ixgbe_common.c revision 1.12 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.9 msaitoh Copyright (c) 2001-2015, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.11 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 299200 2016-05-06 22:54:56Z pfg $*/
34 1.12 msaitoh /*$NetBSD: ixgbe_common.c,v 1.12 2017/01/19 06:56:33 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
83 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
90 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
93 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
100 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 1.1 dyoung
113 1.1 dyoung /* LEDs */
114 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
115 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
116 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 1.1 dyoung
119 1.1 dyoung /* RAR, Multicast, VLAN */
120 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
121 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 1.1 dyoung mac->ops.insert_mac_addr = NULL;
123 1.1 dyoung mac->ops.set_vmdq = NULL;
124 1.1 dyoung mac->ops.clear_vmdq = NULL;
125 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 1.1 dyoung mac->ops.clear_vfta = NULL;
131 1.1 dyoung mac->ops.set_vfta = NULL;
132 1.3 msaitoh mac->ops.set_vlvf = NULL;
133 1.1 dyoung mac->ops.init_uta_tables = NULL;
134 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 1.1 dyoung
137 1.1 dyoung /* Flow Control */
138 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.6 msaitoh mac->ops.dmac_config = NULL;
146 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
147 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
148 1.1 dyoung
149 1.1 dyoung return IXGBE_SUCCESS;
150 1.1 dyoung }
151 1.1 dyoung
152 1.1 dyoung /**
153 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
154 1.6 msaitoh * of flow control
155 1.6 msaitoh * @hw: pointer to hardware structure
156 1.6 msaitoh *
157 1.6 msaitoh * This function returns TRUE if the device supports flow control
158 1.6 msaitoh * autonegotiation, and FALSE if it does not.
159 1.4 msaitoh *
160 1.4 msaitoh **/
161 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
162 1.4 msaitoh {
163 1.6 msaitoh bool supported = FALSE;
164 1.6 msaitoh ixgbe_link_speed speed;
165 1.6 msaitoh bool link_up;
166 1.4 msaitoh
167 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
168 1.4 msaitoh
169 1.6 msaitoh switch (hw->phy.media_type) {
170 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
171 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
172 1.6 msaitoh case ixgbe_media_type_fiber:
173 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
174 1.6 msaitoh /* if link is down, assume supported */
175 1.6 msaitoh if (link_up)
176 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
177 1.6 msaitoh TRUE : FALSE;
178 1.6 msaitoh else
179 1.6 msaitoh supported = TRUE;
180 1.6 msaitoh break;
181 1.6 msaitoh case ixgbe_media_type_backplane:
182 1.6 msaitoh supported = TRUE;
183 1.6 msaitoh break;
184 1.6 msaitoh case ixgbe_media_type_copper:
185 1.6 msaitoh /* only some copper devices support flow control autoneg */
186 1.6 msaitoh switch (hw->device_id) {
187 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
188 1.6 msaitoh case IXGBE_DEV_ID_X540T:
189 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
190 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
191 1.8 msaitoh case IXGBE_DEV_ID_X550T:
192 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
193 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
194 1.6 msaitoh supported = TRUE;
195 1.6 msaitoh break;
196 1.6 msaitoh default:
197 1.6 msaitoh supported = FALSE;
198 1.6 msaitoh }
199 1.4 msaitoh default:
200 1.6 msaitoh break;
201 1.4 msaitoh }
202 1.6 msaitoh
203 1.11 msaitoh if (!supported) {
204 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
205 1.6 msaitoh "Device %x does not support flow control autoneg",
206 1.6 msaitoh hw->device_id);
207 1.11 msaitoh }
208 1.11 msaitoh
209 1.6 msaitoh return supported;
210 1.4 msaitoh }
211 1.4 msaitoh
212 1.4 msaitoh /**
213 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
214 1.4 msaitoh * @hw: pointer to hardware structure
215 1.4 msaitoh *
216 1.4 msaitoh * Called at init time to set up flow control.
217 1.4 msaitoh **/
218 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
219 1.4 msaitoh {
220 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
221 1.4 msaitoh u32 reg = 0, reg_bp = 0;
222 1.4 msaitoh u16 reg_cu = 0;
223 1.8 msaitoh bool locked = FALSE;
224 1.4 msaitoh
225 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
226 1.4 msaitoh
227 1.8 msaitoh /* Validate the requested mode */
228 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
229 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
230 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
231 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
232 1.4 msaitoh goto out;
233 1.4 msaitoh }
234 1.4 msaitoh
235 1.4 msaitoh /*
236 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
237 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
238 1.4 msaitoh */
239 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
240 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
241 1.4 msaitoh
242 1.4 msaitoh /*
243 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
244 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
245 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
246 1.4 msaitoh */
247 1.4 msaitoh switch (hw->phy.media_type) {
248 1.8 msaitoh case ixgbe_media_type_backplane:
249 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
250 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
251 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
252 1.8 msaitoh goto out;
253 1.8 msaitoh
254 1.8 msaitoh /* only backplane uses autoc so fall though */
255 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
256 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
257 1.4 msaitoh case ixgbe_media_type_fiber:
258 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
259 1.8 msaitoh
260 1.4 msaitoh break;
261 1.4 msaitoh case ixgbe_media_type_copper:
262 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
263 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
264 1.4 msaitoh break;
265 1.4 msaitoh default:
266 1.4 msaitoh break;
267 1.4 msaitoh }
268 1.4 msaitoh
269 1.4 msaitoh /*
270 1.4 msaitoh * The possible values of fc.requested_mode are:
271 1.4 msaitoh * 0: Flow control is completely disabled
272 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
273 1.4 msaitoh * but not send pause frames).
274 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
275 1.4 msaitoh * we do not support receiving pause frames).
276 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
277 1.4 msaitoh * other: Invalid.
278 1.4 msaitoh */
279 1.4 msaitoh switch (hw->fc.requested_mode) {
280 1.4 msaitoh case ixgbe_fc_none:
281 1.4 msaitoh /* Flow control completely disabled by software override. */
282 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
283 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
284 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
285 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
286 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
287 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
288 1.4 msaitoh break;
289 1.4 msaitoh case ixgbe_fc_tx_pause:
290 1.4 msaitoh /*
291 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
292 1.4 msaitoh * disabled by software override.
293 1.4 msaitoh */
294 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
295 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
296 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
297 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
298 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
299 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
300 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
301 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
302 1.4 msaitoh }
303 1.4 msaitoh break;
304 1.4 msaitoh case ixgbe_fc_rx_pause:
305 1.4 msaitoh /*
306 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
307 1.4 msaitoh * disabled by software override. Since there really
308 1.4 msaitoh * isn't a way to advertise that we are capable of RX
309 1.4 msaitoh * Pause ONLY, we will advertise that we support both
310 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
311 1.4 msaitoh * through to the fc_full statement. Later, we will
312 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
313 1.4 msaitoh */
314 1.4 msaitoh case ixgbe_fc_full:
315 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
316 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
317 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
318 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
319 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
320 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
321 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
322 1.4 msaitoh break;
323 1.4 msaitoh default:
324 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
325 1.6 msaitoh "Flow control param set incorrectly\n");
326 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
327 1.4 msaitoh goto out;
328 1.4 msaitoh break;
329 1.4 msaitoh }
330 1.4 msaitoh
331 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
332 1.4 msaitoh /*
333 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
334 1.4 msaitoh * the MAC will advertise clause 37 flow control.
335 1.4 msaitoh */
336 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
337 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
338 1.4 msaitoh
339 1.4 msaitoh /* Disable AN timeout */
340 1.4 msaitoh if (hw->fc.strict_ieee)
341 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
342 1.4 msaitoh
343 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
344 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
345 1.4 msaitoh }
346 1.4 msaitoh
347 1.4 msaitoh /*
348 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
349 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
350 1.4 msaitoh *
351 1.4 msaitoh */
352 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
353 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
354 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
355 1.8 msaitoh if (ret_val)
356 1.8 msaitoh goto out;
357 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
358 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
359 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
360 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
361 1.4 msaitoh }
362 1.4 msaitoh
363 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 1.4 msaitoh out:
365 1.4 msaitoh return ret_val;
366 1.4 msaitoh }
367 1.4 msaitoh
368 1.4 msaitoh /**
369 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
370 1.1 dyoung * @hw: pointer to hardware structure
371 1.1 dyoung *
372 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
373 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
374 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
375 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
376 1.1 dyoung **/
377 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
378 1.1 dyoung {
379 1.4 msaitoh s32 ret_val;
380 1.1 dyoung u32 ctrl_ext;
381 1.1 dyoung
382 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
383 1.1 dyoung
384 1.1 dyoung /* Set the media type */
385 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
386 1.1 dyoung
387 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
388 1.1 dyoung
389 1.1 dyoung /* Clear the VLAN filter table */
390 1.1 dyoung hw->mac.ops.clear_vfta(hw);
391 1.1 dyoung
392 1.1 dyoung /* Clear statistics registers */
393 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
394 1.1 dyoung
395 1.1 dyoung /* Set No Snoop Disable */
396 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
397 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
398 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
399 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
400 1.1 dyoung
401 1.1 dyoung /* Setup flow control */
402 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
403 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
404 1.4 msaitoh goto out;
405 1.1 dyoung
406 1.1 dyoung /* Clear adapter stopped flag */
407 1.1 dyoung hw->adapter_stopped = FALSE;
408 1.1 dyoung
409 1.4 msaitoh out:
410 1.4 msaitoh return ret_val;
411 1.1 dyoung }
412 1.1 dyoung
413 1.1 dyoung /**
414 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
415 1.1 dyoung * @hw: pointer to hw structure
416 1.1 dyoung *
417 1.1 dyoung * Performs the init sequence common to the second generation
418 1.1 dyoung * of 10 GbE devices.
419 1.1 dyoung * Devices in the second generation:
420 1.1 dyoung * 82599
421 1.1 dyoung * X540
422 1.1 dyoung **/
423 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
424 1.1 dyoung {
425 1.1 dyoung u32 i;
426 1.1 dyoung u32 regval;
427 1.1 dyoung
428 1.1 dyoung /* Clear the rate limiters */
429 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
430 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
431 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
432 1.1 dyoung }
433 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
434 1.1 dyoung
435 1.1 dyoung /* Disable relaxed ordering */
436 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
437 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
438 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
439 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
440 1.1 dyoung }
441 1.1 dyoung
442 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
443 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
444 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
445 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
446 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
447 1.1 dyoung }
448 1.1 dyoung
449 1.1 dyoung return IXGBE_SUCCESS;
450 1.1 dyoung }
451 1.1 dyoung
452 1.1 dyoung /**
453 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
454 1.1 dyoung * @hw: pointer to hardware structure
455 1.1 dyoung *
456 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
457 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
458 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
459 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
460 1.1 dyoung * disabled and uninitialized
461 1.1 dyoung **/
462 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
463 1.1 dyoung {
464 1.1 dyoung s32 status;
465 1.1 dyoung
466 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
467 1.1 dyoung
468 1.1 dyoung /* Reset the hardware */
469 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
470 1.1 dyoung
471 1.1 dyoung if (status == IXGBE_SUCCESS) {
472 1.1 dyoung /* Start the HW */
473 1.1 dyoung status = hw->mac.ops.start_hw(hw);
474 1.1 dyoung }
475 1.1 dyoung
476 1.1 dyoung return status;
477 1.1 dyoung }
478 1.1 dyoung
479 1.1 dyoung /**
480 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
481 1.1 dyoung * @hw: pointer to hardware structure
482 1.1 dyoung *
483 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
484 1.1 dyoung * Statistics counters are clear on read.
485 1.1 dyoung **/
486 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
487 1.1 dyoung {
488 1.1 dyoung u16 i = 0;
489 1.1 dyoung
490 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
491 1.1 dyoung
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
493 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
496 1.1 dyoung for (i = 0; i < 8; i++)
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
498 1.1 dyoung
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
500 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
504 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
506 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
507 1.1 dyoung } else {
508 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
509 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
510 1.1 dyoung }
511 1.1 dyoung
512 1.1 dyoung for (i = 0; i < 8; i++) {
513 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
514 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
515 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
517 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
518 1.1 dyoung } else {
519 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
520 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
521 1.1 dyoung }
522 1.1 dyoung }
523 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
524 1.1 dyoung for (i = 0; i < 8; i++)
525 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
526 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
540 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
541 1.3 msaitoh for (i = 0; i < 8; i++)
542 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
562 1.1 dyoung for (i = 0; i < 16; i++) {
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
565 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
571 1.1 dyoung } else {
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
574 1.1 dyoung }
575 1.1 dyoung }
576 1.1 dyoung
577 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
578 1.3 msaitoh if (hw->phy.id == 0)
579 1.3 msaitoh ixgbe_identify_phy(hw);
580 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
581 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
582 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
583 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
585 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
586 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
587 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
588 1.3 msaitoh }
589 1.3 msaitoh
590 1.1 dyoung return IXGBE_SUCCESS;
591 1.1 dyoung }
592 1.1 dyoung
593 1.1 dyoung /**
594 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
595 1.1 dyoung * @hw: pointer to hardware structure
596 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
597 1.1 dyoung * @pba_num_size: part number string buffer length
598 1.1 dyoung *
599 1.1 dyoung * Reads the part number string from the EEPROM.
600 1.1 dyoung **/
601 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
602 1.3 msaitoh u32 pba_num_size)
603 1.1 dyoung {
604 1.1 dyoung s32 ret_val;
605 1.1 dyoung u16 data;
606 1.1 dyoung u16 pba_ptr;
607 1.1 dyoung u16 offset;
608 1.1 dyoung u16 length;
609 1.1 dyoung
610 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
611 1.1 dyoung
612 1.1 dyoung if (pba_num == NULL) {
613 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
614 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
615 1.1 dyoung }
616 1.1 dyoung
617 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
618 1.1 dyoung if (ret_val) {
619 1.1 dyoung DEBUGOUT("NVM Read Error\n");
620 1.1 dyoung return ret_val;
621 1.1 dyoung }
622 1.1 dyoung
623 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
624 1.1 dyoung if (ret_val) {
625 1.1 dyoung DEBUGOUT("NVM Read Error\n");
626 1.1 dyoung return ret_val;
627 1.1 dyoung }
628 1.1 dyoung
629 1.1 dyoung /*
630 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
631 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
632 1.1 dyoung * and we can decode it into an ascii string
633 1.1 dyoung */
634 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
635 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
636 1.1 dyoung
637 1.1 dyoung /* we will need 11 characters to store the PBA */
638 1.1 dyoung if (pba_num_size < 11) {
639 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
640 1.1 dyoung return IXGBE_ERR_NO_SPACE;
641 1.1 dyoung }
642 1.1 dyoung
643 1.1 dyoung /* extract hex string from data and pba_ptr */
644 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
645 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
646 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
647 1.1 dyoung pba_num[3] = data & 0xF;
648 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
649 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
650 1.1 dyoung pba_num[6] = '-';
651 1.1 dyoung pba_num[7] = 0;
652 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
653 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
654 1.1 dyoung
655 1.1 dyoung /* put a null character on the end of our string */
656 1.1 dyoung pba_num[10] = '\0';
657 1.1 dyoung
658 1.1 dyoung /* switch all the data but the '-' to hex char */
659 1.1 dyoung for (offset = 0; offset < 10; offset++) {
660 1.1 dyoung if (pba_num[offset] < 0xA)
661 1.1 dyoung pba_num[offset] += '0';
662 1.1 dyoung else if (pba_num[offset] < 0x10)
663 1.1 dyoung pba_num[offset] += 'A' - 0xA;
664 1.1 dyoung }
665 1.1 dyoung
666 1.1 dyoung return IXGBE_SUCCESS;
667 1.1 dyoung }
668 1.1 dyoung
669 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
670 1.1 dyoung if (ret_val) {
671 1.1 dyoung DEBUGOUT("NVM Read Error\n");
672 1.1 dyoung return ret_val;
673 1.1 dyoung }
674 1.1 dyoung
675 1.1 dyoung if (length == 0xFFFF || length == 0) {
676 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
677 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
678 1.1 dyoung }
679 1.1 dyoung
680 1.1 dyoung /* check if pba_num buffer is big enough */
681 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
682 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
683 1.1 dyoung return IXGBE_ERR_NO_SPACE;
684 1.1 dyoung }
685 1.1 dyoung
686 1.1 dyoung /* trim pba length from start of string */
687 1.1 dyoung pba_ptr++;
688 1.1 dyoung length--;
689 1.1 dyoung
690 1.1 dyoung for (offset = 0; offset < length; offset++) {
691 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
692 1.1 dyoung if (ret_val) {
693 1.1 dyoung DEBUGOUT("NVM Read Error\n");
694 1.1 dyoung return ret_val;
695 1.1 dyoung }
696 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
697 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
698 1.1 dyoung }
699 1.1 dyoung pba_num[offset * 2] = '\0';
700 1.1 dyoung
701 1.1 dyoung return IXGBE_SUCCESS;
702 1.1 dyoung }
703 1.1 dyoung
704 1.1 dyoung /**
705 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
706 1.1 dyoung * @hw: pointer to hardware structure
707 1.1 dyoung * @pba_num: stores the part number from the EEPROM
708 1.1 dyoung *
709 1.1 dyoung * Reads the part number from the EEPROM.
710 1.1 dyoung **/
711 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
712 1.1 dyoung {
713 1.1 dyoung s32 ret_val;
714 1.1 dyoung u16 data;
715 1.1 dyoung
716 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
717 1.1 dyoung
718 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
719 1.1 dyoung if (ret_val) {
720 1.1 dyoung DEBUGOUT("NVM Read Error\n");
721 1.1 dyoung return ret_val;
722 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
723 1.1 dyoung DEBUGOUT("NVM Not supported\n");
724 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
725 1.1 dyoung }
726 1.1 dyoung *pba_num = (u32)(data << 16);
727 1.1 dyoung
728 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
729 1.1 dyoung if (ret_val) {
730 1.1 dyoung DEBUGOUT("NVM Read Error\n");
731 1.1 dyoung return ret_val;
732 1.1 dyoung }
733 1.1 dyoung *pba_num |= data;
734 1.1 dyoung
735 1.1 dyoung return IXGBE_SUCCESS;
736 1.1 dyoung }
737 1.1 dyoung
738 1.1 dyoung /**
739 1.5 msaitoh * ixgbe_read_pba_raw
740 1.5 msaitoh * @hw: pointer to the HW structure
741 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
742 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
743 1.5 msaitoh * @max_pba_block_size: PBA block size limit
744 1.5 msaitoh * @pba: pointer to output PBA structure
745 1.5 msaitoh *
746 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
747 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
748 1.5 msaitoh *
749 1.5 msaitoh **/
750 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
751 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
752 1.5 msaitoh struct ixgbe_pba *pba)
753 1.5 msaitoh {
754 1.5 msaitoh s32 ret_val;
755 1.5 msaitoh u16 pba_block_size;
756 1.5 msaitoh
757 1.5 msaitoh if (pba == NULL)
758 1.5 msaitoh return IXGBE_ERR_PARAM;
759 1.5 msaitoh
760 1.5 msaitoh if (eeprom_buf == NULL) {
761 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
762 1.5 msaitoh &pba->word[0]);
763 1.5 msaitoh if (ret_val)
764 1.5 msaitoh return ret_val;
765 1.5 msaitoh } else {
766 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
767 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
768 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
769 1.5 msaitoh } else {
770 1.5 msaitoh return IXGBE_ERR_PARAM;
771 1.5 msaitoh }
772 1.5 msaitoh }
773 1.5 msaitoh
774 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
775 1.5 msaitoh if (pba->pba_block == NULL)
776 1.5 msaitoh return IXGBE_ERR_PARAM;
777 1.5 msaitoh
778 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
779 1.5 msaitoh eeprom_buf_size,
780 1.5 msaitoh &pba_block_size);
781 1.5 msaitoh if (ret_val)
782 1.5 msaitoh return ret_val;
783 1.5 msaitoh
784 1.5 msaitoh if (pba_block_size > max_pba_block_size)
785 1.5 msaitoh return IXGBE_ERR_PARAM;
786 1.5 msaitoh
787 1.5 msaitoh if (eeprom_buf == NULL) {
788 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
789 1.5 msaitoh pba_block_size,
790 1.5 msaitoh pba->pba_block);
791 1.5 msaitoh if (ret_val)
792 1.5 msaitoh return ret_val;
793 1.5 msaitoh } else {
794 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
795 1.8 msaitoh pba_block_size)) {
796 1.5 msaitoh memcpy(pba->pba_block,
797 1.5 msaitoh &eeprom_buf[pba->word[1]],
798 1.5 msaitoh pba_block_size * sizeof(u16));
799 1.5 msaitoh } else {
800 1.5 msaitoh return IXGBE_ERR_PARAM;
801 1.5 msaitoh }
802 1.5 msaitoh }
803 1.5 msaitoh }
804 1.5 msaitoh
805 1.5 msaitoh return IXGBE_SUCCESS;
806 1.5 msaitoh }
807 1.5 msaitoh
808 1.5 msaitoh /**
809 1.5 msaitoh * ixgbe_write_pba_raw
810 1.5 msaitoh * @hw: pointer to the HW structure
811 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
812 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
813 1.5 msaitoh * @pba: pointer to PBA structure
814 1.5 msaitoh *
815 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
816 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
817 1.5 msaitoh *
818 1.5 msaitoh **/
819 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
820 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
821 1.5 msaitoh {
822 1.5 msaitoh s32 ret_val;
823 1.5 msaitoh
824 1.5 msaitoh if (pba == NULL)
825 1.5 msaitoh return IXGBE_ERR_PARAM;
826 1.5 msaitoh
827 1.5 msaitoh if (eeprom_buf == NULL) {
828 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
829 1.5 msaitoh &pba->word[0]);
830 1.5 msaitoh if (ret_val)
831 1.5 msaitoh return ret_val;
832 1.5 msaitoh } else {
833 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
834 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
835 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
836 1.5 msaitoh } else {
837 1.5 msaitoh return IXGBE_ERR_PARAM;
838 1.5 msaitoh }
839 1.5 msaitoh }
840 1.5 msaitoh
841 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
842 1.5 msaitoh if (pba->pba_block == NULL)
843 1.5 msaitoh return IXGBE_ERR_PARAM;
844 1.5 msaitoh
845 1.5 msaitoh if (eeprom_buf == NULL) {
846 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
847 1.5 msaitoh pba->pba_block[0],
848 1.5 msaitoh pba->pba_block);
849 1.5 msaitoh if (ret_val)
850 1.5 msaitoh return ret_val;
851 1.5 msaitoh } else {
852 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
853 1.5 msaitoh pba->pba_block[0])) {
854 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
855 1.5 msaitoh pba->pba_block,
856 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
857 1.5 msaitoh } else {
858 1.5 msaitoh return IXGBE_ERR_PARAM;
859 1.5 msaitoh }
860 1.5 msaitoh }
861 1.5 msaitoh }
862 1.5 msaitoh
863 1.5 msaitoh return IXGBE_SUCCESS;
864 1.5 msaitoh }
865 1.5 msaitoh
866 1.5 msaitoh /**
867 1.5 msaitoh * ixgbe_get_pba_block_size
868 1.5 msaitoh * @hw: pointer to the HW structure
869 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
870 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
871 1.5 msaitoh * @pba_data_size: pointer to output variable
872 1.5 msaitoh *
873 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
874 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
875 1.5 msaitoh * EEPROM device.
876 1.5 msaitoh *
877 1.5 msaitoh **/
878 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
879 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
880 1.5 msaitoh {
881 1.5 msaitoh s32 ret_val;
882 1.5 msaitoh u16 pba_word[2];
883 1.5 msaitoh u16 length;
884 1.5 msaitoh
885 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
886 1.5 msaitoh
887 1.5 msaitoh if (eeprom_buf == NULL) {
888 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
889 1.5 msaitoh &pba_word[0]);
890 1.5 msaitoh if (ret_val)
891 1.5 msaitoh return ret_val;
892 1.5 msaitoh } else {
893 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
894 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
895 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
896 1.5 msaitoh } else {
897 1.5 msaitoh return IXGBE_ERR_PARAM;
898 1.5 msaitoh }
899 1.5 msaitoh }
900 1.5 msaitoh
901 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
902 1.5 msaitoh if (eeprom_buf == NULL) {
903 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
904 1.5 msaitoh &length);
905 1.5 msaitoh if (ret_val)
906 1.5 msaitoh return ret_val;
907 1.5 msaitoh } else {
908 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
909 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
910 1.5 msaitoh else
911 1.5 msaitoh return IXGBE_ERR_PARAM;
912 1.5 msaitoh }
913 1.5 msaitoh
914 1.5 msaitoh if (length == 0xFFFF || length == 0)
915 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
916 1.5 msaitoh } else {
917 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
918 1.5 msaitoh length = 0;
919 1.5 msaitoh }
920 1.5 msaitoh
921 1.5 msaitoh if (pba_block_size != NULL)
922 1.5 msaitoh *pba_block_size = length;
923 1.5 msaitoh
924 1.5 msaitoh return IXGBE_SUCCESS;
925 1.5 msaitoh }
926 1.5 msaitoh
927 1.5 msaitoh /**
928 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
929 1.1 dyoung * @hw: pointer to hardware structure
930 1.1 dyoung * @mac_addr: Adapter MAC address
931 1.1 dyoung *
932 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
933 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
934 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
935 1.1 dyoung **/
936 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
937 1.1 dyoung {
938 1.1 dyoung u32 rar_high;
939 1.1 dyoung u32 rar_low;
940 1.1 dyoung u16 i;
941 1.1 dyoung
942 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
943 1.1 dyoung
944 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
945 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
946 1.1 dyoung
947 1.1 dyoung for (i = 0; i < 4; i++)
948 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
949 1.1 dyoung
950 1.1 dyoung for (i = 0; i < 2; i++)
951 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
952 1.1 dyoung
953 1.1 dyoung return IXGBE_SUCCESS;
954 1.1 dyoung }
955 1.1 dyoung
956 1.1 dyoung /**
957 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
958 1.1 dyoung * @hw: pointer to hardware structure
959 1.6 msaitoh * @link_status: the link status returned by the PCI config space
960 1.1 dyoung *
961 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
962 1.1 dyoung **/
963 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
964 1.1 dyoung {
965 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
966 1.1 dyoung
967 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
968 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
969 1.1 dyoung
970 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
971 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
972 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
973 1.1 dyoung break;
974 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
975 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
976 1.1 dyoung break;
977 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
978 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
979 1.1 dyoung break;
980 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
981 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
982 1.1 dyoung break;
983 1.1 dyoung default:
984 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
985 1.1 dyoung break;
986 1.1 dyoung }
987 1.1 dyoung
988 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
989 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
990 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
991 1.1 dyoung break;
992 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
993 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
994 1.1 dyoung break;
995 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
996 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
997 1.4 msaitoh break;
998 1.1 dyoung default:
999 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1000 1.1 dyoung break;
1001 1.1 dyoung }
1002 1.1 dyoung
1003 1.1 dyoung mac->ops.set_lan_id(hw);
1004 1.6 msaitoh }
1005 1.6 msaitoh
1006 1.6 msaitoh /**
1007 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1008 1.6 msaitoh * @hw: pointer to hardware structure
1009 1.6 msaitoh *
1010 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1011 1.6 msaitoh * store this data within the ixgbe_hw structure.
1012 1.6 msaitoh **/
1013 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1014 1.6 msaitoh {
1015 1.6 msaitoh u16 link_status;
1016 1.6 msaitoh
1017 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1018 1.6 msaitoh
1019 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1020 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1021 1.6 msaitoh
1022 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1023 1.1 dyoung
1024 1.1 dyoung return IXGBE_SUCCESS;
1025 1.1 dyoung }
1026 1.1 dyoung
1027 1.1 dyoung /**
1028 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1029 1.1 dyoung * @hw: pointer to the HW structure
1030 1.1 dyoung *
1031 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1032 1.1 dyoung * and swaps the port value if requested.
1033 1.1 dyoung **/
1034 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1035 1.1 dyoung {
1036 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1037 1.1 dyoung u32 reg;
1038 1.1 dyoung
1039 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1040 1.1 dyoung
1041 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1042 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1043 1.1 dyoung bus->lan_id = bus->func;
1044 1.1 dyoung
1045 1.1 dyoung /* check for a port swap */
1046 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1047 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1048 1.1 dyoung bus->func ^= 0x1;
1049 1.1 dyoung }
1050 1.1 dyoung
1051 1.1 dyoung /**
1052 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1053 1.1 dyoung * @hw: pointer to hardware structure
1054 1.1 dyoung *
1055 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1056 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1057 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1058 1.1 dyoung * state and should not touch the hardware.
1059 1.1 dyoung **/
1060 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1061 1.1 dyoung {
1062 1.1 dyoung u32 reg_val;
1063 1.1 dyoung u16 i;
1064 1.1 dyoung
1065 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1066 1.1 dyoung
1067 1.1 dyoung /*
1068 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1069 1.1 dyoung * the hardware
1070 1.1 dyoung */
1071 1.1 dyoung hw->adapter_stopped = TRUE;
1072 1.1 dyoung
1073 1.1 dyoung /* Disable the receive unit */
1074 1.8 msaitoh ixgbe_disable_rx(hw);
1075 1.1 dyoung
1076 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1077 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1078 1.1 dyoung
1079 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1080 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1081 1.1 dyoung
1082 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1083 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1084 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1085 1.3 msaitoh
1086 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1087 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1088 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1089 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1090 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1091 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1092 1.1 dyoung }
1093 1.1 dyoung
1094 1.3 msaitoh /* flush all queues disables */
1095 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1096 1.3 msaitoh msec_delay(2);
1097 1.3 msaitoh
1098 1.1 dyoung /*
1099 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1100 1.1 dyoung * access and verify no pending requests
1101 1.1 dyoung */
1102 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1103 1.1 dyoung }
1104 1.1 dyoung
1105 1.1 dyoung /**
1106 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1107 1.1 dyoung * @hw: pointer to hardware structure
1108 1.1 dyoung * @index: led number to turn on
1109 1.1 dyoung **/
1110 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1111 1.1 dyoung {
1112 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1113 1.1 dyoung
1114 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1115 1.1 dyoung
1116 1.1 dyoung /* To turn on the LED, set mode to ON. */
1117 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1118 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1119 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1120 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1121 1.1 dyoung
1122 1.1 dyoung return IXGBE_SUCCESS;
1123 1.1 dyoung }
1124 1.1 dyoung
1125 1.1 dyoung /**
1126 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1127 1.1 dyoung * @hw: pointer to hardware structure
1128 1.1 dyoung * @index: led number to turn off
1129 1.1 dyoung **/
1130 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1131 1.1 dyoung {
1132 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1133 1.1 dyoung
1134 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1135 1.1 dyoung
1136 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1137 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1138 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1139 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1140 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1141 1.1 dyoung
1142 1.1 dyoung return IXGBE_SUCCESS;
1143 1.1 dyoung }
1144 1.1 dyoung
1145 1.1 dyoung /**
1146 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1147 1.1 dyoung * @hw: pointer to hardware structure
1148 1.1 dyoung *
1149 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1150 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1151 1.1 dyoung **/
1152 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1153 1.1 dyoung {
1154 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1155 1.1 dyoung u32 eec;
1156 1.1 dyoung u16 eeprom_size;
1157 1.1 dyoung
1158 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1159 1.1 dyoung
1160 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1161 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1162 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1163 1.1 dyoung * tested value */
1164 1.1 dyoung eeprom->semaphore_delay = 10;
1165 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1166 1.3 msaitoh eeprom->word_page_size = 0;
1167 1.1 dyoung
1168 1.1 dyoung /*
1169 1.1 dyoung * Check for EEPROM present first.
1170 1.1 dyoung * If not present leave as none
1171 1.1 dyoung */
1172 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1173 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1174 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1175 1.1 dyoung
1176 1.1 dyoung /*
1177 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1178 1.1 dyoung * change if a future EEPROM is not SPI.
1179 1.1 dyoung */
1180 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1181 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1182 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1183 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1184 1.1 dyoung }
1185 1.1 dyoung
1186 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1187 1.1 dyoung eeprom->address_bits = 16;
1188 1.1 dyoung else
1189 1.1 dyoung eeprom->address_bits = 8;
1190 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1191 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1192 1.3 msaitoh eeprom->address_bits);
1193 1.1 dyoung }
1194 1.1 dyoung
1195 1.1 dyoung return IXGBE_SUCCESS;
1196 1.1 dyoung }
1197 1.1 dyoung
1198 1.1 dyoung /**
1199 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1200 1.3 msaitoh * @hw: pointer to hardware structure
1201 1.3 msaitoh * @offset: offset within the EEPROM to write
1202 1.3 msaitoh * @words: number of word(s)
1203 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1204 1.3 msaitoh *
1205 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1206 1.3 msaitoh **/
1207 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1208 1.3 msaitoh u16 words, u16 *data)
1209 1.3 msaitoh {
1210 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1211 1.3 msaitoh u16 i, count;
1212 1.3 msaitoh
1213 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1214 1.3 msaitoh
1215 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1216 1.3 msaitoh
1217 1.3 msaitoh if (words == 0) {
1218 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1219 1.3 msaitoh goto out;
1220 1.3 msaitoh }
1221 1.3 msaitoh
1222 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1223 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1224 1.3 msaitoh goto out;
1225 1.3 msaitoh }
1226 1.3 msaitoh
1227 1.3 msaitoh /*
1228 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1229 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1230 1.3 msaitoh */
1231 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1232 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1233 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1234 1.3 msaitoh
1235 1.3 msaitoh /*
1236 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1237 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1238 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1239 1.3 msaitoh */
1240 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1241 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1242 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1243 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1244 1.3 msaitoh count, &data[i]);
1245 1.3 msaitoh
1246 1.3 msaitoh if (status != IXGBE_SUCCESS)
1247 1.3 msaitoh break;
1248 1.3 msaitoh }
1249 1.3 msaitoh
1250 1.3 msaitoh out:
1251 1.3 msaitoh return status;
1252 1.3 msaitoh }
1253 1.3 msaitoh
1254 1.3 msaitoh /**
1255 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1256 1.3 msaitoh * @hw: pointer to hardware structure
1257 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1258 1.3 msaitoh * @words: number of word(s)
1259 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1260 1.3 msaitoh *
1261 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1262 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1263 1.3 msaitoh **/
1264 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1265 1.3 msaitoh u16 words, u16 *data)
1266 1.3 msaitoh {
1267 1.3 msaitoh s32 status;
1268 1.3 msaitoh u16 word;
1269 1.3 msaitoh u16 page_size;
1270 1.3 msaitoh u16 i;
1271 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1272 1.3 msaitoh
1273 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1274 1.3 msaitoh
1275 1.3 msaitoh /* Prepare the EEPROM for writing */
1276 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1277 1.3 msaitoh
1278 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1279 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1280 1.3 msaitoh ixgbe_release_eeprom(hw);
1281 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1282 1.3 msaitoh }
1283 1.3 msaitoh }
1284 1.3 msaitoh
1285 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1286 1.3 msaitoh for (i = 0; i < words; i++) {
1287 1.3 msaitoh ixgbe_standby_eeprom(hw);
1288 1.3 msaitoh
1289 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1290 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1291 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1292 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1293 1.3 msaitoh
1294 1.3 msaitoh ixgbe_standby_eeprom(hw);
1295 1.3 msaitoh
1296 1.3 msaitoh /*
1297 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1298 1.3 msaitoh * in the opcode
1299 1.3 msaitoh */
1300 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1301 1.3 msaitoh ((offset + i) >= 128))
1302 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1303 1.3 msaitoh
1304 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1305 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1306 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1307 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1308 1.3 msaitoh hw->eeprom.address_bits);
1309 1.3 msaitoh
1310 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1311 1.3 msaitoh
1312 1.3 msaitoh /* Send the data in burst via SPI*/
1313 1.3 msaitoh do {
1314 1.3 msaitoh word = data[i];
1315 1.3 msaitoh word = (word >> 8) | (word << 8);
1316 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1317 1.3 msaitoh
1318 1.3 msaitoh if (page_size == 0)
1319 1.3 msaitoh break;
1320 1.3 msaitoh
1321 1.3 msaitoh /* do not wrap around page */
1322 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1323 1.3 msaitoh (page_size - 1))
1324 1.3 msaitoh break;
1325 1.3 msaitoh } while (++i < words);
1326 1.3 msaitoh
1327 1.3 msaitoh ixgbe_standby_eeprom(hw);
1328 1.3 msaitoh msec_delay(10);
1329 1.3 msaitoh }
1330 1.3 msaitoh /* Done with writing - release the EEPROM */
1331 1.3 msaitoh ixgbe_release_eeprom(hw);
1332 1.3 msaitoh }
1333 1.3 msaitoh
1334 1.3 msaitoh return status;
1335 1.3 msaitoh }
1336 1.3 msaitoh
1337 1.3 msaitoh /**
1338 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1339 1.1 dyoung * @hw: pointer to hardware structure
1340 1.1 dyoung * @offset: offset within the EEPROM to be written to
1341 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1342 1.1 dyoung *
1343 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1344 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1345 1.1 dyoung **/
1346 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1347 1.1 dyoung {
1348 1.1 dyoung s32 status;
1349 1.1 dyoung
1350 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1351 1.1 dyoung
1352 1.1 dyoung hw->eeprom.ops.init_params(hw);
1353 1.1 dyoung
1354 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1355 1.1 dyoung status = IXGBE_ERR_EEPROM;
1356 1.1 dyoung goto out;
1357 1.1 dyoung }
1358 1.1 dyoung
1359 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1360 1.3 msaitoh
1361 1.3 msaitoh out:
1362 1.3 msaitoh return status;
1363 1.3 msaitoh }
1364 1.3 msaitoh
1365 1.3 msaitoh /**
1366 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1367 1.3 msaitoh * @hw: pointer to hardware structure
1368 1.3 msaitoh * @offset: offset within the EEPROM to be read
1369 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1370 1.3 msaitoh * @words: number of word(s)
1371 1.3 msaitoh *
1372 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1373 1.3 msaitoh **/
1374 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1375 1.3 msaitoh u16 words, u16 *data)
1376 1.3 msaitoh {
1377 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1378 1.3 msaitoh u16 i, count;
1379 1.3 msaitoh
1380 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1381 1.3 msaitoh
1382 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1383 1.3 msaitoh
1384 1.3 msaitoh if (words == 0) {
1385 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1386 1.3 msaitoh goto out;
1387 1.3 msaitoh }
1388 1.3 msaitoh
1389 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1390 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1391 1.3 msaitoh goto out;
1392 1.3 msaitoh }
1393 1.3 msaitoh
1394 1.3 msaitoh /*
1395 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1396 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1397 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1398 1.3 msaitoh */
1399 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1400 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1401 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1402 1.3 msaitoh
1403 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1404 1.3 msaitoh count, &data[i]);
1405 1.3 msaitoh
1406 1.3 msaitoh if (status != IXGBE_SUCCESS)
1407 1.3 msaitoh break;
1408 1.3 msaitoh }
1409 1.3 msaitoh
1410 1.3 msaitoh out:
1411 1.3 msaitoh return status;
1412 1.3 msaitoh }
1413 1.3 msaitoh
1414 1.3 msaitoh /**
1415 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1416 1.3 msaitoh * @hw: pointer to hardware structure
1417 1.3 msaitoh * @offset: offset within the EEPROM to be read
1418 1.3 msaitoh * @words: number of word(s)
1419 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1420 1.3 msaitoh *
1421 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1422 1.3 msaitoh **/
1423 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1424 1.3 msaitoh u16 words, u16 *data)
1425 1.3 msaitoh {
1426 1.3 msaitoh s32 status;
1427 1.3 msaitoh u16 word_in;
1428 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1429 1.3 msaitoh u16 i;
1430 1.3 msaitoh
1431 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1432 1.3 msaitoh
1433 1.3 msaitoh /* Prepare the EEPROM for reading */
1434 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1435 1.1 dyoung
1436 1.1 dyoung if (status == IXGBE_SUCCESS) {
1437 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1438 1.1 dyoung ixgbe_release_eeprom(hw);
1439 1.1 dyoung status = IXGBE_ERR_EEPROM;
1440 1.1 dyoung }
1441 1.1 dyoung }
1442 1.1 dyoung
1443 1.1 dyoung if (status == IXGBE_SUCCESS) {
1444 1.3 msaitoh for (i = 0; i < words; i++) {
1445 1.3 msaitoh ixgbe_standby_eeprom(hw);
1446 1.3 msaitoh /*
1447 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1448 1.3 msaitoh * in the opcode
1449 1.3 msaitoh */
1450 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1451 1.3 msaitoh ((offset + i) >= 128))
1452 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1453 1.3 msaitoh
1454 1.3 msaitoh /* Send the READ command (opcode + addr) */
1455 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1456 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1457 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1458 1.3 msaitoh hw->eeprom.address_bits);
1459 1.3 msaitoh
1460 1.3 msaitoh /* Read the data. */
1461 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1462 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1463 1.3 msaitoh }
1464 1.1 dyoung
1465 1.3 msaitoh /* End this read operation */
1466 1.1 dyoung ixgbe_release_eeprom(hw);
1467 1.1 dyoung }
1468 1.1 dyoung
1469 1.1 dyoung return status;
1470 1.1 dyoung }
1471 1.1 dyoung
1472 1.1 dyoung /**
1473 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1474 1.1 dyoung * @hw: pointer to hardware structure
1475 1.1 dyoung * @offset: offset within the EEPROM to be read
1476 1.1 dyoung * @data: read 16 bit value from EEPROM
1477 1.1 dyoung *
1478 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1479 1.1 dyoung **/
1480 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1481 1.3 msaitoh u16 *data)
1482 1.1 dyoung {
1483 1.1 dyoung s32 status;
1484 1.1 dyoung
1485 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1486 1.1 dyoung
1487 1.1 dyoung hw->eeprom.ops.init_params(hw);
1488 1.1 dyoung
1489 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1490 1.1 dyoung status = IXGBE_ERR_EEPROM;
1491 1.1 dyoung goto out;
1492 1.1 dyoung }
1493 1.1 dyoung
1494 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1495 1.3 msaitoh
1496 1.3 msaitoh out:
1497 1.3 msaitoh return status;
1498 1.3 msaitoh }
1499 1.3 msaitoh
1500 1.3 msaitoh /**
1501 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1502 1.3 msaitoh * @hw: pointer to hardware structure
1503 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1504 1.3 msaitoh * @words: number of word(s)
1505 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1506 1.3 msaitoh *
1507 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1508 1.3 msaitoh **/
1509 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1510 1.3 msaitoh u16 words, u16 *data)
1511 1.3 msaitoh {
1512 1.3 msaitoh u32 eerd;
1513 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1514 1.3 msaitoh u32 i;
1515 1.3 msaitoh
1516 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1517 1.3 msaitoh
1518 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1519 1.3 msaitoh
1520 1.3 msaitoh if (words == 0) {
1521 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1522 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1523 1.3 msaitoh goto out;
1524 1.3 msaitoh }
1525 1.3 msaitoh
1526 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1527 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1528 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1529 1.3 msaitoh goto out;
1530 1.3 msaitoh }
1531 1.3 msaitoh
1532 1.3 msaitoh for (i = 0; i < words; i++) {
1533 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1534 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1535 1.3 msaitoh
1536 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1537 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1538 1.1 dyoung
1539 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1540 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1541 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1542 1.3 msaitoh } else {
1543 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1544 1.3 msaitoh goto out;
1545 1.1 dyoung }
1546 1.1 dyoung }
1547 1.3 msaitoh out:
1548 1.3 msaitoh return status;
1549 1.3 msaitoh }
1550 1.1 dyoung
1551 1.3 msaitoh /**
1552 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1553 1.3 msaitoh * @hw: pointer to hardware structure
1554 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1555 1.3 msaitoh *
1556 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1557 1.3 msaitoh * This function is called only when we are writing a new large buffer
1558 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1559 1.3 msaitoh **/
1560 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1561 1.3 msaitoh u16 offset)
1562 1.3 msaitoh {
1563 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1564 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1565 1.3 msaitoh u16 i;
1566 1.3 msaitoh
1567 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1568 1.3 msaitoh
1569 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1570 1.3 msaitoh data[i] = i;
1571 1.1 dyoung
1572 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1573 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1574 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1575 1.3 msaitoh hw->eeprom.word_page_size = 0;
1576 1.3 msaitoh if (status != IXGBE_SUCCESS)
1577 1.3 msaitoh goto out;
1578 1.1 dyoung
1579 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1580 1.3 msaitoh if (status != IXGBE_SUCCESS)
1581 1.3 msaitoh goto out;
1582 1.1 dyoung
1583 1.3 msaitoh /*
1584 1.3 msaitoh * When writing in burst more than the actual page size
1585 1.3 msaitoh * EEPROM address wraps around current page.
1586 1.3 msaitoh */
1587 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1588 1.1 dyoung
1589 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1590 1.3 msaitoh hw->eeprom.word_page_size);
1591 1.1 dyoung out:
1592 1.1 dyoung return status;
1593 1.1 dyoung }
1594 1.1 dyoung
1595 1.1 dyoung /**
1596 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1597 1.1 dyoung * @hw: pointer to hardware structure
1598 1.1 dyoung * @offset: offset of word in the EEPROM to read
1599 1.1 dyoung * @data: word read from the EEPROM
1600 1.1 dyoung *
1601 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1602 1.1 dyoung **/
1603 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1604 1.1 dyoung {
1605 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1606 1.3 msaitoh }
1607 1.3 msaitoh
1608 1.3 msaitoh /**
1609 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1610 1.3 msaitoh * @hw: pointer to hardware structure
1611 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1612 1.3 msaitoh * @words: number of word(s)
1613 1.3 msaitoh * @data: word(s) write to the EEPROM
1614 1.3 msaitoh *
1615 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1616 1.3 msaitoh **/
1617 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1618 1.3 msaitoh u16 words, u16 *data)
1619 1.3 msaitoh {
1620 1.3 msaitoh u32 eewr;
1621 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1622 1.3 msaitoh u16 i;
1623 1.1 dyoung
1624 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1625 1.1 dyoung
1626 1.1 dyoung hw->eeprom.ops.init_params(hw);
1627 1.1 dyoung
1628 1.3 msaitoh if (words == 0) {
1629 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1630 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1631 1.3 msaitoh goto out;
1632 1.3 msaitoh }
1633 1.3 msaitoh
1634 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1635 1.1 dyoung status = IXGBE_ERR_EEPROM;
1636 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1637 1.1 dyoung goto out;
1638 1.1 dyoung }
1639 1.1 dyoung
1640 1.3 msaitoh for (i = 0; i < words; i++) {
1641 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1642 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1643 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1644 1.3 msaitoh
1645 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1646 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1647 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1648 1.3 msaitoh goto out;
1649 1.3 msaitoh }
1650 1.1 dyoung
1651 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1652 1.1 dyoung
1653 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1654 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1655 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1656 1.3 msaitoh goto out;
1657 1.3 msaitoh }
1658 1.3 msaitoh }
1659 1.1 dyoung
1660 1.1 dyoung out:
1661 1.1 dyoung return status;
1662 1.1 dyoung }
1663 1.1 dyoung
1664 1.1 dyoung /**
1665 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1666 1.1 dyoung * @hw: pointer to hardware structure
1667 1.1 dyoung * @offset: offset of word in the EEPROM to write
1668 1.1 dyoung * @data: word write to the EEPROM
1669 1.1 dyoung *
1670 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1671 1.1 dyoung **/
1672 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1673 1.1 dyoung {
1674 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1675 1.1 dyoung }
1676 1.1 dyoung
1677 1.1 dyoung /**
1678 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1679 1.1 dyoung * @hw: pointer to hardware structure
1680 1.1 dyoung * @ee_reg: EEPROM flag for polling
1681 1.1 dyoung *
1682 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1683 1.1 dyoung * read or write is done respectively.
1684 1.1 dyoung **/
1685 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1686 1.1 dyoung {
1687 1.1 dyoung u32 i;
1688 1.1 dyoung u32 reg;
1689 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1690 1.1 dyoung
1691 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1692 1.1 dyoung
1693 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1694 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1695 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1696 1.1 dyoung else
1697 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1698 1.1 dyoung
1699 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1700 1.1 dyoung status = IXGBE_SUCCESS;
1701 1.1 dyoung break;
1702 1.1 dyoung }
1703 1.1 dyoung usec_delay(5);
1704 1.1 dyoung }
1705 1.6 msaitoh
1706 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1707 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1708 1.6 msaitoh "EEPROM read/write done polling timed out");
1709 1.6 msaitoh
1710 1.1 dyoung return status;
1711 1.1 dyoung }
1712 1.1 dyoung
1713 1.1 dyoung /**
1714 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1715 1.1 dyoung * @hw: pointer to hardware structure
1716 1.1 dyoung *
1717 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1718 1.1 dyoung * be called before issuing a command to the EEPROM.
1719 1.1 dyoung **/
1720 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1721 1.1 dyoung {
1722 1.1 dyoung s32 status = IXGBE_SUCCESS;
1723 1.1 dyoung u32 eec;
1724 1.1 dyoung u32 i;
1725 1.1 dyoung
1726 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1727 1.1 dyoung
1728 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1729 1.3 msaitoh != IXGBE_SUCCESS)
1730 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1731 1.1 dyoung
1732 1.1 dyoung if (status == IXGBE_SUCCESS) {
1733 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1734 1.1 dyoung
1735 1.1 dyoung /* Request EEPROM Access */
1736 1.1 dyoung eec |= IXGBE_EEC_REQ;
1737 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1738 1.1 dyoung
1739 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1740 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1741 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1742 1.1 dyoung break;
1743 1.1 dyoung usec_delay(5);
1744 1.1 dyoung }
1745 1.1 dyoung
1746 1.1 dyoung /* Release if grant not acquired */
1747 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1748 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1749 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1750 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1751 1.1 dyoung
1752 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1753 1.1 dyoung status = IXGBE_ERR_EEPROM;
1754 1.1 dyoung }
1755 1.1 dyoung
1756 1.1 dyoung /* Setup EEPROM for Read/Write */
1757 1.1 dyoung if (status == IXGBE_SUCCESS) {
1758 1.1 dyoung /* Clear CS and SK */
1759 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1760 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1761 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1762 1.1 dyoung usec_delay(1);
1763 1.1 dyoung }
1764 1.1 dyoung }
1765 1.1 dyoung return status;
1766 1.1 dyoung }
1767 1.1 dyoung
1768 1.1 dyoung /**
1769 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1770 1.1 dyoung * @hw: pointer to hardware structure
1771 1.1 dyoung *
1772 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1773 1.1 dyoung **/
1774 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1775 1.1 dyoung {
1776 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1777 1.1 dyoung u32 timeout = 2000;
1778 1.1 dyoung u32 i;
1779 1.1 dyoung u32 swsm;
1780 1.1 dyoung
1781 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1782 1.1 dyoung
1783 1.1 dyoung
1784 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1785 1.1 dyoung for (i = 0; i < timeout; i++) {
1786 1.1 dyoung /*
1787 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1788 1.1 dyoung * set and we have the semaphore
1789 1.1 dyoung */
1790 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1791 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1792 1.1 dyoung status = IXGBE_SUCCESS;
1793 1.1 dyoung break;
1794 1.1 dyoung }
1795 1.1 dyoung usec_delay(50);
1796 1.1 dyoung }
1797 1.1 dyoung
1798 1.3 msaitoh if (i == timeout) {
1799 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1800 1.3 msaitoh "not granted.\n");
1801 1.3 msaitoh /*
1802 1.3 msaitoh * this release is particularly important because our attempts
1803 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1804 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1805 1.3 msaitoh * bits to free the driver to make progress
1806 1.3 msaitoh */
1807 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1808 1.3 msaitoh
1809 1.3 msaitoh usec_delay(50);
1810 1.3 msaitoh /*
1811 1.3 msaitoh * one last try
1812 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1813 1.3 msaitoh * set and we have the semaphore
1814 1.3 msaitoh */
1815 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1816 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1817 1.3 msaitoh status = IXGBE_SUCCESS;
1818 1.3 msaitoh }
1819 1.3 msaitoh
1820 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1821 1.1 dyoung if (status == IXGBE_SUCCESS) {
1822 1.1 dyoung for (i = 0; i < timeout; i++) {
1823 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1824 1.1 dyoung
1825 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1826 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1827 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1828 1.1 dyoung
1829 1.1 dyoung /*
1830 1.1 dyoung * If we set the bit successfully then we got the
1831 1.1 dyoung * semaphore.
1832 1.1 dyoung */
1833 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1834 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1835 1.1 dyoung break;
1836 1.1 dyoung
1837 1.1 dyoung usec_delay(50);
1838 1.1 dyoung }
1839 1.1 dyoung
1840 1.1 dyoung /*
1841 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1842 1.1 dyoung * was not granted because we don't have access to the EEPROM
1843 1.1 dyoung */
1844 1.1 dyoung if (i >= timeout) {
1845 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1846 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1847 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1848 1.1 dyoung status = IXGBE_ERR_EEPROM;
1849 1.1 dyoung }
1850 1.1 dyoung } else {
1851 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1852 1.6 msaitoh "Software semaphore SMBI between device drivers "
1853 1.6 msaitoh "not granted.\n");
1854 1.1 dyoung }
1855 1.1 dyoung
1856 1.1 dyoung return status;
1857 1.1 dyoung }
1858 1.1 dyoung
1859 1.1 dyoung /**
1860 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1861 1.1 dyoung * @hw: pointer to hardware structure
1862 1.1 dyoung *
1863 1.1 dyoung * This function clears hardware semaphore bits.
1864 1.1 dyoung **/
1865 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1866 1.1 dyoung {
1867 1.1 dyoung u32 swsm;
1868 1.1 dyoung
1869 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1870 1.1 dyoung
1871 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1872 1.1 dyoung
1873 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1874 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1875 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1876 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1877 1.1 dyoung }
1878 1.1 dyoung
1879 1.1 dyoung /**
1880 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1881 1.1 dyoung * @hw: pointer to hardware structure
1882 1.1 dyoung **/
1883 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1884 1.1 dyoung {
1885 1.1 dyoung s32 status = IXGBE_SUCCESS;
1886 1.1 dyoung u16 i;
1887 1.1 dyoung u8 spi_stat_reg;
1888 1.1 dyoung
1889 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1890 1.1 dyoung
1891 1.1 dyoung /*
1892 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1893 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1894 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1895 1.1 dyoung * 5 milliseconds, then error out.
1896 1.1 dyoung */
1897 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1898 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1899 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1900 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1901 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1902 1.1 dyoung break;
1903 1.1 dyoung
1904 1.1 dyoung usec_delay(5);
1905 1.1 dyoung ixgbe_standby_eeprom(hw);
1906 1.11 msaitoh }
1907 1.1 dyoung
1908 1.1 dyoung /*
1909 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1910 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1911 1.1 dyoung */
1912 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1913 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1914 1.1 dyoung status = IXGBE_ERR_EEPROM;
1915 1.1 dyoung }
1916 1.1 dyoung
1917 1.1 dyoung return status;
1918 1.1 dyoung }
1919 1.1 dyoung
1920 1.1 dyoung /**
1921 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1922 1.1 dyoung * @hw: pointer to hardware structure
1923 1.1 dyoung **/
1924 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1925 1.1 dyoung {
1926 1.1 dyoung u32 eec;
1927 1.1 dyoung
1928 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1929 1.1 dyoung
1930 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1931 1.1 dyoung
1932 1.1 dyoung /* Toggle CS to flush commands */
1933 1.1 dyoung eec |= IXGBE_EEC_CS;
1934 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1935 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1936 1.1 dyoung usec_delay(1);
1937 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1938 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1939 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1940 1.1 dyoung usec_delay(1);
1941 1.1 dyoung }
1942 1.1 dyoung
1943 1.1 dyoung /**
1944 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1945 1.1 dyoung * @hw: pointer to hardware structure
1946 1.1 dyoung * @data: data to send to the EEPROM
1947 1.1 dyoung * @count: number of bits to shift out
1948 1.1 dyoung **/
1949 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1950 1.3 msaitoh u16 count)
1951 1.1 dyoung {
1952 1.1 dyoung u32 eec;
1953 1.1 dyoung u32 mask;
1954 1.1 dyoung u32 i;
1955 1.1 dyoung
1956 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1957 1.1 dyoung
1958 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1959 1.1 dyoung
1960 1.1 dyoung /*
1961 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1962 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1963 1.1 dyoung */
1964 1.1 dyoung mask = 0x01 << (count - 1);
1965 1.1 dyoung
1966 1.1 dyoung for (i = 0; i < count; i++) {
1967 1.1 dyoung /*
1968 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1969 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1970 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1971 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1972 1.1 dyoung * raising and then lowering the clock.
1973 1.1 dyoung */
1974 1.1 dyoung if (data & mask)
1975 1.1 dyoung eec |= IXGBE_EEC_DI;
1976 1.1 dyoung else
1977 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1978 1.1 dyoung
1979 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1980 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1981 1.1 dyoung
1982 1.1 dyoung usec_delay(1);
1983 1.1 dyoung
1984 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1985 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1986 1.1 dyoung
1987 1.1 dyoung /*
1988 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1989 1.1 dyoung * EEPROM
1990 1.1 dyoung */
1991 1.1 dyoung mask = mask >> 1;
1992 1.11 msaitoh }
1993 1.1 dyoung
1994 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1995 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1996 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1997 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1998 1.1 dyoung }
1999 1.1 dyoung
2000 1.1 dyoung /**
2001 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2002 1.1 dyoung * @hw: pointer to hardware structure
2003 1.1 dyoung **/
2004 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2005 1.1 dyoung {
2006 1.1 dyoung u32 eec;
2007 1.1 dyoung u32 i;
2008 1.1 dyoung u16 data = 0;
2009 1.1 dyoung
2010 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2011 1.1 dyoung
2012 1.1 dyoung /*
2013 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2014 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2015 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2016 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2017 1.1 dyoung * "DI" bit should always be clear.
2018 1.1 dyoung */
2019 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2020 1.1 dyoung
2021 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2022 1.1 dyoung
2023 1.1 dyoung for (i = 0; i < count; i++) {
2024 1.1 dyoung data = data << 1;
2025 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2026 1.1 dyoung
2027 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028 1.1 dyoung
2029 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2030 1.1 dyoung if (eec & IXGBE_EEC_DO)
2031 1.1 dyoung data |= 1;
2032 1.1 dyoung
2033 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2034 1.1 dyoung }
2035 1.1 dyoung
2036 1.1 dyoung return data;
2037 1.1 dyoung }
2038 1.1 dyoung
2039 1.1 dyoung /**
2040 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2041 1.1 dyoung * @hw: pointer to hardware structure
2042 1.1 dyoung * @eec: EEC register's current value
2043 1.1 dyoung **/
2044 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2045 1.1 dyoung {
2046 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2047 1.1 dyoung
2048 1.1 dyoung /*
2049 1.1 dyoung * Raise the clock input to the EEPROM
2050 1.1 dyoung * (setting the SK bit), then delay
2051 1.1 dyoung */
2052 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2053 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2054 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2055 1.1 dyoung usec_delay(1);
2056 1.1 dyoung }
2057 1.1 dyoung
2058 1.1 dyoung /**
2059 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2060 1.1 dyoung * @hw: pointer to hardware structure
2061 1.1 dyoung * @eecd: EECD's current value
2062 1.1 dyoung **/
2063 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2064 1.1 dyoung {
2065 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2066 1.1 dyoung
2067 1.1 dyoung /*
2068 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2069 1.1 dyoung * delay
2070 1.1 dyoung */
2071 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2072 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2073 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2074 1.1 dyoung usec_delay(1);
2075 1.1 dyoung }
2076 1.1 dyoung
2077 1.1 dyoung /**
2078 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2079 1.1 dyoung * @hw: pointer to hardware structure
2080 1.1 dyoung **/
2081 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2082 1.1 dyoung {
2083 1.1 dyoung u32 eec;
2084 1.1 dyoung
2085 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2086 1.1 dyoung
2087 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2088 1.1 dyoung
2089 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2090 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2091 1.1 dyoung
2092 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2093 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2094 1.1 dyoung
2095 1.1 dyoung usec_delay(1);
2096 1.1 dyoung
2097 1.1 dyoung /* Stop requesting EEPROM access */
2098 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2099 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2100 1.1 dyoung
2101 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2102 1.1 dyoung
2103 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2104 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2105 1.1 dyoung }
2106 1.1 dyoung
2107 1.1 dyoung /**
2108 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2109 1.1 dyoung * @hw: pointer to hardware structure
2110 1.8 msaitoh *
2111 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2112 1.1 dyoung **/
2113 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2114 1.1 dyoung {
2115 1.1 dyoung u16 i;
2116 1.1 dyoung u16 j;
2117 1.1 dyoung u16 checksum = 0;
2118 1.1 dyoung u16 length = 0;
2119 1.1 dyoung u16 pointer = 0;
2120 1.1 dyoung u16 word = 0;
2121 1.1 dyoung
2122 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2123 1.1 dyoung
2124 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2125 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2126 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2127 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2128 1.8 msaitoh return IXGBE_ERR_EEPROM;
2129 1.1 dyoung }
2130 1.1 dyoung checksum += word;
2131 1.1 dyoung }
2132 1.1 dyoung
2133 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2134 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2135 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2136 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2137 1.8 msaitoh return IXGBE_ERR_EEPROM;
2138 1.8 msaitoh }
2139 1.8 msaitoh
2140 1.8 msaitoh /* If the pointer seems invalid */
2141 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2142 1.8 msaitoh continue;
2143 1.8 msaitoh
2144 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2145 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2146 1.8 msaitoh return IXGBE_ERR_EEPROM;
2147 1.8 msaitoh }
2148 1.8 msaitoh
2149 1.8 msaitoh if (length == 0xFFFF || length == 0)
2150 1.8 msaitoh continue;
2151 1.1 dyoung
2152 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2153 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2154 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2155 1.8 msaitoh return IXGBE_ERR_EEPROM;
2156 1.1 dyoung }
2157 1.8 msaitoh checksum += word;
2158 1.1 dyoung }
2159 1.1 dyoung }
2160 1.1 dyoung
2161 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2162 1.1 dyoung
2163 1.8 msaitoh return (s32)checksum;
2164 1.1 dyoung }
2165 1.1 dyoung
2166 1.1 dyoung /**
2167 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2168 1.1 dyoung * @hw: pointer to hardware structure
2169 1.1 dyoung * @checksum_val: calculated checksum
2170 1.1 dyoung *
2171 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2172 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2173 1.1 dyoung **/
2174 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2175 1.3 msaitoh u16 *checksum_val)
2176 1.1 dyoung {
2177 1.1 dyoung s32 status;
2178 1.1 dyoung u16 checksum;
2179 1.1 dyoung u16 read_checksum = 0;
2180 1.1 dyoung
2181 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2182 1.1 dyoung
2183 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2184 1.1 dyoung * not continue or we could be in for a very long wait while every
2185 1.1 dyoung * EEPROM read fails
2186 1.1 dyoung */
2187 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2188 1.8 msaitoh if (status) {
2189 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2190 1.8 msaitoh return status;
2191 1.8 msaitoh }
2192 1.1 dyoung
2193 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2194 1.8 msaitoh if (status < 0)
2195 1.8 msaitoh return status;
2196 1.1 dyoung
2197 1.8 msaitoh checksum = (u16)(status & 0xffff);
2198 1.1 dyoung
2199 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2200 1.8 msaitoh if (status) {
2201 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2202 1.8 msaitoh return status;
2203 1.1 dyoung }
2204 1.1 dyoung
2205 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2206 1.8 msaitoh * calculated checksum
2207 1.8 msaitoh */
2208 1.8 msaitoh if (read_checksum != checksum)
2209 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2210 1.8 msaitoh
2211 1.8 msaitoh /* If the user cares, return the calculated checksum */
2212 1.8 msaitoh if (checksum_val)
2213 1.8 msaitoh *checksum_val = checksum;
2214 1.8 msaitoh
2215 1.1 dyoung return status;
2216 1.1 dyoung }
2217 1.1 dyoung
2218 1.1 dyoung /**
2219 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2220 1.1 dyoung * @hw: pointer to hardware structure
2221 1.1 dyoung **/
2222 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2223 1.1 dyoung {
2224 1.1 dyoung s32 status;
2225 1.1 dyoung u16 checksum;
2226 1.1 dyoung
2227 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2228 1.1 dyoung
2229 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2230 1.1 dyoung * not continue or we could be in for a very long wait while every
2231 1.1 dyoung * EEPROM read fails
2232 1.1 dyoung */
2233 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2234 1.8 msaitoh if (status) {
2235 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2236 1.8 msaitoh return status;
2237 1.1 dyoung }
2238 1.1 dyoung
2239 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2240 1.8 msaitoh if (status < 0)
2241 1.8 msaitoh return status;
2242 1.8 msaitoh
2243 1.8 msaitoh checksum = (u16)(status & 0xffff);
2244 1.8 msaitoh
2245 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2246 1.8 msaitoh
2247 1.1 dyoung return status;
2248 1.1 dyoung }
2249 1.1 dyoung
2250 1.1 dyoung /**
2251 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2252 1.1 dyoung * @mac_addr: pointer to MAC address.
2253 1.1 dyoung *
2254 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2255 1.1 dyoung **/
2256 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2257 1.1 dyoung {
2258 1.1 dyoung s32 status = IXGBE_SUCCESS;
2259 1.1 dyoung
2260 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2261 1.1 dyoung
2262 1.1 dyoung /* Make sure it is not a multicast address */
2263 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2264 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2265 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2266 1.1 dyoung /* Not a broadcast address */
2267 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2268 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2269 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2270 1.1 dyoung /* Reject the zero address */
2271 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2272 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2273 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2274 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2275 1.1 dyoung }
2276 1.1 dyoung return status;
2277 1.1 dyoung }
2278 1.1 dyoung
2279 1.1 dyoung /**
2280 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2281 1.1 dyoung * @hw: pointer to hardware structure
2282 1.1 dyoung * @index: Receive address register to write
2283 1.1 dyoung * @addr: Address to put into receive address register
2284 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2285 1.1 dyoung * @enable_addr: set flag that address is active
2286 1.1 dyoung *
2287 1.1 dyoung * Puts an ethernet address into a receive address register.
2288 1.1 dyoung **/
2289 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2290 1.3 msaitoh u32 enable_addr)
2291 1.1 dyoung {
2292 1.1 dyoung u32 rar_low, rar_high;
2293 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2294 1.1 dyoung
2295 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2296 1.1 dyoung
2297 1.1 dyoung /* Make sure we are using a valid rar index range */
2298 1.1 dyoung if (index >= rar_entries) {
2299 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2300 1.6 msaitoh "RAR index %d is out of range.\n", index);
2301 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2302 1.1 dyoung }
2303 1.1 dyoung
2304 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2305 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2306 1.1 dyoung
2307 1.1 dyoung /*
2308 1.1 dyoung * HW expects these in little endian so we reverse the byte
2309 1.1 dyoung * order from network order (big endian) to little endian
2310 1.1 dyoung */
2311 1.1 dyoung rar_low = ((u32)addr[0] |
2312 1.3 msaitoh ((u32)addr[1] << 8) |
2313 1.3 msaitoh ((u32)addr[2] << 16) |
2314 1.3 msaitoh ((u32)addr[3] << 24));
2315 1.1 dyoung /*
2316 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2317 1.1 dyoung * so save everything except the lower 16 bits that hold part
2318 1.1 dyoung * of the address and the address valid bit.
2319 1.1 dyoung */
2320 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2321 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2322 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2323 1.1 dyoung
2324 1.1 dyoung if (enable_addr != 0)
2325 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2326 1.1 dyoung
2327 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2328 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2329 1.1 dyoung
2330 1.1 dyoung return IXGBE_SUCCESS;
2331 1.1 dyoung }
2332 1.1 dyoung
2333 1.1 dyoung /**
2334 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2335 1.1 dyoung * @hw: pointer to hardware structure
2336 1.1 dyoung * @index: Receive address register to write
2337 1.1 dyoung *
2338 1.1 dyoung * Clears an ethernet address from a receive address register.
2339 1.1 dyoung **/
2340 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2341 1.1 dyoung {
2342 1.1 dyoung u32 rar_high;
2343 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2344 1.1 dyoung
2345 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2346 1.1 dyoung
2347 1.1 dyoung /* Make sure we are using a valid rar index range */
2348 1.1 dyoung if (index >= rar_entries) {
2349 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2350 1.6 msaitoh "RAR index %d is out of range.\n", index);
2351 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2352 1.1 dyoung }
2353 1.1 dyoung
2354 1.1 dyoung /*
2355 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2356 1.1 dyoung * so save everything except the lower 16 bits that hold part
2357 1.1 dyoung * of the address and the address valid bit.
2358 1.1 dyoung */
2359 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2360 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2361 1.1 dyoung
2362 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2363 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2364 1.1 dyoung
2365 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2366 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2367 1.1 dyoung
2368 1.1 dyoung return IXGBE_SUCCESS;
2369 1.1 dyoung }
2370 1.1 dyoung
2371 1.1 dyoung /**
2372 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2373 1.1 dyoung * @hw: pointer to hardware structure
2374 1.1 dyoung *
2375 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2376 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2377 1.1 dyoung * the receiver is in reset when the routine is called.
2378 1.1 dyoung **/
2379 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2380 1.1 dyoung {
2381 1.1 dyoung u32 i;
2382 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2383 1.1 dyoung
2384 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2385 1.1 dyoung
2386 1.1 dyoung /*
2387 1.1 dyoung * If the current mac address is valid, assume it is a software override
2388 1.1 dyoung * to the permanent address.
2389 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2390 1.1 dyoung */
2391 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2392 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2393 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2394 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2395 1.1 dyoung
2396 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2397 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2398 1.3 msaitoh hw->mac.addr[2]);
2399 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2400 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2401 1.1 dyoung } else {
2402 1.1 dyoung /* Setup the receive address. */
2403 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2404 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2405 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2406 1.3 msaitoh hw->mac.addr[2]);
2407 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2408 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2409 1.1 dyoung
2410 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2411 1.1 dyoung
2412 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2413 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2414 1.1 dyoung }
2415 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2416 1.1 dyoung
2417 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2418 1.1 dyoung
2419 1.1 dyoung /* Zero out the other receive addresses. */
2420 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2421 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2422 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2423 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2424 1.1 dyoung }
2425 1.1 dyoung
2426 1.1 dyoung /* Clear the MTA */
2427 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2428 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2429 1.1 dyoung
2430 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2431 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2432 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2433 1.1 dyoung
2434 1.1 dyoung ixgbe_init_uta_tables(hw);
2435 1.1 dyoung
2436 1.1 dyoung return IXGBE_SUCCESS;
2437 1.1 dyoung }
2438 1.1 dyoung
2439 1.1 dyoung /**
2440 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2441 1.1 dyoung * @hw: pointer to hardware structure
2442 1.1 dyoung * @addr: new address
2443 1.1 dyoung *
2444 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2445 1.1 dyoung **/
2446 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2447 1.1 dyoung {
2448 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2449 1.1 dyoung u32 rar;
2450 1.1 dyoung
2451 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2452 1.1 dyoung
2453 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2454 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2455 1.1 dyoung
2456 1.1 dyoung /*
2457 1.1 dyoung * Place this address in the RAR if there is room,
2458 1.1 dyoung * else put the controller into promiscuous mode
2459 1.1 dyoung */
2460 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2461 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2462 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2463 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2464 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2465 1.1 dyoung } else {
2466 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2467 1.1 dyoung }
2468 1.1 dyoung
2469 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2470 1.1 dyoung }
2471 1.1 dyoung
2472 1.1 dyoung /**
2473 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2474 1.1 dyoung * @hw: pointer to hardware structure
2475 1.1 dyoung * @addr_list: the list of new addresses
2476 1.1 dyoung * @addr_count: number of addresses
2477 1.1 dyoung * @next: iterator function to walk the address list
2478 1.1 dyoung *
2479 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2480 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2481 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2482 1.1 dyoung *
2483 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2484 1.1 dyoung * manually putting the device into promiscuous mode.
2485 1.1 dyoung **/
2486 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2487 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2488 1.1 dyoung {
2489 1.1 dyoung u8 *addr;
2490 1.1 dyoung u32 i;
2491 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2492 1.1 dyoung u32 uc_addr_in_use;
2493 1.1 dyoung u32 fctrl;
2494 1.1 dyoung u32 vmdq;
2495 1.1 dyoung
2496 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2497 1.1 dyoung
2498 1.1 dyoung /*
2499 1.1 dyoung * Clear accounting of old secondary address list,
2500 1.1 dyoung * don't count RAR[0]
2501 1.1 dyoung */
2502 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2503 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2504 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2505 1.1 dyoung
2506 1.1 dyoung /* Zero out the other receive addresses */
2507 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2508 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2509 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2510 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2511 1.1 dyoung }
2512 1.1 dyoung
2513 1.1 dyoung /* Add the new addresses */
2514 1.1 dyoung for (i = 0; i < addr_count; i++) {
2515 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2516 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2517 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2518 1.1 dyoung }
2519 1.1 dyoung
2520 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2521 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2522 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2523 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2524 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2525 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2526 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2527 1.1 dyoung }
2528 1.1 dyoung } else {
2529 1.1 dyoung /* only disable if set by overflow, not by user */
2530 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2531 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2532 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2533 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2534 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2535 1.1 dyoung }
2536 1.1 dyoung }
2537 1.1 dyoung
2538 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2539 1.1 dyoung return IXGBE_SUCCESS;
2540 1.1 dyoung }
2541 1.1 dyoung
2542 1.1 dyoung /**
2543 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2544 1.1 dyoung * @hw: pointer to hardware structure
2545 1.1 dyoung * @mc_addr: the multicast address
2546 1.1 dyoung *
2547 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2548 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2549 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2550 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2551 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2552 1.1 dyoung * to mc_filter_type.
2553 1.1 dyoung **/
2554 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2555 1.1 dyoung {
2556 1.1 dyoung u32 vector = 0;
2557 1.1 dyoung
2558 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2559 1.1 dyoung
2560 1.1 dyoung switch (hw->mac.mc_filter_type) {
2561 1.1 dyoung case 0: /* use bits [47:36] of the address */
2562 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2563 1.1 dyoung break;
2564 1.1 dyoung case 1: /* use bits [46:35] of the address */
2565 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2566 1.1 dyoung break;
2567 1.1 dyoung case 2: /* use bits [45:34] of the address */
2568 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2569 1.1 dyoung break;
2570 1.1 dyoung case 3: /* use bits [43:32] of the address */
2571 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2572 1.1 dyoung break;
2573 1.1 dyoung default: /* Invalid mc_filter_type */
2574 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2575 1.1 dyoung ASSERT(0);
2576 1.1 dyoung break;
2577 1.1 dyoung }
2578 1.1 dyoung
2579 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2580 1.1 dyoung vector &= 0xFFF;
2581 1.1 dyoung return vector;
2582 1.1 dyoung }
2583 1.1 dyoung
2584 1.1 dyoung /**
2585 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2586 1.1 dyoung * @hw: pointer to hardware structure
2587 1.1 dyoung * @hash_value: Multicast address hash value
2588 1.1 dyoung *
2589 1.1 dyoung * Sets the bit-vector in the multicast table.
2590 1.1 dyoung **/
2591 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2592 1.1 dyoung {
2593 1.1 dyoung u32 vector;
2594 1.1 dyoung u32 vector_bit;
2595 1.1 dyoung u32 vector_reg;
2596 1.1 dyoung
2597 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2598 1.1 dyoung
2599 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2600 1.1 dyoung
2601 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2602 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2603 1.1 dyoung
2604 1.1 dyoung /*
2605 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2606 1.1 dyoung * like an array of 4096 bits. We want to set bit
2607 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2608 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2609 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2610 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2611 1.1 dyoung * the value.
2612 1.1 dyoung */
2613 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2614 1.1 dyoung vector_bit = vector & 0x1F;
2615 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2616 1.1 dyoung }
2617 1.1 dyoung
2618 1.1 dyoung /**
2619 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2620 1.1 dyoung * @hw: pointer to hardware structure
2621 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2622 1.1 dyoung * @mc_addr_count: number of addresses
2623 1.1 dyoung * @next: iterator function to walk the multicast address list
2624 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2625 1.1 dyoung *
2626 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2627 1.3 msaitoh * Hashes the given addresses into the multicast table.
2628 1.1 dyoung **/
2629 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2630 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2631 1.3 msaitoh bool clear)
2632 1.1 dyoung {
2633 1.1 dyoung u32 i;
2634 1.1 dyoung u32 vmdq;
2635 1.1 dyoung
2636 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2637 1.1 dyoung
2638 1.1 dyoung /*
2639 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2640 1.1 dyoung * use.
2641 1.1 dyoung */
2642 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2643 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2644 1.1 dyoung
2645 1.1 dyoung /* Clear mta_shadow */
2646 1.3 msaitoh if (clear) {
2647 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2648 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2649 1.3 msaitoh }
2650 1.1 dyoung
2651 1.1 dyoung /* Update mta_shadow */
2652 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2653 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2654 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2655 1.1 dyoung }
2656 1.1 dyoung
2657 1.1 dyoung /* Enable mta */
2658 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2659 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2660 1.1 dyoung hw->mac.mta_shadow[i]);
2661 1.1 dyoung
2662 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2663 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2664 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2665 1.1 dyoung
2666 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2667 1.1 dyoung return IXGBE_SUCCESS;
2668 1.1 dyoung }
2669 1.1 dyoung
2670 1.1 dyoung /**
2671 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2672 1.1 dyoung * @hw: pointer to hardware structure
2673 1.1 dyoung *
2674 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2675 1.1 dyoung **/
2676 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2677 1.1 dyoung {
2678 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2679 1.1 dyoung
2680 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2681 1.1 dyoung
2682 1.1 dyoung if (a->mta_in_use > 0)
2683 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2684 1.3 msaitoh hw->mac.mc_filter_type);
2685 1.1 dyoung
2686 1.1 dyoung return IXGBE_SUCCESS;
2687 1.1 dyoung }
2688 1.1 dyoung
2689 1.1 dyoung /**
2690 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2691 1.1 dyoung * @hw: pointer to hardware structure
2692 1.1 dyoung *
2693 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2694 1.1 dyoung **/
2695 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2696 1.1 dyoung {
2697 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2698 1.1 dyoung
2699 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2700 1.1 dyoung
2701 1.1 dyoung if (a->mta_in_use > 0)
2702 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2703 1.1 dyoung
2704 1.1 dyoung return IXGBE_SUCCESS;
2705 1.1 dyoung }
2706 1.1 dyoung
2707 1.1 dyoung /**
2708 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2709 1.1 dyoung * @hw: pointer to hardware structure
2710 1.1 dyoung *
2711 1.1 dyoung * Enable flow control according to the current settings.
2712 1.1 dyoung **/
2713 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2714 1.1 dyoung {
2715 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2716 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2717 1.1 dyoung u32 reg;
2718 1.1 dyoung u32 fcrtl, fcrth;
2719 1.4 msaitoh int i;
2720 1.1 dyoung
2721 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2722 1.1 dyoung
2723 1.4 msaitoh /* Validate the water mark configuration */
2724 1.4 msaitoh if (!hw->fc.pause_time) {
2725 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2726 1.4 msaitoh goto out;
2727 1.4 msaitoh }
2728 1.4 msaitoh
2729 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2730 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2731 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2732 1.4 msaitoh hw->fc.high_water[i]) {
2733 1.4 msaitoh if (!hw->fc.low_water[i] ||
2734 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2735 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2736 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2737 1.4 msaitoh goto out;
2738 1.4 msaitoh }
2739 1.4 msaitoh }
2740 1.4 msaitoh }
2741 1.4 msaitoh
2742 1.1 dyoung /* Negotiate the fc mode to use */
2743 1.4 msaitoh ixgbe_fc_autoneg(hw);
2744 1.1 dyoung
2745 1.1 dyoung /* Disable any previous flow control settings */
2746 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2747 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2748 1.1 dyoung
2749 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2750 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2751 1.1 dyoung
2752 1.1 dyoung /*
2753 1.1 dyoung * The possible values of fc.current_mode are:
2754 1.1 dyoung * 0: Flow control is completely disabled
2755 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2756 1.1 dyoung * but not send pause frames).
2757 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2758 1.1 dyoung * we do not support receiving pause frames).
2759 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2760 1.1 dyoung * other: Invalid.
2761 1.1 dyoung */
2762 1.1 dyoung switch (hw->fc.current_mode) {
2763 1.1 dyoung case ixgbe_fc_none:
2764 1.1 dyoung /*
2765 1.1 dyoung * Flow control is disabled by software override or autoneg.
2766 1.1 dyoung * The code below will actually disable it in the HW.
2767 1.1 dyoung */
2768 1.1 dyoung break;
2769 1.1 dyoung case ixgbe_fc_rx_pause:
2770 1.1 dyoung /*
2771 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2772 1.1 dyoung * disabled by software override. Since there really
2773 1.1 dyoung * isn't a way to advertise that we are capable of RX
2774 1.1 dyoung * Pause ONLY, we will advertise that we support both
2775 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2776 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2777 1.1 dyoung */
2778 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2779 1.1 dyoung break;
2780 1.1 dyoung case ixgbe_fc_tx_pause:
2781 1.1 dyoung /*
2782 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2783 1.1 dyoung * disabled by software override.
2784 1.1 dyoung */
2785 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2786 1.1 dyoung break;
2787 1.1 dyoung case ixgbe_fc_full:
2788 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2789 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2790 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2791 1.1 dyoung break;
2792 1.1 dyoung default:
2793 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2794 1.6 msaitoh "Flow control param set incorrectly\n");
2795 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2796 1.1 dyoung goto out;
2797 1.1 dyoung break;
2798 1.1 dyoung }
2799 1.1 dyoung
2800 1.1 dyoung /* Set 802.3x based flow control settings. */
2801 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2802 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2803 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2804 1.1 dyoung
2805 1.1 dyoung
2806 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2807 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2808 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2809 1.4 msaitoh hw->fc.high_water[i]) {
2810 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2811 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2812 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2813 1.4 msaitoh } else {
2814 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2815 1.4 msaitoh /*
2816 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2817 1.4 msaitoh * switch is enabled we must set the high water mark
2818 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2819 1.8 msaitoh * the Tx switch to function even under heavy Rx
2820 1.8 msaitoh * workloads.
2821 1.4 msaitoh */
2822 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2823 1.4 msaitoh }
2824 1.4 msaitoh
2825 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2826 1.1 dyoung }
2827 1.1 dyoung
2828 1.1 dyoung /* Configure pause time (2 TCs per register) */
2829 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2830 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2831 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2832 1.1 dyoung
2833 1.4 msaitoh /* Configure flow control refresh threshold value */
2834 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2835 1.1 dyoung
2836 1.1 dyoung out:
2837 1.1 dyoung return ret_val;
2838 1.1 dyoung }
2839 1.1 dyoung
2840 1.1 dyoung /**
2841 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2842 1.1 dyoung * @hw: pointer to hardware structure
2843 1.4 msaitoh * @adv_reg: flow control advertised settings
2844 1.4 msaitoh * @lp_reg: link partner's flow control settings
2845 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2846 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2847 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2848 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2849 1.1 dyoung *
2850 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2851 1.4 msaitoh * advertised settings
2852 1.1 dyoung **/
2853 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2854 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2855 1.1 dyoung {
2856 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2857 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2858 1.6 msaitoh "Local or link partner's advertised flow control "
2859 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2860 1.6 msaitoh adv_reg, lp_reg);
2861 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2862 1.6 msaitoh }
2863 1.1 dyoung
2864 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2865 1.4 msaitoh /*
2866 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2867 1.4 msaitoh * of pause frames. In this case, we had to advertise
2868 1.4 msaitoh * FULL flow control because we could not advertise RX
2869 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2870 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2871 1.4 msaitoh */
2872 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2873 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2874 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2875 1.4 msaitoh } else {
2876 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2877 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2878 1.4 msaitoh }
2879 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2880 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2881 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2882 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2883 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2884 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2885 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2886 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2887 1.4 msaitoh } else {
2888 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2889 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2890 1.4 msaitoh }
2891 1.4 msaitoh return IXGBE_SUCCESS;
2892 1.4 msaitoh }
2893 1.1 dyoung
2894 1.4 msaitoh /**
2895 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2896 1.4 msaitoh * @hw: pointer to hardware structure
2897 1.4 msaitoh *
2898 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2899 1.4 msaitoh **/
2900 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2901 1.4 msaitoh {
2902 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2903 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2904 1.1 dyoung
2905 1.1 dyoung /*
2906 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2907 1.4 msaitoh * - link is up but AN did not complete, or if
2908 1.4 msaitoh * - link is up and AN completed but timed out
2909 1.1 dyoung */
2910 1.4 msaitoh
2911 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2912 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2913 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2914 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2915 1.1 dyoung goto out;
2916 1.6 msaitoh }
2917 1.1 dyoung
2918 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2919 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2920 1.1 dyoung
2921 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2922 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2923 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2924 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2925 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2926 1.1 dyoung
2927 1.1 dyoung out:
2928 1.1 dyoung return ret_val;
2929 1.1 dyoung }
2930 1.1 dyoung
2931 1.1 dyoung /**
2932 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2933 1.1 dyoung * @hw: pointer to hardware structure
2934 1.1 dyoung *
2935 1.1 dyoung * Enable flow control according to IEEE clause 37.
2936 1.1 dyoung **/
2937 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2938 1.1 dyoung {
2939 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2940 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2941 1.1 dyoung
2942 1.1 dyoung /*
2943 1.1 dyoung * On backplane, bail out if
2944 1.1 dyoung * - backplane autoneg was not completed, or if
2945 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2946 1.1 dyoung */
2947 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2948 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2949 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
2950 1.1 dyoung goto out;
2951 1.6 msaitoh }
2952 1.1 dyoung
2953 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2954 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2955 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2956 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
2957 1.1 dyoung goto out;
2958 1.6 msaitoh }
2959 1.1 dyoung }
2960 1.1 dyoung /*
2961 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2962 1.1 dyoung * local flow control settings accordingly
2963 1.1 dyoung */
2964 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2965 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2966 1.1 dyoung
2967 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2968 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2969 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2970 1.1 dyoung
2971 1.1 dyoung out:
2972 1.1 dyoung return ret_val;
2973 1.1 dyoung }
2974 1.1 dyoung
2975 1.1 dyoung /**
2976 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2977 1.1 dyoung * @hw: pointer to hardware structure
2978 1.1 dyoung *
2979 1.1 dyoung * Enable flow control according to IEEE clause 37.
2980 1.1 dyoung **/
2981 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2982 1.1 dyoung {
2983 1.1 dyoung u16 technology_ability_reg = 0;
2984 1.1 dyoung u16 lp_technology_ability_reg = 0;
2985 1.1 dyoung
2986 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2987 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2988 1.1 dyoung &technology_ability_reg);
2989 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2990 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2991 1.1 dyoung &lp_technology_ability_reg);
2992 1.1 dyoung
2993 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2994 1.1 dyoung (u32)lp_technology_ability_reg,
2995 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2996 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2997 1.1 dyoung }
2998 1.1 dyoung
2999 1.1 dyoung /**
3000 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3001 1.1 dyoung * @hw: pointer to hardware structure
3002 1.1 dyoung *
3003 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3004 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3005 1.1 dyoung **/
3006 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3007 1.1 dyoung {
3008 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3009 1.4 msaitoh ixgbe_link_speed speed;
3010 1.4 msaitoh bool link_up;
3011 1.1 dyoung
3012 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3013 1.1 dyoung
3014 1.1 dyoung /*
3015 1.4 msaitoh * AN should have completed when the cable was plugged in.
3016 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3017 1.4 msaitoh * - FC autoneg is disabled, or if
3018 1.4 msaitoh * - link is not up.
3019 1.1 dyoung */
3020 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3021 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3022 1.6 msaitoh "Flow control autoneg is disabled");
3023 1.1 dyoung goto out;
3024 1.6 msaitoh }
3025 1.1 dyoung
3026 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3027 1.6 msaitoh if (!link_up) {
3028 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3029 1.1 dyoung goto out;
3030 1.6 msaitoh }
3031 1.1 dyoung
3032 1.1 dyoung switch (hw->phy.media_type) {
3033 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3034 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3035 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3036 1.1 dyoung case ixgbe_media_type_fiber:
3037 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3038 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3039 1.4 msaitoh break;
3040 1.4 msaitoh
3041 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3042 1.1 dyoung case ixgbe_media_type_backplane:
3043 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3044 1.1 dyoung break;
3045 1.1 dyoung
3046 1.4 msaitoh /* Autoneg flow control on copper adapters */
3047 1.1 dyoung case ixgbe_media_type_copper:
3048 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3049 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3050 1.1 dyoung break;
3051 1.1 dyoung
3052 1.1 dyoung default:
3053 1.1 dyoung break;
3054 1.1 dyoung }
3055 1.1 dyoung
3056 1.4 msaitoh out:
3057 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3058 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3059 1.4 msaitoh } else {
3060 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3061 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3062 1.3 msaitoh }
3063 1.1 dyoung }
3064 1.1 dyoung
3065 1.6 msaitoh /*
3066 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3067 1.6 msaitoh * @hw: pointer to hardware structure
3068 1.6 msaitoh *
3069 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3070 1.6 msaitoh *
3071 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3072 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3073 1.6 msaitoh * 800 = 80 millisec.
3074 1.6 msaitoh */
3075 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3076 1.6 msaitoh {
3077 1.6 msaitoh s16 devctl2;
3078 1.6 msaitoh u32 pollcnt;
3079 1.6 msaitoh
3080 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3081 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3082 1.6 msaitoh
3083 1.6 msaitoh switch (devctl2) {
3084 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3085 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3086 1.6 msaitoh break;
3087 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3088 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3089 1.6 msaitoh break;
3090 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3091 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3092 1.6 msaitoh break;
3093 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3094 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3095 1.6 msaitoh break;
3096 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3097 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3098 1.6 msaitoh break;
3099 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3100 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3101 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3102 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3103 1.6 msaitoh default:
3104 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3105 1.6 msaitoh break;
3106 1.6 msaitoh }
3107 1.6 msaitoh
3108 1.6 msaitoh /* add 10% to spec maximum */
3109 1.6 msaitoh return (pollcnt * 11) / 10;
3110 1.6 msaitoh }
3111 1.6 msaitoh
3112 1.1 dyoung /**
3113 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3114 1.1 dyoung * @hw: pointer to hardware structure
3115 1.1 dyoung *
3116 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3117 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3118 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3119 1.1 dyoung * is returned signifying master requests disabled.
3120 1.1 dyoung **/
3121 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3122 1.1 dyoung {
3123 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3124 1.6 msaitoh u32 i, poll;
3125 1.8 msaitoh u16 value;
3126 1.1 dyoung
3127 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3128 1.1 dyoung
3129 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3130 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3131 1.3 msaitoh
3132 1.6 msaitoh /* Exit if master requests are blocked */
3133 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3134 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3135 1.1 dyoung goto out;
3136 1.1 dyoung
3137 1.3 msaitoh /* Poll for master request bit to clear */
3138 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3139 1.3 msaitoh usec_delay(100);
3140 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3141 1.3 msaitoh goto out;
3142 1.1 dyoung }
3143 1.1 dyoung
3144 1.3 msaitoh /*
3145 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3146 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3147 1.3 msaitoh * of this need. The first reset prevents new master requests from
3148 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3149 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3150 1.3 msaitoh * again to clear out any effects they may have had on our device.
3151 1.3 msaitoh */
3152 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3153 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3154 1.1 dyoung
3155 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3156 1.10 msaitoh goto out;
3157 1.10 msaitoh
3158 1.1 dyoung /*
3159 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3160 1.1 dyoung * transactions pending.
3161 1.1 dyoung */
3162 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3163 1.6 msaitoh for (i = 0; i < poll; i++) {
3164 1.3 msaitoh usec_delay(100);
3165 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3166 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3167 1.8 msaitoh goto out;
3168 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3169 1.3 msaitoh goto out;
3170 1.1 dyoung }
3171 1.1 dyoung
3172 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3173 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3174 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3175 1.1 dyoung
3176 1.1 dyoung out:
3177 1.1 dyoung return status;
3178 1.1 dyoung }
3179 1.1 dyoung
3180 1.1 dyoung /**
3181 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3182 1.1 dyoung * @hw: pointer to hardware structure
3183 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3184 1.1 dyoung *
3185 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3186 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3187 1.1 dyoung **/
3188 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3189 1.1 dyoung {
3190 1.6 msaitoh u32 gssr = 0;
3191 1.1 dyoung u32 swmask = mask;
3192 1.1 dyoung u32 fwmask = mask << 5;
3193 1.6 msaitoh u32 timeout = 200;
3194 1.6 msaitoh u32 i;
3195 1.1 dyoung
3196 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3197 1.1 dyoung
3198 1.6 msaitoh for (i = 0; i < timeout; i++) {
3199 1.1 dyoung /*
3200 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3201 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3202 1.1 dyoung */
3203 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3204 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3205 1.1 dyoung
3206 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3207 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3208 1.6 msaitoh gssr |= swmask;
3209 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3210 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3211 1.6 msaitoh return IXGBE_SUCCESS;
3212 1.6 msaitoh } else {
3213 1.6 msaitoh /* Resource is currently in use by FW or SW */
3214 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3215 1.6 msaitoh msec_delay(5);
3216 1.6 msaitoh }
3217 1.1 dyoung }
3218 1.1 dyoung
3219 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3220 1.6 msaitoh if (gssr & (fwmask | swmask))
3221 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3222 1.1 dyoung
3223 1.6 msaitoh msec_delay(5);
3224 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3225 1.1 dyoung }
3226 1.1 dyoung
3227 1.1 dyoung /**
3228 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3229 1.1 dyoung * @hw: pointer to hardware structure
3230 1.1 dyoung * @mask: Mask to specify which semaphore to release
3231 1.1 dyoung *
3232 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3233 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3234 1.1 dyoung **/
3235 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3236 1.1 dyoung {
3237 1.1 dyoung u32 gssr;
3238 1.1 dyoung u32 swmask = mask;
3239 1.1 dyoung
3240 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3241 1.1 dyoung
3242 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3243 1.1 dyoung
3244 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3245 1.1 dyoung gssr &= ~swmask;
3246 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3247 1.1 dyoung
3248 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3249 1.1 dyoung }
3250 1.1 dyoung
3251 1.1 dyoung /**
3252 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3253 1.3 msaitoh * @hw: pointer to hardware structure
3254 1.3 msaitoh *
3255 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3256 1.3 msaitoh * the Rx security block
3257 1.3 msaitoh **/
3258 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3259 1.3 msaitoh {
3260 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3261 1.3 msaitoh
3262 1.3 msaitoh int i;
3263 1.3 msaitoh int secrxreg;
3264 1.3 msaitoh
3265 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3266 1.3 msaitoh
3267 1.3 msaitoh
3268 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3269 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3270 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3271 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3272 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3273 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3274 1.3 msaitoh break;
3275 1.3 msaitoh else
3276 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3277 1.3 msaitoh usec_delay(1000);
3278 1.3 msaitoh }
3279 1.3 msaitoh
3280 1.3 msaitoh /* For informational purposes only */
3281 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3282 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3283 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3284 1.3 msaitoh
3285 1.3 msaitoh return IXGBE_SUCCESS;
3286 1.3 msaitoh }
3287 1.3 msaitoh
3288 1.3 msaitoh /**
3289 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3290 1.8 msaitoh * @hw: pointer to hardware structure
3291 1.8 msaitoh * @reg_val: Value we read from AUTOC
3292 1.8 msaitoh *
3293 1.8 msaitoh * The default case requires no protection so just to the register read.
3294 1.8 msaitoh */
3295 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3296 1.8 msaitoh {
3297 1.8 msaitoh *locked = FALSE;
3298 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3299 1.8 msaitoh return IXGBE_SUCCESS;
3300 1.8 msaitoh }
3301 1.8 msaitoh
3302 1.8 msaitoh /**
3303 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3304 1.8 msaitoh * @hw: pointer to hardware structure
3305 1.8 msaitoh * @reg_val: value to write to AUTOC
3306 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3307 1.8 msaitoh * previous read.
3308 1.8 msaitoh *
3309 1.8 msaitoh * The default case requires no protection so just to the register write.
3310 1.8 msaitoh */
3311 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3312 1.8 msaitoh {
3313 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3314 1.8 msaitoh
3315 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3316 1.8 msaitoh return IXGBE_SUCCESS;
3317 1.8 msaitoh }
3318 1.8 msaitoh
3319 1.8 msaitoh /**
3320 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3321 1.3 msaitoh * @hw: pointer to hardware structure
3322 1.3 msaitoh *
3323 1.3 msaitoh * Enables the receive data path.
3324 1.3 msaitoh **/
3325 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3326 1.3 msaitoh {
3327 1.3 msaitoh int secrxreg;
3328 1.3 msaitoh
3329 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3330 1.3 msaitoh
3331 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3332 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3333 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3334 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3335 1.3 msaitoh
3336 1.3 msaitoh return IXGBE_SUCCESS;
3337 1.3 msaitoh }
3338 1.3 msaitoh
3339 1.3 msaitoh /**
3340 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3341 1.1 dyoung * @hw: pointer to hardware structure
3342 1.1 dyoung * @regval: register value to write to RXCTRL
3343 1.1 dyoung *
3344 1.1 dyoung * Enables the Rx DMA unit
3345 1.1 dyoung **/
3346 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3347 1.1 dyoung {
3348 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3349 1.1 dyoung
3350 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3351 1.8 msaitoh ixgbe_enable_rx(hw);
3352 1.8 msaitoh else
3353 1.8 msaitoh ixgbe_disable_rx(hw);
3354 1.1 dyoung
3355 1.1 dyoung return IXGBE_SUCCESS;
3356 1.1 dyoung }
3357 1.1 dyoung
3358 1.1 dyoung /**
3359 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3360 1.1 dyoung * @hw: pointer to hardware structure
3361 1.1 dyoung * @index: led number to blink
3362 1.1 dyoung **/
3363 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3364 1.1 dyoung {
3365 1.1 dyoung ixgbe_link_speed speed = 0;
3366 1.1 dyoung bool link_up = 0;
3367 1.8 msaitoh u32 autoc_reg = 0;
3368 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3369 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3370 1.8 msaitoh bool locked = FALSE;
3371 1.1 dyoung
3372 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3373 1.1 dyoung
3374 1.1 dyoung /*
3375 1.1 dyoung * Link must be up to auto-blink the LEDs;
3376 1.1 dyoung * Force it if link is down.
3377 1.1 dyoung */
3378 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3379 1.1 dyoung
3380 1.1 dyoung if (!link_up) {
3381 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3382 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3383 1.8 msaitoh goto out;
3384 1.5 msaitoh
3385 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3386 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3387 1.8 msaitoh
3388 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3389 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3390 1.8 msaitoh goto out;
3391 1.8 msaitoh
3392 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3393 1.1 dyoung msec_delay(10);
3394 1.1 dyoung }
3395 1.1 dyoung
3396 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3397 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3398 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3399 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3400 1.1 dyoung
3401 1.5 msaitoh out:
3402 1.5 msaitoh return ret_val;
3403 1.1 dyoung }
3404 1.1 dyoung
3405 1.1 dyoung /**
3406 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3407 1.1 dyoung * @hw: pointer to hardware structure
3408 1.1 dyoung * @index: led number to stop blinking
3409 1.1 dyoung **/
3410 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3411 1.1 dyoung {
3412 1.8 msaitoh u32 autoc_reg = 0;
3413 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3414 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3415 1.8 msaitoh bool locked = FALSE;
3416 1.1 dyoung
3417 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3418 1.1 dyoung
3419 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3420 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3421 1.8 msaitoh goto out;
3422 1.1 dyoung
3423 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3424 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3425 1.1 dyoung
3426 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3427 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3428 1.8 msaitoh goto out;
3429 1.5 msaitoh
3430 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3431 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3432 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3433 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3434 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3435 1.1 dyoung
3436 1.5 msaitoh out:
3437 1.5 msaitoh return ret_val;
3438 1.1 dyoung }
3439 1.1 dyoung
3440 1.1 dyoung /**
3441 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3442 1.1 dyoung * @hw: pointer to hardware structure
3443 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3444 1.1 dyoung *
3445 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3446 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3447 1.1 dyoung * get and set mac_addr routines.
3448 1.1 dyoung **/
3449 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3450 1.3 msaitoh u16 *san_mac_offset)
3451 1.1 dyoung {
3452 1.6 msaitoh s32 ret_val;
3453 1.6 msaitoh
3454 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3455 1.1 dyoung
3456 1.1 dyoung /*
3457 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3458 1.1 dyoung * available.
3459 1.1 dyoung */
3460 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3461 1.6 msaitoh san_mac_offset);
3462 1.6 msaitoh if (ret_val) {
3463 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3464 1.6 msaitoh "eeprom at offset %d failed",
3465 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3466 1.6 msaitoh }
3467 1.1 dyoung
3468 1.6 msaitoh return ret_val;
3469 1.1 dyoung }
3470 1.1 dyoung
3471 1.1 dyoung /**
3472 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3473 1.1 dyoung * @hw: pointer to hardware structure
3474 1.1 dyoung * @san_mac_addr: SAN MAC address
3475 1.1 dyoung *
3476 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3477 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3478 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3479 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3480 1.1 dyoung **/
3481 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3482 1.1 dyoung {
3483 1.1 dyoung u16 san_mac_data, san_mac_offset;
3484 1.1 dyoung u8 i;
3485 1.6 msaitoh s32 ret_val;
3486 1.1 dyoung
3487 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3488 1.1 dyoung
3489 1.1 dyoung /*
3490 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3491 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3492 1.1 dyoung */
3493 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3494 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3495 1.1 dyoung goto san_mac_addr_out;
3496 1.1 dyoung
3497 1.1 dyoung /* make sure we know which port we need to program */
3498 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3499 1.1 dyoung /* apply the port offset to the address offset */
3500 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3501 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3502 1.1 dyoung for (i = 0; i < 3; i++) {
3503 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3504 1.6 msaitoh &san_mac_data);
3505 1.6 msaitoh if (ret_val) {
3506 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3507 1.6 msaitoh "eeprom read at offset %d failed",
3508 1.6 msaitoh san_mac_offset);
3509 1.6 msaitoh goto san_mac_addr_out;
3510 1.6 msaitoh }
3511 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3512 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3513 1.1 dyoung san_mac_offset++;
3514 1.1 dyoung }
3515 1.6 msaitoh return IXGBE_SUCCESS;
3516 1.1 dyoung
3517 1.1 dyoung san_mac_addr_out:
3518 1.6 msaitoh /*
3519 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3520 1.6 msaitoh * error though, so just wipe the local address and return.
3521 1.6 msaitoh */
3522 1.6 msaitoh for (i = 0; i < 6; i++)
3523 1.6 msaitoh san_mac_addr[i] = 0xFF;
3524 1.1 dyoung return IXGBE_SUCCESS;
3525 1.1 dyoung }
3526 1.1 dyoung
3527 1.1 dyoung /**
3528 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3529 1.1 dyoung * @hw: pointer to hardware structure
3530 1.1 dyoung * @san_mac_addr: SAN MAC address
3531 1.1 dyoung *
3532 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3533 1.1 dyoung **/
3534 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3535 1.1 dyoung {
3536 1.6 msaitoh s32 ret_val;
3537 1.1 dyoung u16 san_mac_data, san_mac_offset;
3538 1.1 dyoung u8 i;
3539 1.1 dyoung
3540 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3541 1.1 dyoung
3542 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3543 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3544 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3545 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3546 1.1 dyoung
3547 1.1 dyoung /* Make sure we know which port we need to write */
3548 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3549 1.1 dyoung /* Apply the port offset to the address offset */
3550 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3551 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3552 1.1 dyoung
3553 1.1 dyoung for (i = 0; i < 3; i++) {
3554 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3555 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3556 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3557 1.1 dyoung san_mac_offset++;
3558 1.1 dyoung }
3559 1.1 dyoung
3560 1.6 msaitoh return IXGBE_SUCCESS;
3561 1.1 dyoung }
3562 1.1 dyoung
3563 1.1 dyoung /**
3564 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3565 1.1 dyoung * @hw: pointer to hardware structure
3566 1.1 dyoung *
3567 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3568 1.1 dyoung * the capabilities table.
3569 1.1 dyoung **/
3570 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3571 1.1 dyoung {
3572 1.4 msaitoh u16 msix_count = 1;
3573 1.4 msaitoh u16 max_msix_count;
3574 1.4 msaitoh u16 pcie_offset;
3575 1.4 msaitoh
3576 1.4 msaitoh switch (hw->mac.type) {
3577 1.4 msaitoh case ixgbe_mac_82598EB:
3578 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3579 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3580 1.4 msaitoh break;
3581 1.4 msaitoh case ixgbe_mac_82599EB:
3582 1.4 msaitoh case ixgbe_mac_X540:
3583 1.8 msaitoh case ixgbe_mac_X550:
3584 1.8 msaitoh case ixgbe_mac_X550EM_x:
3585 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3586 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3587 1.4 msaitoh break;
3588 1.4 msaitoh default:
3589 1.4 msaitoh return msix_count;
3590 1.4 msaitoh }
3591 1.1 dyoung
3592 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3593 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3594 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3595 1.8 msaitoh msix_count = 0;
3596 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3597 1.4 msaitoh
3598 1.4 msaitoh /* MSI-X count is zero-based in HW */
3599 1.4 msaitoh msix_count++;
3600 1.4 msaitoh
3601 1.4 msaitoh if (msix_count > max_msix_count)
3602 1.4 msaitoh msix_count = max_msix_count;
3603 1.1 dyoung
3604 1.1 dyoung return msix_count;
3605 1.1 dyoung }
3606 1.1 dyoung
3607 1.1 dyoung /**
3608 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3609 1.1 dyoung * @hw: pointer to hardware structure
3610 1.1 dyoung * @addr: Address to put into receive address register
3611 1.1 dyoung * @vmdq: VMDq pool to assign
3612 1.1 dyoung *
3613 1.1 dyoung * Puts an ethernet address into a receive address register, or
3614 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3615 1.1 dyoung **/
3616 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3617 1.1 dyoung {
3618 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3619 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3620 1.1 dyoung u32 rar;
3621 1.1 dyoung u32 rar_low, rar_high;
3622 1.1 dyoung u32 addr_low, addr_high;
3623 1.1 dyoung
3624 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3625 1.1 dyoung
3626 1.1 dyoung /* swap bytes for HW little endian */
3627 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3628 1.1 dyoung | (addr[2] << 16)
3629 1.1 dyoung | (addr[3] << 24);
3630 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3631 1.1 dyoung
3632 1.1 dyoung /*
3633 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3634 1.1 dyoung * rar_highwater points to just after the highest currently used
3635 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3636 1.1 dyoung * rar to the top.
3637 1.1 dyoung */
3638 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3639 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3640 1.1 dyoung
3641 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3642 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3643 1.1 dyoung first_empty_rar = rar;
3644 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3645 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3646 1.1 dyoung if (rar_low == addr_low)
3647 1.1 dyoung break; /* found it already in the rars */
3648 1.1 dyoung }
3649 1.1 dyoung }
3650 1.1 dyoung
3651 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3652 1.1 dyoung /* already there so just add to the pool bits */
3653 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3654 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3655 1.1 dyoung /* stick it into first empty RAR slot we found */
3656 1.1 dyoung rar = first_empty_rar;
3657 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3658 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3659 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3660 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3661 1.1 dyoung hw->mac.rar_highwater++;
3662 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3663 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3664 1.1 dyoung }
3665 1.1 dyoung
3666 1.1 dyoung /*
3667 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3668 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3669 1.1 dyoung */
3670 1.1 dyoung if (rar == 0)
3671 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3672 1.1 dyoung
3673 1.1 dyoung return rar;
3674 1.1 dyoung }
3675 1.1 dyoung
3676 1.1 dyoung /**
3677 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3678 1.1 dyoung * @hw: pointer to hardware struct
3679 1.1 dyoung * @rar: receive address register index to disassociate
3680 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3681 1.1 dyoung **/
3682 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3683 1.1 dyoung {
3684 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3685 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3686 1.1 dyoung
3687 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3688 1.1 dyoung
3689 1.1 dyoung /* Make sure we are using a valid rar index range */
3690 1.1 dyoung if (rar >= rar_entries) {
3691 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3692 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3693 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3694 1.1 dyoung }
3695 1.1 dyoung
3696 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3697 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3698 1.1 dyoung
3699 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3700 1.8 msaitoh goto done;
3701 1.8 msaitoh
3702 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3703 1.1 dyoung goto done;
3704 1.1 dyoung
3705 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3706 1.1 dyoung if (mpsar_lo) {
3707 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3708 1.1 dyoung mpsar_lo = 0;
3709 1.1 dyoung }
3710 1.1 dyoung if (mpsar_hi) {
3711 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3712 1.1 dyoung mpsar_hi = 0;
3713 1.1 dyoung }
3714 1.1 dyoung } else if (vmdq < 32) {
3715 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3716 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3717 1.1 dyoung } else {
3718 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3719 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3720 1.1 dyoung }
3721 1.1 dyoung
3722 1.1 dyoung /* was that the last pool using this rar? */
3723 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3724 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3725 1.1 dyoung done:
3726 1.1 dyoung return IXGBE_SUCCESS;
3727 1.1 dyoung }
3728 1.1 dyoung
3729 1.1 dyoung /**
3730 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3731 1.1 dyoung * @hw: pointer to hardware struct
3732 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3733 1.1 dyoung * @vmdq: VMDq pool index
3734 1.1 dyoung **/
3735 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3736 1.1 dyoung {
3737 1.1 dyoung u32 mpsar;
3738 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3739 1.1 dyoung
3740 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3741 1.1 dyoung
3742 1.1 dyoung /* Make sure we are using a valid rar index range */
3743 1.1 dyoung if (rar >= rar_entries) {
3744 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3745 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3746 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3747 1.1 dyoung }
3748 1.1 dyoung
3749 1.1 dyoung if (vmdq < 32) {
3750 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3751 1.1 dyoung mpsar |= 1 << vmdq;
3752 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3753 1.1 dyoung } else {
3754 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3755 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3756 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3757 1.1 dyoung }
3758 1.1 dyoung return IXGBE_SUCCESS;
3759 1.1 dyoung }
3760 1.1 dyoung
3761 1.1 dyoung /**
3762 1.4 msaitoh * This function should only be involved in the IOV mode.
3763 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3764 1.4 msaitoh * VFs advertized and not 0.
3765 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3766 1.4 msaitoh *
3767 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3768 1.4 msaitoh * @hw: pointer to hardware struct
3769 1.4 msaitoh * @vmdq: VMDq pool index
3770 1.4 msaitoh **/
3771 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3772 1.4 msaitoh {
3773 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3774 1.4 msaitoh
3775 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3776 1.4 msaitoh
3777 1.4 msaitoh if (vmdq < 32) {
3778 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3779 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3780 1.4 msaitoh } else {
3781 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3782 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3783 1.4 msaitoh }
3784 1.4 msaitoh
3785 1.4 msaitoh return IXGBE_SUCCESS;
3786 1.4 msaitoh }
3787 1.4 msaitoh
3788 1.4 msaitoh /**
3789 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3790 1.1 dyoung * @hw: pointer to hardware structure
3791 1.1 dyoung **/
3792 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3793 1.1 dyoung {
3794 1.1 dyoung int i;
3795 1.1 dyoung
3796 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3797 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3798 1.1 dyoung
3799 1.1 dyoung for (i = 0; i < 128; i++)
3800 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3801 1.1 dyoung
3802 1.1 dyoung return IXGBE_SUCCESS;
3803 1.1 dyoung }
3804 1.1 dyoung
3805 1.1 dyoung /**
3806 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3807 1.1 dyoung * @hw: pointer to hardware structure
3808 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3809 1.1 dyoung *
3810 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3811 1.1 dyoung *
3812 1.1 dyoung **/
3813 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3814 1.1 dyoung {
3815 1.1 dyoung u32 bits = 0;
3816 1.1 dyoung u32 first_empty_slot = 0;
3817 1.1 dyoung s32 regindex;
3818 1.1 dyoung
3819 1.1 dyoung /* short cut the special case */
3820 1.1 dyoung if (vlan == 0)
3821 1.1 dyoung return 0;
3822 1.1 dyoung
3823 1.1 dyoung /*
3824 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3825 1.1 dyoung * slot found along the way
3826 1.1 dyoung */
3827 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3828 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3829 1.1 dyoung if (!bits && !(first_empty_slot))
3830 1.1 dyoung first_empty_slot = regindex;
3831 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3832 1.1 dyoung break;
3833 1.1 dyoung }
3834 1.1 dyoung
3835 1.1 dyoung /*
3836 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3837 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3838 1.1 dyoung * vlan id.
3839 1.1 dyoung */
3840 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3841 1.1 dyoung if (first_empty_slot)
3842 1.1 dyoung regindex = first_empty_slot;
3843 1.1 dyoung else {
3844 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3845 1.6 msaitoh "No space in VLVF.\n");
3846 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3847 1.1 dyoung }
3848 1.1 dyoung }
3849 1.1 dyoung
3850 1.1 dyoung return regindex;
3851 1.1 dyoung }
3852 1.1 dyoung
3853 1.1 dyoung /**
3854 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3855 1.1 dyoung * @hw: pointer to hardware structure
3856 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3857 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3858 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3859 1.1 dyoung *
3860 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3861 1.1 dyoung **/
3862 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3863 1.3 msaitoh bool vlan_on)
3864 1.1 dyoung {
3865 1.1 dyoung s32 regindex;
3866 1.1 dyoung u32 bitindex;
3867 1.1 dyoung u32 vfta;
3868 1.1 dyoung u32 targetbit;
3869 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3870 1.1 dyoung bool vfta_changed = FALSE;
3871 1.1 dyoung
3872 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3873 1.1 dyoung
3874 1.1 dyoung if (vlan > 4095)
3875 1.1 dyoung return IXGBE_ERR_PARAM;
3876 1.1 dyoung
3877 1.1 dyoung /*
3878 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3879 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3880 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3881 1.1 dyoung */
3882 1.1 dyoung
3883 1.1 dyoung /* Part 1
3884 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3885 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3886 1.1 dyoung * bits[11-5]: which register
3887 1.1 dyoung * bits[4-0]: which bit in the register
3888 1.1 dyoung */
3889 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3890 1.1 dyoung bitindex = vlan & 0x1F;
3891 1.1 dyoung targetbit = (1 << bitindex);
3892 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3893 1.1 dyoung
3894 1.1 dyoung if (vlan_on) {
3895 1.1 dyoung if (!(vfta & targetbit)) {
3896 1.1 dyoung vfta |= targetbit;
3897 1.1 dyoung vfta_changed = TRUE;
3898 1.1 dyoung }
3899 1.1 dyoung } else {
3900 1.1 dyoung if ((vfta & targetbit)) {
3901 1.1 dyoung vfta &= ~targetbit;
3902 1.1 dyoung vfta_changed = TRUE;
3903 1.1 dyoung }
3904 1.1 dyoung }
3905 1.1 dyoung
3906 1.1 dyoung /* Part 2
3907 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3908 1.3 msaitoh */
3909 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3910 1.3 msaitoh &vfta_changed);
3911 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3912 1.3 msaitoh return ret_val;
3913 1.3 msaitoh
3914 1.3 msaitoh if (vfta_changed)
3915 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3916 1.3 msaitoh
3917 1.3 msaitoh return IXGBE_SUCCESS;
3918 1.3 msaitoh }
3919 1.3 msaitoh
3920 1.3 msaitoh /**
3921 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3922 1.3 msaitoh * @hw: pointer to hardware structure
3923 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3924 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3925 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3926 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3927 1.3 msaitoh * should be changed
3928 1.3 msaitoh *
3929 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3930 1.3 msaitoh **/
3931 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3932 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3933 1.3 msaitoh {
3934 1.3 msaitoh u32 vt;
3935 1.3 msaitoh
3936 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3937 1.3 msaitoh
3938 1.3 msaitoh if (vlan > 4095)
3939 1.3 msaitoh return IXGBE_ERR_PARAM;
3940 1.3 msaitoh
3941 1.3 msaitoh /* If VT Mode is set
3942 1.1 dyoung * Either vlan_on
3943 1.1 dyoung * make sure the vlan is in VLVF
3944 1.1 dyoung * set the vind bit in the matching VLVFB
3945 1.1 dyoung * Or !vlan_on
3946 1.1 dyoung * clear the pool bit and possibly the vind
3947 1.1 dyoung */
3948 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3949 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3950 1.1 dyoung s32 vlvf_index;
3951 1.3 msaitoh u32 bits;
3952 1.1 dyoung
3953 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3954 1.1 dyoung if (vlvf_index < 0)
3955 1.1 dyoung return vlvf_index;
3956 1.1 dyoung
3957 1.1 dyoung if (vlan_on) {
3958 1.1 dyoung /* set the pool bit */
3959 1.1 dyoung if (vind < 32) {
3960 1.1 dyoung bits = IXGBE_READ_REG(hw,
3961 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3962 1.1 dyoung bits |= (1 << vind);
3963 1.1 dyoung IXGBE_WRITE_REG(hw,
3964 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3965 1.1 dyoung bits);
3966 1.1 dyoung } else {
3967 1.1 dyoung bits = IXGBE_READ_REG(hw,
3968 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3969 1.3 msaitoh bits |= (1 << (vind - 32));
3970 1.1 dyoung IXGBE_WRITE_REG(hw,
3971 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3972 1.3 msaitoh bits);
3973 1.1 dyoung }
3974 1.1 dyoung } else {
3975 1.1 dyoung /* clear the pool bit */
3976 1.1 dyoung if (vind < 32) {
3977 1.1 dyoung bits = IXGBE_READ_REG(hw,
3978 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3979 1.1 dyoung bits &= ~(1 << vind);
3980 1.1 dyoung IXGBE_WRITE_REG(hw,
3981 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3982 1.1 dyoung bits);
3983 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3984 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3985 1.1 dyoung } else {
3986 1.1 dyoung bits = IXGBE_READ_REG(hw,
3987 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3988 1.3 msaitoh bits &= ~(1 << (vind - 32));
3989 1.1 dyoung IXGBE_WRITE_REG(hw,
3990 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3991 1.3 msaitoh bits);
3992 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3993 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3994 1.1 dyoung }
3995 1.1 dyoung }
3996 1.1 dyoung
3997 1.1 dyoung /*
3998 1.1 dyoung * If there are still bits set in the VLVFB registers
3999 1.1 dyoung * for the VLAN ID indicated we need to see if the
4000 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
4001 1.1 dyoung * If the caller has requested that we clear the VFTA
4002 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
4003 1.1 dyoung * ID entry then ignore the request. We're not worried
4004 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
4005 1.1 dyoung * entry bit on, only when requested to turn it off as
4006 1.1 dyoung * there may be multiple pools and/or VFs using the
4007 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
4008 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
4009 1.1 dyoung * been cleared. This will be indicated by "bits" being
4010 1.1 dyoung * zero.
4011 1.1 dyoung */
4012 1.1 dyoung if (bits) {
4013 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4014 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
4015 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
4016 1.1 dyoung /* someone wants to clear the vfta entry
4017 1.1 dyoung * but some pools/VFs are still using it.
4018 1.1 dyoung * Ignore it. */
4019 1.3 msaitoh *vfta_changed = FALSE;
4020 1.1 dyoung }
4021 1.3 msaitoh } else
4022 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4023 1.1 dyoung }
4024 1.1 dyoung
4025 1.1 dyoung return IXGBE_SUCCESS;
4026 1.1 dyoung }
4027 1.1 dyoung
4028 1.1 dyoung /**
4029 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4030 1.1 dyoung * @hw: pointer to hardware structure
4031 1.1 dyoung *
4032 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4033 1.1 dyoung **/
4034 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4035 1.1 dyoung {
4036 1.1 dyoung u32 offset;
4037 1.1 dyoung
4038 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4039 1.1 dyoung
4040 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4041 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4042 1.1 dyoung
4043 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4044 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4045 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4046 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4047 1.1 dyoung }
4048 1.1 dyoung
4049 1.1 dyoung return IXGBE_SUCCESS;
4050 1.1 dyoung }
4051 1.1 dyoung
4052 1.1 dyoung /**
4053 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4054 1.1 dyoung * @hw: pointer to hardware structure
4055 1.1 dyoung * @speed: pointer to link speed
4056 1.1 dyoung * @link_up: TRUE when link is up
4057 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4058 1.1 dyoung *
4059 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4060 1.1 dyoung **/
4061 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4062 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4063 1.1 dyoung {
4064 1.1 dyoung u32 links_reg, links_orig;
4065 1.1 dyoung u32 i;
4066 1.1 dyoung
4067 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4068 1.1 dyoung
4069 1.1 dyoung /* clear the old state */
4070 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4071 1.1 dyoung
4072 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4073 1.1 dyoung
4074 1.1 dyoung if (links_orig != links_reg) {
4075 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4076 1.3 msaitoh links_orig, links_reg);
4077 1.1 dyoung }
4078 1.1 dyoung
4079 1.1 dyoung if (link_up_wait_to_complete) {
4080 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4081 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4082 1.1 dyoung *link_up = TRUE;
4083 1.1 dyoung break;
4084 1.1 dyoung } else {
4085 1.1 dyoung *link_up = FALSE;
4086 1.1 dyoung }
4087 1.1 dyoung msec_delay(100);
4088 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4089 1.1 dyoung }
4090 1.1 dyoung } else {
4091 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4092 1.1 dyoung *link_up = TRUE;
4093 1.1 dyoung else
4094 1.1 dyoung *link_up = FALSE;
4095 1.1 dyoung }
4096 1.1 dyoung
4097 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4098 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4099 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4100 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4101 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4102 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4103 1.8 msaitoh }
4104 1.8 msaitoh break;
4105 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4106 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4107 1.8 msaitoh break;
4108 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4109 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4110 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4111 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4112 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4113 1.8 msaitoh }
4114 1.8 msaitoh break;
4115 1.8 msaitoh default:
4116 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4117 1.8 msaitoh }
4118 1.1 dyoung
4119 1.1 dyoung return IXGBE_SUCCESS;
4120 1.1 dyoung }
4121 1.1 dyoung
4122 1.1 dyoung /**
4123 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4124 1.1 dyoung * the EEPROM
4125 1.1 dyoung * @hw: pointer to hardware structure
4126 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4127 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4128 1.1 dyoung *
4129 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4130 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4131 1.1 dyoung **/
4132 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4133 1.3 msaitoh u16 *wwpn_prefix)
4134 1.1 dyoung {
4135 1.1 dyoung u16 offset, caps;
4136 1.1 dyoung u16 alt_san_mac_blk_offset;
4137 1.1 dyoung
4138 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4139 1.1 dyoung
4140 1.1 dyoung /* clear output first */
4141 1.1 dyoung *wwnn_prefix = 0xFFFF;
4142 1.1 dyoung *wwpn_prefix = 0xFFFF;
4143 1.1 dyoung
4144 1.1 dyoung /* check if alternative SAN MAC is supported */
4145 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4146 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4147 1.6 msaitoh goto wwn_prefix_err;
4148 1.1 dyoung
4149 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4150 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4151 1.1 dyoung goto wwn_prefix_out;
4152 1.1 dyoung
4153 1.1 dyoung /* check capability in alternative san mac address block */
4154 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4155 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4156 1.6 msaitoh goto wwn_prefix_err;
4157 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4158 1.1 dyoung goto wwn_prefix_out;
4159 1.1 dyoung
4160 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4161 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4162 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4163 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4164 1.6 msaitoh "eeprom read at offset %d failed", offset);
4165 1.6 msaitoh }
4166 1.1 dyoung
4167 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4168 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4169 1.6 msaitoh goto wwn_prefix_err;
4170 1.1 dyoung
4171 1.1 dyoung wwn_prefix_out:
4172 1.1 dyoung return IXGBE_SUCCESS;
4173 1.6 msaitoh
4174 1.6 msaitoh wwn_prefix_err:
4175 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4176 1.6 msaitoh "eeprom read at offset %d failed", offset);
4177 1.6 msaitoh return IXGBE_SUCCESS;
4178 1.1 dyoung }
4179 1.1 dyoung
4180 1.1 dyoung /**
4181 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4182 1.1 dyoung * @hw: pointer to hardware structure
4183 1.1 dyoung * @bs: the fcoe boot status
4184 1.1 dyoung *
4185 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4186 1.1 dyoung **/
4187 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4188 1.1 dyoung {
4189 1.1 dyoung u16 offset, caps, flags;
4190 1.1 dyoung s32 status;
4191 1.1 dyoung
4192 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4193 1.1 dyoung
4194 1.1 dyoung /* clear output first */
4195 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4196 1.1 dyoung
4197 1.1 dyoung /* check if FCOE IBA block is present */
4198 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4199 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4200 1.1 dyoung if (status != IXGBE_SUCCESS)
4201 1.1 dyoung goto out;
4202 1.1 dyoung
4203 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4204 1.1 dyoung goto out;
4205 1.1 dyoung
4206 1.1 dyoung /* check if iSCSI FCOE block is populated */
4207 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4208 1.1 dyoung if (status != IXGBE_SUCCESS)
4209 1.1 dyoung goto out;
4210 1.1 dyoung
4211 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4212 1.1 dyoung goto out;
4213 1.1 dyoung
4214 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4215 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4216 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4217 1.1 dyoung if (status != IXGBE_SUCCESS)
4218 1.1 dyoung goto out;
4219 1.1 dyoung
4220 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4221 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4222 1.1 dyoung else
4223 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4224 1.1 dyoung
4225 1.1 dyoung out:
4226 1.1 dyoung return status;
4227 1.1 dyoung }
4228 1.1 dyoung
4229 1.1 dyoung /**
4230 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4231 1.1 dyoung * @hw: pointer to hardware structure
4232 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4233 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4234 1.1 dyoung *
4235 1.1 dyoung **/
4236 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4237 1.1 dyoung {
4238 1.1 dyoung int j;
4239 1.1 dyoung int pf_target_reg = pf >> 3;
4240 1.1 dyoung int pf_target_shift = pf % 8;
4241 1.1 dyoung u32 pfvfspoof = 0;
4242 1.1 dyoung
4243 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4244 1.1 dyoung return;
4245 1.1 dyoung
4246 1.1 dyoung if (enable)
4247 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4248 1.1 dyoung
4249 1.1 dyoung /*
4250 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4251 1.1 dyoung * MAC anti-spoof enables in each register array element.
4252 1.1 dyoung */
4253 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4254 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4255 1.1 dyoung
4256 1.4 msaitoh /*
4257 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4258 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4259 1.4 msaitoh */
4260 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4261 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4262 1.1 dyoung
4263 1.1 dyoung /*
4264 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4265 1.4 msaitoh * anti-spoofing enabled.
4266 1.1 dyoung */
4267 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4268 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4269 1.1 dyoung }
4270 1.1 dyoung
4271 1.1 dyoung /**
4272 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4273 1.1 dyoung * @hw: pointer to hardware structure
4274 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4275 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4276 1.1 dyoung *
4277 1.1 dyoung **/
4278 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4279 1.1 dyoung {
4280 1.1 dyoung int vf_target_reg = vf >> 3;
4281 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4282 1.1 dyoung u32 pfvfspoof;
4283 1.1 dyoung
4284 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4285 1.1 dyoung return;
4286 1.1 dyoung
4287 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4288 1.1 dyoung if (enable)
4289 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4290 1.1 dyoung else
4291 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4292 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4293 1.1 dyoung }
4294 1.1 dyoung
4295 1.1 dyoung /**
4296 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4297 1.1 dyoung * @hw: pointer to hardware structure
4298 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4299 1.1 dyoung *
4300 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4301 1.1 dyoung * and return the word through device_caps.
4302 1.1 dyoung **/
4303 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4304 1.1 dyoung {
4305 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4306 1.1 dyoung
4307 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4308 1.1 dyoung
4309 1.1 dyoung return IXGBE_SUCCESS;
4310 1.1 dyoung }
4311 1.1 dyoung
4312 1.1 dyoung /**
4313 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4314 1.1 dyoung * @hw: pointer to hardware structure
4315 1.1 dyoung *
4316 1.1 dyoung **/
4317 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4318 1.1 dyoung {
4319 1.1 dyoung u32 regval;
4320 1.1 dyoung u32 i;
4321 1.1 dyoung
4322 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4323 1.1 dyoung
4324 1.1 dyoung /* Enable relaxed ordering */
4325 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4326 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4327 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4328 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4329 1.1 dyoung }
4330 1.1 dyoung
4331 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4332 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4333 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4334 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4335 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4336 1.1 dyoung }
4337 1.1 dyoung
4338 1.1 dyoung }
4339 1.3 msaitoh
4340 1.3 msaitoh /**
4341 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4342 1.3 msaitoh * @buffer: pointer to EEPROM
4343 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4344 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4345 1.3 msaitoh * checksum calculated is returned.
4346 1.3 msaitoh **/
4347 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4348 1.3 msaitoh {
4349 1.3 msaitoh u32 i;
4350 1.3 msaitoh u8 sum = 0;
4351 1.3 msaitoh
4352 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4353 1.3 msaitoh
4354 1.3 msaitoh if (!buffer)
4355 1.3 msaitoh return 0;
4356 1.3 msaitoh
4357 1.3 msaitoh for (i = 0; i < length; i++)
4358 1.3 msaitoh sum += buffer[i];
4359 1.3 msaitoh
4360 1.3 msaitoh return (u8) (0 - sum);
4361 1.3 msaitoh }
4362 1.3 msaitoh
4363 1.3 msaitoh /**
4364 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4365 1.3 msaitoh * @hw: pointer to the HW structure
4366 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4367 1.3 msaitoh * be placed
4368 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4369 1.8 msaitoh * @timeout: time in ms to wait for command completion
4370 1.8 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4371 1.8 msaitoh * Needed because FW structures are big endian and decoding of
4372 1.8 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4373 1.8 msaitoh * is not easily understood without making a table of commands.
4374 1.8 msaitoh * So we will leave this up to the caller to read back the data
4375 1.8 msaitoh * in these cases.
4376 1.3 msaitoh *
4377 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4378 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4379 1.3 msaitoh **/
4380 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4381 1.8 msaitoh u32 length, u32 timeout, bool return_data)
4382 1.3 msaitoh {
4383 1.8 msaitoh u32 hicr, i, bi, fwsts;
4384 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4385 1.8 msaitoh u16 buf_len;
4386 1.8 msaitoh u16 dword_len;
4387 1.3 msaitoh
4388 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4389 1.3 msaitoh
4390 1.8 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4391 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4392 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4393 1.8 msaitoh }
4394 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4395 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4396 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4397 1.3 msaitoh
4398 1.3 msaitoh /* Check that the host interface is enabled. */
4399 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4400 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4401 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4402 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4403 1.8 msaitoh }
4404 1.8 msaitoh
4405 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4406 1.8 msaitoh if ((length % (sizeof(u32))) != 0) {
4407 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4408 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4409 1.3 msaitoh }
4410 1.3 msaitoh
4411 1.3 msaitoh dword_len = length >> 2;
4412 1.3 msaitoh
4413 1.8 msaitoh /* The device driver writes the relevant command block
4414 1.3 msaitoh * into the ram area.
4415 1.3 msaitoh */
4416 1.3 msaitoh for (i = 0; i < dword_len; i++)
4417 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4418 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4419 1.3 msaitoh
4420 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4421 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4422 1.3 msaitoh
4423 1.8 msaitoh for (i = 0; i < timeout; i++) {
4424 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4425 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4426 1.3 msaitoh break;
4427 1.3 msaitoh msec_delay(1);
4428 1.3 msaitoh }
4429 1.3 msaitoh
4430 1.8 msaitoh /* Check command completion */
4431 1.8 msaitoh if ((timeout != 0 && i == timeout) ||
4432 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4433 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4434 1.8 msaitoh "Command has failed with no status valid.\n");
4435 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4436 1.3 msaitoh }
4437 1.3 msaitoh
4438 1.8 msaitoh if (!return_data)
4439 1.8 msaitoh return 0;
4440 1.8 msaitoh
4441 1.3 msaitoh /* Calculate length in DWORDs */
4442 1.3 msaitoh dword_len = hdr_size >> 2;
4443 1.3 msaitoh
4444 1.3 msaitoh /* first pull in the header so we know the buffer length */
4445 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4446 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4447 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4448 1.3 msaitoh }
4449 1.3 msaitoh
4450 1.3 msaitoh /* If there is any thing in data position pull it in */
4451 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4452 1.3 msaitoh if (buf_len == 0)
4453 1.8 msaitoh return 0;
4454 1.3 msaitoh
4455 1.8 msaitoh if (length < buf_len + hdr_size) {
4456 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4457 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4458 1.3 msaitoh }
4459 1.3 msaitoh
4460 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4461 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4462 1.3 msaitoh
4463 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4464 1.3 msaitoh for (; bi <= dword_len; bi++) {
4465 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4466 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4467 1.3 msaitoh }
4468 1.3 msaitoh
4469 1.8 msaitoh return 0;
4470 1.3 msaitoh }
4471 1.3 msaitoh
4472 1.3 msaitoh /**
4473 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4474 1.3 msaitoh * @hw: pointer to the HW structure
4475 1.3 msaitoh * @maj: driver version major number
4476 1.7 riastrad * @minr: driver version minor number
4477 1.3 msaitoh * @build: driver version build number
4478 1.3 msaitoh * @sub: driver version sub build number
4479 1.3 msaitoh *
4480 1.3 msaitoh * Sends driver version number to firmware through the manageability
4481 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4482 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4483 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4484 1.3 msaitoh **/
4485 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4486 1.3 msaitoh u8 build, u8 sub)
4487 1.3 msaitoh {
4488 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4489 1.3 msaitoh int i;
4490 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4491 1.3 msaitoh
4492 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4493 1.3 msaitoh
4494 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4495 1.3 msaitoh != IXGBE_SUCCESS) {
4496 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4497 1.3 msaitoh goto out;
4498 1.3 msaitoh }
4499 1.3 msaitoh
4500 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4501 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4502 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4503 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4504 1.3 msaitoh fw_cmd.ver_maj = maj;
4505 1.7 riastrad fw_cmd.ver_min = minr;
4506 1.3 msaitoh fw_cmd.ver_build = build;
4507 1.3 msaitoh fw_cmd.ver_sub = sub;
4508 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4509 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4510 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4511 1.3 msaitoh fw_cmd.pad = 0;
4512 1.3 msaitoh fw_cmd.pad2 = 0;
4513 1.3 msaitoh
4514 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4515 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4516 1.8 msaitoh sizeof(fw_cmd),
4517 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4518 1.8 msaitoh TRUE);
4519 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4520 1.3 msaitoh continue;
4521 1.3 msaitoh
4522 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4523 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4524 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4525 1.3 msaitoh else
4526 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4527 1.3 msaitoh
4528 1.3 msaitoh break;
4529 1.3 msaitoh }
4530 1.3 msaitoh
4531 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4532 1.3 msaitoh out:
4533 1.3 msaitoh return ret_val;
4534 1.3 msaitoh }
4535 1.3 msaitoh
4536 1.3 msaitoh /**
4537 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4538 1.3 msaitoh * @hw: pointer to hardware structure
4539 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4540 1.3 msaitoh * @headroom: reserve n KB of headroom
4541 1.3 msaitoh * @strategy: packet buffer allocation strategy
4542 1.3 msaitoh **/
4543 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4544 1.3 msaitoh int strategy)
4545 1.3 msaitoh {
4546 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4547 1.3 msaitoh int i = 0;
4548 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4549 1.3 msaitoh
4550 1.3 msaitoh /* Reserve headroom */
4551 1.3 msaitoh pbsize -= headroom;
4552 1.3 msaitoh
4553 1.3 msaitoh if (!num_pb)
4554 1.3 msaitoh num_pb = 1;
4555 1.3 msaitoh
4556 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4557 1.3 msaitoh * buffers requested using supplied strategy.
4558 1.3 msaitoh */
4559 1.3 msaitoh switch (strategy) {
4560 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4561 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4562 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4563 1.3 msaitoh */
4564 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4565 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4566 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4567 1.3 msaitoh for (; i < (num_pb / 2); i++)
4568 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4569 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4570 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4571 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4572 1.3 msaitoh for (; i < num_pb; i++)
4573 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4574 1.3 msaitoh break;
4575 1.3 msaitoh default:
4576 1.3 msaitoh break;
4577 1.3 msaitoh }
4578 1.3 msaitoh
4579 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4580 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4581 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4582 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4583 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4584 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4585 1.3 msaitoh }
4586 1.3 msaitoh
4587 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4588 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4589 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4590 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4591 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4592 1.3 msaitoh }
4593 1.3 msaitoh }
4594 1.3 msaitoh
4595 1.3 msaitoh /**
4596 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4597 1.3 msaitoh * @hw: pointer to the hardware structure
4598 1.3 msaitoh *
4599 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4600 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4601 1.3 msaitoh * buffers on the system.
4602 1.3 msaitoh **/
4603 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4604 1.3 msaitoh {
4605 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4606 1.8 msaitoh u16 value;
4607 1.3 msaitoh
4608 1.3 msaitoh /*
4609 1.3 msaitoh * If double reset is not requested then all transactions should
4610 1.3 msaitoh * already be clear and as such there is no work to do
4611 1.3 msaitoh */
4612 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4613 1.3 msaitoh return;
4614 1.3 msaitoh
4615 1.3 msaitoh /*
4616 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4617 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4618 1.3 msaitoh * has already been cleared.
4619 1.3 msaitoh */
4620 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4621 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4622 1.3 msaitoh
4623 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4624 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4625 1.8 msaitoh msec_delay(3);
4626 1.8 msaitoh
4627 1.8 msaitoh /*
4628 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4629 1.8 msaitoh * transactions pending.
4630 1.8 msaitoh */
4631 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4632 1.8 msaitoh for (i = 0; i < poll; i++) {
4633 1.8 msaitoh usec_delay(100);
4634 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4635 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4636 1.8 msaitoh goto out;
4637 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4638 1.8 msaitoh goto out;
4639 1.8 msaitoh }
4640 1.8 msaitoh
4641 1.8 msaitoh out:
4642 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4643 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4644 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4645 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4646 1.3 msaitoh
4647 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4648 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4649 1.3 msaitoh usec_delay(20);
4650 1.3 msaitoh
4651 1.3 msaitoh /* restore previous register values */
4652 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4653 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4654 1.3 msaitoh }
4655 1.3 msaitoh
4656 1.6 msaitoh
4657 1.6 msaitoh /**
4658 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4659 1.6 msaitoh * @hw: pointer to hardware structure
4660 1.6 msaitoh * @map: pointer to u8 arr for returning map
4661 1.6 msaitoh *
4662 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4663 1.6 msaitoh **/
4664 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4665 1.6 msaitoh {
4666 1.6 msaitoh u32 reg, i;
4667 1.6 msaitoh
4668 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4669 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4670 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4671 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4672 1.6 msaitoh return;
4673 1.6 msaitoh }
4674 1.8 msaitoh
4675 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4676 1.8 msaitoh {
4677 1.8 msaitoh u32 pfdtxgswc;
4678 1.8 msaitoh u32 rxctrl;
4679 1.8 msaitoh
4680 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4681 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
4682 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4683 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4684 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4685 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4686 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4687 1.8 msaitoh hw->mac.set_lben = TRUE;
4688 1.8 msaitoh } else {
4689 1.8 msaitoh hw->mac.set_lben = FALSE;
4690 1.8 msaitoh }
4691 1.8 msaitoh }
4692 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
4693 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4694 1.8 msaitoh }
4695 1.8 msaitoh }
4696 1.8 msaitoh
4697 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4698 1.8 msaitoh {
4699 1.8 msaitoh u32 pfdtxgswc;
4700 1.8 msaitoh u32 rxctrl;
4701 1.8 msaitoh
4702 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4703 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4704 1.8 msaitoh
4705 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4706 1.8 msaitoh if (hw->mac.set_lben) {
4707 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4708 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4709 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4710 1.8 msaitoh hw->mac.set_lben = FALSE;
4711 1.8 msaitoh }
4712 1.8 msaitoh }
4713 1.8 msaitoh }
4714 1.8 msaitoh
4715 1.8 msaitoh /**
4716 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
4717 1.8 msaitoh * @hw: pointer to hardware structure
4718 1.8 msaitoh */
4719 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
4720 1.8 msaitoh {
4721 1.8 msaitoh u32 fwsm;
4722 1.8 msaitoh
4723 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
4724 1.8 msaitoh return FALSE;
4725 1.8 msaitoh
4726 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4727 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
4728 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
4729 1.8 msaitoh }
4730 1.8 msaitoh
4731 1.8 msaitoh /**
4732 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
4733 1.8 msaitoh * @hw: pointer to hardware structure
4734 1.8 msaitoh *
4735 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
4736 1.8 msaitoh **/
4737 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4738 1.8 msaitoh {
4739 1.8 msaitoh u32 fwsm, manc, factps;
4740 1.8 msaitoh
4741 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4742 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4743 1.8 msaitoh return FALSE;
4744 1.8 msaitoh
4745 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4746 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4747 1.8 msaitoh return FALSE;
4748 1.8 msaitoh
4749 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
4750 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4751 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
4752 1.8 msaitoh return FALSE;
4753 1.8 msaitoh }
4754 1.8 msaitoh
4755 1.8 msaitoh return TRUE;
4756 1.8 msaitoh }
4757 1.8 msaitoh
4758 1.8 msaitoh /**
4759 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4760 1.8 msaitoh * @hw: pointer to hardware structure
4761 1.8 msaitoh * @speed: new link speed
4762 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4763 1.8 msaitoh *
4764 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
4765 1.8 msaitoh **/
4766 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4767 1.8 msaitoh ixgbe_link_speed speed,
4768 1.8 msaitoh bool autoneg_wait_to_complete)
4769 1.8 msaitoh {
4770 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4771 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4772 1.8 msaitoh s32 status = IXGBE_SUCCESS;
4773 1.8 msaitoh u32 speedcnt = 0;
4774 1.8 msaitoh u32 i = 0;
4775 1.8 msaitoh bool autoneg, link_up = FALSE;
4776 1.8 msaitoh
4777 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4778 1.8 msaitoh
4779 1.8 msaitoh /* Mask off requested but non-supported speeds */
4780 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4781 1.8 msaitoh if (status != IXGBE_SUCCESS)
4782 1.8 msaitoh return status;
4783 1.8 msaitoh
4784 1.8 msaitoh speed &= link_speed;
4785 1.8 msaitoh
4786 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
4787 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
4788 1.8 msaitoh */
4789 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4790 1.8 msaitoh speedcnt++;
4791 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4792 1.8 msaitoh
4793 1.8 msaitoh /* If we already have link at this speed, just jump out */
4794 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4795 1.8 msaitoh if (status != IXGBE_SUCCESS)
4796 1.8 msaitoh return status;
4797 1.8 msaitoh
4798 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4799 1.8 msaitoh goto out;
4800 1.8 msaitoh
4801 1.8 msaitoh /* Set the module link speed */
4802 1.8 msaitoh switch (hw->phy.media_type) {
4803 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4804 1.8 msaitoh case ixgbe_media_type_fiber:
4805 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4806 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
4807 1.8 msaitoh break;
4808 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4809 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
4810 1.8 msaitoh break;
4811 1.8 msaitoh default:
4812 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4813 1.8 msaitoh break;
4814 1.8 msaitoh }
4815 1.8 msaitoh
4816 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
4817 1.8 msaitoh msec_delay(40);
4818 1.8 msaitoh
4819 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4820 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
4821 1.8 msaitoh autoneg_wait_to_complete);
4822 1.8 msaitoh if (status != IXGBE_SUCCESS)
4823 1.8 msaitoh return status;
4824 1.8 msaitoh
4825 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4826 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4827 1.8 msaitoh
4828 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4829 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
4830 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
4831 1.8 msaitoh */
4832 1.8 msaitoh for (i = 0; i < 5; i++) {
4833 1.8 msaitoh /* Wait for the link partner to also set speed */
4834 1.8 msaitoh msec_delay(100);
4835 1.8 msaitoh
4836 1.8 msaitoh /* If we have link, just jump out */
4837 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
4838 1.8 msaitoh &link_up, FALSE);
4839 1.8 msaitoh if (status != IXGBE_SUCCESS)
4840 1.8 msaitoh return status;
4841 1.8 msaitoh
4842 1.8 msaitoh if (link_up)
4843 1.8 msaitoh goto out;
4844 1.8 msaitoh }
4845 1.8 msaitoh }
4846 1.8 msaitoh
4847 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4848 1.8 msaitoh speedcnt++;
4849 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4850 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4851 1.8 msaitoh
4852 1.8 msaitoh /* If we already have link at this speed, just jump out */
4853 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4854 1.8 msaitoh if (status != IXGBE_SUCCESS)
4855 1.8 msaitoh return status;
4856 1.8 msaitoh
4857 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4858 1.8 msaitoh goto out;
4859 1.8 msaitoh
4860 1.8 msaitoh /* Set the module link speed */
4861 1.8 msaitoh switch (hw->phy.media_type) {
4862 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4863 1.8 msaitoh case ixgbe_media_type_fiber:
4864 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4865 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
4866 1.8 msaitoh break;
4867 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4868 1.8 msaitoh /* QSFP module automatically detects link speed */
4869 1.8 msaitoh break;
4870 1.8 msaitoh default:
4871 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4872 1.8 msaitoh break;
4873 1.8 msaitoh }
4874 1.8 msaitoh
4875 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
4876 1.8 msaitoh msec_delay(40);
4877 1.8 msaitoh
4878 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4879 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
4880 1.8 msaitoh autoneg_wait_to_complete);
4881 1.8 msaitoh if (status != IXGBE_SUCCESS)
4882 1.8 msaitoh return status;
4883 1.8 msaitoh
4884 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4885 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4886 1.8 msaitoh
4887 1.8 msaitoh /* Wait for the link partner to also set speed */
4888 1.8 msaitoh msec_delay(100);
4889 1.8 msaitoh
4890 1.8 msaitoh /* If we have link, just jump out */
4891 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4892 1.8 msaitoh if (status != IXGBE_SUCCESS)
4893 1.8 msaitoh return status;
4894 1.8 msaitoh
4895 1.8 msaitoh if (link_up)
4896 1.8 msaitoh goto out;
4897 1.8 msaitoh }
4898 1.8 msaitoh
4899 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
4900 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
4901 1.8 msaitoh * single highest speed that the user requested.
4902 1.8 msaitoh */
4903 1.8 msaitoh if (speedcnt > 1)
4904 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4905 1.8 msaitoh highest_link_speed,
4906 1.8 msaitoh autoneg_wait_to_complete);
4907 1.8 msaitoh
4908 1.8 msaitoh out:
4909 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
4910 1.8 msaitoh hw->phy.autoneg_advertised = 0;
4911 1.8 msaitoh
4912 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4913 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4914 1.8 msaitoh
4915 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4916 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4917 1.8 msaitoh
4918 1.8 msaitoh return status;
4919 1.8 msaitoh }
4920 1.8 msaitoh
4921 1.8 msaitoh /**
4922 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
4923 1.8 msaitoh * @hw: pointer to hardware structure
4924 1.8 msaitoh * @speed: link speed to set
4925 1.8 msaitoh *
4926 1.8 msaitoh * Set module link speed via the soft rate select.
4927 1.8 msaitoh */
4928 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4929 1.8 msaitoh ixgbe_link_speed speed)
4930 1.8 msaitoh {
4931 1.8 msaitoh s32 status;
4932 1.8 msaitoh u8 rs, eeprom_data;
4933 1.8 msaitoh
4934 1.8 msaitoh switch (speed) {
4935 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
4936 1.8 msaitoh /* one bit mask same as setting on */
4937 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4938 1.8 msaitoh break;
4939 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
4940 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4941 1.8 msaitoh break;
4942 1.8 msaitoh default:
4943 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
4944 1.8 msaitoh return;
4945 1.8 msaitoh }
4946 1.8 msaitoh
4947 1.8 msaitoh /* Set RS0 */
4948 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4949 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4950 1.8 msaitoh &eeprom_data);
4951 1.8 msaitoh if (status) {
4952 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4953 1.8 msaitoh goto out;
4954 1.8 msaitoh }
4955 1.8 msaitoh
4956 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4957 1.8 msaitoh
4958 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4959 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4960 1.8 msaitoh eeprom_data);
4961 1.8 msaitoh if (status) {
4962 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4963 1.8 msaitoh goto out;
4964 1.8 msaitoh }
4965 1.8 msaitoh
4966 1.8 msaitoh /* Set RS1 */
4967 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4968 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4969 1.8 msaitoh &eeprom_data);
4970 1.8 msaitoh if (status) {
4971 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4972 1.8 msaitoh goto out;
4973 1.8 msaitoh }
4974 1.8 msaitoh
4975 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4976 1.8 msaitoh
4977 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4978 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4979 1.8 msaitoh eeprom_data);
4980 1.8 msaitoh if (status) {
4981 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4982 1.8 msaitoh goto out;
4983 1.8 msaitoh }
4984 1.8 msaitoh out:
4985 1.8 msaitoh return;
4986 1.8 msaitoh }
4987