ixgbe_common.c revision 1.13 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.9 msaitoh Copyright (c) 2001-2015, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.11 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 299200 2016-05-06 22:54:56Z pfg $*/
34 1.13 msaitoh /*$NetBSD: ixgbe_common.c,v 1.13 2017/05/26 08:36:42 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
83 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
90 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
93 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
100 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 1.1 dyoung
113 1.1 dyoung /* LEDs */
114 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
115 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
116 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 1.1 dyoung
119 1.1 dyoung /* RAR, Multicast, VLAN */
120 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
121 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 1.1 dyoung mac->ops.insert_mac_addr = NULL;
123 1.1 dyoung mac->ops.set_vmdq = NULL;
124 1.1 dyoung mac->ops.clear_vmdq = NULL;
125 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 1.1 dyoung mac->ops.clear_vfta = NULL;
131 1.1 dyoung mac->ops.set_vfta = NULL;
132 1.3 msaitoh mac->ops.set_vlvf = NULL;
133 1.1 dyoung mac->ops.init_uta_tables = NULL;
134 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 1.1 dyoung
137 1.1 dyoung /* Flow Control */
138 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.6 msaitoh mac->ops.dmac_config = NULL;
146 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
147 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
148 1.1 dyoung
149 1.1 dyoung return IXGBE_SUCCESS;
150 1.1 dyoung }
151 1.1 dyoung
152 1.1 dyoung /**
153 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
154 1.6 msaitoh * of flow control
155 1.6 msaitoh * @hw: pointer to hardware structure
156 1.6 msaitoh *
157 1.6 msaitoh * This function returns TRUE if the device supports flow control
158 1.6 msaitoh * autonegotiation, and FALSE if it does not.
159 1.4 msaitoh *
160 1.4 msaitoh **/
161 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
162 1.4 msaitoh {
163 1.6 msaitoh bool supported = FALSE;
164 1.6 msaitoh ixgbe_link_speed speed;
165 1.6 msaitoh bool link_up;
166 1.4 msaitoh
167 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
168 1.4 msaitoh
169 1.6 msaitoh switch (hw->phy.media_type) {
170 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
171 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
172 1.6 msaitoh case ixgbe_media_type_fiber:
173 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
174 1.6 msaitoh /* if link is down, assume supported */
175 1.6 msaitoh if (link_up)
176 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
177 1.6 msaitoh TRUE : FALSE;
178 1.6 msaitoh else
179 1.6 msaitoh supported = TRUE;
180 1.6 msaitoh break;
181 1.6 msaitoh case ixgbe_media_type_backplane:
182 1.6 msaitoh supported = TRUE;
183 1.6 msaitoh break;
184 1.6 msaitoh case ixgbe_media_type_copper:
185 1.6 msaitoh /* only some copper devices support flow control autoneg */
186 1.6 msaitoh switch (hw->device_id) {
187 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
188 1.6 msaitoh case IXGBE_DEV_ID_X540T:
189 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
190 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
191 1.8 msaitoh case IXGBE_DEV_ID_X550T:
192 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
193 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
194 1.6 msaitoh supported = TRUE;
195 1.6 msaitoh break;
196 1.6 msaitoh default:
197 1.6 msaitoh supported = FALSE;
198 1.6 msaitoh }
199 1.4 msaitoh default:
200 1.6 msaitoh break;
201 1.4 msaitoh }
202 1.6 msaitoh
203 1.11 msaitoh if (!supported) {
204 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
205 1.6 msaitoh "Device %x does not support flow control autoneg",
206 1.6 msaitoh hw->device_id);
207 1.11 msaitoh }
208 1.11 msaitoh
209 1.6 msaitoh return supported;
210 1.4 msaitoh }
211 1.4 msaitoh
212 1.4 msaitoh /**
213 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
214 1.4 msaitoh * @hw: pointer to hardware structure
215 1.4 msaitoh *
216 1.4 msaitoh * Called at init time to set up flow control.
217 1.4 msaitoh **/
218 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
219 1.4 msaitoh {
220 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
221 1.4 msaitoh u32 reg = 0, reg_bp = 0;
222 1.4 msaitoh u16 reg_cu = 0;
223 1.8 msaitoh bool locked = FALSE;
224 1.4 msaitoh
225 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
226 1.4 msaitoh
227 1.8 msaitoh /* Validate the requested mode */
228 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
229 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
230 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
231 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
232 1.4 msaitoh goto out;
233 1.4 msaitoh }
234 1.4 msaitoh
235 1.4 msaitoh /*
236 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
237 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
238 1.4 msaitoh */
239 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
240 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
241 1.4 msaitoh
242 1.4 msaitoh /*
243 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
244 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
245 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
246 1.4 msaitoh */
247 1.4 msaitoh switch (hw->phy.media_type) {
248 1.8 msaitoh case ixgbe_media_type_backplane:
249 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
250 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
251 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
252 1.8 msaitoh goto out;
253 1.8 msaitoh
254 1.8 msaitoh /* only backplane uses autoc so fall though */
255 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
256 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
257 1.4 msaitoh case ixgbe_media_type_fiber:
258 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
259 1.8 msaitoh
260 1.4 msaitoh break;
261 1.4 msaitoh case ixgbe_media_type_copper:
262 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
263 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
264 1.4 msaitoh break;
265 1.4 msaitoh default:
266 1.4 msaitoh break;
267 1.4 msaitoh }
268 1.4 msaitoh
269 1.4 msaitoh /*
270 1.4 msaitoh * The possible values of fc.requested_mode are:
271 1.4 msaitoh * 0: Flow control is completely disabled
272 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
273 1.4 msaitoh * but not send pause frames).
274 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
275 1.4 msaitoh * we do not support receiving pause frames).
276 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
277 1.4 msaitoh * other: Invalid.
278 1.4 msaitoh */
279 1.4 msaitoh switch (hw->fc.requested_mode) {
280 1.4 msaitoh case ixgbe_fc_none:
281 1.4 msaitoh /* Flow control completely disabled by software override. */
282 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
283 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
284 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
285 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
286 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
287 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
288 1.4 msaitoh break;
289 1.4 msaitoh case ixgbe_fc_tx_pause:
290 1.4 msaitoh /*
291 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
292 1.4 msaitoh * disabled by software override.
293 1.4 msaitoh */
294 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
295 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
296 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
297 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
298 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
299 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
300 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
301 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
302 1.4 msaitoh }
303 1.4 msaitoh break;
304 1.4 msaitoh case ixgbe_fc_rx_pause:
305 1.4 msaitoh /*
306 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
307 1.4 msaitoh * disabled by software override. Since there really
308 1.4 msaitoh * isn't a way to advertise that we are capable of RX
309 1.4 msaitoh * Pause ONLY, we will advertise that we support both
310 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
311 1.4 msaitoh * through to the fc_full statement. Later, we will
312 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
313 1.4 msaitoh */
314 1.4 msaitoh case ixgbe_fc_full:
315 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
316 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
317 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
318 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
319 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
320 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
321 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
322 1.4 msaitoh break;
323 1.4 msaitoh default:
324 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
325 1.6 msaitoh "Flow control param set incorrectly\n");
326 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
327 1.4 msaitoh goto out;
328 1.4 msaitoh break;
329 1.4 msaitoh }
330 1.4 msaitoh
331 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
332 1.4 msaitoh /*
333 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
334 1.4 msaitoh * the MAC will advertise clause 37 flow control.
335 1.4 msaitoh */
336 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
337 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
338 1.4 msaitoh
339 1.4 msaitoh /* Disable AN timeout */
340 1.4 msaitoh if (hw->fc.strict_ieee)
341 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
342 1.4 msaitoh
343 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
344 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
345 1.4 msaitoh }
346 1.4 msaitoh
347 1.4 msaitoh /*
348 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
349 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
350 1.4 msaitoh *
351 1.4 msaitoh */
352 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
353 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
354 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
355 1.8 msaitoh if (ret_val)
356 1.8 msaitoh goto out;
357 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
358 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
359 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
360 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
361 1.4 msaitoh }
362 1.4 msaitoh
363 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 1.4 msaitoh out:
365 1.4 msaitoh return ret_val;
366 1.4 msaitoh }
367 1.4 msaitoh
368 1.4 msaitoh /**
369 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
370 1.1 dyoung * @hw: pointer to hardware structure
371 1.1 dyoung *
372 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
373 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
374 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
375 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
376 1.1 dyoung **/
377 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
378 1.1 dyoung {
379 1.4 msaitoh s32 ret_val;
380 1.1 dyoung u32 ctrl_ext;
381 1.1 dyoung
382 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
383 1.1 dyoung
384 1.1 dyoung /* Set the media type */
385 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
386 1.1 dyoung
387 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
388 1.1 dyoung
389 1.1 dyoung /* Clear the VLAN filter table */
390 1.1 dyoung hw->mac.ops.clear_vfta(hw);
391 1.1 dyoung
392 1.1 dyoung /* Clear statistics registers */
393 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
394 1.1 dyoung
395 1.1 dyoung /* Set No Snoop Disable */
396 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
397 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
398 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
399 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
400 1.1 dyoung
401 1.1 dyoung /* Setup flow control */
402 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
403 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
404 1.4 msaitoh goto out;
405 1.1 dyoung
406 1.1 dyoung /* Clear adapter stopped flag */
407 1.1 dyoung hw->adapter_stopped = FALSE;
408 1.1 dyoung
409 1.4 msaitoh out:
410 1.4 msaitoh return ret_val;
411 1.1 dyoung }
412 1.1 dyoung
413 1.1 dyoung /**
414 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
415 1.1 dyoung * @hw: pointer to hw structure
416 1.1 dyoung *
417 1.1 dyoung * Performs the init sequence common to the second generation
418 1.1 dyoung * of 10 GbE devices.
419 1.1 dyoung * Devices in the second generation:
420 1.1 dyoung * 82599
421 1.1 dyoung * X540
422 1.1 dyoung **/
423 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
424 1.1 dyoung {
425 1.1 dyoung u32 i;
426 1.1 dyoung u32 regval;
427 1.1 dyoung
428 1.1 dyoung /* Clear the rate limiters */
429 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
430 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
431 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
432 1.1 dyoung }
433 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
434 1.1 dyoung
435 1.1 dyoung /* Disable relaxed ordering */
436 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
437 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
438 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
439 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
440 1.1 dyoung }
441 1.1 dyoung
442 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
443 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
444 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
445 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
446 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
447 1.1 dyoung }
448 1.1 dyoung
449 1.1 dyoung return IXGBE_SUCCESS;
450 1.1 dyoung }
451 1.1 dyoung
452 1.1 dyoung /**
453 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
454 1.1 dyoung * @hw: pointer to hardware structure
455 1.1 dyoung *
456 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
457 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
458 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
459 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
460 1.1 dyoung * disabled and uninitialized
461 1.1 dyoung **/
462 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
463 1.1 dyoung {
464 1.1 dyoung s32 status;
465 1.1 dyoung
466 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
467 1.1 dyoung
468 1.1 dyoung /* Reset the hardware */
469 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
470 1.1 dyoung
471 1.1 dyoung if (status == IXGBE_SUCCESS) {
472 1.1 dyoung /* Start the HW */
473 1.1 dyoung status = hw->mac.ops.start_hw(hw);
474 1.1 dyoung }
475 1.1 dyoung
476 1.1 dyoung return status;
477 1.1 dyoung }
478 1.1 dyoung
479 1.1 dyoung /**
480 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
481 1.1 dyoung * @hw: pointer to hardware structure
482 1.1 dyoung *
483 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
484 1.1 dyoung * Statistics counters are clear on read.
485 1.1 dyoung **/
486 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
487 1.1 dyoung {
488 1.1 dyoung u16 i = 0;
489 1.1 dyoung
490 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
491 1.1 dyoung
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
493 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
496 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
497 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
498 1.1 dyoung for (i = 0; i < 8; i++)
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
500 1.1 dyoung
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
506 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
507 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
508 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
509 1.1 dyoung } else {
510 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
512 1.1 dyoung }
513 1.1 dyoung
514 1.1 dyoung for (i = 0; i < 8; i++) {
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
517 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
518 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
519 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
520 1.1 dyoung } else {
521 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
523 1.1 dyoung }
524 1.1 dyoung }
525 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
526 1.1 dyoung for (i = 0; i < 8; i++)
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
542 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
543 1.3 msaitoh for (i = 0; i < 8; i++)
544 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
564 1.1 dyoung for (i = 0; i < 16; i++) {
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
567 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
573 1.1 dyoung } else {
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
576 1.1 dyoung }
577 1.1 dyoung }
578 1.1 dyoung
579 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
580 1.3 msaitoh if (hw->phy.id == 0)
581 1.3 msaitoh ixgbe_identify_phy(hw);
582 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
583 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
585 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
586 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
587 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
588 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
589 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
590 1.3 msaitoh }
591 1.3 msaitoh
592 1.1 dyoung return IXGBE_SUCCESS;
593 1.1 dyoung }
594 1.1 dyoung
595 1.1 dyoung /**
596 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
597 1.1 dyoung * @hw: pointer to hardware structure
598 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
599 1.1 dyoung * @pba_num_size: part number string buffer length
600 1.1 dyoung *
601 1.1 dyoung * Reads the part number string from the EEPROM.
602 1.1 dyoung **/
603 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
604 1.3 msaitoh u32 pba_num_size)
605 1.1 dyoung {
606 1.1 dyoung s32 ret_val;
607 1.1 dyoung u16 data;
608 1.1 dyoung u16 pba_ptr;
609 1.1 dyoung u16 offset;
610 1.1 dyoung u16 length;
611 1.1 dyoung
612 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
613 1.1 dyoung
614 1.1 dyoung if (pba_num == NULL) {
615 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
616 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
617 1.1 dyoung }
618 1.1 dyoung
619 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
620 1.1 dyoung if (ret_val) {
621 1.1 dyoung DEBUGOUT("NVM Read Error\n");
622 1.1 dyoung return ret_val;
623 1.1 dyoung }
624 1.1 dyoung
625 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
626 1.1 dyoung if (ret_val) {
627 1.1 dyoung DEBUGOUT("NVM Read Error\n");
628 1.1 dyoung return ret_val;
629 1.1 dyoung }
630 1.1 dyoung
631 1.1 dyoung /*
632 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
633 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
634 1.1 dyoung * and we can decode it into an ascii string
635 1.1 dyoung */
636 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
637 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
638 1.1 dyoung
639 1.1 dyoung /* we will need 11 characters to store the PBA */
640 1.1 dyoung if (pba_num_size < 11) {
641 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
642 1.1 dyoung return IXGBE_ERR_NO_SPACE;
643 1.1 dyoung }
644 1.1 dyoung
645 1.1 dyoung /* extract hex string from data and pba_ptr */
646 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
647 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
648 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
649 1.1 dyoung pba_num[3] = data & 0xF;
650 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
651 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
652 1.1 dyoung pba_num[6] = '-';
653 1.1 dyoung pba_num[7] = 0;
654 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
655 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
656 1.1 dyoung
657 1.1 dyoung /* put a null character on the end of our string */
658 1.1 dyoung pba_num[10] = '\0';
659 1.1 dyoung
660 1.1 dyoung /* switch all the data but the '-' to hex char */
661 1.1 dyoung for (offset = 0; offset < 10; offset++) {
662 1.1 dyoung if (pba_num[offset] < 0xA)
663 1.1 dyoung pba_num[offset] += '0';
664 1.1 dyoung else if (pba_num[offset] < 0x10)
665 1.1 dyoung pba_num[offset] += 'A' - 0xA;
666 1.1 dyoung }
667 1.1 dyoung
668 1.1 dyoung return IXGBE_SUCCESS;
669 1.1 dyoung }
670 1.1 dyoung
671 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
672 1.1 dyoung if (ret_val) {
673 1.1 dyoung DEBUGOUT("NVM Read Error\n");
674 1.1 dyoung return ret_val;
675 1.1 dyoung }
676 1.1 dyoung
677 1.1 dyoung if (length == 0xFFFF || length == 0) {
678 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
679 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
680 1.1 dyoung }
681 1.1 dyoung
682 1.1 dyoung /* check if pba_num buffer is big enough */
683 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
684 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
685 1.1 dyoung return IXGBE_ERR_NO_SPACE;
686 1.1 dyoung }
687 1.1 dyoung
688 1.1 dyoung /* trim pba length from start of string */
689 1.1 dyoung pba_ptr++;
690 1.1 dyoung length--;
691 1.1 dyoung
692 1.1 dyoung for (offset = 0; offset < length; offset++) {
693 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
694 1.1 dyoung if (ret_val) {
695 1.1 dyoung DEBUGOUT("NVM Read Error\n");
696 1.1 dyoung return ret_val;
697 1.1 dyoung }
698 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
699 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
700 1.1 dyoung }
701 1.1 dyoung pba_num[offset * 2] = '\0';
702 1.1 dyoung
703 1.1 dyoung return IXGBE_SUCCESS;
704 1.1 dyoung }
705 1.1 dyoung
706 1.1 dyoung /**
707 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
708 1.1 dyoung * @hw: pointer to hardware structure
709 1.1 dyoung * @pba_num: stores the part number from the EEPROM
710 1.1 dyoung *
711 1.1 dyoung * Reads the part number from the EEPROM.
712 1.1 dyoung **/
713 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
714 1.1 dyoung {
715 1.1 dyoung s32 ret_val;
716 1.1 dyoung u16 data;
717 1.1 dyoung
718 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
719 1.1 dyoung
720 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
721 1.1 dyoung if (ret_val) {
722 1.1 dyoung DEBUGOUT("NVM Read Error\n");
723 1.1 dyoung return ret_val;
724 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
725 1.1 dyoung DEBUGOUT("NVM Not supported\n");
726 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
727 1.1 dyoung }
728 1.1 dyoung *pba_num = (u32)(data << 16);
729 1.1 dyoung
730 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
731 1.1 dyoung if (ret_val) {
732 1.1 dyoung DEBUGOUT("NVM Read Error\n");
733 1.1 dyoung return ret_val;
734 1.1 dyoung }
735 1.1 dyoung *pba_num |= data;
736 1.1 dyoung
737 1.1 dyoung return IXGBE_SUCCESS;
738 1.1 dyoung }
739 1.1 dyoung
740 1.1 dyoung /**
741 1.5 msaitoh * ixgbe_read_pba_raw
742 1.5 msaitoh * @hw: pointer to the HW structure
743 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
744 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
745 1.5 msaitoh * @max_pba_block_size: PBA block size limit
746 1.5 msaitoh * @pba: pointer to output PBA structure
747 1.5 msaitoh *
748 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
749 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
750 1.5 msaitoh *
751 1.5 msaitoh **/
752 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
753 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
754 1.5 msaitoh struct ixgbe_pba *pba)
755 1.5 msaitoh {
756 1.5 msaitoh s32 ret_val;
757 1.5 msaitoh u16 pba_block_size;
758 1.5 msaitoh
759 1.5 msaitoh if (pba == NULL)
760 1.5 msaitoh return IXGBE_ERR_PARAM;
761 1.5 msaitoh
762 1.5 msaitoh if (eeprom_buf == NULL) {
763 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
764 1.5 msaitoh &pba->word[0]);
765 1.5 msaitoh if (ret_val)
766 1.5 msaitoh return ret_val;
767 1.5 msaitoh } else {
768 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
769 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
770 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
771 1.5 msaitoh } else {
772 1.5 msaitoh return IXGBE_ERR_PARAM;
773 1.5 msaitoh }
774 1.5 msaitoh }
775 1.5 msaitoh
776 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
777 1.5 msaitoh if (pba->pba_block == NULL)
778 1.5 msaitoh return IXGBE_ERR_PARAM;
779 1.5 msaitoh
780 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
781 1.5 msaitoh eeprom_buf_size,
782 1.5 msaitoh &pba_block_size);
783 1.5 msaitoh if (ret_val)
784 1.5 msaitoh return ret_val;
785 1.5 msaitoh
786 1.5 msaitoh if (pba_block_size > max_pba_block_size)
787 1.5 msaitoh return IXGBE_ERR_PARAM;
788 1.5 msaitoh
789 1.5 msaitoh if (eeprom_buf == NULL) {
790 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
791 1.5 msaitoh pba_block_size,
792 1.5 msaitoh pba->pba_block);
793 1.5 msaitoh if (ret_val)
794 1.5 msaitoh return ret_val;
795 1.5 msaitoh } else {
796 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
797 1.8 msaitoh pba_block_size)) {
798 1.5 msaitoh memcpy(pba->pba_block,
799 1.5 msaitoh &eeprom_buf[pba->word[1]],
800 1.5 msaitoh pba_block_size * sizeof(u16));
801 1.5 msaitoh } else {
802 1.5 msaitoh return IXGBE_ERR_PARAM;
803 1.5 msaitoh }
804 1.5 msaitoh }
805 1.5 msaitoh }
806 1.5 msaitoh
807 1.5 msaitoh return IXGBE_SUCCESS;
808 1.5 msaitoh }
809 1.5 msaitoh
810 1.5 msaitoh /**
811 1.5 msaitoh * ixgbe_write_pba_raw
812 1.5 msaitoh * @hw: pointer to the HW structure
813 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
814 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
815 1.5 msaitoh * @pba: pointer to PBA structure
816 1.5 msaitoh *
817 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
818 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
819 1.5 msaitoh *
820 1.5 msaitoh **/
821 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
822 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
823 1.5 msaitoh {
824 1.5 msaitoh s32 ret_val;
825 1.5 msaitoh
826 1.5 msaitoh if (pba == NULL)
827 1.5 msaitoh return IXGBE_ERR_PARAM;
828 1.5 msaitoh
829 1.5 msaitoh if (eeprom_buf == NULL) {
830 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
831 1.5 msaitoh &pba->word[0]);
832 1.5 msaitoh if (ret_val)
833 1.5 msaitoh return ret_val;
834 1.5 msaitoh } else {
835 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
836 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
837 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
838 1.5 msaitoh } else {
839 1.5 msaitoh return IXGBE_ERR_PARAM;
840 1.5 msaitoh }
841 1.5 msaitoh }
842 1.5 msaitoh
843 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
844 1.5 msaitoh if (pba->pba_block == NULL)
845 1.5 msaitoh return IXGBE_ERR_PARAM;
846 1.5 msaitoh
847 1.5 msaitoh if (eeprom_buf == NULL) {
848 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
849 1.5 msaitoh pba->pba_block[0],
850 1.5 msaitoh pba->pba_block);
851 1.5 msaitoh if (ret_val)
852 1.5 msaitoh return ret_val;
853 1.5 msaitoh } else {
854 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
855 1.5 msaitoh pba->pba_block[0])) {
856 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
857 1.5 msaitoh pba->pba_block,
858 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
859 1.5 msaitoh } else {
860 1.5 msaitoh return IXGBE_ERR_PARAM;
861 1.5 msaitoh }
862 1.5 msaitoh }
863 1.5 msaitoh }
864 1.5 msaitoh
865 1.5 msaitoh return IXGBE_SUCCESS;
866 1.5 msaitoh }
867 1.5 msaitoh
868 1.5 msaitoh /**
869 1.5 msaitoh * ixgbe_get_pba_block_size
870 1.5 msaitoh * @hw: pointer to the HW structure
871 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
872 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
873 1.5 msaitoh * @pba_data_size: pointer to output variable
874 1.5 msaitoh *
875 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
876 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
877 1.5 msaitoh * EEPROM device.
878 1.5 msaitoh *
879 1.5 msaitoh **/
880 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
881 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
882 1.5 msaitoh {
883 1.5 msaitoh s32 ret_val;
884 1.5 msaitoh u16 pba_word[2];
885 1.5 msaitoh u16 length;
886 1.5 msaitoh
887 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
888 1.5 msaitoh
889 1.5 msaitoh if (eeprom_buf == NULL) {
890 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
891 1.5 msaitoh &pba_word[0]);
892 1.5 msaitoh if (ret_val)
893 1.5 msaitoh return ret_val;
894 1.5 msaitoh } else {
895 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
896 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
897 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
898 1.5 msaitoh } else {
899 1.5 msaitoh return IXGBE_ERR_PARAM;
900 1.5 msaitoh }
901 1.5 msaitoh }
902 1.5 msaitoh
903 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
904 1.5 msaitoh if (eeprom_buf == NULL) {
905 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
906 1.5 msaitoh &length);
907 1.5 msaitoh if (ret_val)
908 1.5 msaitoh return ret_val;
909 1.5 msaitoh } else {
910 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
911 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
912 1.5 msaitoh else
913 1.5 msaitoh return IXGBE_ERR_PARAM;
914 1.5 msaitoh }
915 1.5 msaitoh
916 1.5 msaitoh if (length == 0xFFFF || length == 0)
917 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
918 1.5 msaitoh } else {
919 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
920 1.5 msaitoh length = 0;
921 1.5 msaitoh }
922 1.5 msaitoh
923 1.5 msaitoh if (pba_block_size != NULL)
924 1.5 msaitoh *pba_block_size = length;
925 1.5 msaitoh
926 1.5 msaitoh return IXGBE_SUCCESS;
927 1.5 msaitoh }
928 1.5 msaitoh
929 1.5 msaitoh /**
930 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
931 1.1 dyoung * @hw: pointer to hardware structure
932 1.1 dyoung * @mac_addr: Adapter MAC address
933 1.1 dyoung *
934 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
935 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
936 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
937 1.1 dyoung **/
938 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
939 1.1 dyoung {
940 1.1 dyoung u32 rar_high;
941 1.1 dyoung u32 rar_low;
942 1.1 dyoung u16 i;
943 1.1 dyoung
944 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
945 1.1 dyoung
946 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
947 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
948 1.1 dyoung
949 1.1 dyoung for (i = 0; i < 4; i++)
950 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
951 1.1 dyoung
952 1.1 dyoung for (i = 0; i < 2; i++)
953 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
954 1.1 dyoung
955 1.1 dyoung return IXGBE_SUCCESS;
956 1.1 dyoung }
957 1.1 dyoung
958 1.1 dyoung /**
959 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
960 1.1 dyoung * @hw: pointer to hardware structure
961 1.6 msaitoh * @link_status: the link status returned by the PCI config space
962 1.1 dyoung *
963 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
964 1.1 dyoung **/
965 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
966 1.1 dyoung {
967 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
968 1.1 dyoung
969 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
970 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
971 1.1 dyoung
972 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
973 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
974 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
975 1.1 dyoung break;
976 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
977 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
978 1.1 dyoung break;
979 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
980 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
981 1.1 dyoung break;
982 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
983 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
984 1.1 dyoung break;
985 1.1 dyoung default:
986 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
987 1.1 dyoung break;
988 1.1 dyoung }
989 1.1 dyoung
990 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
991 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
992 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
993 1.1 dyoung break;
994 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
995 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
996 1.1 dyoung break;
997 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
998 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
999 1.4 msaitoh break;
1000 1.1 dyoung default:
1001 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1002 1.1 dyoung break;
1003 1.1 dyoung }
1004 1.1 dyoung
1005 1.1 dyoung mac->ops.set_lan_id(hw);
1006 1.6 msaitoh }
1007 1.6 msaitoh
1008 1.6 msaitoh /**
1009 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1010 1.6 msaitoh * @hw: pointer to hardware structure
1011 1.6 msaitoh *
1012 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1013 1.6 msaitoh * store this data within the ixgbe_hw structure.
1014 1.6 msaitoh **/
1015 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1016 1.6 msaitoh {
1017 1.6 msaitoh u16 link_status;
1018 1.6 msaitoh
1019 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1020 1.6 msaitoh
1021 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1022 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1023 1.6 msaitoh
1024 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1025 1.1 dyoung
1026 1.1 dyoung return IXGBE_SUCCESS;
1027 1.1 dyoung }
1028 1.1 dyoung
1029 1.1 dyoung /**
1030 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1031 1.1 dyoung * @hw: pointer to the HW structure
1032 1.1 dyoung *
1033 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1034 1.1 dyoung * and swaps the port value if requested.
1035 1.1 dyoung **/
1036 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1037 1.1 dyoung {
1038 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1039 1.1 dyoung u32 reg;
1040 1.1 dyoung
1041 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1042 1.1 dyoung
1043 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1044 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1045 1.1 dyoung bus->lan_id = bus->func;
1046 1.1 dyoung
1047 1.1 dyoung /* check for a port swap */
1048 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1049 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1050 1.1 dyoung bus->func ^= 0x1;
1051 1.1 dyoung }
1052 1.1 dyoung
1053 1.1 dyoung /**
1054 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1055 1.1 dyoung * @hw: pointer to hardware structure
1056 1.1 dyoung *
1057 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1058 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1059 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1060 1.1 dyoung * state and should not touch the hardware.
1061 1.1 dyoung **/
1062 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1063 1.1 dyoung {
1064 1.1 dyoung u32 reg_val;
1065 1.1 dyoung u16 i;
1066 1.1 dyoung
1067 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1068 1.1 dyoung
1069 1.1 dyoung /*
1070 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1071 1.1 dyoung * the hardware
1072 1.1 dyoung */
1073 1.1 dyoung hw->adapter_stopped = TRUE;
1074 1.1 dyoung
1075 1.1 dyoung /* Disable the receive unit */
1076 1.8 msaitoh ixgbe_disable_rx(hw);
1077 1.1 dyoung
1078 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1079 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1080 1.1 dyoung
1081 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1082 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1083 1.1 dyoung
1084 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1085 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1086 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1087 1.3 msaitoh
1088 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1089 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1090 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1091 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1092 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1093 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1094 1.1 dyoung }
1095 1.1 dyoung
1096 1.3 msaitoh /* flush all queues disables */
1097 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1098 1.3 msaitoh msec_delay(2);
1099 1.3 msaitoh
1100 1.1 dyoung /*
1101 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1102 1.1 dyoung * access and verify no pending requests
1103 1.1 dyoung */
1104 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1105 1.1 dyoung }
1106 1.1 dyoung
1107 1.1 dyoung /**
1108 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1109 1.1 dyoung * @hw: pointer to hardware structure
1110 1.1 dyoung * @index: led number to turn on
1111 1.1 dyoung **/
1112 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1113 1.1 dyoung {
1114 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1115 1.1 dyoung
1116 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1117 1.1 dyoung
1118 1.1 dyoung /* To turn on the LED, set mode to ON. */
1119 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1120 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1121 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1122 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1123 1.1 dyoung
1124 1.1 dyoung return IXGBE_SUCCESS;
1125 1.1 dyoung }
1126 1.1 dyoung
1127 1.1 dyoung /**
1128 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1129 1.1 dyoung * @hw: pointer to hardware structure
1130 1.1 dyoung * @index: led number to turn off
1131 1.1 dyoung **/
1132 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1133 1.1 dyoung {
1134 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1135 1.1 dyoung
1136 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1137 1.1 dyoung
1138 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1139 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1140 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1141 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1142 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1143 1.1 dyoung
1144 1.1 dyoung return IXGBE_SUCCESS;
1145 1.1 dyoung }
1146 1.1 dyoung
1147 1.1 dyoung /**
1148 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1149 1.1 dyoung * @hw: pointer to hardware structure
1150 1.1 dyoung *
1151 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1152 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1153 1.1 dyoung **/
1154 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1155 1.1 dyoung {
1156 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1157 1.1 dyoung u32 eec;
1158 1.1 dyoung u16 eeprom_size;
1159 1.1 dyoung
1160 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1161 1.1 dyoung
1162 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1163 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1164 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1165 1.1 dyoung * tested value */
1166 1.1 dyoung eeprom->semaphore_delay = 10;
1167 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1168 1.3 msaitoh eeprom->word_page_size = 0;
1169 1.1 dyoung
1170 1.1 dyoung /*
1171 1.1 dyoung * Check for EEPROM present first.
1172 1.1 dyoung * If not present leave as none
1173 1.1 dyoung */
1174 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1175 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1176 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1177 1.1 dyoung
1178 1.1 dyoung /*
1179 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1180 1.1 dyoung * change if a future EEPROM is not SPI.
1181 1.1 dyoung */
1182 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1183 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1184 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1185 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1186 1.1 dyoung }
1187 1.1 dyoung
1188 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1189 1.1 dyoung eeprom->address_bits = 16;
1190 1.1 dyoung else
1191 1.1 dyoung eeprom->address_bits = 8;
1192 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1193 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1194 1.3 msaitoh eeprom->address_bits);
1195 1.1 dyoung }
1196 1.1 dyoung
1197 1.1 dyoung return IXGBE_SUCCESS;
1198 1.1 dyoung }
1199 1.1 dyoung
1200 1.1 dyoung /**
1201 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1202 1.3 msaitoh * @hw: pointer to hardware structure
1203 1.3 msaitoh * @offset: offset within the EEPROM to write
1204 1.3 msaitoh * @words: number of word(s)
1205 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1206 1.3 msaitoh *
1207 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1208 1.3 msaitoh **/
1209 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1210 1.3 msaitoh u16 words, u16 *data)
1211 1.3 msaitoh {
1212 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1213 1.3 msaitoh u16 i, count;
1214 1.3 msaitoh
1215 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1216 1.3 msaitoh
1217 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1218 1.3 msaitoh
1219 1.3 msaitoh if (words == 0) {
1220 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1221 1.3 msaitoh goto out;
1222 1.3 msaitoh }
1223 1.3 msaitoh
1224 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1225 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1226 1.3 msaitoh goto out;
1227 1.3 msaitoh }
1228 1.3 msaitoh
1229 1.3 msaitoh /*
1230 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1231 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1232 1.3 msaitoh */
1233 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1234 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1235 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1236 1.3 msaitoh
1237 1.3 msaitoh /*
1238 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1239 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1240 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1241 1.3 msaitoh */
1242 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1243 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1244 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1245 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1246 1.3 msaitoh count, &data[i]);
1247 1.3 msaitoh
1248 1.3 msaitoh if (status != IXGBE_SUCCESS)
1249 1.3 msaitoh break;
1250 1.3 msaitoh }
1251 1.3 msaitoh
1252 1.3 msaitoh out:
1253 1.3 msaitoh return status;
1254 1.3 msaitoh }
1255 1.3 msaitoh
1256 1.3 msaitoh /**
1257 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1258 1.3 msaitoh * @hw: pointer to hardware structure
1259 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1260 1.3 msaitoh * @words: number of word(s)
1261 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1262 1.3 msaitoh *
1263 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1264 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1265 1.3 msaitoh **/
1266 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1267 1.3 msaitoh u16 words, u16 *data)
1268 1.3 msaitoh {
1269 1.3 msaitoh s32 status;
1270 1.3 msaitoh u16 word;
1271 1.3 msaitoh u16 page_size;
1272 1.3 msaitoh u16 i;
1273 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1274 1.3 msaitoh
1275 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1276 1.3 msaitoh
1277 1.3 msaitoh /* Prepare the EEPROM for writing */
1278 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1279 1.3 msaitoh
1280 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1281 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1282 1.3 msaitoh ixgbe_release_eeprom(hw);
1283 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1284 1.3 msaitoh }
1285 1.3 msaitoh }
1286 1.3 msaitoh
1287 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1288 1.3 msaitoh for (i = 0; i < words; i++) {
1289 1.3 msaitoh ixgbe_standby_eeprom(hw);
1290 1.3 msaitoh
1291 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1292 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1293 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1294 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1295 1.3 msaitoh
1296 1.3 msaitoh ixgbe_standby_eeprom(hw);
1297 1.3 msaitoh
1298 1.3 msaitoh /*
1299 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1300 1.3 msaitoh * in the opcode
1301 1.3 msaitoh */
1302 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1303 1.3 msaitoh ((offset + i) >= 128))
1304 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1305 1.3 msaitoh
1306 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1307 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1308 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1309 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1310 1.3 msaitoh hw->eeprom.address_bits);
1311 1.3 msaitoh
1312 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1313 1.3 msaitoh
1314 1.3 msaitoh /* Send the data in burst via SPI*/
1315 1.3 msaitoh do {
1316 1.3 msaitoh word = data[i];
1317 1.3 msaitoh word = (word >> 8) | (word << 8);
1318 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1319 1.3 msaitoh
1320 1.3 msaitoh if (page_size == 0)
1321 1.3 msaitoh break;
1322 1.3 msaitoh
1323 1.3 msaitoh /* do not wrap around page */
1324 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1325 1.3 msaitoh (page_size - 1))
1326 1.3 msaitoh break;
1327 1.3 msaitoh } while (++i < words);
1328 1.3 msaitoh
1329 1.3 msaitoh ixgbe_standby_eeprom(hw);
1330 1.3 msaitoh msec_delay(10);
1331 1.3 msaitoh }
1332 1.3 msaitoh /* Done with writing - release the EEPROM */
1333 1.3 msaitoh ixgbe_release_eeprom(hw);
1334 1.3 msaitoh }
1335 1.3 msaitoh
1336 1.3 msaitoh return status;
1337 1.3 msaitoh }
1338 1.3 msaitoh
1339 1.3 msaitoh /**
1340 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1341 1.1 dyoung * @hw: pointer to hardware structure
1342 1.1 dyoung * @offset: offset within the EEPROM to be written to
1343 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1344 1.1 dyoung *
1345 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1346 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1347 1.1 dyoung **/
1348 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1349 1.1 dyoung {
1350 1.1 dyoung s32 status;
1351 1.1 dyoung
1352 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1353 1.1 dyoung
1354 1.1 dyoung hw->eeprom.ops.init_params(hw);
1355 1.1 dyoung
1356 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1357 1.1 dyoung status = IXGBE_ERR_EEPROM;
1358 1.1 dyoung goto out;
1359 1.1 dyoung }
1360 1.1 dyoung
1361 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1362 1.3 msaitoh
1363 1.3 msaitoh out:
1364 1.3 msaitoh return status;
1365 1.3 msaitoh }
1366 1.3 msaitoh
1367 1.3 msaitoh /**
1368 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1369 1.3 msaitoh * @hw: pointer to hardware structure
1370 1.3 msaitoh * @offset: offset within the EEPROM to be read
1371 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1372 1.3 msaitoh * @words: number of word(s)
1373 1.3 msaitoh *
1374 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1375 1.3 msaitoh **/
1376 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1377 1.3 msaitoh u16 words, u16 *data)
1378 1.3 msaitoh {
1379 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1380 1.3 msaitoh u16 i, count;
1381 1.3 msaitoh
1382 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1383 1.3 msaitoh
1384 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1385 1.3 msaitoh
1386 1.3 msaitoh if (words == 0) {
1387 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1388 1.3 msaitoh goto out;
1389 1.3 msaitoh }
1390 1.3 msaitoh
1391 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1392 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1393 1.3 msaitoh goto out;
1394 1.3 msaitoh }
1395 1.3 msaitoh
1396 1.3 msaitoh /*
1397 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1398 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1399 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1400 1.3 msaitoh */
1401 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1402 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1403 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1404 1.3 msaitoh
1405 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1406 1.3 msaitoh count, &data[i]);
1407 1.3 msaitoh
1408 1.3 msaitoh if (status != IXGBE_SUCCESS)
1409 1.3 msaitoh break;
1410 1.3 msaitoh }
1411 1.3 msaitoh
1412 1.3 msaitoh out:
1413 1.3 msaitoh return status;
1414 1.3 msaitoh }
1415 1.3 msaitoh
1416 1.3 msaitoh /**
1417 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1418 1.3 msaitoh * @hw: pointer to hardware structure
1419 1.3 msaitoh * @offset: offset within the EEPROM to be read
1420 1.3 msaitoh * @words: number of word(s)
1421 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1422 1.3 msaitoh *
1423 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1424 1.3 msaitoh **/
1425 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1426 1.3 msaitoh u16 words, u16 *data)
1427 1.3 msaitoh {
1428 1.3 msaitoh s32 status;
1429 1.3 msaitoh u16 word_in;
1430 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1431 1.3 msaitoh u16 i;
1432 1.3 msaitoh
1433 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1434 1.3 msaitoh
1435 1.3 msaitoh /* Prepare the EEPROM for reading */
1436 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1437 1.1 dyoung
1438 1.1 dyoung if (status == IXGBE_SUCCESS) {
1439 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1440 1.1 dyoung ixgbe_release_eeprom(hw);
1441 1.1 dyoung status = IXGBE_ERR_EEPROM;
1442 1.1 dyoung }
1443 1.1 dyoung }
1444 1.1 dyoung
1445 1.1 dyoung if (status == IXGBE_SUCCESS) {
1446 1.3 msaitoh for (i = 0; i < words; i++) {
1447 1.3 msaitoh ixgbe_standby_eeprom(hw);
1448 1.3 msaitoh /*
1449 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1450 1.3 msaitoh * in the opcode
1451 1.3 msaitoh */
1452 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1453 1.3 msaitoh ((offset + i) >= 128))
1454 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1455 1.3 msaitoh
1456 1.3 msaitoh /* Send the READ command (opcode + addr) */
1457 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1458 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1459 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1460 1.3 msaitoh hw->eeprom.address_bits);
1461 1.3 msaitoh
1462 1.3 msaitoh /* Read the data. */
1463 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1464 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1465 1.3 msaitoh }
1466 1.1 dyoung
1467 1.3 msaitoh /* End this read operation */
1468 1.1 dyoung ixgbe_release_eeprom(hw);
1469 1.1 dyoung }
1470 1.1 dyoung
1471 1.1 dyoung return status;
1472 1.1 dyoung }
1473 1.1 dyoung
1474 1.1 dyoung /**
1475 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1476 1.1 dyoung * @hw: pointer to hardware structure
1477 1.1 dyoung * @offset: offset within the EEPROM to be read
1478 1.1 dyoung * @data: read 16 bit value from EEPROM
1479 1.1 dyoung *
1480 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1481 1.1 dyoung **/
1482 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1483 1.3 msaitoh u16 *data)
1484 1.1 dyoung {
1485 1.1 dyoung s32 status;
1486 1.1 dyoung
1487 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1488 1.1 dyoung
1489 1.1 dyoung hw->eeprom.ops.init_params(hw);
1490 1.1 dyoung
1491 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1492 1.1 dyoung status = IXGBE_ERR_EEPROM;
1493 1.1 dyoung goto out;
1494 1.1 dyoung }
1495 1.1 dyoung
1496 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1497 1.3 msaitoh
1498 1.3 msaitoh out:
1499 1.3 msaitoh return status;
1500 1.3 msaitoh }
1501 1.3 msaitoh
1502 1.3 msaitoh /**
1503 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1504 1.3 msaitoh * @hw: pointer to hardware structure
1505 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1506 1.3 msaitoh * @words: number of word(s)
1507 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1508 1.3 msaitoh *
1509 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1510 1.3 msaitoh **/
1511 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1512 1.3 msaitoh u16 words, u16 *data)
1513 1.3 msaitoh {
1514 1.3 msaitoh u32 eerd;
1515 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1516 1.3 msaitoh u32 i;
1517 1.3 msaitoh
1518 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1519 1.3 msaitoh
1520 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1521 1.3 msaitoh
1522 1.3 msaitoh if (words == 0) {
1523 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1524 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1525 1.3 msaitoh goto out;
1526 1.3 msaitoh }
1527 1.3 msaitoh
1528 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1529 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1530 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1531 1.3 msaitoh goto out;
1532 1.3 msaitoh }
1533 1.3 msaitoh
1534 1.3 msaitoh for (i = 0; i < words; i++) {
1535 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1536 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1537 1.3 msaitoh
1538 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1539 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1540 1.1 dyoung
1541 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1542 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1543 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1544 1.3 msaitoh } else {
1545 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1546 1.3 msaitoh goto out;
1547 1.1 dyoung }
1548 1.1 dyoung }
1549 1.3 msaitoh out:
1550 1.3 msaitoh return status;
1551 1.3 msaitoh }
1552 1.1 dyoung
1553 1.3 msaitoh /**
1554 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1555 1.3 msaitoh * @hw: pointer to hardware structure
1556 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1557 1.3 msaitoh *
1558 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1559 1.3 msaitoh * This function is called only when we are writing a new large buffer
1560 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1561 1.3 msaitoh **/
1562 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1563 1.3 msaitoh u16 offset)
1564 1.3 msaitoh {
1565 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1566 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1567 1.3 msaitoh u16 i;
1568 1.3 msaitoh
1569 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1570 1.3 msaitoh
1571 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1572 1.3 msaitoh data[i] = i;
1573 1.1 dyoung
1574 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1575 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1576 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1577 1.3 msaitoh hw->eeprom.word_page_size = 0;
1578 1.3 msaitoh if (status != IXGBE_SUCCESS)
1579 1.3 msaitoh goto out;
1580 1.1 dyoung
1581 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1582 1.3 msaitoh if (status != IXGBE_SUCCESS)
1583 1.3 msaitoh goto out;
1584 1.1 dyoung
1585 1.3 msaitoh /*
1586 1.3 msaitoh * When writing in burst more than the actual page size
1587 1.3 msaitoh * EEPROM address wraps around current page.
1588 1.3 msaitoh */
1589 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1590 1.1 dyoung
1591 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1592 1.3 msaitoh hw->eeprom.word_page_size);
1593 1.1 dyoung out:
1594 1.1 dyoung return status;
1595 1.1 dyoung }
1596 1.1 dyoung
1597 1.1 dyoung /**
1598 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1599 1.1 dyoung * @hw: pointer to hardware structure
1600 1.1 dyoung * @offset: offset of word in the EEPROM to read
1601 1.1 dyoung * @data: word read from the EEPROM
1602 1.1 dyoung *
1603 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1604 1.1 dyoung **/
1605 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1606 1.1 dyoung {
1607 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1608 1.3 msaitoh }
1609 1.3 msaitoh
1610 1.3 msaitoh /**
1611 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1612 1.3 msaitoh * @hw: pointer to hardware structure
1613 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1614 1.3 msaitoh * @words: number of word(s)
1615 1.3 msaitoh * @data: word(s) write to the EEPROM
1616 1.3 msaitoh *
1617 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1618 1.3 msaitoh **/
1619 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1620 1.3 msaitoh u16 words, u16 *data)
1621 1.3 msaitoh {
1622 1.3 msaitoh u32 eewr;
1623 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1624 1.3 msaitoh u16 i;
1625 1.1 dyoung
1626 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1627 1.1 dyoung
1628 1.1 dyoung hw->eeprom.ops.init_params(hw);
1629 1.1 dyoung
1630 1.3 msaitoh if (words == 0) {
1631 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1632 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1633 1.3 msaitoh goto out;
1634 1.3 msaitoh }
1635 1.3 msaitoh
1636 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1637 1.1 dyoung status = IXGBE_ERR_EEPROM;
1638 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1639 1.1 dyoung goto out;
1640 1.1 dyoung }
1641 1.1 dyoung
1642 1.3 msaitoh for (i = 0; i < words; i++) {
1643 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1644 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1645 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1646 1.3 msaitoh
1647 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1648 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1649 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1650 1.3 msaitoh goto out;
1651 1.3 msaitoh }
1652 1.1 dyoung
1653 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1654 1.1 dyoung
1655 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1656 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1657 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1658 1.3 msaitoh goto out;
1659 1.3 msaitoh }
1660 1.3 msaitoh }
1661 1.1 dyoung
1662 1.1 dyoung out:
1663 1.1 dyoung return status;
1664 1.1 dyoung }
1665 1.1 dyoung
1666 1.1 dyoung /**
1667 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1668 1.1 dyoung * @hw: pointer to hardware structure
1669 1.1 dyoung * @offset: offset of word in the EEPROM to write
1670 1.1 dyoung * @data: word write to the EEPROM
1671 1.1 dyoung *
1672 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1673 1.1 dyoung **/
1674 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1675 1.1 dyoung {
1676 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1677 1.1 dyoung }
1678 1.1 dyoung
1679 1.1 dyoung /**
1680 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1681 1.1 dyoung * @hw: pointer to hardware structure
1682 1.1 dyoung * @ee_reg: EEPROM flag for polling
1683 1.1 dyoung *
1684 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1685 1.1 dyoung * read or write is done respectively.
1686 1.1 dyoung **/
1687 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1688 1.1 dyoung {
1689 1.1 dyoung u32 i;
1690 1.1 dyoung u32 reg;
1691 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1692 1.1 dyoung
1693 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1694 1.1 dyoung
1695 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1696 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1697 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1698 1.1 dyoung else
1699 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1700 1.1 dyoung
1701 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1702 1.1 dyoung status = IXGBE_SUCCESS;
1703 1.1 dyoung break;
1704 1.1 dyoung }
1705 1.1 dyoung usec_delay(5);
1706 1.1 dyoung }
1707 1.6 msaitoh
1708 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1709 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1710 1.6 msaitoh "EEPROM read/write done polling timed out");
1711 1.6 msaitoh
1712 1.1 dyoung return status;
1713 1.1 dyoung }
1714 1.1 dyoung
1715 1.1 dyoung /**
1716 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1717 1.1 dyoung * @hw: pointer to hardware structure
1718 1.1 dyoung *
1719 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1720 1.1 dyoung * be called before issuing a command to the EEPROM.
1721 1.1 dyoung **/
1722 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1723 1.1 dyoung {
1724 1.1 dyoung s32 status = IXGBE_SUCCESS;
1725 1.1 dyoung u32 eec;
1726 1.1 dyoung u32 i;
1727 1.1 dyoung
1728 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1729 1.1 dyoung
1730 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1731 1.3 msaitoh != IXGBE_SUCCESS)
1732 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1733 1.1 dyoung
1734 1.1 dyoung if (status == IXGBE_SUCCESS) {
1735 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1736 1.1 dyoung
1737 1.1 dyoung /* Request EEPROM Access */
1738 1.1 dyoung eec |= IXGBE_EEC_REQ;
1739 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1740 1.1 dyoung
1741 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1742 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1743 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1744 1.1 dyoung break;
1745 1.1 dyoung usec_delay(5);
1746 1.1 dyoung }
1747 1.1 dyoung
1748 1.1 dyoung /* Release if grant not acquired */
1749 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1750 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1751 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1752 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1753 1.1 dyoung
1754 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1755 1.1 dyoung status = IXGBE_ERR_EEPROM;
1756 1.1 dyoung }
1757 1.1 dyoung
1758 1.1 dyoung /* Setup EEPROM for Read/Write */
1759 1.1 dyoung if (status == IXGBE_SUCCESS) {
1760 1.1 dyoung /* Clear CS and SK */
1761 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1762 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1763 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1764 1.1 dyoung usec_delay(1);
1765 1.1 dyoung }
1766 1.1 dyoung }
1767 1.1 dyoung return status;
1768 1.1 dyoung }
1769 1.1 dyoung
1770 1.1 dyoung /**
1771 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1772 1.1 dyoung * @hw: pointer to hardware structure
1773 1.1 dyoung *
1774 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1775 1.1 dyoung **/
1776 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1777 1.1 dyoung {
1778 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1779 1.1 dyoung u32 timeout = 2000;
1780 1.1 dyoung u32 i;
1781 1.1 dyoung u32 swsm;
1782 1.1 dyoung
1783 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1784 1.1 dyoung
1785 1.1 dyoung
1786 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1787 1.1 dyoung for (i = 0; i < timeout; i++) {
1788 1.1 dyoung /*
1789 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1790 1.1 dyoung * set and we have the semaphore
1791 1.1 dyoung */
1792 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1793 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1794 1.1 dyoung status = IXGBE_SUCCESS;
1795 1.1 dyoung break;
1796 1.1 dyoung }
1797 1.1 dyoung usec_delay(50);
1798 1.1 dyoung }
1799 1.1 dyoung
1800 1.3 msaitoh if (i == timeout) {
1801 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1802 1.3 msaitoh "not granted.\n");
1803 1.3 msaitoh /*
1804 1.3 msaitoh * this release is particularly important because our attempts
1805 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1806 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1807 1.3 msaitoh * bits to free the driver to make progress
1808 1.3 msaitoh */
1809 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1810 1.3 msaitoh
1811 1.3 msaitoh usec_delay(50);
1812 1.3 msaitoh /*
1813 1.3 msaitoh * one last try
1814 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1815 1.3 msaitoh * set and we have the semaphore
1816 1.3 msaitoh */
1817 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1818 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1819 1.3 msaitoh status = IXGBE_SUCCESS;
1820 1.3 msaitoh }
1821 1.3 msaitoh
1822 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1823 1.1 dyoung if (status == IXGBE_SUCCESS) {
1824 1.1 dyoung for (i = 0; i < timeout; i++) {
1825 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1826 1.1 dyoung
1827 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1828 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1829 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1830 1.1 dyoung
1831 1.1 dyoung /*
1832 1.1 dyoung * If we set the bit successfully then we got the
1833 1.1 dyoung * semaphore.
1834 1.1 dyoung */
1835 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1836 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1837 1.1 dyoung break;
1838 1.1 dyoung
1839 1.1 dyoung usec_delay(50);
1840 1.1 dyoung }
1841 1.1 dyoung
1842 1.1 dyoung /*
1843 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1844 1.1 dyoung * was not granted because we don't have access to the EEPROM
1845 1.1 dyoung */
1846 1.1 dyoung if (i >= timeout) {
1847 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1848 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1849 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1850 1.1 dyoung status = IXGBE_ERR_EEPROM;
1851 1.1 dyoung }
1852 1.1 dyoung } else {
1853 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1854 1.6 msaitoh "Software semaphore SMBI between device drivers "
1855 1.6 msaitoh "not granted.\n");
1856 1.1 dyoung }
1857 1.1 dyoung
1858 1.1 dyoung return status;
1859 1.1 dyoung }
1860 1.1 dyoung
1861 1.1 dyoung /**
1862 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1863 1.1 dyoung * @hw: pointer to hardware structure
1864 1.1 dyoung *
1865 1.1 dyoung * This function clears hardware semaphore bits.
1866 1.1 dyoung **/
1867 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1868 1.1 dyoung {
1869 1.1 dyoung u32 swsm;
1870 1.1 dyoung
1871 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1872 1.1 dyoung
1873 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1874 1.1 dyoung
1875 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1876 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1877 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1878 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1879 1.1 dyoung }
1880 1.1 dyoung
1881 1.1 dyoung /**
1882 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1883 1.1 dyoung * @hw: pointer to hardware structure
1884 1.1 dyoung **/
1885 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1886 1.1 dyoung {
1887 1.1 dyoung s32 status = IXGBE_SUCCESS;
1888 1.1 dyoung u16 i;
1889 1.1 dyoung u8 spi_stat_reg;
1890 1.1 dyoung
1891 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1892 1.1 dyoung
1893 1.1 dyoung /*
1894 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1895 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1896 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1897 1.1 dyoung * 5 milliseconds, then error out.
1898 1.1 dyoung */
1899 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1900 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1901 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1902 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1903 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1904 1.1 dyoung break;
1905 1.1 dyoung
1906 1.1 dyoung usec_delay(5);
1907 1.1 dyoung ixgbe_standby_eeprom(hw);
1908 1.11 msaitoh }
1909 1.1 dyoung
1910 1.1 dyoung /*
1911 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1912 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1913 1.1 dyoung */
1914 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1915 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1916 1.1 dyoung status = IXGBE_ERR_EEPROM;
1917 1.1 dyoung }
1918 1.1 dyoung
1919 1.1 dyoung return status;
1920 1.1 dyoung }
1921 1.1 dyoung
1922 1.1 dyoung /**
1923 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1924 1.1 dyoung * @hw: pointer to hardware structure
1925 1.1 dyoung **/
1926 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1927 1.1 dyoung {
1928 1.1 dyoung u32 eec;
1929 1.1 dyoung
1930 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1931 1.1 dyoung
1932 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1933 1.1 dyoung
1934 1.1 dyoung /* Toggle CS to flush commands */
1935 1.1 dyoung eec |= IXGBE_EEC_CS;
1936 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1937 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1938 1.1 dyoung usec_delay(1);
1939 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1940 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1941 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1942 1.1 dyoung usec_delay(1);
1943 1.1 dyoung }
1944 1.1 dyoung
1945 1.1 dyoung /**
1946 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1947 1.1 dyoung * @hw: pointer to hardware structure
1948 1.1 dyoung * @data: data to send to the EEPROM
1949 1.1 dyoung * @count: number of bits to shift out
1950 1.1 dyoung **/
1951 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1952 1.3 msaitoh u16 count)
1953 1.1 dyoung {
1954 1.1 dyoung u32 eec;
1955 1.1 dyoung u32 mask;
1956 1.1 dyoung u32 i;
1957 1.1 dyoung
1958 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1959 1.1 dyoung
1960 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1961 1.1 dyoung
1962 1.1 dyoung /*
1963 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1964 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1965 1.1 dyoung */
1966 1.1 dyoung mask = 0x01 << (count - 1);
1967 1.1 dyoung
1968 1.1 dyoung for (i = 0; i < count; i++) {
1969 1.1 dyoung /*
1970 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1971 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1972 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1973 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1974 1.1 dyoung * raising and then lowering the clock.
1975 1.1 dyoung */
1976 1.1 dyoung if (data & mask)
1977 1.1 dyoung eec |= IXGBE_EEC_DI;
1978 1.1 dyoung else
1979 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1980 1.1 dyoung
1981 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1982 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1983 1.1 dyoung
1984 1.1 dyoung usec_delay(1);
1985 1.1 dyoung
1986 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1987 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1988 1.1 dyoung
1989 1.1 dyoung /*
1990 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1991 1.1 dyoung * EEPROM
1992 1.1 dyoung */
1993 1.1 dyoung mask = mask >> 1;
1994 1.11 msaitoh }
1995 1.1 dyoung
1996 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1997 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1998 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1999 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2000 1.1 dyoung }
2001 1.1 dyoung
2002 1.1 dyoung /**
2003 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2004 1.1 dyoung * @hw: pointer to hardware structure
2005 1.1 dyoung **/
2006 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2007 1.1 dyoung {
2008 1.1 dyoung u32 eec;
2009 1.1 dyoung u32 i;
2010 1.1 dyoung u16 data = 0;
2011 1.1 dyoung
2012 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2013 1.1 dyoung
2014 1.1 dyoung /*
2015 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2016 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2017 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2018 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2019 1.1 dyoung * "DI" bit should always be clear.
2020 1.1 dyoung */
2021 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2022 1.1 dyoung
2023 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2024 1.1 dyoung
2025 1.1 dyoung for (i = 0; i < count; i++) {
2026 1.1 dyoung data = data << 1;
2027 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2028 1.1 dyoung
2029 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2030 1.1 dyoung
2031 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2032 1.1 dyoung if (eec & IXGBE_EEC_DO)
2033 1.1 dyoung data |= 1;
2034 1.1 dyoung
2035 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2036 1.1 dyoung }
2037 1.1 dyoung
2038 1.1 dyoung return data;
2039 1.1 dyoung }
2040 1.1 dyoung
2041 1.1 dyoung /**
2042 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2043 1.1 dyoung * @hw: pointer to hardware structure
2044 1.1 dyoung * @eec: EEC register's current value
2045 1.1 dyoung **/
2046 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2047 1.1 dyoung {
2048 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2049 1.1 dyoung
2050 1.1 dyoung /*
2051 1.1 dyoung * Raise the clock input to the EEPROM
2052 1.1 dyoung * (setting the SK bit), then delay
2053 1.1 dyoung */
2054 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2055 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2056 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2057 1.1 dyoung usec_delay(1);
2058 1.1 dyoung }
2059 1.1 dyoung
2060 1.1 dyoung /**
2061 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2062 1.1 dyoung * @hw: pointer to hardware structure
2063 1.1 dyoung * @eecd: EECD's current value
2064 1.1 dyoung **/
2065 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2066 1.1 dyoung {
2067 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2068 1.1 dyoung
2069 1.1 dyoung /*
2070 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2071 1.1 dyoung * delay
2072 1.1 dyoung */
2073 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2074 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2075 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2076 1.1 dyoung usec_delay(1);
2077 1.1 dyoung }
2078 1.1 dyoung
2079 1.1 dyoung /**
2080 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2081 1.1 dyoung * @hw: pointer to hardware structure
2082 1.1 dyoung **/
2083 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2084 1.1 dyoung {
2085 1.1 dyoung u32 eec;
2086 1.1 dyoung
2087 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2088 1.1 dyoung
2089 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2090 1.1 dyoung
2091 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2092 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2093 1.1 dyoung
2094 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2095 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2096 1.1 dyoung
2097 1.1 dyoung usec_delay(1);
2098 1.1 dyoung
2099 1.1 dyoung /* Stop requesting EEPROM access */
2100 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2101 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2102 1.1 dyoung
2103 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2104 1.1 dyoung
2105 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2106 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2107 1.1 dyoung }
2108 1.1 dyoung
2109 1.1 dyoung /**
2110 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2111 1.1 dyoung * @hw: pointer to hardware structure
2112 1.8 msaitoh *
2113 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2114 1.1 dyoung **/
2115 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2116 1.1 dyoung {
2117 1.1 dyoung u16 i;
2118 1.1 dyoung u16 j;
2119 1.1 dyoung u16 checksum = 0;
2120 1.1 dyoung u16 length = 0;
2121 1.1 dyoung u16 pointer = 0;
2122 1.1 dyoung u16 word = 0;
2123 1.1 dyoung
2124 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2125 1.1 dyoung
2126 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2127 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2128 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2129 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2130 1.8 msaitoh return IXGBE_ERR_EEPROM;
2131 1.1 dyoung }
2132 1.1 dyoung checksum += word;
2133 1.1 dyoung }
2134 1.1 dyoung
2135 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2136 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2137 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2138 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2139 1.8 msaitoh return IXGBE_ERR_EEPROM;
2140 1.8 msaitoh }
2141 1.8 msaitoh
2142 1.8 msaitoh /* If the pointer seems invalid */
2143 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2144 1.8 msaitoh continue;
2145 1.8 msaitoh
2146 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2147 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2148 1.8 msaitoh return IXGBE_ERR_EEPROM;
2149 1.8 msaitoh }
2150 1.8 msaitoh
2151 1.8 msaitoh if (length == 0xFFFF || length == 0)
2152 1.8 msaitoh continue;
2153 1.1 dyoung
2154 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2155 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2156 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2157 1.8 msaitoh return IXGBE_ERR_EEPROM;
2158 1.1 dyoung }
2159 1.8 msaitoh checksum += word;
2160 1.1 dyoung }
2161 1.1 dyoung }
2162 1.1 dyoung
2163 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2164 1.1 dyoung
2165 1.8 msaitoh return (s32)checksum;
2166 1.1 dyoung }
2167 1.1 dyoung
2168 1.1 dyoung /**
2169 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2170 1.1 dyoung * @hw: pointer to hardware structure
2171 1.1 dyoung * @checksum_val: calculated checksum
2172 1.1 dyoung *
2173 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2174 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2175 1.1 dyoung **/
2176 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2177 1.3 msaitoh u16 *checksum_val)
2178 1.1 dyoung {
2179 1.1 dyoung s32 status;
2180 1.1 dyoung u16 checksum;
2181 1.1 dyoung u16 read_checksum = 0;
2182 1.1 dyoung
2183 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2184 1.1 dyoung
2185 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2186 1.1 dyoung * not continue or we could be in for a very long wait while every
2187 1.1 dyoung * EEPROM read fails
2188 1.1 dyoung */
2189 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2190 1.8 msaitoh if (status) {
2191 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2192 1.8 msaitoh return status;
2193 1.8 msaitoh }
2194 1.1 dyoung
2195 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2196 1.8 msaitoh if (status < 0)
2197 1.8 msaitoh return status;
2198 1.1 dyoung
2199 1.8 msaitoh checksum = (u16)(status & 0xffff);
2200 1.1 dyoung
2201 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2202 1.8 msaitoh if (status) {
2203 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2204 1.8 msaitoh return status;
2205 1.1 dyoung }
2206 1.1 dyoung
2207 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2208 1.8 msaitoh * calculated checksum
2209 1.8 msaitoh */
2210 1.8 msaitoh if (read_checksum != checksum)
2211 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2212 1.8 msaitoh
2213 1.8 msaitoh /* If the user cares, return the calculated checksum */
2214 1.8 msaitoh if (checksum_val)
2215 1.8 msaitoh *checksum_val = checksum;
2216 1.8 msaitoh
2217 1.1 dyoung return status;
2218 1.1 dyoung }
2219 1.1 dyoung
2220 1.1 dyoung /**
2221 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2222 1.1 dyoung * @hw: pointer to hardware structure
2223 1.1 dyoung **/
2224 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2225 1.1 dyoung {
2226 1.1 dyoung s32 status;
2227 1.1 dyoung u16 checksum;
2228 1.1 dyoung
2229 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2230 1.1 dyoung
2231 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2232 1.1 dyoung * not continue or we could be in for a very long wait while every
2233 1.1 dyoung * EEPROM read fails
2234 1.1 dyoung */
2235 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2236 1.8 msaitoh if (status) {
2237 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2238 1.8 msaitoh return status;
2239 1.1 dyoung }
2240 1.1 dyoung
2241 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2242 1.8 msaitoh if (status < 0)
2243 1.8 msaitoh return status;
2244 1.8 msaitoh
2245 1.8 msaitoh checksum = (u16)(status & 0xffff);
2246 1.8 msaitoh
2247 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2248 1.8 msaitoh
2249 1.1 dyoung return status;
2250 1.1 dyoung }
2251 1.1 dyoung
2252 1.1 dyoung /**
2253 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2254 1.1 dyoung * @mac_addr: pointer to MAC address.
2255 1.1 dyoung *
2256 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2257 1.1 dyoung **/
2258 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2259 1.1 dyoung {
2260 1.1 dyoung s32 status = IXGBE_SUCCESS;
2261 1.1 dyoung
2262 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2263 1.1 dyoung
2264 1.1 dyoung /* Make sure it is not a multicast address */
2265 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2266 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2267 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2268 1.1 dyoung /* Not a broadcast address */
2269 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2270 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2271 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2272 1.1 dyoung /* Reject the zero address */
2273 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2274 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2275 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2276 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2277 1.1 dyoung }
2278 1.1 dyoung return status;
2279 1.1 dyoung }
2280 1.1 dyoung
2281 1.1 dyoung /**
2282 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2283 1.1 dyoung * @hw: pointer to hardware structure
2284 1.1 dyoung * @index: Receive address register to write
2285 1.1 dyoung * @addr: Address to put into receive address register
2286 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2287 1.1 dyoung * @enable_addr: set flag that address is active
2288 1.1 dyoung *
2289 1.1 dyoung * Puts an ethernet address into a receive address register.
2290 1.1 dyoung **/
2291 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2292 1.3 msaitoh u32 enable_addr)
2293 1.1 dyoung {
2294 1.1 dyoung u32 rar_low, rar_high;
2295 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2296 1.1 dyoung
2297 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2298 1.1 dyoung
2299 1.1 dyoung /* Make sure we are using a valid rar index range */
2300 1.1 dyoung if (index >= rar_entries) {
2301 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2302 1.6 msaitoh "RAR index %d is out of range.\n", index);
2303 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2304 1.1 dyoung }
2305 1.1 dyoung
2306 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2307 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2308 1.1 dyoung
2309 1.1 dyoung /*
2310 1.1 dyoung * HW expects these in little endian so we reverse the byte
2311 1.1 dyoung * order from network order (big endian) to little endian
2312 1.1 dyoung */
2313 1.1 dyoung rar_low = ((u32)addr[0] |
2314 1.3 msaitoh ((u32)addr[1] << 8) |
2315 1.3 msaitoh ((u32)addr[2] << 16) |
2316 1.3 msaitoh ((u32)addr[3] << 24));
2317 1.1 dyoung /*
2318 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2319 1.1 dyoung * so save everything except the lower 16 bits that hold part
2320 1.1 dyoung * of the address and the address valid bit.
2321 1.1 dyoung */
2322 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2323 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2324 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2325 1.1 dyoung
2326 1.1 dyoung if (enable_addr != 0)
2327 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2328 1.1 dyoung
2329 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2330 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2331 1.1 dyoung
2332 1.1 dyoung return IXGBE_SUCCESS;
2333 1.1 dyoung }
2334 1.1 dyoung
2335 1.1 dyoung /**
2336 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2337 1.1 dyoung * @hw: pointer to hardware structure
2338 1.1 dyoung * @index: Receive address register to write
2339 1.1 dyoung *
2340 1.1 dyoung * Clears an ethernet address from a receive address register.
2341 1.1 dyoung **/
2342 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2343 1.1 dyoung {
2344 1.1 dyoung u32 rar_high;
2345 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2346 1.1 dyoung
2347 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2348 1.1 dyoung
2349 1.1 dyoung /* Make sure we are using a valid rar index range */
2350 1.1 dyoung if (index >= rar_entries) {
2351 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2352 1.6 msaitoh "RAR index %d is out of range.\n", index);
2353 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2354 1.1 dyoung }
2355 1.1 dyoung
2356 1.1 dyoung /*
2357 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2358 1.1 dyoung * so save everything except the lower 16 bits that hold part
2359 1.1 dyoung * of the address and the address valid bit.
2360 1.1 dyoung */
2361 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2362 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2363 1.1 dyoung
2364 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2365 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2366 1.1 dyoung
2367 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2368 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2369 1.1 dyoung
2370 1.1 dyoung return IXGBE_SUCCESS;
2371 1.1 dyoung }
2372 1.1 dyoung
2373 1.1 dyoung /**
2374 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2375 1.1 dyoung * @hw: pointer to hardware structure
2376 1.1 dyoung *
2377 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2378 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2379 1.1 dyoung * the receiver is in reset when the routine is called.
2380 1.1 dyoung **/
2381 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2382 1.1 dyoung {
2383 1.1 dyoung u32 i;
2384 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2385 1.1 dyoung
2386 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2387 1.1 dyoung
2388 1.1 dyoung /*
2389 1.1 dyoung * If the current mac address is valid, assume it is a software override
2390 1.1 dyoung * to the permanent address.
2391 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2392 1.1 dyoung */
2393 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2394 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2395 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2396 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2397 1.1 dyoung
2398 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2399 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2400 1.3 msaitoh hw->mac.addr[2]);
2401 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2402 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2403 1.1 dyoung } else {
2404 1.1 dyoung /* Setup the receive address. */
2405 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2406 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2407 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2408 1.3 msaitoh hw->mac.addr[2]);
2409 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2410 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2411 1.1 dyoung
2412 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2413 1.1 dyoung
2414 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2415 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2416 1.1 dyoung }
2417 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2418 1.1 dyoung
2419 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2420 1.1 dyoung
2421 1.1 dyoung /* Zero out the other receive addresses. */
2422 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2423 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2424 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2425 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2426 1.1 dyoung }
2427 1.1 dyoung
2428 1.1 dyoung /* Clear the MTA */
2429 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2430 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2431 1.1 dyoung
2432 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2433 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2434 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2435 1.1 dyoung
2436 1.1 dyoung ixgbe_init_uta_tables(hw);
2437 1.1 dyoung
2438 1.1 dyoung return IXGBE_SUCCESS;
2439 1.1 dyoung }
2440 1.1 dyoung
2441 1.1 dyoung /**
2442 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2443 1.1 dyoung * @hw: pointer to hardware structure
2444 1.1 dyoung * @addr: new address
2445 1.1 dyoung *
2446 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2447 1.1 dyoung **/
2448 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2449 1.1 dyoung {
2450 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2451 1.1 dyoung u32 rar;
2452 1.1 dyoung
2453 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2454 1.1 dyoung
2455 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2456 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2457 1.1 dyoung
2458 1.1 dyoung /*
2459 1.1 dyoung * Place this address in the RAR if there is room,
2460 1.1 dyoung * else put the controller into promiscuous mode
2461 1.1 dyoung */
2462 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2463 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2464 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2465 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2466 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2467 1.1 dyoung } else {
2468 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2469 1.1 dyoung }
2470 1.1 dyoung
2471 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2472 1.1 dyoung }
2473 1.1 dyoung
2474 1.1 dyoung /**
2475 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2476 1.1 dyoung * @hw: pointer to hardware structure
2477 1.1 dyoung * @addr_list: the list of new addresses
2478 1.1 dyoung * @addr_count: number of addresses
2479 1.1 dyoung * @next: iterator function to walk the address list
2480 1.1 dyoung *
2481 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2482 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2483 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2484 1.1 dyoung *
2485 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2486 1.1 dyoung * manually putting the device into promiscuous mode.
2487 1.1 dyoung **/
2488 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2489 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2490 1.1 dyoung {
2491 1.1 dyoung u8 *addr;
2492 1.1 dyoung u32 i;
2493 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2494 1.1 dyoung u32 uc_addr_in_use;
2495 1.1 dyoung u32 fctrl;
2496 1.1 dyoung u32 vmdq;
2497 1.1 dyoung
2498 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2499 1.1 dyoung
2500 1.1 dyoung /*
2501 1.1 dyoung * Clear accounting of old secondary address list,
2502 1.1 dyoung * don't count RAR[0]
2503 1.1 dyoung */
2504 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2505 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2506 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2507 1.1 dyoung
2508 1.1 dyoung /* Zero out the other receive addresses */
2509 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2510 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2511 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2512 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2513 1.1 dyoung }
2514 1.1 dyoung
2515 1.1 dyoung /* Add the new addresses */
2516 1.1 dyoung for (i = 0; i < addr_count; i++) {
2517 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2518 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2519 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2520 1.1 dyoung }
2521 1.1 dyoung
2522 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2523 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2524 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2525 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2526 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2527 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2528 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2529 1.1 dyoung }
2530 1.1 dyoung } else {
2531 1.1 dyoung /* only disable if set by overflow, not by user */
2532 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2533 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2534 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2535 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2536 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2537 1.1 dyoung }
2538 1.1 dyoung }
2539 1.1 dyoung
2540 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2541 1.1 dyoung return IXGBE_SUCCESS;
2542 1.1 dyoung }
2543 1.1 dyoung
2544 1.1 dyoung /**
2545 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2546 1.1 dyoung * @hw: pointer to hardware structure
2547 1.1 dyoung * @mc_addr: the multicast address
2548 1.1 dyoung *
2549 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2550 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2551 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2552 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2553 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2554 1.1 dyoung * to mc_filter_type.
2555 1.1 dyoung **/
2556 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2557 1.1 dyoung {
2558 1.1 dyoung u32 vector = 0;
2559 1.1 dyoung
2560 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2561 1.1 dyoung
2562 1.1 dyoung switch (hw->mac.mc_filter_type) {
2563 1.1 dyoung case 0: /* use bits [47:36] of the address */
2564 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2565 1.1 dyoung break;
2566 1.1 dyoung case 1: /* use bits [46:35] of the address */
2567 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2568 1.1 dyoung break;
2569 1.1 dyoung case 2: /* use bits [45:34] of the address */
2570 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2571 1.1 dyoung break;
2572 1.1 dyoung case 3: /* use bits [43:32] of the address */
2573 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2574 1.1 dyoung break;
2575 1.1 dyoung default: /* Invalid mc_filter_type */
2576 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2577 1.1 dyoung ASSERT(0);
2578 1.1 dyoung break;
2579 1.1 dyoung }
2580 1.1 dyoung
2581 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2582 1.1 dyoung vector &= 0xFFF;
2583 1.1 dyoung return vector;
2584 1.1 dyoung }
2585 1.1 dyoung
2586 1.1 dyoung /**
2587 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2588 1.1 dyoung * @hw: pointer to hardware structure
2589 1.1 dyoung * @hash_value: Multicast address hash value
2590 1.1 dyoung *
2591 1.1 dyoung * Sets the bit-vector in the multicast table.
2592 1.1 dyoung **/
2593 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2594 1.1 dyoung {
2595 1.1 dyoung u32 vector;
2596 1.1 dyoung u32 vector_bit;
2597 1.1 dyoung u32 vector_reg;
2598 1.1 dyoung
2599 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2600 1.1 dyoung
2601 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2602 1.1 dyoung
2603 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2604 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2605 1.1 dyoung
2606 1.1 dyoung /*
2607 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2608 1.1 dyoung * like an array of 4096 bits. We want to set bit
2609 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2610 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2611 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2612 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2613 1.1 dyoung * the value.
2614 1.1 dyoung */
2615 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2616 1.1 dyoung vector_bit = vector & 0x1F;
2617 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2618 1.1 dyoung }
2619 1.1 dyoung
2620 1.1 dyoung /**
2621 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2622 1.1 dyoung * @hw: pointer to hardware structure
2623 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2624 1.1 dyoung * @mc_addr_count: number of addresses
2625 1.1 dyoung * @next: iterator function to walk the multicast address list
2626 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2627 1.1 dyoung *
2628 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2629 1.3 msaitoh * Hashes the given addresses into the multicast table.
2630 1.1 dyoung **/
2631 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2632 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2633 1.3 msaitoh bool clear)
2634 1.1 dyoung {
2635 1.1 dyoung u32 i;
2636 1.1 dyoung u32 vmdq;
2637 1.1 dyoung
2638 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2639 1.1 dyoung
2640 1.1 dyoung /*
2641 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2642 1.1 dyoung * use.
2643 1.1 dyoung */
2644 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2645 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2646 1.1 dyoung
2647 1.1 dyoung /* Clear mta_shadow */
2648 1.3 msaitoh if (clear) {
2649 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2650 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2651 1.3 msaitoh }
2652 1.1 dyoung
2653 1.1 dyoung /* Update mta_shadow */
2654 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2655 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2656 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2657 1.1 dyoung }
2658 1.1 dyoung
2659 1.1 dyoung /* Enable mta */
2660 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2661 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2662 1.1 dyoung hw->mac.mta_shadow[i]);
2663 1.1 dyoung
2664 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2665 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2666 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2667 1.1 dyoung
2668 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2669 1.1 dyoung return IXGBE_SUCCESS;
2670 1.1 dyoung }
2671 1.1 dyoung
2672 1.1 dyoung /**
2673 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2674 1.1 dyoung * @hw: pointer to hardware structure
2675 1.1 dyoung *
2676 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2677 1.1 dyoung **/
2678 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2679 1.1 dyoung {
2680 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2681 1.1 dyoung
2682 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2683 1.1 dyoung
2684 1.1 dyoung if (a->mta_in_use > 0)
2685 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2686 1.3 msaitoh hw->mac.mc_filter_type);
2687 1.1 dyoung
2688 1.1 dyoung return IXGBE_SUCCESS;
2689 1.1 dyoung }
2690 1.1 dyoung
2691 1.1 dyoung /**
2692 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2693 1.1 dyoung * @hw: pointer to hardware structure
2694 1.1 dyoung *
2695 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2696 1.1 dyoung **/
2697 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2698 1.1 dyoung {
2699 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2700 1.1 dyoung
2701 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2702 1.1 dyoung
2703 1.1 dyoung if (a->mta_in_use > 0)
2704 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2705 1.1 dyoung
2706 1.1 dyoung return IXGBE_SUCCESS;
2707 1.1 dyoung }
2708 1.1 dyoung
2709 1.1 dyoung /**
2710 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2711 1.1 dyoung * @hw: pointer to hardware structure
2712 1.1 dyoung *
2713 1.1 dyoung * Enable flow control according to the current settings.
2714 1.1 dyoung **/
2715 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2716 1.1 dyoung {
2717 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2718 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2719 1.1 dyoung u32 reg;
2720 1.1 dyoung u32 fcrtl, fcrth;
2721 1.4 msaitoh int i;
2722 1.1 dyoung
2723 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2724 1.1 dyoung
2725 1.4 msaitoh /* Validate the water mark configuration */
2726 1.4 msaitoh if (!hw->fc.pause_time) {
2727 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2728 1.4 msaitoh goto out;
2729 1.4 msaitoh }
2730 1.4 msaitoh
2731 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2732 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2733 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2734 1.4 msaitoh hw->fc.high_water[i]) {
2735 1.4 msaitoh if (!hw->fc.low_water[i] ||
2736 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2737 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2738 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2739 1.4 msaitoh goto out;
2740 1.4 msaitoh }
2741 1.4 msaitoh }
2742 1.4 msaitoh }
2743 1.4 msaitoh
2744 1.1 dyoung /* Negotiate the fc mode to use */
2745 1.4 msaitoh ixgbe_fc_autoneg(hw);
2746 1.1 dyoung
2747 1.1 dyoung /* Disable any previous flow control settings */
2748 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2749 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2750 1.1 dyoung
2751 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2752 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2753 1.1 dyoung
2754 1.1 dyoung /*
2755 1.1 dyoung * The possible values of fc.current_mode are:
2756 1.1 dyoung * 0: Flow control is completely disabled
2757 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2758 1.1 dyoung * but not send pause frames).
2759 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2760 1.1 dyoung * we do not support receiving pause frames).
2761 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2762 1.1 dyoung * other: Invalid.
2763 1.1 dyoung */
2764 1.1 dyoung switch (hw->fc.current_mode) {
2765 1.1 dyoung case ixgbe_fc_none:
2766 1.1 dyoung /*
2767 1.1 dyoung * Flow control is disabled by software override or autoneg.
2768 1.1 dyoung * The code below will actually disable it in the HW.
2769 1.1 dyoung */
2770 1.1 dyoung break;
2771 1.1 dyoung case ixgbe_fc_rx_pause:
2772 1.1 dyoung /*
2773 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2774 1.1 dyoung * disabled by software override. Since there really
2775 1.1 dyoung * isn't a way to advertise that we are capable of RX
2776 1.1 dyoung * Pause ONLY, we will advertise that we support both
2777 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2778 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2779 1.1 dyoung */
2780 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2781 1.1 dyoung break;
2782 1.1 dyoung case ixgbe_fc_tx_pause:
2783 1.1 dyoung /*
2784 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2785 1.1 dyoung * disabled by software override.
2786 1.1 dyoung */
2787 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2788 1.1 dyoung break;
2789 1.1 dyoung case ixgbe_fc_full:
2790 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2791 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2792 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2793 1.1 dyoung break;
2794 1.1 dyoung default:
2795 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2796 1.6 msaitoh "Flow control param set incorrectly\n");
2797 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2798 1.1 dyoung goto out;
2799 1.1 dyoung break;
2800 1.1 dyoung }
2801 1.1 dyoung
2802 1.1 dyoung /* Set 802.3x based flow control settings. */
2803 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2804 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2805 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2806 1.1 dyoung
2807 1.1 dyoung
2808 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2809 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2810 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2811 1.4 msaitoh hw->fc.high_water[i]) {
2812 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2813 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2814 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2815 1.4 msaitoh } else {
2816 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2817 1.4 msaitoh /*
2818 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2819 1.4 msaitoh * switch is enabled we must set the high water mark
2820 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2821 1.8 msaitoh * the Tx switch to function even under heavy Rx
2822 1.8 msaitoh * workloads.
2823 1.4 msaitoh */
2824 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2825 1.4 msaitoh }
2826 1.4 msaitoh
2827 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2828 1.1 dyoung }
2829 1.1 dyoung
2830 1.1 dyoung /* Configure pause time (2 TCs per register) */
2831 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2832 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2833 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2834 1.1 dyoung
2835 1.4 msaitoh /* Configure flow control refresh threshold value */
2836 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2837 1.1 dyoung
2838 1.1 dyoung out:
2839 1.1 dyoung return ret_val;
2840 1.1 dyoung }
2841 1.1 dyoung
2842 1.1 dyoung /**
2843 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2844 1.1 dyoung * @hw: pointer to hardware structure
2845 1.4 msaitoh * @adv_reg: flow control advertised settings
2846 1.4 msaitoh * @lp_reg: link partner's flow control settings
2847 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2848 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2849 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2850 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2851 1.1 dyoung *
2852 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2853 1.4 msaitoh * advertised settings
2854 1.1 dyoung **/
2855 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2856 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2857 1.1 dyoung {
2858 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2859 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2860 1.6 msaitoh "Local or link partner's advertised flow control "
2861 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2862 1.6 msaitoh adv_reg, lp_reg);
2863 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2864 1.6 msaitoh }
2865 1.1 dyoung
2866 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2867 1.4 msaitoh /*
2868 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2869 1.4 msaitoh * of pause frames. In this case, we had to advertise
2870 1.4 msaitoh * FULL flow control because we could not advertise RX
2871 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2872 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2873 1.4 msaitoh */
2874 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2875 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2876 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2877 1.4 msaitoh } else {
2878 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2879 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2880 1.4 msaitoh }
2881 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2882 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2883 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2884 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2885 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2886 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2887 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2888 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2889 1.4 msaitoh } else {
2890 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2891 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2892 1.4 msaitoh }
2893 1.4 msaitoh return IXGBE_SUCCESS;
2894 1.4 msaitoh }
2895 1.1 dyoung
2896 1.4 msaitoh /**
2897 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2898 1.4 msaitoh * @hw: pointer to hardware structure
2899 1.4 msaitoh *
2900 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2901 1.4 msaitoh **/
2902 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2903 1.4 msaitoh {
2904 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2905 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2906 1.1 dyoung
2907 1.1 dyoung /*
2908 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2909 1.4 msaitoh * - link is up but AN did not complete, or if
2910 1.4 msaitoh * - link is up and AN completed but timed out
2911 1.1 dyoung */
2912 1.4 msaitoh
2913 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2914 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2915 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2916 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2917 1.1 dyoung goto out;
2918 1.6 msaitoh }
2919 1.1 dyoung
2920 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2921 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2922 1.1 dyoung
2923 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2924 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2925 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2926 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2927 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2928 1.1 dyoung
2929 1.1 dyoung out:
2930 1.1 dyoung return ret_val;
2931 1.1 dyoung }
2932 1.1 dyoung
2933 1.1 dyoung /**
2934 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2935 1.1 dyoung * @hw: pointer to hardware structure
2936 1.1 dyoung *
2937 1.1 dyoung * Enable flow control according to IEEE clause 37.
2938 1.1 dyoung **/
2939 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2940 1.1 dyoung {
2941 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2942 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2943 1.1 dyoung
2944 1.1 dyoung /*
2945 1.1 dyoung * On backplane, bail out if
2946 1.1 dyoung * - backplane autoneg was not completed, or if
2947 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2948 1.1 dyoung */
2949 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2950 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2951 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
2952 1.1 dyoung goto out;
2953 1.6 msaitoh }
2954 1.1 dyoung
2955 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2956 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2957 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2958 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
2959 1.1 dyoung goto out;
2960 1.6 msaitoh }
2961 1.1 dyoung }
2962 1.1 dyoung /*
2963 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2964 1.1 dyoung * local flow control settings accordingly
2965 1.1 dyoung */
2966 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2968 1.1 dyoung
2969 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2970 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2971 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2972 1.1 dyoung
2973 1.1 dyoung out:
2974 1.1 dyoung return ret_val;
2975 1.1 dyoung }
2976 1.1 dyoung
2977 1.1 dyoung /**
2978 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2979 1.1 dyoung * @hw: pointer to hardware structure
2980 1.1 dyoung *
2981 1.1 dyoung * Enable flow control according to IEEE clause 37.
2982 1.1 dyoung **/
2983 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2984 1.1 dyoung {
2985 1.1 dyoung u16 technology_ability_reg = 0;
2986 1.1 dyoung u16 lp_technology_ability_reg = 0;
2987 1.1 dyoung
2988 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2989 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2990 1.1 dyoung &technology_ability_reg);
2991 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2992 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2993 1.1 dyoung &lp_technology_ability_reg);
2994 1.1 dyoung
2995 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2996 1.1 dyoung (u32)lp_technology_ability_reg,
2997 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2998 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2999 1.1 dyoung }
3000 1.1 dyoung
3001 1.1 dyoung /**
3002 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3003 1.1 dyoung * @hw: pointer to hardware structure
3004 1.1 dyoung *
3005 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3006 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3007 1.1 dyoung **/
3008 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3009 1.1 dyoung {
3010 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3011 1.4 msaitoh ixgbe_link_speed speed;
3012 1.4 msaitoh bool link_up;
3013 1.1 dyoung
3014 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3015 1.1 dyoung
3016 1.1 dyoung /*
3017 1.4 msaitoh * AN should have completed when the cable was plugged in.
3018 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3019 1.4 msaitoh * - FC autoneg is disabled, or if
3020 1.4 msaitoh * - link is not up.
3021 1.1 dyoung */
3022 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3023 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3024 1.6 msaitoh "Flow control autoneg is disabled");
3025 1.1 dyoung goto out;
3026 1.6 msaitoh }
3027 1.1 dyoung
3028 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3029 1.6 msaitoh if (!link_up) {
3030 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3031 1.1 dyoung goto out;
3032 1.6 msaitoh }
3033 1.1 dyoung
3034 1.1 dyoung switch (hw->phy.media_type) {
3035 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3036 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3037 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3038 1.1 dyoung case ixgbe_media_type_fiber:
3039 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3040 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3041 1.4 msaitoh break;
3042 1.4 msaitoh
3043 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3044 1.1 dyoung case ixgbe_media_type_backplane:
3045 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3046 1.1 dyoung break;
3047 1.1 dyoung
3048 1.4 msaitoh /* Autoneg flow control on copper adapters */
3049 1.1 dyoung case ixgbe_media_type_copper:
3050 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3051 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3052 1.1 dyoung break;
3053 1.1 dyoung
3054 1.1 dyoung default:
3055 1.1 dyoung break;
3056 1.1 dyoung }
3057 1.1 dyoung
3058 1.4 msaitoh out:
3059 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3060 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3061 1.4 msaitoh } else {
3062 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3063 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3064 1.3 msaitoh }
3065 1.1 dyoung }
3066 1.1 dyoung
3067 1.6 msaitoh /*
3068 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3069 1.6 msaitoh * @hw: pointer to hardware structure
3070 1.6 msaitoh *
3071 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3072 1.6 msaitoh *
3073 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3074 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3075 1.6 msaitoh * 800 = 80 millisec.
3076 1.6 msaitoh */
3077 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3078 1.6 msaitoh {
3079 1.6 msaitoh s16 devctl2;
3080 1.6 msaitoh u32 pollcnt;
3081 1.6 msaitoh
3082 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3083 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3084 1.6 msaitoh
3085 1.6 msaitoh switch (devctl2) {
3086 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3087 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3088 1.6 msaitoh break;
3089 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3090 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3091 1.6 msaitoh break;
3092 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3093 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3094 1.6 msaitoh break;
3095 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3096 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3097 1.6 msaitoh break;
3098 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3099 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3100 1.6 msaitoh break;
3101 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3102 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3103 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3104 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3105 1.6 msaitoh default:
3106 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3107 1.6 msaitoh break;
3108 1.6 msaitoh }
3109 1.6 msaitoh
3110 1.6 msaitoh /* add 10% to spec maximum */
3111 1.6 msaitoh return (pollcnt * 11) / 10;
3112 1.6 msaitoh }
3113 1.6 msaitoh
3114 1.1 dyoung /**
3115 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3116 1.1 dyoung * @hw: pointer to hardware structure
3117 1.1 dyoung *
3118 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3119 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3120 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3121 1.1 dyoung * is returned signifying master requests disabled.
3122 1.1 dyoung **/
3123 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3124 1.1 dyoung {
3125 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3126 1.6 msaitoh u32 i, poll;
3127 1.8 msaitoh u16 value;
3128 1.1 dyoung
3129 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3130 1.1 dyoung
3131 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3132 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3133 1.3 msaitoh
3134 1.6 msaitoh /* Exit if master requests are blocked */
3135 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3136 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3137 1.1 dyoung goto out;
3138 1.1 dyoung
3139 1.3 msaitoh /* Poll for master request bit to clear */
3140 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3141 1.3 msaitoh usec_delay(100);
3142 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3143 1.3 msaitoh goto out;
3144 1.1 dyoung }
3145 1.1 dyoung
3146 1.3 msaitoh /*
3147 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3148 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3149 1.3 msaitoh * of this need. The first reset prevents new master requests from
3150 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3151 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3152 1.3 msaitoh * again to clear out any effects they may have had on our device.
3153 1.3 msaitoh */
3154 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3155 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3156 1.1 dyoung
3157 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3158 1.10 msaitoh goto out;
3159 1.10 msaitoh
3160 1.1 dyoung /*
3161 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3162 1.1 dyoung * transactions pending.
3163 1.1 dyoung */
3164 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3165 1.6 msaitoh for (i = 0; i < poll; i++) {
3166 1.3 msaitoh usec_delay(100);
3167 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3168 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3169 1.8 msaitoh goto out;
3170 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3171 1.3 msaitoh goto out;
3172 1.1 dyoung }
3173 1.1 dyoung
3174 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3175 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3176 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3177 1.1 dyoung
3178 1.1 dyoung out:
3179 1.1 dyoung return status;
3180 1.1 dyoung }
3181 1.1 dyoung
3182 1.1 dyoung /**
3183 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3184 1.1 dyoung * @hw: pointer to hardware structure
3185 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3186 1.1 dyoung *
3187 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3188 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3189 1.1 dyoung **/
3190 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3191 1.1 dyoung {
3192 1.6 msaitoh u32 gssr = 0;
3193 1.1 dyoung u32 swmask = mask;
3194 1.1 dyoung u32 fwmask = mask << 5;
3195 1.6 msaitoh u32 timeout = 200;
3196 1.6 msaitoh u32 i;
3197 1.1 dyoung
3198 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3199 1.1 dyoung
3200 1.6 msaitoh for (i = 0; i < timeout; i++) {
3201 1.1 dyoung /*
3202 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3203 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3204 1.1 dyoung */
3205 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3206 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3207 1.1 dyoung
3208 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3209 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3210 1.6 msaitoh gssr |= swmask;
3211 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3212 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3213 1.6 msaitoh return IXGBE_SUCCESS;
3214 1.6 msaitoh } else {
3215 1.6 msaitoh /* Resource is currently in use by FW or SW */
3216 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3217 1.6 msaitoh msec_delay(5);
3218 1.6 msaitoh }
3219 1.1 dyoung }
3220 1.1 dyoung
3221 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3222 1.6 msaitoh if (gssr & (fwmask | swmask))
3223 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3224 1.1 dyoung
3225 1.6 msaitoh msec_delay(5);
3226 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3227 1.1 dyoung }
3228 1.1 dyoung
3229 1.1 dyoung /**
3230 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3231 1.1 dyoung * @hw: pointer to hardware structure
3232 1.1 dyoung * @mask: Mask to specify which semaphore to release
3233 1.1 dyoung *
3234 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3235 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3236 1.1 dyoung **/
3237 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3238 1.1 dyoung {
3239 1.1 dyoung u32 gssr;
3240 1.1 dyoung u32 swmask = mask;
3241 1.1 dyoung
3242 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3243 1.1 dyoung
3244 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3245 1.1 dyoung
3246 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3247 1.1 dyoung gssr &= ~swmask;
3248 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3249 1.1 dyoung
3250 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3251 1.1 dyoung }
3252 1.1 dyoung
3253 1.1 dyoung /**
3254 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3255 1.3 msaitoh * @hw: pointer to hardware structure
3256 1.3 msaitoh *
3257 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3258 1.3 msaitoh * the Rx security block
3259 1.3 msaitoh **/
3260 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3261 1.3 msaitoh {
3262 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3263 1.3 msaitoh
3264 1.3 msaitoh int i;
3265 1.3 msaitoh int secrxreg;
3266 1.3 msaitoh
3267 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3268 1.3 msaitoh
3269 1.3 msaitoh
3270 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3271 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3272 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3273 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3274 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3275 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3276 1.3 msaitoh break;
3277 1.3 msaitoh else
3278 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3279 1.3 msaitoh usec_delay(1000);
3280 1.3 msaitoh }
3281 1.3 msaitoh
3282 1.3 msaitoh /* For informational purposes only */
3283 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3284 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3285 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3286 1.3 msaitoh
3287 1.3 msaitoh return IXGBE_SUCCESS;
3288 1.3 msaitoh }
3289 1.3 msaitoh
3290 1.3 msaitoh /**
3291 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3292 1.8 msaitoh * @hw: pointer to hardware structure
3293 1.8 msaitoh * @reg_val: Value we read from AUTOC
3294 1.8 msaitoh *
3295 1.8 msaitoh * The default case requires no protection so just to the register read.
3296 1.8 msaitoh */
3297 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3298 1.8 msaitoh {
3299 1.8 msaitoh *locked = FALSE;
3300 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3301 1.8 msaitoh return IXGBE_SUCCESS;
3302 1.8 msaitoh }
3303 1.8 msaitoh
3304 1.8 msaitoh /**
3305 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3306 1.8 msaitoh * @hw: pointer to hardware structure
3307 1.8 msaitoh * @reg_val: value to write to AUTOC
3308 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3309 1.8 msaitoh * previous read.
3310 1.8 msaitoh *
3311 1.8 msaitoh * The default case requires no protection so just to the register write.
3312 1.8 msaitoh */
3313 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3314 1.8 msaitoh {
3315 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3316 1.8 msaitoh
3317 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3318 1.8 msaitoh return IXGBE_SUCCESS;
3319 1.8 msaitoh }
3320 1.8 msaitoh
3321 1.8 msaitoh /**
3322 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3323 1.3 msaitoh * @hw: pointer to hardware structure
3324 1.3 msaitoh *
3325 1.3 msaitoh * Enables the receive data path.
3326 1.3 msaitoh **/
3327 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3328 1.3 msaitoh {
3329 1.3 msaitoh int secrxreg;
3330 1.3 msaitoh
3331 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3332 1.3 msaitoh
3333 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3334 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3335 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3336 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3337 1.3 msaitoh
3338 1.3 msaitoh return IXGBE_SUCCESS;
3339 1.3 msaitoh }
3340 1.3 msaitoh
3341 1.3 msaitoh /**
3342 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3343 1.1 dyoung * @hw: pointer to hardware structure
3344 1.1 dyoung * @regval: register value to write to RXCTRL
3345 1.1 dyoung *
3346 1.1 dyoung * Enables the Rx DMA unit
3347 1.1 dyoung **/
3348 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3349 1.1 dyoung {
3350 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3351 1.1 dyoung
3352 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3353 1.8 msaitoh ixgbe_enable_rx(hw);
3354 1.8 msaitoh else
3355 1.8 msaitoh ixgbe_disable_rx(hw);
3356 1.1 dyoung
3357 1.1 dyoung return IXGBE_SUCCESS;
3358 1.1 dyoung }
3359 1.1 dyoung
3360 1.1 dyoung /**
3361 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3362 1.1 dyoung * @hw: pointer to hardware structure
3363 1.1 dyoung * @index: led number to blink
3364 1.1 dyoung **/
3365 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3366 1.1 dyoung {
3367 1.1 dyoung ixgbe_link_speed speed = 0;
3368 1.1 dyoung bool link_up = 0;
3369 1.8 msaitoh u32 autoc_reg = 0;
3370 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3371 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3372 1.8 msaitoh bool locked = FALSE;
3373 1.1 dyoung
3374 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3375 1.1 dyoung
3376 1.1 dyoung /*
3377 1.1 dyoung * Link must be up to auto-blink the LEDs;
3378 1.1 dyoung * Force it if link is down.
3379 1.1 dyoung */
3380 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3381 1.1 dyoung
3382 1.1 dyoung if (!link_up) {
3383 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3384 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3385 1.8 msaitoh goto out;
3386 1.5 msaitoh
3387 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3388 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3389 1.8 msaitoh
3390 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3391 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3392 1.8 msaitoh goto out;
3393 1.8 msaitoh
3394 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3395 1.1 dyoung msec_delay(10);
3396 1.1 dyoung }
3397 1.1 dyoung
3398 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3399 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3400 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3401 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3402 1.1 dyoung
3403 1.5 msaitoh out:
3404 1.5 msaitoh return ret_val;
3405 1.1 dyoung }
3406 1.1 dyoung
3407 1.1 dyoung /**
3408 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3409 1.1 dyoung * @hw: pointer to hardware structure
3410 1.1 dyoung * @index: led number to stop blinking
3411 1.1 dyoung **/
3412 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3413 1.1 dyoung {
3414 1.8 msaitoh u32 autoc_reg = 0;
3415 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3416 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3417 1.8 msaitoh bool locked = FALSE;
3418 1.1 dyoung
3419 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3420 1.1 dyoung
3421 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3422 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3423 1.8 msaitoh goto out;
3424 1.1 dyoung
3425 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3426 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3427 1.1 dyoung
3428 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3429 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3430 1.8 msaitoh goto out;
3431 1.5 msaitoh
3432 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3433 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3434 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3435 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3436 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3437 1.1 dyoung
3438 1.5 msaitoh out:
3439 1.5 msaitoh return ret_val;
3440 1.1 dyoung }
3441 1.1 dyoung
3442 1.1 dyoung /**
3443 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3444 1.1 dyoung * @hw: pointer to hardware structure
3445 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3446 1.1 dyoung *
3447 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3448 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3449 1.1 dyoung * get and set mac_addr routines.
3450 1.1 dyoung **/
3451 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3452 1.3 msaitoh u16 *san_mac_offset)
3453 1.1 dyoung {
3454 1.6 msaitoh s32 ret_val;
3455 1.6 msaitoh
3456 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3457 1.1 dyoung
3458 1.1 dyoung /*
3459 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3460 1.1 dyoung * available.
3461 1.1 dyoung */
3462 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3463 1.6 msaitoh san_mac_offset);
3464 1.6 msaitoh if (ret_val) {
3465 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3466 1.6 msaitoh "eeprom at offset %d failed",
3467 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3468 1.6 msaitoh }
3469 1.1 dyoung
3470 1.6 msaitoh return ret_val;
3471 1.1 dyoung }
3472 1.1 dyoung
3473 1.1 dyoung /**
3474 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3475 1.1 dyoung * @hw: pointer to hardware structure
3476 1.1 dyoung * @san_mac_addr: SAN MAC address
3477 1.1 dyoung *
3478 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3479 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3480 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3481 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3482 1.1 dyoung **/
3483 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3484 1.1 dyoung {
3485 1.1 dyoung u16 san_mac_data, san_mac_offset;
3486 1.1 dyoung u8 i;
3487 1.6 msaitoh s32 ret_val;
3488 1.1 dyoung
3489 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3490 1.1 dyoung
3491 1.1 dyoung /*
3492 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3493 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3494 1.1 dyoung */
3495 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3496 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3497 1.1 dyoung goto san_mac_addr_out;
3498 1.1 dyoung
3499 1.1 dyoung /* make sure we know which port we need to program */
3500 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3501 1.1 dyoung /* apply the port offset to the address offset */
3502 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3503 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3504 1.1 dyoung for (i = 0; i < 3; i++) {
3505 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3506 1.6 msaitoh &san_mac_data);
3507 1.6 msaitoh if (ret_val) {
3508 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3509 1.6 msaitoh "eeprom read at offset %d failed",
3510 1.6 msaitoh san_mac_offset);
3511 1.6 msaitoh goto san_mac_addr_out;
3512 1.6 msaitoh }
3513 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3514 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3515 1.1 dyoung san_mac_offset++;
3516 1.1 dyoung }
3517 1.6 msaitoh return IXGBE_SUCCESS;
3518 1.1 dyoung
3519 1.1 dyoung san_mac_addr_out:
3520 1.6 msaitoh /*
3521 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3522 1.6 msaitoh * error though, so just wipe the local address and return.
3523 1.6 msaitoh */
3524 1.6 msaitoh for (i = 0; i < 6; i++)
3525 1.6 msaitoh san_mac_addr[i] = 0xFF;
3526 1.1 dyoung return IXGBE_SUCCESS;
3527 1.1 dyoung }
3528 1.1 dyoung
3529 1.1 dyoung /**
3530 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3531 1.1 dyoung * @hw: pointer to hardware structure
3532 1.1 dyoung * @san_mac_addr: SAN MAC address
3533 1.1 dyoung *
3534 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3535 1.1 dyoung **/
3536 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3537 1.1 dyoung {
3538 1.6 msaitoh s32 ret_val;
3539 1.1 dyoung u16 san_mac_data, san_mac_offset;
3540 1.1 dyoung u8 i;
3541 1.1 dyoung
3542 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3543 1.1 dyoung
3544 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3545 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3546 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3547 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3548 1.1 dyoung
3549 1.1 dyoung /* Make sure we know which port we need to write */
3550 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3551 1.1 dyoung /* Apply the port offset to the address offset */
3552 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3553 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3554 1.1 dyoung
3555 1.1 dyoung for (i = 0; i < 3; i++) {
3556 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3557 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3558 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3559 1.1 dyoung san_mac_offset++;
3560 1.1 dyoung }
3561 1.1 dyoung
3562 1.6 msaitoh return IXGBE_SUCCESS;
3563 1.1 dyoung }
3564 1.1 dyoung
3565 1.1 dyoung /**
3566 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3567 1.1 dyoung * @hw: pointer to hardware structure
3568 1.1 dyoung *
3569 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3570 1.1 dyoung * the capabilities table.
3571 1.1 dyoung **/
3572 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3573 1.1 dyoung {
3574 1.4 msaitoh u16 msix_count = 1;
3575 1.4 msaitoh u16 max_msix_count;
3576 1.4 msaitoh u16 pcie_offset;
3577 1.4 msaitoh
3578 1.4 msaitoh switch (hw->mac.type) {
3579 1.4 msaitoh case ixgbe_mac_82598EB:
3580 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3581 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3582 1.4 msaitoh break;
3583 1.4 msaitoh case ixgbe_mac_82599EB:
3584 1.4 msaitoh case ixgbe_mac_X540:
3585 1.8 msaitoh case ixgbe_mac_X550:
3586 1.8 msaitoh case ixgbe_mac_X550EM_x:
3587 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3588 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3589 1.4 msaitoh break;
3590 1.4 msaitoh default:
3591 1.4 msaitoh return msix_count;
3592 1.4 msaitoh }
3593 1.1 dyoung
3594 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3595 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3596 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3597 1.8 msaitoh msix_count = 0;
3598 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3599 1.4 msaitoh
3600 1.4 msaitoh /* MSI-X count is zero-based in HW */
3601 1.4 msaitoh msix_count++;
3602 1.4 msaitoh
3603 1.4 msaitoh if (msix_count > max_msix_count)
3604 1.4 msaitoh msix_count = max_msix_count;
3605 1.1 dyoung
3606 1.1 dyoung return msix_count;
3607 1.1 dyoung }
3608 1.1 dyoung
3609 1.1 dyoung /**
3610 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3611 1.1 dyoung * @hw: pointer to hardware structure
3612 1.1 dyoung * @addr: Address to put into receive address register
3613 1.1 dyoung * @vmdq: VMDq pool to assign
3614 1.1 dyoung *
3615 1.1 dyoung * Puts an ethernet address into a receive address register, or
3616 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3617 1.1 dyoung **/
3618 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3619 1.1 dyoung {
3620 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3621 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3622 1.1 dyoung u32 rar;
3623 1.1 dyoung u32 rar_low, rar_high;
3624 1.1 dyoung u32 addr_low, addr_high;
3625 1.1 dyoung
3626 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3627 1.1 dyoung
3628 1.1 dyoung /* swap bytes for HW little endian */
3629 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3630 1.1 dyoung | (addr[2] << 16)
3631 1.1 dyoung | (addr[3] << 24);
3632 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3633 1.1 dyoung
3634 1.1 dyoung /*
3635 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3636 1.1 dyoung * rar_highwater points to just after the highest currently used
3637 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3638 1.1 dyoung * rar to the top.
3639 1.1 dyoung */
3640 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3641 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3642 1.1 dyoung
3643 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3644 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3645 1.1 dyoung first_empty_rar = rar;
3646 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3647 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3648 1.1 dyoung if (rar_low == addr_low)
3649 1.1 dyoung break; /* found it already in the rars */
3650 1.1 dyoung }
3651 1.1 dyoung }
3652 1.1 dyoung
3653 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3654 1.1 dyoung /* already there so just add to the pool bits */
3655 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3656 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3657 1.1 dyoung /* stick it into first empty RAR slot we found */
3658 1.1 dyoung rar = first_empty_rar;
3659 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3660 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3661 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3662 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3663 1.1 dyoung hw->mac.rar_highwater++;
3664 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3665 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3666 1.1 dyoung }
3667 1.1 dyoung
3668 1.1 dyoung /*
3669 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3670 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3671 1.1 dyoung */
3672 1.1 dyoung if (rar == 0)
3673 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3674 1.1 dyoung
3675 1.1 dyoung return rar;
3676 1.1 dyoung }
3677 1.1 dyoung
3678 1.1 dyoung /**
3679 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3680 1.1 dyoung * @hw: pointer to hardware struct
3681 1.1 dyoung * @rar: receive address register index to disassociate
3682 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3683 1.1 dyoung **/
3684 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3685 1.1 dyoung {
3686 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3687 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3688 1.1 dyoung
3689 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3690 1.1 dyoung
3691 1.1 dyoung /* Make sure we are using a valid rar index range */
3692 1.1 dyoung if (rar >= rar_entries) {
3693 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3694 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3695 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3696 1.1 dyoung }
3697 1.1 dyoung
3698 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3699 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3700 1.1 dyoung
3701 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3702 1.8 msaitoh goto done;
3703 1.8 msaitoh
3704 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3705 1.1 dyoung goto done;
3706 1.1 dyoung
3707 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3708 1.1 dyoung if (mpsar_lo) {
3709 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3710 1.1 dyoung mpsar_lo = 0;
3711 1.1 dyoung }
3712 1.1 dyoung if (mpsar_hi) {
3713 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3714 1.1 dyoung mpsar_hi = 0;
3715 1.1 dyoung }
3716 1.1 dyoung } else if (vmdq < 32) {
3717 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3718 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3719 1.1 dyoung } else {
3720 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3721 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3722 1.1 dyoung }
3723 1.1 dyoung
3724 1.1 dyoung /* was that the last pool using this rar? */
3725 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3726 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3727 1.1 dyoung done:
3728 1.1 dyoung return IXGBE_SUCCESS;
3729 1.1 dyoung }
3730 1.1 dyoung
3731 1.1 dyoung /**
3732 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3733 1.1 dyoung * @hw: pointer to hardware struct
3734 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3735 1.1 dyoung * @vmdq: VMDq pool index
3736 1.1 dyoung **/
3737 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3738 1.1 dyoung {
3739 1.1 dyoung u32 mpsar;
3740 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3741 1.1 dyoung
3742 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3743 1.1 dyoung
3744 1.1 dyoung /* Make sure we are using a valid rar index range */
3745 1.1 dyoung if (rar >= rar_entries) {
3746 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3747 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3748 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3749 1.1 dyoung }
3750 1.1 dyoung
3751 1.1 dyoung if (vmdq < 32) {
3752 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3753 1.1 dyoung mpsar |= 1 << vmdq;
3754 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3755 1.1 dyoung } else {
3756 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3757 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3758 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3759 1.1 dyoung }
3760 1.1 dyoung return IXGBE_SUCCESS;
3761 1.1 dyoung }
3762 1.1 dyoung
3763 1.1 dyoung /**
3764 1.4 msaitoh * This function should only be involved in the IOV mode.
3765 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3766 1.4 msaitoh * VFs advertized and not 0.
3767 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3768 1.4 msaitoh *
3769 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3770 1.4 msaitoh * @hw: pointer to hardware struct
3771 1.4 msaitoh * @vmdq: VMDq pool index
3772 1.4 msaitoh **/
3773 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3774 1.4 msaitoh {
3775 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3776 1.4 msaitoh
3777 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3778 1.4 msaitoh
3779 1.4 msaitoh if (vmdq < 32) {
3780 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3781 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3782 1.4 msaitoh } else {
3783 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3784 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3785 1.4 msaitoh }
3786 1.4 msaitoh
3787 1.4 msaitoh return IXGBE_SUCCESS;
3788 1.4 msaitoh }
3789 1.4 msaitoh
3790 1.4 msaitoh /**
3791 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3792 1.1 dyoung * @hw: pointer to hardware structure
3793 1.1 dyoung **/
3794 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3795 1.1 dyoung {
3796 1.1 dyoung int i;
3797 1.1 dyoung
3798 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3799 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3800 1.1 dyoung
3801 1.1 dyoung for (i = 0; i < 128; i++)
3802 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3803 1.1 dyoung
3804 1.1 dyoung return IXGBE_SUCCESS;
3805 1.1 dyoung }
3806 1.1 dyoung
3807 1.1 dyoung /**
3808 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3809 1.1 dyoung * @hw: pointer to hardware structure
3810 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3811 1.1 dyoung *
3812 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3813 1.1 dyoung *
3814 1.1 dyoung **/
3815 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3816 1.1 dyoung {
3817 1.1 dyoung u32 bits = 0;
3818 1.1 dyoung u32 first_empty_slot = 0;
3819 1.1 dyoung s32 regindex;
3820 1.1 dyoung
3821 1.1 dyoung /* short cut the special case */
3822 1.1 dyoung if (vlan == 0)
3823 1.1 dyoung return 0;
3824 1.1 dyoung
3825 1.1 dyoung /*
3826 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3827 1.1 dyoung * slot found along the way
3828 1.1 dyoung */
3829 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3830 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3831 1.1 dyoung if (!bits && !(first_empty_slot))
3832 1.1 dyoung first_empty_slot = regindex;
3833 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3834 1.1 dyoung break;
3835 1.1 dyoung }
3836 1.1 dyoung
3837 1.1 dyoung /*
3838 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3839 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3840 1.1 dyoung * vlan id.
3841 1.1 dyoung */
3842 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3843 1.1 dyoung if (first_empty_slot)
3844 1.1 dyoung regindex = first_empty_slot;
3845 1.1 dyoung else {
3846 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3847 1.6 msaitoh "No space in VLVF.\n");
3848 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3849 1.1 dyoung }
3850 1.1 dyoung }
3851 1.1 dyoung
3852 1.1 dyoung return regindex;
3853 1.1 dyoung }
3854 1.1 dyoung
3855 1.1 dyoung /**
3856 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3857 1.1 dyoung * @hw: pointer to hardware structure
3858 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3859 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3860 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3861 1.1 dyoung *
3862 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3863 1.1 dyoung **/
3864 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3865 1.3 msaitoh bool vlan_on)
3866 1.1 dyoung {
3867 1.1 dyoung s32 regindex;
3868 1.1 dyoung u32 bitindex;
3869 1.1 dyoung u32 vfta;
3870 1.1 dyoung u32 targetbit;
3871 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3872 1.1 dyoung bool vfta_changed = FALSE;
3873 1.1 dyoung
3874 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3875 1.1 dyoung
3876 1.1 dyoung if (vlan > 4095)
3877 1.1 dyoung return IXGBE_ERR_PARAM;
3878 1.1 dyoung
3879 1.1 dyoung /*
3880 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3881 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3882 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3883 1.1 dyoung */
3884 1.1 dyoung
3885 1.1 dyoung /* Part 1
3886 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3887 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3888 1.1 dyoung * bits[11-5]: which register
3889 1.1 dyoung * bits[4-0]: which bit in the register
3890 1.1 dyoung */
3891 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3892 1.1 dyoung bitindex = vlan & 0x1F;
3893 1.1 dyoung targetbit = (1 << bitindex);
3894 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3895 1.1 dyoung
3896 1.1 dyoung if (vlan_on) {
3897 1.1 dyoung if (!(vfta & targetbit)) {
3898 1.1 dyoung vfta |= targetbit;
3899 1.1 dyoung vfta_changed = TRUE;
3900 1.1 dyoung }
3901 1.1 dyoung } else {
3902 1.1 dyoung if ((vfta & targetbit)) {
3903 1.1 dyoung vfta &= ~targetbit;
3904 1.1 dyoung vfta_changed = TRUE;
3905 1.1 dyoung }
3906 1.1 dyoung }
3907 1.1 dyoung
3908 1.1 dyoung /* Part 2
3909 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3910 1.3 msaitoh */
3911 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3912 1.3 msaitoh &vfta_changed);
3913 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3914 1.3 msaitoh return ret_val;
3915 1.3 msaitoh
3916 1.3 msaitoh if (vfta_changed)
3917 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3918 1.3 msaitoh
3919 1.3 msaitoh return IXGBE_SUCCESS;
3920 1.3 msaitoh }
3921 1.3 msaitoh
3922 1.3 msaitoh /**
3923 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3924 1.3 msaitoh * @hw: pointer to hardware structure
3925 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3926 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3927 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3928 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3929 1.3 msaitoh * should be changed
3930 1.3 msaitoh *
3931 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3932 1.3 msaitoh **/
3933 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3934 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3935 1.3 msaitoh {
3936 1.3 msaitoh u32 vt;
3937 1.3 msaitoh
3938 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3939 1.3 msaitoh
3940 1.3 msaitoh if (vlan > 4095)
3941 1.3 msaitoh return IXGBE_ERR_PARAM;
3942 1.3 msaitoh
3943 1.3 msaitoh /* If VT Mode is set
3944 1.1 dyoung * Either vlan_on
3945 1.1 dyoung * make sure the vlan is in VLVF
3946 1.1 dyoung * set the vind bit in the matching VLVFB
3947 1.1 dyoung * Or !vlan_on
3948 1.1 dyoung * clear the pool bit and possibly the vind
3949 1.1 dyoung */
3950 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3951 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3952 1.1 dyoung s32 vlvf_index;
3953 1.3 msaitoh u32 bits;
3954 1.1 dyoung
3955 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3956 1.1 dyoung if (vlvf_index < 0)
3957 1.1 dyoung return vlvf_index;
3958 1.1 dyoung
3959 1.1 dyoung if (vlan_on) {
3960 1.1 dyoung /* set the pool bit */
3961 1.1 dyoung if (vind < 32) {
3962 1.1 dyoung bits = IXGBE_READ_REG(hw,
3963 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3964 1.1 dyoung bits |= (1 << vind);
3965 1.1 dyoung IXGBE_WRITE_REG(hw,
3966 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3967 1.1 dyoung bits);
3968 1.1 dyoung } else {
3969 1.1 dyoung bits = IXGBE_READ_REG(hw,
3970 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3971 1.3 msaitoh bits |= (1 << (vind - 32));
3972 1.1 dyoung IXGBE_WRITE_REG(hw,
3973 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3974 1.3 msaitoh bits);
3975 1.1 dyoung }
3976 1.1 dyoung } else {
3977 1.1 dyoung /* clear the pool bit */
3978 1.1 dyoung if (vind < 32) {
3979 1.1 dyoung bits = IXGBE_READ_REG(hw,
3980 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3981 1.1 dyoung bits &= ~(1 << vind);
3982 1.1 dyoung IXGBE_WRITE_REG(hw,
3983 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3984 1.1 dyoung bits);
3985 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3986 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3987 1.1 dyoung } else {
3988 1.1 dyoung bits = IXGBE_READ_REG(hw,
3989 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3990 1.3 msaitoh bits &= ~(1 << (vind - 32));
3991 1.1 dyoung IXGBE_WRITE_REG(hw,
3992 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3993 1.3 msaitoh bits);
3994 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3995 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3996 1.1 dyoung }
3997 1.1 dyoung }
3998 1.1 dyoung
3999 1.1 dyoung /*
4000 1.1 dyoung * If there are still bits set in the VLVFB registers
4001 1.1 dyoung * for the VLAN ID indicated we need to see if the
4002 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
4003 1.1 dyoung * If the caller has requested that we clear the VFTA
4004 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
4005 1.1 dyoung * ID entry then ignore the request. We're not worried
4006 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
4007 1.1 dyoung * entry bit on, only when requested to turn it off as
4008 1.1 dyoung * there may be multiple pools and/or VFs using the
4009 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
4010 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
4011 1.1 dyoung * been cleared. This will be indicated by "bits" being
4012 1.1 dyoung * zero.
4013 1.1 dyoung */
4014 1.1 dyoung if (bits) {
4015 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4016 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
4017 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
4018 1.1 dyoung /* someone wants to clear the vfta entry
4019 1.1 dyoung * but some pools/VFs are still using it.
4020 1.1 dyoung * Ignore it. */
4021 1.3 msaitoh *vfta_changed = FALSE;
4022 1.1 dyoung }
4023 1.3 msaitoh } else
4024 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4025 1.1 dyoung }
4026 1.1 dyoung
4027 1.1 dyoung return IXGBE_SUCCESS;
4028 1.1 dyoung }
4029 1.1 dyoung
4030 1.1 dyoung /**
4031 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4032 1.1 dyoung * @hw: pointer to hardware structure
4033 1.1 dyoung *
4034 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4035 1.1 dyoung **/
4036 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4037 1.1 dyoung {
4038 1.1 dyoung u32 offset;
4039 1.1 dyoung
4040 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4041 1.1 dyoung
4042 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4043 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4044 1.1 dyoung
4045 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4046 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4047 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4048 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4049 1.1 dyoung }
4050 1.1 dyoung
4051 1.1 dyoung return IXGBE_SUCCESS;
4052 1.1 dyoung }
4053 1.1 dyoung
4054 1.1 dyoung /**
4055 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4056 1.1 dyoung * @hw: pointer to hardware structure
4057 1.1 dyoung * @speed: pointer to link speed
4058 1.1 dyoung * @link_up: TRUE when link is up
4059 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4060 1.1 dyoung *
4061 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4062 1.1 dyoung **/
4063 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4064 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4065 1.1 dyoung {
4066 1.1 dyoung u32 links_reg, links_orig;
4067 1.1 dyoung u32 i;
4068 1.1 dyoung
4069 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4070 1.1 dyoung
4071 1.1 dyoung /* clear the old state */
4072 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4073 1.1 dyoung
4074 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4075 1.1 dyoung
4076 1.1 dyoung if (links_orig != links_reg) {
4077 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4078 1.3 msaitoh links_orig, links_reg);
4079 1.1 dyoung }
4080 1.1 dyoung
4081 1.1 dyoung if (link_up_wait_to_complete) {
4082 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4083 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4084 1.1 dyoung *link_up = TRUE;
4085 1.1 dyoung break;
4086 1.1 dyoung } else {
4087 1.1 dyoung *link_up = FALSE;
4088 1.1 dyoung }
4089 1.1 dyoung msec_delay(100);
4090 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4091 1.1 dyoung }
4092 1.1 dyoung } else {
4093 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4094 1.1 dyoung *link_up = TRUE;
4095 1.1 dyoung else
4096 1.1 dyoung *link_up = FALSE;
4097 1.1 dyoung }
4098 1.1 dyoung
4099 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4100 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4101 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4102 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4103 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4104 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4105 1.8 msaitoh }
4106 1.8 msaitoh break;
4107 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4108 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4109 1.8 msaitoh break;
4110 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4111 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4112 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4113 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4114 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4115 1.8 msaitoh }
4116 1.8 msaitoh break;
4117 1.8 msaitoh default:
4118 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4119 1.8 msaitoh }
4120 1.1 dyoung
4121 1.1 dyoung return IXGBE_SUCCESS;
4122 1.1 dyoung }
4123 1.1 dyoung
4124 1.1 dyoung /**
4125 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4126 1.1 dyoung * the EEPROM
4127 1.1 dyoung * @hw: pointer to hardware structure
4128 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4129 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4130 1.1 dyoung *
4131 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4132 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4133 1.1 dyoung **/
4134 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4135 1.3 msaitoh u16 *wwpn_prefix)
4136 1.1 dyoung {
4137 1.1 dyoung u16 offset, caps;
4138 1.1 dyoung u16 alt_san_mac_blk_offset;
4139 1.1 dyoung
4140 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4141 1.1 dyoung
4142 1.1 dyoung /* clear output first */
4143 1.1 dyoung *wwnn_prefix = 0xFFFF;
4144 1.1 dyoung *wwpn_prefix = 0xFFFF;
4145 1.1 dyoung
4146 1.1 dyoung /* check if alternative SAN MAC is supported */
4147 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4148 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4149 1.6 msaitoh goto wwn_prefix_err;
4150 1.1 dyoung
4151 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4152 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4153 1.1 dyoung goto wwn_prefix_out;
4154 1.1 dyoung
4155 1.1 dyoung /* check capability in alternative san mac address block */
4156 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4157 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4158 1.6 msaitoh goto wwn_prefix_err;
4159 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4160 1.1 dyoung goto wwn_prefix_out;
4161 1.1 dyoung
4162 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4163 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4164 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4165 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4166 1.6 msaitoh "eeprom read at offset %d failed", offset);
4167 1.6 msaitoh }
4168 1.1 dyoung
4169 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4170 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4171 1.6 msaitoh goto wwn_prefix_err;
4172 1.1 dyoung
4173 1.1 dyoung wwn_prefix_out:
4174 1.1 dyoung return IXGBE_SUCCESS;
4175 1.6 msaitoh
4176 1.6 msaitoh wwn_prefix_err:
4177 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4178 1.6 msaitoh "eeprom read at offset %d failed", offset);
4179 1.6 msaitoh return IXGBE_SUCCESS;
4180 1.1 dyoung }
4181 1.1 dyoung
4182 1.1 dyoung /**
4183 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4184 1.1 dyoung * @hw: pointer to hardware structure
4185 1.1 dyoung * @bs: the fcoe boot status
4186 1.1 dyoung *
4187 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4188 1.1 dyoung **/
4189 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4190 1.1 dyoung {
4191 1.1 dyoung u16 offset, caps, flags;
4192 1.1 dyoung s32 status;
4193 1.1 dyoung
4194 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4195 1.1 dyoung
4196 1.1 dyoung /* clear output first */
4197 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4198 1.1 dyoung
4199 1.1 dyoung /* check if FCOE IBA block is present */
4200 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4201 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4202 1.1 dyoung if (status != IXGBE_SUCCESS)
4203 1.1 dyoung goto out;
4204 1.1 dyoung
4205 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4206 1.1 dyoung goto out;
4207 1.1 dyoung
4208 1.1 dyoung /* check if iSCSI FCOE block is populated */
4209 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4210 1.1 dyoung if (status != IXGBE_SUCCESS)
4211 1.1 dyoung goto out;
4212 1.1 dyoung
4213 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4214 1.1 dyoung goto out;
4215 1.1 dyoung
4216 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4217 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4218 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4219 1.1 dyoung if (status != IXGBE_SUCCESS)
4220 1.1 dyoung goto out;
4221 1.1 dyoung
4222 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4223 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4224 1.1 dyoung else
4225 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4226 1.1 dyoung
4227 1.1 dyoung out:
4228 1.1 dyoung return status;
4229 1.1 dyoung }
4230 1.1 dyoung
4231 1.1 dyoung /**
4232 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4233 1.1 dyoung * @hw: pointer to hardware structure
4234 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4235 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4236 1.1 dyoung *
4237 1.1 dyoung **/
4238 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4239 1.1 dyoung {
4240 1.1 dyoung int j;
4241 1.1 dyoung int pf_target_reg = pf >> 3;
4242 1.1 dyoung int pf_target_shift = pf % 8;
4243 1.1 dyoung u32 pfvfspoof = 0;
4244 1.1 dyoung
4245 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4246 1.1 dyoung return;
4247 1.1 dyoung
4248 1.1 dyoung if (enable)
4249 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4250 1.1 dyoung
4251 1.1 dyoung /*
4252 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4253 1.1 dyoung * MAC anti-spoof enables in each register array element.
4254 1.1 dyoung */
4255 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4256 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4257 1.1 dyoung
4258 1.4 msaitoh /*
4259 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4260 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4261 1.4 msaitoh */
4262 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4263 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4264 1.1 dyoung
4265 1.1 dyoung /*
4266 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4267 1.4 msaitoh * anti-spoofing enabled.
4268 1.1 dyoung */
4269 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4270 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4271 1.1 dyoung }
4272 1.1 dyoung
4273 1.1 dyoung /**
4274 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4275 1.1 dyoung * @hw: pointer to hardware structure
4276 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4277 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4278 1.1 dyoung *
4279 1.1 dyoung **/
4280 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4281 1.1 dyoung {
4282 1.1 dyoung int vf_target_reg = vf >> 3;
4283 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4284 1.1 dyoung u32 pfvfspoof;
4285 1.1 dyoung
4286 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4287 1.1 dyoung return;
4288 1.1 dyoung
4289 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4290 1.1 dyoung if (enable)
4291 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4292 1.1 dyoung else
4293 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4294 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4295 1.1 dyoung }
4296 1.1 dyoung
4297 1.1 dyoung /**
4298 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4299 1.1 dyoung * @hw: pointer to hardware structure
4300 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4301 1.1 dyoung *
4302 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4303 1.1 dyoung * and return the word through device_caps.
4304 1.1 dyoung **/
4305 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4306 1.1 dyoung {
4307 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4308 1.1 dyoung
4309 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4310 1.1 dyoung
4311 1.1 dyoung return IXGBE_SUCCESS;
4312 1.1 dyoung }
4313 1.1 dyoung
4314 1.1 dyoung /**
4315 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4316 1.1 dyoung * @hw: pointer to hardware structure
4317 1.1 dyoung *
4318 1.1 dyoung **/
4319 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4320 1.1 dyoung {
4321 1.1 dyoung u32 regval;
4322 1.1 dyoung u32 i;
4323 1.1 dyoung
4324 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4325 1.1 dyoung
4326 1.1 dyoung /* Enable relaxed ordering */
4327 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4328 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4329 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4330 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4331 1.1 dyoung }
4332 1.1 dyoung
4333 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4334 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4335 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4336 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4337 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4338 1.1 dyoung }
4339 1.1 dyoung
4340 1.1 dyoung }
4341 1.3 msaitoh
4342 1.3 msaitoh /**
4343 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4344 1.3 msaitoh * @buffer: pointer to EEPROM
4345 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4346 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4347 1.3 msaitoh * checksum calculated is returned.
4348 1.3 msaitoh **/
4349 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4350 1.3 msaitoh {
4351 1.3 msaitoh u32 i;
4352 1.3 msaitoh u8 sum = 0;
4353 1.3 msaitoh
4354 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4355 1.3 msaitoh
4356 1.3 msaitoh if (!buffer)
4357 1.3 msaitoh return 0;
4358 1.3 msaitoh
4359 1.3 msaitoh for (i = 0; i < length; i++)
4360 1.3 msaitoh sum += buffer[i];
4361 1.3 msaitoh
4362 1.3 msaitoh return (u8) (0 - sum);
4363 1.3 msaitoh }
4364 1.3 msaitoh
4365 1.3 msaitoh /**
4366 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4367 1.3 msaitoh * @hw: pointer to the HW structure
4368 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4369 1.3 msaitoh * be placed
4370 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4371 1.8 msaitoh * @timeout: time in ms to wait for command completion
4372 1.8 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4373 1.8 msaitoh * Needed because FW structures are big endian and decoding of
4374 1.8 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4375 1.8 msaitoh * is not easily understood without making a table of commands.
4376 1.8 msaitoh * So we will leave this up to the caller to read back the data
4377 1.8 msaitoh * in these cases.
4378 1.3 msaitoh *
4379 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4380 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4381 1.3 msaitoh **/
4382 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4383 1.8 msaitoh u32 length, u32 timeout, bool return_data)
4384 1.3 msaitoh {
4385 1.8 msaitoh u32 hicr, i, bi, fwsts;
4386 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4387 1.8 msaitoh u16 buf_len;
4388 1.8 msaitoh u16 dword_len;
4389 1.3 msaitoh
4390 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4391 1.3 msaitoh
4392 1.8 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4393 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4394 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4395 1.8 msaitoh }
4396 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4397 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4398 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4399 1.3 msaitoh
4400 1.3 msaitoh /* Check that the host interface is enabled. */
4401 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4402 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4403 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4404 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4405 1.8 msaitoh }
4406 1.8 msaitoh
4407 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4408 1.8 msaitoh if ((length % (sizeof(u32))) != 0) {
4409 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4410 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4411 1.3 msaitoh }
4412 1.3 msaitoh
4413 1.3 msaitoh dword_len = length >> 2;
4414 1.3 msaitoh
4415 1.8 msaitoh /* The device driver writes the relevant command block
4416 1.3 msaitoh * into the ram area.
4417 1.3 msaitoh */
4418 1.3 msaitoh for (i = 0; i < dword_len; i++)
4419 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4420 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4421 1.3 msaitoh
4422 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4423 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4424 1.3 msaitoh
4425 1.8 msaitoh for (i = 0; i < timeout; i++) {
4426 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4427 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4428 1.3 msaitoh break;
4429 1.3 msaitoh msec_delay(1);
4430 1.3 msaitoh }
4431 1.3 msaitoh
4432 1.8 msaitoh /* Check command completion */
4433 1.8 msaitoh if ((timeout != 0 && i == timeout) ||
4434 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4435 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4436 1.8 msaitoh "Command has failed with no status valid.\n");
4437 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4438 1.3 msaitoh }
4439 1.3 msaitoh
4440 1.8 msaitoh if (!return_data)
4441 1.8 msaitoh return 0;
4442 1.8 msaitoh
4443 1.3 msaitoh /* Calculate length in DWORDs */
4444 1.3 msaitoh dword_len = hdr_size >> 2;
4445 1.3 msaitoh
4446 1.3 msaitoh /* first pull in the header so we know the buffer length */
4447 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4448 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4449 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4450 1.3 msaitoh }
4451 1.3 msaitoh
4452 1.3 msaitoh /* If there is any thing in data position pull it in */
4453 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4454 1.3 msaitoh if (buf_len == 0)
4455 1.8 msaitoh return 0;
4456 1.3 msaitoh
4457 1.8 msaitoh if (length < buf_len + hdr_size) {
4458 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4459 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4460 1.3 msaitoh }
4461 1.3 msaitoh
4462 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4463 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4464 1.3 msaitoh
4465 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4466 1.3 msaitoh for (; bi <= dword_len; bi++) {
4467 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4468 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4469 1.3 msaitoh }
4470 1.3 msaitoh
4471 1.8 msaitoh return 0;
4472 1.3 msaitoh }
4473 1.3 msaitoh
4474 1.3 msaitoh /**
4475 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4476 1.3 msaitoh * @hw: pointer to the HW structure
4477 1.3 msaitoh * @maj: driver version major number
4478 1.7 riastrad * @minr: driver version minor number
4479 1.3 msaitoh * @build: driver version build number
4480 1.3 msaitoh * @sub: driver version sub build number
4481 1.3 msaitoh *
4482 1.3 msaitoh * Sends driver version number to firmware through the manageability
4483 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4484 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4485 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4486 1.3 msaitoh **/
4487 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4488 1.3 msaitoh u8 build, u8 sub)
4489 1.3 msaitoh {
4490 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4491 1.3 msaitoh int i;
4492 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4493 1.3 msaitoh
4494 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4495 1.3 msaitoh
4496 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4497 1.3 msaitoh != IXGBE_SUCCESS) {
4498 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4499 1.3 msaitoh goto out;
4500 1.3 msaitoh }
4501 1.3 msaitoh
4502 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4503 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4504 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4505 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4506 1.3 msaitoh fw_cmd.ver_maj = maj;
4507 1.7 riastrad fw_cmd.ver_min = minr;
4508 1.3 msaitoh fw_cmd.ver_build = build;
4509 1.3 msaitoh fw_cmd.ver_sub = sub;
4510 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4511 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4512 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4513 1.3 msaitoh fw_cmd.pad = 0;
4514 1.3 msaitoh fw_cmd.pad2 = 0;
4515 1.3 msaitoh
4516 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4517 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4518 1.8 msaitoh sizeof(fw_cmd),
4519 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4520 1.8 msaitoh TRUE);
4521 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4522 1.3 msaitoh continue;
4523 1.3 msaitoh
4524 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4525 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4526 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4527 1.3 msaitoh else
4528 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4529 1.3 msaitoh
4530 1.3 msaitoh break;
4531 1.3 msaitoh }
4532 1.3 msaitoh
4533 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4534 1.3 msaitoh out:
4535 1.3 msaitoh return ret_val;
4536 1.3 msaitoh }
4537 1.3 msaitoh
4538 1.3 msaitoh /**
4539 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4540 1.3 msaitoh * @hw: pointer to hardware structure
4541 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4542 1.3 msaitoh * @headroom: reserve n KB of headroom
4543 1.3 msaitoh * @strategy: packet buffer allocation strategy
4544 1.3 msaitoh **/
4545 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4546 1.3 msaitoh int strategy)
4547 1.3 msaitoh {
4548 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4549 1.3 msaitoh int i = 0;
4550 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4551 1.3 msaitoh
4552 1.3 msaitoh /* Reserve headroom */
4553 1.3 msaitoh pbsize -= headroom;
4554 1.3 msaitoh
4555 1.3 msaitoh if (!num_pb)
4556 1.3 msaitoh num_pb = 1;
4557 1.3 msaitoh
4558 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4559 1.3 msaitoh * buffers requested using supplied strategy.
4560 1.3 msaitoh */
4561 1.3 msaitoh switch (strategy) {
4562 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4563 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4564 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4565 1.3 msaitoh */
4566 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4567 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4568 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4569 1.3 msaitoh for (; i < (num_pb / 2); i++)
4570 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4571 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4572 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4573 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4574 1.3 msaitoh for (; i < num_pb; i++)
4575 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4576 1.3 msaitoh break;
4577 1.3 msaitoh default:
4578 1.3 msaitoh break;
4579 1.3 msaitoh }
4580 1.3 msaitoh
4581 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4582 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4583 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4584 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4585 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4586 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4587 1.3 msaitoh }
4588 1.3 msaitoh
4589 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4590 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4591 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4592 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4593 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4594 1.3 msaitoh }
4595 1.3 msaitoh }
4596 1.3 msaitoh
4597 1.3 msaitoh /**
4598 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4599 1.3 msaitoh * @hw: pointer to the hardware structure
4600 1.3 msaitoh *
4601 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4602 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4603 1.3 msaitoh * buffers on the system.
4604 1.3 msaitoh **/
4605 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4606 1.3 msaitoh {
4607 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4608 1.8 msaitoh u16 value;
4609 1.3 msaitoh
4610 1.3 msaitoh /*
4611 1.3 msaitoh * If double reset is not requested then all transactions should
4612 1.3 msaitoh * already be clear and as such there is no work to do
4613 1.3 msaitoh */
4614 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4615 1.3 msaitoh return;
4616 1.3 msaitoh
4617 1.3 msaitoh /*
4618 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4619 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4620 1.3 msaitoh * has already been cleared.
4621 1.3 msaitoh */
4622 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4623 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4624 1.3 msaitoh
4625 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4626 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4627 1.8 msaitoh msec_delay(3);
4628 1.8 msaitoh
4629 1.8 msaitoh /*
4630 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4631 1.8 msaitoh * transactions pending.
4632 1.8 msaitoh */
4633 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4634 1.8 msaitoh for (i = 0; i < poll; i++) {
4635 1.8 msaitoh usec_delay(100);
4636 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4637 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4638 1.8 msaitoh goto out;
4639 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4640 1.8 msaitoh goto out;
4641 1.8 msaitoh }
4642 1.8 msaitoh
4643 1.8 msaitoh out:
4644 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4645 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4646 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4647 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4648 1.3 msaitoh
4649 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4650 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4651 1.3 msaitoh usec_delay(20);
4652 1.3 msaitoh
4653 1.3 msaitoh /* restore previous register values */
4654 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4655 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4656 1.3 msaitoh }
4657 1.3 msaitoh
4658 1.6 msaitoh
4659 1.6 msaitoh /**
4660 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4661 1.6 msaitoh * @hw: pointer to hardware structure
4662 1.6 msaitoh * @map: pointer to u8 arr for returning map
4663 1.6 msaitoh *
4664 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4665 1.6 msaitoh **/
4666 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4667 1.6 msaitoh {
4668 1.6 msaitoh u32 reg, i;
4669 1.6 msaitoh
4670 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4671 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4672 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4673 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4674 1.6 msaitoh return;
4675 1.6 msaitoh }
4676 1.8 msaitoh
4677 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4678 1.8 msaitoh {
4679 1.8 msaitoh u32 pfdtxgswc;
4680 1.8 msaitoh u32 rxctrl;
4681 1.8 msaitoh
4682 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4683 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
4684 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4685 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4686 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4687 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4688 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4689 1.8 msaitoh hw->mac.set_lben = TRUE;
4690 1.8 msaitoh } else {
4691 1.8 msaitoh hw->mac.set_lben = FALSE;
4692 1.8 msaitoh }
4693 1.8 msaitoh }
4694 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
4695 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4696 1.8 msaitoh }
4697 1.8 msaitoh }
4698 1.8 msaitoh
4699 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4700 1.8 msaitoh {
4701 1.8 msaitoh u32 pfdtxgswc;
4702 1.8 msaitoh u32 rxctrl;
4703 1.8 msaitoh
4704 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4705 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4706 1.8 msaitoh
4707 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4708 1.8 msaitoh if (hw->mac.set_lben) {
4709 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4710 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4711 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4712 1.8 msaitoh hw->mac.set_lben = FALSE;
4713 1.8 msaitoh }
4714 1.8 msaitoh }
4715 1.8 msaitoh }
4716 1.8 msaitoh
4717 1.8 msaitoh /**
4718 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
4719 1.8 msaitoh * @hw: pointer to hardware structure
4720 1.8 msaitoh */
4721 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
4722 1.8 msaitoh {
4723 1.8 msaitoh u32 fwsm;
4724 1.8 msaitoh
4725 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
4726 1.8 msaitoh return FALSE;
4727 1.8 msaitoh
4728 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4729 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
4730 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
4731 1.8 msaitoh }
4732 1.8 msaitoh
4733 1.8 msaitoh /**
4734 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
4735 1.8 msaitoh * @hw: pointer to hardware structure
4736 1.8 msaitoh *
4737 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
4738 1.8 msaitoh **/
4739 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4740 1.8 msaitoh {
4741 1.8 msaitoh u32 fwsm, manc, factps;
4742 1.8 msaitoh
4743 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4744 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4745 1.8 msaitoh return FALSE;
4746 1.8 msaitoh
4747 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4748 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4749 1.8 msaitoh return FALSE;
4750 1.8 msaitoh
4751 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
4752 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4753 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
4754 1.8 msaitoh return FALSE;
4755 1.8 msaitoh }
4756 1.8 msaitoh
4757 1.8 msaitoh return TRUE;
4758 1.8 msaitoh }
4759 1.8 msaitoh
4760 1.8 msaitoh /**
4761 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4762 1.8 msaitoh * @hw: pointer to hardware structure
4763 1.8 msaitoh * @speed: new link speed
4764 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4765 1.8 msaitoh *
4766 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
4767 1.8 msaitoh **/
4768 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4769 1.8 msaitoh ixgbe_link_speed speed,
4770 1.8 msaitoh bool autoneg_wait_to_complete)
4771 1.8 msaitoh {
4772 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4773 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4774 1.8 msaitoh s32 status = IXGBE_SUCCESS;
4775 1.8 msaitoh u32 speedcnt = 0;
4776 1.8 msaitoh u32 i = 0;
4777 1.8 msaitoh bool autoneg, link_up = FALSE;
4778 1.8 msaitoh
4779 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4780 1.8 msaitoh
4781 1.8 msaitoh /* Mask off requested but non-supported speeds */
4782 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4783 1.8 msaitoh if (status != IXGBE_SUCCESS)
4784 1.8 msaitoh return status;
4785 1.8 msaitoh
4786 1.8 msaitoh speed &= link_speed;
4787 1.8 msaitoh
4788 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
4789 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
4790 1.8 msaitoh */
4791 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4792 1.8 msaitoh speedcnt++;
4793 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4794 1.8 msaitoh
4795 1.8 msaitoh /* If we already have link at this speed, just jump out */
4796 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4797 1.8 msaitoh if (status != IXGBE_SUCCESS)
4798 1.8 msaitoh return status;
4799 1.8 msaitoh
4800 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4801 1.8 msaitoh goto out;
4802 1.8 msaitoh
4803 1.8 msaitoh /* Set the module link speed */
4804 1.8 msaitoh switch (hw->phy.media_type) {
4805 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4806 1.8 msaitoh case ixgbe_media_type_fiber:
4807 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4808 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
4809 1.8 msaitoh break;
4810 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4811 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
4812 1.8 msaitoh break;
4813 1.8 msaitoh default:
4814 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4815 1.8 msaitoh break;
4816 1.8 msaitoh }
4817 1.8 msaitoh
4818 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
4819 1.8 msaitoh msec_delay(40);
4820 1.8 msaitoh
4821 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4822 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
4823 1.8 msaitoh autoneg_wait_to_complete);
4824 1.8 msaitoh if (status != IXGBE_SUCCESS)
4825 1.8 msaitoh return status;
4826 1.8 msaitoh
4827 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4828 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4829 1.8 msaitoh
4830 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4831 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
4832 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
4833 1.8 msaitoh */
4834 1.8 msaitoh for (i = 0; i < 5; i++) {
4835 1.8 msaitoh /* Wait for the link partner to also set speed */
4836 1.8 msaitoh msec_delay(100);
4837 1.8 msaitoh
4838 1.8 msaitoh /* If we have link, just jump out */
4839 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
4840 1.8 msaitoh &link_up, FALSE);
4841 1.8 msaitoh if (status != IXGBE_SUCCESS)
4842 1.8 msaitoh return status;
4843 1.8 msaitoh
4844 1.8 msaitoh if (link_up)
4845 1.8 msaitoh goto out;
4846 1.8 msaitoh }
4847 1.8 msaitoh }
4848 1.8 msaitoh
4849 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4850 1.8 msaitoh speedcnt++;
4851 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4852 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4853 1.8 msaitoh
4854 1.8 msaitoh /* If we already have link at this speed, just jump out */
4855 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4856 1.8 msaitoh if (status != IXGBE_SUCCESS)
4857 1.8 msaitoh return status;
4858 1.8 msaitoh
4859 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4860 1.8 msaitoh goto out;
4861 1.8 msaitoh
4862 1.8 msaitoh /* Set the module link speed */
4863 1.8 msaitoh switch (hw->phy.media_type) {
4864 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4865 1.8 msaitoh case ixgbe_media_type_fiber:
4866 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4867 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
4868 1.8 msaitoh break;
4869 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4870 1.8 msaitoh /* QSFP module automatically detects link speed */
4871 1.8 msaitoh break;
4872 1.8 msaitoh default:
4873 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4874 1.8 msaitoh break;
4875 1.8 msaitoh }
4876 1.8 msaitoh
4877 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
4878 1.8 msaitoh msec_delay(40);
4879 1.8 msaitoh
4880 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4881 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
4882 1.8 msaitoh autoneg_wait_to_complete);
4883 1.8 msaitoh if (status != IXGBE_SUCCESS)
4884 1.8 msaitoh return status;
4885 1.8 msaitoh
4886 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4887 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4888 1.8 msaitoh
4889 1.8 msaitoh /* Wait for the link partner to also set speed */
4890 1.8 msaitoh msec_delay(100);
4891 1.8 msaitoh
4892 1.8 msaitoh /* If we have link, just jump out */
4893 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4894 1.8 msaitoh if (status != IXGBE_SUCCESS)
4895 1.8 msaitoh return status;
4896 1.8 msaitoh
4897 1.8 msaitoh if (link_up)
4898 1.8 msaitoh goto out;
4899 1.8 msaitoh }
4900 1.8 msaitoh
4901 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
4902 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
4903 1.8 msaitoh * single highest speed that the user requested.
4904 1.8 msaitoh */
4905 1.8 msaitoh if (speedcnt > 1)
4906 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4907 1.8 msaitoh highest_link_speed,
4908 1.8 msaitoh autoneg_wait_to_complete);
4909 1.8 msaitoh
4910 1.8 msaitoh out:
4911 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
4912 1.8 msaitoh hw->phy.autoneg_advertised = 0;
4913 1.8 msaitoh
4914 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4915 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4916 1.8 msaitoh
4917 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4918 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4919 1.8 msaitoh
4920 1.8 msaitoh return status;
4921 1.8 msaitoh }
4922 1.8 msaitoh
4923 1.8 msaitoh /**
4924 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
4925 1.8 msaitoh * @hw: pointer to hardware structure
4926 1.8 msaitoh * @speed: link speed to set
4927 1.8 msaitoh *
4928 1.8 msaitoh * Set module link speed via the soft rate select.
4929 1.8 msaitoh */
4930 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4931 1.8 msaitoh ixgbe_link_speed speed)
4932 1.8 msaitoh {
4933 1.8 msaitoh s32 status;
4934 1.8 msaitoh u8 rs, eeprom_data;
4935 1.8 msaitoh
4936 1.8 msaitoh switch (speed) {
4937 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
4938 1.8 msaitoh /* one bit mask same as setting on */
4939 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4940 1.8 msaitoh break;
4941 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
4942 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4943 1.8 msaitoh break;
4944 1.8 msaitoh default:
4945 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
4946 1.8 msaitoh return;
4947 1.8 msaitoh }
4948 1.8 msaitoh
4949 1.8 msaitoh /* Set RS0 */
4950 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4951 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4952 1.8 msaitoh &eeprom_data);
4953 1.8 msaitoh if (status) {
4954 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4955 1.8 msaitoh goto out;
4956 1.8 msaitoh }
4957 1.8 msaitoh
4958 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4959 1.8 msaitoh
4960 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4961 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4962 1.8 msaitoh eeprom_data);
4963 1.8 msaitoh if (status) {
4964 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4965 1.8 msaitoh goto out;
4966 1.8 msaitoh }
4967 1.8 msaitoh
4968 1.8 msaitoh /* Set RS1 */
4969 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4970 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4971 1.8 msaitoh &eeprom_data);
4972 1.8 msaitoh if (status) {
4973 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4974 1.8 msaitoh goto out;
4975 1.8 msaitoh }
4976 1.8 msaitoh
4977 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4978 1.8 msaitoh
4979 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4980 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4981 1.8 msaitoh eeprom_data);
4982 1.8 msaitoh if (status) {
4983 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4984 1.8 msaitoh goto out;
4985 1.8 msaitoh }
4986 1.8 msaitoh out:
4987 1.8 msaitoh return;
4988 1.8 msaitoh }
4989