ixgbe_common.c revision 1.1 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.1 dyoung Copyright (c) 2001-2010, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.1 dyoung /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.12 2011/01/19 19:36:27 jfv Exp $*/
34 1.1 dyoung /*$NetBSD: ixgbe_common.c,v 1.1 2011/08/12 21:55:29 dyoung Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.1 dyoung #include "ixgbe_api.h"
39 1.1 dyoung
40 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
41 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
42 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
46 1.1 dyoung u16 count);
47 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
48 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung
52 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
54 1.1 dyoung u16 *san_mac_offset);
55 1.1 dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
56 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
57 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
58 1.1 dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
59 1.1 dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
60 1.1 dyoung u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
61 1.1 dyoung
62 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.1 dyoung eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.1 dyoung if (eec & (1 << 8))
82 1.1 dyoung eeprom->ops.read = &ixgbe_read_eerd_generic;
83 1.1 dyoung else
84 1.1 dyoung eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
85 1.1 dyoung eeprom->ops.write = &ixgbe_write_eeprom_generic;
86 1.1 dyoung eeprom->ops.validate_checksum =
87 1.1 dyoung &ixgbe_validate_eeprom_checksum_generic;
88 1.1 dyoung eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
89 1.1 dyoung eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
90 1.1 dyoung
91 1.1 dyoung /* MAC */
92 1.1 dyoung mac->ops.init_hw = &ixgbe_init_hw_generic;
93 1.1 dyoung mac->ops.reset_hw = NULL;
94 1.1 dyoung mac->ops.start_hw = &ixgbe_start_hw_generic;
95 1.1 dyoung mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
96 1.1 dyoung mac->ops.get_media_type = NULL;
97 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
98 1.1 dyoung mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
99 1.1 dyoung mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
100 1.1 dyoung mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
101 1.1 dyoung mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
102 1.1 dyoung mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
103 1.1 dyoung mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
104 1.1 dyoung mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
105 1.1 dyoung
106 1.1 dyoung /* LEDs */
107 1.1 dyoung mac->ops.led_on = &ixgbe_led_on_generic;
108 1.1 dyoung mac->ops.led_off = &ixgbe_led_off_generic;
109 1.1 dyoung mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
110 1.1 dyoung mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
111 1.1 dyoung
112 1.1 dyoung /* RAR, Multicast, VLAN */
113 1.1 dyoung mac->ops.set_rar = &ixgbe_set_rar_generic;
114 1.1 dyoung mac->ops.clear_rar = &ixgbe_clear_rar_generic;
115 1.1 dyoung mac->ops.insert_mac_addr = NULL;
116 1.1 dyoung mac->ops.set_vmdq = NULL;
117 1.1 dyoung mac->ops.clear_vmdq = NULL;
118 1.1 dyoung mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
119 1.1 dyoung mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
120 1.1 dyoung mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
121 1.1 dyoung mac->ops.enable_mc = &ixgbe_enable_mc_generic;
122 1.1 dyoung mac->ops.disable_mc = &ixgbe_disable_mc_generic;
123 1.1 dyoung mac->ops.clear_vfta = NULL;
124 1.1 dyoung mac->ops.set_vfta = NULL;
125 1.1 dyoung mac->ops.init_uta_tables = NULL;
126 1.1 dyoung
127 1.1 dyoung /* Flow Control */
128 1.1 dyoung mac->ops.fc_enable = &ixgbe_fc_enable_generic;
129 1.1 dyoung
130 1.1 dyoung /* Link */
131 1.1 dyoung mac->ops.get_link_capabilities = NULL;
132 1.1 dyoung mac->ops.setup_link = NULL;
133 1.1 dyoung mac->ops.check_link = NULL;
134 1.1 dyoung
135 1.1 dyoung return IXGBE_SUCCESS;
136 1.1 dyoung }
137 1.1 dyoung
138 1.1 dyoung /**
139 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
140 1.1 dyoung * @hw: pointer to hardware structure
141 1.1 dyoung *
142 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
143 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
144 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
145 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
146 1.1 dyoung **/
147 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
148 1.1 dyoung {
149 1.1 dyoung u32 ctrl_ext;
150 1.1 dyoung
151 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
152 1.1 dyoung
153 1.1 dyoung /* Set the media type */
154 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
155 1.1 dyoung
156 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
157 1.1 dyoung
158 1.1 dyoung /* Clear the VLAN filter table */
159 1.1 dyoung hw->mac.ops.clear_vfta(hw);
160 1.1 dyoung
161 1.1 dyoung /* Clear statistics registers */
162 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
163 1.1 dyoung
164 1.1 dyoung /* Set No Snoop Disable */
165 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
166 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
167 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
168 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
169 1.1 dyoung
170 1.1 dyoung /* Setup flow control */
171 1.1 dyoung ixgbe_setup_fc(hw, 0);
172 1.1 dyoung
173 1.1 dyoung /* Clear adapter stopped flag */
174 1.1 dyoung hw->adapter_stopped = FALSE;
175 1.1 dyoung
176 1.1 dyoung return IXGBE_SUCCESS;
177 1.1 dyoung }
178 1.1 dyoung
179 1.1 dyoung /**
180 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
181 1.1 dyoung * @hw: pointer to hw structure
182 1.1 dyoung *
183 1.1 dyoung * Performs the init sequence common to the second generation
184 1.1 dyoung * of 10 GbE devices.
185 1.1 dyoung * Devices in the second generation:
186 1.1 dyoung * 82599
187 1.1 dyoung * X540
188 1.1 dyoung **/
189 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
190 1.1 dyoung {
191 1.1 dyoung u32 i;
192 1.1 dyoung u32 regval;
193 1.1 dyoung
194 1.1 dyoung /* Clear the rate limiters */
195 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
196 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
197 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
198 1.1 dyoung }
199 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
200 1.1 dyoung
201 1.1 dyoung /* Disable relaxed ordering */
202 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
203 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
204 1.1 dyoung regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
205 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
206 1.1 dyoung }
207 1.1 dyoung
208 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
209 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
210 1.1 dyoung regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
211 1.1 dyoung IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
212 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
213 1.1 dyoung }
214 1.1 dyoung
215 1.1 dyoung return IXGBE_SUCCESS;
216 1.1 dyoung }
217 1.1 dyoung
218 1.1 dyoung /**
219 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
220 1.1 dyoung * @hw: pointer to hardware structure
221 1.1 dyoung *
222 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
223 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
224 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
225 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
226 1.1 dyoung * disabled and uninitialized
227 1.1 dyoung **/
228 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
229 1.1 dyoung {
230 1.1 dyoung s32 status;
231 1.1 dyoung
232 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
233 1.1 dyoung
234 1.1 dyoung /* Reset the hardware */
235 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
236 1.1 dyoung
237 1.1 dyoung if (status == IXGBE_SUCCESS) {
238 1.1 dyoung /* Start the HW */
239 1.1 dyoung status = hw->mac.ops.start_hw(hw);
240 1.1 dyoung }
241 1.1 dyoung
242 1.1 dyoung return status;
243 1.1 dyoung }
244 1.1 dyoung
245 1.1 dyoung /**
246 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
247 1.1 dyoung * @hw: pointer to hardware structure
248 1.1 dyoung *
249 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
250 1.1 dyoung * Statistics counters are clear on read.
251 1.1 dyoung **/
252 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
253 1.1 dyoung {
254 1.1 dyoung u16 i = 0;
255 1.1 dyoung
256 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
257 1.1 dyoung
258 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
259 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
260 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
261 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
262 1.1 dyoung for (i = 0; i < 8; i++)
263 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
264 1.1 dyoung
265 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
266 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
267 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
268 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
269 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
270 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
271 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
272 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
273 1.1 dyoung } else {
274 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
275 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
276 1.1 dyoung }
277 1.1 dyoung
278 1.1 dyoung for (i = 0; i < 8; i++) {
279 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
280 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
281 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
282 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
283 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
284 1.1 dyoung } else {
285 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
286 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
287 1.1 dyoung }
288 1.1 dyoung }
289 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
290 1.1 dyoung for (i = 0; i < 8; i++)
291 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
292 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
293 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
294 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
295 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
296 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
297 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
298 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
299 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
300 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
301 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
302 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
303 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
304 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
305 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
306 1.1 dyoung for (i = 0; i < 8; i++)
307 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RNBC(i));
308 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
309 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
310 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
311 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
312 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
313 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
314 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
315 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
316 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
317 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
318 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
319 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
320 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
321 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
322 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
323 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
324 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
325 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
326 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
327 1.1 dyoung for (i = 0; i < 16; i++) {
328 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
329 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
330 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
331 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
332 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
333 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
334 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
335 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
336 1.1 dyoung } else {
337 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
338 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
339 1.1 dyoung }
340 1.1 dyoung }
341 1.1 dyoung
342 1.1 dyoung return IXGBE_SUCCESS;
343 1.1 dyoung }
344 1.1 dyoung
345 1.1 dyoung /**
346 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
347 1.1 dyoung * @hw: pointer to hardware structure
348 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
349 1.1 dyoung * @pba_num_size: part number string buffer length
350 1.1 dyoung *
351 1.1 dyoung * Reads the part number string from the EEPROM.
352 1.1 dyoung **/
353 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
354 1.1 dyoung u32 pba_num_size)
355 1.1 dyoung {
356 1.1 dyoung s32 ret_val;
357 1.1 dyoung u16 data;
358 1.1 dyoung u16 pba_ptr;
359 1.1 dyoung u16 offset;
360 1.1 dyoung u16 length;
361 1.1 dyoung
362 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
363 1.1 dyoung
364 1.1 dyoung if (pba_num == NULL) {
365 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
366 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
367 1.1 dyoung }
368 1.1 dyoung
369 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
370 1.1 dyoung if (ret_val) {
371 1.1 dyoung DEBUGOUT("NVM Read Error\n");
372 1.1 dyoung return ret_val;
373 1.1 dyoung }
374 1.1 dyoung
375 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
376 1.1 dyoung if (ret_val) {
377 1.1 dyoung DEBUGOUT("NVM Read Error\n");
378 1.1 dyoung return ret_val;
379 1.1 dyoung }
380 1.1 dyoung
381 1.1 dyoung /*
382 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
383 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
384 1.1 dyoung * and we can decode it into an ascii string
385 1.1 dyoung */
386 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
387 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
388 1.1 dyoung
389 1.1 dyoung /* we will need 11 characters to store the PBA */
390 1.1 dyoung if (pba_num_size < 11) {
391 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
392 1.1 dyoung return IXGBE_ERR_NO_SPACE;
393 1.1 dyoung }
394 1.1 dyoung
395 1.1 dyoung /* extract hex string from data and pba_ptr */
396 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
397 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
398 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
399 1.1 dyoung pba_num[3] = data & 0xF;
400 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
401 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
402 1.1 dyoung pba_num[6] = '-';
403 1.1 dyoung pba_num[7] = 0;
404 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
405 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
406 1.1 dyoung
407 1.1 dyoung /* put a null character on the end of our string */
408 1.1 dyoung pba_num[10] = '\0';
409 1.1 dyoung
410 1.1 dyoung /* switch all the data but the '-' to hex char */
411 1.1 dyoung for (offset = 0; offset < 10; offset++) {
412 1.1 dyoung if (pba_num[offset] < 0xA)
413 1.1 dyoung pba_num[offset] += '0';
414 1.1 dyoung else if (pba_num[offset] < 0x10)
415 1.1 dyoung pba_num[offset] += 'A' - 0xA;
416 1.1 dyoung }
417 1.1 dyoung
418 1.1 dyoung return IXGBE_SUCCESS;
419 1.1 dyoung }
420 1.1 dyoung
421 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
422 1.1 dyoung if (ret_val) {
423 1.1 dyoung DEBUGOUT("NVM Read Error\n");
424 1.1 dyoung return ret_val;
425 1.1 dyoung }
426 1.1 dyoung
427 1.1 dyoung if (length == 0xFFFF || length == 0) {
428 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
429 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
430 1.1 dyoung }
431 1.1 dyoung
432 1.1 dyoung /* check if pba_num buffer is big enough */
433 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
434 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
435 1.1 dyoung return IXGBE_ERR_NO_SPACE;
436 1.1 dyoung }
437 1.1 dyoung
438 1.1 dyoung /* trim pba length from start of string */
439 1.1 dyoung pba_ptr++;
440 1.1 dyoung length--;
441 1.1 dyoung
442 1.1 dyoung for (offset = 0; offset < length; offset++) {
443 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
444 1.1 dyoung if (ret_val) {
445 1.1 dyoung DEBUGOUT("NVM Read Error\n");
446 1.1 dyoung return ret_val;
447 1.1 dyoung }
448 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
449 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
450 1.1 dyoung }
451 1.1 dyoung pba_num[offset * 2] = '\0';
452 1.1 dyoung
453 1.1 dyoung return IXGBE_SUCCESS;
454 1.1 dyoung }
455 1.1 dyoung
456 1.1 dyoung /**
457 1.1 dyoung * ixgbe_read_pba_length_generic - Reads part number length from EEPROM
458 1.1 dyoung * @hw: pointer to hardware structure
459 1.1 dyoung * @pba_num_size: part number string buffer length
460 1.1 dyoung *
461 1.1 dyoung * Reads the part number length from the EEPROM.
462 1.1 dyoung * Returns expected buffer size in pba_num_size
463 1.1 dyoung **/
464 1.1 dyoung s32 ixgbe_read_pba_length_generic(struct ixgbe_hw *hw, u32 *pba_num_size)
465 1.1 dyoung {
466 1.1 dyoung s32 ret_val;
467 1.1 dyoung u16 data;
468 1.1 dyoung u16 pba_ptr;
469 1.1 dyoung u16 length;
470 1.1 dyoung
471 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_length_generic");
472 1.1 dyoung
473 1.1 dyoung if (pba_num_size == NULL) {
474 1.1 dyoung DEBUGOUT("PBA buffer size was null\n");
475 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
476 1.1 dyoung }
477 1.1 dyoung
478 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
479 1.1 dyoung if (ret_val) {
480 1.1 dyoung DEBUGOUT("NVM Read Error\n");
481 1.1 dyoung return ret_val;
482 1.1 dyoung }
483 1.1 dyoung
484 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
485 1.1 dyoung if (ret_val) {
486 1.1 dyoung DEBUGOUT("NVM Read Error\n");
487 1.1 dyoung return ret_val;
488 1.1 dyoung }
489 1.1 dyoung
490 1.1 dyoung /* if data is not ptr guard the PBA must be in legacy format */
491 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
492 1.1 dyoung *pba_num_size = 11;
493 1.1 dyoung return IXGBE_SUCCESS;
494 1.1 dyoung }
495 1.1 dyoung
496 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
497 1.1 dyoung if (ret_val) {
498 1.1 dyoung DEBUGOUT("NVM Read Error\n");
499 1.1 dyoung return ret_val;
500 1.1 dyoung }
501 1.1 dyoung
502 1.1 dyoung if (length == 0xFFFF || length == 0) {
503 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
504 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
505 1.1 dyoung }
506 1.1 dyoung
507 1.1 dyoung /*
508 1.1 dyoung * Convert from length in u16 values to u8 chars, add 1 for NULL,
509 1.1 dyoung * and subtract 2 because length field is included in length.
510 1.1 dyoung */
511 1.1 dyoung *pba_num_size = ((u32)length * 2) - 1;
512 1.1 dyoung
513 1.1 dyoung return IXGBE_SUCCESS;
514 1.1 dyoung }
515 1.1 dyoung
516 1.1 dyoung /**
517 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
518 1.1 dyoung * @hw: pointer to hardware structure
519 1.1 dyoung * @pba_num: stores the part number from the EEPROM
520 1.1 dyoung *
521 1.1 dyoung * Reads the part number from the EEPROM.
522 1.1 dyoung **/
523 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
524 1.1 dyoung {
525 1.1 dyoung s32 ret_val;
526 1.1 dyoung u16 data;
527 1.1 dyoung
528 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
529 1.1 dyoung
530 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
531 1.1 dyoung if (ret_val) {
532 1.1 dyoung DEBUGOUT("NVM Read Error\n");
533 1.1 dyoung return ret_val;
534 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
535 1.1 dyoung DEBUGOUT("NVM Not supported\n");
536 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
537 1.1 dyoung }
538 1.1 dyoung *pba_num = (u32)(data << 16);
539 1.1 dyoung
540 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
541 1.1 dyoung if (ret_val) {
542 1.1 dyoung DEBUGOUT("NVM Read Error\n");
543 1.1 dyoung return ret_val;
544 1.1 dyoung }
545 1.1 dyoung *pba_num |= data;
546 1.1 dyoung
547 1.1 dyoung return IXGBE_SUCCESS;
548 1.1 dyoung }
549 1.1 dyoung
550 1.1 dyoung /**
551 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
552 1.1 dyoung * @hw: pointer to hardware structure
553 1.1 dyoung * @mac_addr: Adapter MAC address
554 1.1 dyoung *
555 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
556 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
557 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
558 1.1 dyoung **/
559 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
560 1.1 dyoung {
561 1.1 dyoung u32 rar_high;
562 1.1 dyoung u32 rar_low;
563 1.1 dyoung u16 i;
564 1.1 dyoung
565 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
566 1.1 dyoung
567 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
568 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
569 1.1 dyoung
570 1.1 dyoung for (i = 0; i < 4; i++)
571 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
572 1.1 dyoung
573 1.1 dyoung for (i = 0; i < 2; i++)
574 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
575 1.1 dyoung
576 1.1 dyoung return IXGBE_SUCCESS;
577 1.1 dyoung }
578 1.1 dyoung
579 1.1 dyoung /**
580 1.1 dyoung * ixgbe_get_bus_info_generic - Generic set PCI bus info
581 1.1 dyoung * @hw: pointer to hardware structure
582 1.1 dyoung *
583 1.1 dyoung * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
584 1.1 dyoung **/
585 1.1 dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
586 1.1 dyoung {
587 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
588 1.1 dyoung u16 link_status;
589 1.1 dyoung
590 1.1 dyoung DEBUGFUNC("ixgbe_get_bus_info_generic");
591 1.1 dyoung
592 1.1 dyoung hw->bus.type = ixgbe_bus_type_pci_express;
593 1.1 dyoung
594 1.1 dyoung /* Get the negotiated link width and speed from PCI config space */
595 1.1 dyoung link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
596 1.1 dyoung
597 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
598 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
599 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
600 1.1 dyoung break;
601 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
602 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
603 1.1 dyoung break;
604 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
605 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
606 1.1 dyoung break;
607 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
608 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
609 1.1 dyoung break;
610 1.1 dyoung default:
611 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
612 1.1 dyoung break;
613 1.1 dyoung }
614 1.1 dyoung
615 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
616 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
617 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
618 1.1 dyoung break;
619 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
620 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
621 1.1 dyoung break;
622 1.1 dyoung default:
623 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
624 1.1 dyoung break;
625 1.1 dyoung }
626 1.1 dyoung
627 1.1 dyoung mac->ops.set_lan_id(hw);
628 1.1 dyoung
629 1.1 dyoung return IXGBE_SUCCESS;
630 1.1 dyoung }
631 1.1 dyoung
632 1.1 dyoung /**
633 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
634 1.1 dyoung * @hw: pointer to the HW structure
635 1.1 dyoung *
636 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
637 1.1 dyoung * and swaps the port value if requested.
638 1.1 dyoung **/
639 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
640 1.1 dyoung {
641 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
642 1.1 dyoung u32 reg;
643 1.1 dyoung
644 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
645 1.1 dyoung
646 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
647 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
648 1.1 dyoung bus->lan_id = bus->func;
649 1.1 dyoung
650 1.1 dyoung /* check for a port swap */
651 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
652 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
653 1.1 dyoung bus->func ^= 0x1;
654 1.1 dyoung }
655 1.1 dyoung
656 1.1 dyoung /**
657 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
658 1.1 dyoung * @hw: pointer to hardware structure
659 1.1 dyoung *
660 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
661 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
662 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
663 1.1 dyoung * state and should not touch the hardware.
664 1.1 dyoung **/
665 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
666 1.1 dyoung {
667 1.1 dyoung u32 number_of_queues;
668 1.1 dyoung u32 reg_val;
669 1.1 dyoung u16 i;
670 1.1 dyoung
671 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
672 1.1 dyoung
673 1.1 dyoung /*
674 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
675 1.1 dyoung * the hardware
676 1.1 dyoung */
677 1.1 dyoung hw->adapter_stopped = TRUE;
678 1.1 dyoung
679 1.1 dyoung /* Disable the receive unit */
680 1.1 dyoung reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
681 1.1 dyoung reg_val &= ~(IXGBE_RXCTRL_RXEN);
682 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
683 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
684 1.1 dyoung msec_delay(2);
685 1.1 dyoung
686 1.1 dyoung /* Clear interrupt mask to stop from interrupts being generated */
687 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
688 1.1 dyoung
689 1.1 dyoung /* Clear any pending interrupts */
690 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
691 1.1 dyoung
692 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
693 1.1 dyoung number_of_queues = hw->mac.max_tx_queues;
694 1.1 dyoung for (i = 0; i < number_of_queues; i++) {
695 1.1 dyoung reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
696 1.1 dyoung if (reg_val & IXGBE_TXDCTL_ENABLE) {
697 1.1 dyoung reg_val &= ~IXGBE_TXDCTL_ENABLE;
698 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
699 1.1 dyoung }
700 1.1 dyoung }
701 1.1 dyoung
702 1.1 dyoung /*
703 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
704 1.1 dyoung * access and verify no pending requests
705 1.1 dyoung */
706 1.1 dyoung ixgbe_disable_pcie_master(hw);
707 1.1 dyoung
708 1.1 dyoung return IXGBE_SUCCESS;
709 1.1 dyoung }
710 1.1 dyoung
711 1.1 dyoung /**
712 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
713 1.1 dyoung * @hw: pointer to hardware structure
714 1.1 dyoung * @index: led number to turn on
715 1.1 dyoung **/
716 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
717 1.1 dyoung {
718 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
719 1.1 dyoung
720 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
721 1.1 dyoung
722 1.1 dyoung /* To turn on the LED, set mode to ON. */
723 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
724 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
725 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
726 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
727 1.1 dyoung
728 1.1 dyoung return IXGBE_SUCCESS;
729 1.1 dyoung }
730 1.1 dyoung
731 1.1 dyoung /**
732 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
733 1.1 dyoung * @hw: pointer to hardware structure
734 1.1 dyoung * @index: led number to turn off
735 1.1 dyoung **/
736 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
737 1.1 dyoung {
738 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
739 1.1 dyoung
740 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
741 1.1 dyoung
742 1.1 dyoung /* To turn off the LED, set mode to OFF. */
743 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
744 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
745 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
746 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
747 1.1 dyoung
748 1.1 dyoung return IXGBE_SUCCESS;
749 1.1 dyoung }
750 1.1 dyoung
751 1.1 dyoung /**
752 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
753 1.1 dyoung * @hw: pointer to hardware structure
754 1.1 dyoung *
755 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
756 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
757 1.1 dyoung **/
758 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
759 1.1 dyoung {
760 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
761 1.1 dyoung u32 eec;
762 1.1 dyoung u16 eeprom_size;
763 1.1 dyoung
764 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
765 1.1 dyoung
766 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
767 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
768 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
769 1.1 dyoung * tested value */
770 1.1 dyoung eeprom->semaphore_delay = 10;
771 1.1 dyoung
772 1.1 dyoung /*
773 1.1 dyoung * Check for EEPROM present first.
774 1.1 dyoung * If not present leave as none
775 1.1 dyoung */
776 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
777 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
778 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
779 1.1 dyoung
780 1.1 dyoung /*
781 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
782 1.1 dyoung * change if a future EEPROM is not SPI.
783 1.1 dyoung */
784 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
785 1.1 dyoung IXGBE_EEC_SIZE_SHIFT);
786 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
787 1.1 dyoung IXGBE_EEPROM_WORD_SIZE_BASE_SHIFT);
788 1.1 dyoung }
789 1.1 dyoung
790 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
791 1.1 dyoung eeprom->address_bits = 16;
792 1.1 dyoung else
793 1.1 dyoung eeprom->address_bits = 8;
794 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
795 1.1 dyoung "%d\n", eeprom->type, eeprom->word_size,
796 1.1 dyoung eeprom->address_bits);
797 1.1 dyoung }
798 1.1 dyoung
799 1.1 dyoung return IXGBE_SUCCESS;
800 1.1 dyoung }
801 1.1 dyoung
802 1.1 dyoung /**
803 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
804 1.1 dyoung * @hw: pointer to hardware structure
805 1.1 dyoung * @offset: offset within the EEPROM to be written to
806 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
807 1.1 dyoung *
808 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
809 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
810 1.1 dyoung **/
811 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
812 1.1 dyoung {
813 1.1 dyoung s32 status;
814 1.1 dyoung u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
815 1.1 dyoung
816 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
817 1.1 dyoung
818 1.1 dyoung hw->eeprom.ops.init_params(hw);
819 1.1 dyoung
820 1.1 dyoung if (offset >= hw->eeprom.word_size) {
821 1.1 dyoung status = IXGBE_ERR_EEPROM;
822 1.1 dyoung goto out;
823 1.1 dyoung }
824 1.1 dyoung
825 1.1 dyoung /* Prepare the EEPROM for writing */
826 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
827 1.1 dyoung
828 1.1 dyoung if (status == IXGBE_SUCCESS) {
829 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
830 1.1 dyoung ixgbe_release_eeprom(hw);
831 1.1 dyoung status = IXGBE_ERR_EEPROM;
832 1.1 dyoung }
833 1.1 dyoung }
834 1.1 dyoung
835 1.1 dyoung if (status == IXGBE_SUCCESS) {
836 1.1 dyoung ixgbe_standby_eeprom(hw);
837 1.1 dyoung
838 1.1 dyoung /* Send the WRITE ENABLE command (8 bit opcode ) */
839 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
840 1.1 dyoung IXGBE_EEPROM_OPCODE_BITS);
841 1.1 dyoung
842 1.1 dyoung ixgbe_standby_eeprom(hw);
843 1.1 dyoung
844 1.1 dyoung /*
845 1.1 dyoung * Some SPI eeproms use the 8th address bit embedded in the
846 1.1 dyoung * opcode
847 1.1 dyoung */
848 1.1 dyoung if ((hw->eeprom.address_bits == 8) && (offset >= 128))
849 1.1 dyoung write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
850 1.1 dyoung
851 1.1 dyoung /* Send the Write command (8-bit opcode + addr) */
852 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, write_opcode,
853 1.1 dyoung IXGBE_EEPROM_OPCODE_BITS);
854 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
855 1.1 dyoung hw->eeprom.address_bits);
856 1.1 dyoung
857 1.1 dyoung /* Send the data */
858 1.1 dyoung data = (data >> 8) | (data << 8);
859 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, data, 16);
860 1.1 dyoung ixgbe_standby_eeprom(hw);
861 1.1 dyoung
862 1.1 dyoung /* Done with writing - release the EEPROM */
863 1.1 dyoung ixgbe_release_eeprom(hw);
864 1.1 dyoung }
865 1.1 dyoung
866 1.1 dyoung out:
867 1.1 dyoung return status;
868 1.1 dyoung }
869 1.1 dyoung
870 1.1 dyoung /**
871 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
872 1.1 dyoung * @hw: pointer to hardware structure
873 1.1 dyoung * @offset: offset within the EEPROM to be read
874 1.1 dyoung * @data: read 16 bit value from EEPROM
875 1.1 dyoung *
876 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
877 1.1 dyoung **/
878 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
879 1.1 dyoung u16 *data)
880 1.1 dyoung {
881 1.1 dyoung s32 status;
882 1.1 dyoung u16 word_in;
883 1.1 dyoung u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
884 1.1 dyoung
885 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
886 1.1 dyoung
887 1.1 dyoung hw->eeprom.ops.init_params(hw);
888 1.1 dyoung
889 1.1 dyoung if (offset >= hw->eeprom.word_size) {
890 1.1 dyoung status = IXGBE_ERR_EEPROM;
891 1.1 dyoung goto out;
892 1.1 dyoung }
893 1.1 dyoung
894 1.1 dyoung /* Prepare the EEPROM for reading */
895 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
896 1.1 dyoung
897 1.1 dyoung if (status == IXGBE_SUCCESS) {
898 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
899 1.1 dyoung ixgbe_release_eeprom(hw);
900 1.1 dyoung status = IXGBE_ERR_EEPROM;
901 1.1 dyoung }
902 1.1 dyoung }
903 1.1 dyoung
904 1.1 dyoung if (status == IXGBE_SUCCESS) {
905 1.1 dyoung ixgbe_standby_eeprom(hw);
906 1.1 dyoung
907 1.1 dyoung /*
908 1.1 dyoung * Some SPI eeproms use the 8th address bit embedded in the
909 1.1 dyoung * opcode
910 1.1 dyoung */
911 1.1 dyoung if ((hw->eeprom.address_bits == 8) && (offset >= 128))
912 1.1 dyoung read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
913 1.1 dyoung
914 1.1 dyoung /* Send the READ command (opcode + addr) */
915 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, read_opcode,
916 1.1 dyoung IXGBE_EEPROM_OPCODE_BITS);
917 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
918 1.1 dyoung hw->eeprom.address_bits);
919 1.1 dyoung
920 1.1 dyoung /* Read the data. */
921 1.1 dyoung word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
922 1.1 dyoung *data = (word_in >> 8) | (word_in << 8);
923 1.1 dyoung
924 1.1 dyoung /* End this read operation */
925 1.1 dyoung ixgbe_release_eeprom(hw);
926 1.1 dyoung }
927 1.1 dyoung
928 1.1 dyoung out:
929 1.1 dyoung return status;
930 1.1 dyoung }
931 1.1 dyoung
932 1.1 dyoung /**
933 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
934 1.1 dyoung * @hw: pointer to hardware structure
935 1.1 dyoung * @offset: offset of word in the EEPROM to read
936 1.1 dyoung * @data: word read from the EEPROM
937 1.1 dyoung *
938 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
939 1.1 dyoung **/
940 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
941 1.1 dyoung {
942 1.1 dyoung u32 eerd;
943 1.1 dyoung s32 status;
944 1.1 dyoung
945 1.1 dyoung DEBUGFUNC("ixgbe_read_eerd_generic");
946 1.1 dyoung
947 1.1 dyoung hw->eeprom.ops.init_params(hw);
948 1.1 dyoung
949 1.1 dyoung if (offset >= hw->eeprom.word_size) {
950 1.1 dyoung status = IXGBE_ERR_EEPROM;
951 1.1 dyoung goto out;
952 1.1 dyoung }
953 1.1 dyoung
954 1.1 dyoung eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
955 1.1 dyoung IXGBE_EEPROM_RW_REG_START;
956 1.1 dyoung
957 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
958 1.1 dyoung status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
959 1.1 dyoung
960 1.1 dyoung if (status == IXGBE_SUCCESS)
961 1.1 dyoung *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
962 1.1 dyoung IXGBE_EEPROM_RW_REG_DATA);
963 1.1 dyoung else
964 1.1 dyoung DEBUGOUT("Eeprom read timed out\n");
965 1.1 dyoung
966 1.1 dyoung out:
967 1.1 dyoung return status;
968 1.1 dyoung }
969 1.1 dyoung
970 1.1 dyoung /**
971 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
972 1.1 dyoung * @hw: pointer to hardware structure
973 1.1 dyoung * @offset: offset of word in the EEPROM to write
974 1.1 dyoung * @data: word write to the EEPROM
975 1.1 dyoung *
976 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
977 1.1 dyoung **/
978 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
979 1.1 dyoung {
980 1.1 dyoung u32 eewr;
981 1.1 dyoung s32 status;
982 1.1 dyoung
983 1.1 dyoung DEBUGFUNC("ixgbe_write_eewr_generic");
984 1.1 dyoung
985 1.1 dyoung hw->eeprom.ops.init_params(hw);
986 1.1 dyoung
987 1.1 dyoung if (offset >= hw->eeprom.word_size) {
988 1.1 dyoung status = IXGBE_ERR_EEPROM;
989 1.1 dyoung goto out;
990 1.1 dyoung }
991 1.1 dyoung
992 1.1 dyoung eewr = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) |
993 1.1 dyoung (data << IXGBE_EEPROM_RW_REG_DATA) | IXGBE_EEPROM_RW_REG_START;
994 1.1 dyoung
995 1.1 dyoung status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
996 1.1 dyoung if (status != IXGBE_SUCCESS) {
997 1.1 dyoung DEBUGOUT("Eeprom write EEWR timed out\n");
998 1.1 dyoung goto out;
999 1.1 dyoung }
1000 1.1 dyoung
1001 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1002 1.1 dyoung
1003 1.1 dyoung status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1004 1.1 dyoung if (status != IXGBE_SUCCESS) {
1005 1.1 dyoung DEBUGOUT("Eeprom write EEWR timed out\n");
1006 1.1 dyoung goto out;
1007 1.1 dyoung }
1008 1.1 dyoung
1009 1.1 dyoung out:
1010 1.1 dyoung return status;
1011 1.1 dyoung }
1012 1.1 dyoung
1013 1.1 dyoung /**
1014 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1015 1.1 dyoung * @hw: pointer to hardware structure
1016 1.1 dyoung * @ee_reg: EEPROM flag for polling
1017 1.1 dyoung *
1018 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1019 1.1 dyoung * read or write is done respectively.
1020 1.1 dyoung **/
1021 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1022 1.1 dyoung {
1023 1.1 dyoung u32 i;
1024 1.1 dyoung u32 reg;
1025 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1026 1.1 dyoung
1027 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1028 1.1 dyoung
1029 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1030 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1031 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1032 1.1 dyoung else
1033 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1034 1.1 dyoung
1035 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1036 1.1 dyoung status = IXGBE_SUCCESS;
1037 1.1 dyoung break;
1038 1.1 dyoung }
1039 1.1 dyoung usec_delay(5);
1040 1.1 dyoung }
1041 1.1 dyoung return status;
1042 1.1 dyoung }
1043 1.1 dyoung
1044 1.1 dyoung /**
1045 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1046 1.1 dyoung * @hw: pointer to hardware structure
1047 1.1 dyoung *
1048 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1049 1.1 dyoung * be called before issuing a command to the EEPROM.
1050 1.1 dyoung **/
1051 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1052 1.1 dyoung {
1053 1.1 dyoung s32 status = IXGBE_SUCCESS;
1054 1.1 dyoung u32 eec;
1055 1.1 dyoung u32 i;
1056 1.1 dyoung
1057 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1058 1.1 dyoung
1059 1.1 dyoung if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS)
1060 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1061 1.1 dyoung
1062 1.1 dyoung if (status == IXGBE_SUCCESS) {
1063 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1064 1.1 dyoung
1065 1.1 dyoung /* Request EEPROM Access */
1066 1.1 dyoung eec |= IXGBE_EEC_REQ;
1067 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1068 1.1 dyoung
1069 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1070 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1071 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1072 1.1 dyoung break;
1073 1.1 dyoung usec_delay(5);
1074 1.1 dyoung }
1075 1.1 dyoung
1076 1.1 dyoung /* Release if grant not acquired */
1077 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1078 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1079 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1080 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1081 1.1 dyoung
1082 1.1 dyoung ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1083 1.1 dyoung status = IXGBE_ERR_EEPROM;
1084 1.1 dyoung }
1085 1.1 dyoung
1086 1.1 dyoung /* Setup EEPROM for Read/Write */
1087 1.1 dyoung if (status == IXGBE_SUCCESS) {
1088 1.1 dyoung /* Clear CS and SK */
1089 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1090 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1091 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1092 1.1 dyoung usec_delay(1);
1093 1.1 dyoung }
1094 1.1 dyoung }
1095 1.1 dyoung return status;
1096 1.1 dyoung }
1097 1.1 dyoung
1098 1.1 dyoung /**
1099 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1100 1.1 dyoung * @hw: pointer to hardware structure
1101 1.1 dyoung *
1102 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1103 1.1 dyoung **/
1104 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1105 1.1 dyoung {
1106 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1107 1.1 dyoung u32 timeout = 2000;
1108 1.1 dyoung u32 i;
1109 1.1 dyoung u32 swsm;
1110 1.1 dyoung
1111 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1112 1.1 dyoung
1113 1.1 dyoung
1114 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1115 1.1 dyoung for (i = 0; i < timeout; i++) {
1116 1.1 dyoung /*
1117 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1118 1.1 dyoung * set and we have the semaphore
1119 1.1 dyoung */
1120 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1121 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1122 1.1 dyoung status = IXGBE_SUCCESS;
1123 1.1 dyoung break;
1124 1.1 dyoung }
1125 1.1 dyoung usec_delay(50);
1126 1.1 dyoung }
1127 1.1 dyoung
1128 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1129 1.1 dyoung if (status == IXGBE_SUCCESS) {
1130 1.1 dyoung for (i = 0; i < timeout; i++) {
1131 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1132 1.1 dyoung
1133 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1134 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1135 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1136 1.1 dyoung
1137 1.1 dyoung /*
1138 1.1 dyoung * If we set the bit successfully then we got the
1139 1.1 dyoung * semaphore.
1140 1.1 dyoung */
1141 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1142 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1143 1.1 dyoung break;
1144 1.1 dyoung
1145 1.1 dyoung usec_delay(50);
1146 1.1 dyoung }
1147 1.1 dyoung
1148 1.1 dyoung /*
1149 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1150 1.1 dyoung * was not granted because we don't have access to the EEPROM
1151 1.1 dyoung */
1152 1.1 dyoung if (i >= timeout) {
1153 1.1 dyoung DEBUGOUT("SWESMBI Software EEPROM semaphore "
1154 1.1 dyoung "not granted.\n");
1155 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1156 1.1 dyoung status = IXGBE_ERR_EEPROM;
1157 1.1 dyoung }
1158 1.1 dyoung } else {
1159 1.1 dyoung DEBUGOUT("Software semaphore SMBI between device drivers "
1160 1.1 dyoung "not granted.\n");
1161 1.1 dyoung }
1162 1.1 dyoung
1163 1.1 dyoung return status;
1164 1.1 dyoung }
1165 1.1 dyoung
1166 1.1 dyoung /**
1167 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1168 1.1 dyoung * @hw: pointer to hardware structure
1169 1.1 dyoung *
1170 1.1 dyoung * This function clears hardware semaphore bits.
1171 1.1 dyoung **/
1172 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1173 1.1 dyoung {
1174 1.1 dyoung u32 swsm;
1175 1.1 dyoung
1176 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1177 1.1 dyoung
1178 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1179 1.1 dyoung
1180 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1181 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1182 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1183 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1184 1.1 dyoung }
1185 1.1 dyoung
1186 1.1 dyoung /**
1187 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1188 1.1 dyoung * @hw: pointer to hardware structure
1189 1.1 dyoung **/
1190 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1191 1.1 dyoung {
1192 1.1 dyoung s32 status = IXGBE_SUCCESS;
1193 1.1 dyoung u16 i;
1194 1.1 dyoung u8 spi_stat_reg;
1195 1.1 dyoung
1196 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1197 1.1 dyoung
1198 1.1 dyoung /*
1199 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1200 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1201 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1202 1.1 dyoung * 5 milliseconds, then error out.
1203 1.1 dyoung */
1204 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1205 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1206 1.1 dyoung IXGBE_EEPROM_OPCODE_BITS);
1207 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1208 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1209 1.1 dyoung break;
1210 1.1 dyoung
1211 1.1 dyoung usec_delay(5);
1212 1.1 dyoung ixgbe_standby_eeprom(hw);
1213 1.1 dyoung };
1214 1.1 dyoung
1215 1.1 dyoung /*
1216 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1217 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1218 1.1 dyoung */
1219 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1220 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1221 1.1 dyoung status = IXGBE_ERR_EEPROM;
1222 1.1 dyoung }
1223 1.1 dyoung
1224 1.1 dyoung return status;
1225 1.1 dyoung }
1226 1.1 dyoung
1227 1.1 dyoung /**
1228 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1229 1.1 dyoung * @hw: pointer to hardware structure
1230 1.1 dyoung **/
1231 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1232 1.1 dyoung {
1233 1.1 dyoung u32 eec;
1234 1.1 dyoung
1235 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1236 1.1 dyoung
1237 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1238 1.1 dyoung
1239 1.1 dyoung /* Toggle CS to flush commands */
1240 1.1 dyoung eec |= IXGBE_EEC_CS;
1241 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1242 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1243 1.1 dyoung usec_delay(1);
1244 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1245 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1246 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1247 1.1 dyoung usec_delay(1);
1248 1.1 dyoung }
1249 1.1 dyoung
1250 1.1 dyoung /**
1251 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1252 1.1 dyoung * @hw: pointer to hardware structure
1253 1.1 dyoung * @data: data to send to the EEPROM
1254 1.1 dyoung * @count: number of bits to shift out
1255 1.1 dyoung **/
1256 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1257 1.1 dyoung u16 count)
1258 1.1 dyoung {
1259 1.1 dyoung u32 eec;
1260 1.1 dyoung u32 mask;
1261 1.1 dyoung u32 i;
1262 1.1 dyoung
1263 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1264 1.1 dyoung
1265 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1266 1.1 dyoung
1267 1.1 dyoung /*
1268 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1269 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1270 1.1 dyoung */
1271 1.1 dyoung mask = 0x01 << (count - 1);
1272 1.1 dyoung
1273 1.1 dyoung for (i = 0; i < count; i++) {
1274 1.1 dyoung /*
1275 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1276 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1277 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1278 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1279 1.1 dyoung * raising and then lowering the clock.
1280 1.1 dyoung */
1281 1.1 dyoung if (data & mask)
1282 1.1 dyoung eec |= IXGBE_EEC_DI;
1283 1.1 dyoung else
1284 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1285 1.1 dyoung
1286 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1287 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1288 1.1 dyoung
1289 1.1 dyoung usec_delay(1);
1290 1.1 dyoung
1291 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1292 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1293 1.1 dyoung
1294 1.1 dyoung /*
1295 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1296 1.1 dyoung * EEPROM
1297 1.1 dyoung */
1298 1.1 dyoung mask = mask >> 1;
1299 1.1 dyoung };
1300 1.1 dyoung
1301 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1302 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1303 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1304 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1305 1.1 dyoung }
1306 1.1 dyoung
1307 1.1 dyoung /**
1308 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1309 1.1 dyoung * @hw: pointer to hardware structure
1310 1.1 dyoung **/
1311 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1312 1.1 dyoung {
1313 1.1 dyoung u32 eec;
1314 1.1 dyoung u32 i;
1315 1.1 dyoung u16 data = 0;
1316 1.1 dyoung
1317 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1318 1.1 dyoung
1319 1.1 dyoung /*
1320 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
1321 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1322 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
1323 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
1324 1.1 dyoung * "DI" bit should always be clear.
1325 1.1 dyoung */
1326 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1327 1.1 dyoung
1328 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1329 1.1 dyoung
1330 1.1 dyoung for (i = 0; i < count; i++) {
1331 1.1 dyoung data = data << 1;
1332 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1333 1.1 dyoung
1334 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1335 1.1 dyoung
1336 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
1337 1.1 dyoung if (eec & IXGBE_EEC_DO)
1338 1.1 dyoung data |= 1;
1339 1.1 dyoung
1340 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1341 1.1 dyoung }
1342 1.1 dyoung
1343 1.1 dyoung return data;
1344 1.1 dyoung }
1345 1.1 dyoung
1346 1.1 dyoung /**
1347 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1348 1.1 dyoung * @hw: pointer to hardware structure
1349 1.1 dyoung * @eec: EEC register's current value
1350 1.1 dyoung **/
1351 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1352 1.1 dyoung {
1353 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
1354 1.1 dyoung
1355 1.1 dyoung /*
1356 1.1 dyoung * Raise the clock input to the EEPROM
1357 1.1 dyoung * (setting the SK bit), then delay
1358 1.1 dyoung */
1359 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
1360 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1361 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1362 1.1 dyoung usec_delay(1);
1363 1.1 dyoung }
1364 1.1 dyoung
1365 1.1 dyoung /**
1366 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1367 1.1 dyoung * @hw: pointer to hardware structure
1368 1.1 dyoung * @eecd: EECD's current value
1369 1.1 dyoung **/
1370 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1371 1.1 dyoung {
1372 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
1373 1.1 dyoung
1374 1.1 dyoung /*
1375 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
1376 1.1 dyoung * delay
1377 1.1 dyoung */
1378 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
1379 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1380 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1381 1.1 dyoung usec_delay(1);
1382 1.1 dyoung }
1383 1.1 dyoung
1384 1.1 dyoung /**
1385 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
1386 1.1 dyoung * @hw: pointer to hardware structure
1387 1.1 dyoung **/
1388 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1389 1.1 dyoung {
1390 1.1 dyoung u32 eec;
1391 1.1 dyoung
1392 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
1393 1.1 dyoung
1394 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1395 1.1 dyoung
1396 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
1397 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1398 1.1 dyoung
1399 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1400 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1401 1.1 dyoung
1402 1.1 dyoung usec_delay(1);
1403 1.1 dyoung
1404 1.1 dyoung /* Stop requesting EEPROM access */
1405 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1406 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1407 1.1 dyoung
1408 1.1 dyoung ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1409 1.1 dyoung
1410 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
1411 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
1412 1.1 dyoung }
1413 1.1 dyoung
1414 1.1 dyoung /**
1415 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1416 1.1 dyoung * @hw: pointer to hardware structure
1417 1.1 dyoung **/
1418 1.1 dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1419 1.1 dyoung {
1420 1.1 dyoung u16 i;
1421 1.1 dyoung u16 j;
1422 1.1 dyoung u16 checksum = 0;
1423 1.1 dyoung u16 length = 0;
1424 1.1 dyoung u16 pointer = 0;
1425 1.1 dyoung u16 word = 0;
1426 1.1 dyoung
1427 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1428 1.1 dyoung
1429 1.1 dyoung /* Include 0x0-0x3F in the checksum */
1430 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1431 1.1 dyoung if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1432 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1433 1.1 dyoung break;
1434 1.1 dyoung }
1435 1.1 dyoung checksum += word;
1436 1.1 dyoung }
1437 1.1 dyoung
1438 1.1 dyoung /* Include all data from pointers except for the fw pointer */
1439 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1440 1.1 dyoung hw->eeprom.ops.read(hw, i, &pointer);
1441 1.1 dyoung
1442 1.1 dyoung /* Make sure the pointer seems valid */
1443 1.1 dyoung if (pointer != 0xFFFF && pointer != 0) {
1444 1.1 dyoung hw->eeprom.ops.read(hw, pointer, &length);
1445 1.1 dyoung
1446 1.1 dyoung if (length != 0xFFFF && length != 0) {
1447 1.1 dyoung for (j = pointer+1; j <= pointer+length; j++) {
1448 1.1 dyoung hw->eeprom.ops.read(hw, j, &word);
1449 1.1 dyoung checksum += word;
1450 1.1 dyoung }
1451 1.1 dyoung }
1452 1.1 dyoung }
1453 1.1 dyoung }
1454 1.1 dyoung
1455 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1456 1.1 dyoung
1457 1.1 dyoung return checksum;
1458 1.1 dyoung }
1459 1.1 dyoung
1460 1.1 dyoung /**
1461 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1462 1.1 dyoung * @hw: pointer to hardware structure
1463 1.1 dyoung * @checksum_val: calculated checksum
1464 1.1 dyoung *
1465 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
1466 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
1467 1.1 dyoung **/
1468 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1469 1.1 dyoung u16 *checksum_val)
1470 1.1 dyoung {
1471 1.1 dyoung s32 status;
1472 1.1 dyoung u16 checksum;
1473 1.1 dyoung u16 read_checksum = 0;
1474 1.1 dyoung
1475 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1476 1.1 dyoung
1477 1.1 dyoung /*
1478 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1479 1.1 dyoung * not continue or we could be in for a very long wait while every
1480 1.1 dyoung * EEPROM read fails
1481 1.1 dyoung */
1482 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1483 1.1 dyoung
1484 1.1 dyoung if (status == IXGBE_SUCCESS) {
1485 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1486 1.1 dyoung
1487 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1488 1.1 dyoung
1489 1.1 dyoung /*
1490 1.1 dyoung * Verify read checksum from EEPROM is the same as
1491 1.1 dyoung * calculated checksum
1492 1.1 dyoung */
1493 1.1 dyoung if (read_checksum != checksum)
1494 1.1 dyoung status = IXGBE_ERR_EEPROM_CHECKSUM;
1495 1.1 dyoung
1496 1.1 dyoung /* If the user cares, return the calculated checksum */
1497 1.1 dyoung if (checksum_val)
1498 1.1 dyoung *checksum_val = checksum;
1499 1.1 dyoung } else {
1500 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1501 1.1 dyoung }
1502 1.1 dyoung
1503 1.1 dyoung return status;
1504 1.1 dyoung }
1505 1.1 dyoung
1506 1.1 dyoung /**
1507 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1508 1.1 dyoung * @hw: pointer to hardware structure
1509 1.1 dyoung **/
1510 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1511 1.1 dyoung {
1512 1.1 dyoung s32 status;
1513 1.1 dyoung u16 checksum;
1514 1.1 dyoung
1515 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1516 1.1 dyoung
1517 1.1 dyoung /*
1518 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1519 1.1 dyoung * not continue or we could be in for a very long wait while every
1520 1.1 dyoung * EEPROM read fails
1521 1.1 dyoung */
1522 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1523 1.1 dyoung
1524 1.1 dyoung if (status == IXGBE_SUCCESS) {
1525 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1526 1.1 dyoung status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1527 1.1 dyoung checksum);
1528 1.1 dyoung } else {
1529 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1530 1.1 dyoung }
1531 1.1 dyoung
1532 1.1 dyoung return status;
1533 1.1 dyoung }
1534 1.1 dyoung
1535 1.1 dyoung /**
1536 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
1537 1.1 dyoung * @mac_addr: pointer to MAC address.
1538 1.1 dyoung *
1539 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
1540 1.1 dyoung **/
1541 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1542 1.1 dyoung {
1543 1.1 dyoung s32 status = IXGBE_SUCCESS;
1544 1.1 dyoung
1545 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
1546 1.1 dyoung
1547 1.1 dyoung /* Make sure it is not a multicast address */
1548 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
1549 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
1550 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1551 1.1 dyoung /* Not a broadcast address */
1552 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1553 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
1554 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1555 1.1 dyoung /* Reject the zero address */
1556 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1557 1.1 dyoung mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1558 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
1559 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1560 1.1 dyoung }
1561 1.1 dyoung return status;
1562 1.1 dyoung }
1563 1.1 dyoung
1564 1.1 dyoung /**
1565 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
1566 1.1 dyoung * @hw: pointer to hardware structure
1567 1.1 dyoung * @index: Receive address register to write
1568 1.1 dyoung * @addr: Address to put into receive address register
1569 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
1570 1.1 dyoung * @enable_addr: set flag that address is active
1571 1.1 dyoung *
1572 1.1 dyoung * Puts an ethernet address into a receive address register.
1573 1.1 dyoung **/
1574 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1575 1.1 dyoung u32 enable_addr)
1576 1.1 dyoung {
1577 1.1 dyoung u32 rar_low, rar_high;
1578 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1579 1.1 dyoung
1580 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
1581 1.1 dyoung
1582 1.1 dyoung /* Make sure we are using a valid rar index range */
1583 1.1 dyoung if (index >= rar_entries) {
1584 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
1585 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
1586 1.1 dyoung }
1587 1.1 dyoung
1588 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
1589 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
1590 1.1 dyoung
1591 1.1 dyoung /*
1592 1.1 dyoung * HW expects these in little endian so we reverse the byte
1593 1.1 dyoung * order from network order (big endian) to little endian
1594 1.1 dyoung */
1595 1.1 dyoung rar_low = ((u32)addr[0] |
1596 1.1 dyoung ((u32)addr[1] << 8) |
1597 1.1 dyoung ((u32)addr[2] << 16) |
1598 1.1 dyoung ((u32)addr[3] << 24));
1599 1.1 dyoung /*
1600 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
1601 1.1 dyoung * so save everything except the lower 16 bits that hold part
1602 1.1 dyoung * of the address and the address valid bit.
1603 1.1 dyoung */
1604 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1605 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1606 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1607 1.1 dyoung
1608 1.1 dyoung if (enable_addr != 0)
1609 1.1 dyoung rar_high |= IXGBE_RAH_AV;
1610 1.1 dyoung
1611 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1612 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1613 1.1 dyoung
1614 1.1 dyoung return IXGBE_SUCCESS;
1615 1.1 dyoung }
1616 1.1 dyoung
1617 1.1 dyoung /**
1618 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
1619 1.1 dyoung * @hw: pointer to hardware structure
1620 1.1 dyoung * @index: Receive address register to write
1621 1.1 dyoung *
1622 1.1 dyoung * Clears an ethernet address from a receive address register.
1623 1.1 dyoung **/
1624 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1625 1.1 dyoung {
1626 1.1 dyoung u32 rar_high;
1627 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1628 1.1 dyoung
1629 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
1630 1.1 dyoung
1631 1.1 dyoung /* Make sure we are using a valid rar index range */
1632 1.1 dyoung if (index >= rar_entries) {
1633 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
1634 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
1635 1.1 dyoung }
1636 1.1 dyoung
1637 1.1 dyoung /*
1638 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
1639 1.1 dyoung * so save everything except the lower 16 bits that hold part
1640 1.1 dyoung * of the address and the address valid bit.
1641 1.1 dyoung */
1642 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1643 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1644 1.1 dyoung
1645 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1646 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1647 1.1 dyoung
1648 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
1649 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1650 1.1 dyoung
1651 1.1 dyoung return IXGBE_SUCCESS;
1652 1.1 dyoung }
1653 1.1 dyoung
1654 1.1 dyoung /**
1655 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1656 1.1 dyoung * @hw: pointer to hardware structure
1657 1.1 dyoung *
1658 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
1659 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
1660 1.1 dyoung * the receiver is in reset when the routine is called.
1661 1.1 dyoung **/
1662 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1663 1.1 dyoung {
1664 1.1 dyoung u32 i;
1665 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1666 1.1 dyoung
1667 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
1668 1.1 dyoung
1669 1.1 dyoung /*
1670 1.1 dyoung * If the current mac address is valid, assume it is a software override
1671 1.1 dyoung * to the permanent address.
1672 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
1673 1.1 dyoung */
1674 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1675 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
1676 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
1677 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1678 1.1 dyoung
1679 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1680 1.1 dyoung hw->mac.addr[0], hw->mac.addr[1],
1681 1.1 dyoung hw->mac.addr[2]);
1682 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1683 1.1 dyoung hw->mac.addr[4], hw->mac.addr[5]);
1684 1.1 dyoung } else {
1685 1.1 dyoung /* Setup the receive address. */
1686 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
1687 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
1688 1.1 dyoung hw->mac.addr[0], hw->mac.addr[1],
1689 1.1 dyoung hw->mac.addr[2]);
1690 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1691 1.1 dyoung hw->mac.addr[4], hw->mac.addr[5]);
1692 1.1 dyoung
1693 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1694 1.1 dyoung
1695 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
1696 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1697 1.1 dyoung }
1698 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
1699 1.1 dyoung
1700 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
1701 1.1 dyoung
1702 1.1 dyoung /* Zero out the other receive addresses. */
1703 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
1704 1.1 dyoung for (i = 1; i < rar_entries; i++) {
1705 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1706 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1707 1.1 dyoung }
1708 1.1 dyoung
1709 1.1 dyoung /* Clear the MTA */
1710 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
1711 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1712 1.1 dyoung
1713 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
1714 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
1715 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1716 1.1 dyoung
1717 1.1 dyoung ixgbe_init_uta_tables(hw);
1718 1.1 dyoung
1719 1.1 dyoung return IXGBE_SUCCESS;
1720 1.1 dyoung }
1721 1.1 dyoung
1722 1.1 dyoung /**
1723 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
1724 1.1 dyoung * @hw: pointer to hardware structure
1725 1.1 dyoung * @addr: new address
1726 1.1 dyoung *
1727 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
1728 1.1 dyoung **/
1729 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1730 1.1 dyoung {
1731 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1732 1.1 dyoung u32 rar;
1733 1.1 dyoung
1734 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
1735 1.1 dyoung
1736 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1737 1.1 dyoung addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1738 1.1 dyoung
1739 1.1 dyoung /*
1740 1.1 dyoung * Place this address in the RAR if there is room,
1741 1.1 dyoung * else put the controller into promiscuous mode
1742 1.1 dyoung */
1743 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
1744 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
1745 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1746 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
1747 1.1 dyoung hw->addr_ctrl.rar_used_count++;
1748 1.1 dyoung } else {
1749 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
1750 1.1 dyoung }
1751 1.1 dyoung
1752 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
1753 1.1 dyoung }
1754 1.1 dyoung
1755 1.1 dyoung /**
1756 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1757 1.1 dyoung * @hw: pointer to hardware structure
1758 1.1 dyoung * @addr_list: the list of new addresses
1759 1.1 dyoung * @addr_count: number of addresses
1760 1.1 dyoung * @next: iterator function to walk the address list
1761 1.1 dyoung *
1762 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
1763 1.1 dyoung * receive address registers. Uses unused receive address registers for the
1764 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
1765 1.1 dyoung *
1766 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
1767 1.1 dyoung * manually putting the device into promiscuous mode.
1768 1.1 dyoung **/
1769 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1770 1.1 dyoung u32 addr_count, ixgbe_mc_addr_itr next)
1771 1.1 dyoung {
1772 1.1 dyoung u8 *addr;
1773 1.1 dyoung u32 i;
1774 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1775 1.1 dyoung u32 uc_addr_in_use;
1776 1.1 dyoung u32 fctrl;
1777 1.1 dyoung u32 vmdq;
1778 1.1 dyoung
1779 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
1780 1.1 dyoung
1781 1.1 dyoung /*
1782 1.1 dyoung * Clear accounting of old secondary address list,
1783 1.1 dyoung * don't count RAR[0]
1784 1.1 dyoung */
1785 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
1786 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1787 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
1788 1.1 dyoung
1789 1.1 dyoung /* Zero out the other receive addresses */
1790 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
1791 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
1792 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
1793 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
1794 1.1 dyoung }
1795 1.1 dyoung
1796 1.1 dyoung /* Add the new addresses */
1797 1.1 dyoung for (i = 0; i < addr_count; i++) {
1798 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
1799 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
1800 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
1801 1.1 dyoung }
1802 1.1 dyoung
1803 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
1804 1.1 dyoung /* enable promisc if not already in overflow or set by user */
1805 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1806 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
1807 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1808 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
1809 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1810 1.1 dyoung }
1811 1.1 dyoung } else {
1812 1.1 dyoung /* only disable if set by overflow, not by user */
1813 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1814 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
1815 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1816 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
1817 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1818 1.1 dyoung }
1819 1.1 dyoung }
1820 1.1 dyoung
1821 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
1822 1.1 dyoung return IXGBE_SUCCESS;
1823 1.1 dyoung }
1824 1.1 dyoung
1825 1.1 dyoung /**
1826 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1827 1.1 dyoung * @hw: pointer to hardware structure
1828 1.1 dyoung * @mc_addr: the multicast address
1829 1.1 dyoung *
1830 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
1831 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1832 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
1833 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1834 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
1835 1.1 dyoung * to mc_filter_type.
1836 1.1 dyoung **/
1837 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1838 1.1 dyoung {
1839 1.1 dyoung u32 vector = 0;
1840 1.1 dyoung
1841 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
1842 1.1 dyoung
1843 1.1 dyoung switch (hw->mac.mc_filter_type) {
1844 1.1 dyoung case 0: /* use bits [47:36] of the address */
1845 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1846 1.1 dyoung break;
1847 1.1 dyoung case 1: /* use bits [46:35] of the address */
1848 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1849 1.1 dyoung break;
1850 1.1 dyoung case 2: /* use bits [45:34] of the address */
1851 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1852 1.1 dyoung break;
1853 1.1 dyoung case 3: /* use bits [43:32] of the address */
1854 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1855 1.1 dyoung break;
1856 1.1 dyoung default: /* Invalid mc_filter_type */
1857 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
1858 1.1 dyoung ASSERT(0);
1859 1.1 dyoung break;
1860 1.1 dyoung }
1861 1.1 dyoung
1862 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
1863 1.1 dyoung vector &= 0xFFF;
1864 1.1 dyoung return vector;
1865 1.1 dyoung }
1866 1.1 dyoung
1867 1.1 dyoung /**
1868 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
1869 1.1 dyoung * @hw: pointer to hardware structure
1870 1.1 dyoung * @hash_value: Multicast address hash value
1871 1.1 dyoung *
1872 1.1 dyoung * Sets the bit-vector in the multicast table.
1873 1.1 dyoung **/
1874 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1875 1.1 dyoung {
1876 1.1 dyoung u32 vector;
1877 1.1 dyoung u32 vector_bit;
1878 1.1 dyoung u32 vector_reg;
1879 1.1 dyoung
1880 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
1881 1.1 dyoung
1882 1.1 dyoung hw->addr_ctrl.mta_in_use++;
1883 1.1 dyoung
1884 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
1885 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
1886 1.1 dyoung
1887 1.1 dyoung /*
1888 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
1889 1.1 dyoung * like an array of 4096 bits. We want to set bit
1890 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
1891 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
1892 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
1893 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
1894 1.1 dyoung * the value.
1895 1.1 dyoung */
1896 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
1897 1.1 dyoung vector_bit = vector & 0x1F;
1898 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1899 1.1 dyoung }
1900 1.1 dyoung
1901 1.1 dyoung /**
1902 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1903 1.1 dyoung * @hw: pointer to hardware structure
1904 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
1905 1.1 dyoung * @mc_addr_count: number of addresses
1906 1.1 dyoung * @next: iterator function to walk the multicast address list
1907 1.1 dyoung *
1908 1.1 dyoung * The given list replaces any existing list. Clears the MC addrs from receive
1909 1.1 dyoung * address registers and the multicast table. Uses unused receive address
1910 1.1 dyoung * registers for the first multicast addresses, and hashes the rest into the
1911 1.1 dyoung * multicast table.
1912 1.1 dyoung **/
1913 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1914 1.1 dyoung u32 mc_addr_count, ixgbe_mc_addr_itr next)
1915 1.1 dyoung {
1916 1.1 dyoung u32 i;
1917 1.1 dyoung u32 vmdq;
1918 1.1 dyoung
1919 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
1920 1.1 dyoung
1921 1.1 dyoung /*
1922 1.1 dyoung * Set the new number of MC addresses that we are being requested to
1923 1.1 dyoung * use.
1924 1.1 dyoung */
1925 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1926 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
1927 1.1 dyoung
1928 1.1 dyoung /* Clear mta_shadow */
1929 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
1930 1.1 dyoung memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1931 1.1 dyoung
1932 1.1 dyoung /* Update mta_shadow */
1933 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
1934 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
1935 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
1936 1.1 dyoung }
1937 1.1 dyoung
1938 1.1 dyoung /* Enable mta */
1939 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
1940 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1941 1.1 dyoung hw->mac.mta_shadow[i]);
1942 1.1 dyoung
1943 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
1944 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1945 1.1 dyoung IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1946 1.1 dyoung
1947 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
1948 1.1 dyoung return IXGBE_SUCCESS;
1949 1.1 dyoung }
1950 1.1 dyoung
1951 1.1 dyoung /**
1952 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
1953 1.1 dyoung * @hw: pointer to hardware structure
1954 1.1 dyoung *
1955 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
1956 1.1 dyoung **/
1957 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1958 1.1 dyoung {
1959 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1960 1.1 dyoung
1961 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
1962 1.1 dyoung
1963 1.1 dyoung if (a->mta_in_use > 0)
1964 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1965 1.1 dyoung hw->mac.mc_filter_type);
1966 1.1 dyoung
1967 1.1 dyoung return IXGBE_SUCCESS;
1968 1.1 dyoung }
1969 1.1 dyoung
1970 1.1 dyoung /**
1971 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
1972 1.1 dyoung * @hw: pointer to hardware structure
1973 1.1 dyoung *
1974 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
1975 1.1 dyoung **/
1976 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1977 1.1 dyoung {
1978 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1979 1.1 dyoung
1980 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
1981 1.1 dyoung
1982 1.1 dyoung if (a->mta_in_use > 0)
1983 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1984 1.1 dyoung
1985 1.1 dyoung return IXGBE_SUCCESS;
1986 1.1 dyoung }
1987 1.1 dyoung
1988 1.1 dyoung /**
1989 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
1990 1.1 dyoung * @hw: pointer to hardware structure
1991 1.1 dyoung * @packetbuf_num: packet buffer number (0-7)
1992 1.1 dyoung *
1993 1.1 dyoung * Enable flow control according to the current settings.
1994 1.1 dyoung **/
1995 1.1 dyoung s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1996 1.1 dyoung {
1997 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
1998 1.1 dyoung u32 mflcn_reg, fccfg_reg;
1999 1.1 dyoung u32 reg;
2000 1.1 dyoung u32 rx_pba_size;
2001 1.1 dyoung u32 fcrtl, fcrth;
2002 1.1 dyoung
2003 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2004 1.1 dyoung
2005 1.1 dyoung /* Negotiate the fc mode to use */
2006 1.1 dyoung ret_val = ixgbe_fc_autoneg(hw);
2007 1.1 dyoung if (ret_val == IXGBE_ERR_FLOW_CONTROL)
2008 1.1 dyoung goto out;
2009 1.1 dyoung
2010 1.1 dyoung /* Disable any previous flow control settings */
2011 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2012 1.1 dyoung mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
2013 1.1 dyoung
2014 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2015 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2016 1.1 dyoung
2017 1.1 dyoung /*
2018 1.1 dyoung * The possible values of fc.current_mode are:
2019 1.1 dyoung * 0: Flow control is completely disabled
2020 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2021 1.1 dyoung * but not send pause frames).
2022 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2023 1.1 dyoung * we do not support receiving pause frames).
2024 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2025 1.1 dyoung * other: Invalid.
2026 1.1 dyoung */
2027 1.1 dyoung switch (hw->fc.current_mode) {
2028 1.1 dyoung case ixgbe_fc_none:
2029 1.1 dyoung /*
2030 1.1 dyoung * Flow control is disabled by software override or autoneg.
2031 1.1 dyoung * The code below will actually disable it in the HW.
2032 1.1 dyoung */
2033 1.1 dyoung break;
2034 1.1 dyoung case ixgbe_fc_rx_pause:
2035 1.1 dyoung /*
2036 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2037 1.1 dyoung * disabled by software override. Since there really
2038 1.1 dyoung * isn't a way to advertise that we are capable of RX
2039 1.1 dyoung * Pause ONLY, we will advertise that we support both
2040 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2041 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2042 1.1 dyoung */
2043 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2044 1.1 dyoung break;
2045 1.1 dyoung case ixgbe_fc_tx_pause:
2046 1.1 dyoung /*
2047 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2048 1.1 dyoung * disabled by software override.
2049 1.1 dyoung */
2050 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2051 1.1 dyoung break;
2052 1.1 dyoung case ixgbe_fc_full:
2053 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2054 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2055 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2056 1.1 dyoung break;
2057 1.1 dyoung default:
2058 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2059 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2060 1.1 dyoung goto out;
2061 1.1 dyoung break;
2062 1.1 dyoung }
2063 1.1 dyoung
2064 1.1 dyoung /* Set 802.3x based flow control settings. */
2065 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2066 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2067 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2068 1.1 dyoung
2069 1.1 dyoung rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
2070 1.1 dyoung rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
2071 1.1 dyoung
2072 1.1 dyoung fcrth = (rx_pba_size - hw->fc.high_water) << 10;
2073 1.1 dyoung fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
2074 1.1 dyoung
2075 1.1 dyoung if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2076 1.1 dyoung fcrth |= IXGBE_FCRTH_FCEN;
2077 1.1 dyoung if (hw->fc.send_xon)
2078 1.1 dyoung fcrtl |= IXGBE_FCRTL_XONE;
2079 1.1 dyoung }
2080 1.1 dyoung
2081 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2082 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2083 1.1 dyoung
2084 1.1 dyoung /* Configure pause time (2 TCs per register) */
2085 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2086 1.1 dyoung if ((packetbuf_num & 1) == 0)
2087 1.1 dyoung reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2088 1.1 dyoung else
2089 1.1 dyoung reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2090 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2091 1.1 dyoung
2092 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2093 1.1 dyoung
2094 1.1 dyoung out:
2095 1.1 dyoung return ret_val;
2096 1.1 dyoung }
2097 1.1 dyoung
2098 1.1 dyoung /**
2099 1.1 dyoung * ixgbe_fc_autoneg - Configure flow control
2100 1.1 dyoung * @hw: pointer to hardware structure
2101 1.1 dyoung *
2102 1.1 dyoung * Compares our advertised flow control capabilities to those advertised by
2103 1.1 dyoung * our link partner, and determines the proper flow control mode to use.
2104 1.1 dyoung **/
2105 1.1 dyoung s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2106 1.1 dyoung {
2107 1.1 dyoung s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2108 1.1 dyoung ixgbe_link_speed speed;
2109 1.1 dyoung bool link_up;
2110 1.1 dyoung
2111 1.1 dyoung DEBUGFUNC("ixgbe_fc_autoneg");
2112 1.1 dyoung
2113 1.1 dyoung if (hw->fc.disable_fc_autoneg)
2114 1.1 dyoung goto out;
2115 1.1 dyoung
2116 1.1 dyoung /*
2117 1.1 dyoung * AN should have completed when the cable was plugged in.
2118 1.1 dyoung * Look for reasons to bail out. Bail out if:
2119 1.1 dyoung * - FC autoneg is disabled, or if
2120 1.1 dyoung * - link is not up.
2121 1.1 dyoung *
2122 1.1 dyoung * Since we're being called from an LSC, link is already known to be up.
2123 1.1 dyoung * So use link_up_wait_to_complete=FALSE.
2124 1.1 dyoung */
2125 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2126 1.1 dyoung if (!link_up) {
2127 1.1 dyoung ret_val = IXGBE_ERR_FLOW_CONTROL;
2128 1.1 dyoung goto out;
2129 1.1 dyoung }
2130 1.1 dyoung
2131 1.1 dyoung switch (hw->phy.media_type) {
2132 1.1 dyoung /* Autoneg flow control on fiber adapters */
2133 1.1 dyoung case ixgbe_media_type_fiber:
2134 1.1 dyoung if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2135 1.1 dyoung ret_val = ixgbe_fc_autoneg_fiber(hw);
2136 1.1 dyoung break;
2137 1.1 dyoung
2138 1.1 dyoung /* Autoneg flow control on backplane adapters */
2139 1.1 dyoung case ixgbe_media_type_backplane:
2140 1.1 dyoung ret_val = ixgbe_fc_autoneg_backplane(hw);
2141 1.1 dyoung break;
2142 1.1 dyoung
2143 1.1 dyoung /* Autoneg flow control on copper adapters */
2144 1.1 dyoung case ixgbe_media_type_copper:
2145 1.1 dyoung if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2146 1.1 dyoung ret_val = ixgbe_fc_autoneg_copper(hw);
2147 1.1 dyoung break;
2148 1.1 dyoung
2149 1.1 dyoung default:
2150 1.1 dyoung break;
2151 1.1 dyoung }
2152 1.1 dyoung
2153 1.1 dyoung out:
2154 1.1 dyoung if (ret_val == IXGBE_SUCCESS) {
2155 1.1 dyoung hw->fc.fc_was_autonegged = TRUE;
2156 1.1 dyoung } else {
2157 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2158 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2159 1.1 dyoung }
2160 1.1 dyoung return ret_val;
2161 1.1 dyoung }
2162 1.1 dyoung
2163 1.1 dyoung /**
2164 1.1 dyoung * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2165 1.1 dyoung * @hw: pointer to hardware structure
2166 1.1 dyoung * @speed:
2167 1.1 dyoung * @link_up
2168 1.1 dyoung *
2169 1.1 dyoung * Enable flow control according on 1 gig fiber.
2170 1.1 dyoung **/
2171 1.1 dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2172 1.1 dyoung {
2173 1.1 dyoung u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2174 1.1 dyoung s32 ret_val;
2175 1.1 dyoung
2176 1.1 dyoung /*
2177 1.1 dyoung * On multispeed fiber at 1g, bail out if
2178 1.1 dyoung * - link is up but AN did not complete, or if
2179 1.1 dyoung * - link is up and AN completed but timed out
2180 1.1 dyoung */
2181 1.1 dyoung
2182 1.1 dyoung linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2183 1.1 dyoung if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2184 1.1 dyoung ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2185 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2186 1.1 dyoung goto out;
2187 1.1 dyoung }
2188 1.1 dyoung
2189 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2190 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2191 1.1 dyoung
2192 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2193 1.1 dyoung pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2194 1.1 dyoung IXGBE_PCS1GANA_ASM_PAUSE,
2195 1.1 dyoung IXGBE_PCS1GANA_SYM_PAUSE,
2196 1.1 dyoung IXGBE_PCS1GANA_ASM_PAUSE);
2197 1.1 dyoung
2198 1.1 dyoung out:
2199 1.1 dyoung return ret_val;
2200 1.1 dyoung }
2201 1.1 dyoung
2202 1.1 dyoung /**
2203 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2204 1.1 dyoung * @hw: pointer to hardware structure
2205 1.1 dyoung *
2206 1.1 dyoung * Enable flow control according to IEEE clause 37.
2207 1.1 dyoung **/
2208 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2209 1.1 dyoung {
2210 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2211 1.1 dyoung s32 ret_val;
2212 1.1 dyoung
2213 1.1 dyoung /*
2214 1.1 dyoung * On backplane, bail out if
2215 1.1 dyoung * - backplane autoneg was not completed, or if
2216 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2217 1.1 dyoung */
2218 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2219 1.1 dyoung if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2220 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2221 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2222 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2223 1.1 dyoung goto out;
2224 1.1 dyoung }
2225 1.1 dyoung
2226 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2227 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2228 1.1 dyoung if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2229 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2230 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2231 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2232 1.1 dyoung goto out;
2233 1.1 dyoung }
2234 1.1 dyoung }
2235 1.1 dyoung /*
2236 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2237 1.1 dyoung * local flow control settings accordingly
2238 1.1 dyoung */
2239 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2240 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2241 1.1 dyoung
2242 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2243 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2244 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2245 1.1 dyoung
2246 1.1 dyoung out:
2247 1.1 dyoung return ret_val;
2248 1.1 dyoung }
2249 1.1 dyoung
2250 1.1 dyoung /**
2251 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2252 1.1 dyoung * @hw: pointer to hardware structure
2253 1.1 dyoung *
2254 1.1 dyoung * Enable flow control according to IEEE clause 37.
2255 1.1 dyoung **/
2256 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2257 1.1 dyoung {
2258 1.1 dyoung u16 technology_ability_reg = 0;
2259 1.1 dyoung u16 lp_technology_ability_reg = 0;
2260 1.1 dyoung
2261 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2262 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2263 1.1 dyoung &technology_ability_reg);
2264 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2265 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2266 1.1 dyoung &lp_technology_ability_reg);
2267 1.1 dyoung
2268 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2269 1.1 dyoung (u32)lp_technology_ability_reg,
2270 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2271 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2272 1.1 dyoung }
2273 1.1 dyoung
2274 1.1 dyoung /**
2275 1.1 dyoung * ixgbe_negotiate_fc - Negotiate flow control
2276 1.1 dyoung * @hw: pointer to hardware structure
2277 1.1 dyoung * @adv_reg: flow control advertised settings
2278 1.1 dyoung * @lp_reg: link partner's flow control settings
2279 1.1 dyoung * @adv_sym: symmetric pause bit in advertisement
2280 1.1 dyoung * @adv_asm: asymmetric pause bit in advertisement
2281 1.1 dyoung * @lp_sym: symmetric pause bit in link partner advertisement
2282 1.1 dyoung * @lp_asm: asymmetric pause bit in link partner advertisement
2283 1.1 dyoung *
2284 1.1 dyoung * Find the intersection between advertised settings and link partner's
2285 1.1 dyoung * advertised settings
2286 1.1 dyoung **/
2287 1.1 dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2288 1.1 dyoung u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2289 1.1 dyoung {
2290 1.1 dyoung if ((!(adv_reg)) || (!(lp_reg)))
2291 1.1 dyoung return IXGBE_ERR_FC_NOT_NEGOTIATED;
2292 1.1 dyoung
2293 1.1 dyoung if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2294 1.1 dyoung /*
2295 1.1 dyoung * Now we need to check if the user selected Rx ONLY
2296 1.1 dyoung * of pause frames. In this case, we had to advertise
2297 1.1 dyoung * FULL flow control because we could not advertise RX
2298 1.1 dyoung * ONLY. Hence, we must now check to see if we need to
2299 1.1 dyoung * turn OFF the TRANSMISSION of PAUSE frames.
2300 1.1 dyoung */
2301 1.1 dyoung if (hw->fc.requested_mode == ixgbe_fc_full) {
2302 1.1 dyoung hw->fc.current_mode = ixgbe_fc_full;
2303 1.1 dyoung DEBUGOUT("Flow Control = FULL.\n");
2304 1.1 dyoung } else {
2305 1.1 dyoung hw->fc.current_mode = ixgbe_fc_rx_pause;
2306 1.1 dyoung DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2307 1.1 dyoung }
2308 1.1 dyoung } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2309 1.1 dyoung (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2310 1.1 dyoung hw->fc.current_mode = ixgbe_fc_tx_pause;
2311 1.1 dyoung DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2312 1.1 dyoung } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2313 1.1 dyoung !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2314 1.1 dyoung hw->fc.current_mode = ixgbe_fc_rx_pause;
2315 1.1 dyoung DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2316 1.1 dyoung } else {
2317 1.1 dyoung hw->fc.current_mode = ixgbe_fc_none;
2318 1.1 dyoung DEBUGOUT("Flow Control = NONE.\n");
2319 1.1 dyoung }
2320 1.1 dyoung return IXGBE_SUCCESS;
2321 1.1 dyoung }
2322 1.1 dyoung
2323 1.1 dyoung /**
2324 1.1 dyoung * ixgbe_setup_fc - Set up flow control
2325 1.1 dyoung * @hw: pointer to hardware structure
2326 1.1 dyoung *
2327 1.1 dyoung * Called at init time to set up flow control.
2328 1.1 dyoung **/
2329 1.1 dyoung s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2330 1.1 dyoung {
2331 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2332 1.1 dyoung u32 reg = 0, reg_bp = 0;
2333 1.1 dyoung u16 reg_cu = 0;
2334 1.1 dyoung
2335 1.1 dyoung DEBUGFUNC("ixgbe_setup_fc");
2336 1.1 dyoung
2337 1.1 dyoung /* Validate the packetbuf configuration */
2338 1.1 dyoung if (packetbuf_num < 0 || packetbuf_num > 7) {
2339 1.1 dyoung DEBUGOUT1("Invalid packet buffer number [%d], expected range is"
2340 1.1 dyoung " 0-7\n", packetbuf_num);
2341 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2342 1.1 dyoung goto out;
2343 1.1 dyoung }
2344 1.1 dyoung
2345 1.1 dyoung /*
2346 1.1 dyoung * Validate the water mark configuration. Zero water marks are invalid
2347 1.1 dyoung * because it causes the controller to just blast out fc packets.
2348 1.1 dyoung */
2349 1.1 dyoung if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
2350 1.1 dyoung DEBUGOUT("Invalid water mark configuration\n");
2351 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2352 1.1 dyoung goto out;
2353 1.1 dyoung }
2354 1.1 dyoung
2355 1.1 dyoung /*
2356 1.1 dyoung * Validate the requested mode. Strict IEEE mode does not allow
2357 1.1 dyoung * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2358 1.1 dyoung */
2359 1.1 dyoung if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2360 1.1 dyoung DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
2361 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2362 1.1 dyoung goto out;
2363 1.1 dyoung }
2364 1.1 dyoung
2365 1.1 dyoung /*
2366 1.1 dyoung * 10gig parts do not have a word in the EEPROM to determine the
2367 1.1 dyoung * default flow control setting, so we explicitly set it to full.
2368 1.1 dyoung */
2369 1.1 dyoung if (hw->fc.requested_mode == ixgbe_fc_default)
2370 1.1 dyoung hw->fc.requested_mode = ixgbe_fc_full;
2371 1.1 dyoung
2372 1.1 dyoung /*
2373 1.1 dyoung * Set up the 1G and 10G flow control advertisement registers so the
2374 1.1 dyoung * HW will be able to do fc autoneg once the cable is plugged in. If
2375 1.1 dyoung * we link at 10G, the 1G advertisement is harmless and vice versa.
2376 1.1 dyoung */
2377 1.1 dyoung
2378 1.1 dyoung switch (hw->phy.media_type) {
2379 1.1 dyoung case ixgbe_media_type_fiber:
2380 1.1 dyoung case ixgbe_media_type_backplane:
2381 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2382 1.1 dyoung reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2383 1.1 dyoung break;
2384 1.1 dyoung
2385 1.1 dyoung case ixgbe_media_type_copper:
2386 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2387 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
2388 1.1 dyoung break;
2389 1.1 dyoung
2390 1.1 dyoung default:
2391 1.1 dyoung ;
2392 1.1 dyoung }
2393 1.1 dyoung
2394 1.1 dyoung /*
2395 1.1 dyoung * The possible values of fc.requested_mode are:
2396 1.1 dyoung * 0: Flow control is completely disabled
2397 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2398 1.1 dyoung * but not send pause frames).
2399 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2400 1.1 dyoung * we do not support receiving pause frames).
2401 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2402 1.1 dyoung * other: Invalid.
2403 1.1 dyoung */
2404 1.1 dyoung switch (hw->fc.requested_mode) {
2405 1.1 dyoung case ixgbe_fc_none:
2406 1.1 dyoung /* Flow control completely disabled by software override. */
2407 1.1 dyoung reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2408 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2409 1.1 dyoung reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2410 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2411 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2412 1.1 dyoung reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2413 1.1 dyoung break;
2414 1.1 dyoung case ixgbe_fc_rx_pause:
2415 1.1 dyoung /*
2416 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2417 1.1 dyoung * disabled by software override. Since there really
2418 1.1 dyoung * isn't a way to advertise that we are capable of RX
2419 1.1 dyoung * Pause ONLY, we will advertise that we support both
2420 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2421 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2422 1.1 dyoung */
2423 1.1 dyoung reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2424 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2425 1.1 dyoung reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2426 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2427 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2428 1.1 dyoung reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2429 1.1 dyoung break;
2430 1.1 dyoung case ixgbe_fc_tx_pause:
2431 1.1 dyoung /*
2432 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2433 1.1 dyoung * disabled by software override.
2434 1.1 dyoung */
2435 1.1 dyoung reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2436 1.1 dyoung reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2437 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane) {
2438 1.1 dyoung reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2439 1.1 dyoung reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2440 1.1 dyoung } else if (hw->phy.media_type == ixgbe_media_type_copper) {
2441 1.1 dyoung reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2442 1.1 dyoung reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2443 1.1 dyoung }
2444 1.1 dyoung break;
2445 1.1 dyoung case ixgbe_fc_full:
2446 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2447 1.1 dyoung reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2448 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2449 1.1 dyoung reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2450 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2451 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2452 1.1 dyoung reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2453 1.1 dyoung break;
2454 1.1 dyoung default:
2455 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2456 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2457 1.1 dyoung goto out;
2458 1.1 dyoung break;
2459 1.1 dyoung }
2460 1.1 dyoung
2461 1.1 dyoung /*
2462 1.1 dyoung * Enable auto-negotiation between the MAC & PHY;
2463 1.1 dyoung * the MAC will advertise clause 37 flow control.
2464 1.1 dyoung */
2465 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2466 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2467 1.1 dyoung
2468 1.1 dyoung /* Disable AN timeout */
2469 1.1 dyoung if (hw->fc.strict_ieee)
2470 1.1 dyoung reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2471 1.1 dyoung
2472 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2473 1.1 dyoung DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2474 1.1 dyoung
2475 1.1 dyoung /*
2476 1.1 dyoung * AUTOC restart handles negotiation of 1G and 10G on backplane
2477 1.1 dyoung * and copper. There is no need to set the PCS1GCTL register.
2478 1.1 dyoung *
2479 1.1 dyoung */
2480 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane) {
2481 1.1 dyoung reg_bp |= IXGBE_AUTOC_AN_RESTART;
2482 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2483 1.1 dyoung } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2484 1.1 dyoung (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
2485 1.1 dyoung hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2486 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
2487 1.1 dyoung }
2488 1.1 dyoung
2489 1.1 dyoung DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2490 1.1 dyoung out:
2491 1.1 dyoung return ret_val;
2492 1.1 dyoung }
2493 1.1 dyoung
2494 1.1 dyoung /**
2495 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
2496 1.1 dyoung * @hw: pointer to hardware structure
2497 1.1 dyoung *
2498 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
2499 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2500 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2501 1.1 dyoung * is returned signifying master requests disabled.
2502 1.1 dyoung **/
2503 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2504 1.1 dyoung {
2505 1.1 dyoung u32 i;
2506 1.1 dyoung u32 reg_val;
2507 1.1 dyoung u32 number_of_queues;
2508 1.1 dyoung s32 status = IXGBE_SUCCESS;
2509 1.1 dyoung
2510 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
2511 1.1 dyoung
2512 1.1 dyoung /* Just jump out if bus mastering is already disabled */
2513 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2514 1.1 dyoung goto out;
2515 1.1 dyoung
2516 1.1 dyoung /* Disable the receive unit by stopping each queue */
2517 1.1 dyoung number_of_queues = hw->mac.max_rx_queues;
2518 1.1 dyoung for (i = 0; i < number_of_queues; i++) {
2519 1.1 dyoung reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2520 1.1 dyoung if (reg_val & IXGBE_RXDCTL_ENABLE) {
2521 1.1 dyoung reg_val &= ~IXGBE_RXDCTL_ENABLE;
2522 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2523 1.1 dyoung }
2524 1.1 dyoung }
2525 1.1 dyoung
2526 1.1 dyoung reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2527 1.1 dyoung reg_val |= IXGBE_CTRL_GIO_DIS;
2528 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2529 1.1 dyoung
2530 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2531 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532 1.1 dyoung goto check_device_status;
2533 1.1 dyoung usec_delay(100);
2534 1.1 dyoung }
2535 1.1 dyoung
2536 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2537 1.1 dyoung status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2538 1.1 dyoung
2539 1.1 dyoung /*
2540 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
2541 1.1 dyoung * transactions pending.
2542 1.1 dyoung */
2543 1.1 dyoung check_device_status:
2544 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2545 1.1 dyoung if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2546 1.1 dyoung IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2547 1.1 dyoung break;
2548 1.1 dyoung usec_delay(100);
2549 1.1 dyoung }
2550 1.1 dyoung
2551 1.1 dyoung if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2552 1.1 dyoung DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2553 1.1 dyoung else
2554 1.1 dyoung goto out;
2555 1.1 dyoung
2556 1.1 dyoung /*
2557 1.1 dyoung * Two consecutive resets are required via CTRL.RST per datasheet
2558 1.1 dyoung * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2559 1.1 dyoung * of this need. The first reset prevents new master requests from
2560 1.1 dyoung * being issued by our device. We then must wait 1usec for any
2561 1.1 dyoung * remaining completions from the PCIe bus to trickle in, and then reset
2562 1.1 dyoung * again to clear out any effects they may have had on our device.
2563 1.1 dyoung */
2564 1.1 dyoung hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2565 1.1 dyoung
2566 1.1 dyoung out:
2567 1.1 dyoung return status;
2568 1.1 dyoung }
2569 1.1 dyoung
2570 1.1 dyoung
2571 1.1 dyoung /**
2572 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2573 1.1 dyoung * @hw: pointer to hardware structure
2574 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
2575 1.1 dyoung *
2576 1.1 dyoung * Acquires the SWFW semaphore thought the GSSR register for the specified
2577 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2578 1.1 dyoung **/
2579 1.1 dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2580 1.1 dyoung {
2581 1.1 dyoung u32 gssr;
2582 1.1 dyoung u32 swmask = mask;
2583 1.1 dyoung u32 fwmask = mask << 5;
2584 1.1 dyoung s32 timeout = 200;
2585 1.1 dyoung
2586 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
2587 1.1 dyoung
2588 1.1 dyoung while (timeout) {
2589 1.1 dyoung /*
2590 1.1 dyoung * SW EEPROM semaphore bit is used for access to all
2591 1.1 dyoung * SW_FW_SYNC/GSSR bits (not just EEPROM)
2592 1.1 dyoung */
2593 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
2594 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2595 1.1 dyoung
2596 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2597 1.1 dyoung if (!(gssr & (fwmask | swmask)))
2598 1.1 dyoung break;
2599 1.1 dyoung
2600 1.1 dyoung /*
2601 1.1 dyoung * Firmware currently using resource (fwmask) or other software
2602 1.1 dyoung * thread currently using resource (swmask)
2603 1.1 dyoung */
2604 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2605 1.1 dyoung msec_delay(5);
2606 1.1 dyoung timeout--;
2607 1.1 dyoung }
2608 1.1 dyoung
2609 1.1 dyoung if (!timeout) {
2610 1.1 dyoung DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2611 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2612 1.1 dyoung }
2613 1.1 dyoung
2614 1.1 dyoung gssr |= swmask;
2615 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2616 1.1 dyoung
2617 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2618 1.1 dyoung return IXGBE_SUCCESS;
2619 1.1 dyoung }
2620 1.1 dyoung
2621 1.1 dyoung /**
2622 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
2623 1.1 dyoung * @hw: pointer to hardware structure
2624 1.1 dyoung * @mask: Mask to specify which semaphore to release
2625 1.1 dyoung *
2626 1.1 dyoung * Releases the SWFW semaphore thought the GSSR register for the specified
2627 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2628 1.1 dyoung **/
2629 1.1 dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2630 1.1 dyoung {
2631 1.1 dyoung u32 gssr;
2632 1.1 dyoung u32 swmask = mask;
2633 1.1 dyoung
2634 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
2635 1.1 dyoung
2636 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
2637 1.1 dyoung
2638 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2639 1.1 dyoung gssr &= ~swmask;
2640 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2641 1.1 dyoung
2642 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2643 1.1 dyoung }
2644 1.1 dyoung
2645 1.1 dyoung /**
2646 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2647 1.1 dyoung * @hw: pointer to hardware structure
2648 1.1 dyoung * @regval: register value to write to RXCTRL
2649 1.1 dyoung *
2650 1.1 dyoung * Enables the Rx DMA unit
2651 1.1 dyoung **/
2652 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2653 1.1 dyoung {
2654 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2655 1.1 dyoung
2656 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2657 1.1 dyoung
2658 1.1 dyoung return IXGBE_SUCCESS;
2659 1.1 dyoung }
2660 1.1 dyoung
2661 1.1 dyoung /**
2662 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
2663 1.1 dyoung * @hw: pointer to hardware structure
2664 1.1 dyoung * @index: led number to blink
2665 1.1 dyoung **/
2666 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2667 1.1 dyoung {
2668 1.1 dyoung ixgbe_link_speed speed = 0;
2669 1.1 dyoung bool link_up = 0;
2670 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2671 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2672 1.1 dyoung
2673 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
2674 1.1 dyoung
2675 1.1 dyoung /*
2676 1.1 dyoung * Link must be up to auto-blink the LEDs;
2677 1.1 dyoung * Force it if link is down.
2678 1.1 dyoung */
2679 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2680 1.1 dyoung
2681 1.1 dyoung if (!link_up) {
2682 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2683 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
2684 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2685 1.1 dyoung msec_delay(10);
2686 1.1 dyoung }
2687 1.1 dyoung
2688 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
2689 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
2690 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2691 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2692 1.1 dyoung
2693 1.1 dyoung return IXGBE_SUCCESS;
2694 1.1 dyoung }
2695 1.1 dyoung
2696 1.1 dyoung /**
2697 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2698 1.1 dyoung * @hw: pointer to hardware structure
2699 1.1 dyoung * @index: led number to stop blinking
2700 1.1 dyoung **/
2701 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2702 1.1 dyoung {
2703 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2704 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2705 1.1 dyoung
2706 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
2707 1.1 dyoung
2708 1.1 dyoung
2709 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
2710 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2711 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2712 1.1 dyoung
2713 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
2714 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
2715 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2716 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2717 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2718 1.1 dyoung
2719 1.1 dyoung return IXGBE_SUCCESS;
2720 1.1 dyoung }
2721 1.1 dyoung
2722 1.1 dyoung /**
2723 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2724 1.1 dyoung * @hw: pointer to hardware structure
2725 1.1 dyoung * @san_mac_offset: SAN MAC address offset
2726 1.1 dyoung *
2727 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
2728 1.1 dyoung * pointer, and returns the value at that location. This is used in both
2729 1.1 dyoung * get and set mac_addr routines.
2730 1.1 dyoung **/
2731 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2732 1.1 dyoung u16 *san_mac_offset)
2733 1.1 dyoung {
2734 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
2735 1.1 dyoung
2736 1.1 dyoung /*
2737 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
2738 1.1 dyoung * available.
2739 1.1 dyoung */
2740 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2741 1.1 dyoung
2742 1.1 dyoung return IXGBE_SUCCESS;
2743 1.1 dyoung }
2744 1.1 dyoung
2745 1.1 dyoung /**
2746 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2747 1.1 dyoung * @hw: pointer to hardware structure
2748 1.1 dyoung * @san_mac_addr: SAN MAC address
2749 1.1 dyoung *
2750 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
2751 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
2752 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
2753 1.1 dyoung * upon for non-SFP connections, so we must call it here.
2754 1.1 dyoung **/
2755 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2756 1.1 dyoung {
2757 1.1 dyoung u16 san_mac_data, san_mac_offset;
2758 1.1 dyoung u8 i;
2759 1.1 dyoung
2760 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
2761 1.1 dyoung
2762 1.1 dyoung /*
2763 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
2764 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
2765 1.1 dyoung */
2766 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2767 1.1 dyoung
2768 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2769 1.1 dyoung /*
2770 1.1 dyoung * No addresses available in this EEPROM. It's not an
2771 1.1 dyoung * error though, so just wipe the local address and return.
2772 1.1 dyoung */
2773 1.1 dyoung for (i = 0; i < 6; i++)
2774 1.1 dyoung san_mac_addr[i] = 0xFF;
2775 1.1 dyoung
2776 1.1 dyoung goto san_mac_addr_out;
2777 1.1 dyoung }
2778 1.1 dyoung
2779 1.1 dyoung /* make sure we know which port we need to program */
2780 1.1 dyoung hw->mac.ops.set_lan_id(hw);
2781 1.1 dyoung /* apply the port offset to the address offset */
2782 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2783 1.1 dyoung (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2784 1.1 dyoung for (i = 0; i < 3; i++) {
2785 1.1 dyoung hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2786 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
2787 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2788 1.1 dyoung san_mac_offset++;
2789 1.1 dyoung }
2790 1.1 dyoung
2791 1.1 dyoung san_mac_addr_out:
2792 1.1 dyoung return IXGBE_SUCCESS;
2793 1.1 dyoung }
2794 1.1 dyoung
2795 1.1 dyoung /**
2796 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
2797 1.1 dyoung * @hw: pointer to hardware structure
2798 1.1 dyoung * @san_mac_addr: SAN MAC address
2799 1.1 dyoung *
2800 1.1 dyoung * Write a SAN MAC address to the EEPROM.
2801 1.1 dyoung **/
2802 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2803 1.1 dyoung {
2804 1.1 dyoung s32 status = IXGBE_SUCCESS;
2805 1.1 dyoung u16 san_mac_data, san_mac_offset;
2806 1.1 dyoung u8 i;
2807 1.1 dyoung
2808 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
2809 1.1 dyoung
2810 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
2811 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2812 1.1 dyoung
2813 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2814 1.1 dyoung status = IXGBE_ERR_NO_SAN_ADDR_PTR;
2815 1.1 dyoung goto san_mac_addr_out;
2816 1.1 dyoung }
2817 1.1 dyoung
2818 1.1 dyoung /* Make sure we know which port we need to write */
2819 1.1 dyoung hw->mac.ops.set_lan_id(hw);
2820 1.1 dyoung /* Apply the port offset to the address offset */
2821 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2822 1.1 dyoung (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2823 1.1 dyoung
2824 1.1 dyoung for (i = 0; i < 3; i++) {
2825 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
2826 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
2827 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
2828 1.1 dyoung san_mac_offset++;
2829 1.1 dyoung }
2830 1.1 dyoung
2831 1.1 dyoung san_mac_addr_out:
2832 1.1 dyoung return status;
2833 1.1 dyoung }
2834 1.1 dyoung
2835 1.1 dyoung /**
2836 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2837 1.1 dyoung * @hw: pointer to hardware structure
2838 1.1 dyoung *
2839 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
2840 1.1 dyoung * the capabilities table.
2841 1.1 dyoung **/
2842 1.1 dyoung u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2843 1.1 dyoung {
2844 1.1 dyoung u32 msix_count = 64;
2845 1.1 dyoung
2846 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
2847 1.1 dyoung if (hw->mac.msix_vectors_from_pcie) {
2848 1.1 dyoung msix_count = IXGBE_READ_PCIE_WORD(hw,
2849 1.1 dyoung IXGBE_PCIE_MSIX_82599_CAPS);
2850 1.1 dyoung msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2851 1.1 dyoung
2852 1.1 dyoung /* MSI-X count is zero-based in HW, so increment to give
2853 1.1 dyoung * proper value */
2854 1.1 dyoung msix_count++;
2855 1.1 dyoung }
2856 1.1 dyoung
2857 1.1 dyoung return msix_count;
2858 1.1 dyoung }
2859 1.1 dyoung
2860 1.1 dyoung /**
2861 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
2862 1.1 dyoung * @hw: pointer to hardware structure
2863 1.1 dyoung * @addr: Address to put into receive address register
2864 1.1 dyoung * @vmdq: VMDq pool to assign
2865 1.1 dyoung *
2866 1.1 dyoung * Puts an ethernet address into a receive address register, or
2867 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
2868 1.1 dyoung **/
2869 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2870 1.1 dyoung {
2871 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
2872 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
2873 1.1 dyoung u32 rar;
2874 1.1 dyoung u32 rar_low, rar_high;
2875 1.1 dyoung u32 addr_low, addr_high;
2876 1.1 dyoung
2877 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
2878 1.1 dyoung
2879 1.1 dyoung /* swap bytes for HW little endian */
2880 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
2881 1.1 dyoung | (addr[2] << 16)
2882 1.1 dyoung | (addr[3] << 24);
2883 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
2884 1.1 dyoung
2885 1.1 dyoung /*
2886 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
2887 1.1 dyoung * rar_highwater points to just after the highest currently used
2888 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
2889 1.1 dyoung * rar to the top.
2890 1.1 dyoung */
2891 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
2892 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
2893 1.1 dyoung
2894 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
2895 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
2896 1.1 dyoung first_empty_rar = rar;
2897 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
2898 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
2899 1.1 dyoung if (rar_low == addr_low)
2900 1.1 dyoung break; /* found it already in the rars */
2901 1.1 dyoung }
2902 1.1 dyoung }
2903 1.1 dyoung
2904 1.1 dyoung if (rar < hw->mac.rar_highwater) {
2905 1.1 dyoung /* already there so just add to the pool bits */
2906 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
2907 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
2908 1.1 dyoung /* stick it into first empty RAR slot we found */
2909 1.1 dyoung rar = first_empty_rar;
2910 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2911 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
2912 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
2913 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2914 1.1 dyoung hw->mac.rar_highwater++;
2915 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
2916 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
2917 1.1 dyoung }
2918 1.1 dyoung
2919 1.1 dyoung /*
2920 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
2921 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
2922 1.1 dyoung */
2923 1.1 dyoung if (rar == 0)
2924 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
2925 1.1 dyoung
2926 1.1 dyoung return rar;
2927 1.1 dyoung }
2928 1.1 dyoung
2929 1.1 dyoung /**
2930 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2931 1.1 dyoung * @hw: pointer to hardware struct
2932 1.1 dyoung * @rar: receive address register index to disassociate
2933 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
2934 1.1 dyoung **/
2935 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2936 1.1 dyoung {
2937 1.1 dyoung u32 mpsar_lo, mpsar_hi;
2938 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2939 1.1 dyoung
2940 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
2941 1.1 dyoung
2942 1.1 dyoung /* Make sure we are using a valid rar index range */
2943 1.1 dyoung if (rar >= rar_entries) {
2944 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
2945 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2946 1.1 dyoung }
2947 1.1 dyoung
2948 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2949 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2950 1.1 dyoung
2951 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
2952 1.1 dyoung goto done;
2953 1.1 dyoung
2954 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2955 1.1 dyoung if (mpsar_lo) {
2956 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2957 1.1 dyoung mpsar_lo = 0;
2958 1.1 dyoung }
2959 1.1 dyoung if (mpsar_hi) {
2960 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2961 1.1 dyoung mpsar_hi = 0;
2962 1.1 dyoung }
2963 1.1 dyoung } else if (vmdq < 32) {
2964 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
2965 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2966 1.1 dyoung } else {
2967 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
2968 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2969 1.1 dyoung }
2970 1.1 dyoung
2971 1.1 dyoung /* was that the last pool using this rar? */
2972 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2973 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
2974 1.1 dyoung done:
2975 1.1 dyoung return IXGBE_SUCCESS;
2976 1.1 dyoung }
2977 1.1 dyoung
2978 1.1 dyoung /**
2979 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2980 1.1 dyoung * @hw: pointer to hardware struct
2981 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
2982 1.1 dyoung * @vmdq: VMDq pool index
2983 1.1 dyoung **/
2984 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2985 1.1 dyoung {
2986 1.1 dyoung u32 mpsar;
2987 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2988 1.1 dyoung
2989 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
2990 1.1 dyoung
2991 1.1 dyoung /* Make sure we are using a valid rar index range */
2992 1.1 dyoung if (rar >= rar_entries) {
2993 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
2994 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2995 1.1 dyoung }
2996 1.1 dyoung
2997 1.1 dyoung if (vmdq < 32) {
2998 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2999 1.1 dyoung mpsar |= 1 << vmdq;
3000 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3001 1.1 dyoung } else {
3002 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3003 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3004 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3005 1.1 dyoung }
3006 1.1 dyoung return IXGBE_SUCCESS;
3007 1.1 dyoung }
3008 1.1 dyoung
3009 1.1 dyoung /**
3010 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3011 1.1 dyoung * @hw: pointer to hardware structure
3012 1.1 dyoung **/
3013 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3014 1.1 dyoung {
3015 1.1 dyoung int i;
3016 1.1 dyoung
3017 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3018 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3019 1.1 dyoung
3020 1.1 dyoung for (i = 0; i < 128; i++)
3021 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3022 1.1 dyoung
3023 1.1 dyoung return IXGBE_SUCCESS;
3024 1.1 dyoung }
3025 1.1 dyoung
3026 1.1 dyoung /**
3027 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3028 1.1 dyoung * @hw: pointer to hardware structure
3029 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3030 1.1 dyoung *
3031 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3032 1.1 dyoung *
3033 1.1 dyoung **/
3034 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3035 1.1 dyoung {
3036 1.1 dyoung u32 bits = 0;
3037 1.1 dyoung u32 first_empty_slot = 0;
3038 1.1 dyoung s32 regindex;
3039 1.1 dyoung
3040 1.1 dyoung /* short cut the special case */
3041 1.1 dyoung if (vlan == 0)
3042 1.1 dyoung return 0;
3043 1.1 dyoung
3044 1.1 dyoung /*
3045 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3046 1.1 dyoung * slot found along the way
3047 1.1 dyoung */
3048 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3049 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3050 1.1 dyoung if (!bits && !(first_empty_slot))
3051 1.1 dyoung first_empty_slot = regindex;
3052 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3053 1.1 dyoung break;
3054 1.1 dyoung }
3055 1.1 dyoung
3056 1.1 dyoung /*
3057 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3058 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3059 1.1 dyoung * vlan id.
3060 1.1 dyoung */
3061 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3062 1.1 dyoung if (first_empty_slot)
3063 1.1 dyoung regindex = first_empty_slot;
3064 1.1 dyoung else {
3065 1.1 dyoung DEBUGOUT("No space in VLVF.\n");
3066 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3067 1.1 dyoung }
3068 1.1 dyoung }
3069 1.1 dyoung
3070 1.1 dyoung return regindex;
3071 1.1 dyoung }
3072 1.1 dyoung
3073 1.1 dyoung /**
3074 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3075 1.1 dyoung * @hw: pointer to hardware structure
3076 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3077 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3078 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3079 1.1 dyoung *
3080 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3081 1.1 dyoung **/
3082 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3083 1.1 dyoung bool vlan_on)
3084 1.1 dyoung {
3085 1.1 dyoung s32 regindex;
3086 1.1 dyoung u32 bitindex;
3087 1.1 dyoung u32 vfta;
3088 1.1 dyoung u32 bits;
3089 1.1 dyoung u32 vt;
3090 1.1 dyoung u32 targetbit;
3091 1.1 dyoung bool vfta_changed = FALSE;
3092 1.1 dyoung
3093 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3094 1.1 dyoung
3095 1.1 dyoung if (vlan > 4095)
3096 1.1 dyoung return IXGBE_ERR_PARAM;
3097 1.1 dyoung
3098 1.1 dyoung /*
3099 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3100 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3101 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3102 1.1 dyoung */
3103 1.1 dyoung
3104 1.1 dyoung /* Part 1
3105 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3106 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3107 1.1 dyoung * bits[11-5]: which register
3108 1.1 dyoung * bits[4-0]: which bit in the register
3109 1.1 dyoung */
3110 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3111 1.1 dyoung bitindex = vlan & 0x1F;
3112 1.1 dyoung targetbit = (1 << bitindex);
3113 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3114 1.1 dyoung
3115 1.1 dyoung if (vlan_on) {
3116 1.1 dyoung if (!(vfta & targetbit)) {
3117 1.1 dyoung vfta |= targetbit;
3118 1.1 dyoung vfta_changed = TRUE;
3119 1.1 dyoung }
3120 1.1 dyoung } else {
3121 1.1 dyoung if ((vfta & targetbit)) {
3122 1.1 dyoung vfta &= ~targetbit;
3123 1.1 dyoung vfta_changed = TRUE;
3124 1.1 dyoung }
3125 1.1 dyoung }
3126 1.1 dyoung
3127 1.1 dyoung /* Part 2
3128 1.1 dyoung * If VT Mode is set
3129 1.1 dyoung * Either vlan_on
3130 1.1 dyoung * make sure the vlan is in VLVF
3131 1.1 dyoung * set the vind bit in the matching VLVFB
3132 1.1 dyoung * Or !vlan_on
3133 1.1 dyoung * clear the pool bit and possibly the vind
3134 1.1 dyoung */
3135 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3136 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3137 1.1 dyoung s32 vlvf_index;
3138 1.1 dyoung
3139 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3140 1.1 dyoung if (vlvf_index < 0)
3141 1.1 dyoung return vlvf_index;
3142 1.1 dyoung
3143 1.1 dyoung if (vlan_on) {
3144 1.1 dyoung /* set the pool bit */
3145 1.1 dyoung if (vind < 32) {
3146 1.1 dyoung bits = IXGBE_READ_REG(hw,
3147 1.1 dyoung IXGBE_VLVFB(vlvf_index*2));
3148 1.1 dyoung bits |= (1 << vind);
3149 1.1 dyoung IXGBE_WRITE_REG(hw,
3150 1.1 dyoung IXGBE_VLVFB(vlvf_index*2),
3151 1.1 dyoung bits);
3152 1.1 dyoung } else {
3153 1.1 dyoung bits = IXGBE_READ_REG(hw,
3154 1.1 dyoung IXGBE_VLVFB((vlvf_index*2)+1));
3155 1.1 dyoung bits |= (1 << (vind-32));
3156 1.1 dyoung IXGBE_WRITE_REG(hw,
3157 1.1 dyoung IXGBE_VLVFB((vlvf_index*2)+1),
3158 1.1 dyoung bits);
3159 1.1 dyoung }
3160 1.1 dyoung } else {
3161 1.1 dyoung /* clear the pool bit */
3162 1.1 dyoung if (vind < 32) {
3163 1.1 dyoung bits = IXGBE_READ_REG(hw,
3164 1.1 dyoung IXGBE_VLVFB(vlvf_index*2));
3165 1.1 dyoung bits &= ~(1 << vind);
3166 1.1 dyoung IXGBE_WRITE_REG(hw,
3167 1.1 dyoung IXGBE_VLVFB(vlvf_index*2),
3168 1.1 dyoung bits);
3169 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3170 1.1 dyoung IXGBE_VLVFB((vlvf_index*2)+1));
3171 1.1 dyoung } else {
3172 1.1 dyoung bits = IXGBE_READ_REG(hw,
3173 1.1 dyoung IXGBE_VLVFB((vlvf_index*2)+1));
3174 1.1 dyoung bits &= ~(1 << (vind-32));
3175 1.1 dyoung IXGBE_WRITE_REG(hw,
3176 1.1 dyoung IXGBE_VLVFB((vlvf_index*2)+1),
3177 1.1 dyoung bits);
3178 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3179 1.1 dyoung IXGBE_VLVFB(vlvf_index*2));
3180 1.1 dyoung }
3181 1.1 dyoung }
3182 1.1 dyoung
3183 1.1 dyoung /*
3184 1.1 dyoung * If there are still bits set in the VLVFB registers
3185 1.1 dyoung * for the VLAN ID indicated we need to see if the
3186 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3187 1.1 dyoung * If the caller has requested that we clear the VFTA
3188 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3189 1.1 dyoung * ID entry then ignore the request. We're not worried
3190 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3191 1.1 dyoung * entry bit on, only when requested to turn it off as
3192 1.1 dyoung * there may be multiple pools and/or VFs using the
3193 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
3194 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
3195 1.1 dyoung * been cleared. This will be indicated by "bits" being
3196 1.1 dyoung * zero.
3197 1.1 dyoung */
3198 1.1 dyoung if (bits) {
3199 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3200 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
3201 1.1 dyoung if (!vlan_on) {
3202 1.1 dyoung /* someone wants to clear the vfta entry
3203 1.1 dyoung * but some pools/VFs are still using it.
3204 1.1 dyoung * Ignore it. */
3205 1.1 dyoung vfta_changed = FALSE;
3206 1.1 dyoung }
3207 1.1 dyoung }
3208 1.1 dyoung else
3209 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3210 1.1 dyoung }
3211 1.1 dyoung
3212 1.1 dyoung if (vfta_changed)
3213 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3214 1.1 dyoung
3215 1.1 dyoung return IXGBE_SUCCESS;
3216 1.1 dyoung }
3217 1.1 dyoung
3218 1.1 dyoung /**
3219 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
3220 1.1 dyoung * @hw: pointer to hardware structure
3221 1.1 dyoung *
3222 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
3223 1.1 dyoung **/
3224 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3225 1.1 dyoung {
3226 1.1 dyoung u32 offset;
3227 1.1 dyoung
3228 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
3229 1.1 dyoung
3230 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
3231 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3232 1.1 dyoung
3233 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3234 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3235 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3236 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3237 1.1 dyoung }
3238 1.1 dyoung
3239 1.1 dyoung return IXGBE_SUCCESS;
3240 1.1 dyoung }
3241 1.1 dyoung
3242 1.1 dyoung /**
3243 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
3244 1.1 dyoung * @hw: pointer to hardware structure
3245 1.1 dyoung * @speed: pointer to link speed
3246 1.1 dyoung * @link_up: TRUE when link is up
3247 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
3248 1.1 dyoung *
3249 1.1 dyoung * Reads the links register to determine if link is up and the current speed
3250 1.1 dyoung **/
3251 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3252 1.1 dyoung bool *link_up, bool link_up_wait_to_complete)
3253 1.1 dyoung {
3254 1.1 dyoung u32 links_reg, links_orig;
3255 1.1 dyoung u32 i;
3256 1.1 dyoung
3257 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
3258 1.1 dyoung
3259 1.1 dyoung /* clear the old state */
3260 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3261 1.1 dyoung
3262 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3263 1.1 dyoung
3264 1.1 dyoung if (links_orig != links_reg) {
3265 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
3266 1.1 dyoung links_orig, links_reg);
3267 1.1 dyoung }
3268 1.1 dyoung
3269 1.1 dyoung if (link_up_wait_to_complete) {
3270 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3271 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
3272 1.1 dyoung *link_up = TRUE;
3273 1.1 dyoung break;
3274 1.1 dyoung } else {
3275 1.1 dyoung *link_up = FALSE;
3276 1.1 dyoung }
3277 1.1 dyoung msec_delay(100);
3278 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3279 1.1 dyoung }
3280 1.1 dyoung } else {
3281 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
3282 1.1 dyoung *link_up = TRUE;
3283 1.1 dyoung else
3284 1.1 dyoung *link_up = FALSE;
3285 1.1 dyoung }
3286 1.1 dyoung
3287 1.1 dyoung if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3288 1.1 dyoung IXGBE_LINKS_SPEED_10G_82599)
3289 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
3290 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3291 1.1 dyoung IXGBE_LINKS_SPEED_1G_82599)
3292 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
3293 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3294 1.1 dyoung IXGBE_LINKS_SPEED_100_82599)
3295 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
3296 1.1 dyoung else
3297 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
3298 1.1 dyoung
3299 1.1 dyoung /* if link is down, zero out the current_mode */
3300 1.1 dyoung if (*link_up == FALSE) {
3301 1.1 dyoung hw->fc.current_mode = ixgbe_fc_none;
3302 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
3303 1.1 dyoung }
3304 1.1 dyoung
3305 1.1 dyoung return IXGBE_SUCCESS;
3306 1.1 dyoung }
3307 1.1 dyoung
3308 1.1 dyoung /**
3309 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3310 1.1 dyoung * the EEPROM
3311 1.1 dyoung * @hw: pointer to hardware structure
3312 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
3313 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
3314 1.1 dyoung *
3315 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
3316 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
3317 1.1 dyoung **/
3318 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3319 1.1 dyoung u16 *wwpn_prefix)
3320 1.1 dyoung {
3321 1.1 dyoung u16 offset, caps;
3322 1.1 dyoung u16 alt_san_mac_blk_offset;
3323 1.1 dyoung
3324 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3325 1.1 dyoung
3326 1.1 dyoung /* clear output first */
3327 1.1 dyoung *wwnn_prefix = 0xFFFF;
3328 1.1 dyoung *wwpn_prefix = 0xFFFF;
3329 1.1 dyoung
3330 1.1 dyoung /* check if alternative SAN MAC is supported */
3331 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3332 1.1 dyoung &alt_san_mac_blk_offset);
3333 1.1 dyoung
3334 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
3335 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
3336 1.1 dyoung goto wwn_prefix_out;
3337 1.1 dyoung
3338 1.1 dyoung /* check capability in alternative san mac address block */
3339 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3340 1.1 dyoung hw->eeprom.ops.read(hw, offset, &caps);
3341 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3342 1.1 dyoung goto wwn_prefix_out;
3343 1.1 dyoung
3344 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
3345 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3346 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3347 1.1 dyoung
3348 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3349 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3350 1.1 dyoung
3351 1.1 dyoung wwn_prefix_out:
3352 1.1 dyoung return IXGBE_SUCCESS;
3353 1.1 dyoung }
3354 1.1 dyoung
3355 1.1 dyoung /**
3356 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3357 1.1 dyoung * @hw: pointer to hardware structure
3358 1.1 dyoung * @bs: the fcoe boot status
3359 1.1 dyoung *
3360 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
3361 1.1 dyoung **/
3362 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3363 1.1 dyoung {
3364 1.1 dyoung u16 offset, caps, flags;
3365 1.1 dyoung s32 status;
3366 1.1 dyoung
3367 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3368 1.1 dyoung
3369 1.1 dyoung /* clear output first */
3370 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
3371 1.1 dyoung
3372 1.1 dyoung /* check if FCOE IBA block is present */
3373 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3374 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
3375 1.1 dyoung if (status != IXGBE_SUCCESS)
3376 1.1 dyoung goto out;
3377 1.1 dyoung
3378 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3379 1.1 dyoung goto out;
3380 1.1 dyoung
3381 1.1 dyoung /* check if iSCSI FCOE block is populated */
3382 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3383 1.1 dyoung if (status != IXGBE_SUCCESS)
3384 1.1 dyoung goto out;
3385 1.1 dyoung
3386 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
3387 1.1 dyoung goto out;
3388 1.1 dyoung
3389 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
3390 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3391 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
3392 1.1 dyoung if (status != IXGBE_SUCCESS)
3393 1.1 dyoung goto out;
3394 1.1 dyoung
3395 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3396 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
3397 1.1 dyoung else
3398 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
3399 1.1 dyoung
3400 1.1 dyoung out:
3401 1.1 dyoung return status;
3402 1.1 dyoung }
3403 1.1 dyoung
3404 1.1 dyoung /**
3405 1.1 dyoung * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3406 1.1 dyoung * control
3407 1.1 dyoung * @hw: pointer to hardware structure
3408 1.1 dyoung *
3409 1.1 dyoung * There are several phys that do not support autoneg flow control. This
3410 1.1 dyoung * function check the device id to see if the associated phy supports
3411 1.1 dyoung * autoneg flow control.
3412 1.1 dyoung **/
3413 1.1 dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3414 1.1 dyoung {
3415 1.1 dyoung
3416 1.1 dyoung DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
3417 1.1 dyoung
3418 1.1 dyoung switch (hw->device_id) {
3419 1.1 dyoung case IXGBE_DEV_ID_82599_T3_LOM:
3420 1.1 dyoung return IXGBE_SUCCESS;
3421 1.1 dyoung default:
3422 1.1 dyoung return IXGBE_ERR_FC_NOT_SUPPORTED;
3423 1.1 dyoung }
3424 1.1 dyoung }
3425 1.1 dyoung
3426 1.1 dyoung /**
3427 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3428 1.1 dyoung * @hw: pointer to hardware structure
3429 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
3430 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3431 1.1 dyoung *
3432 1.1 dyoung **/
3433 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3434 1.1 dyoung {
3435 1.1 dyoung int j;
3436 1.1 dyoung int pf_target_reg = pf >> 3;
3437 1.1 dyoung int pf_target_shift = pf % 8;
3438 1.1 dyoung u32 pfvfspoof = 0;
3439 1.1 dyoung
3440 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3441 1.1 dyoung return;
3442 1.1 dyoung
3443 1.1 dyoung if (enable)
3444 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3445 1.1 dyoung
3446 1.1 dyoung /*
3447 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
3448 1.1 dyoung * MAC anti-spoof enables in each register array element.
3449 1.1 dyoung */
3450 1.1 dyoung for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3451 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3452 1.1 dyoung
3453 1.1 dyoung /* If not enabling anti-spoofing then done */
3454 1.1 dyoung if (!enable)
3455 1.1 dyoung return;
3456 1.1 dyoung
3457 1.1 dyoung /*
3458 1.1 dyoung * The PF should be allowed to spoof so that it can support
3459 1.1 dyoung * emulation mode NICs. Reset the bit assigned to the PF
3460 1.1 dyoung */
3461 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3462 1.1 dyoung pfvfspoof ^= (1 << pf_target_shift);
3463 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3464 1.1 dyoung }
3465 1.1 dyoung
3466 1.1 dyoung /**
3467 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3468 1.1 dyoung * @hw: pointer to hardware structure
3469 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
3470 1.1 dyoung * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3471 1.1 dyoung *
3472 1.1 dyoung **/
3473 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3474 1.1 dyoung {
3475 1.1 dyoung int vf_target_reg = vf >> 3;
3476 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3477 1.1 dyoung u32 pfvfspoof;
3478 1.1 dyoung
3479 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3480 1.1 dyoung return;
3481 1.1 dyoung
3482 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3483 1.1 dyoung if (enable)
3484 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
3485 1.1 dyoung else
3486 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
3487 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3488 1.1 dyoung }
3489 1.1 dyoung
3490 1.1 dyoung /**
3491 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
3492 1.1 dyoung * @hw: pointer to hardware structure
3493 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
3494 1.1 dyoung *
3495 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
3496 1.1 dyoung * and return the word through device_caps.
3497 1.1 dyoung **/
3498 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3499 1.1 dyoung {
3500 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
3501 1.1 dyoung
3502 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3503 1.1 dyoung
3504 1.1 dyoung return IXGBE_SUCCESS;
3505 1.1 dyoung }
3506 1.1 dyoung
3507 1.1 dyoung /**
3508 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3509 1.1 dyoung * @hw: pointer to hardware structure
3510 1.1 dyoung *
3511 1.1 dyoung **/
3512 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3513 1.1 dyoung {
3514 1.1 dyoung u32 regval;
3515 1.1 dyoung u32 i;
3516 1.1 dyoung
3517 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3518 1.1 dyoung
3519 1.1 dyoung /* Enable relaxed ordering */
3520 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
3521 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3522 1.1 dyoung regval |= IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
3523 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3524 1.1 dyoung }
3525 1.1 dyoung
3526 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
3527 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3528 1.1 dyoung regval |= (IXGBE_DCA_RXCTRL_DESC_WRO_EN |
3529 1.1 dyoung IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
3530 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3531 1.1 dyoung }
3532 1.1 dyoung
3533 1.1 dyoung }
3534