Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.13
      1   1.1    dyoung /******************************************************************************
      2   1.1    dyoung 
      3   1.9   msaitoh   Copyright (c) 2001-2015, Intel Corporation
      4   1.1    dyoung   All rights reserved.
      5   1.1    dyoung 
      6   1.1    dyoung   Redistribution and use in source and binary forms, with or without
      7   1.1    dyoung   modification, are permitted provided that the following conditions are met:
      8   1.1    dyoung 
      9   1.1    dyoung    1. Redistributions of source code must retain the above copyright notice,
     10   1.1    dyoung       this list of conditions and the following disclaimer.
     11   1.1    dyoung 
     12   1.1    dyoung    2. Redistributions in binary form must reproduce the above copyright
     13   1.1    dyoung       notice, this list of conditions and the following disclaimer in the
     14   1.1    dyoung       documentation and/or other materials provided with the distribution.
     15   1.1    dyoung 
     16   1.1    dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17   1.1    dyoung       contributors may be used to endorse or promote products derived from
     18   1.1    dyoung       this software without specific prior written permission.
     19   1.1    dyoung 
     20   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21   1.1    dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22   1.1    dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23   1.1    dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24   1.1    dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   1.1    dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   1.1    dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   1.1    dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   1.1    dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     31   1.1    dyoung 
     32   1.1    dyoung ******************************************************************************/
     33  1.11   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 299200 2016-05-06 22:54:56Z pfg $*/
     34  1.13   msaitoh /*$NetBSD: ixgbe_common.c,v 1.13 2017/05/26 08:36:42 msaitoh Exp $*/
     35   1.1    dyoung 
     36   1.1    dyoung #include "ixgbe_common.h"
     37   1.1    dyoung #include "ixgbe_phy.h"
     38   1.6   msaitoh #include "ixgbe_dcb.h"
     39   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     40   1.1    dyoung #include "ixgbe_api.h"
     41   1.1    dyoung 
     42   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48   1.3   msaitoh 					u16 count);
     49   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53   1.1    dyoung 
     54   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56   1.3   msaitoh 					 u16 *san_mac_offset);
     57   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58   1.3   msaitoh 					     u16 words, u16 *data);
     59   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60   1.3   msaitoh 					      u16 words, u16 *data);
     61   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62   1.3   msaitoh 						 u16 offset);
     63   1.1    dyoung 
     64   1.1    dyoung /**
     65   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66   1.1    dyoung  *  @hw: pointer to the hardware structure
     67   1.1    dyoung  *
     68   1.1    dyoung  *  Initialize the function pointers.
     69   1.1    dyoung  **/
     70   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71   1.1    dyoung {
     72   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     75   1.1    dyoung 
     76   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77   1.1    dyoung 
     78   1.1    dyoung 	/* EEPROM */
     79   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     80   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     82   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     83   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     84   1.3   msaitoh 	} else {
     85   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     86   1.3   msaitoh 		eeprom->ops.read_buffer =
     87   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     88   1.3   msaitoh 	}
     89   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     90   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     91   1.1    dyoung 	eeprom->ops.validate_checksum =
     92   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     93   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     94   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     95   1.1    dyoung 
     96   1.1    dyoung 	/* MAC */
     97   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
     98   1.1    dyoung 	mac->ops.reset_hw = NULL;
     99   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    100   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    101   1.1    dyoung 	mac->ops.get_media_type = NULL;
    102   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    103   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    104   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    105   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    106   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    107   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    108   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    109   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    110   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    111   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    112   1.1    dyoung 
    113   1.1    dyoung 	/* LEDs */
    114   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    115   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    116   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    117   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    118   1.1    dyoung 
    119   1.1    dyoung 	/* RAR, Multicast, VLAN */
    120   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    121   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    122   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    123   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    124   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    125   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    126   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    127   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    128   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    129   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    130   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    131   1.1    dyoung 	mac->ops.set_vfta = NULL;
    132   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    133   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    134   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    135   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    136   1.1    dyoung 
    137   1.1    dyoung 	/* Flow Control */
    138   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    139   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    140   1.1    dyoung 
    141   1.1    dyoung 	/* Link */
    142   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    143   1.1    dyoung 	mac->ops.setup_link = NULL;
    144   1.1    dyoung 	mac->ops.check_link = NULL;
    145   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    146   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    147   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    148   1.1    dyoung 
    149   1.1    dyoung 	return IXGBE_SUCCESS;
    150   1.1    dyoung }
    151   1.1    dyoung 
    152   1.1    dyoung /**
    153   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    154   1.6   msaitoh  * of flow control
    155   1.6   msaitoh  * @hw: pointer to hardware structure
    156   1.6   msaitoh  *
    157   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    158   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    159   1.4   msaitoh  *
    160   1.4   msaitoh  **/
    161   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    162   1.4   msaitoh {
    163   1.6   msaitoh 	bool supported = FALSE;
    164   1.6   msaitoh 	ixgbe_link_speed speed;
    165   1.6   msaitoh 	bool link_up;
    166   1.4   msaitoh 
    167   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    168   1.4   msaitoh 
    169   1.6   msaitoh 	switch (hw->phy.media_type) {
    170   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    171   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    172   1.6   msaitoh 	case ixgbe_media_type_fiber:
    173   1.6   msaitoh 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    174   1.6   msaitoh 		/* if link is down, assume supported */
    175   1.6   msaitoh 		if (link_up)
    176   1.6   msaitoh 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    177   1.6   msaitoh 				TRUE : FALSE;
    178   1.6   msaitoh 		else
    179   1.6   msaitoh 			supported = TRUE;
    180   1.6   msaitoh 		break;
    181   1.6   msaitoh 	case ixgbe_media_type_backplane:
    182   1.6   msaitoh 		supported = TRUE;
    183   1.6   msaitoh 		break;
    184   1.6   msaitoh 	case ixgbe_media_type_copper:
    185   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    186   1.6   msaitoh 		switch (hw->device_id) {
    187   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    188   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    189   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    190   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    191   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    192  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    193   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    194   1.6   msaitoh 			supported = TRUE;
    195   1.6   msaitoh 			break;
    196   1.6   msaitoh 		default:
    197   1.6   msaitoh 			supported = FALSE;
    198   1.6   msaitoh 		}
    199   1.4   msaitoh 	default:
    200   1.6   msaitoh 		break;
    201   1.4   msaitoh 	}
    202   1.6   msaitoh 
    203  1.11   msaitoh 	if (!supported) {
    204  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    205   1.6   msaitoh 		      "Device %x does not support flow control autoneg",
    206   1.6   msaitoh 		      hw->device_id);
    207  1.11   msaitoh 	}
    208  1.11   msaitoh 
    209   1.6   msaitoh 	return supported;
    210   1.4   msaitoh }
    211   1.4   msaitoh 
    212   1.4   msaitoh /**
    213   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    214   1.4   msaitoh  *  @hw: pointer to hardware structure
    215   1.4   msaitoh  *
    216   1.4   msaitoh  *  Called at init time to set up flow control.
    217   1.4   msaitoh  **/
    218   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    219   1.4   msaitoh {
    220   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    221   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    222   1.4   msaitoh 	u16 reg_cu = 0;
    223   1.8   msaitoh 	bool locked = FALSE;
    224   1.4   msaitoh 
    225   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    226   1.4   msaitoh 
    227   1.8   msaitoh 	/* Validate the requested mode */
    228   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    229   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    230   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    231   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    232   1.4   msaitoh 		goto out;
    233   1.4   msaitoh 	}
    234   1.4   msaitoh 
    235   1.4   msaitoh 	/*
    236   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    237   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    238   1.4   msaitoh 	 */
    239   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    240   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    241   1.4   msaitoh 
    242   1.4   msaitoh 	/*
    243   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    244   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    245   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    246   1.4   msaitoh 	 */
    247   1.4   msaitoh 	switch (hw->phy.media_type) {
    248   1.8   msaitoh 	case ixgbe_media_type_backplane:
    249   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    250   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    251   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    252   1.8   msaitoh 			goto out;
    253   1.8   msaitoh 
    254   1.8   msaitoh 		/* only backplane uses autoc so fall though */
    255   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    256   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    257   1.4   msaitoh 	case ixgbe_media_type_fiber:
    258   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    259   1.8   msaitoh 
    260   1.4   msaitoh 		break;
    261   1.4   msaitoh 	case ixgbe_media_type_copper:
    262   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    263   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    264   1.4   msaitoh 		break;
    265   1.4   msaitoh 	default:
    266   1.4   msaitoh 		break;
    267   1.4   msaitoh 	}
    268   1.4   msaitoh 
    269   1.4   msaitoh 	/*
    270   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    271   1.4   msaitoh 	 * 0: Flow control is completely disabled
    272   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    273   1.4   msaitoh 	 *    but not send pause frames).
    274   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    275   1.4   msaitoh 	 *    we do not support receiving pause frames).
    276   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    277   1.4   msaitoh 	 * other: Invalid.
    278   1.4   msaitoh 	 */
    279   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    280   1.4   msaitoh 	case ixgbe_fc_none:
    281   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    282   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    283   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    284   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    285   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    286   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    287   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    288   1.4   msaitoh 		break;
    289   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    290   1.4   msaitoh 		/*
    291   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    292   1.4   msaitoh 		 * disabled by software override.
    293   1.4   msaitoh 		 */
    294   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    295   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    296   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    297   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    298   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    299   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    300   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    301   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    302   1.4   msaitoh 		}
    303   1.4   msaitoh 		break;
    304   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    305   1.4   msaitoh 		/*
    306   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    307   1.4   msaitoh 		 * disabled by software override. Since there really
    308   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    309   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    310   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    311   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    312   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    313   1.4   msaitoh 		 */
    314   1.4   msaitoh 	case ixgbe_fc_full:
    315   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    316   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    317   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    318   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    319   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    320   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    321   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    322   1.4   msaitoh 		break;
    323   1.4   msaitoh 	default:
    324   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    325   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    326   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    327   1.4   msaitoh 		goto out;
    328   1.4   msaitoh 		break;
    329   1.4   msaitoh 	}
    330   1.4   msaitoh 
    331   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    332   1.4   msaitoh 		/*
    333   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    334   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    335   1.4   msaitoh 		 */
    336   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    337   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    338   1.4   msaitoh 
    339   1.4   msaitoh 		/* Disable AN timeout */
    340   1.4   msaitoh 		if (hw->fc.strict_ieee)
    341   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    342   1.4   msaitoh 
    343   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    344   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    345   1.4   msaitoh 	}
    346   1.4   msaitoh 
    347   1.4   msaitoh 	/*
    348   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    349   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    350   1.4   msaitoh 	 *
    351   1.4   msaitoh 	 */
    352   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    353   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    354   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    355   1.8   msaitoh 		if (ret_val)
    356   1.8   msaitoh 			goto out;
    357   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    358   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    359   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    360   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    361   1.4   msaitoh 	}
    362   1.4   msaitoh 
    363   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    364   1.4   msaitoh out:
    365   1.4   msaitoh 	return ret_val;
    366   1.4   msaitoh }
    367   1.4   msaitoh 
    368   1.4   msaitoh /**
    369   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    370   1.1    dyoung  *  @hw: pointer to hardware structure
    371   1.1    dyoung  *
    372   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    373   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    374   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    375   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    376   1.1    dyoung  **/
    377   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    378   1.1    dyoung {
    379   1.4   msaitoh 	s32 ret_val;
    380   1.1    dyoung 	u32 ctrl_ext;
    381   1.1    dyoung 
    382   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    383   1.1    dyoung 
    384   1.1    dyoung 	/* Set the media type */
    385   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    386   1.1    dyoung 
    387   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    388   1.1    dyoung 
    389   1.1    dyoung 	/* Clear the VLAN filter table */
    390   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    391   1.1    dyoung 
    392   1.1    dyoung 	/* Clear statistics registers */
    393   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    394   1.1    dyoung 
    395   1.1    dyoung 	/* Set No Snoop Disable */
    396   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    397   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    398   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    399   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    400   1.1    dyoung 
    401   1.1    dyoung 	/* Setup flow control */
    402   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    403   1.4   msaitoh 	if (ret_val != IXGBE_SUCCESS)
    404   1.4   msaitoh 		goto out;
    405   1.1    dyoung 
    406   1.1    dyoung 	/* Clear adapter stopped flag */
    407   1.1    dyoung 	hw->adapter_stopped = FALSE;
    408   1.1    dyoung 
    409   1.4   msaitoh out:
    410   1.4   msaitoh 	return ret_val;
    411   1.1    dyoung }
    412   1.1    dyoung 
    413   1.1    dyoung /**
    414   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    415   1.1    dyoung  *  @hw: pointer to hw structure
    416   1.1    dyoung  *
    417   1.1    dyoung  * Performs the init sequence common to the second generation
    418   1.1    dyoung  * of 10 GbE devices.
    419   1.1    dyoung  * Devices in the second generation:
    420   1.1    dyoung  *     82599
    421   1.1    dyoung  *     X540
    422   1.1    dyoung  **/
    423   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    424   1.1    dyoung {
    425   1.1    dyoung 	u32 i;
    426   1.1    dyoung 	u32 regval;
    427   1.1    dyoung 
    428   1.1    dyoung 	/* Clear the rate limiters */
    429   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    430   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    431   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    432   1.1    dyoung 	}
    433   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    434   1.1    dyoung 
    435   1.1    dyoung 	/* Disable relaxed ordering */
    436   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    437   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    438   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    439   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    440   1.1    dyoung 	}
    441   1.1    dyoung 
    442   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    443   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    444   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    445   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    446   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    447   1.1    dyoung 	}
    448   1.1    dyoung 
    449   1.1    dyoung 	return IXGBE_SUCCESS;
    450   1.1    dyoung }
    451   1.1    dyoung 
    452   1.1    dyoung /**
    453   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    454   1.1    dyoung  *  @hw: pointer to hardware structure
    455   1.1    dyoung  *
    456   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    457   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    458   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    459   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    460   1.1    dyoung  *  disabled and uninitialized
    461   1.1    dyoung  **/
    462   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    463   1.1    dyoung {
    464   1.1    dyoung 	s32 status;
    465   1.1    dyoung 
    466   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    467   1.1    dyoung 
    468   1.1    dyoung 	/* Reset the hardware */
    469   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    470   1.1    dyoung 
    471   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
    472   1.1    dyoung 		/* Start the HW */
    473   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    474   1.1    dyoung 	}
    475   1.1    dyoung 
    476   1.1    dyoung 	return status;
    477   1.1    dyoung }
    478   1.1    dyoung 
    479   1.1    dyoung /**
    480   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    481   1.1    dyoung  *  @hw: pointer to hardware structure
    482   1.1    dyoung  *
    483   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    484   1.1    dyoung  *  Statistics counters are clear on read.
    485   1.1    dyoung  **/
    486   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    487   1.1    dyoung {
    488   1.1    dyoung 	u16 i = 0;
    489   1.1    dyoung 
    490   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    491   1.1    dyoung 
    492   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    493   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    494   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    495   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    496  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    497  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    498   1.1    dyoung 	for (i = 0; i < 8; i++)
    499   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    500   1.1    dyoung 
    501   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    502   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    503   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    504   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    505   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    506   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    507   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    508   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    509   1.1    dyoung 	} else {
    510   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    511   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    512   1.1    dyoung 	}
    513   1.1    dyoung 
    514   1.1    dyoung 	for (i = 0; i < 8; i++) {
    515   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    516   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    517   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    518   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    519   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    520   1.1    dyoung 		} else {
    521   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    522   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    523   1.1    dyoung 		}
    524   1.1    dyoung 	}
    525   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    526   1.1    dyoung 		for (i = 0; i < 8; i++)
    527   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    528   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    529   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    530   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    531   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    532   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    533   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    534   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    535   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    536   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    537   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    538   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    539   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    540   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    541   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    542   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    543   1.3   msaitoh 		for (i = 0; i < 8; i++)
    544   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    545   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    547   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    548   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    549   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    550   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    551   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    552   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    553   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    554   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    555   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    556   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    557   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    558   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    559   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    560   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    561   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    562   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    563   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    564   1.1    dyoung 	for (i = 0; i < 16; i++) {
    565   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    566   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    567   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    568   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    569   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    570   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    571   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    572   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    573   1.1    dyoung 		} else {
    574   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    575   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    576   1.1    dyoung 		}
    577   1.1    dyoung 	}
    578   1.1    dyoung 
    579   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    580   1.3   msaitoh 		if (hw->phy.id == 0)
    581   1.3   msaitoh 			ixgbe_identify_phy(hw);
    582   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    583   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    584   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    585   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    586   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    587   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    588   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    589   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    590   1.3   msaitoh 	}
    591   1.3   msaitoh 
    592   1.1    dyoung 	return IXGBE_SUCCESS;
    593   1.1    dyoung }
    594   1.1    dyoung 
    595   1.1    dyoung /**
    596   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    597   1.1    dyoung  *  @hw: pointer to hardware structure
    598   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    599   1.1    dyoung  *  @pba_num_size: part number string buffer length
    600   1.1    dyoung  *
    601   1.1    dyoung  *  Reads the part number string from the EEPROM.
    602   1.1    dyoung  **/
    603   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    604   1.3   msaitoh 				  u32 pba_num_size)
    605   1.1    dyoung {
    606   1.1    dyoung 	s32 ret_val;
    607   1.1    dyoung 	u16 data;
    608   1.1    dyoung 	u16 pba_ptr;
    609   1.1    dyoung 	u16 offset;
    610   1.1    dyoung 	u16 length;
    611   1.1    dyoung 
    612   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    613   1.1    dyoung 
    614   1.1    dyoung 	if (pba_num == NULL) {
    615   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    616   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    617   1.1    dyoung 	}
    618   1.1    dyoung 
    619   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    620   1.1    dyoung 	if (ret_val) {
    621   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    622   1.1    dyoung 		return ret_val;
    623   1.1    dyoung 	}
    624   1.1    dyoung 
    625   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    626   1.1    dyoung 	if (ret_val) {
    627   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    628   1.1    dyoung 		return ret_val;
    629   1.1    dyoung 	}
    630   1.1    dyoung 
    631   1.1    dyoung 	/*
    632   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    633   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    634   1.1    dyoung 	 * and we can decode it into an ascii string
    635   1.1    dyoung 	 */
    636   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    637   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    638   1.1    dyoung 
    639   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    640   1.1    dyoung 		if (pba_num_size < 11) {
    641   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    642   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    643   1.1    dyoung 		}
    644   1.1    dyoung 
    645   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    646   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    647   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    648   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    649   1.1    dyoung 		pba_num[3] = data & 0xF;
    650   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    651   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    652   1.1    dyoung 		pba_num[6] = '-';
    653   1.1    dyoung 		pba_num[7] = 0;
    654   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    655   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    656   1.1    dyoung 
    657   1.1    dyoung 		/* put a null character on the end of our string */
    658   1.1    dyoung 		pba_num[10] = '\0';
    659   1.1    dyoung 
    660   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    661   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    662   1.1    dyoung 			if (pba_num[offset] < 0xA)
    663   1.1    dyoung 				pba_num[offset] += '0';
    664   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    665   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    666   1.1    dyoung 		}
    667   1.1    dyoung 
    668   1.1    dyoung 		return IXGBE_SUCCESS;
    669   1.1    dyoung 	}
    670   1.1    dyoung 
    671   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    672   1.1    dyoung 	if (ret_val) {
    673   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    674   1.1    dyoung 		return ret_val;
    675   1.1    dyoung 	}
    676   1.1    dyoung 
    677   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    678   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    679   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    680   1.1    dyoung 	}
    681   1.1    dyoung 
    682   1.1    dyoung 	/* check if pba_num buffer is big enough */
    683   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    684   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    685   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    686   1.1    dyoung 	}
    687   1.1    dyoung 
    688   1.1    dyoung 	/* trim pba length from start of string */
    689   1.1    dyoung 	pba_ptr++;
    690   1.1    dyoung 	length--;
    691   1.1    dyoung 
    692   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    693   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    694   1.1    dyoung 		if (ret_val) {
    695   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    696   1.1    dyoung 			return ret_val;
    697   1.1    dyoung 		}
    698   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    699   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    700   1.1    dyoung 	}
    701   1.1    dyoung 	pba_num[offset * 2] = '\0';
    702   1.1    dyoung 
    703   1.1    dyoung 	return IXGBE_SUCCESS;
    704   1.1    dyoung }
    705   1.1    dyoung 
    706   1.1    dyoung /**
    707   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    708   1.1    dyoung  *  @hw: pointer to hardware structure
    709   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    710   1.1    dyoung  *
    711   1.1    dyoung  *  Reads the part number from the EEPROM.
    712   1.1    dyoung  **/
    713   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    714   1.1    dyoung {
    715   1.1    dyoung 	s32 ret_val;
    716   1.1    dyoung 	u16 data;
    717   1.1    dyoung 
    718   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    719   1.1    dyoung 
    720   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    721   1.1    dyoung 	if (ret_val) {
    722   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    723   1.1    dyoung 		return ret_val;
    724   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    725   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    726   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    727   1.1    dyoung 	}
    728   1.1    dyoung 	*pba_num = (u32)(data << 16);
    729   1.1    dyoung 
    730   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    731   1.1    dyoung 	if (ret_val) {
    732   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    733   1.1    dyoung 		return ret_val;
    734   1.1    dyoung 	}
    735   1.1    dyoung 	*pba_num |= data;
    736   1.1    dyoung 
    737   1.1    dyoung 	return IXGBE_SUCCESS;
    738   1.1    dyoung }
    739   1.1    dyoung 
    740   1.1    dyoung /**
    741   1.5   msaitoh  *  ixgbe_read_pba_raw
    742   1.5   msaitoh  *  @hw: pointer to the HW structure
    743   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    744   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    745   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    746   1.5   msaitoh  *  @pba: pointer to output PBA structure
    747   1.5   msaitoh  *
    748   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    749   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    750   1.5   msaitoh  *
    751   1.5   msaitoh  **/
    752   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    753   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    754   1.5   msaitoh 		       struct ixgbe_pba *pba)
    755   1.5   msaitoh {
    756   1.5   msaitoh 	s32 ret_val;
    757   1.5   msaitoh 	u16 pba_block_size;
    758   1.5   msaitoh 
    759   1.5   msaitoh 	if (pba == NULL)
    760   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    761   1.5   msaitoh 
    762   1.5   msaitoh 	if (eeprom_buf == NULL) {
    763   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    764   1.5   msaitoh 						     &pba->word[0]);
    765   1.5   msaitoh 		if (ret_val)
    766   1.5   msaitoh 			return ret_val;
    767   1.5   msaitoh 	} else {
    768   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    769   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    770   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    771   1.5   msaitoh 		} else {
    772   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    773   1.5   msaitoh 		}
    774   1.5   msaitoh 	}
    775   1.5   msaitoh 
    776   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    777   1.5   msaitoh 		if (pba->pba_block == NULL)
    778   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    779   1.5   msaitoh 
    780   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    781   1.5   msaitoh 						   eeprom_buf_size,
    782   1.5   msaitoh 						   &pba_block_size);
    783   1.5   msaitoh 		if (ret_val)
    784   1.5   msaitoh 			return ret_val;
    785   1.5   msaitoh 
    786   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    787   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    788   1.5   msaitoh 
    789   1.5   msaitoh 		if (eeprom_buf == NULL) {
    790   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    791   1.5   msaitoh 							     pba_block_size,
    792   1.5   msaitoh 							     pba->pba_block);
    793   1.5   msaitoh 			if (ret_val)
    794   1.5   msaitoh 				return ret_val;
    795   1.5   msaitoh 		} else {
    796   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    797   1.8   msaitoh 					      pba_block_size)) {
    798   1.5   msaitoh 				memcpy(pba->pba_block,
    799   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    800   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    801   1.5   msaitoh 			} else {
    802   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    803   1.5   msaitoh 			}
    804   1.5   msaitoh 		}
    805   1.5   msaitoh 	}
    806   1.5   msaitoh 
    807   1.5   msaitoh 	return IXGBE_SUCCESS;
    808   1.5   msaitoh }
    809   1.5   msaitoh 
    810   1.5   msaitoh /**
    811   1.5   msaitoh  *  ixgbe_write_pba_raw
    812   1.5   msaitoh  *  @hw: pointer to the HW structure
    813   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    814   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    815   1.5   msaitoh  *  @pba: pointer to PBA structure
    816   1.5   msaitoh  *
    817   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    818   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    819   1.5   msaitoh  *
    820   1.5   msaitoh  **/
    821   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    822   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    823   1.5   msaitoh {
    824   1.5   msaitoh 	s32 ret_val;
    825   1.5   msaitoh 
    826   1.5   msaitoh 	if (pba == NULL)
    827   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    828   1.5   msaitoh 
    829   1.5   msaitoh 	if (eeprom_buf == NULL) {
    830   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    831   1.5   msaitoh 						      &pba->word[0]);
    832   1.5   msaitoh 		if (ret_val)
    833   1.5   msaitoh 			return ret_val;
    834   1.5   msaitoh 	} else {
    835   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    836   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    837   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    838   1.5   msaitoh 		} else {
    839   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    840   1.5   msaitoh 		}
    841   1.5   msaitoh 	}
    842   1.5   msaitoh 
    843   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    844   1.5   msaitoh 		if (pba->pba_block == NULL)
    845   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    846   1.5   msaitoh 
    847   1.5   msaitoh 		if (eeprom_buf == NULL) {
    848   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    849   1.5   msaitoh 							      pba->pba_block[0],
    850   1.5   msaitoh 							      pba->pba_block);
    851   1.5   msaitoh 			if (ret_val)
    852   1.5   msaitoh 				return ret_val;
    853   1.5   msaitoh 		} else {
    854   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    855   1.5   msaitoh 					      pba->pba_block[0])) {
    856   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    857   1.5   msaitoh 				       pba->pba_block,
    858   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    859   1.5   msaitoh 			} else {
    860   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    861   1.5   msaitoh 			}
    862   1.5   msaitoh 		}
    863   1.5   msaitoh 	}
    864   1.5   msaitoh 
    865   1.5   msaitoh 	return IXGBE_SUCCESS;
    866   1.5   msaitoh }
    867   1.5   msaitoh 
    868   1.5   msaitoh /**
    869   1.5   msaitoh  *  ixgbe_get_pba_block_size
    870   1.5   msaitoh  *  @hw: pointer to the HW structure
    871   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    872   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    873   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    874   1.5   msaitoh  *
    875   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    876   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    877   1.5   msaitoh  *  EEPROM device.
    878   1.5   msaitoh  *
    879   1.5   msaitoh  **/
    880   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    881   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    882   1.5   msaitoh {
    883   1.5   msaitoh 	s32 ret_val;
    884   1.5   msaitoh 	u16 pba_word[2];
    885   1.5   msaitoh 	u16 length;
    886   1.5   msaitoh 
    887   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    888   1.5   msaitoh 
    889   1.5   msaitoh 	if (eeprom_buf == NULL) {
    890   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    891   1.5   msaitoh 						     &pba_word[0]);
    892   1.5   msaitoh 		if (ret_val)
    893   1.5   msaitoh 			return ret_val;
    894   1.5   msaitoh 	} else {
    895   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    896   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    897   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    898   1.5   msaitoh 		} else {
    899   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    900   1.5   msaitoh 		}
    901   1.5   msaitoh 	}
    902   1.5   msaitoh 
    903   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    904   1.5   msaitoh 		if (eeprom_buf == NULL) {
    905   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    906   1.5   msaitoh 						      &length);
    907   1.5   msaitoh 			if (ret_val)
    908   1.5   msaitoh 				return ret_val;
    909   1.5   msaitoh 		} else {
    910   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    911   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    912   1.5   msaitoh 			else
    913   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    914   1.5   msaitoh 		}
    915   1.5   msaitoh 
    916   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    917   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    918   1.5   msaitoh 	} else {
    919   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    920   1.5   msaitoh 		length = 0;
    921   1.5   msaitoh 	}
    922   1.5   msaitoh 
    923   1.5   msaitoh 	if (pba_block_size != NULL)
    924   1.5   msaitoh 		*pba_block_size = length;
    925   1.5   msaitoh 
    926   1.5   msaitoh 	return IXGBE_SUCCESS;
    927   1.5   msaitoh }
    928   1.5   msaitoh 
    929   1.5   msaitoh /**
    930   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    931   1.1    dyoung  *  @hw: pointer to hardware structure
    932   1.1    dyoung  *  @mac_addr: Adapter MAC address
    933   1.1    dyoung  *
    934   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    935   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    936   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    937   1.1    dyoung  **/
    938   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    939   1.1    dyoung {
    940   1.1    dyoung 	u32 rar_high;
    941   1.1    dyoung 	u32 rar_low;
    942   1.1    dyoung 	u16 i;
    943   1.1    dyoung 
    944   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    945   1.1    dyoung 
    946   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    947   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    948   1.1    dyoung 
    949   1.1    dyoung 	for (i = 0; i < 4; i++)
    950   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    951   1.1    dyoung 
    952   1.1    dyoung 	for (i = 0; i < 2; i++)
    953   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    954   1.1    dyoung 
    955   1.1    dyoung 	return IXGBE_SUCCESS;
    956   1.1    dyoung }
    957   1.1    dyoung 
    958   1.1    dyoung /**
    959   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    960   1.1    dyoung  *  @hw: pointer to hardware structure
    961   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
    962   1.1    dyoung  *
    963   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    964   1.1    dyoung  **/
    965   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    966   1.1    dyoung {
    967   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    968   1.1    dyoung 
    969   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
    970   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
    971   1.1    dyoung 
    972   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    973   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    974   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    975   1.1    dyoung 		break;
    976   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    977   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    978   1.1    dyoung 		break;
    979   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    980   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    981   1.1    dyoung 		break;
    982   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    983   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    984   1.1    dyoung 		break;
    985   1.1    dyoung 	default:
    986   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    987   1.1    dyoung 		break;
    988   1.1    dyoung 	}
    989   1.1    dyoung 
    990   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    991   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    992   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    993   1.1    dyoung 		break;
    994   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    995   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    996   1.1    dyoung 		break;
    997   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    998   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    999   1.4   msaitoh 		break;
   1000   1.1    dyoung 	default:
   1001   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1002   1.1    dyoung 		break;
   1003   1.1    dyoung 	}
   1004   1.1    dyoung 
   1005   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1006   1.6   msaitoh }
   1007   1.6   msaitoh 
   1008   1.6   msaitoh /**
   1009   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1010   1.6   msaitoh  *  @hw: pointer to hardware structure
   1011   1.6   msaitoh  *
   1012   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1013   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1014   1.6   msaitoh  **/
   1015   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1016   1.6   msaitoh {
   1017   1.6   msaitoh 	u16 link_status;
   1018   1.6   msaitoh 
   1019   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1020   1.6   msaitoh 
   1021   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1022   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1023   1.6   msaitoh 
   1024   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1025   1.1    dyoung 
   1026   1.1    dyoung 	return IXGBE_SUCCESS;
   1027   1.1    dyoung }
   1028   1.1    dyoung 
   1029   1.1    dyoung /**
   1030   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1031   1.1    dyoung  *  @hw: pointer to the HW structure
   1032   1.1    dyoung  *
   1033   1.1    dyoung  *  Determines the LAN function id by reading memory-mapped registers
   1034   1.1    dyoung  *  and swaps the port value if requested.
   1035   1.1    dyoung  **/
   1036   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1037   1.1    dyoung {
   1038   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1039   1.1    dyoung 	u32 reg;
   1040   1.1    dyoung 
   1041   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1042   1.1    dyoung 
   1043   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1044   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1045   1.1    dyoung 	bus->lan_id = bus->func;
   1046   1.1    dyoung 
   1047   1.1    dyoung 	/* check for a port swap */
   1048  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1049   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1050   1.1    dyoung 		bus->func ^= 0x1;
   1051   1.1    dyoung }
   1052   1.1    dyoung 
   1053   1.1    dyoung /**
   1054   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1055   1.1    dyoung  *  @hw: pointer to hardware structure
   1056   1.1    dyoung  *
   1057   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1058   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1059   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1060   1.1    dyoung  *  state and should not touch the hardware.
   1061   1.1    dyoung  **/
   1062   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1063   1.1    dyoung {
   1064   1.1    dyoung 	u32 reg_val;
   1065   1.1    dyoung 	u16 i;
   1066   1.1    dyoung 
   1067   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1068   1.1    dyoung 
   1069   1.1    dyoung 	/*
   1070   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1071   1.1    dyoung 	 * the hardware
   1072   1.1    dyoung 	 */
   1073   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1074   1.1    dyoung 
   1075   1.1    dyoung 	/* Disable the receive unit */
   1076   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1077   1.1    dyoung 
   1078   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1079   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1080   1.1    dyoung 
   1081   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1082   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1083   1.1    dyoung 
   1084   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1085   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1086   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1087   1.3   msaitoh 
   1088   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1089   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1090   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1091   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1092   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1093   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1094   1.1    dyoung 	}
   1095   1.1    dyoung 
   1096   1.3   msaitoh 	/* flush all queues disables */
   1097   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1098   1.3   msaitoh 	msec_delay(2);
   1099   1.3   msaitoh 
   1100   1.1    dyoung 	/*
   1101   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1102   1.1    dyoung 	 * access and verify no pending requests
   1103   1.1    dyoung 	 */
   1104   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1105   1.1    dyoung }
   1106   1.1    dyoung 
   1107   1.1    dyoung /**
   1108   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1109   1.1    dyoung  *  @hw: pointer to hardware structure
   1110   1.1    dyoung  *  @index: led number to turn on
   1111   1.1    dyoung  **/
   1112   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1113   1.1    dyoung {
   1114   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1115   1.1    dyoung 
   1116   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1117   1.1    dyoung 
   1118   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1119   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1120   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1121   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1122   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1123   1.1    dyoung 
   1124   1.1    dyoung 	return IXGBE_SUCCESS;
   1125   1.1    dyoung }
   1126   1.1    dyoung 
   1127   1.1    dyoung /**
   1128   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1129   1.1    dyoung  *  @hw: pointer to hardware structure
   1130   1.1    dyoung  *  @index: led number to turn off
   1131   1.1    dyoung  **/
   1132   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1133   1.1    dyoung {
   1134   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1135   1.1    dyoung 
   1136   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1137   1.1    dyoung 
   1138   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1139   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1140   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1141   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1142   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1143   1.1    dyoung 
   1144   1.1    dyoung 	return IXGBE_SUCCESS;
   1145   1.1    dyoung }
   1146   1.1    dyoung 
   1147   1.1    dyoung /**
   1148   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1149   1.1    dyoung  *  @hw: pointer to hardware structure
   1150   1.1    dyoung  *
   1151   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1152   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1153   1.1    dyoung  **/
   1154   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1155   1.1    dyoung {
   1156   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1157   1.1    dyoung 	u32 eec;
   1158   1.1    dyoung 	u16 eeprom_size;
   1159   1.1    dyoung 
   1160   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1161   1.1    dyoung 
   1162   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1163   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1164   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1165   1.1    dyoung 		 * tested value */
   1166   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1167   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1168   1.3   msaitoh 		eeprom->word_page_size = 0;
   1169   1.1    dyoung 
   1170   1.1    dyoung 		/*
   1171   1.1    dyoung 		 * Check for EEPROM present first.
   1172   1.1    dyoung 		 * If not present leave as none
   1173   1.1    dyoung 		 */
   1174  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1175   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1176   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1177   1.1    dyoung 
   1178   1.1    dyoung 			/*
   1179   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1180   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1181   1.1    dyoung 			 */
   1182   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1183   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1184   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1185   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1186   1.1    dyoung 		}
   1187   1.1    dyoung 
   1188   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1189   1.1    dyoung 			eeprom->address_bits = 16;
   1190   1.1    dyoung 		else
   1191   1.1    dyoung 			eeprom->address_bits = 8;
   1192   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1193   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1194   1.3   msaitoh 			  eeprom->address_bits);
   1195   1.1    dyoung 	}
   1196   1.1    dyoung 
   1197   1.1    dyoung 	return IXGBE_SUCCESS;
   1198   1.1    dyoung }
   1199   1.1    dyoung 
   1200   1.1    dyoung /**
   1201   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1202   1.3   msaitoh  *  @hw: pointer to hardware structure
   1203   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1204   1.3   msaitoh  *  @words: number of word(s)
   1205   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1206   1.3   msaitoh  *
   1207   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1208   1.3   msaitoh  **/
   1209   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1210   1.3   msaitoh 					       u16 words, u16 *data)
   1211   1.3   msaitoh {
   1212   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1213   1.3   msaitoh 	u16 i, count;
   1214   1.3   msaitoh 
   1215   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1216   1.3   msaitoh 
   1217   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1218   1.3   msaitoh 
   1219   1.3   msaitoh 	if (words == 0) {
   1220   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1221   1.3   msaitoh 		goto out;
   1222   1.3   msaitoh 	}
   1223   1.3   msaitoh 
   1224   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1225   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1226   1.3   msaitoh 		goto out;
   1227   1.3   msaitoh 	}
   1228   1.3   msaitoh 
   1229   1.3   msaitoh 	/*
   1230   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1231   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1232   1.3   msaitoh 	 */
   1233   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1234   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1235   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1236   1.3   msaitoh 
   1237   1.3   msaitoh 	/*
   1238   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1239   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1240   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1241   1.3   msaitoh 	 */
   1242   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1243   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1244   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1245   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1246   1.3   msaitoh 							    count, &data[i]);
   1247   1.3   msaitoh 
   1248   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1249   1.3   msaitoh 			break;
   1250   1.3   msaitoh 	}
   1251   1.3   msaitoh 
   1252   1.3   msaitoh out:
   1253   1.3   msaitoh 	return status;
   1254   1.3   msaitoh }
   1255   1.3   msaitoh 
   1256   1.3   msaitoh /**
   1257   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1258   1.3   msaitoh  *  @hw: pointer to hardware structure
   1259   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1260   1.3   msaitoh  *  @words: number of word(s)
   1261   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1262   1.3   msaitoh  *
   1263   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1264   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1265   1.3   msaitoh  **/
   1266   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1267   1.3   msaitoh 					      u16 words, u16 *data)
   1268   1.3   msaitoh {
   1269   1.3   msaitoh 	s32 status;
   1270   1.3   msaitoh 	u16 word;
   1271   1.3   msaitoh 	u16 page_size;
   1272   1.3   msaitoh 	u16 i;
   1273   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1274   1.3   msaitoh 
   1275   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1276   1.3   msaitoh 
   1277   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1278   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1279   1.3   msaitoh 
   1280   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1281   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1282   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1283   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1284   1.3   msaitoh 		}
   1285   1.3   msaitoh 	}
   1286   1.3   msaitoh 
   1287   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1288   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1289   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1290   1.3   msaitoh 
   1291   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1292   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1293   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1294   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1295   1.3   msaitoh 
   1296   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1297   1.3   msaitoh 
   1298   1.3   msaitoh 			/*
   1299   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1300   1.3   msaitoh 			 * in the opcode
   1301   1.3   msaitoh 			 */
   1302   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1303   1.3   msaitoh 			    ((offset + i) >= 128))
   1304   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1305   1.3   msaitoh 
   1306   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1307   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1308   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1309   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1310   1.3   msaitoh 						    hw->eeprom.address_bits);
   1311   1.3   msaitoh 
   1312   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1313   1.3   msaitoh 
   1314   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1315   1.3   msaitoh 			do {
   1316   1.3   msaitoh 				word = data[i];
   1317   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1318   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1319   1.3   msaitoh 
   1320   1.3   msaitoh 				if (page_size == 0)
   1321   1.3   msaitoh 					break;
   1322   1.3   msaitoh 
   1323   1.3   msaitoh 				/* do not wrap around page */
   1324   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1325   1.3   msaitoh 				    (page_size - 1))
   1326   1.3   msaitoh 					break;
   1327   1.3   msaitoh 			} while (++i < words);
   1328   1.3   msaitoh 
   1329   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1330   1.3   msaitoh 			msec_delay(10);
   1331   1.3   msaitoh 		}
   1332   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1333   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1334   1.3   msaitoh 	}
   1335   1.3   msaitoh 
   1336   1.3   msaitoh 	return status;
   1337   1.3   msaitoh }
   1338   1.3   msaitoh 
   1339   1.3   msaitoh /**
   1340   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1341   1.1    dyoung  *  @hw: pointer to hardware structure
   1342   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1343   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1344   1.1    dyoung  *
   1345   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1346   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1347   1.1    dyoung  **/
   1348   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1349   1.1    dyoung {
   1350   1.1    dyoung 	s32 status;
   1351   1.1    dyoung 
   1352   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1353   1.1    dyoung 
   1354   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1355   1.1    dyoung 
   1356   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1357   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1358   1.1    dyoung 		goto out;
   1359   1.1    dyoung 	}
   1360   1.1    dyoung 
   1361   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1362   1.3   msaitoh 
   1363   1.3   msaitoh out:
   1364   1.3   msaitoh 	return status;
   1365   1.3   msaitoh }
   1366   1.3   msaitoh 
   1367   1.3   msaitoh /**
   1368   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1369   1.3   msaitoh  *  @hw: pointer to hardware structure
   1370   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1371   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1372   1.3   msaitoh  *  @words: number of word(s)
   1373   1.3   msaitoh  *
   1374   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1375   1.3   msaitoh  **/
   1376   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1377   1.3   msaitoh 					      u16 words, u16 *data)
   1378   1.3   msaitoh {
   1379   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1380   1.3   msaitoh 	u16 i, count;
   1381   1.3   msaitoh 
   1382   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1383   1.3   msaitoh 
   1384   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1385   1.3   msaitoh 
   1386   1.3   msaitoh 	if (words == 0) {
   1387   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1388   1.3   msaitoh 		goto out;
   1389   1.3   msaitoh 	}
   1390   1.3   msaitoh 
   1391   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1392   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1393   1.3   msaitoh 		goto out;
   1394   1.3   msaitoh 	}
   1395   1.3   msaitoh 
   1396   1.3   msaitoh 	/*
   1397   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1398   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1399   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1400   1.3   msaitoh 	 */
   1401   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1402   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1403   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1404   1.3   msaitoh 
   1405   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1406   1.3   msaitoh 							   count, &data[i]);
   1407   1.3   msaitoh 
   1408   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1409   1.3   msaitoh 			break;
   1410   1.3   msaitoh 	}
   1411   1.3   msaitoh 
   1412   1.3   msaitoh out:
   1413   1.3   msaitoh 	return status;
   1414   1.3   msaitoh }
   1415   1.3   msaitoh 
   1416   1.3   msaitoh /**
   1417   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1418   1.3   msaitoh  *  @hw: pointer to hardware structure
   1419   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1420   1.3   msaitoh  *  @words: number of word(s)
   1421   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1422   1.3   msaitoh  *
   1423   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1424   1.3   msaitoh  **/
   1425   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1426   1.3   msaitoh 					     u16 words, u16 *data)
   1427   1.3   msaitoh {
   1428   1.3   msaitoh 	s32 status;
   1429   1.3   msaitoh 	u16 word_in;
   1430   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1431   1.3   msaitoh 	u16 i;
   1432   1.3   msaitoh 
   1433   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1434   1.3   msaitoh 
   1435   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1436   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1437   1.1    dyoung 
   1438   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1439   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1440   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1441   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1442   1.1    dyoung 		}
   1443   1.1    dyoung 	}
   1444   1.1    dyoung 
   1445   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1446   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1447   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1448   1.3   msaitoh 			/*
   1449   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1450   1.3   msaitoh 			 * in the opcode
   1451   1.3   msaitoh 			 */
   1452   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1453   1.3   msaitoh 			    ((offset + i) >= 128))
   1454   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1455   1.3   msaitoh 
   1456   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1457   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1458   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1459   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1460   1.3   msaitoh 						    hw->eeprom.address_bits);
   1461   1.3   msaitoh 
   1462   1.3   msaitoh 			/* Read the data. */
   1463   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1464   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1465   1.3   msaitoh 		}
   1466   1.1    dyoung 
   1467   1.3   msaitoh 		/* End this read operation */
   1468   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1469   1.1    dyoung 	}
   1470   1.1    dyoung 
   1471   1.1    dyoung 	return status;
   1472   1.1    dyoung }
   1473   1.1    dyoung 
   1474   1.1    dyoung /**
   1475   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1476   1.1    dyoung  *  @hw: pointer to hardware structure
   1477   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1478   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1479   1.1    dyoung  *
   1480   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1481   1.1    dyoung  **/
   1482   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1483   1.3   msaitoh 				       u16 *data)
   1484   1.1    dyoung {
   1485   1.1    dyoung 	s32 status;
   1486   1.1    dyoung 
   1487   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1488   1.1    dyoung 
   1489   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1490   1.1    dyoung 
   1491   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1492   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1493   1.1    dyoung 		goto out;
   1494   1.1    dyoung 	}
   1495   1.1    dyoung 
   1496   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1497   1.3   msaitoh 
   1498   1.3   msaitoh out:
   1499   1.3   msaitoh 	return status;
   1500   1.3   msaitoh }
   1501   1.3   msaitoh 
   1502   1.3   msaitoh /**
   1503   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1504   1.3   msaitoh  *  @hw: pointer to hardware structure
   1505   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1506   1.3   msaitoh  *  @words: number of word(s)
   1507   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1508   1.3   msaitoh  *
   1509   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1510   1.3   msaitoh  **/
   1511   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1512   1.3   msaitoh 				   u16 words, u16 *data)
   1513   1.3   msaitoh {
   1514   1.3   msaitoh 	u32 eerd;
   1515   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1516   1.3   msaitoh 	u32 i;
   1517   1.3   msaitoh 
   1518   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1519   1.3   msaitoh 
   1520   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1521   1.3   msaitoh 
   1522   1.3   msaitoh 	if (words == 0) {
   1523   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1524   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1525   1.3   msaitoh 		goto out;
   1526   1.3   msaitoh 	}
   1527   1.3   msaitoh 
   1528   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1529   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1530   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1531   1.3   msaitoh 		goto out;
   1532   1.3   msaitoh 	}
   1533   1.3   msaitoh 
   1534   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1535   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1536   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1537   1.3   msaitoh 
   1538   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1539   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1540   1.1    dyoung 
   1541   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1542   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1543   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1544   1.3   msaitoh 		} else {
   1545   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1546   1.3   msaitoh 			goto out;
   1547   1.1    dyoung 		}
   1548   1.1    dyoung 	}
   1549   1.3   msaitoh out:
   1550   1.3   msaitoh 	return status;
   1551   1.3   msaitoh }
   1552   1.1    dyoung 
   1553   1.3   msaitoh /**
   1554   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1555   1.3   msaitoh  *  @hw: pointer to hardware structure
   1556   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1557   1.3   msaitoh  *
   1558   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1559   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1560   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1561   1.3   msaitoh  **/
   1562   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1563   1.3   msaitoh 						 u16 offset)
   1564   1.3   msaitoh {
   1565   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1566   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1567   1.3   msaitoh 	u16 i;
   1568   1.3   msaitoh 
   1569   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1570   1.3   msaitoh 
   1571   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1572   1.3   msaitoh 		data[i] = i;
   1573   1.1    dyoung 
   1574   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1575   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1576   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1577   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1578   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1579   1.3   msaitoh 		goto out;
   1580   1.1    dyoung 
   1581   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1582   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1583   1.3   msaitoh 		goto out;
   1584   1.1    dyoung 
   1585   1.3   msaitoh 	/*
   1586   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1587   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1588   1.3   msaitoh 	 */
   1589   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1590   1.1    dyoung 
   1591   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1592   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1593   1.1    dyoung out:
   1594   1.1    dyoung 	return status;
   1595   1.1    dyoung }
   1596   1.1    dyoung 
   1597   1.1    dyoung /**
   1598   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1599   1.1    dyoung  *  @hw: pointer to hardware structure
   1600   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1601   1.1    dyoung  *  @data: word read from the EEPROM
   1602   1.1    dyoung  *
   1603   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1604   1.1    dyoung  **/
   1605   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1606   1.1    dyoung {
   1607   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1608   1.3   msaitoh }
   1609   1.3   msaitoh 
   1610   1.3   msaitoh /**
   1611   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1612   1.3   msaitoh  *  @hw: pointer to hardware structure
   1613   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1614   1.3   msaitoh  *  @words: number of word(s)
   1615   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1616   1.3   msaitoh  *
   1617   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1618   1.3   msaitoh  **/
   1619   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1620   1.3   msaitoh 				    u16 words, u16 *data)
   1621   1.3   msaitoh {
   1622   1.3   msaitoh 	u32 eewr;
   1623   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1624   1.3   msaitoh 	u16 i;
   1625   1.1    dyoung 
   1626   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1627   1.1    dyoung 
   1628   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1629   1.1    dyoung 
   1630   1.3   msaitoh 	if (words == 0) {
   1631   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1632   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1633   1.3   msaitoh 		goto out;
   1634   1.3   msaitoh 	}
   1635   1.3   msaitoh 
   1636   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1637   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1638   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1639   1.1    dyoung 		goto out;
   1640   1.1    dyoung 	}
   1641   1.1    dyoung 
   1642   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1643   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1644   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1645   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1646   1.3   msaitoh 
   1647   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1648   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1649   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1650   1.3   msaitoh 			goto out;
   1651   1.3   msaitoh 		}
   1652   1.1    dyoung 
   1653   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1654   1.1    dyoung 
   1655   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1656   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1657   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1658   1.3   msaitoh 			goto out;
   1659   1.3   msaitoh 		}
   1660   1.3   msaitoh 	}
   1661   1.1    dyoung 
   1662   1.1    dyoung out:
   1663   1.1    dyoung 	return status;
   1664   1.1    dyoung }
   1665   1.1    dyoung 
   1666   1.1    dyoung /**
   1667   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1668   1.1    dyoung  *  @hw: pointer to hardware structure
   1669   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1670   1.1    dyoung  *  @data: word write to the EEPROM
   1671   1.1    dyoung  *
   1672   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1673   1.1    dyoung  **/
   1674   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1675   1.1    dyoung {
   1676   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1677   1.1    dyoung }
   1678   1.1    dyoung 
   1679   1.1    dyoung /**
   1680   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1681   1.1    dyoung  *  @hw: pointer to hardware structure
   1682   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1683   1.1    dyoung  *
   1684   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1685   1.1    dyoung  *  read or write is done respectively.
   1686   1.1    dyoung  **/
   1687   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1688   1.1    dyoung {
   1689   1.1    dyoung 	u32 i;
   1690   1.1    dyoung 	u32 reg;
   1691   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1692   1.1    dyoung 
   1693   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1694   1.1    dyoung 
   1695   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1696   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1697   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1698   1.1    dyoung 		else
   1699   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1700   1.1    dyoung 
   1701   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1702   1.1    dyoung 			status = IXGBE_SUCCESS;
   1703   1.1    dyoung 			break;
   1704   1.1    dyoung 		}
   1705   1.1    dyoung 		usec_delay(5);
   1706   1.1    dyoung 	}
   1707   1.6   msaitoh 
   1708   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1709   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1710   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1711   1.6   msaitoh 
   1712   1.1    dyoung 	return status;
   1713   1.1    dyoung }
   1714   1.1    dyoung 
   1715   1.1    dyoung /**
   1716   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1717   1.1    dyoung  *  @hw: pointer to hardware structure
   1718   1.1    dyoung  *
   1719   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1720   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1721   1.1    dyoung  **/
   1722   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1723   1.1    dyoung {
   1724   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1725   1.1    dyoung 	u32 eec;
   1726   1.1    dyoung 	u32 i;
   1727   1.1    dyoung 
   1728   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1729   1.1    dyoung 
   1730   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1731   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1732   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1733   1.1    dyoung 
   1734   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1735  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1736   1.1    dyoung 
   1737   1.1    dyoung 		/* Request EEPROM Access */
   1738   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1739  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1740   1.1    dyoung 
   1741   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1742  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1743   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1744   1.1    dyoung 				break;
   1745   1.1    dyoung 			usec_delay(5);
   1746   1.1    dyoung 		}
   1747   1.1    dyoung 
   1748   1.1    dyoung 		/* Release if grant not acquired */
   1749   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1750   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1751  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1752   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1753   1.1    dyoung 
   1754   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1755   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1756   1.1    dyoung 		}
   1757   1.1    dyoung 
   1758   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1759   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1760   1.1    dyoung 			/* Clear CS and SK */
   1761   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1762  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1763   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1764   1.1    dyoung 			usec_delay(1);
   1765   1.1    dyoung 		}
   1766   1.1    dyoung 	}
   1767   1.1    dyoung 	return status;
   1768   1.1    dyoung }
   1769   1.1    dyoung 
   1770   1.1    dyoung /**
   1771   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1772   1.1    dyoung  *  @hw: pointer to hardware structure
   1773   1.1    dyoung  *
   1774   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1775   1.1    dyoung  **/
   1776   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1777   1.1    dyoung {
   1778   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1779   1.1    dyoung 	u32 timeout = 2000;
   1780   1.1    dyoung 	u32 i;
   1781   1.1    dyoung 	u32 swsm;
   1782   1.1    dyoung 
   1783   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1784   1.1    dyoung 
   1785   1.1    dyoung 
   1786   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1787   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1788   1.1    dyoung 		/*
   1789   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1790   1.1    dyoung 		 * set and we have the semaphore
   1791   1.1    dyoung 		 */
   1792  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1793   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1794   1.1    dyoung 			status = IXGBE_SUCCESS;
   1795   1.1    dyoung 			break;
   1796   1.1    dyoung 		}
   1797   1.1    dyoung 		usec_delay(50);
   1798   1.1    dyoung 	}
   1799   1.1    dyoung 
   1800   1.3   msaitoh 	if (i == timeout) {
   1801   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1802   1.3   msaitoh 			 "not granted.\n");
   1803   1.3   msaitoh 		/*
   1804   1.3   msaitoh 		 * this release is particularly important because our attempts
   1805   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1806   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1807   1.3   msaitoh 		 * bits to free the driver to make progress
   1808   1.3   msaitoh 		 */
   1809   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1810   1.3   msaitoh 
   1811   1.3   msaitoh 		usec_delay(50);
   1812   1.3   msaitoh 		/*
   1813   1.3   msaitoh 		 * one last try
   1814   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1815   1.3   msaitoh 		 * set and we have the semaphore
   1816   1.3   msaitoh 		 */
   1817  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1818   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1819   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1820   1.3   msaitoh 	}
   1821   1.3   msaitoh 
   1822   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1823   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1824   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1825  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1826   1.1    dyoung 
   1827   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1828   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1829  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1830   1.1    dyoung 
   1831   1.1    dyoung 			/*
   1832   1.1    dyoung 			 * If we set the bit successfully then we got the
   1833   1.1    dyoung 			 * semaphore.
   1834   1.1    dyoung 			 */
   1835  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1836   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1837   1.1    dyoung 				break;
   1838   1.1    dyoung 
   1839   1.1    dyoung 			usec_delay(50);
   1840   1.1    dyoung 		}
   1841   1.1    dyoung 
   1842   1.1    dyoung 		/*
   1843   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1844   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1845   1.1    dyoung 		 */
   1846   1.1    dyoung 		if (i >= timeout) {
   1847   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1848   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1849   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1850   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1851   1.1    dyoung 		}
   1852   1.1    dyoung 	} else {
   1853   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1854   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1855   1.6   msaitoh 			     "not granted.\n");
   1856   1.1    dyoung 	}
   1857   1.1    dyoung 
   1858   1.1    dyoung 	return status;
   1859   1.1    dyoung }
   1860   1.1    dyoung 
   1861   1.1    dyoung /**
   1862   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1863   1.1    dyoung  *  @hw: pointer to hardware structure
   1864   1.1    dyoung  *
   1865   1.1    dyoung  *  This function clears hardware semaphore bits.
   1866   1.1    dyoung  **/
   1867   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1868   1.1    dyoung {
   1869   1.1    dyoung 	u32 swsm;
   1870   1.1    dyoung 
   1871   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1872   1.1    dyoung 
   1873   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1874   1.1    dyoung 
   1875   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1876   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1877   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1878   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1879   1.1    dyoung }
   1880   1.1    dyoung 
   1881   1.1    dyoung /**
   1882   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1883   1.1    dyoung  *  @hw: pointer to hardware structure
   1884   1.1    dyoung  **/
   1885   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1886   1.1    dyoung {
   1887   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1888   1.1    dyoung 	u16 i;
   1889   1.1    dyoung 	u8 spi_stat_reg;
   1890   1.1    dyoung 
   1891   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1892   1.1    dyoung 
   1893   1.1    dyoung 	/*
   1894   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1895   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1896   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1897   1.1    dyoung 	 * 5 milliseconds, then error out.
   1898   1.1    dyoung 	 */
   1899   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1900   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1901   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1902   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1903   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1904   1.1    dyoung 			break;
   1905   1.1    dyoung 
   1906   1.1    dyoung 		usec_delay(5);
   1907   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   1908  1.11   msaitoh 	}
   1909   1.1    dyoung 
   1910   1.1    dyoung 	/*
   1911   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1912   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1913   1.1    dyoung 	 */
   1914   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1915   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1916   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1917   1.1    dyoung 	}
   1918   1.1    dyoung 
   1919   1.1    dyoung 	return status;
   1920   1.1    dyoung }
   1921   1.1    dyoung 
   1922   1.1    dyoung /**
   1923   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1924   1.1    dyoung  *  @hw: pointer to hardware structure
   1925   1.1    dyoung  **/
   1926   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1927   1.1    dyoung {
   1928   1.1    dyoung 	u32 eec;
   1929   1.1    dyoung 
   1930   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1931   1.1    dyoung 
   1932  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1933   1.1    dyoung 
   1934   1.1    dyoung 	/* Toggle CS to flush commands */
   1935   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   1936  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1937   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1938   1.1    dyoung 	usec_delay(1);
   1939   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   1940  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1941   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1942   1.1    dyoung 	usec_delay(1);
   1943   1.1    dyoung }
   1944   1.1    dyoung 
   1945   1.1    dyoung /**
   1946   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1947   1.1    dyoung  *  @hw: pointer to hardware structure
   1948   1.1    dyoung  *  @data: data to send to the EEPROM
   1949   1.1    dyoung  *  @count: number of bits to shift out
   1950   1.1    dyoung  **/
   1951   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1952   1.3   msaitoh 					u16 count)
   1953   1.1    dyoung {
   1954   1.1    dyoung 	u32 eec;
   1955   1.1    dyoung 	u32 mask;
   1956   1.1    dyoung 	u32 i;
   1957   1.1    dyoung 
   1958   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1959   1.1    dyoung 
   1960  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1961   1.1    dyoung 
   1962   1.1    dyoung 	/*
   1963   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1964   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1965   1.1    dyoung 	 */
   1966   1.1    dyoung 	mask = 0x01 << (count - 1);
   1967   1.1    dyoung 
   1968   1.1    dyoung 	for (i = 0; i < count; i++) {
   1969   1.1    dyoung 		/*
   1970   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1971   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1972   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1973   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1974   1.1    dyoung 		 * raising and then lowering the clock.
   1975   1.1    dyoung 		 */
   1976   1.1    dyoung 		if (data & mask)
   1977   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   1978   1.1    dyoung 		else
   1979   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   1980   1.1    dyoung 
   1981  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1982   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   1983   1.1    dyoung 
   1984   1.1    dyoung 		usec_delay(1);
   1985   1.1    dyoung 
   1986   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1987   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1988   1.1    dyoung 
   1989   1.1    dyoung 		/*
   1990   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1991   1.1    dyoung 		 * EEPROM
   1992   1.1    dyoung 		 */
   1993   1.1    dyoung 		mask = mask >> 1;
   1994  1.11   msaitoh 	}
   1995   1.1    dyoung 
   1996   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1997   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   1998  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1999   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2000   1.1    dyoung }
   2001   1.1    dyoung 
   2002   1.1    dyoung /**
   2003   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2004   1.1    dyoung  *  @hw: pointer to hardware structure
   2005   1.1    dyoung  **/
   2006   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2007   1.1    dyoung {
   2008   1.1    dyoung 	u32 eec;
   2009   1.1    dyoung 	u32 i;
   2010   1.1    dyoung 	u16 data = 0;
   2011   1.1    dyoung 
   2012   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2013   1.1    dyoung 
   2014   1.1    dyoung 	/*
   2015   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2016   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2017   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2018   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2019   1.1    dyoung 	 * "DI" bit should always be clear.
   2020   1.1    dyoung 	 */
   2021  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2022   1.1    dyoung 
   2023   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2024   1.1    dyoung 
   2025   1.1    dyoung 	for (i = 0; i < count; i++) {
   2026   1.1    dyoung 		data = data << 1;
   2027   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2028   1.1    dyoung 
   2029  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2030   1.1    dyoung 
   2031   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2032   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2033   1.1    dyoung 			data |= 1;
   2034   1.1    dyoung 
   2035   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2036   1.1    dyoung 	}
   2037   1.1    dyoung 
   2038   1.1    dyoung 	return data;
   2039   1.1    dyoung }
   2040   1.1    dyoung 
   2041   1.1    dyoung /**
   2042   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2043   1.1    dyoung  *  @hw: pointer to hardware structure
   2044   1.1    dyoung  *  @eec: EEC register's current value
   2045   1.1    dyoung  **/
   2046   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2047   1.1    dyoung {
   2048   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2049   1.1    dyoung 
   2050   1.1    dyoung 	/*
   2051   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2052   1.1    dyoung 	 * (setting the SK bit), then delay
   2053   1.1    dyoung 	 */
   2054   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2055  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2056   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2057   1.1    dyoung 	usec_delay(1);
   2058   1.1    dyoung }
   2059   1.1    dyoung 
   2060   1.1    dyoung /**
   2061   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2062   1.1    dyoung  *  @hw: pointer to hardware structure
   2063   1.1    dyoung  *  @eecd: EECD's current value
   2064   1.1    dyoung  **/
   2065   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2066   1.1    dyoung {
   2067   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2068   1.1    dyoung 
   2069   1.1    dyoung 	/*
   2070   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2071   1.1    dyoung 	 * delay
   2072   1.1    dyoung 	 */
   2073   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2074  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2075   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2076   1.1    dyoung 	usec_delay(1);
   2077   1.1    dyoung }
   2078   1.1    dyoung 
   2079   1.1    dyoung /**
   2080   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2081   1.1    dyoung  *  @hw: pointer to hardware structure
   2082   1.1    dyoung  **/
   2083   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2084   1.1    dyoung {
   2085   1.1    dyoung 	u32 eec;
   2086   1.1    dyoung 
   2087   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2088   1.1    dyoung 
   2089  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2090   1.1    dyoung 
   2091   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2092   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2093   1.1    dyoung 
   2094  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2095   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2096   1.1    dyoung 
   2097   1.1    dyoung 	usec_delay(1);
   2098   1.1    dyoung 
   2099   1.1    dyoung 	/* Stop requesting EEPROM access */
   2100   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2101  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2102   1.1    dyoung 
   2103   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2104   1.1    dyoung 
   2105   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2106   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2107   1.1    dyoung }
   2108   1.1    dyoung 
   2109   1.1    dyoung /**
   2110   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2111   1.1    dyoung  *  @hw: pointer to hardware structure
   2112   1.8   msaitoh  *
   2113   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2114   1.1    dyoung  **/
   2115   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2116   1.1    dyoung {
   2117   1.1    dyoung 	u16 i;
   2118   1.1    dyoung 	u16 j;
   2119   1.1    dyoung 	u16 checksum = 0;
   2120   1.1    dyoung 	u16 length = 0;
   2121   1.1    dyoung 	u16 pointer = 0;
   2122   1.1    dyoung 	u16 word = 0;
   2123   1.1    dyoung 
   2124   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2125   1.1    dyoung 
   2126   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2127   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2128   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2129   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2130   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2131   1.1    dyoung 		}
   2132   1.1    dyoung 		checksum += word;
   2133   1.1    dyoung 	}
   2134   1.1    dyoung 
   2135   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2136   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2137   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2138   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2139   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2140   1.8   msaitoh 		}
   2141   1.8   msaitoh 
   2142   1.8   msaitoh 		/* If the pointer seems invalid */
   2143   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2144   1.8   msaitoh 			continue;
   2145   1.8   msaitoh 
   2146   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2147   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2148   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2149   1.8   msaitoh 		}
   2150   1.8   msaitoh 
   2151   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2152   1.8   msaitoh 			continue;
   2153   1.1    dyoung 
   2154   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2155   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2156   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2157   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2158   1.1    dyoung 			}
   2159   1.8   msaitoh 			checksum += word;
   2160   1.1    dyoung 		}
   2161   1.1    dyoung 	}
   2162   1.1    dyoung 
   2163   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2164   1.1    dyoung 
   2165   1.8   msaitoh 	return (s32)checksum;
   2166   1.1    dyoung }
   2167   1.1    dyoung 
   2168   1.1    dyoung /**
   2169   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2170   1.1    dyoung  *  @hw: pointer to hardware structure
   2171   1.1    dyoung  *  @checksum_val: calculated checksum
   2172   1.1    dyoung  *
   2173   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2174   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2175   1.1    dyoung  **/
   2176   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2177   1.3   msaitoh 					   u16 *checksum_val)
   2178   1.1    dyoung {
   2179   1.1    dyoung 	s32 status;
   2180   1.1    dyoung 	u16 checksum;
   2181   1.1    dyoung 	u16 read_checksum = 0;
   2182   1.1    dyoung 
   2183   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2184   1.1    dyoung 
   2185   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2186   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2187   1.1    dyoung 	 * EEPROM read fails
   2188   1.1    dyoung 	 */
   2189   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2190   1.8   msaitoh 	if (status) {
   2191   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2192   1.8   msaitoh 		return status;
   2193   1.8   msaitoh 	}
   2194   1.1    dyoung 
   2195   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2196   1.8   msaitoh 	if (status < 0)
   2197   1.8   msaitoh 		return status;
   2198   1.1    dyoung 
   2199   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2200   1.1    dyoung 
   2201   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2202   1.8   msaitoh 	if (status) {
   2203   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2204   1.8   msaitoh 		return status;
   2205   1.1    dyoung 	}
   2206   1.1    dyoung 
   2207   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2208   1.8   msaitoh 	 * calculated checksum
   2209   1.8   msaitoh 	 */
   2210   1.8   msaitoh 	if (read_checksum != checksum)
   2211   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2212   1.8   msaitoh 
   2213   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2214   1.8   msaitoh 	if (checksum_val)
   2215   1.8   msaitoh 		*checksum_val = checksum;
   2216   1.8   msaitoh 
   2217   1.1    dyoung 	return status;
   2218   1.1    dyoung }
   2219   1.1    dyoung 
   2220   1.1    dyoung /**
   2221   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2222   1.1    dyoung  *  @hw: pointer to hardware structure
   2223   1.1    dyoung  **/
   2224   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2225   1.1    dyoung {
   2226   1.1    dyoung 	s32 status;
   2227   1.1    dyoung 	u16 checksum;
   2228   1.1    dyoung 
   2229   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2230   1.1    dyoung 
   2231   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2232   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2233   1.1    dyoung 	 * EEPROM read fails
   2234   1.1    dyoung 	 */
   2235   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2236   1.8   msaitoh 	if (status) {
   2237   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2238   1.8   msaitoh 		return status;
   2239   1.1    dyoung 	}
   2240   1.1    dyoung 
   2241   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2242   1.8   msaitoh 	if (status < 0)
   2243   1.8   msaitoh 		return status;
   2244   1.8   msaitoh 
   2245   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2246   1.8   msaitoh 
   2247   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2248   1.8   msaitoh 
   2249   1.1    dyoung 	return status;
   2250   1.1    dyoung }
   2251   1.1    dyoung 
   2252   1.1    dyoung /**
   2253   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2254   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2255   1.1    dyoung  *
   2256   1.1    dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2257   1.1    dyoung  **/
   2258   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2259   1.1    dyoung {
   2260   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2261   1.1    dyoung 
   2262   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2263   1.1    dyoung 
   2264   1.1    dyoung 	/* Make sure it is not a multicast address */
   2265   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2266   1.1    dyoung 		DEBUGOUT("MAC address is multicast\n");
   2267   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2268   1.1    dyoung 	/* Not a broadcast address */
   2269   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2270   1.1    dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2271   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2272   1.1    dyoung 	/* Reject the zero address */
   2273   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2274   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2275   1.1    dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2276   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2277   1.1    dyoung 	}
   2278   1.1    dyoung 	return status;
   2279   1.1    dyoung }
   2280   1.1    dyoung 
   2281   1.1    dyoung /**
   2282   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2283   1.1    dyoung  *  @hw: pointer to hardware structure
   2284   1.1    dyoung  *  @index: Receive address register to write
   2285   1.1    dyoung  *  @addr: Address to put into receive address register
   2286   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2287   1.1    dyoung  *  @enable_addr: set flag that address is active
   2288   1.1    dyoung  *
   2289   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2290   1.1    dyoung  **/
   2291   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2292   1.3   msaitoh 			  u32 enable_addr)
   2293   1.1    dyoung {
   2294   1.1    dyoung 	u32 rar_low, rar_high;
   2295   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2296   1.1    dyoung 
   2297   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2298   1.1    dyoung 
   2299   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2300   1.1    dyoung 	if (index >= rar_entries) {
   2301   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2302   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2303   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2304   1.1    dyoung 	}
   2305   1.1    dyoung 
   2306   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2307   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2308   1.1    dyoung 
   2309   1.1    dyoung 	/*
   2310   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2311   1.1    dyoung 	 * order from network order (big endian) to little endian
   2312   1.1    dyoung 	 */
   2313   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2314   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2315   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2316   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2317   1.1    dyoung 	/*
   2318   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2319   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2320   1.1    dyoung 	 * of the address and the address valid bit.
   2321   1.1    dyoung 	 */
   2322   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2323   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2324   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2325   1.1    dyoung 
   2326   1.1    dyoung 	if (enable_addr != 0)
   2327   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2328   1.1    dyoung 
   2329   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2330   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2331   1.1    dyoung 
   2332   1.1    dyoung 	return IXGBE_SUCCESS;
   2333   1.1    dyoung }
   2334   1.1    dyoung 
   2335   1.1    dyoung /**
   2336   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2337   1.1    dyoung  *  @hw: pointer to hardware structure
   2338   1.1    dyoung  *  @index: Receive address register to write
   2339   1.1    dyoung  *
   2340   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2341   1.1    dyoung  **/
   2342   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2343   1.1    dyoung {
   2344   1.1    dyoung 	u32 rar_high;
   2345   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2346   1.1    dyoung 
   2347   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2348   1.1    dyoung 
   2349   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2350   1.1    dyoung 	if (index >= rar_entries) {
   2351   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2352   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2353   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2354   1.1    dyoung 	}
   2355   1.1    dyoung 
   2356   1.1    dyoung 	/*
   2357   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2358   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2359   1.1    dyoung 	 * of the address and the address valid bit.
   2360   1.1    dyoung 	 */
   2361   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2362   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2363   1.1    dyoung 
   2364   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2365   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2366   1.1    dyoung 
   2367   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2368   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2369   1.1    dyoung 
   2370   1.1    dyoung 	return IXGBE_SUCCESS;
   2371   1.1    dyoung }
   2372   1.1    dyoung 
   2373   1.1    dyoung /**
   2374   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2375   1.1    dyoung  *  @hw: pointer to hardware structure
   2376   1.1    dyoung  *
   2377   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2378   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2379   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2380   1.1    dyoung  **/
   2381   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2382   1.1    dyoung {
   2383   1.1    dyoung 	u32 i;
   2384   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2385   1.1    dyoung 
   2386   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2387   1.1    dyoung 
   2388   1.1    dyoung 	/*
   2389   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2390   1.1    dyoung 	 * to the permanent address.
   2391   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2392   1.1    dyoung 	 */
   2393   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2394   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2395   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2396   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2397   1.1    dyoung 
   2398   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2399   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2400   1.3   msaitoh 			  hw->mac.addr[2]);
   2401   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2402   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2403   1.1    dyoung 	} else {
   2404   1.1    dyoung 		/* Setup the receive address. */
   2405   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2406   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2407   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2408   1.3   msaitoh 			  hw->mac.addr[2]);
   2409   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2410   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2411   1.1    dyoung 
   2412   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2413   1.1    dyoung 
   2414   1.1    dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2415   1.1    dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2416   1.1    dyoung 	}
   2417   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2418   1.1    dyoung 
   2419   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2420   1.1    dyoung 
   2421   1.1    dyoung 	/* Zero out the other receive addresses. */
   2422   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2423   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2424   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2425   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2426   1.1    dyoung 	}
   2427   1.1    dyoung 
   2428   1.1    dyoung 	/* Clear the MTA */
   2429   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2430   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2431   1.1    dyoung 
   2432   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2433   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2434   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2435   1.1    dyoung 
   2436   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2437   1.1    dyoung 
   2438   1.1    dyoung 	return IXGBE_SUCCESS;
   2439   1.1    dyoung }
   2440   1.1    dyoung 
   2441   1.1    dyoung /**
   2442   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2443   1.1    dyoung  *  @hw: pointer to hardware structure
   2444   1.1    dyoung  *  @addr: new address
   2445   1.1    dyoung  *
   2446   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2447   1.1    dyoung  **/
   2448   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2449   1.1    dyoung {
   2450   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2451   1.1    dyoung 	u32 rar;
   2452   1.1    dyoung 
   2453   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2454   1.1    dyoung 
   2455   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2456   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2457   1.1    dyoung 
   2458   1.1    dyoung 	/*
   2459   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2460   1.1    dyoung 	 * else put the controller into promiscuous mode
   2461   1.1    dyoung 	 */
   2462   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2463   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2464   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2465   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2466   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2467   1.1    dyoung 	} else {
   2468   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2469   1.1    dyoung 	}
   2470   1.1    dyoung 
   2471   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2472   1.1    dyoung }
   2473   1.1    dyoung 
   2474   1.1    dyoung /**
   2475   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2476   1.1    dyoung  *  @hw: pointer to hardware structure
   2477   1.1    dyoung  *  @addr_list: the list of new addresses
   2478   1.1    dyoung  *  @addr_count: number of addresses
   2479   1.1    dyoung  *  @next: iterator function to walk the address list
   2480   1.1    dyoung  *
   2481   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2482   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2483   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2484   1.1    dyoung  *
   2485   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2486   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2487   1.1    dyoung  **/
   2488   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2489   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2490   1.1    dyoung {
   2491   1.1    dyoung 	u8 *addr;
   2492   1.1    dyoung 	u32 i;
   2493   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2494   1.1    dyoung 	u32 uc_addr_in_use;
   2495   1.1    dyoung 	u32 fctrl;
   2496   1.1    dyoung 	u32 vmdq;
   2497   1.1    dyoung 
   2498   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2499   1.1    dyoung 
   2500   1.1    dyoung 	/*
   2501   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2502   1.1    dyoung 	 * don't count RAR[0]
   2503   1.1    dyoung 	 */
   2504   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2505   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2506   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2507   1.1    dyoung 
   2508   1.1    dyoung 	/* Zero out the other receive addresses */
   2509   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2510   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2511   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2512   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2513   1.1    dyoung 	}
   2514   1.1    dyoung 
   2515   1.1    dyoung 	/* Add the new addresses */
   2516   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2517   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2518   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2519   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2520   1.1    dyoung 	}
   2521   1.1    dyoung 
   2522   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2523   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2524   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2525   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2526   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2527   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2528   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2529   1.1    dyoung 		}
   2530   1.1    dyoung 	} else {
   2531   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2532   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2533   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2534   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2535   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2536   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2537   1.1    dyoung 		}
   2538   1.1    dyoung 	}
   2539   1.1    dyoung 
   2540   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2541   1.1    dyoung 	return IXGBE_SUCCESS;
   2542   1.1    dyoung }
   2543   1.1    dyoung 
   2544   1.1    dyoung /**
   2545   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2546   1.1    dyoung  *  @hw: pointer to hardware structure
   2547   1.1    dyoung  *  @mc_addr: the multicast address
   2548   1.1    dyoung  *
   2549   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2550   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2551   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2552   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2553   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2554   1.1    dyoung  *  to mc_filter_type.
   2555   1.1    dyoung  **/
   2556   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2557   1.1    dyoung {
   2558   1.1    dyoung 	u32 vector = 0;
   2559   1.1    dyoung 
   2560   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2561   1.1    dyoung 
   2562   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2563   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2564   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2565   1.1    dyoung 		break;
   2566   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2567   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2568   1.1    dyoung 		break;
   2569   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2570   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2571   1.1    dyoung 		break;
   2572   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2573   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2574   1.1    dyoung 		break;
   2575   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2576   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2577   1.1    dyoung 		ASSERT(0);
   2578   1.1    dyoung 		break;
   2579   1.1    dyoung 	}
   2580   1.1    dyoung 
   2581   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2582   1.1    dyoung 	vector &= 0xFFF;
   2583   1.1    dyoung 	return vector;
   2584   1.1    dyoung }
   2585   1.1    dyoung 
   2586   1.1    dyoung /**
   2587   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2588   1.1    dyoung  *  @hw: pointer to hardware structure
   2589   1.1    dyoung  *  @hash_value: Multicast address hash value
   2590   1.1    dyoung  *
   2591   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2592   1.1    dyoung  **/
   2593   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2594   1.1    dyoung {
   2595   1.1    dyoung 	u32 vector;
   2596   1.1    dyoung 	u32 vector_bit;
   2597   1.1    dyoung 	u32 vector_reg;
   2598   1.1    dyoung 
   2599   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2600   1.1    dyoung 
   2601   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2602   1.1    dyoung 
   2603   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2604   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2605   1.1    dyoung 
   2606   1.1    dyoung 	/*
   2607   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2608   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2609   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2610   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2611   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2612   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2613   1.1    dyoung 	 * the value.
   2614   1.1    dyoung 	 */
   2615   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2616   1.1    dyoung 	vector_bit = vector & 0x1F;
   2617   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2618   1.1    dyoung }
   2619   1.1    dyoung 
   2620   1.1    dyoung /**
   2621   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2622   1.1    dyoung  *  @hw: pointer to hardware structure
   2623   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2624   1.1    dyoung  *  @mc_addr_count: number of addresses
   2625   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2626   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2627   1.1    dyoung  *
   2628   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2629   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2630   1.1    dyoung  **/
   2631   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2632   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2633   1.3   msaitoh 				      bool clear)
   2634   1.1    dyoung {
   2635   1.1    dyoung 	u32 i;
   2636   1.1    dyoung 	u32 vmdq;
   2637   1.1    dyoung 
   2638   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2639   1.1    dyoung 
   2640   1.1    dyoung 	/*
   2641   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2642   1.1    dyoung 	 * use.
   2643   1.1    dyoung 	 */
   2644   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2645   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2646   1.1    dyoung 
   2647   1.1    dyoung 	/* Clear mta_shadow */
   2648   1.3   msaitoh 	if (clear) {
   2649   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2650   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2651   1.3   msaitoh 	}
   2652   1.1    dyoung 
   2653   1.1    dyoung 	/* Update mta_shadow */
   2654   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2655   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2656   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2657   1.1    dyoung 	}
   2658   1.1    dyoung 
   2659   1.1    dyoung 	/* Enable mta */
   2660   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2661   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2662   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2663   1.1    dyoung 
   2664   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2665   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2666   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2667   1.1    dyoung 
   2668   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2669   1.1    dyoung 	return IXGBE_SUCCESS;
   2670   1.1    dyoung }
   2671   1.1    dyoung 
   2672   1.1    dyoung /**
   2673   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2674   1.1    dyoung  *  @hw: pointer to hardware structure
   2675   1.1    dyoung  *
   2676   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2677   1.1    dyoung  **/
   2678   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2679   1.1    dyoung {
   2680   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2681   1.1    dyoung 
   2682   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2683   1.1    dyoung 
   2684   1.1    dyoung 	if (a->mta_in_use > 0)
   2685   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2686   1.3   msaitoh 				hw->mac.mc_filter_type);
   2687   1.1    dyoung 
   2688   1.1    dyoung 	return IXGBE_SUCCESS;
   2689   1.1    dyoung }
   2690   1.1    dyoung 
   2691   1.1    dyoung /**
   2692   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2693   1.1    dyoung  *  @hw: pointer to hardware structure
   2694   1.1    dyoung  *
   2695   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2696   1.1    dyoung  **/
   2697   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2698   1.1    dyoung {
   2699   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2700   1.1    dyoung 
   2701   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2702   1.1    dyoung 
   2703   1.1    dyoung 	if (a->mta_in_use > 0)
   2704   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2705   1.1    dyoung 
   2706   1.1    dyoung 	return IXGBE_SUCCESS;
   2707   1.1    dyoung }
   2708   1.1    dyoung 
   2709   1.1    dyoung /**
   2710   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2711   1.1    dyoung  *  @hw: pointer to hardware structure
   2712   1.1    dyoung  *
   2713   1.1    dyoung  *  Enable flow control according to the current settings.
   2714   1.1    dyoung  **/
   2715   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2716   1.1    dyoung {
   2717   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2718   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2719   1.1    dyoung 	u32 reg;
   2720   1.1    dyoung 	u32 fcrtl, fcrth;
   2721   1.4   msaitoh 	int i;
   2722   1.1    dyoung 
   2723   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2724   1.1    dyoung 
   2725   1.4   msaitoh 	/* Validate the water mark configuration */
   2726   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2727   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2728   1.4   msaitoh 		goto out;
   2729   1.4   msaitoh 	}
   2730   1.4   msaitoh 
   2731   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2732   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2733   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2734   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2735   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2736   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2737   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2738   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2739   1.4   msaitoh 				goto out;
   2740   1.4   msaitoh 			}
   2741   1.4   msaitoh 		}
   2742   1.4   msaitoh 	}
   2743   1.4   msaitoh 
   2744   1.1    dyoung 	/* Negotiate the fc mode to use */
   2745   1.4   msaitoh 	ixgbe_fc_autoneg(hw);
   2746   1.1    dyoung 
   2747   1.1    dyoung 	/* Disable any previous flow control settings */
   2748   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2749   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2750   1.1    dyoung 
   2751   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2752   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2753   1.1    dyoung 
   2754   1.1    dyoung 	/*
   2755   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2756   1.1    dyoung 	 * 0: Flow control is completely disabled
   2757   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2758   1.1    dyoung 	 *    but not send pause frames).
   2759   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2760   1.1    dyoung 	 *    we do not support receiving pause frames).
   2761   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2762   1.1    dyoung 	 * other: Invalid.
   2763   1.1    dyoung 	 */
   2764   1.1    dyoung 	switch (hw->fc.current_mode) {
   2765   1.1    dyoung 	case ixgbe_fc_none:
   2766   1.1    dyoung 		/*
   2767   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2768   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2769   1.1    dyoung 		 */
   2770   1.1    dyoung 		break;
   2771   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2772   1.1    dyoung 		/*
   2773   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2774   1.1    dyoung 		 * disabled by software override. Since there really
   2775   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2776   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2777   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2778   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2779   1.1    dyoung 		 */
   2780   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2781   1.1    dyoung 		break;
   2782   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2783   1.1    dyoung 		/*
   2784   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2785   1.1    dyoung 		 * disabled by software override.
   2786   1.1    dyoung 		 */
   2787   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2788   1.1    dyoung 		break;
   2789   1.1    dyoung 	case ixgbe_fc_full:
   2790   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2791   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2792   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2793   1.1    dyoung 		break;
   2794   1.1    dyoung 	default:
   2795   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2796   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2797   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2798   1.1    dyoung 		goto out;
   2799   1.1    dyoung 		break;
   2800   1.1    dyoung 	}
   2801   1.1    dyoung 
   2802   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2803   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2804   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2805   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2806   1.1    dyoung 
   2807   1.1    dyoung 
   2808   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2809   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2810   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2811   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2812   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2813   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2814   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2815   1.4   msaitoh 		} else {
   2816   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2817   1.4   msaitoh 			/*
   2818   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2819   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2820   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2821   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2822   1.8   msaitoh 			 * workloads.
   2823   1.4   msaitoh 			 */
   2824   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2825   1.4   msaitoh 		}
   2826   1.4   msaitoh 
   2827   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2828   1.1    dyoung 	}
   2829   1.1    dyoung 
   2830   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2831   1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2832   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2833   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2834   1.1    dyoung 
   2835   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2836   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2837   1.1    dyoung 
   2838   1.1    dyoung out:
   2839   1.1    dyoung 	return ret_val;
   2840   1.1    dyoung }
   2841   1.1    dyoung 
   2842   1.1    dyoung /**
   2843   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2844   1.1    dyoung  *  @hw: pointer to hardware structure
   2845   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2846   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2847   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2848   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2849   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2850   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2851   1.1    dyoung  *
   2852   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2853   1.4   msaitoh  *  advertised settings
   2854   1.1    dyoung  **/
   2855   1.4   msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2856   1.4   msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2857   1.1    dyoung {
   2858   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2859   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2860   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2861   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2862   1.6   msaitoh 			     adv_reg, lp_reg);
   2863   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2864   1.6   msaitoh 	}
   2865   1.1    dyoung 
   2866   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2867   1.4   msaitoh 		/*
   2868   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2869   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2870   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2871   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2872   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2873   1.4   msaitoh 		 */
   2874   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2875   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2876   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2877   1.4   msaitoh 		} else {
   2878   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2879   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2880   1.4   msaitoh 		}
   2881   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2882   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2883   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2884   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2885   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2886   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2887   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2888   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2889   1.4   msaitoh 	} else {
   2890   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2891   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2892   1.4   msaitoh 	}
   2893   1.4   msaitoh 	return IXGBE_SUCCESS;
   2894   1.4   msaitoh }
   2895   1.1    dyoung 
   2896   1.4   msaitoh /**
   2897   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2898   1.4   msaitoh  *  @hw: pointer to hardware structure
   2899   1.4   msaitoh  *
   2900   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2901   1.4   msaitoh  **/
   2902   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2903   1.4   msaitoh {
   2904   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2905   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2906   1.1    dyoung 
   2907   1.1    dyoung 	/*
   2908   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   2909   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   2910   1.4   msaitoh 	 * - link is up and AN completed but timed out
   2911   1.1    dyoung 	 */
   2912   1.4   msaitoh 
   2913   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2914   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2915   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2916   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   2917   1.1    dyoung 		goto out;
   2918   1.6   msaitoh 	}
   2919   1.1    dyoung 
   2920   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2921   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2922   1.1    dyoung 
   2923   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2924   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2925   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2926   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2927   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2928   1.1    dyoung 
   2929   1.1    dyoung out:
   2930   1.1    dyoung 	return ret_val;
   2931   1.1    dyoung }
   2932   1.1    dyoung 
   2933   1.1    dyoung /**
   2934   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2935   1.1    dyoung  *  @hw: pointer to hardware structure
   2936   1.1    dyoung  *
   2937   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2938   1.1    dyoung  **/
   2939   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2940   1.1    dyoung {
   2941   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2942   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2943   1.1    dyoung 
   2944   1.1    dyoung 	/*
   2945   1.1    dyoung 	 * On backplane, bail out if
   2946   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   2947   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   2948   1.1    dyoung 	 */
   2949   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2950   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2951   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   2952   1.1    dyoung 		goto out;
   2953   1.6   msaitoh 	}
   2954   1.1    dyoung 
   2955   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2956   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2957   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2958   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   2959   1.1    dyoung 			goto out;
   2960   1.6   msaitoh 		}
   2961   1.1    dyoung 	}
   2962   1.1    dyoung 	/*
   2963   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2964   1.1    dyoung 	 * local flow control settings accordingly
   2965   1.1    dyoung 	 */
   2966   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2967   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2968   1.1    dyoung 
   2969   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2970   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2971   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2972   1.1    dyoung 
   2973   1.1    dyoung out:
   2974   1.1    dyoung 	return ret_val;
   2975   1.1    dyoung }
   2976   1.1    dyoung 
   2977   1.1    dyoung /**
   2978   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2979   1.1    dyoung  *  @hw: pointer to hardware structure
   2980   1.1    dyoung  *
   2981   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2982   1.1    dyoung  **/
   2983   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2984   1.1    dyoung {
   2985   1.1    dyoung 	u16 technology_ability_reg = 0;
   2986   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   2987   1.1    dyoung 
   2988   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2989   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2990   1.1    dyoung 			     &technology_ability_reg);
   2991   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2992   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2993   1.1    dyoung 			     &lp_technology_ability_reg);
   2994   1.1    dyoung 
   2995   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2996   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   2997   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2998   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2999   1.1    dyoung }
   3000   1.1    dyoung 
   3001   1.1    dyoung /**
   3002   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3003   1.1    dyoung  *  @hw: pointer to hardware structure
   3004   1.1    dyoung  *
   3005   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3006   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3007   1.1    dyoung  **/
   3008   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3009   1.1    dyoung {
   3010   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3011   1.4   msaitoh 	ixgbe_link_speed speed;
   3012   1.4   msaitoh 	bool link_up;
   3013   1.1    dyoung 
   3014   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3015   1.1    dyoung 
   3016   1.1    dyoung 	/*
   3017   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3018   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3019   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3020   1.4   msaitoh 	 * - link is not up.
   3021   1.1    dyoung 	 */
   3022   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3023   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3024   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3025   1.1    dyoung 		goto out;
   3026   1.6   msaitoh 	}
   3027   1.1    dyoung 
   3028   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3029   1.6   msaitoh 	if (!link_up) {
   3030   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3031   1.1    dyoung 		goto out;
   3032   1.6   msaitoh 	}
   3033   1.1    dyoung 
   3034   1.1    dyoung 	switch (hw->phy.media_type) {
   3035   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3036   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3037   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3038   1.1    dyoung 	case ixgbe_media_type_fiber:
   3039   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3040   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3041   1.4   msaitoh 		break;
   3042   1.4   msaitoh 
   3043   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3044   1.1    dyoung 	case ixgbe_media_type_backplane:
   3045   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3046   1.1    dyoung 		break;
   3047   1.1    dyoung 
   3048   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3049   1.1    dyoung 	case ixgbe_media_type_copper:
   3050   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3051   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3052   1.1    dyoung 		break;
   3053   1.1    dyoung 
   3054   1.1    dyoung 	default:
   3055   1.1    dyoung 		break;
   3056   1.1    dyoung 	}
   3057   1.1    dyoung 
   3058   1.4   msaitoh out:
   3059   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3060   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3061   1.4   msaitoh 	} else {
   3062   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3063   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3064   1.3   msaitoh 	}
   3065   1.1    dyoung }
   3066   1.1    dyoung 
   3067   1.6   msaitoh /*
   3068   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3069   1.6   msaitoh  * @hw: pointer to hardware structure
   3070   1.6   msaitoh  *
   3071   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3072   1.6   msaitoh  *
   3073   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3074   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3075   1.6   msaitoh  * 800 = 80 millisec.
   3076   1.6   msaitoh  */
   3077   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3078   1.6   msaitoh {
   3079   1.6   msaitoh 	s16 devctl2;
   3080   1.6   msaitoh 	u32 pollcnt;
   3081   1.6   msaitoh 
   3082   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3083   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3084   1.6   msaitoh 
   3085   1.6   msaitoh 	switch (devctl2) {
   3086   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3087   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3088   1.6   msaitoh 		break;
   3089   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3090   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3091   1.6   msaitoh 		break;
   3092   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3093   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3094   1.6   msaitoh 		break;
   3095   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3096   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3097   1.6   msaitoh 		break;
   3098   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3099   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3100   1.6   msaitoh 		break;
   3101   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3102   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3103   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3104   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3105   1.6   msaitoh 	default:
   3106   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3107   1.6   msaitoh 		break;
   3108   1.6   msaitoh 	}
   3109   1.6   msaitoh 
   3110   1.6   msaitoh 	/* add 10% to spec maximum */
   3111   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3112   1.6   msaitoh }
   3113   1.6   msaitoh 
   3114   1.1    dyoung /**
   3115   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3116   1.1    dyoung  *  @hw: pointer to hardware structure
   3117   1.1    dyoung  *
   3118   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3119   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3120   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3121   1.1    dyoung  *  is returned signifying master requests disabled.
   3122   1.1    dyoung  **/
   3123   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3124   1.1    dyoung {
   3125   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3126   1.6   msaitoh 	u32 i, poll;
   3127   1.8   msaitoh 	u16 value;
   3128   1.1    dyoung 
   3129   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3130   1.1    dyoung 
   3131   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3132   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3133   1.3   msaitoh 
   3134   1.6   msaitoh 	/* Exit if master requests are blocked */
   3135   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3136   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3137   1.1    dyoung 		goto out;
   3138   1.1    dyoung 
   3139   1.3   msaitoh 	/* Poll for master request bit to clear */
   3140   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3141   1.3   msaitoh 		usec_delay(100);
   3142   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3143   1.3   msaitoh 			goto out;
   3144   1.1    dyoung 	}
   3145   1.1    dyoung 
   3146   1.3   msaitoh 	/*
   3147   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3148   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3149   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3150   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3151   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3152   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3153   1.3   msaitoh 	 */
   3154   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3155   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3156   1.1    dyoung 
   3157  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3158  1.10   msaitoh 		goto out;
   3159  1.10   msaitoh 
   3160   1.1    dyoung 	/*
   3161   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3162   1.1    dyoung 	 * transactions pending.
   3163   1.1    dyoung 	 */
   3164   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3165   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3166   1.3   msaitoh 		usec_delay(100);
   3167   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3168   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3169   1.8   msaitoh 			goto out;
   3170   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3171   1.3   msaitoh 			goto out;
   3172   1.1    dyoung 	}
   3173   1.1    dyoung 
   3174   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3175   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3176   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3177   1.1    dyoung 
   3178   1.1    dyoung out:
   3179   1.1    dyoung 	return status;
   3180   1.1    dyoung }
   3181   1.1    dyoung 
   3182   1.1    dyoung /**
   3183   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3184   1.1    dyoung  *  @hw: pointer to hardware structure
   3185   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3186   1.1    dyoung  *
   3187   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3188   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3189   1.1    dyoung  **/
   3190   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3191   1.1    dyoung {
   3192   1.6   msaitoh 	u32 gssr = 0;
   3193   1.1    dyoung 	u32 swmask = mask;
   3194   1.1    dyoung 	u32 fwmask = mask << 5;
   3195   1.6   msaitoh 	u32 timeout = 200;
   3196   1.6   msaitoh 	u32 i;
   3197   1.1    dyoung 
   3198   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3199   1.1    dyoung 
   3200   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3201   1.1    dyoung 		/*
   3202   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3203   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3204   1.1    dyoung 		 */
   3205   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3206   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3207   1.1    dyoung 
   3208   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3209   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3210   1.6   msaitoh 			gssr |= swmask;
   3211   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3212   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3213   1.6   msaitoh 			return IXGBE_SUCCESS;
   3214   1.6   msaitoh 		} else {
   3215   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3216   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3217   1.6   msaitoh 			msec_delay(5);
   3218   1.6   msaitoh 		}
   3219   1.1    dyoung 	}
   3220   1.1    dyoung 
   3221   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3222   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3223   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3224   1.1    dyoung 
   3225   1.6   msaitoh 	msec_delay(5);
   3226   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3227   1.1    dyoung }
   3228   1.1    dyoung 
   3229   1.1    dyoung /**
   3230   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3231   1.1    dyoung  *  @hw: pointer to hardware structure
   3232   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3233   1.1    dyoung  *
   3234   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3235   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3236   1.1    dyoung  **/
   3237   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3238   1.1    dyoung {
   3239   1.1    dyoung 	u32 gssr;
   3240   1.1    dyoung 	u32 swmask = mask;
   3241   1.1    dyoung 
   3242   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3243   1.1    dyoung 
   3244   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3245   1.1    dyoung 
   3246   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3247   1.1    dyoung 	gssr &= ~swmask;
   3248   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3249   1.1    dyoung 
   3250   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3251   1.1    dyoung }
   3252   1.1    dyoung 
   3253   1.1    dyoung /**
   3254   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3255   1.3   msaitoh  *  @hw: pointer to hardware structure
   3256   1.3   msaitoh  *
   3257   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3258   1.3   msaitoh  *  the Rx security block
   3259   1.3   msaitoh  **/
   3260   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3261   1.3   msaitoh {
   3262   1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3263   1.3   msaitoh 
   3264   1.3   msaitoh 	int i;
   3265   1.3   msaitoh 	int secrxreg;
   3266   1.3   msaitoh 
   3267   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3268   1.3   msaitoh 
   3269   1.3   msaitoh 
   3270   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3271   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3272   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3273   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3274   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3275   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3276   1.3   msaitoh 			break;
   3277   1.3   msaitoh 		else
   3278   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3279   1.3   msaitoh 			usec_delay(1000);
   3280   1.3   msaitoh 	}
   3281   1.3   msaitoh 
   3282   1.3   msaitoh 	/* For informational purposes only */
   3283   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3284   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3285   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3286   1.3   msaitoh 
   3287   1.3   msaitoh 	return IXGBE_SUCCESS;
   3288   1.3   msaitoh }
   3289   1.3   msaitoh 
   3290   1.3   msaitoh /**
   3291   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3292   1.8   msaitoh  *  @hw: pointer to hardware structure
   3293   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3294   1.8   msaitoh  *
   3295   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3296   1.8   msaitoh  */
   3297   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3298   1.8   msaitoh {
   3299   1.8   msaitoh 	*locked = FALSE;
   3300   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3301   1.8   msaitoh 	return IXGBE_SUCCESS;
   3302   1.8   msaitoh }
   3303   1.8   msaitoh 
   3304   1.8   msaitoh /**
   3305   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3306   1.8   msaitoh  * @hw: pointer to hardware structure
   3307   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3308   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3309   1.8   msaitoh  *           previous read.
   3310   1.8   msaitoh  *
   3311   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3312   1.8   msaitoh  */
   3313   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3314   1.8   msaitoh {
   3315   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3316   1.8   msaitoh 
   3317   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3318   1.8   msaitoh 	return IXGBE_SUCCESS;
   3319   1.8   msaitoh }
   3320   1.8   msaitoh 
   3321   1.8   msaitoh /**
   3322   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3323   1.3   msaitoh  *  @hw: pointer to hardware structure
   3324   1.3   msaitoh  *
   3325   1.3   msaitoh  *  Enables the receive data path.
   3326   1.3   msaitoh  **/
   3327   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3328   1.3   msaitoh {
   3329   1.3   msaitoh 	int secrxreg;
   3330   1.3   msaitoh 
   3331   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3332   1.3   msaitoh 
   3333   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3334   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3335   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3336   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3337   1.3   msaitoh 
   3338   1.3   msaitoh 	return IXGBE_SUCCESS;
   3339   1.3   msaitoh }
   3340   1.3   msaitoh 
   3341   1.3   msaitoh /**
   3342   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3343   1.1    dyoung  *  @hw: pointer to hardware structure
   3344   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3345   1.1    dyoung  *
   3346   1.1    dyoung  *  Enables the Rx DMA unit
   3347   1.1    dyoung  **/
   3348   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3349   1.1    dyoung {
   3350   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3351   1.1    dyoung 
   3352   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3353   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3354   1.8   msaitoh 	else
   3355   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3356   1.1    dyoung 
   3357   1.1    dyoung 	return IXGBE_SUCCESS;
   3358   1.1    dyoung }
   3359   1.1    dyoung 
   3360   1.1    dyoung /**
   3361   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3362   1.1    dyoung  *  @hw: pointer to hardware structure
   3363   1.1    dyoung  *  @index: led number to blink
   3364   1.1    dyoung  **/
   3365   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3366   1.1    dyoung {
   3367   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3368   1.1    dyoung 	bool link_up = 0;
   3369   1.8   msaitoh 	u32 autoc_reg = 0;
   3370   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3371   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3372   1.8   msaitoh 	bool locked = FALSE;
   3373   1.1    dyoung 
   3374   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3375   1.1    dyoung 
   3376   1.1    dyoung 	/*
   3377   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3378   1.1    dyoung 	 * Force it if link is down.
   3379   1.1    dyoung 	 */
   3380   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3381   1.1    dyoung 
   3382   1.1    dyoung 	if (!link_up) {
   3383   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3384   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3385   1.8   msaitoh 			goto out;
   3386   1.5   msaitoh 
   3387   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3388   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3389   1.8   msaitoh 
   3390   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3391   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3392   1.8   msaitoh 			goto out;
   3393   1.8   msaitoh 
   3394   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3395   1.1    dyoung 		msec_delay(10);
   3396   1.1    dyoung 	}
   3397   1.1    dyoung 
   3398   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3399   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3400   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3401   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3402   1.1    dyoung 
   3403   1.5   msaitoh out:
   3404   1.5   msaitoh 	return ret_val;
   3405   1.1    dyoung }
   3406   1.1    dyoung 
   3407   1.1    dyoung /**
   3408   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3409   1.1    dyoung  *  @hw: pointer to hardware structure
   3410   1.1    dyoung  *  @index: led number to stop blinking
   3411   1.1    dyoung  **/
   3412   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3413   1.1    dyoung {
   3414   1.8   msaitoh 	u32 autoc_reg = 0;
   3415   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3416   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3417   1.8   msaitoh 	bool locked = FALSE;
   3418   1.1    dyoung 
   3419   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3420   1.1    dyoung 
   3421   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3422   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3423   1.8   msaitoh 		goto out;
   3424   1.1    dyoung 
   3425   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3426   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3427   1.1    dyoung 
   3428   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3429   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3430   1.8   msaitoh 		goto out;
   3431   1.5   msaitoh 
   3432   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3433   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3434   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3435   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3436   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3437   1.1    dyoung 
   3438   1.5   msaitoh out:
   3439   1.5   msaitoh 	return ret_val;
   3440   1.1    dyoung }
   3441   1.1    dyoung 
   3442   1.1    dyoung /**
   3443   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3444   1.1    dyoung  *  @hw: pointer to hardware structure
   3445   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3446   1.1    dyoung  *
   3447   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3448   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3449   1.1    dyoung  *  get and set mac_addr routines.
   3450   1.1    dyoung  **/
   3451   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3452   1.3   msaitoh 					 u16 *san_mac_offset)
   3453   1.1    dyoung {
   3454   1.6   msaitoh 	s32 ret_val;
   3455   1.6   msaitoh 
   3456   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3457   1.1    dyoung 
   3458   1.1    dyoung 	/*
   3459   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3460   1.1    dyoung 	 * available.
   3461   1.1    dyoung 	 */
   3462   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3463   1.6   msaitoh 				      san_mac_offset);
   3464   1.6   msaitoh 	if (ret_val) {
   3465   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3466   1.6   msaitoh 			      "eeprom at offset %d failed",
   3467   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3468   1.6   msaitoh 	}
   3469   1.1    dyoung 
   3470   1.6   msaitoh 	return ret_val;
   3471   1.1    dyoung }
   3472   1.1    dyoung 
   3473   1.1    dyoung /**
   3474   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3475   1.1    dyoung  *  @hw: pointer to hardware structure
   3476   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3477   1.1    dyoung  *
   3478   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3479   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3480   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3481   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3482   1.1    dyoung  **/
   3483   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3484   1.1    dyoung {
   3485   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3486   1.1    dyoung 	u8 i;
   3487   1.6   msaitoh 	s32 ret_val;
   3488   1.1    dyoung 
   3489   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3490   1.1    dyoung 
   3491   1.1    dyoung 	/*
   3492   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3493   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3494   1.1    dyoung 	 */
   3495   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3496   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3497   1.1    dyoung 		goto san_mac_addr_out;
   3498   1.1    dyoung 
   3499   1.1    dyoung 	/* make sure we know which port we need to program */
   3500   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3501   1.1    dyoung 	/* apply the port offset to the address offset */
   3502   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3503   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3504   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3505   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3506   1.6   msaitoh 					      &san_mac_data);
   3507   1.6   msaitoh 		if (ret_val) {
   3508   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3509   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3510   1.6   msaitoh 				      san_mac_offset);
   3511   1.6   msaitoh 			goto san_mac_addr_out;
   3512   1.6   msaitoh 		}
   3513   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3514   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3515   1.1    dyoung 		san_mac_offset++;
   3516   1.1    dyoung 	}
   3517   1.6   msaitoh 	return IXGBE_SUCCESS;
   3518   1.1    dyoung 
   3519   1.1    dyoung san_mac_addr_out:
   3520   1.6   msaitoh 	/*
   3521   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3522   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3523   1.6   msaitoh 	 */
   3524   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3525   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3526   1.1    dyoung 	return IXGBE_SUCCESS;
   3527   1.1    dyoung }
   3528   1.1    dyoung 
   3529   1.1    dyoung /**
   3530   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3531   1.1    dyoung  *  @hw: pointer to hardware structure
   3532   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3533   1.1    dyoung  *
   3534   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3535   1.1    dyoung  **/
   3536   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3537   1.1    dyoung {
   3538   1.6   msaitoh 	s32 ret_val;
   3539   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3540   1.1    dyoung 	u8 i;
   3541   1.1    dyoung 
   3542   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3543   1.1    dyoung 
   3544   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3545   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3546   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3547   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3548   1.1    dyoung 
   3549   1.1    dyoung 	/* Make sure we know which port we need to write */
   3550   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3551   1.1    dyoung 	/* Apply the port offset to the address offset */
   3552   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3553   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3554   1.1    dyoung 
   3555   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3556   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3557   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3558   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3559   1.1    dyoung 		san_mac_offset++;
   3560   1.1    dyoung 	}
   3561   1.1    dyoung 
   3562   1.6   msaitoh 	return IXGBE_SUCCESS;
   3563   1.1    dyoung }
   3564   1.1    dyoung 
   3565   1.1    dyoung /**
   3566   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3567   1.1    dyoung  *  @hw: pointer to hardware structure
   3568   1.1    dyoung  *
   3569   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3570   1.1    dyoung  *  the capabilities table.
   3571   1.1    dyoung  **/
   3572   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3573   1.1    dyoung {
   3574   1.4   msaitoh 	u16 msix_count = 1;
   3575   1.4   msaitoh 	u16 max_msix_count;
   3576   1.4   msaitoh 	u16 pcie_offset;
   3577   1.4   msaitoh 
   3578   1.4   msaitoh 	switch (hw->mac.type) {
   3579   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3580   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3581   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3582   1.4   msaitoh 		break;
   3583   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3584   1.4   msaitoh 	case ixgbe_mac_X540:
   3585   1.8   msaitoh 	case ixgbe_mac_X550:
   3586   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3587   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3588   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3589   1.4   msaitoh 		break;
   3590   1.4   msaitoh 	default:
   3591   1.4   msaitoh 		return msix_count;
   3592   1.4   msaitoh 	}
   3593   1.1    dyoung 
   3594   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3595   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3596   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3597   1.8   msaitoh 		msix_count = 0;
   3598   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3599   1.4   msaitoh 
   3600   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3601   1.4   msaitoh 	msix_count++;
   3602   1.4   msaitoh 
   3603   1.4   msaitoh 	if (msix_count > max_msix_count)
   3604   1.4   msaitoh 		msix_count = max_msix_count;
   3605   1.1    dyoung 
   3606   1.1    dyoung 	return msix_count;
   3607   1.1    dyoung }
   3608   1.1    dyoung 
   3609   1.1    dyoung /**
   3610   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3611   1.1    dyoung  *  @hw: pointer to hardware structure
   3612   1.1    dyoung  *  @addr: Address to put into receive address register
   3613   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3614   1.1    dyoung  *
   3615   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3616  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3617   1.1    dyoung  **/
   3618   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3619   1.1    dyoung {
   3620   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3621   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3622   1.1    dyoung 	u32 rar;
   3623   1.1    dyoung 	u32 rar_low, rar_high;
   3624   1.1    dyoung 	u32 addr_low, addr_high;
   3625   1.1    dyoung 
   3626   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3627   1.1    dyoung 
   3628   1.1    dyoung 	/* swap bytes for HW little endian */
   3629   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3630   1.1    dyoung 			    | (addr[2] << 16)
   3631   1.1    dyoung 			    | (addr[3] << 24);
   3632   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3633   1.1    dyoung 
   3634   1.1    dyoung 	/*
   3635   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3636   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3637   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3638   1.1    dyoung 	 * rar to the top.
   3639   1.1    dyoung 	 */
   3640   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3641   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3642   1.1    dyoung 
   3643   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3644   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3645   1.1    dyoung 			first_empty_rar = rar;
   3646   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3647   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3648   1.1    dyoung 			if (rar_low == addr_low)
   3649   1.1    dyoung 				break;    /* found it already in the rars */
   3650   1.1    dyoung 		}
   3651   1.1    dyoung 	}
   3652   1.1    dyoung 
   3653   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3654   1.1    dyoung 		/* already there so just add to the pool bits */
   3655   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3656   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3657   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3658   1.1    dyoung 		rar = first_empty_rar;
   3659   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3660   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3661   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3662   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3663   1.1    dyoung 		hw->mac.rar_highwater++;
   3664   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3665   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3666   1.1    dyoung 	}
   3667   1.1    dyoung 
   3668   1.1    dyoung 	/*
   3669   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3670   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3671   1.1    dyoung 	 */
   3672   1.1    dyoung 	if (rar == 0)
   3673   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3674   1.1    dyoung 
   3675   1.1    dyoung 	return rar;
   3676   1.1    dyoung }
   3677   1.1    dyoung 
   3678   1.1    dyoung /**
   3679   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3680   1.1    dyoung  *  @hw: pointer to hardware struct
   3681   1.1    dyoung  *  @rar: receive address register index to disassociate
   3682   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3683   1.1    dyoung  **/
   3684   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3685   1.1    dyoung {
   3686   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3687   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3688   1.1    dyoung 
   3689   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3690   1.1    dyoung 
   3691   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3692   1.1    dyoung 	if (rar >= rar_entries) {
   3693   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3694   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3695   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3696   1.1    dyoung 	}
   3697   1.1    dyoung 
   3698   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3699   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3700   1.1    dyoung 
   3701   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3702   1.8   msaitoh 		goto done;
   3703   1.8   msaitoh 
   3704   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3705   1.1    dyoung 		goto done;
   3706   1.1    dyoung 
   3707   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3708   1.1    dyoung 		if (mpsar_lo) {
   3709   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3710   1.1    dyoung 			mpsar_lo = 0;
   3711   1.1    dyoung 		}
   3712   1.1    dyoung 		if (mpsar_hi) {
   3713   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3714   1.1    dyoung 			mpsar_hi = 0;
   3715   1.1    dyoung 		}
   3716   1.1    dyoung 	} else if (vmdq < 32) {
   3717   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3718   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3719   1.1    dyoung 	} else {
   3720   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3721   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3722   1.1    dyoung 	}
   3723   1.1    dyoung 
   3724   1.1    dyoung 	/* was that the last pool using this rar? */
   3725   1.1    dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3726   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3727   1.1    dyoung done:
   3728   1.1    dyoung 	return IXGBE_SUCCESS;
   3729   1.1    dyoung }
   3730   1.1    dyoung 
   3731   1.1    dyoung /**
   3732   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3733   1.1    dyoung  *  @hw: pointer to hardware struct
   3734   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3735   1.1    dyoung  *  @vmdq: VMDq pool index
   3736   1.1    dyoung  **/
   3737   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3738   1.1    dyoung {
   3739   1.1    dyoung 	u32 mpsar;
   3740   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3741   1.1    dyoung 
   3742   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3743   1.1    dyoung 
   3744   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3745   1.1    dyoung 	if (rar >= rar_entries) {
   3746   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3747   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3748   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3749   1.1    dyoung 	}
   3750   1.1    dyoung 
   3751   1.1    dyoung 	if (vmdq < 32) {
   3752   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3753   1.1    dyoung 		mpsar |= 1 << vmdq;
   3754   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3755   1.1    dyoung 	} else {
   3756   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3757   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3758   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3759   1.1    dyoung 	}
   3760   1.1    dyoung 	return IXGBE_SUCCESS;
   3761   1.1    dyoung }
   3762   1.1    dyoung 
   3763   1.1    dyoung /**
   3764   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3765   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3766   1.4   msaitoh  *  VFs advertized and not 0.
   3767   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3768   1.4   msaitoh  *
   3769   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3770   1.4   msaitoh  *  @hw: pointer to hardware struct
   3771   1.4   msaitoh  *  @vmdq: VMDq pool index
   3772   1.4   msaitoh  **/
   3773   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3774   1.4   msaitoh {
   3775   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3776   1.4   msaitoh 
   3777   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3778   1.4   msaitoh 
   3779   1.4   msaitoh 	if (vmdq < 32) {
   3780   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3781   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3782   1.4   msaitoh 	} else {
   3783   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3784   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3785   1.4   msaitoh 	}
   3786   1.4   msaitoh 
   3787   1.4   msaitoh 	return IXGBE_SUCCESS;
   3788   1.4   msaitoh }
   3789   1.4   msaitoh 
   3790   1.4   msaitoh /**
   3791   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3792   1.1    dyoung  *  @hw: pointer to hardware structure
   3793   1.1    dyoung  **/
   3794   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3795   1.1    dyoung {
   3796   1.1    dyoung 	int i;
   3797   1.1    dyoung 
   3798   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3799   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3800   1.1    dyoung 
   3801   1.1    dyoung 	for (i = 0; i < 128; i++)
   3802   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3803   1.1    dyoung 
   3804   1.1    dyoung 	return IXGBE_SUCCESS;
   3805   1.1    dyoung }
   3806   1.1    dyoung 
   3807   1.1    dyoung /**
   3808   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3809   1.1    dyoung  *  @hw: pointer to hardware structure
   3810   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3811   1.1    dyoung  *
   3812   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3813   1.1    dyoung  *
   3814   1.1    dyoung  **/
   3815   1.1    dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3816   1.1    dyoung {
   3817   1.1    dyoung 	u32 bits = 0;
   3818   1.1    dyoung 	u32 first_empty_slot = 0;
   3819   1.1    dyoung 	s32 regindex;
   3820   1.1    dyoung 
   3821   1.1    dyoung 	/* short cut the special case */
   3822   1.1    dyoung 	if (vlan == 0)
   3823   1.1    dyoung 		return 0;
   3824   1.1    dyoung 
   3825   1.1    dyoung 	/*
   3826   1.1    dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3827   1.1    dyoung 	  * slot found along the way
   3828   1.1    dyoung 	  */
   3829   1.1    dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3830   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3831   1.1    dyoung 		if (!bits && !(first_empty_slot))
   3832   1.1    dyoung 			first_empty_slot = regindex;
   3833   1.1    dyoung 		else if ((bits & 0x0FFF) == vlan)
   3834   1.1    dyoung 			break;
   3835   1.1    dyoung 	}
   3836   1.1    dyoung 
   3837   1.1    dyoung 	/*
   3838   1.1    dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3839   1.1    dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3840   1.1    dyoung 	  * vlan id.
   3841   1.1    dyoung 	  */
   3842   1.1    dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3843   1.1    dyoung 		if (first_empty_slot)
   3844   1.1    dyoung 			regindex = first_empty_slot;
   3845   1.1    dyoung 		else {
   3846   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3847   1.6   msaitoh 				     "No space in VLVF.\n");
   3848   1.1    dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3849   1.1    dyoung 		}
   3850   1.1    dyoung 	}
   3851   1.1    dyoung 
   3852   1.1    dyoung 	return regindex;
   3853   1.1    dyoung }
   3854   1.1    dyoung 
   3855   1.1    dyoung /**
   3856   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3857   1.1    dyoung  *  @hw: pointer to hardware structure
   3858   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3859   1.1    dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3860   1.1    dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3861   1.1    dyoung  *
   3862   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3863   1.1    dyoung  **/
   3864   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3865   1.3   msaitoh 			   bool vlan_on)
   3866   1.1    dyoung {
   3867   1.1    dyoung 	s32 regindex;
   3868   1.1    dyoung 	u32 bitindex;
   3869   1.1    dyoung 	u32 vfta;
   3870   1.1    dyoung 	u32 targetbit;
   3871   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3872   1.1    dyoung 	bool vfta_changed = FALSE;
   3873   1.1    dyoung 
   3874   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3875   1.1    dyoung 
   3876   1.1    dyoung 	if (vlan > 4095)
   3877   1.1    dyoung 		return IXGBE_ERR_PARAM;
   3878   1.1    dyoung 
   3879   1.1    dyoung 	/*
   3880   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3881   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3882   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3883   1.1    dyoung 	 */
   3884   1.1    dyoung 
   3885   1.1    dyoung 	/* Part 1
   3886   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3887   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3888   1.1    dyoung 	 *    bits[11-5]: which register
   3889   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3890   1.1    dyoung 	 */
   3891   1.1    dyoung 	regindex = (vlan >> 5) & 0x7F;
   3892   1.1    dyoung 	bitindex = vlan & 0x1F;
   3893   1.1    dyoung 	targetbit = (1 << bitindex);
   3894   1.1    dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3895   1.1    dyoung 
   3896   1.1    dyoung 	if (vlan_on) {
   3897   1.1    dyoung 		if (!(vfta & targetbit)) {
   3898   1.1    dyoung 			vfta |= targetbit;
   3899   1.1    dyoung 			vfta_changed = TRUE;
   3900   1.1    dyoung 		}
   3901   1.1    dyoung 	} else {
   3902   1.1    dyoung 		if ((vfta & targetbit)) {
   3903   1.1    dyoung 			vfta &= ~targetbit;
   3904   1.1    dyoung 			vfta_changed = TRUE;
   3905   1.1    dyoung 		}
   3906   1.1    dyoung 	}
   3907   1.1    dyoung 
   3908   1.1    dyoung 	/* Part 2
   3909   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3910   1.3   msaitoh 	 */
   3911   1.3   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3912   1.3   msaitoh 					 &vfta_changed);
   3913   1.3   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3914   1.3   msaitoh 		return ret_val;
   3915   1.3   msaitoh 
   3916   1.3   msaitoh 	if (vfta_changed)
   3917   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3918   1.3   msaitoh 
   3919   1.3   msaitoh 	return IXGBE_SUCCESS;
   3920   1.3   msaitoh }
   3921   1.3   msaitoh 
   3922   1.3   msaitoh /**
   3923   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3924   1.3   msaitoh  *  @hw: pointer to hardware structure
   3925   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3926   1.3   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3927   1.3   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3928   1.3   msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3929   1.3   msaitoh  *                 should be changed
   3930   1.3   msaitoh  *
   3931   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   3932   1.3   msaitoh  **/
   3933   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3934   1.3   msaitoh 			    bool vlan_on, bool *vfta_changed)
   3935   1.3   msaitoh {
   3936   1.3   msaitoh 	u32 vt;
   3937   1.3   msaitoh 
   3938   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3939   1.3   msaitoh 
   3940   1.3   msaitoh 	if (vlan > 4095)
   3941   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   3942   1.3   msaitoh 
   3943   1.3   msaitoh 	/* If VT Mode is set
   3944   1.1    dyoung 	 *   Either vlan_on
   3945   1.1    dyoung 	 *     make sure the vlan is in VLVF
   3946   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   3947   1.1    dyoung 	 *   Or !vlan_on
   3948   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   3949   1.1    dyoung 	 */
   3950   1.1    dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3951   1.1    dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3952   1.1    dyoung 		s32 vlvf_index;
   3953   1.3   msaitoh 		u32 bits;
   3954   1.1    dyoung 
   3955   1.1    dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3956   1.1    dyoung 		if (vlvf_index < 0)
   3957   1.1    dyoung 			return vlvf_index;
   3958   1.1    dyoung 
   3959   1.1    dyoung 		if (vlan_on) {
   3960   1.1    dyoung 			/* set the pool bit */
   3961   1.1    dyoung 			if (vind < 32) {
   3962   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3963   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3964   1.1    dyoung 				bits |= (1 << vind);
   3965   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3966   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3967   1.1    dyoung 						bits);
   3968   1.1    dyoung 			} else {
   3969   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3970   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3971   1.3   msaitoh 				bits |= (1 << (vind - 32));
   3972   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3973   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3974   1.3   msaitoh 					bits);
   3975   1.1    dyoung 			}
   3976   1.1    dyoung 		} else {
   3977   1.1    dyoung 			/* clear the pool bit */
   3978   1.1    dyoung 			if (vind < 32) {
   3979   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3980   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3981   1.1    dyoung 				bits &= ~(1 << vind);
   3982   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3983   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3984   1.1    dyoung 						bits);
   3985   1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3986   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3987   1.1    dyoung 			} else {
   3988   1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3989   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3990   1.3   msaitoh 				bits &= ~(1 << (vind - 32));
   3991   1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3992   1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3993   1.3   msaitoh 					bits);
   3994   1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3995   1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3996   1.1    dyoung 			}
   3997   1.1    dyoung 		}
   3998   1.1    dyoung 
   3999   1.1    dyoung 		/*
   4000   1.1    dyoung 		 * If there are still bits set in the VLVFB registers
   4001   1.1    dyoung 		 * for the VLAN ID indicated we need to see if the
   4002   1.1    dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   4003   1.1    dyoung 		 * If the caller has requested that we clear the VFTA
   4004   1.1    dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   4005   1.1    dyoung 		 * ID entry then ignore the request.  We're not worried
   4006   1.1    dyoung 		 * about the case where we're turning the VFTA VLAN ID
   4007   1.1    dyoung 		 * entry bit on, only when requested to turn it off as
   4008   1.1    dyoung 		 * there may be multiple pools and/or VFs using the
   4009   1.1    dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   4010   1.1    dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   4011   1.1    dyoung 		 * been cleared.  This will be indicated by "bits" being
   4012   1.1    dyoung 		 * zero.
   4013   1.1    dyoung 		 */
   4014   1.1    dyoung 		if (bits) {
   4015   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   4016   1.1    dyoung 					(IXGBE_VLVF_VIEN | vlan));
   4017   1.3   msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   4018   1.1    dyoung 				/* someone wants to clear the vfta entry
   4019   1.1    dyoung 				 * but some pools/VFs are still using it.
   4020   1.1    dyoung 				 * Ignore it. */
   4021   1.3   msaitoh 				*vfta_changed = FALSE;
   4022   1.1    dyoung 			}
   4023   1.3   msaitoh 		} else
   4024   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4025   1.1    dyoung 	}
   4026   1.1    dyoung 
   4027   1.1    dyoung 	return IXGBE_SUCCESS;
   4028   1.1    dyoung }
   4029   1.1    dyoung 
   4030   1.1    dyoung /**
   4031   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4032   1.1    dyoung  *  @hw: pointer to hardware structure
   4033   1.1    dyoung  *
   4034   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4035   1.1    dyoung  **/
   4036   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4037   1.1    dyoung {
   4038   1.1    dyoung 	u32 offset;
   4039   1.1    dyoung 
   4040   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4041   1.1    dyoung 
   4042   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4043   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4044   1.1    dyoung 
   4045   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4046   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4047   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4048   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4049   1.1    dyoung 	}
   4050   1.1    dyoung 
   4051   1.1    dyoung 	return IXGBE_SUCCESS;
   4052   1.1    dyoung }
   4053   1.1    dyoung 
   4054   1.1    dyoung /**
   4055   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4056   1.1    dyoung  *  @hw: pointer to hardware structure
   4057   1.1    dyoung  *  @speed: pointer to link speed
   4058   1.1    dyoung  *  @link_up: TRUE when link is up
   4059   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4060   1.1    dyoung  *
   4061   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4062   1.1    dyoung  **/
   4063   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4064   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4065   1.1    dyoung {
   4066   1.1    dyoung 	u32 links_reg, links_orig;
   4067   1.1    dyoung 	u32 i;
   4068   1.1    dyoung 
   4069   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4070   1.1    dyoung 
   4071   1.1    dyoung 	/* clear the old state */
   4072   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4073   1.1    dyoung 
   4074   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4075   1.1    dyoung 
   4076   1.1    dyoung 	if (links_orig != links_reg) {
   4077   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4078   1.3   msaitoh 			  links_orig, links_reg);
   4079   1.1    dyoung 	}
   4080   1.1    dyoung 
   4081   1.1    dyoung 	if (link_up_wait_to_complete) {
   4082  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4083   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4084   1.1    dyoung 				*link_up = TRUE;
   4085   1.1    dyoung 				break;
   4086   1.1    dyoung 			} else {
   4087   1.1    dyoung 				*link_up = FALSE;
   4088   1.1    dyoung 			}
   4089   1.1    dyoung 			msec_delay(100);
   4090   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4091   1.1    dyoung 		}
   4092   1.1    dyoung 	} else {
   4093   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4094   1.1    dyoung 			*link_up = TRUE;
   4095   1.1    dyoung 		else
   4096   1.1    dyoung 			*link_up = FALSE;
   4097   1.1    dyoung 	}
   4098   1.1    dyoung 
   4099   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4100   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4101   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4102   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4103   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4104   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4105   1.8   msaitoh 		}
   4106   1.8   msaitoh 		break;
   4107   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4108   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4109   1.8   msaitoh 		break;
   4110   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4111   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4112   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4113   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4114   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4115   1.8   msaitoh 		}
   4116   1.8   msaitoh 		break;
   4117   1.8   msaitoh 	default:
   4118   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4119   1.8   msaitoh 	}
   4120   1.1    dyoung 
   4121   1.1    dyoung 	return IXGBE_SUCCESS;
   4122   1.1    dyoung }
   4123   1.1    dyoung 
   4124   1.1    dyoung /**
   4125   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4126   1.1    dyoung  *  the EEPROM
   4127   1.1    dyoung  *  @hw: pointer to hardware structure
   4128   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4129   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4130   1.1    dyoung  *
   4131   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4132   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4133   1.1    dyoung  **/
   4134   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4135   1.3   msaitoh 				 u16 *wwpn_prefix)
   4136   1.1    dyoung {
   4137   1.1    dyoung 	u16 offset, caps;
   4138   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4139   1.1    dyoung 
   4140   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4141   1.1    dyoung 
   4142   1.1    dyoung 	/* clear output first */
   4143   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4144   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4145   1.1    dyoung 
   4146   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4147   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4148   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4149   1.6   msaitoh 		goto wwn_prefix_err;
   4150   1.1    dyoung 
   4151   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4152   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4153   1.1    dyoung 		goto wwn_prefix_out;
   4154   1.1    dyoung 
   4155   1.1    dyoung 	/* check capability in alternative san mac address block */
   4156   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4157   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4158   1.6   msaitoh 		goto wwn_prefix_err;
   4159   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4160   1.1    dyoung 		goto wwn_prefix_out;
   4161   1.1    dyoung 
   4162   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4163   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4164   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4165   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4166   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4167   1.6   msaitoh 	}
   4168   1.1    dyoung 
   4169   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4170   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4171   1.6   msaitoh 		goto wwn_prefix_err;
   4172   1.1    dyoung 
   4173   1.1    dyoung wwn_prefix_out:
   4174   1.1    dyoung 	return IXGBE_SUCCESS;
   4175   1.6   msaitoh 
   4176   1.6   msaitoh wwn_prefix_err:
   4177   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4178   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4179   1.6   msaitoh 	return IXGBE_SUCCESS;
   4180   1.1    dyoung }
   4181   1.1    dyoung 
   4182   1.1    dyoung /**
   4183   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4184   1.1    dyoung  *  @hw: pointer to hardware structure
   4185   1.1    dyoung  *  @bs: the fcoe boot status
   4186   1.1    dyoung  *
   4187   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4188   1.1    dyoung  **/
   4189   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4190   1.1    dyoung {
   4191   1.1    dyoung 	u16 offset, caps, flags;
   4192   1.1    dyoung 	s32 status;
   4193   1.1    dyoung 
   4194   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4195   1.1    dyoung 
   4196   1.1    dyoung 	/* clear output first */
   4197   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4198   1.1    dyoung 
   4199   1.1    dyoung 	/* check if FCOE IBA block is present */
   4200   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4201   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4202   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4203   1.1    dyoung 		goto out;
   4204   1.1    dyoung 
   4205   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4206   1.1    dyoung 		goto out;
   4207   1.1    dyoung 
   4208   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4209   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4210   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4211   1.1    dyoung 		goto out;
   4212   1.1    dyoung 
   4213   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4214   1.1    dyoung 		goto out;
   4215   1.1    dyoung 
   4216   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4217   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4218   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4219   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4220   1.1    dyoung 		goto out;
   4221   1.1    dyoung 
   4222   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4223   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4224   1.1    dyoung 	else
   4225   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4226   1.1    dyoung 
   4227   1.1    dyoung out:
   4228   1.1    dyoung 	return status;
   4229   1.1    dyoung }
   4230   1.1    dyoung 
   4231   1.1    dyoung /**
   4232   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4233   1.1    dyoung  *  @hw: pointer to hardware structure
   4234   1.1    dyoung  *  @enable: enable or disable switch for anti-spoofing
   4235   1.1    dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4236   1.1    dyoung  *
   4237   1.1    dyoung  **/
   4238   1.1    dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4239   1.1    dyoung {
   4240   1.1    dyoung 	int j;
   4241   1.1    dyoung 	int pf_target_reg = pf >> 3;
   4242   1.1    dyoung 	int pf_target_shift = pf % 8;
   4243   1.1    dyoung 	u32 pfvfspoof = 0;
   4244   1.1    dyoung 
   4245   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4246   1.1    dyoung 		return;
   4247   1.1    dyoung 
   4248   1.1    dyoung 	if (enable)
   4249   1.1    dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4250   1.1    dyoung 
   4251   1.1    dyoung 	/*
   4252   1.1    dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4253   1.1    dyoung 	 * MAC anti-spoof enables in each register array element.
   4254   1.1    dyoung 	 */
   4255   1.4   msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4256   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4257   1.1    dyoung 
   4258   1.4   msaitoh 	/*
   4259   1.4   msaitoh 	 * The PF should be allowed to spoof so that it can support
   4260   1.4   msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4261   1.4   msaitoh 	 */
   4262   1.4   msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4263   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4264   1.1    dyoung 
   4265   1.1    dyoung 	/*
   4266   1.4   msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4267   1.4   msaitoh 	 * anti-spoofing enabled.
   4268   1.1    dyoung 	 */
   4269   1.4   msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4270   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4271   1.1    dyoung }
   4272   1.1    dyoung 
   4273   1.1    dyoung /**
   4274   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4275   1.1    dyoung  *  @hw: pointer to hardware structure
   4276   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4277   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4278   1.1    dyoung  *
   4279   1.1    dyoung  **/
   4280   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4281   1.1    dyoung {
   4282   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4283   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4284   1.1    dyoung 	u32 pfvfspoof;
   4285   1.1    dyoung 
   4286   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4287   1.1    dyoung 		return;
   4288   1.1    dyoung 
   4289   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4290   1.1    dyoung 	if (enable)
   4291   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4292   1.1    dyoung 	else
   4293   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4294   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4295   1.1    dyoung }
   4296   1.1    dyoung 
   4297   1.1    dyoung /**
   4298   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4299   1.1    dyoung  *  @hw: pointer to hardware structure
   4300   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4301   1.1    dyoung  *
   4302   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4303   1.1    dyoung  *  and return the word through device_caps.
   4304   1.1    dyoung  **/
   4305   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4306   1.1    dyoung {
   4307   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4308   1.1    dyoung 
   4309   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4310   1.1    dyoung 
   4311   1.1    dyoung 	return IXGBE_SUCCESS;
   4312   1.1    dyoung }
   4313   1.1    dyoung 
   4314   1.1    dyoung /**
   4315   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4316   1.1    dyoung  *  @hw: pointer to hardware structure
   4317   1.1    dyoung  *
   4318   1.1    dyoung  **/
   4319   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4320   1.1    dyoung {
   4321   1.1    dyoung 	u32 regval;
   4322   1.1    dyoung 	u32 i;
   4323   1.1    dyoung 
   4324   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4325   1.1    dyoung 
   4326   1.1    dyoung 	/* Enable relaxed ordering */
   4327   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4328   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4329   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4330   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4331   1.1    dyoung 	}
   4332   1.1    dyoung 
   4333   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4334   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4335   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4336   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4337   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4338   1.1    dyoung 	}
   4339   1.1    dyoung 
   4340   1.1    dyoung }
   4341   1.3   msaitoh 
   4342   1.3   msaitoh /**
   4343   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4344   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4345   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4346   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4347   1.3   msaitoh  *  checksum calculated is returned.
   4348   1.3   msaitoh  **/
   4349   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4350   1.3   msaitoh {
   4351   1.3   msaitoh 	u32 i;
   4352   1.3   msaitoh 	u8 sum = 0;
   4353   1.3   msaitoh 
   4354   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4355   1.3   msaitoh 
   4356   1.3   msaitoh 	if (!buffer)
   4357   1.3   msaitoh 		return 0;
   4358   1.3   msaitoh 
   4359   1.3   msaitoh 	for (i = 0; i < length; i++)
   4360   1.3   msaitoh 		sum += buffer[i];
   4361   1.3   msaitoh 
   4362   1.3   msaitoh 	return (u8) (0 - sum);
   4363   1.3   msaitoh }
   4364   1.3   msaitoh 
   4365   1.3   msaitoh /**
   4366   1.3   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4367   1.3   msaitoh  *  @hw: pointer to the HW structure
   4368   1.3   msaitoh  *  @buffer: contains the command to write and where the return status will
   4369   1.3   msaitoh  *   be placed
   4370   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4371   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4372   1.8   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4373   1.8   msaitoh  *   Needed because FW structures are big endian and decoding of
   4374   1.8   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4375   1.8   msaitoh  *   is not easily understood without making a table of commands.
   4376   1.8   msaitoh  *   So we will leave this up to the caller to read back the data
   4377   1.8   msaitoh  *   in these cases.
   4378   1.3   msaitoh  *
   4379   1.3   msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4380   1.3   msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4381   1.3   msaitoh  **/
   4382   1.5   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4383   1.8   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4384   1.3   msaitoh {
   4385   1.8   msaitoh 	u32 hicr, i, bi, fwsts;
   4386   1.3   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4387   1.8   msaitoh 	u16 buf_len;
   4388   1.8   msaitoh 	u16 dword_len;
   4389   1.3   msaitoh 
   4390   1.3   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4391   1.3   msaitoh 
   4392   1.8   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4393   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4394   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4395   1.8   msaitoh 	}
   4396   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4397   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4398   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4399   1.3   msaitoh 
   4400   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4401   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4402   1.3   msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4403   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4404   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4405   1.8   msaitoh 	}
   4406   1.8   msaitoh 
   4407   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4408   1.8   msaitoh 	if ((length % (sizeof(u32))) != 0) {
   4409   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4410   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4411   1.3   msaitoh 	}
   4412   1.3   msaitoh 
   4413   1.3   msaitoh 	dword_len = length >> 2;
   4414   1.3   msaitoh 
   4415   1.8   msaitoh 	/* The device driver writes the relevant command block
   4416   1.3   msaitoh 	 * into the ram area.
   4417   1.3   msaitoh 	 */
   4418   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4419   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4420   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4421   1.3   msaitoh 
   4422   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4423   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4424   1.3   msaitoh 
   4425   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4426   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4427   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4428   1.3   msaitoh 			break;
   4429   1.3   msaitoh 		msec_delay(1);
   4430   1.3   msaitoh 	}
   4431   1.3   msaitoh 
   4432   1.8   msaitoh 	/* Check command completion */
   4433   1.8   msaitoh 	if ((timeout != 0 && i == timeout) ||
   4434   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4435   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4436   1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4437   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4438   1.3   msaitoh 	}
   4439   1.3   msaitoh 
   4440   1.8   msaitoh 	if (!return_data)
   4441   1.8   msaitoh 		return 0;
   4442   1.8   msaitoh 
   4443   1.3   msaitoh 	/* Calculate length in DWORDs */
   4444   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4445   1.3   msaitoh 
   4446   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4447   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4448   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4449   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4450   1.3   msaitoh 	}
   4451   1.3   msaitoh 
   4452   1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4453   1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4454   1.3   msaitoh 	if (buf_len == 0)
   4455   1.8   msaitoh 		return 0;
   4456   1.3   msaitoh 
   4457   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4458   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4459   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4460   1.3   msaitoh 	}
   4461   1.3   msaitoh 
   4462   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4463   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4464   1.3   msaitoh 
   4465   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4466   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4467   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4468   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4469   1.3   msaitoh 	}
   4470   1.3   msaitoh 
   4471   1.8   msaitoh 	return 0;
   4472   1.3   msaitoh }
   4473   1.3   msaitoh 
   4474   1.3   msaitoh /**
   4475   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4476   1.3   msaitoh  *  @hw: pointer to the HW structure
   4477   1.3   msaitoh  *  @maj: driver version major number
   4478   1.7  riastrad  *  @minr: driver version minor number
   4479   1.3   msaitoh  *  @build: driver version build number
   4480   1.3   msaitoh  *  @sub: driver version sub build number
   4481   1.3   msaitoh  *
   4482   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4483   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4484   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4485   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4486   1.3   msaitoh  **/
   4487   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4488   1.3   msaitoh 				 u8 build, u8 sub)
   4489   1.3   msaitoh {
   4490   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4491   1.3   msaitoh 	int i;
   4492   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4493   1.3   msaitoh 
   4494   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4495   1.3   msaitoh 
   4496   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4497   1.3   msaitoh 	    != IXGBE_SUCCESS) {
   4498   1.3   msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4499   1.3   msaitoh 		goto out;
   4500   1.3   msaitoh 	}
   4501   1.3   msaitoh 
   4502   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4503   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4504   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4505   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4506   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4507   1.7  riastrad 	fw_cmd.ver_min = minr;
   4508   1.3   msaitoh 	fw_cmd.ver_build = build;
   4509   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4510   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4511   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4512   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4513   1.3   msaitoh 	fw_cmd.pad = 0;
   4514   1.3   msaitoh 	fw_cmd.pad2 = 0;
   4515   1.3   msaitoh 
   4516   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4517   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4518   1.8   msaitoh 						       sizeof(fw_cmd),
   4519   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4520   1.8   msaitoh 						       TRUE);
   4521   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4522   1.3   msaitoh 			continue;
   4523   1.3   msaitoh 
   4524   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4525   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4526   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4527   1.3   msaitoh 		else
   4528   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4529   1.3   msaitoh 
   4530   1.3   msaitoh 		break;
   4531   1.3   msaitoh 	}
   4532   1.3   msaitoh 
   4533   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4534   1.3   msaitoh out:
   4535   1.3   msaitoh 	return ret_val;
   4536   1.3   msaitoh }
   4537   1.3   msaitoh 
   4538   1.3   msaitoh /**
   4539   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4540   1.3   msaitoh  * @hw: pointer to hardware structure
   4541   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4542   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4543   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4544   1.3   msaitoh  **/
   4545   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4546   1.3   msaitoh 			     int strategy)
   4547   1.3   msaitoh {
   4548   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4549   1.3   msaitoh 	int i = 0;
   4550   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4551   1.3   msaitoh 
   4552   1.3   msaitoh 	/* Reserve headroom */
   4553   1.3   msaitoh 	pbsize -= headroom;
   4554   1.3   msaitoh 
   4555   1.3   msaitoh 	if (!num_pb)
   4556   1.3   msaitoh 		num_pb = 1;
   4557   1.3   msaitoh 
   4558   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4559   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4560   1.3   msaitoh 	 */
   4561   1.3   msaitoh 	switch (strategy) {
   4562   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4563   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4564   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4565   1.3   msaitoh 		 */
   4566   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4567   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4568   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4569   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4570   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4571   1.3   msaitoh 		/* Fall through to configure remaining packet buffers */
   4572   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4573   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4574   1.3   msaitoh 		for (; i < num_pb; i++)
   4575   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4576   1.3   msaitoh 		break;
   4577   1.3   msaitoh 	default:
   4578   1.3   msaitoh 		break;
   4579   1.3   msaitoh 	}
   4580   1.3   msaitoh 
   4581   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4582   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4583   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4584   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4585   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4586   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4587   1.3   msaitoh 	}
   4588   1.3   msaitoh 
   4589   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4590   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4591   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4592   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4593   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4594   1.3   msaitoh 	}
   4595   1.3   msaitoh }
   4596   1.3   msaitoh 
   4597   1.3   msaitoh /**
   4598   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4599   1.3   msaitoh  * @hw: pointer to the hardware structure
   4600   1.3   msaitoh  *
   4601   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4602   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4603   1.3   msaitoh  * buffers on the system.
   4604   1.3   msaitoh  **/
   4605   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4606   1.3   msaitoh {
   4607   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4608   1.8   msaitoh 	u16 value;
   4609   1.3   msaitoh 
   4610   1.3   msaitoh 	/*
   4611   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4612   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4613   1.3   msaitoh 	 */
   4614   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4615   1.3   msaitoh 		return;
   4616   1.3   msaitoh 
   4617   1.3   msaitoh 	/*
   4618   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4619   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4620   1.3   msaitoh 	 * has already been cleared.
   4621   1.3   msaitoh 	 */
   4622   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4623   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4624   1.3   msaitoh 
   4625   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4626   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4627   1.8   msaitoh 	msec_delay(3);
   4628   1.8   msaitoh 
   4629   1.8   msaitoh 	/*
   4630   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4631   1.8   msaitoh 	 * transactions pending.
   4632   1.8   msaitoh 	 */
   4633   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4634   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4635   1.8   msaitoh 		usec_delay(100);
   4636   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4637   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4638   1.8   msaitoh 			goto out;
   4639   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4640   1.8   msaitoh 			goto out;
   4641   1.8   msaitoh 	}
   4642   1.8   msaitoh 
   4643   1.8   msaitoh out:
   4644   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4645   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4646   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4647   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4648   1.3   msaitoh 
   4649   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4650   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4651   1.3   msaitoh 	usec_delay(20);
   4652   1.3   msaitoh 
   4653   1.3   msaitoh 	/* restore previous register values */
   4654   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4655   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4656   1.3   msaitoh }
   4657   1.3   msaitoh 
   4658   1.6   msaitoh 
   4659   1.6   msaitoh /**
   4660   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4661   1.6   msaitoh  * @hw: pointer to hardware structure
   4662   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   4663   1.6   msaitoh  *
   4664   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   4665   1.6   msaitoh  **/
   4666   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4667   1.6   msaitoh {
   4668   1.6   msaitoh 	u32 reg, i;
   4669   1.6   msaitoh 
   4670   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4671   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4672   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4673   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4674   1.6   msaitoh 	return;
   4675   1.6   msaitoh }
   4676   1.8   msaitoh 
   4677   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4678   1.8   msaitoh {
   4679   1.8   msaitoh 	u32 pfdtxgswc;
   4680   1.8   msaitoh 	u32 rxctrl;
   4681   1.8   msaitoh 
   4682   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4683   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4684   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   4685   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4686   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4687   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4688   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4689   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   4690   1.8   msaitoh 			} else {
   4691   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   4692   1.8   msaitoh 			}
   4693   1.8   msaitoh 		}
   4694   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4695   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4696   1.8   msaitoh 	}
   4697   1.8   msaitoh }
   4698   1.8   msaitoh 
   4699   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4700   1.8   msaitoh {
   4701   1.8   msaitoh 	u32 pfdtxgswc;
   4702   1.8   msaitoh 	u32 rxctrl;
   4703   1.8   msaitoh 
   4704   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4705   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4706   1.8   msaitoh 
   4707   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   4708   1.8   msaitoh 		if (hw->mac.set_lben) {
   4709   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4710   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4711   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4712   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   4713   1.8   msaitoh 		}
   4714   1.8   msaitoh 	}
   4715   1.8   msaitoh }
   4716   1.8   msaitoh 
   4717   1.8   msaitoh /**
   4718   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   4719   1.8   msaitoh  * @hw: pointer to hardware structure
   4720   1.8   msaitoh  */
   4721   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4722   1.8   msaitoh {
   4723   1.8   msaitoh 	u32 fwsm;
   4724   1.8   msaitoh 
   4725   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   4726   1.8   msaitoh 		return FALSE;
   4727   1.8   msaitoh 
   4728  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   4729   1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   4730   1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   4731   1.8   msaitoh }
   4732   1.8   msaitoh 
   4733   1.8   msaitoh /**
   4734   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   4735   1.8   msaitoh  * @hw: pointer to hardware structure
   4736   1.8   msaitoh  *
   4737   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   4738   1.8   msaitoh  **/
   4739   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   4740   1.8   msaitoh {
   4741   1.8   msaitoh 	u32 fwsm, manc, factps;
   4742   1.8   msaitoh 
   4743  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   4744   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   4745   1.8   msaitoh 		return FALSE;
   4746   1.8   msaitoh 
   4747   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   4748   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   4749   1.8   msaitoh 		return FALSE;
   4750   1.8   msaitoh 
   4751   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   4752  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   4753   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   4754   1.8   msaitoh 			return FALSE;
   4755   1.8   msaitoh 	}
   4756   1.8   msaitoh 
   4757   1.8   msaitoh 	return TRUE;
   4758   1.8   msaitoh }
   4759   1.8   msaitoh 
   4760   1.8   msaitoh /**
   4761   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4762   1.8   msaitoh  *  @hw: pointer to hardware structure
   4763   1.8   msaitoh  *  @speed: new link speed
   4764   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   4765   1.8   msaitoh  *
   4766   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   4767   1.8   msaitoh  **/
   4768   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4769   1.8   msaitoh 					  ixgbe_link_speed speed,
   4770   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   4771   1.8   msaitoh {
   4772   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4773   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4774   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   4775   1.8   msaitoh 	u32 speedcnt = 0;
   4776   1.8   msaitoh 	u32 i = 0;
   4777   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   4778   1.8   msaitoh 
   4779   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   4780   1.8   msaitoh 
   4781   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   4782   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   4783   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   4784   1.8   msaitoh 		return status;
   4785   1.8   msaitoh 
   4786   1.8   msaitoh 	speed &= link_speed;
   4787   1.8   msaitoh 
   4788   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   4789   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4790   1.8   msaitoh 	 */
   4791   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4792   1.8   msaitoh 		speedcnt++;
   4793   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4794   1.8   msaitoh 
   4795   1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4796   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4797   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4798   1.8   msaitoh 			return status;
   4799   1.8   msaitoh 
   4800   1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
   4801   1.8   msaitoh 			goto out;
   4802   1.8   msaitoh 
   4803   1.8   msaitoh 		/* Set the module link speed */
   4804   1.8   msaitoh 		switch (hw->phy.media_type) {
   4805   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4806   1.8   msaitoh 		case ixgbe_media_type_fiber:
   4807   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4808   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   4809   1.8   msaitoh 			break;
   4810   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4811   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   4812   1.8   msaitoh 			break;
   4813   1.8   msaitoh 		default:
   4814   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4815   1.8   msaitoh 			break;
   4816   1.8   msaitoh 		}
   4817   1.8   msaitoh 
   4818   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   4819   1.8   msaitoh 		msec_delay(40);
   4820   1.8   msaitoh 
   4821   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4822   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   4823   1.8   msaitoh 					      autoneg_wait_to_complete);
   4824   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4825   1.8   msaitoh 			return status;
   4826   1.8   msaitoh 
   4827   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4828   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4829   1.8   msaitoh 
   4830   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4831   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4832   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   4833   1.8   msaitoh 		 */
   4834   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   4835   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   4836   1.8   msaitoh 			msec_delay(100);
   4837   1.8   msaitoh 
   4838   1.8   msaitoh 			/* If we have link, just jump out */
   4839   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   4840   1.8   msaitoh 						  &link_up, FALSE);
   4841   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   4842   1.8   msaitoh 				return status;
   4843   1.8   msaitoh 
   4844   1.8   msaitoh 			if (link_up)
   4845   1.8   msaitoh 				goto out;
   4846   1.8   msaitoh 		}
   4847   1.8   msaitoh 	}
   4848   1.8   msaitoh 
   4849   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4850   1.8   msaitoh 		speedcnt++;
   4851   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4852   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4853   1.8   msaitoh 
   4854   1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4855   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4856   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4857   1.8   msaitoh 			return status;
   4858   1.8   msaitoh 
   4859   1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
   4860   1.8   msaitoh 			goto out;
   4861   1.8   msaitoh 
   4862   1.8   msaitoh 		/* Set the module link speed */
   4863   1.8   msaitoh 		switch (hw->phy.media_type) {
   4864   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4865   1.8   msaitoh 		case ixgbe_media_type_fiber:
   4866   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4867   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   4868   1.8   msaitoh 			break;
   4869   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4870   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   4871   1.8   msaitoh 			break;
   4872   1.8   msaitoh 		default:
   4873   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4874   1.8   msaitoh 			break;
   4875   1.8   msaitoh 		}
   4876   1.8   msaitoh 
   4877   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   4878   1.8   msaitoh 		msec_delay(40);
   4879   1.8   msaitoh 
   4880   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4881   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   4882   1.8   msaitoh 					      autoneg_wait_to_complete);
   4883   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4884   1.8   msaitoh 			return status;
   4885   1.8   msaitoh 
   4886   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4887   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4888   1.8   msaitoh 
   4889   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   4890   1.8   msaitoh 		msec_delay(100);
   4891   1.8   msaitoh 
   4892   1.8   msaitoh 		/* If we have link, just jump out */
   4893   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4894   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4895   1.8   msaitoh 			return status;
   4896   1.8   msaitoh 
   4897   1.8   msaitoh 		if (link_up)
   4898   1.8   msaitoh 			goto out;
   4899   1.8   msaitoh 	}
   4900   1.8   msaitoh 
   4901   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   4902   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   4903   1.8   msaitoh 	 * single highest speed that the user requested.
   4904   1.8   msaitoh 	 */
   4905   1.8   msaitoh 	if (speedcnt > 1)
   4906   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4907   1.8   msaitoh 						      highest_link_speed,
   4908   1.8   msaitoh 						      autoneg_wait_to_complete);
   4909   1.8   msaitoh 
   4910   1.8   msaitoh out:
   4911   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   4912   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   4913   1.8   msaitoh 
   4914   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4915   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4916   1.8   msaitoh 
   4917   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4918   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4919   1.8   msaitoh 
   4920   1.8   msaitoh 	return status;
   4921   1.8   msaitoh }
   4922   1.8   msaitoh 
   4923   1.8   msaitoh /**
   4924   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4925   1.8   msaitoh  *  @hw: pointer to hardware structure
   4926   1.8   msaitoh  *  @speed: link speed to set
   4927   1.8   msaitoh  *
   4928   1.8   msaitoh  *  Set module link speed via the soft rate select.
   4929   1.8   msaitoh  */
   4930   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4931   1.8   msaitoh 					ixgbe_link_speed speed)
   4932   1.8   msaitoh {
   4933   1.8   msaitoh 	s32 status;
   4934   1.8   msaitoh 	u8 rs, eeprom_data;
   4935   1.8   msaitoh 
   4936   1.8   msaitoh 	switch (speed) {
   4937   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   4938   1.8   msaitoh 		/* one bit mask same as setting on */
   4939   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4940   1.8   msaitoh 		break;
   4941   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   4942   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4943   1.8   msaitoh 		break;
   4944   1.8   msaitoh 	default:
   4945   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   4946   1.8   msaitoh 		return;
   4947   1.8   msaitoh 	}
   4948   1.8   msaitoh 
   4949   1.8   msaitoh 	/* Set RS0 */
   4950   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4951   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4952   1.8   msaitoh 					   &eeprom_data);
   4953   1.8   msaitoh 	if (status) {
   4954   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   4955   1.8   msaitoh 		goto out;
   4956   1.8   msaitoh 	}
   4957   1.8   msaitoh 
   4958   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4959   1.8   msaitoh 
   4960   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4961   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4962   1.8   msaitoh 					    eeprom_data);
   4963   1.8   msaitoh 	if (status) {
   4964   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   4965   1.8   msaitoh 		goto out;
   4966   1.8   msaitoh 	}
   4967   1.8   msaitoh 
   4968   1.8   msaitoh 	/* Set RS1 */
   4969   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4970   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4971   1.8   msaitoh 					   &eeprom_data);
   4972   1.8   msaitoh 	if (status) {
   4973   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   4974   1.8   msaitoh 		goto out;
   4975   1.8   msaitoh 	}
   4976   1.8   msaitoh 
   4977   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4978   1.8   msaitoh 
   4979   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4980   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4981   1.8   msaitoh 					    eeprom_data);
   4982   1.8   msaitoh 	if (status) {
   4983   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   4984   1.8   msaitoh 		goto out;
   4985   1.8   msaitoh 	}
   4986   1.8   msaitoh out:
   4987   1.8   msaitoh 	return;
   4988   1.8   msaitoh }
   4989