Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.1
      1  1.1  dyoung /******************************************************************************
      2  1.1  dyoung 
      3  1.1  dyoung   Copyright (c) 2001-2010, Intel Corporation
      4  1.1  dyoung   All rights reserved.
      5  1.1  dyoung 
      6  1.1  dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1  dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1  dyoung 
      9  1.1  dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1  dyoung       this list of conditions and the following disclaimer.
     11  1.1  dyoung 
     12  1.1  dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1  dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1  dyoung       documentation and/or other materials provided with the distribution.
     15  1.1  dyoung 
     16  1.1  dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1  dyoung       contributors may be used to endorse or promote products derived from
     18  1.1  dyoung       this software without specific prior written permission.
     19  1.1  dyoung 
     20  1.1  dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1  dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1  dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1  dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1  dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1  dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1  dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1  dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1  dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1  dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1  dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1  dyoung 
     32  1.1  dyoung ******************************************************************************/
     33  1.1  dyoung /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.12 2011/01/19 19:36:27 jfv Exp $*/
     34  1.1  dyoung /*$NetBSD: ixgbe_common.c,v 1.1 2011/08/12 21:55:29 dyoung Exp $*/
     35  1.1  dyoung 
     36  1.1  dyoung #include "ixgbe_common.h"
     37  1.1  dyoung #include "ixgbe_phy.h"
     38  1.1  dyoung #include "ixgbe_api.h"
     39  1.1  dyoung 
     40  1.1  dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     41  1.1  dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     42  1.1  dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     43  1.1  dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     44  1.1  dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     45  1.1  dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     46  1.1  dyoung                                         u16 count);
     47  1.1  dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     48  1.1  dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     49  1.1  dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     50  1.1  dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     51  1.1  dyoung 
     52  1.1  dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     53  1.1  dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     54  1.1  dyoung                                         u16 *san_mac_offset);
     55  1.1  dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
     56  1.1  dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
     57  1.1  dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
     58  1.1  dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
     59  1.1  dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
     60  1.1  dyoung 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
     61  1.1  dyoung 
     62  1.1  dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan);
     63  1.1  dyoung 
     64  1.1  dyoung /**
     65  1.1  dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66  1.1  dyoung  *  @hw: pointer to the hardware structure
     67  1.1  dyoung  *
     68  1.1  dyoung  *  Initialize the function pointers.
     69  1.1  dyoung  **/
     70  1.1  dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71  1.1  dyoung {
     72  1.1  dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73  1.1  dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.1  dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     75  1.1  dyoung 
     76  1.1  dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77  1.1  dyoung 
     78  1.1  dyoung 	/* EEPROM */
     79  1.1  dyoung 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     80  1.1  dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81  1.1  dyoung 	if (eec & (1 << 8))
     82  1.1  dyoung 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     83  1.1  dyoung 	else
     84  1.1  dyoung 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     85  1.1  dyoung 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     86  1.1  dyoung 	eeprom->ops.validate_checksum =
     87  1.1  dyoung 	                              &ixgbe_validate_eeprom_checksum_generic;
     88  1.1  dyoung 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     89  1.1  dyoung 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
     90  1.1  dyoung 
     91  1.1  dyoung 	/* MAC */
     92  1.1  dyoung 	mac->ops.init_hw = &ixgbe_init_hw_generic;
     93  1.1  dyoung 	mac->ops.reset_hw = NULL;
     94  1.1  dyoung 	mac->ops.start_hw = &ixgbe_start_hw_generic;
     95  1.1  dyoung 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
     96  1.1  dyoung 	mac->ops.get_media_type = NULL;
     97  1.1  dyoung 	mac->ops.get_supported_physical_layer = NULL;
     98  1.1  dyoung 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
     99  1.1  dyoung 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    100  1.1  dyoung 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    101  1.1  dyoung 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    102  1.1  dyoung 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    103  1.1  dyoung 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    104  1.1  dyoung 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    105  1.1  dyoung 
    106  1.1  dyoung 	/* LEDs */
    107  1.1  dyoung 	mac->ops.led_on = &ixgbe_led_on_generic;
    108  1.1  dyoung 	mac->ops.led_off = &ixgbe_led_off_generic;
    109  1.1  dyoung 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    110  1.1  dyoung 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    111  1.1  dyoung 
    112  1.1  dyoung 	/* RAR, Multicast, VLAN */
    113  1.1  dyoung 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    114  1.1  dyoung 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    115  1.1  dyoung 	mac->ops.insert_mac_addr = NULL;
    116  1.1  dyoung 	mac->ops.set_vmdq = NULL;
    117  1.1  dyoung 	mac->ops.clear_vmdq = NULL;
    118  1.1  dyoung 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    119  1.1  dyoung 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    120  1.1  dyoung 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    121  1.1  dyoung 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    122  1.1  dyoung 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    123  1.1  dyoung 	mac->ops.clear_vfta = NULL;
    124  1.1  dyoung 	mac->ops.set_vfta = NULL;
    125  1.1  dyoung 	mac->ops.init_uta_tables = NULL;
    126  1.1  dyoung 
    127  1.1  dyoung 	/* Flow Control */
    128  1.1  dyoung 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    129  1.1  dyoung 
    130  1.1  dyoung 	/* Link */
    131  1.1  dyoung 	mac->ops.get_link_capabilities = NULL;
    132  1.1  dyoung 	mac->ops.setup_link = NULL;
    133  1.1  dyoung 	mac->ops.check_link = NULL;
    134  1.1  dyoung 
    135  1.1  dyoung 	return IXGBE_SUCCESS;
    136  1.1  dyoung }
    137  1.1  dyoung 
    138  1.1  dyoung /**
    139  1.1  dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    140  1.1  dyoung  *  @hw: pointer to hardware structure
    141  1.1  dyoung  *
    142  1.1  dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    143  1.1  dyoung  *  all on chip counters, initializes receive address registers, multicast
    144  1.1  dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    145  1.1  dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    146  1.1  dyoung  **/
    147  1.1  dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    148  1.1  dyoung {
    149  1.1  dyoung 	u32 ctrl_ext;
    150  1.1  dyoung 
    151  1.1  dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    152  1.1  dyoung 
    153  1.1  dyoung 	/* Set the media type */
    154  1.1  dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    155  1.1  dyoung 
    156  1.1  dyoung 	/* PHY ops initialization must be done in reset_hw() */
    157  1.1  dyoung 
    158  1.1  dyoung 	/* Clear the VLAN filter table */
    159  1.1  dyoung 	hw->mac.ops.clear_vfta(hw);
    160  1.1  dyoung 
    161  1.1  dyoung 	/* Clear statistics registers */
    162  1.1  dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    163  1.1  dyoung 
    164  1.1  dyoung 	/* Set No Snoop Disable */
    165  1.1  dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    166  1.1  dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    167  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    168  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
    169  1.1  dyoung 
    170  1.1  dyoung 	/* Setup flow control */
    171  1.1  dyoung 	ixgbe_setup_fc(hw, 0);
    172  1.1  dyoung 
    173  1.1  dyoung 	/* Clear adapter stopped flag */
    174  1.1  dyoung 	hw->adapter_stopped = FALSE;
    175  1.1  dyoung 
    176  1.1  dyoung 	return IXGBE_SUCCESS;
    177  1.1  dyoung }
    178  1.1  dyoung 
    179  1.1  dyoung /**
    180  1.1  dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    181  1.1  dyoung  *  @hw: pointer to hw structure
    182  1.1  dyoung  *
    183  1.1  dyoung  * Performs the init sequence common to the second generation
    184  1.1  dyoung  * of 10 GbE devices.
    185  1.1  dyoung  * Devices in the second generation:
    186  1.1  dyoung  *     82599
    187  1.1  dyoung  *     X540
    188  1.1  dyoung  **/
    189  1.1  dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    190  1.1  dyoung {
    191  1.1  dyoung 	u32 i;
    192  1.1  dyoung 	u32 regval;
    193  1.1  dyoung 
    194  1.1  dyoung 	/* Clear the rate limiters */
    195  1.1  dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    196  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    197  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    198  1.1  dyoung 	}
    199  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
    200  1.1  dyoung 
    201  1.1  dyoung 	/* Disable relaxed ordering */
    202  1.1  dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    203  1.1  dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    204  1.1  dyoung 		regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
    205  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    206  1.1  dyoung 	}
    207  1.1  dyoung 
    208  1.1  dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    209  1.1  dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    210  1.1  dyoung 		regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
    211  1.1  dyoung 					IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
    212  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    213  1.1  dyoung 	}
    214  1.1  dyoung 
    215  1.1  dyoung 	return IXGBE_SUCCESS;
    216  1.1  dyoung }
    217  1.1  dyoung 
    218  1.1  dyoung /**
    219  1.1  dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    220  1.1  dyoung  *  @hw: pointer to hardware structure
    221  1.1  dyoung  *
    222  1.1  dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    223  1.1  dyoung  *  structure and media type, clears all on chip counters, initializes receive
    224  1.1  dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    225  1.1  dyoung  *  up link and flow control settings, and leaves transmit and receive units
    226  1.1  dyoung  *  disabled and uninitialized
    227  1.1  dyoung  **/
    228  1.1  dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    229  1.1  dyoung {
    230  1.1  dyoung 	s32 status;
    231  1.1  dyoung 
    232  1.1  dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    233  1.1  dyoung 
    234  1.1  dyoung 	/* Reset the hardware */
    235  1.1  dyoung 	status = hw->mac.ops.reset_hw(hw);
    236  1.1  dyoung 
    237  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
    238  1.1  dyoung 		/* Start the HW */
    239  1.1  dyoung 		status = hw->mac.ops.start_hw(hw);
    240  1.1  dyoung 	}
    241  1.1  dyoung 
    242  1.1  dyoung 	return status;
    243  1.1  dyoung }
    244  1.1  dyoung 
    245  1.1  dyoung /**
    246  1.1  dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    247  1.1  dyoung  *  @hw: pointer to hardware structure
    248  1.1  dyoung  *
    249  1.1  dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    250  1.1  dyoung  *  Statistics counters are clear on read.
    251  1.1  dyoung  **/
    252  1.1  dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    253  1.1  dyoung {
    254  1.1  dyoung 	u16 i = 0;
    255  1.1  dyoung 
    256  1.1  dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    257  1.1  dyoung 
    258  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    259  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    260  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    261  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    262  1.1  dyoung 	for (i = 0; i < 8; i++)
    263  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    264  1.1  dyoung 
    265  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    266  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    267  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    268  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    269  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    270  1.1  dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    271  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    272  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    273  1.1  dyoung 	} else {
    274  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    275  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    276  1.1  dyoung 	}
    277  1.1  dyoung 
    278  1.1  dyoung 	for (i = 0; i < 8; i++) {
    279  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    280  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    281  1.1  dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    282  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    283  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    284  1.1  dyoung 		} else {
    285  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    286  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    287  1.1  dyoung 		}
    288  1.1  dyoung 	}
    289  1.1  dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    290  1.1  dyoung 		for (i = 0; i < 8; i++)
    291  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    292  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    293  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    294  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    295  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    296  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    297  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    298  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    299  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    300  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    301  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    302  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    303  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    304  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    305  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    306  1.1  dyoung 	for (i = 0; i < 8; i++)
    307  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    308  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    309  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    310  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    311  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    312  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    313  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    314  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    315  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    316  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    317  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    318  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    319  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    320  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    321  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    322  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    323  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    324  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    325  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    326  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    327  1.1  dyoung 	for (i = 0; i < 16; i++) {
    328  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    329  1.1  dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    330  1.1  dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    331  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    332  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    333  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    334  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    335  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    336  1.1  dyoung 		} else {
    337  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    338  1.1  dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    339  1.1  dyoung 		}
    340  1.1  dyoung 	}
    341  1.1  dyoung 
    342  1.1  dyoung 	return IXGBE_SUCCESS;
    343  1.1  dyoung }
    344  1.1  dyoung 
    345  1.1  dyoung /**
    346  1.1  dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    347  1.1  dyoung  *  @hw: pointer to hardware structure
    348  1.1  dyoung  *  @pba_num: stores the part number string from the EEPROM
    349  1.1  dyoung  *  @pba_num_size: part number string buffer length
    350  1.1  dyoung  *
    351  1.1  dyoung  *  Reads the part number string from the EEPROM.
    352  1.1  dyoung  **/
    353  1.1  dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    354  1.1  dyoung                                   u32 pba_num_size)
    355  1.1  dyoung {
    356  1.1  dyoung 	s32 ret_val;
    357  1.1  dyoung 	u16 data;
    358  1.1  dyoung 	u16 pba_ptr;
    359  1.1  dyoung 	u16 offset;
    360  1.1  dyoung 	u16 length;
    361  1.1  dyoung 
    362  1.1  dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    363  1.1  dyoung 
    364  1.1  dyoung 	if (pba_num == NULL) {
    365  1.1  dyoung 		DEBUGOUT("PBA string buffer was null\n");
    366  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    367  1.1  dyoung 	}
    368  1.1  dyoung 
    369  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    370  1.1  dyoung 	if (ret_val) {
    371  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    372  1.1  dyoung 		return ret_val;
    373  1.1  dyoung 	}
    374  1.1  dyoung 
    375  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    376  1.1  dyoung 	if (ret_val) {
    377  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    378  1.1  dyoung 		return ret_val;
    379  1.1  dyoung 	}
    380  1.1  dyoung 
    381  1.1  dyoung 	/*
    382  1.1  dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    383  1.1  dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    384  1.1  dyoung 	 * and we can decode it into an ascii string
    385  1.1  dyoung 	 */
    386  1.1  dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    387  1.1  dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    388  1.1  dyoung 
    389  1.1  dyoung 		/* we will need 11 characters to store the PBA */
    390  1.1  dyoung 		if (pba_num_size < 11) {
    391  1.1  dyoung 			DEBUGOUT("PBA string buffer too small\n");
    392  1.1  dyoung 			return IXGBE_ERR_NO_SPACE;
    393  1.1  dyoung 		}
    394  1.1  dyoung 
    395  1.1  dyoung 		/* extract hex string from data and pba_ptr */
    396  1.1  dyoung 		pba_num[0] = (data >> 12) & 0xF;
    397  1.1  dyoung 		pba_num[1] = (data >> 8) & 0xF;
    398  1.1  dyoung 		pba_num[2] = (data >> 4) & 0xF;
    399  1.1  dyoung 		pba_num[3] = data & 0xF;
    400  1.1  dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    401  1.1  dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    402  1.1  dyoung 		pba_num[6] = '-';
    403  1.1  dyoung 		pba_num[7] = 0;
    404  1.1  dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    405  1.1  dyoung 		pba_num[9] = pba_ptr & 0xF;
    406  1.1  dyoung 
    407  1.1  dyoung 		/* put a null character on the end of our string */
    408  1.1  dyoung 		pba_num[10] = '\0';
    409  1.1  dyoung 
    410  1.1  dyoung 		/* switch all the data but the '-' to hex char */
    411  1.1  dyoung 		for (offset = 0; offset < 10; offset++) {
    412  1.1  dyoung 			if (pba_num[offset] < 0xA)
    413  1.1  dyoung 				pba_num[offset] += '0';
    414  1.1  dyoung 			else if (pba_num[offset] < 0x10)
    415  1.1  dyoung 				pba_num[offset] += 'A' - 0xA;
    416  1.1  dyoung 		}
    417  1.1  dyoung 
    418  1.1  dyoung 		return IXGBE_SUCCESS;
    419  1.1  dyoung 	}
    420  1.1  dyoung 
    421  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    422  1.1  dyoung 	if (ret_val) {
    423  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    424  1.1  dyoung 		return ret_val;
    425  1.1  dyoung 	}
    426  1.1  dyoung 
    427  1.1  dyoung 	if (length == 0xFFFF || length == 0) {
    428  1.1  dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    429  1.1  dyoung 		return IXGBE_ERR_PBA_SECTION;
    430  1.1  dyoung 	}
    431  1.1  dyoung 
    432  1.1  dyoung 	/* check if pba_num buffer is big enough */
    433  1.1  dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    434  1.1  dyoung 		DEBUGOUT("PBA string buffer too small\n");
    435  1.1  dyoung 		return IXGBE_ERR_NO_SPACE;
    436  1.1  dyoung 	}
    437  1.1  dyoung 
    438  1.1  dyoung 	/* trim pba length from start of string */
    439  1.1  dyoung 	pba_ptr++;
    440  1.1  dyoung 	length--;
    441  1.1  dyoung 
    442  1.1  dyoung 	for (offset = 0; offset < length; offset++) {
    443  1.1  dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    444  1.1  dyoung 		if (ret_val) {
    445  1.1  dyoung 			DEBUGOUT("NVM Read Error\n");
    446  1.1  dyoung 			return ret_val;
    447  1.1  dyoung 		}
    448  1.1  dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    449  1.1  dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    450  1.1  dyoung 	}
    451  1.1  dyoung 	pba_num[offset * 2] = '\0';
    452  1.1  dyoung 
    453  1.1  dyoung 	return IXGBE_SUCCESS;
    454  1.1  dyoung }
    455  1.1  dyoung 
    456  1.1  dyoung /**
    457  1.1  dyoung  *  ixgbe_read_pba_length_generic - Reads part number length from EEPROM
    458  1.1  dyoung  *  @hw: pointer to hardware structure
    459  1.1  dyoung  *  @pba_num_size: part number string buffer length
    460  1.1  dyoung  *
    461  1.1  dyoung  *  Reads the part number length from the EEPROM.
    462  1.1  dyoung  *  Returns expected buffer size in pba_num_size
    463  1.1  dyoung  **/
    464  1.1  dyoung s32 ixgbe_read_pba_length_generic(struct ixgbe_hw *hw, u32 *pba_num_size)
    465  1.1  dyoung {
    466  1.1  dyoung 	s32 ret_val;
    467  1.1  dyoung 	u16 data;
    468  1.1  dyoung 	u16 pba_ptr;
    469  1.1  dyoung 	u16 length;
    470  1.1  dyoung 
    471  1.1  dyoung 	DEBUGFUNC("ixgbe_read_pba_length_generic");
    472  1.1  dyoung 
    473  1.1  dyoung 	if (pba_num_size == NULL) {
    474  1.1  dyoung 		DEBUGOUT("PBA buffer size was null\n");
    475  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    476  1.1  dyoung 	}
    477  1.1  dyoung 
    478  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    479  1.1  dyoung 	if (ret_val) {
    480  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    481  1.1  dyoung 		return ret_val;
    482  1.1  dyoung 	}
    483  1.1  dyoung 
    484  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    485  1.1  dyoung 	if (ret_val) {
    486  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    487  1.1  dyoung 		return ret_val;
    488  1.1  dyoung 	}
    489  1.1  dyoung 
    490  1.1  dyoung 	 /* if data is not ptr guard the PBA must be in legacy format */
    491  1.1  dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    492  1.1  dyoung 		*pba_num_size = 11;
    493  1.1  dyoung 		return IXGBE_SUCCESS;
    494  1.1  dyoung 	}
    495  1.1  dyoung 
    496  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    497  1.1  dyoung 	if (ret_val) {
    498  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    499  1.1  dyoung 		return ret_val;
    500  1.1  dyoung 	}
    501  1.1  dyoung 
    502  1.1  dyoung 	if (length == 0xFFFF || length == 0) {
    503  1.1  dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    504  1.1  dyoung 		return IXGBE_ERR_PBA_SECTION;
    505  1.1  dyoung 	}
    506  1.1  dyoung 
    507  1.1  dyoung 	/*
    508  1.1  dyoung 	 * Convert from length in u16 values to u8 chars, add 1 for NULL,
    509  1.1  dyoung 	 * and subtract 2 because length field is included in length.
    510  1.1  dyoung 	 */
    511  1.1  dyoung 	*pba_num_size = ((u32)length * 2) - 1;
    512  1.1  dyoung 
    513  1.1  dyoung 	return IXGBE_SUCCESS;
    514  1.1  dyoung }
    515  1.1  dyoung 
    516  1.1  dyoung /**
    517  1.1  dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    518  1.1  dyoung  *  @hw: pointer to hardware structure
    519  1.1  dyoung  *  @pba_num: stores the part number from the EEPROM
    520  1.1  dyoung  *
    521  1.1  dyoung  *  Reads the part number from the EEPROM.
    522  1.1  dyoung  **/
    523  1.1  dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    524  1.1  dyoung {
    525  1.1  dyoung 	s32 ret_val;
    526  1.1  dyoung 	u16 data;
    527  1.1  dyoung 
    528  1.1  dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    529  1.1  dyoung 
    530  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    531  1.1  dyoung 	if (ret_val) {
    532  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    533  1.1  dyoung 		return ret_val;
    534  1.1  dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    535  1.1  dyoung 		DEBUGOUT("NVM Not supported\n");
    536  1.1  dyoung 		return IXGBE_NOT_IMPLEMENTED;
    537  1.1  dyoung 	}
    538  1.1  dyoung 	*pba_num = (u32)(data << 16);
    539  1.1  dyoung 
    540  1.1  dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    541  1.1  dyoung 	if (ret_val) {
    542  1.1  dyoung 		DEBUGOUT("NVM Read Error\n");
    543  1.1  dyoung 		return ret_val;
    544  1.1  dyoung 	}
    545  1.1  dyoung 	*pba_num |= data;
    546  1.1  dyoung 
    547  1.1  dyoung 	return IXGBE_SUCCESS;
    548  1.1  dyoung }
    549  1.1  dyoung 
    550  1.1  dyoung /**
    551  1.1  dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    552  1.1  dyoung  *  @hw: pointer to hardware structure
    553  1.1  dyoung  *  @mac_addr: Adapter MAC address
    554  1.1  dyoung  *
    555  1.1  dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    556  1.1  dyoung  *  A reset of the adapter must be performed prior to calling this function
    557  1.1  dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    558  1.1  dyoung  **/
    559  1.1  dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    560  1.1  dyoung {
    561  1.1  dyoung 	u32 rar_high;
    562  1.1  dyoung 	u32 rar_low;
    563  1.1  dyoung 	u16 i;
    564  1.1  dyoung 
    565  1.1  dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    566  1.1  dyoung 
    567  1.1  dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    568  1.1  dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    569  1.1  dyoung 
    570  1.1  dyoung 	for (i = 0; i < 4; i++)
    571  1.1  dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    572  1.1  dyoung 
    573  1.1  dyoung 	for (i = 0; i < 2; i++)
    574  1.1  dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    575  1.1  dyoung 
    576  1.1  dyoung 	return IXGBE_SUCCESS;
    577  1.1  dyoung }
    578  1.1  dyoung 
    579  1.1  dyoung /**
    580  1.1  dyoung  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    581  1.1  dyoung  *  @hw: pointer to hardware structure
    582  1.1  dyoung  *
    583  1.1  dyoung  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    584  1.1  dyoung  **/
    585  1.1  dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    586  1.1  dyoung {
    587  1.1  dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    588  1.1  dyoung 	u16 link_status;
    589  1.1  dyoung 
    590  1.1  dyoung 	DEBUGFUNC("ixgbe_get_bus_info_generic");
    591  1.1  dyoung 
    592  1.1  dyoung 	hw->bus.type = ixgbe_bus_type_pci_express;
    593  1.1  dyoung 
    594  1.1  dyoung 	/* Get the negotiated link width and speed from PCI config space */
    595  1.1  dyoung 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
    596  1.1  dyoung 
    597  1.1  dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    598  1.1  dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    599  1.1  dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    600  1.1  dyoung 		break;
    601  1.1  dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    602  1.1  dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    603  1.1  dyoung 		break;
    604  1.1  dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    605  1.1  dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    606  1.1  dyoung 		break;
    607  1.1  dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    608  1.1  dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    609  1.1  dyoung 		break;
    610  1.1  dyoung 	default:
    611  1.1  dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    612  1.1  dyoung 		break;
    613  1.1  dyoung 	}
    614  1.1  dyoung 
    615  1.1  dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    616  1.1  dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    617  1.1  dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    618  1.1  dyoung 		break;
    619  1.1  dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    620  1.1  dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    621  1.1  dyoung 		break;
    622  1.1  dyoung 	default:
    623  1.1  dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    624  1.1  dyoung 		break;
    625  1.1  dyoung 	}
    626  1.1  dyoung 
    627  1.1  dyoung 	mac->ops.set_lan_id(hw);
    628  1.1  dyoung 
    629  1.1  dyoung 	return IXGBE_SUCCESS;
    630  1.1  dyoung }
    631  1.1  dyoung 
    632  1.1  dyoung /**
    633  1.1  dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    634  1.1  dyoung  *  @hw: pointer to the HW structure
    635  1.1  dyoung  *
    636  1.1  dyoung  *  Determines the LAN function id by reading memory-mapped registers
    637  1.1  dyoung  *  and swaps the port value if requested.
    638  1.1  dyoung  **/
    639  1.1  dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    640  1.1  dyoung {
    641  1.1  dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
    642  1.1  dyoung 	u32 reg;
    643  1.1  dyoung 
    644  1.1  dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
    645  1.1  dyoung 
    646  1.1  dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    647  1.1  dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    648  1.1  dyoung 	bus->lan_id = bus->func;
    649  1.1  dyoung 
    650  1.1  dyoung 	/* check for a port swap */
    651  1.1  dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
    652  1.1  dyoung 	if (reg & IXGBE_FACTPS_LFS)
    653  1.1  dyoung 		bus->func ^= 0x1;
    654  1.1  dyoung }
    655  1.1  dyoung 
    656  1.1  dyoung /**
    657  1.1  dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
    658  1.1  dyoung  *  @hw: pointer to hardware structure
    659  1.1  dyoung  *
    660  1.1  dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
    661  1.1  dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
    662  1.1  dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
    663  1.1  dyoung  *  state and should not touch the hardware.
    664  1.1  dyoung  **/
    665  1.1  dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
    666  1.1  dyoung {
    667  1.1  dyoung 	u32 number_of_queues;
    668  1.1  dyoung 	u32 reg_val;
    669  1.1  dyoung 	u16 i;
    670  1.1  dyoung 
    671  1.1  dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
    672  1.1  dyoung 
    673  1.1  dyoung 	/*
    674  1.1  dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
    675  1.1  dyoung 	 * the hardware
    676  1.1  dyoung 	 */
    677  1.1  dyoung 	hw->adapter_stopped = TRUE;
    678  1.1  dyoung 
    679  1.1  dyoung 	/* Disable the receive unit */
    680  1.1  dyoung 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
    681  1.1  dyoung 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
    682  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
    683  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
    684  1.1  dyoung 	msec_delay(2);
    685  1.1  dyoung 
    686  1.1  dyoung 	/* Clear interrupt mask to stop from interrupts being generated */
    687  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
    688  1.1  dyoung 
    689  1.1  dyoung 	/* Clear any pending interrupts */
    690  1.1  dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
    691  1.1  dyoung 
    692  1.1  dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
    693  1.1  dyoung 	number_of_queues = hw->mac.max_tx_queues;
    694  1.1  dyoung 	for (i = 0; i < number_of_queues; i++) {
    695  1.1  dyoung 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
    696  1.1  dyoung 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
    697  1.1  dyoung 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
    698  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
    699  1.1  dyoung 		}
    700  1.1  dyoung 	}
    701  1.1  dyoung 
    702  1.1  dyoung 	/*
    703  1.1  dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
    704  1.1  dyoung 	 * access and verify no pending requests
    705  1.1  dyoung 	 */
    706  1.1  dyoung 	ixgbe_disable_pcie_master(hw);
    707  1.1  dyoung 
    708  1.1  dyoung 	return IXGBE_SUCCESS;
    709  1.1  dyoung }
    710  1.1  dyoung 
    711  1.1  dyoung /**
    712  1.1  dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
    713  1.1  dyoung  *  @hw: pointer to hardware structure
    714  1.1  dyoung  *  @index: led number to turn on
    715  1.1  dyoung  **/
    716  1.1  dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
    717  1.1  dyoung {
    718  1.1  dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    719  1.1  dyoung 
    720  1.1  dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
    721  1.1  dyoung 
    722  1.1  dyoung 	/* To turn on the LED, set mode to ON. */
    723  1.1  dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    724  1.1  dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
    725  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    726  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
    727  1.1  dyoung 
    728  1.1  dyoung 	return IXGBE_SUCCESS;
    729  1.1  dyoung }
    730  1.1  dyoung 
    731  1.1  dyoung /**
    732  1.1  dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
    733  1.1  dyoung  *  @hw: pointer to hardware structure
    734  1.1  dyoung  *  @index: led number to turn off
    735  1.1  dyoung  **/
    736  1.1  dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
    737  1.1  dyoung {
    738  1.1  dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    739  1.1  dyoung 
    740  1.1  dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
    741  1.1  dyoung 
    742  1.1  dyoung 	/* To turn off the LED, set mode to OFF. */
    743  1.1  dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    744  1.1  dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
    745  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    746  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
    747  1.1  dyoung 
    748  1.1  dyoung 	return IXGBE_SUCCESS;
    749  1.1  dyoung }
    750  1.1  dyoung 
    751  1.1  dyoung /**
    752  1.1  dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
    753  1.1  dyoung  *  @hw: pointer to hardware structure
    754  1.1  dyoung  *
    755  1.1  dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
    756  1.1  dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
    757  1.1  dyoung  **/
    758  1.1  dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
    759  1.1  dyoung {
    760  1.1  dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
    761  1.1  dyoung 	u32 eec;
    762  1.1  dyoung 	u16 eeprom_size;
    763  1.1  dyoung 
    764  1.1  dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
    765  1.1  dyoung 
    766  1.1  dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
    767  1.1  dyoung 		eeprom->type = ixgbe_eeprom_none;
    768  1.1  dyoung 		/* Set default semaphore delay to 10ms which is a well
    769  1.1  dyoung 		 * tested value */
    770  1.1  dyoung 		eeprom->semaphore_delay = 10;
    771  1.1  dyoung 
    772  1.1  dyoung 		/*
    773  1.1  dyoung 		 * Check for EEPROM present first.
    774  1.1  dyoung 		 * If not present leave as none
    775  1.1  dyoung 		 */
    776  1.1  dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
    777  1.1  dyoung 		if (eec & IXGBE_EEC_PRES) {
    778  1.1  dyoung 			eeprom->type = ixgbe_eeprom_spi;
    779  1.1  dyoung 
    780  1.1  dyoung 			/*
    781  1.1  dyoung 			 * SPI EEPROM is assumed here.  This code would need to
    782  1.1  dyoung 			 * change if a future EEPROM is not SPI.
    783  1.1  dyoung 			 */
    784  1.1  dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
    785  1.1  dyoung 			                    IXGBE_EEC_SIZE_SHIFT);
    786  1.1  dyoung 			eeprom->word_size = 1 << (eeprom_size +
    787  1.1  dyoung 			                     IXGBE_EEPROM_WORD_SIZE_BASE_SHIFT);
    788  1.1  dyoung 		}
    789  1.1  dyoung 
    790  1.1  dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
    791  1.1  dyoung 			eeprom->address_bits = 16;
    792  1.1  dyoung 		else
    793  1.1  dyoung 			eeprom->address_bits = 8;
    794  1.1  dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
    795  1.1  dyoung 		          "%d\n", eeprom->type, eeprom->word_size,
    796  1.1  dyoung 		          eeprom->address_bits);
    797  1.1  dyoung 	}
    798  1.1  dyoung 
    799  1.1  dyoung 	return IXGBE_SUCCESS;
    800  1.1  dyoung }
    801  1.1  dyoung 
    802  1.1  dyoung /**
    803  1.1  dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
    804  1.1  dyoung  *  @hw: pointer to hardware structure
    805  1.1  dyoung  *  @offset: offset within the EEPROM to be written to
    806  1.1  dyoung  *  @data: 16 bit word to be written to the EEPROM
    807  1.1  dyoung  *
    808  1.1  dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
    809  1.1  dyoung  *  EEPROM will most likely contain an invalid checksum.
    810  1.1  dyoung  **/
    811  1.1  dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
    812  1.1  dyoung {
    813  1.1  dyoung 	s32 status;
    814  1.1  dyoung 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
    815  1.1  dyoung 
    816  1.1  dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
    817  1.1  dyoung 
    818  1.1  dyoung 	hw->eeprom.ops.init_params(hw);
    819  1.1  dyoung 
    820  1.1  dyoung 	if (offset >= hw->eeprom.word_size) {
    821  1.1  dyoung 		status = IXGBE_ERR_EEPROM;
    822  1.1  dyoung 		goto out;
    823  1.1  dyoung 	}
    824  1.1  dyoung 
    825  1.1  dyoung 	/* Prepare the EEPROM for writing  */
    826  1.1  dyoung 	status = ixgbe_acquire_eeprom(hw);
    827  1.1  dyoung 
    828  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
    829  1.1  dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
    830  1.1  dyoung 			ixgbe_release_eeprom(hw);
    831  1.1  dyoung 			status = IXGBE_ERR_EEPROM;
    832  1.1  dyoung 		}
    833  1.1  dyoung 	}
    834  1.1  dyoung 
    835  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
    836  1.1  dyoung 		ixgbe_standby_eeprom(hw);
    837  1.1  dyoung 
    838  1.1  dyoung 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
    839  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
    840  1.1  dyoung 		                            IXGBE_EEPROM_OPCODE_BITS);
    841  1.1  dyoung 
    842  1.1  dyoung 		ixgbe_standby_eeprom(hw);
    843  1.1  dyoung 
    844  1.1  dyoung 		/*
    845  1.1  dyoung 		 * Some SPI eeproms use the 8th address bit embedded in the
    846  1.1  dyoung 		 * opcode
    847  1.1  dyoung 		 */
    848  1.1  dyoung 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
    849  1.1  dyoung 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
    850  1.1  dyoung 
    851  1.1  dyoung 		/* Send the Write command (8-bit opcode + addr) */
    852  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
    853  1.1  dyoung 		                            IXGBE_EEPROM_OPCODE_BITS);
    854  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
    855  1.1  dyoung 		                            hw->eeprom.address_bits);
    856  1.1  dyoung 
    857  1.1  dyoung 		/* Send the data */
    858  1.1  dyoung 		data = (data >> 8) | (data << 8);
    859  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
    860  1.1  dyoung 		ixgbe_standby_eeprom(hw);
    861  1.1  dyoung 
    862  1.1  dyoung 		/* Done with writing - release the EEPROM */
    863  1.1  dyoung 		ixgbe_release_eeprom(hw);
    864  1.1  dyoung 	}
    865  1.1  dyoung 
    866  1.1  dyoung out:
    867  1.1  dyoung 	return status;
    868  1.1  dyoung }
    869  1.1  dyoung 
    870  1.1  dyoung /**
    871  1.1  dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
    872  1.1  dyoung  *  @hw: pointer to hardware structure
    873  1.1  dyoung  *  @offset: offset within the EEPROM to be read
    874  1.1  dyoung  *  @data: read 16 bit value from EEPROM
    875  1.1  dyoung  *
    876  1.1  dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
    877  1.1  dyoung  **/
    878  1.1  dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    879  1.1  dyoung                                        u16 *data)
    880  1.1  dyoung {
    881  1.1  dyoung 	s32 status;
    882  1.1  dyoung 	u16 word_in;
    883  1.1  dyoung 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
    884  1.1  dyoung 
    885  1.1  dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
    886  1.1  dyoung 
    887  1.1  dyoung 	hw->eeprom.ops.init_params(hw);
    888  1.1  dyoung 
    889  1.1  dyoung 	if (offset >= hw->eeprom.word_size) {
    890  1.1  dyoung 		status = IXGBE_ERR_EEPROM;
    891  1.1  dyoung 		goto out;
    892  1.1  dyoung 	}
    893  1.1  dyoung 
    894  1.1  dyoung 	/* Prepare the EEPROM for reading  */
    895  1.1  dyoung 	status = ixgbe_acquire_eeprom(hw);
    896  1.1  dyoung 
    897  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
    898  1.1  dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
    899  1.1  dyoung 			ixgbe_release_eeprom(hw);
    900  1.1  dyoung 			status = IXGBE_ERR_EEPROM;
    901  1.1  dyoung 		}
    902  1.1  dyoung 	}
    903  1.1  dyoung 
    904  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
    905  1.1  dyoung 		ixgbe_standby_eeprom(hw);
    906  1.1  dyoung 
    907  1.1  dyoung 		/*
    908  1.1  dyoung 		 * Some SPI eeproms use the 8th address bit embedded in the
    909  1.1  dyoung 		 * opcode
    910  1.1  dyoung 		 */
    911  1.1  dyoung 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
    912  1.1  dyoung 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
    913  1.1  dyoung 
    914  1.1  dyoung 		/* Send the READ command (opcode + addr) */
    915  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
    916  1.1  dyoung 		                            IXGBE_EEPROM_OPCODE_BITS);
    917  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
    918  1.1  dyoung 		                            hw->eeprom.address_bits);
    919  1.1  dyoung 
    920  1.1  dyoung 		/* Read the data. */
    921  1.1  dyoung 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
    922  1.1  dyoung 		*data = (word_in >> 8) | (word_in << 8);
    923  1.1  dyoung 
    924  1.1  dyoung 		/* End this read operation */
    925  1.1  dyoung 		ixgbe_release_eeprom(hw);
    926  1.1  dyoung 	}
    927  1.1  dyoung 
    928  1.1  dyoung out:
    929  1.1  dyoung 	return status;
    930  1.1  dyoung }
    931  1.1  dyoung 
    932  1.1  dyoung /**
    933  1.1  dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
    934  1.1  dyoung  *  @hw: pointer to hardware structure
    935  1.1  dyoung  *  @offset: offset of  word in the EEPROM to read
    936  1.1  dyoung  *  @data: word read from the EEPROM
    937  1.1  dyoung  *
    938  1.1  dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
    939  1.1  dyoung  **/
    940  1.1  dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
    941  1.1  dyoung {
    942  1.1  dyoung 	u32 eerd;
    943  1.1  dyoung 	s32 status;
    944  1.1  dyoung 
    945  1.1  dyoung 	DEBUGFUNC("ixgbe_read_eerd_generic");
    946  1.1  dyoung 
    947  1.1  dyoung 	hw->eeprom.ops.init_params(hw);
    948  1.1  dyoung 
    949  1.1  dyoung 	if (offset >= hw->eeprom.word_size) {
    950  1.1  dyoung 		status = IXGBE_ERR_EEPROM;
    951  1.1  dyoung 		goto out;
    952  1.1  dyoung 	}
    953  1.1  dyoung 
    954  1.1  dyoung 	eerd = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) +
    955  1.1  dyoung 	       IXGBE_EEPROM_RW_REG_START;
    956  1.1  dyoung 
    957  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
    958  1.1  dyoung 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
    959  1.1  dyoung 
    960  1.1  dyoung 	if (status == IXGBE_SUCCESS)
    961  1.1  dyoung 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
    962  1.1  dyoung 		         IXGBE_EEPROM_RW_REG_DATA);
    963  1.1  dyoung 	else
    964  1.1  dyoung 		DEBUGOUT("Eeprom read timed out\n");
    965  1.1  dyoung 
    966  1.1  dyoung out:
    967  1.1  dyoung 	return status;
    968  1.1  dyoung }
    969  1.1  dyoung 
    970  1.1  dyoung /**
    971  1.1  dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
    972  1.1  dyoung  *  @hw: pointer to hardware structure
    973  1.1  dyoung  *  @offset: offset of  word in the EEPROM to write
    974  1.1  dyoung  *  @data: word write to the EEPROM
    975  1.1  dyoung  *
    976  1.1  dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
    977  1.1  dyoung  **/
    978  1.1  dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
    979  1.1  dyoung {
    980  1.1  dyoung 	u32 eewr;
    981  1.1  dyoung 	s32 status;
    982  1.1  dyoung 
    983  1.1  dyoung 	DEBUGFUNC("ixgbe_write_eewr_generic");
    984  1.1  dyoung 
    985  1.1  dyoung 	hw->eeprom.ops.init_params(hw);
    986  1.1  dyoung 
    987  1.1  dyoung 	if (offset >= hw->eeprom.word_size) {
    988  1.1  dyoung 		status = IXGBE_ERR_EEPROM;
    989  1.1  dyoung 		goto out;
    990  1.1  dyoung 	}
    991  1.1  dyoung 
    992  1.1  dyoung 	eewr = (offset << IXGBE_EEPROM_RW_ADDR_SHIFT) |
    993  1.1  dyoung 	       (data << IXGBE_EEPROM_RW_REG_DATA) | IXGBE_EEPROM_RW_REG_START;
    994  1.1  dyoung 
    995  1.1  dyoung 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
    996  1.1  dyoung 	if (status != IXGBE_SUCCESS) {
    997  1.1  dyoung 		DEBUGOUT("Eeprom write EEWR timed out\n");
    998  1.1  dyoung 		goto out;
    999  1.1  dyoung 	}
   1000  1.1  dyoung 
   1001  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1002  1.1  dyoung 
   1003  1.1  dyoung 	status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1004  1.1  dyoung 	if (status != IXGBE_SUCCESS) {
   1005  1.1  dyoung 		DEBUGOUT("Eeprom write EEWR timed out\n");
   1006  1.1  dyoung 		goto out;
   1007  1.1  dyoung 	}
   1008  1.1  dyoung 
   1009  1.1  dyoung out:
   1010  1.1  dyoung 	return status;
   1011  1.1  dyoung }
   1012  1.1  dyoung 
   1013  1.1  dyoung /**
   1014  1.1  dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1015  1.1  dyoung  *  @hw: pointer to hardware structure
   1016  1.1  dyoung  *  @ee_reg: EEPROM flag for polling
   1017  1.1  dyoung  *
   1018  1.1  dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1019  1.1  dyoung  *  read or write is done respectively.
   1020  1.1  dyoung  **/
   1021  1.1  dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1022  1.1  dyoung {
   1023  1.1  dyoung 	u32 i;
   1024  1.1  dyoung 	u32 reg;
   1025  1.1  dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1026  1.1  dyoung 
   1027  1.1  dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1028  1.1  dyoung 
   1029  1.1  dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1030  1.1  dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1031  1.1  dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1032  1.1  dyoung 		else
   1033  1.1  dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1034  1.1  dyoung 
   1035  1.1  dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1036  1.1  dyoung 			status = IXGBE_SUCCESS;
   1037  1.1  dyoung 			break;
   1038  1.1  dyoung 		}
   1039  1.1  dyoung 		usec_delay(5);
   1040  1.1  dyoung 	}
   1041  1.1  dyoung 	return status;
   1042  1.1  dyoung }
   1043  1.1  dyoung 
   1044  1.1  dyoung /**
   1045  1.1  dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1046  1.1  dyoung  *  @hw: pointer to hardware structure
   1047  1.1  dyoung  *
   1048  1.1  dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1049  1.1  dyoung  *  be called before issuing a command to the EEPROM.
   1050  1.1  dyoung  **/
   1051  1.1  dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1052  1.1  dyoung {
   1053  1.1  dyoung 	s32 status = IXGBE_SUCCESS;
   1054  1.1  dyoung 	u32 eec;
   1055  1.1  dyoung 	u32 i;
   1056  1.1  dyoung 
   1057  1.1  dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1058  1.1  dyoung 
   1059  1.1  dyoung 	if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != IXGBE_SUCCESS)
   1060  1.1  dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1061  1.1  dyoung 
   1062  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
   1063  1.1  dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1064  1.1  dyoung 
   1065  1.1  dyoung 		/* Request EEPROM Access */
   1066  1.1  dyoung 		eec |= IXGBE_EEC_REQ;
   1067  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1068  1.1  dyoung 
   1069  1.1  dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1070  1.1  dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1071  1.1  dyoung 			if (eec & IXGBE_EEC_GNT)
   1072  1.1  dyoung 				break;
   1073  1.1  dyoung 			usec_delay(5);
   1074  1.1  dyoung 		}
   1075  1.1  dyoung 
   1076  1.1  dyoung 		/* Release if grant not acquired */
   1077  1.1  dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1078  1.1  dyoung 			eec &= ~IXGBE_EEC_REQ;
   1079  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1080  1.1  dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1081  1.1  dyoung 
   1082  1.1  dyoung 			ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1083  1.1  dyoung 			status = IXGBE_ERR_EEPROM;
   1084  1.1  dyoung 		}
   1085  1.1  dyoung 
   1086  1.1  dyoung 		/* Setup EEPROM for Read/Write */
   1087  1.1  dyoung 		if (status == IXGBE_SUCCESS) {
   1088  1.1  dyoung 			/* Clear CS and SK */
   1089  1.1  dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1090  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1091  1.1  dyoung 			IXGBE_WRITE_FLUSH(hw);
   1092  1.1  dyoung 			usec_delay(1);
   1093  1.1  dyoung 		}
   1094  1.1  dyoung 	}
   1095  1.1  dyoung 	return status;
   1096  1.1  dyoung }
   1097  1.1  dyoung 
   1098  1.1  dyoung /**
   1099  1.1  dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1100  1.1  dyoung  *  @hw: pointer to hardware structure
   1101  1.1  dyoung  *
   1102  1.1  dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1103  1.1  dyoung  **/
   1104  1.1  dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1105  1.1  dyoung {
   1106  1.1  dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1107  1.1  dyoung 	u32 timeout = 2000;
   1108  1.1  dyoung 	u32 i;
   1109  1.1  dyoung 	u32 swsm;
   1110  1.1  dyoung 
   1111  1.1  dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1112  1.1  dyoung 
   1113  1.1  dyoung 
   1114  1.1  dyoung 	/* Get SMBI software semaphore between device drivers first */
   1115  1.1  dyoung 	for (i = 0; i < timeout; i++) {
   1116  1.1  dyoung 		/*
   1117  1.1  dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1118  1.1  dyoung 		 * set and we have the semaphore
   1119  1.1  dyoung 		 */
   1120  1.1  dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1121  1.1  dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1122  1.1  dyoung 			status = IXGBE_SUCCESS;
   1123  1.1  dyoung 			break;
   1124  1.1  dyoung 		}
   1125  1.1  dyoung 		usec_delay(50);
   1126  1.1  dyoung 	}
   1127  1.1  dyoung 
   1128  1.1  dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1129  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
   1130  1.1  dyoung 		for (i = 0; i < timeout; i++) {
   1131  1.1  dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1132  1.1  dyoung 
   1133  1.1  dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1134  1.1  dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1135  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1136  1.1  dyoung 
   1137  1.1  dyoung 			/*
   1138  1.1  dyoung 			 * If we set the bit successfully then we got the
   1139  1.1  dyoung 			 * semaphore.
   1140  1.1  dyoung 			 */
   1141  1.1  dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1142  1.1  dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1143  1.1  dyoung 				break;
   1144  1.1  dyoung 
   1145  1.1  dyoung 			usec_delay(50);
   1146  1.1  dyoung 		}
   1147  1.1  dyoung 
   1148  1.1  dyoung 		/*
   1149  1.1  dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1150  1.1  dyoung 		 * was not granted because we don't have access to the EEPROM
   1151  1.1  dyoung 		 */
   1152  1.1  dyoung 		if (i >= timeout) {
   1153  1.1  dyoung 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
   1154  1.1  dyoung 			         "not granted.\n");
   1155  1.1  dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1156  1.1  dyoung 			status = IXGBE_ERR_EEPROM;
   1157  1.1  dyoung 		}
   1158  1.1  dyoung 	} else {
   1159  1.1  dyoung 		DEBUGOUT("Software semaphore SMBI between device drivers "
   1160  1.1  dyoung 		         "not granted.\n");
   1161  1.1  dyoung 	}
   1162  1.1  dyoung 
   1163  1.1  dyoung 	return status;
   1164  1.1  dyoung }
   1165  1.1  dyoung 
   1166  1.1  dyoung /**
   1167  1.1  dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1168  1.1  dyoung  *  @hw: pointer to hardware structure
   1169  1.1  dyoung  *
   1170  1.1  dyoung  *  This function clears hardware semaphore bits.
   1171  1.1  dyoung  **/
   1172  1.1  dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1173  1.1  dyoung {
   1174  1.1  dyoung 	u32 swsm;
   1175  1.1  dyoung 
   1176  1.1  dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1177  1.1  dyoung 
   1178  1.1  dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1179  1.1  dyoung 
   1180  1.1  dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1181  1.1  dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1182  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1183  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1184  1.1  dyoung }
   1185  1.1  dyoung 
   1186  1.1  dyoung /**
   1187  1.1  dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1188  1.1  dyoung  *  @hw: pointer to hardware structure
   1189  1.1  dyoung  **/
   1190  1.1  dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1191  1.1  dyoung {
   1192  1.1  dyoung 	s32 status = IXGBE_SUCCESS;
   1193  1.1  dyoung 	u16 i;
   1194  1.1  dyoung 	u8 spi_stat_reg;
   1195  1.1  dyoung 
   1196  1.1  dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1197  1.1  dyoung 
   1198  1.1  dyoung 	/*
   1199  1.1  dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1200  1.1  dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1201  1.1  dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1202  1.1  dyoung 	 * 5 milliseconds, then error out.
   1203  1.1  dyoung 	 */
   1204  1.1  dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1205  1.1  dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1206  1.1  dyoung 		                            IXGBE_EEPROM_OPCODE_BITS);
   1207  1.1  dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1208  1.1  dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1209  1.1  dyoung 			break;
   1210  1.1  dyoung 
   1211  1.1  dyoung 		usec_delay(5);
   1212  1.1  dyoung 		ixgbe_standby_eeprom(hw);
   1213  1.1  dyoung 	};
   1214  1.1  dyoung 
   1215  1.1  dyoung 	/*
   1216  1.1  dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1217  1.1  dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1218  1.1  dyoung 	 */
   1219  1.1  dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1220  1.1  dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1221  1.1  dyoung 		status = IXGBE_ERR_EEPROM;
   1222  1.1  dyoung 	}
   1223  1.1  dyoung 
   1224  1.1  dyoung 	return status;
   1225  1.1  dyoung }
   1226  1.1  dyoung 
   1227  1.1  dyoung /**
   1228  1.1  dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1229  1.1  dyoung  *  @hw: pointer to hardware structure
   1230  1.1  dyoung  **/
   1231  1.1  dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1232  1.1  dyoung {
   1233  1.1  dyoung 	u32 eec;
   1234  1.1  dyoung 
   1235  1.1  dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1236  1.1  dyoung 
   1237  1.1  dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1238  1.1  dyoung 
   1239  1.1  dyoung 	/* Toggle CS to flush commands */
   1240  1.1  dyoung 	eec |= IXGBE_EEC_CS;
   1241  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1242  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1243  1.1  dyoung 	usec_delay(1);
   1244  1.1  dyoung 	eec &= ~IXGBE_EEC_CS;
   1245  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1246  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1247  1.1  dyoung 	usec_delay(1);
   1248  1.1  dyoung }
   1249  1.1  dyoung 
   1250  1.1  dyoung /**
   1251  1.1  dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1252  1.1  dyoung  *  @hw: pointer to hardware structure
   1253  1.1  dyoung  *  @data: data to send to the EEPROM
   1254  1.1  dyoung  *  @count: number of bits to shift out
   1255  1.1  dyoung  **/
   1256  1.1  dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1257  1.1  dyoung                                         u16 count)
   1258  1.1  dyoung {
   1259  1.1  dyoung 	u32 eec;
   1260  1.1  dyoung 	u32 mask;
   1261  1.1  dyoung 	u32 i;
   1262  1.1  dyoung 
   1263  1.1  dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1264  1.1  dyoung 
   1265  1.1  dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1266  1.1  dyoung 
   1267  1.1  dyoung 	/*
   1268  1.1  dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1269  1.1  dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1270  1.1  dyoung 	 */
   1271  1.1  dyoung 	mask = 0x01 << (count - 1);
   1272  1.1  dyoung 
   1273  1.1  dyoung 	for (i = 0; i < count; i++) {
   1274  1.1  dyoung 		/*
   1275  1.1  dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1276  1.1  dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1277  1.1  dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1278  1.1  dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1279  1.1  dyoung 		 * raising and then lowering the clock.
   1280  1.1  dyoung 		 */
   1281  1.1  dyoung 		if (data & mask)
   1282  1.1  dyoung 			eec |= IXGBE_EEC_DI;
   1283  1.1  dyoung 		else
   1284  1.1  dyoung 			eec &= ~IXGBE_EEC_DI;
   1285  1.1  dyoung 
   1286  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1287  1.1  dyoung 		IXGBE_WRITE_FLUSH(hw);
   1288  1.1  dyoung 
   1289  1.1  dyoung 		usec_delay(1);
   1290  1.1  dyoung 
   1291  1.1  dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1292  1.1  dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1293  1.1  dyoung 
   1294  1.1  dyoung 		/*
   1295  1.1  dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1296  1.1  dyoung 		 * EEPROM
   1297  1.1  dyoung 		 */
   1298  1.1  dyoung 		mask = mask >> 1;
   1299  1.1  dyoung 	};
   1300  1.1  dyoung 
   1301  1.1  dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1302  1.1  dyoung 	eec &= ~IXGBE_EEC_DI;
   1303  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1304  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1305  1.1  dyoung }
   1306  1.1  dyoung 
   1307  1.1  dyoung /**
   1308  1.1  dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1309  1.1  dyoung  *  @hw: pointer to hardware structure
   1310  1.1  dyoung  **/
   1311  1.1  dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1312  1.1  dyoung {
   1313  1.1  dyoung 	u32 eec;
   1314  1.1  dyoung 	u32 i;
   1315  1.1  dyoung 	u16 data = 0;
   1316  1.1  dyoung 
   1317  1.1  dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   1318  1.1  dyoung 
   1319  1.1  dyoung 	/*
   1320  1.1  dyoung 	 * In order to read a register from the EEPROM, we need to shift
   1321  1.1  dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1322  1.1  dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1323  1.1  dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   1324  1.1  dyoung 	 * "DI" bit should always be clear.
   1325  1.1  dyoung 	 */
   1326  1.1  dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1327  1.1  dyoung 
   1328  1.1  dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1329  1.1  dyoung 
   1330  1.1  dyoung 	for (i = 0; i < count; i++) {
   1331  1.1  dyoung 		data = data << 1;
   1332  1.1  dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1333  1.1  dyoung 
   1334  1.1  dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1335  1.1  dyoung 
   1336  1.1  dyoung 		eec &= ~(IXGBE_EEC_DI);
   1337  1.1  dyoung 		if (eec & IXGBE_EEC_DO)
   1338  1.1  dyoung 			data |= 1;
   1339  1.1  dyoung 
   1340  1.1  dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1341  1.1  dyoung 	}
   1342  1.1  dyoung 
   1343  1.1  dyoung 	return data;
   1344  1.1  dyoung }
   1345  1.1  dyoung 
   1346  1.1  dyoung /**
   1347  1.1  dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1348  1.1  dyoung  *  @hw: pointer to hardware structure
   1349  1.1  dyoung  *  @eec: EEC register's current value
   1350  1.1  dyoung  **/
   1351  1.1  dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1352  1.1  dyoung {
   1353  1.1  dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   1354  1.1  dyoung 
   1355  1.1  dyoung 	/*
   1356  1.1  dyoung 	 * Raise the clock input to the EEPROM
   1357  1.1  dyoung 	 * (setting the SK bit), then delay
   1358  1.1  dyoung 	 */
   1359  1.1  dyoung 	*eec = *eec | IXGBE_EEC_SK;
   1360  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1361  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1362  1.1  dyoung 	usec_delay(1);
   1363  1.1  dyoung }
   1364  1.1  dyoung 
   1365  1.1  dyoung /**
   1366  1.1  dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   1367  1.1  dyoung  *  @hw: pointer to hardware structure
   1368  1.1  dyoung  *  @eecd: EECD's current value
   1369  1.1  dyoung  **/
   1370  1.1  dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1371  1.1  dyoung {
   1372  1.1  dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   1373  1.1  dyoung 
   1374  1.1  dyoung 	/*
   1375  1.1  dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   1376  1.1  dyoung 	 * delay
   1377  1.1  dyoung 	 */
   1378  1.1  dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   1379  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1380  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1381  1.1  dyoung 	usec_delay(1);
   1382  1.1  dyoung }
   1383  1.1  dyoung 
   1384  1.1  dyoung /**
   1385  1.1  dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   1386  1.1  dyoung  *  @hw: pointer to hardware structure
   1387  1.1  dyoung  **/
   1388  1.1  dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   1389  1.1  dyoung {
   1390  1.1  dyoung 	u32 eec;
   1391  1.1  dyoung 
   1392  1.1  dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   1393  1.1  dyoung 
   1394  1.1  dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1395  1.1  dyoung 
   1396  1.1  dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   1397  1.1  dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   1398  1.1  dyoung 
   1399  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1400  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   1401  1.1  dyoung 
   1402  1.1  dyoung 	usec_delay(1);
   1403  1.1  dyoung 
   1404  1.1  dyoung 	/* Stop requesting EEPROM access */
   1405  1.1  dyoung 	eec &= ~IXGBE_EEC_REQ;
   1406  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1407  1.1  dyoung 
   1408  1.1  dyoung 	ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1409  1.1  dyoung 
   1410  1.1  dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   1411  1.1  dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   1412  1.1  dyoung }
   1413  1.1  dyoung 
   1414  1.1  dyoung /**
   1415  1.1  dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   1416  1.1  dyoung  *  @hw: pointer to hardware structure
   1417  1.1  dyoung  **/
   1418  1.1  dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1419  1.1  dyoung {
   1420  1.1  dyoung 	u16 i;
   1421  1.1  dyoung 	u16 j;
   1422  1.1  dyoung 	u16 checksum = 0;
   1423  1.1  dyoung 	u16 length = 0;
   1424  1.1  dyoung 	u16 pointer = 0;
   1425  1.1  dyoung 	u16 word = 0;
   1426  1.1  dyoung 
   1427  1.1  dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   1428  1.1  dyoung 
   1429  1.1  dyoung 	/* Include 0x0-0x3F in the checksum */
   1430  1.1  dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   1431  1.1  dyoung 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   1432  1.1  dyoung 			DEBUGOUT("EEPROM read failed\n");
   1433  1.1  dyoung 			break;
   1434  1.1  dyoung 		}
   1435  1.1  dyoung 		checksum += word;
   1436  1.1  dyoung 	}
   1437  1.1  dyoung 
   1438  1.1  dyoung 	/* Include all data from pointers except for the fw pointer */
   1439  1.1  dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   1440  1.1  dyoung 		hw->eeprom.ops.read(hw, i, &pointer);
   1441  1.1  dyoung 
   1442  1.1  dyoung 		/* Make sure the pointer seems valid */
   1443  1.1  dyoung 		if (pointer != 0xFFFF && pointer != 0) {
   1444  1.1  dyoung 			hw->eeprom.ops.read(hw, pointer, &length);
   1445  1.1  dyoung 
   1446  1.1  dyoung 			if (length != 0xFFFF && length != 0) {
   1447  1.1  dyoung 				for (j = pointer+1; j <= pointer+length; j++) {
   1448  1.1  dyoung 					hw->eeprom.ops.read(hw, j, &word);
   1449  1.1  dyoung 					checksum += word;
   1450  1.1  dyoung 				}
   1451  1.1  dyoung 			}
   1452  1.1  dyoung 		}
   1453  1.1  dyoung 	}
   1454  1.1  dyoung 
   1455  1.1  dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   1456  1.1  dyoung 
   1457  1.1  dyoung 	return checksum;
   1458  1.1  dyoung }
   1459  1.1  dyoung 
   1460  1.1  dyoung /**
   1461  1.1  dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   1462  1.1  dyoung  *  @hw: pointer to hardware structure
   1463  1.1  dyoung  *  @checksum_val: calculated checksum
   1464  1.1  dyoung  *
   1465  1.1  dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   1466  1.1  dyoung  *  caller does not need checksum_val, the value can be NULL.
   1467  1.1  dyoung  **/
   1468  1.1  dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   1469  1.1  dyoung                                            u16 *checksum_val)
   1470  1.1  dyoung {
   1471  1.1  dyoung 	s32 status;
   1472  1.1  dyoung 	u16 checksum;
   1473  1.1  dyoung 	u16 read_checksum = 0;
   1474  1.1  dyoung 
   1475  1.1  dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   1476  1.1  dyoung 
   1477  1.1  dyoung 	/*
   1478  1.1  dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1479  1.1  dyoung 	 * not continue or we could be in for a very long wait while every
   1480  1.1  dyoung 	 * EEPROM read fails
   1481  1.1  dyoung 	 */
   1482  1.1  dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1483  1.1  dyoung 
   1484  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
   1485  1.1  dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1486  1.1  dyoung 
   1487  1.1  dyoung 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   1488  1.1  dyoung 
   1489  1.1  dyoung 		/*
   1490  1.1  dyoung 		 * Verify read checksum from EEPROM is the same as
   1491  1.1  dyoung 		 * calculated checksum
   1492  1.1  dyoung 		 */
   1493  1.1  dyoung 		if (read_checksum != checksum)
   1494  1.1  dyoung 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   1495  1.1  dyoung 
   1496  1.1  dyoung 		/* If the user cares, return the calculated checksum */
   1497  1.1  dyoung 		if (checksum_val)
   1498  1.1  dyoung 			*checksum_val = checksum;
   1499  1.1  dyoung 	} else {
   1500  1.1  dyoung 		DEBUGOUT("EEPROM read failed\n");
   1501  1.1  dyoung 	}
   1502  1.1  dyoung 
   1503  1.1  dyoung 	return status;
   1504  1.1  dyoung }
   1505  1.1  dyoung 
   1506  1.1  dyoung /**
   1507  1.1  dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   1508  1.1  dyoung  *  @hw: pointer to hardware structure
   1509  1.1  dyoung  **/
   1510  1.1  dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1511  1.1  dyoung {
   1512  1.1  dyoung 	s32 status;
   1513  1.1  dyoung 	u16 checksum;
   1514  1.1  dyoung 
   1515  1.1  dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   1516  1.1  dyoung 
   1517  1.1  dyoung 	/*
   1518  1.1  dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1519  1.1  dyoung 	 * not continue or we could be in for a very long wait while every
   1520  1.1  dyoung 	 * EEPROM read fails
   1521  1.1  dyoung 	 */
   1522  1.1  dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1523  1.1  dyoung 
   1524  1.1  dyoung 	if (status == IXGBE_SUCCESS) {
   1525  1.1  dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1526  1.1  dyoung 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   1527  1.1  dyoung 		                              checksum);
   1528  1.1  dyoung 	} else {
   1529  1.1  dyoung 		DEBUGOUT("EEPROM read failed\n");
   1530  1.1  dyoung 	}
   1531  1.1  dyoung 
   1532  1.1  dyoung 	return status;
   1533  1.1  dyoung }
   1534  1.1  dyoung 
   1535  1.1  dyoung /**
   1536  1.1  dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   1537  1.1  dyoung  *  @mac_addr: pointer to MAC address.
   1538  1.1  dyoung  *
   1539  1.1  dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   1540  1.1  dyoung  **/
   1541  1.1  dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   1542  1.1  dyoung {
   1543  1.1  dyoung 	s32 status = IXGBE_SUCCESS;
   1544  1.1  dyoung 
   1545  1.1  dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   1546  1.1  dyoung 
   1547  1.1  dyoung 	/* Make sure it is not a multicast address */
   1548  1.1  dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   1549  1.1  dyoung 		DEBUGOUT("MAC address is multicast\n");
   1550  1.1  dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1551  1.1  dyoung 	/* Not a broadcast address */
   1552  1.1  dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   1553  1.1  dyoung 		DEBUGOUT("MAC address is broadcast\n");
   1554  1.1  dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1555  1.1  dyoung 	/* Reject the zero address */
   1556  1.1  dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   1557  1.1  dyoung 	           mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   1558  1.1  dyoung 		DEBUGOUT("MAC address is all zeros\n");
   1559  1.1  dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1560  1.1  dyoung 	}
   1561  1.1  dyoung 	return status;
   1562  1.1  dyoung }
   1563  1.1  dyoung 
   1564  1.1  dyoung /**
   1565  1.1  dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   1566  1.1  dyoung  *  @hw: pointer to hardware structure
   1567  1.1  dyoung  *  @index: Receive address register to write
   1568  1.1  dyoung  *  @addr: Address to put into receive address register
   1569  1.1  dyoung  *  @vmdq: VMDq "set" or "pool" index
   1570  1.1  dyoung  *  @enable_addr: set flag that address is active
   1571  1.1  dyoung  *
   1572  1.1  dyoung  *  Puts an ethernet address into a receive address register.
   1573  1.1  dyoung  **/
   1574  1.1  dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   1575  1.1  dyoung                           u32 enable_addr)
   1576  1.1  dyoung {
   1577  1.1  dyoung 	u32 rar_low, rar_high;
   1578  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1579  1.1  dyoung 
   1580  1.1  dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   1581  1.1  dyoung 
   1582  1.1  dyoung 	/* Make sure we are using a valid rar index range */
   1583  1.1  dyoung 	if (index >= rar_entries) {
   1584  1.1  dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   1585  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   1586  1.1  dyoung 	}
   1587  1.1  dyoung 
   1588  1.1  dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   1589  1.1  dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   1590  1.1  dyoung 
   1591  1.1  dyoung 	/*
   1592  1.1  dyoung 	 * HW expects these in little endian so we reverse the byte
   1593  1.1  dyoung 	 * order from network order (big endian) to little endian
   1594  1.1  dyoung 	 */
   1595  1.1  dyoung 	rar_low = ((u32)addr[0] |
   1596  1.1  dyoung 	           ((u32)addr[1] << 8) |
   1597  1.1  dyoung 	           ((u32)addr[2] << 16) |
   1598  1.1  dyoung 	           ((u32)addr[3] << 24));
   1599  1.1  dyoung 	/*
   1600  1.1  dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   1601  1.1  dyoung 	 * so save everything except the lower 16 bits that hold part
   1602  1.1  dyoung 	 * of the address and the address valid bit.
   1603  1.1  dyoung 	 */
   1604  1.1  dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1605  1.1  dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1606  1.1  dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   1607  1.1  dyoung 
   1608  1.1  dyoung 	if (enable_addr != 0)
   1609  1.1  dyoung 		rar_high |= IXGBE_RAH_AV;
   1610  1.1  dyoung 
   1611  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   1612  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1613  1.1  dyoung 
   1614  1.1  dyoung 	return IXGBE_SUCCESS;
   1615  1.1  dyoung }
   1616  1.1  dyoung 
   1617  1.1  dyoung /**
   1618  1.1  dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   1619  1.1  dyoung  *  @hw: pointer to hardware structure
   1620  1.1  dyoung  *  @index: Receive address register to write
   1621  1.1  dyoung  *
   1622  1.1  dyoung  *  Clears an ethernet address from a receive address register.
   1623  1.1  dyoung  **/
   1624  1.1  dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   1625  1.1  dyoung {
   1626  1.1  dyoung 	u32 rar_high;
   1627  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1628  1.1  dyoung 
   1629  1.1  dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   1630  1.1  dyoung 
   1631  1.1  dyoung 	/* Make sure we are using a valid rar index range */
   1632  1.1  dyoung 	if (index >= rar_entries) {
   1633  1.1  dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   1634  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   1635  1.1  dyoung 	}
   1636  1.1  dyoung 
   1637  1.1  dyoung 	/*
   1638  1.1  dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   1639  1.1  dyoung 	 * so save everything except the lower 16 bits that hold part
   1640  1.1  dyoung 	 * of the address and the address valid bit.
   1641  1.1  dyoung 	 */
   1642  1.1  dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1643  1.1  dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1644  1.1  dyoung 
   1645  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   1646  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1647  1.1  dyoung 
   1648  1.1  dyoung 	/* clear VMDq pool/queue selection for this RAR */
   1649  1.1  dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   1650  1.1  dyoung 
   1651  1.1  dyoung 	return IXGBE_SUCCESS;
   1652  1.1  dyoung }
   1653  1.1  dyoung 
   1654  1.1  dyoung /**
   1655  1.1  dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   1656  1.1  dyoung  *  @hw: pointer to hardware structure
   1657  1.1  dyoung  *
   1658  1.1  dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   1659  1.1  dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   1660  1.1  dyoung  *  the receiver is in reset when the routine is called.
   1661  1.1  dyoung  **/
   1662  1.1  dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   1663  1.1  dyoung {
   1664  1.1  dyoung 	u32 i;
   1665  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1666  1.1  dyoung 
   1667  1.1  dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   1668  1.1  dyoung 
   1669  1.1  dyoung 	/*
   1670  1.1  dyoung 	 * If the current mac address is valid, assume it is a software override
   1671  1.1  dyoung 	 * to the permanent address.
   1672  1.1  dyoung 	 * Otherwise, use the permanent address from the eeprom.
   1673  1.1  dyoung 	 */
   1674  1.1  dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   1675  1.1  dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   1676  1.1  dyoung 		/* Get the MAC address from the RAR0 for later reference */
   1677  1.1  dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   1678  1.1  dyoung 
   1679  1.1  dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   1680  1.1  dyoung 		          hw->mac.addr[0], hw->mac.addr[1],
   1681  1.1  dyoung 		          hw->mac.addr[2]);
   1682  1.1  dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   1683  1.1  dyoung 		          hw->mac.addr[4], hw->mac.addr[5]);
   1684  1.1  dyoung 	} else {
   1685  1.1  dyoung 		/* Setup the receive address. */
   1686  1.1  dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   1687  1.1  dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   1688  1.1  dyoung 		          hw->mac.addr[0], hw->mac.addr[1],
   1689  1.1  dyoung 		          hw->mac.addr[2]);
   1690  1.1  dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   1691  1.1  dyoung 		          hw->mac.addr[4], hw->mac.addr[5]);
   1692  1.1  dyoung 
   1693  1.1  dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   1694  1.1  dyoung 
   1695  1.1  dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   1696  1.1  dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   1697  1.1  dyoung 	}
   1698  1.1  dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   1699  1.1  dyoung 
   1700  1.1  dyoung 	hw->addr_ctrl.rar_used_count = 1;
   1701  1.1  dyoung 
   1702  1.1  dyoung 	/* Zero out the other receive addresses. */
   1703  1.1  dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   1704  1.1  dyoung 	for (i = 1; i < rar_entries; i++) {
   1705  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   1706  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   1707  1.1  dyoung 	}
   1708  1.1  dyoung 
   1709  1.1  dyoung 	/* Clear the MTA */
   1710  1.1  dyoung 	hw->addr_ctrl.mta_in_use = 0;
   1711  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   1712  1.1  dyoung 
   1713  1.1  dyoung 	DEBUGOUT(" Clearing MTA\n");
   1714  1.1  dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   1715  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   1716  1.1  dyoung 
   1717  1.1  dyoung 	ixgbe_init_uta_tables(hw);
   1718  1.1  dyoung 
   1719  1.1  dyoung 	return IXGBE_SUCCESS;
   1720  1.1  dyoung }
   1721  1.1  dyoung 
   1722  1.1  dyoung /**
   1723  1.1  dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   1724  1.1  dyoung  *  @hw: pointer to hardware structure
   1725  1.1  dyoung  *  @addr: new address
   1726  1.1  dyoung  *
   1727  1.1  dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   1728  1.1  dyoung  **/
   1729  1.1  dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   1730  1.1  dyoung {
   1731  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1732  1.1  dyoung 	u32 rar;
   1733  1.1  dyoung 
   1734  1.1  dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   1735  1.1  dyoung 
   1736  1.1  dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   1737  1.1  dyoung 	          addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   1738  1.1  dyoung 
   1739  1.1  dyoung 	/*
   1740  1.1  dyoung 	 * Place this address in the RAR if there is room,
   1741  1.1  dyoung 	 * else put the controller into promiscuous mode
   1742  1.1  dyoung 	 */
   1743  1.1  dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   1744  1.1  dyoung 		rar = hw->addr_ctrl.rar_used_count;
   1745  1.1  dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   1746  1.1  dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   1747  1.1  dyoung 		hw->addr_ctrl.rar_used_count++;
   1748  1.1  dyoung 	} else {
   1749  1.1  dyoung 		hw->addr_ctrl.overflow_promisc++;
   1750  1.1  dyoung 	}
   1751  1.1  dyoung 
   1752  1.1  dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   1753  1.1  dyoung }
   1754  1.1  dyoung 
   1755  1.1  dyoung /**
   1756  1.1  dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   1757  1.1  dyoung  *  @hw: pointer to hardware structure
   1758  1.1  dyoung  *  @addr_list: the list of new addresses
   1759  1.1  dyoung  *  @addr_count: number of addresses
   1760  1.1  dyoung  *  @next: iterator function to walk the address list
   1761  1.1  dyoung  *
   1762  1.1  dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   1763  1.1  dyoung  *  receive address registers.  Uses unused receive address registers for the
   1764  1.1  dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   1765  1.1  dyoung  *
   1766  1.1  dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   1767  1.1  dyoung  *  manually putting the device into promiscuous mode.
   1768  1.1  dyoung  **/
   1769  1.1  dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   1770  1.1  dyoung                                       u32 addr_count, ixgbe_mc_addr_itr next)
   1771  1.1  dyoung {
   1772  1.1  dyoung 	u8 *addr;
   1773  1.1  dyoung 	u32 i;
   1774  1.1  dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   1775  1.1  dyoung 	u32 uc_addr_in_use;
   1776  1.1  dyoung 	u32 fctrl;
   1777  1.1  dyoung 	u32 vmdq;
   1778  1.1  dyoung 
   1779  1.1  dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   1780  1.1  dyoung 
   1781  1.1  dyoung 	/*
   1782  1.1  dyoung 	 * Clear accounting of old secondary address list,
   1783  1.1  dyoung 	 * don't count RAR[0]
   1784  1.1  dyoung 	 */
   1785  1.1  dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   1786  1.1  dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   1787  1.1  dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   1788  1.1  dyoung 
   1789  1.1  dyoung 	/* Zero out the other receive addresses */
   1790  1.1  dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   1791  1.1  dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   1792  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   1793  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   1794  1.1  dyoung 	}
   1795  1.1  dyoung 
   1796  1.1  dyoung 	/* Add the new addresses */
   1797  1.1  dyoung 	for (i = 0; i < addr_count; i++) {
   1798  1.1  dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   1799  1.1  dyoung 		addr = next(hw, &addr_list, &vmdq);
   1800  1.1  dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   1801  1.1  dyoung 	}
   1802  1.1  dyoung 
   1803  1.1  dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   1804  1.1  dyoung 		/* enable promisc if not already in overflow or set by user */
   1805  1.1  dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   1806  1.1  dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   1807  1.1  dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   1808  1.1  dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   1809  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   1810  1.1  dyoung 		}
   1811  1.1  dyoung 	} else {
   1812  1.1  dyoung 		/* only disable if set by overflow, not by user */
   1813  1.1  dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   1814  1.1  dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   1815  1.1  dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   1816  1.1  dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   1817  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   1818  1.1  dyoung 		}
   1819  1.1  dyoung 	}
   1820  1.1  dyoung 
   1821  1.1  dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   1822  1.1  dyoung 	return IXGBE_SUCCESS;
   1823  1.1  dyoung }
   1824  1.1  dyoung 
   1825  1.1  dyoung /**
   1826  1.1  dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   1827  1.1  dyoung  *  @hw: pointer to hardware structure
   1828  1.1  dyoung  *  @mc_addr: the multicast address
   1829  1.1  dyoung  *
   1830  1.1  dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   1831  1.1  dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   1832  1.1  dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   1833  1.1  dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   1834  1.1  dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   1835  1.1  dyoung  *  to mc_filter_type.
   1836  1.1  dyoung  **/
   1837  1.1  dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   1838  1.1  dyoung {
   1839  1.1  dyoung 	u32 vector = 0;
   1840  1.1  dyoung 
   1841  1.1  dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   1842  1.1  dyoung 
   1843  1.1  dyoung 	switch (hw->mac.mc_filter_type) {
   1844  1.1  dyoung 	case 0:   /* use bits [47:36] of the address */
   1845  1.1  dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   1846  1.1  dyoung 		break;
   1847  1.1  dyoung 	case 1:   /* use bits [46:35] of the address */
   1848  1.1  dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   1849  1.1  dyoung 		break;
   1850  1.1  dyoung 	case 2:   /* use bits [45:34] of the address */
   1851  1.1  dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   1852  1.1  dyoung 		break;
   1853  1.1  dyoung 	case 3:   /* use bits [43:32] of the address */
   1854  1.1  dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   1855  1.1  dyoung 		break;
   1856  1.1  dyoung 	default:  /* Invalid mc_filter_type */
   1857  1.1  dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   1858  1.1  dyoung 		ASSERT(0);
   1859  1.1  dyoung 		break;
   1860  1.1  dyoung 	}
   1861  1.1  dyoung 
   1862  1.1  dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   1863  1.1  dyoung 	vector &= 0xFFF;
   1864  1.1  dyoung 	return vector;
   1865  1.1  dyoung }
   1866  1.1  dyoung 
   1867  1.1  dyoung /**
   1868  1.1  dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   1869  1.1  dyoung  *  @hw: pointer to hardware structure
   1870  1.1  dyoung  *  @hash_value: Multicast address hash value
   1871  1.1  dyoung  *
   1872  1.1  dyoung  *  Sets the bit-vector in the multicast table.
   1873  1.1  dyoung  **/
   1874  1.1  dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   1875  1.1  dyoung {
   1876  1.1  dyoung 	u32 vector;
   1877  1.1  dyoung 	u32 vector_bit;
   1878  1.1  dyoung 	u32 vector_reg;
   1879  1.1  dyoung 
   1880  1.1  dyoung 	DEBUGFUNC("ixgbe_set_mta");
   1881  1.1  dyoung 
   1882  1.1  dyoung 	hw->addr_ctrl.mta_in_use++;
   1883  1.1  dyoung 
   1884  1.1  dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   1885  1.1  dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   1886  1.1  dyoung 
   1887  1.1  dyoung 	/*
   1888  1.1  dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   1889  1.1  dyoung 	 * like an array of 4096 bits.  We want to set bit
   1890  1.1  dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   1891  1.1  dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   1892  1.1  dyoung 	 * register is determined by the upper 7 bits of the vector value and
   1893  1.1  dyoung 	 * the bit within that register are determined by the lower 5 bits of
   1894  1.1  dyoung 	 * the value.
   1895  1.1  dyoung 	 */
   1896  1.1  dyoung 	vector_reg = (vector >> 5) & 0x7F;
   1897  1.1  dyoung 	vector_bit = vector & 0x1F;
   1898  1.1  dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   1899  1.1  dyoung }
   1900  1.1  dyoung 
   1901  1.1  dyoung /**
   1902  1.1  dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   1903  1.1  dyoung  *  @hw: pointer to hardware structure
   1904  1.1  dyoung  *  @mc_addr_list: the list of new multicast addresses
   1905  1.1  dyoung  *  @mc_addr_count: number of addresses
   1906  1.1  dyoung  *  @next: iterator function to walk the multicast address list
   1907  1.1  dyoung  *
   1908  1.1  dyoung  *  The given list replaces any existing list. Clears the MC addrs from receive
   1909  1.1  dyoung  *  address registers and the multicast table. Uses unused receive address
   1910  1.1  dyoung  *  registers for the first multicast addresses, and hashes the rest into the
   1911  1.1  dyoung  *  multicast table.
   1912  1.1  dyoung  **/
   1913  1.1  dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   1914  1.1  dyoung                                       u32 mc_addr_count, ixgbe_mc_addr_itr next)
   1915  1.1  dyoung {
   1916  1.1  dyoung 	u32 i;
   1917  1.1  dyoung 	u32 vmdq;
   1918  1.1  dyoung 
   1919  1.1  dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   1920  1.1  dyoung 
   1921  1.1  dyoung 	/*
   1922  1.1  dyoung 	 * Set the new number of MC addresses that we are being requested to
   1923  1.1  dyoung 	 * use.
   1924  1.1  dyoung 	 */
   1925  1.1  dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   1926  1.1  dyoung 	hw->addr_ctrl.mta_in_use = 0;
   1927  1.1  dyoung 
   1928  1.1  dyoung 	/* Clear mta_shadow */
   1929  1.1  dyoung 	DEBUGOUT(" Clearing MTA\n");
   1930  1.1  dyoung 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   1931  1.1  dyoung 
   1932  1.1  dyoung 	/* Update mta_shadow */
   1933  1.1  dyoung 	for (i = 0; i < mc_addr_count; i++) {
   1934  1.1  dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   1935  1.1  dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   1936  1.1  dyoung 	}
   1937  1.1  dyoung 
   1938  1.1  dyoung 	/* Enable mta */
   1939  1.1  dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   1940  1.1  dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   1941  1.1  dyoung 				      hw->mac.mta_shadow[i]);
   1942  1.1  dyoung 
   1943  1.1  dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   1944  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   1945  1.1  dyoung 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   1946  1.1  dyoung 
   1947  1.1  dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   1948  1.1  dyoung 	return IXGBE_SUCCESS;
   1949  1.1  dyoung }
   1950  1.1  dyoung 
   1951  1.1  dyoung /**
   1952  1.1  dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   1953  1.1  dyoung  *  @hw: pointer to hardware structure
   1954  1.1  dyoung  *
   1955  1.1  dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   1956  1.1  dyoung  **/
   1957  1.1  dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   1958  1.1  dyoung {
   1959  1.1  dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   1960  1.1  dyoung 
   1961  1.1  dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   1962  1.1  dyoung 
   1963  1.1  dyoung 	if (a->mta_in_use > 0)
   1964  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   1965  1.1  dyoung 		                hw->mac.mc_filter_type);
   1966  1.1  dyoung 
   1967  1.1  dyoung 	return IXGBE_SUCCESS;
   1968  1.1  dyoung }
   1969  1.1  dyoung 
   1970  1.1  dyoung /**
   1971  1.1  dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   1972  1.1  dyoung  *  @hw: pointer to hardware structure
   1973  1.1  dyoung  *
   1974  1.1  dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   1975  1.1  dyoung  **/
   1976  1.1  dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   1977  1.1  dyoung {
   1978  1.1  dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   1979  1.1  dyoung 
   1980  1.1  dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   1981  1.1  dyoung 
   1982  1.1  dyoung 	if (a->mta_in_use > 0)
   1983  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   1984  1.1  dyoung 
   1985  1.1  dyoung 	return IXGBE_SUCCESS;
   1986  1.1  dyoung }
   1987  1.1  dyoung 
   1988  1.1  dyoung /**
   1989  1.1  dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   1990  1.1  dyoung  *  @hw: pointer to hardware structure
   1991  1.1  dyoung  *  @packetbuf_num: packet buffer number (0-7)
   1992  1.1  dyoung  *
   1993  1.1  dyoung  *  Enable flow control according to the current settings.
   1994  1.1  dyoung  **/
   1995  1.1  dyoung s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
   1996  1.1  dyoung {
   1997  1.1  dyoung 	s32 ret_val = IXGBE_SUCCESS;
   1998  1.1  dyoung 	u32 mflcn_reg, fccfg_reg;
   1999  1.1  dyoung 	u32 reg;
   2000  1.1  dyoung 	u32 rx_pba_size;
   2001  1.1  dyoung 	u32 fcrtl, fcrth;
   2002  1.1  dyoung 
   2003  1.1  dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2004  1.1  dyoung 
   2005  1.1  dyoung 	/* Negotiate the fc mode to use */
   2006  1.1  dyoung 	ret_val = ixgbe_fc_autoneg(hw);
   2007  1.1  dyoung 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
   2008  1.1  dyoung 		goto out;
   2009  1.1  dyoung 
   2010  1.1  dyoung 	/* Disable any previous flow control settings */
   2011  1.1  dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2012  1.1  dyoung 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
   2013  1.1  dyoung 
   2014  1.1  dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2015  1.1  dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2016  1.1  dyoung 
   2017  1.1  dyoung 	/*
   2018  1.1  dyoung 	 * The possible values of fc.current_mode are:
   2019  1.1  dyoung 	 * 0: Flow control is completely disabled
   2020  1.1  dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2021  1.1  dyoung 	 *    but not send pause frames).
   2022  1.1  dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2023  1.1  dyoung 	 *    we do not support receiving pause frames).
   2024  1.1  dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2025  1.1  dyoung 	 * other: Invalid.
   2026  1.1  dyoung 	 */
   2027  1.1  dyoung 	switch (hw->fc.current_mode) {
   2028  1.1  dyoung 	case ixgbe_fc_none:
   2029  1.1  dyoung 		/*
   2030  1.1  dyoung 		 * Flow control is disabled by software override or autoneg.
   2031  1.1  dyoung 		 * The code below will actually disable it in the HW.
   2032  1.1  dyoung 		 */
   2033  1.1  dyoung 		break;
   2034  1.1  dyoung 	case ixgbe_fc_rx_pause:
   2035  1.1  dyoung 		/*
   2036  1.1  dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2037  1.1  dyoung 		 * disabled by software override. Since there really
   2038  1.1  dyoung 		 * isn't a way to advertise that we are capable of RX
   2039  1.1  dyoung 		 * Pause ONLY, we will advertise that we support both
   2040  1.1  dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2041  1.1  dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2042  1.1  dyoung 		 */
   2043  1.1  dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2044  1.1  dyoung 		break;
   2045  1.1  dyoung 	case ixgbe_fc_tx_pause:
   2046  1.1  dyoung 		/*
   2047  1.1  dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2048  1.1  dyoung 		 * disabled by software override.
   2049  1.1  dyoung 		 */
   2050  1.1  dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2051  1.1  dyoung 		break;
   2052  1.1  dyoung 	case ixgbe_fc_full:
   2053  1.1  dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2054  1.1  dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2055  1.1  dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2056  1.1  dyoung 		break;
   2057  1.1  dyoung 	default:
   2058  1.1  dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2059  1.1  dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2060  1.1  dyoung 		goto out;
   2061  1.1  dyoung 		break;
   2062  1.1  dyoung 	}
   2063  1.1  dyoung 
   2064  1.1  dyoung 	/* Set 802.3x based flow control settings. */
   2065  1.1  dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2066  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2067  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2068  1.1  dyoung 
   2069  1.1  dyoung 	rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
   2070  1.1  dyoung 	rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
   2071  1.1  dyoung 
   2072  1.1  dyoung 	fcrth = (rx_pba_size - hw->fc.high_water) << 10;
   2073  1.1  dyoung 	fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
   2074  1.1  dyoung 
   2075  1.1  dyoung 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
   2076  1.1  dyoung 		fcrth |= IXGBE_FCRTH_FCEN;
   2077  1.1  dyoung 		if (hw->fc.send_xon)
   2078  1.1  dyoung 			fcrtl |= IXGBE_FCRTL_XONE;
   2079  1.1  dyoung 	}
   2080  1.1  dyoung 
   2081  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
   2082  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
   2083  1.1  dyoung 
   2084  1.1  dyoung 	/* Configure pause time (2 TCs per register) */
   2085  1.1  dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
   2086  1.1  dyoung 	if ((packetbuf_num & 1) == 0)
   2087  1.1  dyoung 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
   2088  1.1  dyoung 	else
   2089  1.1  dyoung 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
   2090  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
   2091  1.1  dyoung 
   2092  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
   2093  1.1  dyoung 
   2094  1.1  dyoung out:
   2095  1.1  dyoung 	return ret_val;
   2096  1.1  dyoung }
   2097  1.1  dyoung 
   2098  1.1  dyoung /**
   2099  1.1  dyoung  *  ixgbe_fc_autoneg - Configure flow control
   2100  1.1  dyoung  *  @hw: pointer to hardware structure
   2101  1.1  dyoung  *
   2102  1.1  dyoung  *  Compares our advertised flow control capabilities to those advertised by
   2103  1.1  dyoung  *  our link partner, and determines the proper flow control mode to use.
   2104  1.1  dyoung  **/
   2105  1.1  dyoung s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2106  1.1  dyoung {
   2107  1.1  dyoung 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2108  1.1  dyoung 	ixgbe_link_speed speed;
   2109  1.1  dyoung 	bool link_up;
   2110  1.1  dyoung 
   2111  1.1  dyoung 	DEBUGFUNC("ixgbe_fc_autoneg");
   2112  1.1  dyoung 
   2113  1.1  dyoung 	if (hw->fc.disable_fc_autoneg)
   2114  1.1  dyoung 		goto out;
   2115  1.1  dyoung 
   2116  1.1  dyoung 	/*
   2117  1.1  dyoung 	 * AN should have completed when the cable was plugged in.
   2118  1.1  dyoung 	 * Look for reasons to bail out.  Bail out if:
   2119  1.1  dyoung 	 * - FC autoneg is disabled, or if
   2120  1.1  dyoung 	 * - link is not up.
   2121  1.1  dyoung 	 *
   2122  1.1  dyoung 	 * Since we're being called from an LSC, link is already known to be up.
   2123  1.1  dyoung 	 * So use link_up_wait_to_complete=FALSE.
   2124  1.1  dyoung 	 */
   2125  1.1  dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2126  1.1  dyoung 	if (!link_up) {
   2127  1.1  dyoung 		ret_val = IXGBE_ERR_FLOW_CONTROL;
   2128  1.1  dyoung 		goto out;
   2129  1.1  dyoung 	}
   2130  1.1  dyoung 
   2131  1.1  dyoung 	switch (hw->phy.media_type) {
   2132  1.1  dyoung 	/* Autoneg flow control on fiber adapters */
   2133  1.1  dyoung 	case ixgbe_media_type_fiber:
   2134  1.1  dyoung 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2135  1.1  dyoung 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2136  1.1  dyoung 		break;
   2137  1.1  dyoung 
   2138  1.1  dyoung 	/* Autoneg flow control on backplane adapters */
   2139  1.1  dyoung 	case ixgbe_media_type_backplane:
   2140  1.1  dyoung 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2141  1.1  dyoung 		break;
   2142  1.1  dyoung 
   2143  1.1  dyoung 	/* Autoneg flow control on copper adapters */
   2144  1.1  dyoung 	case ixgbe_media_type_copper:
   2145  1.1  dyoung 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
   2146  1.1  dyoung 			ret_val = ixgbe_fc_autoneg_copper(hw);
   2147  1.1  dyoung 		break;
   2148  1.1  dyoung 
   2149  1.1  dyoung 	default:
   2150  1.1  dyoung 		break;
   2151  1.1  dyoung 	}
   2152  1.1  dyoung 
   2153  1.1  dyoung out:
   2154  1.1  dyoung 	if (ret_val == IXGBE_SUCCESS) {
   2155  1.1  dyoung 		hw->fc.fc_was_autonegged = TRUE;
   2156  1.1  dyoung 	} else {
   2157  1.1  dyoung 		hw->fc.fc_was_autonegged = FALSE;
   2158  1.1  dyoung 		hw->fc.current_mode = hw->fc.requested_mode;
   2159  1.1  dyoung 	}
   2160  1.1  dyoung 	return ret_val;
   2161  1.1  dyoung }
   2162  1.1  dyoung 
   2163  1.1  dyoung /**
   2164  1.1  dyoung  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2165  1.1  dyoung  *  @hw: pointer to hardware structure
   2166  1.1  dyoung  *  @speed:
   2167  1.1  dyoung  *  @link_up
   2168  1.1  dyoung  *
   2169  1.1  dyoung  *  Enable flow control according on 1 gig fiber.
   2170  1.1  dyoung  **/
   2171  1.1  dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2172  1.1  dyoung {
   2173  1.1  dyoung 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2174  1.1  dyoung 	s32 ret_val;
   2175  1.1  dyoung 
   2176  1.1  dyoung 	/*
   2177  1.1  dyoung 	 * On multispeed fiber at 1g, bail out if
   2178  1.1  dyoung 	 * - link is up but AN did not complete, or if
   2179  1.1  dyoung 	 * - link is up and AN completed but timed out
   2180  1.1  dyoung 	 */
   2181  1.1  dyoung 
   2182  1.1  dyoung 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2183  1.1  dyoung 	if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2184  1.1  dyoung 	    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2185  1.1  dyoung 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2186  1.1  dyoung 		goto out;
   2187  1.1  dyoung 	}
   2188  1.1  dyoung 
   2189  1.1  dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2190  1.1  dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2191  1.1  dyoung 
   2192  1.1  dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2193  1.1  dyoung 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2194  1.1  dyoung 			       IXGBE_PCS1GANA_ASM_PAUSE,
   2195  1.1  dyoung 			       IXGBE_PCS1GANA_SYM_PAUSE,
   2196  1.1  dyoung 			       IXGBE_PCS1GANA_ASM_PAUSE);
   2197  1.1  dyoung 
   2198  1.1  dyoung out:
   2199  1.1  dyoung 	return ret_val;
   2200  1.1  dyoung }
   2201  1.1  dyoung 
   2202  1.1  dyoung /**
   2203  1.1  dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2204  1.1  dyoung  *  @hw: pointer to hardware structure
   2205  1.1  dyoung  *
   2206  1.1  dyoung  *  Enable flow control according to IEEE clause 37.
   2207  1.1  dyoung  **/
   2208  1.1  dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2209  1.1  dyoung {
   2210  1.1  dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2211  1.1  dyoung 	s32 ret_val;
   2212  1.1  dyoung 
   2213  1.1  dyoung 	/*
   2214  1.1  dyoung 	 * On backplane, bail out if
   2215  1.1  dyoung 	 * - backplane autoneg was not completed, or if
   2216  1.1  dyoung 	 * - we are 82599 and link partner is not AN enabled
   2217  1.1  dyoung 	 */
   2218  1.1  dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2219  1.1  dyoung 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2220  1.1  dyoung 		hw->fc.fc_was_autonegged = FALSE;
   2221  1.1  dyoung 		hw->fc.current_mode = hw->fc.requested_mode;
   2222  1.1  dyoung 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2223  1.1  dyoung 		goto out;
   2224  1.1  dyoung 	}
   2225  1.1  dyoung 
   2226  1.1  dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2227  1.1  dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2228  1.1  dyoung 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2229  1.1  dyoung 			hw->fc.fc_was_autonegged = FALSE;
   2230  1.1  dyoung 			hw->fc.current_mode = hw->fc.requested_mode;
   2231  1.1  dyoung 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2232  1.1  dyoung 			goto out;
   2233  1.1  dyoung 		}
   2234  1.1  dyoung 	}
   2235  1.1  dyoung 	/*
   2236  1.1  dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2237  1.1  dyoung 	 * local flow control settings accordingly
   2238  1.1  dyoung 	 */
   2239  1.1  dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2240  1.1  dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2241  1.1  dyoung 
   2242  1.1  dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2243  1.1  dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2244  1.1  dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2245  1.1  dyoung 
   2246  1.1  dyoung out:
   2247  1.1  dyoung 	return ret_val;
   2248  1.1  dyoung }
   2249  1.1  dyoung 
   2250  1.1  dyoung /**
   2251  1.1  dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2252  1.1  dyoung  *  @hw: pointer to hardware structure
   2253  1.1  dyoung  *
   2254  1.1  dyoung  *  Enable flow control according to IEEE clause 37.
   2255  1.1  dyoung  **/
   2256  1.1  dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2257  1.1  dyoung {
   2258  1.1  dyoung 	u16 technology_ability_reg = 0;
   2259  1.1  dyoung 	u16 lp_technology_ability_reg = 0;
   2260  1.1  dyoung 
   2261  1.1  dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2262  1.1  dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2263  1.1  dyoung 			     &technology_ability_reg);
   2264  1.1  dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2265  1.1  dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2266  1.1  dyoung 			     &lp_technology_ability_reg);
   2267  1.1  dyoung 
   2268  1.1  dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2269  1.1  dyoung 				  (u32)lp_technology_ability_reg,
   2270  1.1  dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2271  1.1  dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2272  1.1  dyoung }
   2273  1.1  dyoung 
   2274  1.1  dyoung /**
   2275  1.1  dyoung  *  ixgbe_negotiate_fc - Negotiate flow control
   2276  1.1  dyoung  *  @hw: pointer to hardware structure
   2277  1.1  dyoung  *  @adv_reg: flow control advertised settings
   2278  1.1  dyoung  *  @lp_reg: link partner's flow control settings
   2279  1.1  dyoung  *  @adv_sym: symmetric pause bit in advertisement
   2280  1.1  dyoung  *  @adv_asm: asymmetric pause bit in advertisement
   2281  1.1  dyoung  *  @lp_sym: symmetric pause bit in link partner advertisement
   2282  1.1  dyoung  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2283  1.1  dyoung  *
   2284  1.1  dyoung  *  Find the intersection between advertised settings and link partner's
   2285  1.1  dyoung  *  advertised settings
   2286  1.1  dyoung  **/
   2287  1.1  dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2288  1.1  dyoung 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2289  1.1  dyoung {
   2290  1.1  dyoung 	if ((!(adv_reg)) ||  (!(lp_reg)))
   2291  1.1  dyoung 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2292  1.1  dyoung 
   2293  1.1  dyoung 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2294  1.1  dyoung 		/*
   2295  1.1  dyoung 		 * Now we need to check if the user selected Rx ONLY
   2296  1.1  dyoung 		 * of pause frames.  In this case, we had to advertise
   2297  1.1  dyoung 		 * FULL flow control because we could not advertise RX
   2298  1.1  dyoung 		 * ONLY. Hence, we must now check to see if we need to
   2299  1.1  dyoung 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2300  1.1  dyoung 		 */
   2301  1.1  dyoung 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2302  1.1  dyoung 			hw->fc.current_mode = ixgbe_fc_full;
   2303  1.1  dyoung 			DEBUGOUT("Flow Control = FULL.\n");
   2304  1.1  dyoung 		} else {
   2305  1.1  dyoung 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2306  1.1  dyoung 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2307  1.1  dyoung 		}
   2308  1.1  dyoung 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2309  1.1  dyoung 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2310  1.1  dyoung 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2311  1.1  dyoung 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2312  1.1  dyoung 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2313  1.1  dyoung 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2314  1.1  dyoung 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2315  1.1  dyoung 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2316  1.1  dyoung 	} else {
   2317  1.1  dyoung 		hw->fc.current_mode = ixgbe_fc_none;
   2318  1.1  dyoung 		DEBUGOUT("Flow Control = NONE.\n");
   2319  1.1  dyoung 	}
   2320  1.1  dyoung 	return IXGBE_SUCCESS;
   2321  1.1  dyoung }
   2322  1.1  dyoung 
   2323  1.1  dyoung /**
   2324  1.1  dyoung  *  ixgbe_setup_fc - Set up flow control
   2325  1.1  dyoung  *  @hw: pointer to hardware structure
   2326  1.1  dyoung  *
   2327  1.1  dyoung  *  Called at init time to set up flow control.
   2328  1.1  dyoung  **/
   2329  1.1  dyoung s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
   2330  1.1  dyoung {
   2331  1.1  dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2332  1.1  dyoung 	u32 reg = 0, reg_bp = 0;
   2333  1.1  dyoung 	u16 reg_cu = 0;
   2334  1.1  dyoung 
   2335  1.1  dyoung 	DEBUGFUNC("ixgbe_setup_fc");
   2336  1.1  dyoung 
   2337  1.1  dyoung 	/* Validate the packetbuf configuration */
   2338  1.1  dyoung 	if (packetbuf_num < 0 || packetbuf_num > 7) {
   2339  1.1  dyoung 		DEBUGOUT1("Invalid packet buffer number [%d], expected range is"
   2340  1.1  dyoung 		          " 0-7\n", packetbuf_num);
   2341  1.1  dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2342  1.1  dyoung 		goto out;
   2343  1.1  dyoung 	}
   2344  1.1  dyoung 
   2345  1.1  dyoung 	/*
   2346  1.1  dyoung 	 * Validate the water mark configuration.  Zero water marks are invalid
   2347  1.1  dyoung 	 * because it causes the controller to just blast out fc packets.
   2348  1.1  dyoung 	 */
   2349  1.1  dyoung 	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
   2350  1.1  dyoung 		DEBUGOUT("Invalid water mark configuration\n");
   2351  1.1  dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2352  1.1  dyoung 		goto out;
   2353  1.1  dyoung 	}
   2354  1.1  dyoung 
   2355  1.1  dyoung 	/*
   2356  1.1  dyoung 	 * Validate the requested mode.  Strict IEEE mode does not allow
   2357  1.1  dyoung 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
   2358  1.1  dyoung 	 */
   2359  1.1  dyoung 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
   2360  1.1  dyoung 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
   2361  1.1  dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2362  1.1  dyoung 		goto out;
   2363  1.1  dyoung 	}
   2364  1.1  dyoung 
   2365  1.1  dyoung 	/*
   2366  1.1  dyoung 	 * 10gig parts do not have a word in the EEPROM to determine the
   2367  1.1  dyoung 	 * default flow control setting, so we explicitly set it to full.
   2368  1.1  dyoung 	 */
   2369  1.1  dyoung 	if (hw->fc.requested_mode == ixgbe_fc_default)
   2370  1.1  dyoung 		hw->fc.requested_mode = ixgbe_fc_full;
   2371  1.1  dyoung 
   2372  1.1  dyoung 	/*
   2373  1.1  dyoung 	 * Set up the 1G and 10G flow control advertisement registers so the
   2374  1.1  dyoung 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
   2375  1.1  dyoung 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
   2376  1.1  dyoung 	 */
   2377  1.1  dyoung 
   2378  1.1  dyoung 	switch (hw->phy.media_type) {
   2379  1.1  dyoung 	case ixgbe_media_type_fiber:
   2380  1.1  dyoung 	case ixgbe_media_type_backplane:
   2381  1.1  dyoung 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2382  1.1  dyoung 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2383  1.1  dyoung 		break;
   2384  1.1  dyoung 
   2385  1.1  dyoung 	case ixgbe_media_type_copper:
   2386  1.1  dyoung 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2387  1.1  dyoung 					IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
   2388  1.1  dyoung 		break;
   2389  1.1  dyoung 
   2390  1.1  dyoung 	default:
   2391  1.1  dyoung 		;
   2392  1.1  dyoung 	}
   2393  1.1  dyoung 
   2394  1.1  dyoung 	/*
   2395  1.1  dyoung 	 * The possible values of fc.requested_mode are:
   2396  1.1  dyoung 	 * 0: Flow control is completely disabled
   2397  1.1  dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2398  1.1  dyoung 	 *    but not send pause frames).
   2399  1.1  dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2400  1.1  dyoung 	 *    we do not support receiving pause frames).
   2401  1.1  dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2402  1.1  dyoung 	 * other: Invalid.
   2403  1.1  dyoung 	 */
   2404  1.1  dyoung 	switch (hw->fc.requested_mode) {
   2405  1.1  dyoung 	case ixgbe_fc_none:
   2406  1.1  dyoung 		/* Flow control completely disabled by software override. */
   2407  1.1  dyoung 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2408  1.1  dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2409  1.1  dyoung 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
   2410  1.1  dyoung 				    IXGBE_AUTOC_ASM_PAUSE);
   2411  1.1  dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2412  1.1  dyoung 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2413  1.1  dyoung 		break;
   2414  1.1  dyoung 	case ixgbe_fc_rx_pause:
   2415  1.1  dyoung 		/*
   2416  1.1  dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2417  1.1  dyoung 		 * disabled by software override. Since there really
   2418  1.1  dyoung 		 * isn't a way to advertise that we are capable of RX
   2419  1.1  dyoung 		 * Pause ONLY, we will advertise that we support both
   2420  1.1  dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2421  1.1  dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2422  1.1  dyoung 		 */
   2423  1.1  dyoung 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2424  1.1  dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2425  1.1  dyoung 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
   2426  1.1  dyoung 				   IXGBE_AUTOC_ASM_PAUSE);
   2427  1.1  dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2428  1.1  dyoung 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2429  1.1  dyoung 		break;
   2430  1.1  dyoung 	case ixgbe_fc_tx_pause:
   2431  1.1  dyoung 		/*
   2432  1.1  dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2433  1.1  dyoung 		 * disabled by software override.
   2434  1.1  dyoung 		 */
   2435  1.1  dyoung 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
   2436  1.1  dyoung 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
   2437  1.1  dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
   2438  1.1  dyoung 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
   2439  1.1  dyoung 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
   2440  1.1  dyoung 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
   2441  1.1  dyoung 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
   2442  1.1  dyoung 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
   2443  1.1  dyoung 		}
   2444  1.1  dyoung 		break;
   2445  1.1  dyoung 	case ixgbe_fc_full:
   2446  1.1  dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2447  1.1  dyoung 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2448  1.1  dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2449  1.1  dyoung 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
   2450  1.1  dyoung 				   IXGBE_AUTOC_ASM_PAUSE);
   2451  1.1  dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2452  1.1  dyoung 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2453  1.1  dyoung 		break;
   2454  1.1  dyoung 	default:
   2455  1.1  dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2456  1.1  dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2457  1.1  dyoung 		goto out;
   2458  1.1  dyoung 		break;
   2459  1.1  dyoung 	}
   2460  1.1  dyoung 
   2461  1.1  dyoung 	/*
   2462  1.1  dyoung 	 * Enable auto-negotiation between the MAC & PHY;
   2463  1.1  dyoung 	 * the MAC will advertise clause 37 flow control.
   2464  1.1  dyoung 	 */
   2465  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
   2466  1.1  dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
   2467  1.1  dyoung 
   2468  1.1  dyoung 	/* Disable AN timeout */
   2469  1.1  dyoung 	if (hw->fc.strict_ieee)
   2470  1.1  dyoung 		reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
   2471  1.1  dyoung 
   2472  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
   2473  1.1  dyoung 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
   2474  1.1  dyoung 
   2475  1.1  dyoung 	/*
   2476  1.1  dyoung 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
   2477  1.1  dyoung 	 * and copper. There is no need to set the PCS1GCTL register.
   2478  1.1  dyoung 	 *
   2479  1.1  dyoung 	 */
   2480  1.1  dyoung 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
   2481  1.1  dyoung 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
   2482  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
   2483  1.1  dyoung 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
   2484  1.1  dyoung 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
   2485  1.1  dyoung 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2486  1.1  dyoung 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
   2487  1.1  dyoung 	}
   2488  1.1  dyoung 
   2489  1.1  dyoung 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
   2490  1.1  dyoung out:
   2491  1.1  dyoung 	return ret_val;
   2492  1.1  dyoung }
   2493  1.1  dyoung 
   2494  1.1  dyoung /**
   2495  1.1  dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   2496  1.1  dyoung  *  @hw: pointer to hardware structure
   2497  1.1  dyoung  *
   2498  1.1  dyoung  *  Disables PCI-Express master access and verifies there are no pending
   2499  1.1  dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   2500  1.1  dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   2501  1.1  dyoung  *  is returned signifying master requests disabled.
   2502  1.1  dyoung  **/
   2503  1.1  dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   2504  1.1  dyoung {
   2505  1.1  dyoung 	u32 i;
   2506  1.1  dyoung 	u32 reg_val;
   2507  1.1  dyoung 	u32 number_of_queues;
   2508  1.1  dyoung 	s32 status = IXGBE_SUCCESS;
   2509  1.1  dyoung 
   2510  1.1  dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   2511  1.1  dyoung 
   2512  1.1  dyoung 	/* Just jump out if bus mastering is already disabled */
   2513  1.1  dyoung 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2514  1.1  dyoung 		goto out;
   2515  1.1  dyoung 
   2516  1.1  dyoung 	/* Disable the receive unit by stopping each queue */
   2517  1.1  dyoung 	number_of_queues = hw->mac.max_rx_queues;
   2518  1.1  dyoung 	for (i = 0; i < number_of_queues; i++) {
   2519  1.1  dyoung 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   2520  1.1  dyoung 		if (reg_val & IXGBE_RXDCTL_ENABLE) {
   2521  1.1  dyoung 			reg_val &= ~IXGBE_RXDCTL_ENABLE;
   2522  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   2523  1.1  dyoung 		}
   2524  1.1  dyoung 	}
   2525  1.1  dyoung 
   2526  1.1  dyoung 	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
   2527  1.1  dyoung 	reg_val |= IXGBE_CTRL_GIO_DIS;
   2528  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
   2529  1.1  dyoung 
   2530  1.1  dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2531  1.1  dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2532  1.1  dyoung 			goto check_device_status;
   2533  1.1  dyoung 		usec_delay(100);
   2534  1.1  dyoung 	}
   2535  1.1  dyoung 
   2536  1.1  dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   2537  1.1  dyoung 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   2538  1.1  dyoung 
   2539  1.1  dyoung 	/*
   2540  1.1  dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   2541  1.1  dyoung 	 * transactions pending.
   2542  1.1  dyoung 	 */
   2543  1.1  dyoung check_device_status:
   2544  1.1  dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2545  1.1  dyoung 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   2546  1.1  dyoung 			IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   2547  1.1  dyoung 			break;
   2548  1.1  dyoung 		usec_delay(100);
   2549  1.1  dyoung 	}
   2550  1.1  dyoung 
   2551  1.1  dyoung 	if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
   2552  1.1  dyoung 		DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
   2553  1.1  dyoung 	else
   2554  1.1  dyoung 		goto out;
   2555  1.1  dyoung 
   2556  1.1  dyoung 	/*
   2557  1.1  dyoung 	 * Two consecutive resets are required via CTRL.RST per datasheet
   2558  1.1  dyoung 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   2559  1.1  dyoung 	 * of this need.  The first reset prevents new master requests from
   2560  1.1  dyoung 	 * being issued by our device.  We then must wait 1usec for any
   2561  1.1  dyoung 	 * remaining completions from the PCIe bus to trickle in, and then reset
   2562  1.1  dyoung 	 * again to clear out any effects they may have had on our device.
   2563  1.1  dyoung 	 */
   2564  1.1  dyoung 	 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   2565  1.1  dyoung 
   2566  1.1  dyoung out:
   2567  1.1  dyoung 	return status;
   2568  1.1  dyoung }
   2569  1.1  dyoung 
   2570  1.1  dyoung 
   2571  1.1  dyoung /**
   2572  1.1  dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   2573  1.1  dyoung  *  @hw: pointer to hardware structure
   2574  1.1  dyoung  *  @mask: Mask to specify which semaphore to acquire
   2575  1.1  dyoung  *
   2576  1.1  dyoung  *  Acquires the SWFW semaphore thought the GSSR register for the specified
   2577  1.1  dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2578  1.1  dyoung  **/
   2579  1.1  dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2580  1.1  dyoung {
   2581  1.1  dyoung 	u32 gssr;
   2582  1.1  dyoung 	u32 swmask = mask;
   2583  1.1  dyoung 	u32 fwmask = mask << 5;
   2584  1.1  dyoung 	s32 timeout = 200;
   2585  1.1  dyoung 
   2586  1.1  dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   2587  1.1  dyoung 
   2588  1.1  dyoung 	while (timeout) {
   2589  1.1  dyoung 		/*
   2590  1.1  dyoung 		 * SW EEPROM semaphore bit is used for access to all
   2591  1.1  dyoung 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
   2592  1.1  dyoung 		 */
   2593  1.1  dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   2594  1.1  dyoung 			return IXGBE_ERR_SWFW_SYNC;
   2595  1.1  dyoung 
   2596  1.1  dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2597  1.1  dyoung 		if (!(gssr & (fwmask | swmask)))
   2598  1.1  dyoung 			break;
   2599  1.1  dyoung 
   2600  1.1  dyoung 		/*
   2601  1.1  dyoung 		 * Firmware currently using resource (fwmask) or other software
   2602  1.1  dyoung 		 * thread currently using resource (swmask)
   2603  1.1  dyoung 		 */
   2604  1.1  dyoung 		ixgbe_release_eeprom_semaphore(hw);
   2605  1.1  dyoung 		msec_delay(5);
   2606  1.1  dyoung 		timeout--;
   2607  1.1  dyoung 	}
   2608  1.1  dyoung 
   2609  1.1  dyoung 	if (!timeout) {
   2610  1.1  dyoung 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
   2611  1.1  dyoung 		return IXGBE_ERR_SWFW_SYNC;
   2612  1.1  dyoung 	}
   2613  1.1  dyoung 
   2614  1.1  dyoung 	gssr |= swmask;
   2615  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2616  1.1  dyoung 
   2617  1.1  dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2618  1.1  dyoung 	return IXGBE_SUCCESS;
   2619  1.1  dyoung }
   2620  1.1  dyoung 
   2621  1.1  dyoung /**
   2622  1.1  dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   2623  1.1  dyoung  *  @hw: pointer to hardware structure
   2624  1.1  dyoung  *  @mask: Mask to specify which semaphore to release
   2625  1.1  dyoung  *
   2626  1.1  dyoung  *  Releases the SWFW semaphore thought the GSSR register for the specified
   2627  1.1  dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2628  1.1  dyoung  **/
   2629  1.1  dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2630  1.1  dyoung {
   2631  1.1  dyoung 	u32 gssr;
   2632  1.1  dyoung 	u32 swmask = mask;
   2633  1.1  dyoung 
   2634  1.1  dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   2635  1.1  dyoung 
   2636  1.1  dyoung 	ixgbe_get_eeprom_semaphore(hw);
   2637  1.1  dyoung 
   2638  1.1  dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2639  1.1  dyoung 	gssr &= ~swmask;
   2640  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2641  1.1  dyoung 
   2642  1.1  dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2643  1.1  dyoung }
   2644  1.1  dyoung 
   2645  1.1  dyoung /**
   2646  1.1  dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   2647  1.1  dyoung  *  @hw: pointer to hardware structure
   2648  1.1  dyoung  *  @regval: register value to write to RXCTRL
   2649  1.1  dyoung  *
   2650  1.1  dyoung  *  Enables the Rx DMA unit
   2651  1.1  dyoung  **/
   2652  1.1  dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   2653  1.1  dyoung {
   2654  1.1  dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   2655  1.1  dyoung 
   2656  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   2657  1.1  dyoung 
   2658  1.1  dyoung 	return IXGBE_SUCCESS;
   2659  1.1  dyoung }
   2660  1.1  dyoung 
   2661  1.1  dyoung /**
   2662  1.1  dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   2663  1.1  dyoung  *  @hw: pointer to hardware structure
   2664  1.1  dyoung  *  @index: led number to blink
   2665  1.1  dyoung  **/
   2666  1.1  dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   2667  1.1  dyoung {
   2668  1.1  dyoung 	ixgbe_link_speed speed = 0;
   2669  1.1  dyoung 	bool link_up = 0;
   2670  1.1  dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2671  1.1  dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2672  1.1  dyoung 
   2673  1.1  dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   2674  1.1  dyoung 
   2675  1.1  dyoung 	/*
   2676  1.1  dyoung 	 * Link must be up to auto-blink the LEDs;
   2677  1.1  dyoung 	 * Force it if link is down.
   2678  1.1  dyoung 	 */
   2679  1.1  dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2680  1.1  dyoung 
   2681  1.1  dyoung 	if (!link_up) {
   2682  1.1  dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2683  1.1  dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   2684  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   2685  1.1  dyoung 		msec_delay(10);
   2686  1.1  dyoung 	}
   2687  1.1  dyoung 
   2688  1.1  dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2689  1.1  dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   2690  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2691  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   2692  1.1  dyoung 
   2693  1.1  dyoung 	return IXGBE_SUCCESS;
   2694  1.1  dyoung }
   2695  1.1  dyoung 
   2696  1.1  dyoung /**
   2697  1.1  dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   2698  1.1  dyoung  *  @hw: pointer to hardware structure
   2699  1.1  dyoung  *  @index: led number to stop blinking
   2700  1.1  dyoung  **/
   2701  1.1  dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   2702  1.1  dyoung {
   2703  1.1  dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2704  1.1  dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2705  1.1  dyoung 
   2706  1.1  dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   2707  1.1  dyoung 
   2708  1.1  dyoung 
   2709  1.1  dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   2710  1.1  dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2711  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   2712  1.1  dyoung 
   2713  1.1  dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2714  1.1  dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   2715  1.1  dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   2716  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2717  1.1  dyoung 	IXGBE_WRITE_FLUSH(hw);
   2718  1.1  dyoung 
   2719  1.1  dyoung 	return IXGBE_SUCCESS;
   2720  1.1  dyoung }
   2721  1.1  dyoung 
   2722  1.1  dyoung /**
   2723  1.1  dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   2724  1.1  dyoung  *  @hw: pointer to hardware structure
   2725  1.1  dyoung  *  @san_mac_offset: SAN MAC address offset
   2726  1.1  dyoung  *
   2727  1.1  dyoung  *  This function will read the EEPROM location for the SAN MAC address
   2728  1.1  dyoung  *  pointer, and returns the value at that location.  This is used in both
   2729  1.1  dyoung  *  get and set mac_addr routines.
   2730  1.1  dyoung  **/
   2731  1.1  dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   2732  1.1  dyoung                                         u16 *san_mac_offset)
   2733  1.1  dyoung {
   2734  1.1  dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   2735  1.1  dyoung 
   2736  1.1  dyoung 	/*
   2737  1.1  dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   2738  1.1  dyoung 	 * available.
   2739  1.1  dyoung 	 */
   2740  1.1  dyoung 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
   2741  1.1  dyoung 
   2742  1.1  dyoung 	return IXGBE_SUCCESS;
   2743  1.1  dyoung }
   2744  1.1  dyoung 
   2745  1.1  dyoung /**
   2746  1.1  dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   2747  1.1  dyoung  *  @hw: pointer to hardware structure
   2748  1.1  dyoung  *  @san_mac_addr: SAN MAC address
   2749  1.1  dyoung  *
   2750  1.1  dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   2751  1.1  dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   2752  1.1  dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   2753  1.1  dyoung  *  upon for non-SFP connections, so we must call it here.
   2754  1.1  dyoung  **/
   2755  1.1  dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   2756  1.1  dyoung {
   2757  1.1  dyoung 	u16 san_mac_data, san_mac_offset;
   2758  1.1  dyoung 	u8 i;
   2759  1.1  dyoung 
   2760  1.1  dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   2761  1.1  dyoung 
   2762  1.1  dyoung 	/*
   2763  1.1  dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   2764  1.1  dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   2765  1.1  dyoung 	 */
   2766  1.1  dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   2767  1.1  dyoung 
   2768  1.1  dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   2769  1.1  dyoung 		/*
   2770  1.1  dyoung 		 * No addresses available in this EEPROM.  It's not an
   2771  1.1  dyoung 		 * error though, so just wipe the local address and return.
   2772  1.1  dyoung 		 */
   2773  1.1  dyoung 		for (i = 0; i < 6; i++)
   2774  1.1  dyoung 			san_mac_addr[i] = 0xFF;
   2775  1.1  dyoung 
   2776  1.1  dyoung 		goto san_mac_addr_out;
   2777  1.1  dyoung 	}
   2778  1.1  dyoung 
   2779  1.1  dyoung 	/* make sure we know which port we need to program */
   2780  1.1  dyoung 	hw->mac.ops.set_lan_id(hw);
   2781  1.1  dyoung 	/* apply the port offset to the address offset */
   2782  1.1  dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   2783  1.1  dyoung 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   2784  1.1  dyoung 	for (i = 0; i < 3; i++) {
   2785  1.1  dyoung 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
   2786  1.1  dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   2787  1.1  dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   2788  1.1  dyoung 		san_mac_offset++;
   2789  1.1  dyoung 	}
   2790  1.1  dyoung 
   2791  1.1  dyoung san_mac_addr_out:
   2792  1.1  dyoung 	return IXGBE_SUCCESS;
   2793  1.1  dyoung }
   2794  1.1  dyoung 
   2795  1.1  dyoung /**
   2796  1.1  dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   2797  1.1  dyoung  *  @hw: pointer to hardware structure
   2798  1.1  dyoung  *  @san_mac_addr: SAN MAC address
   2799  1.1  dyoung  *
   2800  1.1  dyoung  *  Write a SAN MAC address to the EEPROM.
   2801  1.1  dyoung  **/
   2802  1.1  dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   2803  1.1  dyoung {
   2804  1.1  dyoung 	s32 status = IXGBE_SUCCESS;
   2805  1.1  dyoung 	u16 san_mac_data, san_mac_offset;
   2806  1.1  dyoung 	u8 i;
   2807  1.1  dyoung 
   2808  1.1  dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   2809  1.1  dyoung 
   2810  1.1  dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   2811  1.1  dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   2812  1.1  dyoung 
   2813  1.1  dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   2814  1.1  dyoung 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
   2815  1.1  dyoung 		goto san_mac_addr_out;
   2816  1.1  dyoung 	}
   2817  1.1  dyoung 
   2818  1.1  dyoung 	/* Make sure we know which port we need to write */
   2819  1.1  dyoung 	hw->mac.ops.set_lan_id(hw);
   2820  1.1  dyoung 	/* Apply the port offset to the address offset */
   2821  1.1  dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   2822  1.1  dyoung 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   2823  1.1  dyoung 
   2824  1.1  dyoung 	for (i = 0; i < 3; i++) {
   2825  1.1  dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   2826  1.1  dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   2827  1.1  dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   2828  1.1  dyoung 		san_mac_offset++;
   2829  1.1  dyoung 	}
   2830  1.1  dyoung 
   2831  1.1  dyoung san_mac_addr_out:
   2832  1.1  dyoung 	return status;
   2833  1.1  dyoung }
   2834  1.1  dyoung 
   2835  1.1  dyoung /**
   2836  1.1  dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   2837  1.1  dyoung  *  @hw: pointer to hardware structure
   2838  1.1  dyoung  *
   2839  1.1  dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   2840  1.1  dyoung  *  the capabilities table.
   2841  1.1  dyoung  **/
   2842  1.1  dyoung u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   2843  1.1  dyoung {
   2844  1.1  dyoung 	u32 msix_count = 64;
   2845  1.1  dyoung 
   2846  1.1  dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   2847  1.1  dyoung 	if (hw->mac.msix_vectors_from_pcie) {
   2848  1.1  dyoung 		msix_count = IXGBE_READ_PCIE_WORD(hw,
   2849  1.1  dyoung 		                                  IXGBE_PCIE_MSIX_82599_CAPS);
   2850  1.1  dyoung 		msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   2851  1.1  dyoung 
   2852  1.1  dyoung 		/* MSI-X count is zero-based in HW, so increment to give
   2853  1.1  dyoung 		 * proper value */
   2854  1.1  dyoung 		msix_count++;
   2855  1.1  dyoung 	}
   2856  1.1  dyoung 
   2857  1.1  dyoung 	return msix_count;
   2858  1.1  dyoung }
   2859  1.1  dyoung 
   2860  1.1  dyoung /**
   2861  1.1  dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   2862  1.1  dyoung  *  @hw: pointer to hardware structure
   2863  1.1  dyoung  *  @addr: Address to put into receive address register
   2864  1.1  dyoung  *  @vmdq: VMDq pool to assign
   2865  1.1  dyoung  *
   2866  1.1  dyoung  *  Puts an ethernet address into a receive address register, or
   2867  1.1  dyoung  *  finds the rar that it is aleady in; adds to the pool list
   2868  1.1  dyoung  **/
   2869  1.1  dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2870  1.1  dyoung {
   2871  1.1  dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   2872  1.1  dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   2873  1.1  dyoung 	u32 rar;
   2874  1.1  dyoung 	u32 rar_low, rar_high;
   2875  1.1  dyoung 	u32 addr_low, addr_high;
   2876  1.1  dyoung 
   2877  1.1  dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   2878  1.1  dyoung 
   2879  1.1  dyoung 	/* swap bytes for HW little endian */
   2880  1.1  dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   2881  1.1  dyoung 			    | (addr[2] << 16)
   2882  1.1  dyoung 			    | (addr[3] << 24);
   2883  1.1  dyoung 	addr_high = addr[4] | (addr[5] << 8);
   2884  1.1  dyoung 
   2885  1.1  dyoung 	/*
   2886  1.1  dyoung 	 * Either find the mac_id in rar or find the first empty space.
   2887  1.1  dyoung 	 * rar_highwater points to just after the highest currently used
   2888  1.1  dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   2889  1.1  dyoung 	 * rar to the top.
   2890  1.1  dyoung 	 */
   2891  1.1  dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   2892  1.1  dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   2893  1.1  dyoung 
   2894  1.1  dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   2895  1.1  dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   2896  1.1  dyoung 			first_empty_rar = rar;
   2897  1.1  dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   2898  1.1  dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   2899  1.1  dyoung 			if (rar_low == addr_low)
   2900  1.1  dyoung 				break;    /* found it already in the rars */
   2901  1.1  dyoung 		}
   2902  1.1  dyoung 	}
   2903  1.1  dyoung 
   2904  1.1  dyoung 	if (rar < hw->mac.rar_highwater) {
   2905  1.1  dyoung 		/* already there so just add to the pool bits */
   2906  1.1  dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   2907  1.1  dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   2908  1.1  dyoung 		/* stick it into first empty RAR slot we found */
   2909  1.1  dyoung 		rar = first_empty_rar;
   2910  1.1  dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2911  1.1  dyoung 	} else if (rar == hw->mac.rar_highwater) {
   2912  1.1  dyoung 		/* add it to the top of the list and inc the highwater mark */
   2913  1.1  dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2914  1.1  dyoung 		hw->mac.rar_highwater++;
   2915  1.1  dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   2916  1.1  dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   2917  1.1  dyoung 	}
   2918  1.1  dyoung 
   2919  1.1  dyoung 	/*
   2920  1.1  dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   2921  1.1  dyoung 	 * remains cleared to be sure default pool packets will get delivered
   2922  1.1  dyoung 	 */
   2923  1.1  dyoung 	if (rar == 0)
   2924  1.1  dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   2925  1.1  dyoung 
   2926  1.1  dyoung 	return rar;
   2927  1.1  dyoung }
   2928  1.1  dyoung 
   2929  1.1  dyoung /**
   2930  1.1  dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   2931  1.1  dyoung  *  @hw: pointer to hardware struct
   2932  1.1  dyoung  *  @rar: receive address register index to disassociate
   2933  1.1  dyoung  *  @vmdq: VMDq pool index to remove from the rar
   2934  1.1  dyoung  **/
   2935  1.1  dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   2936  1.1  dyoung {
   2937  1.1  dyoung 	u32 mpsar_lo, mpsar_hi;
   2938  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2939  1.1  dyoung 
   2940  1.1  dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   2941  1.1  dyoung 
   2942  1.1  dyoung 	/* Make sure we are using a valid rar index range */
   2943  1.1  dyoung 	if (rar >= rar_entries) {
   2944  1.1  dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   2945  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2946  1.1  dyoung 	}
   2947  1.1  dyoung 
   2948  1.1  dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   2949  1.1  dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   2950  1.1  dyoung 
   2951  1.1  dyoung 	if (!mpsar_lo && !mpsar_hi)
   2952  1.1  dyoung 		goto done;
   2953  1.1  dyoung 
   2954  1.1  dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   2955  1.1  dyoung 		if (mpsar_lo) {
   2956  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   2957  1.1  dyoung 			mpsar_lo = 0;
   2958  1.1  dyoung 		}
   2959  1.1  dyoung 		if (mpsar_hi) {
   2960  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   2961  1.1  dyoung 			mpsar_hi = 0;
   2962  1.1  dyoung 		}
   2963  1.1  dyoung 	} else if (vmdq < 32) {
   2964  1.1  dyoung 		mpsar_lo &= ~(1 << vmdq);
   2965  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   2966  1.1  dyoung 	} else {
   2967  1.1  dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   2968  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   2969  1.1  dyoung 	}
   2970  1.1  dyoung 
   2971  1.1  dyoung 	/* was that the last pool using this rar? */
   2972  1.1  dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   2973  1.1  dyoung 		hw->mac.ops.clear_rar(hw, rar);
   2974  1.1  dyoung done:
   2975  1.1  dyoung 	return IXGBE_SUCCESS;
   2976  1.1  dyoung }
   2977  1.1  dyoung 
   2978  1.1  dyoung /**
   2979  1.1  dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   2980  1.1  dyoung  *  @hw: pointer to hardware struct
   2981  1.1  dyoung  *  @rar: receive address register index to associate with a VMDq index
   2982  1.1  dyoung  *  @vmdq: VMDq pool index
   2983  1.1  dyoung  **/
   2984  1.1  dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   2985  1.1  dyoung {
   2986  1.1  dyoung 	u32 mpsar;
   2987  1.1  dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2988  1.1  dyoung 
   2989  1.1  dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   2990  1.1  dyoung 
   2991  1.1  dyoung 	/* Make sure we are using a valid rar index range */
   2992  1.1  dyoung 	if (rar >= rar_entries) {
   2993  1.1  dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   2994  1.1  dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2995  1.1  dyoung 	}
   2996  1.1  dyoung 
   2997  1.1  dyoung 	if (vmdq < 32) {
   2998  1.1  dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   2999  1.1  dyoung 		mpsar |= 1 << vmdq;
   3000  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3001  1.1  dyoung 	} else {
   3002  1.1  dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3003  1.1  dyoung 		mpsar |= 1 << (vmdq - 32);
   3004  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3005  1.1  dyoung 	}
   3006  1.1  dyoung 	return IXGBE_SUCCESS;
   3007  1.1  dyoung }
   3008  1.1  dyoung 
   3009  1.1  dyoung /**
   3010  1.1  dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3011  1.1  dyoung  *  @hw: pointer to hardware structure
   3012  1.1  dyoung  **/
   3013  1.1  dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3014  1.1  dyoung {
   3015  1.1  dyoung 	int i;
   3016  1.1  dyoung 
   3017  1.1  dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3018  1.1  dyoung 	DEBUGOUT(" Clearing UTA\n");
   3019  1.1  dyoung 
   3020  1.1  dyoung 	for (i = 0; i < 128; i++)
   3021  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3022  1.1  dyoung 
   3023  1.1  dyoung 	return IXGBE_SUCCESS;
   3024  1.1  dyoung }
   3025  1.1  dyoung 
   3026  1.1  dyoung /**
   3027  1.1  dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3028  1.1  dyoung  *  @hw: pointer to hardware structure
   3029  1.1  dyoung  *  @vlan: VLAN id to write to VLAN filter
   3030  1.1  dyoung  *
   3031  1.1  dyoung  *  return the VLVF index where this VLAN id should be placed
   3032  1.1  dyoung  *
   3033  1.1  dyoung  **/
   3034  1.1  dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3035  1.1  dyoung {
   3036  1.1  dyoung 	u32 bits = 0;
   3037  1.1  dyoung 	u32 first_empty_slot = 0;
   3038  1.1  dyoung 	s32 regindex;
   3039  1.1  dyoung 
   3040  1.1  dyoung 	/* short cut the special case */
   3041  1.1  dyoung 	if (vlan == 0)
   3042  1.1  dyoung 		return 0;
   3043  1.1  dyoung 
   3044  1.1  dyoung 	/*
   3045  1.1  dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3046  1.1  dyoung 	  * slot found along the way
   3047  1.1  dyoung 	  */
   3048  1.1  dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3049  1.1  dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3050  1.1  dyoung 		if (!bits && !(first_empty_slot))
   3051  1.1  dyoung 			first_empty_slot = regindex;
   3052  1.1  dyoung 		else if ((bits & 0x0FFF) == vlan)
   3053  1.1  dyoung 			break;
   3054  1.1  dyoung 	}
   3055  1.1  dyoung 
   3056  1.1  dyoung 	/*
   3057  1.1  dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3058  1.1  dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3059  1.1  dyoung 	  * vlan id.
   3060  1.1  dyoung 	  */
   3061  1.1  dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3062  1.1  dyoung 		if (first_empty_slot)
   3063  1.1  dyoung 			regindex = first_empty_slot;
   3064  1.1  dyoung 		else {
   3065  1.1  dyoung 			DEBUGOUT("No space in VLVF.\n");
   3066  1.1  dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3067  1.1  dyoung 		}
   3068  1.1  dyoung 	}
   3069  1.1  dyoung 
   3070  1.1  dyoung 	return regindex;
   3071  1.1  dyoung }
   3072  1.1  dyoung 
   3073  1.1  dyoung /**
   3074  1.1  dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3075  1.1  dyoung  *  @hw: pointer to hardware structure
   3076  1.1  dyoung  *  @vlan: VLAN id to write to VLAN filter
   3077  1.1  dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3078  1.1  dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3079  1.1  dyoung  *
   3080  1.1  dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3081  1.1  dyoung  **/
   3082  1.1  dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3083  1.1  dyoung                            bool vlan_on)
   3084  1.1  dyoung {
   3085  1.1  dyoung 	s32 regindex;
   3086  1.1  dyoung 	u32 bitindex;
   3087  1.1  dyoung 	u32 vfta;
   3088  1.1  dyoung 	u32 bits;
   3089  1.1  dyoung 	u32 vt;
   3090  1.1  dyoung 	u32 targetbit;
   3091  1.1  dyoung 	bool vfta_changed = FALSE;
   3092  1.1  dyoung 
   3093  1.1  dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3094  1.1  dyoung 
   3095  1.1  dyoung 	if (vlan > 4095)
   3096  1.1  dyoung 		return IXGBE_ERR_PARAM;
   3097  1.1  dyoung 
   3098  1.1  dyoung 	/*
   3099  1.1  dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3100  1.1  dyoung 	 * VLVF and VLVFB if VT Mode is set
   3101  1.1  dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3102  1.1  dyoung 	 */
   3103  1.1  dyoung 
   3104  1.1  dyoung 	/* Part 1
   3105  1.1  dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3106  1.1  dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3107  1.1  dyoung 	 *    bits[11-5]: which register
   3108  1.1  dyoung 	 *    bits[4-0]:  which bit in the register
   3109  1.1  dyoung 	 */
   3110  1.1  dyoung 	regindex = (vlan >> 5) & 0x7F;
   3111  1.1  dyoung 	bitindex = vlan & 0x1F;
   3112  1.1  dyoung 	targetbit = (1 << bitindex);
   3113  1.1  dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3114  1.1  dyoung 
   3115  1.1  dyoung 	if (vlan_on) {
   3116  1.1  dyoung 		if (!(vfta & targetbit)) {
   3117  1.1  dyoung 			vfta |= targetbit;
   3118  1.1  dyoung 			vfta_changed = TRUE;
   3119  1.1  dyoung 		}
   3120  1.1  dyoung 	} else {
   3121  1.1  dyoung 		if ((vfta & targetbit)) {
   3122  1.1  dyoung 			vfta &= ~targetbit;
   3123  1.1  dyoung 			vfta_changed = TRUE;
   3124  1.1  dyoung 		}
   3125  1.1  dyoung 	}
   3126  1.1  dyoung 
   3127  1.1  dyoung 	/* Part 2
   3128  1.1  dyoung 	 * If VT Mode is set
   3129  1.1  dyoung 	 *   Either vlan_on
   3130  1.1  dyoung 	 *     make sure the vlan is in VLVF
   3131  1.1  dyoung 	 *     set the vind bit in the matching VLVFB
   3132  1.1  dyoung 	 *   Or !vlan_on
   3133  1.1  dyoung 	 *     clear the pool bit and possibly the vind
   3134  1.1  dyoung 	 */
   3135  1.1  dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3136  1.1  dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3137  1.1  dyoung 		s32 vlvf_index;
   3138  1.1  dyoung 
   3139  1.1  dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3140  1.1  dyoung 		if (vlvf_index < 0)
   3141  1.1  dyoung 			return vlvf_index;
   3142  1.1  dyoung 
   3143  1.1  dyoung 		if (vlan_on) {
   3144  1.1  dyoung 			/* set the pool bit */
   3145  1.1  dyoung 			if (vind < 32) {
   3146  1.1  dyoung 				bits = IXGBE_READ_REG(hw,
   3147  1.1  dyoung 						IXGBE_VLVFB(vlvf_index*2));
   3148  1.1  dyoung 				bits |= (1 << vind);
   3149  1.1  dyoung 				IXGBE_WRITE_REG(hw,
   3150  1.1  dyoung 						IXGBE_VLVFB(vlvf_index*2),
   3151  1.1  dyoung 						bits);
   3152  1.1  dyoung 			} else {
   3153  1.1  dyoung 				bits = IXGBE_READ_REG(hw,
   3154  1.1  dyoung 						IXGBE_VLVFB((vlvf_index*2)+1));
   3155  1.1  dyoung 				bits |= (1 << (vind-32));
   3156  1.1  dyoung 				IXGBE_WRITE_REG(hw,
   3157  1.1  dyoung 						IXGBE_VLVFB((vlvf_index*2)+1),
   3158  1.1  dyoung 						bits);
   3159  1.1  dyoung 			}
   3160  1.1  dyoung 		} else {
   3161  1.1  dyoung 			/* clear the pool bit */
   3162  1.1  dyoung 			if (vind < 32) {
   3163  1.1  dyoung 				bits = IXGBE_READ_REG(hw,
   3164  1.1  dyoung 						IXGBE_VLVFB(vlvf_index*2));
   3165  1.1  dyoung 				bits &= ~(1 << vind);
   3166  1.1  dyoung 				IXGBE_WRITE_REG(hw,
   3167  1.1  dyoung 						IXGBE_VLVFB(vlvf_index*2),
   3168  1.1  dyoung 						bits);
   3169  1.1  dyoung 				bits |= IXGBE_READ_REG(hw,
   3170  1.1  dyoung 						IXGBE_VLVFB((vlvf_index*2)+1));
   3171  1.1  dyoung 			} else {
   3172  1.1  dyoung 				bits = IXGBE_READ_REG(hw,
   3173  1.1  dyoung 						IXGBE_VLVFB((vlvf_index*2)+1));
   3174  1.1  dyoung 				bits &= ~(1 << (vind-32));
   3175  1.1  dyoung 				IXGBE_WRITE_REG(hw,
   3176  1.1  dyoung 						IXGBE_VLVFB((vlvf_index*2)+1),
   3177  1.1  dyoung 						bits);
   3178  1.1  dyoung 				bits |= IXGBE_READ_REG(hw,
   3179  1.1  dyoung 						IXGBE_VLVFB(vlvf_index*2));
   3180  1.1  dyoung 			}
   3181  1.1  dyoung 		}
   3182  1.1  dyoung 
   3183  1.1  dyoung 		/*
   3184  1.1  dyoung 		 * If there are still bits set in the VLVFB registers
   3185  1.1  dyoung 		 * for the VLAN ID indicated we need to see if the
   3186  1.1  dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3187  1.1  dyoung 		 * If the caller has requested that we clear the VFTA
   3188  1.1  dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3189  1.1  dyoung 		 * ID entry then ignore the request.  We're not worried
   3190  1.1  dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3191  1.1  dyoung 		 * entry bit on, only when requested to turn it off as
   3192  1.1  dyoung 		 * there may be multiple pools and/or VFs using the
   3193  1.1  dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   3194  1.1  dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3195  1.1  dyoung 		 * been cleared.  This will be indicated by "bits" being
   3196  1.1  dyoung 		 * zero.
   3197  1.1  dyoung 		 */
   3198  1.1  dyoung 		if (bits) {
   3199  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3200  1.1  dyoung 					(IXGBE_VLVF_VIEN | vlan));
   3201  1.1  dyoung 			if (!vlan_on) {
   3202  1.1  dyoung 				/* someone wants to clear the vfta entry
   3203  1.1  dyoung 				 * but some pools/VFs are still using it.
   3204  1.1  dyoung 				 * Ignore it. */
   3205  1.1  dyoung 				vfta_changed = FALSE;
   3206  1.1  dyoung 			}
   3207  1.1  dyoung 		}
   3208  1.1  dyoung 		else
   3209  1.1  dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3210  1.1  dyoung 	}
   3211  1.1  dyoung 
   3212  1.1  dyoung 	if (vfta_changed)
   3213  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3214  1.1  dyoung 
   3215  1.1  dyoung 	return IXGBE_SUCCESS;
   3216  1.1  dyoung }
   3217  1.1  dyoung 
   3218  1.1  dyoung /**
   3219  1.1  dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3220  1.1  dyoung  *  @hw: pointer to hardware structure
   3221  1.1  dyoung  *
   3222  1.1  dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3223  1.1  dyoung  **/
   3224  1.1  dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3225  1.1  dyoung {
   3226  1.1  dyoung 	u32 offset;
   3227  1.1  dyoung 
   3228  1.1  dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3229  1.1  dyoung 
   3230  1.1  dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3231  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3232  1.1  dyoung 
   3233  1.1  dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3234  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3235  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
   3236  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
   3237  1.1  dyoung 	}
   3238  1.1  dyoung 
   3239  1.1  dyoung 	return IXGBE_SUCCESS;
   3240  1.1  dyoung }
   3241  1.1  dyoung 
   3242  1.1  dyoung /**
   3243  1.1  dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   3244  1.1  dyoung  *  @hw: pointer to hardware structure
   3245  1.1  dyoung  *  @speed: pointer to link speed
   3246  1.1  dyoung  *  @link_up: TRUE when link is up
   3247  1.1  dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   3248  1.1  dyoung  *
   3249  1.1  dyoung  *  Reads the links register to determine if link is up and the current speed
   3250  1.1  dyoung  **/
   3251  1.1  dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3252  1.1  dyoung                                  bool *link_up, bool link_up_wait_to_complete)
   3253  1.1  dyoung {
   3254  1.1  dyoung 	u32 links_reg, links_orig;
   3255  1.1  dyoung 	u32 i;
   3256  1.1  dyoung 
   3257  1.1  dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   3258  1.1  dyoung 
   3259  1.1  dyoung 	/* clear the old state */
   3260  1.1  dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3261  1.1  dyoung 
   3262  1.1  dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3263  1.1  dyoung 
   3264  1.1  dyoung 	if (links_orig != links_reg) {
   3265  1.1  dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   3266  1.1  dyoung 		          links_orig, links_reg);
   3267  1.1  dyoung 	}
   3268  1.1  dyoung 
   3269  1.1  dyoung 	if (link_up_wait_to_complete) {
   3270  1.1  dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3271  1.1  dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   3272  1.1  dyoung 				*link_up = TRUE;
   3273  1.1  dyoung 				break;
   3274  1.1  dyoung 			} else {
   3275  1.1  dyoung 				*link_up = FALSE;
   3276  1.1  dyoung 			}
   3277  1.1  dyoung 			msec_delay(100);
   3278  1.1  dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3279  1.1  dyoung 		}
   3280  1.1  dyoung 	} else {
   3281  1.1  dyoung 		if (links_reg & IXGBE_LINKS_UP)
   3282  1.1  dyoung 			*link_up = TRUE;
   3283  1.1  dyoung 		else
   3284  1.1  dyoung 			*link_up = FALSE;
   3285  1.1  dyoung 	}
   3286  1.1  dyoung 
   3287  1.1  dyoung 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3288  1.1  dyoung 	    IXGBE_LINKS_SPEED_10G_82599)
   3289  1.1  dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3290  1.1  dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3291  1.1  dyoung 	         IXGBE_LINKS_SPEED_1G_82599)
   3292  1.1  dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3293  1.1  dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3294  1.1  dyoung 	         IXGBE_LINKS_SPEED_100_82599)
   3295  1.1  dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   3296  1.1  dyoung 	else
   3297  1.1  dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3298  1.1  dyoung 
   3299  1.1  dyoung 	/* if link is down, zero out the current_mode */
   3300  1.1  dyoung 	if (*link_up == FALSE) {
   3301  1.1  dyoung 		hw->fc.current_mode = ixgbe_fc_none;
   3302  1.1  dyoung 		hw->fc.fc_was_autonegged = FALSE;
   3303  1.1  dyoung 	}
   3304  1.1  dyoung 
   3305  1.1  dyoung 	return IXGBE_SUCCESS;
   3306  1.1  dyoung }
   3307  1.1  dyoung 
   3308  1.1  dyoung /**
   3309  1.1  dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3310  1.1  dyoung  *  the EEPROM
   3311  1.1  dyoung  *  @hw: pointer to hardware structure
   3312  1.1  dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   3313  1.1  dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   3314  1.1  dyoung  *
   3315  1.1  dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   3316  1.1  dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   3317  1.1  dyoung  **/
   3318  1.1  dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3319  1.1  dyoung                                  u16 *wwpn_prefix)
   3320  1.1  dyoung {
   3321  1.1  dyoung 	u16 offset, caps;
   3322  1.1  dyoung 	u16 alt_san_mac_blk_offset;
   3323  1.1  dyoung 
   3324  1.1  dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   3325  1.1  dyoung 
   3326  1.1  dyoung 	/* clear output first */
   3327  1.1  dyoung 	*wwnn_prefix = 0xFFFF;
   3328  1.1  dyoung 	*wwpn_prefix = 0xFFFF;
   3329  1.1  dyoung 
   3330  1.1  dyoung 	/* check if alternative SAN MAC is supported */
   3331  1.1  dyoung 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
   3332  1.1  dyoung 	                    &alt_san_mac_blk_offset);
   3333  1.1  dyoung 
   3334  1.1  dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   3335  1.1  dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   3336  1.1  dyoung 		goto wwn_prefix_out;
   3337  1.1  dyoung 
   3338  1.1  dyoung 	/* check capability in alternative san mac address block */
   3339  1.1  dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3340  1.1  dyoung 	hw->eeprom.ops.read(hw, offset, &caps);
   3341  1.1  dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3342  1.1  dyoung 		goto wwn_prefix_out;
   3343  1.1  dyoung 
   3344  1.1  dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   3345  1.1  dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3346  1.1  dyoung 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
   3347  1.1  dyoung 
   3348  1.1  dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3349  1.1  dyoung 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
   3350  1.1  dyoung 
   3351  1.1  dyoung wwn_prefix_out:
   3352  1.1  dyoung 	return IXGBE_SUCCESS;
   3353  1.1  dyoung }
   3354  1.1  dyoung 
   3355  1.1  dyoung /**
   3356  1.1  dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   3357  1.1  dyoung  *  @hw: pointer to hardware structure
   3358  1.1  dyoung  *  @bs: the fcoe boot status
   3359  1.1  dyoung  *
   3360  1.1  dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   3361  1.1  dyoung  **/
   3362  1.1  dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   3363  1.1  dyoung {
   3364  1.1  dyoung 	u16 offset, caps, flags;
   3365  1.1  dyoung 	s32 status;
   3366  1.1  dyoung 
   3367  1.1  dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   3368  1.1  dyoung 
   3369  1.1  dyoung 	/* clear output first */
   3370  1.1  dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   3371  1.1  dyoung 
   3372  1.1  dyoung 	/* check if FCOE IBA block is present */
   3373  1.1  dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   3374  1.1  dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   3375  1.1  dyoung 	if (status != IXGBE_SUCCESS)
   3376  1.1  dyoung 		goto out;
   3377  1.1  dyoung 
   3378  1.1  dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   3379  1.1  dyoung 		goto out;
   3380  1.1  dyoung 
   3381  1.1  dyoung 	/* check if iSCSI FCOE block is populated */
   3382  1.1  dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   3383  1.1  dyoung 	if (status != IXGBE_SUCCESS)
   3384  1.1  dyoung 		goto out;
   3385  1.1  dyoung 
   3386  1.1  dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   3387  1.1  dyoung 		goto out;
   3388  1.1  dyoung 
   3389  1.1  dyoung 	/* read fcoe flags in iSCSI FCOE block */
   3390  1.1  dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   3391  1.1  dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   3392  1.1  dyoung 	if (status != IXGBE_SUCCESS)
   3393  1.1  dyoung 		goto out;
   3394  1.1  dyoung 
   3395  1.1  dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   3396  1.1  dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   3397  1.1  dyoung 	else
   3398  1.1  dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   3399  1.1  dyoung 
   3400  1.1  dyoung out:
   3401  1.1  dyoung 	return status;
   3402  1.1  dyoung }
   3403  1.1  dyoung 
   3404  1.1  dyoung /**
   3405  1.1  dyoung  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
   3406  1.1  dyoung  *  control
   3407  1.1  dyoung  *  @hw: pointer to hardware structure
   3408  1.1  dyoung  *
   3409  1.1  dyoung  *  There are several phys that do not support autoneg flow control. This
   3410  1.1  dyoung  *  function check the device id to see if the associated phy supports
   3411  1.1  dyoung  *  autoneg flow control.
   3412  1.1  dyoung  **/
   3413  1.1  dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
   3414  1.1  dyoung {
   3415  1.1  dyoung 
   3416  1.1  dyoung 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
   3417  1.1  dyoung 
   3418  1.1  dyoung 	switch (hw->device_id) {
   3419  1.1  dyoung 	case IXGBE_DEV_ID_82599_T3_LOM:
   3420  1.1  dyoung 		return IXGBE_SUCCESS;
   3421  1.1  dyoung 	default:
   3422  1.1  dyoung 		return IXGBE_ERR_FC_NOT_SUPPORTED;
   3423  1.1  dyoung 	}
   3424  1.1  dyoung }
   3425  1.1  dyoung 
   3426  1.1  dyoung /**
   3427  1.1  dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   3428  1.1  dyoung  *  @hw: pointer to hardware structure
   3429  1.1  dyoung  *  @enable: enable or disable switch for anti-spoofing
   3430  1.1  dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   3431  1.1  dyoung  *
   3432  1.1  dyoung  **/
   3433  1.1  dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   3434  1.1  dyoung {
   3435  1.1  dyoung 	int j;
   3436  1.1  dyoung 	int pf_target_reg = pf >> 3;
   3437  1.1  dyoung 	int pf_target_shift = pf % 8;
   3438  1.1  dyoung 	u32 pfvfspoof = 0;
   3439  1.1  dyoung 
   3440  1.1  dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3441  1.1  dyoung 		return;
   3442  1.1  dyoung 
   3443  1.1  dyoung 	if (enable)
   3444  1.1  dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   3445  1.1  dyoung 
   3446  1.1  dyoung 	/*
   3447  1.1  dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   3448  1.1  dyoung 	 * MAC anti-spoof enables in each register array element.
   3449  1.1  dyoung 	 */
   3450  1.1  dyoung 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   3451  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3452  1.1  dyoung 
   3453  1.1  dyoung 	/* If not enabling anti-spoofing then done */
   3454  1.1  dyoung 	if (!enable)
   3455  1.1  dyoung 		return;
   3456  1.1  dyoung 
   3457  1.1  dyoung 	/*
   3458  1.1  dyoung 	 * The PF should be allowed to spoof so that it can support
   3459  1.1  dyoung 	 * emulation mode NICs.  Reset the bit assigned to the PF
   3460  1.1  dyoung 	 */
   3461  1.1  dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
   3462  1.1  dyoung 	pfvfspoof ^= (1 << pf_target_shift);
   3463  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
   3464  1.1  dyoung }
   3465  1.1  dyoung 
   3466  1.1  dyoung /**
   3467  1.1  dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   3468  1.1  dyoung  *  @hw: pointer to hardware structure
   3469  1.1  dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   3470  1.1  dyoung  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   3471  1.1  dyoung  *
   3472  1.1  dyoung  **/
   3473  1.1  dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3474  1.1  dyoung {
   3475  1.1  dyoung 	int vf_target_reg = vf >> 3;
   3476  1.1  dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   3477  1.1  dyoung 	u32 pfvfspoof;
   3478  1.1  dyoung 
   3479  1.1  dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3480  1.1  dyoung 		return;
   3481  1.1  dyoung 
   3482  1.1  dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3483  1.1  dyoung 	if (enable)
   3484  1.1  dyoung 		pfvfspoof |= (1 << vf_target_shift);
   3485  1.1  dyoung 	else
   3486  1.1  dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   3487  1.1  dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3488  1.1  dyoung }
   3489  1.1  dyoung 
   3490  1.1  dyoung /**
   3491  1.1  dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   3492  1.1  dyoung  *  @hw: pointer to hardware structure
   3493  1.1  dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   3494  1.1  dyoung  *
   3495  1.1  dyoung  *  This function will read the EEPROM location for the device capabilities,
   3496  1.1  dyoung  *  and return the word through device_caps.
   3497  1.1  dyoung  **/
   3498  1.1  dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   3499  1.1  dyoung {
   3500  1.1  dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   3501  1.1  dyoung 
   3502  1.1  dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   3503  1.1  dyoung 
   3504  1.1  dyoung 	return IXGBE_SUCCESS;
   3505  1.1  dyoung }
   3506  1.1  dyoung 
   3507  1.1  dyoung /**
   3508  1.1  dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   3509  1.1  dyoung  *  @hw: pointer to hardware structure
   3510  1.1  dyoung  *
   3511  1.1  dyoung  **/
   3512  1.1  dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   3513  1.1  dyoung {
   3514  1.1  dyoung 	u32 regval;
   3515  1.1  dyoung 	u32 i;
   3516  1.1  dyoung 
   3517  1.1  dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   3518  1.1  dyoung 
   3519  1.1  dyoung 	/* Enable relaxed ordering */
   3520  1.1  dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   3521  1.1  dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   3522  1.1  dyoung 		regval |= IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
   3523  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   3524  1.1  dyoung 	}
   3525  1.1  dyoung 
   3526  1.1  dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   3527  1.1  dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   3528  1.1  dyoung 		regval |= (IXGBE_DCA_RXCTRL_DESC_WRO_EN |
   3529  1.1  dyoung 		           IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
   3530  1.1  dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   3531  1.1  dyoung 	}
   3532  1.1  dyoung 
   3533  1.1  dyoung }
   3534