Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.14
      1  1.14   msaitoh /* $NetBSD: ixgbe_common.c,v 1.14 2017/08/30 08:49:18 msaitoh Exp $ */
      2  1.14   msaitoh 
      3   1.1    dyoung /******************************************************************************
      4   1.1    dyoung 
      5  1.14   msaitoh   Copyright (c) 2001-2017, Intel Corporation
      6   1.1    dyoung   All rights reserved.
      7  1.14   msaitoh 
      8  1.14   msaitoh   Redistribution and use in source and binary forms, with or without
      9   1.1    dyoung   modification, are permitted provided that the following conditions are met:
     10  1.14   msaitoh 
     11  1.14   msaitoh    1. Redistributions of source code must retain the above copyright notice,
     12   1.1    dyoung       this list of conditions and the following disclaimer.
     13  1.14   msaitoh 
     14  1.14   msaitoh    2. Redistributions in binary form must reproduce the above copyright
     15  1.14   msaitoh       notice, this list of conditions and the following disclaimer in the
     16   1.1    dyoung       documentation and/or other materials provided with the distribution.
     17  1.14   msaitoh 
     18  1.14   msaitoh    3. Neither the name of the Intel Corporation nor the names of its
     19  1.14   msaitoh       contributors may be used to endorse or promote products derived from
     20   1.1    dyoung       this software without specific prior written permission.
     21  1.14   msaitoh 
     22   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     23  1.14   msaitoh   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.14   msaitoh   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.14   msaitoh   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     26  1.14   msaitoh   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  1.14   msaitoh   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  1.14   msaitoh   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  1.14   msaitoh   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  1.14   msaitoh   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     33   1.1    dyoung 
     34   1.1    dyoung ******************************************************************************/
     35  1.14   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
     36   1.1    dyoung 
     37   1.1    dyoung #include "ixgbe_common.h"
     38   1.1    dyoung #include "ixgbe_phy.h"
     39   1.6   msaitoh #include "ixgbe_dcb.h"
     40   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     41   1.1    dyoung #include "ixgbe_api.h"
     42   1.1    dyoung 
     43   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     44   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     45   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     46   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     47   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     48   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     49   1.3   msaitoh 					u16 count);
     50   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     51   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     53   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     54   1.1    dyoung 
     55   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     56   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     57   1.3   msaitoh 					 u16 *san_mac_offset);
     58   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     59   1.3   msaitoh 					     u16 words, u16 *data);
     60   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     61   1.3   msaitoh 					      u16 words, u16 *data);
     62   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     63   1.3   msaitoh 						 u16 offset);
     64   1.1    dyoung 
     65   1.1    dyoung /**
     66   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     67   1.1    dyoung  *  @hw: pointer to the hardware structure
     68   1.1    dyoung  *
     69   1.1    dyoung  *  Initialize the function pointers.
     70   1.1    dyoung  **/
     71   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     72   1.1    dyoung {
     73   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     74   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     75  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     76   1.1    dyoung 
     77   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     78   1.1    dyoung 
     79   1.1    dyoung 	/* EEPROM */
     80   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     81   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     82   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     83   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     84   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     85   1.3   msaitoh 	} else {
     86   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     87   1.3   msaitoh 		eeprom->ops.read_buffer =
     88   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     89   1.3   msaitoh 	}
     90   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     91   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     92   1.1    dyoung 	eeprom->ops.validate_checksum =
     93   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     94   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     95   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     96   1.1    dyoung 
     97   1.1    dyoung 	/* MAC */
     98   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
     99   1.1    dyoung 	mac->ops.reset_hw = NULL;
    100   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    101   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    102   1.1    dyoung 	mac->ops.get_media_type = NULL;
    103   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    104   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    105   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    106   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    107   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    108   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    109   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    110   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    111   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    112   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    113   1.1    dyoung 
    114   1.1    dyoung 	/* LEDs */
    115   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    116   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    117   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    118   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    119  1.14   msaitoh 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    120   1.1    dyoung 
    121   1.1    dyoung 	/* RAR, Multicast, VLAN */
    122   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    123   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    124   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    125   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    126   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    127   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    128   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    129   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    130   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    131   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    132   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    133   1.1    dyoung 	mac->ops.set_vfta = NULL;
    134   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    135   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    136   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    137   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    138   1.1    dyoung 
    139   1.1    dyoung 	/* Flow Control */
    140   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    141   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    142  1.14   msaitoh 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    143   1.1    dyoung 
    144   1.1    dyoung 	/* Link */
    145   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    146   1.1    dyoung 	mac->ops.setup_link = NULL;
    147   1.1    dyoung 	mac->ops.check_link = NULL;
    148   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    149   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    150   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    151   1.1    dyoung 
    152   1.1    dyoung 	return IXGBE_SUCCESS;
    153   1.1    dyoung }
    154   1.1    dyoung 
    155   1.1    dyoung /**
    156   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    157   1.6   msaitoh  * of flow control
    158   1.6   msaitoh  * @hw: pointer to hardware structure
    159   1.6   msaitoh  *
    160   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    161   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    162   1.4   msaitoh  *
    163   1.4   msaitoh  **/
    164   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    165   1.4   msaitoh {
    166   1.6   msaitoh 	bool supported = FALSE;
    167   1.6   msaitoh 	ixgbe_link_speed speed;
    168   1.6   msaitoh 	bool link_up;
    169   1.4   msaitoh 
    170   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    171   1.4   msaitoh 
    172   1.6   msaitoh 	switch (hw->phy.media_type) {
    173   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    174   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    175   1.6   msaitoh 	case ixgbe_media_type_fiber:
    176  1.14   msaitoh 		/* flow control autoneg black list */
    177  1.14   msaitoh 		switch (hw->device_id) {
    178  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP:
    179  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    180  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    181  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    182  1.14   msaitoh 			supported = FALSE;
    183  1.14   msaitoh 			break;
    184  1.14   msaitoh 		default:
    185  1.14   msaitoh 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    186  1.14   msaitoh 			/* if link is down, assume supported */
    187  1.14   msaitoh 			if (link_up)
    188  1.14   msaitoh 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    189  1.14   msaitoh 				    TRUE : FALSE;
    190  1.14   msaitoh 			else
    191  1.14   msaitoh 				supported = TRUE;
    192  1.14   msaitoh 		}
    193  1.14   msaitoh 
    194  1.14   msaitoh 		break;
    195  1.14   msaitoh 	case ixgbe_media_type_backplane:
    196  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    197  1.14   msaitoh 			supported = FALSE;
    198   1.6   msaitoh 		else
    199   1.6   msaitoh 			supported = TRUE;
    200   1.6   msaitoh 		break;
    201   1.6   msaitoh 	case ixgbe_media_type_copper:
    202   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    203   1.6   msaitoh 		switch (hw->device_id) {
    204   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    205   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    206   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    207   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    208   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    209  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    210   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    211  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    212  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    213  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    214   1.6   msaitoh 			supported = TRUE;
    215   1.6   msaitoh 			break;
    216   1.6   msaitoh 		default:
    217   1.6   msaitoh 			supported = FALSE;
    218   1.6   msaitoh 		}
    219   1.4   msaitoh 	default:
    220   1.6   msaitoh 		break;
    221   1.4   msaitoh 	}
    222   1.6   msaitoh 
    223  1.14   msaitoh 	if (!supported)
    224  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    225  1.14   msaitoh 			      "Device %x does not support flow control autoneg",
    226  1.14   msaitoh 			      hw->device_id);
    227   1.6   msaitoh 	return supported;
    228   1.4   msaitoh }
    229   1.4   msaitoh 
    230   1.4   msaitoh /**
    231   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    232   1.4   msaitoh  *  @hw: pointer to hardware structure
    233   1.4   msaitoh  *
    234   1.4   msaitoh  *  Called at init time to set up flow control.
    235   1.4   msaitoh  **/
    236   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    237   1.4   msaitoh {
    238   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    239   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    240   1.4   msaitoh 	u16 reg_cu = 0;
    241   1.8   msaitoh 	bool locked = FALSE;
    242   1.4   msaitoh 
    243   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    244   1.4   msaitoh 
    245   1.8   msaitoh 	/* Validate the requested mode */
    246   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    247   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    248   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    249   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    250   1.4   msaitoh 		goto out;
    251   1.4   msaitoh 	}
    252   1.4   msaitoh 
    253   1.4   msaitoh 	/*
    254   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    255   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    256   1.4   msaitoh 	 */
    257   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    258   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    259   1.4   msaitoh 
    260   1.4   msaitoh 	/*
    261   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    262   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    263   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    264   1.4   msaitoh 	 */
    265   1.4   msaitoh 	switch (hw->phy.media_type) {
    266   1.8   msaitoh 	case ixgbe_media_type_backplane:
    267   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    268   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    269   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    270   1.8   msaitoh 			goto out;
    271   1.8   msaitoh 
    272  1.14   msaitoh 		/* fall through - only backplane uses autoc */
    273   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    274   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    275   1.4   msaitoh 	case ixgbe_media_type_fiber:
    276   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    277   1.8   msaitoh 
    278   1.4   msaitoh 		break;
    279   1.4   msaitoh 	case ixgbe_media_type_copper:
    280   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    281   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    282   1.4   msaitoh 		break;
    283   1.4   msaitoh 	default:
    284   1.4   msaitoh 		break;
    285   1.4   msaitoh 	}
    286   1.4   msaitoh 
    287   1.4   msaitoh 	/*
    288   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    289   1.4   msaitoh 	 * 0: Flow control is completely disabled
    290   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    291   1.4   msaitoh 	 *    but not send pause frames).
    292   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    293   1.4   msaitoh 	 *    we do not support receiving pause frames).
    294   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    295   1.4   msaitoh 	 * other: Invalid.
    296   1.4   msaitoh 	 */
    297   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    298   1.4   msaitoh 	case ixgbe_fc_none:
    299   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    300   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    301   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    302   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    303   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    304   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    305   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    306   1.4   msaitoh 		break;
    307   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    308   1.4   msaitoh 		/*
    309   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    310   1.4   msaitoh 		 * disabled by software override.
    311   1.4   msaitoh 		 */
    312   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    313   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    314   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    315   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    316   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    317   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    318   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    319   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    320   1.4   msaitoh 		}
    321   1.4   msaitoh 		break;
    322   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    323   1.4   msaitoh 		/*
    324   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    325   1.4   msaitoh 		 * disabled by software override. Since there really
    326   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    327   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    328   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    329   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    330   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    331   1.4   msaitoh 		 */
    332   1.4   msaitoh 	case ixgbe_fc_full:
    333   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    334   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    335   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    336   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    337   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    338   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    339   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    340   1.4   msaitoh 		break;
    341   1.4   msaitoh 	default:
    342   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    343   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    344   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    345   1.4   msaitoh 		goto out;
    346   1.4   msaitoh 		break;
    347   1.4   msaitoh 	}
    348   1.4   msaitoh 
    349   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    350   1.4   msaitoh 		/*
    351   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    352   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    353   1.4   msaitoh 		 */
    354   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    355   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    356   1.4   msaitoh 
    357   1.4   msaitoh 		/* Disable AN timeout */
    358   1.4   msaitoh 		if (hw->fc.strict_ieee)
    359   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    360   1.4   msaitoh 
    361   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    362   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    363   1.4   msaitoh 	}
    364   1.4   msaitoh 
    365   1.4   msaitoh 	/*
    366   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    367   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    368   1.4   msaitoh 	 *
    369   1.4   msaitoh 	 */
    370   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    371   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    372   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    373   1.8   msaitoh 		if (ret_val)
    374   1.8   msaitoh 			goto out;
    375   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    376   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    377   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    378   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    379   1.4   msaitoh 	}
    380   1.4   msaitoh 
    381   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    382   1.4   msaitoh out:
    383   1.4   msaitoh 	return ret_val;
    384   1.4   msaitoh }
    385   1.4   msaitoh 
    386   1.4   msaitoh /**
    387   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    388   1.1    dyoung  *  @hw: pointer to hardware structure
    389   1.1    dyoung  *
    390   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    391   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    392   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    393   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    394   1.1    dyoung  **/
    395   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    396   1.1    dyoung {
    397   1.4   msaitoh 	s32 ret_val;
    398   1.1    dyoung 	u32 ctrl_ext;
    399  1.14   msaitoh 	u16 device_caps;
    400   1.1    dyoung 
    401   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    402   1.1    dyoung 
    403   1.1    dyoung 	/* Set the media type */
    404   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    405   1.1    dyoung 
    406   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    407   1.1    dyoung 
    408   1.1    dyoung 	/* Clear the VLAN filter table */
    409   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    410   1.1    dyoung 
    411   1.1    dyoung 	/* Clear statistics registers */
    412   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    413   1.1    dyoung 
    414   1.1    dyoung 	/* Set No Snoop Disable */
    415   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    416   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    417   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    418   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    419   1.1    dyoung 
    420   1.1    dyoung 	/* Setup flow control */
    421   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    422  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    423  1.14   msaitoh 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    424  1.14   msaitoh 		return ret_val;
    425  1.14   msaitoh 	}
    426  1.14   msaitoh 
    427  1.14   msaitoh 	/* Cache bit indicating need for crosstalk fix */
    428  1.14   msaitoh 	switch (hw->mac.type) {
    429  1.14   msaitoh 	case ixgbe_mac_82599EB:
    430  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
    431  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
    432  1.14   msaitoh 		hw->mac.ops.get_device_caps(hw, &device_caps);
    433  1.14   msaitoh 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    434  1.14   msaitoh 			hw->need_crosstalk_fix = FALSE;
    435  1.14   msaitoh 		else
    436  1.14   msaitoh 			hw->need_crosstalk_fix = TRUE;
    437  1.14   msaitoh 		break;
    438  1.14   msaitoh 	default:
    439  1.14   msaitoh 		hw->need_crosstalk_fix = FALSE;
    440  1.14   msaitoh 		break;
    441  1.14   msaitoh 	}
    442   1.1    dyoung 
    443   1.1    dyoung 	/* Clear adapter stopped flag */
    444   1.1    dyoung 	hw->adapter_stopped = FALSE;
    445   1.1    dyoung 
    446  1.14   msaitoh 	return IXGBE_SUCCESS;
    447   1.1    dyoung }
    448   1.1    dyoung 
    449   1.1    dyoung /**
    450   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    451   1.1    dyoung  *  @hw: pointer to hw structure
    452   1.1    dyoung  *
    453   1.1    dyoung  * Performs the init sequence common to the second generation
    454   1.1    dyoung  * of 10 GbE devices.
    455   1.1    dyoung  * Devices in the second generation:
    456   1.1    dyoung  *     82599
    457   1.1    dyoung  *     X540
    458   1.1    dyoung  **/
    459   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    460   1.1    dyoung {
    461   1.1    dyoung 	u32 i;
    462   1.1    dyoung 	u32 regval;
    463   1.1    dyoung 
    464   1.1    dyoung 	/* Clear the rate limiters */
    465   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    466   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    467   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    468   1.1    dyoung 	}
    469   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    470   1.1    dyoung 
    471   1.1    dyoung 	/* Disable relaxed ordering */
    472   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    473   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    474   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    475   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    476   1.1    dyoung 	}
    477   1.1    dyoung 
    478   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    479   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    480   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    481   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    482   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    483   1.1    dyoung 	}
    484   1.1    dyoung 
    485   1.1    dyoung 	return IXGBE_SUCCESS;
    486   1.1    dyoung }
    487   1.1    dyoung 
    488   1.1    dyoung /**
    489   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    490   1.1    dyoung  *  @hw: pointer to hardware structure
    491   1.1    dyoung  *
    492   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    493   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    494   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    495   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    496   1.1    dyoung  *  disabled and uninitialized
    497   1.1    dyoung  **/
    498   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    499   1.1    dyoung {
    500   1.1    dyoung 	s32 status;
    501   1.1    dyoung 
    502   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    503   1.1    dyoung 
    504   1.1    dyoung 	/* Reset the hardware */
    505   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    506   1.1    dyoung 
    507  1.14   msaitoh 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    508   1.1    dyoung 		/* Start the HW */
    509   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    510   1.1    dyoung 	}
    511   1.1    dyoung 
    512  1.14   msaitoh 	/* Initialize the LED link active for LED blink support */
    513  1.14   msaitoh 	if (hw->mac.ops.init_led_link_act)
    514  1.14   msaitoh 		hw->mac.ops.init_led_link_act(hw);
    515  1.14   msaitoh 
    516  1.14   msaitoh 	if (status != IXGBE_SUCCESS)
    517  1.14   msaitoh 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    518  1.14   msaitoh 
    519   1.1    dyoung 	return status;
    520   1.1    dyoung }
    521   1.1    dyoung 
    522   1.1    dyoung /**
    523   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    524   1.1    dyoung  *  @hw: pointer to hardware structure
    525   1.1    dyoung  *
    526   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    527   1.1    dyoung  *  Statistics counters are clear on read.
    528   1.1    dyoung  **/
    529   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    530   1.1    dyoung {
    531   1.1    dyoung 	u16 i = 0;
    532   1.1    dyoung 
    533   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    534   1.1    dyoung 
    535   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    536   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    537   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    538   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    539  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    540  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    541   1.1    dyoung 	for (i = 0; i < 8; i++)
    542   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    543   1.1    dyoung 
    544   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    545   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    547   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    548   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    549   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    550   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    551   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    552   1.1    dyoung 	} else {
    553   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    554   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    555   1.1    dyoung 	}
    556   1.1    dyoung 
    557   1.1    dyoung 	for (i = 0; i < 8; i++) {
    558   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    559   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    560   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    561   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    562   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    563   1.1    dyoung 		} else {
    564   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    565   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    566   1.1    dyoung 		}
    567   1.1    dyoung 	}
    568   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    569   1.1    dyoung 		for (i = 0; i < 8; i++)
    570   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    571   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    572   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    573   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    574   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    575   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    576   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    577   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    578   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    579   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    580   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    581   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    582   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    583   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    584   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    585   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    586   1.3   msaitoh 		for (i = 0; i < 8; i++)
    587   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    588   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    589   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    590   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    591   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    592   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    593   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    594   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    595   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    596   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    597   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    598   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    599   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    600   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    601   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    602   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    603   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    604   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    605   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    606   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    607   1.1    dyoung 	for (i = 0; i < 16; i++) {
    608   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    609   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    610   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    611   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    612   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    613   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    614   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    615   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    616   1.1    dyoung 		} else {
    617   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    618   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    619   1.1    dyoung 		}
    620   1.1    dyoung 	}
    621   1.1    dyoung 
    622   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    623   1.3   msaitoh 		if (hw->phy.id == 0)
    624   1.3   msaitoh 			ixgbe_identify_phy(hw);
    625   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    626   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    627   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    628   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    629   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    630   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    631   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    632   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    633   1.3   msaitoh 	}
    634   1.3   msaitoh 
    635   1.1    dyoung 	return IXGBE_SUCCESS;
    636   1.1    dyoung }
    637   1.1    dyoung 
    638   1.1    dyoung /**
    639   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    640   1.1    dyoung  *  @hw: pointer to hardware structure
    641   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    642   1.1    dyoung  *  @pba_num_size: part number string buffer length
    643   1.1    dyoung  *
    644   1.1    dyoung  *  Reads the part number string from the EEPROM.
    645   1.1    dyoung  **/
    646   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    647   1.3   msaitoh 				  u32 pba_num_size)
    648   1.1    dyoung {
    649   1.1    dyoung 	s32 ret_val;
    650   1.1    dyoung 	u16 data;
    651   1.1    dyoung 	u16 pba_ptr;
    652   1.1    dyoung 	u16 offset;
    653   1.1    dyoung 	u16 length;
    654   1.1    dyoung 
    655   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    656   1.1    dyoung 
    657   1.1    dyoung 	if (pba_num == NULL) {
    658   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    659   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    660   1.1    dyoung 	}
    661   1.1    dyoung 
    662   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    663   1.1    dyoung 	if (ret_val) {
    664   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    665   1.1    dyoung 		return ret_val;
    666   1.1    dyoung 	}
    667   1.1    dyoung 
    668   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    669   1.1    dyoung 	if (ret_val) {
    670   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    671   1.1    dyoung 		return ret_val;
    672   1.1    dyoung 	}
    673   1.1    dyoung 
    674   1.1    dyoung 	/*
    675   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    676   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    677   1.1    dyoung 	 * and we can decode it into an ascii string
    678   1.1    dyoung 	 */
    679   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    680   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    681   1.1    dyoung 
    682   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    683   1.1    dyoung 		if (pba_num_size < 11) {
    684   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    685   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    686   1.1    dyoung 		}
    687   1.1    dyoung 
    688   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    689   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    690   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    691   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    692   1.1    dyoung 		pba_num[3] = data & 0xF;
    693   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    694   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    695   1.1    dyoung 		pba_num[6] = '-';
    696   1.1    dyoung 		pba_num[7] = 0;
    697   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    698   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    699   1.1    dyoung 
    700   1.1    dyoung 		/* put a null character on the end of our string */
    701   1.1    dyoung 		pba_num[10] = '\0';
    702   1.1    dyoung 
    703   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    704   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    705   1.1    dyoung 			if (pba_num[offset] < 0xA)
    706   1.1    dyoung 				pba_num[offset] += '0';
    707   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    708   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    709   1.1    dyoung 		}
    710   1.1    dyoung 
    711   1.1    dyoung 		return IXGBE_SUCCESS;
    712   1.1    dyoung 	}
    713   1.1    dyoung 
    714   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    715   1.1    dyoung 	if (ret_val) {
    716   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    717   1.1    dyoung 		return ret_val;
    718   1.1    dyoung 	}
    719   1.1    dyoung 
    720   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    721   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    722   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    723   1.1    dyoung 	}
    724   1.1    dyoung 
    725   1.1    dyoung 	/* check if pba_num buffer is big enough */
    726   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    727   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    728   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    729   1.1    dyoung 	}
    730   1.1    dyoung 
    731   1.1    dyoung 	/* trim pba length from start of string */
    732   1.1    dyoung 	pba_ptr++;
    733   1.1    dyoung 	length--;
    734   1.1    dyoung 
    735   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    736   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    737   1.1    dyoung 		if (ret_val) {
    738   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    739   1.1    dyoung 			return ret_val;
    740   1.1    dyoung 		}
    741   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    742   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    743   1.1    dyoung 	}
    744   1.1    dyoung 	pba_num[offset * 2] = '\0';
    745   1.1    dyoung 
    746   1.1    dyoung 	return IXGBE_SUCCESS;
    747   1.1    dyoung }
    748   1.1    dyoung 
    749   1.1    dyoung /**
    750   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    751   1.1    dyoung  *  @hw: pointer to hardware structure
    752   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    753   1.1    dyoung  *
    754   1.1    dyoung  *  Reads the part number from the EEPROM.
    755   1.1    dyoung  **/
    756   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    757   1.1    dyoung {
    758   1.1    dyoung 	s32 ret_val;
    759   1.1    dyoung 	u16 data;
    760   1.1    dyoung 
    761   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    762   1.1    dyoung 
    763   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    764   1.1    dyoung 	if (ret_val) {
    765   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    766   1.1    dyoung 		return ret_val;
    767   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    768   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    769   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    770   1.1    dyoung 	}
    771   1.1    dyoung 	*pba_num = (u32)(data << 16);
    772   1.1    dyoung 
    773   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    774   1.1    dyoung 	if (ret_val) {
    775   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    776   1.1    dyoung 		return ret_val;
    777   1.1    dyoung 	}
    778   1.1    dyoung 	*pba_num |= data;
    779   1.1    dyoung 
    780   1.1    dyoung 	return IXGBE_SUCCESS;
    781   1.1    dyoung }
    782   1.1    dyoung 
    783   1.1    dyoung /**
    784   1.5   msaitoh  *  ixgbe_read_pba_raw
    785   1.5   msaitoh  *  @hw: pointer to the HW structure
    786   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    787   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    788   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    789   1.5   msaitoh  *  @pba: pointer to output PBA structure
    790   1.5   msaitoh  *
    791   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    792   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    793   1.5   msaitoh  *
    794   1.5   msaitoh  **/
    795   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    796   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    797   1.5   msaitoh 		       struct ixgbe_pba *pba)
    798   1.5   msaitoh {
    799   1.5   msaitoh 	s32 ret_val;
    800   1.5   msaitoh 	u16 pba_block_size;
    801   1.5   msaitoh 
    802   1.5   msaitoh 	if (pba == NULL)
    803   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    804   1.5   msaitoh 
    805   1.5   msaitoh 	if (eeprom_buf == NULL) {
    806   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    807   1.5   msaitoh 						     &pba->word[0]);
    808   1.5   msaitoh 		if (ret_val)
    809   1.5   msaitoh 			return ret_val;
    810   1.5   msaitoh 	} else {
    811   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    812   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    813   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    814   1.5   msaitoh 		} else {
    815   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    816   1.5   msaitoh 		}
    817   1.5   msaitoh 	}
    818   1.5   msaitoh 
    819   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    820   1.5   msaitoh 		if (pba->pba_block == NULL)
    821   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    822   1.5   msaitoh 
    823   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    824   1.5   msaitoh 						   eeprom_buf_size,
    825   1.5   msaitoh 						   &pba_block_size);
    826   1.5   msaitoh 		if (ret_val)
    827   1.5   msaitoh 			return ret_val;
    828   1.5   msaitoh 
    829   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    830   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    831   1.5   msaitoh 
    832   1.5   msaitoh 		if (eeprom_buf == NULL) {
    833   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    834   1.5   msaitoh 							     pba_block_size,
    835   1.5   msaitoh 							     pba->pba_block);
    836   1.5   msaitoh 			if (ret_val)
    837   1.5   msaitoh 				return ret_val;
    838   1.5   msaitoh 		} else {
    839   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    840   1.8   msaitoh 					      pba_block_size)) {
    841   1.5   msaitoh 				memcpy(pba->pba_block,
    842   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    843   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    844   1.5   msaitoh 			} else {
    845   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    846   1.5   msaitoh 			}
    847   1.5   msaitoh 		}
    848   1.5   msaitoh 	}
    849   1.5   msaitoh 
    850   1.5   msaitoh 	return IXGBE_SUCCESS;
    851   1.5   msaitoh }
    852   1.5   msaitoh 
    853   1.5   msaitoh /**
    854   1.5   msaitoh  *  ixgbe_write_pba_raw
    855   1.5   msaitoh  *  @hw: pointer to the HW structure
    856   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    857   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    858   1.5   msaitoh  *  @pba: pointer to PBA structure
    859   1.5   msaitoh  *
    860   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    861   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    862   1.5   msaitoh  *
    863   1.5   msaitoh  **/
    864   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    865   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    866   1.5   msaitoh {
    867   1.5   msaitoh 	s32 ret_val;
    868   1.5   msaitoh 
    869   1.5   msaitoh 	if (pba == NULL)
    870   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    871   1.5   msaitoh 
    872   1.5   msaitoh 	if (eeprom_buf == NULL) {
    873   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    874   1.5   msaitoh 						      &pba->word[0]);
    875   1.5   msaitoh 		if (ret_val)
    876   1.5   msaitoh 			return ret_val;
    877   1.5   msaitoh 	} else {
    878   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    879   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    880   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    881   1.5   msaitoh 		} else {
    882   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    883   1.5   msaitoh 		}
    884   1.5   msaitoh 	}
    885   1.5   msaitoh 
    886   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    887   1.5   msaitoh 		if (pba->pba_block == NULL)
    888   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    889   1.5   msaitoh 
    890   1.5   msaitoh 		if (eeprom_buf == NULL) {
    891   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    892   1.5   msaitoh 							      pba->pba_block[0],
    893   1.5   msaitoh 							      pba->pba_block);
    894   1.5   msaitoh 			if (ret_val)
    895   1.5   msaitoh 				return ret_val;
    896   1.5   msaitoh 		} else {
    897   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    898   1.5   msaitoh 					      pba->pba_block[0])) {
    899   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    900   1.5   msaitoh 				       pba->pba_block,
    901   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    902   1.5   msaitoh 			} else {
    903   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    904   1.5   msaitoh 			}
    905   1.5   msaitoh 		}
    906   1.5   msaitoh 	}
    907   1.5   msaitoh 
    908   1.5   msaitoh 	return IXGBE_SUCCESS;
    909   1.5   msaitoh }
    910   1.5   msaitoh 
    911   1.5   msaitoh /**
    912   1.5   msaitoh  *  ixgbe_get_pba_block_size
    913   1.5   msaitoh  *  @hw: pointer to the HW structure
    914   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    915   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    916   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    917   1.5   msaitoh  *
    918   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    919   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    920   1.5   msaitoh  *  EEPROM device.
    921   1.5   msaitoh  *
    922   1.5   msaitoh  **/
    923   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    924   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    925   1.5   msaitoh {
    926   1.5   msaitoh 	s32 ret_val;
    927   1.5   msaitoh 	u16 pba_word[2];
    928   1.5   msaitoh 	u16 length;
    929   1.5   msaitoh 
    930   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    931   1.5   msaitoh 
    932   1.5   msaitoh 	if (eeprom_buf == NULL) {
    933   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    934   1.5   msaitoh 						     &pba_word[0]);
    935   1.5   msaitoh 		if (ret_val)
    936   1.5   msaitoh 			return ret_val;
    937   1.5   msaitoh 	} else {
    938   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    939   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    940   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    941   1.5   msaitoh 		} else {
    942   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    943   1.5   msaitoh 		}
    944   1.5   msaitoh 	}
    945   1.5   msaitoh 
    946   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    947   1.5   msaitoh 		if (eeprom_buf == NULL) {
    948   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    949   1.5   msaitoh 						      &length);
    950   1.5   msaitoh 			if (ret_val)
    951   1.5   msaitoh 				return ret_val;
    952   1.5   msaitoh 		} else {
    953   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    954   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    955   1.5   msaitoh 			else
    956   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    957   1.5   msaitoh 		}
    958   1.5   msaitoh 
    959   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    960   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    961   1.5   msaitoh 	} else {
    962   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    963   1.5   msaitoh 		length = 0;
    964   1.5   msaitoh 	}
    965   1.5   msaitoh 
    966   1.5   msaitoh 	if (pba_block_size != NULL)
    967   1.5   msaitoh 		*pba_block_size = length;
    968   1.5   msaitoh 
    969   1.5   msaitoh 	return IXGBE_SUCCESS;
    970   1.5   msaitoh }
    971   1.5   msaitoh 
    972   1.5   msaitoh /**
    973   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    974   1.1    dyoung  *  @hw: pointer to hardware structure
    975   1.1    dyoung  *  @mac_addr: Adapter MAC address
    976   1.1    dyoung  *
    977   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    978   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    979   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    980   1.1    dyoung  **/
    981   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    982   1.1    dyoung {
    983   1.1    dyoung 	u32 rar_high;
    984   1.1    dyoung 	u32 rar_low;
    985   1.1    dyoung 	u16 i;
    986   1.1    dyoung 
    987   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    988   1.1    dyoung 
    989   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    990   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    991   1.1    dyoung 
    992   1.1    dyoung 	for (i = 0; i < 4; i++)
    993   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    994   1.1    dyoung 
    995   1.1    dyoung 	for (i = 0; i < 2; i++)
    996   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    997   1.1    dyoung 
    998   1.1    dyoung 	return IXGBE_SUCCESS;
    999   1.1    dyoung }
   1000   1.1    dyoung 
   1001   1.1    dyoung /**
   1002   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1003   1.1    dyoung  *  @hw: pointer to hardware structure
   1004   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
   1005   1.1    dyoung  *
   1006   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1007   1.1    dyoung  **/
   1008   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1009   1.1    dyoung {
   1010   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
   1011   1.1    dyoung 
   1012   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1013   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
   1014   1.1    dyoung 
   1015   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1016   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
   1017   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1018   1.1    dyoung 		break;
   1019   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
   1020   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1021   1.1    dyoung 		break;
   1022   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
   1023   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1024   1.1    dyoung 		break;
   1025   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
   1026   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1027   1.1    dyoung 		break;
   1028   1.1    dyoung 	default:
   1029   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
   1030   1.1    dyoung 		break;
   1031   1.1    dyoung 	}
   1032   1.1    dyoung 
   1033   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1034   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
   1035   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
   1036   1.1    dyoung 		break;
   1037   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
   1038   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
   1039   1.1    dyoung 		break;
   1040   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
   1041   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
   1042   1.4   msaitoh 		break;
   1043   1.1    dyoung 	default:
   1044   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1045   1.1    dyoung 		break;
   1046   1.1    dyoung 	}
   1047   1.1    dyoung 
   1048   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1049   1.6   msaitoh }
   1050   1.6   msaitoh 
   1051   1.6   msaitoh /**
   1052   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1053   1.6   msaitoh  *  @hw: pointer to hardware structure
   1054   1.6   msaitoh  *
   1055   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1056   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1057   1.6   msaitoh  **/
   1058   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1059   1.6   msaitoh {
   1060   1.6   msaitoh 	u16 link_status;
   1061   1.6   msaitoh 
   1062   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1063   1.6   msaitoh 
   1064   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1065   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1066   1.6   msaitoh 
   1067   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1068   1.1    dyoung 
   1069   1.1    dyoung 	return IXGBE_SUCCESS;
   1070   1.1    dyoung }
   1071   1.1    dyoung 
   1072   1.1    dyoung /**
   1073   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1074   1.1    dyoung  *  @hw: pointer to the HW structure
   1075   1.1    dyoung  *
   1076  1.14   msaitoh  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1077  1.14   msaitoh  *  the port value if requested, and set MAC instance for devices that share
   1078  1.14   msaitoh  *  CS4227.
   1079   1.1    dyoung  **/
   1080   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1081   1.1    dyoung {
   1082   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1083   1.1    dyoung 	u32 reg;
   1084  1.14   msaitoh 	u16 ee_ctrl_4;
   1085   1.1    dyoung 
   1086   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1087   1.1    dyoung 
   1088   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1089   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1090  1.14   msaitoh 	bus->lan_id = (u8)bus->func;
   1091   1.1    dyoung 
   1092   1.1    dyoung 	/* check for a port swap */
   1093  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1094   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1095   1.1    dyoung 		bus->func ^= 0x1;
   1096  1.14   msaitoh 
   1097  1.14   msaitoh 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1098  1.14   msaitoh 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1099  1.14   msaitoh 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1100  1.14   msaitoh 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1101  1.14   msaitoh 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1102  1.14   msaitoh 	}
   1103   1.1    dyoung }
   1104   1.1    dyoung 
   1105   1.1    dyoung /**
   1106   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1107   1.1    dyoung  *  @hw: pointer to hardware structure
   1108   1.1    dyoung  *
   1109   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1110   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1111   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1112   1.1    dyoung  *  state and should not touch the hardware.
   1113   1.1    dyoung  **/
   1114   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1115   1.1    dyoung {
   1116   1.1    dyoung 	u32 reg_val;
   1117   1.1    dyoung 	u16 i;
   1118   1.1    dyoung 
   1119   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1120   1.1    dyoung 
   1121   1.1    dyoung 	/*
   1122   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1123   1.1    dyoung 	 * the hardware
   1124   1.1    dyoung 	 */
   1125   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1126   1.1    dyoung 
   1127   1.1    dyoung 	/* Disable the receive unit */
   1128   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1129   1.1    dyoung 
   1130   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1131   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1132   1.1    dyoung 
   1133   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1134   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1135   1.1    dyoung 
   1136   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1137   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1138   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1139   1.3   msaitoh 
   1140   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1141   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1142   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1143   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1144   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1145   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1146   1.1    dyoung 	}
   1147   1.1    dyoung 
   1148   1.3   msaitoh 	/* flush all queues disables */
   1149   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1150   1.3   msaitoh 	msec_delay(2);
   1151   1.3   msaitoh 
   1152   1.1    dyoung 	/*
   1153   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1154   1.1    dyoung 	 * access and verify no pending requests
   1155   1.1    dyoung 	 */
   1156   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1157   1.1    dyoung }
   1158   1.1    dyoung 
   1159   1.1    dyoung /**
   1160  1.14   msaitoh  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1161  1.14   msaitoh  *  @hw: pointer to hardware structure
   1162  1.14   msaitoh  *
   1163  1.14   msaitoh  *  Store the index for the link active LED. This will be used to support
   1164  1.14   msaitoh  *  blinking the LED.
   1165  1.14   msaitoh  **/
   1166  1.14   msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1167  1.14   msaitoh {
   1168  1.14   msaitoh 	struct ixgbe_mac_info *mac = &hw->mac;
   1169  1.14   msaitoh 	u32 led_reg, led_mode;
   1170  1.14   msaitoh 	u8 i;
   1171  1.14   msaitoh 
   1172  1.14   msaitoh 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1173  1.14   msaitoh 
   1174  1.14   msaitoh 	/* Get LED link active from the LEDCTL register */
   1175  1.14   msaitoh 	for (i = 0; i < 4; i++) {
   1176  1.14   msaitoh 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1177  1.14   msaitoh 
   1178  1.14   msaitoh 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1179  1.14   msaitoh 		     IXGBE_LED_LINK_ACTIVE) {
   1180  1.14   msaitoh 			mac->led_link_act = i;
   1181  1.14   msaitoh 			return IXGBE_SUCCESS;
   1182  1.14   msaitoh 		}
   1183  1.14   msaitoh 	}
   1184  1.14   msaitoh 
   1185  1.14   msaitoh 	/*
   1186  1.14   msaitoh 	 * If LEDCTL register does not have the LED link active set, then use
   1187  1.14   msaitoh 	 * known MAC defaults.
   1188  1.14   msaitoh 	 */
   1189  1.14   msaitoh 	switch (hw->mac.type) {
   1190  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   1191  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
   1192  1.14   msaitoh 		mac->led_link_act = 1;
   1193  1.14   msaitoh 		break;
   1194  1.14   msaitoh 	default:
   1195  1.14   msaitoh 		mac->led_link_act = 2;
   1196  1.14   msaitoh 	}
   1197  1.14   msaitoh 	return IXGBE_SUCCESS;
   1198  1.14   msaitoh }
   1199  1.14   msaitoh 
   1200  1.14   msaitoh /**
   1201   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1202   1.1    dyoung  *  @hw: pointer to hardware structure
   1203   1.1    dyoung  *  @index: led number to turn on
   1204   1.1    dyoung  **/
   1205   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1206   1.1    dyoung {
   1207   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1208   1.1    dyoung 
   1209   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1210   1.1    dyoung 
   1211  1.14   msaitoh 	if (index > 3)
   1212  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1213  1.14   msaitoh 
   1214   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1215   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1216   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1217   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1218   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1219   1.1    dyoung 
   1220   1.1    dyoung 	return IXGBE_SUCCESS;
   1221   1.1    dyoung }
   1222   1.1    dyoung 
   1223   1.1    dyoung /**
   1224   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1225   1.1    dyoung  *  @hw: pointer to hardware structure
   1226   1.1    dyoung  *  @index: led number to turn off
   1227   1.1    dyoung  **/
   1228   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1229   1.1    dyoung {
   1230   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1231   1.1    dyoung 
   1232   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1233   1.1    dyoung 
   1234  1.14   msaitoh 	if (index > 3)
   1235  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1236  1.14   msaitoh 
   1237   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1238   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1239   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1240   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1241   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1242   1.1    dyoung 
   1243   1.1    dyoung 	return IXGBE_SUCCESS;
   1244   1.1    dyoung }
   1245   1.1    dyoung 
   1246   1.1    dyoung /**
   1247   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1248   1.1    dyoung  *  @hw: pointer to hardware structure
   1249   1.1    dyoung  *
   1250   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1251   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1252   1.1    dyoung  **/
   1253   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1254   1.1    dyoung {
   1255   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1256   1.1    dyoung 	u32 eec;
   1257   1.1    dyoung 	u16 eeprom_size;
   1258   1.1    dyoung 
   1259   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1260   1.1    dyoung 
   1261   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1262   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1263   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1264   1.1    dyoung 		 * tested value */
   1265   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1266   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1267   1.3   msaitoh 		eeprom->word_page_size = 0;
   1268   1.1    dyoung 
   1269   1.1    dyoung 		/*
   1270   1.1    dyoung 		 * Check for EEPROM present first.
   1271   1.1    dyoung 		 * If not present leave as none
   1272   1.1    dyoung 		 */
   1273  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1274   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1275   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1276   1.1    dyoung 
   1277   1.1    dyoung 			/*
   1278   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1279   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1280   1.1    dyoung 			 */
   1281   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1282   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1283   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1284   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1285   1.1    dyoung 		}
   1286   1.1    dyoung 
   1287   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1288   1.1    dyoung 			eeprom->address_bits = 16;
   1289   1.1    dyoung 		else
   1290   1.1    dyoung 			eeprom->address_bits = 8;
   1291   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1292   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1293   1.3   msaitoh 			  eeprom->address_bits);
   1294   1.1    dyoung 	}
   1295   1.1    dyoung 
   1296   1.1    dyoung 	return IXGBE_SUCCESS;
   1297   1.1    dyoung }
   1298   1.1    dyoung 
   1299   1.1    dyoung /**
   1300   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1301   1.3   msaitoh  *  @hw: pointer to hardware structure
   1302   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1303   1.3   msaitoh  *  @words: number of word(s)
   1304   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1305   1.3   msaitoh  *
   1306   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1307   1.3   msaitoh  **/
   1308   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1309   1.3   msaitoh 					       u16 words, u16 *data)
   1310   1.3   msaitoh {
   1311   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1312   1.3   msaitoh 	u16 i, count;
   1313   1.3   msaitoh 
   1314   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1315   1.3   msaitoh 
   1316   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1317   1.3   msaitoh 
   1318   1.3   msaitoh 	if (words == 0) {
   1319   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1320   1.3   msaitoh 		goto out;
   1321   1.3   msaitoh 	}
   1322   1.3   msaitoh 
   1323   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1324   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1325   1.3   msaitoh 		goto out;
   1326   1.3   msaitoh 	}
   1327   1.3   msaitoh 
   1328   1.3   msaitoh 	/*
   1329   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1330   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1331   1.3   msaitoh 	 */
   1332   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1333   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1334   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1335   1.3   msaitoh 
   1336   1.3   msaitoh 	/*
   1337   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1338   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1339   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1340   1.3   msaitoh 	 */
   1341   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1342   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1343   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1344   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1345   1.3   msaitoh 							    count, &data[i]);
   1346   1.3   msaitoh 
   1347   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1348   1.3   msaitoh 			break;
   1349   1.3   msaitoh 	}
   1350   1.3   msaitoh 
   1351   1.3   msaitoh out:
   1352   1.3   msaitoh 	return status;
   1353   1.3   msaitoh }
   1354   1.3   msaitoh 
   1355   1.3   msaitoh /**
   1356   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1357   1.3   msaitoh  *  @hw: pointer to hardware structure
   1358   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1359   1.3   msaitoh  *  @words: number of word(s)
   1360   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1361   1.3   msaitoh  *
   1362   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1363   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1364   1.3   msaitoh  **/
   1365   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1366   1.3   msaitoh 					      u16 words, u16 *data)
   1367   1.3   msaitoh {
   1368   1.3   msaitoh 	s32 status;
   1369   1.3   msaitoh 	u16 word;
   1370   1.3   msaitoh 	u16 page_size;
   1371   1.3   msaitoh 	u16 i;
   1372   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1373   1.3   msaitoh 
   1374   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1375   1.3   msaitoh 
   1376   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1377   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1378   1.3   msaitoh 
   1379   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1380   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1381   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1382   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1383   1.3   msaitoh 		}
   1384   1.3   msaitoh 	}
   1385   1.3   msaitoh 
   1386   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1387   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1388   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1389   1.3   msaitoh 
   1390   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1391   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1392   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1393   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1394   1.3   msaitoh 
   1395   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1396   1.3   msaitoh 
   1397   1.3   msaitoh 			/*
   1398   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1399   1.3   msaitoh 			 * in the opcode
   1400   1.3   msaitoh 			 */
   1401   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1402   1.3   msaitoh 			    ((offset + i) >= 128))
   1403   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1404   1.3   msaitoh 
   1405   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1406   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1407   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1408   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1409   1.3   msaitoh 						    hw->eeprom.address_bits);
   1410   1.3   msaitoh 
   1411   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1412   1.3   msaitoh 
   1413   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1414   1.3   msaitoh 			do {
   1415   1.3   msaitoh 				word = data[i];
   1416   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1417   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1418   1.3   msaitoh 
   1419   1.3   msaitoh 				if (page_size == 0)
   1420   1.3   msaitoh 					break;
   1421   1.3   msaitoh 
   1422   1.3   msaitoh 				/* do not wrap around page */
   1423   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1424   1.3   msaitoh 				    (page_size - 1))
   1425   1.3   msaitoh 					break;
   1426   1.3   msaitoh 			} while (++i < words);
   1427   1.3   msaitoh 
   1428   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1429   1.3   msaitoh 			msec_delay(10);
   1430   1.3   msaitoh 		}
   1431   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1432   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1433   1.3   msaitoh 	}
   1434   1.3   msaitoh 
   1435   1.3   msaitoh 	return status;
   1436   1.3   msaitoh }
   1437   1.3   msaitoh 
   1438   1.3   msaitoh /**
   1439   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1440   1.1    dyoung  *  @hw: pointer to hardware structure
   1441   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1442   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1443   1.1    dyoung  *
   1444   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1445   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1446   1.1    dyoung  **/
   1447   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1448   1.1    dyoung {
   1449   1.1    dyoung 	s32 status;
   1450   1.1    dyoung 
   1451   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1452   1.1    dyoung 
   1453   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1454   1.1    dyoung 
   1455   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1456   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1457   1.1    dyoung 		goto out;
   1458   1.1    dyoung 	}
   1459   1.1    dyoung 
   1460   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1461   1.3   msaitoh 
   1462   1.3   msaitoh out:
   1463   1.3   msaitoh 	return status;
   1464   1.3   msaitoh }
   1465   1.3   msaitoh 
   1466   1.3   msaitoh /**
   1467   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1468   1.3   msaitoh  *  @hw: pointer to hardware structure
   1469   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1470   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1471   1.3   msaitoh  *  @words: number of word(s)
   1472   1.3   msaitoh  *
   1473   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1474   1.3   msaitoh  **/
   1475   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1476   1.3   msaitoh 					      u16 words, u16 *data)
   1477   1.3   msaitoh {
   1478   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1479   1.3   msaitoh 	u16 i, count;
   1480   1.3   msaitoh 
   1481   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1482   1.3   msaitoh 
   1483   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1484   1.3   msaitoh 
   1485   1.3   msaitoh 	if (words == 0) {
   1486   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1487   1.3   msaitoh 		goto out;
   1488   1.3   msaitoh 	}
   1489   1.3   msaitoh 
   1490   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1491   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1492   1.3   msaitoh 		goto out;
   1493   1.3   msaitoh 	}
   1494   1.3   msaitoh 
   1495   1.3   msaitoh 	/*
   1496   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1497   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1498   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1499   1.3   msaitoh 	 */
   1500   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1501   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1502   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1503   1.3   msaitoh 
   1504   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1505   1.3   msaitoh 							   count, &data[i]);
   1506   1.3   msaitoh 
   1507   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1508   1.3   msaitoh 			break;
   1509   1.3   msaitoh 	}
   1510   1.3   msaitoh 
   1511   1.3   msaitoh out:
   1512   1.3   msaitoh 	return status;
   1513   1.3   msaitoh }
   1514   1.3   msaitoh 
   1515   1.3   msaitoh /**
   1516   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1517   1.3   msaitoh  *  @hw: pointer to hardware structure
   1518   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1519   1.3   msaitoh  *  @words: number of word(s)
   1520   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1521   1.3   msaitoh  *
   1522   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1523   1.3   msaitoh  **/
   1524   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1525   1.3   msaitoh 					     u16 words, u16 *data)
   1526   1.3   msaitoh {
   1527   1.3   msaitoh 	s32 status;
   1528   1.3   msaitoh 	u16 word_in;
   1529   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1530   1.3   msaitoh 	u16 i;
   1531   1.3   msaitoh 
   1532   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1533   1.3   msaitoh 
   1534   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1535   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1536   1.1    dyoung 
   1537   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1538   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1539   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1540   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1541   1.1    dyoung 		}
   1542   1.1    dyoung 	}
   1543   1.1    dyoung 
   1544   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1545   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1546   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1547   1.3   msaitoh 			/*
   1548   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1549   1.3   msaitoh 			 * in the opcode
   1550   1.3   msaitoh 			 */
   1551   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1552   1.3   msaitoh 			    ((offset + i) >= 128))
   1553   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1554   1.3   msaitoh 
   1555   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1556   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1557   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1558   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1559   1.3   msaitoh 						    hw->eeprom.address_bits);
   1560   1.3   msaitoh 
   1561   1.3   msaitoh 			/* Read the data. */
   1562   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1563   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1564   1.3   msaitoh 		}
   1565   1.1    dyoung 
   1566   1.3   msaitoh 		/* End this read operation */
   1567   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1568   1.1    dyoung 	}
   1569   1.1    dyoung 
   1570   1.1    dyoung 	return status;
   1571   1.1    dyoung }
   1572   1.1    dyoung 
   1573   1.1    dyoung /**
   1574   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1575   1.1    dyoung  *  @hw: pointer to hardware structure
   1576   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1577   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1578   1.1    dyoung  *
   1579   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1580   1.1    dyoung  **/
   1581   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1582   1.3   msaitoh 				       u16 *data)
   1583   1.1    dyoung {
   1584   1.1    dyoung 	s32 status;
   1585   1.1    dyoung 
   1586   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1587   1.1    dyoung 
   1588   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1589   1.1    dyoung 
   1590   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1591   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1592   1.1    dyoung 		goto out;
   1593   1.1    dyoung 	}
   1594   1.1    dyoung 
   1595   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1596   1.3   msaitoh 
   1597   1.3   msaitoh out:
   1598   1.3   msaitoh 	return status;
   1599   1.3   msaitoh }
   1600   1.3   msaitoh 
   1601   1.3   msaitoh /**
   1602   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1603   1.3   msaitoh  *  @hw: pointer to hardware structure
   1604   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1605   1.3   msaitoh  *  @words: number of word(s)
   1606   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1607   1.3   msaitoh  *
   1608   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1609   1.3   msaitoh  **/
   1610   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1611   1.3   msaitoh 				   u16 words, u16 *data)
   1612   1.3   msaitoh {
   1613   1.3   msaitoh 	u32 eerd;
   1614   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1615   1.3   msaitoh 	u32 i;
   1616   1.3   msaitoh 
   1617   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1618   1.3   msaitoh 
   1619   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1620   1.3   msaitoh 
   1621   1.3   msaitoh 	if (words == 0) {
   1622   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1623   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1624   1.3   msaitoh 		goto out;
   1625   1.3   msaitoh 	}
   1626   1.3   msaitoh 
   1627   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1628   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1629   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1630   1.3   msaitoh 		goto out;
   1631   1.3   msaitoh 	}
   1632   1.3   msaitoh 
   1633   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1634   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1635   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1636   1.3   msaitoh 
   1637   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1638   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1639   1.1    dyoung 
   1640   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1641   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1642   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1643   1.3   msaitoh 		} else {
   1644   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1645   1.3   msaitoh 			goto out;
   1646   1.1    dyoung 		}
   1647   1.1    dyoung 	}
   1648   1.3   msaitoh out:
   1649   1.3   msaitoh 	return status;
   1650   1.3   msaitoh }
   1651   1.1    dyoung 
   1652   1.3   msaitoh /**
   1653   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1654   1.3   msaitoh  *  @hw: pointer to hardware structure
   1655   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1656   1.3   msaitoh  *
   1657   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1658   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1659   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1660   1.3   msaitoh  **/
   1661   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1662   1.3   msaitoh 						 u16 offset)
   1663   1.3   msaitoh {
   1664   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1665   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1666   1.3   msaitoh 	u16 i;
   1667   1.3   msaitoh 
   1668   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1669   1.3   msaitoh 
   1670   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1671   1.3   msaitoh 		data[i] = i;
   1672   1.1    dyoung 
   1673   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1674   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1675   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1676   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1677   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1678   1.3   msaitoh 		goto out;
   1679   1.1    dyoung 
   1680   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1681   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1682   1.3   msaitoh 		goto out;
   1683   1.1    dyoung 
   1684   1.3   msaitoh 	/*
   1685   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1686   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1687   1.3   msaitoh 	 */
   1688   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1689   1.1    dyoung 
   1690   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1691   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1692   1.1    dyoung out:
   1693   1.1    dyoung 	return status;
   1694   1.1    dyoung }
   1695   1.1    dyoung 
   1696   1.1    dyoung /**
   1697   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1698   1.1    dyoung  *  @hw: pointer to hardware structure
   1699   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1700   1.1    dyoung  *  @data: word read from the EEPROM
   1701   1.1    dyoung  *
   1702   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1703   1.1    dyoung  **/
   1704   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1705   1.1    dyoung {
   1706   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1707   1.3   msaitoh }
   1708   1.3   msaitoh 
   1709   1.3   msaitoh /**
   1710   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1711   1.3   msaitoh  *  @hw: pointer to hardware structure
   1712   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1713   1.3   msaitoh  *  @words: number of word(s)
   1714   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1715   1.3   msaitoh  *
   1716   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1717   1.3   msaitoh  **/
   1718   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1719   1.3   msaitoh 				    u16 words, u16 *data)
   1720   1.3   msaitoh {
   1721   1.3   msaitoh 	u32 eewr;
   1722   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1723   1.3   msaitoh 	u16 i;
   1724   1.1    dyoung 
   1725   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1726   1.1    dyoung 
   1727   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1728   1.1    dyoung 
   1729   1.3   msaitoh 	if (words == 0) {
   1730   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1731   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1732   1.3   msaitoh 		goto out;
   1733   1.3   msaitoh 	}
   1734   1.3   msaitoh 
   1735   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1736   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1737   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1738   1.1    dyoung 		goto out;
   1739   1.1    dyoung 	}
   1740   1.1    dyoung 
   1741   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1742   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1743   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1744   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1745   1.3   msaitoh 
   1746   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1747   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1748   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1749   1.3   msaitoh 			goto out;
   1750   1.3   msaitoh 		}
   1751   1.1    dyoung 
   1752   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1753   1.1    dyoung 
   1754   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1755   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1756   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1757   1.3   msaitoh 			goto out;
   1758   1.3   msaitoh 		}
   1759   1.3   msaitoh 	}
   1760   1.1    dyoung 
   1761   1.1    dyoung out:
   1762   1.1    dyoung 	return status;
   1763   1.1    dyoung }
   1764   1.1    dyoung 
   1765   1.1    dyoung /**
   1766   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1767   1.1    dyoung  *  @hw: pointer to hardware structure
   1768   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1769   1.1    dyoung  *  @data: word write to the EEPROM
   1770   1.1    dyoung  *
   1771   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1772   1.1    dyoung  **/
   1773   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1774   1.1    dyoung {
   1775   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1776   1.1    dyoung }
   1777   1.1    dyoung 
   1778   1.1    dyoung /**
   1779   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1780   1.1    dyoung  *  @hw: pointer to hardware structure
   1781   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1782   1.1    dyoung  *
   1783   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1784   1.1    dyoung  *  read or write is done respectively.
   1785   1.1    dyoung  **/
   1786   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1787   1.1    dyoung {
   1788   1.1    dyoung 	u32 i;
   1789   1.1    dyoung 	u32 reg;
   1790   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1791   1.1    dyoung 
   1792   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1793   1.1    dyoung 
   1794   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1795   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1796   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1797   1.1    dyoung 		else
   1798   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1799   1.1    dyoung 
   1800   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1801   1.1    dyoung 			status = IXGBE_SUCCESS;
   1802   1.1    dyoung 			break;
   1803   1.1    dyoung 		}
   1804   1.1    dyoung 		usec_delay(5);
   1805   1.1    dyoung 	}
   1806   1.6   msaitoh 
   1807   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1808   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1809   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1810   1.6   msaitoh 
   1811   1.1    dyoung 	return status;
   1812   1.1    dyoung }
   1813   1.1    dyoung 
   1814   1.1    dyoung /**
   1815   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1816   1.1    dyoung  *  @hw: pointer to hardware structure
   1817   1.1    dyoung  *
   1818   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1819   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1820   1.1    dyoung  **/
   1821   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1822   1.1    dyoung {
   1823   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1824   1.1    dyoung 	u32 eec;
   1825   1.1    dyoung 	u32 i;
   1826   1.1    dyoung 
   1827   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1828   1.1    dyoung 
   1829   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1830   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1831   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1832   1.1    dyoung 
   1833   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1834  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1835   1.1    dyoung 
   1836   1.1    dyoung 		/* Request EEPROM Access */
   1837   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1838  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1839   1.1    dyoung 
   1840   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1841  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1842   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1843   1.1    dyoung 				break;
   1844   1.1    dyoung 			usec_delay(5);
   1845   1.1    dyoung 		}
   1846   1.1    dyoung 
   1847   1.1    dyoung 		/* Release if grant not acquired */
   1848   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1849   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1850  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1851   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1852   1.1    dyoung 
   1853   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1854   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1855   1.1    dyoung 		}
   1856   1.1    dyoung 
   1857   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1858   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1859   1.1    dyoung 			/* Clear CS and SK */
   1860   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1861  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1862   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1863   1.1    dyoung 			usec_delay(1);
   1864   1.1    dyoung 		}
   1865   1.1    dyoung 	}
   1866   1.1    dyoung 	return status;
   1867   1.1    dyoung }
   1868   1.1    dyoung 
   1869   1.1    dyoung /**
   1870   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1871   1.1    dyoung  *  @hw: pointer to hardware structure
   1872   1.1    dyoung  *
   1873   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1874   1.1    dyoung  **/
   1875   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1876   1.1    dyoung {
   1877   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1878   1.1    dyoung 	u32 timeout = 2000;
   1879   1.1    dyoung 	u32 i;
   1880   1.1    dyoung 	u32 swsm;
   1881   1.1    dyoung 
   1882   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1883   1.1    dyoung 
   1884   1.1    dyoung 
   1885   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1886   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1887   1.1    dyoung 		/*
   1888   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1889   1.1    dyoung 		 * set and we have the semaphore
   1890   1.1    dyoung 		 */
   1891  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1892   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1893   1.1    dyoung 			status = IXGBE_SUCCESS;
   1894   1.1    dyoung 			break;
   1895   1.1    dyoung 		}
   1896   1.1    dyoung 		usec_delay(50);
   1897   1.1    dyoung 	}
   1898   1.1    dyoung 
   1899   1.3   msaitoh 	if (i == timeout) {
   1900   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1901   1.3   msaitoh 			 "not granted.\n");
   1902   1.3   msaitoh 		/*
   1903   1.3   msaitoh 		 * this release is particularly important because our attempts
   1904   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1905   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1906   1.3   msaitoh 		 * bits to free the driver to make progress
   1907   1.3   msaitoh 		 */
   1908   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1909   1.3   msaitoh 
   1910   1.3   msaitoh 		usec_delay(50);
   1911   1.3   msaitoh 		/*
   1912   1.3   msaitoh 		 * one last try
   1913   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1914   1.3   msaitoh 		 * set and we have the semaphore
   1915   1.3   msaitoh 		 */
   1916  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1917   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1918   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1919   1.3   msaitoh 	}
   1920   1.3   msaitoh 
   1921   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1922   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1923   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1924  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1925   1.1    dyoung 
   1926   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1927   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1928  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1929   1.1    dyoung 
   1930   1.1    dyoung 			/*
   1931   1.1    dyoung 			 * If we set the bit successfully then we got the
   1932   1.1    dyoung 			 * semaphore.
   1933   1.1    dyoung 			 */
   1934  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1935   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1936   1.1    dyoung 				break;
   1937   1.1    dyoung 
   1938   1.1    dyoung 			usec_delay(50);
   1939   1.1    dyoung 		}
   1940   1.1    dyoung 
   1941   1.1    dyoung 		/*
   1942   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1943   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1944   1.1    dyoung 		 */
   1945   1.1    dyoung 		if (i >= timeout) {
   1946   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1947   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1948   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1949   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1950   1.1    dyoung 		}
   1951   1.1    dyoung 	} else {
   1952   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1953   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1954   1.6   msaitoh 			     "not granted.\n");
   1955   1.1    dyoung 	}
   1956   1.1    dyoung 
   1957   1.1    dyoung 	return status;
   1958   1.1    dyoung }
   1959   1.1    dyoung 
   1960   1.1    dyoung /**
   1961   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1962   1.1    dyoung  *  @hw: pointer to hardware structure
   1963   1.1    dyoung  *
   1964   1.1    dyoung  *  This function clears hardware semaphore bits.
   1965   1.1    dyoung  **/
   1966   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1967   1.1    dyoung {
   1968   1.1    dyoung 	u32 swsm;
   1969   1.1    dyoung 
   1970   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1971   1.1    dyoung 
   1972   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1973   1.1    dyoung 
   1974   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1975   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1976   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1977   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1978   1.1    dyoung }
   1979   1.1    dyoung 
   1980   1.1    dyoung /**
   1981   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1982   1.1    dyoung  *  @hw: pointer to hardware structure
   1983   1.1    dyoung  **/
   1984   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1985   1.1    dyoung {
   1986   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1987   1.1    dyoung 	u16 i;
   1988   1.1    dyoung 	u8 spi_stat_reg;
   1989   1.1    dyoung 
   1990   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1991   1.1    dyoung 
   1992   1.1    dyoung 	/*
   1993   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1994   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1995   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1996   1.1    dyoung 	 * 5 milliseconds, then error out.
   1997   1.1    dyoung 	 */
   1998   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1999   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2000   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   2001   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2002   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2003   1.1    dyoung 			break;
   2004   1.1    dyoung 
   2005   1.1    dyoung 		usec_delay(5);
   2006   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   2007  1.11   msaitoh 	}
   2008   1.1    dyoung 
   2009   1.1    dyoung 	/*
   2010   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2011   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   2012   1.1    dyoung 	 */
   2013   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2014   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   2015   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   2016   1.1    dyoung 	}
   2017   1.1    dyoung 
   2018   1.1    dyoung 	return status;
   2019   1.1    dyoung }
   2020   1.1    dyoung 
   2021   1.1    dyoung /**
   2022   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2023   1.1    dyoung  *  @hw: pointer to hardware structure
   2024   1.1    dyoung  **/
   2025   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2026   1.1    dyoung {
   2027   1.1    dyoung 	u32 eec;
   2028   1.1    dyoung 
   2029   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   2030   1.1    dyoung 
   2031  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2032   1.1    dyoung 
   2033   1.1    dyoung 	/* Toggle CS to flush commands */
   2034   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   2035  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2036   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2037   1.1    dyoung 	usec_delay(1);
   2038   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   2039  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2040   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2041   1.1    dyoung 	usec_delay(1);
   2042   1.1    dyoung }
   2043   1.1    dyoung 
   2044   1.1    dyoung /**
   2045   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2046   1.1    dyoung  *  @hw: pointer to hardware structure
   2047   1.1    dyoung  *  @data: data to send to the EEPROM
   2048   1.1    dyoung  *  @count: number of bits to shift out
   2049   1.1    dyoung  **/
   2050   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2051   1.3   msaitoh 					u16 count)
   2052   1.1    dyoung {
   2053   1.1    dyoung 	u32 eec;
   2054   1.1    dyoung 	u32 mask;
   2055   1.1    dyoung 	u32 i;
   2056   1.1    dyoung 
   2057   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2058   1.1    dyoung 
   2059  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2060   1.1    dyoung 
   2061   1.1    dyoung 	/*
   2062   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2063   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   2064   1.1    dyoung 	 */
   2065   1.1    dyoung 	mask = 0x01 << (count - 1);
   2066   1.1    dyoung 
   2067   1.1    dyoung 	for (i = 0; i < count; i++) {
   2068   1.1    dyoung 		/*
   2069   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2070   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   2071   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   2072   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2073   1.1    dyoung 		 * raising and then lowering the clock.
   2074   1.1    dyoung 		 */
   2075   1.1    dyoung 		if (data & mask)
   2076   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   2077   1.1    dyoung 		else
   2078   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   2079   1.1    dyoung 
   2080  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2081   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   2082   1.1    dyoung 
   2083   1.1    dyoung 		usec_delay(1);
   2084   1.1    dyoung 
   2085   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2086   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2087   1.1    dyoung 
   2088   1.1    dyoung 		/*
   2089   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   2090   1.1    dyoung 		 * EEPROM
   2091   1.1    dyoung 		 */
   2092   1.1    dyoung 		mask = mask >> 1;
   2093  1.11   msaitoh 	}
   2094   1.1    dyoung 
   2095   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2096   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   2097  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2098   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2099   1.1    dyoung }
   2100   1.1    dyoung 
   2101   1.1    dyoung /**
   2102   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2103   1.1    dyoung  *  @hw: pointer to hardware structure
   2104   1.1    dyoung  **/
   2105   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2106   1.1    dyoung {
   2107   1.1    dyoung 	u32 eec;
   2108   1.1    dyoung 	u32 i;
   2109   1.1    dyoung 	u16 data = 0;
   2110   1.1    dyoung 
   2111   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2112   1.1    dyoung 
   2113   1.1    dyoung 	/*
   2114   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2115   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2116   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2117   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2118   1.1    dyoung 	 * "DI" bit should always be clear.
   2119   1.1    dyoung 	 */
   2120  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2121   1.1    dyoung 
   2122   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2123   1.1    dyoung 
   2124   1.1    dyoung 	for (i = 0; i < count; i++) {
   2125   1.1    dyoung 		data = data << 1;
   2126   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2127   1.1    dyoung 
   2128  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2129   1.1    dyoung 
   2130   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2131   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2132   1.1    dyoung 			data |= 1;
   2133   1.1    dyoung 
   2134   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2135   1.1    dyoung 	}
   2136   1.1    dyoung 
   2137   1.1    dyoung 	return data;
   2138   1.1    dyoung }
   2139   1.1    dyoung 
   2140   1.1    dyoung /**
   2141   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2142   1.1    dyoung  *  @hw: pointer to hardware structure
   2143   1.1    dyoung  *  @eec: EEC register's current value
   2144   1.1    dyoung  **/
   2145   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2146   1.1    dyoung {
   2147   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2148   1.1    dyoung 
   2149   1.1    dyoung 	/*
   2150   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2151   1.1    dyoung 	 * (setting the SK bit), then delay
   2152   1.1    dyoung 	 */
   2153   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2154  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2155   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2156   1.1    dyoung 	usec_delay(1);
   2157   1.1    dyoung }
   2158   1.1    dyoung 
   2159   1.1    dyoung /**
   2160   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2161   1.1    dyoung  *  @hw: pointer to hardware structure
   2162   1.1    dyoung  *  @eecd: EECD's current value
   2163   1.1    dyoung  **/
   2164   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2165   1.1    dyoung {
   2166   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2167   1.1    dyoung 
   2168   1.1    dyoung 	/*
   2169   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2170   1.1    dyoung 	 * delay
   2171   1.1    dyoung 	 */
   2172   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2173  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2174   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2175   1.1    dyoung 	usec_delay(1);
   2176   1.1    dyoung }
   2177   1.1    dyoung 
   2178   1.1    dyoung /**
   2179   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2180   1.1    dyoung  *  @hw: pointer to hardware structure
   2181   1.1    dyoung  **/
   2182   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2183   1.1    dyoung {
   2184   1.1    dyoung 	u32 eec;
   2185   1.1    dyoung 
   2186   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2187   1.1    dyoung 
   2188  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2189   1.1    dyoung 
   2190   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2191   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2192   1.1    dyoung 
   2193  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2194   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2195   1.1    dyoung 
   2196   1.1    dyoung 	usec_delay(1);
   2197   1.1    dyoung 
   2198   1.1    dyoung 	/* Stop requesting EEPROM access */
   2199   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2200  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2201   1.1    dyoung 
   2202   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2203   1.1    dyoung 
   2204   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2205   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2206   1.1    dyoung }
   2207   1.1    dyoung 
   2208   1.1    dyoung /**
   2209   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2210   1.1    dyoung  *  @hw: pointer to hardware structure
   2211   1.8   msaitoh  *
   2212   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2213   1.1    dyoung  **/
   2214   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2215   1.1    dyoung {
   2216   1.1    dyoung 	u16 i;
   2217   1.1    dyoung 	u16 j;
   2218   1.1    dyoung 	u16 checksum = 0;
   2219   1.1    dyoung 	u16 length = 0;
   2220   1.1    dyoung 	u16 pointer = 0;
   2221   1.1    dyoung 	u16 word = 0;
   2222   1.1    dyoung 
   2223   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2224   1.1    dyoung 
   2225   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2226   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2227   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2228   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2229   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2230   1.1    dyoung 		}
   2231   1.1    dyoung 		checksum += word;
   2232   1.1    dyoung 	}
   2233   1.1    dyoung 
   2234   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2235   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2236   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2237   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2238   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2239   1.8   msaitoh 		}
   2240   1.8   msaitoh 
   2241   1.8   msaitoh 		/* If the pointer seems invalid */
   2242   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2243   1.8   msaitoh 			continue;
   2244   1.8   msaitoh 
   2245   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2246   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2247   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2248   1.8   msaitoh 		}
   2249   1.8   msaitoh 
   2250   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2251   1.8   msaitoh 			continue;
   2252   1.1    dyoung 
   2253   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2254   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2255   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2256   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2257   1.1    dyoung 			}
   2258   1.8   msaitoh 			checksum += word;
   2259   1.1    dyoung 		}
   2260   1.1    dyoung 	}
   2261   1.1    dyoung 
   2262   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2263   1.1    dyoung 
   2264   1.8   msaitoh 	return (s32)checksum;
   2265   1.1    dyoung }
   2266   1.1    dyoung 
   2267   1.1    dyoung /**
   2268   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2269   1.1    dyoung  *  @hw: pointer to hardware structure
   2270   1.1    dyoung  *  @checksum_val: calculated checksum
   2271   1.1    dyoung  *
   2272   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2273   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2274   1.1    dyoung  **/
   2275   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2276   1.3   msaitoh 					   u16 *checksum_val)
   2277   1.1    dyoung {
   2278   1.1    dyoung 	s32 status;
   2279   1.1    dyoung 	u16 checksum;
   2280   1.1    dyoung 	u16 read_checksum = 0;
   2281   1.1    dyoung 
   2282   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2283   1.1    dyoung 
   2284   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2285   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2286   1.1    dyoung 	 * EEPROM read fails
   2287   1.1    dyoung 	 */
   2288   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2289   1.8   msaitoh 	if (status) {
   2290   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2291   1.8   msaitoh 		return status;
   2292   1.8   msaitoh 	}
   2293   1.1    dyoung 
   2294   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2295   1.8   msaitoh 	if (status < 0)
   2296   1.8   msaitoh 		return status;
   2297   1.1    dyoung 
   2298   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2299   1.1    dyoung 
   2300   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2301   1.8   msaitoh 	if (status) {
   2302   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2303   1.8   msaitoh 		return status;
   2304   1.1    dyoung 	}
   2305   1.1    dyoung 
   2306   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2307   1.8   msaitoh 	 * calculated checksum
   2308   1.8   msaitoh 	 */
   2309   1.8   msaitoh 	if (read_checksum != checksum)
   2310   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2311   1.8   msaitoh 
   2312   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2313   1.8   msaitoh 	if (checksum_val)
   2314   1.8   msaitoh 		*checksum_val = checksum;
   2315   1.8   msaitoh 
   2316   1.1    dyoung 	return status;
   2317   1.1    dyoung }
   2318   1.1    dyoung 
   2319   1.1    dyoung /**
   2320   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2321   1.1    dyoung  *  @hw: pointer to hardware structure
   2322   1.1    dyoung  **/
   2323   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2324   1.1    dyoung {
   2325   1.1    dyoung 	s32 status;
   2326   1.1    dyoung 	u16 checksum;
   2327   1.1    dyoung 
   2328   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2329   1.1    dyoung 
   2330   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2331   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2332   1.1    dyoung 	 * EEPROM read fails
   2333   1.1    dyoung 	 */
   2334   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2335   1.8   msaitoh 	if (status) {
   2336   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2337   1.8   msaitoh 		return status;
   2338   1.1    dyoung 	}
   2339   1.1    dyoung 
   2340   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2341   1.8   msaitoh 	if (status < 0)
   2342   1.8   msaitoh 		return status;
   2343   1.8   msaitoh 
   2344   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2345   1.8   msaitoh 
   2346   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2347   1.8   msaitoh 
   2348   1.1    dyoung 	return status;
   2349   1.1    dyoung }
   2350   1.1    dyoung 
   2351   1.1    dyoung /**
   2352   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2353   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2354   1.1    dyoung  *
   2355  1.14   msaitoh  *  Tests a MAC address to ensure it is a valid Individual Address.
   2356   1.1    dyoung  **/
   2357   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2358   1.1    dyoung {
   2359   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2360   1.1    dyoung 
   2361   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2362   1.1    dyoung 
   2363   1.1    dyoung 	/* Make sure it is not a multicast address */
   2364   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2365   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2366   1.1    dyoung 	/* Not a broadcast address */
   2367   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2368   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2369   1.1    dyoung 	/* Reject the zero address */
   2370   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2371   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2372   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2373   1.1    dyoung 	}
   2374   1.1    dyoung 	return status;
   2375   1.1    dyoung }
   2376   1.1    dyoung 
   2377   1.1    dyoung /**
   2378   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2379   1.1    dyoung  *  @hw: pointer to hardware structure
   2380   1.1    dyoung  *  @index: Receive address register to write
   2381   1.1    dyoung  *  @addr: Address to put into receive address register
   2382   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2383   1.1    dyoung  *  @enable_addr: set flag that address is active
   2384   1.1    dyoung  *
   2385   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2386   1.1    dyoung  **/
   2387   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2388   1.3   msaitoh 			  u32 enable_addr)
   2389   1.1    dyoung {
   2390   1.1    dyoung 	u32 rar_low, rar_high;
   2391   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2392   1.1    dyoung 
   2393   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2394   1.1    dyoung 
   2395   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2396   1.1    dyoung 	if (index >= rar_entries) {
   2397   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2398   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2399   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2400   1.1    dyoung 	}
   2401   1.1    dyoung 
   2402   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2403   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2404   1.1    dyoung 
   2405   1.1    dyoung 	/*
   2406   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2407   1.1    dyoung 	 * order from network order (big endian) to little endian
   2408   1.1    dyoung 	 */
   2409   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2410   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2411   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2412   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2413   1.1    dyoung 	/*
   2414   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2415   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2416   1.1    dyoung 	 * of the address and the address valid bit.
   2417   1.1    dyoung 	 */
   2418   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2419   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2420   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2421   1.1    dyoung 
   2422   1.1    dyoung 	if (enable_addr != 0)
   2423   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2424   1.1    dyoung 
   2425   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2426   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2427   1.1    dyoung 
   2428   1.1    dyoung 	return IXGBE_SUCCESS;
   2429   1.1    dyoung }
   2430   1.1    dyoung 
   2431   1.1    dyoung /**
   2432   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2433   1.1    dyoung  *  @hw: pointer to hardware structure
   2434   1.1    dyoung  *  @index: Receive address register to write
   2435   1.1    dyoung  *
   2436   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2437   1.1    dyoung  **/
   2438   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2439   1.1    dyoung {
   2440   1.1    dyoung 	u32 rar_high;
   2441   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2442   1.1    dyoung 
   2443   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2444   1.1    dyoung 
   2445   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2446   1.1    dyoung 	if (index >= rar_entries) {
   2447   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2448   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2449   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2450   1.1    dyoung 	}
   2451   1.1    dyoung 
   2452   1.1    dyoung 	/*
   2453   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2454   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2455   1.1    dyoung 	 * of the address and the address valid bit.
   2456   1.1    dyoung 	 */
   2457   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2458   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2459   1.1    dyoung 
   2460   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2461   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2462   1.1    dyoung 
   2463   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2464   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2465   1.1    dyoung 
   2466   1.1    dyoung 	return IXGBE_SUCCESS;
   2467   1.1    dyoung }
   2468   1.1    dyoung 
   2469   1.1    dyoung /**
   2470   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2471   1.1    dyoung  *  @hw: pointer to hardware structure
   2472   1.1    dyoung  *
   2473   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2474   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2475   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2476   1.1    dyoung  **/
   2477   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2478   1.1    dyoung {
   2479   1.1    dyoung 	u32 i;
   2480   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2481   1.1    dyoung 
   2482   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2483   1.1    dyoung 
   2484   1.1    dyoung 	/*
   2485   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2486   1.1    dyoung 	 * to the permanent address.
   2487   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2488   1.1    dyoung 	 */
   2489   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2490   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2491   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2492   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2493   1.1    dyoung 
   2494   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2495   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2496   1.3   msaitoh 			  hw->mac.addr[2]);
   2497   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2498   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2499   1.1    dyoung 	} else {
   2500   1.1    dyoung 		/* Setup the receive address. */
   2501   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2502   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2503   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2504   1.3   msaitoh 			  hw->mac.addr[2]);
   2505   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2506   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2507   1.1    dyoung 
   2508   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2509  1.14   msaitoh 	}
   2510  1.14   msaitoh 
   2511  1.14   msaitoh 	/* clear VMDq pool/queue selection for RAR 0 */
   2512  1.14   msaitoh 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2513   1.1    dyoung 
   2514   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2515   1.1    dyoung 
   2516   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2517   1.1    dyoung 
   2518   1.1    dyoung 	/* Zero out the other receive addresses. */
   2519   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2520   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2521   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2522   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2523   1.1    dyoung 	}
   2524   1.1    dyoung 
   2525   1.1    dyoung 	/* Clear the MTA */
   2526   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2527   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2528   1.1    dyoung 
   2529   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2530   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2531   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2532   1.1    dyoung 
   2533   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2534   1.1    dyoung 
   2535   1.1    dyoung 	return IXGBE_SUCCESS;
   2536   1.1    dyoung }
   2537   1.1    dyoung 
   2538   1.1    dyoung /**
   2539   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2540   1.1    dyoung  *  @hw: pointer to hardware structure
   2541   1.1    dyoung  *  @addr: new address
   2542   1.1    dyoung  *
   2543   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2544   1.1    dyoung  **/
   2545   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2546   1.1    dyoung {
   2547   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2548   1.1    dyoung 	u32 rar;
   2549   1.1    dyoung 
   2550   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2551   1.1    dyoung 
   2552   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2553   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2554   1.1    dyoung 
   2555   1.1    dyoung 	/*
   2556   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2557   1.1    dyoung 	 * else put the controller into promiscuous mode
   2558   1.1    dyoung 	 */
   2559   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2560   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2561   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2562   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2563   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2564   1.1    dyoung 	} else {
   2565   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2566   1.1    dyoung 	}
   2567   1.1    dyoung 
   2568   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2569   1.1    dyoung }
   2570   1.1    dyoung 
   2571   1.1    dyoung /**
   2572   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2573   1.1    dyoung  *  @hw: pointer to hardware structure
   2574   1.1    dyoung  *  @addr_list: the list of new addresses
   2575   1.1    dyoung  *  @addr_count: number of addresses
   2576   1.1    dyoung  *  @next: iterator function to walk the address list
   2577   1.1    dyoung  *
   2578   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2579   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2580   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2581   1.1    dyoung  *
   2582   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2583   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2584   1.1    dyoung  **/
   2585   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2586   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2587   1.1    dyoung {
   2588   1.1    dyoung 	u8 *addr;
   2589   1.1    dyoung 	u32 i;
   2590   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2591   1.1    dyoung 	u32 uc_addr_in_use;
   2592   1.1    dyoung 	u32 fctrl;
   2593   1.1    dyoung 	u32 vmdq;
   2594   1.1    dyoung 
   2595   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2596   1.1    dyoung 
   2597   1.1    dyoung 	/*
   2598   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2599   1.1    dyoung 	 * don't count RAR[0]
   2600   1.1    dyoung 	 */
   2601   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2602   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2603   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2604   1.1    dyoung 
   2605   1.1    dyoung 	/* Zero out the other receive addresses */
   2606   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2607   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2608   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2609   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2610   1.1    dyoung 	}
   2611   1.1    dyoung 
   2612   1.1    dyoung 	/* Add the new addresses */
   2613   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2614   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2615   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2616   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2617   1.1    dyoung 	}
   2618   1.1    dyoung 
   2619   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2620   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2621   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2622   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2623   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2624   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2625   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2626   1.1    dyoung 		}
   2627   1.1    dyoung 	} else {
   2628   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2629   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2630   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2631   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2632   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2633   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2634   1.1    dyoung 		}
   2635   1.1    dyoung 	}
   2636   1.1    dyoung 
   2637   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2638   1.1    dyoung 	return IXGBE_SUCCESS;
   2639   1.1    dyoung }
   2640   1.1    dyoung 
   2641   1.1    dyoung /**
   2642   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2643   1.1    dyoung  *  @hw: pointer to hardware structure
   2644   1.1    dyoung  *  @mc_addr: the multicast address
   2645   1.1    dyoung  *
   2646   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2647   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2648   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2649   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2650   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2651   1.1    dyoung  *  to mc_filter_type.
   2652   1.1    dyoung  **/
   2653   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2654   1.1    dyoung {
   2655   1.1    dyoung 	u32 vector = 0;
   2656   1.1    dyoung 
   2657   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2658   1.1    dyoung 
   2659   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2660   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2661   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2662   1.1    dyoung 		break;
   2663   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2664   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2665   1.1    dyoung 		break;
   2666   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2667   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2668   1.1    dyoung 		break;
   2669   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2670   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2671   1.1    dyoung 		break;
   2672   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2673   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2674   1.1    dyoung 		ASSERT(0);
   2675   1.1    dyoung 		break;
   2676   1.1    dyoung 	}
   2677   1.1    dyoung 
   2678   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2679   1.1    dyoung 	vector &= 0xFFF;
   2680   1.1    dyoung 	return vector;
   2681   1.1    dyoung }
   2682   1.1    dyoung 
   2683   1.1    dyoung /**
   2684   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2685   1.1    dyoung  *  @hw: pointer to hardware structure
   2686   1.1    dyoung  *  @hash_value: Multicast address hash value
   2687   1.1    dyoung  *
   2688   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2689   1.1    dyoung  **/
   2690   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2691   1.1    dyoung {
   2692   1.1    dyoung 	u32 vector;
   2693   1.1    dyoung 	u32 vector_bit;
   2694   1.1    dyoung 	u32 vector_reg;
   2695   1.1    dyoung 
   2696   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2697   1.1    dyoung 
   2698   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2699   1.1    dyoung 
   2700   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2701   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2702   1.1    dyoung 
   2703   1.1    dyoung 	/*
   2704   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2705   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2706   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2707   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2708   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2709   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2710   1.1    dyoung 	 * the value.
   2711   1.1    dyoung 	 */
   2712   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2713   1.1    dyoung 	vector_bit = vector & 0x1F;
   2714   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2715   1.1    dyoung }
   2716   1.1    dyoung 
   2717   1.1    dyoung /**
   2718   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2719   1.1    dyoung  *  @hw: pointer to hardware structure
   2720   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2721   1.1    dyoung  *  @mc_addr_count: number of addresses
   2722   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2723   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2724   1.1    dyoung  *
   2725   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2726   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2727   1.1    dyoung  **/
   2728   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2729   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2730   1.3   msaitoh 				      bool clear)
   2731   1.1    dyoung {
   2732   1.1    dyoung 	u32 i;
   2733   1.1    dyoung 	u32 vmdq;
   2734   1.1    dyoung 
   2735   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2736   1.1    dyoung 
   2737   1.1    dyoung 	/*
   2738   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2739   1.1    dyoung 	 * use.
   2740   1.1    dyoung 	 */
   2741   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2742   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2743   1.1    dyoung 
   2744   1.1    dyoung 	/* Clear mta_shadow */
   2745   1.3   msaitoh 	if (clear) {
   2746   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2747   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2748   1.3   msaitoh 	}
   2749   1.1    dyoung 
   2750   1.1    dyoung 	/* Update mta_shadow */
   2751   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2752   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2753   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2754   1.1    dyoung 	}
   2755   1.1    dyoung 
   2756   1.1    dyoung 	/* Enable mta */
   2757   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2758   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2759   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2760   1.1    dyoung 
   2761   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2762   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2763   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2764   1.1    dyoung 
   2765   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2766   1.1    dyoung 	return IXGBE_SUCCESS;
   2767   1.1    dyoung }
   2768   1.1    dyoung 
   2769   1.1    dyoung /**
   2770   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2771   1.1    dyoung  *  @hw: pointer to hardware structure
   2772   1.1    dyoung  *
   2773   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2774   1.1    dyoung  **/
   2775   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2776   1.1    dyoung {
   2777   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2778   1.1    dyoung 
   2779   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2780   1.1    dyoung 
   2781   1.1    dyoung 	if (a->mta_in_use > 0)
   2782   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2783   1.3   msaitoh 				hw->mac.mc_filter_type);
   2784   1.1    dyoung 
   2785   1.1    dyoung 	return IXGBE_SUCCESS;
   2786   1.1    dyoung }
   2787   1.1    dyoung 
   2788   1.1    dyoung /**
   2789   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2790   1.1    dyoung  *  @hw: pointer to hardware structure
   2791   1.1    dyoung  *
   2792   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2793   1.1    dyoung  **/
   2794   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2795   1.1    dyoung {
   2796   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2797   1.1    dyoung 
   2798   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2799   1.1    dyoung 
   2800   1.1    dyoung 	if (a->mta_in_use > 0)
   2801   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2802   1.1    dyoung 
   2803   1.1    dyoung 	return IXGBE_SUCCESS;
   2804   1.1    dyoung }
   2805   1.1    dyoung 
   2806   1.1    dyoung /**
   2807   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2808   1.1    dyoung  *  @hw: pointer to hardware structure
   2809   1.1    dyoung  *
   2810   1.1    dyoung  *  Enable flow control according to the current settings.
   2811   1.1    dyoung  **/
   2812   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2813   1.1    dyoung {
   2814   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2815   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2816   1.1    dyoung 	u32 reg;
   2817   1.1    dyoung 	u32 fcrtl, fcrth;
   2818   1.4   msaitoh 	int i;
   2819   1.1    dyoung 
   2820   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2821   1.1    dyoung 
   2822   1.4   msaitoh 	/* Validate the water mark configuration */
   2823   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2824   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2825   1.4   msaitoh 		goto out;
   2826   1.4   msaitoh 	}
   2827   1.4   msaitoh 
   2828   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2829   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2830   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2831   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2832   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2833   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2834   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2835   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2836   1.4   msaitoh 				goto out;
   2837   1.4   msaitoh 			}
   2838   1.4   msaitoh 		}
   2839   1.4   msaitoh 	}
   2840   1.4   msaitoh 
   2841   1.1    dyoung 	/* Negotiate the fc mode to use */
   2842  1.14   msaitoh 	hw->mac.ops.fc_autoneg(hw);
   2843   1.1    dyoung 
   2844   1.1    dyoung 	/* Disable any previous flow control settings */
   2845   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2846   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2847   1.1    dyoung 
   2848   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2849   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2850   1.1    dyoung 
   2851   1.1    dyoung 	/*
   2852   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2853   1.1    dyoung 	 * 0: Flow control is completely disabled
   2854   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2855   1.1    dyoung 	 *    but not send pause frames).
   2856   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2857   1.1    dyoung 	 *    we do not support receiving pause frames).
   2858   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2859   1.1    dyoung 	 * other: Invalid.
   2860   1.1    dyoung 	 */
   2861   1.1    dyoung 	switch (hw->fc.current_mode) {
   2862   1.1    dyoung 	case ixgbe_fc_none:
   2863   1.1    dyoung 		/*
   2864   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2865   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2866   1.1    dyoung 		 */
   2867   1.1    dyoung 		break;
   2868   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2869   1.1    dyoung 		/*
   2870   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2871   1.1    dyoung 		 * disabled by software override. Since there really
   2872   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2873   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2874   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2875   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2876   1.1    dyoung 		 */
   2877   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2878   1.1    dyoung 		break;
   2879   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2880   1.1    dyoung 		/*
   2881   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2882   1.1    dyoung 		 * disabled by software override.
   2883   1.1    dyoung 		 */
   2884   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2885   1.1    dyoung 		break;
   2886   1.1    dyoung 	case ixgbe_fc_full:
   2887   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2888   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2889   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2890   1.1    dyoung 		break;
   2891   1.1    dyoung 	default:
   2892   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2893   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2894   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2895   1.1    dyoung 		goto out;
   2896   1.1    dyoung 		break;
   2897   1.1    dyoung 	}
   2898   1.1    dyoung 
   2899   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2900   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2901   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2902   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2903   1.1    dyoung 
   2904   1.1    dyoung 
   2905   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2906   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2907   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2908   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2909   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2910   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2911   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2912   1.4   msaitoh 		} else {
   2913   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2914   1.4   msaitoh 			/*
   2915   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2916   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2917   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2918   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2919   1.8   msaitoh 			 * workloads.
   2920   1.4   msaitoh 			 */
   2921   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2922   1.4   msaitoh 		}
   2923   1.4   msaitoh 
   2924   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2925   1.1    dyoung 	}
   2926   1.1    dyoung 
   2927   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2928   1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2929   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2930   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2931   1.1    dyoung 
   2932   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2933   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2934   1.1    dyoung 
   2935   1.1    dyoung out:
   2936   1.1    dyoung 	return ret_val;
   2937   1.1    dyoung }
   2938   1.1    dyoung 
   2939   1.1    dyoung /**
   2940   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2941   1.1    dyoung  *  @hw: pointer to hardware structure
   2942   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2943   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2944   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2945   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2946   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2947   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2948   1.1    dyoung  *
   2949   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2950   1.4   msaitoh  *  advertised settings
   2951   1.1    dyoung  **/
   2952  1.14   msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2953  1.14   msaitoh 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2954   1.1    dyoung {
   2955   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2956   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2957   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2958   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2959   1.6   msaitoh 			     adv_reg, lp_reg);
   2960   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2961   1.6   msaitoh 	}
   2962   1.1    dyoung 
   2963   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2964   1.4   msaitoh 		/*
   2965   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2966   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2967   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2968   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2969   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2970   1.4   msaitoh 		 */
   2971   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2972   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2973   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2974   1.4   msaitoh 		} else {
   2975   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2976   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2977   1.4   msaitoh 		}
   2978   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2979   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2980   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2981   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2982   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2983   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2984   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2985   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2986   1.4   msaitoh 	} else {
   2987   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2988   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2989   1.4   msaitoh 	}
   2990   1.4   msaitoh 	return IXGBE_SUCCESS;
   2991   1.4   msaitoh }
   2992   1.1    dyoung 
   2993   1.4   msaitoh /**
   2994   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2995   1.4   msaitoh  *  @hw: pointer to hardware structure
   2996   1.4   msaitoh  *
   2997   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2998   1.4   msaitoh  **/
   2999   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3000   1.4   msaitoh {
   3001   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3002   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3003   1.1    dyoung 
   3004   1.1    dyoung 	/*
   3005   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   3006   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   3007   1.4   msaitoh 	 * - link is up and AN completed but timed out
   3008   1.1    dyoung 	 */
   3009   1.4   msaitoh 
   3010   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3011   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3012   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3013   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3014   1.1    dyoung 		goto out;
   3015   1.6   msaitoh 	}
   3016   1.1    dyoung 
   3017   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3018   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3019   1.1    dyoung 
   3020   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3021   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3022   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3023   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3024   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3025   1.1    dyoung 
   3026   1.1    dyoung out:
   3027   1.1    dyoung 	return ret_val;
   3028   1.1    dyoung }
   3029   1.1    dyoung 
   3030   1.1    dyoung /**
   3031   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3032   1.1    dyoung  *  @hw: pointer to hardware structure
   3033   1.1    dyoung  *
   3034   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3035   1.1    dyoung  **/
   3036   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3037   1.1    dyoung {
   3038   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   3039   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3040   1.1    dyoung 
   3041   1.1    dyoung 	/*
   3042   1.1    dyoung 	 * On backplane, bail out if
   3043   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   3044   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   3045   1.1    dyoung 	 */
   3046   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3047   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3048   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3049   1.1    dyoung 		goto out;
   3050   1.6   msaitoh 	}
   3051   1.1    dyoung 
   3052   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3053   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3054   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3055   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   3056   1.1    dyoung 			goto out;
   3057   1.6   msaitoh 		}
   3058   1.1    dyoung 	}
   3059   1.1    dyoung 	/*
   3060   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   3061   1.1    dyoung 	 * local flow control settings accordingly
   3062   1.1    dyoung 	 */
   3063   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3064   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3065   1.1    dyoung 
   3066   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3067   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3068   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3069   1.1    dyoung 
   3070   1.1    dyoung out:
   3071   1.1    dyoung 	return ret_val;
   3072   1.1    dyoung }
   3073   1.1    dyoung 
   3074   1.1    dyoung /**
   3075   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3076   1.1    dyoung  *  @hw: pointer to hardware structure
   3077   1.1    dyoung  *
   3078   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3079   1.1    dyoung  **/
   3080   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3081   1.1    dyoung {
   3082   1.1    dyoung 	u16 technology_ability_reg = 0;
   3083   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   3084   1.1    dyoung 
   3085   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3086   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3087   1.1    dyoung 			     &technology_ability_reg);
   3088   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3089   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3090   1.1    dyoung 			     &lp_technology_ability_reg);
   3091   1.1    dyoung 
   3092   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3093   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   3094   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3095   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3096   1.1    dyoung }
   3097   1.1    dyoung 
   3098   1.1    dyoung /**
   3099   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3100   1.1    dyoung  *  @hw: pointer to hardware structure
   3101   1.1    dyoung  *
   3102   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3103   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3104   1.1    dyoung  **/
   3105   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3106   1.1    dyoung {
   3107   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3108   1.4   msaitoh 	ixgbe_link_speed speed;
   3109   1.4   msaitoh 	bool link_up;
   3110   1.1    dyoung 
   3111   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3112   1.1    dyoung 
   3113   1.1    dyoung 	/*
   3114   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3115   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3116   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3117   1.4   msaitoh 	 * - link is not up.
   3118   1.1    dyoung 	 */
   3119   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3120   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3121   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3122   1.1    dyoung 		goto out;
   3123   1.6   msaitoh 	}
   3124   1.1    dyoung 
   3125   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3126   1.6   msaitoh 	if (!link_up) {
   3127   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3128   1.1    dyoung 		goto out;
   3129   1.6   msaitoh 	}
   3130   1.1    dyoung 
   3131   1.1    dyoung 	switch (hw->phy.media_type) {
   3132   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3133   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3134   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3135   1.1    dyoung 	case ixgbe_media_type_fiber:
   3136   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3137   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3138   1.4   msaitoh 		break;
   3139   1.4   msaitoh 
   3140   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3141   1.1    dyoung 	case ixgbe_media_type_backplane:
   3142   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3143   1.1    dyoung 		break;
   3144   1.1    dyoung 
   3145   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3146   1.1    dyoung 	case ixgbe_media_type_copper:
   3147   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3148   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3149   1.1    dyoung 		break;
   3150   1.1    dyoung 
   3151   1.1    dyoung 	default:
   3152   1.1    dyoung 		break;
   3153   1.1    dyoung 	}
   3154   1.1    dyoung 
   3155   1.4   msaitoh out:
   3156   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3157   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3158   1.4   msaitoh 	} else {
   3159   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3160   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3161   1.3   msaitoh 	}
   3162   1.1    dyoung }
   3163   1.1    dyoung 
   3164   1.6   msaitoh /*
   3165   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3166   1.6   msaitoh  * @hw: pointer to hardware structure
   3167   1.6   msaitoh  *
   3168   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3169   1.6   msaitoh  *
   3170   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3171   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3172   1.6   msaitoh  * 800 = 80 millisec.
   3173   1.6   msaitoh  */
   3174   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3175   1.6   msaitoh {
   3176   1.6   msaitoh 	s16 devctl2;
   3177   1.6   msaitoh 	u32 pollcnt;
   3178   1.6   msaitoh 
   3179   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3180   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3181   1.6   msaitoh 
   3182   1.6   msaitoh 	switch (devctl2) {
   3183   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3184   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3185   1.6   msaitoh 		break;
   3186   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3187   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3188   1.6   msaitoh 		break;
   3189   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3190   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3191   1.6   msaitoh 		break;
   3192   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3193   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3194   1.6   msaitoh 		break;
   3195   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3196   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3197   1.6   msaitoh 		break;
   3198   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3199   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3200   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3201   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3202   1.6   msaitoh 	default:
   3203   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3204   1.6   msaitoh 		break;
   3205   1.6   msaitoh 	}
   3206   1.6   msaitoh 
   3207   1.6   msaitoh 	/* add 10% to spec maximum */
   3208   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3209   1.6   msaitoh }
   3210   1.6   msaitoh 
   3211   1.1    dyoung /**
   3212   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3213   1.1    dyoung  *  @hw: pointer to hardware structure
   3214   1.1    dyoung  *
   3215   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3216   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3217   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3218   1.1    dyoung  *  is returned signifying master requests disabled.
   3219   1.1    dyoung  **/
   3220   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3221   1.1    dyoung {
   3222   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3223   1.6   msaitoh 	u32 i, poll;
   3224   1.8   msaitoh 	u16 value;
   3225   1.1    dyoung 
   3226   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3227   1.1    dyoung 
   3228   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3229   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3230   1.3   msaitoh 
   3231   1.6   msaitoh 	/* Exit if master requests are blocked */
   3232   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3233   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3234   1.1    dyoung 		goto out;
   3235   1.1    dyoung 
   3236   1.3   msaitoh 	/* Poll for master request bit to clear */
   3237   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3238   1.3   msaitoh 		usec_delay(100);
   3239   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3240   1.3   msaitoh 			goto out;
   3241   1.1    dyoung 	}
   3242   1.1    dyoung 
   3243   1.3   msaitoh 	/*
   3244   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3245   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3246   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3247   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3248   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3249   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3250   1.3   msaitoh 	 */
   3251   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3252   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3253   1.1    dyoung 
   3254  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3255  1.10   msaitoh 		goto out;
   3256  1.10   msaitoh 
   3257   1.1    dyoung 	/*
   3258   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3259   1.1    dyoung 	 * transactions pending.
   3260   1.1    dyoung 	 */
   3261   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3262   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3263   1.3   msaitoh 		usec_delay(100);
   3264   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3265   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3266   1.8   msaitoh 			goto out;
   3267   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3268   1.3   msaitoh 			goto out;
   3269   1.1    dyoung 	}
   3270   1.1    dyoung 
   3271   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3272   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3273   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3274   1.1    dyoung 
   3275   1.1    dyoung out:
   3276   1.1    dyoung 	return status;
   3277   1.1    dyoung }
   3278   1.1    dyoung 
   3279   1.1    dyoung /**
   3280   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3281   1.1    dyoung  *  @hw: pointer to hardware structure
   3282   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3283   1.1    dyoung  *
   3284   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3285   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3286   1.1    dyoung  **/
   3287   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3288   1.1    dyoung {
   3289   1.6   msaitoh 	u32 gssr = 0;
   3290   1.1    dyoung 	u32 swmask = mask;
   3291   1.1    dyoung 	u32 fwmask = mask << 5;
   3292   1.6   msaitoh 	u32 timeout = 200;
   3293   1.6   msaitoh 	u32 i;
   3294   1.1    dyoung 
   3295   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3296   1.1    dyoung 
   3297   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3298   1.1    dyoung 		/*
   3299   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3300   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3301   1.1    dyoung 		 */
   3302   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3303   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3304   1.1    dyoung 
   3305   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3306   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3307   1.6   msaitoh 			gssr |= swmask;
   3308   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3309   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3310   1.6   msaitoh 			return IXGBE_SUCCESS;
   3311   1.6   msaitoh 		} else {
   3312   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3313   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3314   1.6   msaitoh 			msec_delay(5);
   3315   1.6   msaitoh 		}
   3316   1.1    dyoung 	}
   3317   1.1    dyoung 
   3318   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3319   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3320   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3321   1.1    dyoung 
   3322   1.6   msaitoh 	msec_delay(5);
   3323   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3324   1.1    dyoung }
   3325   1.1    dyoung 
   3326   1.1    dyoung /**
   3327   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3328   1.1    dyoung  *  @hw: pointer to hardware structure
   3329   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3330   1.1    dyoung  *
   3331   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3332   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3333   1.1    dyoung  **/
   3334   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3335   1.1    dyoung {
   3336   1.1    dyoung 	u32 gssr;
   3337   1.1    dyoung 	u32 swmask = mask;
   3338   1.1    dyoung 
   3339   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3340   1.1    dyoung 
   3341   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3342   1.1    dyoung 
   3343   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3344   1.1    dyoung 	gssr &= ~swmask;
   3345   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3346   1.1    dyoung 
   3347   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3348   1.1    dyoung }
   3349   1.1    dyoung 
   3350   1.1    dyoung /**
   3351   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3352   1.3   msaitoh  *  @hw: pointer to hardware structure
   3353   1.3   msaitoh  *
   3354   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3355   1.3   msaitoh  *  the Rx security block
   3356   1.3   msaitoh  **/
   3357   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3358   1.3   msaitoh {
   3359   1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3360   1.3   msaitoh 
   3361   1.3   msaitoh 	int i;
   3362   1.3   msaitoh 	int secrxreg;
   3363   1.3   msaitoh 
   3364   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3365   1.3   msaitoh 
   3366   1.3   msaitoh 
   3367   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3368   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3369   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3370   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3371   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3372   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3373   1.3   msaitoh 			break;
   3374   1.3   msaitoh 		else
   3375   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3376   1.3   msaitoh 			usec_delay(1000);
   3377   1.3   msaitoh 	}
   3378   1.3   msaitoh 
   3379   1.3   msaitoh 	/* For informational purposes only */
   3380   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3381   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3382   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3383   1.3   msaitoh 
   3384   1.3   msaitoh 	return IXGBE_SUCCESS;
   3385   1.3   msaitoh }
   3386   1.3   msaitoh 
   3387   1.3   msaitoh /**
   3388   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3389   1.8   msaitoh  *  @hw: pointer to hardware structure
   3390   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3391   1.8   msaitoh  *
   3392   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3393   1.8   msaitoh  */
   3394   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3395   1.8   msaitoh {
   3396   1.8   msaitoh 	*locked = FALSE;
   3397   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3398   1.8   msaitoh 	return IXGBE_SUCCESS;
   3399   1.8   msaitoh }
   3400   1.8   msaitoh 
   3401   1.8   msaitoh /**
   3402   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3403   1.8   msaitoh  * @hw: pointer to hardware structure
   3404   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3405   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3406   1.8   msaitoh  *           previous read.
   3407   1.8   msaitoh  *
   3408   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3409   1.8   msaitoh  */
   3410   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3411   1.8   msaitoh {
   3412   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3413   1.8   msaitoh 
   3414   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3415   1.8   msaitoh 	return IXGBE_SUCCESS;
   3416   1.8   msaitoh }
   3417   1.8   msaitoh 
   3418   1.8   msaitoh /**
   3419   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3420   1.3   msaitoh  *  @hw: pointer to hardware structure
   3421   1.3   msaitoh  *
   3422   1.3   msaitoh  *  Enables the receive data path.
   3423   1.3   msaitoh  **/
   3424   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3425   1.3   msaitoh {
   3426  1.14   msaitoh 	u32 secrxreg;
   3427   1.3   msaitoh 
   3428   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3429   1.3   msaitoh 
   3430   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3431   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3432   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3433   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3434   1.3   msaitoh 
   3435   1.3   msaitoh 	return IXGBE_SUCCESS;
   3436   1.3   msaitoh }
   3437   1.3   msaitoh 
   3438   1.3   msaitoh /**
   3439   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3440   1.1    dyoung  *  @hw: pointer to hardware structure
   3441   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3442   1.1    dyoung  *
   3443   1.1    dyoung  *  Enables the Rx DMA unit
   3444   1.1    dyoung  **/
   3445   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3446   1.1    dyoung {
   3447   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3448   1.1    dyoung 
   3449   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3450   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3451   1.8   msaitoh 	else
   3452   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3453   1.1    dyoung 
   3454   1.1    dyoung 	return IXGBE_SUCCESS;
   3455   1.1    dyoung }
   3456   1.1    dyoung 
   3457   1.1    dyoung /**
   3458   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3459   1.1    dyoung  *  @hw: pointer to hardware structure
   3460   1.1    dyoung  *  @index: led number to blink
   3461   1.1    dyoung  **/
   3462   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3463   1.1    dyoung {
   3464   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3465   1.1    dyoung 	bool link_up = 0;
   3466   1.8   msaitoh 	u32 autoc_reg = 0;
   3467   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3468   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3469   1.8   msaitoh 	bool locked = FALSE;
   3470   1.1    dyoung 
   3471   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3472   1.1    dyoung 
   3473  1.14   msaitoh 	if (index > 3)
   3474  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3475  1.14   msaitoh 
   3476   1.1    dyoung 	/*
   3477   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3478   1.1    dyoung 	 * Force it if link is down.
   3479   1.1    dyoung 	 */
   3480   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3481   1.1    dyoung 
   3482   1.1    dyoung 	if (!link_up) {
   3483   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3484   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3485   1.8   msaitoh 			goto out;
   3486   1.5   msaitoh 
   3487   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3488   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3489   1.8   msaitoh 
   3490   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3491   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3492   1.8   msaitoh 			goto out;
   3493   1.8   msaitoh 
   3494   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3495   1.1    dyoung 		msec_delay(10);
   3496   1.1    dyoung 	}
   3497   1.1    dyoung 
   3498   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3499   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3500   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3501   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3502   1.1    dyoung 
   3503   1.5   msaitoh out:
   3504   1.5   msaitoh 	return ret_val;
   3505   1.1    dyoung }
   3506   1.1    dyoung 
   3507   1.1    dyoung /**
   3508   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3509   1.1    dyoung  *  @hw: pointer to hardware structure
   3510   1.1    dyoung  *  @index: led number to stop blinking
   3511   1.1    dyoung  **/
   3512   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3513   1.1    dyoung {
   3514   1.8   msaitoh 	u32 autoc_reg = 0;
   3515   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3516   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3517   1.8   msaitoh 	bool locked = FALSE;
   3518   1.1    dyoung 
   3519   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3520   1.1    dyoung 
   3521  1.14   msaitoh 	if (index > 3)
   3522  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3523  1.14   msaitoh 
   3524  1.14   msaitoh 
   3525   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3526   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3527   1.8   msaitoh 		goto out;
   3528   1.1    dyoung 
   3529   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3530   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3531   1.1    dyoung 
   3532   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3533   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3534   1.8   msaitoh 		goto out;
   3535   1.5   msaitoh 
   3536   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3537   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3538   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3539   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3540   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3541   1.1    dyoung 
   3542   1.5   msaitoh out:
   3543   1.5   msaitoh 	return ret_val;
   3544   1.1    dyoung }
   3545   1.1    dyoung 
   3546   1.1    dyoung /**
   3547   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3548   1.1    dyoung  *  @hw: pointer to hardware structure
   3549   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3550   1.1    dyoung  *
   3551   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3552   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3553   1.1    dyoung  *  get and set mac_addr routines.
   3554   1.1    dyoung  **/
   3555   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3556   1.3   msaitoh 					 u16 *san_mac_offset)
   3557   1.1    dyoung {
   3558   1.6   msaitoh 	s32 ret_val;
   3559   1.6   msaitoh 
   3560   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3561   1.1    dyoung 
   3562   1.1    dyoung 	/*
   3563   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3564   1.1    dyoung 	 * available.
   3565   1.1    dyoung 	 */
   3566   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3567   1.6   msaitoh 				      san_mac_offset);
   3568   1.6   msaitoh 	if (ret_val) {
   3569   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3570   1.6   msaitoh 			      "eeprom at offset %d failed",
   3571   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3572   1.6   msaitoh 	}
   3573   1.1    dyoung 
   3574   1.6   msaitoh 	return ret_val;
   3575   1.1    dyoung }
   3576   1.1    dyoung 
   3577   1.1    dyoung /**
   3578   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3579   1.1    dyoung  *  @hw: pointer to hardware structure
   3580   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3581   1.1    dyoung  *
   3582   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3583   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3584   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3585   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3586   1.1    dyoung  **/
   3587   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3588   1.1    dyoung {
   3589   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3590   1.1    dyoung 	u8 i;
   3591   1.6   msaitoh 	s32 ret_val;
   3592   1.1    dyoung 
   3593   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3594   1.1    dyoung 
   3595   1.1    dyoung 	/*
   3596   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3597   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3598   1.1    dyoung 	 */
   3599   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3600   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3601   1.1    dyoung 		goto san_mac_addr_out;
   3602   1.1    dyoung 
   3603   1.1    dyoung 	/* make sure we know which port we need to program */
   3604   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3605   1.1    dyoung 	/* apply the port offset to the address offset */
   3606   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3607   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3608   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3609   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3610   1.6   msaitoh 					      &san_mac_data);
   3611   1.6   msaitoh 		if (ret_val) {
   3612   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3613   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3614   1.6   msaitoh 				      san_mac_offset);
   3615   1.6   msaitoh 			goto san_mac_addr_out;
   3616   1.6   msaitoh 		}
   3617   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3618   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3619   1.1    dyoung 		san_mac_offset++;
   3620   1.1    dyoung 	}
   3621   1.6   msaitoh 	return IXGBE_SUCCESS;
   3622   1.1    dyoung 
   3623   1.1    dyoung san_mac_addr_out:
   3624   1.6   msaitoh 	/*
   3625   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3626   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3627   1.6   msaitoh 	 */
   3628   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3629   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3630   1.1    dyoung 	return IXGBE_SUCCESS;
   3631   1.1    dyoung }
   3632   1.1    dyoung 
   3633   1.1    dyoung /**
   3634   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3635   1.1    dyoung  *  @hw: pointer to hardware structure
   3636   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3637   1.1    dyoung  *
   3638   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3639   1.1    dyoung  **/
   3640   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3641   1.1    dyoung {
   3642   1.6   msaitoh 	s32 ret_val;
   3643   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3644   1.1    dyoung 	u8 i;
   3645   1.1    dyoung 
   3646   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3647   1.1    dyoung 
   3648   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3649   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3650   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3651   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3652   1.1    dyoung 
   3653   1.1    dyoung 	/* Make sure we know which port we need to write */
   3654   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3655   1.1    dyoung 	/* Apply the port offset to the address offset */
   3656   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3657   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3658   1.1    dyoung 
   3659   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3660   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3661   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3662   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3663   1.1    dyoung 		san_mac_offset++;
   3664   1.1    dyoung 	}
   3665   1.1    dyoung 
   3666   1.6   msaitoh 	return IXGBE_SUCCESS;
   3667   1.1    dyoung }
   3668   1.1    dyoung 
   3669   1.1    dyoung /**
   3670   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3671   1.1    dyoung  *  @hw: pointer to hardware structure
   3672   1.1    dyoung  *
   3673   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3674   1.1    dyoung  *  the capabilities table.
   3675   1.1    dyoung  **/
   3676   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3677   1.1    dyoung {
   3678   1.4   msaitoh 	u16 msix_count = 1;
   3679   1.4   msaitoh 	u16 max_msix_count;
   3680   1.4   msaitoh 	u16 pcie_offset;
   3681   1.4   msaitoh 
   3682   1.4   msaitoh 	switch (hw->mac.type) {
   3683   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3684   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3685   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3686   1.4   msaitoh 		break;
   3687   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3688   1.4   msaitoh 	case ixgbe_mac_X540:
   3689   1.8   msaitoh 	case ixgbe_mac_X550:
   3690   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3691  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   3692   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3693   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3694   1.4   msaitoh 		break;
   3695   1.4   msaitoh 	default:
   3696   1.4   msaitoh 		return msix_count;
   3697   1.4   msaitoh 	}
   3698   1.1    dyoung 
   3699   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3700   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3701   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3702   1.8   msaitoh 		msix_count = 0;
   3703   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3704   1.4   msaitoh 
   3705   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3706   1.4   msaitoh 	msix_count++;
   3707   1.4   msaitoh 
   3708   1.4   msaitoh 	if (msix_count > max_msix_count)
   3709   1.4   msaitoh 		msix_count = max_msix_count;
   3710   1.1    dyoung 
   3711   1.1    dyoung 	return msix_count;
   3712   1.1    dyoung }
   3713   1.1    dyoung 
   3714   1.1    dyoung /**
   3715   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3716   1.1    dyoung  *  @hw: pointer to hardware structure
   3717   1.1    dyoung  *  @addr: Address to put into receive address register
   3718   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3719   1.1    dyoung  *
   3720   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3721  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3722   1.1    dyoung  **/
   3723   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3724   1.1    dyoung {
   3725   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3726   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3727   1.1    dyoung 	u32 rar;
   3728   1.1    dyoung 	u32 rar_low, rar_high;
   3729   1.1    dyoung 	u32 addr_low, addr_high;
   3730   1.1    dyoung 
   3731   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3732   1.1    dyoung 
   3733   1.1    dyoung 	/* swap bytes for HW little endian */
   3734   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3735   1.1    dyoung 			    | (addr[2] << 16)
   3736   1.1    dyoung 			    | (addr[3] << 24);
   3737   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3738   1.1    dyoung 
   3739   1.1    dyoung 	/*
   3740   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3741   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3742   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3743   1.1    dyoung 	 * rar to the top.
   3744   1.1    dyoung 	 */
   3745   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3746   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3747   1.1    dyoung 
   3748   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3749   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3750   1.1    dyoung 			first_empty_rar = rar;
   3751   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3752   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3753   1.1    dyoung 			if (rar_low == addr_low)
   3754   1.1    dyoung 				break;    /* found it already in the rars */
   3755   1.1    dyoung 		}
   3756   1.1    dyoung 	}
   3757   1.1    dyoung 
   3758   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3759   1.1    dyoung 		/* already there so just add to the pool bits */
   3760   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3761   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3762   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3763   1.1    dyoung 		rar = first_empty_rar;
   3764   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3765   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3766   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3767   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3768   1.1    dyoung 		hw->mac.rar_highwater++;
   3769   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3770   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3771   1.1    dyoung 	}
   3772   1.1    dyoung 
   3773   1.1    dyoung 	/*
   3774   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3775   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3776   1.1    dyoung 	 */
   3777   1.1    dyoung 	if (rar == 0)
   3778   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3779   1.1    dyoung 
   3780   1.1    dyoung 	return rar;
   3781   1.1    dyoung }
   3782   1.1    dyoung 
   3783   1.1    dyoung /**
   3784   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3785   1.1    dyoung  *  @hw: pointer to hardware struct
   3786   1.1    dyoung  *  @rar: receive address register index to disassociate
   3787   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3788   1.1    dyoung  **/
   3789   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3790   1.1    dyoung {
   3791   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3792   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3793   1.1    dyoung 
   3794   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3795   1.1    dyoung 
   3796   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3797   1.1    dyoung 	if (rar >= rar_entries) {
   3798   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3799   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3800   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3801   1.1    dyoung 	}
   3802   1.1    dyoung 
   3803   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3804   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3805   1.1    dyoung 
   3806   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3807   1.8   msaitoh 		goto done;
   3808   1.8   msaitoh 
   3809   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3810   1.1    dyoung 		goto done;
   3811   1.1    dyoung 
   3812   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3813   1.1    dyoung 		if (mpsar_lo) {
   3814   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3815   1.1    dyoung 			mpsar_lo = 0;
   3816   1.1    dyoung 		}
   3817   1.1    dyoung 		if (mpsar_hi) {
   3818   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3819   1.1    dyoung 			mpsar_hi = 0;
   3820   1.1    dyoung 		}
   3821   1.1    dyoung 	} else if (vmdq < 32) {
   3822   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3823   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3824   1.1    dyoung 	} else {
   3825   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3826   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3827   1.1    dyoung 	}
   3828   1.1    dyoung 
   3829   1.1    dyoung 	/* was that the last pool using this rar? */
   3830  1.14   msaitoh 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3831  1.14   msaitoh 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3832   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3833   1.1    dyoung done:
   3834   1.1    dyoung 	return IXGBE_SUCCESS;
   3835   1.1    dyoung }
   3836   1.1    dyoung 
   3837   1.1    dyoung /**
   3838   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3839   1.1    dyoung  *  @hw: pointer to hardware struct
   3840   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3841   1.1    dyoung  *  @vmdq: VMDq pool index
   3842   1.1    dyoung  **/
   3843   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3844   1.1    dyoung {
   3845   1.1    dyoung 	u32 mpsar;
   3846   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3847   1.1    dyoung 
   3848   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3849   1.1    dyoung 
   3850   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3851   1.1    dyoung 	if (rar >= rar_entries) {
   3852   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3853   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3854   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3855   1.1    dyoung 	}
   3856   1.1    dyoung 
   3857   1.1    dyoung 	if (vmdq < 32) {
   3858   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3859   1.1    dyoung 		mpsar |= 1 << vmdq;
   3860   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3861   1.1    dyoung 	} else {
   3862   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3863   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3864   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3865   1.1    dyoung 	}
   3866   1.1    dyoung 	return IXGBE_SUCCESS;
   3867   1.1    dyoung }
   3868   1.1    dyoung 
   3869   1.1    dyoung /**
   3870   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3871   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3872   1.4   msaitoh  *  VFs advertized and not 0.
   3873   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3874   1.4   msaitoh  *
   3875   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3876   1.4   msaitoh  *  @hw: pointer to hardware struct
   3877   1.4   msaitoh  *  @vmdq: VMDq pool index
   3878   1.4   msaitoh  **/
   3879   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3880   1.4   msaitoh {
   3881   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3882   1.4   msaitoh 
   3883   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3884   1.4   msaitoh 
   3885   1.4   msaitoh 	if (vmdq < 32) {
   3886   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3887   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3888   1.4   msaitoh 	} else {
   3889   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3890   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3891   1.4   msaitoh 	}
   3892   1.4   msaitoh 
   3893   1.4   msaitoh 	return IXGBE_SUCCESS;
   3894   1.4   msaitoh }
   3895   1.4   msaitoh 
   3896   1.4   msaitoh /**
   3897   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3898   1.1    dyoung  *  @hw: pointer to hardware structure
   3899   1.1    dyoung  **/
   3900   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3901   1.1    dyoung {
   3902   1.1    dyoung 	int i;
   3903   1.1    dyoung 
   3904   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3905   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3906   1.1    dyoung 
   3907   1.1    dyoung 	for (i = 0; i < 128; i++)
   3908   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3909   1.1    dyoung 
   3910   1.1    dyoung 	return IXGBE_SUCCESS;
   3911   1.1    dyoung }
   3912   1.1    dyoung 
   3913   1.1    dyoung /**
   3914   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3915   1.1    dyoung  *  @hw: pointer to hardware structure
   3916   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3917   1.1    dyoung  *
   3918   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3919   1.1    dyoung  *
   3920   1.1    dyoung  **/
   3921  1.14   msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3922   1.1    dyoung {
   3923  1.14   msaitoh 	s32 regindex, first_empty_slot;
   3924  1.14   msaitoh 	u32 bits;
   3925   1.1    dyoung 
   3926   1.1    dyoung 	/* short cut the special case */
   3927   1.1    dyoung 	if (vlan == 0)
   3928   1.1    dyoung 		return 0;
   3929   1.1    dyoung 
   3930  1.14   msaitoh 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3931  1.14   msaitoh 	 * will simply bypass the VLVF if there are no entries present in the
   3932  1.14   msaitoh 	 * VLVF that contain our VLAN
   3933  1.14   msaitoh 	 */
   3934  1.14   msaitoh 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3935  1.14   msaitoh 
   3936  1.14   msaitoh 	/* add VLAN enable bit for comparison */
   3937  1.14   msaitoh 	vlan |= IXGBE_VLVF_VIEN;
   3938  1.14   msaitoh 
   3939  1.14   msaitoh 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3940  1.14   msaitoh 	 * slot found along the way.
   3941  1.14   msaitoh 	 *
   3942  1.14   msaitoh 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3943  1.14   msaitoh 	 */
   3944  1.14   msaitoh 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3945   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3946  1.14   msaitoh 		if (bits == vlan)
   3947  1.14   msaitoh 			return regindex;
   3948  1.14   msaitoh 		if (!first_empty_slot && !bits)
   3949   1.1    dyoung 			first_empty_slot = regindex;
   3950   1.1    dyoung 	}
   3951   1.1    dyoung 
   3952  1.14   msaitoh 	/* If we are here then we didn't find the VLAN.  Return first empty
   3953  1.14   msaitoh 	 * slot we found during our search, else error.
   3954  1.14   msaitoh 	 */
   3955  1.14   msaitoh 	if (!first_empty_slot)
   3956  1.14   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3957   1.1    dyoung 
   3958  1.14   msaitoh 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3959   1.1    dyoung }
   3960   1.1    dyoung 
   3961   1.1    dyoung /**
   3962   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3963   1.1    dyoung  *  @hw: pointer to hardware structure
   3964   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3965  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3966  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN
   3967  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3968   1.1    dyoung  *
   3969   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3970   1.1    dyoung  **/
   3971   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3972  1.14   msaitoh 			   bool vlan_on, bool vlvf_bypass)
   3973   1.1    dyoung {
   3974  1.14   msaitoh 	u32 regidx, vfta_delta, vfta;
   3975  1.14   msaitoh 	s32 ret_val;
   3976   1.1    dyoung 
   3977   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3978   1.1    dyoung 
   3979  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   3980   1.1    dyoung 		return IXGBE_ERR_PARAM;
   3981   1.1    dyoung 
   3982   1.1    dyoung 	/*
   3983   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3984   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3985   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3986   1.1    dyoung 	 */
   3987   1.1    dyoung 
   3988   1.1    dyoung 	/* Part 1
   3989   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3990   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3991   1.1    dyoung 	 *    bits[11-5]: which register
   3992   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3993   1.1    dyoung 	 */
   3994  1.14   msaitoh 	regidx = vlan / 32;
   3995  1.14   msaitoh 	vfta_delta = 1 << (vlan % 32);
   3996  1.14   msaitoh 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   3997  1.14   msaitoh 
   3998  1.14   msaitoh 	/*
   3999  1.14   msaitoh 	 * vfta_delta represents the difference between the current value
   4000  1.14   msaitoh 	 * of vfta and the value we want in the register.  Since the diff
   4001  1.14   msaitoh 	 * is an XOR mask we can just update the vfta using an XOR
   4002  1.14   msaitoh 	 */
   4003  1.14   msaitoh 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4004  1.14   msaitoh 	vfta ^= vfta_delta;
   4005   1.1    dyoung 
   4006   1.1    dyoung 	/* Part 2
   4007   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4008   1.3   msaitoh 	 */
   4009  1.14   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4010  1.14   msaitoh 					 vfta, vlvf_bypass);
   4011  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS) {
   4012  1.14   msaitoh 		if (vlvf_bypass)
   4013  1.14   msaitoh 			goto vfta_update;
   4014   1.3   msaitoh 		return ret_val;
   4015  1.14   msaitoh 	}
   4016   1.3   msaitoh 
   4017  1.14   msaitoh vfta_update:
   4018  1.14   msaitoh 	/* Update VFTA now that we are ready for traffic */
   4019  1.14   msaitoh 	if (vfta_delta)
   4020  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4021   1.3   msaitoh 
   4022   1.3   msaitoh 	return IXGBE_SUCCESS;
   4023   1.3   msaitoh }
   4024   1.3   msaitoh 
   4025   1.3   msaitoh /**
   4026   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4027   1.3   msaitoh  *  @hw: pointer to hardware structure
   4028   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   4029  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4030  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4031  1.14   msaitoh  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4032  1.14   msaitoh  *		 and the desired value
   4033  1.14   msaitoh  *  @vfta: the desired value of the VFTA
   4034  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4035   1.3   msaitoh  *
   4036   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   4037   1.3   msaitoh  **/
   4038   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4039  1.14   msaitoh 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4040  1.14   msaitoh 			   bool vlvf_bypass)
   4041   1.3   msaitoh {
   4042  1.14   msaitoh 	u32 bits;
   4043  1.14   msaitoh 	s32 vlvf_index;
   4044   1.3   msaitoh 
   4045   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4046   1.3   msaitoh 
   4047  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4048   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   4049   1.3   msaitoh 
   4050   1.3   msaitoh 	/* If VT Mode is set
   4051   1.1    dyoung 	 *   Either vlan_on
   4052   1.1    dyoung 	 *     make sure the vlan is in VLVF
   4053   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   4054   1.1    dyoung 	 *   Or !vlan_on
   4055   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   4056   1.1    dyoung 	 */
   4057  1.14   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4058  1.14   msaitoh 		return IXGBE_SUCCESS;
   4059   1.1    dyoung 
   4060  1.14   msaitoh 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4061  1.14   msaitoh 	if (vlvf_index < 0)
   4062  1.14   msaitoh 		return vlvf_index;
   4063  1.14   msaitoh 
   4064  1.14   msaitoh 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4065  1.14   msaitoh 
   4066  1.14   msaitoh 	/* set the pool bit */
   4067  1.14   msaitoh 	bits |= 1 << (vind % 32);
   4068  1.14   msaitoh 	if (vlan_on)
   4069  1.14   msaitoh 		goto vlvf_update;
   4070  1.14   msaitoh 
   4071  1.14   msaitoh 	/* clear the pool bit */
   4072  1.14   msaitoh 	bits ^= 1 << (vind % 32);
   4073  1.14   msaitoh 
   4074  1.14   msaitoh 	if (!bits &&
   4075  1.14   msaitoh 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4076  1.14   msaitoh 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4077  1.14   msaitoh 		 * we run the risk of stray packets leaking into
   4078  1.14   msaitoh 		 * the PF via the default pool
   4079   1.1    dyoung 		 */
   4080  1.14   msaitoh 		if (*vfta_delta)
   4081  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4082  1.14   msaitoh 
   4083  1.14   msaitoh 		/* disable VLVF and clear remaining bit from pool */
   4084  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4085  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4086  1.14   msaitoh 
   4087  1.14   msaitoh 		return IXGBE_SUCCESS;
   4088   1.1    dyoung 	}
   4089   1.1    dyoung 
   4090  1.14   msaitoh 	/* If there are still bits set in the VLVFB registers
   4091  1.14   msaitoh 	 * for the VLAN ID indicated we need to see if the
   4092  1.14   msaitoh 	 * caller is requesting that we clear the VFTA entry bit.
   4093  1.14   msaitoh 	 * If the caller has requested that we clear the VFTA
   4094  1.14   msaitoh 	 * entry bit but there are still pools/VFs using this VLAN
   4095  1.14   msaitoh 	 * ID entry then ignore the request.  We're not worried
   4096  1.14   msaitoh 	 * about the case where we're turning the VFTA VLAN ID
   4097  1.14   msaitoh 	 * entry bit on, only when requested to turn it off as
   4098  1.14   msaitoh 	 * there may be multiple pools and/or VFs using the
   4099  1.14   msaitoh 	 * VLAN ID entry.  In that case we cannot clear the
   4100  1.14   msaitoh 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4101  1.14   msaitoh 	 * been cleared.  This will be indicated by "bits" being
   4102  1.14   msaitoh 	 * zero.
   4103  1.14   msaitoh 	 */
   4104  1.14   msaitoh 	*vfta_delta = 0;
   4105  1.14   msaitoh 
   4106  1.14   msaitoh vlvf_update:
   4107  1.14   msaitoh 	/* record pool change and enable VLAN ID if not already enabled */
   4108  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4109  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4110  1.14   msaitoh 
   4111   1.1    dyoung 	return IXGBE_SUCCESS;
   4112   1.1    dyoung }
   4113   1.1    dyoung 
   4114   1.1    dyoung /**
   4115   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4116   1.1    dyoung  *  @hw: pointer to hardware structure
   4117   1.1    dyoung  *
   4118   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4119   1.1    dyoung  **/
   4120   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4121   1.1    dyoung {
   4122   1.1    dyoung 	u32 offset;
   4123   1.1    dyoung 
   4124   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4125   1.1    dyoung 
   4126   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4127   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4128   1.1    dyoung 
   4129   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4130   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4131   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4132  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
   4133   1.1    dyoung 	}
   4134   1.1    dyoung 
   4135   1.1    dyoung 	return IXGBE_SUCCESS;
   4136   1.1    dyoung }
   4137   1.1    dyoung 
   4138   1.1    dyoung /**
   4139  1.14   msaitoh  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4140  1.14   msaitoh  *  @hw: pointer to hardware structure
   4141  1.14   msaitoh  *
   4142  1.14   msaitoh  *  Contains the logic to identify if we need to verify link for the
   4143  1.14   msaitoh  *  crosstalk fix
   4144  1.14   msaitoh  **/
   4145  1.14   msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4146  1.14   msaitoh {
   4147  1.14   msaitoh 
   4148  1.14   msaitoh 	/* Does FW say we need the fix */
   4149  1.14   msaitoh 	if (!hw->need_crosstalk_fix)
   4150  1.14   msaitoh 		return FALSE;
   4151  1.14   msaitoh 
   4152  1.14   msaitoh 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4153  1.14   msaitoh 	switch (hw->mac.ops.get_media_type(hw)) {
   4154  1.14   msaitoh 	case ixgbe_media_type_fiber:
   4155  1.14   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   4156  1.14   msaitoh 		break;
   4157  1.14   msaitoh 	default:
   4158  1.14   msaitoh 		return FALSE;
   4159  1.14   msaitoh 	}
   4160  1.14   msaitoh 
   4161  1.14   msaitoh 	return TRUE;
   4162  1.14   msaitoh }
   4163  1.14   msaitoh 
   4164  1.14   msaitoh /**
   4165   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4166   1.1    dyoung  *  @hw: pointer to hardware structure
   4167   1.1    dyoung  *  @speed: pointer to link speed
   4168   1.1    dyoung  *  @link_up: TRUE when link is up
   4169   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4170   1.1    dyoung  *
   4171   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4172   1.1    dyoung  **/
   4173   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4174   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4175   1.1    dyoung {
   4176   1.1    dyoung 	u32 links_reg, links_orig;
   4177   1.1    dyoung 	u32 i;
   4178   1.1    dyoung 
   4179   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4180   1.1    dyoung 
   4181  1.14   msaitoh 	/* If Crosstalk fix enabled do the sanity check of making sure
   4182  1.14   msaitoh 	 * the SFP+ cage is full.
   4183  1.14   msaitoh 	 */
   4184  1.14   msaitoh 	if (ixgbe_need_crosstalk_fix(hw)) {
   4185  1.14   msaitoh 		u32 sfp_cage_full;
   4186  1.14   msaitoh 
   4187  1.14   msaitoh 		switch (hw->mac.type) {
   4188  1.14   msaitoh 		case ixgbe_mac_82599EB:
   4189  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4190  1.14   msaitoh 					IXGBE_ESDP_SDP2;
   4191  1.14   msaitoh 			break;
   4192  1.14   msaitoh 		case ixgbe_mac_X550EM_x:
   4193  1.14   msaitoh 		case ixgbe_mac_X550EM_a:
   4194  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4195  1.14   msaitoh 					IXGBE_ESDP_SDP0;
   4196  1.14   msaitoh 			break;
   4197  1.14   msaitoh 		default:
   4198  1.14   msaitoh 			/* sanity check - No SFP+ devices here */
   4199  1.14   msaitoh 			sfp_cage_full = FALSE;
   4200  1.14   msaitoh 			break;
   4201  1.14   msaitoh 		}
   4202  1.14   msaitoh 
   4203  1.14   msaitoh 		if (!sfp_cage_full) {
   4204  1.14   msaitoh 			*link_up = FALSE;
   4205  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4206  1.14   msaitoh 			return IXGBE_SUCCESS;
   4207  1.14   msaitoh 		}
   4208  1.14   msaitoh 	}
   4209  1.14   msaitoh 
   4210   1.1    dyoung 	/* clear the old state */
   4211   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4212   1.1    dyoung 
   4213   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4214   1.1    dyoung 
   4215   1.1    dyoung 	if (links_orig != links_reg) {
   4216   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4217   1.3   msaitoh 			  links_orig, links_reg);
   4218   1.1    dyoung 	}
   4219   1.1    dyoung 
   4220   1.1    dyoung 	if (link_up_wait_to_complete) {
   4221  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4222   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4223   1.1    dyoung 				*link_up = TRUE;
   4224   1.1    dyoung 				break;
   4225   1.1    dyoung 			} else {
   4226   1.1    dyoung 				*link_up = FALSE;
   4227   1.1    dyoung 			}
   4228   1.1    dyoung 			msec_delay(100);
   4229   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4230   1.1    dyoung 		}
   4231   1.1    dyoung 	} else {
   4232   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4233   1.1    dyoung 			*link_up = TRUE;
   4234   1.1    dyoung 		else
   4235   1.1    dyoung 			*link_up = FALSE;
   4236   1.1    dyoung 	}
   4237   1.1    dyoung 
   4238   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4239   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4240   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4241   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4242   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4243   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4244   1.8   msaitoh 		}
   4245   1.8   msaitoh 		break;
   4246   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4247   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4248   1.8   msaitoh 		break;
   4249   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4250   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4251  1.14   msaitoh 		if (hw->mac.type == ixgbe_mac_X550) {
   4252   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4253   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4254   1.8   msaitoh 		}
   4255   1.8   msaitoh 		break;
   4256  1.14   msaitoh 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4257  1.14   msaitoh 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4258  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4259  1.14   msaitoh 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
   4260  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4261  1.14   msaitoh 		}
   4262  1.14   msaitoh 		break;
   4263   1.8   msaitoh 	default:
   4264   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4265   1.8   msaitoh 	}
   4266   1.1    dyoung 
   4267   1.1    dyoung 	return IXGBE_SUCCESS;
   4268   1.1    dyoung }
   4269   1.1    dyoung 
   4270   1.1    dyoung /**
   4271   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4272   1.1    dyoung  *  the EEPROM
   4273   1.1    dyoung  *  @hw: pointer to hardware structure
   4274   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4275   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4276   1.1    dyoung  *
   4277   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4278   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4279   1.1    dyoung  **/
   4280   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4281   1.3   msaitoh 				 u16 *wwpn_prefix)
   4282   1.1    dyoung {
   4283   1.1    dyoung 	u16 offset, caps;
   4284   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4285   1.1    dyoung 
   4286   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4287   1.1    dyoung 
   4288   1.1    dyoung 	/* clear output first */
   4289   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4290   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4291   1.1    dyoung 
   4292   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4293   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4294   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4295   1.6   msaitoh 		goto wwn_prefix_err;
   4296   1.1    dyoung 
   4297   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4298   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4299   1.1    dyoung 		goto wwn_prefix_out;
   4300   1.1    dyoung 
   4301   1.1    dyoung 	/* check capability in alternative san mac address block */
   4302   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4303   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4304   1.6   msaitoh 		goto wwn_prefix_err;
   4305   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4306   1.1    dyoung 		goto wwn_prefix_out;
   4307   1.1    dyoung 
   4308   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4309   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4310   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4311   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4312   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4313   1.6   msaitoh 	}
   4314   1.1    dyoung 
   4315   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4316   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4317   1.6   msaitoh 		goto wwn_prefix_err;
   4318   1.1    dyoung 
   4319   1.1    dyoung wwn_prefix_out:
   4320   1.1    dyoung 	return IXGBE_SUCCESS;
   4321   1.6   msaitoh 
   4322   1.6   msaitoh wwn_prefix_err:
   4323   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4324   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4325   1.6   msaitoh 	return IXGBE_SUCCESS;
   4326   1.1    dyoung }
   4327   1.1    dyoung 
   4328   1.1    dyoung /**
   4329   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4330   1.1    dyoung  *  @hw: pointer to hardware structure
   4331   1.1    dyoung  *  @bs: the fcoe boot status
   4332   1.1    dyoung  *
   4333   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4334   1.1    dyoung  **/
   4335   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4336   1.1    dyoung {
   4337   1.1    dyoung 	u16 offset, caps, flags;
   4338   1.1    dyoung 	s32 status;
   4339   1.1    dyoung 
   4340   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4341   1.1    dyoung 
   4342   1.1    dyoung 	/* clear output first */
   4343   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4344   1.1    dyoung 
   4345   1.1    dyoung 	/* check if FCOE IBA block is present */
   4346   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4347   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4348   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4349   1.1    dyoung 		goto out;
   4350   1.1    dyoung 
   4351   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4352   1.1    dyoung 		goto out;
   4353   1.1    dyoung 
   4354   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4355   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4356   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4357   1.1    dyoung 		goto out;
   4358   1.1    dyoung 
   4359   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4360   1.1    dyoung 		goto out;
   4361   1.1    dyoung 
   4362   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4363   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4364   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4365   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4366   1.1    dyoung 		goto out;
   4367   1.1    dyoung 
   4368   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4369   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4370   1.1    dyoung 	else
   4371   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4372   1.1    dyoung 
   4373   1.1    dyoung out:
   4374   1.1    dyoung 	return status;
   4375   1.1    dyoung }
   4376   1.1    dyoung 
   4377   1.1    dyoung /**
   4378   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4379   1.1    dyoung  *  @hw: pointer to hardware structure
   4380  1.14   msaitoh  *  @enable: enable or disable switch for MAC anti-spoofing
   4381  1.14   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4382   1.1    dyoung  *
   4383   1.1    dyoung  **/
   4384  1.14   msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4385   1.1    dyoung {
   4386  1.14   msaitoh 	int vf_target_reg = vf >> 3;
   4387  1.14   msaitoh 	int vf_target_shift = vf % 8;
   4388  1.14   msaitoh 	u32 pfvfspoof;
   4389   1.1    dyoung 
   4390   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4391   1.1    dyoung 		return;
   4392   1.1    dyoung 
   4393  1.14   msaitoh 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4394   1.1    dyoung 	if (enable)
   4395  1.14   msaitoh 		pfvfspoof |= (1 << vf_target_shift);
   4396  1.14   msaitoh 	else
   4397  1.14   msaitoh 		pfvfspoof &= ~(1 << vf_target_shift);
   4398  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4399   1.1    dyoung }
   4400   1.1    dyoung 
   4401   1.1    dyoung /**
   4402   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4403   1.1    dyoung  *  @hw: pointer to hardware structure
   4404   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4405   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4406   1.1    dyoung  *
   4407   1.1    dyoung  **/
   4408   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4409   1.1    dyoung {
   4410   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4411   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4412   1.1    dyoung 	u32 pfvfspoof;
   4413   1.1    dyoung 
   4414   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4415   1.1    dyoung 		return;
   4416   1.1    dyoung 
   4417   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4418   1.1    dyoung 	if (enable)
   4419   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4420   1.1    dyoung 	else
   4421   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4422   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4423   1.1    dyoung }
   4424   1.1    dyoung 
   4425   1.1    dyoung /**
   4426   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4427   1.1    dyoung  *  @hw: pointer to hardware structure
   4428   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4429   1.1    dyoung  *
   4430   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4431   1.1    dyoung  *  and return the word through device_caps.
   4432   1.1    dyoung  **/
   4433   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4434   1.1    dyoung {
   4435   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4436   1.1    dyoung 
   4437   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4438   1.1    dyoung 
   4439   1.1    dyoung 	return IXGBE_SUCCESS;
   4440   1.1    dyoung }
   4441   1.1    dyoung 
   4442   1.1    dyoung /**
   4443   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4444   1.1    dyoung  *  @hw: pointer to hardware structure
   4445   1.1    dyoung  *
   4446   1.1    dyoung  **/
   4447   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4448   1.1    dyoung {
   4449   1.1    dyoung 	u32 regval;
   4450   1.1    dyoung 	u32 i;
   4451   1.1    dyoung 
   4452   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4453   1.1    dyoung 
   4454   1.1    dyoung 	/* Enable relaxed ordering */
   4455   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4456   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4457   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4458   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4459   1.1    dyoung 	}
   4460   1.1    dyoung 
   4461   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4462   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4463   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4464   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4465   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4466   1.1    dyoung 	}
   4467   1.1    dyoung 
   4468   1.1    dyoung }
   4469   1.3   msaitoh 
   4470   1.3   msaitoh /**
   4471   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4472   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4473   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4474   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4475   1.3   msaitoh  *  checksum calculated is returned.
   4476   1.3   msaitoh  **/
   4477   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4478   1.3   msaitoh {
   4479   1.3   msaitoh 	u32 i;
   4480   1.3   msaitoh 	u8 sum = 0;
   4481   1.3   msaitoh 
   4482   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4483   1.3   msaitoh 
   4484   1.3   msaitoh 	if (!buffer)
   4485   1.3   msaitoh 		return 0;
   4486   1.3   msaitoh 
   4487   1.3   msaitoh 	for (i = 0; i < length; i++)
   4488   1.3   msaitoh 		sum += buffer[i];
   4489   1.3   msaitoh 
   4490   1.3   msaitoh 	return (u8) (0 - sum);
   4491   1.3   msaitoh }
   4492   1.3   msaitoh 
   4493   1.3   msaitoh /**
   4494  1.14   msaitoh  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4495   1.3   msaitoh  *  @hw: pointer to the HW structure
   4496  1.14   msaitoh  *  @buffer: command to write and where the return status will be placed
   4497   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4498   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4499   1.3   msaitoh  *
   4500  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4501  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4502  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4503  1.14   msaitoh  *
   4504  1.14   msaitoh  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4505  1.14   msaitoh  *  by the caller.
   4506   1.3   msaitoh  **/
   4507  1.14   msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4508  1.14   msaitoh 		       u32 timeout)
   4509   1.3   msaitoh {
   4510  1.14   msaitoh 	u32 hicr, i, fwsts;
   4511   1.8   msaitoh 	u16 dword_len;
   4512   1.3   msaitoh 
   4513  1.14   msaitoh 	DEBUGFUNC("ixgbe_hic_unlocked");
   4514   1.3   msaitoh 
   4515  1.14   msaitoh 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4516   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4517   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4518   1.8   msaitoh 	}
   4519  1.14   msaitoh 
   4520   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4521   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4522   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4523   1.3   msaitoh 
   4524   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4525   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4526  1.14   msaitoh 	if (!(hicr & IXGBE_HICR_EN)) {
   4527   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4528   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4529   1.8   msaitoh 	}
   4530   1.8   msaitoh 
   4531   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4532  1.14   msaitoh 	if (length % sizeof(u32)) {
   4533   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4534   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4535   1.3   msaitoh 	}
   4536   1.3   msaitoh 
   4537   1.3   msaitoh 	dword_len = length >> 2;
   4538   1.3   msaitoh 
   4539   1.8   msaitoh 	/* The device driver writes the relevant command block
   4540   1.3   msaitoh 	 * into the ram area.
   4541   1.3   msaitoh 	 */
   4542   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4543   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4544   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4545   1.3   msaitoh 
   4546   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4547   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4548   1.3   msaitoh 
   4549   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4550   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4551   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4552   1.3   msaitoh 			break;
   4553   1.3   msaitoh 		msec_delay(1);
   4554   1.3   msaitoh 	}
   4555   1.3   msaitoh 
   4556   1.8   msaitoh 	/* Check command completion */
   4557  1.14   msaitoh 	if ((timeout && i == timeout) ||
   4558   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4559   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4560   1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4561   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4562   1.3   msaitoh 	}
   4563   1.3   msaitoh 
   4564  1.14   msaitoh 	return IXGBE_SUCCESS;
   4565  1.14   msaitoh }
   4566  1.14   msaitoh 
   4567  1.14   msaitoh /**
   4568  1.14   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4569  1.14   msaitoh  *  @hw: pointer to the HW structure
   4570  1.14   msaitoh  *  @buffer: contains the command to write and where the return status will
   4571  1.14   msaitoh  *   be placed
   4572  1.14   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4573  1.14   msaitoh  *  @timeout: time in ms to wait for command completion
   4574  1.14   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4575  1.14   msaitoh  *   Needed because FW structures are big endian and decoding of
   4576  1.14   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4577  1.14   msaitoh  *   is not easily understood without making a table of commands.
   4578  1.14   msaitoh  *   So we will leave this up to the caller to read back the data
   4579  1.14   msaitoh  *   in these cases.
   4580  1.14   msaitoh  *
   4581  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4582  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4583  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4584  1.14   msaitoh  **/
   4585  1.14   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4586  1.14   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4587  1.14   msaitoh {
   4588  1.14   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4589  1.14   msaitoh 	u16 dword_len;
   4590  1.14   msaitoh 	u16 buf_len;
   4591  1.14   msaitoh 	s32 status;
   4592  1.14   msaitoh 	u32 bi;
   4593  1.14   msaitoh 
   4594  1.14   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4595  1.14   msaitoh 
   4596  1.14   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4597  1.14   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4598  1.14   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4599  1.14   msaitoh 	}
   4600  1.14   msaitoh 
   4601  1.14   msaitoh 	/* Take management host interface semaphore */
   4602  1.14   msaitoh 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4603  1.14   msaitoh 	if (status)
   4604  1.14   msaitoh 		return status;
   4605  1.14   msaitoh 
   4606  1.14   msaitoh 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4607  1.14   msaitoh 	if (status)
   4608  1.14   msaitoh 		goto rel_out;
   4609  1.14   msaitoh 
   4610   1.8   msaitoh 	if (!return_data)
   4611  1.14   msaitoh 		goto rel_out;
   4612   1.8   msaitoh 
   4613   1.3   msaitoh 	/* Calculate length in DWORDs */
   4614   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4615   1.3   msaitoh 
   4616   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4617   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4618   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4619   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4620   1.3   msaitoh 	}
   4621   1.3   msaitoh 
   4622   1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4623   1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4624  1.14   msaitoh 	if (!buf_len)
   4625  1.14   msaitoh 		goto rel_out;
   4626   1.3   msaitoh 
   4627   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4628   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4629  1.14   msaitoh 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4630  1.14   msaitoh 		goto rel_out;
   4631   1.3   msaitoh 	}
   4632   1.3   msaitoh 
   4633   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4634   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4635   1.3   msaitoh 
   4636   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4637   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4638   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4639   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4640   1.3   msaitoh 	}
   4641   1.3   msaitoh 
   4642  1.14   msaitoh rel_out:
   4643  1.14   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4644  1.14   msaitoh 
   4645  1.14   msaitoh 	return status;
   4646   1.3   msaitoh }
   4647   1.3   msaitoh 
   4648   1.3   msaitoh /**
   4649   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4650   1.3   msaitoh  *  @hw: pointer to the HW structure
   4651   1.3   msaitoh  *  @maj: driver version major number
   4652   1.7  riastrad  *  @minr: driver version minor number
   4653   1.3   msaitoh  *  @build: driver version build number
   4654   1.3   msaitoh  *  @sub: driver version sub build number
   4655   1.3   msaitoh  *
   4656   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4657   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4658   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4659   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4660   1.3   msaitoh  **/
   4661   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4662  1.14   msaitoh 				 u8 build, u8 sub, u16 len,
   4663  1.14   msaitoh 				 const char *driver_ver)
   4664   1.3   msaitoh {
   4665   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4666   1.3   msaitoh 	int i;
   4667   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4668   1.3   msaitoh 
   4669   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4670  1.14   msaitoh 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4671   1.3   msaitoh 
   4672   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4673   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4674   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4675   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4676   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4677   1.7  riastrad 	fw_cmd.ver_min = minr;
   4678   1.3   msaitoh 	fw_cmd.ver_build = build;
   4679   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4680   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4681   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4682   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4683   1.3   msaitoh 	fw_cmd.pad = 0;
   4684   1.3   msaitoh 	fw_cmd.pad2 = 0;
   4685   1.3   msaitoh 
   4686   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4687   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4688   1.8   msaitoh 						       sizeof(fw_cmd),
   4689   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4690   1.8   msaitoh 						       TRUE);
   4691   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4692   1.3   msaitoh 			continue;
   4693   1.3   msaitoh 
   4694   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4695   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4696   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4697   1.3   msaitoh 		else
   4698   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4699   1.3   msaitoh 
   4700   1.3   msaitoh 		break;
   4701   1.3   msaitoh 	}
   4702   1.3   msaitoh 
   4703   1.3   msaitoh 	return ret_val;
   4704   1.3   msaitoh }
   4705   1.3   msaitoh 
   4706   1.3   msaitoh /**
   4707   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4708   1.3   msaitoh  * @hw: pointer to hardware structure
   4709   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4710   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4711   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4712   1.3   msaitoh  **/
   4713   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4714   1.3   msaitoh 			     int strategy)
   4715   1.3   msaitoh {
   4716   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4717   1.3   msaitoh 	int i = 0;
   4718   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4719   1.3   msaitoh 
   4720   1.3   msaitoh 	/* Reserve headroom */
   4721   1.3   msaitoh 	pbsize -= headroom;
   4722   1.3   msaitoh 
   4723   1.3   msaitoh 	if (!num_pb)
   4724   1.3   msaitoh 		num_pb = 1;
   4725   1.3   msaitoh 
   4726   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4727   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4728   1.3   msaitoh 	 */
   4729   1.3   msaitoh 	switch (strategy) {
   4730   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4731   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4732   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4733   1.3   msaitoh 		 */
   4734   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4735   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4736   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4737   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4738   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4739  1.14   msaitoh 		/* fall through - configure remaining packet buffers */
   4740   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4741   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4742   1.3   msaitoh 		for (; i < num_pb; i++)
   4743   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4744   1.3   msaitoh 		break;
   4745   1.3   msaitoh 	default:
   4746   1.3   msaitoh 		break;
   4747   1.3   msaitoh 	}
   4748   1.3   msaitoh 
   4749   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4750   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4751   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4752   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4753   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4754   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4755   1.3   msaitoh 	}
   4756   1.3   msaitoh 
   4757   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4758   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4759   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4760   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4761   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4762   1.3   msaitoh 	}
   4763   1.3   msaitoh }
   4764   1.3   msaitoh 
   4765   1.3   msaitoh /**
   4766   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4767   1.3   msaitoh  * @hw: pointer to the hardware structure
   4768   1.3   msaitoh  *
   4769   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4770   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4771   1.3   msaitoh  * buffers on the system.
   4772   1.3   msaitoh  **/
   4773   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4774   1.3   msaitoh {
   4775   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4776   1.8   msaitoh 	u16 value;
   4777   1.3   msaitoh 
   4778   1.3   msaitoh 	/*
   4779   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4780   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4781   1.3   msaitoh 	 */
   4782   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4783   1.3   msaitoh 		return;
   4784   1.3   msaitoh 
   4785   1.3   msaitoh 	/*
   4786   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4787   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4788   1.3   msaitoh 	 * has already been cleared.
   4789   1.3   msaitoh 	 */
   4790   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4791   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4792   1.3   msaitoh 
   4793   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4794   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4795   1.8   msaitoh 	msec_delay(3);
   4796   1.8   msaitoh 
   4797   1.8   msaitoh 	/*
   4798   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4799   1.8   msaitoh 	 * transactions pending.
   4800   1.8   msaitoh 	 */
   4801   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4802   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4803   1.8   msaitoh 		usec_delay(100);
   4804   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4805   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4806   1.8   msaitoh 			goto out;
   4807   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4808   1.8   msaitoh 			goto out;
   4809   1.8   msaitoh 	}
   4810   1.8   msaitoh 
   4811   1.8   msaitoh out:
   4812   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4813   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4814   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4815   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4816   1.3   msaitoh 
   4817   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4818   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4819   1.3   msaitoh 	usec_delay(20);
   4820   1.3   msaitoh 
   4821   1.3   msaitoh 	/* restore previous register values */
   4822   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4823   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4824   1.3   msaitoh }
   4825   1.3   msaitoh 
   4826  1.14   msaitoh /**
   4827  1.14   msaitoh  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4828  1.14   msaitoh  *
   4829  1.14   msaitoh  *  @hw: pointer to hardware structure
   4830  1.14   msaitoh  *  @cmd: Command we send to the FW
   4831  1.14   msaitoh  *  @status: The reply from the FW
   4832  1.14   msaitoh  *
   4833  1.14   msaitoh  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4834  1.14   msaitoh  **/
   4835  1.14   msaitoh #define IXGBE_BYPASS_BB_WAIT 1
   4836  1.14   msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4837  1.14   msaitoh {
   4838  1.14   msaitoh 	int i;
   4839  1.14   msaitoh 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4840  1.14   msaitoh 	u32 esdp;
   4841  1.14   msaitoh 
   4842  1.14   msaitoh 	if (!status)
   4843  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   4844  1.14   msaitoh 
   4845  1.14   msaitoh 	*status = 0;
   4846  1.14   msaitoh 
   4847  1.14   msaitoh 	/* SDP vary by MAC type */
   4848  1.14   msaitoh 	switch (hw->mac.type) {
   4849  1.14   msaitoh 	case ixgbe_mac_82599EB:
   4850  1.14   msaitoh 		sck = IXGBE_ESDP_SDP7;
   4851  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4852  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP6;
   4853  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4854  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4855  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4856  1.14   msaitoh 		break;
   4857  1.14   msaitoh 	case ixgbe_mac_X540:
   4858  1.14   msaitoh 		sck = IXGBE_ESDP_SDP2;
   4859  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4860  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP1;
   4861  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4862  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4863  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4864  1.14   msaitoh 		break;
   4865  1.14   msaitoh 	default:
   4866  1.14   msaitoh 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4867  1.14   msaitoh 	}
   4868  1.14   msaitoh 
   4869  1.14   msaitoh 	/* Set SDP pins direction */
   4870  1.14   msaitoh 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4871  1.14   msaitoh 	esdp |= dir_sck;	/* SCK as output */
   4872  1.14   msaitoh 	esdp |= dir_sdi;	/* SDI as output */
   4873  1.14   msaitoh 	esdp &= ~dir_sdo;	/* SDO as input */
   4874  1.14   msaitoh 	esdp |= sck;
   4875  1.14   msaitoh 	esdp |= sdi;
   4876  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4877  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4878  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4879  1.14   msaitoh 
   4880  1.14   msaitoh 	/* Generate start condition */
   4881  1.14   msaitoh 	esdp &= ~sdi;
   4882  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4883  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4884  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4885  1.14   msaitoh 
   4886  1.14   msaitoh 	esdp &= ~sck;
   4887  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4888  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4889  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4890  1.14   msaitoh 
   4891  1.14   msaitoh 	/* Clock out the new control word and clock in the status */
   4892  1.14   msaitoh 	for (i = 0; i < 32; i++) {
   4893  1.14   msaitoh 		if ((cmd >> (31 - i)) & 0x01) {
   4894  1.14   msaitoh 			esdp |= sdi;
   4895  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4896  1.14   msaitoh 		} else {
   4897  1.14   msaitoh 			esdp &= ~sdi;
   4898  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4899  1.14   msaitoh 		}
   4900  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4901  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4902  1.14   msaitoh 
   4903  1.14   msaitoh 		esdp |= sck;
   4904  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4905  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4906  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4907  1.14   msaitoh 
   4908  1.14   msaitoh 		esdp &= ~sck;
   4909  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4910  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4911  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4912  1.14   msaitoh 
   4913  1.14   msaitoh 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4914  1.14   msaitoh 		if (esdp & sdo)
   4915  1.14   msaitoh 			*status = (*status << 1) | 0x01;
   4916  1.14   msaitoh 		else
   4917  1.14   msaitoh 			*status = (*status << 1) | 0x00;
   4918  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4919  1.14   msaitoh 	}
   4920  1.14   msaitoh 
   4921  1.14   msaitoh 	/* stop condition */
   4922  1.14   msaitoh 	esdp |= sck;
   4923  1.14   msaitoh 	esdp &= ~sdi;
   4924  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4925  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4926  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4927  1.14   msaitoh 
   4928  1.14   msaitoh 	esdp |= sdi;
   4929  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4930  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4931  1.14   msaitoh 
   4932  1.14   msaitoh 	/* set the page bits to match the cmd that the status it belongs to */
   4933  1.14   msaitoh 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   4934  1.14   msaitoh 
   4935  1.14   msaitoh 	return IXGBE_SUCCESS;
   4936  1.14   msaitoh }
   4937  1.14   msaitoh 
   4938  1.14   msaitoh /**
   4939  1.14   msaitoh  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   4940  1.14   msaitoh  *
   4941  1.14   msaitoh  * If we send a write we can't be sure it took until we can read back
   4942  1.14   msaitoh  * that same register.  It can be a problem as some of the feilds may
   4943  1.14   msaitoh  * for valid reasons change inbetween the time wrote the register and
   4944  1.14   msaitoh  * we read it again to verify.  So this function check everything we
   4945  1.14   msaitoh  * can check and then assumes it worked.
   4946  1.14   msaitoh  *
   4947  1.14   msaitoh  * @u32 in_reg - The register cmd for the bit-bang read.
   4948  1.14   msaitoh  * @u32 out_reg - The register returned from a bit-bang read.
   4949  1.14   msaitoh  **/
   4950  1.14   msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   4951  1.14   msaitoh {
   4952  1.14   msaitoh 	u32 mask;
   4953  1.14   msaitoh 
   4954  1.14   msaitoh 	/* Page must match for all control pages */
   4955  1.14   msaitoh 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   4956  1.14   msaitoh 		return FALSE;
   4957  1.14   msaitoh 
   4958  1.14   msaitoh 	switch (in_reg & BYPASS_PAGE_M) {
   4959  1.14   msaitoh 	case BYPASS_PAGE_CTL0:
   4960  1.14   msaitoh 		/* All the following can't change since the last write
   4961  1.14   msaitoh 		 *  - All the event actions
   4962  1.14   msaitoh 		 *  - The timeout value
   4963  1.14   msaitoh 		 */
   4964  1.14   msaitoh 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   4965  1.14   msaitoh 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   4966  1.14   msaitoh 		       BYPASS_WDTIMEOUT_M |
   4967  1.14   msaitoh 		       BYPASS_WDT_VALUE_M;
   4968  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   4969  1.14   msaitoh 			return FALSE;
   4970  1.14   msaitoh 
   4971  1.14   msaitoh 		/* 0x0 is never a valid value for bypass status */
   4972  1.14   msaitoh 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   4973  1.14   msaitoh 			return FALSE;
   4974  1.14   msaitoh 		break;
   4975  1.14   msaitoh 	case BYPASS_PAGE_CTL1:
   4976  1.14   msaitoh 		/* All the following can't change since the last write
   4977  1.14   msaitoh 		 *  - time valid bit
   4978  1.14   msaitoh 		 *  - time we last sent
   4979  1.14   msaitoh 		 */
   4980  1.14   msaitoh 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   4981  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   4982  1.14   msaitoh 			return FALSE;
   4983  1.14   msaitoh 		break;
   4984  1.14   msaitoh 	case BYPASS_PAGE_CTL2:
   4985  1.14   msaitoh 		/* All we can check in this page is control number
   4986  1.14   msaitoh 		 * which is already done above.
   4987  1.14   msaitoh 		 */
   4988  1.14   msaitoh 		break;
   4989  1.14   msaitoh 	}
   4990  1.14   msaitoh 
   4991  1.14   msaitoh 	/* We are as sure as we can be return TRUE */
   4992  1.14   msaitoh 	return TRUE;
   4993  1.14   msaitoh }
   4994  1.14   msaitoh 
   4995  1.14   msaitoh /**
   4996  1.14   msaitoh  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
   4997  1.14   msaitoh  *
   4998  1.14   msaitoh  *  @hw: pointer to hardware structure
   4999  1.14   msaitoh  *  @cmd: The control word we are setting.
   5000  1.14   msaitoh  *  @event: The event we are setting in the FW.  This also happens to
   5001  1.14   msaitoh  *	    be the mask for the event we are setting (handy)
   5002  1.14   msaitoh  *  @action: The action we set the event to in the FW. This is in a
   5003  1.14   msaitoh  *	     bit field that happens to be what we want to put in
   5004  1.14   msaitoh  *	     the event spot (also handy)
   5005  1.14   msaitoh  **/
   5006  1.14   msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5007  1.14   msaitoh 			     u32 action)
   5008  1.14   msaitoh {
   5009  1.14   msaitoh 	u32 by_ctl = 0;
   5010  1.14   msaitoh 	u32 cmd, verify;
   5011  1.14   msaitoh 	u32 count = 0;
   5012  1.14   msaitoh 
   5013  1.14   msaitoh 	/* Get current values */
   5014  1.14   msaitoh 	cmd = ctrl;	/* just reading only need control number */
   5015  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5016  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5017  1.14   msaitoh 
   5018  1.14   msaitoh 	/* Set to new action */
   5019  1.14   msaitoh 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5020  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5021  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5022  1.14   msaitoh 
   5023  1.14   msaitoh 	/* Page 0 force a FW eeprom write which is slow so verify */
   5024  1.14   msaitoh 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5025  1.14   msaitoh 		verify = BYPASS_PAGE_CTL0;
   5026  1.14   msaitoh 		do {
   5027  1.14   msaitoh 			if (count++ > 5)
   5028  1.14   msaitoh 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5029  1.14   msaitoh 
   5030  1.14   msaitoh 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5031  1.14   msaitoh 				return IXGBE_ERR_INVALID_ARGUMENT;
   5032  1.14   msaitoh 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5033  1.14   msaitoh 	} else {
   5034  1.14   msaitoh 		/* We have give the FW time for the write to stick */
   5035  1.14   msaitoh 		msec_delay(100);
   5036  1.14   msaitoh 	}
   5037  1.14   msaitoh 
   5038  1.14   msaitoh 	return IXGBE_SUCCESS;
   5039  1.14   msaitoh }
   5040  1.14   msaitoh 
   5041  1.14   msaitoh /**
   5042  1.14   msaitoh  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
   5043  1.14   msaitoh  *
   5044  1.14   msaitoh  *  @hw: pointer to hardware structure
   5045  1.14   msaitoh  *  @addr: The bypass eeprom address to read.
   5046  1.14   msaitoh  *  @value: The 8b of data at the address above.
   5047  1.14   msaitoh  **/
   5048  1.14   msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5049  1.14   msaitoh {
   5050  1.14   msaitoh 	u32 cmd;
   5051  1.14   msaitoh 	u32 status;
   5052  1.14   msaitoh 
   5053  1.14   msaitoh 
   5054  1.14   msaitoh 	/* send the request */
   5055  1.14   msaitoh 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5056  1.14   msaitoh 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5057  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5058  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5059  1.14   msaitoh 
   5060  1.14   msaitoh 	/* We have give the FW time for the write to stick */
   5061  1.14   msaitoh 	msec_delay(100);
   5062  1.14   msaitoh 
   5063  1.14   msaitoh 	/* now read the results */
   5064  1.14   msaitoh 	cmd &= ~BYPASS_WE;
   5065  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5066  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5067  1.14   msaitoh 
   5068  1.14   msaitoh 	*value = status & BYPASS_CTL2_DATA_M;
   5069  1.14   msaitoh 
   5070  1.14   msaitoh 	return IXGBE_SUCCESS;
   5071  1.14   msaitoh }
   5072  1.14   msaitoh 
   5073   1.6   msaitoh 
   5074   1.6   msaitoh /**
   5075   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5076   1.6   msaitoh  * @hw: pointer to hardware structure
   5077   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   5078   1.6   msaitoh  *
   5079   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   5080   1.6   msaitoh  **/
   5081   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5082   1.6   msaitoh {
   5083   1.6   msaitoh 	u32 reg, i;
   5084   1.6   msaitoh 
   5085   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5086   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5087   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5088   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5089   1.6   msaitoh 	return;
   5090   1.6   msaitoh }
   5091   1.8   msaitoh 
   5092   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5093   1.8   msaitoh {
   5094   1.8   msaitoh 	u32 pfdtxgswc;
   5095   1.8   msaitoh 	u32 rxctrl;
   5096   1.8   msaitoh 
   5097   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5098   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5099   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5100   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5101   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5102   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5103   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5104   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   5105   1.8   msaitoh 			} else {
   5106   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   5107   1.8   msaitoh 			}
   5108   1.8   msaitoh 		}
   5109   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5110   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5111   1.8   msaitoh 	}
   5112   1.8   msaitoh }
   5113   1.8   msaitoh 
   5114   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5115   1.8   msaitoh {
   5116   1.8   msaitoh 	u32 pfdtxgswc;
   5117   1.8   msaitoh 	u32 rxctrl;
   5118   1.8   msaitoh 
   5119   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5120   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5121   1.8   msaitoh 
   5122   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5123   1.8   msaitoh 		if (hw->mac.set_lben) {
   5124   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5125   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5126   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5127   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   5128   1.8   msaitoh 		}
   5129   1.8   msaitoh 	}
   5130   1.8   msaitoh }
   5131   1.8   msaitoh 
   5132   1.8   msaitoh /**
   5133   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   5134   1.8   msaitoh  * @hw: pointer to hardware structure
   5135   1.8   msaitoh  */
   5136   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5137   1.8   msaitoh {
   5138   1.8   msaitoh 	u32 fwsm;
   5139   1.8   msaitoh 
   5140   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   5141   1.8   msaitoh 		return FALSE;
   5142   1.8   msaitoh 
   5143  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5144   1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   5145   1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   5146   1.8   msaitoh }
   5147   1.8   msaitoh 
   5148   1.8   msaitoh /**
   5149   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5150   1.8   msaitoh  * @hw: pointer to hardware structure
   5151   1.8   msaitoh  *
   5152   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   5153   1.8   msaitoh  **/
   5154   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5155   1.8   msaitoh {
   5156   1.8   msaitoh 	u32 fwsm, manc, factps;
   5157   1.8   msaitoh 
   5158  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5159   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5160   1.8   msaitoh 		return FALSE;
   5161   1.8   msaitoh 
   5162   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5163   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5164   1.8   msaitoh 		return FALSE;
   5165   1.8   msaitoh 
   5166   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   5167  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5168   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   5169   1.8   msaitoh 			return FALSE;
   5170   1.8   msaitoh 	}
   5171   1.8   msaitoh 
   5172   1.8   msaitoh 	return TRUE;
   5173   1.8   msaitoh }
   5174   1.8   msaitoh 
   5175   1.8   msaitoh /**
   5176   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5177   1.8   msaitoh  *  @hw: pointer to hardware structure
   5178   1.8   msaitoh  *  @speed: new link speed
   5179   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5180   1.8   msaitoh  *
   5181   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5182   1.8   msaitoh  **/
   5183   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5184   1.8   msaitoh 					  ixgbe_link_speed speed,
   5185   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   5186   1.8   msaitoh {
   5187   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5188   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5189   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   5190   1.8   msaitoh 	u32 speedcnt = 0;
   5191   1.8   msaitoh 	u32 i = 0;
   5192   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   5193   1.8   msaitoh 
   5194   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5195   1.8   msaitoh 
   5196   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   5197   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5198   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   5199   1.8   msaitoh 		return status;
   5200   1.8   msaitoh 
   5201   1.8   msaitoh 	speed &= link_speed;
   5202   1.8   msaitoh 
   5203   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   5204   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5205   1.8   msaitoh 	 */
   5206   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5207   1.8   msaitoh 		speedcnt++;
   5208   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5209   1.8   msaitoh 
   5210   1.8   msaitoh 		/* Set the module link speed */
   5211   1.8   msaitoh 		switch (hw->phy.media_type) {
   5212   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5213   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5214   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5215   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   5216   1.8   msaitoh 			break;
   5217   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5218   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   5219   1.8   msaitoh 			break;
   5220   1.8   msaitoh 		default:
   5221   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5222   1.8   msaitoh 			break;
   5223   1.8   msaitoh 		}
   5224   1.8   msaitoh 
   5225   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   5226   1.8   msaitoh 		msec_delay(40);
   5227   1.8   msaitoh 
   5228   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5229   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   5230   1.8   msaitoh 					      autoneg_wait_to_complete);
   5231   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5232   1.8   msaitoh 			return status;
   5233   1.8   msaitoh 
   5234   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5235   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5236   1.8   msaitoh 
   5237   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5238   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5239   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   5240   1.8   msaitoh 		 */
   5241   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   5242   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   5243   1.8   msaitoh 			msec_delay(100);
   5244   1.8   msaitoh 
   5245   1.8   msaitoh 			/* If we have link, just jump out */
   5246   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   5247   1.8   msaitoh 						  &link_up, FALSE);
   5248   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   5249   1.8   msaitoh 				return status;
   5250   1.8   msaitoh 
   5251   1.8   msaitoh 			if (link_up)
   5252   1.8   msaitoh 				goto out;
   5253   1.8   msaitoh 		}
   5254   1.8   msaitoh 	}
   5255   1.8   msaitoh 
   5256   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5257   1.8   msaitoh 		speedcnt++;
   5258   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5259   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5260   1.8   msaitoh 
   5261   1.8   msaitoh 		/* Set the module link speed */
   5262   1.8   msaitoh 		switch (hw->phy.media_type) {
   5263   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5264   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5265   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5266   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   5267   1.8   msaitoh 			break;
   5268   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5269   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   5270   1.8   msaitoh 			break;
   5271   1.8   msaitoh 		default:
   5272   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5273   1.8   msaitoh 			break;
   5274   1.8   msaitoh 		}
   5275   1.8   msaitoh 
   5276   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   5277   1.8   msaitoh 		msec_delay(40);
   5278   1.8   msaitoh 
   5279   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5280   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   5281   1.8   msaitoh 					      autoneg_wait_to_complete);
   5282   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5283   1.8   msaitoh 			return status;
   5284   1.8   msaitoh 
   5285   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5286   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5287   1.8   msaitoh 
   5288   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   5289   1.8   msaitoh 		msec_delay(100);
   5290   1.8   msaitoh 
   5291   1.8   msaitoh 		/* If we have link, just jump out */
   5292   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5293   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5294   1.8   msaitoh 			return status;
   5295   1.8   msaitoh 
   5296   1.8   msaitoh 		if (link_up)
   5297   1.8   msaitoh 			goto out;
   5298   1.8   msaitoh 	}
   5299   1.8   msaitoh 
   5300   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   5301   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   5302   1.8   msaitoh 	 * single highest speed that the user requested.
   5303   1.8   msaitoh 	 */
   5304   1.8   msaitoh 	if (speedcnt > 1)
   5305   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5306   1.8   msaitoh 						      highest_link_speed,
   5307   1.8   msaitoh 						      autoneg_wait_to_complete);
   5308   1.8   msaitoh 
   5309   1.8   msaitoh out:
   5310   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   5311   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   5312   1.8   msaitoh 
   5313   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5314   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5315   1.8   msaitoh 
   5316   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5317   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5318   1.8   msaitoh 
   5319   1.8   msaitoh 	return status;
   5320   1.8   msaitoh }
   5321   1.8   msaitoh 
   5322   1.8   msaitoh /**
   5323   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5324   1.8   msaitoh  *  @hw: pointer to hardware structure
   5325   1.8   msaitoh  *  @speed: link speed to set
   5326   1.8   msaitoh  *
   5327   1.8   msaitoh  *  Set module link speed via the soft rate select.
   5328   1.8   msaitoh  */
   5329   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5330   1.8   msaitoh 					ixgbe_link_speed speed)
   5331   1.8   msaitoh {
   5332   1.8   msaitoh 	s32 status;
   5333   1.8   msaitoh 	u8 rs, eeprom_data;
   5334   1.8   msaitoh 
   5335   1.8   msaitoh 	switch (speed) {
   5336   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   5337   1.8   msaitoh 		/* one bit mask same as setting on */
   5338   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5339   1.8   msaitoh 		break;
   5340   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   5341   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5342   1.8   msaitoh 		break;
   5343   1.8   msaitoh 	default:
   5344   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   5345   1.8   msaitoh 		return;
   5346   1.8   msaitoh 	}
   5347   1.8   msaitoh 
   5348   1.8   msaitoh 	/* Set RS0 */
   5349   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5350   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5351   1.8   msaitoh 					   &eeprom_data);
   5352   1.8   msaitoh 	if (status) {
   5353   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5354   1.8   msaitoh 		goto out;
   5355   1.8   msaitoh 	}
   5356   1.8   msaitoh 
   5357   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5358   1.8   msaitoh 
   5359   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5360   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5361   1.8   msaitoh 					    eeprom_data);
   5362   1.8   msaitoh 	if (status) {
   5363   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5364   1.8   msaitoh 		goto out;
   5365   1.8   msaitoh 	}
   5366   1.8   msaitoh 
   5367   1.8   msaitoh 	/* Set RS1 */
   5368   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5369   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5370   1.8   msaitoh 					   &eeprom_data);
   5371   1.8   msaitoh 	if (status) {
   5372   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5373   1.8   msaitoh 		goto out;
   5374   1.8   msaitoh 	}
   5375   1.8   msaitoh 
   5376   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5377   1.8   msaitoh 
   5378   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5379   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5380   1.8   msaitoh 					    eeprom_data);
   5381   1.8   msaitoh 	if (status) {
   5382   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5383   1.8   msaitoh 		goto out;
   5384   1.8   msaitoh 	}
   5385   1.8   msaitoh out:
   5386   1.8   msaitoh 	return;
   5387   1.8   msaitoh }
   5388