Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.10
      1   1.1    dyoung /******************************************************************************
      2   1.1    dyoung 
      3   1.9   msaitoh   Copyright (c) 2001-2015, Intel Corporation
      4   1.1    dyoung   All rights reserved.
      5   1.1    dyoung 
      6   1.1    dyoung   Redistribution and use in source and binary forms, with or without
      7   1.1    dyoung   modification, are permitted provided that the following conditions are met:
      8   1.1    dyoung 
      9   1.1    dyoung    1. Redistributions of source code must retain the above copyright notice,
     10   1.1    dyoung       this list of conditions and the following disclaimer.
     11   1.1    dyoung 
     12   1.1    dyoung    2. Redistributions in binary form must reproduce the above copyright
     13   1.1    dyoung       notice, this list of conditions and the following disclaimer in the
     14   1.1    dyoung       documentation and/or other materials provided with the distribution.
     15   1.1    dyoung 
     16   1.1    dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17   1.1    dyoung       contributors may be used to endorse or promote products derived from
     18   1.1    dyoung       this software without specific prior written permission.
     19   1.1    dyoung 
     20   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21   1.1    dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22   1.1    dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23   1.1    dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24   1.1    dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1    dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1    dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1    dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1    dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     31   1.1    dyoung 
     32   1.1    dyoung ******************************************************************************/
     33  1.10   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 292674 2015-12-23 22:45:17Z sbruno $*/
     34  1.10   msaitoh /*$NetBSD: ixgbe_common.c,v 1.10 2016/12/02 10:42:04 msaitoh Exp $*/
     35   1.1    dyoung 
     36   1.1    dyoung #include "ixgbe_common.h"
     37   1.1    dyoung #include "ixgbe_phy.h"
     38   1.6   msaitoh #include "ixgbe_dcb.h"
     39   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     40   1.1    dyoung #include "ixgbe_api.h"
     41   1.1    dyoung 
     42   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48   1.3   msaitoh 					u16 count);
     49   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53   1.1    dyoung 
     54   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56   1.3   msaitoh 					 u16 *san_mac_offset);
     57   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58   1.3   msaitoh 					     u16 words, u16 *data);
     59   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60   1.3   msaitoh 					      u16 words, u16 *data);
     61   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62   1.3   msaitoh 						 u16 offset);
     63   1.1    dyoung 
     64   1.1    dyoung /**
     65   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66   1.1    dyoung  *  @hw: pointer to the hardware structure
     67   1.1    dyoung  *
     68   1.1    dyoung  *  Initialize the function pointers.
     69   1.1    dyoung  **/
     70   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71   1.1    dyoung {
     72   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     75   1.1    dyoung 
     76   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77   1.1    dyoung 
     78   1.1    dyoung 	/* EEPROM */
     79   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     80   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     82   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     83   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     84   1.3   msaitoh 	} else {
     85   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     86   1.3   msaitoh 		eeprom->ops.read_buffer =
     87   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     88   1.3   msaitoh 	}
     89   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     90   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     91   1.1    dyoung 	eeprom->ops.validate_checksum =
     92   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     93   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     94   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     95   1.1    dyoung 
     96   1.1    dyoung 	/* MAC */
     97   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
     98   1.1    dyoung 	mac->ops.reset_hw = NULL;
     99   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    100   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    101   1.1    dyoung 	mac->ops.get_media_type = NULL;
    102   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    103   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    104   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    105   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    106   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    107   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    108   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    109   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    110   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    111   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    112   1.1    dyoung 
    113   1.1    dyoung 	/* LEDs */
    114   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    115   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    116   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    117   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    118   1.1    dyoung 
    119   1.1    dyoung 	/* RAR, Multicast, VLAN */
    120   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    121   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    122   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    123   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    124   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    125   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    126   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    127   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    128   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    129   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    130   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    131   1.1    dyoung 	mac->ops.set_vfta = NULL;
    132   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    133   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    134   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    135   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    136   1.1    dyoung 
    137   1.1    dyoung 	/* Flow Control */
    138   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    139   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    140   1.1    dyoung 
    141   1.1    dyoung 	/* Link */
    142   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    143   1.1    dyoung 	mac->ops.setup_link = NULL;
    144   1.1    dyoung 	mac->ops.check_link = NULL;
    145   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    146   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    147   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    148   1.1    dyoung 
    149   1.1    dyoung 	return IXGBE_SUCCESS;
    150   1.1    dyoung }
    151   1.1    dyoung 
    152   1.1    dyoung /**
    153   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    154   1.6   msaitoh  * of flow control
    155   1.6   msaitoh  * @hw: pointer to hardware structure
    156   1.6   msaitoh  *
    157   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    158   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    159   1.4   msaitoh  *
    160   1.4   msaitoh  **/
    161   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    162   1.4   msaitoh {
    163   1.6   msaitoh 	bool supported = FALSE;
    164   1.6   msaitoh 	ixgbe_link_speed speed;
    165   1.6   msaitoh 	bool link_up;
    166   1.4   msaitoh 
    167   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    168   1.4   msaitoh 
    169   1.6   msaitoh 	switch (hw->phy.media_type) {
    170   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    171   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    172   1.6   msaitoh 	case ixgbe_media_type_fiber:
    173   1.6   msaitoh 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    174   1.6   msaitoh 		/* if link is down, assume supported */
    175   1.6   msaitoh 		if (link_up)
    176   1.6   msaitoh 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    177   1.6   msaitoh 				TRUE : FALSE;
    178   1.6   msaitoh 		else
    179   1.6   msaitoh 			supported = TRUE;
    180   1.6   msaitoh 		break;
    181   1.6   msaitoh 	case ixgbe_media_type_backplane:
    182   1.6   msaitoh 		supported = TRUE;
    183   1.6   msaitoh 		break;
    184   1.6   msaitoh 	case ixgbe_media_type_copper:
    185   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    186   1.6   msaitoh 		switch (hw->device_id) {
    187   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    188   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    189   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    190   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    191   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    192  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    193   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    194   1.6   msaitoh 			supported = TRUE;
    195   1.6   msaitoh 			break;
    196   1.6   msaitoh 		default:
    197   1.6   msaitoh 			supported = FALSE;
    198   1.6   msaitoh 		}
    199   1.4   msaitoh 	default:
    200   1.6   msaitoh 		break;
    201   1.4   msaitoh 	}
    202   1.6   msaitoh 
    203   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    204   1.6   msaitoh 		      "Device %x does not support flow control autoneg",
    205   1.6   msaitoh 		      hw->device_id);
    206   1.6   msaitoh 	return supported;
    207   1.4   msaitoh }
    208   1.4   msaitoh 
    209   1.4   msaitoh /**
    210   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    211   1.4   msaitoh  *  @hw: pointer to hardware structure
    212   1.4   msaitoh  *
    213   1.4   msaitoh  *  Called at init time to set up flow control.
    214   1.4   msaitoh  **/
    215   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    216   1.4   msaitoh {
    217   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    218   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    219   1.4   msaitoh 	u16 reg_cu = 0;
    220   1.8   msaitoh 	bool locked = FALSE;
    221   1.4   msaitoh 
    222   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    223   1.4   msaitoh 
    224   1.8   msaitoh 	/* Validate the requested mode */
    225   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    226   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    227   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    228   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    229   1.4   msaitoh 		goto out;
    230   1.4   msaitoh 	}
    231   1.4   msaitoh 
    232   1.4   msaitoh 	/*
    233   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    234   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    235   1.4   msaitoh 	 */
    236   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    237   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    238   1.4   msaitoh 
    239   1.4   msaitoh 	/*
    240   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    241   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    242   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    243   1.4   msaitoh 	 */
    244   1.4   msaitoh 	switch (hw->phy.media_type) {
    245   1.8   msaitoh 	case ixgbe_media_type_backplane:
    246   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    247   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    248   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    249   1.8   msaitoh 			goto out;
    250   1.8   msaitoh 
    251   1.8   msaitoh 		/* only backplane uses autoc so fall though */
    252   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    253   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    254   1.4   msaitoh 	case ixgbe_media_type_fiber:
    255   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    256   1.8   msaitoh 
    257   1.4   msaitoh 		break;
    258   1.4   msaitoh 	case ixgbe_media_type_copper:
    259   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    260   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    261   1.4   msaitoh 		break;
    262   1.4   msaitoh 	default:
    263   1.4   msaitoh 		break;
    264   1.4   msaitoh 	}
    265   1.4   msaitoh 
    266   1.4   msaitoh 	/*
    267   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    268   1.4   msaitoh 	 * 0: Flow control is completely disabled
    269   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    270   1.4   msaitoh 	 *    but not send pause frames).
    271   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    272   1.4   msaitoh 	 *    we do not support receiving pause frames).
    273   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    274   1.4   msaitoh 	 * other: Invalid.
    275   1.4   msaitoh 	 */
    276   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    277   1.4   msaitoh 	case ixgbe_fc_none:
    278   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    279   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    280   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    281   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    282   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    283   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    284   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    285   1.4   msaitoh 		break;
    286   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    287   1.4   msaitoh 		/*
    288   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    289   1.4   msaitoh 		 * disabled by software override.
    290   1.4   msaitoh 		 */
    291   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    292   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    293   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    294   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    295   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    296   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    297   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    298   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    299   1.4   msaitoh 		}
    300   1.4   msaitoh 		break;
    301   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    302   1.4   msaitoh 		/*
    303   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    304   1.4   msaitoh 		 * disabled by software override. Since there really
    305   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    306   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    307   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    308   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    309   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    310   1.4   msaitoh 		 */
    311   1.4   msaitoh 	case ixgbe_fc_full:
    312   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    313   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    314   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    315   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    316   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    317   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    318   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    319   1.4   msaitoh 		break;
    320   1.4   msaitoh 	default:
    321   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    322   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    323   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    324   1.4   msaitoh 		goto out;
    325   1.4   msaitoh 		break;
    326   1.4   msaitoh 	}
    327   1.4   msaitoh 
    328   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    329   1.4   msaitoh 		/*
    330   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    331   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    332   1.4   msaitoh 		 */
    333   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    334   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    335   1.4   msaitoh 
    336   1.4   msaitoh 		/* Disable AN timeout */
    337   1.4   msaitoh 		if (hw->fc.strict_ieee)
    338   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    339   1.4   msaitoh 
    340   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    341   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    342   1.4   msaitoh 	}
    343   1.4   msaitoh 
    344   1.4   msaitoh 	/*
    345   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    346   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    347   1.4   msaitoh 	 *
    348   1.4   msaitoh 	 */
    349   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    350   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    351   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    352   1.8   msaitoh 		if (ret_val)
    353   1.8   msaitoh 			goto out;
    354   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    355   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    356   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    357   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    358   1.4   msaitoh 	}
    359   1.4   msaitoh 
    360   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    361   1.4   msaitoh out:
    362   1.4   msaitoh 	return ret_val;
    363   1.4   msaitoh }
    364   1.4   msaitoh 
    365   1.4   msaitoh /**
    366   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    367   1.1    dyoung  *  @hw: pointer to hardware structure
    368   1.1    dyoung  *
    369   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    370   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    371   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    372   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    373   1.1    dyoung  **/
    374   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    375   1.1    dyoung {
    376   1.4   msaitoh 	s32 ret_val;
    377   1.1    dyoung 	u32 ctrl_ext;
    378   1.1    dyoung 
    379   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    380   1.1    dyoung 
    381   1.1    dyoung 	/* Set the media type */
    382   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    383   1.1    dyoung 
    384   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    385   1.1    dyoung 
    386   1.1    dyoung 	/* Clear the VLAN filter table */
    387   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    388   1.1    dyoung 
    389   1.1    dyoung 	/* Clear statistics registers */
    390   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    391   1.1    dyoung 
    392   1.1    dyoung 	/* Set No Snoop Disable */
    393   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    394   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    395   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    396   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    397   1.1    dyoung 
    398   1.1    dyoung 	/* Setup flow control */
    399   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    400   1.4   msaitoh 	if (ret_val != IXGBE_SUCCESS)
    401   1.4   msaitoh 		goto out;
    402   1.1    dyoung 
    403   1.1    dyoung 	/* Clear adapter stopped flag */
    404   1.1    dyoung 	hw->adapter_stopped = FALSE;
    405   1.1    dyoung 
    406   1.4   msaitoh out:
    407   1.4   msaitoh 	return ret_val;
    408   1.1    dyoung }
    409   1.1    dyoung 
    410   1.1    dyoung /**
    411   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    412   1.1    dyoung  *  @hw: pointer to hw structure
    413   1.1    dyoung  *
    414   1.1    dyoung  * Performs the init sequence common to the second generation
    415   1.1    dyoung  * of 10 GbE devices.
    416   1.1    dyoung  * Devices in the second generation:
    417   1.1    dyoung  *     82599
    418   1.1    dyoung  *     X540
    419   1.1    dyoung  **/
    420   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    421   1.1    dyoung {
    422   1.1    dyoung 	u32 i;
    423   1.1    dyoung 	u32 regval;
    424   1.1    dyoung 
    425   1.1    dyoung 	/* Clear the rate limiters */
    426   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    427   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    428   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    429   1.1    dyoung 	}
    430   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    431   1.1    dyoung 
    432   1.1    dyoung 	/* Disable relaxed ordering */
    433   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    434   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    435   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    436   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    437   1.1    dyoung 	}
    438   1.1    dyoung 
    439   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    440   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    441   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    442   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    443   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    444   1.1    dyoung 	}
    445   1.1    dyoung 
    446   1.1    dyoung 	return IXGBE_SUCCESS;
    447   1.1    dyoung }
    448   1.1    dyoung 
    449   1.1    dyoung /**
    450   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    451   1.1    dyoung  *  @hw: pointer to hardware structure
    452   1.1    dyoung  *
    453   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    454   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    455   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    456   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    457   1.1    dyoung  *  disabled and uninitialized
    458   1.1    dyoung  **/
    459   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    460   1.1    dyoung {
    461   1.1    dyoung 	s32 status;
    462   1.1    dyoung 
    463   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    464   1.1    dyoung 
    465   1.1    dyoung 	/* Reset the hardware */
    466   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    467   1.1    dyoung 
    468   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
    469   1.1    dyoung 		/* Start the HW */
    470   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    471   1.1    dyoung 	}
    472   1.1    dyoung 
    473   1.1    dyoung 	return status;
    474   1.1    dyoung }
    475   1.1    dyoung 
    476   1.1    dyoung /**
    477   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    478   1.1    dyoung  *  @hw: pointer to hardware structure
    479   1.1    dyoung  *
    480   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    481   1.1    dyoung  *  Statistics counters are clear on read.
    482   1.1    dyoung  **/
    483   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    484   1.1    dyoung {
    485   1.1    dyoung 	u16 i = 0;
    486   1.1    dyoung 
    487   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    488   1.1    dyoung 
    489   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    490   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    491   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    492   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    493   1.1    dyoung 	for (i = 0; i < 8; i++)
    494   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    495   1.1    dyoung 
    496   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    497   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    498   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    499   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    500   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    501   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    502   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    503   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    504   1.1    dyoung 	} else {
    505   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    506   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    507   1.1    dyoung 	}
    508   1.1    dyoung 
    509   1.1    dyoung 	for (i = 0; i < 8; i++) {
    510   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    511   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    512   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    513   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    514   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    515   1.1    dyoung 		} else {
    516   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    517   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    518   1.1    dyoung 		}
    519   1.1    dyoung 	}
    520   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    521   1.1    dyoung 		for (i = 0; i < 8; i++)
    522   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    523   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    524   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    525   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    526   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    527   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    528   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    529   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    530   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    531   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    532   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    533   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    534   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    535   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    536   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    537   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    538   1.3   msaitoh 		for (i = 0; i < 8; i++)
    539   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    540   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    541   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    542   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    543   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    544   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    545   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    547   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    548   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    549   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    550   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    551   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    552   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    553   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    554   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    555   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    556   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    557   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    558   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    559   1.1    dyoung 	for (i = 0; i < 16; i++) {
    560   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    561   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    562   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    563   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    564   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    565   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    566   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    567   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    568   1.1    dyoung 		} else {
    569   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    570   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    571   1.1    dyoung 		}
    572   1.1    dyoung 	}
    573   1.1    dyoung 
    574   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    575   1.3   msaitoh 		if (hw->phy.id == 0)
    576   1.3   msaitoh 			ixgbe_identify_phy(hw);
    577   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    578   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    579   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    580   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    581   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    582   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    583   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    584   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    585   1.3   msaitoh 	}
    586   1.3   msaitoh 
    587   1.1    dyoung 	return IXGBE_SUCCESS;
    588   1.1    dyoung }
    589   1.1    dyoung 
    590   1.1    dyoung /**
    591   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    592   1.1    dyoung  *  @hw: pointer to hardware structure
    593   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    594   1.1    dyoung  *  @pba_num_size: part number string buffer length
    595   1.1    dyoung  *
    596   1.1    dyoung  *  Reads the part number string from the EEPROM.
    597   1.1    dyoung  **/
    598   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    599   1.3   msaitoh 				  u32 pba_num_size)
    600   1.1    dyoung {
    601   1.1    dyoung 	s32 ret_val;
    602   1.1    dyoung 	u16 data;
    603   1.1    dyoung 	u16 pba_ptr;
    604   1.1    dyoung 	u16 offset;
    605   1.1    dyoung 	u16 length;
    606   1.1    dyoung 
    607   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    608   1.1    dyoung 
    609   1.1    dyoung 	if (pba_num == NULL) {
    610   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    611   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    612   1.1    dyoung 	}
    613   1.1    dyoung 
    614   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    615   1.1    dyoung 	if (ret_val) {
    616   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    617   1.1    dyoung 		return ret_val;
    618   1.1    dyoung 	}
    619   1.1    dyoung 
    620   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    621   1.1    dyoung 	if (ret_val) {
    622   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    623   1.1    dyoung 		return ret_val;
    624   1.1    dyoung 	}
    625   1.1    dyoung 
    626   1.1    dyoung 	/*
    627   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    628   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    629   1.1    dyoung 	 * and we can decode it into an ascii string
    630   1.1    dyoung 	 */
    631   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    632   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    633   1.1    dyoung 
    634   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    635   1.1    dyoung 		if (pba_num_size < 11) {
    636   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    637   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    638   1.1    dyoung 		}
    639   1.1    dyoung 
    640   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    641   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    642   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    643   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    644   1.1    dyoung 		pba_num[3] = data & 0xF;
    645   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    646   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    647   1.1    dyoung 		pba_num[6] = '-';
    648   1.1    dyoung 		pba_num[7] = 0;
    649   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    650   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    651   1.1    dyoung 
    652   1.1    dyoung 		/* put a null character on the end of our string */
    653   1.1    dyoung 		pba_num[10] = '\0';
    654   1.1    dyoung 
    655   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    656   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    657   1.1    dyoung 			if (pba_num[offset] < 0xA)
    658   1.1    dyoung 				pba_num[offset] += '0';
    659   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    660   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    661   1.1    dyoung 		}
    662   1.1    dyoung 
    663   1.1    dyoung 		return IXGBE_SUCCESS;
    664   1.1    dyoung 	}
    665   1.1    dyoung 
    666   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    667   1.1    dyoung 	if (ret_val) {
    668   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    669   1.1    dyoung 		return ret_val;
    670   1.1    dyoung 	}
    671   1.1    dyoung 
    672   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    673   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    674   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    675   1.1    dyoung 	}
    676   1.1    dyoung 
    677   1.1    dyoung 	/* check if pba_num buffer is big enough */
    678   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    679   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    680   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    681   1.1    dyoung 	}
    682   1.1    dyoung 
    683   1.1    dyoung 	/* trim pba length from start of string */
    684   1.1    dyoung 	pba_ptr++;
    685   1.1    dyoung 	length--;
    686   1.1    dyoung 
    687   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    688   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    689   1.1    dyoung 		if (ret_val) {
    690   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    691   1.1    dyoung 			return ret_val;
    692   1.1    dyoung 		}
    693   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    694   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    695   1.1    dyoung 	}
    696   1.1    dyoung 	pba_num[offset * 2] = '\0';
    697   1.1    dyoung 
    698   1.1    dyoung 	return IXGBE_SUCCESS;
    699   1.1    dyoung }
    700   1.1    dyoung 
    701   1.1    dyoung /**
    702   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    703   1.1    dyoung  *  @hw: pointer to hardware structure
    704   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    705   1.1    dyoung  *
    706   1.1    dyoung  *  Reads the part number from the EEPROM.
    707   1.1    dyoung  **/
    708   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    709   1.1    dyoung {
    710   1.1    dyoung 	s32 ret_val;
    711   1.1    dyoung 	u16 data;
    712   1.1    dyoung 
    713   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    714   1.1    dyoung 
    715   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    716   1.1    dyoung 	if (ret_val) {
    717   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    718   1.1    dyoung 		return ret_val;
    719   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    720   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    721   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    722   1.1    dyoung 	}
    723   1.1    dyoung 	*pba_num = (u32)(data << 16);
    724   1.1    dyoung 
    725   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    726   1.1    dyoung 	if (ret_val) {
    727   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    728   1.1    dyoung 		return ret_val;
    729   1.1    dyoung 	}
    730   1.1    dyoung 	*pba_num |= data;
    731   1.1    dyoung 
    732   1.1    dyoung 	return IXGBE_SUCCESS;
    733   1.1    dyoung }
    734   1.1    dyoung 
    735   1.1    dyoung /**
    736   1.5   msaitoh  *  ixgbe_read_pba_raw
    737   1.5   msaitoh  *  @hw: pointer to the HW structure
    738   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    739   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    740   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    741   1.5   msaitoh  *  @pba: pointer to output PBA structure
    742   1.5   msaitoh  *
    743   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    744   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    745   1.5   msaitoh  *
    746   1.5   msaitoh  **/
    747   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    748   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    749   1.5   msaitoh 		       struct ixgbe_pba *pba)
    750   1.5   msaitoh {
    751   1.5   msaitoh 	s32 ret_val;
    752   1.5   msaitoh 	u16 pba_block_size;
    753   1.5   msaitoh 
    754   1.5   msaitoh 	if (pba == NULL)
    755   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    756   1.5   msaitoh 
    757   1.5   msaitoh 	if (eeprom_buf == NULL) {
    758   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    759   1.5   msaitoh 						     &pba->word[0]);
    760   1.5   msaitoh 		if (ret_val)
    761   1.5   msaitoh 			return ret_val;
    762   1.5   msaitoh 	} else {
    763   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    764   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    765   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    766   1.5   msaitoh 		} else {
    767   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    768   1.5   msaitoh 		}
    769   1.5   msaitoh 	}
    770   1.5   msaitoh 
    771   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    772   1.5   msaitoh 		if (pba->pba_block == NULL)
    773   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    774   1.5   msaitoh 
    775   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    776   1.5   msaitoh 						   eeprom_buf_size,
    777   1.5   msaitoh 						   &pba_block_size);
    778   1.5   msaitoh 		if (ret_val)
    779   1.5   msaitoh 			return ret_val;
    780   1.5   msaitoh 
    781   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    782   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    783   1.5   msaitoh 
    784   1.5   msaitoh 		if (eeprom_buf == NULL) {
    785   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    786   1.5   msaitoh 							     pba_block_size,
    787   1.5   msaitoh 							     pba->pba_block);
    788   1.5   msaitoh 			if (ret_val)
    789   1.5   msaitoh 				return ret_val;
    790   1.5   msaitoh 		} else {
    791   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    792   1.8   msaitoh 					      pba_block_size)) {
    793   1.5   msaitoh 				memcpy(pba->pba_block,
    794   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    795   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    796   1.5   msaitoh 			} else {
    797   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    798   1.5   msaitoh 			}
    799   1.5   msaitoh 		}
    800   1.5   msaitoh 	}
    801   1.5   msaitoh 
    802   1.5   msaitoh 	return IXGBE_SUCCESS;
    803   1.5   msaitoh }
    804   1.5   msaitoh 
    805   1.5   msaitoh /**
    806   1.5   msaitoh  *  ixgbe_write_pba_raw
    807   1.5   msaitoh  *  @hw: pointer to the HW structure
    808   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    809   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    810   1.5   msaitoh  *  @pba: pointer to PBA structure
    811   1.5   msaitoh  *
    812   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    813   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    814   1.5   msaitoh  *
    815   1.5   msaitoh  **/
    816   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    817   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    818   1.5   msaitoh {
    819   1.5   msaitoh 	s32 ret_val;
    820   1.5   msaitoh 
    821   1.5   msaitoh 	if (pba == NULL)
    822   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    823   1.5   msaitoh 
    824   1.5   msaitoh 	if (eeprom_buf == NULL) {
    825   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    826   1.5   msaitoh 						      &pba->word[0]);
    827   1.5   msaitoh 		if (ret_val)
    828   1.5   msaitoh 			return ret_val;
    829   1.5   msaitoh 	} else {
    830   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    831   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    832   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    833   1.5   msaitoh 		} else {
    834   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    835   1.5   msaitoh 		}
    836   1.5   msaitoh 	}
    837   1.5   msaitoh 
    838   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    839   1.5   msaitoh 		if (pba->pba_block == NULL)
    840   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    841   1.5   msaitoh 
    842   1.5   msaitoh 		if (eeprom_buf == NULL) {
    843   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    844   1.5   msaitoh 							      pba->pba_block[0],
    845   1.5   msaitoh 							      pba->pba_block);
    846   1.5   msaitoh 			if (ret_val)
    847   1.5   msaitoh 				return ret_val;
    848   1.5   msaitoh 		} else {
    849   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    850   1.5   msaitoh 					      pba->pba_block[0])) {
    851   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    852   1.5   msaitoh 				       pba->pba_block,
    853   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    854   1.5   msaitoh 			} else {
    855   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    856   1.5   msaitoh 			}
    857   1.5   msaitoh 		}
    858   1.5   msaitoh 	}
    859   1.5   msaitoh 
    860   1.5   msaitoh 	return IXGBE_SUCCESS;
    861   1.5   msaitoh }
    862   1.5   msaitoh 
    863   1.5   msaitoh /**
    864   1.5   msaitoh  *  ixgbe_get_pba_block_size
    865   1.5   msaitoh  *  @hw: pointer to the HW structure
    866   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    867   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    868   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    869   1.5   msaitoh  *
    870   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    871   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    872   1.5   msaitoh  *  EEPROM device.
    873   1.5   msaitoh  *
    874   1.5   msaitoh  **/
    875   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    876   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    877   1.5   msaitoh {
    878   1.5   msaitoh 	s32 ret_val;
    879   1.5   msaitoh 	u16 pba_word[2];
    880   1.5   msaitoh 	u16 length;
    881   1.5   msaitoh 
    882   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    883   1.5   msaitoh 
    884   1.5   msaitoh 	if (eeprom_buf == NULL) {
    885   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    886   1.5   msaitoh 						     &pba_word[0]);
    887   1.5   msaitoh 		if (ret_val)
    888   1.5   msaitoh 			return ret_val;
    889   1.5   msaitoh 	} else {
    890   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    891   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    892   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    893   1.5   msaitoh 		} else {
    894   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    895   1.5   msaitoh 		}
    896   1.5   msaitoh 	}
    897   1.5   msaitoh 
    898   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    899   1.5   msaitoh 		if (eeprom_buf == NULL) {
    900   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    901   1.5   msaitoh 						      &length);
    902   1.5   msaitoh 			if (ret_val)
    903   1.5   msaitoh 				return ret_val;
    904   1.5   msaitoh 		} else {
    905   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    906   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    907   1.5   msaitoh 			else
    908   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    909   1.5   msaitoh 		}
    910   1.5   msaitoh 
    911   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    912   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    913   1.5   msaitoh 	} else {
    914   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    915   1.5   msaitoh 		length = 0;
    916   1.5   msaitoh 	}
    917   1.5   msaitoh 
    918   1.5   msaitoh 	if (pba_block_size != NULL)
    919   1.5   msaitoh 		*pba_block_size = length;
    920   1.5   msaitoh 
    921   1.5   msaitoh 	return IXGBE_SUCCESS;
    922   1.5   msaitoh }
    923   1.5   msaitoh 
    924   1.5   msaitoh /**
    925   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    926   1.1    dyoung  *  @hw: pointer to hardware structure
    927   1.1    dyoung  *  @mac_addr: Adapter MAC address
    928   1.1    dyoung  *
    929   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    930   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    931   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    932   1.1    dyoung  **/
    933   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    934   1.1    dyoung {
    935   1.1    dyoung 	u32 rar_high;
    936   1.1    dyoung 	u32 rar_low;
    937   1.1    dyoung 	u16 i;
    938   1.1    dyoung 
    939   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    940   1.1    dyoung 
    941   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    942   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    943   1.1    dyoung 
    944   1.1    dyoung 	for (i = 0; i < 4; i++)
    945   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    946   1.1    dyoung 
    947   1.1    dyoung 	for (i = 0; i < 2; i++)
    948   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    949   1.1    dyoung 
    950   1.1    dyoung 	return IXGBE_SUCCESS;
    951   1.1    dyoung }
    952   1.1    dyoung 
    953   1.1    dyoung /**
    954   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    955   1.1    dyoung  *  @hw: pointer to hardware structure
    956   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
    957   1.1    dyoung  *
    958   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    959   1.1    dyoung  **/
    960   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    961   1.1    dyoung {
    962   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    963   1.1    dyoung 
    964   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
    965   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
    966   1.1    dyoung 
    967   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    968   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    969   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    970   1.1    dyoung 		break;
    971   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    972   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    973   1.1    dyoung 		break;
    974   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    975   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    976   1.1    dyoung 		break;
    977   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    978   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    979   1.1    dyoung 		break;
    980   1.1    dyoung 	default:
    981   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    982   1.1    dyoung 		break;
    983   1.1    dyoung 	}
    984   1.1    dyoung 
    985   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    986   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    987   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    988   1.1    dyoung 		break;
    989   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    990   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    991   1.1    dyoung 		break;
    992   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    993   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    994   1.4   msaitoh 		break;
    995   1.1    dyoung 	default:
    996   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    997   1.1    dyoung 		break;
    998   1.1    dyoung 	}
    999   1.1    dyoung 
   1000   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1001   1.6   msaitoh }
   1002   1.6   msaitoh 
   1003   1.6   msaitoh /**
   1004   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1005   1.6   msaitoh  *  @hw: pointer to hardware structure
   1006   1.6   msaitoh  *
   1007   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1008   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1009   1.6   msaitoh  **/
   1010   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1011   1.6   msaitoh {
   1012   1.6   msaitoh 	u16 link_status;
   1013   1.6   msaitoh 
   1014   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1015   1.6   msaitoh 
   1016   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1017   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1018   1.6   msaitoh 
   1019   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1020   1.1    dyoung 
   1021   1.1    dyoung 	return IXGBE_SUCCESS;
   1022   1.1    dyoung }
   1023   1.1    dyoung 
   1024   1.1    dyoung /**
   1025   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1026   1.1    dyoung  *  @hw: pointer to the HW structure
   1027   1.1    dyoung  *
   1028   1.1    dyoung  *  Determines the LAN function id by reading memory-mapped registers
   1029   1.1    dyoung  *  and swaps the port value if requested.
   1030   1.1    dyoung  **/
   1031   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1032   1.1    dyoung {
   1033   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1034   1.1    dyoung 	u32 reg;
   1035   1.1    dyoung 
   1036   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1037   1.1    dyoung 
   1038   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1039   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1040   1.1    dyoung 	bus->lan_id = bus->func;
   1041   1.1    dyoung 
   1042   1.1    dyoung 	/* check for a port swap */
   1043  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1044   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1045   1.1    dyoung 		bus->func ^= 0x1;
   1046   1.1    dyoung }
   1047   1.1    dyoung 
   1048   1.1    dyoung /**
   1049   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1050   1.1    dyoung  *  @hw: pointer to hardware structure
   1051   1.1    dyoung  *
   1052   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1053   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1054   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1055   1.1    dyoung  *  state and should not touch the hardware.
   1056   1.1    dyoung  **/
   1057   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1058   1.1    dyoung {
   1059   1.1    dyoung 	u32 reg_val;
   1060   1.1    dyoung 	u16 i;
   1061   1.1    dyoung 
   1062   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1063   1.1    dyoung 
   1064   1.1    dyoung 	/*
   1065   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1066   1.1    dyoung 	 * the hardware
   1067   1.1    dyoung 	 */
   1068   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1069   1.1    dyoung 
   1070   1.1    dyoung 	/* Disable the receive unit */
   1071   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1072   1.1    dyoung 
   1073   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1074   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1075   1.1    dyoung 
   1076   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1077   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1078   1.1    dyoung 
   1079   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1080   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1081   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1082   1.3   msaitoh 
   1083   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1084   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1085   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1086   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1087   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1088   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1089   1.1    dyoung 	}
   1090   1.1    dyoung 
   1091   1.3   msaitoh 	/* flush all queues disables */
   1092   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1093   1.3   msaitoh 	msec_delay(2);
   1094   1.3   msaitoh 
   1095   1.1    dyoung 	/*
   1096   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1097   1.1    dyoung 	 * access and verify no pending requests
   1098   1.1    dyoung 	 */
   1099   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1100   1.1    dyoung }
   1101   1.1    dyoung 
   1102   1.1    dyoung /**
   1103   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1104   1.1    dyoung  *  @hw: pointer to hardware structure
   1105   1.1    dyoung  *  @index: led number to turn on
   1106   1.1    dyoung  **/
   1107   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1108   1.1    dyoung {
   1109   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1110   1.1    dyoung 
   1111   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1112   1.1    dyoung 
   1113   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1114   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1115   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1116   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1117   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1118   1.1    dyoung 
   1119   1.1    dyoung 	return IXGBE_SUCCESS;
   1120   1.1    dyoung }
   1121   1.1    dyoung 
   1122   1.1    dyoung /**
   1123   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1124   1.1    dyoung  *  @hw: pointer to hardware structure
   1125   1.1    dyoung  *  @index: led number to turn off
   1126   1.1    dyoung  **/
   1127   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1128   1.1    dyoung {
   1129   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1130   1.1    dyoung 
   1131   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1132   1.1    dyoung 
   1133   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1134   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1135   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1136   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1137   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1138   1.1    dyoung 
   1139   1.1    dyoung 	return IXGBE_SUCCESS;
   1140   1.1    dyoung }
   1141   1.1    dyoung 
   1142   1.1    dyoung /**
   1143   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1144   1.1    dyoung  *  @hw: pointer to hardware structure
   1145   1.1    dyoung  *
   1146   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1147   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1148   1.1    dyoung  **/
   1149   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1150   1.1    dyoung {
   1151   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1152   1.1    dyoung 	u32 eec;
   1153   1.1    dyoung 	u16 eeprom_size;
   1154   1.1    dyoung 
   1155   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1156   1.1    dyoung 
   1157   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1158   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1159   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1160   1.1    dyoung 		 * tested value */
   1161   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1162   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1163   1.3   msaitoh 		eeprom->word_page_size = 0;
   1164   1.1    dyoung 
   1165   1.1    dyoung 		/*
   1166   1.1    dyoung 		 * Check for EEPROM present first.
   1167   1.1    dyoung 		 * If not present leave as none
   1168   1.1    dyoung 		 */
   1169  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1170   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1171   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1172   1.1    dyoung 
   1173   1.1    dyoung 			/*
   1174   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1175   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1176   1.1    dyoung 			 */
   1177   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1178   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1179   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1180   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1181   1.1    dyoung 		}
   1182   1.1    dyoung 
   1183   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1184   1.1    dyoung 			eeprom->address_bits = 16;
   1185   1.1    dyoung 		else
   1186   1.1    dyoung 			eeprom->address_bits = 8;
   1187   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1188   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1189   1.3   msaitoh 			  eeprom->address_bits);
   1190   1.1    dyoung 	}
   1191   1.1    dyoung 
   1192   1.1    dyoung 	return IXGBE_SUCCESS;
   1193   1.1    dyoung }
   1194   1.1    dyoung 
   1195   1.1    dyoung /**
   1196   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1197   1.3   msaitoh  *  @hw: pointer to hardware structure
   1198   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1199   1.3   msaitoh  *  @words: number of word(s)
   1200   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1201   1.3   msaitoh  *
   1202   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1203   1.3   msaitoh  **/
   1204   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1205   1.3   msaitoh 					       u16 words, u16 *data)
   1206   1.3   msaitoh {
   1207   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1208   1.3   msaitoh 	u16 i, count;
   1209   1.3   msaitoh 
   1210   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1211   1.3   msaitoh 
   1212   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1213   1.3   msaitoh 
   1214   1.3   msaitoh 	if (words == 0) {
   1215   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1216   1.3   msaitoh 		goto out;
   1217   1.3   msaitoh 	}
   1218   1.3   msaitoh 
   1219   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1220   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1221   1.3   msaitoh 		goto out;
   1222   1.3   msaitoh 	}
   1223   1.3   msaitoh 
   1224   1.3   msaitoh 	/*
   1225   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1226   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1227   1.3   msaitoh 	 */
   1228   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1229   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1230   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1231   1.3   msaitoh 
   1232   1.3   msaitoh 	/*
   1233   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1234   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1235   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1236   1.3   msaitoh 	 */
   1237   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1238   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1239   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1240   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1241   1.3   msaitoh 							    count, &data[i]);
   1242   1.3   msaitoh 
   1243   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1244   1.3   msaitoh 			break;
   1245   1.3   msaitoh 	}
   1246   1.3   msaitoh 
   1247   1.3   msaitoh out:
   1248   1.3   msaitoh 	return status;
   1249   1.3   msaitoh }
   1250   1.3   msaitoh 
   1251   1.3   msaitoh /**
   1252   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1253   1.3   msaitoh  *  @hw: pointer to hardware structure
   1254   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1255   1.3   msaitoh  *  @words: number of word(s)
   1256   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1257   1.3   msaitoh  *
   1258   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1259   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1260   1.3   msaitoh  **/
   1261   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1262   1.3   msaitoh 					      u16 words, u16 *data)
   1263   1.3   msaitoh {
   1264   1.3   msaitoh 	s32 status;
   1265   1.3   msaitoh 	u16 word;
   1266   1.3   msaitoh 	u16 page_size;
   1267   1.3   msaitoh 	u16 i;
   1268   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1269   1.3   msaitoh 
   1270   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1271   1.3   msaitoh 
   1272   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1273   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1274   1.3   msaitoh 
   1275   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1276   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1277   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1278   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1279   1.3   msaitoh 		}
   1280   1.3   msaitoh 	}
   1281   1.3   msaitoh 
   1282   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1283   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1284   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1285   1.3   msaitoh 
   1286   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1287   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1288   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1289   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1290   1.3   msaitoh 
   1291   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1292   1.3   msaitoh 
   1293   1.3   msaitoh 			/*
   1294   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1295   1.3   msaitoh 			 * in the opcode
   1296   1.3   msaitoh 			 */
   1297   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1298   1.3   msaitoh 			    ((offset + i) >= 128))
   1299   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1300   1.3   msaitoh 
   1301   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1302   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1303   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1304   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1305   1.3   msaitoh 						    hw->eeprom.address_bits);
   1306   1.3   msaitoh 
   1307   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1308   1.3   msaitoh 
   1309   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1310   1.3   msaitoh 			do {
   1311   1.3   msaitoh 				word = data[i];
   1312   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1313   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1314   1.3   msaitoh 
   1315   1.3   msaitoh 				if (page_size == 0)
   1316   1.3   msaitoh 					break;
   1317   1.3   msaitoh 
   1318   1.3   msaitoh 				/* do not wrap around page */
   1319   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1320   1.3   msaitoh 				    (page_size - 1))
   1321   1.3   msaitoh 					break;
   1322   1.3   msaitoh 			} while (++i < words);
   1323   1.3   msaitoh 
   1324   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1325   1.3   msaitoh 			msec_delay(10);
   1326   1.3   msaitoh 		}
   1327   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1328   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1329   1.3   msaitoh 	}
   1330   1.3   msaitoh 
   1331   1.3   msaitoh 	return status;
   1332   1.3   msaitoh }
   1333   1.3   msaitoh 
   1334   1.3   msaitoh /**
   1335   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1336   1.1    dyoung  *  @hw: pointer to hardware structure
   1337   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1338   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1339   1.1    dyoung  *
   1340   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1341   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1342   1.1    dyoung  **/
   1343   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1344   1.1    dyoung {
   1345   1.1    dyoung 	s32 status;
   1346   1.1    dyoung 
   1347   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1348   1.1    dyoung 
   1349   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1350   1.1    dyoung 
   1351   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1352   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1353   1.1    dyoung 		goto out;
   1354   1.1    dyoung 	}
   1355   1.1    dyoung 
   1356   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1357   1.3   msaitoh 
   1358   1.3   msaitoh out:
   1359   1.3   msaitoh 	return status;
   1360   1.3   msaitoh }
   1361   1.3   msaitoh 
   1362   1.3   msaitoh /**
   1363   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1364   1.3   msaitoh  *  @hw: pointer to hardware structure
   1365   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1366   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1367   1.3   msaitoh  *  @words: number of word(s)
   1368   1.3   msaitoh  *
   1369   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1370   1.3   msaitoh  **/
   1371   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1372   1.3   msaitoh 					      u16 words, u16 *data)
   1373   1.3   msaitoh {
   1374   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1375   1.3   msaitoh 	u16 i, count;
   1376   1.3   msaitoh 
   1377   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1378   1.3   msaitoh 
   1379   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1380   1.3   msaitoh 
   1381   1.3   msaitoh 	if (words == 0) {
   1382   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1383   1.3   msaitoh 		goto out;
   1384   1.3   msaitoh 	}
   1385   1.3   msaitoh 
   1386   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1387   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1388   1.3   msaitoh 		goto out;
   1389   1.3   msaitoh 	}
   1390   1.3   msaitoh 
   1391   1.3   msaitoh 	/*
   1392   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1393   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1394   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1395   1.3   msaitoh 	 */
   1396   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1397   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1398   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1399   1.3   msaitoh 
   1400   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1401   1.3   msaitoh 							   count, &data[i]);
   1402   1.3   msaitoh 
   1403   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1404   1.3   msaitoh 			break;
   1405   1.3   msaitoh 	}
   1406   1.3   msaitoh 
   1407   1.3   msaitoh out:
   1408   1.3   msaitoh 	return status;
   1409   1.3   msaitoh }
   1410   1.3   msaitoh 
   1411   1.3   msaitoh /**
   1412   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1413   1.3   msaitoh  *  @hw: pointer to hardware structure
   1414   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1415   1.3   msaitoh  *  @words: number of word(s)
   1416   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1417   1.3   msaitoh  *
   1418   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1419   1.3   msaitoh  **/
   1420   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1421   1.3   msaitoh 					     u16 words, u16 *data)
   1422   1.3   msaitoh {
   1423   1.3   msaitoh 	s32 status;
   1424   1.3   msaitoh 	u16 word_in;
   1425   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1426   1.3   msaitoh 	u16 i;
   1427   1.3   msaitoh 
   1428   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1429   1.3   msaitoh 
   1430   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1431   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1432   1.1    dyoung 
   1433   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1434   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1435   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1436   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1437   1.1    dyoung 		}
   1438   1.1    dyoung 	}
   1439   1.1    dyoung 
   1440   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1441   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1442   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1443   1.3   msaitoh 			/*
   1444   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1445   1.3   msaitoh 			 * in the opcode
   1446   1.3   msaitoh 			 */
   1447   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1448   1.3   msaitoh 			    ((offset + i) >= 128))
   1449   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1450   1.3   msaitoh 
   1451   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1452   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1453   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1454   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1455   1.3   msaitoh 						    hw->eeprom.address_bits);
   1456   1.3   msaitoh 
   1457   1.3   msaitoh 			/* Read the data. */
   1458   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1459   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1460   1.3   msaitoh 		}
   1461   1.1    dyoung 
   1462   1.3   msaitoh 		/* End this read operation */
   1463   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1464   1.1    dyoung 	}
   1465   1.1    dyoung 
   1466   1.1    dyoung 	return status;
   1467   1.1    dyoung }
   1468   1.1    dyoung 
   1469   1.1    dyoung /**
   1470   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1471   1.1    dyoung  *  @hw: pointer to hardware structure
   1472   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1473   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1474   1.1    dyoung  *
   1475   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1476   1.1    dyoung  **/
   1477   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1478   1.3   msaitoh 				       u16 *data)
   1479   1.1    dyoung {
   1480   1.1    dyoung 	s32 status;
   1481   1.1    dyoung 
   1482   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1483   1.1    dyoung 
   1484   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1485   1.1    dyoung 
   1486   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1487   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1488   1.1    dyoung 		goto out;
   1489   1.1    dyoung 	}
   1490   1.1    dyoung 
   1491   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1492   1.3   msaitoh 
   1493   1.3   msaitoh out:
   1494   1.3   msaitoh 	return status;
   1495   1.3   msaitoh }
   1496   1.3   msaitoh 
   1497   1.3   msaitoh /**
   1498   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1499   1.3   msaitoh  *  @hw: pointer to hardware structure
   1500   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1501   1.3   msaitoh  *  @words: number of word(s)
   1502   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1503   1.3   msaitoh  *
   1504   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1505   1.3   msaitoh  **/
   1506   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1507   1.3   msaitoh 				   u16 words, u16 *data)
   1508   1.3   msaitoh {
   1509   1.3   msaitoh 	u32 eerd;
   1510   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1511   1.3   msaitoh 	u32 i;
   1512   1.3   msaitoh 
   1513   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1514   1.3   msaitoh 
   1515   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1516   1.3   msaitoh 
   1517   1.3   msaitoh 	if (words == 0) {
   1518   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1519   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1520   1.3   msaitoh 		goto out;
   1521   1.3   msaitoh 	}
   1522   1.3   msaitoh 
   1523   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1524   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1525   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1526   1.3   msaitoh 		goto out;
   1527   1.3   msaitoh 	}
   1528   1.3   msaitoh 
   1529   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1530   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1531   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1532   1.3   msaitoh 
   1533   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1534   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1535   1.1    dyoung 
   1536   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1537   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1538   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1539   1.3   msaitoh 		} else {
   1540   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1541   1.3   msaitoh 			goto out;
   1542   1.1    dyoung 		}
   1543   1.1    dyoung 	}
   1544   1.3   msaitoh out:
   1545   1.3   msaitoh 	return status;
   1546   1.3   msaitoh }
   1547   1.1    dyoung 
   1548   1.3   msaitoh /**
   1549   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1550   1.3   msaitoh  *  @hw: pointer to hardware structure
   1551   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1552   1.3   msaitoh  *
   1553   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1554   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1555   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1556   1.3   msaitoh  **/
   1557   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1558   1.3   msaitoh 						 u16 offset)
   1559   1.3   msaitoh {
   1560   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1561   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1562   1.3   msaitoh 	u16 i;
   1563   1.3   msaitoh 
   1564   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1565   1.3   msaitoh 
   1566   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1567   1.3   msaitoh 		data[i] = i;
   1568   1.1    dyoung 
   1569   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1570   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1571   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1572   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1573   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1574   1.3   msaitoh 		goto out;
   1575   1.1    dyoung 
   1576   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1577   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1578   1.3   msaitoh 		goto out;
   1579   1.1    dyoung 
   1580   1.3   msaitoh 	/*
   1581   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1582   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1583   1.3   msaitoh 	 */
   1584   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1585   1.1    dyoung 
   1586   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1587   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1588   1.1    dyoung out:
   1589   1.1    dyoung 	return status;
   1590   1.1    dyoung }
   1591   1.1    dyoung 
   1592   1.1    dyoung /**
   1593   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1594   1.1    dyoung  *  @hw: pointer to hardware structure
   1595   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1596   1.1    dyoung  *  @data: word read from the EEPROM
   1597   1.1    dyoung  *
   1598   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1599   1.1    dyoung  **/
   1600   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1601   1.1    dyoung {
   1602   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1603   1.3   msaitoh }
   1604   1.3   msaitoh 
   1605   1.3   msaitoh /**
   1606   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1607   1.3   msaitoh  *  @hw: pointer to hardware structure
   1608   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1609   1.3   msaitoh  *  @words: number of word(s)
   1610   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1611   1.3   msaitoh  *
   1612   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1613   1.3   msaitoh  **/
   1614   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1615   1.3   msaitoh 				    u16 words, u16 *data)
   1616   1.3   msaitoh {
   1617   1.3   msaitoh 	u32 eewr;
   1618   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1619   1.3   msaitoh 	u16 i;
   1620   1.1    dyoung 
   1621   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1622   1.1    dyoung 
   1623   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1624   1.1    dyoung 
   1625   1.3   msaitoh 	if (words == 0) {
   1626   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1627   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1628   1.3   msaitoh 		goto out;
   1629   1.3   msaitoh 	}
   1630   1.3   msaitoh 
   1631   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1632   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1633   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1634   1.1    dyoung 		goto out;
   1635   1.1    dyoung 	}
   1636   1.1    dyoung 
   1637   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1638   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1639   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1640   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1641   1.3   msaitoh 
   1642   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1643   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1644   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1645   1.3   msaitoh 			goto out;
   1646   1.3   msaitoh 		}
   1647   1.1    dyoung 
   1648   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1649   1.1    dyoung 
   1650   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1651   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1652   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1653   1.3   msaitoh 			goto out;
   1654   1.3   msaitoh 		}
   1655   1.3   msaitoh 	}
   1656   1.1    dyoung 
   1657   1.1    dyoung out:
   1658   1.1    dyoung 	return status;
   1659   1.1    dyoung }
   1660   1.1    dyoung 
   1661   1.1    dyoung /**
   1662   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1663   1.1    dyoung  *  @hw: pointer to hardware structure
   1664   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1665   1.1    dyoung  *  @data: word write to the EEPROM
   1666   1.1    dyoung  *
   1667   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1668   1.1    dyoung  **/
   1669   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1670   1.1    dyoung {
   1671   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1672   1.1    dyoung }
   1673   1.1    dyoung 
   1674   1.1    dyoung /**
   1675   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1676   1.1    dyoung  *  @hw: pointer to hardware structure
   1677   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1678   1.1    dyoung  *
   1679   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1680   1.1    dyoung  *  read or write is done respectively.
   1681   1.1    dyoung  **/
   1682   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1683   1.1    dyoung {
   1684   1.1    dyoung 	u32 i;
   1685   1.1    dyoung 	u32 reg;
   1686   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1687   1.1    dyoung 
   1688   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1689   1.1    dyoung 
   1690   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1691   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1692   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1693   1.1    dyoung 		else
   1694   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1695   1.1    dyoung 
   1696   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1697   1.1    dyoung 			status = IXGBE_SUCCESS;
   1698   1.1    dyoung 			break;
   1699   1.1    dyoung 		}
   1700   1.1    dyoung 		usec_delay(5);
   1701   1.1    dyoung 	}
   1702   1.6   msaitoh 
   1703   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1704   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1705   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1706   1.6   msaitoh 
   1707   1.1    dyoung 	return status;
   1708   1.1    dyoung }
   1709   1.1    dyoung 
   1710   1.1    dyoung /**
   1711   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1712   1.1    dyoung  *  @hw: pointer to hardware structure
   1713   1.1    dyoung  *
   1714   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1715   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1716   1.1    dyoung  **/
   1717   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1718   1.1    dyoung {
   1719   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1720   1.1    dyoung 	u32 eec;
   1721   1.1    dyoung 	u32 i;
   1722   1.1    dyoung 
   1723   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1724   1.1    dyoung 
   1725   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1726   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1727   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1728   1.1    dyoung 
   1729   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1730  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1731   1.1    dyoung 
   1732   1.1    dyoung 		/* Request EEPROM Access */
   1733   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1734  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1735   1.1    dyoung 
   1736   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1737  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1738   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1739   1.1    dyoung 				break;
   1740   1.1    dyoung 			usec_delay(5);
   1741   1.1    dyoung 		}
   1742   1.1    dyoung 
   1743   1.1    dyoung 		/* Release if grant not acquired */
   1744   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1745   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1746  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1747   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1748   1.1    dyoung 
   1749   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1750   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1751   1.1    dyoung 		}
   1752   1.1    dyoung 
   1753   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1754   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1755   1.1    dyoung 			/* Clear CS and SK */
   1756   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1757  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1758   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1759   1.1    dyoung 			usec_delay(1);
   1760   1.1    dyoung 		}
   1761   1.1    dyoung 	}
   1762   1.1    dyoung 	return status;
   1763   1.1    dyoung }
   1764   1.1    dyoung 
   1765   1.1    dyoung /**
   1766   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1767   1.1    dyoung  *  @hw: pointer to hardware structure
   1768   1.1    dyoung  *
   1769   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1770   1.1    dyoung  **/
   1771   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1772   1.1    dyoung {
   1773   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1774   1.1    dyoung 	u32 timeout = 2000;
   1775   1.1    dyoung 	u32 i;
   1776   1.1    dyoung 	u32 swsm;
   1777   1.1    dyoung 
   1778   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1779   1.1    dyoung 
   1780   1.1    dyoung 
   1781   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1782   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1783   1.1    dyoung 		/*
   1784   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1785   1.1    dyoung 		 * set and we have the semaphore
   1786   1.1    dyoung 		 */
   1787  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1788   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1789   1.1    dyoung 			status = IXGBE_SUCCESS;
   1790   1.1    dyoung 			break;
   1791   1.1    dyoung 		}
   1792   1.1    dyoung 		usec_delay(50);
   1793   1.1    dyoung 	}
   1794   1.1    dyoung 
   1795   1.3   msaitoh 	if (i == timeout) {
   1796   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1797   1.3   msaitoh 			 "not granted.\n");
   1798   1.3   msaitoh 		/*
   1799   1.3   msaitoh 		 * this release is particularly important because our attempts
   1800   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1801   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1802   1.3   msaitoh 		 * bits to free the driver to make progress
   1803   1.3   msaitoh 		 */
   1804   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1805   1.3   msaitoh 
   1806   1.3   msaitoh 		usec_delay(50);
   1807   1.3   msaitoh 		/*
   1808   1.3   msaitoh 		 * one last try
   1809   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1810   1.3   msaitoh 		 * set and we have the semaphore
   1811   1.3   msaitoh 		 */
   1812  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1813   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1814   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1815   1.3   msaitoh 	}
   1816   1.3   msaitoh 
   1817   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1818   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1819   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1820  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1821   1.1    dyoung 
   1822   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1823   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1824  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1825   1.1    dyoung 
   1826   1.1    dyoung 			/*
   1827   1.1    dyoung 			 * If we set the bit successfully then we got the
   1828   1.1    dyoung 			 * semaphore.
   1829   1.1    dyoung 			 */
   1830  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1831   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1832   1.1    dyoung 				break;
   1833   1.1    dyoung 
   1834   1.1    dyoung 			usec_delay(50);
   1835   1.1    dyoung 		}
   1836   1.1    dyoung 
   1837   1.1    dyoung 		/*
   1838   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1839   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1840   1.1    dyoung 		 */
   1841   1.1    dyoung 		if (i >= timeout) {
   1842   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1843   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1844   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1845   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1846   1.1    dyoung 		}
   1847   1.1    dyoung 	} else {
   1848   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1849   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1850   1.6   msaitoh 			     "not granted.\n");
   1851   1.1    dyoung 	}
   1852   1.1    dyoung 
   1853   1.1    dyoung 	return status;
   1854   1.1    dyoung }
   1855   1.1    dyoung 
   1856   1.1    dyoung /**
   1857   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1858   1.1    dyoung  *  @hw: pointer to hardware structure
   1859   1.1    dyoung  *
   1860   1.1    dyoung  *  This function clears hardware semaphore bits.
   1861   1.1    dyoung  **/
   1862   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1863   1.1    dyoung {
   1864   1.1    dyoung 	u32 swsm;
   1865   1.1    dyoung 
   1866   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1867   1.1    dyoung 
   1868   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1869   1.1    dyoung 
   1870   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1871   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1872   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1873   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1874   1.1    dyoung }
   1875   1.1    dyoung 
   1876   1.1    dyoung /**
   1877   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1878   1.1    dyoung  *  @hw: pointer to hardware structure
   1879   1.1    dyoung  **/
   1880   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1881   1.1    dyoung {
   1882   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1883   1.1    dyoung 	u16 i;
   1884   1.1    dyoung 	u8 spi_stat_reg;
   1885   1.1    dyoung 
   1886   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1887   1.1    dyoung 
   1888   1.1    dyoung 	/*
   1889   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1890   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1891   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1892   1.1    dyoung 	 * 5 milliseconds, then error out.
   1893   1.1    dyoung 	 */
   1894   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1895   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1896   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1897   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1898   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1899   1.1    dyoung 			break;
   1900   1.1    dyoung 
   1901   1.1    dyoung 		usec_delay(5);
   1902   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   1903   1.1    dyoung 	};
   1904   1.1    dyoung 
   1905   1.1    dyoung 	/*
   1906   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1907   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1908   1.1    dyoung 	 */
   1909   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1910   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1911   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1912   1.1    dyoung 	}
   1913   1.1    dyoung 
   1914   1.1    dyoung 	return status;
   1915   1.1    dyoung }
   1916   1.1    dyoung 
   1917   1.1    dyoung /**
   1918   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1919   1.1    dyoung  *  @hw: pointer to hardware structure
   1920   1.1    dyoung  **/
   1921   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1922   1.1    dyoung {
   1923   1.1    dyoung 	u32 eec;
   1924   1.1    dyoung 
   1925   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1926   1.1    dyoung 
   1927  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1928   1.1    dyoung 
   1929   1.1    dyoung 	/* Toggle CS to flush commands */
   1930   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   1931  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1932   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1933   1.1    dyoung 	usec_delay(1);
   1934   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   1935  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1936   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1937   1.1    dyoung 	usec_delay(1);
   1938   1.1    dyoung }
   1939   1.1    dyoung 
   1940   1.1    dyoung /**
   1941   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1942   1.1    dyoung  *  @hw: pointer to hardware structure
   1943   1.1    dyoung  *  @data: data to send to the EEPROM
   1944   1.1    dyoung  *  @count: number of bits to shift out
   1945   1.1    dyoung  **/
   1946   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1947   1.3   msaitoh 					u16 count)
   1948   1.1    dyoung {
   1949   1.1    dyoung 	u32 eec;
   1950   1.1    dyoung 	u32 mask;
   1951   1.1    dyoung 	u32 i;
   1952   1.1    dyoung 
   1953   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1954   1.1    dyoung 
   1955  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1956   1.1    dyoung 
   1957   1.1    dyoung 	/*
   1958   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1959   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1960   1.1    dyoung 	 */
   1961   1.1    dyoung 	mask = 0x01 << (count - 1);
   1962   1.1    dyoung 
   1963   1.1    dyoung 	for (i = 0; i < count; i++) {
   1964   1.1    dyoung 		/*
   1965   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1966   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1967   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1968   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1969   1.1    dyoung 		 * raising and then lowering the clock.
   1970   1.1    dyoung 		 */
   1971   1.1    dyoung 		if (data & mask)
   1972   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   1973   1.1    dyoung 		else
   1974   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   1975   1.1    dyoung 
   1976  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1977   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   1978   1.1    dyoung 
   1979   1.1    dyoung 		usec_delay(1);
   1980   1.1    dyoung 
   1981   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1982   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1983   1.1    dyoung 
   1984   1.1    dyoung 		/*
   1985   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1986   1.1    dyoung 		 * EEPROM
   1987   1.1    dyoung 		 */
   1988   1.1    dyoung 		mask = mask >> 1;
   1989   1.1    dyoung 	};
   1990   1.1    dyoung 
   1991   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1992   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   1993  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1994   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1995   1.1    dyoung }
   1996   1.1    dyoung 
   1997   1.1    dyoung /**
   1998   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1999   1.1    dyoung  *  @hw: pointer to hardware structure
   2000   1.1    dyoung  **/
   2001   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2002   1.1    dyoung {
   2003   1.1    dyoung 	u32 eec;
   2004   1.1    dyoung 	u32 i;
   2005   1.1    dyoung 	u16 data = 0;
   2006   1.1    dyoung 
   2007   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2008   1.1    dyoung 
   2009   1.1    dyoung 	/*
   2010   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2011   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2012   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2013   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2014   1.1    dyoung 	 * "DI" bit should always be clear.
   2015   1.1    dyoung 	 */
   2016  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2017   1.1    dyoung 
   2018   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2019   1.1    dyoung 
   2020   1.1    dyoung 	for (i = 0; i < count; i++) {
   2021   1.1    dyoung 		data = data << 1;
   2022   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2023   1.1    dyoung 
   2024  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2025   1.1    dyoung 
   2026   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2027   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2028   1.1    dyoung 			data |= 1;
   2029   1.1    dyoung 
   2030   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2031   1.1    dyoung 	}
   2032   1.1    dyoung 
   2033   1.1    dyoung 	return data;
   2034   1.1    dyoung }
   2035   1.1    dyoung 
   2036   1.1    dyoung /**
   2037   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2038   1.1    dyoung  *  @hw: pointer to hardware structure
   2039   1.1    dyoung  *  @eec: EEC register's current value
   2040   1.1    dyoung  **/
   2041   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2042   1.1    dyoung {
   2043   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2044   1.1    dyoung 
   2045   1.1    dyoung 	/*
   2046   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2047   1.1    dyoung 	 * (setting the SK bit), then delay
   2048   1.1    dyoung 	 */
   2049   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2050  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2051   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2052   1.1    dyoung 	usec_delay(1);
   2053   1.1    dyoung }
   2054   1.1    dyoung 
   2055   1.1    dyoung /**
   2056   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2057   1.1    dyoung  *  @hw: pointer to hardware structure
   2058   1.1    dyoung  *  @eecd: EECD's current value
   2059   1.1    dyoung  **/
   2060   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2061   1.1    dyoung {
   2062   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2063   1.1    dyoung 
   2064   1.1    dyoung 	/*
   2065   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2066   1.1    dyoung 	 * delay
   2067   1.1    dyoung 	 */
   2068   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2069  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2070   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2071   1.1    dyoung 	usec_delay(1);
   2072   1.1    dyoung }
   2073   1.1    dyoung 
   2074   1.1    dyoung /**
   2075   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2076   1.1    dyoung  *  @hw: pointer to hardware structure
   2077   1.1    dyoung  **/
   2078   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2079   1.1    dyoung {
   2080   1.1    dyoung 	u32 eec;
   2081   1.1    dyoung 
   2082   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2083   1.1    dyoung 
   2084  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2085   1.1    dyoung 
   2086   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2087   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2088   1.1    dyoung 
   2089  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2090   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2091   1.1    dyoung 
   2092   1.1    dyoung 	usec_delay(1);
   2093   1.1    dyoung 
   2094   1.1    dyoung 	/* Stop requesting EEPROM access */
   2095   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2096  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2097   1.1    dyoung 
   2098   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2099   1.1    dyoung 
   2100   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2101   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2102   1.1    dyoung }
   2103   1.1    dyoung 
   2104   1.1    dyoung /**
   2105   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2106   1.1    dyoung  *  @hw: pointer to hardware structure
   2107   1.8   msaitoh  *
   2108   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2109   1.1    dyoung  **/
   2110   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2111   1.1    dyoung {
   2112   1.1    dyoung 	u16 i;
   2113   1.1    dyoung 	u16 j;
   2114   1.1    dyoung 	u16 checksum = 0;
   2115   1.1    dyoung 	u16 length = 0;
   2116   1.1    dyoung 	u16 pointer = 0;
   2117   1.1    dyoung 	u16 word = 0;
   2118   1.1    dyoung 
   2119   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2120   1.1    dyoung 
   2121   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2122   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2123   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2124   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2125   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2126   1.1    dyoung 		}
   2127   1.1    dyoung 		checksum += word;
   2128   1.1    dyoung 	}
   2129   1.1    dyoung 
   2130   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2131   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2132   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2133   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2134   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2135   1.8   msaitoh 		}
   2136   1.8   msaitoh 
   2137   1.8   msaitoh 		/* If the pointer seems invalid */
   2138   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2139   1.8   msaitoh 			continue;
   2140   1.8   msaitoh 
   2141   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2142   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2143   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2144   1.8   msaitoh 		}
   2145   1.8   msaitoh 
   2146   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2147   1.8   msaitoh 			continue;
   2148   1.1    dyoung 
   2149   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2150   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2151   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2152   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2153   1.1    dyoung 			}
   2154   1.8   msaitoh 			checksum += word;
   2155   1.1    dyoung 		}
   2156   1.1    dyoung 	}
   2157   1.1    dyoung 
   2158   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2159   1.1    dyoung 
   2160   1.8   msaitoh 	return (s32)checksum;
   2161   1.1    dyoung }
   2162   1.1    dyoung 
   2163   1.1    dyoung /**
   2164   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2165   1.1    dyoung  *  @hw: pointer to hardware structure
   2166   1.1    dyoung  *  @checksum_val: calculated checksum
   2167   1.1    dyoung  *
   2168   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2169   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2170   1.1    dyoung  **/
   2171   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2172   1.3   msaitoh 					   u16 *checksum_val)
   2173   1.1    dyoung {
   2174   1.1    dyoung 	s32 status;
   2175   1.1    dyoung 	u16 checksum;
   2176   1.1    dyoung 	u16 read_checksum = 0;
   2177   1.1    dyoung 
   2178   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2179   1.1    dyoung 
   2180   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2181   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2182   1.1    dyoung 	 * EEPROM read fails
   2183   1.1    dyoung 	 */
   2184   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2185   1.8   msaitoh 	if (status) {
   2186   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2187   1.8   msaitoh 		return status;
   2188   1.8   msaitoh 	}
   2189   1.1    dyoung 
   2190   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2191   1.8   msaitoh 	if (status < 0)
   2192   1.8   msaitoh 		return status;
   2193   1.1    dyoung 
   2194   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2195   1.1    dyoung 
   2196   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2197   1.8   msaitoh 	if (status) {
   2198   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2199   1.8   msaitoh 		return status;
   2200   1.1    dyoung 	}
   2201   1.1    dyoung 
   2202   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2203   1.8   msaitoh 	 * calculated checksum
   2204   1.8   msaitoh 	 */
   2205   1.8   msaitoh 	if (read_checksum != checksum)
   2206   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2207   1.8   msaitoh 
   2208   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2209   1.8   msaitoh 	if (checksum_val)
   2210   1.8   msaitoh 		*checksum_val = checksum;
   2211   1.8   msaitoh 
   2212   1.1    dyoung 	return status;
   2213   1.1    dyoung }
   2214   1.1    dyoung 
   2215   1.1    dyoung /**
   2216   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2217   1.1    dyoung  *  @hw: pointer to hardware structure
   2218   1.1    dyoung  **/
   2219   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2220   1.1    dyoung {
   2221   1.1    dyoung 	s32 status;
   2222   1.1    dyoung 	u16 checksum;
   2223   1.1    dyoung 
   2224   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2225   1.1    dyoung 
   2226   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2227   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2228   1.1    dyoung 	 * EEPROM read fails
   2229   1.1    dyoung 	 */
   2230   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2231   1.8   msaitoh 	if (status) {
   2232   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2233   1.8   msaitoh 		return status;
   2234   1.1    dyoung 	}
   2235   1.1    dyoung 
   2236   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2237   1.8   msaitoh 	if (status < 0)
   2238   1.8   msaitoh 		return status;
   2239   1.8   msaitoh 
   2240   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2241   1.8   msaitoh 
   2242   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2243   1.8   msaitoh 
   2244   1.1    dyoung 	return status;
   2245   1.1    dyoung }
   2246   1.1    dyoung 
   2247   1.1    dyoung /**
   2248   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2249   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2250   1.1    dyoung  *
   2251   1.1    dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2252   1.1    dyoung  **/
   2253   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2254   1.1    dyoung {
   2255   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2256   1.1    dyoung 
   2257   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2258   1.1    dyoung 
   2259   1.1    dyoung 	/* Make sure it is not a multicast address */
   2260   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2261   1.1    dyoung 		DEBUGOUT("MAC address is multicast\n");
   2262   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2263   1.1    dyoung 	/* Not a broadcast address */
   2264   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2265   1.1    dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2266   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2267   1.1    dyoung 	/* Reject the zero address */
   2268   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2269   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2270   1.1    dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2271   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2272   1.1    dyoung 	}
   2273   1.1    dyoung 	return status;
   2274   1.1    dyoung }
   2275   1.1    dyoung 
   2276   1.1    dyoung /**
   2277   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2278   1.1    dyoung  *  @hw: pointer to hardware structure
   2279   1.1    dyoung  *  @index: Receive address register to write
   2280   1.1    dyoung  *  @addr: Address to put into receive address register
   2281   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2282   1.1    dyoung  *  @enable_addr: set flag that address is active
   2283   1.1    dyoung  *
   2284   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2285   1.1    dyoung  **/
   2286   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2287   1.3   msaitoh 			  u32 enable_addr)
   2288   1.1    dyoung {
   2289   1.1    dyoung 	u32 rar_low, rar_high;
   2290   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2291   1.1    dyoung 
   2292   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2293   1.1    dyoung 
   2294   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2295   1.1    dyoung 	if (index >= rar_entries) {
   2296   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2297   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2298   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2299   1.1    dyoung 	}
   2300   1.1    dyoung 
   2301   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2302   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2303   1.1    dyoung 
   2304   1.1    dyoung 	/*
   2305   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2306   1.1    dyoung 	 * order from network order (big endian) to little endian
   2307   1.1    dyoung 	 */
   2308   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2309   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2310   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2311   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2312   1.1    dyoung 	/*
   2313   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2314   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2315   1.1    dyoung 	 * of the address and the address valid bit.
   2316   1.1    dyoung 	 */
   2317   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2318   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2319   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2320   1.1    dyoung 
   2321   1.1    dyoung 	if (enable_addr != 0)
   2322   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2323   1.1    dyoung 
   2324   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2325   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2326   1.1    dyoung 
   2327   1.1    dyoung 	return IXGBE_SUCCESS;
   2328   1.1    dyoung }
   2329   1.1    dyoung 
   2330   1.1    dyoung /**
   2331   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2332   1.1    dyoung  *  @hw: pointer to hardware structure
   2333   1.1    dyoung  *  @index: Receive address register to write
   2334   1.1    dyoung  *
   2335   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2336   1.1    dyoung  **/
   2337   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2338   1.1    dyoung {
   2339   1.1    dyoung 	u32 rar_high;
   2340   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2341   1.1    dyoung 
   2342   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2343   1.1    dyoung 
   2344   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2345   1.1    dyoung 	if (index >= rar_entries) {
   2346   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2347   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2348   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2349   1.1    dyoung 	}
   2350   1.1    dyoung 
   2351   1.1    dyoung 	/*
   2352   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2353   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2354   1.1    dyoung 	 * of the address and the address valid bit.
   2355   1.1    dyoung 	 */
   2356   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2357   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2358   1.1    dyoung 
   2359   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2360   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2361   1.1    dyoung 
   2362   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2363   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2364   1.1    dyoung 
   2365   1.1    dyoung 	return IXGBE_SUCCESS;
   2366   1.1    dyoung }
   2367   1.1    dyoung 
   2368   1.1    dyoung /**
   2369   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2370   1.1    dyoung  *  @hw: pointer to hardware structure
   2371   1.1    dyoung  *
   2372   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2373   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2374   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2375   1.1    dyoung  **/
   2376   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2377   1.1    dyoung {
   2378   1.1    dyoung 	u32 i;
   2379   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2380   1.1    dyoung 
   2381   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2382   1.1    dyoung 
   2383   1.1    dyoung 	/*
   2384   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2385   1.1    dyoung 	 * to the permanent address.
   2386   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2387   1.1    dyoung 	 */
   2388   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2389   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2390   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2391   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2392   1.1    dyoung 
   2393   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2394   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2395   1.3   msaitoh 			  hw->mac.addr[2]);
   2396   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2397   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2398   1.1    dyoung 	} else {
   2399   1.1    dyoung 		/* Setup the receive address. */
   2400   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2401   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2402   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2403   1.3   msaitoh 			  hw->mac.addr[2]);
   2404   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2405   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2406   1.1    dyoung 
   2407   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2408   1.1    dyoung 
   2409   1.1    dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2410   1.1    dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2411   1.1    dyoung 	}
   2412   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2413   1.1    dyoung 
   2414   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2415   1.1    dyoung 
   2416   1.1    dyoung 	/* Zero out the other receive addresses. */
   2417   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2418   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2419   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2420   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2421   1.1    dyoung 	}
   2422   1.1    dyoung 
   2423   1.1    dyoung 	/* Clear the MTA */
   2424   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2425   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2426   1.1    dyoung 
   2427   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2428   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2429   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2430   1.1    dyoung 
   2431   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2432   1.1    dyoung 
   2433   1.1    dyoung 	return IXGBE_SUCCESS;
   2434   1.1    dyoung }
   2435   1.1    dyoung 
   2436   1.1    dyoung /**
   2437   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2438   1.1    dyoung  *  @hw: pointer to hardware structure
   2439   1.1    dyoung  *  @addr: new address
   2440   1.1    dyoung  *
   2441   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2442   1.1    dyoung  **/
   2443   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2444   1.1    dyoung {
   2445   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2446   1.1    dyoung 	u32 rar;
   2447   1.1    dyoung 
   2448   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2449   1.1    dyoung 
   2450   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2451   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2452   1.1    dyoung 
   2453   1.1    dyoung 	/*
   2454   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2455   1.1    dyoung 	 * else put the controller into promiscuous mode
   2456   1.1    dyoung 	 */
   2457   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2458   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2459   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2460   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2461   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2462   1.1    dyoung 	} else {
   2463   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2464   1.1    dyoung 	}
   2465   1.1    dyoung 
   2466   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2467   1.1    dyoung }
   2468   1.1    dyoung 
   2469   1.1    dyoung /**
   2470   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2471   1.1    dyoung  *  @hw: pointer to hardware structure
   2472   1.1    dyoung  *  @addr_list: the list of new addresses
   2473   1.1    dyoung  *  @addr_count: number of addresses
   2474   1.1    dyoung  *  @next: iterator function to walk the address list
   2475   1.1    dyoung  *
   2476   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2477   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2478   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2479   1.1    dyoung  *
   2480   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2481   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2482   1.1    dyoung  **/
   2483   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2484   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2485   1.1    dyoung {
   2486   1.1    dyoung 	u8 *addr;
   2487   1.1    dyoung 	u32 i;
   2488   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2489   1.1    dyoung 	u32 uc_addr_in_use;
   2490   1.1    dyoung 	u32 fctrl;
   2491   1.1    dyoung 	u32 vmdq;
   2492   1.1    dyoung 
   2493   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2494   1.1    dyoung 
   2495   1.1    dyoung 	/*
   2496   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2497   1.1    dyoung 	 * don't count RAR[0]
   2498   1.1    dyoung 	 */
   2499   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2500   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2501   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2502   1.1    dyoung 
   2503   1.1    dyoung 	/* Zero out the other receive addresses */
   2504   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2505   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2506   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2507   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2508   1.1    dyoung 	}
   2509   1.1    dyoung 
   2510   1.1    dyoung 	/* Add the new addresses */
   2511   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2512   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2513   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2514   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2515   1.1    dyoung 	}
   2516   1.1    dyoung 
   2517   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2518   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2519   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2520   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2521   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2522   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2523   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2524   1.1    dyoung 		}
   2525   1.1    dyoung 	} else {
   2526   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2527   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2528   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2529   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2530   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2531   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2532   1.1    dyoung 		}
   2533   1.1    dyoung 	}
   2534   1.1    dyoung 
   2535   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2536   1.1    dyoung 	return IXGBE_SUCCESS;
   2537   1.1    dyoung }
   2538   1.1    dyoung 
   2539   1.1    dyoung /**
   2540   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2541   1.1    dyoung  *  @hw: pointer to hardware structure
   2542   1.1    dyoung  *  @mc_addr: the multicast address
   2543   1.1    dyoung  *
   2544   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2545   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2546   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2547   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2548   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2549   1.1    dyoung  *  to mc_filter_type.
   2550   1.1    dyoung  **/
   2551   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2552   1.1    dyoung {
   2553   1.1    dyoung 	u32 vector = 0;
   2554   1.1    dyoung 
   2555   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2556   1.1    dyoung 
   2557   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2558   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2559   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2560   1.1    dyoung 		break;
   2561   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2562   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2563   1.1    dyoung 		break;
   2564   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2565   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2566   1.1    dyoung 		break;
   2567   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2568   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2569   1.1    dyoung 		break;
   2570   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2571   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2572   1.1    dyoung 		ASSERT(0);
   2573   1.1    dyoung 		break;
   2574   1.1    dyoung 	}
   2575   1.1    dyoung 
   2576   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2577   1.1    dyoung 	vector &= 0xFFF;
   2578   1.1    dyoung 	return vector;
   2579   1.1    dyoung }
   2580   1.1    dyoung 
   2581   1.1    dyoung /**
   2582   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2583   1.1    dyoung  *  @hw: pointer to hardware structure
   2584   1.1    dyoung  *  @hash_value: Multicast address hash value
   2585   1.1    dyoung  *
   2586   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2587   1.1    dyoung  **/
   2588   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2589   1.1    dyoung {
   2590   1.1    dyoung 	u32 vector;
   2591   1.1    dyoung 	u32 vector_bit;
   2592   1.1    dyoung 	u32 vector_reg;
   2593   1.1    dyoung 
   2594   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2595   1.1    dyoung 
   2596   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2597   1.1    dyoung 
   2598   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2599   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2600   1.1    dyoung 
   2601   1.1    dyoung 	/*
   2602   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2603   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2604   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2605   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2606   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2607   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2608   1.1    dyoung 	 * the value.
   2609   1.1    dyoung 	 */
   2610   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2611   1.1    dyoung 	vector_bit = vector & 0x1F;
   2612   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2613   1.1    dyoung }
   2614   1.1    dyoung 
   2615   1.1    dyoung /**
   2616   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2617   1.1    dyoung  *  @hw: pointer to hardware structure
   2618   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2619   1.1    dyoung  *  @mc_addr_count: number of addresses
   2620   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2621   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2622   1.1    dyoung  *
   2623   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2624   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2625   1.1    dyoung  **/
   2626   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2627   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2628   1.3   msaitoh 				      bool clear)
   2629   1.1    dyoung {
   2630   1.1    dyoung 	u32 i;
   2631   1.1    dyoung 	u32 vmdq;
   2632   1.1    dyoung 
   2633   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2634   1.1    dyoung 
   2635   1.1    dyoung 	/*
   2636   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2637   1.1    dyoung 	 * use.
   2638   1.1    dyoung 	 */
   2639   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2640   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2641   1.1    dyoung 
   2642   1.1    dyoung 	/* Clear mta_shadow */
   2643   1.3   msaitoh 	if (clear) {
   2644   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2645   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2646   1.3   msaitoh 	}
   2647   1.1    dyoung 
   2648   1.1    dyoung 	/* Update mta_shadow */
   2649   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2650   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2651   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2652   1.1    dyoung 	}
   2653   1.1    dyoung 
   2654   1.1    dyoung 	/* Enable mta */
   2655   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2656   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2657   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2658   1.1    dyoung 
   2659   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2660   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2661   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2662   1.1    dyoung 
   2663   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2664   1.1    dyoung 	return IXGBE_SUCCESS;
   2665   1.1    dyoung }
   2666   1.1    dyoung 
   2667   1.1    dyoung /**
   2668   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2669   1.1    dyoung  *  @hw: pointer to hardware structure
   2670   1.1    dyoung  *
   2671   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2672   1.1    dyoung  **/
   2673   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2674   1.1    dyoung {
   2675   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2676   1.1    dyoung 
   2677   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2678   1.1    dyoung 
   2679   1.1    dyoung 	if (a->mta_in_use > 0)
   2680   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2681   1.3   msaitoh 				hw->mac.mc_filter_type);
   2682   1.1    dyoung 
   2683   1.1    dyoung 	return IXGBE_SUCCESS;
   2684   1.1    dyoung }
   2685   1.1    dyoung 
   2686   1.1    dyoung /**
   2687   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2688   1.1    dyoung  *  @hw: pointer to hardware structure
   2689   1.1    dyoung  *
   2690   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2691   1.1    dyoung  **/
   2692   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2693   1.1    dyoung {
   2694   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2695   1.1    dyoung 
   2696   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2697   1.1    dyoung 
   2698   1.1    dyoung 	if (a->mta_in_use > 0)
   2699   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2700   1.1    dyoung 
   2701   1.1    dyoung 	return IXGBE_SUCCESS;
   2702   1.1    dyoung }
   2703   1.1    dyoung 
   2704   1.1    dyoung /**
   2705   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2706   1.1    dyoung  *  @hw: pointer to hardware structure
   2707   1.1    dyoung  *
   2708   1.1    dyoung  *  Enable flow control according to the current settings.
   2709   1.1    dyoung  **/
   2710   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2711   1.1    dyoung {
   2712   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2713   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2714   1.1    dyoung 	u32 reg;
   2715   1.1    dyoung 	u32 fcrtl, fcrth;
   2716   1.4   msaitoh 	int i;
   2717   1.1    dyoung 
   2718   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2719   1.1    dyoung 
   2720   1.4   msaitoh 	/* Validate the water mark configuration */
   2721   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2722   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2723   1.4   msaitoh 		goto out;
   2724   1.4   msaitoh 	}
   2725   1.4   msaitoh 
   2726   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2727   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2728   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2729   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2730   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2731   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2732   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2733   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2734   1.4   msaitoh 				goto out;
   2735   1.4   msaitoh 			}
   2736   1.4   msaitoh 		}
   2737   1.4   msaitoh 	}
   2738   1.4   msaitoh 
   2739   1.1    dyoung 	/* Negotiate the fc mode to use */
   2740   1.4   msaitoh 	ixgbe_fc_autoneg(hw);
   2741   1.1    dyoung 
   2742   1.1    dyoung 	/* Disable any previous flow control settings */
   2743   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2744   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2745   1.1    dyoung 
   2746   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2747   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2748   1.1    dyoung 
   2749   1.1    dyoung 	/*
   2750   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2751   1.1    dyoung 	 * 0: Flow control is completely disabled
   2752   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2753   1.1    dyoung 	 *    but not send pause frames).
   2754   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2755   1.1    dyoung 	 *    we do not support receiving pause frames).
   2756   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2757   1.1    dyoung 	 * other: Invalid.
   2758   1.1    dyoung 	 */
   2759   1.1    dyoung 	switch (hw->fc.current_mode) {
   2760   1.1    dyoung 	case ixgbe_fc_none:
   2761   1.1    dyoung 		/*
   2762   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2763   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2764   1.1    dyoung 		 */
   2765   1.1    dyoung 		break;
   2766   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2767   1.1    dyoung 		/*
   2768   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2769   1.1    dyoung 		 * disabled by software override. Since there really
   2770   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2771   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2772   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2773   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2774   1.1    dyoung 		 */
   2775   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2776   1.1    dyoung 		break;
   2777   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2778   1.1    dyoung 		/*
   2779   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2780   1.1    dyoung 		 * disabled by software override.
   2781   1.1    dyoung 		 */
   2782   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2783   1.1    dyoung 		break;
   2784   1.1    dyoung 	case ixgbe_fc_full:
   2785   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2786   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2787   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2788   1.1    dyoung 		break;
   2789   1.1    dyoung 	default:
   2790   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2791   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2792   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2793   1.1    dyoung 		goto out;
   2794   1.1    dyoung 		break;
   2795   1.1    dyoung 	}
   2796   1.1    dyoung 
   2797   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2798   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2799   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2800   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2801   1.1    dyoung 
   2802   1.1    dyoung 
   2803   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2804   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2805   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2806   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2807   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2808   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2809   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2810   1.4   msaitoh 		} else {
   2811   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2812   1.4   msaitoh 			/*
   2813   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2814   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2815   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2816   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2817   1.8   msaitoh 			 * workloads.
   2818   1.4   msaitoh 			 */
   2819   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2820   1.4   msaitoh 		}
   2821   1.4   msaitoh 
   2822   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2823   1.1    dyoung 	}
   2824   1.1    dyoung 
   2825   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2826   1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2827   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2828   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2829   1.1    dyoung 
   2830   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2831   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2832   1.1    dyoung 
   2833   1.1    dyoung out:
   2834   1.1    dyoung 	return ret_val;
   2835   1.1    dyoung }
   2836   1.1    dyoung 
   2837   1.1    dyoung /**
   2838   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2839   1.1    dyoung  *  @hw: pointer to hardware structure
   2840   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2841   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2842   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2843   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2844   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2845   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2846   1.1    dyoung  *
   2847   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2848   1.4   msaitoh  *  advertised settings
   2849   1.1    dyoung  **/
   2850   1.4   msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2851   1.4   msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2852   1.1    dyoung {
   2853   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2854   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2855   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2856   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2857   1.6   msaitoh 			     adv_reg, lp_reg);
   2858   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2859   1.6   msaitoh 	}
   2860   1.1    dyoung 
   2861   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2862   1.4   msaitoh 		/*
   2863   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2864   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2865   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2866   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2867   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2868   1.4   msaitoh 		 */
   2869   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2870   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2871   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2872   1.4   msaitoh 		} else {
   2873   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2874   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2875   1.4   msaitoh 		}
   2876   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2877   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2878   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2879   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2880   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2881   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2882   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2883   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2884   1.4   msaitoh 	} else {
   2885   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2886   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2887   1.4   msaitoh 	}
   2888   1.4   msaitoh 	return IXGBE_SUCCESS;
   2889   1.4   msaitoh }
   2890   1.1    dyoung 
   2891   1.4   msaitoh /**
   2892   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2893   1.4   msaitoh  *  @hw: pointer to hardware structure
   2894   1.4   msaitoh  *
   2895   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2896   1.4   msaitoh  **/
   2897   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2898   1.4   msaitoh {
   2899   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2900   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2901   1.1    dyoung 
   2902   1.1    dyoung 	/*
   2903   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   2904   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   2905   1.4   msaitoh 	 * - link is up and AN completed but timed out
   2906   1.1    dyoung 	 */
   2907   1.4   msaitoh 
   2908   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2909   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2910   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2911   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   2912   1.1    dyoung 		goto out;
   2913   1.6   msaitoh 	}
   2914   1.1    dyoung 
   2915   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2916   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2917   1.1    dyoung 
   2918   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2919   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2920   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2921   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2922   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2923   1.1    dyoung 
   2924   1.1    dyoung out:
   2925   1.1    dyoung 	return ret_val;
   2926   1.1    dyoung }
   2927   1.1    dyoung 
   2928   1.1    dyoung /**
   2929   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2930   1.1    dyoung  *  @hw: pointer to hardware structure
   2931   1.1    dyoung  *
   2932   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2933   1.1    dyoung  **/
   2934   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2935   1.1    dyoung {
   2936   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2937   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2938   1.1    dyoung 
   2939   1.1    dyoung 	/*
   2940   1.1    dyoung 	 * On backplane, bail out if
   2941   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   2942   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   2943   1.1    dyoung 	 */
   2944   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2945   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2946   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   2947   1.1    dyoung 		goto out;
   2948   1.6   msaitoh 	}
   2949   1.1    dyoung 
   2950   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2951   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2952   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2953   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   2954   1.1    dyoung 			goto out;
   2955   1.6   msaitoh 		}
   2956   1.1    dyoung 	}
   2957   1.1    dyoung 	/*
   2958   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2959   1.1    dyoung 	 * local flow control settings accordingly
   2960   1.1    dyoung 	 */
   2961   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2962   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2963   1.1    dyoung 
   2964   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2965   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2966   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2967   1.1    dyoung 
   2968   1.1    dyoung out:
   2969   1.1    dyoung 	return ret_val;
   2970   1.1    dyoung }
   2971   1.1    dyoung 
   2972   1.1    dyoung /**
   2973   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2974   1.1    dyoung  *  @hw: pointer to hardware structure
   2975   1.1    dyoung  *
   2976   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2977   1.1    dyoung  **/
   2978   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2979   1.1    dyoung {
   2980   1.1    dyoung 	u16 technology_ability_reg = 0;
   2981   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   2982   1.1    dyoung 
   2983   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2984   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2985   1.1    dyoung 			     &technology_ability_reg);
   2986   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2987   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2988   1.1    dyoung 			     &lp_technology_ability_reg);
   2989   1.1    dyoung 
   2990   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2991   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   2992   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2993   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2994   1.1    dyoung }
   2995   1.1    dyoung 
   2996   1.1    dyoung /**
   2997   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2998   1.1    dyoung  *  @hw: pointer to hardware structure
   2999   1.1    dyoung  *
   3000   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3001   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3002   1.1    dyoung  **/
   3003   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3004   1.1    dyoung {
   3005   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3006   1.4   msaitoh 	ixgbe_link_speed speed;
   3007   1.4   msaitoh 	bool link_up;
   3008   1.1    dyoung 
   3009   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3010   1.1    dyoung 
   3011   1.1    dyoung 	/*
   3012   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3013   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3014   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3015   1.4   msaitoh 	 * - link is not up.
   3016   1.1    dyoung 	 */
   3017   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3018   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3019   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3020   1.1    dyoung 		goto out;
   3021   1.6   msaitoh 	}
   3022   1.1    dyoung 
   3023   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3024   1.6   msaitoh 	if (!link_up) {
   3025   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3026   1.1    dyoung 		goto out;
   3027   1.6   msaitoh 	}
   3028   1.1    dyoung 
   3029   1.1    dyoung 	switch (hw->phy.media_type) {
   3030   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3031   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3032   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3033   1.1    dyoung 	case ixgbe_media_type_fiber:
   3034   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3035   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3036   1.4   msaitoh 		break;
   3037   1.4   msaitoh 
   3038   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3039   1.1    dyoung 	case ixgbe_media_type_backplane:
   3040   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3041   1.1    dyoung 		break;
   3042   1.1    dyoung 
   3043   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3044   1.1    dyoung 	case ixgbe_media_type_copper:
   3045   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3046   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3047   1.1    dyoung 		break;
   3048   1.1    dyoung 
   3049   1.1    dyoung 	default:
   3050   1.1    dyoung 		break;
   3051   1.1    dyoung 	}
   3052   1.1    dyoung 
   3053   1.4   msaitoh out:
   3054   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3055   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3056   1.4   msaitoh 	} else {
   3057   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3058   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3059   1.3   msaitoh 	}
   3060   1.1    dyoung }
   3061   1.1    dyoung 
   3062   1.6   msaitoh /*
   3063   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3064   1.6   msaitoh  * @hw: pointer to hardware structure
   3065   1.6   msaitoh  *
   3066   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3067   1.6   msaitoh  *
   3068   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3069   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3070   1.6   msaitoh  * 800 = 80 millisec.
   3071   1.6   msaitoh  */
   3072   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3073   1.6   msaitoh {
   3074   1.6   msaitoh 	s16 devctl2;
   3075   1.6   msaitoh 	u32 pollcnt;
   3076   1.6   msaitoh 
   3077   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3078   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3079   1.6   msaitoh 
   3080   1.6   msaitoh 	switch (devctl2) {
   3081   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3082   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3083   1.6   msaitoh 		break;
   3084   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3085   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3086   1.6   msaitoh 		break;
   3087   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3088   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3089   1.6   msaitoh 		break;
   3090   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3091   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3092   1.6   msaitoh 		break;
   3093   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3094   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3095   1.6   msaitoh 		break;
   3096   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3097   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3098   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3099   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3100   1.6   msaitoh 	default:
   3101   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3102   1.6   msaitoh 		break;
   3103   1.6   msaitoh 	}
   3104   1.6   msaitoh 
   3105   1.6   msaitoh 	/* add 10% to spec maximum */
   3106   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3107   1.6   msaitoh }
   3108   1.6   msaitoh 
   3109   1.1    dyoung /**
   3110   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3111   1.1    dyoung  *  @hw: pointer to hardware structure
   3112   1.1    dyoung  *
   3113   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3114   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3115   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3116   1.1    dyoung  *  is returned signifying master requests disabled.
   3117   1.1    dyoung  **/
   3118   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3119   1.1    dyoung {
   3120   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3121   1.6   msaitoh 	u32 i, poll;
   3122   1.8   msaitoh 	u16 value;
   3123   1.1    dyoung 
   3124   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3125   1.1    dyoung 
   3126   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3127   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3128   1.3   msaitoh 
   3129   1.6   msaitoh 	/* Exit if master requests are blocked */
   3130   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3131   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3132   1.1    dyoung 		goto out;
   3133   1.1    dyoung 
   3134   1.3   msaitoh 	/* Poll for master request bit to clear */
   3135   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3136   1.3   msaitoh 		usec_delay(100);
   3137   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3138   1.3   msaitoh 			goto out;
   3139   1.1    dyoung 	}
   3140   1.1    dyoung 
   3141   1.3   msaitoh 	/*
   3142   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3143   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3144   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3145   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3146   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3147   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3148   1.3   msaitoh 	 */
   3149   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3150   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3151   1.1    dyoung 
   3152  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3153  1.10   msaitoh 		goto out;
   3154  1.10   msaitoh 
   3155   1.1    dyoung 	/*
   3156   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3157   1.1    dyoung 	 * transactions pending.
   3158   1.1    dyoung 	 */
   3159   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3160   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3161   1.3   msaitoh 		usec_delay(100);
   3162   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3163   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3164   1.8   msaitoh 			goto out;
   3165   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3166   1.3   msaitoh 			goto out;
   3167   1.1    dyoung 	}
   3168   1.1    dyoung 
   3169   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3170   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3171   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3172   1.1    dyoung 
   3173   1.1    dyoung out:
   3174   1.1    dyoung 	return status;
   3175   1.1    dyoung }
   3176   1.1    dyoung 
   3177   1.1    dyoung /**
   3178   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3179   1.1    dyoung  *  @hw: pointer to hardware structure
   3180   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3181   1.1    dyoung  *
   3182   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3183   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3184   1.1    dyoung  **/
   3185   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3186   1.1    dyoung {
   3187   1.6   msaitoh 	u32 gssr = 0;
   3188   1.1    dyoung 	u32 swmask = mask;
   3189   1.1    dyoung 	u32 fwmask = mask << 5;
   3190   1.6   msaitoh 	u32 timeout = 200;
   3191   1.6   msaitoh 	u32 i;
   3192   1.1    dyoung 
   3193   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3194   1.1    dyoung 
   3195   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3196   1.1    dyoung 		/*
   3197   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3198   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3199   1.1    dyoung 		 */
   3200   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3201   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3202   1.1    dyoung 
   3203   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3204   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3205   1.6   msaitoh 			gssr |= swmask;
   3206   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3207   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3208   1.6   msaitoh 			return IXGBE_SUCCESS;
   3209   1.6   msaitoh 		} else {
   3210   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3211   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3212   1.6   msaitoh 			msec_delay(5);
   3213   1.6   msaitoh 		}
   3214   1.1    dyoung 	}
   3215   1.1    dyoung 
   3216   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3217   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3218   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3219   1.1    dyoung 
   3220   1.6   msaitoh 	msec_delay(5);
   3221   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3222   1.1    dyoung }
   3223   1.1    dyoung 
   3224   1.1    dyoung /**
   3225   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3226   1.1    dyoung  *  @hw: pointer to hardware structure
   3227   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3228   1.1    dyoung  *
   3229   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3230   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3231   1.1    dyoung  **/
   3232   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3233   1.1    dyoung {
   3234   1.1    dyoung 	u32 gssr;
   3235   1.1    dyoung 	u32 swmask = mask;
   3236   1.1    dyoung 
   3237   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3238   1.1    dyoung 
   3239   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3240   1.1    dyoung 
   3241   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3242   1.1    dyoung 	gssr &= ~swmask;
   3243   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3244   1.1    dyoung 
   3245   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3246   1.1    dyoung }
   3247   1.1    dyoung 
   3248   1.1    dyoung /**
   3249   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3250   1.3   msaitoh  *  @hw: pointer to hardware structure
   3251   1.3   msaitoh  *
   3252   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3253   1.3   msaitoh  *  the Rx security block
   3254   1.3   msaitoh  **/
   3255   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3256   1.3   msaitoh {
   3257   1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3258   1.3   msaitoh 
   3259   1.3   msaitoh 	int i;
   3260   1.3   msaitoh 	int secrxreg;
   3261   1.3   msaitoh 
   3262   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3263   1.3   msaitoh 
   3264   1.3   msaitoh 
   3265   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3266   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3267   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3268   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3269   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3270   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3271   1.3   msaitoh 			break;
   3272   1.3   msaitoh 		else
   3273   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3274   1.3   msaitoh 			usec_delay(1000);
   3275   1.3   msaitoh 	}
   3276   1.3   msaitoh 
   3277   1.3   msaitoh 	/* For informational purposes only */
   3278   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3279   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3280   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3281   1.3   msaitoh 
   3282   1.3   msaitoh 	return IXGBE_SUCCESS;
   3283   1.3   msaitoh }
   3284   1.3   msaitoh 
   3285   1.3   msaitoh /**
   3286   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3287   1.8   msaitoh  *  @hw: pointer to hardware structure
   3288   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3289   1.8   msaitoh  *
   3290   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3291   1.8   msaitoh  */
   3292   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3293   1.8   msaitoh {
   3294   1.8   msaitoh 	*locked = FALSE;
   3295   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3296   1.8   msaitoh 	return IXGBE_SUCCESS;
   3297   1.8   msaitoh }
   3298   1.8   msaitoh 
   3299   1.8   msaitoh /**
   3300   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3301   1.8   msaitoh  * @hw: pointer to hardware structure
   3302   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3303   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3304   1.8   msaitoh  *           previous read.
   3305   1.8   msaitoh  *
   3306   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3307   1.8   msaitoh  */
   3308   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3309   1.8   msaitoh {
   3310   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3311   1.8   msaitoh 
   3312   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3313   1.8   msaitoh 	return IXGBE_SUCCESS;
   3314   1.8   msaitoh }
   3315   1.8   msaitoh 
   3316   1.8   msaitoh /**
   3317   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3318   1.3   msaitoh  *  @hw: pointer to hardware structure
   3319   1.3   msaitoh  *
   3320   1.3   msaitoh  *  Enables the receive data path.
   3321   1.3   msaitoh  **/
   3322   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3323   1.3   msaitoh {
   3324   1.3   msaitoh 	int secrxreg;
   3325   1.3   msaitoh 
   3326   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3327   1.3   msaitoh 
   3328   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3329   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3330   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3331   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3332   1.3   msaitoh 
   3333   1.3   msaitoh 	return IXGBE_SUCCESS;
   3334   1.3   msaitoh }
   3335   1.3   msaitoh 
   3336   1.3   msaitoh /**
   3337   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3338   1.1    dyoung  *  @hw: pointer to hardware structure
   3339   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3340   1.1    dyoung  *
   3341   1.1    dyoung  *  Enables the Rx DMA unit
   3342   1.1    dyoung  **/
   3343   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3344   1.1    dyoung {
   3345   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3346   1.1    dyoung 
   3347   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3348   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3349   1.8   msaitoh 	else
   3350   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3351   1.1    dyoung 
   3352   1.1    dyoung 	return IXGBE_SUCCESS;
   3353   1.1    dyoung }
   3354   1.1    dyoung 
   3355   1.1    dyoung /**
   3356   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3357   1.1    dyoung  *  @hw: pointer to hardware structure
   3358   1.1    dyoung  *  @index: led number to blink
   3359   1.1    dyoung  **/
   3360   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3361   1.1    dyoung {
   3362   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3363   1.1    dyoung 	bool link_up = 0;
   3364   1.8   msaitoh 	u32 autoc_reg = 0;
   3365   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3366   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3367   1.8   msaitoh 	bool locked = FALSE;
   3368   1.1    dyoung 
   3369   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3370   1.1    dyoung 
   3371   1.1    dyoung 	/*
   3372   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3373   1.1    dyoung 	 * Force it if link is down.
   3374   1.1    dyoung 	 */
   3375   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3376   1.1    dyoung 
   3377   1.1    dyoung 	if (!link_up) {
   3378   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3379   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3380   1.8   msaitoh 			goto out;
   3381   1.5   msaitoh 
   3382   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3383   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3384   1.8   msaitoh 
   3385   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3386   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3387   1.8   msaitoh 			goto out;
   3388   1.8   msaitoh 
   3389   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3390   1.1    dyoung 		msec_delay(10);
   3391   1.1    dyoung 	}
   3392   1.1    dyoung 
   3393   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3394   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3395   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3396   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3397   1.1    dyoung 
   3398   1.5   msaitoh out:
   3399   1.5   msaitoh 	return ret_val;
   3400   1.1    dyoung }
   3401   1.1    dyoung 
   3402   1.1    dyoung /**
   3403   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3404   1.1    dyoung  *  @hw: pointer to hardware structure
   3405   1.1    dyoung  *  @index: led number to stop blinking
   3406   1.1    dyoung  **/
   3407   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3408   1.1    dyoung {
   3409   1.8   msaitoh 	u32 autoc_reg = 0;
   3410   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3411   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3412   1.8   msaitoh 	bool locked = FALSE;
   3413   1.1    dyoung 
   3414   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3415   1.1    dyoung 
   3416   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3417   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3418   1.8   msaitoh 		goto out;
   3419   1.1    dyoung 
   3420   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3421   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3422   1.1    dyoung 
   3423   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3424   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3425   1.8   msaitoh 		goto out;
   3426   1.5   msaitoh 
   3427   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3428   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3429   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3430   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3431   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3432   1.1    dyoung 
   3433   1.5   msaitoh out:
   3434   1.5   msaitoh 	return ret_val;
   3435   1.1    dyoung }
   3436   1.1    dyoung 
   3437   1.1    dyoung /**
   3438   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3439   1.1    dyoung  *  @hw: pointer to hardware structure
   3440   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3441   1.1    dyoung  *
   3442   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3443   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3444   1.1    dyoung  *  get and set mac_addr routines.
   3445   1.1    dyoung  **/
   3446   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3447   1.3   msaitoh 					 u16 *san_mac_offset)
   3448   1.1    dyoung {
   3449   1.6   msaitoh 	s32 ret_val;
   3450   1.6   msaitoh 
   3451   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3452   1.1    dyoung 
   3453   1.1    dyoung 	/*
   3454   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3455   1.1    dyoung 	 * available.
   3456   1.1    dyoung 	 */
   3457   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3458   1.6   msaitoh 				      san_mac_offset);
   3459   1.6   msaitoh 	if (ret_val) {
   3460   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3461   1.6   msaitoh 			      "eeprom at offset %d failed",
   3462   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3463   1.6   msaitoh 	}
   3464   1.1    dyoung 
   3465   1.6   msaitoh 	return ret_val;
   3466   1.1    dyoung }
   3467   1.1    dyoung 
   3468   1.1    dyoung /**
   3469   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3470   1.1    dyoung  *  @hw: pointer to hardware structure
   3471   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3472   1.1    dyoung  *
   3473   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3474   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3475   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3476   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3477   1.1    dyoung  **/
   3478   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3479   1.1    dyoung {
   3480   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3481   1.1    dyoung 	u8 i;
   3482   1.6   msaitoh 	s32 ret_val;
   3483   1.1    dyoung 
   3484   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3485   1.1    dyoung 
   3486   1.1    dyoung 	/*
   3487   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3488   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3489   1.1    dyoung 	 */
   3490   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3491   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3492   1.1    dyoung 		goto san_mac_addr_out;
   3493   1.1    dyoung 
   3494   1.1    dyoung 	/* make sure we know which port we need to program */
   3495   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3496   1.1    dyoung 	/* apply the port offset to the address offset */
   3497   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3498   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3499   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3500   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3501   1.6   msaitoh 					      &san_mac_data);
   3502   1.6   msaitoh 		if (ret_val) {
   3503   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3504   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3505   1.6   msaitoh 				      san_mac_offset);
   3506   1.6   msaitoh 			goto san_mac_addr_out;
   3507   1.6   msaitoh 		}
   3508   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3509   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3510   1.1    dyoung 		san_mac_offset++;
   3511   1.1    dyoung 	}
   3512   1.6   msaitoh 	return IXGBE_SUCCESS;
   3513   1.1    dyoung 
   3514   1.1    dyoung san_mac_addr_out:
   3515   1.6   msaitoh 	/*
   3516   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3517   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3518   1.6   msaitoh 	 */
   3519   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3520   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3521   1.1    dyoung 	return IXGBE_SUCCESS;
   3522   1.1    dyoung }
   3523   1.1    dyoung 
   3524   1.1    dyoung /**
   3525   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3526   1.1    dyoung  *  @hw: pointer to hardware structure
   3527   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3528   1.1    dyoung  *
   3529   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3530   1.1    dyoung  **/
   3531   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3532   1.1    dyoung {
   3533   1.6   msaitoh 	s32 ret_val;
   3534   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3535   1.1    dyoung 	u8 i;
   3536   1.1    dyoung 
   3537   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3538   1.1    dyoung 
   3539   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3540   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3541   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3542   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3543   1.1    dyoung 
   3544   1.1    dyoung 	/* Make sure we know which port we need to write */
   3545   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3546   1.1    dyoung 	/* Apply the port offset to the address offset */
   3547   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3548   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3549   1.1    dyoung 
   3550   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3551   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3552   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3553   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3554   1.1    dyoung 		san_mac_offset++;
   3555   1.1    dyoung 	}
   3556   1.1    dyoung 
   3557   1.6   msaitoh 	return IXGBE_SUCCESS;
   3558   1.1    dyoung }
   3559   1.1    dyoung 
   3560   1.1    dyoung /**
   3561   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3562   1.1    dyoung  *  @hw: pointer to hardware structure
   3563   1.1    dyoung  *
   3564   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3565   1.1    dyoung  *  the capabilities table.
   3566   1.1    dyoung  **/
   3567   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3568   1.1    dyoung {
   3569   1.4   msaitoh 	u16 msix_count = 1;
   3570   1.4   msaitoh 	u16 max_msix_count;
   3571   1.4   msaitoh 	u16 pcie_offset;
   3572   1.4   msaitoh 
   3573   1.4   msaitoh 	switch (hw->mac.type) {
   3574   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3575   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3576   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3577   1.4   msaitoh 		break;
   3578   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3579   1.4   msaitoh 	case ixgbe_mac_X540:
   3580   1.8   msaitoh 	case ixgbe_mac_X550:
   3581   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3582   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3583   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3584   1.4   msaitoh 		break;
   3585   1.4   msaitoh 	default:
   3586   1.4   msaitoh 		return msix_count;
   3587   1.4   msaitoh 	}
   3588   1.1    dyoung 
   3589   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3590   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3591   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3592   1.8   msaitoh 		msix_count = 0;
   3593   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3594   1.4   msaitoh 
   3595   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3596   1.4   msaitoh 	msix_count++;
   3597   1.4   msaitoh 
   3598   1.4   msaitoh 	if (msix_count > max_msix_count)
   3599   1.4   msaitoh 		msix_count = max_msix_count;
   3600   1.1    dyoung 
   3601   1.1    dyoung 	return msix_count;
   3602   1.1    dyoung }
   3603   1.1    dyoung 
   3604   1.1    dyoung /**
   3605   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3606   1.1    dyoung  *  @hw: pointer to hardware structure
   3607   1.1    dyoung  *  @addr: Address to put into receive address register
   3608   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3609   1.1    dyoung  *
   3610   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3611   1.1    dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3612   1.1    dyoung  **/
   3613   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3614   1.1    dyoung {
   3615   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3616   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3617   1.1    dyoung 	u32 rar;
   3618   1.1    dyoung 	u32 rar_low, rar_high;
   3619   1.1    dyoung 	u32 addr_low, addr_high;
   3620   1.1    dyoung 
   3621   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3622   1.1    dyoung 
   3623   1.1    dyoung 	/* swap bytes for HW little endian */
   3624   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3625   1.1    dyoung 			    | (addr[2] << 16)
   3626   1.1    dyoung 			    | (addr[3] << 24);
   3627   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3628   1.1    dyoung 
   3629   1.1    dyoung 	/*
   3630   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3631   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3632   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3633   1.1    dyoung 	 * rar to the top.
   3634   1.1    dyoung 	 */
   3635   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3636   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3637   1.1    dyoung 
   3638   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3639   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3640   1.1    dyoung 			first_empty_rar = rar;
   3641   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3642   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3643   1.1    dyoung 			if (rar_low == addr_low)
   3644   1.1    dyoung 				break;    /* found it already in the rars */
   3645   1.1    dyoung 		}
   3646   1.1    dyoung 	}
   3647   1.1    dyoung 
   3648   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3649   1.1    dyoung 		/* already there so just add to the pool bits */
   3650   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3651   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3652   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3653   1.1    dyoung 		rar = first_empty_rar;
   3654   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3655   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3656   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3657   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3658   1.1    dyoung 		hw->mac.rar_highwater++;
   3659   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3660   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3661   1.1    dyoung 	}
   3662   1.1    dyoung 
   3663   1.1    dyoung 	/*
   3664   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3665   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3666   1.1    dyoung 	 */
   3667   1.1    dyoung 	if (rar == 0)
   3668   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3669   1.1    dyoung 
   3670   1.1    dyoung 	return rar;
   3671   1.1    dyoung }
   3672   1.1    dyoung 
   3673   1.1    dyoung /**
   3674   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3675   1.1    dyoung  *  @hw: pointer to hardware struct
   3676   1.1    dyoung  *  @rar: receive address register index to disassociate
   3677   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3678   1.1    dyoung  **/
   3679   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3680   1.1    dyoung {
   3681   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3682   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3683   1.1    dyoung 
   3684   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3685   1.1    dyoung 
   3686   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3687   1.1    dyoung 	if (rar >= rar_entries) {
   3688   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3689   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3690   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3691   1.1    dyoung 	}
   3692   1.1    dyoung 
   3693   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3694   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3695   1.1    dyoung 
   3696   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3697   1.8   msaitoh 		goto done;
   3698   1.8   msaitoh 
   3699   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3700   1.1    dyoung 		goto done;
   3701   1.1    dyoung 
   3702   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3703   1.1    dyoung 		if (mpsar_lo) {
   3704   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3705   1.1    dyoung 			mpsar_lo = 0;
   3706   1.1    dyoung 		}
   3707   1.1    dyoung 		if (mpsar_hi) {
   3708   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3709   1.1    dyoung 			mpsar_hi = 0;
   3710   1.1    dyoung 		}
   3711   1.1    dyoung 	} else if (vmdq < 32) {
   3712   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3713   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3714   1.1    dyoung 	} else {
   3715   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3716   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3717   1.1    dyoung 	}
   3718   1.1    dyoung 
   3719   1.1    dyoung 	/* was that the last pool using this rar? */
   3720   1.1    dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3721   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3722   1.1    dyoung done:
   3723   1.1    dyoung 	return IXGBE_SUCCESS;
   3724   1.1    dyoung }
   3725   1.1    dyoung 
   3726   1.1    dyoung /**
   3727   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3728   1.1    dyoung  *  @hw: pointer to hardware struct
   3729   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3730   1.1    dyoung  *  @vmdq: VMDq pool index
   3731   1.1    dyoung  **/
   3732   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3733   1.1    dyoung {
   3734   1.1    dyoung 	u32 mpsar;
   3735   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3736   1.1    dyoung 
   3737   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3738   1.1    dyoung 
   3739   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3740   1.1    dyoung 	if (rar >= rar_entries) {
   3741   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3742   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3743   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3744   1.1    dyoung 	}
   3745   1.1    dyoung 
   3746   1.1    dyoung 	if (vmdq < 32) {
   3747   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3748   1.1    dyoung 		mpsar |= 1 << vmdq;
   3749   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3750   1.1    dyoung 	} else {
   3751   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3752   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3753   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3754   1.1    dyoung 	}
   3755   1.1    dyoung 	return IXGBE_SUCCESS;
   3756   1.1    dyoung }
   3757   1.1    dyoung 
   3758   1.1    dyoung /**
   3759   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3760   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3761   1.4   msaitoh  *  VFs advertized and not 0.
   3762   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3763   1.4   msaitoh  *
   3764   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3765   1.4   msaitoh  *  @hw: pointer to hardware struct
   3766   1.4   msaitoh  *  @vmdq: VMDq pool index
   3767   1.4   msaitoh  **/
   3768   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3769   1.4   msaitoh {
   3770   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3771   1.4   msaitoh 
   3772   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3773   1.4   msaitoh 
   3774   1.4   msaitoh 	if (vmdq < 32) {
   3775   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3776   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3777   1.4   msaitoh 	} else {
   3778   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3779   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3780   1.4   msaitoh 	}
   3781   1.4   msaitoh 
   3782   1.4   msaitoh 	return IXGBE_SUCCESS;
   3783   1.4   msaitoh }
   3784   1.4   msaitoh 
   3785   1.4   msaitoh /**
   3786   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3787   1.1    dyoung  *  @hw: pointer to hardware structure
   3788   1.1    dyoung  **/
   3789   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3790   1.1    dyoung {
   3791   1.1    dyoung 	int i;
   3792   1.1    dyoung 
   3793   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3794   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3795   1.1    dyoung 
   3796   1.1    dyoung 	for (i = 0; i < 128; i++)
   3797   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3798   1.1    dyoung 
   3799   1.1    dyoung 	return IXGBE_SUCCESS;
   3800   1.1    dyoung }
   3801   1.1    dyoung 
   3802   1.1    dyoung /**
   3803   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3804   1.1    dyoung  *  @hw: pointer to hardware structure
   3805   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3806   1.1    dyoung  *
   3807   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3808   1.1    dyoung  *
   3809   1.1    dyoung  **/
   3810   1.1    dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3811   1.1    dyoung {
   3812   1.1    dyoung 	u32 bits = 0;
   3813   1.1    dyoung 	u32 first_empty_slot = 0;
   3814   1.1    dyoung 	s32 regindex;
   3815   1.1    dyoung 
   3816   1.1    dyoung 	/* short cut the special case */
   3817   1.1    dyoung 	if (vlan == 0)
   3818   1.1    dyoung 		return 0;
   3819   1.1    dyoung 
   3820   1.1    dyoung 	/*
   3821   1.1    dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3822   1.1    dyoung 	  * slot found along the way
   3823   1.1    dyoung 	  */
   3824   1.1    dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3825   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3826   1.1    dyoung 		if (!bits && !(first_empty_slot))
   3827   1.1    dyoung 			first_empty_slot = regindex;
   3828   1.1    dyoung 		else if ((bits & 0x0FFF) == vlan)
   3829   1.1    dyoung 			break;
   3830   1.1    dyoung 	}
   3831   1.1    dyoung 
   3832   1.1    dyoung 	/*
   3833   1.1    dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3834   1.1    dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3835   1.1    dyoung 	  * vlan id.
   3836   1.1    dyoung 	  */
   3837   1.1    dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3838   1.1    dyoung 		if (first_empty_slot)
   3839   1.1    dyoung 			regindex = first_empty_slot;
   3840   1.1    dyoung 		else {
   3841   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3842   1.6   msaitoh 				     "No space in VLVF.\n");
   3843   1.1    dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3844   1.1    dyoung 		}
   3845   1.1    dyoung 	}
   3846   1.1    dyoung 
   3847   1.1    dyoung 	return regindex;
   3848   1.1    dyoung }
   3849   1.1    dyoung 
   3850   1.1    dyoung /**
   3851   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3852   1.1    dyoung  *  @hw: pointer to hardware structure
   3853   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3854   1.1    dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3855   1.1    dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3856   1.1    dyoung  *
   3857   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3858   1.1    dyoung  **/
   3859   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3860   1.3   msaitoh 			   bool vlan_on)
   3861   1.1    dyoung {
   3862   1.1    dyoung 	s32 regindex;
   3863   1.1    dyoung 	u32 bitindex;
   3864   1.1    dyoung 	u32 vfta;
   3865   1.1    dyoung 	u32 targetbit;
   3866   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3867   1.1    dyoung 	bool vfta_changed = FALSE;
   3868   1.1    dyoung 
   3869   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3870   1.1    dyoung 
   3871   1.1    dyoung 	if (vlan > 4095)
   3872   1.1    dyoung 		return IXGBE_ERR_PARAM;
   3873   1.1    dyoung 
   3874   1.1    dyoung 	/*
   3875   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3876   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3877   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3878   1.1    dyoung 	 */
   3879   1.1    dyoung 
   3880   1.1    dyoung 	/* Part 1
   3881   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3882   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3883   1.1    dyoung 	 *    bits[11-5]: which register
   3884   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3885   1.1    dyoung 	 */
   3886   1.1    dyoung 	regindex = (vlan >> 5) & 0x7F;
   3887   1.1    dyoung 	bitindex = vlan & 0x1F;
   3888   1.1    dyoung 	targetbit = (1 << bitindex);
   3889   1.1    dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3890   1.1    dyoung 
   3891   1.1    dyoung 	if (vlan_on) {
   3892   1.1    dyoung 		if (!(vfta & targetbit)) {
   3893   1.1    dyoung 			vfta |= targetbit;
   3894   1.1    dyoung 			vfta_changed = TRUE;
   3895   1.1    dyoung 		}
   3896   1.1    dyoung 	} else {
   3897   1.1    dyoung 		if ((vfta & targetbit)) {
   3898   1.1    dyoung 			vfta &= ~targetbit;
   3899   1.1    dyoung 			vfta_changed = TRUE;
   3900   1.1    dyoung 		}
   3901   1.1    dyoung 	}
   3902   1.1    dyoung 
   3903   1.1    dyoung 	/* Part 2
   3904   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3905   1.3   msaitoh 	 */
   3906   1.3   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3907   1.3   msaitoh 					 &vfta_changed);
   3908   1.3   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3909   1.3   msaitoh 		return ret_val;
   3910   1.3   msaitoh 
   3911   1.3   msaitoh 	if (vfta_changed)
   3912   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3913   1.3   msaitoh 
   3914   1.3   msaitoh 	return IXGBE_SUCCESS;
   3915   1.3   msaitoh }
   3916   1.3   msaitoh 
   3917   1.3   msaitoh /**
   3918   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3919   1.3   msaitoh  *  @hw: pointer to hardware structure
   3920   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3921   1.3   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3922   1.3   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3923   1.3   msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3924   1.3   msaitoh  *                 should be changed
   3925   1.3   msaitoh  *
   3926   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   3927   1.3   msaitoh  **/
   3928   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3929   1.3   msaitoh 			    bool vlan_on, bool *vfta_changed)
   3930   1.3   msaitoh {
   3931   1.3   msaitoh 	u32 vt;
   3932   1.3   msaitoh 
   3933   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3934   1.3   msaitoh 
   3935   1.3   msaitoh 	if (vlan > 4095)
   3936   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   3937   1.3   msaitoh 
   3938   1.3   msaitoh 	/* If VT Mode is set
   3939   1.1    dyoung 	 *   Either vlan_on
   3940   1.1    dyoung 	 *     make sure the vlan is in VLVF
   3941   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   3942   1.1    dyoung 	 *   Or !vlan_on
   3943   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   3944   1.1    dyoung 	 */
   3945   1.1    dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3946   1.1    dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3947   1.1    dyoung 		s32 vlvf_index;
   3948   1.3   msaitoh 		u32 bits;
   3949   1.1    dyoung 
   3950   1.1    dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3951   1.1    dyoung 		if (vlvf_index < 0)
   3952   1.1    dyoung 			return vlvf_index;
   3953   1.1    dyoung 
   3954   1.1    dyoung 		if (vlan_on) {
   3955   1.1    dyoung 			/* set the pool bit */
   3956   1.1    dyoung 			if (vind < 32) {
   3957   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3958   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3959   1.1    dyoung 				bits |= (1 << vind);
   3960   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3961   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3962   1.1    dyoung 						bits);
   3963   1.1    dyoung 			} else {
   3964   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3965   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3966   1.3   msaitoh 				bits |= (1 << (vind - 32));
   3967   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3968   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3969   1.3   msaitoh 					bits);
   3970   1.1    dyoung 			}
   3971   1.1    dyoung 		} else {
   3972   1.1    dyoung 			/* clear the pool bit */
   3973   1.1    dyoung 			if (vind < 32) {
   3974   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3975   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3976   1.1    dyoung 				bits &= ~(1 << vind);
   3977   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3978   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3979   1.1    dyoung 						bits);
   3980   1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3981   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3982   1.1    dyoung 			} else {
   3983   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3984   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3985   1.3   msaitoh 				bits &= ~(1 << (vind - 32));
   3986   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3987   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3988   1.3   msaitoh 					bits);
   3989   1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3990   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3991   1.1    dyoung 			}
   3992   1.1    dyoung 		}
   3993   1.1    dyoung 
   3994   1.1    dyoung 		/*
   3995   1.1    dyoung 		 * If there are still bits set in the VLVFB registers
   3996   1.1    dyoung 		 * for the VLAN ID indicated we need to see if the
   3997   1.1    dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3998   1.1    dyoung 		 * If the caller has requested that we clear the VFTA
   3999   1.1    dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   4000   1.1    dyoung 		 * ID entry then ignore the request.  We're not worried
   4001   1.1    dyoung 		 * about the case where we're turning the VFTA VLAN ID
   4002   1.1    dyoung 		 * entry bit on, only when requested to turn it off as
   4003   1.1    dyoung 		 * there may be multiple pools and/or VFs using the
   4004   1.1    dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   4005   1.1    dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   4006   1.1    dyoung 		 * been cleared.  This will be indicated by "bits" being
   4007   1.1    dyoung 		 * zero.
   4008   1.1    dyoung 		 */
   4009   1.1    dyoung 		if (bits) {
   4010   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   4011   1.1    dyoung 					(IXGBE_VLVF_VIEN | vlan));
   4012   1.3   msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   4013   1.1    dyoung 				/* someone wants to clear the vfta entry
   4014   1.1    dyoung 				 * but some pools/VFs are still using it.
   4015   1.1    dyoung 				 * Ignore it. */
   4016   1.3   msaitoh 				*vfta_changed = FALSE;
   4017   1.1    dyoung 			}
   4018   1.3   msaitoh 		} else
   4019   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4020   1.1    dyoung 	}
   4021   1.1    dyoung 
   4022   1.1    dyoung 	return IXGBE_SUCCESS;
   4023   1.1    dyoung }
   4024   1.1    dyoung 
   4025   1.1    dyoung /**
   4026   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4027   1.1    dyoung  *  @hw: pointer to hardware structure
   4028   1.1    dyoung  *
   4029   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4030   1.1    dyoung  **/
   4031   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4032   1.1    dyoung {
   4033   1.1    dyoung 	u32 offset;
   4034   1.1    dyoung 
   4035   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4036   1.1    dyoung 
   4037   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4038   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4039   1.1    dyoung 
   4040   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4041   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4042   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4043   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4044   1.1    dyoung 	}
   4045   1.1    dyoung 
   4046   1.1    dyoung 	return IXGBE_SUCCESS;
   4047   1.1    dyoung }
   4048   1.1    dyoung 
   4049   1.1    dyoung /**
   4050   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4051   1.1    dyoung  *  @hw: pointer to hardware structure
   4052   1.1    dyoung  *  @speed: pointer to link speed
   4053   1.1    dyoung  *  @link_up: TRUE when link is up
   4054   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4055   1.1    dyoung  *
   4056   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4057   1.1    dyoung  **/
   4058   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4059   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4060   1.1    dyoung {
   4061   1.1    dyoung 	u32 links_reg, links_orig;
   4062   1.1    dyoung 	u32 i;
   4063   1.1    dyoung 
   4064   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4065   1.1    dyoung 
   4066   1.1    dyoung 	/* clear the old state */
   4067   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4068   1.1    dyoung 
   4069   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4070   1.1    dyoung 
   4071   1.1    dyoung 	if (links_orig != links_reg) {
   4072   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4073   1.3   msaitoh 			  links_orig, links_reg);
   4074   1.1    dyoung 	}
   4075   1.1    dyoung 
   4076   1.1    dyoung 	if (link_up_wait_to_complete) {
   4077  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4078   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4079   1.1    dyoung 				*link_up = TRUE;
   4080   1.1    dyoung 				break;
   4081   1.1    dyoung 			} else {
   4082   1.1    dyoung 				*link_up = FALSE;
   4083   1.1    dyoung 			}
   4084   1.1    dyoung 			msec_delay(100);
   4085   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4086   1.1    dyoung 		}
   4087   1.1    dyoung 	} else {
   4088   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4089   1.1    dyoung 			*link_up = TRUE;
   4090   1.1    dyoung 		else
   4091   1.1    dyoung 			*link_up = FALSE;
   4092   1.1    dyoung 	}
   4093   1.1    dyoung 
   4094   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4095   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4096   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4097   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4098   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4099   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4100   1.8   msaitoh 		}
   4101   1.8   msaitoh 		break;
   4102   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4103   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4104   1.8   msaitoh 		break;
   4105   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4106   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4107   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4108   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4109   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4110   1.8   msaitoh 		}
   4111   1.8   msaitoh 		break;
   4112   1.8   msaitoh 	default:
   4113   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4114   1.8   msaitoh 	}
   4115   1.1    dyoung 
   4116   1.1    dyoung 	return IXGBE_SUCCESS;
   4117   1.1    dyoung }
   4118   1.1    dyoung 
   4119   1.1    dyoung /**
   4120   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4121   1.1    dyoung  *  the EEPROM
   4122   1.1    dyoung  *  @hw: pointer to hardware structure
   4123   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4124   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4125   1.1    dyoung  *
   4126   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4127   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4128   1.1    dyoung  **/
   4129   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4130   1.3   msaitoh 				 u16 *wwpn_prefix)
   4131   1.1    dyoung {
   4132   1.1    dyoung 	u16 offset, caps;
   4133   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4134   1.1    dyoung 
   4135   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4136   1.1    dyoung 
   4137   1.1    dyoung 	/* clear output first */
   4138   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4139   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4140   1.1    dyoung 
   4141   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4142   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4143   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4144   1.6   msaitoh 		goto wwn_prefix_err;
   4145   1.1    dyoung 
   4146   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4147   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4148   1.1    dyoung 		goto wwn_prefix_out;
   4149   1.1    dyoung 
   4150   1.1    dyoung 	/* check capability in alternative san mac address block */
   4151   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4152   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4153   1.6   msaitoh 		goto wwn_prefix_err;
   4154   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4155   1.1    dyoung 		goto wwn_prefix_out;
   4156   1.1    dyoung 
   4157   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4158   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4159   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4160   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4161   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4162   1.6   msaitoh 	}
   4163   1.1    dyoung 
   4164   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4165   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4166   1.6   msaitoh 		goto wwn_prefix_err;
   4167   1.1    dyoung 
   4168   1.1    dyoung wwn_prefix_out:
   4169   1.1    dyoung 	return IXGBE_SUCCESS;
   4170   1.6   msaitoh 
   4171   1.6   msaitoh wwn_prefix_err:
   4172   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4173   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4174   1.6   msaitoh 	return IXGBE_SUCCESS;
   4175   1.1    dyoung }
   4176   1.1    dyoung 
   4177   1.1    dyoung /**
   4178   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4179   1.1    dyoung  *  @hw: pointer to hardware structure
   4180   1.1    dyoung  *  @bs: the fcoe boot status
   4181   1.1    dyoung  *
   4182   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4183   1.1    dyoung  **/
   4184   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4185   1.1    dyoung {
   4186   1.1    dyoung 	u16 offset, caps, flags;
   4187   1.1    dyoung 	s32 status;
   4188   1.1    dyoung 
   4189   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4190   1.1    dyoung 
   4191   1.1    dyoung 	/* clear output first */
   4192   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4193   1.1    dyoung 
   4194   1.1    dyoung 	/* check if FCOE IBA block is present */
   4195   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4196   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4197   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4198   1.1    dyoung 		goto out;
   4199   1.1    dyoung 
   4200   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4201   1.1    dyoung 		goto out;
   4202   1.1    dyoung 
   4203   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4204   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4205   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4206   1.1    dyoung 		goto out;
   4207   1.1    dyoung 
   4208   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4209   1.1    dyoung 		goto out;
   4210   1.1    dyoung 
   4211   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4212   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4213   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4214   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4215   1.1    dyoung 		goto out;
   4216   1.1    dyoung 
   4217   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4218   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4219   1.1    dyoung 	else
   4220   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4221   1.1    dyoung 
   4222   1.1    dyoung out:
   4223   1.1    dyoung 	return status;
   4224   1.1    dyoung }
   4225   1.1    dyoung 
   4226   1.1    dyoung /**
   4227   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4228   1.1    dyoung  *  @hw: pointer to hardware structure
   4229   1.1    dyoung  *  @enable: enable or disable switch for anti-spoofing
   4230   1.1    dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4231   1.1    dyoung  *
   4232   1.1    dyoung  **/
   4233   1.1    dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4234   1.1    dyoung {
   4235   1.1    dyoung 	int j;
   4236   1.1    dyoung 	int pf_target_reg = pf >> 3;
   4237   1.1    dyoung 	int pf_target_shift = pf % 8;
   4238   1.1    dyoung 	u32 pfvfspoof = 0;
   4239   1.1    dyoung 
   4240   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4241   1.1    dyoung 		return;
   4242   1.1    dyoung 
   4243   1.1    dyoung 	if (enable)
   4244   1.1    dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4245   1.1    dyoung 
   4246   1.1    dyoung 	/*
   4247   1.1    dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4248   1.1    dyoung 	 * MAC anti-spoof enables in each register array element.
   4249   1.1    dyoung 	 */
   4250   1.4   msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4251   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4252   1.1    dyoung 
   4253   1.4   msaitoh 	/*
   4254   1.4   msaitoh 	 * The PF should be allowed to spoof so that it can support
   4255   1.4   msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4256   1.4   msaitoh 	 */
   4257   1.4   msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4258   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4259   1.1    dyoung 
   4260   1.1    dyoung 	/*
   4261   1.4   msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4262   1.4   msaitoh 	 * anti-spoofing enabled.
   4263   1.1    dyoung 	 */
   4264   1.4   msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4265   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4266   1.1    dyoung }
   4267   1.1    dyoung 
   4268   1.1    dyoung /**
   4269   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4270   1.1    dyoung  *  @hw: pointer to hardware structure
   4271   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4272   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4273   1.1    dyoung  *
   4274   1.1    dyoung  **/
   4275   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4276   1.1    dyoung {
   4277   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4278   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4279   1.1    dyoung 	u32 pfvfspoof;
   4280   1.1    dyoung 
   4281   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4282   1.1    dyoung 		return;
   4283   1.1    dyoung 
   4284   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4285   1.1    dyoung 	if (enable)
   4286   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4287   1.1    dyoung 	else
   4288   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4289   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4290   1.1    dyoung }
   4291   1.1    dyoung 
   4292   1.1    dyoung /**
   4293   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4294   1.1    dyoung  *  @hw: pointer to hardware structure
   4295   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4296   1.1    dyoung  *
   4297   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4298   1.1    dyoung  *  and return the word through device_caps.
   4299   1.1    dyoung  **/
   4300   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4301   1.1    dyoung {
   4302   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4303   1.1    dyoung 
   4304   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4305   1.1    dyoung 
   4306   1.1    dyoung 	return IXGBE_SUCCESS;
   4307   1.1    dyoung }
   4308   1.1    dyoung 
   4309   1.1    dyoung /**
   4310   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4311   1.1    dyoung  *  @hw: pointer to hardware structure
   4312   1.1    dyoung  *
   4313   1.1    dyoung  **/
   4314   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4315   1.1    dyoung {
   4316   1.1    dyoung 	u32 regval;
   4317   1.1    dyoung 	u32 i;
   4318   1.1    dyoung 
   4319   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4320   1.1    dyoung 
   4321   1.1    dyoung 	/* Enable relaxed ordering */
   4322   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4323   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4324   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4325   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4326   1.1    dyoung 	}
   4327   1.1    dyoung 
   4328   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4329   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4330   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4331   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4332   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4333   1.1    dyoung 	}
   4334   1.1    dyoung 
   4335   1.1    dyoung }
   4336   1.3   msaitoh 
   4337   1.3   msaitoh /**
   4338   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4339   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4340   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4341   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4342   1.3   msaitoh  *  checksum calculated is returned.
   4343   1.3   msaitoh  **/
   4344   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4345   1.3   msaitoh {
   4346   1.3   msaitoh 	u32 i;
   4347   1.3   msaitoh 	u8 sum = 0;
   4348   1.3   msaitoh 
   4349   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4350   1.3   msaitoh 
   4351   1.3   msaitoh 	if (!buffer)
   4352   1.3   msaitoh 		return 0;
   4353   1.3   msaitoh 
   4354   1.3   msaitoh 	for (i = 0; i < length; i++)
   4355   1.3   msaitoh 		sum += buffer[i];
   4356   1.3   msaitoh 
   4357   1.3   msaitoh 	return (u8) (0 - sum);
   4358   1.3   msaitoh }
   4359   1.3   msaitoh 
   4360   1.3   msaitoh /**
   4361   1.3   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4362   1.3   msaitoh  *  @hw: pointer to the HW structure
   4363   1.3   msaitoh  *  @buffer: contains the command to write and where the return status will
   4364   1.3   msaitoh  *   be placed
   4365   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4366   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4367   1.8   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4368   1.8   msaitoh  *   Needed because FW structures are big endian and decoding of
   4369   1.8   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4370   1.8   msaitoh  *   is not easily understood without making a table of commands.
   4371   1.8   msaitoh  *   So we will leave this up to the caller to read back the data
   4372   1.8   msaitoh  *   in these cases.
   4373   1.3   msaitoh  *
   4374   1.3   msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4375   1.3   msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4376   1.3   msaitoh  **/
   4377   1.5   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4378   1.8   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4379   1.3   msaitoh {
   4380   1.8   msaitoh 	u32 hicr, i, bi, fwsts;
   4381   1.3   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4382   1.8   msaitoh 	u16 buf_len;
   4383   1.8   msaitoh 	u16 dword_len;
   4384   1.3   msaitoh 
   4385   1.3   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4386   1.3   msaitoh 
   4387   1.8   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4388   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4389   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4390   1.8   msaitoh 	}
   4391   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4392   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4393   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4394   1.3   msaitoh 
   4395   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4396   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4397   1.3   msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4398   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4399   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4400   1.8   msaitoh 	}
   4401   1.8   msaitoh 
   4402   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4403   1.8   msaitoh 	if ((length % (sizeof(u32))) != 0) {
   4404   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4405   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4406   1.3   msaitoh 	}
   4407   1.3   msaitoh 
   4408   1.3   msaitoh 	dword_len = length >> 2;
   4409   1.3   msaitoh 
   4410   1.8   msaitoh 	/* The device driver writes the relevant command block
   4411   1.3   msaitoh 	 * into the ram area.
   4412   1.3   msaitoh 	 */
   4413   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4414   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4415   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4416   1.3   msaitoh 
   4417   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4418   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4419   1.3   msaitoh 
   4420   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4421   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4422   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4423   1.3   msaitoh 			break;
   4424   1.3   msaitoh 		msec_delay(1);
   4425   1.3   msaitoh 	}
   4426   1.3   msaitoh 
   4427   1.8   msaitoh 	/* Check command completion */
   4428   1.8   msaitoh 	if ((timeout != 0 && i == timeout) ||
   4429   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4430   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4431   1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4432   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4433   1.3   msaitoh 	}
   4434   1.3   msaitoh 
   4435   1.8   msaitoh 	if (!return_data)
   4436   1.8   msaitoh 		return 0;
   4437   1.8   msaitoh 
   4438   1.3   msaitoh 	/* Calculate length in DWORDs */
   4439   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4440   1.3   msaitoh 
   4441   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4442   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4443   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4444   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4445   1.3   msaitoh 	}
   4446   1.3   msaitoh 
   4447   1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4448   1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4449   1.3   msaitoh 	if (buf_len == 0)
   4450   1.8   msaitoh 		return 0;
   4451   1.3   msaitoh 
   4452   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4453   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4454   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4455   1.3   msaitoh 	}
   4456   1.3   msaitoh 
   4457   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4458   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4459   1.3   msaitoh 
   4460   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4461   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4462   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4463   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4464   1.3   msaitoh 	}
   4465   1.3   msaitoh 
   4466   1.8   msaitoh 	return 0;
   4467   1.3   msaitoh }
   4468   1.3   msaitoh 
   4469   1.3   msaitoh /**
   4470   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4471   1.3   msaitoh  *  @hw: pointer to the HW structure
   4472   1.3   msaitoh  *  @maj: driver version major number
   4473   1.7  riastrad  *  @minr: driver version minor number
   4474   1.3   msaitoh  *  @build: driver version build number
   4475   1.3   msaitoh  *  @sub: driver version sub build number
   4476   1.3   msaitoh  *
   4477   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4478   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4479   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4480   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4481   1.3   msaitoh  **/
   4482   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4483   1.3   msaitoh 				 u8 build, u8 sub)
   4484   1.3   msaitoh {
   4485   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4486   1.3   msaitoh 	int i;
   4487   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4488   1.3   msaitoh 
   4489   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4490   1.3   msaitoh 
   4491   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4492   1.3   msaitoh 	    != IXGBE_SUCCESS) {
   4493   1.3   msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4494   1.3   msaitoh 		goto out;
   4495   1.3   msaitoh 	}
   4496   1.3   msaitoh 
   4497   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4498   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4499   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4500   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4501   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4502   1.7  riastrad 	fw_cmd.ver_min = minr;
   4503   1.3   msaitoh 	fw_cmd.ver_build = build;
   4504   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4505   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4506   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4507   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4508   1.3   msaitoh 	fw_cmd.pad = 0;
   4509   1.3   msaitoh 	fw_cmd.pad2 = 0;
   4510   1.3   msaitoh 
   4511   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4512   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4513   1.8   msaitoh 						       sizeof(fw_cmd),
   4514   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4515   1.8   msaitoh 						       TRUE);
   4516   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4517   1.3   msaitoh 			continue;
   4518   1.3   msaitoh 
   4519   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4520   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4521   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4522   1.3   msaitoh 		else
   4523   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4524   1.3   msaitoh 
   4525   1.3   msaitoh 		break;
   4526   1.3   msaitoh 	}
   4527   1.3   msaitoh 
   4528   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4529   1.3   msaitoh out:
   4530   1.3   msaitoh 	return ret_val;
   4531   1.3   msaitoh }
   4532   1.3   msaitoh 
   4533   1.3   msaitoh /**
   4534   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4535   1.3   msaitoh  * @hw: pointer to hardware structure
   4536   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4537   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4538   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4539   1.3   msaitoh  **/
   4540   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4541   1.3   msaitoh 			     int strategy)
   4542   1.3   msaitoh {
   4543   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4544   1.3   msaitoh 	int i = 0;
   4545   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4546   1.3   msaitoh 
   4547   1.3   msaitoh 	/* Reserve headroom */
   4548   1.3   msaitoh 	pbsize -= headroom;
   4549   1.3   msaitoh 
   4550   1.3   msaitoh 	if (!num_pb)
   4551   1.3   msaitoh 		num_pb = 1;
   4552   1.3   msaitoh 
   4553   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4554   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4555   1.3   msaitoh 	 */
   4556   1.3   msaitoh 	switch (strategy) {
   4557   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4558   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4559   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4560   1.3   msaitoh 		 */
   4561   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4562   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4563   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4564   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4565   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4566   1.3   msaitoh 		/* Fall through to configure remaining packet buffers */
   4567   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4568   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4569   1.3   msaitoh 		for (; i < num_pb; i++)
   4570   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4571   1.3   msaitoh 		break;
   4572   1.3   msaitoh 	default:
   4573   1.3   msaitoh 		break;
   4574   1.3   msaitoh 	}
   4575   1.3   msaitoh 
   4576   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4577   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4578   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4579   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4580   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4581   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4582   1.3   msaitoh 	}
   4583   1.3   msaitoh 
   4584   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4585   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4586   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4587   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4588   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4589   1.3   msaitoh 	}
   4590   1.3   msaitoh }
   4591   1.3   msaitoh 
   4592   1.3   msaitoh /**
   4593   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4594   1.3   msaitoh  * @hw: pointer to the hardware structure
   4595   1.3   msaitoh  *
   4596   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4597   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4598   1.3   msaitoh  * buffers on the system.
   4599   1.3   msaitoh  **/
   4600   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4601   1.3   msaitoh {
   4602   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4603   1.8   msaitoh 	u16 value;
   4604   1.3   msaitoh 
   4605   1.3   msaitoh 	/*
   4606   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4607   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4608   1.3   msaitoh 	 */
   4609   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4610   1.3   msaitoh 		return;
   4611   1.3   msaitoh 
   4612   1.3   msaitoh 	/*
   4613   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4614   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4615   1.3   msaitoh 	 * has already been cleared.
   4616   1.3   msaitoh 	 */
   4617   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4618   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4619   1.3   msaitoh 
   4620   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4621   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4622   1.8   msaitoh 	msec_delay(3);
   4623   1.8   msaitoh 
   4624   1.8   msaitoh 	/*
   4625   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4626   1.8   msaitoh 	 * transactions pending.
   4627   1.8   msaitoh 	 */
   4628   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4629   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4630   1.8   msaitoh 		usec_delay(100);
   4631   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4632   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4633   1.8   msaitoh 			goto out;
   4634   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4635   1.8   msaitoh 			goto out;
   4636   1.8   msaitoh 	}
   4637   1.8   msaitoh 
   4638   1.8   msaitoh out:
   4639   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4640   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4641   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4642   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4643   1.3   msaitoh 
   4644   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4645   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4646   1.3   msaitoh 	usec_delay(20);
   4647   1.3   msaitoh 
   4648   1.3   msaitoh 	/* restore previous register values */
   4649   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4650   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4651   1.3   msaitoh }
   4652   1.3   msaitoh 
   4653   1.6   msaitoh 
   4654   1.6   msaitoh /**
   4655   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4656   1.6   msaitoh  * @hw: pointer to hardware structure
   4657   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   4658   1.6   msaitoh  *
   4659   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   4660   1.6   msaitoh  **/
   4661   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4662   1.6   msaitoh {
   4663   1.6   msaitoh 	u32 reg, i;
   4664   1.6   msaitoh 
   4665   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4666   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4667   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4668   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4669   1.6   msaitoh 	return;
   4670   1.6   msaitoh }
   4671   1.8   msaitoh 
   4672   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4673   1.8   msaitoh {
   4674   1.8   msaitoh 	u32 pfdtxgswc;
   4675   1.8   msaitoh 	u32 rxctrl;
   4676   1.8   msaitoh 
   4677   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4678   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4679   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   4680   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4681   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4682   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4683   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4684   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   4685   1.8   msaitoh 			} else {
   4686   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   4687   1.8   msaitoh 			}
   4688   1.8   msaitoh 		}
   4689   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4690   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4691   1.8   msaitoh 	}
   4692   1.8   msaitoh }
   4693   1.8   msaitoh 
   4694   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4695   1.8   msaitoh {
   4696   1.8   msaitoh 	u32 pfdtxgswc;
   4697   1.8   msaitoh 	u32 rxctrl;
   4698   1.8   msaitoh 
   4699   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4700   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4701   1.8   msaitoh 
   4702   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   4703   1.8   msaitoh 		if (hw->mac.set_lben) {
   4704   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4705   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4706   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4707   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   4708   1.8   msaitoh 		}
   4709   1.8   msaitoh 	}
   4710   1.8   msaitoh }
   4711   1.8   msaitoh 
   4712   1.8   msaitoh /**
   4713   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   4714   1.8   msaitoh  * @hw: pointer to hardware structure
   4715   1.8   msaitoh  */
   4716   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4717   1.8   msaitoh {
   4718   1.8   msaitoh 	u32 fwsm;
   4719   1.8   msaitoh 
   4720   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   4721   1.8   msaitoh 		return FALSE;
   4722   1.8   msaitoh 
   4723  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   4724   1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   4725   1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   4726   1.8   msaitoh }
   4727   1.8   msaitoh 
   4728   1.8   msaitoh /**
   4729   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   4730   1.8   msaitoh  * @hw: pointer to hardware structure
   4731   1.8   msaitoh  *
   4732   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   4733   1.8   msaitoh  **/
   4734   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   4735   1.8   msaitoh {
   4736   1.8   msaitoh 	u32 fwsm, manc, factps;
   4737   1.8   msaitoh 
   4738  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   4739   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   4740   1.8   msaitoh 		return FALSE;
   4741   1.8   msaitoh 
   4742   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   4743   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   4744   1.8   msaitoh 		return FALSE;
   4745   1.8   msaitoh 
   4746   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   4747  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   4748   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   4749   1.8   msaitoh 			return FALSE;
   4750   1.8   msaitoh 	}
   4751   1.8   msaitoh 
   4752   1.8   msaitoh 	return TRUE;
   4753   1.8   msaitoh }
   4754   1.8   msaitoh 
   4755   1.8   msaitoh /**
   4756   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4757   1.8   msaitoh  *  @hw: pointer to hardware structure
   4758   1.8   msaitoh  *  @speed: new link speed
   4759   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   4760   1.8   msaitoh  *
   4761   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   4762   1.8   msaitoh  **/
   4763   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4764   1.8   msaitoh 					  ixgbe_link_speed speed,
   4765   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   4766   1.8   msaitoh {
   4767   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4768   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4769   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   4770   1.8   msaitoh 	u32 speedcnt = 0;
   4771   1.8   msaitoh 	u32 i = 0;
   4772   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   4773   1.8   msaitoh 
   4774   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   4775   1.8   msaitoh 
   4776   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   4777   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   4778   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   4779   1.8   msaitoh 		return status;
   4780   1.8   msaitoh 
   4781   1.8   msaitoh 	speed &= link_speed;
   4782   1.8   msaitoh 
   4783   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   4784   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4785   1.8   msaitoh 	 */
   4786   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4787   1.8   msaitoh 		speedcnt++;
   4788   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4789   1.8   msaitoh 
   4790   1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4791   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4792   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4793   1.8   msaitoh 			return status;
   4794   1.8   msaitoh 
   4795   1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
   4796   1.8   msaitoh 			goto out;
   4797   1.8   msaitoh 
   4798   1.8   msaitoh 		/* Set the module link speed */
   4799   1.8   msaitoh 		switch (hw->phy.media_type) {
   4800   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4801   1.8   msaitoh 		case ixgbe_media_type_fiber:
   4802   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4803   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   4804   1.8   msaitoh 			break;
   4805   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4806   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   4807   1.8   msaitoh 			break;
   4808   1.8   msaitoh 		default:
   4809   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4810   1.8   msaitoh 			break;
   4811   1.8   msaitoh 		}
   4812   1.8   msaitoh 
   4813   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   4814   1.8   msaitoh 		msec_delay(40);
   4815   1.8   msaitoh 
   4816   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4817   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   4818   1.8   msaitoh 					      autoneg_wait_to_complete);
   4819   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4820   1.8   msaitoh 			return status;
   4821   1.8   msaitoh 
   4822   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4823   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4824   1.8   msaitoh 
   4825   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4826   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4827   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   4828   1.8   msaitoh 		 */
   4829   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   4830   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   4831   1.8   msaitoh 			msec_delay(100);
   4832   1.8   msaitoh 
   4833   1.8   msaitoh 			/* If we have link, just jump out */
   4834   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   4835   1.8   msaitoh 						  &link_up, FALSE);
   4836   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   4837   1.8   msaitoh 				return status;
   4838   1.8   msaitoh 
   4839   1.8   msaitoh 			if (link_up)
   4840   1.8   msaitoh 				goto out;
   4841   1.8   msaitoh 		}
   4842   1.8   msaitoh 	}
   4843   1.8   msaitoh 
   4844   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4845   1.8   msaitoh 		speedcnt++;
   4846   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4847   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4848   1.8   msaitoh 
   4849   1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4850   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4851   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4852   1.8   msaitoh 			return status;
   4853   1.8   msaitoh 
   4854   1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
   4855   1.8   msaitoh 			goto out;
   4856   1.8   msaitoh 
   4857   1.8   msaitoh 		/* Set the module link speed */
   4858   1.8   msaitoh 		switch (hw->phy.media_type) {
   4859   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4860   1.8   msaitoh 		case ixgbe_media_type_fiber:
   4861   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4862   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   4863   1.8   msaitoh 			break;
   4864   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4865   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   4866   1.8   msaitoh 			break;
   4867   1.8   msaitoh 		default:
   4868   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4869   1.8   msaitoh 			break;
   4870   1.8   msaitoh 		}
   4871   1.8   msaitoh 
   4872   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   4873   1.8   msaitoh 		msec_delay(40);
   4874   1.8   msaitoh 
   4875   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4876   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   4877   1.8   msaitoh 					      autoneg_wait_to_complete);
   4878   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4879   1.8   msaitoh 			return status;
   4880   1.8   msaitoh 
   4881   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4882   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4883   1.8   msaitoh 
   4884   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   4885   1.8   msaitoh 		msec_delay(100);
   4886   1.8   msaitoh 
   4887   1.8   msaitoh 		/* If we have link, just jump out */
   4888   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4889   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4890   1.8   msaitoh 			return status;
   4891   1.8   msaitoh 
   4892   1.8   msaitoh 		if (link_up)
   4893   1.8   msaitoh 			goto out;
   4894   1.8   msaitoh 	}
   4895   1.8   msaitoh 
   4896   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   4897   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   4898   1.8   msaitoh 	 * single highest speed that the user requested.
   4899   1.8   msaitoh 	 */
   4900   1.8   msaitoh 	if (speedcnt > 1)
   4901   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4902   1.8   msaitoh 						      highest_link_speed,
   4903   1.8   msaitoh 						      autoneg_wait_to_complete);
   4904   1.8   msaitoh 
   4905   1.8   msaitoh out:
   4906   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   4907   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   4908   1.8   msaitoh 
   4909   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4910   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4911   1.8   msaitoh 
   4912   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4913   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4914   1.8   msaitoh 
   4915   1.8   msaitoh 	return status;
   4916   1.8   msaitoh }
   4917   1.8   msaitoh 
   4918   1.8   msaitoh /**
   4919   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4920   1.8   msaitoh  *  @hw: pointer to hardware structure
   4921   1.8   msaitoh  *  @speed: link speed to set
   4922   1.8   msaitoh  *
   4923   1.8   msaitoh  *  Set module link speed via the soft rate select.
   4924   1.8   msaitoh  */
   4925   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4926   1.8   msaitoh 					ixgbe_link_speed speed)
   4927   1.8   msaitoh {
   4928   1.8   msaitoh 	s32 status;
   4929   1.8   msaitoh 	u8 rs, eeprom_data;
   4930   1.8   msaitoh 
   4931   1.8   msaitoh 	switch (speed) {
   4932   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   4933   1.8   msaitoh 		/* one bit mask same as setting on */
   4934   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4935   1.8   msaitoh 		break;
   4936   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   4937   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4938   1.8   msaitoh 		break;
   4939   1.8   msaitoh 	default:
   4940   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   4941   1.8   msaitoh 		return;
   4942   1.8   msaitoh 	}
   4943   1.8   msaitoh 
   4944   1.8   msaitoh 	/* Set RS0 */
   4945   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4946   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4947   1.8   msaitoh 					   &eeprom_data);
   4948   1.8   msaitoh 	if (status) {
   4949   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   4950   1.8   msaitoh 		goto out;
   4951   1.8   msaitoh 	}
   4952   1.8   msaitoh 
   4953   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4954   1.8   msaitoh 
   4955   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4956   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4957   1.8   msaitoh 					    eeprom_data);
   4958   1.8   msaitoh 	if (status) {
   4959   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   4960   1.8   msaitoh 		goto out;
   4961   1.8   msaitoh 	}
   4962   1.8   msaitoh 
   4963   1.8   msaitoh 	/* Set RS1 */
   4964   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4965   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4966   1.8   msaitoh 					   &eeprom_data);
   4967   1.8   msaitoh 	if (status) {
   4968   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   4969   1.8   msaitoh 		goto out;
   4970   1.8   msaitoh 	}
   4971   1.8   msaitoh 
   4972   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4973   1.8   msaitoh 
   4974   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4975   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4976   1.8   msaitoh 					    eeprom_data);
   4977   1.8   msaitoh 	if (status) {
   4978   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   4979   1.8   msaitoh 		goto out;
   4980   1.8   msaitoh 	}
   4981   1.8   msaitoh out:
   4982   1.8   msaitoh 	return;
   4983   1.8   msaitoh }
   4984