ixgbe_common.c revision 1.10 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.9 msaitoh Copyright (c) 2001-2015, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.10 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 292674 2015-12-23 22:45:17Z sbruno $*/
34 1.10 msaitoh /*$NetBSD: ixgbe_common.c,v 1.10 2016/12/02 10:42:04 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
83 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
90 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
93 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
100 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 1.1 dyoung
113 1.1 dyoung /* LEDs */
114 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
115 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
116 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 1.1 dyoung
119 1.1 dyoung /* RAR, Multicast, VLAN */
120 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
121 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 1.1 dyoung mac->ops.insert_mac_addr = NULL;
123 1.1 dyoung mac->ops.set_vmdq = NULL;
124 1.1 dyoung mac->ops.clear_vmdq = NULL;
125 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 1.1 dyoung mac->ops.clear_vfta = NULL;
131 1.1 dyoung mac->ops.set_vfta = NULL;
132 1.3 msaitoh mac->ops.set_vlvf = NULL;
133 1.1 dyoung mac->ops.init_uta_tables = NULL;
134 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 1.1 dyoung
137 1.1 dyoung /* Flow Control */
138 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.6 msaitoh mac->ops.dmac_config = NULL;
146 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
147 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
148 1.1 dyoung
149 1.1 dyoung return IXGBE_SUCCESS;
150 1.1 dyoung }
151 1.1 dyoung
152 1.1 dyoung /**
153 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
154 1.6 msaitoh * of flow control
155 1.6 msaitoh * @hw: pointer to hardware structure
156 1.6 msaitoh *
157 1.6 msaitoh * This function returns TRUE if the device supports flow control
158 1.6 msaitoh * autonegotiation, and FALSE if it does not.
159 1.4 msaitoh *
160 1.4 msaitoh **/
161 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
162 1.4 msaitoh {
163 1.6 msaitoh bool supported = FALSE;
164 1.6 msaitoh ixgbe_link_speed speed;
165 1.6 msaitoh bool link_up;
166 1.4 msaitoh
167 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
168 1.4 msaitoh
169 1.6 msaitoh switch (hw->phy.media_type) {
170 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
171 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
172 1.6 msaitoh case ixgbe_media_type_fiber:
173 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
174 1.6 msaitoh /* if link is down, assume supported */
175 1.6 msaitoh if (link_up)
176 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
177 1.6 msaitoh TRUE : FALSE;
178 1.6 msaitoh else
179 1.6 msaitoh supported = TRUE;
180 1.6 msaitoh break;
181 1.6 msaitoh case ixgbe_media_type_backplane:
182 1.6 msaitoh supported = TRUE;
183 1.6 msaitoh break;
184 1.6 msaitoh case ixgbe_media_type_copper:
185 1.6 msaitoh /* only some copper devices support flow control autoneg */
186 1.6 msaitoh switch (hw->device_id) {
187 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
188 1.6 msaitoh case IXGBE_DEV_ID_X540T:
189 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
190 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
191 1.8 msaitoh case IXGBE_DEV_ID_X550T:
192 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
193 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
194 1.6 msaitoh supported = TRUE;
195 1.6 msaitoh break;
196 1.6 msaitoh default:
197 1.6 msaitoh supported = FALSE;
198 1.6 msaitoh }
199 1.4 msaitoh default:
200 1.6 msaitoh break;
201 1.4 msaitoh }
202 1.6 msaitoh
203 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
204 1.6 msaitoh "Device %x does not support flow control autoneg",
205 1.6 msaitoh hw->device_id);
206 1.6 msaitoh return supported;
207 1.4 msaitoh }
208 1.4 msaitoh
209 1.4 msaitoh /**
210 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
211 1.4 msaitoh * @hw: pointer to hardware structure
212 1.4 msaitoh *
213 1.4 msaitoh * Called at init time to set up flow control.
214 1.4 msaitoh **/
215 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
216 1.4 msaitoh {
217 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
218 1.4 msaitoh u32 reg = 0, reg_bp = 0;
219 1.4 msaitoh u16 reg_cu = 0;
220 1.8 msaitoh bool locked = FALSE;
221 1.4 msaitoh
222 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
223 1.4 msaitoh
224 1.8 msaitoh /* Validate the requested mode */
225 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
226 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
227 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
228 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
229 1.4 msaitoh goto out;
230 1.4 msaitoh }
231 1.4 msaitoh
232 1.4 msaitoh /*
233 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
234 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
235 1.4 msaitoh */
236 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
237 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
238 1.4 msaitoh
239 1.4 msaitoh /*
240 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
241 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
242 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
243 1.4 msaitoh */
244 1.4 msaitoh switch (hw->phy.media_type) {
245 1.8 msaitoh case ixgbe_media_type_backplane:
246 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
247 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
248 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
249 1.8 msaitoh goto out;
250 1.8 msaitoh
251 1.8 msaitoh /* only backplane uses autoc so fall though */
252 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
253 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
254 1.4 msaitoh case ixgbe_media_type_fiber:
255 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
256 1.8 msaitoh
257 1.4 msaitoh break;
258 1.4 msaitoh case ixgbe_media_type_copper:
259 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
260 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
261 1.4 msaitoh break;
262 1.4 msaitoh default:
263 1.4 msaitoh break;
264 1.4 msaitoh }
265 1.4 msaitoh
266 1.4 msaitoh /*
267 1.4 msaitoh * The possible values of fc.requested_mode are:
268 1.4 msaitoh * 0: Flow control is completely disabled
269 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
270 1.4 msaitoh * but not send pause frames).
271 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
272 1.4 msaitoh * we do not support receiving pause frames).
273 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
274 1.4 msaitoh * other: Invalid.
275 1.4 msaitoh */
276 1.4 msaitoh switch (hw->fc.requested_mode) {
277 1.4 msaitoh case ixgbe_fc_none:
278 1.4 msaitoh /* Flow control completely disabled by software override. */
279 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
280 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
281 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
282 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
283 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
284 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
285 1.4 msaitoh break;
286 1.4 msaitoh case ixgbe_fc_tx_pause:
287 1.4 msaitoh /*
288 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
289 1.4 msaitoh * disabled by software override.
290 1.4 msaitoh */
291 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
292 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
293 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
294 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
295 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
296 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
297 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
298 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
299 1.4 msaitoh }
300 1.4 msaitoh break;
301 1.4 msaitoh case ixgbe_fc_rx_pause:
302 1.4 msaitoh /*
303 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
304 1.4 msaitoh * disabled by software override. Since there really
305 1.4 msaitoh * isn't a way to advertise that we are capable of RX
306 1.4 msaitoh * Pause ONLY, we will advertise that we support both
307 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
308 1.4 msaitoh * through to the fc_full statement. Later, we will
309 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
310 1.4 msaitoh */
311 1.4 msaitoh case ixgbe_fc_full:
312 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
313 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
314 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
315 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
316 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
317 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
318 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
319 1.4 msaitoh break;
320 1.4 msaitoh default:
321 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
322 1.6 msaitoh "Flow control param set incorrectly\n");
323 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
324 1.4 msaitoh goto out;
325 1.4 msaitoh break;
326 1.4 msaitoh }
327 1.4 msaitoh
328 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
329 1.4 msaitoh /*
330 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
331 1.4 msaitoh * the MAC will advertise clause 37 flow control.
332 1.4 msaitoh */
333 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
334 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
335 1.4 msaitoh
336 1.4 msaitoh /* Disable AN timeout */
337 1.4 msaitoh if (hw->fc.strict_ieee)
338 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
339 1.4 msaitoh
340 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
341 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
342 1.4 msaitoh }
343 1.4 msaitoh
344 1.4 msaitoh /*
345 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
346 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
347 1.4 msaitoh *
348 1.4 msaitoh */
349 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
350 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
351 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
352 1.8 msaitoh if (ret_val)
353 1.8 msaitoh goto out;
354 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
355 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
356 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
357 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
358 1.4 msaitoh }
359 1.4 msaitoh
360 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
361 1.4 msaitoh out:
362 1.4 msaitoh return ret_val;
363 1.4 msaitoh }
364 1.4 msaitoh
365 1.4 msaitoh /**
366 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
367 1.1 dyoung * @hw: pointer to hardware structure
368 1.1 dyoung *
369 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
370 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
371 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
372 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
373 1.1 dyoung **/
374 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
375 1.1 dyoung {
376 1.4 msaitoh s32 ret_val;
377 1.1 dyoung u32 ctrl_ext;
378 1.1 dyoung
379 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
380 1.1 dyoung
381 1.1 dyoung /* Set the media type */
382 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
383 1.1 dyoung
384 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
385 1.1 dyoung
386 1.1 dyoung /* Clear the VLAN filter table */
387 1.1 dyoung hw->mac.ops.clear_vfta(hw);
388 1.1 dyoung
389 1.1 dyoung /* Clear statistics registers */
390 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
391 1.1 dyoung
392 1.1 dyoung /* Set No Snoop Disable */
393 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
394 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
395 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
396 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
397 1.1 dyoung
398 1.1 dyoung /* Setup flow control */
399 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
400 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
401 1.4 msaitoh goto out;
402 1.1 dyoung
403 1.1 dyoung /* Clear adapter stopped flag */
404 1.1 dyoung hw->adapter_stopped = FALSE;
405 1.1 dyoung
406 1.4 msaitoh out:
407 1.4 msaitoh return ret_val;
408 1.1 dyoung }
409 1.1 dyoung
410 1.1 dyoung /**
411 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
412 1.1 dyoung * @hw: pointer to hw structure
413 1.1 dyoung *
414 1.1 dyoung * Performs the init sequence common to the second generation
415 1.1 dyoung * of 10 GbE devices.
416 1.1 dyoung * Devices in the second generation:
417 1.1 dyoung * 82599
418 1.1 dyoung * X540
419 1.1 dyoung **/
420 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
421 1.1 dyoung {
422 1.1 dyoung u32 i;
423 1.1 dyoung u32 regval;
424 1.1 dyoung
425 1.1 dyoung /* Clear the rate limiters */
426 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
427 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
428 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
429 1.1 dyoung }
430 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
431 1.1 dyoung
432 1.1 dyoung /* Disable relaxed ordering */
433 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
434 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
435 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
436 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
437 1.1 dyoung }
438 1.1 dyoung
439 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
440 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
441 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
442 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
443 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
444 1.1 dyoung }
445 1.1 dyoung
446 1.1 dyoung return IXGBE_SUCCESS;
447 1.1 dyoung }
448 1.1 dyoung
449 1.1 dyoung /**
450 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
451 1.1 dyoung * @hw: pointer to hardware structure
452 1.1 dyoung *
453 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
454 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
455 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
456 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
457 1.1 dyoung * disabled and uninitialized
458 1.1 dyoung **/
459 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
460 1.1 dyoung {
461 1.1 dyoung s32 status;
462 1.1 dyoung
463 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
464 1.1 dyoung
465 1.1 dyoung /* Reset the hardware */
466 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
467 1.1 dyoung
468 1.1 dyoung if (status == IXGBE_SUCCESS) {
469 1.1 dyoung /* Start the HW */
470 1.1 dyoung status = hw->mac.ops.start_hw(hw);
471 1.1 dyoung }
472 1.1 dyoung
473 1.1 dyoung return status;
474 1.1 dyoung }
475 1.1 dyoung
476 1.1 dyoung /**
477 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
478 1.1 dyoung * @hw: pointer to hardware structure
479 1.1 dyoung *
480 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
481 1.1 dyoung * Statistics counters are clear on read.
482 1.1 dyoung **/
483 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
484 1.1 dyoung {
485 1.1 dyoung u16 i = 0;
486 1.1 dyoung
487 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
488 1.1 dyoung
489 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
490 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
491 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
493 1.1 dyoung for (i = 0; i < 8; i++)
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
495 1.1 dyoung
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
498 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
500 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
501 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
504 1.1 dyoung } else {
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
506 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
507 1.1 dyoung }
508 1.1 dyoung
509 1.1 dyoung for (i = 0; i < 8; i++) {
510 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
512 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
513 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
514 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
515 1.1 dyoung } else {
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
517 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
518 1.1 dyoung }
519 1.1 dyoung }
520 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
521 1.1 dyoung for (i = 0; i < 8; i++)
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
523 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
524 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
525 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
526 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
537 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
538 1.3 msaitoh for (i = 0; i < 8; i++)
539 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
559 1.1 dyoung for (i = 0; i < 16; i++) {
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
562 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
568 1.1 dyoung } else {
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
571 1.1 dyoung }
572 1.1 dyoung }
573 1.1 dyoung
574 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
575 1.3 msaitoh if (hw->phy.id == 0)
576 1.3 msaitoh ixgbe_identify_phy(hw);
577 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
578 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
579 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
580 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
581 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
582 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
583 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
584 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
585 1.3 msaitoh }
586 1.3 msaitoh
587 1.1 dyoung return IXGBE_SUCCESS;
588 1.1 dyoung }
589 1.1 dyoung
590 1.1 dyoung /**
591 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
592 1.1 dyoung * @hw: pointer to hardware structure
593 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
594 1.1 dyoung * @pba_num_size: part number string buffer length
595 1.1 dyoung *
596 1.1 dyoung * Reads the part number string from the EEPROM.
597 1.1 dyoung **/
598 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
599 1.3 msaitoh u32 pba_num_size)
600 1.1 dyoung {
601 1.1 dyoung s32 ret_val;
602 1.1 dyoung u16 data;
603 1.1 dyoung u16 pba_ptr;
604 1.1 dyoung u16 offset;
605 1.1 dyoung u16 length;
606 1.1 dyoung
607 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
608 1.1 dyoung
609 1.1 dyoung if (pba_num == NULL) {
610 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
611 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
612 1.1 dyoung }
613 1.1 dyoung
614 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
615 1.1 dyoung if (ret_val) {
616 1.1 dyoung DEBUGOUT("NVM Read Error\n");
617 1.1 dyoung return ret_val;
618 1.1 dyoung }
619 1.1 dyoung
620 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
621 1.1 dyoung if (ret_val) {
622 1.1 dyoung DEBUGOUT("NVM Read Error\n");
623 1.1 dyoung return ret_val;
624 1.1 dyoung }
625 1.1 dyoung
626 1.1 dyoung /*
627 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
628 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
629 1.1 dyoung * and we can decode it into an ascii string
630 1.1 dyoung */
631 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
632 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
633 1.1 dyoung
634 1.1 dyoung /* we will need 11 characters to store the PBA */
635 1.1 dyoung if (pba_num_size < 11) {
636 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
637 1.1 dyoung return IXGBE_ERR_NO_SPACE;
638 1.1 dyoung }
639 1.1 dyoung
640 1.1 dyoung /* extract hex string from data and pba_ptr */
641 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
642 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
643 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
644 1.1 dyoung pba_num[3] = data & 0xF;
645 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
646 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
647 1.1 dyoung pba_num[6] = '-';
648 1.1 dyoung pba_num[7] = 0;
649 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
650 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
651 1.1 dyoung
652 1.1 dyoung /* put a null character on the end of our string */
653 1.1 dyoung pba_num[10] = '\0';
654 1.1 dyoung
655 1.1 dyoung /* switch all the data but the '-' to hex char */
656 1.1 dyoung for (offset = 0; offset < 10; offset++) {
657 1.1 dyoung if (pba_num[offset] < 0xA)
658 1.1 dyoung pba_num[offset] += '0';
659 1.1 dyoung else if (pba_num[offset] < 0x10)
660 1.1 dyoung pba_num[offset] += 'A' - 0xA;
661 1.1 dyoung }
662 1.1 dyoung
663 1.1 dyoung return IXGBE_SUCCESS;
664 1.1 dyoung }
665 1.1 dyoung
666 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
667 1.1 dyoung if (ret_val) {
668 1.1 dyoung DEBUGOUT("NVM Read Error\n");
669 1.1 dyoung return ret_val;
670 1.1 dyoung }
671 1.1 dyoung
672 1.1 dyoung if (length == 0xFFFF || length == 0) {
673 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
674 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
675 1.1 dyoung }
676 1.1 dyoung
677 1.1 dyoung /* check if pba_num buffer is big enough */
678 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
679 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
680 1.1 dyoung return IXGBE_ERR_NO_SPACE;
681 1.1 dyoung }
682 1.1 dyoung
683 1.1 dyoung /* trim pba length from start of string */
684 1.1 dyoung pba_ptr++;
685 1.1 dyoung length--;
686 1.1 dyoung
687 1.1 dyoung for (offset = 0; offset < length; offset++) {
688 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
689 1.1 dyoung if (ret_val) {
690 1.1 dyoung DEBUGOUT("NVM Read Error\n");
691 1.1 dyoung return ret_val;
692 1.1 dyoung }
693 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
694 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
695 1.1 dyoung }
696 1.1 dyoung pba_num[offset * 2] = '\0';
697 1.1 dyoung
698 1.1 dyoung return IXGBE_SUCCESS;
699 1.1 dyoung }
700 1.1 dyoung
701 1.1 dyoung /**
702 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
703 1.1 dyoung * @hw: pointer to hardware structure
704 1.1 dyoung * @pba_num: stores the part number from the EEPROM
705 1.1 dyoung *
706 1.1 dyoung * Reads the part number from the EEPROM.
707 1.1 dyoung **/
708 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
709 1.1 dyoung {
710 1.1 dyoung s32 ret_val;
711 1.1 dyoung u16 data;
712 1.1 dyoung
713 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
714 1.1 dyoung
715 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
716 1.1 dyoung if (ret_val) {
717 1.1 dyoung DEBUGOUT("NVM Read Error\n");
718 1.1 dyoung return ret_val;
719 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
720 1.1 dyoung DEBUGOUT("NVM Not supported\n");
721 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
722 1.1 dyoung }
723 1.1 dyoung *pba_num = (u32)(data << 16);
724 1.1 dyoung
725 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
726 1.1 dyoung if (ret_val) {
727 1.1 dyoung DEBUGOUT("NVM Read Error\n");
728 1.1 dyoung return ret_val;
729 1.1 dyoung }
730 1.1 dyoung *pba_num |= data;
731 1.1 dyoung
732 1.1 dyoung return IXGBE_SUCCESS;
733 1.1 dyoung }
734 1.1 dyoung
735 1.1 dyoung /**
736 1.5 msaitoh * ixgbe_read_pba_raw
737 1.5 msaitoh * @hw: pointer to the HW structure
738 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
739 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
740 1.5 msaitoh * @max_pba_block_size: PBA block size limit
741 1.5 msaitoh * @pba: pointer to output PBA structure
742 1.5 msaitoh *
743 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
744 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
745 1.5 msaitoh *
746 1.5 msaitoh **/
747 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
748 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
749 1.5 msaitoh struct ixgbe_pba *pba)
750 1.5 msaitoh {
751 1.5 msaitoh s32 ret_val;
752 1.5 msaitoh u16 pba_block_size;
753 1.5 msaitoh
754 1.5 msaitoh if (pba == NULL)
755 1.5 msaitoh return IXGBE_ERR_PARAM;
756 1.5 msaitoh
757 1.5 msaitoh if (eeprom_buf == NULL) {
758 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
759 1.5 msaitoh &pba->word[0]);
760 1.5 msaitoh if (ret_val)
761 1.5 msaitoh return ret_val;
762 1.5 msaitoh } else {
763 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
764 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
765 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
766 1.5 msaitoh } else {
767 1.5 msaitoh return IXGBE_ERR_PARAM;
768 1.5 msaitoh }
769 1.5 msaitoh }
770 1.5 msaitoh
771 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
772 1.5 msaitoh if (pba->pba_block == NULL)
773 1.5 msaitoh return IXGBE_ERR_PARAM;
774 1.5 msaitoh
775 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
776 1.5 msaitoh eeprom_buf_size,
777 1.5 msaitoh &pba_block_size);
778 1.5 msaitoh if (ret_val)
779 1.5 msaitoh return ret_val;
780 1.5 msaitoh
781 1.5 msaitoh if (pba_block_size > max_pba_block_size)
782 1.5 msaitoh return IXGBE_ERR_PARAM;
783 1.5 msaitoh
784 1.5 msaitoh if (eeprom_buf == NULL) {
785 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
786 1.5 msaitoh pba_block_size,
787 1.5 msaitoh pba->pba_block);
788 1.5 msaitoh if (ret_val)
789 1.5 msaitoh return ret_val;
790 1.5 msaitoh } else {
791 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
792 1.8 msaitoh pba_block_size)) {
793 1.5 msaitoh memcpy(pba->pba_block,
794 1.5 msaitoh &eeprom_buf[pba->word[1]],
795 1.5 msaitoh pba_block_size * sizeof(u16));
796 1.5 msaitoh } else {
797 1.5 msaitoh return IXGBE_ERR_PARAM;
798 1.5 msaitoh }
799 1.5 msaitoh }
800 1.5 msaitoh }
801 1.5 msaitoh
802 1.5 msaitoh return IXGBE_SUCCESS;
803 1.5 msaitoh }
804 1.5 msaitoh
805 1.5 msaitoh /**
806 1.5 msaitoh * ixgbe_write_pba_raw
807 1.5 msaitoh * @hw: pointer to the HW structure
808 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
809 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
810 1.5 msaitoh * @pba: pointer to PBA structure
811 1.5 msaitoh *
812 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
813 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
814 1.5 msaitoh *
815 1.5 msaitoh **/
816 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
817 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
818 1.5 msaitoh {
819 1.5 msaitoh s32 ret_val;
820 1.5 msaitoh
821 1.5 msaitoh if (pba == NULL)
822 1.5 msaitoh return IXGBE_ERR_PARAM;
823 1.5 msaitoh
824 1.5 msaitoh if (eeprom_buf == NULL) {
825 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
826 1.5 msaitoh &pba->word[0]);
827 1.5 msaitoh if (ret_val)
828 1.5 msaitoh return ret_val;
829 1.5 msaitoh } else {
830 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
831 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
832 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
833 1.5 msaitoh } else {
834 1.5 msaitoh return IXGBE_ERR_PARAM;
835 1.5 msaitoh }
836 1.5 msaitoh }
837 1.5 msaitoh
838 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
839 1.5 msaitoh if (pba->pba_block == NULL)
840 1.5 msaitoh return IXGBE_ERR_PARAM;
841 1.5 msaitoh
842 1.5 msaitoh if (eeprom_buf == NULL) {
843 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
844 1.5 msaitoh pba->pba_block[0],
845 1.5 msaitoh pba->pba_block);
846 1.5 msaitoh if (ret_val)
847 1.5 msaitoh return ret_val;
848 1.5 msaitoh } else {
849 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
850 1.5 msaitoh pba->pba_block[0])) {
851 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
852 1.5 msaitoh pba->pba_block,
853 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
854 1.5 msaitoh } else {
855 1.5 msaitoh return IXGBE_ERR_PARAM;
856 1.5 msaitoh }
857 1.5 msaitoh }
858 1.5 msaitoh }
859 1.5 msaitoh
860 1.5 msaitoh return IXGBE_SUCCESS;
861 1.5 msaitoh }
862 1.5 msaitoh
863 1.5 msaitoh /**
864 1.5 msaitoh * ixgbe_get_pba_block_size
865 1.5 msaitoh * @hw: pointer to the HW structure
866 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
867 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
868 1.5 msaitoh * @pba_data_size: pointer to output variable
869 1.5 msaitoh *
870 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
871 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
872 1.5 msaitoh * EEPROM device.
873 1.5 msaitoh *
874 1.5 msaitoh **/
875 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
876 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
877 1.5 msaitoh {
878 1.5 msaitoh s32 ret_val;
879 1.5 msaitoh u16 pba_word[2];
880 1.5 msaitoh u16 length;
881 1.5 msaitoh
882 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
883 1.5 msaitoh
884 1.5 msaitoh if (eeprom_buf == NULL) {
885 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
886 1.5 msaitoh &pba_word[0]);
887 1.5 msaitoh if (ret_val)
888 1.5 msaitoh return ret_val;
889 1.5 msaitoh } else {
890 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
891 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
892 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
893 1.5 msaitoh } else {
894 1.5 msaitoh return IXGBE_ERR_PARAM;
895 1.5 msaitoh }
896 1.5 msaitoh }
897 1.5 msaitoh
898 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
899 1.5 msaitoh if (eeprom_buf == NULL) {
900 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
901 1.5 msaitoh &length);
902 1.5 msaitoh if (ret_val)
903 1.5 msaitoh return ret_val;
904 1.5 msaitoh } else {
905 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
906 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
907 1.5 msaitoh else
908 1.5 msaitoh return IXGBE_ERR_PARAM;
909 1.5 msaitoh }
910 1.5 msaitoh
911 1.5 msaitoh if (length == 0xFFFF || length == 0)
912 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
913 1.5 msaitoh } else {
914 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
915 1.5 msaitoh length = 0;
916 1.5 msaitoh }
917 1.5 msaitoh
918 1.5 msaitoh if (pba_block_size != NULL)
919 1.5 msaitoh *pba_block_size = length;
920 1.5 msaitoh
921 1.5 msaitoh return IXGBE_SUCCESS;
922 1.5 msaitoh }
923 1.5 msaitoh
924 1.5 msaitoh /**
925 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
926 1.1 dyoung * @hw: pointer to hardware structure
927 1.1 dyoung * @mac_addr: Adapter MAC address
928 1.1 dyoung *
929 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
930 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
931 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
932 1.1 dyoung **/
933 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
934 1.1 dyoung {
935 1.1 dyoung u32 rar_high;
936 1.1 dyoung u32 rar_low;
937 1.1 dyoung u16 i;
938 1.1 dyoung
939 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
940 1.1 dyoung
941 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
942 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
943 1.1 dyoung
944 1.1 dyoung for (i = 0; i < 4; i++)
945 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
946 1.1 dyoung
947 1.1 dyoung for (i = 0; i < 2; i++)
948 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
949 1.1 dyoung
950 1.1 dyoung return IXGBE_SUCCESS;
951 1.1 dyoung }
952 1.1 dyoung
953 1.1 dyoung /**
954 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
955 1.1 dyoung * @hw: pointer to hardware structure
956 1.6 msaitoh * @link_status: the link status returned by the PCI config space
957 1.1 dyoung *
958 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
959 1.1 dyoung **/
960 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
961 1.1 dyoung {
962 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
963 1.1 dyoung
964 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
965 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
966 1.1 dyoung
967 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
968 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
969 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
970 1.1 dyoung break;
971 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
972 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
973 1.1 dyoung break;
974 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
975 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
976 1.1 dyoung break;
977 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
978 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
979 1.1 dyoung break;
980 1.1 dyoung default:
981 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
982 1.1 dyoung break;
983 1.1 dyoung }
984 1.1 dyoung
985 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
986 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
987 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
988 1.1 dyoung break;
989 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
990 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
991 1.1 dyoung break;
992 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
993 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
994 1.4 msaitoh break;
995 1.1 dyoung default:
996 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
997 1.1 dyoung break;
998 1.1 dyoung }
999 1.1 dyoung
1000 1.1 dyoung mac->ops.set_lan_id(hw);
1001 1.6 msaitoh }
1002 1.6 msaitoh
1003 1.6 msaitoh /**
1004 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1005 1.6 msaitoh * @hw: pointer to hardware structure
1006 1.6 msaitoh *
1007 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1008 1.6 msaitoh * store this data within the ixgbe_hw structure.
1009 1.6 msaitoh **/
1010 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1011 1.6 msaitoh {
1012 1.6 msaitoh u16 link_status;
1013 1.6 msaitoh
1014 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1015 1.6 msaitoh
1016 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1017 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1018 1.6 msaitoh
1019 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1020 1.1 dyoung
1021 1.1 dyoung return IXGBE_SUCCESS;
1022 1.1 dyoung }
1023 1.1 dyoung
1024 1.1 dyoung /**
1025 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1026 1.1 dyoung * @hw: pointer to the HW structure
1027 1.1 dyoung *
1028 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1029 1.1 dyoung * and swaps the port value if requested.
1030 1.1 dyoung **/
1031 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1032 1.1 dyoung {
1033 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1034 1.1 dyoung u32 reg;
1035 1.1 dyoung
1036 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1037 1.1 dyoung
1038 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1039 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1040 1.1 dyoung bus->lan_id = bus->func;
1041 1.1 dyoung
1042 1.1 dyoung /* check for a port swap */
1043 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1044 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1045 1.1 dyoung bus->func ^= 0x1;
1046 1.1 dyoung }
1047 1.1 dyoung
1048 1.1 dyoung /**
1049 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1050 1.1 dyoung * @hw: pointer to hardware structure
1051 1.1 dyoung *
1052 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1053 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1054 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1055 1.1 dyoung * state and should not touch the hardware.
1056 1.1 dyoung **/
1057 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1058 1.1 dyoung {
1059 1.1 dyoung u32 reg_val;
1060 1.1 dyoung u16 i;
1061 1.1 dyoung
1062 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1063 1.1 dyoung
1064 1.1 dyoung /*
1065 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1066 1.1 dyoung * the hardware
1067 1.1 dyoung */
1068 1.1 dyoung hw->adapter_stopped = TRUE;
1069 1.1 dyoung
1070 1.1 dyoung /* Disable the receive unit */
1071 1.8 msaitoh ixgbe_disable_rx(hw);
1072 1.1 dyoung
1073 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1074 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1075 1.1 dyoung
1076 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1077 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1078 1.1 dyoung
1079 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1080 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1081 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1082 1.3 msaitoh
1083 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1084 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1085 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1086 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1087 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1088 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1089 1.1 dyoung }
1090 1.1 dyoung
1091 1.3 msaitoh /* flush all queues disables */
1092 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1093 1.3 msaitoh msec_delay(2);
1094 1.3 msaitoh
1095 1.1 dyoung /*
1096 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1097 1.1 dyoung * access and verify no pending requests
1098 1.1 dyoung */
1099 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1100 1.1 dyoung }
1101 1.1 dyoung
1102 1.1 dyoung /**
1103 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1104 1.1 dyoung * @hw: pointer to hardware structure
1105 1.1 dyoung * @index: led number to turn on
1106 1.1 dyoung **/
1107 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1108 1.1 dyoung {
1109 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1110 1.1 dyoung
1111 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1112 1.1 dyoung
1113 1.1 dyoung /* To turn on the LED, set mode to ON. */
1114 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1115 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1116 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1117 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1118 1.1 dyoung
1119 1.1 dyoung return IXGBE_SUCCESS;
1120 1.1 dyoung }
1121 1.1 dyoung
1122 1.1 dyoung /**
1123 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1124 1.1 dyoung * @hw: pointer to hardware structure
1125 1.1 dyoung * @index: led number to turn off
1126 1.1 dyoung **/
1127 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1128 1.1 dyoung {
1129 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1130 1.1 dyoung
1131 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1132 1.1 dyoung
1133 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1134 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1135 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1136 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1137 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1138 1.1 dyoung
1139 1.1 dyoung return IXGBE_SUCCESS;
1140 1.1 dyoung }
1141 1.1 dyoung
1142 1.1 dyoung /**
1143 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1144 1.1 dyoung * @hw: pointer to hardware structure
1145 1.1 dyoung *
1146 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1147 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1148 1.1 dyoung **/
1149 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1150 1.1 dyoung {
1151 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1152 1.1 dyoung u32 eec;
1153 1.1 dyoung u16 eeprom_size;
1154 1.1 dyoung
1155 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1156 1.1 dyoung
1157 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1158 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1159 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1160 1.1 dyoung * tested value */
1161 1.1 dyoung eeprom->semaphore_delay = 10;
1162 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1163 1.3 msaitoh eeprom->word_page_size = 0;
1164 1.1 dyoung
1165 1.1 dyoung /*
1166 1.1 dyoung * Check for EEPROM present first.
1167 1.1 dyoung * If not present leave as none
1168 1.1 dyoung */
1169 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1170 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1171 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1172 1.1 dyoung
1173 1.1 dyoung /*
1174 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1175 1.1 dyoung * change if a future EEPROM is not SPI.
1176 1.1 dyoung */
1177 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1178 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1179 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1180 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1181 1.1 dyoung }
1182 1.1 dyoung
1183 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1184 1.1 dyoung eeprom->address_bits = 16;
1185 1.1 dyoung else
1186 1.1 dyoung eeprom->address_bits = 8;
1187 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1188 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1189 1.3 msaitoh eeprom->address_bits);
1190 1.1 dyoung }
1191 1.1 dyoung
1192 1.1 dyoung return IXGBE_SUCCESS;
1193 1.1 dyoung }
1194 1.1 dyoung
1195 1.1 dyoung /**
1196 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1197 1.3 msaitoh * @hw: pointer to hardware structure
1198 1.3 msaitoh * @offset: offset within the EEPROM to write
1199 1.3 msaitoh * @words: number of word(s)
1200 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1201 1.3 msaitoh *
1202 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1203 1.3 msaitoh **/
1204 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1205 1.3 msaitoh u16 words, u16 *data)
1206 1.3 msaitoh {
1207 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1208 1.3 msaitoh u16 i, count;
1209 1.3 msaitoh
1210 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1211 1.3 msaitoh
1212 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1213 1.3 msaitoh
1214 1.3 msaitoh if (words == 0) {
1215 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1216 1.3 msaitoh goto out;
1217 1.3 msaitoh }
1218 1.3 msaitoh
1219 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1220 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1221 1.3 msaitoh goto out;
1222 1.3 msaitoh }
1223 1.3 msaitoh
1224 1.3 msaitoh /*
1225 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1226 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1227 1.3 msaitoh */
1228 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1229 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1230 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1231 1.3 msaitoh
1232 1.3 msaitoh /*
1233 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1234 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1235 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1236 1.3 msaitoh */
1237 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1238 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1239 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1240 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1241 1.3 msaitoh count, &data[i]);
1242 1.3 msaitoh
1243 1.3 msaitoh if (status != IXGBE_SUCCESS)
1244 1.3 msaitoh break;
1245 1.3 msaitoh }
1246 1.3 msaitoh
1247 1.3 msaitoh out:
1248 1.3 msaitoh return status;
1249 1.3 msaitoh }
1250 1.3 msaitoh
1251 1.3 msaitoh /**
1252 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1253 1.3 msaitoh * @hw: pointer to hardware structure
1254 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1255 1.3 msaitoh * @words: number of word(s)
1256 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1257 1.3 msaitoh *
1258 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1259 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1260 1.3 msaitoh **/
1261 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1262 1.3 msaitoh u16 words, u16 *data)
1263 1.3 msaitoh {
1264 1.3 msaitoh s32 status;
1265 1.3 msaitoh u16 word;
1266 1.3 msaitoh u16 page_size;
1267 1.3 msaitoh u16 i;
1268 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1269 1.3 msaitoh
1270 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1271 1.3 msaitoh
1272 1.3 msaitoh /* Prepare the EEPROM for writing */
1273 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1274 1.3 msaitoh
1275 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1276 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1277 1.3 msaitoh ixgbe_release_eeprom(hw);
1278 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1279 1.3 msaitoh }
1280 1.3 msaitoh }
1281 1.3 msaitoh
1282 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1283 1.3 msaitoh for (i = 0; i < words; i++) {
1284 1.3 msaitoh ixgbe_standby_eeprom(hw);
1285 1.3 msaitoh
1286 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1287 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1288 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1289 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1290 1.3 msaitoh
1291 1.3 msaitoh ixgbe_standby_eeprom(hw);
1292 1.3 msaitoh
1293 1.3 msaitoh /*
1294 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1295 1.3 msaitoh * in the opcode
1296 1.3 msaitoh */
1297 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1298 1.3 msaitoh ((offset + i) >= 128))
1299 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1300 1.3 msaitoh
1301 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1302 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1303 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1304 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1305 1.3 msaitoh hw->eeprom.address_bits);
1306 1.3 msaitoh
1307 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1308 1.3 msaitoh
1309 1.3 msaitoh /* Send the data in burst via SPI*/
1310 1.3 msaitoh do {
1311 1.3 msaitoh word = data[i];
1312 1.3 msaitoh word = (word >> 8) | (word << 8);
1313 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1314 1.3 msaitoh
1315 1.3 msaitoh if (page_size == 0)
1316 1.3 msaitoh break;
1317 1.3 msaitoh
1318 1.3 msaitoh /* do not wrap around page */
1319 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1320 1.3 msaitoh (page_size - 1))
1321 1.3 msaitoh break;
1322 1.3 msaitoh } while (++i < words);
1323 1.3 msaitoh
1324 1.3 msaitoh ixgbe_standby_eeprom(hw);
1325 1.3 msaitoh msec_delay(10);
1326 1.3 msaitoh }
1327 1.3 msaitoh /* Done with writing - release the EEPROM */
1328 1.3 msaitoh ixgbe_release_eeprom(hw);
1329 1.3 msaitoh }
1330 1.3 msaitoh
1331 1.3 msaitoh return status;
1332 1.3 msaitoh }
1333 1.3 msaitoh
1334 1.3 msaitoh /**
1335 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1336 1.1 dyoung * @hw: pointer to hardware structure
1337 1.1 dyoung * @offset: offset within the EEPROM to be written to
1338 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1339 1.1 dyoung *
1340 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1341 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1342 1.1 dyoung **/
1343 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1344 1.1 dyoung {
1345 1.1 dyoung s32 status;
1346 1.1 dyoung
1347 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1348 1.1 dyoung
1349 1.1 dyoung hw->eeprom.ops.init_params(hw);
1350 1.1 dyoung
1351 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1352 1.1 dyoung status = IXGBE_ERR_EEPROM;
1353 1.1 dyoung goto out;
1354 1.1 dyoung }
1355 1.1 dyoung
1356 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1357 1.3 msaitoh
1358 1.3 msaitoh out:
1359 1.3 msaitoh return status;
1360 1.3 msaitoh }
1361 1.3 msaitoh
1362 1.3 msaitoh /**
1363 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1364 1.3 msaitoh * @hw: pointer to hardware structure
1365 1.3 msaitoh * @offset: offset within the EEPROM to be read
1366 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1367 1.3 msaitoh * @words: number of word(s)
1368 1.3 msaitoh *
1369 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1370 1.3 msaitoh **/
1371 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1372 1.3 msaitoh u16 words, u16 *data)
1373 1.3 msaitoh {
1374 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1375 1.3 msaitoh u16 i, count;
1376 1.3 msaitoh
1377 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1378 1.3 msaitoh
1379 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1380 1.3 msaitoh
1381 1.3 msaitoh if (words == 0) {
1382 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1383 1.3 msaitoh goto out;
1384 1.3 msaitoh }
1385 1.3 msaitoh
1386 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1387 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1388 1.3 msaitoh goto out;
1389 1.3 msaitoh }
1390 1.3 msaitoh
1391 1.3 msaitoh /*
1392 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1393 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1394 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1395 1.3 msaitoh */
1396 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1397 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1398 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1399 1.3 msaitoh
1400 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1401 1.3 msaitoh count, &data[i]);
1402 1.3 msaitoh
1403 1.3 msaitoh if (status != IXGBE_SUCCESS)
1404 1.3 msaitoh break;
1405 1.3 msaitoh }
1406 1.3 msaitoh
1407 1.3 msaitoh out:
1408 1.3 msaitoh return status;
1409 1.3 msaitoh }
1410 1.3 msaitoh
1411 1.3 msaitoh /**
1412 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1413 1.3 msaitoh * @hw: pointer to hardware structure
1414 1.3 msaitoh * @offset: offset within the EEPROM to be read
1415 1.3 msaitoh * @words: number of word(s)
1416 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1417 1.3 msaitoh *
1418 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1419 1.3 msaitoh **/
1420 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1421 1.3 msaitoh u16 words, u16 *data)
1422 1.3 msaitoh {
1423 1.3 msaitoh s32 status;
1424 1.3 msaitoh u16 word_in;
1425 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1426 1.3 msaitoh u16 i;
1427 1.3 msaitoh
1428 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1429 1.3 msaitoh
1430 1.3 msaitoh /* Prepare the EEPROM for reading */
1431 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1432 1.1 dyoung
1433 1.1 dyoung if (status == IXGBE_SUCCESS) {
1434 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1435 1.1 dyoung ixgbe_release_eeprom(hw);
1436 1.1 dyoung status = IXGBE_ERR_EEPROM;
1437 1.1 dyoung }
1438 1.1 dyoung }
1439 1.1 dyoung
1440 1.1 dyoung if (status == IXGBE_SUCCESS) {
1441 1.3 msaitoh for (i = 0; i < words; i++) {
1442 1.3 msaitoh ixgbe_standby_eeprom(hw);
1443 1.3 msaitoh /*
1444 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1445 1.3 msaitoh * in the opcode
1446 1.3 msaitoh */
1447 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1448 1.3 msaitoh ((offset + i) >= 128))
1449 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1450 1.3 msaitoh
1451 1.3 msaitoh /* Send the READ command (opcode + addr) */
1452 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1453 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1454 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1455 1.3 msaitoh hw->eeprom.address_bits);
1456 1.3 msaitoh
1457 1.3 msaitoh /* Read the data. */
1458 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1459 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1460 1.3 msaitoh }
1461 1.1 dyoung
1462 1.3 msaitoh /* End this read operation */
1463 1.1 dyoung ixgbe_release_eeprom(hw);
1464 1.1 dyoung }
1465 1.1 dyoung
1466 1.1 dyoung return status;
1467 1.1 dyoung }
1468 1.1 dyoung
1469 1.1 dyoung /**
1470 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1471 1.1 dyoung * @hw: pointer to hardware structure
1472 1.1 dyoung * @offset: offset within the EEPROM to be read
1473 1.1 dyoung * @data: read 16 bit value from EEPROM
1474 1.1 dyoung *
1475 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1476 1.1 dyoung **/
1477 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1478 1.3 msaitoh u16 *data)
1479 1.1 dyoung {
1480 1.1 dyoung s32 status;
1481 1.1 dyoung
1482 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1483 1.1 dyoung
1484 1.1 dyoung hw->eeprom.ops.init_params(hw);
1485 1.1 dyoung
1486 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1487 1.1 dyoung status = IXGBE_ERR_EEPROM;
1488 1.1 dyoung goto out;
1489 1.1 dyoung }
1490 1.1 dyoung
1491 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1492 1.3 msaitoh
1493 1.3 msaitoh out:
1494 1.3 msaitoh return status;
1495 1.3 msaitoh }
1496 1.3 msaitoh
1497 1.3 msaitoh /**
1498 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1499 1.3 msaitoh * @hw: pointer to hardware structure
1500 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1501 1.3 msaitoh * @words: number of word(s)
1502 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1503 1.3 msaitoh *
1504 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1505 1.3 msaitoh **/
1506 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1507 1.3 msaitoh u16 words, u16 *data)
1508 1.3 msaitoh {
1509 1.3 msaitoh u32 eerd;
1510 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1511 1.3 msaitoh u32 i;
1512 1.3 msaitoh
1513 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1514 1.3 msaitoh
1515 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1516 1.3 msaitoh
1517 1.3 msaitoh if (words == 0) {
1518 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1519 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1520 1.3 msaitoh goto out;
1521 1.3 msaitoh }
1522 1.3 msaitoh
1523 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1524 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1525 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1526 1.3 msaitoh goto out;
1527 1.3 msaitoh }
1528 1.3 msaitoh
1529 1.3 msaitoh for (i = 0; i < words; i++) {
1530 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1531 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1532 1.3 msaitoh
1533 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1534 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1535 1.1 dyoung
1536 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1537 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1538 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1539 1.3 msaitoh } else {
1540 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1541 1.3 msaitoh goto out;
1542 1.1 dyoung }
1543 1.1 dyoung }
1544 1.3 msaitoh out:
1545 1.3 msaitoh return status;
1546 1.3 msaitoh }
1547 1.1 dyoung
1548 1.3 msaitoh /**
1549 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1550 1.3 msaitoh * @hw: pointer to hardware structure
1551 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1552 1.3 msaitoh *
1553 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1554 1.3 msaitoh * This function is called only when we are writing a new large buffer
1555 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1556 1.3 msaitoh **/
1557 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1558 1.3 msaitoh u16 offset)
1559 1.3 msaitoh {
1560 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1561 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1562 1.3 msaitoh u16 i;
1563 1.3 msaitoh
1564 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1565 1.3 msaitoh
1566 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1567 1.3 msaitoh data[i] = i;
1568 1.1 dyoung
1569 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1570 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1571 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1572 1.3 msaitoh hw->eeprom.word_page_size = 0;
1573 1.3 msaitoh if (status != IXGBE_SUCCESS)
1574 1.3 msaitoh goto out;
1575 1.1 dyoung
1576 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1577 1.3 msaitoh if (status != IXGBE_SUCCESS)
1578 1.3 msaitoh goto out;
1579 1.1 dyoung
1580 1.3 msaitoh /*
1581 1.3 msaitoh * When writing in burst more than the actual page size
1582 1.3 msaitoh * EEPROM address wraps around current page.
1583 1.3 msaitoh */
1584 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1585 1.1 dyoung
1586 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1587 1.3 msaitoh hw->eeprom.word_page_size);
1588 1.1 dyoung out:
1589 1.1 dyoung return status;
1590 1.1 dyoung }
1591 1.1 dyoung
1592 1.1 dyoung /**
1593 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1594 1.1 dyoung * @hw: pointer to hardware structure
1595 1.1 dyoung * @offset: offset of word in the EEPROM to read
1596 1.1 dyoung * @data: word read from the EEPROM
1597 1.1 dyoung *
1598 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1599 1.1 dyoung **/
1600 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1601 1.1 dyoung {
1602 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1603 1.3 msaitoh }
1604 1.3 msaitoh
1605 1.3 msaitoh /**
1606 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1607 1.3 msaitoh * @hw: pointer to hardware structure
1608 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1609 1.3 msaitoh * @words: number of word(s)
1610 1.3 msaitoh * @data: word(s) write to the EEPROM
1611 1.3 msaitoh *
1612 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1613 1.3 msaitoh **/
1614 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1615 1.3 msaitoh u16 words, u16 *data)
1616 1.3 msaitoh {
1617 1.3 msaitoh u32 eewr;
1618 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1619 1.3 msaitoh u16 i;
1620 1.1 dyoung
1621 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1622 1.1 dyoung
1623 1.1 dyoung hw->eeprom.ops.init_params(hw);
1624 1.1 dyoung
1625 1.3 msaitoh if (words == 0) {
1626 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1627 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1628 1.3 msaitoh goto out;
1629 1.3 msaitoh }
1630 1.3 msaitoh
1631 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1632 1.1 dyoung status = IXGBE_ERR_EEPROM;
1633 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1634 1.1 dyoung goto out;
1635 1.1 dyoung }
1636 1.1 dyoung
1637 1.3 msaitoh for (i = 0; i < words; i++) {
1638 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1639 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1640 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1641 1.3 msaitoh
1642 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1643 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1644 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1645 1.3 msaitoh goto out;
1646 1.3 msaitoh }
1647 1.1 dyoung
1648 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1649 1.1 dyoung
1650 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1651 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1652 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1653 1.3 msaitoh goto out;
1654 1.3 msaitoh }
1655 1.3 msaitoh }
1656 1.1 dyoung
1657 1.1 dyoung out:
1658 1.1 dyoung return status;
1659 1.1 dyoung }
1660 1.1 dyoung
1661 1.1 dyoung /**
1662 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1663 1.1 dyoung * @hw: pointer to hardware structure
1664 1.1 dyoung * @offset: offset of word in the EEPROM to write
1665 1.1 dyoung * @data: word write to the EEPROM
1666 1.1 dyoung *
1667 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1668 1.1 dyoung **/
1669 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1670 1.1 dyoung {
1671 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1672 1.1 dyoung }
1673 1.1 dyoung
1674 1.1 dyoung /**
1675 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1676 1.1 dyoung * @hw: pointer to hardware structure
1677 1.1 dyoung * @ee_reg: EEPROM flag for polling
1678 1.1 dyoung *
1679 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1680 1.1 dyoung * read or write is done respectively.
1681 1.1 dyoung **/
1682 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1683 1.1 dyoung {
1684 1.1 dyoung u32 i;
1685 1.1 dyoung u32 reg;
1686 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1687 1.1 dyoung
1688 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1689 1.1 dyoung
1690 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1691 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1692 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1693 1.1 dyoung else
1694 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1695 1.1 dyoung
1696 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1697 1.1 dyoung status = IXGBE_SUCCESS;
1698 1.1 dyoung break;
1699 1.1 dyoung }
1700 1.1 dyoung usec_delay(5);
1701 1.1 dyoung }
1702 1.6 msaitoh
1703 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1704 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1705 1.6 msaitoh "EEPROM read/write done polling timed out");
1706 1.6 msaitoh
1707 1.1 dyoung return status;
1708 1.1 dyoung }
1709 1.1 dyoung
1710 1.1 dyoung /**
1711 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1712 1.1 dyoung * @hw: pointer to hardware structure
1713 1.1 dyoung *
1714 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1715 1.1 dyoung * be called before issuing a command to the EEPROM.
1716 1.1 dyoung **/
1717 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1718 1.1 dyoung {
1719 1.1 dyoung s32 status = IXGBE_SUCCESS;
1720 1.1 dyoung u32 eec;
1721 1.1 dyoung u32 i;
1722 1.1 dyoung
1723 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1724 1.1 dyoung
1725 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1726 1.3 msaitoh != IXGBE_SUCCESS)
1727 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1728 1.1 dyoung
1729 1.1 dyoung if (status == IXGBE_SUCCESS) {
1730 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1731 1.1 dyoung
1732 1.1 dyoung /* Request EEPROM Access */
1733 1.1 dyoung eec |= IXGBE_EEC_REQ;
1734 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1735 1.1 dyoung
1736 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1737 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1738 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1739 1.1 dyoung break;
1740 1.1 dyoung usec_delay(5);
1741 1.1 dyoung }
1742 1.1 dyoung
1743 1.1 dyoung /* Release if grant not acquired */
1744 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1745 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1746 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1747 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1748 1.1 dyoung
1749 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1750 1.1 dyoung status = IXGBE_ERR_EEPROM;
1751 1.1 dyoung }
1752 1.1 dyoung
1753 1.1 dyoung /* Setup EEPROM for Read/Write */
1754 1.1 dyoung if (status == IXGBE_SUCCESS) {
1755 1.1 dyoung /* Clear CS and SK */
1756 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1757 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1758 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1759 1.1 dyoung usec_delay(1);
1760 1.1 dyoung }
1761 1.1 dyoung }
1762 1.1 dyoung return status;
1763 1.1 dyoung }
1764 1.1 dyoung
1765 1.1 dyoung /**
1766 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1767 1.1 dyoung * @hw: pointer to hardware structure
1768 1.1 dyoung *
1769 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1770 1.1 dyoung **/
1771 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1772 1.1 dyoung {
1773 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1774 1.1 dyoung u32 timeout = 2000;
1775 1.1 dyoung u32 i;
1776 1.1 dyoung u32 swsm;
1777 1.1 dyoung
1778 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1779 1.1 dyoung
1780 1.1 dyoung
1781 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1782 1.1 dyoung for (i = 0; i < timeout; i++) {
1783 1.1 dyoung /*
1784 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1785 1.1 dyoung * set and we have the semaphore
1786 1.1 dyoung */
1787 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1788 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1789 1.1 dyoung status = IXGBE_SUCCESS;
1790 1.1 dyoung break;
1791 1.1 dyoung }
1792 1.1 dyoung usec_delay(50);
1793 1.1 dyoung }
1794 1.1 dyoung
1795 1.3 msaitoh if (i == timeout) {
1796 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1797 1.3 msaitoh "not granted.\n");
1798 1.3 msaitoh /*
1799 1.3 msaitoh * this release is particularly important because our attempts
1800 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1801 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1802 1.3 msaitoh * bits to free the driver to make progress
1803 1.3 msaitoh */
1804 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1805 1.3 msaitoh
1806 1.3 msaitoh usec_delay(50);
1807 1.3 msaitoh /*
1808 1.3 msaitoh * one last try
1809 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1810 1.3 msaitoh * set and we have the semaphore
1811 1.3 msaitoh */
1812 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1813 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1814 1.3 msaitoh status = IXGBE_SUCCESS;
1815 1.3 msaitoh }
1816 1.3 msaitoh
1817 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1818 1.1 dyoung if (status == IXGBE_SUCCESS) {
1819 1.1 dyoung for (i = 0; i < timeout; i++) {
1820 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1821 1.1 dyoung
1822 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1823 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1824 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1825 1.1 dyoung
1826 1.1 dyoung /*
1827 1.1 dyoung * If we set the bit successfully then we got the
1828 1.1 dyoung * semaphore.
1829 1.1 dyoung */
1830 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1831 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1832 1.1 dyoung break;
1833 1.1 dyoung
1834 1.1 dyoung usec_delay(50);
1835 1.1 dyoung }
1836 1.1 dyoung
1837 1.1 dyoung /*
1838 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1839 1.1 dyoung * was not granted because we don't have access to the EEPROM
1840 1.1 dyoung */
1841 1.1 dyoung if (i >= timeout) {
1842 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1843 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1844 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1845 1.1 dyoung status = IXGBE_ERR_EEPROM;
1846 1.1 dyoung }
1847 1.1 dyoung } else {
1848 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1849 1.6 msaitoh "Software semaphore SMBI between device drivers "
1850 1.6 msaitoh "not granted.\n");
1851 1.1 dyoung }
1852 1.1 dyoung
1853 1.1 dyoung return status;
1854 1.1 dyoung }
1855 1.1 dyoung
1856 1.1 dyoung /**
1857 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1858 1.1 dyoung * @hw: pointer to hardware structure
1859 1.1 dyoung *
1860 1.1 dyoung * This function clears hardware semaphore bits.
1861 1.1 dyoung **/
1862 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1863 1.1 dyoung {
1864 1.1 dyoung u32 swsm;
1865 1.1 dyoung
1866 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1867 1.1 dyoung
1868 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1869 1.1 dyoung
1870 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1871 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1872 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1873 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1874 1.1 dyoung }
1875 1.1 dyoung
1876 1.1 dyoung /**
1877 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1878 1.1 dyoung * @hw: pointer to hardware structure
1879 1.1 dyoung **/
1880 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1881 1.1 dyoung {
1882 1.1 dyoung s32 status = IXGBE_SUCCESS;
1883 1.1 dyoung u16 i;
1884 1.1 dyoung u8 spi_stat_reg;
1885 1.1 dyoung
1886 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1887 1.1 dyoung
1888 1.1 dyoung /*
1889 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1890 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1891 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1892 1.1 dyoung * 5 milliseconds, then error out.
1893 1.1 dyoung */
1894 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1895 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1896 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1897 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1898 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1899 1.1 dyoung break;
1900 1.1 dyoung
1901 1.1 dyoung usec_delay(5);
1902 1.1 dyoung ixgbe_standby_eeprom(hw);
1903 1.1 dyoung };
1904 1.1 dyoung
1905 1.1 dyoung /*
1906 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1907 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1908 1.1 dyoung */
1909 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1910 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1911 1.1 dyoung status = IXGBE_ERR_EEPROM;
1912 1.1 dyoung }
1913 1.1 dyoung
1914 1.1 dyoung return status;
1915 1.1 dyoung }
1916 1.1 dyoung
1917 1.1 dyoung /**
1918 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1919 1.1 dyoung * @hw: pointer to hardware structure
1920 1.1 dyoung **/
1921 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1922 1.1 dyoung {
1923 1.1 dyoung u32 eec;
1924 1.1 dyoung
1925 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1926 1.1 dyoung
1927 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1928 1.1 dyoung
1929 1.1 dyoung /* Toggle CS to flush commands */
1930 1.1 dyoung eec |= IXGBE_EEC_CS;
1931 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1932 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1933 1.1 dyoung usec_delay(1);
1934 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1935 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1936 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1937 1.1 dyoung usec_delay(1);
1938 1.1 dyoung }
1939 1.1 dyoung
1940 1.1 dyoung /**
1941 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1942 1.1 dyoung * @hw: pointer to hardware structure
1943 1.1 dyoung * @data: data to send to the EEPROM
1944 1.1 dyoung * @count: number of bits to shift out
1945 1.1 dyoung **/
1946 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1947 1.3 msaitoh u16 count)
1948 1.1 dyoung {
1949 1.1 dyoung u32 eec;
1950 1.1 dyoung u32 mask;
1951 1.1 dyoung u32 i;
1952 1.1 dyoung
1953 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1954 1.1 dyoung
1955 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1956 1.1 dyoung
1957 1.1 dyoung /*
1958 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1959 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1960 1.1 dyoung */
1961 1.1 dyoung mask = 0x01 << (count - 1);
1962 1.1 dyoung
1963 1.1 dyoung for (i = 0; i < count; i++) {
1964 1.1 dyoung /*
1965 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1966 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1967 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1968 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1969 1.1 dyoung * raising and then lowering the clock.
1970 1.1 dyoung */
1971 1.1 dyoung if (data & mask)
1972 1.1 dyoung eec |= IXGBE_EEC_DI;
1973 1.1 dyoung else
1974 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1975 1.1 dyoung
1976 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1977 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1978 1.1 dyoung
1979 1.1 dyoung usec_delay(1);
1980 1.1 dyoung
1981 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1982 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1983 1.1 dyoung
1984 1.1 dyoung /*
1985 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1986 1.1 dyoung * EEPROM
1987 1.1 dyoung */
1988 1.1 dyoung mask = mask >> 1;
1989 1.1 dyoung };
1990 1.1 dyoung
1991 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1992 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1993 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1994 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1995 1.1 dyoung }
1996 1.1 dyoung
1997 1.1 dyoung /**
1998 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1999 1.1 dyoung * @hw: pointer to hardware structure
2000 1.1 dyoung **/
2001 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2002 1.1 dyoung {
2003 1.1 dyoung u32 eec;
2004 1.1 dyoung u32 i;
2005 1.1 dyoung u16 data = 0;
2006 1.1 dyoung
2007 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2008 1.1 dyoung
2009 1.1 dyoung /*
2010 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2011 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2012 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2013 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2014 1.1 dyoung * "DI" bit should always be clear.
2015 1.1 dyoung */
2016 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2017 1.1 dyoung
2018 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2019 1.1 dyoung
2020 1.1 dyoung for (i = 0; i < count; i++) {
2021 1.1 dyoung data = data << 1;
2022 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2023 1.1 dyoung
2024 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2025 1.1 dyoung
2026 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2027 1.1 dyoung if (eec & IXGBE_EEC_DO)
2028 1.1 dyoung data |= 1;
2029 1.1 dyoung
2030 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2031 1.1 dyoung }
2032 1.1 dyoung
2033 1.1 dyoung return data;
2034 1.1 dyoung }
2035 1.1 dyoung
2036 1.1 dyoung /**
2037 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2038 1.1 dyoung * @hw: pointer to hardware structure
2039 1.1 dyoung * @eec: EEC register's current value
2040 1.1 dyoung **/
2041 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2042 1.1 dyoung {
2043 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2044 1.1 dyoung
2045 1.1 dyoung /*
2046 1.1 dyoung * Raise the clock input to the EEPROM
2047 1.1 dyoung * (setting the SK bit), then delay
2048 1.1 dyoung */
2049 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2050 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2051 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2052 1.1 dyoung usec_delay(1);
2053 1.1 dyoung }
2054 1.1 dyoung
2055 1.1 dyoung /**
2056 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2057 1.1 dyoung * @hw: pointer to hardware structure
2058 1.1 dyoung * @eecd: EECD's current value
2059 1.1 dyoung **/
2060 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2061 1.1 dyoung {
2062 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2063 1.1 dyoung
2064 1.1 dyoung /*
2065 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2066 1.1 dyoung * delay
2067 1.1 dyoung */
2068 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2069 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2070 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2071 1.1 dyoung usec_delay(1);
2072 1.1 dyoung }
2073 1.1 dyoung
2074 1.1 dyoung /**
2075 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2076 1.1 dyoung * @hw: pointer to hardware structure
2077 1.1 dyoung **/
2078 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2079 1.1 dyoung {
2080 1.1 dyoung u32 eec;
2081 1.1 dyoung
2082 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2083 1.1 dyoung
2084 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2085 1.1 dyoung
2086 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2087 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2088 1.1 dyoung
2089 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2090 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2091 1.1 dyoung
2092 1.1 dyoung usec_delay(1);
2093 1.1 dyoung
2094 1.1 dyoung /* Stop requesting EEPROM access */
2095 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2096 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2097 1.1 dyoung
2098 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2099 1.1 dyoung
2100 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2101 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2102 1.1 dyoung }
2103 1.1 dyoung
2104 1.1 dyoung /**
2105 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2106 1.1 dyoung * @hw: pointer to hardware structure
2107 1.8 msaitoh *
2108 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2109 1.1 dyoung **/
2110 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2111 1.1 dyoung {
2112 1.1 dyoung u16 i;
2113 1.1 dyoung u16 j;
2114 1.1 dyoung u16 checksum = 0;
2115 1.1 dyoung u16 length = 0;
2116 1.1 dyoung u16 pointer = 0;
2117 1.1 dyoung u16 word = 0;
2118 1.1 dyoung
2119 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2120 1.1 dyoung
2121 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2122 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2123 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2124 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2125 1.8 msaitoh return IXGBE_ERR_EEPROM;
2126 1.1 dyoung }
2127 1.1 dyoung checksum += word;
2128 1.1 dyoung }
2129 1.1 dyoung
2130 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2131 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2132 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2133 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2134 1.8 msaitoh return IXGBE_ERR_EEPROM;
2135 1.8 msaitoh }
2136 1.8 msaitoh
2137 1.8 msaitoh /* If the pointer seems invalid */
2138 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2139 1.8 msaitoh continue;
2140 1.8 msaitoh
2141 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2142 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2143 1.8 msaitoh return IXGBE_ERR_EEPROM;
2144 1.8 msaitoh }
2145 1.8 msaitoh
2146 1.8 msaitoh if (length == 0xFFFF || length == 0)
2147 1.8 msaitoh continue;
2148 1.1 dyoung
2149 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2150 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2151 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2152 1.8 msaitoh return IXGBE_ERR_EEPROM;
2153 1.1 dyoung }
2154 1.8 msaitoh checksum += word;
2155 1.1 dyoung }
2156 1.1 dyoung }
2157 1.1 dyoung
2158 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2159 1.1 dyoung
2160 1.8 msaitoh return (s32)checksum;
2161 1.1 dyoung }
2162 1.1 dyoung
2163 1.1 dyoung /**
2164 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2165 1.1 dyoung * @hw: pointer to hardware structure
2166 1.1 dyoung * @checksum_val: calculated checksum
2167 1.1 dyoung *
2168 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2169 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2170 1.1 dyoung **/
2171 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2172 1.3 msaitoh u16 *checksum_val)
2173 1.1 dyoung {
2174 1.1 dyoung s32 status;
2175 1.1 dyoung u16 checksum;
2176 1.1 dyoung u16 read_checksum = 0;
2177 1.1 dyoung
2178 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2179 1.1 dyoung
2180 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2181 1.1 dyoung * not continue or we could be in for a very long wait while every
2182 1.1 dyoung * EEPROM read fails
2183 1.1 dyoung */
2184 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2185 1.8 msaitoh if (status) {
2186 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2187 1.8 msaitoh return status;
2188 1.8 msaitoh }
2189 1.1 dyoung
2190 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2191 1.8 msaitoh if (status < 0)
2192 1.8 msaitoh return status;
2193 1.1 dyoung
2194 1.8 msaitoh checksum = (u16)(status & 0xffff);
2195 1.1 dyoung
2196 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2197 1.8 msaitoh if (status) {
2198 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2199 1.8 msaitoh return status;
2200 1.1 dyoung }
2201 1.1 dyoung
2202 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2203 1.8 msaitoh * calculated checksum
2204 1.8 msaitoh */
2205 1.8 msaitoh if (read_checksum != checksum)
2206 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2207 1.8 msaitoh
2208 1.8 msaitoh /* If the user cares, return the calculated checksum */
2209 1.8 msaitoh if (checksum_val)
2210 1.8 msaitoh *checksum_val = checksum;
2211 1.8 msaitoh
2212 1.1 dyoung return status;
2213 1.1 dyoung }
2214 1.1 dyoung
2215 1.1 dyoung /**
2216 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2217 1.1 dyoung * @hw: pointer to hardware structure
2218 1.1 dyoung **/
2219 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2220 1.1 dyoung {
2221 1.1 dyoung s32 status;
2222 1.1 dyoung u16 checksum;
2223 1.1 dyoung
2224 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2225 1.1 dyoung
2226 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2227 1.1 dyoung * not continue or we could be in for a very long wait while every
2228 1.1 dyoung * EEPROM read fails
2229 1.1 dyoung */
2230 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2231 1.8 msaitoh if (status) {
2232 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2233 1.8 msaitoh return status;
2234 1.1 dyoung }
2235 1.1 dyoung
2236 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2237 1.8 msaitoh if (status < 0)
2238 1.8 msaitoh return status;
2239 1.8 msaitoh
2240 1.8 msaitoh checksum = (u16)(status & 0xffff);
2241 1.8 msaitoh
2242 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2243 1.8 msaitoh
2244 1.1 dyoung return status;
2245 1.1 dyoung }
2246 1.1 dyoung
2247 1.1 dyoung /**
2248 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2249 1.1 dyoung * @mac_addr: pointer to MAC address.
2250 1.1 dyoung *
2251 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2252 1.1 dyoung **/
2253 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2254 1.1 dyoung {
2255 1.1 dyoung s32 status = IXGBE_SUCCESS;
2256 1.1 dyoung
2257 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2258 1.1 dyoung
2259 1.1 dyoung /* Make sure it is not a multicast address */
2260 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2261 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2262 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2263 1.1 dyoung /* Not a broadcast address */
2264 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2265 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2266 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2267 1.1 dyoung /* Reject the zero address */
2268 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2269 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2270 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2271 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2272 1.1 dyoung }
2273 1.1 dyoung return status;
2274 1.1 dyoung }
2275 1.1 dyoung
2276 1.1 dyoung /**
2277 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2278 1.1 dyoung * @hw: pointer to hardware structure
2279 1.1 dyoung * @index: Receive address register to write
2280 1.1 dyoung * @addr: Address to put into receive address register
2281 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2282 1.1 dyoung * @enable_addr: set flag that address is active
2283 1.1 dyoung *
2284 1.1 dyoung * Puts an ethernet address into a receive address register.
2285 1.1 dyoung **/
2286 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2287 1.3 msaitoh u32 enable_addr)
2288 1.1 dyoung {
2289 1.1 dyoung u32 rar_low, rar_high;
2290 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2291 1.1 dyoung
2292 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2293 1.1 dyoung
2294 1.1 dyoung /* Make sure we are using a valid rar index range */
2295 1.1 dyoung if (index >= rar_entries) {
2296 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2297 1.6 msaitoh "RAR index %d is out of range.\n", index);
2298 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2299 1.1 dyoung }
2300 1.1 dyoung
2301 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2302 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2303 1.1 dyoung
2304 1.1 dyoung /*
2305 1.1 dyoung * HW expects these in little endian so we reverse the byte
2306 1.1 dyoung * order from network order (big endian) to little endian
2307 1.1 dyoung */
2308 1.1 dyoung rar_low = ((u32)addr[0] |
2309 1.3 msaitoh ((u32)addr[1] << 8) |
2310 1.3 msaitoh ((u32)addr[2] << 16) |
2311 1.3 msaitoh ((u32)addr[3] << 24));
2312 1.1 dyoung /*
2313 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2314 1.1 dyoung * so save everything except the lower 16 bits that hold part
2315 1.1 dyoung * of the address and the address valid bit.
2316 1.1 dyoung */
2317 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2318 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2319 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2320 1.1 dyoung
2321 1.1 dyoung if (enable_addr != 0)
2322 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2323 1.1 dyoung
2324 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2325 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2326 1.1 dyoung
2327 1.1 dyoung return IXGBE_SUCCESS;
2328 1.1 dyoung }
2329 1.1 dyoung
2330 1.1 dyoung /**
2331 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2332 1.1 dyoung * @hw: pointer to hardware structure
2333 1.1 dyoung * @index: Receive address register to write
2334 1.1 dyoung *
2335 1.1 dyoung * Clears an ethernet address from a receive address register.
2336 1.1 dyoung **/
2337 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2338 1.1 dyoung {
2339 1.1 dyoung u32 rar_high;
2340 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2341 1.1 dyoung
2342 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2343 1.1 dyoung
2344 1.1 dyoung /* Make sure we are using a valid rar index range */
2345 1.1 dyoung if (index >= rar_entries) {
2346 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2347 1.6 msaitoh "RAR index %d is out of range.\n", index);
2348 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2349 1.1 dyoung }
2350 1.1 dyoung
2351 1.1 dyoung /*
2352 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2353 1.1 dyoung * so save everything except the lower 16 bits that hold part
2354 1.1 dyoung * of the address and the address valid bit.
2355 1.1 dyoung */
2356 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2357 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2358 1.1 dyoung
2359 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2360 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2361 1.1 dyoung
2362 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2363 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2364 1.1 dyoung
2365 1.1 dyoung return IXGBE_SUCCESS;
2366 1.1 dyoung }
2367 1.1 dyoung
2368 1.1 dyoung /**
2369 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2370 1.1 dyoung * @hw: pointer to hardware structure
2371 1.1 dyoung *
2372 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2373 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2374 1.1 dyoung * the receiver is in reset when the routine is called.
2375 1.1 dyoung **/
2376 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2377 1.1 dyoung {
2378 1.1 dyoung u32 i;
2379 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2380 1.1 dyoung
2381 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2382 1.1 dyoung
2383 1.1 dyoung /*
2384 1.1 dyoung * If the current mac address is valid, assume it is a software override
2385 1.1 dyoung * to the permanent address.
2386 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2387 1.1 dyoung */
2388 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2389 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2390 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2391 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2392 1.1 dyoung
2393 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2394 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2395 1.3 msaitoh hw->mac.addr[2]);
2396 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2397 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2398 1.1 dyoung } else {
2399 1.1 dyoung /* Setup the receive address. */
2400 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2401 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2402 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2403 1.3 msaitoh hw->mac.addr[2]);
2404 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2405 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2406 1.1 dyoung
2407 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2408 1.1 dyoung
2409 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2410 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2411 1.1 dyoung }
2412 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2413 1.1 dyoung
2414 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2415 1.1 dyoung
2416 1.1 dyoung /* Zero out the other receive addresses. */
2417 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2418 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2419 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2420 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2421 1.1 dyoung }
2422 1.1 dyoung
2423 1.1 dyoung /* Clear the MTA */
2424 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2425 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2426 1.1 dyoung
2427 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2428 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2429 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2430 1.1 dyoung
2431 1.1 dyoung ixgbe_init_uta_tables(hw);
2432 1.1 dyoung
2433 1.1 dyoung return IXGBE_SUCCESS;
2434 1.1 dyoung }
2435 1.1 dyoung
2436 1.1 dyoung /**
2437 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2438 1.1 dyoung * @hw: pointer to hardware structure
2439 1.1 dyoung * @addr: new address
2440 1.1 dyoung *
2441 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2442 1.1 dyoung **/
2443 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2444 1.1 dyoung {
2445 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2446 1.1 dyoung u32 rar;
2447 1.1 dyoung
2448 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2449 1.1 dyoung
2450 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2451 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2452 1.1 dyoung
2453 1.1 dyoung /*
2454 1.1 dyoung * Place this address in the RAR if there is room,
2455 1.1 dyoung * else put the controller into promiscuous mode
2456 1.1 dyoung */
2457 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2458 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2459 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2460 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2461 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2462 1.1 dyoung } else {
2463 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2464 1.1 dyoung }
2465 1.1 dyoung
2466 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2467 1.1 dyoung }
2468 1.1 dyoung
2469 1.1 dyoung /**
2470 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2471 1.1 dyoung * @hw: pointer to hardware structure
2472 1.1 dyoung * @addr_list: the list of new addresses
2473 1.1 dyoung * @addr_count: number of addresses
2474 1.1 dyoung * @next: iterator function to walk the address list
2475 1.1 dyoung *
2476 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2477 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2478 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2479 1.1 dyoung *
2480 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2481 1.1 dyoung * manually putting the device into promiscuous mode.
2482 1.1 dyoung **/
2483 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2484 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2485 1.1 dyoung {
2486 1.1 dyoung u8 *addr;
2487 1.1 dyoung u32 i;
2488 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2489 1.1 dyoung u32 uc_addr_in_use;
2490 1.1 dyoung u32 fctrl;
2491 1.1 dyoung u32 vmdq;
2492 1.1 dyoung
2493 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2494 1.1 dyoung
2495 1.1 dyoung /*
2496 1.1 dyoung * Clear accounting of old secondary address list,
2497 1.1 dyoung * don't count RAR[0]
2498 1.1 dyoung */
2499 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2500 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2501 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2502 1.1 dyoung
2503 1.1 dyoung /* Zero out the other receive addresses */
2504 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2505 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2506 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2507 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2508 1.1 dyoung }
2509 1.1 dyoung
2510 1.1 dyoung /* Add the new addresses */
2511 1.1 dyoung for (i = 0; i < addr_count; i++) {
2512 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2513 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2514 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2515 1.1 dyoung }
2516 1.1 dyoung
2517 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2518 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2519 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2520 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2521 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2522 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2523 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2524 1.1 dyoung }
2525 1.1 dyoung } else {
2526 1.1 dyoung /* only disable if set by overflow, not by user */
2527 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2528 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2529 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2530 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2531 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2532 1.1 dyoung }
2533 1.1 dyoung }
2534 1.1 dyoung
2535 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2536 1.1 dyoung return IXGBE_SUCCESS;
2537 1.1 dyoung }
2538 1.1 dyoung
2539 1.1 dyoung /**
2540 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2541 1.1 dyoung * @hw: pointer to hardware structure
2542 1.1 dyoung * @mc_addr: the multicast address
2543 1.1 dyoung *
2544 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2545 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2546 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2547 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2548 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2549 1.1 dyoung * to mc_filter_type.
2550 1.1 dyoung **/
2551 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2552 1.1 dyoung {
2553 1.1 dyoung u32 vector = 0;
2554 1.1 dyoung
2555 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2556 1.1 dyoung
2557 1.1 dyoung switch (hw->mac.mc_filter_type) {
2558 1.1 dyoung case 0: /* use bits [47:36] of the address */
2559 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2560 1.1 dyoung break;
2561 1.1 dyoung case 1: /* use bits [46:35] of the address */
2562 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2563 1.1 dyoung break;
2564 1.1 dyoung case 2: /* use bits [45:34] of the address */
2565 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2566 1.1 dyoung break;
2567 1.1 dyoung case 3: /* use bits [43:32] of the address */
2568 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2569 1.1 dyoung break;
2570 1.1 dyoung default: /* Invalid mc_filter_type */
2571 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2572 1.1 dyoung ASSERT(0);
2573 1.1 dyoung break;
2574 1.1 dyoung }
2575 1.1 dyoung
2576 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2577 1.1 dyoung vector &= 0xFFF;
2578 1.1 dyoung return vector;
2579 1.1 dyoung }
2580 1.1 dyoung
2581 1.1 dyoung /**
2582 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2583 1.1 dyoung * @hw: pointer to hardware structure
2584 1.1 dyoung * @hash_value: Multicast address hash value
2585 1.1 dyoung *
2586 1.1 dyoung * Sets the bit-vector in the multicast table.
2587 1.1 dyoung **/
2588 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2589 1.1 dyoung {
2590 1.1 dyoung u32 vector;
2591 1.1 dyoung u32 vector_bit;
2592 1.1 dyoung u32 vector_reg;
2593 1.1 dyoung
2594 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2595 1.1 dyoung
2596 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2597 1.1 dyoung
2598 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2599 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2600 1.1 dyoung
2601 1.1 dyoung /*
2602 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2603 1.1 dyoung * like an array of 4096 bits. We want to set bit
2604 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2605 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2606 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2607 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2608 1.1 dyoung * the value.
2609 1.1 dyoung */
2610 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2611 1.1 dyoung vector_bit = vector & 0x1F;
2612 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2613 1.1 dyoung }
2614 1.1 dyoung
2615 1.1 dyoung /**
2616 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2617 1.1 dyoung * @hw: pointer to hardware structure
2618 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2619 1.1 dyoung * @mc_addr_count: number of addresses
2620 1.1 dyoung * @next: iterator function to walk the multicast address list
2621 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2622 1.1 dyoung *
2623 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2624 1.3 msaitoh * Hashes the given addresses into the multicast table.
2625 1.1 dyoung **/
2626 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2627 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2628 1.3 msaitoh bool clear)
2629 1.1 dyoung {
2630 1.1 dyoung u32 i;
2631 1.1 dyoung u32 vmdq;
2632 1.1 dyoung
2633 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2634 1.1 dyoung
2635 1.1 dyoung /*
2636 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2637 1.1 dyoung * use.
2638 1.1 dyoung */
2639 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2640 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2641 1.1 dyoung
2642 1.1 dyoung /* Clear mta_shadow */
2643 1.3 msaitoh if (clear) {
2644 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2645 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2646 1.3 msaitoh }
2647 1.1 dyoung
2648 1.1 dyoung /* Update mta_shadow */
2649 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2650 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2651 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2652 1.1 dyoung }
2653 1.1 dyoung
2654 1.1 dyoung /* Enable mta */
2655 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2656 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2657 1.1 dyoung hw->mac.mta_shadow[i]);
2658 1.1 dyoung
2659 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2660 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2661 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2662 1.1 dyoung
2663 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2664 1.1 dyoung return IXGBE_SUCCESS;
2665 1.1 dyoung }
2666 1.1 dyoung
2667 1.1 dyoung /**
2668 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2669 1.1 dyoung * @hw: pointer to hardware structure
2670 1.1 dyoung *
2671 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2672 1.1 dyoung **/
2673 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2674 1.1 dyoung {
2675 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2676 1.1 dyoung
2677 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2678 1.1 dyoung
2679 1.1 dyoung if (a->mta_in_use > 0)
2680 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2681 1.3 msaitoh hw->mac.mc_filter_type);
2682 1.1 dyoung
2683 1.1 dyoung return IXGBE_SUCCESS;
2684 1.1 dyoung }
2685 1.1 dyoung
2686 1.1 dyoung /**
2687 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2688 1.1 dyoung * @hw: pointer to hardware structure
2689 1.1 dyoung *
2690 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2691 1.1 dyoung **/
2692 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2693 1.1 dyoung {
2694 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2695 1.1 dyoung
2696 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2697 1.1 dyoung
2698 1.1 dyoung if (a->mta_in_use > 0)
2699 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2700 1.1 dyoung
2701 1.1 dyoung return IXGBE_SUCCESS;
2702 1.1 dyoung }
2703 1.1 dyoung
2704 1.1 dyoung /**
2705 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2706 1.1 dyoung * @hw: pointer to hardware structure
2707 1.1 dyoung *
2708 1.1 dyoung * Enable flow control according to the current settings.
2709 1.1 dyoung **/
2710 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2711 1.1 dyoung {
2712 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2713 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2714 1.1 dyoung u32 reg;
2715 1.1 dyoung u32 fcrtl, fcrth;
2716 1.4 msaitoh int i;
2717 1.1 dyoung
2718 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2719 1.1 dyoung
2720 1.4 msaitoh /* Validate the water mark configuration */
2721 1.4 msaitoh if (!hw->fc.pause_time) {
2722 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2723 1.4 msaitoh goto out;
2724 1.4 msaitoh }
2725 1.4 msaitoh
2726 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2727 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2728 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2729 1.4 msaitoh hw->fc.high_water[i]) {
2730 1.4 msaitoh if (!hw->fc.low_water[i] ||
2731 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2732 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2733 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2734 1.4 msaitoh goto out;
2735 1.4 msaitoh }
2736 1.4 msaitoh }
2737 1.4 msaitoh }
2738 1.4 msaitoh
2739 1.1 dyoung /* Negotiate the fc mode to use */
2740 1.4 msaitoh ixgbe_fc_autoneg(hw);
2741 1.1 dyoung
2742 1.1 dyoung /* Disable any previous flow control settings */
2743 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2744 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2745 1.1 dyoung
2746 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2747 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2748 1.1 dyoung
2749 1.1 dyoung /*
2750 1.1 dyoung * The possible values of fc.current_mode are:
2751 1.1 dyoung * 0: Flow control is completely disabled
2752 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2753 1.1 dyoung * but not send pause frames).
2754 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2755 1.1 dyoung * we do not support receiving pause frames).
2756 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2757 1.1 dyoung * other: Invalid.
2758 1.1 dyoung */
2759 1.1 dyoung switch (hw->fc.current_mode) {
2760 1.1 dyoung case ixgbe_fc_none:
2761 1.1 dyoung /*
2762 1.1 dyoung * Flow control is disabled by software override or autoneg.
2763 1.1 dyoung * The code below will actually disable it in the HW.
2764 1.1 dyoung */
2765 1.1 dyoung break;
2766 1.1 dyoung case ixgbe_fc_rx_pause:
2767 1.1 dyoung /*
2768 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2769 1.1 dyoung * disabled by software override. Since there really
2770 1.1 dyoung * isn't a way to advertise that we are capable of RX
2771 1.1 dyoung * Pause ONLY, we will advertise that we support both
2772 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2773 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2774 1.1 dyoung */
2775 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2776 1.1 dyoung break;
2777 1.1 dyoung case ixgbe_fc_tx_pause:
2778 1.1 dyoung /*
2779 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2780 1.1 dyoung * disabled by software override.
2781 1.1 dyoung */
2782 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2783 1.1 dyoung break;
2784 1.1 dyoung case ixgbe_fc_full:
2785 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2786 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2787 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2788 1.1 dyoung break;
2789 1.1 dyoung default:
2790 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2791 1.6 msaitoh "Flow control param set incorrectly\n");
2792 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2793 1.1 dyoung goto out;
2794 1.1 dyoung break;
2795 1.1 dyoung }
2796 1.1 dyoung
2797 1.1 dyoung /* Set 802.3x based flow control settings. */
2798 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2799 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2800 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2801 1.1 dyoung
2802 1.1 dyoung
2803 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2804 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2805 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2806 1.4 msaitoh hw->fc.high_water[i]) {
2807 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2808 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2809 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2810 1.4 msaitoh } else {
2811 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2812 1.4 msaitoh /*
2813 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2814 1.4 msaitoh * switch is enabled we must set the high water mark
2815 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2816 1.8 msaitoh * the Tx switch to function even under heavy Rx
2817 1.8 msaitoh * workloads.
2818 1.4 msaitoh */
2819 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2820 1.4 msaitoh }
2821 1.4 msaitoh
2822 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2823 1.1 dyoung }
2824 1.1 dyoung
2825 1.1 dyoung /* Configure pause time (2 TCs per register) */
2826 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2827 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2828 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2829 1.1 dyoung
2830 1.4 msaitoh /* Configure flow control refresh threshold value */
2831 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2832 1.1 dyoung
2833 1.1 dyoung out:
2834 1.1 dyoung return ret_val;
2835 1.1 dyoung }
2836 1.1 dyoung
2837 1.1 dyoung /**
2838 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2839 1.1 dyoung * @hw: pointer to hardware structure
2840 1.4 msaitoh * @adv_reg: flow control advertised settings
2841 1.4 msaitoh * @lp_reg: link partner's flow control settings
2842 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2843 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2844 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2845 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2846 1.1 dyoung *
2847 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2848 1.4 msaitoh * advertised settings
2849 1.1 dyoung **/
2850 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2851 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2852 1.1 dyoung {
2853 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2854 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2855 1.6 msaitoh "Local or link partner's advertised flow control "
2856 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2857 1.6 msaitoh adv_reg, lp_reg);
2858 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2859 1.6 msaitoh }
2860 1.1 dyoung
2861 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2862 1.4 msaitoh /*
2863 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2864 1.4 msaitoh * of pause frames. In this case, we had to advertise
2865 1.4 msaitoh * FULL flow control because we could not advertise RX
2866 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2867 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2868 1.4 msaitoh */
2869 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2870 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2871 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2872 1.4 msaitoh } else {
2873 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2874 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2875 1.4 msaitoh }
2876 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2877 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2878 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2879 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2880 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2881 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2882 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2883 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2884 1.4 msaitoh } else {
2885 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2886 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2887 1.4 msaitoh }
2888 1.4 msaitoh return IXGBE_SUCCESS;
2889 1.4 msaitoh }
2890 1.1 dyoung
2891 1.4 msaitoh /**
2892 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2893 1.4 msaitoh * @hw: pointer to hardware structure
2894 1.4 msaitoh *
2895 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2896 1.4 msaitoh **/
2897 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2898 1.4 msaitoh {
2899 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2900 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2901 1.1 dyoung
2902 1.1 dyoung /*
2903 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2904 1.4 msaitoh * - link is up but AN did not complete, or if
2905 1.4 msaitoh * - link is up and AN completed but timed out
2906 1.1 dyoung */
2907 1.4 msaitoh
2908 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2909 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2910 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2911 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2912 1.1 dyoung goto out;
2913 1.6 msaitoh }
2914 1.1 dyoung
2915 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2916 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2917 1.1 dyoung
2918 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2919 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2920 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2921 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2922 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2923 1.1 dyoung
2924 1.1 dyoung out:
2925 1.1 dyoung return ret_val;
2926 1.1 dyoung }
2927 1.1 dyoung
2928 1.1 dyoung /**
2929 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2930 1.1 dyoung * @hw: pointer to hardware structure
2931 1.1 dyoung *
2932 1.1 dyoung * Enable flow control according to IEEE clause 37.
2933 1.1 dyoung **/
2934 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2935 1.1 dyoung {
2936 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2937 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2938 1.1 dyoung
2939 1.1 dyoung /*
2940 1.1 dyoung * On backplane, bail out if
2941 1.1 dyoung * - backplane autoneg was not completed, or if
2942 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2943 1.1 dyoung */
2944 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2945 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2946 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
2947 1.1 dyoung goto out;
2948 1.6 msaitoh }
2949 1.1 dyoung
2950 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2951 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2952 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2953 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
2954 1.1 dyoung goto out;
2955 1.6 msaitoh }
2956 1.1 dyoung }
2957 1.1 dyoung /*
2958 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2959 1.1 dyoung * local flow control settings accordingly
2960 1.1 dyoung */
2961 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2962 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2963 1.1 dyoung
2964 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2965 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2966 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2967 1.1 dyoung
2968 1.1 dyoung out:
2969 1.1 dyoung return ret_val;
2970 1.1 dyoung }
2971 1.1 dyoung
2972 1.1 dyoung /**
2973 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2974 1.1 dyoung * @hw: pointer to hardware structure
2975 1.1 dyoung *
2976 1.1 dyoung * Enable flow control according to IEEE clause 37.
2977 1.1 dyoung **/
2978 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2979 1.1 dyoung {
2980 1.1 dyoung u16 technology_ability_reg = 0;
2981 1.1 dyoung u16 lp_technology_ability_reg = 0;
2982 1.1 dyoung
2983 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2984 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2985 1.1 dyoung &technology_ability_reg);
2986 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2987 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2988 1.1 dyoung &lp_technology_ability_reg);
2989 1.1 dyoung
2990 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2991 1.1 dyoung (u32)lp_technology_ability_reg,
2992 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2993 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2994 1.1 dyoung }
2995 1.1 dyoung
2996 1.1 dyoung /**
2997 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2998 1.1 dyoung * @hw: pointer to hardware structure
2999 1.1 dyoung *
3000 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3001 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3002 1.1 dyoung **/
3003 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3004 1.1 dyoung {
3005 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3006 1.4 msaitoh ixgbe_link_speed speed;
3007 1.4 msaitoh bool link_up;
3008 1.1 dyoung
3009 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3010 1.1 dyoung
3011 1.1 dyoung /*
3012 1.4 msaitoh * AN should have completed when the cable was plugged in.
3013 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3014 1.4 msaitoh * - FC autoneg is disabled, or if
3015 1.4 msaitoh * - link is not up.
3016 1.1 dyoung */
3017 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3018 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3019 1.6 msaitoh "Flow control autoneg is disabled");
3020 1.1 dyoung goto out;
3021 1.6 msaitoh }
3022 1.1 dyoung
3023 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3024 1.6 msaitoh if (!link_up) {
3025 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3026 1.1 dyoung goto out;
3027 1.6 msaitoh }
3028 1.1 dyoung
3029 1.1 dyoung switch (hw->phy.media_type) {
3030 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3031 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3032 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3033 1.1 dyoung case ixgbe_media_type_fiber:
3034 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3035 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3036 1.4 msaitoh break;
3037 1.4 msaitoh
3038 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3039 1.1 dyoung case ixgbe_media_type_backplane:
3040 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3041 1.1 dyoung break;
3042 1.1 dyoung
3043 1.4 msaitoh /* Autoneg flow control on copper adapters */
3044 1.1 dyoung case ixgbe_media_type_copper:
3045 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3046 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3047 1.1 dyoung break;
3048 1.1 dyoung
3049 1.1 dyoung default:
3050 1.1 dyoung break;
3051 1.1 dyoung }
3052 1.1 dyoung
3053 1.4 msaitoh out:
3054 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3055 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3056 1.4 msaitoh } else {
3057 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3058 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3059 1.3 msaitoh }
3060 1.1 dyoung }
3061 1.1 dyoung
3062 1.6 msaitoh /*
3063 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3064 1.6 msaitoh * @hw: pointer to hardware structure
3065 1.6 msaitoh *
3066 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3067 1.6 msaitoh *
3068 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3069 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3070 1.6 msaitoh * 800 = 80 millisec.
3071 1.6 msaitoh */
3072 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3073 1.6 msaitoh {
3074 1.6 msaitoh s16 devctl2;
3075 1.6 msaitoh u32 pollcnt;
3076 1.6 msaitoh
3077 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3078 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3079 1.6 msaitoh
3080 1.6 msaitoh switch (devctl2) {
3081 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3082 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3083 1.6 msaitoh break;
3084 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3085 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3086 1.6 msaitoh break;
3087 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3088 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3089 1.6 msaitoh break;
3090 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3091 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3092 1.6 msaitoh break;
3093 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3094 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3095 1.6 msaitoh break;
3096 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3097 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3098 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3099 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3100 1.6 msaitoh default:
3101 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3102 1.6 msaitoh break;
3103 1.6 msaitoh }
3104 1.6 msaitoh
3105 1.6 msaitoh /* add 10% to spec maximum */
3106 1.6 msaitoh return (pollcnt * 11) / 10;
3107 1.6 msaitoh }
3108 1.6 msaitoh
3109 1.1 dyoung /**
3110 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3111 1.1 dyoung * @hw: pointer to hardware structure
3112 1.1 dyoung *
3113 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3114 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3115 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3116 1.1 dyoung * is returned signifying master requests disabled.
3117 1.1 dyoung **/
3118 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3119 1.1 dyoung {
3120 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3121 1.6 msaitoh u32 i, poll;
3122 1.8 msaitoh u16 value;
3123 1.1 dyoung
3124 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3125 1.1 dyoung
3126 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3127 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3128 1.3 msaitoh
3129 1.6 msaitoh /* Exit if master requests are blocked */
3130 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3131 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3132 1.1 dyoung goto out;
3133 1.1 dyoung
3134 1.3 msaitoh /* Poll for master request bit to clear */
3135 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3136 1.3 msaitoh usec_delay(100);
3137 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3138 1.3 msaitoh goto out;
3139 1.1 dyoung }
3140 1.1 dyoung
3141 1.3 msaitoh /*
3142 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3143 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3144 1.3 msaitoh * of this need. The first reset prevents new master requests from
3145 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3146 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3147 1.3 msaitoh * again to clear out any effects they may have had on our device.
3148 1.3 msaitoh */
3149 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3150 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3151 1.1 dyoung
3152 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3153 1.10 msaitoh goto out;
3154 1.10 msaitoh
3155 1.1 dyoung /*
3156 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3157 1.1 dyoung * transactions pending.
3158 1.1 dyoung */
3159 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3160 1.6 msaitoh for (i = 0; i < poll; i++) {
3161 1.3 msaitoh usec_delay(100);
3162 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3163 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3164 1.8 msaitoh goto out;
3165 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3166 1.3 msaitoh goto out;
3167 1.1 dyoung }
3168 1.1 dyoung
3169 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3170 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3171 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3172 1.1 dyoung
3173 1.1 dyoung out:
3174 1.1 dyoung return status;
3175 1.1 dyoung }
3176 1.1 dyoung
3177 1.1 dyoung /**
3178 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3179 1.1 dyoung * @hw: pointer to hardware structure
3180 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3181 1.1 dyoung *
3182 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3183 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3184 1.1 dyoung **/
3185 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3186 1.1 dyoung {
3187 1.6 msaitoh u32 gssr = 0;
3188 1.1 dyoung u32 swmask = mask;
3189 1.1 dyoung u32 fwmask = mask << 5;
3190 1.6 msaitoh u32 timeout = 200;
3191 1.6 msaitoh u32 i;
3192 1.1 dyoung
3193 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3194 1.1 dyoung
3195 1.6 msaitoh for (i = 0; i < timeout; i++) {
3196 1.1 dyoung /*
3197 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3198 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3199 1.1 dyoung */
3200 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3201 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3202 1.1 dyoung
3203 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3204 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3205 1.6 msaitoh gssr |= swmask;
3206 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3207 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3208 1.6 msaitoh return IXGBE_SUCCESS;
3209 1.6 msaitoh } else {
3210 1.6 msaitoh /* Resource is currently in use by FW or SW */
3211 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3212 1.6 msaitoh msec_delay(5);
3213 1.6 msaitoh }
3214 1.1 dyoung }
3215 1.1 dyoung
3216 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3217 1.6 msaitoh if (gssr & (fwmask | swmask))
3218 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3219 1.1 dyoung
3220 1.6 msaitoh msec_delay(5);
3221 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3222 1.1 dyoung }
3223 1.1 dyoung
3224 1.1 dyoung /**
3225 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3226 1.1 dyoung * @hw: pointer to hardware structure
3227 1.1 dyoung * @mask: Mask to specify which semaphore to release
3228 1.1 dyoung *
3229 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3230 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3231 1.1 dyoung **/
3232 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3233 1.1 dyoung {
3234 1.1 dyoung u32 gssr;
3235 1.1 dyoung u32 swmask = mask;
3236 1.1 dyoung
3237 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3238 1.1 dyoung
3239 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3240 1.1 dyoung
3241 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3242 1.1 dyoung gssr &= ~swmask;
3243 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3244 1.1 dyoung
3245 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3246 1.1 dyoung }
3247 1.1 dyoung
3248 1.1 dyoung /**
3249 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3250 1.3 msaitoh * @hw: pointer to hardware structure
3251 1.3 msaitoh *
3252 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3253 1.3 msaitoh * the Rx security block
3254 1.3 msaitoh **/
3255 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3256 1.3 msaitoh {
3257 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3258 1.3 msaitoh
3259 1.3 msaitoh int i;
3260 1.3 msaitoh int secrxreg;
3261 1.3 msaitoh
3262 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3263 1.3 msaitoh
3264 1.3 msaitoh
3265 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3266 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3267 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3268 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3269 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3270 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3271 1.3 msaitoh break;
3272 1.3 msaitoh else
3273 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3274 1.3 msaitoh usec_delay(1000);
3275 1.3 msaitoh }
3276 1.3 msaitoh
3277 1.3 msaitoh /* For informational purposes only */
3278 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3279 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3280 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3281 1.3 msaitoh
3282 1.3 msaitoh return IXGBE_SUCCESS;
3283 1.3 msaitoh }
3284 1.3 msaitoh
3285 1.3 msaitoh /**
3286 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3287 1.8 msaitoh * @hw: pointer to hardware structure
3288 1.8 msaitoh * @reg_val: Value we read from AUTOC
3289 1.8 msaitoh *
3290 1.8 msaitoh * The default case requires no protection so just to the register read.
3291 1.8 msaitoh */
3292 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3293 1.8 msaitoh {
3294 1.8 msaitoh *locked = FALSE;
3295 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3296 1.8 msaitoh return IXGBE_SUCCESS;
3297 1.8 msaitoh }
3298 1.8 msaitoh
3299 1.8 msaitoh /**
3300 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3301 1.8 msaitoh * @hw: pointer to hardware structure
3302 1.8 msaitoh * @reg_val: value to write to AUTOC
3303 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3304 1.8 msaitoh * previous read.
3305 1.8 msaitoh *
3306 1.8 msaitoh * The default case requires no protection so just to the register write.
3307 1.8 msaitoh */
3308 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3309 1.8 msaitoh {
3310 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3311 1.8 msaitoh
3312 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3313 1.8 msaitoh return IXGBE_SUCCESS;
3314 1.8 msaitoh }
3315 1.8 msaitoh
3316 1.8 msaitoh /**
3317 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3318 1.3 msaitoh * @hw: pointer to hardware structure
3319 1.3 msaitoh *
3320 1.3 msaitoh * Enables the receive data path.
3321 1.3 msaitoh **/
3322 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3323 1.3 msaitoh {
3324 1.3 msaitoh int secrxreg;
3325 1.3 msaitoh
3326 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3327 1.3 msaitoh
3328 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3329 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3330 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3331 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3332 1.3 msaitoh
3333 1.3 msaitoh return IXGBE_SUCCESS;
3334 1.3 msaitoh }
3335 1.3 msaitoh
3336 1.3 msaitoh /**
3337 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3338 1.1 dyoung * @hw: pointer to hardware structure
3339 1.1 dyoung * @regval: register value to write to RXCTRL
3340 1.1 dyoung *
3341 1.1 dyoung * Enables the Rx DMA unit
3342 1.1 dyoung **/
3343 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3344 1.1 dyoung {
3345 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3346 1.1 dyoung
3347 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3348 1.8 msaitoh ixgbe_enable_rx(hw);
3349 1.8 msaitoh else
3350 1.8 msaitoh ixgbe_disable_rx(hw);
3351 1.1 dyoung
3352 1.1 dyoung return IXGBE_SUCCESS;
3353 1.1 dyoung }
3354 1.1 dyoung
3355 1.1 dyoung /**
3356 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3357 1.1 dyoung * @hw: pointer to hardware structure
3358 1.1 dyoung * @index: led number to blink
3359 1.1 dyoung **/
3360 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3361 1.1 dyoung {
3362 1.1 dyoung ixgbe_link_speed speed = 0;
3363 1.1 dyoung bool link_up = 0;
3364 1.8 msaitoh u32 autoc_reg = 0;
3365 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3366 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3367 1.8 msaitoh bool locked = FALSE;
3368 1.1 dyoung
3369 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3370 1.1 dyoung
3371 1.1 dyoung /*
3372 1.1 dyoung * Link must be up to auto-blink the LEDs;
3373 1.1 dyoung * Force it if link is down.
3374 1.1 dyoung */
3375 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3376 1.1 dyoung
3377 1.1 dyoung if (!link_up) {
3378 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3379 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3380 1.8 msaitoh goto out;
3381 1.5 msaitoh
3382 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3383 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3384 1.8 msaitoh
3385 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3386 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3387 1.8 msaitoh goto out;
3388 1.8 msaitoh
3389 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3390 1.1 dyoung msec_delay(10);
3391 1.1 dyoung }
3392 1.1 dyoung
3393 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3394 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3395 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3396 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3397 1.1 dyoung
3398 1.5 msaitoh out:
3399 1.5 msaitoh return ret_val;
3400 1.1 dyoung }
3401 1.1 dyoung
3402 1.1 dyoung /**
3403 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3404 1.1 dyoung * @hw: pointer to hardware structure
3405 1.1 dyoung * @index: led number to stop blinking
3406 1.1 dyoung **/
3407 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3408 1.1 dyoung {
3409 1.8 msaitoh u32 autoc_reg = 0;
3410 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3411 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3412 1.8 msaitoh bool locked = FALSE;
3413 1.1 dyoung
3414 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3415 1.1 dyoung
3416 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3417 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3418 1.8 msaitoh goto out;
3419 1.1 dyoung
3420 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3421 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3422 1.1 dyoung
3423 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3424 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3425 1.8 msaitoh goto out;
3426 1.5 msaitoh
3427 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3428 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3429 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3430 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3431 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3432 1.1 dyoung
3433 1.5 msaitoh out:
3434 1.5 msaitoh return ret_val;
3435 1.1 dyoung }
3436 1.1 dyoung
3437 1.1 dyoung /**
3438 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3439 1.1 dyoung * @hw: pointer to hardware structure
3440 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3441 1.1 dyoung *
3442 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3443 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3444 1.1 dyoung * get and set mac_addr routines.
3445 1.1 dyoung **/
3446 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3447 1.3 msaitoh u16 *san_mac_offset)
3448 1.1 dyoung {
3449 1.6 msaitoh s32 ret_val;
3450 1.6 msaitoh
3451 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3452 1.1 dyoung
3453 1.1 dyoung /*
3454 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3455 1.1 dyoung * available.
3456 1.1 dyoung */
3457 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3458 1.6 msaitoh san_mac_offset);
3459 1.6 msaitoh if (ret_val) {
3460 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3461 1.6 msaitoh "eeprom at offset %d failed",
3462 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3463 1.6 msaitoh }
3464 1.1 dyoung
3465 1.6 msaitoh return ret_val;
3466 1.1 dyoung }
3467 1.1 dyoung
3468 1.1 dyoung /**
3469 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3470 1.1 dyoung * @hw: pointer to hardware structure
3471 1.1 dyoung * @san_mac_addr: SAN MAC address
3472 1.1 dyoung *
3473 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3474 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3475 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3476 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3477 1.1 dyoung **/
3478 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3479 1.1 dyoung {
3480 1.1 dyoung u16 san_mac_data, san_mac_offset;
3481 1.1 dyoung u8 i;
3482 1.6 msaitoh s32 ret_val;
3483 1.1 dyoung
3484 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3485 1.1 dyoung
3486 1.1 dyoung /*
3487 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3488 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3489 1.1 dyoung */
3490 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3491 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3492 1.1 dyoung goto san_mac_addr_out;
3493 1.1 dyoung
3494 1.1 dyoung /* make sure we know which port we need to program */
3495 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3496 1.1 dyoung /* apply the port offset to the address offset */
3497 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3498 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3499 1.1 dyoung for (i = 0; i < 3; i++) {
3500 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3501 1.6 msaitoh &san_mac_data);
3502 1.6 msaitoh if (ret_val) {
3503 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3504 1.6 msaitoh "eeprom read at offset %d failed",
3505 1.6 msaitoh san_mac_offset);
3506 1.6 msaitoh goto san_mac_addr_out;
3507 1.6 msaitoh }
3508 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3509 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3510 1.1 dyoung san_mac_offset++;
3511 1.1 dyoung }
3512 1.6 msaitoh return IXGBE_SUCCESS;
3513 1.1 dyoung
3514 1.1 dyoung san_mac_addr_out:
3515 1.6 msaitoh /*
3516 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3517 1.6 msaitoh * error though, so just wipe the local address and return.
3518 1.6 msaitoh */
3519 1.6 msaitoh for (i = 0; i < 6; i++)
3520 1.6 msaitoh san_mac_addr[i] = 0xFF;
3521 1.1 dyoung return IXGBE_SUCCESS;
3522 1.1 dyoung }
3523 1.1 dyoung
3524 1.1 dyoung /**
3525 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3526 1.1 dyoung * @hw: pointer to hardware structure
3527 1.1 dyoung * @san_mac_addr: SAN MAC address
3528 1.1 dyoung *
3529 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3530 1.1 dyoung **/
3531 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3532 1.1 dyoung {
3533 1.6 msaitoh s32 ret_val;
3534 1.1 dyoung u16 san_mac_data, san_mac_offset;
3535 1.1 dyoung u8 i;
3536 1.1 dyoung
3537 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3538 1.1 dyoung
3539 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3540 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3541 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3542 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3543 1.1 dyoung
3544 1.1 dyoung /* Make sure we know which port we need to write */
3545 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3546 1.1 dyoung /* Apply the port offset to the address offset */
3547 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3548 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3549 1.1 dyoung
3550 1.1 dyoung for (i = 0; i < 3; i++) {
3551 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3552 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3553 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3554 1.1 dyoung san_mac_offset++;
3555 1.1 dyoung }
3556 1.1 dyoung
3557 1.6 msaitoh return IXGBE_SUCCESS;
3558 1.1 dyoung }
3559 1.1 dyoung
3560 1.1 dyoung /**
3561 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3562 1.1 dyoung * @hw: pointer to hardware structure
3563 1.1 dyoung *
3564 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3565 1.1 dyoung * the capabilities table.
3566 1.1 dyoung **/
3567 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3568 1.1 dyoung {
3569 1.4 msaitoh u16 msix_count = 1;
3570 1.4 msaitoh u16 max_msix_count;
3571 1.4 msaitoh u16 pcie_offset;
3572 1.4 msaitoh
3573 1.4 msaitoh switch (hw->mac.type) {
3574 1.4 msaitoh case ixgbe_mac_82598EB:
3575 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3576 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3577 1.4 msaitoh break;
3578 1.4 msaitoh case ixgbe_mac_82599EB:
3579 1.4 msaitoh case ixgbe_mac_X540:
3580 1.8 msaitoh case ixgbe_mac_X550:
3581 1.8 msaitoh case ixgbe_mac_X550EM_x:
3582 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3583 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3584 1.4 msaitoh break;
3585 1.4 msaitoh default:
3586 1.4 msaitoh return msix_count;
3587 1.4 msaitoh }
3588 1.1 dyoung
3589 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3590 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3591 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3592 1.8 msaitoh msix_count = 0;
3593 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3594 1.4 msaitoh
3595 1.4 msaitoh /* MSI-X count is zero-based in HW */
3596 1.4 msaitoh msix_count++;
3597 1.4 msaitoh
3598 1.4 msaitoh if (msix_count > max_msix_count)
3599 1.4 msaitoh msix_count = max_msix_count;
3600 1.1 dyoung
3601 1.1 dyoung return msix_count;
3602 1.1 dyoung }
3603 1.1 dyoung
3604 1.1 dyoung /**
3605 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3606 1.1 dyoung * @hw: pointer to hardware structure
3607 1.1 dyoung * @addr: Address to put into receive address register
3608 1.1 dyoung * @vmdq: VMDq pool to assign
3609 1.1 dyoung *
3610 1.1 dyoung * Puts an ethernet address into a receive address register, or
3611 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3612 1.1 dyoung **/
3613 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3614 1.1 dyoung {
3615 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3616 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3617 1.1 dyoung u32 rar;
3618 1.1 dyoung u32 rar_low, rar_high;
3619 1.1 dyoung u32 addr_low, addr_high;
3620 1.1 dyoung
3621 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3622 1.1 dyoung
3623 1.1 dyoung /* swap bytes for HW little endian */
3624 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3625 1.1 dyoung | (addr[2] << 16)
3626 1.1 dyoung | (addr[3] << 24);
3627 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3628 1.1 dyoung
3629 1.1 dyoung /*
3630 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3631 1.1 dyoung * rar_highwater points to just after the highest currently used
3632 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3633 1.1 dyoung * rar to the top.
3634 1.1 dyoung */
3635 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3636 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3637 1.1 dyoung
3638 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3639 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3640 1.1 dyoung first_empty_rar = rar;
3641 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3642 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3643 1.1 dyoung if (rar_low == addr_low)
3644 1.1 dyoung break; /* found it already in the rars */
3645 1.1 dyoung }
3646 1.1 dyoung }
3647 1.1 dyoung
3648 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3649 1.1 dyoung /* already there so just add to the pool bits */
3650 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3651 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3652 1.1 dyoung /* stick it into first empty RAR slot we found */
3653 1.1 dyoung rar = first_empty_rar;
3654 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3655 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3656 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3657 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3658 1.1 dyoung hw->mac.rar_highwater++;
3659 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3660 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3661 1.1 dyoung }
3662 1.1 dyoung
3663 1.1 dyoung /*
3664 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3665 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3666 1.1 dyoung */
3667 1.1 dyoung if (rar == 0)
3668 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3669 1.1 dyoung
3670 1.1 dyoung return rar;
3671 1.1 dyoung }
3672 1.1 dyoung
3673 1.1 dyoung /**
3674 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3675 1.1 dyoung * @hw: pointer to hardware struct
3676 1.1 dyoung * @rar: receive address register index to disassociate
3677 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3678 1.1 dyoung **/
3679 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3680 1.1 dyoung {
3681 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3682 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3683 1.1 dyoung
3684 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3685 1.1 dyoung
3686 1.1 dyoung /* Make sure we are using a valid rar index range */
3687 1.1 dyoung if (rar >= rar_entries) {
3688 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3689 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3690 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3691 1.1 dyoung }
3692 1.1 dyoung
3693 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3694 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3695 1.1 dyoung
3696 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3697 1.8 msaitoh goto done;
3698 1.8 msaitoh
3699 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3700 1.1 dyoung goto done;
3701 1.1 dyoung
3702 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3703 1.1 dyoung if (mpsar_lo) {
3704 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3705 1.1 dyoung mpsar_lo = 0;
3706 1.1 dyoung }
3707 1.1 dyoung if (mpsar_hi) {
3708 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3709 1.1 dyoung mpsar_hi = 0;
3710 1.1 dyoung }
3711 1.1 dyoung } else if (vmdq < 32) {
3712 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3713 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3714 1.1 dyoung } else {
3715 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3716 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3717 1.1 dyoung }
3718 1.1 dyoung
3719 1.1 dyoung /* was that the last pool using this rar? */
3720 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3721 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3722 1.1 dyoung done:
3723 1.1 dyoung return IXGBE_SUCCESS;
3724 1.1 dyoung }
3725 1.1 dyoung
3726 1.1 dyoung /**
3727 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3728 1.1 dyoung * @hw: pointer to hardware struct
3729 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3730 1.1 dyoung * @vmdq: VMDq pool index
3731 1.1 dyoung **/
3732 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3733 1.1 dyoung {
3734 1.1 dyoung u32 mpsar;
3735 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3736 1.1 dyoung
3737 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3738 1.1 dyoung
3739 1.1 dyoung /* Make sure we are using a valid rar index range */
3740 1.1 dyoung if (rar >= rar_entries) {
3741 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3742 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3743 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3744 1.1 dyoung }
3745 1.1 dyoung
3746 1.1 dyoung if (vmdq < 32) {
3747 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3748 1.1 dyoung mpsar |= 1 << vmdq;
3749 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3750 1.1 dyoung } else {
3751 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3752 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3753 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3754 1.1 dyoung }
3755 1.1 dyoung return IXGBE_SUCCESS;
3756 1.1 dyoung }
3757 1.1 dyoung
3758 1.1 dyoung /**
3759 1.4 msaitoh * This function should only be involved in the IOV mode.
3760 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3761 1.4 msaitoh * VFs advertized and not 0.
3762 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3763 1.4 msaitoh *
3764 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3765 1.4 msaitoh * @hw: pointer to hardware struct
3766 1.4 msaitoh * @vmdq: VMDq pool index
3767 1.4 msaitoh **/
3768 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3769 1.4 msaitoh {
3770 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3771 1.4 msaitoh
3772 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3773 1.4 msaitoh
3774 1.4 msaitoh if (vmdq < 32) {
3775 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3776 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3777 1.4 msaitoh } else {
3778 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3779 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3780 1.4 msaitoh }
3781 1.4 msaitoh
3782 1.4 msaitoh return IXGBE_SUCCESS;
3783 1.4 msaitoh }
3784 1.4 msaitoh
3785 1.4 msaitoh /**
3786 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3787 1.1 dyoung * @hw: pointer to hardware structure
3788 1.1 dyoung **/
3789 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3790 1.1 dyoung {
3791 1.1 dyoung int i;
3792 1.1 dyoung
3793 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3794 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3795 1.1 dyoung
3796 1.1 dyoung for (i = 0; i < 128; i++)
3797 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3798 1.1 dyoung
3799 1.1 dyoung return IXGBE_SUCCESS;
3800 1.1 dyoung }
3801 1.1 dyoung
3802 1.1 dyoung /**
3803 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3804 1.1 dyoung * @hw: pointer to hardware structure
3805 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3806 1.1 dyoung *
3807 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3808 1.1 dyoung *
3809 1.1 dyoung **/
3810 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3811 1.1 dyoung {
3812 1.1 dyoung u32 bits = 0;
3813 1.1 dyoung u32 first_empty_slot = 0;
3814 1.1 dyoung s32 regindex;
3815 1.1 dyoung
3816 1.1 dyoung /* short cut the special case */
3817 1.1 dyoung if (vlan == 0)
3818 1.1 dyoung return 0;
3819 1.1 dyoung
3820 1.1 dyoung /*
3821 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3822 1.1 dyoung * slot found along the way
3823 1.1 dyoung */
3824 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3825 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3826 1.1 dyoung if (!bits && !(first_empty_slot))
3827 1.1 dyoung first_empty_slot = regindex;
3828 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3829 1.1 dyoung break;
3830 1.1 dyoung }
3831 1.1 dyoung
3832 1.1 dyoung /*
3833 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3834 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3835 1.1 dyoung * vlan id.
3836 1.1 dyoung */
3837 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3838 1.1 dyoung if (first_empty_slot)
3839 1.1 dyoung regindex = first_empty_slot;
3840 1.1 dyoung else {
3841 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3842 1.6 msaitoh "No space in VLVF.\n");
3843 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3844 1.1 dyoung }
3845 1.1 dyoung }
3846 1.1 dyoung
3847 1.1 dyoung return regindex;
3848 1.1 dyoung }
3849 1.1 dyoung
3850 1.1 dyoung /**
3851 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3852 1.1 dyoung * @hw: pointer to hardware structure
3853 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3854 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3855 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3856 1.1 dyoung *
3857 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3858 1.1 dyoung **/
3859 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3860 1.3 msaitoh bool vlan_on)
3861 1.1 dyoung {
3862 1.1 dyoung s32 regindex;
3863 1.1 dyoung u32 bitindex;
3864 1.1 dyoung u32 vfta;
3865 1.1 dyoung u32 targetbit;
3866 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3867 1.1 dyoung bool vfta_changed = FALSE;
3868 1.1 dyoung
3869 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3870 1.1 dyoung
3871 1.1 dyoung if (vlan > 4095)
3872 1.1 dyoung return IXGBE_ERR_PARAM;
3873 1.1 dyoung
3874 1.1 dyoung /*
3875 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3876 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3877 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3878 1.1 dyoung */
3879 1.1 dyoung
3880 1.1 dyoung /* Part 1
3881 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3882 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3883 1.1 dyoung * bits[11-5]: which register
3884 1.1 dyoung * bits[4-0]: which bit in the register
3885 1.1 dyoung */
3886 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3887 1.1 dyoung bitindex = vlan & 0x1F;
3888 1.1 dyoung targetbit = (1 << bitindex);
3889 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3890 1.1 dyoung
3891 1.1 dyoung if (vlan_on) {
3892 1.1 dyoung if (!(vfta & targetbit)) {
3893 1.1 dyoung vfta |= targetbit;
3894 1.1 dyoung vfta_changed = TRUE;
3895 1.1 dyoung }
3896 1.1 dyoung } else {
3897 1.1 dyoung if ((vfta & targetbit)) {
3898 1.1 dyoung vfta &= ~targetbit;
3899 1.1 dyoung vfta_changed = TRUE;
3900 1.1 dyoung }
3901 1.1 dyoung }
3902 1.1 dyoung
3903 1.1 dyoung /* Part 2
3904 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3905 1.3 msaitoh */
3906 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3907 1.3 msaitoh &vfta_changed);
3908 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3909 1.3 msaitoh return ret_val;
3910 1.3 msaitoh
3911 1.3 msaitoh if (vfta_changed)
3912 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3913 1.3 msaitoh
3914 1.3 msaitoh return IXGBE_SUCCESS;
3915 1.3 msaitoh }
3916 1.3 msaitoh
3917 1.3 msaitoh /**
3918 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3919 1.3 msaitoh * @hw: pointer to hardware structure
3920 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3921 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3922 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3923 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3924 1.3 msaitoh * should be changed
3925 1.3 msaitoh *
3926 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3927 1.3 msaitoh **/
3928 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3929 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3930 1.3 msaitoh {
3931 1.3 msaitoh u32 vt;
3932 1.3 msaitoh
3933 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3934 1.3 msaitoh
3935 1.3 msaitoh if (vlan > 4095)
3936 1.3 msaitoh return IXGBE_ERR_PARAM;
3937 1.3 msaitoh
3938 1.3 msaitoh /* If VT Mode is set
3939 1.1 dyoung * Either vlan_on
3940 1.1 dyoung * make sure the vlan is in VLVF
3941 1.1 dyoung * set the vind bit in the matching VLVFB
3942 1.1 dyoung * Or !vlan_on
3943 1.1 dyoung * clear the pool bit and possibly the vind
3944 1.1 dyoung */
3945 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3946 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3947 1.1 dyoung s32 vlvf_index;
3948 1.3 msaitoh u32 bits;
3949 1.1 dyoung
3950 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3951 1.1 dyoung if (vlvf_index < 0)
3952 1.1 dyoung return vlvf_index;
3953 1.1 dyoung
3954 1.1 dyoung if (vlan_on) {
3955 1.1 dyoung /* set the pool bit */
3956 1.1 dyoung if (vind < 32) {
3957 1.1 dyoung bits = IXGBE_READ_REG(hw,
3958 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3959 1.1 dyoung bits |= (1 << vind);
3960 1.1 dyoung IXGBE_WRITE_REG(hw,
3961 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3962 1.1 dyoung bits);
3963 1.1 dyoung } else {
3964 1.1 dyoung bits = IXGBE_READ_REG(hw,
3965 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3966 1.3 msaitoh bits |= (1 << (vind - 32));
3967 1.1 dyoung IXGBE_WRITE_REG(hw,
3968 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3969 1.3 msaitoh bits);
3970 1.1 dyoung }
3971 1.1 dyoung } else {
3972 1.1 dyoung /* clear the pool bit */
3973 1.1 dyoung if (vind < 32) {
3974 1.1 dyoung bits = IXGBE_READ_REG(hw,
3975 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3976 1.1 dyoung bits &= ~(1 << vind);
3977 1.1 dyoung IXGBE_WRITE_REG(hw,
3978 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3979 1.1 dyoung bits);
3980 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3981 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3982 1.1 dyoung } else {
3983 1.1 dyoung bits = IXGBE_READ_REG(hw,
3984 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3985 1.3 msaitoh bits &= ~(1 << (vind - 32));
3986 1.1 dyoung IXGBE_WRITE_REG(hw,
3987 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3988 1.3 msaitoh bits);
3989 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3990 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3991 1.1 dyoung }
3992 1.1 dyoung }
3993 1.1 dyoung
3994 1.1 dyoung /*
3995 1.1 dyoung * If there are still bits set in the VLVFB registers
3996 1.1 dyoung * for the VLAN ID indicated we need to see if the
3997 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3998 1.1 dyoung * If the caller has requested that we clear the VFTA
3999 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
4000 1.1 dyoung * ID entry then ignore the request. We're not worried
4001 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
4002 1.1 dyoung * entry bit on, only when requested to turn it off as
4003 1.1 dyoung * there may be multiple pools and/or VFs using the
4004 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
4005 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
4006 1.1 dyoung * been cleared. This will be indicated by "bits" being
4007 1.1 dyoung * zero.
4008 1.1 dyoung */
4009 1.1 dyoung if (bits) {
4010 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4011 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
4012 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
4013 1.1 dyoung /* someone wants to clear the vfta entry
4014 1.1 dyoung * but some pools/VFs are still using it.
4015 1.1 dyoung * Ignore it. */
4016 1.3 msaitoh *vfta_changed = FALSE;
4017 1.1 dyoung }
4018 1.3 msaitoh } else
4019 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4020 1.1 dyoung }
4021 1.1 dyoung
4022 1.1 dyoung return IXGBE_SUCCESS;
4023 1.1 dyoung }
4024 1.1 dyoung
4025 1.1 dyoung /**
4026 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4027 1.1 dyoung * @hw: pointer to hardware structure
4028 1.1 dyoung *
4029 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4030 1.1 dyoung **/
4031 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4032 1.1 dyoung {
4033 1.1 dyoung u32 offset;
4034 1.1 dyoung
4035 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4036 1.1 dyoung
4037 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4038 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4039 1.1 dyoung
4040 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4041 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4042 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4043 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4044 1.1 dyoung }
4045 1.1 dyoung
4046 1.1 dyoung return IXGBE_SUCCESS;
4047 1.1 dyoung }
4048 1.1 dyoung
4049 1.1 dyoung /**
4050 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4051 1.1 dyoung * @hw: pointer to hardware structure
4052 1.1 dyoung * @speed: pointer to link speed
4053 1.1 dyoung * @link_up: TRUE when link is up
4054 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4055 1.1 dyoung *
4056 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4057 1.1 dyoung **/
4058 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4059 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4060 1.1 dyoung {
4061 1.1 dyoung u32 links_reg, links_orig;
4062 1.1 dyoung u32 i;
4063 1.1 dyoung
4064 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4065 1.1 dyoung
4066 1.1 dyoung /* clear the old state */
4067 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4068 1.1 dyoung
4069 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4070 1.1 dyoung
4071 1.1 dyoung if (links_orig != links_reg) {
4072 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4073 1.3 msaitoh links_orig, links_reg);
4074 1.1 dyoung }
4075 1.1 dyoung
4076 1.1 dyoung if (link_up_wait_to_complete) {
4077 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4078 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4079 1.1 dyoung *link_up = TRUE;
4080 1.1 dyoung break;
4081 1.1 dyoung } else {
4082 1.1 dyoung *link_up = FALSE;
4083 1.1 dyoung }
4084 1.1 dyoung msec_delay(100);
4085 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4086 1.1 dyoung }
4087 1.1 dyoung } else {
4088 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4089 1.1 dyoung *link_up = TRUE;
4090 1.1 dyoung else
4091 1.1 dyoung *link_up = FALSE;
4092 1.1 dyoung }
4093 1.1 dyoung
4094 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4095 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4096 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4097 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4098 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4099 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4100 1.8 msaitoh }
4101 1.8 msaitoh break;
4102 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4103 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4104 1.8 msaitoh break;
4105 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4106 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4107 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4108 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4109 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4110 1.8 msaitoh }
4111 1.8 msaitoh break;
4112 1.8 msaitoh default:
4113 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4114 1.8 msaitoh }
4115 1.1 dyoung
4116 1.1 dyoung return IXGBE_SUCCESS;
4117 1.1 dyoung }
4118 1.1 dyoung
4119 1.1 dyoung /**
4120 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4121 1.1 dyoung * the EEPROM
4122 1.1 dyoung * @hw: pointer to hardware structure
4123 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4124 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4125 1.1 dyoung *
4126 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4127 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4128 1.1 dyoung **/
4129 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4130 1.3 msaitoh u16 *wwpn_prefix)
4131 1.1 dyoung {
4132 1.1 dyoung u16 offset, caps;
4133 1.1 dyoung u16 alt_san_mac_blk_offset;
4134 1.1 dyoung
4135 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4136 1.1 dyoung
4137 1.1 dyoung /* clear output first */
4138 1.1 dyoung *wwnn_prefix = 0xFFFF;
4139 1.1 dyoung *wwpn_prefix = 0xFFFF;
4140 1.1 dyoung
4141 1.1 dyoung /* check if alternative SAN MAC is supported */
4142 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4143 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4144 1.6 msaitoh goto wwn_prefix_err;
4145 1.1 dyoung
4146 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4147 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4148 1.1 dyoung goto wwn_prefix_out;
4149 1.1 dyoung
4150 1.1 dyoung /* check capability in alternative san mac address block */
4151 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4152 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4153 1.6 msaitoh goto wwn_prefix_err;
4154 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4155 1.1 dyoung goto wwn_prefix_out;
4156 1.1 dyoung
4157 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4158 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4159 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4160 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4161 1.6 msaitoh "eeprom read at offset %d failed", offset);
4162 1.6 msaitoh }
4163 1.1 dyoung
4164 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4165 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4166 1.6 msaitoh goto wwn_prefix_err;
4167 1.1 dyoung
4168 1.1 dyoung wwn_prefix_out:
4169 1.1 dyoung return IXGBE_SUCCESS;
4170 1.6 msaitoh
4171 1.6 msaitoh wwn_prefix_err:
4172 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4173 1.6 msaitoh "eeprom read at offset %d failed", offset);
4174 1.6 msaitoh return IXGBE_SUCCESS;
4175 1.1 dyoung }
4176 1.1 dyoung
4177 1.1 dyoung /**
4178 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4179 1.1 dyoung * @hw: pointer to hardware structure
4180 1.1 dyoung * @bs: the fcoe boot status
4181 1.1 dyoung *
4182 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4183 1.1 dyoung **/
4184 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4185 1.1 dyoung {
4186 1.1 dyoung u16 offset, caps, flags;
4187 1.1 dyoung s32 status;
4188 1.1 dyoung
4189 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4190 1.1 dyoung
4191 1.1 dyoung /* clear output first */
4192 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4193 1.1 dyoung
4194 1.1 dyoung /* check if FCOE IBA block is present */
4195 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4196 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4197 1.1 dyoung if (status != IXGBE_SUCCESS)
4198 1.1 dyoung goto out;
4199 1.1 dyoung
4200 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4201 1.1 dyoung goto out;
4202 1.1 dyoung
4203 1.1 dyoung /* check if iSCSI FCOE block is populated */
4204 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4205 1.1 dyoung if (status != IXGBE_SUCCESS)
4206 1.1 dyoung goto out;
4207 1.1 dyoung
4208 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4209 1.1 dyoung goto out;
4210 1.1 dyoung
4211 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4212 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4213 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4214 1.1 dyoung if (status != IXGBE_SUCCESS)
4215 1.1 dyoung goto out;
4216 1.1 dyoung
4217 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4218 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4219 1.1 dyoung else
4220 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4221 1.1 dyoung
4222 1.1 dyoung out:
4223 1.1 dyoung return status;
4224 1.1 dyoung }
4225 1.1 dyoung
4226 1.1 dyoung /**
4227 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4228 1.1 dyoung * @hw: pointer to hardware structure
4229 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4230 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4231 1.1 dyoung *
4232 1.1 dyoung **/
4233 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4234 1.1 dyoung {
4235 1.1 dyoung int j;
4236 1.1 dyoung int pf_target_reg = pf >> 3;
4237 1.1 dyoung int pf_target_shift = pf % 8;
4238 1.1 dyoung u32 pfvfspoof = 0;
4239 1.1 dyoung
4240 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4241 1.1 dyoung return;
4242 1.1 dyoung
4243 1.1 dyoung if (enable)
4244 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4245 1.1 dyoung
4246 1.1 dyoung /*
4247 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4248 1.1 dyoung * MAC anti-spoof enables in each register array element.
4249 1.1 dyoung */
4250 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4251 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4252 1.1 dyoung
4253 1.4 msaitoh /*
4254 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4255 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4256 1.4 msaitoh */
4257 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4258 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4259 1.1 dyoung
4260 1.1 dyoung /*
4261 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4262 1.4 msaitoh * anti-spoofing enabled.
4263 1.1 dyoung */
4264 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4265 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4266 1.1 dyoung }
4267 1.1 dyoung
4268 1.1 dyoung /**
4269 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4270 1.1 dyoung * @hw: pointer to hardware structure
4271 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4272 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4273 1.1 dyoung *
4274 1.1 dyoung **/
4275 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4276 1.1 dyoung {
4277 1.1 dyoung int vf_target_reg = vf >> 3;
4278 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4279 1.1 dyoung u32 pfvfspoof;
4280 1.1 dyoung
4281 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4282 1.1 dyoung return;
4283 1.1 dyoung
4284 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4285 1.1 dyoung if (enable)
4286 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4287 1.1 dyoung else
4288 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4289 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4290 1.1 dyoung }
4291 1.1 dyoung
4292 1.1 dyoung /**
4293 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4294 1.1 dyoung * @hw: pointer to hardware structure
4295 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4296 1.1 dyoung *
4297 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4298 1.1 dyoung * and return the word through device_caps.
4299 1.1 dyoung **/
4300 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4301 1.1 dyoung {
4302 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4303 1.1 dyoung
4304 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4305 1.1 dyoung
4306 1.1 dyoung return IXGBE_SUCCESS;
4307 1.1 dyoung }
4308 1.1 dyoung
4309 1.1 dyoung /**
4310 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4311 1.1 dyoung * @hw: pointer to hardware structure
4312 1.1 dyoung *
4313 1.1 dyoung **/
4314 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4315 1.1 dyoung {
4316 1.1 dyoung u32 regval;
4317 1.1 dyoung u32 i;
4318 1.1 dyoung
4319 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4320 1.1 dyoung
4321 1.1 dyoung /* Enable relaxed ordering */
4322 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4323 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4324 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4325 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4326 1.1 dyoung }
4327 1.1 dyoung
4328 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4329 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4330 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4331 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4332 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4333 1.1 dyoung }
4334 1.1 dyoung
4335 1.1 dyoung }
4336 1.3 msaitoh
4337 1.3 msaitoh /**
4338 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4339 1.3 msaitoh * @buffer: pointer to EEPROM
4340 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4341 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4342 1.3 msaitoh * checksum calculated is returned.
4343 1.3 msaitoh **/
4344 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4345 1.3 msaitoh {
4346 1.3 msaitoh u32 i;
4347 1.3 msaitoh u8 sum = 0;
4348 1.3 msaitoh
4349 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4350 1.3 msaitoh
4351 1.3 msaitoh if (!buffer)
4352 1.3 msaitoh return 0;
4353 1.3 msaitoh
4354 1.3 msaitoh for (i = 0; i < length; i++)
4355 1.3 msaitoh sum += buffer[i];
4356 1.3 msaitoh
4357 1.3 msaitoh return (u8) (0 - sum);
4358 1.3 msaitoh }
4359 1.3 msaitoh
4360 1.3 msaitoh /**
4361 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4362 1.3 msaitoh * @hw: pointer to the HW structure
4363 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4364 1.3 msaitoh * be placed
4365 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4366 1.8 msaitoh * @timeout: time in ms to wait for command completion
4367 1.8 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4368 1.8 msaitoh * Needed because FW structures are big endian and decoding of
4369 1.8 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4370 1.8 msaitoh * is not easily understood without making a table of commands.
4371 1.8 msaitoh * So we will leave this up to the caller to read back the data
4372 1.8 msaitoh * in these cases.
4373 1.3 msaitoh *
4374 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4375 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4376 1.3 msaitoh **/
4377 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4378 1.8 msaitoh u32 length, u32 timeout, bool return_data)
4379 1.3 msaitoh {
4380 1.8 msaitoh u32 hicr, i, bi, fwsts;
4381 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4382 1.8 msaitoh u16 buf_len;
4383 1.8 msaitoh u16 dword_len;
4384 1.3 msaitoh
4385 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4386 1.3 msaitoh
4387 1.8 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4388 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4389 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4390 1.8 msaitoh }
4391 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4392 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4393 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4394 1.3 msaitoh
4395 1.3 msaitoh /* Check that the host interface is enabled. */
4396 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4397 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4398 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4399 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4400 1.8 msaitoh }
4401 1.8 msaitoh
4402 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4403 1.8 msaitoh if ((length % (sizeof(u32))) != 0) {
4404 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4405 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4406 1.3 msaitoh }
4407 1.3 msaitoh
4408 1.3 msaitoh dword_len = length >> 2;
4409 1.3 msaitoh
4410 1.8 msaitoh /* The device driver writes the relevant command block
4411 1.3 msaitoh * into the ram area.
4412 1.3 msaitoh */
4413 1.3 msaitoh for (i = 0; i < dword_len; i++)
4414 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4415 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4416 1.3 msaitoh
4417 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4418 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4419 1.3 msaitoh
4420 1.8 msaitoh for (i = 0; i < timeout; i++) {
4421 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4422 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4423 1.3 msaitoh break;
4424 1.3 msaitoh msec_delay(1);
4425 1.3 msaitoh }
4426 1.3 msaitoh
4427 1.8 msaitoh /* Check command completion */
4428 1.8 msaitoh if ((timeout != 0 && i == timeout) ||
4429 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4430 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4431 1.8 msaitoh "Command has failed with no status valid.\n");
4432 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4433 1.3 msaitoh }
4434 1.3 msaitoh
4435 1.8 msaitoh if (!return_data)
4436 1.8 msaitoh return 0;
4437 1.8 msaitoh
4438 1.3 msaitoh /* Calculate length in DWORDs */
4439 1.3 msaitoh dword_len = hdr_size >> 2;
4440 1.3 msaitoh
4441 1.3 msaitoh /* first pull in the header so we know the buffer length */
4442 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4443 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4444 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4445 1.3 msaitoh }
4446 1.3 msaitoh
4447 1.3 msaitoh /* If there is any thing in data position pull it in */
4448 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4449 1.3 msaitoh if (buf_len == 0)
4450 1.8 msaitoh return 0;
4451 1.3 msaitoh
4452 1.8 msaitoh if (length < buf_len + hdr_size) {
4453 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4454 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4455 1.3 msaitoh }
4456 1.3 msaitoh
4457 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4458 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4459 1.3 msaitoh
4460 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4461 1.3 msaitoh for (; bi <= dword_len; bi++) {
4462 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4463 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4464 1.3 msaitoh }
4465 1.3 msaitoh
4466 1.8 msaitoh return 0;
4467 1.3 msaitoh }
4468 1.3 msaitoh
4469 1.3 msaitoh /**
4470 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4471 1.3 msaitoh * @hw: pointer to the HW structure
4472 1.3 msaitoh * @maj: driver version major number
4473 1.7 riastrad * @minr: driver version minor number
4474 1.3 msaitoh * @build: driver version build number
4475 1.3 msaitoh * @sub: driver version sub build number
4476 1.3 msaitoh *
4477 1.3 msaitoh * Sends driver version number to firmware through the manageability
4478 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4479 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4480 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4481 1.3 msaitoh **/
4482 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4483 1.3 msaitoh u8 build, u8 sub)
4484 1.3 msaitoh {
4485 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4486 1.3 msaitoh int i;
4487 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4488 1.3 msaitoh
4489 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4490 1.3 msaitoh
4491 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4492 1.3 msaitoh != IXGBE_SUCCESS) {
4493 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4494 1.3 msaitoh goto out;
4495 1.3 msaitoh }
4496 1.3 msaitoh
4497 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4498 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4499 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4500 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4501 1.3 msaitoh fw_cmd.ver_maj = maj;
4502 1.7 riastrad fw_cmd.ver_min = minr;
4503 1.3 msaitoh fw_cmd.ver_build = build;
4504 1.3 msaitoh fw_cmd.ver_sub = sub;
4505 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4506 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4507 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4508 1.3 msaitoh fw_cmd.pad = 0;
4509 1.3 msaitoh fw_cmd.pad2 = 0;
4510 1.3 msaitoh
4511 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4512 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4513 1.8 msaitoh sizeof(fw_cmd),
4514 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4515 1.8 msaitoh TRUE);
4516 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4517 1.3 msaitoh continue;
4518 1.3 msaitoh
4519 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4520 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4521 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4522 1.3 msaitoh else
4523 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4524 1.3 msaitoh
4525 1.3 msaitoh break;
4526 1.3 msaitoh }
4527 1.3 msaitoh
4528 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4529 1.3 msaitoh out:
4530 1.3 msaitoh return ret_val;
4531 1.3 msaitoh }
4532 1.3 msaitoh
4533 1.3 msaitoh /**
4534 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4535 1.3 msaitoh * @hw: pointer to hardware structure
4536 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4537 1.3 msaitoh * @headroom: reserve n KB of headroom
4538 1.3 msaitoh * @strategy: packet buffer allocation strategy
4539 1.3 msaitoh **/
4540 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4541 1.3 msaitoh int strategy)
4542 1.3 msaitoh {
4543 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4544 1.3 msaitoh int i = 0;
4545 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4546 1.3 msaitoh
4547 1.3 msaitoh /* Reserve headroom */
4548 1.3 msaitoh pbsize -= headroom;
4549 1.3 msaitoh
4550 1.3 msaitoh if (!num_pb)
4551 1.3 msaitoh num_pb = 1;
4552 1.3 msaitoh
4553 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4554 1.3 msaitoh * buffers requested using supplied strategy.
4555 1.3 msaitoh */
4556 1.3 msaitoh switch (strategy) {
4557 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4558 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4559 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4560 1.3 msaitoh */
4561 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4562 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4563 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4564 1.3 msaitoh for (; i < (num_pb / 2); i++)
4565 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4566 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4567 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4568 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4569 1.3 msaitoh for (; i < num_pb; i++)
4570 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4571 1.3 msaitoh break;
4572 1.3 msaitoh default:
4573 1.3 msaitoh break;
4574 1.3 msaitoh }
4575 1.3 msaitoh
4576 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4577 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4578 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4579 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4580 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4581 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4582 1.3 msaitoh }
4583 1.3 msaitoh
4584 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4585 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4586 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4587 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4588 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4589 1.3 msaitoh }
4590 1.3 msaitoh }
4591 1.3 msaitoh
4592 1.3 msaitoh /**
4593 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4594 1.3 msaitoh * @hw: pointer to the hardware structure
4595 1.3 msaitoh *
4596 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4597 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4598 1.3 msaitoh * buffers on the system.
4599 1.3 msaitoh **/
4600 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4601 1.3 msaitoh {
4602 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4603 1.8 msaitoh u16 value;
4604 1.3 msaitoh
4605 1.3 msaitoh /*
4606 1.3 msaitoh * If double reset is not requested then all transactions should
4607 1.3 msaitoh * already be clear and as such there is no work to do
4608 1.3 msaitoh */
4609 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4610 1.3 msaitoh return;
4611 1.3 msaitoh
4612 1.3 msaitoh /*
4613 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4614 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4615 1.3 msaitoh * has already been cleared.
4616 1.3 msaitoh */
4617 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4618 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4619 1.3 msaitoh
4620 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4621 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4622 1.8 msaitoh msec_delay(3);
4623 1.8 msaitoh
4624 1.8 msaitoh /*
4625 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4626 1.8 msaitoh * transactions pending.
4627 1.8 msaitoh */
4628 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4629 1.8 msaitoh for (i = 0; i < poll; i++) {
4630 1.8 msaitoh usec_delay(100);
4631 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4632 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4633 1.8 msaitoh goto out;
4634 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4635 1.8 msaitoh goto out;
4636 1.8 msaitoh }
4637 1.8 msaitoh
4638 1.8 msaitoh out:
4639 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4640 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4641 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4642 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4643 1.3 msaitoh
4644 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4645 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4646 1.3 msaitoh usec_delay(20);
4647 1.3 msaitoh
4648 1.3 msaitoh /* restore previous register values */
4649 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4650 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4651 1.3 msaitoh }
4652 1.3 msaitoh
4653 1.6 msaitoh
4654 1.6 msaitoh /**
4655 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4656 1.6 msaitoh * @hw: pointer to hardware structure
4657 1.6 msaitoh * @map: pointer to u8 arr for returning map
4658 1.6 msaitoh *
4659 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4660 1.6 msaitoh **/
4661 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4662 1.6 msaitoh {
4663 1.6 msaitoh u32 reg, i;
4664 1.6 msaitoh
4665 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4666 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4667 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4668 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4669 1.6 msaitoh return;
4670 1.6 msaitoh }
4671 1.8 msaitoh
4672 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4673 1.8 msaitoh {
4674 1.8 msaitoh u32 pfdtxgswc;
4675 1.8 msaitoh u32 rxctrl;
4676 1.8 msaitoh
4677 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4678 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
4679 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4680 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4681 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4682 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4683 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4684 1.8 msaitoh hw->mac.set_lben = TRUE;
4685 1.8 msaitoh } else {
4686 1.8 msaitoh hw->mac.set_lben = FALSE;
4687 1.8 msaitoh }
4688 1.8 msaitoh }
4689 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
4690 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4691 1.8 msaitoh }
4692 1.8 msaitoh }
4693 1.8 msaitoh
4694 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4695 1.8 msaitoh {
4696 1.8 msaitoh u32 pfdtxgswc;
4697 1.8 msaitoh u32 rxctrl;
4698 1.8 msaitoh
4699 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4700 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4701 1.8 msaitoh
4702 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4703 1.8 msaitoh if (hw->mac.set_lben) {
4704 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4705 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4706 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4707 1.8 msaitoh hw->mac.set_lben = FALSE;
4708 1.8 msaitoh }
4709 1.8 msaitoh }
4710 1.8 msaitoh }
4711 1.8 msaitoh
4712 1.8 msaitoh /**
4713 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
4714 1.8 msaitoh * @hw: pointer to hardware structure
4715 1.8 msaitoh */
4716 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
4717 1.8 msaitoh {
4718 1.8 msaitoh u32 fwsm;
4719 1.8 msaitoh
4720 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
4721 1.8 msaitoh return FALSE;
4722 1.8 msaitoh
4723 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4724 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
4725 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
4726 1.8 msaitoh }
4727 1.8 msaitoh
4728 1.8 msaitoh /**
4729 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
4730 1.8 msaitoh * @hw: pointer to hardware structure
4731 1.8 msaitoh *
4732 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
4733 1.8 msaitoh **/
4734 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4735 1.8 msaitoh {
4736 1.8 msaitoh u32 fwsm, manc, factps;
4737 1.8 msaitoh
4738 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4739 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4740 1.8 msaitoh return FALSE;
4741 1.8 msaitoh
4742 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4743 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4744 1.8 msaitoh return FALSE;
4745 1.8 msaitoh
4746 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
4747 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4748 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
4749 1.8 msaitoh return FALSE;
4750 1.8 msaitoh }
4751 1.8 msaitoh
4752 1.8 msaitoh return TRUE;
4753 1.8 msaitoh }
4754 1.8 msaitoh
4755 1.8 msaitoh /**
4756 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4757 1.8 msaitoh * @hw: pointer to hardware structure
4758 1.8 msaitoh * @speed: new link speed
4759 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4760 1.8 msaitoh *
4761 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
4762 1.8 msaitoh **/
4763 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4764 1.8 msaitoh ixgbe_link_speed speed,
4765 1.8 msaitoh bool autoneg_wait_to_complete)
4766 1.8 msaitoh {
4767 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4768 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4769 1.8 msaitoh s32 status = IXGBE_SUCCESS;
4770 1.8 msaitoh u32 speedcnt = 0;
4771 1.8 msaitoh u32 i = 0;
4772 1.8 msaitoh bool autoneg, link_up = FALSE;
4773 1.8 msaitoh
4774 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4775 1.8 msaitoh
4776 1.8 msaitoh /* Mask off requested but non-supported speeds */
4777 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4778 1.8 msaitoh if (status != IXGBE_SUCCESS)
4779 1.8 msaitoh return status;
4780 1.8 msaitoh
4781 1.8 msaitoh speed &= link_speed;
4782 1.8 msaitoh
4783 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
4784 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
4785 1.8 msaitoh */
4786 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4787 1.8 msaitoh speedcnt++;
4788 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4789 1.8 msaitoh
4790 1.8 msaitoh /* If we already have link at this speed, just jump out */
4791 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4792 1.8 msaitoh if (status != IXGBE_SUCCESS)
4793 1.8 msaitoh return status;
4794 1.8 msaitoh
4795 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4796 1.8 msaitoh goto out;
4797 1.8 msaitoh
4798 1.8 msaitoh /* Set the module link speed */
4799 1.8 msaitoh switch (hw->phy.media_type) {
4800 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4801 1.8 msaitoh case ixgbe_media_type_fiber:
4802 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4803 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
4804 1.8 msaitoh break;
4805 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4806 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
4807 1.8 msaitoh break;
4808 1.8 msaitoh default:
4809 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4810 1.8 msaitoh break;
4811 1.8 msaitoh }
4812 1.8 msaitoh
4813 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
4814 1.8 msaitoh msec_delay(40);
4815 1.8 msaitoh
4816 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4817 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
4818 1.8 msaitoh autoneg_wait_to_complete);
4819 1.8 msaitoh if (status != IXGBE_SUCCESS)
4820 1.8 msaitoh return status;
4821 1.8 msaitoh
4822 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4823 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4824 1.8 msaitoh
4825 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4826 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
4827 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
4828 1.8 msaitoh */
4829 1.8 msaitoh for (i = 0; i < 5; i++) {
4830 1.8 msaitoh /* Wait for the link partner to also set speed */
4831 1.8 msaitoh msec_delay(100);
4832 1.8 msaitoh
4833 1.8 msaitoh /* If we have link, just jump out */
4834 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
4835 1.8 msaitoh &link_up, FALSE);
4836 1.8 msaitoh if (status != IXGBE_SUCCESS)
4837 1.8 msaitoh return status;
4838 1.8 msaitoh
4839 1.8 msaitoh if (link_up)
4840 1.8 msaitoh goto out;
4841 1.8 msaitoh }
4842 1.8 msaitoh }
4843 1.8 msaitoh
4844 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4845 1.8 msaitoh speedcnt++;
4846 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4847 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4848 1.8 msaitoh
4849 1.8 msaitoh /* If we already have link at this speed, just jump out */
4850 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4851 1.8 msaitoh if (status != IXGBE_SUCCESS)
4852 1.8 msaitoh return status;
4853 1.8 msaitoh
4854 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4855 1.8 msaitoh goto out;
4856 1.8 msaitoh
4857 1.8 msaitoh /* Set the module link speed */
4858 1.8 msaitoh switch (hw->phy.media_type) {
4859 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4860 1.8 msaitoh case ixgbe_media_type_fiber:
4861 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4862 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
4863 1.8 msaitoh break;
4864 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4865 1.8 msaitoh /* QSFP module automatically detects link speed */
4866 1.8 msaitoh break;
4867 1.8 msaitoh default:
4868 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4869 1.8 msaitoh break;
4870 1.8 msaitoh }
4871 1.8 msaitoh
4872 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
4873 1.8 msaitoh msec_delay(40);
4874 1.8 msaitoh
4875 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4876 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
4877 1.8 msaitoh autoneg_wait_to_complete);
4878 1.8 msaitoh if (status != IXGBE_SUCCESS)
4879 1.8 msaitoh return status;
4880 1.8 msaitoh
4881 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4882 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4883 1.8 msaitoh
4884 1.8 msaitoh /* Wait for the link partner to also set speed */
4885 1.8 msaitoh msec_delay(100);
4886 1.8 msaitoh
4887 1.8 msaitoh /* If we have link, just jump out */
4888 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4889 1.8 msaitoh if (status != IXGBE_SUCCESS)
4890 1.8 msaitoh return status;
4891 1.8 msaitoh
4892 1.8 msaitoh if (link_up)
4893 1.8 msaitoh goto out;
4894 1.8 msaitoh }
4895 1.8 msaitoh
4896 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
4897 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
4898 1.8 msaitoh * single highest speed that the user requested.
4899 1.8 msaitoh */
4900 1.8 msaitoh if (speedcnt > 1)
4901 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4902 1.8 msaitoh highest_link_speed,
4903 1.8 msaitoh autoneg_wait_to_complete);
4904 1.8 msaitoh
4905 1.8 msaitoh out:
4906 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
4907 1.8 msaitoh hw->phy.autoneg_advertised = 0;
4908 1.8 msaitoh
4909 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4910 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4911 1.8 msaitoh
4912 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4913 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4914 1.8 msaitoh
4915 1.8 msaitoh return status;
4916 1.8 msaitoh }
4917 1.8 msaitoh
4918 1.8 msaitoh /**
4919 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
4920 1.8 msaitoh * @hw: pointer to hardware structure
4921 1.8 msaitoh * @speed: link speed to set
4922 1.8 msaitoh *
4923 1.8 msaitoh * Set module link speed via the soft rate select.
4924 1.8 msaitoh */
4925 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4926 1.8 msaitoh ixgbe_link_speed speed)
4927 1.8 msaitoh {
4928 1.8 msaitoh s32 status;
4929 1.8 msaitoh u8 rs, eeprom_data;
4930 1.8 msaitoh
4931 1.8 msaitoh switch (speed) {
4932 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
4933 1.8 msaitoh /* one bit mask same as setting on */
4934 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4935 1.8 msaitoh break;
4936 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
4937 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4938 1.8 msaitoh break;
4939 1.8 msaitoh default:
4940 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
4941 1.8 msaitoh return;
4942 1.8 msaitoh }
4943 1.8 msaitoh
4944 1.8 msaitoh /* Set RS0 */
4945 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4946 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4947 1.8 msaitoh &eeprom_data);
4948 1.8 msaitoh if (status) {
4949 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4950 1.8 msaitoh goto out;
4951 1.8 msaitoh }
4952 1.8 msaitoh
4953 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4954 1.8 msaitoh
4955 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4956 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4957 1.8 msaitoh eeprom_data);
4958 1.8 msaitoh if (status) {
4959 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4960 1.8 msaitoh goto out;
4961 1.8 msaitoh }
4962 1.8 msaitoh
4963 1.8 msaitoh /* Set RS1 */
4964 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4965 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4966 1.8 msaitoh &eeprom_data);
4967 1.8 msaitoh if (status) {
4968 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4969 1.8 msaitoh goto out;
4970 1.8 msaitoh }
4971 1.8 msaitoh
4972 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4973 1.8 msaitoh
4974 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4975 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4976 1.8 msaitoh eeprom_data);
4977 1.8 msaitoh if (status) {
4978 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4979 1.8 msaitoh goto out;
4980 1.8 msaitoh }
4981 1.8 msaitoh out:
4982 1.8 msaitoh return;
4983 1.8 msaitoh }
4984