ixgbe_common.c revision 1.14 1 1.14 msaitoh /* $NetBSD: ixgbe_common.c,v 1.14 2017/08/30 08:49:18 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.1 dyoung
5 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
6 1.1 dyoung All rights reserved.
7 1.14 msaitoh
8 1.14 msaitoh Redistribution and use in source and binary forms, with or without
9 1.1 dyoung modification, are permitted provided that the following conditions are met:
10 1.14 msaitoh
11 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
12 1.1 dyoung this list of conditions and the following disclaimer.
13 1.14 msaitoh
14 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
15 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
16 1.1 dyoung documentation and/or other materials provided with the distribution.
17 1.14 msaitoh
18 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
19 1.14 msaitoh contributors may be used to endorse or promote products derived from
20 1.1 dyoung this software without specific prior written permission.
21 1.14 msaitoh
22 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
33 1.1 dyoung
34 1.1 dyoung ******************************************************************************/
35 1.14 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
36 1.1 dyoung
37 1.1 dyoung #include "ixgbe_common.h"
38 1.1 dyoung #include "ixgbe_phy.h"
39 1.6 msaitoh #include "ixgbe_dcb.h"
40 1.6 msaitoh #include "ixgbe_dcb_82599.h"
41 1.1 dyoung #include "ixgbe_api.h"
42 1.1 dyoung
43 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
44 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
46 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
49 1.3 msaitoh u16 count);
50 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
51 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
53 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
54 1.1 dyoung
55 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
56 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
57 1.3 msaitoh u16 *san_mac_offset);
58 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 1.3 msaitoh u16 words, u16 *data);
60 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
61 1.3 msaitoh u16 words, u16 *data);
62 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
63 1.3 msaitoh u16 offset);
64 1.1 dyoung
65 1.1 dyoung /**
66 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
67 1.1 dyoung * @hw: pointer to the hardware structure
68 1.1 dyoung *
69 1.1 dyoung * Initialize the function pointers.
70 1.1 dyoung **/
71 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
72 1.1 dyoung {
73 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
74 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
75 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
76 1.1 dyoung
77 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
78 1.1 dyoung
79 1.1 dyoung /* EEPROM */
80 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
81 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
82 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
83 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
84 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
85 1.3 msaitoh } else {
86 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
87 1.3 msaitoh eeprom->ops.read_buffer =
88 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
89 1.3 msaitoh }
90 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
91 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
92 1.1 dyoung eeprom->ops.validate_checksum =
93 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
95 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
96 1.1 dyoung
97 1.1 dyoung /* MAC */
98 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
99 1.1 dyoung mac->ops.reset_hw = NULL;
100 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
101 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
102 1.1 dyoung mac->ops.get_media_type = NULL;
103 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
104 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
105 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
106 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
107 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
108 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
109 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
110 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
111 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
112 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
113 1.1 dyoung
114 1.1 dyoung /* LEDs */
115 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
116 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
117 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
118 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
119 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
120 1.1 dyoung
121 1.1 dyoung /* RAR, Multicast, VLAN */
122 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
123 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
124 1.1 dyoung mac->ops.insert_mac_addr = NULL;
125 1.1 dyoung mac->ops.set_vmdq = NULL;
126 1.1 dyoung mac->ops.clear_vmdq = NULL;
127 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
128 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
129 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
130 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
131 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
132 1.1 dyoung mac->ops.clear_vfta = NULL;
133 1.1 dyoung mac->ops.set_vfta = NULL;
134 1.3 msaitoh mac->ops.set_vlvf = NULL;
135 1.1 dyoung mac->ops.init_uta_tables = NULL;
136 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
137 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
138 1.1 dyoung
139 1.1 dyoung /* Flow Control */
140 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
141 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
142 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
143 1.1 dyoung
144 1.1 dyoung /* Link */
145 1.1 dyoung mac->ops.get_link_capabilities = NULL;
146 1.1 dyoung mac->ops.setup_link = NULL;
147 1.1 dyoung mac->ops.check_link = NULL;
148 1.6 msaitoh mac->ops.dmac_config = NULL;
149 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
150 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
151 1.1 dyoung
152 1.1 dyoung return IXGBE_SUCCESS;
153 1.1 dyoung }
154 1.1 dyoung
155 1.1 dyoung /**
156 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
157 1.6 msaitoh * of flow control
158 1.6 msaitoh * @hw: pointer to hardware structure
159 1.6 msaitoh *
160 1.6 msaitoh * This function returns TRUE if the device supports flow control
161 1.6 msaitoh * autonegotiation, and FALSE if it does not.
162 1.4 msaitoh *
163 1.4 msaitoh **/
164 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
165 1.4 msaitoh {
166 1.6 msaitoh bool supported = FALSE;
167 1.6 msaitoh ixgbe_link_speed speed;
168 1.6 msaitoh bool link_up;
169 1.4 msaitoh
170 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
171 1.4 msaitoh
172 1.6 msaitoh switch (hw->phy.media_type) {
173 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
174 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
175 1.6 msaitoh case ixgbe_media_type_fiber:
176 1.14 msaitoh /* flow control autoneg black list */
177 1.14 msaitoh switch (hw->device_id) {
178 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
179 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
180 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
181 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
182 1.14 msaitoh supported = FALSE;
183 1.14 msaitoh break;
184 1.14 msaitoh default:
185 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
186 1.14 msaitoh /* if link is down, assume supported */
187 1.14 msaitoh if (link_up)
188 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
189 1.14 msaitoh TRUE : FALSE;
190 1.14 msaitoh else
191 1.14 msaitoh supported = TRUE;
192 1.14 msaitoh }
193 1.14 msaitoh
194 1.14 msaitoh break;
195 1.14 msaitoh case ixgbe_media_type_backplane:
196 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
197 1.14 msaitoh supported = FALSE;
198 1.6 msaitoh else
199 1.6 msaitoh supported = TRUE;
200 1.6 msaitoh break;
201 1.6 msaitoh case ixgbe_media_type_copper:
202 1.6 msaitoh /* only some copper devices support flow control autoneg */
203 1.6 msaitoh switch (hw->device_id) {
204 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
205 1.6 msaitoh case IXGBE_DEV_ID_X540T:
206 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
207 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
208 1.8 msaitoh case IXGBE_DEV_ID_X550T:
209 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
210 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
211 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
212 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
213 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
214 1.6 msaitoh supported = TRUE;
215 1.6 msaitoh break;
216 1.6 msaitoh default:
217 1.6 msaitoh supported = FALSE;
218 1.6 msaitoh }
219 1.4 msaitoh default:
220 1.6 msaitoh break;
221 1.4 msaitoh }
222 1.6 msaitoh
223 1.14 msaitoh if (!supported)
224 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
225 1.14 msaitoh "Device %x does not support flow control autoneg",
226 1.14 msaitoh hw->device_id);
227 1.6 msaitoh return supported;
228 1.4 msaitoh }
229 1.4 msaitoh
230 1.4 msaitoh /**
231 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
232 1.4 msaitoh * @hw: pointer to hardware structure
233 1.4 msaitoh *
234 1.4 msaitoh * Called at init time to set up flow control.
235 1.4 msaitoh **/
236 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
237 1.4 msaitoh {
238 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
239 1.4 msaitoh u32 reg = 0, reg_bp = 0;
240 1.4 msaitoh u16 reg_cu = 0;
241 1.8 msaitoh bool locked = FALSE;
242 1.4 msaitoh
243 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
244 1.4 msaitoh
245 1.8 msaitoh /* Validate the requested mode */
246 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
247 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
248 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
249 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
250 1.4 msaitoh goto out;
251 1.4 msaitoh }
252 1.4 msaitoh
253 1.4 msaitoh /*
254 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
255 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
256 1.4 msaitoh */
257 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
258 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
259 1.4 msaitoh
260 1.4 msaitoh /*
261 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
262 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
263 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
264 1.4 msaitoh */
265 1.4 msaitoh switch (hw->phy.media_type) {
266 1.8 msaitoh case ixgbe_media_type_backplane:
267 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
268 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
269 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
270 1.8 msaitoh goto out;
271 1.8 msaitoh
272 1.14 msaitoh /* fall through - only backplane uses autoc */
273 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
274 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
275 1.4 msaitoh case ixgbe_media_type_fiber:
276 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
277 1.8 msaitoh
278 1.4 msaitoh break;
279 1.4 msaitoh case ixgbe_media_type_copper:
280 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
281 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
282 1.4 msaitoh break;
283 1.4 msaitoh default:
284 1.4 msaitoh break;
285 1.4 msaitoh }
286 1.4 msaitoh
287 1.4 msaitoh /*
288 1.4 msaitoh * The possible values of fc.requested_mode are:
289 1.4 msaitoh * 0: Flow control is completely disabled
290 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
291 1.4 msaitoh * but not send pause frames).
292 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
293 1.4 msaitoh * we do not support receiving pause frames).
294 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
295 1.4 msaitoh * other: Invalid.
296 1.4 msaitoh */
297 1.4 msaitoh switch (hw->fc.requested_mode) {
298 1.4 msaitoh case ixgbe_fc_none:
299 1.4 msaitoh /* Flow control completely disabled by software override. */
300 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
301 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
302 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
303 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
304 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
305 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
306 1.4 msaitoh break;
307 1.4 msaitoh case ixgbe_fc_tx_pause:
308 1.4 msaitoh /*
309 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
310 1.4 msaitoh * disabled by software override.
311 1.4 msaitoh */
312 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
313 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
314 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
315 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
316 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
317 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
318 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
319 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
320 1.4 msaitoh }
321 1.4 msaitoh break;
322 1.4 msaitoh case ixgbe_fc_rx_pause:
323 1.4 msaitoh /*
324 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
325 1.4 msaitoh * disabled by software override. Since there really
326 1.4 msaitoh * isn't a way to advertise that we are capable of RX
327 1.4 msaitoh * Pause ONLY, we will advertise that we support both
328 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
329 1.4 msaitoh * through to the fc_full statement. Later, we will
330 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
331 1.4 msaitoh */
332 1.4 msaitoh case ixgbe_fc_full:
333 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
334 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
335 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
336 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
337 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
338 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
339 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
340 1.4 msaitoh break;
341 1.4 msaitoh default:
342 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
343 1.6 msaitoh "Flow control param set incorrectly\n");
344 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
345 1.4 msaitoh goto out;
346 1.4 msaitoh break;
347 1.4 msaitoh }
348 1.4 msaitoh
349 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
350 1.4 msaitoh /*
351 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
352 1.4 msaitoh * the MAC will advertise clause 37 flow control.
353 1.4 msaitoh */
354 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
355 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
356 1.4 msaitoh
357 1.4 msaitoh /* Disable AN timeout */
358 1.4 msaitoh if (hw->fc.strict_ieee)
359 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
360 1.4 msaitoh
361 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
362 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363 1.4 msaitoh }
364 1.4 msaitoh
365 1.4 msaitoh /*
366 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
367 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
368 1.4 msaitoh *
369 1.4 msaitoh */
370 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
371 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
372 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
373 1.8 msaitoh if (ret_val)
374 1.8 msaitoh goto out;
375 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
376 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
377 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
378 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
379 1.4 msaitoh }
380 1.4 msaitoh
381 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
382 1.4 msaitoh out:
383 1.4 msaitoh return ret_val;
384 1.4 msaitoh }
385 1.4 msaitoh
386 1.4 msaitoh /**
387 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
388 1.1 dyoung * @hw: pointer to hardware structure
389 1.1 dyoung *
390 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
391 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
392 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
393 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
394 1.1 dyoung **/
395 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
396 1.1 dyoung {
397 1.4 msaitoh s32 ret_val;
398 1.1 dyoung u32 ctrl_ext;
399 1.14 msaitoh u16 device_caps;
400 1.1 dyoung
401 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
402 1.1 dyoung
403 1.1 dyoung /* Set the media type */
404 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
405 1.1 dyoung
406 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
407 1.1 dyoung
408 1.1 dyoung /* Clear the VLAN filter table */
409 1.1 dyoung hw->mac.ops.clear_vfta(hw);
410 1.1 dyoung
411 1.1 dyoung /* Clear statistics registers */
412 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
413 1.1 dyoung
414 1.1 dyoung /* Set No Snoop Disable */
415 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
416 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
417 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
418 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
419 1.1 dyoung
420 1.1 dyoung /* Setup flow control */
421 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
422 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
423 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
424 1.14 msaitoh return ret_val;
425 1.14 msaitoh }
426 1.14 msaitoh
427 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
428 1.14 msaitoh switch (hw->mac.type) {
429 1.14 msaitoh case ixgbe_mac_82599EB:
430 1.14 msaitoh case ixgbe_mac_X550EM_x:
431 1.14 msaitoh case ixgbe_mac_X550EM_a:
432 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
433 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
434 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
435 1.14 msaitoh else
436 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
437 1.14 msaitoh break;
438 1.14 msaitoh default:
439 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
440 1.14 msaitoh break;
441 1.14 msaitoh }
442 1.1 dyoung
443 1.1 dyoung /* Clear adapter stopped flag */
444 1.1 dyoung hw->adapter_stopped = FALSE;
445 1.1 dyoung
446 1.14 msaitoh return IXGBE_SUCCESS;
447 1.1 dyoung }
448 1.1 dyoung
449 1.1 dyoung /**
450 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
451 1.1 dyoung * @hw: pointer to hw structure
452 1.1 dyoung *
453 1.1 dyoung * Performs the init sequence common to the second generation
454 1.1 dyoung * of 10 GbE devices.
455 1.1 dyoung * Devices in the second generation:
456 1.1 dyoung * 82599
457 1.1 dyoung * X540
458 1.1 dyoung **/
459 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
460 1.1 dyoung {
461 1.1 dyoung u32 i;
462 1.1 dyoung u32 regval;
463 1.1 dyoung
464 1.1 dyoung /* Clear the rate limiters */
465 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
466 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
467 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
468 1.1 dyoung }
469 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
470 1.1 dyoung
471 1.1 dyoung /* Disable relaxed ordering */
472 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
473 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
474 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
475 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
476 1.1 dyoung }
477 1.1 dyoung
478 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
479 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
480 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
481 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
482 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
483 1.1 dyoung }
484 1.1 dyoung
485 1.1 dyoung return IXGBE_SUCCESS;
486 1.1 dyoung }
487 1.1 dyoung
488 1.1 dyoung /**
489 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
490 1.1 dyoung * @hw: pointer to hardware structure
491 1.1 dyoung *
492 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
493 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
494 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
495 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
496 1.1 dyoung * disabled and uninitialized
497 1.1 dyoung **/
498 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
499 1.1 dyoung {
500 1.1 dyoung s32 status;
501 1.1 dyoung
502 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
503 1.1 dyoung
504 1.1 dyoung /* Reset the hardware */
505 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
506 1.1 dyoung
507 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
508 1.1 dyoung /* Start the HW */
509 1.1 dyoung status = hw->mac.ops.start_hw(hw);
510 1.1 dyoung }
511 1.1 dyoung
512 1.14 msaitoh /* Initialize the LED link active for LED blink support */
513 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
514 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
515 1.14 msaitoh
516 1.14 msaitoh if (status != IXGBE_SUCCESS)
517 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
518 1.14 msaitoh
519 1.1 dyoung return status;
520 1.1 dyoung }
521 1.1 dyoung
522 1.1 dyoung /**
523 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
524 1.1 dyoung * @hw: pointer to hardware structure
525 1.1 dyoung *
526 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
527 1.1 dyoung * Statistics counters are clear on read.
528 1.1 dyoung **/
529 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
530 1.1 dyoung {
531 1.1 dyoung u16 i = 0;
532 1.1 dyoung
533 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
534 1.1 dyoung
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
539 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
540 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
541 1.1 dyoung for (i = 0; i < 8; i++)
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
543 1.1 dyoung
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
549 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
552 1.1 dyoung } else {
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
555 1.1 dyoung }
556 1.1 dyoung
557 1.1 dyoung for (i = 0; i < 8; i++) {
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
560 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
563 1.1 dyoung } else {
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
566 1.1 dyoung }
567 1.1 dyoung }
568 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
569 1.1 dyoung for (i = 0; i < 8; i++)
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
585 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
586 1.3 msaitoh for (i = 0; i < 8; i++)
587 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
588 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
590 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
607 1.1 dyoung for (i = 0; i < 16; i++) {
608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
610 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
613 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
616 1.1 dyoung } else {
617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
619 1.1 dyoung }
620 1.1 dyoung }
621 1.1 dyoung
622 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
623 1.3 msaitoh if (hw->phy.id == 0)
624 1.3 msaitoh ixgbe_identify_phy(hw);
625 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
626 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
628 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
630 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
631 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
632 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
633 1.3 msaitoh }
634 1.3 msaitoh
635 1.1 dyoung return IXGBE_SUCCESS;
636 1.1 dyoung }
637 1.1 dyoung
638 1.1 dyoung /**
639 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
640 1.1 dyoung * @hw: pointer to hardware structure
641 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
642 1.1 dyoung * @pba_num_size: part number string buffer length
643 1.1 dyoung *
644 1.1 dyoung * Reads the part number string from the EEPROM.
645 1.1 dyoung **/
646 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
647 1.3 msaitoh u32 pba_num_size)
648 1.1 dyoung {
649 1.1 dyoung s32 ret_val;
650 1.1 dyoung u16 data;
651 1.1 dyoung u16 pba_ptr;
652 1.1 dyoung u16 offset;
653 1.1 dyoung u16 length;
654 1.1 dyoung
655 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
656 1.1 dyoung
657 1.1 dyoung if (pba_num == NULL) {
658 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
659 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
660 1.1 dyoung }
661 1.1 dyoung
662 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
663 1.1 dyoung if (ret_val) {
664 1.1 dyoung DEBUGOUT("NVM Read Error\n");
665 1.1 dyoung return ret_val;
666 1.1 dyoung }
667 1.1 dyoung
668 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
669 1.1 dyoung if (ret_val) {
670 1.1 dyoung DEBUGOUT("NVM Read Error\n");
671 1.1 dyoung return ret_val;
672 1.1 dyoung }
673 1.1 dyoung
674 1.1 dyoung /*
675 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
676 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
677 1.1 dyoung * and we can decode it into an ascii string
678 1.1 dyoung */
679 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
680 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
681 1.1 dyoung
682 1.1 dyoung /* we will need 11 characters to store the PBA */
683 1.1 dyoung if (pba_num_size < 11) {
684 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
685 1.1 dyoung return IXGBE_ERR_NO_SPACE;
686 1.1 dyoung }
687 1.1 dyoung
688 1.1 dyoung /* extract hex string from data and pba_ptr */
689 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
690 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
691 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
692 1.1 dyoung pba_num[3] = data & 0xF;
693 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
694 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
695 1.1 dyoung pba_num[6] = '-';
696 1.1 dyoung pba_num[7] = 0;
697 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
698 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
699 1.1 dyoung
700 1.1 dyoung /* put a null character on the end of our string */
701 1.1 dyoung pba_num[10] = '\0';
702 1.1 dyoung
703 1.1 dyoung /* switch all the data but the '-' to hex char */
704 1.1 dyoung for (offset = 0; offset < 10; offset++) {
705 1.1 dyoung if (pba_num[offset] < 0xA)
706 1.1 dyoung pba_num[offset] += '0';
707 1.1 dyoung else if (pba_num[offset] < 0x10)
708 1.1 dyoung pba_num[offset] += 'A' - 0xA;
709 1.1 dyoung }
710 1.1 dyoung
711 1.1 dyoung return IXGBE_SUCCESS;
712 1.1 dyoung }
713 1.1 dyoung
714 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
715 1.1 dyoung if (ret_val) {
716 1.1 dyoung DEBUGOUT("NVM Read Error\n");
717 1.1 dyoung return ret_val;
718 1.1 dyoung }
719 1.1 dyoung
720 1.1 dyoung if (length == 0xFFFF || length == 0) {
721 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
722 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
723 1.1 dyoung }
724 1.1 dyoung
725 1.1 dyoung /* check if pba_num buffer is big enough */
726 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
727 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
728 1.1 dyoung return IXGBE_ERR_NO_SPACE;
729 1.1 dyoung }
730 1.1 dyoung
731 1.1 dyoung /* trim pba length from start of string */
732 1.1 dyoung pba_ptr++;
733 1.1 dyoung length--;
734 1.1 dyoung
735 1.1 dyoung for (offset = 0; offset < length; offset++) {
736 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
737 1.1 dyoung if (ret_val) {
738 1.1 dyoung DEBUGOUT("NVM Read Error\n");
739 1.1 dyoung return ret_val;
740 1.1 dyoung }
741 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
742 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
743 1.1 dyoung }
744 1.1 dyoung pba_num[offset * 2] = '\0';
745 1.1 dyoung
746 1.1 dyoung return IXGBE_SUCCESS;
747 1.1 dyoung }
748 1.1 dyoung
749 1.1 dyoung /**
750 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
751 1.1 dyoung * @hw: pointer to hardware structure
752 1.1 dyoung * @pba_num: stores the part number from the EEPROM
753 1.1 dyoung *
754 1.1 dyoung * Reads the part number from the EEPROM.
755 1.1 dyoung **/
756 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
757 1.1 dyoung {
758 1.1 dyoung s32 ret_val;
759 1.1 dyoung u16 data;
760 1.1 dyoung
761 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
762 1.1 dyoung
763 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
764 1.1 dyoung if (ret_val) {
765 1.1 dyoung DEBUGOUT("NVM Read Error\n");
766 1.1 dyoung return ret_val;
767 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
768 1.1 dyoung DEBUGOUT("NVM Not supported\n");
769 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
770 1.1 dyoung }
771 1.1 dyoung *pba_num = (u32)(data << 16);
772 1.1 dyoung
773 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
774 1.1 dyoung if (ret_val) {
775 1.1 dyoung DEBUGOUT("NVM Read Error\n");
776 1.1 dyoung return ret_val;
777 1.1 dyoung }
778 1.1 dyoung *pba_num |= data;
779 1.1 dyoung
780 1.1 dyoung return IXGBE_SUCCESS;
781 1.1 dyoung }
782 1.1 dyoung
783 1.1 dyoung /**
784 1.5 msaitoh * ixgbe_read_pba_raw
785 1.5 msaitoh * @hw: pointer to the HW structure
786 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
787 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
788 1.5 msaitoh * @max_pba_block_size: PBA block size limit
789 1.5 msaitoh * @pba: pointer to output PBA structure
790 1.5 msaitoh *
791 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
792 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
793 1.5 msaitoh *
794 1.5 msaitoh **/
795 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
796 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
797 1.5 msaitoh struct ixgbe_pba *pba)
798 1.5 msaitoh {
799 1.5 msaitoh s32 ret_val;
800 1.5 msaitoh u16 pba_block_size;
801 1.5 msaitoh
802 1.5 msaitoh if (pba == NULL)
803 1.5 msaitoh return IXGBE_ERR_PARAM;
804 1.5 msaitoh
805 1.5 msaitoh if (eeprom_buf == NULL) {
806 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
807 1.5 msaitoh &pba->word[0]);
808 1.5 msaitoh if (ret_val)
809 1.5 msaitoh return ret_val;
810 1.5 msaitoh } else {
811 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
812 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
813 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
814 1.5 msaitoh } else {
815 1.5 msaitoh return IXGBE_ERR_PARAM;
816 1.5 msaitoh }
817 1.5 msaitoh }
818 1.5 msaitoh
819 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
820 1.5 msaitoh if (pba->pba_block == NULL)
821 1.5 msaitoh return IXGBE_ERR_PARAM;
822 1.5 msaitoh
823 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
824 1.5 msaitoh eeprom_buf_size,
825 1.5 msaitoh &pba_block_size);
826 1.5 msaitoh if (ret_val)
827 1.5 msaitoh return ret_val;
828 1.5 msaitoh
829 1.5 msaitoh if (pba_block_size > max_pba_block_size)
830 1.5 msaitoh return IXGBE_ERR_PARAM;
831 1.5 msaitoh
832 1.5 msaitoh if (eeprom_buf == NULL) {
833 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
834 1.5 msaitoh pba_block_size,
835 1.5 msaitoh pba->pba_block);
836 1.5 msaitoh if (ret_val)
837 1.5 msaitoh return ret_val;
838 1.5 msaitoh } else {
839 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
840 1.8 msaitoh pba_block_size)) {
841 1.5 msaitoh memcpy(pba->pba_block,
842 1.5 msaitoh &eeprom_buf[pba->word[1]],
843 1.5 msaitoh pba_block_size * sizeof(u16));
844 1.5 msaitoh } else {
845 1.5 msaitoh return IXGBE_ERR_PARAM;
846 1.5 msaitoh }
847 1.5 msaitoh }
848 1.5 msaitoh }
849 1.5 msaitoh
850 1.5 msaitoh return IXGBE_SUCCESS;
851 1.5 msaitoh }
852 1.5 msaitoh
853 1.5 msaitoh /**
854 1.5 msaitoh * ixgbe_write_pba_raw
855 1.5 msaitoh * @hw: pointer to the HW structure
856 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
857 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
858 1.5 msaitoh * @pba: pointer to PBA structure
859 1.5 msaitoh *
860 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
861 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
862 1.5 msaitoh *
863 1.5 msaitoh **/
864 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
865 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
866 1.5 msaitoh {
867 1.5 msaitoh s32 ret_val;
868 1.5 msaitoh
869 1.5 msaitoh if (pba == NULL)
870 1.5 msaitoh return IXGBE_ERR_PARAM;
871 1.5 msaitoh
872 1.5 msaitoh if (eeprom_buf == NULL) {
873 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
874 1.5 msaitoh &pba->word[0]);
875 1.5 msaitoh if (ret_val)
876 1.5 msaitoh return ret_val;
877 1.5 msaitoh } else {
878 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
879 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
880 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
881 1.5 msaitoh } else {
882 1.5 msaitoh return IXGBE_ERR_PARAM;
883 1.5 msaitoh }
884 1.5 msaitoh }
885 1.5 msaitoh
886 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
887 1.5 msaitoh if (pba->pba_block == NULL)
888 1.5 msaitoh return IXGBE_ERR_PARAM;
889 1.5 msaitoh
890 1.5 msaitoh if (eeprom_buf == NULL) {
891 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
892 1.5 msaitoh pba->pba_block[0],
893 1.5 msaitoh pba->pba_block);
894 1.5 msaitoh if (ret_val)
895 1.5 msaitoh return ret_val;
896 1.5 msaitoh } else {
897 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
898 1.5 msaitoh pba->pba_block[0])) {
899 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
900 1.5 msaitoh pba->pba_block,
901 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
902 1.5 msaitoh } else {
903 1.5 msaitoh return IXGBE_ERR_PARAM;
904 1.5 msaitoh }
905 1.5 msaitoh }
906 1.5 msaitoh }
907 1.5 msaitoh
908 1.5 msaitoh return IXGBE_SUCCESS;
909 1.5 msaitoh }
910 1.5 msaitoh
911 1.5 msaitoh /**
912 1.5 msaitoh * ixgbe_get_pba_block_size
913 1.5 msaitoh * @hw: pointer to the HW structure
914 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
915 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
916 1.5 msaitoh * @pba_data_size: pointer to output variable
917 1.5 msaitoh *
918 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
919 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
920 1.5 msaitoh * EEPROM device.
921 1.5 msaitoh *
922 1.5 msaitoh **/
923 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
924 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
925 1.5 msaitoh {
926 1.5 msaitoh s32 ret_val;
927 1.5 msaitoh u16 pba_word[2];
928 1.5 msaitoh u16 length;
929 1.5 msaitoh
930 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
931 1.5 msaitoh
932 1.5 msaitoh if (eeprom_buf == NULL) {
933 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
934 1.5 msaitoh &pba_word[0]);
935 1.5 msaitoh if (ret_val)
936 1.5 msaitoh return ret_val;
937 1.5 msaitoh } else {
938 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
939 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
940 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
941 1.5 msaitoh } else {
942 1.5 msaitoh return IXGBE_ERR_PARAM;
943 1.5 msaitoh }
944 1.5 msaitoh }
945 1.5 msaitoh
946 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
947 1.5 msaitoh if (eeprom_buf == NULL) {
948 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
949 1.5 msaitoh &length);
950 1.5 msaitoh if (ret_val)
951 1.5 msaitoh return ret_val;
952 1.5 msaitoh } else {
953 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
954 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
955 1.5 msaitoh else
956 1.5 msaitoh return IXGBE_ERR_PARAM;
957 1.5 msaitoh }
958 1.5 msaitoh
959 1.5 msaitoh if (length == 0xFFFF || length == 0)
960 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
961 1.5 msaitoh } else {
962 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
963 1.5 msaitoh length = 0;
964 1.5 msaitoh }
965 1.5 msaitoh
966 1.5 msaitoh if (pba_block_size != NULL)
967 1.5 msaitoh *pba_block_size = length;
968 1.5 msaitoh
969 1.5 msaitoh return IXGBE_SUCCESS;
970 1.5 msaitoh }
971 1.5 msaitoh
972 1.5 msaitoh /**
973 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
974 1.1 dyoung * @hw: pointer to hardware structure
975 1.1 dyoung * @mac_addr: Adapter MAC address
976 1.1 dyoung *
977 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
978 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
979 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
980 1.1 dyoung **/
981 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
982 1.1 dyoung {
983 1.1 dyoung u32 rar_high;
984 1.1 dyoung u32 rar_low;
985 1.1 dyoung u16 i;
986 1.1 dyoung
987 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
988 1.1 dyoung
989 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
990 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
991 1.1 dyoung
992 1.1 dyoung for (i = 0; i < 4; i++)
993 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
994 1.1 dyoung
995 1.1 dyoung for (i = 0; i < 2; i++)
996 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
997 1.1 dyoung
998 1.1 dyoung return IXGBE_SUCCESS;
999 1.1 dyoung }
1000 1.1 dyoung
1001 1.1 dyoung /**
1002 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1003 1.1 dyoung * @hw: pointer to hardware structure
1004 1.6 msaitoh * @link_status: the link status returned by the PCI config space
1005 1.1 dyoung *
1006 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1007 1.1 dyoung **/
1008 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1009 1.1 dyoung {
1010 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1011 1.1 dyoung
1012 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1013 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1014 1.1 dyoung
1015 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1016 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1017 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1018 1.1 dyoung break;
1019 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1020 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1021 1.1 dyoung break;
1022 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1023 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1024 1.1 dyoung break;
1025 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1026 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1027 1.1 dyoung break;
1028 1.1 dyoung default:
1029 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1030 1.1 dyoung break;
1031 1.1 dyoung }
1032 1.1 dyoung
1033 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1034 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1035 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1036 1.1 dyoung break;
1037 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1038 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1039 1.1 dyoung break;
1040 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1041 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1042 1.4 msaitoh break;
1043 1.1 dyoung default:
1044 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1045 1.1 dyoung break;
1046 1.1 dyoung }
1047 1.1 dyoung
1048 1.1 dyoung mac->ops.set_lan_id(hw);
1049 1.6 msaitoh }
1050 1.6 msaitoh
1051 1.6 msaitoh /**
1052 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1053 1.6 msaitoh * @hw: pointer to hardware structure
1054 1.6 msaitoh *
1055 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1056 1.6 msaitoh * store this data within the ixgbe_hw structure.
1057 1.6 msaitoh **/
1058 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1059 1.6 msaitoh {
1060 1.6 msaitoh u16 link_status;
1061 1.6 msaitoh
1062 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1063 1.6 msaitoh
1064 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1065 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1066 1.6 msaitoh
1067 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1068 1.1 dyoung
1069 1.1 dyoung return IXGBE_SUCCESS;
1070 1.1 dyoung }
1071 1.1 dyoung
1072 1.1 dyoung /**
1073 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1074 1.1 dyoung * @hw: pointer to the HW structure
1075 1.1 dyoung *
1076 1.14 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1077 1.14 msaitoh * the port value if requested, and set MAC instance for devices that share
1078 1.14 msaitoh * CS4227.
1079 1.1 dyoung **/
1080 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1081 1.1 dyoung {
1082 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1083 1.1 dyoung u32 reg;
1084 1.14 msaitoh u16 ee_ctrl_4;
1085 1.1 dyoung
1086 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1087 1.1 dyoung
1088 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1089 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1090 1.14 msaitoh bus->lan_id = (u8)bus->func;
1091 1.1 dyoung
1092 1.1 dyoung /* check for a port swap */
1093 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1094 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1095 1.1 dyoung bus->func ^= 0x1;
1096 1.14 msaitoh
1097 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1098 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1099 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1100 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1101 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1102 1.14 msaitoh }
1103 1.1 dyoung }
1104 1.1 dyoung
1105 1.1 dyoung /**
1106 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1107 1.1 dyoung * @hw: pointer to hardware structure
1108 1.1 dyoung *
1109 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1110 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1111 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1112 1.1 dyoung * state and should not touch the hardware.
1113 1.1 dyoung **/
1114 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1115 1.1 dyoung {
1116 1.1 dyoung u32 reg_val;
1117 1.1 dyoung u16 i;
1118 1.1 dyoung
1119 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1120 1.1 dyoung
1121 1.1 dyoung /*
1122 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1123 1.1 dyoung * the hardware
1124 1.1 dyoung */
1125 1.1 dyoung hw->adapter_stopped = TRUE;
1126 1.1 dyoung
1127 1.1 dyoung /* Disable the receive unit */
1128 1.8 msaitoh ixgbe_disable_rx(hw);
1129 1.1 dyoung
1130 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1131 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1132 1.1 dyoung
1133 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1134 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1135 1.1 dyoung
1136 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1137 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1138 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1139 1.3 msaitoh
1140 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1141 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1142 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1143 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1144 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1145 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1146 1.1 dyoung }
1147 1.1 dyoung
1148 1.3 msaitoh /* flush all queues disables */
1149 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1150 1.3 msaitoh msec_delay(2);
1151 1.3 msaitoh
1152 1.1 dyoung /*
1153 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1154 1.1 dyoung * access and verify no pending requests
1155 1.1 dyoung */
1156 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1157 1.1 dyoung }
1158 1.1 dyoung
1159 1.1 dyoung /**
1160 1.14 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1161 1.14 msaitoh * @hw: pointer to hardware structure
1162 1.14 msaitoh *
1163 1.14 msaitoh * Store the index for the link active LED. This will be used to support
1164 1.14 msaitoh * blinking the LED.
1165 1.14 msaitoh **/
1166 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1167 1.14 msaitoh {
1168 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1169 1.14 msaitoh u32 led_reg, led_mode;
1170 1.14 msaitoh u8 i;
1171 1.14 msaitoh
1172 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1173 1.14 msaitoh
1174 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1175 1.14 msaitoh for (i = 0; i < 4; i++) {
1176 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1177 1.14 msaitoh
1178 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1179 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1180 1.14 msaitoh mac->led_link_act = i;
1181 1.14 msaitoh return IXGBE_SUCCESS;
1182 1.14 msaitoh }
1183 1.14 msaitoh }
1184 1.14 msaitoh
1185 1.14 msaitoh /*
1186 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1187 1.14 msaitoh * known MAC defaults.
1188 1.14 msaitoh */
1189 1.14 msaitoh switch (hw->mac.type) {
1190 1.14 msaitoh case ixgbe_mac_X550EM_a:
1191 1.14 msaitoh case ixgbe_mac_X550EM_x:
1192 1.14 msaitoh mac->led_link_act = 1;
1193 1.14 msaitoh break;
1194 1.14 msaitoh default:
1195 1.14 msaitoh mac->led_link_act = 2;
1196 1.14 msaitoh }
1197 1.14 msaitoh return IXGBE_SUCCESS;
1198 1.14 msaitoh }
1199 1.14 msaitoh
1200 1.14 msaitoh /**
1201 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1202 1.1 dyoung * @hw: pointer to hardware structure
1203 1.1 dyoung * @index: led number to turn on
1204 1.1 dyoung **/
1205 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1206 1.1 dyoung {
1207 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1208 1.1 dyoung
1209 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1210 1.1 dyoung
1211 1.14 msaitoh if (index > 3)
1212 1.14 msaitoh return IXGBE_ERR_PARAM;
1213 1.14 msaitoh
1214 1.1 dyoung /* To turn on the LED, set mode to ON. */
1215 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1216 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1217 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1218 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1219 1.1 dyoung
1220 1.1 dyoung return IXGBE_SUCCESS;
1221 1.1 dyoung }
1222 1.1 dyoung
1223 1.1 dyoung /**
1224 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1225 1.1 dyoung * @hw: pointer to hardware structure
1226 1.1 dyoung * @index: led number to turn off
1227 1.1 dyoung **/
1228 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1229 1.1 dyoung {
1230 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1231 1.1 dyoung
1232 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1233 1.1 dyoung
1234 1.14 msaitoh if (index > 3)
1235 1.14 msaitoh return IXGBE_ERR_PARAM;
1236 1.14 msaitoh
1237 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1238 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1239 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1240 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1241 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1242 1.1 dyoung
1243 1.1 dyoung return IXGBE_SUCCESS;
1244 1.1 dyoung }
1245 1.1 dyoung
1246 1.1 dyoung /**
1247 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1248 1.1 dyoung * @hw: pointer to hardware structure
1249 1.1 dyoung *
1250 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1251 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1252 1.1 dyoung **/
1253 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1254 1.1 dyoung {
1255 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1256 1.1 dyoung u32 eec;
1257 1.1 dyoung u16 eeprom_size;
1258 1.1 dyoung
1259 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1260 1.1 dyoung
1261 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1262 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1263 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1264 1.1 dyoung * tested value */
1265 1.1 dyoung eeprom->semaphore_delay = 10;
1266 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1267 1.3 msaitoh eeprom->word_page_size = 0;
1268 1.1 dyoung
1269 1.1 dyoung /*
1270 1.1 dyoung * Check for EEPROM present first.
1271 1.1 dyoung * If not present leave as none
1272 1.1 dyoung */
1273 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1274 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1275 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1276 1.1 dyoung
1277 1.1 dyoung /*
1278 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1279 1.1 dyoung * change if a future EEPROM is not SPI.
1280 1.1 dyoung */
1281 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1282 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1283 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1284 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1285 1.1 dyoung }
1286 1.1 dyoung
1287 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1288 1.1 dyoung eeprom->address_bits = 16;
1289 1.1 dyoung else
1290 1.1 dyoung eeprom->address_bits = 8;
1291 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1292 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1293 1.3 msaitoh eeprom->address_bits);
1294 1.1 dyoung }
1295 1.1 dyoung
1296 1.1 dyoung return IXGBE_SUCCESS;
1297 1.1 dyoung }
1298 1.1 dyoung
1299 1.1 dyoung /**
1300 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1301 1.3 msaitoh * @hw: pointer to hardware structure
1302 1.3 msaitoh * @offset: offset within the EEPROM to write
1303 1.3 msaitoh * @words: number of word(s)
1304 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1305 1.3 msaitoh *
1306 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1307 1.3 msaitoh **/
1308 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1309 1.3 msaitoh u16 words, u16 *data)
1310 1.3 msaitoh {
1311 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1312 1.3 msaitoh u16 i, count;
1313 1.3 msaitoh
1314 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1315 1.3 msaitoh
1316 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1317 1.3 msaitoh
1318 1.3 msaitoh if (words == 0) {
1319 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1320 1.3 msaitoh goto out;
1321 1.3 msaitoh }
1322 1.3 msaitoh
1323 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1324 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1325 1.3 msaitoh goto out;
1326 1.3 msaitoh }
1327 1.3 msaitoh
1328 1.3 msaitoh /*
1329 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1330 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1331 1.3 msaitoh */
1332 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1333 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1334 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1335 1.3 msaitoh
1336 1.3 msaitoh /*
1337 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1338 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1339 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1340 1.3 msaitoh */
1341 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1342 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1343 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1344 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1345 1.3 msaitoh count, &data[i]);
1346 1.3 msaitoh
1347 1.3 msaitoh if (status != IXGBE_SUCCESS)
1348 1.3 msaitoh break;
1349 1.3 msaitoh }
1350 1.3 msaitoh
1351 1.3 msaitoh out:
1352 1.3 msaitoh return status;
1353 1.3 msaitoh }
1354 1.3 msaitoh
1355 1.3 msaitoh /**
1356 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1357 1.3 msaitoh * @hw: pointer to hardware structure
1358 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1359 1.3 msaitoh * @words: number of word(s)
1360 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1361 1.3 msaitoh *
1362 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1363 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1364 1.3 msaitoh **/
1365 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1366 1.3 msaitoh u16 words, u16 *data)
1367 1.3 msaitoh {
1368 1.3 msaitoh s32 status;
1369 1.3 msaitoh u16 word;
1370 1.3 msaitoh u16 page_size;
1371 1.3 msaitoh u16 i;
1372 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1373 1.3 msaitoh
1374 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1375 1.3 msaitoh
1376 1.3 msaitoh /* Prepare the EEPROM for writing */
1377 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1378 1.3 msaitoh
1379 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1380 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1381 1.3 msaitoh ixgbe_release_eeprom(hw);
1382 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1383 1.3 msaitoh }
1384 1.3 msaitoh }
1385 1.3 msaitoh
1386 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1387 1.3 msaitoh for (i = 0; i < words; i++) {
1388 1.3 msaitoh ixgbe_standby_eeprom(hw);
1389 1.3 msaitoh
1390 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1391 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1392 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1393 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1394 1.3 msaitoh
1395 1.3 msaitoh ixgbe_standby_eeprom(hw);
1396 1.3 msaitoh
1397 1.3 msaitoh /*
1398 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1399 1.3 msaitoh * in the opcode
1400 1.3 msaitoh */
1401 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1402 1.3 msaitoh ((offset + i) >= 128))
1403 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1404 1.3 msaitoh
1405 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1406 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1407 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1408 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1409 1.3 msaitoh hw->eeprom.address_bits);
1410 1.3 msaitoh
1411 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1412 1.3 msaitoh
1413 1.3 msaitoh /* Send the data in burst via SPI*/
1414 1.3 msaitoh do {
1415 1.3 msaitoh word = data[i];
1416 1.3 msaitoh word = (word >> 8) | (word << 8);
1417 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1418 1.3 msaitoh
1419 1.3 msaitoh if (page_size == 0)
1420 1.3 msaitoh break;
1421 1.3 msaitoh
1422 1.3 msaitoh /* do not wrap around page */
1423 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1424 1.3 msaitoh (page_size - 1))
1425 1.3 msaitoh break;
1426 1.3 msaitoh } while (++i < words);
1427 1.3 msaitoh
1428 1.3 msaitoh ixgbe_standby_eeprom(hw);
1429 1.3 msaitoh msec_delay(10);
1430 1.3 msaitoh }
1431 1.3 msaitoh /* Done with writing - release the EEPROM */
1432 1.3 msaitoh ixgbe_release_eeprom(hw);
1433 1.3 msaitoh }
1434 1.3 msaitoh
1435 1.3 msaitoh return status;
1436 1.3 msaitoh }
1437 1.3 msaitoh
1438 1.3 msaitoh /**
1439 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1440 1.1 dyoung * @hw: pointer to hardware structure
1441 1.1 dyoung * @offset: offset within the EEPROM to be written to
1442 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1443 1.1 dyoung *
1444 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1445 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1446 1.1 dyoung **/
1447 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1448 1.1 dyoung {
1449 1.1 dyoung s32 status;
1450 1.1 dyoung
1451 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1452 1.1 dyoung
1453 1.1 dyoung hw->eeprom.ops.init_params(hw);
1454 1.1 dyoung
1455 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1456 1.1 dyoung status = IXGBE_ERR_EEPROM;
1457 1.1 dyoung goto out;
1458 1.1 dyoung }
1459 1.1 dyoung
1460 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1461 1.3 msaitoh
1462 1.3 msaitoh out:
1463 1.3 msaitoh return status;
1464 1.3 msaitoh }
1465 1.3 msaitoh
1466 1.3 msaitoh /**
1467 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1468 1.3 msaitoh * @hw: pointer to hardware structure
1469 1.3 msaitoh * @offset: offset within the EEPROM to be read
1470 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1471 1.3 msaitoh * @words: number of word(s)
1472 1.3 msaitoh *
1473 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1474 1.3 msaitoh **/
1475 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1476 1.3 msaitoh u16 words, u16 *data)
1477 1.3 msaitoh {
1478 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1479 1.3 msaitoh u16 i, count;
1480 1.3 msaitoh
1481 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1482 1.3 msaitoh
1483 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1484 1.3 msaitoh
1485 1.3 msaitoh if (words == 0) {
1486 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1487 1.3 msaitoh goto out;
1488 1.3 msaitoh }
1489 1.3 msaitoh
1490 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1491 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1492 1.3 msaitoh goto out;
1493 1.3 msaitoh }
1494 1.3 msaitoh
1495 1.3 msaitoh /*
1496 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1497 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1498 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1499 1.3 msaitoh */
1500 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1501 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1502 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1503 1.3 msaitoh
1504 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1505 1.3 msaitoh count, &data[i]);
1506 1.3 msaitoh
1507 1.3 msaitoh if (status != IXGBE_SUCCESS)
1508 1.3 msaitoh break;
1509 1.3 msaitoh }
1510 1.3 msaitoh
1511 1.3 msaitoh out:
1512 1.3 msaitoh return status;
1513 1.3 msaitoh }
1514 1.3 msaitoh
1515 1.3 msaitoh /**
1516 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1517 1.3 msaitoh * @hw: pointer to hardware structure
1518 1.3 msaitoh * @offset: offset within the EEPROM to be read
1519 1.3 msaitoh * @words: number of word(s)
1520 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1521 1.3 msaitoh *
1522 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1523 1.3 msaitoh **/
1524 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1525 1.3 msaitoh u16 words, u16 *data)
1526 1.3 msaitoh {
1527 1.3 msaitoh s32 status;
1528 1.3 msaitoh u16 word_in;
1529 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1530 1.3 msaitoh u16 i;
1531 1.3 msaitoh
1532 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1533 1.3 msaitoh
1534 1.3 msaitoh /* Prepare the EEPROM for reading */
1535 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1536 1.1 dyoung
1537 1.1 dyoung if (status == IXGBE_SUCCESS) {
1538 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1539 1.1 dyoung ixgbe_release_eeprom(hw);
1540 1.1 dyoung status = IXGBE_ERR_EEPROM;
1541 1.1 dyoung }
1542 1.1 dyoung }
1543 1.1 dyoung
1544 1.1 dyoung if (status == IXGBE_SUCCESS) {
1545 1.3 msaitoh for (i = 0; i < words; i++) {
1546 1.3 msaitoh ixgbe_standby_eeprom(hw);
1547 1.3 msaitoh /*
1548 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1549 1.3 msaitoh * in the opcode
1550 1.3 msaitoh */
1551 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1552 1.3 msaitoh ((offset + i) >= 128))
1553 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1554 1.3 msaitoh
1555 1.3 msaitoh /* Send the READ command (opcode + addr) */
1556 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1557 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1558 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1559 1.3 msaitoh hw->eeprom.address_bits);
1560 1.3 msaitoh
1561 1.3 msaitoh /* Read the data. */
1562 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1563 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1564 1.3 msaitoh }
1565 1.1 dyoung
1566 1.3 msaitoh /* End this read operation */
1567 1.1 dyoung ixgbe_release_eeprom(hw);
1568 1.1 dyoung }
1569 1.1 dyoung
1570 1.1 dyoung return status;
1571 1.1 dyoung }
1572 1.1 dyoung
1573 1.1 dyoung /**
1574 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1575 1.1 dyoung * @hw: pointer to hardware structure
1576 1.1 dyoung * @offset: offset within the EEPROM to be read
1577 1.1 dyoung * @data: read 16 bit value from EEPROM
1578 1.1 dyoung *
1579 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1580 1.1 dyoung **/
1581 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1582 1.3 msaitoh u16 *data)
1583 1.1 dyoung {
1584 1.1 dyoung s32 status;
1585 1.1 dyoung
1586 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1587 1.1 dyoung
1588 1.1 dyoung hw->eeprom.ops.init_params(hw);
1589 1.1 dyoung
1590 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1591 1.1 dyoung status = IXGBE_ERR_EEPROM;
1592 1.1 dyoung goto out;
1593 1.1 dyoung }
1594 1.1 dyoung
1595 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1596 1.3 msaitoh
1597 1.3 msaitoh out:
1598 1.3 msaitoh return status;
1599 1.3 msaitoh }
1600 1.3 msaitoh
1601 1.3 msaitoh /**
1602 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1603 1.3 msaitoh * @hw: pointer to hardware structure
1604 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1605 1.3 msaitoh * @words: number of word(s)
1606 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1607 1.3 msaitoh *
1608 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1609 1.3 msaitoh **/
1610 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1611 1.3 msaitoh u16 words, u16 *data)
1612 1.3 msaitoh {
1613 1.3 msaitoh u32 eerd;
1614 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1615 1.3 msaitoh u32 i;
1616 1.3 msaitoh
1617 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1618 1.3 msaitoh
1619 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1620 1.3 msaitoh
1621 1.3 msaitoh if (words == 0) {
1622 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1623 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1624 1.3 msaitoh goto out;
1625 1.3 msaitoh }
1626 1.3 msaitoh
1627 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1628 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1629 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1630 1.3 msaitoh goto out;
1631 1.3 msaitoh }
1632 1.3 msaitoh
1633 1.3 msaitoh for (i = 0; i < words; i++) {
1634 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1635 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1636 1.3 msaitoh
1637 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1638 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1639 1.1 dyoung
1640 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1641 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1642 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1643 1.3 msaitoh } else {
1644 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1645 1.3 msaitoh goto out;
1646 1.1 dyoung }
1647 1.1 dyoung }
1648 1.3 msaitoh out:
1649 1.3 msaitoh return status;
1650 1.3 msaitoh }
1651 1.1 dyoung
1652 1.3 msaitoh /**
1653 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1654 1.3 msaitoh * @hw: pointer to hardware structure
1655 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1656 1.3 msaitoh *
1657 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1658 1.3 msaitoh * This function is called only when we are writing a new large buffer
1659 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1660 1.3 msaitoh **/
1661 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1662 1.3 msaitoh u16 offset)
1663 1.3 msaitoh {
1664 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1665 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1666 1.3 msaitoh u16 i;
1667 1.3 msaitoh
1668 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1669 1.3 msaitoh
1670 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1671 1.3 msaitoh data[i] = i;
1672 1.1 dyoung
1673 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1674 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1675 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1676 1.3 msaitoh hw->eeprom.word_page_size = 0;
1677 1.3 msaitoh if (status != IXGBE_SUCCESS)
1678 1.3 msaitoh goto out;
1679 1.1 dyoung
1680 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1681 1.3 msaitoh if (status != IXGBE_SUCCESS)
1682 1.3 msaitoh goto out;
1683 1.1 dyoung
1684 1.3 msaitoh /*
1685 1.3 msaitoh * When writing in burst more than the actual page size
1686 1.3 msaitoh * EEPROM address wraps around current page.
1687 1.3 msaitoh */
1688 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1689 1.1 dyoung
1690 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1691 1.3 msaitoh hw->eeprom.word_page_size);
1692 1.1 dyoung out:
1693 1.1 dyoung return status;
1694 1.1 dyoung }
1695 1.1 dyoung
1696 1.1 dyoung /**
1697 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1698 1.1 dyoung * @hw: pointer to hardware structure
1699 1.1 dyoung * @offset: offset of word in the EEPROM to read
1700 1.1 dyoung * @data: word read from the EEPROM
1701 1.1 dyoung *
1702 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1703 1.1 dyoung **/
1704 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1705 1.1 dyoung {
1706 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1707 1.3 msaitoh }
1708 1.3 msaitoh
1709 1.3 msaitoh /**
1710 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1711 1.3 msaitoh * @hw: pointer to hardware structure
1712 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1713 1.3 msaitoh * @words: number of word(s)
1714 1.3 msaitoh * @data: word(s) write to the EEPROM
1715 1.3 msaitoh *
1716 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1717 1.3 msaitoh **/
1718 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1719 1.3 msaitoh u16 words, u16 *data)
1720 1.3 msaitoh {
1721 1.3 msaitoh u32 eewr;
1722 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1723 1.3 msaitoh u16 i;
1724 1.1 dyoung
1725 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1726 1.1 dyoung
1727 1.1 dyoung hw->eeprom.ops.init_params(hw);
1728 1.1 dyoung
1729 1.3 msaitoh if (words == 0) {
1730 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1731 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1732 1.3 msaitoh goto out;
1733 1.3 msaitoh }
1734 1.3 msaitoh
1735 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1736 1.1 dyoung status = IXGBE_ERR_EEPROM;
1737 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1738 1.1 dyoung goto out;
1739 1.1 dyoung }
1740 1.1 dyoung
1741 1.3 msaitoh for (i = 0; i < words; i++) {
1742 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1743 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1744 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1745 1.3 msaitoh
1746 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1747 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1748 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1749 1.3 msaitoh goto out;
1750 1.3 msaitoh }
1751 1.1 dyoung
1752 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1753 1.1 dyoung
1754 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1755 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1756 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1757 1.3 msaitoh goto out;
1758 1.3 msaitoh }
1759 1.3 msaitoh }
1760 1.1 dyoung
1761 1.1 dyoung out:
1762 1.1 dyoung return status;
1763 1.1 dyoung }
1764 1.1 dyoung
1765 1.1 dyoung /**
1766 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1767 1.1 dyoung * @hw: pointer to hardware structure
1768 1.1 dyoung * @offset: offset of word in the EEPROM to write
1769 1.1 dyoung * @data: word write to the EEPROM
1770 1.1 dyoung *
1771 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1772 1.1 dyoung **/
1773 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1774 1.1 dyoung {
1775 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1776 1.1 dyoung }
1777 1.1 dyoung
1778 1.1 dyoung /**
1779 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1780 1.1 dyoung * @hw: pointer to hardware structure
1781 1.1 dyoung * @ee_reg: EEPROM flag for polling
1782 1.1 dyoung *
1783 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1784 1.1 dyoung * read or write is done respectively.
1785 1.1 dyoung **/
1786 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1787 1.1 dyoung {
1788 1.1 dyoung u32 i;
1789 1.1 dyoung u32 reg;
1790 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1791 1.1 dyoung
1792 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1793 1.1 dyoung
1794 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1795 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1796 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1797 1.1 dyoung else
1798 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1799 1.1 dyoung
1800 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1801 1.1 dyoung status = IXGBE_SUCCESS;
1802 1.1 dyoung break;
1803 1.1 dyoung }
1804 1.1 dyoung usec_delay(5);
1805 1.1 dyoung }
1806 1.6 msaitoh
1807 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1808 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1809 1.6 msaitoh "EEPROM read/write done polling timed out");
1810 1.6 msaitoh
1811 1.1 dyoung return status;
1812 1.1 dyoung }
1813 1.1 dyoung
1814 1.1 dyoung /**
1815 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1816 1.1 dyoung * @hw: pointer to hardware structure
1817 1.1 dyoung *
1818 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1819 1.1 dyoung * be called before issuing a command to the EEPROM.
1820 1.1 dyoung **/
1821 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1822 1.1 dyoung {
1823 1.1 dyoung s32 status = IXGBE_SUCCESS;
1824 1.1 dyoung u32 eec;
1825 1.1 dyoung u32 i;
1826 1.1 dyoung
1827 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1828 1.1 dyoung
1829 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1830 1.3 msaitoh != IXGBE_SUCCESS)
1831 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1832 1.1 dyoung
1833 1.1 dyoung if (status == IXGBE_SUCCESS) {
1834 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1835 1.1 dyoung
1836 1.1 dyoung /* Request EEPROM Access */
1837 1.1 dyoung eec |= IXGBE_EEC_REQ;
1838 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1839 1.1 dyoung
1840 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1841 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1842 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1843 1.1 dyoung break;
1844 1.1 dyoung usec_delay(5);
1845 1.1 dyoung }
1846 1.1 dyoung
1847 1.1 dyoung /* Release if grant not acquired */
1848 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1849 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1850 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1851 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1852 1.1 dyoung
1853 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1854 1.1 dyoung status = IXGBE_ERR_EEPROM;
1855 1.1 dyoung }
1856 1.1 dyoung
1857 1.1 dyoung /* Setup EEPROM for Read/Write */
1858 1.1 dyoung if (status == IXGBE_SUCCESS) {
1859 1.1 dyoung /* Clear CS and SK */
1860 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1861 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1862 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1863 1.1 dyoung usec_delay(1);
1864 1.1 dyoung }
1865 1.1 dyoung }
1866 1.1 dyoung return status;
1867 1.1 dyoung }
1868 1.1 dyoung
1869 1.1 dyoung /**
1870 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1871 1.1 dyoung * @hw: pointer to hardware structure
1872 1.1 dyoung *
1873 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1874 1.1 dyoung **/
1875 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1876 1.1 dyoung {
1877 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1878 1.1 dyoung u32 timeout = 2000;
1879 1.1 dyoung u32 i;
1880 1.1 dyoung u32 swsm;
1881 1.1 dyoung
1882 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1883 1.1 dyoung
1884 1.1 dyoung
1885 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1886 1.1 dyoung for (i = 0; i < timeout; i++) {
1887 1.1 dyoung /*
1888 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1889 1.1 dyoung * set and we have the semaphore
1890 1.1 dyoung */
1891 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1892 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1893 1.1 dyoung status = IXGBE_SUCCESS;
1894 1.1 dyoung break;
1895 1.1 dyoung }
1896 1.1 dyoung usec_delay(50);
1897 1.1 dyoung }
1898 1.1 dyoung
1899 1.3 msaitoh if (i == timeout) {
1900 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1901 1.3 msaitoh "not granted.\n");
1902 1.3 msaitoh /*
1903 1.3 msaitoh * this release is particularly important because our attempts
1904 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1905 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1906 1.3 msaitoh * bits to free the driver to make progress
1907 1.3 msaitoh */
1908 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1909 1.3 msaitoh
1910 1.3 msaitoh usec_delay(50);
1911 1.3 msaitoh /*
1912 1.3 msaitoh * one last try
1913 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1914 1.3 msaitoh * set and we have the semaphore
1915 1.3 msaitoh */
1916 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1917 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1918 1.3 msaitoh status = IXGBE_SUCCESS;
1919 1.3 msaitoh }
1920 1.3 msaitoh
1921 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1922 1.1 dyoung if (status == IXGBE_SUCCESS) {
1923 1.1 dyoung for (i = 0; i < timeout; i++) {
1924 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1925 1.1 dyoung
1926 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1927 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1928 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1929 1.1 dyoung
1930 1.1 dyoung /*
1931 1.1 dyoung * If we set the bit successfully then we got the
1932 1.1 dyoung * semaphore.
1933 1.1 dyoung */
1934 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1935 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1936 1.1 dyoung break;
1937 1.1 dyoung
1938 1.1 dyoung usec_delay(50);
1939 1.1 dyoung }
1940 1.1 dyoung
1941 1.1 dyoung /*
1942 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1943 1.1 dyoung * was not granted because we don't have access to the EEPROM
1944 1.1 dyoung */
1945 1.1 dyoung if (i >= timeout) {
1946 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1947 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1948 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1949 1.1 dyoung status = IXGBE_ERR_EEPROM;
1950 1.1 dyoung }
1951 1.1 dyoung } else {
1952 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1953 1.6 msaitoh "Software semaphore SMBI between device drivers "
1954 1.6 msaitoh "not granted.\n");
1955 1.1 dyoung }
1956 1.1 dyoung
1957 1.1 dyoung return status;
1958 1.1 dyoung }
1959 1.1 dyoung
1960 1.1 dyoung /**
1961 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1962 1.1 dyoung * @hw: pointer to hardware structure
1963 1.1 dyoung *
1964 1.1 dyoung * This function clears hardware semaphore bits.
1965 1.1 dyoung **/
1966 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1967 1.1 dyoung {
1968 1.1 dyoung u32 swsm;
1969 1.1 dyoung
1970 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1971 1.1 dyoung
1972 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1973 1.1 dyoung
1974 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1975 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1976 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1977 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1978 1.1 dyoung }
1979 1.1 dyoung
1980 1.1 dyoung /**
1981 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1982 1.1 dyoung * @hw: pointer to hardware structure
1983 1.1 dyoung **/
1984 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1985 1.1 dyoung {
1986 1.1 dyoung s32 status = IXGBE_SUCCESS;
1987 1.1 dyoung u16 i;
1988 1.1 dyoung u8 spi_stat_reg;
1989 1.1 dyoung
1990 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1991 1.1 dyoung
1992 1.1 dyoung /*
1993 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1994 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1995 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1996 1.1 dyoung * 5 milliseconds, then error out.
1997 1.1 dyoung */
1998 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1999 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2000 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2001 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2002 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2003 1.1 dyoung break;
2004 1.1 dyoung
2005 1.1 dyoung usec_delay(5);
2006 1.1 dyoung ixgbe_standby_eeprom(hw);
2007 1.11 msaitoh }
2008 1.1 dyoung
2009 1.1 dyoung /*
2010 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2011 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2012 1.1 dyoung */
2013 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2014 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2015 1.1 dyoung status = IXGBE_ERR_EEPROM;
2016 1.1 dyoung }
2017 1.1 dyoung
2018 1.1 dyoung return status;
2019 1.1 dyoung }
2020 1.1 dyoung
2021 1.1 dyoung /**
2022 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2023 1.1 dyoung * @hw: pointer to hardware structure
2024 1.1 dyoung **/
2025 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2026 1.1 dyoung {
2027 1.1 dyoung u32 eec;
2028 1.1 dyoung
2029 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2030 1.1 dyoung
2031 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2032 1.1 dyoung
2033 1.1 dyoung /* Toggle CS to flush commands */
2034 1.1 dyoung eec |= IXGBE_EEC_CS;
2035 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2037 1.1 dyoung usec_delay(1);
2038 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2039 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2040 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2041 1.1 dyoung usec_delay(1);
2042 1.1 dyoung }
2043 1.1 dyoung
2044 1.1 dyoung /**
2045 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2046 1.1 dyoung * @hw: pointer to hardware structure
2047 1.1 dyoung * @data: data to send to the EEPROM
2048 1.1 dyoung * @count: number of bits to shift out
2049 1.1 dyoung **/
2050 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2051 1.3 msaitoh u16 count)
2052 1.1 dyoung {
2053 1.1 dyoung u32 eec;
2054 1.1 dyoung u32 mask;
2055 1.1 dyoung u32 i;
2056 1.1 dyoung
2057 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2058 1.1 dyoung
2059 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2060 1.1 dyoung
2061 1.1 dyoung /*
2062 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2063 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2064 1.1 dyoung */
2065 1.1 dyoung mask = 0x01 << (count - 1);
2066 1.1 dyoung
2067 1.1 dyoung for (i = 0; i < count; i++) {
2068 1.1 dyoung /*
2069 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2070 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2071 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2072 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2073 1.1 dyoung * raising and then lowering the clock.
2074 1.1 dyoung */
2075 1.1 dyoung if (data & mask)
2076 1.1 dyoung eec |= IXGBE_EEC_DI;
2077 1.1 dyoung else
2078 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2079 1.1 dyoung
2080 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2081 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2082 1.1 dyoung
2083 1.1 dyoung usec_delay(1);
2084 1.1 dyoung
2085 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2086 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2087 1.1 dyoung
2088 1.1 dyoung /*
2089 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2090 1.1 dyoung * EEPROM
2091 1.1 dyoung */
2092 1.1 dyoung mask = mask >> 1;
2093 1.11 msaitoh }
2094 1.1 dyoung
2095 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2096 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2097 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2098 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2099 1.1 dyoung }
2100 1.1 dyoung
2101 1.1 dyoung /**
2102 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2103 1.1 dyoung * @hw: pointer to hardware structure
2104 1.1 dyoung **/
2105 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2106 1.1 dyoung {
2107 1.1 dyoung u32 eec;
2108 1.1 dyoung u32 i;
2109 1.1 dyoung u16 data = 0;
2110 1.1 dyoung
2111 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2112 1.1 dyoung
2113 1.1 dyoung /*
2114 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2115 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2116 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2117 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2118 1.1 dyoung * "DI" bit should always be clear.
2119 1.1 dyoung */
2120 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2121 1.1 dyoung
2122 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2123 1.1 dyoung
2124 1.1 dyoung for (i = 0; i < count; i++) {
2125 1.1 dyoung data = data << 1;
2126 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2127 1.1 dyoung
2128 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2129 1.1 dyoung
2130 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2131 1.1 dyoung if (eec & IXGBE_EEC_DO)
2132 1.1 dyoung data |= 1;
2133 1.1 dyoung
2134 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2135 1.1 dyoung }
2136 1.1 dyoung
2137 1.1 dyoung return data;
2138 1.1 dyoung }
2139 1.1 dyoung
2140 1.1 dyoung /**
2141 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2142 1.1 dyoung * @hw: pointer to hardware structure
2143 1.1 dyoung * @eec: EEC register's current value
2144 1.1 dyoung **/
2145 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2146 1.1 dyoung {
2147 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2148 1.1 dyoung
2149 1.1 dyoung /*
2150 1.1 dyoung * Raise the clock input to the EEPROM
2151 1.1 dyoung * (setting the SK bit), then delay
2152 1.1 dyoung */
2153 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2154 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2155 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2156 1.1 dyoung usec_delay(1);
2157 1.1 dyoung }
2158 1.1 dyoung
2159 1.1 dyoung /**
2160 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2161 1.1 dyoung * @hw: pointer to hardware structure
2162 1.1 dyoung * @eecd: EECD's current value
2163 1.1 dyoung **/
2164 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2165 1.1 dyoung {
2166 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2167 1.1 dyoung
2168 1.1 dyoung /*
2169 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2170 1.1 dyoung * delay
2171 1.1 dyoung */
2172 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2173 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2174 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2175 1.1 dyoung usec_delay(1);
2176 1.1 dyoung }
2177 1.1 dyoung
2178 1.1 dyoung /**
2179 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2180 1.1 dyoung * @hw: pointer to hardware structure
2181 1.1 dyoung **/
2182 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2183 1.1 dyoung {
2184 1.1 dyoung u32 eec;
2185 1.1 dyoung
2186 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2187 1.1 dyoung
2188 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2189 1.1 dyoung
2190 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2191 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2192 1.1 dyoung
2193 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2194 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2195 1.1 dyoung
2196 1.1 dyoung usec_delay(1);
2197 1.1 dyoung
2198 1.1 dyoung /* Stop requesting EEPROM access */
2199 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2200 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2201 1.1 dyoung
2202 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2203 1.1 dyoung
2204 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2205 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2206 1.1 dyoung }
2207 1.1 dyoung
2208 1.1 dyoung /**
2209 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2210 1.1 dyoung * @hw: pointer to hardware structure
2211 1.8 msaitoh *
2212 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2213 1.1 dyoung **/
2214 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2215 1.1 dyoung {
2216 1.1 dyoung u16 i;
2217 1.1 dyoung u16 j;
2218 1.1 dyoung u16 checksum = 0;
2219 1.1 dyoung u16 length = 0;
2220 1.1 dyoung u16 pointer = 0;
2221 1.1 dyoung u16 word = 0;
2222 1.1 dyoung
2223 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2224 1.1 dyoung
2225 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2226 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2227 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2228 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2229 1.8 msaitoh return IXGBE_ERR_EEPROM;
2230 1.1 dyoung }
2231 1.1 dyoung checksum += word;
2232 1.1 dyoung }
2233 1.1 dyoung
2234 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2235 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2236 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2237 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2238 1.8 msaitoh return IXGBE_ERR_EEPROM;
2239 1.8 msaitoh }
2240 1.8 msaitoh
2241 1.8 msaitoh /* If the pointer seems invalid */
2242 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2243 1.8 msaitoh continue;
2244 1.8 msaitoh
2245 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2246 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2247 1.8 msaitoh return IXGBE_ERR_EEPROM;
2248 1.8 msaitoh }
2249 1.8 msaitoh
2250 1.8 msaitoh if (length == 0xFFFF || length == 0)
2251 1.8 msaitoh continue;
2252 1.1 dyoung
2253 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2254 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2255 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2256 1.8 msaitoh return IXGBE_ERR_EEPROM;
2257 1.1 dyoung }
2258 1.8 msaitoh checksum += word;
2259 1.1 dyoung }
2260 1.1 dyoung }
2261 1.1 dyoung
2262 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2263 1.1 dyoung
2264 1.8 msaitoh return (s32)checksum;
2265 1.1 dyoung }
2266 1.1 dyoung
2267 1.1 dyoung /**
2268 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2269 1.1 dyoung * @hw: pointer to hardware structure
2270 1.1 dyoung * @checksum_val: calculated checksum
2271 1.1 dyoung *
2272 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2273 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2274 1.1 dyoung **/
2275 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2276 1.3 msaitoh u16 *checksum_val)
2277 1.1 dyoung {
2278 1.1 dyoung s32 status;
2279 1.1 dyoung u16 checksum;
2280 1.1 dyoung u16 read_checksum = 0;
2281 1.1 dyoung
2282 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2283 1.1 dyoung
2284 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2285 1.1 dyoung * not continue or we could be in for a very long wait while every
2286 1.1 dyoung * EEPROM read fails
2287 1.1 dyoung */
2288 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2289 1.8 msaitoh if (status) {
2290 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2291 1.8 msaitoh return status;
2292 1.8 msaitoh }
2293 1.1 dyoung
2294 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2295 1.8 msaitoh if (status < 0)
2296 1.8 msaitoh return status;
2297 1.1 dyoung
2298 1.8 msaitoh checksum = (u16)(status & 0xffff);
2299 1.1 dyoung
2300 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2301 1.8 msaitoh if (status) {
2302 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2303 1.8 msaitoh return status;
2304 1.1 dyoung }
2305 1.1 dyoung
2306 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2307 1.8 msaitoh * calculated checksum
2308 1.8 msaitoh */
2309 1.8 msaitoh if (read_checksum != checksum)
2310 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2311 1.8 msaitoh
2312 1.8 msaitoh /* If the user cares, return the calculated checksum */
2313 1.8 msaitoh if (checksum_val)
2314 1.8 msaitoh *checksum_val = checksum;
2315 1.8 msaitoh
2316 1.1 dyoung return status;
2317 1.1 dyoung }
2318 1.1 dyoung
2319 1.1 dyoung /**
2320 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2321 1.1 dyoung * @hw: pointer to hardware structure
2322 1.1 dyoung **/
2323 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2324 1.1 dyoung {
2325 1.1 dyoung s32 status;
2326 1.1 dyoung u16 checksum;
2327 1.1 dyoung
2328 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2329 1.1 dyoung
2330 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2331 1.1 dyoung * not continue or we could be in for a very long wait while every
2332 1.1 dyoung * EEPROM read fails
2333 1.1 dyoung */
2334 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2335 1.8 msaitoh if (status) {
2336 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2337 1.8 msaitoh return status;
2338 1.1 dyoung }
2339 1.1 dyoung
2340 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2341 1.8 msaitoh if (status < 0)
2342 1.8 msaitoh return status;
2343 1.8 msaitoh
2344 1.8 msaitoh checksum = (u16)(status & 0xffff);
2345 1.8 msaitoh
2346 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2347 1.8 msaitoh
2348 1.1 dyoung return status;
2349 1.1 dyoung }
2350 1.1 dyoung
2351 1.1 dyoung /**
2352 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2353 1.1 dyoung * @mac_addr: pointer to MAC address.
2354 1.1 dyoung *
2355 1.14 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2356 1.1 dyoung **/
2357 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2358 1.1 dyoung {
2359 1.1 dyoung s32 status = IXGBE_SUCCESS;
2360 1.1 dyoung
2361 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2362 1.1 dyoung
2363 1.1 dyoung /* Make sure it is not a multicast address */
2364 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2365 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2366 1.1 dyoung /* Not a broadcast address */
2367 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2368 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2369 1.1 dyoung /* Reject the zero address */
2370 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2371 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2372 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2373 1.1 dyoung }
2374 1.1 dyoung return status;
2375 1.1 dyoung }
2376 1.1 dyoung
2377 1.1 dyoung /**
2378 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2379 1.1 dyoung * @hw: pointer to hardware structure
2380 1.1 dyoung * @index: Receive address register to write
2381 1.1 dyoung * @addr: Address to put into receive address register
2382 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2383 1.1 dyoung * @enable_addr: set flag that address is active
2384 1.1 dyoung *
2385 1.1 dyoung * Puts an ethernet address into a receive address register.
2386 1.1 dyoung **/
2387 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2388 1.3 msaitoh u32 enable_addr)
2389 1.1 dyoung {
2390 1.1 dyoung u32 rar_low, rar_high;
2391 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2392 1.1 dyoung
2393 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2394 1.1 dyoung
2395 1.1 dyoung /* Make sure we are using a valid rar index range */
2396 1.1 dyoung if (index >= rar_entries) {
2397 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2398 1.6 msaitoh "RAR index %d is out of range.\n", index);
2399 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2400 1.1 dyoung }
2401 1.1 dyoung
2402 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2403 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2404 1.1 dyoung
2405 1.1 dyoung /*
2406 1.1 dyoung * HW expects these in little endian so we reverse the byte
2407 1.1 dyoung * order from network order (big endian) to little endian
2408 1.1 dyoung */
2409 1.1 dyoung rar_low = ((u32)addr[0] |
2410 1.3 msaitoh ((u32)addr[1] << 8) |
2411 1.3 msaitoh ((u32)addr[2] << 16) |
2412 1.3 msaitoh ((u32)addr[3] << 24));
2413 1.1 dyoung /*
2414 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2415 1.1 dyoung * so save everything except the lower 16 bits that hold part
2416 1.1 dyoung * of the address and the address valid bit.
2417 1.1 dyoung */
2418 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2419 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2420 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2421 1.1 dyoung
2422 1.1 dyoung if (enable_addr != 0)
2423 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2424 1.1 dyoung
2425 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2427 1.1 dyoung
2428 1.1 dyoung return IXGBE_SUCCESS;
2429 1.1 dyoung }
2430 1.1 dyoung
2431 1.1 dyoung /**
2432 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2433 1.1 dyoung * @hw: pointer to hardware structure
2434 1.1 dyoung * @index: Receive address register to write
2435 1.1 dyoung *
2436 1.1 dyoung * Clears an ethernet address from a receive address register.
2437 1.1 dyoung **/
2438 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2439 1.1 dyoung {
2440 1.1 dyoung u32 rar_high;
2441 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2442 1.1 dyoung
2443 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2444 1.1 dyoung
2445 1.1 dyoung /* Make sure we are using a valid rar index range */
2446 1.1 dyoung if (index >= rar_entries) {
2447 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2448 1.6 msaitoh "RAR index %d is out of range.\n", index);
2449 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2450 1.1 dyoung }
2451 1.1 dyoung
2452 1.1 dyoung /*
2453 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2454 1.1 dyoung * so save everything except the lower 16 bits that hold part
2455 1.1 dyoung * of the address and the address valid bit.
2456 1.1 dyoung */
2457 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2458 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2459 1.1 dyoung
2460 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2461 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2462 1.1 dyoung
2463 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2464 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2465 1.1 dyoung
2466 1.1 dyoung return IXGBE_SUCCESS;
2467 1.1 dyoung }
2468 1.1 dyoung
2469 1.1 dyoung /**
2470 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2471 1.1 dyoung * @hw: pointer to hardware structure
2472 1.1 dyoung *
2473 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2474 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2475 1.1 dyoung * the receiver is in reset when the routine is called.
2476 1.1 dyoung **/
2477 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2478 1.1 dyoung {
2479 1.1 dyoung u32 i;
2480 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2481 1.1 dyoung
2482 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2483 1.1 dyoung
2484 1.1 dyoung /*
2485 1.1 dyoung * If the current mac address is valid, assume it is a software override
2486 1.1 dyoung * to the permanent address.
2487 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2488 1.1 dyoung */
2489 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2490 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2491 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2492 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2493 1.1 dyoung
2494 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2495 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2496 1.3 msaitoh hw->mac.addr[2]);
2497 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2498 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2499 1.1 dyoung } else {
2500 1.1 dyoung /* Setup the receive address. */
2501 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2502 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2503 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2504 1.3 msaitoh hw->mac.addr[2]);
2505 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2506 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2507 1.1 dyoung
2508 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2509 1.14 msaitoh }
2510 1.14 msaitoh
2511 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2512 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2513 1.1 dyoung
2514 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2515 1.1 dyoung
2516 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2517 1.1 dyoung
2518 1.1 dyoung /* Zero out the other receive addresses. */
2519 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2520 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2521 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2522 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2523 1.1 dyoung }
2524 1.1 dyoung
2525 1.1 dyoung /* Clear the MTA */
2526 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2527 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2528 1.1 dyoung
2529 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2530 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2531 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2532 1.1 dyoung
2533 1.1 dyoung ixgbe_init_uta_tables(hw);
2534 1.1 dyoung
2535 1.1 dyoung return IXGBE_SUCCESS;
2536 1.1 dyoung }
2537 1.1 dyoung
2538 1.1 dyoung /**
2539 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2540 1.1 dyoung * @hw: pointer to hardware structure
2541 1.1 dyoung * @addr: new address
2542 1.1 dyoung *
2543 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2544 1.1 dyoung **/
2545 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2546 1.1 dyoung {
2547 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2548 1.1 dyoung u32 rar;
2549 1.1 dyoung
2550 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2551 1.1 dyoung
2552 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2553 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2554 1.1 dyoung
2555 1.1 dyoung /*
2556 1.1 dyoung * Place this address in the RAR if there is room,
2557 1.1 dyoung * else put the controller into promiscuous mode
2558 1.1 dyoung */
2559 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2560 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2561 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2562 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2563 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2564 1.1 dyoung } else {
2565 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2566 1.1 dyoung }
2567 1.1 dyoung
2568 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2569 1.1 dyoung }
2570 1.1 dyoung
2571 1.1 dyoung /**
2572 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2573 1.1 dyoung * @hw: pointer to hardware structure
2574 1.1 dyoung * @addr_list: the list of new addresses
2575 1.1 dyoung * @addr_count: number of addresses
2576 1.1 dyoung * @next: iterator function to walk the address list
2577 1.1 dyoung *
2578 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2579 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2580 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2581 1.1 dyoung *
2582 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2583 1.1 dyoung * manually putting the device into promiscuous mode.
2584 1.1 dyoung **/
2585 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2586 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2587 1.1 dyoung {
2588 1.1 dyoung u8 *addr;
2589 1.1 dyoung u32 i;
2590 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2591 1.1 dyoung u32 uc_addr_in_use;
2592 1.1 dyoung u32 fctrl;
2593 1.1 dyoung u32 vmdq;
2594 1.1 dyoung
2595 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2596 1.1 dyoung
2597 1.1 dyoung /*
2598 1.1 dyoung * Clear accounting of old secondary address list,
2599 1.1 dyoung * don't count RAR[0]
2600 1.1 dyoung */
2601 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2602 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2603 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2604 1.1 dyoung
2605 1.1 dyoung /* Zero out the other receive addresses */
2606 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2607 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2608 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2609 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2610 1.1 dyoung }
2611 1.1 dyoung
2612 1.1 dyoung /* Add the new addresses */
2613 1.1 dyoung for (i = 0; i < addr_count; i++) {
2614 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2615 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2616 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2617 1.1 dyoung }
2618 1.1 dyoung
2619 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2620 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2621 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2622 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2623 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2624 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2625 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2626 1.1 dyoung }
2627 1.1 dyoung } else {
2628 1.1 dyoung /* only disable if set by overflow, not by user */
2629 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2630 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2631 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2632 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2633 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2634 1.1 dyoung }
2635 1.1 dyoung }
2636 1.1 dyoung
2637 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2638 1.1 dyoung return IXGBE_SUCCESS;
2639 1.1 dyoung }
2640 1.1 dyoung
2641 1.1 dyoung /**
2642 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2643 1.1 dyoung * @hw: pointer to hardware structure
2644 1.1 dyoung * @mc_addr: the multicast address
2645 1.1 dyoung *
2646 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2647 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2648 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2649 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2650 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2651 1.1 dyoung * to mc_filter_type.
2652 1.1 dyoung **/
2653 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2654 1.1 dyoung {
2655 1.1 dyoung u32 vector = 0;
2656 1.1 dyoung
2657 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2658 1.1 dyoung
2659 1.1 dyoung switch (hw->mac.mc_filter_type) {
2660 1.1 dyoung case 0: /* use bits [47:36] of the address */
2661 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2662 1.1 dyoung break;
2663 1.1 dyoung case 1: /* use bits [46:35] of the address */
2664 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2665 1.1 dyoung break;
2666 1.1 dyoung case 2: /* use bits [45:34] of the address */
2667 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2668 1.1 dyoung break;
2669 1.1 dyoung case 3: /* use bits [43:32] of the address */
2670 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2671 1.1 dyoung break;
2672 1.1 dyoung default: /* Invalid mc_filter_type */
2673 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2674 1.1 dyoung ASSERT(0);
2675 1.1 dyoung break;
2676 1.1 dyoung }
2677 1.1 dyoung
2678 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2679 1.1 dyoung vector &= 0xFFF;
2680 1.1 dyoung return vector;
2681 1.1 dyoung }
2682 1.1 dyoung
2683 1.1 dyoung /**
2684 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2685 1.1 dyoung * @hw: pointer to hardware structure
2686 1.1 dyoung * @hash_value: Multicast address hash value
2687 1.1 dyoung *
2688 1.1 dyoung * Sets the bit-vector in the multicast table.
2689 1.1 dyoung **/
2690 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2691 1.1 dyoung {
2692 1.1 dyoung u32 vector;
2693 1.1 dyoung u32 vector_bit;
2694 1.1 dyoung u32 vector_reg;
2695 1.1 dyoung
2696 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2697 1.1 dyoung
2698 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2699 1.1 dyoung
2700 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2701 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2702 1.1 dyoung
2703 1.1 dyoung /*
2704 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2705 1.1 dyoung * like an array of 4096 bits. We want to set bit
2706 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2707 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2708 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2709 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2710 1.1 dyoung * the value.
2711 1.1 dyoung */
2712 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2713 1.1 dyoung vector_bit = vector & 0x1F;
2714 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2715 1.1 dyoung }
2716 1.1 dyoung
2717 1.1 dyoung /**
2718 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2719 1.1 dyoung * @hw: pointer to hardware structure
2720 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2721 1.1 dyoung * @mc_addr_count: number of addresses
2722 1.1 dyoung * @next: iterator function to walk the multicast address list
2723 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2724 1.1 dyoung *
2725 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2726 1.3 msaitoh * Hashes the given addresses into the multicast table.
2727 1.1 dyoung **/
2728 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2729 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2730 1.3 msaitoh bool clear)
2731 1.1 dyoung {
2732 1.1 dyoung u32 i;
2733 1.1 dyoung u32 vmdq;
2734 1.1 dyoung
2735 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2736 1.1 dyoung
2737 1.1 dyoung /*
2738 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2739 1.1 dyoung * use.
2740 1.1 dyoung */
2741 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2742 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2743 1.1 dyoung
2744 1.1 dyoung /* Clear mta_shadow */
2745 1.3 msaitoh if (clear) {
2746 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2747 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2748 1.3 msaitoh }
2749 1.1 dyoung
2750 1.1 dyoung /* Update mta_shadow */
2751 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2752 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2753 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2754 1.1 dyoung }
2755 1.1 dyoung
2756 1.1 dyoung /* Enable mta */
2757 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2758 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2759 1.1 dyoung hw->mac.mta_shadow[i]);
2760 1.1 dyoung
2761 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2762 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2763 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2764 1.1 dyoung
2765 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2766 1.1 dyoung return IXGBE_SUCCESS;
2767 1.1 dyoung }
2768 1.1 dyoung
2769 1.1 dyoung /**
2770 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2771 1.1 dyoung * @hw: pointer to hardware structure
2772 1.1 dyoung *
2773 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2774 1.1 dyoung **/
2775 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2776 1.1 dyoung {
2777 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2778 1.1 dyoung
2779 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2780 1.1 dyoung
2781 1.1 dyoung if (a->mta_in_use > 0)
2782 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2783 1.3 msaitoh hw->mac.mc_filter_type);
2784 1.1 dyoung
2785 1.1 dyoung return IXGBE_SUCCESS;
2786 1.1 dyoung }
2787 1.1 dyoung
2788 1.1 dyoung /**
2789 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2790 1.1 dyoung * @hw: pointer to hardware structure
2791 1.1 dyoung *
2792 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2793 1.1 dyoung **/
2794 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2795 1.1 dyoung {
2796 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2797 1.1 dyoung
2798 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2799 1.1 dyoung
2800 1.1 dyoung if (a->mta_in_use > 0)
2801 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2802 1.1 dyoung
2803 1.1 dyoung return IXGBE_SUCCESS;
2804 1.1 dyoung }
2805 1.1 dyoung
2806 1.1 dyoung /**
2807 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2808 1.1 dyoung * @hw: pointer to hardware structure
2809 1.1 dyoung *
2810 1.1 dyoung * Enable flow control according to the current settings.
2811 1.1 dyoung **/
2812 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2813 1.1 dyoung {
2814 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2815 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2816 1.1 dyoung u32 reg;
2817 1.1 dyoung u32 fcrtl, fcrth;
2818 1.4 msaitoh int i;
2819 1.1 dyoung
2820 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2821 1.1 dyoung
2822 1.4 msaitoh /* Validate the water mark configuration */
2823 1.4 msaitoh if (!hw->fc.pause_time) {
2824 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2825 1.4 msaitoh goto out;
2826 1.4 msaitoh }
2827 1.4 msaitoh
2828 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2829 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2830 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2831 1.4 msaitoh hw->fc.high_water[i]) {
2832 1.4 msaitoh if (!hw->fc.low_water[i] ||
2833 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2834 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2835 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2836 1.4 msaitoh goto out;
2837 1.4 msaitoh }
2838 1.4 msaitoh }
2839 1.4 msaitoh }
2840 1.4 msaitoh
2841 1.1 dyoung /* Negotiate the fc mode to use */
2842 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2843 1.1 dyoung
2844 1.1 dyoung /* Disable any previous flow control settings */
2845 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2846 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2847 1.1 dyoung
2848 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2849 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2850 1.1 dyoung
2851 1.1 dyoung /*
2852 1.1 dyoung * The possible values of fc.current_mode are:
2853 1.1 dyoung * 0: Flow control is completely disabled
2854 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2855 1.1 dyoung * but not send pause frames).
2856 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2857 1.1 dyoung * we do not support receiving pause frames).
2858 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2859 1.1 dyoung * other: Invalid.
2860 1.1 dyoung */
2861 1.1 dyoung switch (hw->fc.current_mode) {
2862 1.1 dyoung case ixgbe_fc_none:
2863 1.1 dyoung /*
2864 1.1 dyoung * Flow control is disabled by software override or autoneg.
2865 1.1 dyoung * The code below will actually disable it in the HW.
2866 1.1 dyoung */
2867 1.1 dyoung break;
2868 1.1 dyoung case ixgbe_fc_rx_pause:
2869 1.1 dyoung /*
2870 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2871 1.1 dyoung * disabled by software override. Since there really
2872 1.1 dyoung * isn't a way to advertise that we are capable of RX
2873 1.1 dyoung * Pause ONLY, we will advertise that we support both
2874 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2875 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2876 1.1 dyoung */
2877 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2878 1.1 dyoung break;
2879 1.1 dyoung case ixgbe_fc_tx_pause:
2880 1.1 dyoung /*
2881 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2882 1.1 dyoung * disabled by software override.
2883 1.1 dyoung */
2884 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2885 1.1 dyoung break;
2886 1.1 dyoung case ixgbe_fc_full:
2887 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2888 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2889 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2890 1.1 dyoung break;
2891 1.1 dyoung default:
2892 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2893 1.6 msaitoh "Flow control param set incorrectly\n");
2894 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2895 1.1 dyoung goto out;
2896 1.1 dyoung break;
2897 1.1 dyoung }
2898 1.1 dyoung
2899 1.1 dyoung /* Set 802.3x based flow control settings. */
2900 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2901 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2902 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2903 1.1 dyoung
2904 1.1 dyoung
2905 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2906 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2907 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2908 1.4 msaitoh hw->fc.high_water[i]) {
2909 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2910 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2911 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2912 1.4 msaitoh } else {
2913 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2914 1.4 msaitoh /*
2915 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2916 1.4 msaitoh * switch is enabled we must set the high water mark
2917 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2918 1.8 msaitoh * the Tx switch to function even under heavy Rx
2919 1.8 msaitoh * workloads.
2920 1.4 msaitoh */
2921 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2922 1.4 msaitoh }
2923 1.4 msaitoh
2924 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2925 1.1 dyoung }
2926 1.1 dyoung
2927 1.1 dyoung /* Configure pause time (2 TCs per register) */
2928 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2929 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2930 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2931 1.1 dyoung
2932 1.4 msaitoh /* Configure flow control refresh threshold value */
2933 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2934 1.1 dyoung
2935 1.1 dyoung out:
2936 1.1 dyoung return ret_val;
2937 1.1 dyoung }
2938 1.1 dyoung
2939 1.1 dyoung /**
2940 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2941 1.1 dyoung * @hw: pointer to hardware structure
2942 1.4 msaitoh * @adv_reg: flow control advertised settings
2943 1.4 msaitoh * @lp_reg: link partner's flow control settings
2944 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2945 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2946 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2947 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2948 1.1 dyoung *
2949 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2950 1.4 msaitoh * advertised settings
2951 1.1 dyoung **/
2952 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2953 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2954 1.1 dyoung {
2955 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2956 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2957 1.6 msaitoh "Local or link partner's advertised flow control "
2958 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2959 1.6 msaitoh adv_reg, lp_reg);
2960 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2961 1.6 msaitoh }
2962 1.1 dyoung
2963 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2964 1.4 msaitoh /*
2965 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2966 1.4 msaitoh * of pause frames. In this case, we had to advertise
2967 1.4 msaitoh * FULL flow control because we could not advertise RX
2968 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2969 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2970 1.4 msaitoh */
2971 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2972 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2973 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2974 1.4 msaitoh } else {
2975 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2976 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2977 1.4 msaitoh }
2978 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2981 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2982 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2983 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2984 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2985 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2986 1.4 msaitoh } else {
2987 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2988 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2989 1.4 msaitoh }
2990 1.4 msaitoh return IXGBE_SUCCESS;
2991 1.4 msaitoh }
2992 1.1 dyoung
2993 1.4 msaitoh /**
2994 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2995 1.4 msaitoh * @hw: pointer to hardware structure
2996 1.4 msaitoh *
2997 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2998 1.4 msaitoh **/
2999 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3000 1.4 msaitoh {
3001 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3002 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3003 1.1 dyoung
3004 1.1 dyoung /*
3005 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3006 1.4 msaitoh * - link is up but AN did not complete, or if
3007 1.4 msaitoh * - link is up and AN completed but timed out
3008 1.1 dyoung */
3009 1.4 msaitoh
3010 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3011 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3012 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3013 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3014 1.1 dyoung goto out;
3015 1.6 msaitoh }
3016 1.1 dyoung
3017 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3018 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3019 1.1 dyoung
3020 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3021 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3022 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3023 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3024 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3025 1.1 dyoung
3026 1.1 dyoung out:
3027 1.1 dyoung return ret_val;
3028 1.1 dyoung }
3029 1.1 dyoung
3030 1.1 dyoung /**
3031 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3032 1.1 dyoung * @hw: pointer to hardware structure
3033 1.1 dyoung *
3034 1.1 dyoung * Enable flow control according to IEEE clause 37.
3035 1.1 dyoung **/
3036 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3037 1.1 dyoung {
3038 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3039 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3040 1.1 dyoung
3041 1.1 dyoung /*
3042 1.1 dyoung * On backplane, bail out if
3043 1.1 dyoung * - backplane autoneg was not completed, or if
3044 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3045 1.1 dyoung */
3046 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3047 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3048 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3049 1.1 dyoung goto out;
3050 1.6 msaitoh }
3051 1.1 dyoung
3052 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3053 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3054 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3055 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3056 1.1 dyoung goto out;
3057 1.6 msaitoh }
3058 1.1 dyoung }
3059 1.1 dyoung /*
3060 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3061 1.1 dyoung * local flow control settings accordingly
3062 1.1 dyoung */
3063 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3064 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3065 1.1 dyoung
3066 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3067 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3068 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3069 1.1 dyoung
3070 1.1 dyoung out:
3071 1.1 dyoung return ret_val;
3072 1.1 dyoung }
3073 1.1 dyoung
3074 1.1 dyoung /**
3075 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3076 1.1 dyoung * @hw: pointer to hardware structure
3077 1.1 dyoung *
3078 1.1 dyoung * Enable flow control according to IEEE clause 37.
3079 1.1 dyoung **/
3080 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3081 1.1 dyoung {
3082 1.1 dyoung u16 technology_ability_reg = 0;
3083 1.1 dyoung u16 lp_technology_ability_reg = 0;
3084 1.1 dyoung
3085 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3086 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3087 1.1 dyoung &technology_ability_reg);
3088 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3089 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3090 1.1 dyoung &lp_technology_ability_reg);
3091 1.1 dyoung
3092 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3093 1.1 dyoung (u32)lp_technology_ability_reg,
3094 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3095 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3096 1.1 dyoung }
3097 1.1 dyoung
3098 1.1 dyoung /**
3099 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3100 1.1 dyoung * @hw: pointer to hardware structure
3101 1.1 dyoung *
3102 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3103 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3104 1.1 dyoung **/
3105 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3106 1.1 dyoung {
3107 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3108 1.4 msaitoh ixgbe_link_speed speed;
3109 1.4 msaitoh bool link_up;
3110 1.1 dyoung
3111 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3112 1.1 dyoung
3113 1.1 dyoung /*
3114 1.4 msaitoh * AN should have completed when the cable was plugged in.
3115 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3116 1.4 msaitoh * - FC autoneg is disabled, or if
3117 1.4 msaitoh * - link is not up.
3118 1.1 dyoung */
3119 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3120 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3121 1.6 msaitoh "Flow control autoneg is disabled");
3122 1.1 dyoung goto out;
3123 1.6 msaitoh }
3124 1.1 dyoung
3125 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3126 1.6 msaitoh if (!link_up) {
3127 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3128 1.1 dyoung goto out;
3129 1.6 msaitoh }
3130 1.1 dyoung
3131 1.1 dyoung switch (hw->phy.media_type) {
3132 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3133 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3134 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3135 1.1 dyoung case ixgbe_media_type_fiber:
3136 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3137 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3138 1.4 msaitoh break;
3139 1.4 msaitoh
3140 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3141 1.1 dyoung case ixgbe_media_type_backplane:
3142 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3143 1.1 dyoung break;
3144 1.1 dyoung
3145 1.4 msaitoh /* Autoneg flow control on copper adapters */
3146 1.1 dyoung case ixgbe_media_type_copper:
3147 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3148 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3149 1.1 dyoung break;
3150 1.1 dyoung
3151 1.1 dyoung default:
3152 1.1 dyoung break;
3153 1.1 dyoung }
3154 1.1 dyoung
3155 1.4 msaitoh out:
3156 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3157 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3158 1.4 msaitoh } else {
3159 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3160 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3161 1.3 msaitoh }
3162 1.1 dyoung }
3163 1.1 dyoung
3164 1.6 msaitoh /*
3165 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3166 1.6 msaitoh * @hw: pointer to hardware structure
3167 1.6 msaitoh *
3168 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3169 1.6 msaitoh *
3170 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3171 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3172 1.6 msaitoh * 800 = 80 millisec.
3173 1.6 msaitoh */
3174 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3175 1.6 msaitoh {
3176 1.6 msaitoh s16 devctl2;
3177 1.6 msaitoh u32 pollcnt;
3178 1.6 msaitoh
3179 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3180 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3181 1.6 msaitoh
3182 1.6 msaitoh switch (devctl2) {
3183 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3184 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3185 1.6 msaitoh break;
3186 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3187 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3188 1.6 msaitoh break;
3189 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3190 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3191 1.6 msaitoh break;
3192 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3193 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3194 1.6 msaitoh break;
3195 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3196 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3197 1.6 msaitoh break;
3198 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3199 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3200 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3201 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3202 1.6 msaitoh default:
3203 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3204 1.6 msaitoh break;
3205 1.6 msaitoh }
3206 1.6 msaitoh
3207 1.6 msaitoh /* add 10% to spec maximum */
3208 1.6 msaitoh return (pollcnt * 11) / 10;
3209 1.6 msaitoh }
3210 1.6 msaitoh
3211 1.1 dyoung /**
3212 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3213 1.1 dyoung * @hw: pointer to hardware structure
3214 1.1 dyoung *
3215 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3216 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3217 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3218 1.1 dyoung * is returned signifying master requests disabled.
3219 1.1 dyoung **/
3220 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3221 1.1 dyoung {
3222 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3223 1.6 msaitoh u32 i, poll;
3224 1.8 msaitoh u16 value;
3225 1.1 dyoung
3226 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3227 1.1 dyoung
3228 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3229 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3230 1.3 msaitoh
3231 1.6 msaitoh /* Exit if master requests are blocked */
3232 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3233 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3234 1.1 dyoung goto out;
3235 1.1 dyoung
3236 1.3 msaitoh /* Poll for master request bit to clear */
3237 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3238 1.3 msaitoh usec_delay(100);
3239 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3240 1.3 msaitoh goto out;
3241 1.1 dyoung }
3242 1.1 dyoung
3243 1.3 msaitoh /*
3244 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3245 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3246 1.3 msaitoh * of this need. The first reset prevents new master requests from
3247 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3248 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3249 1.3 msaitoh * again to clear out any effects they may have had on our device.
3250 1.3 msaitoh */
3251 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3252 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3253 1.1 dyoung
3254 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3255 1.10 msaitoh goto out;
3256 1.10 msaitoh
3257 1.1 dyoung /*
3258 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3259 1.1 dyoung * transactions pending.
3260 1.1 dyoung */
3261 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3262 1.6 msaitoh for (i = 0; i < poll; i++) {
3263 1.3 msaitoh usec_delay(100);
3264 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3265 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3266 1.8 msaitoh goto out;
3267 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3268 1.3 msaitoh goto out;
3269 1.1 dyoung }
3270 1.1 dyoung
3271 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3272 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3273 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3274 1.1 dyoung
3275 1.1 dyoung out:
3276 1.1 dyoung return status;
3277 1.1 dyoung }
3278 1.1 dyoung
3279 1.1 dyoung /**
3280 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3281 1.1 dyoung * @hw: pointer to hardware structure
3282 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3283 1.1 dyoung *
3284 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3285 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3286 1.1 dyoung **/
3287 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3288 1.1 dyoung {
3289 1.6 msaitoh u32 gssr = 0;
3290 1.1 dyoung u32 swmask = mask;
3291 1.1 dyoung u32 fwmask = mask << 5;
3292 1.6 msaitoh u32 timeout = 200;
3293 1.6 msaitoh u32 i;
3294 1.1 dyoung
3295 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3296 1.1 dyoung
3297 1.6 msaitoh for (i = 0; i < timeout; i++) {
3298 1.1 dyoung /*
3299 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3300 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3301 1.1 dyoung */
3302 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3303 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3304 1.1 dyoung
3305 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3306 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3307 1.6 msaitoh gssr |= swmask;
3308 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3309 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3310 1.6 msaitoh return IXGBE_SUCCESS;
3311 1.6 msaitoh } else {
3312 1.6 msaitoh /* Resource is currently in use by FW or SW */
3313 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3314 1.6 msaitoh msec_delay(5);
3315 1.6 msaitoh }
3316 1.1 dyoung }
3317 1.1 dyoung
3318 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3319 1.6 msaitoh if (gssr & (fwmask | swmask))
3320 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3321 1.1 dyoung
3322 1.6 msaitoh msec_delay(5);
3323 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3324 1.1 dyoung }
3325 1.1 dyoung
3326 1.1 dyoung /**
3327 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3328 1.1 dyoung * @hw: pointer to hardware structure
3329 1.1 dyoung * @mask: Mask to specify which semaphore to release
3330 1.1 dyoung *
3331 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3332 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3333 1.1 dyoung **/
3334 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3335 1.1 dyoung {
3336 1.1 dyoung u32 gssr;
3337 1.1 dyoung u32 swmask = mask;
3338 1.1 dyoung
3339 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3340 1.1 dyoung
3341 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3342 1.1 dyoung
3343 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3344 1.1 dyoung gssr &= ~swmask;
3345 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3346 1.1 dyoung
3347 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3348 1.1 dyoung }
3349 1.1 dyoung
3350 1.1 dyoung /**
3351 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3352 1.3 msaitoh * @hw: pointer to hardware structure
3353 1.3 msaitoh *
3354 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3355 1.3 msaitoh * the Rx security block
3356 1.3 msaitoh **/
3357 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3358 1.3 msaitoh {
3359 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3360 1.3 msaitoh
3361 1.3 msaitoh int i;
3362 1.3 msaitoh int secrxreg;
3363 1.3 msaitoh
3364 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3365 1.3 msaitoh
3366 1.3 msaitoh
3367 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3368 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3369 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3370 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3371 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3372 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3373 1.3 msaitoh break;
3374 1.3 msaitoh else
3375 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3376 1.3 msaitoh usec_delay(1000);
3377 1.3 msaitoh }
3378 1.3 msaitoh
3379 1.3 msaitoh /* For informational purposes only */
3380 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3381 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3382 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3383 1.3 msaitoh
3384 1.3 msaitoh return IXGBE_SUCCESS;
3385 1.3 msaitoh }
3386 1.3 msaitoh
3387 1.3 msaitoh /**
3388 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3389 1.8 msaitoh * @hw: pointer to hardware structure
3390 1.8 msaitoh * @reg_val: Value we read from AUTOC
3391 1.8 msaitoh *
3392 1.8 msaitoh * The default case requires no protection so just to the register read.
3393 1.8 msaitoh */
3394 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3395 1.8 msaitoh {
3396 1.8 msaitoh *locked = FALSE;
3397 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3398 1.8 msaitoh return IXGBE_SUCCESS;
3399 1.8 msaitoh }
3400 1.8 msaitoh
3401 1.8 msaitoh /**
3402 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3403 1.8 msaitoh * @hw: pointer to hardware structure
3404 1.8 msaitoh * @reg_val: value to write to AUTOC
3405 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3406 1.8 msaitoh * previous read.
3407 1.8 msaitoh *
3408 1.8 msaitoh * The default case requires no protection so just to the register write.
3409 1.8 msaitoh */
3410 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3411 1.8 msaitoh {
3412 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3413 1.8 msaitoh
3414 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3415 1.8 msaitoh return IXGBE_SUCCESS;
3416 1.8 msaitoh }
3417 1.8 msaitoh
3418 1.8 msaitoh /**
3419 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3420 1.3 msaitoh * @hw: pointer to hardware structure
3421 1.3 msaitoh *
3422 1.3 msaitoh * Enables the receive data path.
3423 1.3 msaitoh **/
3424 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3425 1.3 msaitoh {
3426 1.14 msaitoh u32 secrxreg;
3427 1.3 msaitoh
3428 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3429 1.3 msaitoh
3430 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3431 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3432 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3433 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3434 1.3 msaitoh
3435 1.3 msaitoh return IXGBE_SUCCESS;
3436 1.3 msaitoh }
3437 1.3 msaitoh
3438 1.3 msaitoh /**
3439 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3440 1.1 dyoung * @hw: pointer to hardware structure
3441 1.1 dyoung * @regval: register value to write to RXCTRL
3442 1.1 dyoung *
3443 1.1 dyoung * Enables the Rx DMA unit
3444 1.1 dyoung **/
3445 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3446 1.1 dyoung {
3447 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3448 1.1 dyoung
3449 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3450 1.8 msaitoh ixgbe_enable_rx(hw);
3451 1.8 msaitoh else
3452 1.8 msaitoh ixgbe_disable_rx(hw);
3453 1.1 dyoung
3454 1.1 dyoung return IXGBE_SUCCESS;
3455 1.1 dyoung }
3456 1.1 dyoung
3457 1.1 dyoung /**
3458 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3459 1.1 dyoung * @hw: pointer to hardware structure
3460 1.1 dyoung * @index: led number to blink
3461 1.1 dyoung **/
3462 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3463 1.1 dyoung {
3464 1.1 dyoung ixgbe_link_speed speed = 0;
3465 1.1 dyoung bool link_up = 0;
3466 1.8 msaitoh u32 autoc_reg = 0;
3467 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3468 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3469 1.8 msaitoh bool locked = FALSE;
3470 1.1 dyoung
3471 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3472 1.1 dyoung
3473 1.14 msaitoh if (index > 3)
3474 1.14 msaitoh return IXGBE_ERR_PARAM;
3475 1.14 msaitoh
3476 1.1 dyoung /*
3477 1.1 dyoung * Link must be up to auto-blink the LEDs;
3478 1.1 dyoung * Force it if link is down.
3479 1.1 dyoung */
3480 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3481 1.1 dyoung
3482 1.1 dyoung if (!link_up) {
3483 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3484 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3485 1.8 msaitoh goto out;
3486 1.5 msaitoh
3487 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3488 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3489 1.8 msaitoh
3490 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3491 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3492 1.8 msaitoh goto out;
3493 1.8 msaitoh
3494 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3495 1.1 dyoung msec_delay(10);
3496 1.1 dyoung }
3497 1.1 dyoung
3498 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3499 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3500 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3501 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3502 1.1 dyoung
3503 1.5 msaitoh out:
3504 1.5 msaitoh return ret_val;
3505 1.1 dyoung }
3506 1.1 dyoung
3507 1.1 dyoung /**
3508 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3509 1.1 dyoung * @hw: pointer to hardware structure
3510 1.1 dyoung * @index: led number to stop blinking
3511 1.1 dyoung **/
3512 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3513 1.1 dyoung {
3514 1.8 msaitoh u32 autoc_reg = 0;
3515 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3516 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3517 1.8 msaitoh bool locked = FALSE;
3518 1.1 dyoung
3519 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3520 1.1 dyoung
3521 1.14 msaitoh if (index > 3)
3522 1.14 msaitoh return IXGBE_ERR_PARAM;
3523 1.14 msaitoh
3524 1.14 msaitoh
3525 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3526 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3527 1.8 msaitoh goto out;
3528 1.1 dyoung
3529 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3530 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3531 1.1 dyoung
3532 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3533 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3534 1.8 msaitoh goto out;
3535 1.5 msaitoh
3536 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3537 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3538 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3539 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3540 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3541 1.1 dyoung
3542 1.5 msaitoh out:
3543 1.5 msaitoh return ret_val;
3544 1.1 dyoung }
3545 1.1 dyoung
3546 1.1 dyoung /**
3547 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3548 1.1 dyoung * @hw: pointer to hardware structure
3549 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3550 1.1 dyoung *
3551 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3552 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3553 1.1 dyoung * get and set mac_addr routines.
3554 1.1 dyoung **/
3555 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3556 1.3 msaitoh u16 *san_mac_offset)
3557 1.1 dyoung {
3558 1.6 msaitoh s32 ret_val;
3559 1.6 msaitoh
3560 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3561 1.1 dyoung
3562 1.1 dyoung /*
3563 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3564 1.1 dyoung * available.
3565 1.1 dyoung */
3566 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3567 1.6 msaitoh san_mac_offset);
3568 1.6 msaitoh if (ret_val) {
3569 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3570 1.6 msaitoh "eeprom at offset %d failed",
3571 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3572 1.6 msaitoh }
3573 1.1 dyoung
3574 1.6 msaitoh return ret_val;
3575 1.1 dyoung }
3576 1.1 dyoung
3577 1.1 dyoung /**
3578 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3579 1.1 dyoung * @hw: pointer to hardware structure
3580 1.1 dyoung * @san_mac_addr: SAN MAC address
3581 1.1 dyoung *
3582 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3583 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3584 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3585 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3586 1.1 dyoung **/
3587 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3588 1.1 dyoung {
3589 1.1 dyoung u16 san_mac_data, san_mac_offset;
3590 1.1 dyoung u8 i;
3591 1.6 msaitoh s32 ret_val;
3592 1.1 dyoung
3593 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3594 1.1 dyoung
3595 1.1 dyoung /*
3596 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3597 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3598 1.1 dyoung */
3599 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3600 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3601 1.1 dyoung goto san_mac_addr_out;
3602 1.1 dyoung
3603 1.1 dyoung /* make sure we know which port we need to program */
3604 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3605 1.1 dyoung /* apply the port offset to the address offset */
3606 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3607 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3608 1.1 dyoung for (i = 0; i < 3; i++) {
3609 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3610 1.6 msaitoh &san_mac_data);
3611 1.6 msaitoh if (ret_val) {
3612 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3613 1.6 msaitoh "eeprom read at offset %d failed",
3614 1.6 msaitoh san_mac_offset);
3615 1.6 msaitoh goto san_mac_addr_out;
3616 1.6 msaitoh }
3617 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3618 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3619 1.1 dyoung san_mac_offset++;
3620 1.1 dyoung }
3621 1.6 msaitoh return IXGBE_SUCCESS;
3622 1.1 dyoung
3623 1.1 dyoung san_mac_addr_out:
3624 1.6 msaitoh /*
3625 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3626 1.6 msaitoh * error though, so just wipe the local address and return.
3627 1.6 msaitoh */
3628 1.6 msaitoh for (i = 0; i < 6; i++)
3629 1.6 msaitoh san_mac_addr[i] = 0xFF;
3630 1.1 dyoung return IXGBE_SUCCESS;
3631 1.1 dyoung }
3632 1.1 dyoung
3633 1.1 dyoung /**
3634 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3635 1.1 dyoung * @hw: pointer to hardware structure
3636 1.1 dyoung * @san_mac_addr: SAN MAC address
3637 1.1 dyoung *
3638 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3639 1.1 dyoung **/
3640 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3641 1.1 dyoung {
3642 1.6 msaitoh s32 ret_val;
3643 1.1 dyoung u16 san_mac_data, san_mac_offset;
3644 1.1 dyoung u8 i;
3645 1.1 dyoung
3646 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3647 1.1 dyoung
3648 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3649 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3650 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3651 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3652 1.1 dyoung
3653 1.1 dyoung /* Make sure we know which port we need to write */
3654 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3655 1.1 dyoung /* Apply the port offset to the address offset */
3656 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3657 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3658 1.1 dyoung
3659 1.1 dyoung for (i = 0; i < 3; i++) {
3660 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3661 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3662 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3663 1.1 dyoung san_mac_offset++;
3664 1.1 dyoung }
3665 1.1 dyoung
3666 1.6 msaitoh return IXGBE_SUCCESS;
3667 1.1 dyoung }
3668 1.1 dyoung
3669 1.1 dyoung /**
3670 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3671 1.1 dyoung * @hw: pointer to hardware structure
3672 1.1 dyoung *
3673 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3674 1.1 dyoung * the capabilities table.
3675 1.1 dyoung **/
3676 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3677 1.1 dyoung {
3678 1.4 msaitoh u16 msix_count = 1;
3679 1.4 msaitoh u16 max_msix_count;
3680 1.4 msaitoh u16 pcie_offset;
3681 1.4 msaitoh
3682 1.4 msaitoh switch (hw->mac.type) {
3683 1.4 msaitoh case ixgbe_mac_82598EB:
3684 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3685 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3686 1.4 msaitoh break;
3687 1.4 msaitoh case ixgbe_mac_82599EB:
3688 1.4 msaitoh case ixgbe_mac_X540:
3689 1.8 msaitoh case ixgbe_mac_X550:
3690 1.8 msaitoh case ixgbe_mac_X550EM_x:
3691 1.14 msaitoh case ixgbe_mac_X550EM_a:
3692 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3693 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3694 1.4 msaitoh break;
3695 1.4 msaitoh default:
3696 1.4 msaitoh return msix_count;
3697 1.4 msaitoh }
3698 1.1 dyoung
3699 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3700 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3701 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3702 1.8 msaitoh msix_count = 0;
3703 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3704 1.4 msaitoh
3705 1.4 msaitoh /* MSI-X count is zero-based in HW */
3706 1.4 msaitoh msix_count++;
3707 1.4 msaitoh
3708 1.4 msaitoh if (msix_count > max_msix_count)
3709 1.4 msaitoh msix_count = max_msix_count;
3710 1.1 dyoung
3711 1.1 dyoung return msix_count;
3712 1.1 dyoung }
3713 1.1 dyoung
3714 1.1 dyoung /**
3715 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3716 1.1 dyoung * @hw: pointer to hardware structure
3717 1.1 dyoung * @addr: Address to put into receive address register
3718 1.1 dyoung * @vmdq: VMDq pool to assign
3719 1.1 dyoung *
3720 1.1 dyoung * Puts an ethernet address into a receive address register, or
3721 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3722 1.1 dyoung **/
3723 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3724 1.1 dyoung {
3725 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3726 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3727 1.1 dyoung u32 rar;
3728 1.1 dyoung u32 rar_low, rar_high;
3729 1.1 dyoung u32 addr_low, addr_high;
3730 1.1 dyoung
3731 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3732 1.1 dyoung
3733 1.1 dyoung /* swap bytes for HW little endian */
3734 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3735 1.1 dyoung | (addr[2] << 16)
3736 1.1 dyoung | (addr[3] << 24);
3737 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3738 1.1 dyoung
3739 1.1 dyoung /*
3740 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3741 1.1 dyoung * rar_highwater points to just after the highest currently used
3742 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3743 1.1 dyoung * rar to the top.
3744 1.1 dyoung */
3745 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3746 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3747 1.1 dyoung
3748 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3749 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3750 1.1 dyoung first_empty_rar = rar;
3751 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3752 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3753 1.1 dyoung if (rar_low == addr_low)
3754 1.1 dyoung break; /* found it already in the rars */
3755 1.1 dyoung }
3756 1.1 dyoung }
3757 1.1 dyoung
3758 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3759 1.1 dyoung /* already there so just add to the pool bits */
3760 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3761 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3762 1.1 dyoung /* stick it into first empty RAR slot we found */
3763 1.1 dyoung rar = first_empty_rar;
3764 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3765 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3766 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3767 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3768 1.1 dyoung hw->mac.rar_highwater++;
3769 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3770 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3771 1.1 dyoung }
3772 1.1 dyoung
3773 1.1 dyoung /*
3774 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3775 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3776 1.1 dyoung */
3777 1.1 dyoung if (rar == 0)
3778 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3779 1.1 dyoung
3780 1.1 dyoung return rar;
3781 1.1 dyoung }
3782 1.1 dyoung
3783 1.1 dyoung /**
3784 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3785 1.1 dyoung * @hw: pointer to hardware struct
3786 1.1 dyoung * @rar: receive address register index to disassociate
3787 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3788 1.1 dyoung **/
3789 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3790 1.1 dyoung {
3791 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3792 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3793 1.1 dyoung
3794 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3795 1.1 dyoung
3796 1.1 dyoung /* Make sure we are using a valid rar index range */
3797 1.1 dyoung if (rar >= rar_entries) {
3798 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3799 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3800 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3801 1.1 dyoung }
3802 1.1 dyoung
3803 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3804 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3805 1.1 dyoung
3806 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3807 1.8 msaitoh goto done;
3808 1.8 msaitoh
3809 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3810 1.1 dyoung goto done;
3811 1.1 dyoung
3812 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3813 1.1 dyoung if (mpsar_lo) {
3814 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3815 1.1 dyoung mpsar_lo = 0;
3816 1.1 dyoung }
3817 1.1 dyoung if (mpsar_hi) {
3818 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3819 1.1 dyoung mpsar_hi = 0;
3820 1.1 dyoung }
3821 1.1 dyoung } else if (vmdq < 32) {
3822 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3823 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3824 1.1 dyoung } else {
3825 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3826 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3827 1.1 dyoung }
3828 1.1 dyoung
3829 1.1 dyoung /* was that the last pool using this rar? */
3830 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3831 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3832 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3833 1.1 dyoung done:
3834 1.1 dyoung return IXGBE_SUCCESS;
3835 1.1 dyoung }
3836 1.1 dyoung
3837 1.1 dyoung /**
3838 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3839 1.1 dyoung * @hw: pointer to hardware struct
3840 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3841 1.1 dyoung * @vmdq: VMDq pool index
3842 1.1 dyoung **/
3843 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3844 1.1 dyoung {
3845 1.1 dyoung u32 mpsar;
3846 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3847 1.1 dyoung
3848 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3849 1.1 dyoung
3850 1.1 dyoung /* Make sure we are using a valid rar index range */
3851 1.1 dyoung if (rar >= rar_entries) {
3852 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3853 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3854 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3855 1.1 dyoung }
3856 1.1 dyoung
3857 1.1 dyoung if (vmdq < 32) {
3858 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3859 1.1 dyoung mpsar |= 1 << vmdq;
3860 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3861 1.1 dyoung } else {
3862 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3863 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3864 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3865 1.1 dyoung }
3866 1.1 dyoung return IXGBE_SUCCESS;
3867 1.1 dyoung }
3868 1.1 dyoung
3869 1.1 dyoung /**
3870 1.4 msaitoh * This function should only be involved in the IOV mode.
3871 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3872 1.4 msaitoh * VFs advertized and not 0.
3873 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3874 1.4 msaitoh *
3875 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3876 1.4 msaitoh * @hw: pointer to hardware struct
3877 1.4 msaitoh * @vmdq: VMDq pool index
3878 1.4 msaitoh **/
3879 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3880 1.4 msaitoh {
3881 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3882 1.4 msaitoh
3883 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3884 1.4 msaitoh
3885 1.4 msaitoh if (vmdq < 32) {
3886 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3887 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3888 1.4 msaitoh } else {
3889 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3890 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3891 1.4 msaitoh }
3892 1.4 msaitoh
3893 1.4 msaitoh return IXGBE_SUCCESS;
3894 1.4 msaitoh }
3895 1.4 msaitoh
3896 1.4 msaitoh /**
3897 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3898 1.1 dyoung * @hw: pointer to hardware structure
3899 1.1 dyoung **/
3900 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3901 1.1 dyoung {
3902 1.1 dyoung int i;
3903 1.1 dyoung
3904 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3905 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3906 1.1 dyoung
3907 1.1 dyoung for (i = 0; i < 128; i++)
3908 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3909 1.1 dyoung
3910 1.1 dyoung return IXGBE_SUCCESS;
3911 1.1 dyoung }
3912 1.1 dyoung
3913 1.1 dyoung /**
3914 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3915 1.1 dyoung * @hw: pointer to hardware structure
3916 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3917 1.1 dyoung *
3918 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3919 1.1 dyoung *
3920 1.1 dyoung **/
3921 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3922 1.1 dyoung {
3923 1.14 msaitoh s32 regindex, first_empty_slot;
3924 1.14 msaitoh u32 bits;
3925 1.1 dyoung
3926 1.1 dyoung /* short cut the special case */
3927 1.1 dyoung if (vlan == 0)
3928 1.1 dyoung return 0;
3929 1.1 dyoung
3930 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3931 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3932 1.14 msaitoh * VLVF that contain our VLAN
3933 1.14 msaitoh */
3934 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3935 1.14 msaitoh
3936 1.14 msaitoh /* add VLAN enable bit for comparison */
3937 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3938 1.14 msaitoh
3939 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3940 1.14 msaitoh * slot found along the way.
3941 1.14 msaitoh *
3942 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3943 1.14 msaitoh */
3944 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3945 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3946 1.14 msaitoh if (bits == vlan)
3947 1.14 msaitoh return regindex;
3948 1.14 msaitoh if (!first_empty_slot && !bits)
3949 1.1 dyoung first_empty_slot = regindex;
3950 1.1 dyoung }
3951 1.1 dyoung
3952 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3953 1.14 msaitoh * slot we found during our search, else error.
3954 1.14 msaitoh */
3955 1.14 msaitoh if (!first_empty_slot)
3956 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3957 1.1 dyoung
3958 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3959 1.1 dyoung }
3960 1.1 dyoung
3961 1.1 dyoung /**
3962 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3963 1.1 dyoung * @hw: pointer to hardware structure
3964 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3965 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3966 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3967 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3968 1.1 dyoung *
3969 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3970 1.1 dyoung **/
3971 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3972 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
3973 1.1 dyoung {
3974 1.14 msaitoh u32 regidx, vfta_delta, vfta;
3975 1.14 msaitoh s32 ret_val;
3976 1.1 dyoung
3977 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3978 1.1 dyoung
3979 1.14 msaitoh if (vlan > 4095 || vind > 63)
3980 1.1 dyoung return IXGBE_ERR_PARAM;
3981 1.1 dyoung
3982 1.1 dyoung /*
3983 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3984 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3985 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3986 1.1 dyoung */
3987 1.1 dyoung
3988 1.1 dyoung /* Part 1
3989 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3990 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3991 1.1 dyoung * bits[11-5]: which register
3992 1.1 dyoung * bits[4-0]: which bit in the register
3993 1.1 dyoung */
3994 1.14 msaitoh regidx = vlan / 32;
3995 1.14 msaitoh vfta_delta = 1 << (vlan % 32);
3996 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3997 1.14 msaitoh
3998 1.14 msaitoh /*
3999 1.14 msaitoh * vfta_delta represents the difference between the current value
4000 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4001 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4002 1.14 msaitoh */
4003 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4004 1.14 msaitoh vfta ^= vfta_delta;
4005 1.1 dyoung
4006 1.1 dyoung /* Part 2
4007 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4008 1.3 msaitoh */
4009 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4010 1.14 msaitoh vfta, vlvf_bypass);
4011 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4012 1.14 msaitoh if (vlvf_bypass)
4013 1.14 msaitoh goto vfta_update;
4014 1.3 msaitoh return ret_val;
4015 1.14 msaitoh }
4016 1.3 msaitoh
4017 1.14 msaitoh vfta_update:
4018 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4019 1.14 msaitoh if (vfta_delta)
4020 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4021 1.3 msaitoh
4022 1.3 msaitoh return IXGBE_SUCCESS;
4023 1.3 msaitoh }
4024 1.3 msaitoh
4025 1.3 msaitoh /**
4026 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4027 1.3 msaitoh * @hw: pointer to hardware structure
4028 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
4029 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4030 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4031 1.14 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4032 1.14 msaitoh * and the desired value
4033 1.14 msaitoh * @vfta: the desired value of the VFTA
4034 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4035 1.3 msaitoh *
4036 1.3 msaitoh * Turn on/off specified bit in VLVF table.
4037 1.3 msaitoh **/
4038 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4039 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4040 1.14 msaitoh bool vlvf_bypass)
4041 1.3 msaitoh {
4042 1.14 msaitoh u32 bits;
4043 1.14 msaitoh s32 vlvf_index;
4044 1.3 msaitoh
4045 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4046 1.3 msaitoh
4047 1.14 msaitoh if (vlan > 4095 || vind > 63)
4048 1.3 msaitoh return IXGBE_ERR_PARAM;
4049 1.3 msaitoh
4050 1.3 msaitoh /* If VT Mode is set
4051 1.1 dyoung * Either vlan_on
4052 1.1 dyoung * make sure the vlan is in VLVF
4053 1.1 dyoung * set the vind bit in the matching VLVFB
4054 1.1 dyoung * Or !vlan_on
4055 1.1 dyoung * clear the pool bit and possibly the vind
4056 1.1 dyoung */
4057 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4058 1.14 msaitoh return IXGBE_SUCCESS;
4059 1.1 dyoung
4060 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4061 1.14 msaitoh if (vlvf_index < 0)
4062 1.14 msaitoh return vlvf_index;
4063 1.14 msaitoh
4064 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4065 1.14 msaitoh
4066 1.14 msaitoh /* set the pool bit */
4067 1.14 msaitoh bits |= 1 << (vind % 32);
4068 1.14 msaitoh if (vlan_on)
4069 1.14 msaitoh goto vlvf_update;
4070 1.14 msaitoh
4071 1.14 msaitoh /* clear the pool bit */
4072 1.14 msaitoh bits ^= 1 << (vind % 32);
4073 1.14 msaitoh
4074 1.14 msaitoh if (!bits &&
4075 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4076 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4077 1.14 msaitoh * we run the risk of stray packets leaking into
4078 1.14 msaitoh * the PF via the default pool
4079 1.1 dyoung */
4080 1.14 msaitoh if (*vfta_delta)
4081 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4082 1.14 msaitoh
4083 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4084 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4085 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4086 1.14 msaitoh
4087 1.14 msaitoh return IXGBE_SUCCESS;
4088 1.1 dyoung }
4089 1.1 dyoung
4090 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4091 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4092 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4093 1.14 msaitoh * If the caller has requested that we clear the VFTA
4094 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4095 1.14 msaitoh * ID entry then ignore the request. We're not worried
4096 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4097 1.14 msaitoh * entry bit on, only when requested to turn it off as
4098 1.14 msaitoh * there may be multiple pools and/or VFs using the
4099 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4100 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4101 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4102 1.14 msaitoh * zero.
4103 1.14 msaitoh */
4104 1.14 msaitoh *vfta_delta = 0;
4105 1.14 msaitoh
4106 1.14 msaitoh vlvf_update:
4107 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4108 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4109 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4110 1.14 msaitoh
4111 1.1 dyoung return IXGBE_SUCCESS;
4112 1.1 dyoung }
4113 1.1 dyoung
4114 1.1 dyoung /**
4115 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4116 1.1 dyoung * @hw: pointer to hardware structure
4117 1.1 dyoung *
4118 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4119 1.1 dyoung **/
4120 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4121 1.1 dyoung {
4122 1.1 dyoung u32 offset;
4123 1.1 dyoung
4124 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4125 1.1 dyoung
4126 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4127 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4128 1.1 dyoung
4129 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4130 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4131 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4132 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4133 1.1 dyoung }
4134 1.1 dyoung
4135 1.1 dyoung return IXGBE_SUCCESS;
4136 1.1 dyoung }
4137 1.1 dyoung
4138 1.1 dyoung /**
4139 1.14 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4140 1.14 msaitoh * @hw: pointer to hardware structure
4141 1.14 msaitoh *
4142 1.14 msaitoh * Contains the logic to identify if we need to verify link for the
4143 1.14 msaitoh * crosstalk fix
4144 1.14 msaitoh **/
4145 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4146 1.14 msaitoh {
4147 1.14 msaitoh
4148 1.14 msaitoh /* Does FW say we need the fix */
4149 1.14 msaitoh if (!hw->need_crosstalk_fix)
4150 1.14 msaitoh return FALSE;
4151 1.14 msaitoh
4152 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4153 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4154 1.14 msaitoh case ixgbe_media_type_fiber:
4155 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4156 1.14 msaitoh break;
4157 1.14 msaitoh default:
4158 1.14 msaitoh return FALSE;
4159 1.14 msaitoh }
4160 1.14 msaitoh
4161 1.14 msaitoh return TRUE;
4162 1.14 msaitoh }
4163 1.14 msaitoh
4164 1.14 msaitoh /**
4165 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4166 1.1 dyoung * @hw: pointer to hardware structure
4167 1.1 dyoung * @speed: pointer to link speed
4168 1.1 dyoung * @link_up: TRUE when link is up
4169 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4170 1.1 dyoung *
4171 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4172 1.1 dyoung **/
4173 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4174 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4175 1.1 dyoung {
4176 1.1 dyoung u32 links_reg, links_orig;
4177 1.1 dyoung u32 i;
4178 1.1 dyoung
4179 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4180 1.1 dyoung
4181 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4182 1.14 msaitoh * the SFP+ cage is full.
4183 1.14 msaitoh */
4184 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4185 1.14 msaitoh u32 sfp_cage_full;
4186 1.14 msaitoh
4187 1.14 msaitoh switch (hw->mac.type) {
4188 1.14 msaitoh case ixgbe_mac_82599EB:
4189 1.14 msaitoh sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4190 1.14 msaitoh IXGBE_ESDP_SDP2;
4191 1.14 msaitoh break;
4192 1.14 msaitoh case ixgbe_mac_X550EM_x:
4193 1.14 msaitoh case ixgbe_mac_X550EM_a:
4194 1.14 msaitoh sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4195 1.14 msaitoh IXGBE_ESDP_SDP0;
4196 1.14 msaitoh break;
4197 1.14 msaitoh default:
4198 1.14 msaitoh /* sanity check - No SFP+ devices here */
4199 1.14 msaitoh sfp_cage_full = FALSE;
4200 1.14 msaitoh break;
4201 1.14 msaitoh }
4202 1.14 msaitoh
4203 1.14 msaitoh if (!sfp_cage_full) {
4204 1.14 msaitoh *link_up = FALSE;
4205 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4206 1.14 msaitoh return IXGBE_SUCCESS;
4207 1.14 msaitoh }
4208 1.14 msaitoh }
4209 1.14 msaitoh
4210 1.1 dyoung /* clear the old state */
4211 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4212 1.1 dyoung
4213 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4214 1.1 dyoung
4215 1.1 dyoung if (links_orig != links_reg) {
4216 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4217 1.3 msaitoh links_orig, links_reg);
4218 1.1 dyoung }
4219 1.1 dyoung
4220 1.1 dyoung if (link_up_wait_to_complete) {
4221 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4222 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4223 1.1 dyoung *link_up = TRUE;
4224 1.1 dyoung break;
4225 1.1 dyoung } else {
4226 1.1 dyoung *link_up = FALSE;
4227 1.1 dyoung }
4228 1.1 dyoung msec_delay(100);
4229 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4230 1.1 dyoung }
4231 1.1 dyoung } else {
4232 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4233 1.1 dyoung *link_up = TRUE;
4234 1.1 dyoung else
4235 1.1 dyoung *link_up = FALSE;
4236 1.1 dyoung }
4237 1.1 dyoung
4238 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4239 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4240 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4241 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4242 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4243 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4244 1.8 msaitoh }
4245 1.8 msaitoh break;
4246 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4247 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4248 1.8 msaitoh break;
4249 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4250 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4251 1.14 msaitoh if (hw->mac.type == ixgbe_mac_X550) {
4252 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4253 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4254 1.8 msaitoh }
4255 1.8 msaitoh break;
4256 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4257 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4258 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4259 1.14 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4260 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4261 1.14 msaitoh }
4262 1.14 msaitoh break;
4263 1.8 msaitoh default:
4264 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4265 1.8 msaitoh }
4266 1.1 dyoung
4267 1.1 dyoung return IXGBE_SUCCESS;
4268 1.1 dyoung }
4269 1.1 dyoung
4270 1.1 dyoung /**
4271 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4272 1.1 dyoung * the EEPROM
4273 1.1 dyoung * @hw: pointer to hardware structure
4274 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4275 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4276 1.1 dyoung *
4277 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4278 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4279 1.1 dyoung **/
4280 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4281 1.3 msaitoh u16 *wwpn_prefix)
4282 1.1 dyoung {
4283 1.1 dyoung u16 offset, caps;
4284 1.1 dyoung u16 alt_san_mac_blk_offset;
4285 1.1 dyoung
4286 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4287 1.1 dyoung
4288 1.1 dyoung /* clear output first */
4289 1.1 dyoung *wwnn_prefix = 0xFFFF;
4290 1.1 dyoung *wwpn_prefix = 0xFFFF;
4291 1.1 dyoung
4292 1.1 dyoung /* check if alternative SAN MAC is supported */
4293 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4294 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4295 1.6 msaitoh goto wwn_prefix_err;
4296 1.1 dyoung
4297 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4298 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4299 1.1 dyoung goto wwn_prefix_out;
4300 1.1 dyoung
4301 1.1 dyoung /* check capability in alternative san mac address block */
4302 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4303 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4304 1.6 msaitoh goto wwn_prefix_err;
4305 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4306 1.1 dyoung goto wwn_prefix_out;
4307 1.1 dyoung
4308 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4309 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4310 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4311 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4312 1.6 msaitoh "eeprom read at offset %d failed", offset);
4313 1.6 msaitoh }
4314 1.1 dyoung
4315 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4316 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4317 1.6 msaitoh goto wwn_prefix_err;
4318 1.1 dyoung
4319 1.1 dyoung wwn_prefix_out:
4320 1.1 dyoung return IXGBE_SUCCESS;
4321 1.6 msaitoh
4322 1.6 msaitoh wwn_prefix_err:
4323 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4324 1.6 msaitoh "eeprom read at offset %d failed", offset);
4325 1.6 msaitoh return IXGBE_SUCCESS;
4326 1.1 dyoung }
4327 1.1 dyoung
4328 1.1 dyoung /**
4329 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4330 1.1 dyoung * @hw: pointer to hardware structure
4331 1.1 dyoung * @bs: the fcoe boot status
4332 1.1 dyoung *
4333 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4334 1.1 dyoung **/
4335 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4336 1.1 dyoung {
4337 1.1 dyoung u16 offset, caps, flags;
4338 1.1 dyoung s32 status;
4339 1.1 dyoung
4340 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4341 1.1 dyoung
4342 1.1 dyoung /* clear output first */
4343 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4344 1.1 dyoung
4345 1.1 dyoung /* check if FCOE IBA block is present */
4346 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4347 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4348 1.1 dyoung if (status != IXGBE_SUCCESS)
4349 1.1 dyoung goto out;
4350 1.1 dyoung
4351 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4352 1.1 dyoung goto out;
4353 1.1 dyoung
4354 1.1 dyoung /* check if iSCSI FCOE block is populated */
4355 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4356 1.1 dyoung if (status != IXGBE_SUCCESS)
4357 1.1 dyoung goto out;
4358 1.1 dyoung
4359 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4360 1.1 dyoung goto out;
4361 1.1 dyoung
4362 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4363 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4364 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4365 1.1 dyoung if (status != IXGBE_SUCCESS)
4366 1.1 dyoung goto out;
4367 1.1 dyoung
4368 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4369 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4370 1.1 dyoung else
4371 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4372 1.1 dyoung
4373 1.1 dyoung out:
4374 1.1 dyoung return status;
4375 1.1 dyoung }
4376 1.1 dyoung
4377 1.1 dyoung /**
4378 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4379 1.1 dyoung * @hw: pointer to hardware structure
4380 1.14 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4381 1.14 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4382 1.1 dyoung *
4383 1.1 dyoung **/
4384 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4385 1.1 dyoung {
4386 1.14 msaitoh int vf_target_reg = vf >> 3;
4387 1.14 msaitoh int vf_target_shift = vf % 8;
4388 1.14 msaitoh u32 pfvfspoof;
4389 1.1 dyoung
4390 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4391 1.1 dyoung return;
4392 1.1 dyoung
4393 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4394 1.1 dyoung if (enable)
4395 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4396 1.14 msaitoh else
4397 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4398 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4399 1.1 dyoung }
4400 1.1 dyoung
4401 1.1 dyoung /**
4402 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4403 1.1 dyoung * @hw: pointer to hardware structure
4404 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4405 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4406 1.1 dyoung *
4407 1.1 dyoung **/
4408 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4409 1.1 dyoung {
4410 1.1 dyoung int vf_target_reg = vf >> 3;
4411 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4412 1.1 dyoung u32 pfvfspoof;
4413 1.1 dyoung
4414 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4415 1.1 dyoung return;
4416 1.1 dyoung
4417 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4418 1.1 dyoung if (enable)
4419 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4420 1.1 dyoung else
4421 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4422 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4423 1.1 dyoung }
4424 1.1 dyoung
4425 1.1 dyoung /**
4426 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4427 1.1 dyoung * @hw: pointer to hardware structure
4428 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4429 1.1 dyoung *
4430 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4431 1.1 dyoung * and return the word through device_caps.
4432 1.1 dyoung **/
4433 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4434 1.1 dyoung {
4435 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4436 1.1 dyoung
4437 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4438 1.1 dyoung
4439 1.1 dyoung return IXGBE_SUCCESS;
4440 1.1 dyoung }
4441 1.1 dyoung
4442 1.1 dyoung /**
4443 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4444 1.1 dyoung * @hw: pointer to hardware structure
4445 1.1 dyoung *
4446 1.1 dyoung **/
4447 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4448 1.1 dyoung {
4449 1.1 dyoung u32 regval;
4450 1.1 dyoung u32 i;
4451 1.1 dyoung
4452 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4453 1.1 dyoung
4454 1.1 dyoung /* Enable relaxed ordering */
4455 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4456 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4457 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4458 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4459 1.1 dyoung }
4460 1.1 dyoung
4461 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4462 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4463 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4464 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4465 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4466 1.1 dyoung }
4467 1.1 dyoung
4468 1.1 dyoung }
4469 1.3 msaitoh
4470 1.3 msaitoh /**
4471 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4472 1.3 msaitoh * @buffer: pointer to EEPROM
4473 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4474 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4475 1.3 msaitoh * checksum calculated is returned.
4476 1.3 msaitoh **/
4477 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4478 1.3 msaitoh {
4479 1.3 msaitoh u32 i;
4480 1.3 msaitoh u8 sum = 0;
4481 1.3 msaitoh
4482 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4483 1.3 msaitoh
4484 1.3 msaitoh if (!buffer)
4485 1.3 msaitoh return 0;
4486 1.3 msaitoh
4487 1.3 msaitoh for (i = 0; i < length; i++)
4488 1.3 msaitoh sum += buffer[i];
4489 1.3 msaitoh
4490 1.3 msaitoh return (u8) (0 - sum);
4491 1.3 msaitoh }
4492 1.3 msaitoh
4493 1.3 msaitoh /**
4494 1.14 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4495 1.3 msaitoh * @hw: pointer to the HW structure
4496 1.14 msaitoh * @buffer: command to write and where the return status will be placed
4497 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4498 1.8 msaitoh * @timeout: time in ms to wait for command completion
4499 1.3 msaitoh *
4500 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4501 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4502 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4503 1.14 msaitoh *
4504 1.14 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4505 1.14 msaitoh * by the caller.
4506 1.3 msaitoh **/
4507 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4508 1.14 msaitoh u32 timeout)
4509 1.3 msaitoh {
4510 1.14 msaitoh u32 hicr, i, fwsts;
4511 1.8 msaitoh u16 dword_len;
4512 1.3 msaitoh
4513 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4514 1.3 msaitoh
4515 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4516 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4517 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4518 1.8 msaitoh }
4519 1.14 msaitoh
4520 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4521 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4522 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4523 1.3 msaitoh
4524 1.3 msaitoh /* Check that the host interface is enabled. */
4525 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4526 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4527 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4528 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4529 1.8 msaitoh }
4530 1.8 msaitoh
4531 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4532 1.14 msaitoh if (length % sizeof(u32)) {
4533 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4534 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4535 1.3 msaitoh }
4536 1.3 msaitoh
4537 1.3 msaitoh dword_len = length >> 2;
4538 1.3 msaitoh
4539 1.8 msaitoh /* The device driver writes the relevant command block
4540 1.3 msaitoh * into the ram area.
4541 1.3 msaitoh */
4542 1.3 msaitoh for (i = 0; i < dword_len; i++)
4543 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4544 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4545 1.3 msaitoh
4546 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4547 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4548 1.3 msaitoh
4549 1.8 msaitoh for (i = 0; i < timeout; i++) {
4550 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4551 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4552 1.3 msaitoh break;
4553 1.3 msaitoh msec_delay(1);
4554 1.3 msaitoh }
4555 1.3 msaitoh
4556 1.8 msaitoh /* Check command completion */
4557 1.14 msaitoh if ((timeout && i == timeout) ||
4558 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4559 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4560 1.8 msaitoh "Command has failed with no status valid.\n");
4561 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4562 1.3 msaitoh }
4563 1.3 msaitoh
4564 1.14 msaitoh return IXGBE_SUCCESS;
4565 1.14 msaitoh }
4566 1.14 msaitoh
4567 1.14 msaitoh /**
4568 1.14 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4569 1.14 msaitoh * @hw: pointer to the HW structure
4570 1.14 msaitoh * @buffer: contains the command to write and where the return status will
4571 1.14 msaitoh * be placed
4572 1.14 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4573 1.14 msaitoh * @timeout: time in ms to wait for command completion
4574 1.14 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4575 1.14 msaitoh * Needed because FW structures are big endian and decoding of
4576 1.14 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4577 1.14 msaitoh * is not easily understood without making a table of commands.
4578 1.14 msaitoh * So we will leave this up to the caller to read back the data
4579 1.14 msaitoh * in these cases.
4580 1.14 msaitoh *
4581 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4582 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4583 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4584 1.14 msaitoh **/
4585 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4586 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4587 1.14 msaitoh {
4588 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4589 1.14 msaitoh u16 dword_len;
4590 1.14 msaitoh u16 buf_len;
4591 1.14 msaitoh s32 status;
4592 1.14 msaitoh u32 bi;
4593 1.14 msaitoh
4594 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4595 1.14 msaitoh
4596 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4597 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4598 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4599 1.14 msaitoh }
4600 1.14 msaitoh
4601 1.14 msaitoh /* Take management host interface semaphore */
4602 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4603 1.14 msaitoh if (status)
4604 1.14 msaitoh return status;
4605 1.14 msaitoh
4606 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4607 1.14 msaitoh if (status)
4608 1.14 msaitoh goto rel_out;
4609 1.14 msaitoh
4610 1.8 msaitoh if (!return_data)
4611 1.14 msaitoh goto rel_out;
4612 1.8 msaitoh
4613 1.3 msaitoh /* Calculate length in DWORDs */
4614 1.3 msaitoh dword_len = hdr_size >> 2;
4615 1.3 msaitoh
4616 1.3 msaitoh /* first pull in the header so we know the buffer length */
4617 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4618 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4619 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4620 1.3 msaitoh }
4621 1.3 msaitoh
4622 1.3 msaitoh /* If there is any thing in data position pull it in */
4623 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4624 1.14 msaitoh if (!buf_len)
4625 1.14 msaitoh goto rel_out;
4626 1.3 msaitoh
4627 1.8 msaitoh if (length < buf_len + hdr_size) {
4628 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4629 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4630 1.14 msaitoh goto rel_out;
4631 1.3 msaitoh }
4632 1.3 msaitoh
4633 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4634 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4635 1.3 msaitoh
4636 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4637 1.3 msaitoh for (; bi <= dword_len; bi++) {
4638 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4639 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4640 1.3 msaitoh }
4641 1.3 msaitoh
4642 1.14 msaitoh rel_out:
4643 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4644 1.14 msaitoh
4645 1.14 msaitoh return status;
4646 1.3 msaitoh }
4647 1.3 msaitoh
4648 1.3 msaitoh /**
4649 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4650 1.3 msaitoh * @hw: pointer to the HW structure
4651 1.3 msaitoh * @maj: driver version major number
4652 1.7 riastrad * @minr: driver version minor number
4653 1.3 msaitoh * @build: driver version build number
4654 1.3 msaitoh * @sub: driver version sub build number
4655 1.3 msaitoh *
4656 1.3 msaitoh * Sends driver version number to firmware through the manageability
4657 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4658 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4659 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4660 1.3 msaitoh **/
4661 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4662 1.14 msaitoh u8 build, u8 sub, u16 len,
4663 1.14 msaitoh const char *driver_ver)
4664 1.3 msaitoh {
4665 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4666 1.3 msaitoh int i;
4667 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4668 1.3 msaitoh
4669 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4670 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4671 1.3 msaitoh
4672 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4673 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4674 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4675 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4676 1.3 msaitoh fw_cmd.ver_maj = maj;
4677 1.7 riastrad fw_cmd.ver_min = minr;
4678 1.3 msaitoh fw_cmd.ver_build = build;
4679 1.3 msaitoh fw_cmd.ver_sub = sub;
4680 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4681 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4682 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4683 1.3 msaitoh fw_cmd.pad = 0;
4684 1.3 msaitoh fw_cmd.pad2 = 0;
4685 1.3 msaitoh
4686 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4687 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4688 1.8 msaitoh sizeof(fw_cmd),
4689 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4690 1.8 msaitoh TRUE);
4691 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4692 1.3 msaitoh continue;
4693 1.3 msaitoh
4694 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4695 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4696 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4697 1.3 msaitoh else
4698 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4699 1.3 msaitoh
4700 1.3 msaitoh break;
4701 1.3 msaitoh }
4702 1.3 msaitoh
4703 1.3 msaitoh return ret_val;
4704 1.3 msaitoh }
4705 1.3 msaitoh
4706 1.3 msaitoh /**
4707 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4708 1.3 msaitoh * @hw: pointer to hardware structure
4709 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4710 1.3 msaitoh * @headroom: reserve n KB of headroom
4711 1.3 msaitoh * @strategy: packet buffer allocation strategy
4712 1.3 msaitoh **/
4713 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4714 1.3 msaitoh int strategy)
4715 1.3 msaitoh {
4716 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4717 1.3 msaitoh int i = 0;
4718 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4719 1.3 msaitoh
4720 1.3 msaitoh /* Reserve headroom */
4721 1.3 msaitoh pbsize -= headroom;
4722 1.3 msaitoh
4723 1.3 msaitoh if (!num_pb)
4724 1.3 msaitoh num_pb = 1;
4725 1.3 msaitoh
4726 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4727 1.3 msaitoh * buffers requested using supplied strategy.
4728 1.3 msaitoh */
4729 1.3 msaitoh switch (strategy) {
4730 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4731 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4732 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4733 1.3 msaitoh */
4734 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4735 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4736 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4737 1.3 msaitoh for (; i < (num_pb / 2); i++)
4738 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4739 1.14 msaitoh /* fall through - configure remaining packet buffers */
4740 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4741 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4742 1.3 msaitoh for (; i < num_pb; i++)
4743 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4744 1.3 msaitoh break;
4745 1.3 msaitoh default:
4746 1.3 msaitoh break;
4747 1.3 msaitoh }
4748 1.3 msaitoh
4749 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4750 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4751 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4752 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4753 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4754 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4755 1.3 msaitoh }
4756 1.3 msaitoh
4757 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4758 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4759 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4760 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4761 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4762 1.3 msaitoh }
4763 1.3 msaitoh }
4764 1.3 msaitoh
4765 1.3 msaitoh /**
4766 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4767 1.3 msaitoh * @hw: pointer to the hardware structure
4768 1.3 msaitoh *
4769 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4770 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4771 1.3 msaitoh * buffers on the system.
4772 1.3 msaitoh **/
4773 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4774 1.3 msaitoh {
4775 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4776 1.8 msaitoh u16 value;
4777 1.3 msaitoh
4778 1.3 msaitoh /*
4779 1.3 msaitoh * If double reset is not requested then all transactions should
4780 1.3 msaitoh * already be clear and as such there is no work to do
4781 1.3 msaitoh */
4782 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4783 1.3 msaitoh return;
4784 1.3 msaitoh
4785 1.3 msaitoh /*
4786 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4787 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4788 1.3 msaitoh * has already been cleared.
4789 1.3 msaitoh */
4790 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4791 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4792 1.3 msaitoh
4793 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4794 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4795 1.8 msaitoh msec_delay(3);
4796 1.8 msaitoh
4797 1.8 msaitoh /*
4798 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4799 1.8 msaitoh * transactions pending.
4800 1.8 msaitoh */
4801 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4802 1.8 msaitoh for (i = 0; i < poll; i++) {
4803 1.8 msaitoh usec_delay(100);
4804 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4805 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4806 1.8 msaitoh goto out;
4807 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4808 1.8 msaitoh goto out;
4809 1.8 msaitoh }
4810 1.8 msaitoh
4811 1.8 msaitoh out:
4812 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4813 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4814 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4815 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4816 1.3 msaitoh
4817 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4818 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4819 1.3 msaitoh usec_delay(20);
4820 1.3 msaitoh
4821 1.3 msaitoh /* restore previous register values */
4822 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4823 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4824 1.3 msaitoh }
4825 1.3 msaitoh
4826 1.14 msaitoh /**
4827 1.14 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4828 1.14 msaitoh *
4829 1.14 msaitoh * @hw: pointer to hardware structure
4830 1.14 msaitoh * @cmd: Command we send to the FW
4831 1.14 msaitoh * @status: The reply from the FW
4832 1.14 msaitoh *
4833 1.14 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4834 1.14 msaitoh **/
4835 1.14 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4836 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4837 1.14 msaitoh {
4838 1.14 msaitoh int i;
4839 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4840 1.14 msaitoh u32 esdp;
4841 1.14 msaitoh
4842 1.14 msaitoh if (!status)
4843 1.14 msaitoh return IXGBE_ERR_PARAM;
4844 1.14 msaitoh
4845 1.14 msaitoh *status = 0;
4846 1.14 msaitoh
4847 1.14 msaitoh /* SDP vary by MAC type */
4848 1.14 msaitoh switch (hw->mac.type) {
4849 1.14 msaitoh case ixgbe_mac_82599EB:
4850 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4851 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4852 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4853 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4854 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4855 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4856 1.14 msaitoh break;
4857 1.14 msaitoh case ixgbe_mac_X540:
4858 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4859 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4860 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4861 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4862 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4863 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4864 1.14 msaitoh break;
4865 1.14 msaitoh default:
4866 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4867 1.14 msaitoh }
4868 1.14 msaitoh
4869 1.14 msaitoh /* Set SDP pins direction */
4870 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4871 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4872 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4873 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4874 1.14 msaitoh esdp |= sck;
4875 1.14 msaitoh esdp |= sdi;
4876 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4877 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4878 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4879 1.14 msaitoh
4880 1.14 msaitoh /* Generate start condition */
4881 1.14 msaitoh esdp &= ~sdi;
4882 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4883 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4884 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4885 1.14 msaitoh
4886 1.14 msaitoh esdp &= ~sck;
4887 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4888 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4889 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4890 1.14 msaitoh
4891 1.14 msaitoh /* Clock out the new control word and clock in the status */
4892 1.14 msaitoh for (i = 0; i < 32; i++) {
4893 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4894 1.14 msaitoh esdp |= sdi;
4895 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4896 1.14 msaitoh } else {
4897 1.14 msaitoh esdp &= ~sdi;
4898 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4899 1.14 msaitoh }
4900 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4901 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4902 1.14 msaitoh
4903 1.14 msaitoh esdp |= sck;
4904 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4905 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4906 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4907 1.14 msaitoh
4908 1.14 msaitoh esdp &= ~sck;
4909 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4910 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4911 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4912 1.14 msaitoh
4913 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4914 1.14 msaitoh if (esdp & sdo)
4915 1.14 msaitoh *status = (*status << 1) | 0x01;
4916 1.14 msaitoh else
4917 1.14 msaitoh *status = (*status << 1) | 0x00;
4918 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4919 1.14 msaitoh }
4920 1.14 msaitoh
4921 1.14 msaitoh /* stop condition */
4922 1.14 msaitoh esdp |= sck;
4923 1.14 msaitoh esdp &= ~sdi;
4924 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4925 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4926 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4927 1.14 msaitoh
4928 1.14 msaitoh esdp |= sdi;
4929 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4930 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4931 1.14 msaitoh
4932 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
4933 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4934 1.14 msaitoh
4935 1.14 msaitoh return IXGBE_SUCCESS;
4936 1.14 msaitoh }
4937 1.14 msaitoh
4938 1.14 msaitoh /**
4939 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4940 1.14 msaitoh *
4941 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
4942 1.14 msaitoh * that same register. It can be a problem as some of the feilds may
4943 1.14 msaitoh * for valid reasons change inbetween the time wrote the register and
4944 1.14 msaitoh * we read it again to verify. So this function check everything we
4945 1.14 msaitoh * can check and then assumes it worked.
4946 1.14 msaitoh *
4947 1.14 msaitoh * @u32 in_reg - The register cmd for the bit-bang read.
4948 1.14 msaitoh * @u32 out_reg - The register returned from a bit-bang read.
4949 1.14 msaitoh **/
4950 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4951 1.14 msaitoh {
4952 1.14 msaitoh u32 mask;
4953 1.14 msaitoh
4954 1.14 msaitoh /* Page must match for all control pages */
4955 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4956 1.14 msaitoh return FALSE;
4957 1.14 msaitoh
4958 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
4959 1.14 msaitoh case BYPASS_PAGE_CTL0:
4960 1.14 msaitoh /* All the following can't change since the last write
4961 1.14 msaitoh * - All the event actions
4962 1.14 msaitoh * - The timeout value
4963 1.14 msaitoh */
4964 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4965 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4966 1.14 msaitoh BYPASS_WDTIMEOUT_M |
4967 1.14 msaitoh BYPASS_WDT_VALUE_M;
4968 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
4969 1.14 msaitoh return FALSE;
4970 1.14 msaitoh
4971 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
4972 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
4973 1.14 msaitoh return FALSE;
4974 1.14 msaitoh break;
4975 1.14 msaitoh case BYPASS_PAGE_CTL1:
4976 1.14 msaitoh /* All the following can't change since the last write
4977 1.14 msaitoh * - time valid bit
4978 1.14 msaitoh * - time we last sent
4979 1.14 msaitoh */
4980 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4981 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
4982 1.14 msaitoh return FALSE;
4983 1.14 msaitoh break;
4984 1.14 msaitoh case BYPASS_PAGE_CTL2:
4985 1.14 msaitoh /* All we can check in this page is control number
4986 1.14 msaitoh * which is already done above.
4987 1.14 msaitoh */
4988 1.14 msaitoh break;
4989 1.14 msaitoh }
4990 1.14 msaitoh
4991 1.14 msaitoh /* We are as sure as we can be return TRUE */
4992 1.14 msaitoh return TRUE;
4993 1.14 msaitoh }
4994 1.14 msaitoh
4995 1.14 msaitoh /**
4996 1.14 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4997 1.14 msaitoh *
4998 1.14 msaitoh * @hw: pointer to hardware structure
4999 1.14 msaitoh * @cmd: The control word we are setting.
5000 1.14 msaitoh * @event: The event we are setting in the FW. This also happens to
5001 1.14 msaitoh * be the mask for the event we are setting (handy)
5002 1.14 msaitoh * @action: The action we set the event to in the FW. This is in a
5003 1.14 msaitoh * bit field that happens to be what we want to put in
5004 1.14 msaitoh * the event spot (also handy)
5005 1.14 msaitoh **/
5006 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5007 1.14 msaitoh u32 action)
5008 1.14 msaitoh {
5009 1.14 msaitoh u32 by_ctl = 0;
5010 1.14 msaitoh u32 cmd, verify;
5011 1.14 msaitoh u32 count = 0;
5012 1.14 msaitoh
5013 1.14 msaitoh /* Get current values */
5014 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5015 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5016 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5017 1.14 msaitoh
5018 1.14 msaitoh /* Set to new action */
5019 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5020 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5021 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5022 1.14 msaitoh
5023 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5024 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5025 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5026 1.14 msaitoh do {
5027 1.14 msaitoh if (count++ > 5)
5028 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5029 1.14 msaitoh
5030 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5031 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5032 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5033 1.14 msaitoh } else {
5034 1.14 msaitoh /* We have give the FW time for the write to stick */
5035 1.14 msaitoh msec_delay(100);
5036 1.14 msaitoh }
5037 1.14 msaitoh
5038 1.14 msaitoh return IXGBE_SUCCESS;
5039 1.14 msaitoh }
5040 1.14 msaitoh
5041 1.14 msaitoh /**
5042 1.14 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5043 1.14 msaitoh *
5044 1.14 msaitoh * @hw: pointer to hardware structure
5045 1.14 msaitoh * @addr: The bypass eeprom address to read.
5046 1.14 msaitoh * @value: The 8b of data at the address above.
5047 1.14 msaitoh **/
5048 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5049 1.14 msaitoh {
5050 1.14 msaitoh u32 cmd;
5051 1.14 msaitoh u32 status;
5052 1.14 msaitoh
5053 1.14 msaitoh
5054 1.14 msaitoh /* send the request */
5055 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5056 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5057 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5058 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5059 1.14 msaitoh
5060 1.14 msaitoh /* We have give the FW time for the write to stick */
5061 1.14 msaitoh msec_delay(100);
5062 1.14 msaitoh
5063 1.14 msaitoh /* now read the results */
5064 1.14 msaitoh cmd &= ~BYPASS_WE;
5065 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5066 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5067 1.14 msaitoh
5068 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5069 1.14 msaitoh
5070 1.14 msaitoh return IXGBE_SUCCESS;
5071 1.14 msaitoh }
5072 1.14 msaitoh
5073 1.6 msaitoh
5074 1.6 msaitoh /**
5075 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5076 1.6 msaitoh * @hw: pointer to hardware structure
5077 1.6 msaitoh * @map: pointer to u8 arr for returning map
5078 1.6 msaitoh *
5079 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5080 1.6 msaitoh **/
5081 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5082 1.6 msaitoh {
5083 1.6 msaitoh u32 reg, i;
5084 1.6 msaitoh
5085 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5086 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5087 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5088 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5089 1.6 msaitoh return;
5090 1.6 msaitoh }
5091 1.8 msaitoh
5092 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5093 1.8 msaitoh {
5094 1.8 msaitoh u32 pfdtxgswc;
5095 1.8 msaitoh u32 rxctrl;
5096 1.8 msaitoh
5097 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5098 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5099 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5100 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5101 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5102 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5103 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5104 1.8 msaitoh hw->mac.set_lben = TRUE;
5105 1.8 msaitoh } else {
5106 1.8 msaitoh hw->mac.set_lben = FALSE;
5107 1.8 msaitoh }
5108 1.8 msaitoh }
5109 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5110 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5111 1.8 msaitoh }
5112 1.8 msaitoh }
5113 1.8 msaitoh
5114 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5115 1.8 msaitoh {
5116 1.8 msaitoh u32 pfdtxgswc;
5117 1.8 msaitoh u32 rxctrl;
5118 1.8 msaitoh
5119 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5120 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5121 1.8 msaitoh
5122 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5123 1.8 msaitoh if (hw->mac.set_lben) {
5124 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5125 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5126 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5127 1.8 msaitoh hw->mac.set_lben = FALSE;
5128 1.8 msaitoh }
5129 1.8 msaitoh }
5130 1.8 msaitoh }
5131 1.8 msaitoh
5132 1.8 msaitoh /**
5133 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5134 1.8 msaitoh * @hw: pointer to hardware structure
5135 1.8 msaitoh */
5136 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5137 1.8 msaitoh {
5138 1.8 msaitoh u32 fwsm;
5139 1.8 msaitoh
5140 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5141 1.8 msaitoh return FALSE;
5142 1.8 msaitoh
5143 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5144 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
5145 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
5146 1.8 msaitoh }
5147 1.8 msaitoh
5148 1.8 msaitoh /**
5149 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5150 1.8 msaitoh * @hw: pointer to hardware structure
5151 1.8 msaitoh *
5152 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5153 1.8 msaitoh **/
5154 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5155 1.8 msaitoh {
5156 1.8 msaitoh u32 fwsm, manc, factps;
5157 1.8 msaitoh
5158 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5159 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5160 1.8 msaitoh return FALSE;
5161 1.8 msaitoh
5162 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5163 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5164 1.8 msaitoh return FALSE;
5165 1.8 msaitoh
5166 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5167 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5168 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5169 1.8 msaitoh return FALSE;
5170 1.8 msaitoh }
5171 1.8 msaitoh
5172 1.8 msaitoh return TRUE;
5173 1.8 msaitoh }
5174 1.8 msaitoh
5175 1.8 msaitoh /**
5176 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5177 1.8 msaitoh * @hw: pointer to hardware structure
5178 1.8 msaitoh * @speed: new link speed
5179 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5180 1.8 msaitoh *
5181 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5182 1.8 msaitoh **/
5183 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5184 1.8 msaitoh ixgbe_link_speed speed,
5185 1.8 msaitoh bool autoneg_wait_to_complete)
5186 1.8 msaitoh {
5187 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5188 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5189 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5190 1.8 msaitoh u32 speedcnt = 0;
5191 1.8 msaitoh u32 i = 0;
5192 1.8 msaitoh bool autoneg, link_up = FALSE;
5193 1.8 msaitoh
5194 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5195 1.8 msaitoh
5196 1.8 msaitoh /* Mask off requested but non-supported speeds */
5197 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5198 1.8 msaitoh if (status != IXGBE_SUCCESS)
5199 1.8 msaitoh return status;
5200 1.8 msaitoh
5201 1.8 msaitoh speed &= link_speed;
5202 1.8 msaitoh
5203 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5204 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5205 1.8 msaitoh */
5206 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5207 1.8 msaitoh speedcnt++;
5208 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5209 1.8 msaitoh
5210 1.8 msaitoh /* Set the module link speed */
5211 1.8 msaitoh switch (hw->phy.media_type) {
5212 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5213 1.8 msaitoh case ixgbe_media_type_fiber:
5214 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5215 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5216 1.8 msaitoh break;
5217 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5218 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5219 1.8 msaitoh break;
5220 1.8 msaitoh default:
5221 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5222 1.8 msaitoh break;
5223 1.8 msaitoh }
5224 1.8 msaitoh
5225 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5226 1.8 msaitoh msec_delay(40);
5227 1.8 msaitoh
5228 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5229 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5230 1.8 msaitoh autoneg_wait_to_complete);
5231 1.8 msaitoh if (status != IXGBE_SUCCESS)
5232 1.8 msaitoh return status;
5233 1.8 msaitoh
5234 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5235 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5236 1.8 msaitoh
5237 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5238 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
5239 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5240 1.8 msaitoh */
5241 1.8 msaitoh for (i = 0; i < 5; i++) {
5242 1.8 msaitoh /* Wait for the link partner to also set speed */
5243 1.8 msaitoh msec_delay(100);
5244 1.8 msaitoh
5245 1.8 msaitoh /* If we have link, just jump out */
5246 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5247 1.8 msaitoh &link_up, FALSE);
5248 1.8 msaitoh if (status != IXGBE_SUCCESS)
5249 1.8 msaitoh return status;
5250 1.8 msaitoh
5251 1.8 msaitoh if (link_up)
5252 1.8 msaitoh goto out;
5253 1.8 msaitoh }
5254 1.8 msaitoh }
5255 1.8 msaitoh
5256 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5257 1.8 msaitoh speedcnt++;
5258 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5259 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5260 1.8 msaitoh
5261 1.8 msaitoh /* Set the module link speed */
5262 1.8 msaitoh switch (hw->phy.media_type) {
5263 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5264 1.8 msaitoh case ixgbe_media_type_fiber:
5265 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5266 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5267 1.8 msaitoh break;
5268 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5269 1.8 msaitoh /* QSFP module automatically detects link speed */
5270 1.8 msaitoh break;
5271 1.8 msaitoh default:
5272 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5273 1.8 msaitoh break;
5274 1.8 msaitoh }
5275 1.8 msaitoh
5276 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5277 1.8 msaitoh msec_delay(40);
5278 1.8 msaitoh
5279 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5280 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5281 1.8 msaitoh autoneg_wait_to_complete);
5282 1.8 msaitoh if (status != IXGBE_SUCCESS)
5283 1.8 msaitoh return status;
5284 1.8 msaitoh
5285 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5286 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5287 1.8 msaitoh
5288 1.8 msaitoh /* Wait for the link partner to also set speed */
5289 1.8 msaitoh msec_delay(100);
5290 1.8 msaitoh
5291 1.8 msaitoh /* If we have link, just jump out */
5292 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5293 1.8 msaitoh if (status != IXGBE_SUCCESS)
5294 1.8 msaitoh return status;
5295 1.8 msaitoh
5296 1.8 msaitoh if (link_up)
5297 1.8 msaitoh goto out;
5298 1.8 msaitoh }
5299 1.8 msaitoh
5300 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5301 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5302 1.8 msaitoh * single highest speed that the user requested.
5303 1.8 msaitoh */
5304 1.8 msaitoh if (speedcnt > 1)
5305 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5306 1.8 msaitoh highest_link_speed,
5307 1.8 msaitoh autoneg_wait_to_complete);
5308 1.8 msaitoh
5309 1.8 msaitoh out:
5310 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5311 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5312 1.8 msaitoh
5313 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5314 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5315 1.8 msaitoh
5316 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5317 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5318 1.8 msaitoh
5319 1.8 msaitoh return status;
5320 1.8 msaitoh }
5321 1.8 msaitoh
5322 1.8 msaitoh /**
5323 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5324 1.8 msaitoh * @hw: pointer to hardware structure
5325 1.8 msaitoh * @speed: link speed to set
5326 1.8 msaitoh *
5327 1.8 msaitoh * Set module link speed via the soft rate select.
5328 1.8 msaitoh */
5329 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5330 1.8 msaitoh ixgbe_link_speed speed)
5331 1.8 msaitoh {
5332 1.8 msaitoh s32 status;
5333 1.8 msaitoh u8 rs, eeprom_data;
5334 1.8 msaitoh
5335 1.8 msaitoh switch (speed) {
5336 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5337 1.8 msaitoh /* one bit mask same as setting on */
5338 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5339 1.8 msaitoh break;
5340 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5341 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5342 1.8 msaitoh break;
5343 1.8 msaitoh default:
5344 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5345 1.8 msaitoh return;
5346 1.8 msaitoh }
5347 1.8 msaitoh
5348 1.8 msaitoh /* Set RS0 */
5349 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5350 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5351 1.8 msaitoh &eeprom_data);
5352 1.8 msaitoh if (status) {
5353 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5354 1.8 msaitoh goto out;
5355 1.8 msaitoh }
5356 1.8 msaitoh
5357 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5358 1.8 msaitoh
5359 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5360 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5361 1.8 msaitoh eeprom_data);
5362 1.8 msaitoh if (status) {
5363 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5364 1.8 msaitoh goto out;
5365 1.8 msaitoh }
5366 1.8 msaitoh
5367 1.8 msaitoh /* Set RS1 */
5368 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5369 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5370 1.8 msaitoh &eeprom_data);
5371 1.8 msaitoh if (status) {
5372 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5373 1.8 msaitoh goto out;
5374 1.8 msaitoh }
5375 1.8 msaitoh
5376 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5377 1.8 msaitoh
5378 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5379 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5380 1.8 msaitoh eeprom_data);
5381 1.8 msaitoh if (status) {
5382 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5383 1.8 msaitoh goto out;
5384 1.8 msaitoh }
5385 1.8 msaitoh out:
5386 1.8 msaitoh return;
5387 1.8 msaitoh }
5388