msaitoh * slot we found during our search, else error. 3981 1.14 msaitoh */ 3982 1.14 msaitoh if (!first_empty_slot) 3983 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n"); 3984 1.1 dyoung 3985 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE; 3986 1.1 dyoung } 3987 1.1 dyoung 3988 1.1 dyoung /** 3989 1.38 msaitoh * ixgbe_set_vfta_generic - Set VLAN filter table 3990 1.38 msaitoh * @hw: pointer to hardware structure 3991 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter 3992 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB 3993 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN 3994 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay 3995 1.1 dyoung * 3996 1.38 msaitoh * Turn on/off specified VLAN in the VLAN filter table. 3997 1.1 dyoung **/ 3998 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3999 1.14 msaitoh bool vlan_on, bool vlvf_bypass) 4000 1.1 dyoung { 4001 1.14 msaitoh u32 regidx, vfta_delta, vfta; 4002 1.14 msaitoh s32 ret_val; 4003 1.1 dyoung 4004 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic"); 4005 1.1 dyoung 4006 1.14 msaitoh if (vlan > 4095 || vind > 63) 4007 1.1 dyoung return IXGBE_ERR_PARAM; 4008 1.1 dyoung 4009 1.1 dyoung /* 4010 1.1 dyoung * this is a 2 part operation - first the VFTA, then the 4011 1.1 dyoung * VLVF and VLVFB if VT Mode is set 4012 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded. 4013 1.1 dyoung */ 4014 1.1 dyoung 4015 1.1 dyoung /* Part 1 4016 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers 4017 1.1 dyoung * that enable the particular VLAN id, much like the MTA: 4018 1.1 dyoung * bits[11-5]: which register 4019 1.1 dyoung * bits[4-0]: which bit in the register 4020 1.1 dyoung */ 4021 1.14 msaitoh regidx = vlan / 32; 4022 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32); 4023 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx)); 4024 1.14 msaitoh 4025 1.14 msaitoh /* 4026 1.14 msaitoh * vfta_delta represents the difference between the current value 4027 1.14 msaitoh * of vfta and the value we want in the register. Since the diff 4028 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR 4029 1.14 msaitoh */ 4030 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta; 4031 1.14 msaitoh vfta ^= vfta_delta; 4032 1.1 dyoung 4033 1.1 dyoung /* Part 2 4034 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF 4035 1.3 msaitoh */ 4036 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta, 4037 1.14 msaitoh vfta, vlvf_bypass); 4038 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) { 4039 1.14 msaitoh if (vlvf_bypass) 4040 1.14 msaitoh goto vfta_update; 4041 1.3 msaitoh return ret_val; 4042 1.14 msaitoh } 4043 1.3 msaitoh 4044 1.14 msaitoh vfta_update: 4045 1.14 msaitoh /* Update VFTA now that we are ready for traffic */ 4046 1.14 msaitoh if (vfta_delta) 4047 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta); 4048 1.3 msaitoh 4049 1.3 msaitoh return IXGBE_SUCCESS; 4050 1.3 msaitoh } 4051 1.3 msaitoh 4052 1.3 msaitoh /** 4053 1.38 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter 4054 1.38 msaitoh * @hw: pointer to hardware structure 4055 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter 4056 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB 4057 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF 4058 1.38 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA 4059 1.14 msaitoh * and the desired value 4060 1.38 msaitoh * @vfta: the desired value of the VFTA 4061 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay 4062 1.3 msaitoh * 4063 1.38 msaitoh * Turn on/off specified bit in VLVF table. 4064 1.3 msaitoh **/ 4065 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 4066 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta, 4067 1.14 msaitoh bool vlvf_bypass) 4068 1.3 msaitoh { 4069 1.14 msaitoh u32 bits; 4070 1.14 msaitoh s32 vlvf_index; 4071 1.3 msaitoh 4072 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic"); 4073 1.3 msaitoh 4074 1.14 msaitoh if (vlan > 4095 || vind > 63) 4075 1.3 msaitoh return IXGBE_ERR_PARAM; 4076 1.3 msaitoh 4077 1.3 msaitoh /* If VT Mode is set 4078 1.1 dyoung * Either vlan_on 4079 1.1 dyoung * make sure the vlan is in VLVF 4080 1.1 dyoung * set the vind bit in the matching VLVFB 4081 1.1 dyoung * Or !vlan_on 4082 1.1 dyoung * clear the pool bit and possibly the vind 4083 1.1 dyoung */ 4084 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE)) 4085 1.14 msaitoh return IXGBE_SUCCESS; 4086 1.1 dyoung 4087 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass); 4088 1.14 msaitoh if (vlvf_index < 0) 4089 1.14 msaitoh return vlvf_index; 4090 1.14 msaitoh 4091 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32)); 4092 1.14 msaitoh 4093 1.14 msaitoh /* set the pool bit */ 4094 1.14 msaitoh bits |= 1 << (vind % 32); 4095 1.14 msaitoh if (vlan_on) 4096 1.14 msaitoh goto vlvf_update; 4097 1.14 msaitoh 4098 1.14 msaitoh /* clear the pool bit */ 4099 1.14 msaitoh bits ^= 1 << (vind % 32); 4100 1.14 msaitoh 4101 1.14 msaitoh if (!bits && 4102 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) { 4103 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise 4104 1.14 msaitoh * we run the risk of stray packets leaking into 4105 1.14 msaitoh * the PF via the default pool 4106 1.1 dyoung */ 4107 1.14 msaitoh if (*vfta_delta) 4108 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta); 4109 1.14 msaitoh 4110 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */ 4111 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 4112 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0); 4113 1.14 msaitoh 4114 1.14 msaitoh return IXGBE_SUCCESS; 4115 1.1 dyoung } 4116 1.1 dyoung 4117 1.14 msaitoh /* If there are still bits set in the VLVFB registers 4118 1.14 msaitoh * for the VLAN ID indicated we need to see if the 4119 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit. 4120 1.14 msaitoh * If the caller has requested that we clear the VFTA 4121 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN 4122 1.14 msaitoh * ID entry then ignore the request. We're not worried 4123 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID 4124 1.14 msaitoh * entry bit on, only when requested to turn it off as 4125 1.14 msaitoh * there may be multiple pools and/or VFs using the 4126 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the 4127 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also 4128 1.14 msaitoh * been cleared. This will be indicated by "bits" being 4129 1.14 msaitoh * zero. 4130 1.14 msaitoh */ 4131 1.14 msaitoh *vfta_delta = 0; 4132 1.14 msaitoh 4133 1.14 msaitoh vlvf_update: 4134 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */ 4135 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits); 4136 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan); 4137 1.14 msaitoh 4138 1.1 dyoung return IXGBE_SUCCESS; 4139 1.1 dyoung } 4140 1.1 dyoung 4141 1.1 dyoung /** 4142 1.38 msaitoh * ixgbe_clear_vfta_generic - Clear VLAN filter table 4143 1.38 msaitoh * @hw: pointer to hardware structure 4144 1.1 dyoung * 4145 1.43 msaitoh * Clears the VLAN filter table, and the VMDq index associated with the filter 4146 1.1 dyoung **/ 4147 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 4148 1.1 dyoung { 4149 1.1 dyoung u32 offset; 4150 1.1 dyoung 4151 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic"); 4152 1.1 dyoung 4153 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++) 4154 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 4155 1.1 dyoung 4156 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 4157 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 4158 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0); 4159 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0); 4160 1.1 dyoung } 4161 1.1 dyoung 4162 1.1 dyoung return IXGBE_SUCCESS; 4163 1.1 dyoung } 4164 1.1 dyoung 4165 1.1 dyoung /** 4166 1.38 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues 4167 1.38 msaitoh * @hw: pointer to hardware structure 4168 1.38 msaitoh * @vf_number: VF index 4169 1.23 msaitoh * 4170 1.38 msaitoh * Enable and disable each queue in VF. 4171 1.23 msaitoh */ 4172 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number) 4173 1.23 msaitoh { 4174 1.23 msaitoh u8 queue_count, i; 4175 1.23 msaitoh u32 offset, reg; 4176 1.23 msaitoh 4177 1.23 msaitoh if (vf_number > 63) 4178 1.23 msaitoh return IXGBE_ERR_PARAM; 4179 1.23 msaitoh 4180 1.23 msaitoh /* 4181 1.23 msaitoh * Determine number of queues by checking 4182 1.23 msaitoh * number of virtual functions 4183 1.23 msaitoh */ 4184 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 4185 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) { 4186 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64: 4187 1.23 msaitoh queue_count = 2; 4188 1.23 msaitoh break; 4189 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32: 4190 1.23 msaitoh queue_count = 4; 4191 1.23 msaitoh break; 4192 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16: 4193 1.23 msaitoh queue_count = 8; 4194 1.23 msaitoh break; 4195 1.23 msaitoh default: 4196 1.23 msaitoh return IXGBE_ERR_CONFIG; 4197 1.23 msaitoh } 4198 1.23 msaitoh 4199 1.23 msaitoh /* Toggle queues */ 4200 1.23 msaitoh for (i = 0; i < queue_count; ++i) { 4201 1.23 msaitoh /* Calculate offset of current queue */ 4202 1.23 msaitoh offset = queue_count * vf_number + i; 4203 1.23 msaitoh 4204 1.23 msaitoh /* Enable queue */ 4205 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset)); 4206 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE; 4207 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg); 4208 1.23 msaitoh IXGBE_WRITE_FLUSH(hw); 4209 1.23 msaitoh 4210 1.23 msaitoh /* Disable queue */ 4211 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset)); 4212 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE; 4213 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg); 4214 1.23 msaitoh IXGBE_WRITE_FLUSH(hw); 4215 1.23 msaitoh } 4216 1.23 msaitoh 4217 1.23 msaitoh return IXGBE_SUCCESS; 4218 1.23 msaitoh } 4219 1.23 msaitoh 4220 1.23 msaitoh /** 4221 1.38 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix 4222 1.38 msaitoh * @hw: pointer to hardware structure 4223 1.14 msaitoh * 4224 1.38 msaitoh * Contains the logic to identify if we need to verify link for the 4225 1.38 msaitoh * crosstalk fix 4226 1.14 msaitoh **/ 4227 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw) 4228 1.14 msaitoh { 4229 1.14 msaitoh 4230 1.14 msaitoh /* Does FW say we need the fix */ 4231 1.14 msaitoh if (!hw->need_crosstalk_fix) 4232 1.14 msaitoh return FALSE; 4233 1.14 msaitoh 4234 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */ 4235 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) { 4236 1.14 msaitoh case ixgbe_media_type_fiber: 4237 1.14 msaitoh case ixgbe_media_type_fiber_qsfp: 4238 1.14 msaitoh break; 4239 1.14 msaitoh default: 4240 1.14 msaitoh return FALSE; 4241 1.14 msaitoh } 4242 1.14 msaitoh 4243 1.14 msaitoh return TRUE; 4244 1.14 msaitoh } 4245 1.14 msaitoh 4246 1.14 msaitoh /** 4247 1.38 msaitoh * ixgbe_check_mac_link_generic - Determine link and speed status 4248 1.38 msaitoh * @hw: pointer to hardware structure 4249 1.38 msaitoh * @speed: pointer to link speed 4250 1.38 msaitoh * @link_up: TRUE when link is up 4251 1.38 msaitoh * @link_up_wait_to_complete: bool used to wait for link up or not 4252 1.1 dyoung * 4253 1.38 msaitoh * Reads the links register to determine if link is up and the current speed 4254 1.1 dyoung **/ 4255 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 4256 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete) 4257 1.1 dyoung { 4258 1.1 dyoung u32 links_reg, links_orig; 4259 1.1 dyoung u32 i; 4260 1.1 dyoung 4261 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic"); 4262 1.1 dyoung 4263 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure 4264 1.14 msaitoh * the SFP+ cage is full. 4265 1.14 msaitoh */ 4266 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) { 4267 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) && 4268 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) { 4269 1.14 msaitoh *link_up = FALSE; 4270 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN; 4271 1.14 msaitoh return IXGBE_SUCCESS; 4272 1.14 msaitoh } 4273 1.14 msaitoh } 4274 1.14 msaitoh 4275 1.1 dyoung /* clear the old state */ 4276 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 4277 1.1 dyoung 4278 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4279 1.1 dyoung 4280 1.1 dyoung if (links_orig != links_reg) { 4281 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n", 4282 1.3 msaitoh links_orig, links_reg); 4283 1.1 dyoung } 4284 1.1 dyoung 4285 1.1 dyoung if (link_up_wait_to_complete) { 4286 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) { 4287 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) { 4288 1.1 dyoung *link_up = TRUE; 4289 1.1 dyoung break; 4290 1.1 dyoung } else { 4291 1.1 dyoung *link_up = FALSE; 4292 1.1 dyoung } 4293 1.1 dyoung msec_delay(100); 4294 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4295 1.1 dyoung } 4296 1.1 dyoung } else { 4297 1.46 msaitoh if (links_reg & IXGBE_LINKS_UP) { 4298 1.46 msaitoh if (ixgbe_need_crosstalk_fix(hw)) { 4299 1.46 msaitoh /* Check the link state again after a delay 4300 1.46 msaitoh * to filter out spurious link up 4301 1.46 msaitoh * notifications. 4302 1.46 msaitoh */ 4303 1.46 msaitoh msec_delay(5); 4304 1.46 msaitoh links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4305 1.46 msaitoh if (!(links_reg & IXGBE_LINKS_UP)) { 4306 1.46 msaitoh *link_up = false; 4307 1.46 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN; 4308 1.46 msaitoh return IXGBE_SUCCESS; 4309 1.46 msaitoh } 4310 1.46 msaitoh 4311 1.46 msaitoh } 4312 1.1 dyoung *link_up = TRUE; 4313 1.46 msaitoh } else { 4314 1.1 dyoung *link_up = FALSE; 4315 1.46 msaitoh } 4316 1.1 dyoung } 4317 1.1 dyoung 4318 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) { 4319 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599: 4320 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL; 4321 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) { 4322 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4323 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 4324 1.8 msaitoh } 4325 1.8 msaitoh break; 4326 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599: 4327 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL; 4328 1.8 msaitoh break; 4329 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599: 4330 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL; 4331 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) { 4332 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4333 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL; 4334 1.8 msaitoh } 4335 1.8 msaitoh break; 4336 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A: 4337 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN; 4338 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T || 4339 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) 4340 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL; 4341 1.14 msaitoh break; 4342 1.8 msaitoh default: 4343 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN; 4344 1.8 msaitoh } 4345 1.1 dyoung 4346 1.1 dyoung return IXGBE_SUCCESS; 4347 1.1 dyoung } 4348 1.1 dyoung 4349 1.1 dyoung /** 4350 1.38 msaitoh * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from 4351 1.38 msaitoh * the EEPROM 4352 1.38 msaitoh * @hw: pointer to hardware structure 4353 1.38 msaitoh * @wwnn_prefix: the alternative WWNN prefix 4354 1.38 msaitoh * @wwpn_prefix: the alternative WWPN prefix 4355 1.1 dyoung * 4356 1.38 msaitoh * This function will read the EEPROM from the alternative SAN MAC address 4357 1.38 msaitoh * block to check the support for the alternative WWNN/WWPN prefix support. 4358 1.1 dyoung **/ 4359 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 4360 1.3 msaitoh u16 *wwpn_prefix) 4361 1.1 dyoung { 4362 1.1 dyoung u16 offset, caps; 4363 1.1 dyoung u16 alt_san_mac_blk_offset; 4364 1.1 dyoung 4365 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic"); 4366 1.1 dyoung 4367 1.1 dyoung /* clear output first */ 4368 1.1 dyoung *wwnn_prefix = 0xFFFF; 4369 1.1 dyoung *wwpn_prefix = 0xFFFF; 4370 1.1 dyoung 4371 1.1 dyoung /* check if alternative SAN MAC is supported */ 4372 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR; 4373 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset)) 4374 1.6 msaitoh goto wwn_prefix_err; 4375 1.1 dyoung 4376 1.1 dyoung if ((alt_san_mac_blk_offset == 0) || 4377 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF)) 4378 1.1 dyoung goto wwn_prefix_out; 4379 1.1 dyoung 4380 1.1 dyoung /* check capability in alternative san mac address block */ 4381 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 4382 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps)) 4383 1.6 msaitoh goto wwn_prefix_err; 4384 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 4385 1.1 dyoung goto wwn_prefix_out; 4386 1.1 dyoung 4387 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */ 4388 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 4389 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) { 4390 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4391 1.6 msaitoh "eeprom read at offset %d failed", offset); 4392 1.6 msaitoh } 4393 1.1 dyoung 4394 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 4395 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix)) 4396 1.6 msaitoh goto wwn_prefix_err; 4397 1.1 dyoung 4398 1.1 dyoung wwn_prefix_out: 4399 1.1 dyoung return IXGBE_SUCCESS; 4400 1.6 msaitoh 4401 1.6 msaitoh wwn_prefix_err: 4402 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4403 1.6 msaitoh "eeprom read at offset %d failed", offset); 4404 1.6 msaitoh return IXGBE_SUCCESS; 4405 1.1 dyoung } 4406 1.1 dyoung 4407 1.1 dyoung /** 4408 1.38 msaitoh * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM 4409 1.38 msaitoh * @hw: pointer to hardware structure 4410 1.38 msaitoh * @bs: the fcoe boot status 4411 1.1 dyoung * 4412 1.38 msaitoh * This function will read the FCOE boot status from the iSCSI FCOE block 4413 1.1 dyoung **/ 4414 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs) 4415 1.1 dyoung { 4416 1.1 dyoung u16 offset, caps, flags; 4417 1.1 dyoung s32 status; 4418 1.1 dyoung 4419 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic"); 4420 1.1 dyoung 4421 1.1 dyoung /* clear output first */ 4422 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable; 4423 1.1 dyoung 4424 1.1 dyoung /* check if FCOE IBA block is present */ 4425 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR; 4426 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps); 4427 1.1 dyoung if (status != IXGBE_SUCCESS) 4428 1.1 dyoung goto out; 4429 1.1 dyoung 4430 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE)) 4431 1.1 dyoung goto out; 4432 1.1 dyoung 4433 1.1 dyoung /* check if iSCSI FCOE block is populated */ 4434 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset); 4435 1.1 dyoung if (status != IXGBE_SUCCESS) 4436 1.1 dyoung goto out; 4437 1.1 dyoung 4438 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF)) 4439 1.1 dyoung goto out; 4440 1.1 dyoung 4441 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */ 4442 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET; 4443 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags); 4444 1.1 dyoung if (status != IXGBE_SUCCESS) 4445 1.1 dyoung goto out; 4446 1.1 dyoung 4447 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE) 4448 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled; 4449 1.1 dyoung else 4450 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled; 4451 1.1 dyoung 4452 1.1 dyoung out: 4453 1.1 dyoung return status; 4454 1.1 dyoung } 4455 1.1 dyoung 4456 1.1 dyoung /** 4457 1.38 msaitoh * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 4458 1.38 msaitoh * @hw: pointer to hardware structure 4459 1.38 msaitoh * @enable: enable or disable switch for MAC anti-spoofing 4460 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing 4461 1.1 dyoung * 4462 1.1 dyoung **/ 4463 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4464 1.1 dyoung { 4465 1.14 msaitoh int vf_target_reg = vf >> 3; 4466 1.14 msaitoh int vf_target_shift = vf % 8; 4467 1.14 msaitoh u32 pfvfspoof; 4468 1.1 dyoung 4469 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB) 4470 1.1 dyoung return; 4471 1.1 dyoung 4472 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4473 1.1 dyoung if (enable) 4474 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift); 4475 1.14 msaitoh else 4476 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift); 4477 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4478 1.1 dyoung } 4479 1.1 dyoung 4480 1.1 dyoung /** 4481 1.38 msaitoh * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 4482 1.38 msaitoh * @hw: pointer to hardware structure 4483 1.38 msaitoh * @enable: enable or disable switch for VLAN anti-spoofing 4484 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 4485 1.1 dyoung * 4486 1.1 dyoung **/ 4487 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4488 1.1 dyoung { 4489 1.1 dyoung int vf_target_reg = vf >> 3; 4490 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 4491 1.1 dyoung u32 pfvfspoof; 4492 1.1 dyoung 4493 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB) 4494 1.1 dyoung return; 4495 1.1 dyoung 4496 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4497 1.1 dyoung if (enable) 4498 1.1 dyoung pfvfspoof |= (1 << vf_target_shift); 4499 1.1 dyoung else 4500 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift); 4501 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4502 1.1 dyoung } 4503 1.1 dyoung 4504 1.1 dyoung /** 4505 1.38 msaitoh * ixgbe_get_device_caps_generic - Get additional device capabilities 4506 1.38 msaitoh * @hw: pointer to hardware structure 4507 1.38 msaitoh * @device_caps: the EEPROM word with the extra device capabilities 4508 1.1 dyoung * 4509 1.38 msaitoh * This function will read the EEPROM location for the device capabilities, 4510 1.38 msaitoh * and return the word through device_caps. 4511 1.1 dyoung **/ 4512 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 4513 1.1 dyoung { 4514 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic"); 4515 1.1 dyoung 4516 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 4517 1.1 dyoung 4518 1.1 dyoung return IXGBE_SUCCESS; 4519 1.1 dyoung } 4520 1.1 dyoung 4521 1.1 dyoung /** 4522 1.38 msaitoh * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering 4523 1.38 msaitoh * @hw: pointer to hardware structure 4524 1.1 dyoung * 4525 1.1 dyoung **/ 4526 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw) 4527 1.1 dyoung { 4528 1.1 dyoung u32 regval; 4529 1.1 dyoung u32 i; 4530 1.1 dyoung 4531 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2"); 4532 1.1 dyoung 4533 1.1 dyoung /* Enable relaxed ordering */ 4534 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) { 4535 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 4536 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN; 4537 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 4538 1.1 dyoung } 4539 1.1 dyoung 4540 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) { 4541 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 4542 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN | 4543 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN; 4544 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 4545 1.1 dyoung } 4546 1.1 dyoung 4547 1.1 dyoung } 4548 1.3 msaitoh 4549 1.3 msaitoh /** 4550 1.38 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer 4551 1.38 msaitoh * @buffer: pointer to EEPROM 4552 1.38 msaitoh * @length: size of EEPROM to calculate a checksum for 4553 1.38 msaitoh * Calculates the checksum for some buffer on a specified length. The 4554 1.38 msaitoh * checksum calculated is returned. 4555 1.3 msaitoh **/ 4556 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 4557 1.3 msaitoh { 4558 1.3 msaitoh u32 i; 4559 1.3 msaitoh u8 sum = 0; 4560 1.3 msaitoh 4561 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum"); 4562 1.3 msaitoh 4563 1.3 msaitoh if (!buffer) 4564 1.3 msaitoh return 0; 4565 1.3 msaitoh 4566 1.3 msaitoh for (i = 0; i < length; i++) 4567 1.3 msaitoh sum += buffer[i]; 4568 1.3 msaitoh 4569 1.3 msaitoh return (u8) (0 - sum); 4570 1.3 msaitoh } 4571 1.3 msaitoh 4572 1.3 msaitoh /** 4573 1.38 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked 4574 1.38 msaitoh * @hw: pointer to the HW structure 4575 1.38 msaitoh * @buffer: command to write and where the return status will be placed 4576 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes 4577 1.38 msaitoh * @timeout: time in ms to wait for command completion 4578 1.38 msaitoh * 4579 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS 4580 1.38 msaitoh * else returns semaphore error when encountering an error acquiring 4581 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4582 1.14 msaitoh * 4583 1.38 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held 4584 1.38 msaitoh * by the caller. 4585 1.3 msaitoh **/ 4586 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length, 4587 1.14 msaitoh u32 timeout) 4588 1.3 msaitoh { 4589 1.14 msaitoh u32 hicr, i, fwsts; 4590 1.8 msaitoh u16 dword_len; 4591 1.3 msaitoh 4592 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked"); 4593 1.3 msaitoh 4594 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4595 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4596 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4597 1.8 msaitoh } 4598 1.14 msaitoh 4599 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */ 4600 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS); 4601 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI); 4602 1.3 msaitoh 4603 1.3 msaitoh /* Check that the host interface is enabled. */ 4604 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4605 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) { 4606 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n"); 4607 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4608 1.8 msaitoh } 4609 1.8 msaitoh 4610 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */ 4611 1.14 msaitoh if (length % sizeof(u32)) { 4612 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword"); 4613 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 4614 1.3 msaitoh } 4615 1.3 msaitoh 4616 1.3 msaitoh dword_len = length >> 2; 4617 1.3 msaitoh 4618 1.8 msaitoh /* The device driver writes the relevant command block 4619 1.3 msaitoh * into the ram area. 4620 1.3 msaitoh */ 4621 1.3 msaitoh for (i = 0; i < dword_len; i++) 4622 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4623 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i])); 4624 1.3 msaitoh 4625 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */ 4626 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 4627 1.3 msaitoh 4628 1.8 msaitoh for (i = 0; i < timeout; i++) { 4629 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4630 1.3 msaitoh if (!(hicr & IXGBE_HICR_C)) 4631 1.3 msaitoh break; 4632 1.3 msaitoh msec_delay(1); 4633 1.3 msaitoh } 4634 1.3 msaitoh 4635 1.23 msaitoh /* For each command except "Apply Update" perform 4636 1.23 msaitoh * status checks in the HICR registry. 4637 1.23 msaitoh */ 4638 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) == 4639 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD) 4640 1.23 msaitoh return IXGBE_SUCCESS; 4641 1.23 msaitoh 4642 1.8 msaitoh /* Check command completion */ 4643 1.14 msaitoh if ((timeout && i == timeout) || 4644 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) { 4645 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION, 4646 1.23 msaitoh "Command has failed with no status valid.\n"); 4647 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4648 1.3 msaitoh } 4649 1.3 msaitoh 4650 1.14 msaitoh return IXGBE_SUCCESS; 4651 1.14 msaitoh } 4652 1.14 msaitoh 4653 1.14 msaitoh /** 4654 1.38 msaitoh * ixgbe_host_interface_command - Issue command to manageability block 4655 1.38 msaitoh * @hw: pointer to the HW structure 4656 1.38 msaitoh * @buffer: contains the command to write and where the return status will 4657 1.38 msaitoh * be placed 4658 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes 4659 1.38 msaitoh * @timeout: time in ms to wait for command completion 4660 1.38 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE) 4661 1.38 msaitoh * Needed because FW structures are big endian and decoding of 4662 1.38 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding 4663 1.38 msaitoh * is not easily understood without making a table of commands. 4664 1.38 msaitoh * So we will leave this up to the caller to read back the data 4665 1.38 msaitoh * in these cases. 4666 1.38 msaitoh * 4667 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS 4668 1.38 msaitoh * else returns semaphore error when encountering an error acquiring 4669 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4670 1.14 msaitoh **/ 4671 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 4672 1.14 msaitoh u32 length, u32 timeout, bool return_data) 4673 1.14 msaitoh { 4674 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 4675 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer; 4676 1.14 msaitoh u16 buf_len; 4677 1.14 msaitoh s32 status; 4678 1.14 msaitoh u32 bi; 4679 1.22 msaitoh u32 dword_len; 4680 1.14 msaitoh 4681 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command"); 4682 1.14 msaitoh 4683 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4684 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4685 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4686 1.14 msaitoh } 4687 1.14 msaitoh 4688 1.14 msaitoh /* Take management host interface semaphore */ 4689 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4690 1.14 msaitoh if (status) 4691 1.14 msaitoh return status; 4692 1.14 msaitoh 4693 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout); 4694 1.14 msaitoh if (status) 4695 1.14 msaitoh goto rel_out; 4696 1.14 msaitoh 4697 1.8 msaitoh if (!return_data) 4698 1.14 msaitoh goto rel_out; 4699 1.8 msaitoh 4700 1.3 msaitoh /* Calculate length in DWORDs */ 4701 1.3 msaitoh dword_len = hdr_size >> 2; 4702 1.3 msaitoh 4703 1.3 msaitoh /* first pull in the header so we know the buffer length */ 4704 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) { 4705 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4706 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]); 4707 1.3 msaitoh } 4708 1.3 msaitoh 4709 1.22 msaitoh /* 4710 1.22 msaitoh * If there is any thing in data position pull it in 4711 1.22 msaitoh * Read Flash command requires reading buffer length from 4712 1.48 andvar * two bytes instead of one byte 4713 1.22 msaitoh */ 4714 1.40 msaitoh if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD || 4715 1.40 msaitoh resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) { 4716 1.22 msaitoh for (; bi < dword_len + 2; bi++) { 4717 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4718 1.22 msaitoh bi); 4719 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]); 4720 1.22 msaitoh } 4721 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3) 4722 1.22 msaitoh & 0xF00) | resp->buf_len; 4723 1.22 msaitoh hdr_size += (2 << 2); 4724 1.22 msaitoh } else { 4725 1.22 msaitoh buf_len = resp->buf_len; 4726 1.22 msaitoh } 4727 1.14 msaitoh if (!buf_len) 4728 1.14 msaitoh goto rel_out; 4729 1.3 msaitoh 4730 1.8 msaitoh if (length < buf_len + hdr_size) { 4731 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n"); 4732 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4733 1.14 msaitoh goto rel_out; 4734 1.3 msaitoh } 4735 1.3 msaitoh 4736 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */ 4737 1.3 msaitoh dword_len = (buf_len + 3) >> 2; 4738 1.3 msaitoh 4739 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */ 4740 1.3 msaitoh for (; bi <= dword_len; bi++) { 4741 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4742 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]); 4743 1.3 msaitoh } 4744 1.3 msaitoh 4745 1.14 msaitoh rel_out: 4746 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4747 1.14 msaitoh 4748 1.14 msaitoh return status; 4749 1.3 msaitoh } 4750 1.3 msaitoh 4751 1.3 msaitoh /** 4752 1.38 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 4753 1.38 msaitoh * @hw: pointer to the HW structure 4754 1.38 msaitoh * @maj: driver version major number 4755 1.38 msaitoh * @minr: driver version minor number 4756 1.38 msaitoh * @build: driver version build number 4757 1.38 msaitoh * @sub: driver version sub build number 4758 1.38 msaitoh * @len: unused 4759 1.38 msaitoh * @driver_ver: unused 4760 1.38 msaitoh * 4761 1.38 msaitoh * Sends driver version number to firmware through the manageability 4762 1.38 msaitoh * block. On success return IXGBE_SUCCESS 4763 1.38 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 4764 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4765 1.3 msaitoh **/ 4766 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr, 4767 1.14 msaitoh u8 build, u8 sub, u16 len, 4768 1.14 msaitoh const char *driver_ver) 4769 1.3 msaitoh { 4770 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd; 4771 1.3 msaitoh int i; 4772 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS; 4773 1.3 msaitoh 4774 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic"); 4775 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver); 4776 1.3 msaitoh 4777 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 4778 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 4779 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 4780 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func; 4781 1.3 msaitoh fw_cmd.ver_maj = maj; 4782 1.7 riastrad fw_cmd.ver_min = minr; 4783 1.3 msaitoh fw_cmd.ver_build = build; 4784 1.3 msaitoh fw_cmd.ver_sub = sub; 4785 1.3 msaitoh fw_cmd.hdr.checksum = 0; 4786 1.17 msaitoh fw_cmd.pad = 0; 4787 1.17 msaitoh fw_cmd.pad2 = 0; 4788 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 4789 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 4790 1.3 msaitoh 4791 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 4792 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 4793 1.8 msaitoh sizeof(fw_cmd), 4794 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT, 4795 1.8 msaitoh TRUE); 4796 1.3 msaitoh if (ret_val != IXGBE_SUCCESS) 4797 1.3 msaitoh continue; 4798 1.3 msaitoh 4799 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status == 4800 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS) 4801 1.3 msaitoh ret_val = IXGBE_SUCCESS; 4802 1.3 msaitoh else 4803 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4804 1.3 msaitoh 4805 1.3 msaitoh break; 4806 1.3 msaitoh } 4807 1.3 msaitoh 4808 1.3 msaitoh return ret_val; 4809 1.3 msaitoh } 4810 1.3 msaitoh 4811 1.3 msaitoh /** 4812 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer 4813 1.3 msaitoh * @hw: pointer to hardware structure 4814 1.3 msaitoh * @num_pb: number of packet buffers to allocate 4815 1.3 msaitoh * @headroom: reserve n KB of headroom 4816 1.3 msaitoh * @strategy: packet buffer allocation strategy 4817 1.3 msaitoh **/ 4818 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom, 4819 1.3 msaitoh int strategy) 4820 1.3 msaitoh { 4821 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size; 4822 1.3 msaitoh int i = 0; 4823 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh; 4824 1.3 msaitoh 4825 1.3 msaitoh /* Reserve headroom */ 4826 1.3 msaitoh pbsize -= headroom; 4827 1.3 msaitoh 4828 1.3 msaitoh if (!num_pb) 4829 1.3 msaitoh num_pb = 1; 4830 1.3 msaitoh 4831 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet 4832 1.3 msaitoh * buffers requested using supplied strategy. 4833 1.3 msaitoh */ 4834 1.3 msaitoh switch (strategy) { 4835 1.4 msaitoh case PBA_STRATEGY_WEIGHTED: 4836 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet 4837 1.3 msaitoh * buffer with 5/8 of the packet buffer space. 4838 1.3 msaitoh */ 4839 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4); 4840 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2); 4841 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 4842 1.3 msaitoh for (; i < (num_pb / 2); i++) 4843 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4844 1.14 msaitoh /* fall through - configure remaining packet buffers */ 4845 1.4 msaitoh case PBA_STRATEGY_EQUAL: 4846 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 4847 1.3 msaitoh for (; i < num_pb; i++) 4848 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4849 1.3 msaitoh break; 4850 1.3 msaitoh default: 4851 1.3 msaitoh break; 4852 1.3 msaitoh } 4853 1.3 msaitoh 4854 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */ 4855 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 4856 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 4857 1.3 msaitoh for (i = 0; i < num_pb; i++) { 4858 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 4859 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 4860 1.3 msaitoh } 4861 1.3 msaitoh 4862 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/ 4863 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) { 4864 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 4865 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 4866 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 4867 1.3 msaitoh } 4868 1.3 msaitoh } 4869 1.3 msaitoh 4870 1.3 msaitoh /** 4871 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 4872 1.3 msaitoh * @hw: pointer to the hardware structure 4873 1.3 msaitoh * 4874 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending 4875 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe 4876 1.3 msaitoh * buffers on the system. 4877 1.3 msaitoh **/ 4878 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 4879 1.3 msaitoh { 4880 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll; 4881 1.8 msaitoh u16 value; 4882 1.3 msaitoh 4883 1.3 msaitoh /* 4884 1.3 msaitoh * If double reset is not requested then all transactions should 4885 1.3 msaitoh * already be clear and as such there is no work to do 4886 1.3 msaitoh */ 4887 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 4888 1.3 msaitoh return; 4889 1.3 msaitoh 4890 1.3 msaitoh /* 4891 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent 4892 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit 4893 1.3 msaitoh * has already been cleared. 4894 1.3 msaitoh */ 4895 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 4896 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 4897 1.3 msaitoh 4898 1.8 msaitoh /* Wait for a last completion before clearing buffers */ 4899 1.8 msaitoh IXGBE_WRITE_FLUSH(hw); 4900 1.8 msaitoh msec_delay(3); 4901 1.8 msaitoh 4902 1.8 msaitoh /* 4903 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have 4904 1.8 msaitoh * transactions pending. 4905 1.8 msaitoh */ 4906 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw); 4907 1.8 msaitoh for (i = 0; i < poll; i++) { 4908 1.8 msaitoh usec_delay(100); 4909 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 4910 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr)) 4911 1.8 msaitoh goto out; 4912 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 4913 1.8 msaitoh goto out; 4914 1.8 msaitoh } 4915 1.8 msaitoh 4916 1.8 msaitoh out: 4917 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */ 4918 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 4919 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 4920 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 4921 1.3 msaitoh 4922 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */ 4923 1.3 msaitoh IXGBE_WRITE_FLUSH(hw); 4924 1.3 msaitoh usec_delay(20); 4925 1.3 msaitoh 4926 1.3 msaitoh /* restore previous register values */ 4927 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 4928 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 4929 1.3 msaitoh } 4930 1.3 msaitoh 4931 1.38 msaitoh #define IXGBE_BYPASS_BB_WAIT 1 4932 1.38 msaitoh 4933 1.14 msaitoh /** 4934 1.38 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW 4935 1.38 msaitoh * @hw: pointer to hardware structure 4936 1.38 msaitoh * @cmd: Command we send to the FW 4937 1.38 msaitoh * @status: The reply from the FW 4938 1.14 msaitoh * 4939 1.38 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned. 4940 1.14 msaitoh **/ 4941 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status) 4942 1.14 msaitoh { 4943 1.14 msaitoh int i; 4944 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo; 4945 1.14 msaitoh u32 esdp; 4946 1.14 msaitoh 4947 1.14 msaitoh if (!status) 4948 1.14 msaitoh return IXGBE_ERR_PARAM; 4949 1.14 msaitoh 4950 1.14 msaitoh *status = 0; 4951 1.14 msaitoh 4952 1.14 msaitoh /* SDP vary by MAC type */ 4953 1.14 msaitoh switch (hw->mac.type) { 4954 1.14 msaitoh case ixgbe_mac_82599EB: 4955 1.14 msaitoh sck = IXGBE_ESDP_SDP7; 4956 1.14 msaitoh sdi = IXGBE_ESDP_SDP0; 4957 1.14 msaitoh sdo = IXGBE_ESDP_SDP6; 4958 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR; 4959 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR; 4960 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR; 4961 1.14 msaitoh break; 4962 1.14 msaitoh case ixgbe_mac_X540: 4963 1.14 msaitoh sck = IXGBE_ESDP_SDP2; 4964 1.14 msaitoh sdi = IXGBE_ESDP_SDP0; 4965 1.14 msaitoh sdo = IXGBE_ESDP_SDP1; 4966 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR; 4967 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR; 4968 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR; 4969 1.14 msaitoh break; 4970 1.14 msaitoh default: 4971 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED; 4972 1.14 msaitoh } 4973 1.14 msaitoh 4974 1.14 msaitoh /* Set SDP pins direction */ 4975 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 4976 1.14 msaitoh esdp |= dir_sck; /* SCK as output */ 4977 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */ 4978 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */ 4979 1.14 msaitoh esdp |= sck; 4980 1.14 msaitoh esdp |= sdi; 4981 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 4982 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 4983 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 4984 1.14 msaitoh 4985 1.14 msaitoh /* Generate start condition */ 4986 1.14 msaitoh esdp &= ~sdi; 4987 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 4988 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 4989 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 4990 1.14 msaitoh 4991 1.14 msaitoh esdp &= ~sck; 4992 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 4993 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 4994 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 4995 1.14 msaitoh 4996 1.14 msaitoh /* Clock out the new control word and clock in the status */ 4997 1.14 msaitoh for (i = 0; i < 32; i++) { 4998 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) { 4999 1.14 msaitoh esdp |= sdi; 5000 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5001 1.14 msaitoh } else { 5002 1.14 msaitoh esdp &= ~sdi; 5003 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5004 1.14 msaitoh } 5005 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 5006 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 5007 1.14 msaitoh 5008 1.14 msaitoh esdp |= sck; 5009 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5010 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 5011 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 5012 1.14 msaitoh 5013 1.14 msaitoh esdp &= ~sck; 5014 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5015 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 5016 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 5017 1.14 msaitoh 5018 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 5019 1.14 msaitoh if (esdp & sdo) 5020 1.14 msaitoh *status = (*status << 1) | 0x01; 5021 1.14 msaitoh else 5022 1.14 msaitoh *status = (*status << 1) | 0x00; 5023 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 5024 1.14 msaitoh } 5025 1.14 msaitoh 5026 1.14 msaitoh /* stop condition */ 5027 1.14 msaitoh esdp |= sck; 5028 1.14 msaitoh esdp &= ~sdi; 5029 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5030 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 5031 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT); 5032 1.14 msaitoh 5033 1.14 msaitoh esdp |= sdi; 5034 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5035 1.14 msaitoh IXGBE_WRITE_FLUSH(hw); 5036 1.14 msaitoh 5037 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */ 5038 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000); 5039 1.14 msaitoh 5040 1.14 msaitoh return IXGBE_SUCCESS; 5041 1.14 msaitoh } 5042 1.14 msaitoh 5043 1.14 msaitoh /** 5044 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang. 5045 1.38 msaitoh * @in_reg: The register cmd for the bit-bang read. 5046 1.38 msaitoh * @out_reg: The register returned from a bit-bang read. 5047 1.14 msaitoh * 5048 1.14 msaitoh * If we send a write we can't be sure it took until we can read back 5049 1.32 andvar * that same register. It can be a problem as some of the fields may 5050 1.32 andvar * for valid reasons change in-between the time wrote the register and 5051 1.14 msaitoh * we read it again to verify. So this function check everything we 5052 1.14 msaitoh * can check and then assumes it worked. 5053 1.14 msaitoh **/ 5054 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg) 5055 1.14 msaitoh { 5056 1.14 msaitoh u32 mask; 5057 1.14 msaitoh 5058 1.14 msaitoh /* Page must match for all control pages */ 5059 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M)) 5060 1.14 msaitoh return FALSE; 5061 1.14 msaitoh 5062 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) { 5063 1.14 msaitoh case BYPASS_PAGE_CTL0: 5064 1.14 msaitoh /* All the following can't change since the last write 5065 1.14 msaitoh * - All the event actions 5066 1.14 msaitoh * - The timeout value 5067 1.14 msaitoh */ 5068 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M | 5069 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M | 5070 1.14 msaitoh BYPASS_WDTIMEOUT_M | 5071 1.14 msaitoh BYPASS_WDT_VALUE_M; 5072 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask)) 5073 1.14 msaitoh return FALSE; 5074 1.14 msaitoh 5075 1.14 msaitoh /* 0x0 is never a valid value for bypass status */ 5076 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M)) 5077 1.14 msaitoh return FALSE; 5078 1.14 msaitoh break; 5079 1.14 msaitoh case BYPASS_PAGE_CTL1: 5080 1.14 msaitoh /* All the following can't change since the last write 5081 1.14 msaitoh * - time valid bit 5082 1.14 msaitoh * - time we last sent 5083 1.14 msaitoh */ 5084 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M; 5085 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask)) 5086 1.14 msaitoh return FALSE; 5087 1.14 msaitoh break; 5088 1.14 msaitoh case BYPASS_PAGE_CTL2: 5089 1.14 msaitoh /* All we can check in this page is control number 5090 1.14 msaitoh * which is already done above. 5091 1.14 msaitoh */ 5092 1.14 msaitoh break; 5093 1.14 msaitoh } 5094 1.14 msaitoh 5095 1.14 msaitoh /* We are as sure as we can be return TRUE */ 5096 1.14 msaitoh return TRUE; 5097 1.14 msaitoh } 5098 1.14 msaitoh 5099 1.14 msaitoh /** 5100 1.38 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register. 5101 1.38 msaitoh * @hw: pointer to hardware structure 5102 1.38 msaitoh * @ctrl: The control word we are setting. 5103 1.38 msaitoh * @event: The event we are setting in the FW. This also happens to 5104 1.14 msaitoh * be the mask for the event we are setting (handy) 5105 1.38 msaitoh * @action: The action we set the event to in the FW. This is in a 5106 1.14 msaitoh * bit field that happens to be what we want to put in 5107 1.14 msaitoh * the event spot (also handy) 5108 1.14 msaitoh **/ 5109 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event, 5110 1.14 msaitoh u32 action) 5111 1.14 msaitoh { 5112 1.14 msaitoh u32 by_ctl = 0; 5113 1.14 msaitoh u32 cmd, verify; 5114 1.14 msaitoh u32 count = 0; 5115 1.14 msaitoh 5116 1.14 msaitoh /* Get current values */ 5117 1.14 msaitoh cmd = ctrl; /* just reading only need control number */ 5118 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5119 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 5120 1.14 msaitoh 5121 1.14 msaitoh /* Set to new action */ 5122 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action; 5123 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5124 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 5125 1.14 msaitoh 5126 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */ 5127 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) { 5128 1.14 msaitoh verify = BYPASS_PAGE_CTL0; 5129 1.14 msaitoh do { 5130 1.14 msaitoh if (count++ > 5) 5131 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE; 5132 1.14 msaitoh 5133 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl)) 5134 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 5135 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl)); 5136 1.14 msaitoh } else { 5137 1.14 msaitoh /* We have give the FW time for the write to stick */ 5138 1.14 msaitoh msec_delay(100); 5139 1.14 msaitoh } 5140 1.14 msaitoh 5141 1.14 msaitoh return IXGBE_SUCCESS; 5142 1.14 msaitoh } 5143 1.14 msaitoh 5144 1.14 msaitoh /** 5145 1.38 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address. 5146 1.14 msaitoh * 5147 1.38 msaitoh * @hw: pointer to hardware structure 5148 1.38 msaitoh * @addr: The bypass eeprom address to read. 5149 1.38 msaitoh * @value: The 8b of data at the address above. 5150 1.14 msaitoh **/ 5151 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value) 5152 1.14 msaitoh { 5153 1.14 msaitoh u32 cmd; 5154 1.14 msaitoh u32 status; 5155 1.14 msaitoh 5156 1.14 msaitoh 5157 1.14 msaitoh /* send the request */ 5158 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE; 5159 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M; 5160 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5161 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 5162 1.14 msaitoh 5163 1.14 msaitoh /* We have give the FW time for the write to stick */ 5164 1.14 msaitoh msec_delay(100); 5165 1.14 msaitoh 5166 1.14 msaitoh /* now read the results */ 5167 1.14 msaitoh cmd &= ~BYPASS_WE; 5168 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5169 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT; 5170 1.14 msaitoh 5171 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M; 5172 1.14 msaitoh 5173 1.14 msaitoh return IXGBE_SUCCESS; 5174 1.14 msaitoh } 5175 1.14 msaitoh 5176 1.17 msaitoh /** 5177 1.38 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM 5178 1.17 msaitoh * 5179 1.38 msaitoh * @hw: pointer to hardware structure 5180 1.38 msaitoh * @nvm_ver: pointer to output structure 5181 1.17 msaitoh * 5182 1.38 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE 5183 1.38 msaitoh * else nvm_ver->or_valid is FALSE. 5184 1.17 msaitoh **/ 5185 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw, 5186 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver) 5187 1.17 msaitoh { 5188 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl; 5189 1.17 msaitoh 5190 1.17 msaitoh nvm_ver->or_valid = FALSE; 5191 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */ 5192 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset); 5193 1.17 msaitoh 5194 1.17 msaitoh /* make sure offset is valid */ 5195 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR)) 5196 1.17 msaitoh return; 5197 1.17 msaitoh 5198 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh); 5199 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl); 5200 1.17 msaitoh 5201 1.17 msaitoh /* option rom exists and is valid */ 5202 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 || 5203 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID || 5204 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID) 5205 1.17 msaitoh return; 5206 1.17 msaitoh 5207 1.17 msaitoh nvm_ver->or_valid = TRUE; 5208 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT; 5209 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) | 5210 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT); 5211 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK; 5212 1.17 msaitoh } 5213 1.17 msaitoh 5214 1.17 msaitoh /** 5215 1.38 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version 5216 1.17 msaitoh * 5217 1.38 msaitoh * @hw: pointer to hardware structure 5218 1.38 msaitoh * @nvm_ver: pointer to output structure 5219 1.17 msaitoh * 5220 1.38 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE 5221 1.38 msaitoh * else nvm_ver->oem_valid is FALSE. 5222 1.17 msaitoh **/ 5223 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw, 5224 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver) 5225 1.17 msaitoh { 5226 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset; 5227 1.17 msaitoh 5228 1.17 msaitoh nvm_ver->oem_valid = FALSE; 5229 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset); 5230 1.17 msaitoh 5231 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */ 5232 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR) 5233 1.17 msaitoh return; 5234 1.17 msaitoh 5235 1.17 msaitoh /* Read product version block */ 5236 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len); 5237 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap); 5238 1.17 msaitoh 5239 1.17 msaitoh /* Return if OEM product version block is invalid */ 5240 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN || 5241 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0) 5242 1.17 msaitoh return; 5243 1.17 msaitoh 5244 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver); 5245 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num); 5246 1.17 msaitoh 5247 1.17 msaitoh /* Return if version is invalid */ 5248 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 || 5249 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID) 5250 1.17 msaitoh return; 5251 1.17 msaitoh 5252 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT; 5253 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK; 5254 1.17 msaitoh nvm_ver->oem_release = rel_num; 5255 1.17 msaitoh nvm_ver->oem_valid = TRUE; 5256 1.17 msaitoh } 5257 1.17 msaitoh 5258 1.17 msaitoh /** 5259 1.38 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM 5260 1.17 msaitoh * 5261 1.38 msaitoh * @hw: pointer to hardware structure 5262 1.38 msaitoh * @nvm_ver: pointer to output structure 5263 1.17 msaitoh * 5264 1.38 msaitoh * word read errors will return 0xFFFF 5265 1.17 msaitoh **/ 5266 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) 5267 1.17 msaitoh { 5268 1.17 msaitoh u16 etk_id_l, etk_id_h; 5269 1.17 msaitoh 5270 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l)) 5271 1.17 msaitoh etk_id_l = NVM_VER_INVALID; 5272 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h)) 5273 1.17 msaitoh etk_id_h = NVM_VER_INVALID; 5274 1.17 msaitoh 5275 1.17 msaitoh /* The word order for the version format is determined by high order 5276 1.17 msaitoh * word bit 15. 5277 1.17 msaitoh */ 5278 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) { 5279 1.17 msaitoh nvm_ver->etk_id = etk_id_h; 5280 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT); 5281 1.17 msaitoh } else { 5282 1.17 msaitoh nvm_ver->etk_id = etk_id_l; 5283 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT); 5284 1.17 msaitoh } 5285 1.17 msaitoh } 5286 1.17 msaitoh 5287 1.6 msaitoh 5288 1.6 msaitoh /** 5289 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg 5290 1.6 msaitoh * @hw: pointer to hardware structure 5291 1.6 msaitoh * @map: pointer to u8 arr for returning map 5292 1.6 msaitoh * 5293 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map 5294 1.6 msaitoh **/ 5295 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map) 5296 1.6 msaitoh { 5297 1.6 msaitoh u32 reg, i; 5298 1.6 msaitoh 5299 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC); 5300 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++) 5301 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK & 5302 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT)); 5303 1.6 msaitoh return; 5304 1.6 msaitoh } 5305 1.8 msaitoh 5306 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw) 5307 1.8 msaitoh { 5308 1.8 msaitoh u32 pfdtxgswc; 5309 1.8 msaitoh u32 rxctrl; 5310 1.8 msaitoh 5311 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5312 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) { 5313 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) { 5314 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5315 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 5316 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 5317 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5318 1.8 msaitoh hw->mac.set_lben = TRUE; 5319 1.8 msaitoh } else { 5320 1.8 msaitoh hw->mac.set_lben = FALSE; 5321 1.8 msaitoh } 5322 1.8 msaitoh } 5323 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN; 5324 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 5325 1.8 msaitoh } 5326 1.8 msaitoh } 5327 1.8 msaitoh 5328 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw) 5329 1.8 msaitoh { 5330 1.8 msaitoh u32 pfdtxgswc; 5331 1.8 msaitoh u32 rxctrl; 5332 1.8 msaitoh 5333 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5334 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN)); 5335 1.8 msaitoh 5336 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) { 5337 1.8 msaitoh if (hw->mac.set_lben) { 5338 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5339 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN; 5340 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5341 1.8 msaitoh hw->mac.set_lben = FALSE; 5342 1.8 msaitoh } 5343 1.8 msaitoh } 5344 1.8 msaitoh } 5345 1.8 msaitoh 5346 1.8 msaitoh /** 5347 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present 5348 1.8 msaitoh * @hw: pointer to hardware structure 5349 1.8 msaitoh */ 5350 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw) 5351 1.8 msaitoh { 5352 1.8 msaitoh u32 fwsm; 5353 1.8 msaitoh 5354 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB) 5355 1.8 msaitoh return FALSE; 5356 1.8 msaitoh 5357 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5358 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT); 5359 1.8 msaitoh } 5360 1.8 msaitoh 5361 1.8 msaitoh /** 5362 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled? 5363 1.8 msaitoh * @hw: pointer to hardware structure 5364 1.8 msaitoh * 5365 1.8 msaitoh * Returns TRUE if the manageability engine is enabled. 5366 1.8 msaitoh **/ 5367 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw) 5368 1.8 msaitoh { 5369 1.8 msaitoh u32 fwsm, manc, factps; 5370 1.8 msaitoh 5371 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5372 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT) 5373 1.8 msaitoh return FALSE; 5374 1.8 msaitoh 5375 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC); 5376 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN)) 5377 1.8 msaitoh return FALSE; 5378 1.8 msaitoh 5379 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) { 5380 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 5381 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG) 5382 1.8 msaitoh return FALSE; 5383 1.8 msaitoh } 5384 1.8 msaitoh 5385 1.8 msaitoh return TRUE; 5386 1.8 msaitoh } 5387 1.8 msaitoh 5388 1.8 msaitoh /** 5389 1.38 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed 5390 1.38 msaitoh * @hw: pointer to hardware structure 5391 1.38 msaitoh * @speed: new link speed 5392 1.38 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed 5393 1.8 msaitoh * 5394 1.38 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link. 5395 1.8 msaitoh **/ 5396 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, 5397 1.8 msaitoh ixgbe_link_speed speed, 5398 1.8 msaitoh bool autoneg_wait_to_complete) 5399 1.8 msaitoh { 5400 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5401 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5402 1.8 msaitoh s32 status = IXGBE_SUCCESS; 5403 1.8 msaitoh u32 speedcnt = 0; 5404 1.8 msaitoh u32 i = 0; 5405 1.8 msaitoh bool autoneg, link_up = FALSE; 5406 1.8 msaitoh 5407 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber"); 5408 1.8 msaitoh 5409 1.8 msaitoh /* Mask off requested but non-supported speeds */ 5410 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg); 5411 1.8 msaitoh if (status != IXGBE_SUCCESS) 5412 1.8 msaitoh return status; 5413 1.8 msaitoh 5414 1.8 msaitoh speed &= link_speed; 5415 1.8 msaitoh 5416 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in 5417 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation. 5418 1.8 msaitoh */ 5419 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 5420 1.8 msaitoh speedcnt++; 5421 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; 5422 1.8 msaitoh 5423 1.8 msaitoh /* Set the module link speed */ 5424 1.8 msaitoh switch (hw->phy.media_type) { 5425 1.8 msaitoh case ixgbe_media_type_fiber_fixed: 5426 1.8 msaitoh case ixgbe_media_type_fiber: 5427 1.8 msaitoh ixgbe_set_rate_select_speed(hw, 5428 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL); 5429 1.8 msaitoh break; 5430 1.8 msaitoh case ixgbe_media_type_fiber_qsfp: 5431 1.8 msaitoh /* QSFP module automatically detects MAC link speed */ 5432 1.8 msaitoh break; 5433 1.8 msaitoh default: 5434 1.8 msaitoh DEBUGOUT("Unexpected media type.\n"); 5435 1.8 msaitoh break; 5436 1.8 msaitoh } 5437 1.8 msaitoh 5438 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */ 5439 1.8 msaitoh msec_delay(40); 5440 1.8 msaitoh 5441 1.8 msaitoh status = ixgbe_setup_mac_link(hw, 5442 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL, 5443 1.8 msaitoh autoneg_wait_to_complete); 5444 1.8 msaitoh if (status != IXGBE_SUCCESS) 5445 1.8 msaitoh return status; 5446 1.8 msaitoh 5447 1.8 msaitoh /* Flap the Tx laser if it has not already been done */ 5448 1.8 msaitoh ixgbe_flap_tx_laser(hw); 5449 1.8 msaitoh 5450 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap, 5451 1.41 msaitoh * Section 73.10.2, we may have to wait up to 1000ms if KR is 5452 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI. 5453 1.8 msaitoh */ 5454 1.41 msaitoh for (i = 0; i < 10; i++) { 5455 1.8 msaitoh /* Wait for the link partner to also set speed */ 5456 1.8 msaitoh msec_delay(100); 5457 1.8 msaitoh 5458 1.8 msaitoh /* If we have link, just jump out */ 5459 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, 5460 1.8 msaitoh &link_up, FALSE); 5461 1.8 msaitoh if (status != IXGBE_SUCCESS) 5462 1.8 msaitoh return status; 5463 1.8 msaitoh 5464 1.8 msaitoh if (link_up) 5465 1.8 msaitoh goto out; 5466 1.8 msaitoh } 5467 1.8 msaitoh } 5468 1.8 msaitoh 5469 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 5470 1.8 msaitoh speedcnt++; 5471 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) 5472 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; 5473 1.8 msaitoh 5474 1.8 msaitoh /* Set the module link speed */ 5475 1.8 msaitoh switch (hw->phy.media_type) { 5476 1.8 msaitoh case ixgbe_media_type_fiber_fixed: 5477 1.8 msaitoh case ixgbe_media_type_fiber: 5478 1.8 msaitoh ixgbe_set_rate_select_speed(hw, 5479 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL); 5480 1.8 msaitoh break; 5481 1.8 msaitoh case ixgbe_media_type_fiber_qsfp: 5482 1.8 msaitoh /* QSFP module automatically detects link speed */ 5483 1.8 msaitoh break; 5484 1.8 msaitoh default: 5485 1.8 msaitoh DEBUGOUT("Unexpected media type.\n"); 5486 1.8 msaitoh break; 5487 1.8 msaitoh } 5488 1.8 msaitoh 5489 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */ 5490 1.8 msaitoh msec_delay(40); 5491 1.8 msaitoh 5492 1.8 msaitoh status = ixgbe_setup_mac_link(hw, 5493 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL, 5494 1.8 msaitoh autoneg_wait_to_complete); 5495 1.8 msaitoh if (status != IXGBE_SUCCESS) 5496 1.8 msaitoh return status; 5497 1.8 msaitoh 5498 1.8 msaitoh /* Flap the Tx laser if it has not already been done */ 5499 1.8 msaitoh ixgbe_flap_tx_laser(hw); 5500 1.8 msaitoh 5501 1.8 msaitoh /* Wait for the link partner to also set speed */ 5502 1.8 msaitoh msec_delay(100); 5503 1.8 msaitoh 5504 1.8 msaitoh /* If we have link, just jump out */ 5505 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE); 5506 1.8 msaitoh if (status != IXGBE_SUCCESS) 5507 1.8 msaitoh return status; 5508 1.8 msaitoh 5509 1.8 msaitoh if (link_up) 5510 1.8 msaitoh goto out; 5511 1.8 msaitoh } 5512 1.8 msaitoh 5513 1.20 msaitoh if (speed == 0) { 5514 1.20 msaitoh /* Disable the Tx laser for media none */ 5515 1.20 msaitoh ixgbe_disable_tx_laser(hw); 5516 1.20 msaitoh 5517 1.20 msaitoh goto out; 5518 1.20 msaitoh } 5519 1.26 msaitoh 5520 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried, 5521 1.8 msaitoh * (if there was more than one). We call ourselves back with just the 5522 1.8 msaitoh * single highest speed that the user requested. 5523 1.8 msaitoh */ 5524 1.8 msaitoh if (speedcnt > 1) 5525 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw, 5526 1.8 msaitoh highest_link_speed, 5527 1.8 msaitoh autoneg_wait_to_complete); 5528 1.8 msaitoh 5529 1.8 msaitoh out: 5530 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */ 5531 1.8 msaitoh hw->phy.autoneg_advertised = 0; 5532 1.8 msaitoh 5533 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) 5534 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 5535 1.8 msaitoh 5536 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) 5537 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 5538 1.8 msaitoh 5539 1.8 msaitoh return status; 5540 1.8 msaitoh } 5541 1.8 msaitoh 5542 1.8 msaitoh /** 5543 1.38 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed 5544 1.38 msaitoh * @hw: pointer to hardware structure 5545 1.38 msaitoh * @speed: link speed to set 5546 1.8 msaitoh * 5547 1.38 msaitoh * Set module link speed via the soft rate select. 5548 1.8 msaitoh */ 5549 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw, 5550 1.8 msaitoh ixgbe_link_speed speed) 5551 1.8 msaitoh { 5552 1.8 msaitoh s32 status; 5553 1.8 msaitoh u8 rs, eeprom_data; 5554 1.8 msaitoh 5555 1.8 msaitoh switch (speed) { 5556 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL: 5557 1.8 msaitoh /* one bit mask same as setting on */ 5558 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G; 5559 1.8 msaitoh break; 5560 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL: 5561 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G; 5562 1.8 msaitoh break; 5563 1.8 msaitoh default: 5564 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n"); 5565 1.8 msaitoh return; 5566 1.8 msaitoh } 5567 1.8 msaitoh 5568 1.8 msaitoh /* Set RS0 */ 5569 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5570 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2, 5571 1.8 msaitoh &eeprom_data); 5572 1.8 msaitoh if (status) { 5573 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n"); 5574 1.8 msaitoh goto out; 5575 1.8 msaitoh } 5576 1.8 msaitoh 5577 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5578 1.8 msaitoh 5579 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5580 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2, 5581 1.8 msaitoh eeprom_data); 5582 1.8 msaitoh if (status) { 5583 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n"); 5584 1.8 msaitoh goto out; 5585 1.8 msaitoh } 5586 1.8 msaitoh 5587 1.8 msaitoh /* Set RS1 */ 5588 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5589 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2, 5590 1.8 msaitoh &eeprom_data); 5591 1.8 msaitoh if (status) { 5592 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n"); 5593 1.8 msaitoh goto out; 5594 1.8 msaitoh } 5595 1.8 msaitoh 5596 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5597 1.8 msaitoh 5598 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5599 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2, 5600 1.8 msaitoh eeprom_data); 5601 1.8 msaitoh if (status) { 5602 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n"); 5603 1.8 msaitoh goto out; 5604 1.8 msaitoh } 5605 1.8 msaitoh out: 5606 1.8 msaitoh return; 5607 1.8 msaitoh } 5608