ixgbe_common.c revision 1.16 1 1.16 msaitoh /* $NetBSD: ixgbe_common.c,v 1.16 2017/12/06 04:08:50 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.14 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
37 1.1 dyoung
38 1.1 dyoung #include "ixgbe_common.h"
39 1.1 dyoung #include "ixgbe_phy.h"
40 1.6 msaitoh #include "ixgbe_dcb.h"
41 1.6 msaitoh #include "ixgbe_dcb_82599.h"
42 1.1 dyoung #include "ixgbe_api.h"
43 1.1 dyoung
44 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
47 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
50 1.3 msaitoh u16 count);
51 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
52 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
53 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
54 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
55 1.1 dyoung
56 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
57 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
58 1.3 msaitoh u16 *san_mac_offset);
59 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
62 1.3 msaitoh u16 words, u16 *data);
63 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
64 1.3 msaitoh u16 offset);
65 1.1 dyoung
66 1.1 dyoung /**
67 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
68 1.1 dyoung * @hw: pointer to the hardware structure
69 1.1 dyoung *
70 1.1 dyoung * Initialize the function pointers.
71 1.1 dyoung **/
72 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
73 1.1 dyoung {
74 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
75 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
76 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
77 1.1 dyoung
78 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
79 1.1 dyoung
80 1.1 dyoung /* EEPROM */
81 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
82 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
83 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
84 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
85 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
86 1.3 msaitoh } else {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
88 1.3 msaitoh eeprom->ops.read_buffer =
89 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
90 1.3 msaitoh }
91 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
92 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
93 1.1 dyoung eeprom->ops.validate_checksum =
94 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
95 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
96 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
97 1.1 dyoung
98 1.1 dyoung /* MAC */
99 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
100 1.1 dyoung mac->ops.reset_hw = NULL;
101 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
102 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
103 1.1 dyoung mac->ops.get_media_type = NULL;
104 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
105 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
106 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
107 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
108 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
109 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
110 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
111 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
112 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
113 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
114 1.1 dyoung
115 1.1 dyoung /* LEDs */
116 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
117 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
118 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
119 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
120 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
121 1.1 dyoung
122 1.1 dyoung /* RAR, Multicast, VLAN */
123 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
124 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
125 1.1 dyoung mac->ops.insert_mac_addr = NULL;
126 1.1 dyoung mac->ops.set_vmdq = NULL;
127 1.1 dyoung mac->ops.clear_vmdq = NULL;
128 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
129 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
130 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
131 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
132 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
133 1.1 dyoung mac->ops.clear_vfta = NULL;
134 1.1 dyoung mac->ops.set_vfta = NULL;
135 1.3 msaitoh mac->ops.set_vlvf = NULL;
136 1.1 dyoung mac->ops.init_uta_tables = NULL;
137 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
138 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
139 1.1 dyoung
140 1.1 dyoung /* Flow Control */
141 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
142 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
143 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
144 1.1 dyoung
145 1.1 dyoung /* Link */
146 1.1 dyoung mac->ops.get_link_capabilities = NULL;
147 1.1 dyoung mac->ops.setup_link = NULL;
148 1.1 dyoung mac->ops.check_link = NULL;
149 1.6 msaitoh mac->ops.dmac_config = NULL;
150 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
151 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
152 1.1 dyoung
153 1.1 dyoung return IXGBE_SUCCESS;
154 1.1 dyoung }
155 1.1 dyoung
156 1.1 dyoung /**
157 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
158 1.6 msaitoh * of flow control
159 1.6 msaitoh * @hw: pointer to hardware structure
160 1.6 msaitoh *
161 1.6 msaitoh * This function returns TRUE if the device supports flow control
162 1.6 msaitoh * autonegotiation, and FALSE if it does not.
163 1.4 msaitoh *
164 1.4 msaitoh **/
165 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
166 1.4 msaitoh {
167 1.6 msaitoh bool supported = FALSE;
168 1.6 msaitoh ixgbe_link_speed speed;
169 1.6 msaitoh bool link_up;
170 1.4 msaitoh
171 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
172 1.4 msaitoh
173 1.6 msaitoh switch (hw->phy.media_type) {
174 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
175 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
176 1.6 msaitoh case ixgbe_media_type_fiber:
177 1.14 msaitoh /* flow control autoneg black list */
178 1.14 msaitoh switch (hw->device_id) {
179 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
180 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
181 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
182 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
183 1.14 msaitoh supported = FALSE;
184 1.14 msaitoh break;
185 1.14 msaitoh default:
186 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
187 1.14 msaitoh /* if link is down, assume supported */
188 1.14 msaitoh if (link_up)
189 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
190 1.14 msaitoh TRUE : FALSE;
191 1.14 msaitoh else
192 1.14 msaitoh supported = TRUE;
193 1.14 msaitoh }
194 1.14 msaitoh
195 1.14 msaitoh break;
196 1.14 msaitoh case ixgbe_media_type_backplane:
197 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
198 1.14 msaitoh supported = FALSE;
199 1.6 msaitoh else
200 1.6 msaitoh supported = TRUE;
201 1.6 msaitoh break;
202 1.6 msaitoh case ixgbe_media_type_copper:
203 1.6 msaitoh /* only some copper devices support flow control autoneg */
204 1.6 msaitoh switch (hw->device_id) {
205 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
206 1.6 msaitoh case IXGBE_DEV_ID_X540T:
207 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
208 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
209 1.8 msaitoh case IXGBE_DEV_ID_X550T:
210 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
211 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
212 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
213 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
214 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
215 1.6 msaitoh supported = TRUE;
216 1.6 msaitoh break;
217 1.6 msaitoh default:
218 1.6 msaitoh supported = FALSE;
219 1.6 msaitoh }
220 1.4 msaitoh default:
221 1.6 msaitoh break;
222 1.4 msaitoh }
223 1.6 msaitoh
224 1.14 msaitoh if (!supported)
225 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
226 1.14 msaitoh "Device %x does not support flow control autoneg",
227 1.14 msaitoh hw->device_id);
228 1.6 msaitoh return supported;
229 1.4 msaitoh }
230 1.4 msaitoh
231 1.4 msaitoh /**
232 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
233 1.4 msaitoh * @hw: pointer to hardware structure
234 1.4 msaitoh *
235 1.4 msaitoh * Called at init time to set up flow control.
236 1.4 msaitoh **/
237 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
238 1.4 msaitoh {
239 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
240 1.4 msaitoh u32 reg = 0, reg_bp = 0;
241 1.4 msaitoh u16 reg_cu = 0;
242 1.8 msaitoh bool locked = FALSE;
243 1.4 msaitoh
244 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
245 1.4 msaitoh
246 1.8 msaitoh /* Validate the requested mode */
247 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
248 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
249 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
250 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
251 1.4 msaitoh goto out;
252 1.4 msaitoh }
253 1.4 msaitoh
254 1.4 msaitoh /*
255 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
256 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
257 1.4 msaitoh */
258 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
259 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
260 1.4 msaitoh
261 1.4 msaitoh /*
262 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
263 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
264 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
265 1.4 msaitoh */
266 1.4 msaitoh switch (hw->phy.media_type) {
267 1.8 msaitoh case ixgbe_media_type_backplane:
268 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
269 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
270 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
271 1.8 msaitoh goto out;
272 1.8 msaitoh
273 1.14 msaitoh /* fall through - only backplane uses autoc */
274 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
275 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
276 1.4 msaitoh case ixgbe_media_type_fiber:
277 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
278 1.8 msaitoh
279 1.4 msaitoh break;
280 1.4 msaitoh case ixgbe_media_type_copper:
281 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
282 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
283 1.4 msaitoh break;
284 1.4 msaitoh default:
285 1.4 msaitoh break;
286 1.4 msaitoh }
287 1.4 msaitoh
288 1.4 msaitoh /*
289 1.4 msaitoh * The possible values of fc.requested_mode are:
290 1.4 msaitoh * 0: Flow control is completely disabled
291 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
292 1.4 msaitoh * but not send pause frames).
293 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
294 1.4 msaitoh * we do not support receiving pause frames).
295 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
296 1.4 msaitoh * other: Invalid.
297 1.4 msaitoh */
298 1.4 msaitoh switch (hw->fc.requested_mode) {
299 1.4 msaitoh case ixgbe_fc_none:
300 1.4 msaitoh /* Flow control completely disabled by software override. */
301 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
302 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
303 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
304 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
305 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
306 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
307 1.4 msaitoh break;
308 1.4 msaitoh case ixgbe_fc_tx_pause:
309 1.4 msaitoh /*
310 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
311 1.4 msaitoh * disabled by software override.
312 1.4 msaitoh */
313 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
314 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
315 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
316 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
317 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
318 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
319 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
320 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
321 1.4 msaitoh }
322 1.4 msaitoh break;
323 1.4 msaitoh case ixgbe_fc_rx_pause:
324 1.4 msaitoh /*
325 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
326 1.4 msaitoh * disabled by software override. Since there really
327 1.4 msaitoh * isn't a way to advertise that we are capable of RX
328 1.4 msaitoh * Pause ONLY, we will advertise that we support both
329 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
330 1.4 msaitoh * through to the fc_full statement. Later, we will
331 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
332 1.4 msaitoh */
333 1.4 msaitoh case ixgbe_fc_full:
334 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
335 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
336 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
337 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
338 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
339 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
340 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
341 1.4 msaitoh break;
342 1.4 msaitoh default:
343 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
344 1.6 msaitoh "Flow control param set incorrectly\n");
345 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
346 1.4 msaitoh goto out;
347 1.4 msaitoh break;
348 1.4 msaitoh }
349 1.4 msaitoh
350 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
351 1.4 msaitoh /*
352 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
353 1.4 msaitoh * the MAC will advertise clause 37 flow control.
354 1.4 msaitoh */
355 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
356 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
357 1.4 msaitoh
358 1.4 msaitoh /* Disable AN timeout */
359 1.4 msaitoh if (hw->fc.strict_ieee)
360 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
361 1.4 msaitoh
362 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
363 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 1.4 msaitoh }
365 1.4 msaitoh
366 1.4 msaitoh /*
367 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
368 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
369 1.4 msaitoh *
370 1.4 msaitoh */
371 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
372 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
373 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
374 1.8 msaitoh if (ret_val)
375 1.8 msaitoh goto out;
376 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
377 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
378 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
379 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
380 1.4 msaitoh }
381 1.4 msaitoh
382 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
383 1.4 msaitoh out:
384 1.4 msaitoh return ret_val;
385 1.4 msaitoh }
386 1.4 msaitoh
387 1.4 msaitoh /**
388 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
389 1.1 dyoung * @hw: pointer to hardware structure
390 1.1 dyoung *
391 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
392 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
393 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
394 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
395 1.1 dyoung **/
396 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
397 1.1 dyoung {
398 1.4 msaitoh s32 ret_val;
399 1.1 dyoung u32 ctrl_ext;
400 1.14 msaitoh u16 device_caps;
401 1.1 dyoung
402 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
403 1.1 dyoung
404 1.1 dyoung /* Set the media type */
405 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
406 1.1 dyoung
407 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
408 1.1 dyoung
409 1.1 dyoung /* Clear the VLAN filter table */
410 1.1 dyoung hw->mac.ops.clear_vfta(hw);
411 1.1 dyoung
412 1.1 dyoung /* Clear statistics registers */
413 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
414 1.1 dyoung
415 1.1 dyoung /* Set No Snoop Disable */
416 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
417 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
419 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
420 1.1 dyoung
421 1.1 dyoung /* Setup flow control */
422 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
423 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
424 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
425 1.14 msaitoh return ret_val;
426 1.14 msaitoh }
427 1.14 msaitoh
428 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
429 1.14 msaitoh switch (hw->mac.type) {
430 1.14 msaitoh case ixgbe_mac_82599EB:
431 1.14 msaitoh case ixgbe_mac_X550EM_x:
432 1.14 msaitoh case ixgbe_mac_X550EM_a:
433 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
434 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
435 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
436 1.14 msaitoh else
437 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
438 1.14 msaitoh break;
439 1.14 msaitoh default:
440 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
441 1.14 msaitoh break;
442 1.14 msaitoh }
443 1.1 dyoung
444 1.1 dyoung /* Clear adapter stopped flag */
445 1.1 dyoung hw->adapter_stopped = FALSE;
446 1.1 dyoung
447 1.14 msaitoh return IXGBE_SUCCESS;
448 1.1 dyoung }
449 1.1 dyoung
450 1.1 dyoung /**
451 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
452 1.1 dyoung * @hw: pointer to hw structure
453 1.1 dyoung *
454 1.1 dyoung * Performs the init sequence common to the second generation
455 1.1 dyoung * of 10 GbE devices.
456 1.1 dyoung * Devices in the second generation:
457 1.1 dyoung * 82599
458 1.1 dyoung * X540
459 1.1 dyoung **/
460 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
461 1.1 dyoung {
462 1.1 dyoung u32 i;
463 1.1 dyoung u32 regval;
464 1.1 dyoung
465 1.1 dyoung /* Clear the rate limiters */
466 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
467 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
468 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
469 1.1 dyoung }
470 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
471 1.1 dyoung
472 1.1 dyoung /* Disable relaxed ordering */
473 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
474 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
475 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
476 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
477 1.1 dyoung }
478 1.1 dyoung
479 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
480 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
481 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
482 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
483 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
484 1.1 dyoung }
485 1.1 dyoung
486 1.1 dyoung return IXGBE_SUCCESS;
487 1.1 dyoung }
488 1.1 dyoung
489 1.1 dyoung /**
490 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
491 1.1 dyoung * @hw: pointer to hardware structure
492 1.1 dyoung *
493 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
494 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
495 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
496 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
497 1.1 dyoung * disabled and uninitialized
498 1.1 dyoung **/
499 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
500 1.1 dyoung {
501 1.1 dyoung s32 status;
502 1.1 dyoung
503 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
504 1.1 dyoung
505 1.1 dyoung /* Reset the hardware */
506 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
507 1.1 dyoung
508 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
509 1.1 dyoung /* Start the HW */
510 1.1 dyoung status = hw->mac.ops.start_hw(hw);
511 1.1 dyoung }
512 1.1 dyoung
513 1.14 msaitoh /* Initialize the LED link active for LED blink support */
514 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
515 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
516 1.14 msaitoh
517 1.14 msaitoh if (status != IXGBE_SUCCESS)
518 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
519 1.14 msaitoh
520 1.1 dyoung return status;
521 1.1 dyoung }
522 1.1 dyoung
523 1.1 dyoung /**
524 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
525 1.1 dyoung * @hw: pointer to hardware structure
526 1.1 dyoung *
527 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
528 1.1 dyoung * Statistics counters are clear on read.
529 1.1 dyoung **/
530 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
531 1.1 dyoung {
532 1.1 dyoung u16 i = 0;
533 1.1 dyoung
534 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
535 1.1 dyoung
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
540 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
541 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
542 1.1 dyoung for (i = 0; i < 8; i++)
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
544 1.1 dyoung
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
550 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
553 1.1 dyoung } else {
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
556 1.1 dyoung }
557 1.1 dyoung
558 1.1 dyoung for (i = 0; i < 8; i++) {
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
561 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
564 1.1 dyoung } else {
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
567 1.1 dyoung }
568 1.1 dyoung }
569 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
570 1.1 dyoung for (i = 0; i < 8; i++)
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
586 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
587 1.3 msaitoh for (i = 0; i < 8; i++)
588 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
590 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
608 1.1 dyoung for (i = 0; i < 16; i++) {
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
610 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
611 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
613 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
617 1.1 dyoung } else {
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
619 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
620 1.1 dyoung }
621 1.1 dyoung }
622 1.1 dyoung
623 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
624 1.3 msaitoh if (hw->phy.id == 0)
625 1.3 msaitoh ixgbe_identify_phy(hw);
626 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
627 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
628 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
629 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
631 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
633 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 1.3 msaitoh }
635 1.3 msaitoh
636 1.1 dyoung return IXGBE_SUCCESS;
637 1.1 dyoung }
638 1.1 dyoung
639 1.1 dyoung /**
640 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
641 1.1 dyoung * @hw: pointer to hardware structure
642 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
643 1.1 dyoung * @pba_num_size: part number string buffer length
644 1.1 dyoung *
645 1.1 dyoung * Reads the part number string from the EEPROM.
646 1.1 dyoung **/
647 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
648 1.3 msaitoh u32 pba_num_size)
649 1.1 dyoung {
650 1.1 dyoung s32 ret_val;
651 1.1 dyoung u16 data;
652 1.1 dyoung u16 pba_ptr;
653 1.1 dyoung u16 offset;
654 1.1 dyoung u16 length;
655 1.1 dyoung
656 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
657 1.1 dyoung
658 1.1 dyoung if (pba_num == NULL) {
659 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
660 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
661 1.1 dyoung }
662 1.1 dyoung
663 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
664 1.1 dyoung if (ret_val) {
665 1.1 dyoung DEBUGOUT("NVM Read Error\n");
666 1.1 dyoung return ret_val;
667 1.1 dyoung }
668 1.1 dyoung
669 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
670 1.1 dyoung if (ret_val) {
671 1.1 dyoung DEBUGOUT("NVM Read Error\n");
672 1.1 dyoung return ret_val;
673 1.1 dyoung }
674 1.1 dyoung
675 1.1 dyoung /*
676 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
677 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
678 1.1 dyoung * and we can decode it into an ascii string
679 1.1 dyoung */
680 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
681 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
682 1.1 dyoung
683 1.1 dyoung /* we will need 11 characters to store the PBA */
684 1.1 dyoung if (pba_num_size < 11) {
685 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
686 1.1 dyoung return IXGBE_ERR_NO_SPACE;
687 1.1 dyoung }
688 1.1 dyoung
689 1.1 dyoung /* extract hex string from data and pba_ptr */
690 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
691 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
692 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
693 1.1 dyoung pba_num[3] = data & 0xF;
694 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
695 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
696 1.1 dyoung pba_num[6] = '-';
697 1.1 dyoung pba_num[7] = 0;
698 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
699 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
700 1.1 dyoung
701 1.1 dyoung /* put a null character on the end of our string */
702 1.1 dyoung pba_num[10] = '\0';
703 1.1 dyoung
704 1.1 dyoung /* switch all the data but the '-' to hex char */
705 1.1 dyoung for (offset = 0; offset < 10; offset++) {
706 1.1 dyoung if (pba_num[offset] < 0xA)
707 1.1 dyoung pba_num[offset] += '0';
708 1.1 dyoung else if (pba_num[offset] < 0x10)
709 1.1 dyoung pba_num[offset] += 'A' - 0xA;
710 1.1 dyoung }
711 1.1 dyoung
712 1.1 dyoung return IXGBE_SUCCESS;
713 1.1 dyoung }
714 1.1 dyoung
715 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
716 1.1 dyoung if (ret_val) {
717 1.1 dyoung DEBUGOUT("NVM Read Error\n");
718 1.1 dyoung return ret_val;
719 1.1 dyoung }
720 1.1 dyoung
721 1.1 dyoung if (length == 0xFFFF || length == 0) {
722 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
723 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
724 1.1 dyoung }
725 1.1 dyoung
726 1.1 dyoung /* check if pba_num buffer is big enough */
727 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
728 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
729 1.1 dyoung return IXGBE_ERR_NO_SPACE;
730 1.1 dyoung }
731 1.1 dyoung
732 1.1 dyoung /* trim pba length from start of string */
733 1.1 dyoung pba_ptr++;
734 1.1 dyoung length--;
735 1.1 dyoung
736 1.1 dyoung for (offset = 0; offset < length; offset++) {
737 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
738 1.1 dyoung if (ret_val) {
739 1.1 dyoung DEBUGOUT("NVM Read Error\n");
740 1.1 dyoung return ret_val;
741 1.1 dyoung }
742 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
743 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
744 1.1 dyoung }
745 1.1 dyoung pba_num[offset * 2] = '\0';
746 1.1 dyoung
747 1.1 dyoung return IXGBE_SUCCESS;
748 1.1 dyoung }
749 1.1 dyoung
750 1.1 dyoung /**
751 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
752 1.1 dyoung * @hw: pointer to hardware structure
753 1.1 dyoung * @pba_num: stores the part number from the EEPROM
754 1.1 dyoung *
755 1.1 dyoung * Reads the part number from the EEPROM.
756 1.1 dyoung **/
757 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
758 1.1 dyoung {
759 1.1 dyoung s32 ret_val;
760 1.1 dyoung u16 data;
761 1.1 dyoung
762 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
763 1.1 dyoung
764 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
765 1.1 dyoung if (ret_val) {
766 1.1 dyoung DEBUGOUT("NVM Read Error\n");
767 1.1 dyoung return ret_val;
768 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
769 1.1 dyoung DEBUGOUT("NVM Not supported\n");
770 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
771 1.1 dyoung }
772 1.1 dyoung *pba_num = (u32)(data << 16);
773 1.1 dyoung
774 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
775 1.1 dyoung if (ret_val) {
776 1.1 dyoung DEBUGOUT("NVM Read Error\n");
777 1.1 dyoung return ret_val;
778 1.1 dyoung }
779 1.1 dyoung *pba_num |= data;
780 1.1 dyoung
781 1.1 dyoung return IXGBE_SUCCESS;
782 1.1 dyoung }
783 1.1 dyoung
784 1.1 dyoung /**
785 1.5 msaitoh * ixgbe_read_pba_raw
786 1.5 msaitoh * @hw: pointer to the HW structure
787 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
788 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
789 1.5 msaitoh * @max_pba_block_size: PBA block size limit
790 1.5 msaitoh * @pba: pointer to output PBA structure
791 1.5 msaitoh *
792 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
793 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
794 1.5 msaitoh *
795 1.5 msaitoh **/
796 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
797 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
798 1.5 msaitoh struct ixgbe_pba *pba)
799 1.5 msaitoh {
800 1.5 msaitoh s32 ret_val;
801 1.5 msaitoh u16 pba_block_size;
802 1.5 msaitoh
803 1.5 msaitoh if (pba == NULL)
804 1.5 msaitoh return IXGBE_ERR_PARAM;
805 1.5 msaitoh
806 1.5 msaitoh if (eeprom_buf == NULL) {
807 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
808 1.5 msaitoh &pba->word[0]);
809 1.5 msaitoh if (ret_val)
810 1.5 msaitoh return ret_val;
811 1.5 msaitoh } else {
812 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
813 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
814 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
815 1.5 msaitoh } else {
816 1.5 msaitoh return IXGBE_ERR_PARAM;
817 1.5 msaitoh }
818 1.5 msaitoh }
819 1.5 msaitoh
820 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
821 1.5 msaitoh if (pba->pba_block == NULL)
822 1.5 msaitoh return IXGBE_ERR_PARAM;
823 1.5 msaitoh
824 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
825 1.5 msaitoh eeprom_buf_size,
826 1.5 msaitoh &pba_block_size);
827 1.5 msaitoh if (ret_val)
828 1.5 msaitoh return ret_val;
829 1.5 msaitoh
830 1.5 msaitoh if (pba_block_size > max_pba_block_size)
831 1.5 msaitoh return IXGBE_ERR_PARAM;
832 1.5 msaitoh
833 1.5 msaitoh if (eeprom_buf == NULL) {
834 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
835 1.5 msaitoh pba_block_size,
836 1.5 msaitoh pba->pba_block);
837 1.5 msaitoh if (ret_val)
838 1.5 msaitoh return ret_val;
839 1.5 msaitoh } else {
840 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
841 1.8 msaitoh pba_block_size)) {
842 1.5 msaitoh memcpy(pba->pba_block,
843 1.5 msaitoh &eeprom_buf[pba->word[1]],
844 1.5 msaitoh pba_block_size * sizeof(u16));
845 1.5 msaitoh } else {
846 1.5 msaitoh return IXGBE_ERR_PARAM;
847 1.5 msaitoh }
848 1.5 msaitoh }
849 1.5 msaitoh }
850 1.5 msaitoh
851 1.5 msaitoh return IXGBE_SUCCESS;
852 1.5 msaitoh }
853 1.5 msaitoh
854 1.5 msaitoh /**
855 1.5 msaitoh * ixgbe_write_pba_raw
856 1.5 msaitoh * @hw: pointer to the HW structure
857 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
858 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
859 1.5 msaitoh * @pba: pointer to PBA structure
860 1.5 msaitoh *
861 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
862 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
863 1.5 msaitoh *
864 1.5 msaitoh **/
865 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
866 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
867 1.5 msaitoh {
868 1.5 msaitoh s32 ret_val;
869 1.5 msaitoh
870 1.5 msaitoh if (pba == NULL)
871 1.5 msaitoh return IXGBE_ERR_PARAM;
872 1.5 msaitoh
873 1.5 msaitoh if (eeprom_buf == NULL) {
874 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
875 1.5 msaitoh &pba->word[0]);
876 1.5 msaitoh if (ret_val)
877 1.5 msaitoh return ret_val;
878 1.5 msaitoh } else {
879 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
880 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
881 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
882 1.5 msaitoh } else {
883 1.5 msaitoh return IXGBE_ERR_PARAM;
884 1.5 msaitoh }
885 1.5 msaitoh }
886 1.5 msaitoh
887 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
888 1.5 msaitoh if (pba->pba_block == NULL)
889 1.5 msaitoh return IXGBE_ERR_PARAM;
890 1.5 msaitoh
891 1.5 msaitoh if (eeprom_buf == NULL) {
892 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
893 1.5 msaitoh pba->pba_block[0],
894 1.5 msaitoh pba->pba_block);
895 1.5 msaitoh if (ret_val)
896 1.5 msaitoh return ret_val;
897 1.5 msaitoh } else {
898 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
899 1.5 msaitoh pba->pba_block[0])) {
900 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
901 1.5 msaitoh pba->pba_block,
902 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
903 1.5 msaitoh } else {
904 1.5 msaitoh return IXGBE_ERR_PARAM;
905 1.5 msaitoh }
906 1.5 msaitoh }
907 1.5 msaitoh }
908 1.5 msaitoh
909 1.5 msaitoh return IXGBE_SUCCESS;
910 1.5 msaitoh }
911 1.5 msaitoh
912 1.5 msaitoh /**
913 1.5 msaitoh * ixgbe_get_pba_block_size
914 1.5 msaitoh * @hw: pointer to the HW structure
915 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
916 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
917 1.5 msaitoh * @pba_data_size: pointer to output variable
918 1.5 msaitoh *
919 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
920 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
921 1.5 msaitoh * EEPROM device.
922 1.5 msaitoh *
923 1.5 msaitoh **/
924 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
925 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
926 1.5 msaitoh {
927 1.5 msaitoh s32 ret_val;
928 1.5 msaitoh u16 pba_word[2];
929 1.5 msaitoh u16 length;
930 1.5 msaitoh
931 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
932 1.5 msaitoh
933 1.5 msaitoh if (eeprom_buf == NULL) {
934 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
935 1.5 msaitoh &pba_word[0]);
936 1.5 msaitoh if (ret_val)
937 1.5 msaitoh return ret_val;
938 1.5 msaitoh } else {
939 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
940 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
941 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
942 1.5 msaitoh } else {
943 1.5 msaitoh return IXGBE_ERR_PARAM;
944 1.5 msaitoh }
945 1.5 msaitoh }
946 1.5 msaitoh
947 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
948 1.5 msaitoh if (eeprom_buf == NULL) {
949 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
950 1.5 msaitoh &length);
951 1.5 msaitoh if (ret_val)
952 1.5 msaitoh return ret_val;
953 1.5 msaitoh } else {
954 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
955 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
956 1.5 msaitoh else
957 1.5 msaitoh return IXGBE_ERR_PARAM;
958 1.5 msaitoh }
959 1.5 msaitoh
960 1.5 msaitoh if (length == 0xFFFF || length == 0)
961 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
962 1.5 msaitoh } else {
963 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
964 1.5 msaitoh length = 0;
965 1.5 msaitoh }
966 1.5 msaitoh
967 1.5 msaitoh if (pba_block_size != NULL)
968 1.5 msaitoh *pba_block_size = length;
969 1.5 msaitoh
970 1.5 msaitoh return IXGBE_SUCCESS;
971 1.5 msaitoh }
972 1.5 msaitoh
973 1.5 msaitoh /**
974 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
975 1.1 dyoung * @hw: pointer to hardware structure
976 1.1 dyoung * @mac_addr: Adapter MAC address
977 1.1 dyoung *
978 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
979 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
980 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
981 1.1 dyoung **/
982 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
983 1.1 dyoung {
984 1.1 dyoung u32 rar_high;
985 1.1 dyoung u32 rar_low;
986 1.1 dyoung u16 i;
987 1.1 dyoung
988 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
989 1.1 dyoung
990 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
991 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
992 1.1 dyoung
993 1.1 dyoung for (i = 0; i < 4; i++)
994 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
995 1.1 dyoung
996 1.1 dyoung for (i = 0; i < 2; i++)
997 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
998 1.1 dyoung
999 1.1 dyoung return IXGBE_SUCCESS;
1000 1.1 dyoung }
1001 1.1 dyoung
1002 1.1 dyoung /**
1003 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1004 1.1 dyoung * @hw: pointer to hardware structure
1005 1.6 msaitoh * @link_status: the link status returned by the PCI config space
1006 1.1 dyoung *
1007 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1008 1.1 dyoung **/
1009 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1010 1.1 dyoung {
1011 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1012 1.1 dyoung
1013 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1014 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1015 1.1 dyoung
1016 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1017 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1018 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1019 1.1 dyoung break;
1020 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1021 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1022 1.1 dyoung break;
1023 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1024 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1025 1.1 dyoung break;
1026 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1027 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1028 1.1 dyoung break;
1029 1.1 dyoung default:
1030 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1031 1.1 dyoung break;
1032 1.1 dyoung }
1033 1.1 dyoung
1034 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1035 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1036 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1037 1.1 dyoung break;
1038 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1039 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1040 1.1 dyoung break;
1041 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1042 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1043 1.4 msaitoh break;
1044 1.1 dyoung default:
1045 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1046 1.1 dyoung break;
1047 1.1 dyoung }
1048 1.1 dyoung
1049 1.1 dyoung mac->ops.set_lan_id(hw);
1050 1.6 msaitoh }
1051 1.6 msaitoh
1052 1.6 msaitoh /**
1053 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1054 1.6 msaitoh * @hw: pointer to hardware structure
1055 1.6 msaitoh *
1056 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1057 1.6 msaitoh * store this data within the ixgbe_hw structure.
1058 1.6 msaitoh **/
1059 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1060 1.6 msaitoh {
1061 1.6 msaitoh u16 link_status;
1062 1.6 msaitoh
1063 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1064 1.6 msaitoh
1065 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1066 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1067 1.6 msaitoh
1068 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1069 1.1 dyoung
1070 1.1 dyoung return IXGBE_SUCCESS;
1071 1.1 dyoung }
1072 1.1 dyoung
1073 1.1 dyoung /**
1074 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1075 1.1 dyoung * @hw: pointer to the HW structure
1076 1.1 dyoung *
1077 1.14 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1078 1.14 msaitoh * the port value if requested, and set MAC instance for devices that share
1079 1.14 msaitoh * CS4227.
1080 1.1 dyoung **/
1081 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1082 1.1 dyoung {
1083 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1084 1.1 dyoung u32 reg;
1085 1.14 msaitoh u16 ee_ctrl_4;
1086 1.1 dyoung
1087 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1088 1.1 dyoung
1089 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1090 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1091 1.14 msaitoh bus->lan_id = (u8)bus->func;
1092 1.1 dyoung
1093 1.1 dyoung /* check for a port swap */
1094 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1095 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1096 1.1 dyoung bus->func ^= 0x1;
1097 1.14 msaitoh
1098 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1099 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1100 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1101 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1102 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1103 1.14 msaitoh }
1104 1.1 dyoung }
1105 1.1 dyoung
1106 1.1 dyoung /**
1107 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1108 1.1 dyoung * @hw: pointer to hardware structure
1109 1.1 dyoung *
1110 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1111 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1112 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1113 1.1 dyoung * state and should not touch the hardware.
1114 1.1 dyoung **/
1115 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1116 1.1 dyoung {
1117 1.1 dyoung u32 reg_val;
1118 1.1 dyoung u16 i;
1119 1.1 dyoung
1120 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1121 1.1 dyoung
1122 1.1 dyoung /*
1123 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1124 1.1 dyoung * the hardware
1125 1.1 dyoung */
1126 1.1 dyoung hw->adapter_stopped = TRUE;
1127 1.1 dyoung
1128 1.1 dyoung /* Disable the receive unit */
1129 1.8 msaitoh ixgbe_disable_rx(hw);
1130 1.1 dyoung
1131 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1132 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1133 1.1 dyoung
1134 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1135 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1136 1.1 dyoung
1137 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1138 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1139 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1140 1.3 msaitoh
1141 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1142 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1143 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1144 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1145 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1146 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1147 1.1 dyoung }
1148 1.1 dyoung
1149 1.3 msaitoh /* flush all queues disables */
1150 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1151 1.3 msaitoh msec_delay(2);
1152 1.3 msaitoh
1153 1.1 dyoung /*
1154 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1155 1.1 dyoung * access and verify no pending requests
1156 1.1 dyoung */
1157 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1158 1.1 dyoung }
1159 1.1 dyoung
1160 1.1 dyoung /**
1161 1.14 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1162 1.14 msaitoh * @hw: pointer to hardware structure
1163 1.14 msaitoh *
1164 1.14 msaitoh * Store the index for the link active LED. This will be used to support
1165 1.14 msaitoh * blinking the LED.
1166 1.14 msaitoh **/
1167 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1168 1.14 msaitoh {
1169 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1170 1.14 msaitoh u32 led_reg, led_mode;
1171 1.14 msaitoh u8 i;
1172 1.14 msaitoh
1173 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1174 1.14 msaitoh
1175 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1176 1.14 msaitoh for (i = 0; i < 4; i++) {
1177 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1178 1.14 msaitoh
1179 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1180 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1181 1.14 msaitoh mac->led_link_act = i;
1182 1.14 msaitoh return IXGBE_SUCCESS;
1183 1.14 msaitoh }
1184 1.14 msaitoh }
1185 1.14 msaitoh
1186 1.14 msaitoh /*
1187 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1188 1.14 msaitoh * known MAC defaults.
1189 1.14 msaitoh */
1190 1.14 msaitoh switch (hw->mac.type) {
1191 1.14 msaitoh case ixgbe_mac_X550EM_a:
1192 1.14 msaitoh case ixgbe_mac_X550EM_x:
1193 1.14 msaitoh mac->led_link_act = 1;
1194 1.14 msaitoh break;
1195 1.14 msaitoh default:
1196 1.14 msaitoh mac->led_link_act = 2;
1197 1.14 msaitoh }
1198 1.14 msaitoh return IXGBE_SUCCESS;
1199 1.14 msaitoh }
1200 1.14 msaitoh
1201 1.14 msaitoh /**
1202 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1203 1.1 dyoung * @hw: pointer to hardware structure
1204 1.1 dyoung * @index: led number to turn on
1205 1.1 dyoung **/
1206 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1207 1.1 dyoung {
1208 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1209 1.1 dyoung
1210 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1211 1.1 dyoung
1212 1.14 msaitoh if (index > 3)
1213 1.14 msaitoh return IXGBE_ERR_PARAM;
1214 1.14 msaitoh
1215 1.1 dyoung /* To turn on the LED, set mode to ON. */
1216 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1217 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1218 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1219 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1220 1.1 dyoung
1221 1.1 dyoung return IXGBE_SUCCESS;
1222 1.1 dyoung }
1223 1.1 dyoung
1224 1.1 dyoung /**
1225 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1226 1.1 dyoung * @hw: pointer to hardware structure
1227 1.1 dyoung * @index: led number to turn off
1228 1.1 dyoung **/
1229 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1230 1.1 dyoung {
1231 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1232 1.1 dyoung
1233 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1234 1.1 dyoung
1235 1.14 msaitoh if (index > 3)
1236 1.14 msaitoh return IXGBE_ERR_PARAM;
1237 1.14 msaitoh
1238 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1239 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1240 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1241 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1242 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1243 1.1 dyoung
1244 1.1 dyoung return IXGBE_SUCCESS;
1245 1.1 dyoung }
1246 1.1 dyoung
1247 1.1 dyoung /**
1248 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1249 1.1 dyoung * @hw: pointer to hardware structure
1250 1.1 dyoung *
1251 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1252 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1253 1.1 dyoung **/
1254 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1255 1.1 dyoung {
1256 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1257 1.1 dyoung u32 eec;
1258 1.1 dyoung u16 eeprom_size;
1259 1.1 dyoung
1260 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1261 1.1 dyoung
1262 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1263 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1264 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1265 1.1 dyoung * tested value */
1266 1.1 dyoung eeprom->semaphore_delay = 10;
1267 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1268 1.3 msaitoh eeprom->word_page_size = 0;
1269 1.1 dyoung
1270 1.1 dyoung /*
1271 1.1 dyoung * Check for EEPROM present first.
1272 1.1 dyoung * If not present leave as none
1273 1.1 dyoung */
1274 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1275 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1276 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1277 1.1 dyoung
1278 1.1 dyoung /*
1279 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1280 1.1 dyoung * change if a future EEPROM is not SPI.
1281 1.1 dyoung */
1282 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1283 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1284 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1285 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1286 1.1 dyoung }
1287 1.1 dyoung
1288 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1289 1.1 dyoung eeprom->address_bits = 16;
1290 1.1 dyoung else
1291 1.1 dyoung eeprom->address_bits = 8;
1292 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1293 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1294 1.3 msaitoh eeprom->address_bits);
1295 1.1 dyoung }
1296 1.1 dyoung
1297 1.1 dyoung return IXGBE_SUCCESS;
1298 1.1 dyoung }
1299 1.1 dyoung
1300 1.1 dyoung /**
1301 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1302 1.3 msaitoh * @hw: pointer to hardware structure
1303 1.3 msaitoh * @offset: offset within the EEPROM to write
1304 1.3 msaitoh * @words: number of word(s)
1305 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1306 1.3 msaitoh *
1307 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1308 1.3 msaitoh **/
1309 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1310 1.3 msaitoh u16 words, u16 *data)
1311 1.3 msaitoh {
1312 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1313 1.3 msaitoh u16 i, count;
1314 1.3 msaitoh
1315 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1316 1.3 msaitoh
1317 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1318 1.3 msaitoh
1319 1.3 msaitoh if (words == 0) {
1320 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1321 1.3 msaitoh goto out;
1322 1.3 msaitoh }
1323 1.3 msaitoh
1324 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1325 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1326 1.3 msaitoh goto out;
1327 1.3 msaitoh }
1328 1.3 msaitoh
1329 1.3 msaitoh /*
1330 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1331 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1332 1.3 msaitoh */
1333 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1334 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1335 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1336 1.3 msaitoh
1337 1.3 msaitoh /*
1338 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1339 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1340 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1341 1.3 msaitoh */
1342 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1343 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1344 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1345 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1346 1.3 msaitoh count, &data[i]);
1347 1.3 msaitoh
1348 1.3 msaitoh if (status != IXGBE_SUCCESS)
1349 1.3 msaitoh break;
1350 1.3 msaitoh }
1351 1.3 msaitoh
1352 1.3 msaitoh out:
1353 1.3 msaitoh return status;
1354 1.3 msaitoh }
1355 1.3 msaitoh
1356 1.3 msaitoh /**
1357 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1358 1.3 msaitoh * @hw: pointer to hardware structure
1359 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1360 1.3 msaitoh * @words: number of word(s)
1361 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1362 1.3 msaitoh *
1363 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1364 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1365 1.3 msaitoh **/
1366 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1367 1.3 msaitoh u16 words, u16 *data)
1368 1.3 msaitoh {
1369 1.3 msaitoh s32 status;
1370 1.3 msaitoh u16 word;
1371 1.3 msaitoh u16 page_size;
1372 1.3 msaitoh u16 i;
1373 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1374 1.3 msaitoh
1375 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1376 1.3 msaitoh
1377 1.3 msaitoh /* Prepare the EEPROM for writing */
1378 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1379 1.3 msaitoh
1380 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1381 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1382 1.3 msaitoh ixgbe_release_eeprom(hw);
1383 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1384 1.3 msaitoh }
1385 1.3 msaitoh }
1386 1.3 msaitoh
1387 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1388 1.3 msaitoh for (i = 0; i < words; i++) {
1389 1.3 msaitoh ixgbe_standby_eeprom(hw);
1390 1.3 msaitoh
1391 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1392 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1393 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1394 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1395 1.3 msaitoh
1396 1.3 msaitoh ixgbe_standby_eeprom(hw);
1397 1.3 msaitoh
1398 1.3 msaitoh /*
1399 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1400 1.3 msaitoh * in the opcode
1401 1.3 msaitoh */
1402 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1403 1.3 msaitoh ((offset + i) >= 128))
1404 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1405 1.3 msaitoh
1406 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1407 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1408 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1409 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1410 1.3 msaitoh hw->eeprom.address_bits);
1411 1.3 msaitoh
1412 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1413 1.3 msaitoh
1414 1.3 msaitoh /* Send the data in burst via SPI*/
1415 1.3 msaitoh do {
1416 1.3 msaitoh word = data[i];
1417 1.3 msaitoh word = (word >> 8) | (word << 8);
1418 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1419 1.3 msaitoh
1420 1.3 msaitoh if (page_size == 0)
1421 1.3 msaitoh break;
1422 1.3 msaitoh
1423 1.3 msaitoh /* do not wrap around page */
1424 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1425 1.3 msaitoh (page_size - 1))
1426 1.3 msaitoh break;
1427 1.3 msaitoh } while (++i < words);
1428 1.3 msaitoh
1429 1.3 msaitoh ixgbe_standby_eeprom(hw);
1430 1.3 msaitoh msec_delay(10);
1431 1.3 msaitoh }
1432 1.3 msaitoh /* Done with writing - release the EEPROM */
1433 1.3 msaitoh ixgbe_release_eeprom(hw);
1434 1.3 msaitoh }
1435 1.3 msaitoh
1436 1.3 msaitoh return status;
1437 1.3 msaitoh }
1438 1.3 msaitoh
1439 1.3 msaitoh /**
1440 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1441 1.1 dyoung * @hw: pointer to hardware structure
1442 1.1 dyoung * @offset: offset within the EEPROM to be written to
1443 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1444 1.1 dyoung *
1445 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1446 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1447 1.1 dyoung **/
1448 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1449 1.1 dyoung {
1450 1.1 dyoung s32 status;
1451 1.1 dyoung
1452 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1453 1.1 dyoung
1454 1.1 dyoung hw->eeprom.ops.init_params(hw);
1455 1.1 dyoung
1456 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1457 1.1 dyoung status = IXGBE_ERR_EEPROM;
1458 1.1 dyoung goto out;
1459 1.1 dyoung }
1460 1.1 dyoung
1461 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1462 1.3 msaitoh
1463 1.3 msaitoh out:
1464 1.3 msaitoh return status;
1465 1.3 msaitoh }
1466 1.3 msaitoh
1467 1.3 msaitoh /**
1468 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1469 1.3 msaitoh * @hw: pointer to hardware structure
1470 1.3 msaitoh * @offset: offset within the EEPROM to be read
1471 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1472 1.3 msaitoh * @words: number of word(s)
1473 1.3 msaitoh *
1474 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1475 1.3 msaitoh **/
1476 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1477 1.3 msaitoh u16 words, u16 *data)
1478 1.3 msaitoh {
1479 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1480 1.3 msaitoh u16 i, count;
1481 1.3 msaitoh
1482 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1483 1.3 msaitoh
1484 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1485 1.3 msaitoh
1486 1.3 msaitoh if (words == 0) {
1487 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1488 1.3 msaitoh goto out;
1489 1.3 msaitoh }
1490 1.3 msaitoh
1491 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1492 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1493 1.3 msaitoh goto out;
1494 1.3 msaitoh }
1495 1.3 msaitoh
1496 1.3 msaitoh /*
1497 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1498 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1499 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1500 1.3 msaitoh */
1501 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1502 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1503 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1504 1.3 msaitoh
1505 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1506 1.3 msaitoh count, &data[i]);
1507 1.3 msaitoh
1508 1.3 msaitoh if (status != IXGBE_SUCCESS)
1509 1.3 msaitoh break;
1510 1.3 msaitoh }
1511 1.3 msaitoh
1512 1.3 msaitoh out:
1513 1.3 msaitoh return status;
1514 1.3 msaitoh }
1515 1.3 msaitoh
1516 1.3 msaitoh /**
1517 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1518 1.3 msaitoh * @hw: pointer to hardware structure
1519 1.3 msaitoh * @offset: offset within the EEPROM to be read
1520 1.3 msaitoh * @words: number of word(s)
1521 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1522 1.3 msaitoh *
1523 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1524 1.3 msaitoh **/
1525 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1526 1.3 msaitoh u16 words, u16 *data)
1527 1.3 msaitoh {
1528 1.3 msaitoh s32 status;
1529 1.3 msaitoh u16 word_in;
1530 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1531 1.3 msaitoh u16 i;
1532 1.3 msaitoh
1533 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1534 1.3 msaitoh
1535 1.3 msaitoh /* Prepare the EEPROM for reading */
1536 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1537 1.1 dyoung
1538 1.1 dyoung if (status == IXGBE_SUCCESS) {
1539 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1540 1.1 dyoung ixgbe_release_eeprom(hw);
1541 1.1 dyoung status = IXGBE_ERR_EEPROM;
1542 1.1 dyoung }
1543 1.1 dyoung }
1544 1.1 dyoung
1545 1.1 dyoung if (status == IXGBE_SUCCESS) {
1546 1.3 msaitoh for (i = 0; i < words; i++) {
1547 1.3 msaitoh ixgbe_standby_eeprom(hw);
1548 1.3 msaitoh /*
1549 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1550 1.3 msaitoh * in the opcode
1551 1.3 msaitoh */
1552 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1553 1.3 msaitoh ((offset + i) >= 128))
1554 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1555 1.3 msaitoh
1556 1.3 msaitoh /* Send the READ command (opcode + addr) */
1557 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1558 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1559 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1560 1.3 msaitoh hw->eeprom.address_bits);
1561 1.3 msaitoh
1562 1.3 msaitoh /* Read the data. */
1563 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1564 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1565 1.3 msaitoh }
1566 1.1 dyoung
1567 1.3 msaitoh /* End this read operation */
1568 1.1 dyoung ixgbe_release_eeprom(hw);
1569 1.1 dyoung }
1570 1.1 dyoung
1571 1.1 dyoung return status;
1572 1.1 dyoung }
1573 1.1 dyoung
1574 1.1 dyoung /**
1575 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1576 1.1 dyoung * @hw: pointer to hardware structure
1577 1.1 dyoung * @offset: offset within the EEPROM to be read
1578 1.1 dyoung * @data: read 16 bit value from EEPROM
1579 1.1 dyoung *
1580 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1581 1.1 dyoung **/
1582 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1583 1.3 msaitoh u16 *data)
1584 1.1 dyoung {
1585 1.1 dyoung s32 status;
1586 1.1 dyoung
1587 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1588 1.1 dyoung
1589 1.1 dyoung hw->eeprom.ops.init_params(hw);
1590 1.1 dyoung
1591 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1592 1.1 dyoung status = IXGBE_ERR_EEPROM;
1593 1.1 dyoung goto out;
1594 1.1 dyoung }
1595 1.1 dyoung
1596 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1597 1.3 msaitoh
1598 1.3 msaitoh out:
1599 1.3 msaitoh return status;
1600 1.3 msaitoh }
1601 1.3 msaitoh
1602 1.3 msaitoh /**
1603 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1604 1.3 msaitoh * @hw: pointer to hardware structure
1605 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1606 1.3 msaitoh * @words: number of word(s)
1607 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1608 1.3 msaitoh *
1609 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1610 1.3 msaitoh **/
1611 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1612 1.3 msaitoh u16 words, u16 *data)
1613 1.3 msaitoh {
1614 1.3 msaitoh u32 eerd;
1615 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1616 1.3 msaitoh u32 i;
1617 1.3 msaitoh
1618 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1619 1.3 msaitoh
1620 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1621 1.3 msaitoh
1622 1.3 msaitoh if (words == 0) {
1623 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1624 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1625 1.3 msaitoh goto out;
1626 1.3 msaitoh }
1627 1.3 msaitoh
1628 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1629 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1630 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1631 1.3 msaitoh goto out;
1632 1.3 msaitoh }
1633 1.3 msaitoh
1634 1.3 msaitoh for (i = 0; i < words; i++) {
1635 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1636 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1637 1.3 msaitoh
1638 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1639 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1640 1.1 dyoung
1641 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1642 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1643 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1644 1.3 msaitoh } else {
1645 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1646 1.3 msaitoh goto out;
1647 1.1 dyoung }
1648 1.1 dyoung }
1649 1.3 msaitoh out:
1650 1.3 msaitoh return status;
1651 1.3 msaitoh }
1652 1.1 dyoung
1653 1.3 msaitoh /**
1654 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1655 1.3 msaitoh * @hw: pointer to hardware structure
1656 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1657 1.3 msaitoh *
1658 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1659 1.3 msaitoh * This function is called only when we are writing a new large buffer
1660 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1661 1.3 msaitoh **/
1662 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1663 1.3 msaitoh u16 offset)
1664 1.3 msaitoh {
1665 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1666 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1667 1.3 msaitoh u16 i;
1668 1.3 msaitoh
1669 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1670 1.3 msaitoh
1671 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1672 1.3 msaitoh data[i] = i;
1673 1.1 dyoung
1674 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1675 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1676 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1677 1.3 msaitoh hw->eeprom.word_page_size = 0;
1678 1.3 msaitoh if (status != IXGBE_SUCCESS)
1679 1.3 msaitoh goto out;
1680 1.1 dyoung
1681 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1682 1.3 msaitoh if (status != IXGBE_SUCCESS)
1683 1.3 msaitoh goto out;
1684 1.1 dyoung
1685 1.3 msaitoh /*
1686 1.3 msaitoh * When writing in burst more than the actual page size
1687 1.3 msaitoh * EEPROM address wraps around current page.
1688 1.3 msaitoh */
1689 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1690 1.1 dyoung
1691 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1692 1.3 msaitoh hw->eeprom.word_page_size);
1693 1.1 dyoung out:
1694 1.1 dyoung return status;
1695 1.1 dyoung }
1696 1.1 dyoung
1697 1.1 dyoung /**
1698 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1699 1.1 dyoung * @hw: pointer to hardware structure
1700 1.1 dyoung * @offset: offset of word in the EEPROM to read
1701 1.1 dyoung * @data: word read from the EEPROM
1702 1.1 dyoung *
1703 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1704 1.1 dyoung **/
1705 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1706 1.1 dyoung {
1707 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1708 1.3 msaitoh }
1709 1.3 msaitoh
1710 1.3 msaitoh /**
1711 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1712 1.3 msaitoh * @hw: pointer to hardware structure
1713 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1714 1.3 msaitoh * @words: number of word(s)
1715 1.3 msaitoh * @data: word(s) write to the EEPROM
1716 1.3 msaitoh *
1717 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1718 1.3 msaitoh **/
1719 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1720 1.3 msaitoh u16 words, u16 *data)
1721 1.3 msaitoh {
1722 1.3 msaitoh u32 eewr;
1723 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1724 1.3 msaitoh u16 i;
1725 1.1 dyoung
1726 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1727 1.1 dyoung
1728 1.1 dyoung hw->eeprom.ops.init_params(hw);
1729 1.1 dyoung
1730 1.3 msaitoh if (words == 0) {
1731 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1732 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1733 1.3 msaitoh goto out;
1734 1.3 msaitoh }
1735 1.3 msaitoh
1736 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1737 1.1 dyoung status = IXGBE_ERR_EEPROM;
1738 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1739 1.1 dyoung goto out;
1740 1.1 dyoung }
1741 1.1 dyoung
1742 1.3 msaitoh for (i = 0; i < words; i++) {
1743 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1744 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1745 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1746 1.3 msaitoh
1747 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1748 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1749 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1750 1.3 msaitoh goto out;
1751 1.3 msaitoh }
1752 1.1 dyoung
1753 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1754 1.1 dyoung
1755 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1756 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1757 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1758 1.3 msaitoh goto out;
1759 1.3 msaitoh }
1760 1.3 msaitoh }
1761 1.1 dyoung
1762 1.1 dyoung out:
1763 1.1 dyoung return status;
1764 1.1 dyoung }
1765 1.1 dyoung
1766 1.1 dyoung /**
1767 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1768 1.1 dyoung * @hw: pointer to hardware structure
1769 1.1 dyoung * @offset: offset of word in the EEPROM to write
1770 1.1 dyoung * @data: word write to the EEPROM
1771 1.1 dyoung *
1772 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1773 1.1 dyoung **/
1774 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1775 1.1 dyoung {
1776 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1777 1.1 dyoung }
1778 1.1 dyoung
1779 1.1 dyoung /**
1780 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1781 1.1 dyoung * @hw: pointer to hardware structure
1782 1.1 dyoung * @ee_reg: EEPROM flag for polling
1783 1.1 dyoung *
1784 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1785 1.1 dyoung * read or write is done respectively.
1786 1.1 dyoung **/
1787 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1788 1.1 dyoung {
1789 1.1 dyoung u32 i;
1790 1.1 dyoung u32 reg;
1791 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1792 1.1 dyoung
1793 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1794 1.1 dyoung
1795 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1796 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1797 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1798 1.1 dyoung else
1799 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1800 1.1 dyoung
1801 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1802 1.1 dyoung status = IXGBE_SUCCESS;
1803 1.1 dyoung break;
1804 1.1 dyoung }
1805 1.1 dyoung usec_delay(5);
1806 1.1 dyoung }
1807 1.6 msaitoh
1808 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1809 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1810 1.6 msaitoh "EEPROM read/write done polling timed out");
1811 1.6 msaitoh
1812 1.1 dyoung return status;
1813 1.1 dyoung }
1814 1.1 dyoung
1815 1.1 dyoung /**
1816 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1817 1.1 dyoung * @hw: pointer to hardware structure
1818 1.1 dyoung *
1819 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1820 1.1 dyoung * be called before issuing a command to the EEPROM.
1821 1.1 dyoung **/
1822 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1823 1.1 dyoung {
1824 1.1 dyoung s32 status = IXGBE_SUCCESS;
1825 1.1 dyoung u32 eec;
1826 1.1 dyoung u32 i;
1827 1.1 dyoung
1828 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1829 1.1 dyoung
1830 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1831 1.3 msaitoh != IXGBE_SUCCESS)
1832 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1833 1.1 dyoung
1834 1.1 dyoung if (status == IXGBE_SUCCESS) {
1835 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1836 1.1 dyoung
1837 1.1 dyoung /* Request EEPROM Access */
1838 1.1 dyoung eec |= IXGBE_EEC_REQ;
1839 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1840 1.1 dyoung
1841 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1842 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1843 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1844 1.1 dyoung break;
1845 1.1 dyoung usec_delay(5);
1846 1.1 dyoung }
1847 1.1 dyoung
1848 1.1 dyoung /* Release if grant not acquired */
1849 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1850 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1851 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1852 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1853 1.1 dyoung
1854 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1855 1.1 dyoung status = IXGBE_ERR_EEPROM;
1856 1.1 dyoung }
1857 1.1 dyoung
1858 1.1 dyoung /* Setup EEPROM for Read/Write */
1859 1.1 dyoung if (status == IXGBE_SUCCESS) {
1860 1.1 dyoung /* Clear CS and SK */
1861 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1862 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1863 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1864 1.1 dyoung usec_delay(1);
1865 1.1 dyoung }
1866 1.1 dyoung }
1867 1.1 dyoung return status;
1868 1.1 dyoung }
1869 1.1 dyoung
1870 1.1 dyoung /**
1871 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1872 1.1 dyoung * @hw: pointer to hardware structure
1873 1.1 dyoung *
1874 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1875 1.1 dyoung **/
1876 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1877 1.1 dyoung {
1878 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1879 1.1 dyoung u32 timeout = 2000;
1880 1.1 dyoung u32 i;
1881 1.1 dyoung u32 swsm;
1882 1.1 dyoung
1883 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1884 1.1 dyoung
1885 1.1 dyoung
1886 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1887 1.1 dyoung for (i = 0; i < timeout; i++) {
1888 1.1 dyoung /*
1889 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1890 1.1 dyoung * set and we have the semaphore
1891 1.1 dyoung */
1892 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1893 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1894 1.1 dyoung status = IXGBE_SUCCESS;
1895 1.1 dyoung break;
1896 1.1 dyoung }
1897 1.1 dyoung usec_delay(50);
1898 1.1 dyoung }
1899 1.1 dyoung
1900 1.3 msaitoh if (i == timeout) {
1901 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1902 1.3 msaitoh "not granted.\n");
1903 1.3 msaitoh /*
1904 1.3 msaitoh * this release is particularly important because our attempts
1905 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1906 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1907 1.3 msaitoh * bits to free the driver to make progress
1908 1.3 msaitoh */
1909 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1910 1.3 msaitoh
1911 1.3 msaitoh usec_delay(50);
1912 1.3 msaitoh /*
1913 1.3 msaitoh * one last try
1914 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1915 1.3 msaitoh * set and we have the semaphore
1916 1.3 msaitoh */
1917 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1918 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1919 1.3 msaitoh status = IXGBE_SUCCESS;
1920 1.3 msaitoh }
1921 1.3 msaitoh
1922 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1923 1.1 dyoung if (status == IXGBE_SUCCESS) {
1924 1.1 dyoung for (i = 0; i < timeout; i++) {
1925 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1926 1.1 dyoung
1927 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1928 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1929 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1930 1.1 dyoung
1931 1.1 dyoung /*
1932 1.1 dyoung * If we set the bit successfully then we got the
1933 1.1 dyoung * semaphore.
1934 1.1 dyoung */
1935 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1936 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1937 1.1 dyoung break;
1938 1.1 dyoung
1939 1.1 dyoung usec_delay(50);
1940 1.1 dyoung }
1941 1.1 dyoung
1942 1.1 dyoung /*
1943 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1944 1.1 dyoung * was not granted because we don't have access to the EEPROM
1945 1.1 dyoung */
1946 1.1 dyoung if (i >= timeout) {
1947 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1948 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1949 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1950 1.1 dyoung status = IXGBE_ERR_EEPROM;
1951 1.1 dyoung }
1952 1.1 dyoung } else {
1953 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1954 1.6 msaitoh "Software semaphore SMBI between device drivers "
1955 1.6 msaitoh "not granted.\n");
1956 1.1 dyoung }
1957 1.1 dyoung
1958 1.1 dyoung return status;
1959 1.1 dyoung }
1960 1.1 dyoung
1961 1.1 dyoung /**
1962 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1963 1.1 dyoung * @hw: pointer to hardware structure
1964 1.1 dyoung *
1965 1.1 dyoung * This function clears hardware semaphore bits.
1966 1.1 dyoung **/
1967 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1968 1.1 dyoung {
1969 1.1 dyoung u32 swsm;
1970 1.1 dyoung
1971 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1972 1.1 dyoung
1973 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1974 1.1 dyoung
1975 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1976 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1977 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1978 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1979 1.1 dyoung }
1980 1.1 dyoung
1981 1.1 dyoung /**
1982 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1983 1.1 dyoung * @hw: pointer to hardware structure
1984 1.1 dyoung **/
1985 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1986 1.1 dyoung {
1987 1.1 dyoung s32 status = IXGBE_SUCCESS;
1988 1.1 dyoung u16 i;
1989 1.1 dyoung u8 spi_stat_reg;
1990 1.1 dyoung
1991 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1992 1.1 dyoung
1993 1.1 dyoung /*
1994 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1995 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1996 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1997 1.1 dyoung * 5 milliseconds, then error out.
1998 1.1 dyoung */
1999 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2000 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2001 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2002 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2003 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2004 1.1 dyoung break;
2005 1.1 dyoung
2006 1.1 dyoung usec_delay(5);
2007 1.1 dyoung ixgbe_standby_eeprom(hw);
2008 1.11 msaitoh }
2009 1.1 dyoung
2010 1.1 dyoung /*
2011 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2012 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2013 1.1 dyoung */
2014 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2015 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2016 1.1 dyoung status = IXGBE_ERR_EEPROM;
2017 1.1 dyoung }
2018 1.1 dyoung
2019 1.1 dyoung return status;
2020 1.1 dyoung }
2021 1.1 dyoung
2022 1.1 dyoung /**
2023 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2024 1.1 dyoung * @hw: pointer to hardware structure
2025 1.1 dyoung **/
2026 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2027 1.1 dyoung {
2028 1.1 dyoung u32 eec;
2029 1.1 dyoung
2030 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2031 1.1 dyoung
2032 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2033 1.1 dyoung
2034 1.1 dyoung /* Toggle CS to flush commands */
2035 1.1 dyoung eec |= IXGBE_EEC_CS;
2036 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2037 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2038 1.1 dyoung usec_delay(1);
2039 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2040 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2041 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2042 1.1 dyoung usec_delay(1);
2043 1.1 dyoung }
2044 1.1 dyoung
2045 1.1 dyoung /**
2046 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2047 1.1 dyoung * @hw: pointer to hardware structure
2048 1.1 dyoung * @data: data to send to the EEPROM
2049 1.1 dyoung * @count: number of bits to shift out
2050 1.1 dyoung **/
2051 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2052 1.3 msaitoh u16 count)
2053 1.1 dyoung {
2054 1.1 dyoung u32 eec;
2055 1.1 dyoung u32 mask;
2056 1.1 dyoung u32 i;
2057 1.1 dyoung
2058 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2059 1.1 dyoung
2060 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2061 1.1 dyoung
2062 1.1 dyoung /*
2063 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2064 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2065 1.1 dyoung */
2066 1.1 dyoung mask = 0x01 << (count - 1);
2067 1.1 dyoung
2068 1.1 dyoung for (i = 0; i < count; i++) {
2069 1.1 dyoung /*
2070 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2071 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2072 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2073 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2074 1.1 dyoung * raising and then lowering the clock.
2075 1.1 dyoung */
2076 1.1 dyoung if (data & mask)
2077 1.1 dyoung eec |= IXGBE_EEC_DI;
2078 1.1 dyoung else
2079 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2080 1.1 dyoung
2081 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2082 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2083 1.1 dyoung
2084 1.1 dyoung usec_delay(1);
2085 1.1 dyoung
2086 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2087 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2088 1.1 dyoung
2089 1.1 dyoung /*
2090 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2091 1.1 dyoung * EEPROM
2092 1.1 dyoung */
2093 1.1 dyoung mask = mask >> 1;
2094 1.11 msaitoh }
2095 1.1 dyoung
2096 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2097 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2098 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2099 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2100 1.1 dyoung }
2101 1.1 dyoung
2102 1.1 dyoung /**
2103 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2104 1.1 dyoung * @hw: pointer to hardware structure
2105 1.1 dyoung **/
2106 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2107 1.1 dyoung {
2108 1.1 dyoung u32 eec;
2109 1.1 dyoung u32 i;
2110 1.1 dyoung u16 data = 0;
2111 1.1 dyoung
2112 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2113 1.1 dyoung
2114 1.1 dyoung /*
2115 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2116 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2117 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2118 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2119 1.1 dyoung * "DI" bit should always be clear.
2120 1.1 dyoung */
2121 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2122 1.1 dyoung
2123 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2124 1.1 dyoung
2125 1.1 dyoung for (i = 0; i < count; i++) {
2126 1.1 dyoung data = data << 1;
2127 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2128 1.1 dyoung
2129 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2130 1.1 dyoung
2131 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2132 1.1 dyoung if (eec & IXGBE_EEC_DO)
2133 1.1 dyoung data |= 1;
2134 1.1 dyoung
2135 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2136 1.1 dyoung }
2137 1.1 dyoung
2138 1.1 dyoung return data;
2139 1.1 dyoung }
2140 1.1 dyoung
2141 1.1 dyoung /**
2142 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2143 1.1 dyoung * @hw: pointer to hardware structure
2144 1.1 dyoung * @eec: EEC register's current value
2145 1.1 dyoung **/
2146 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2147 1.1 dyoung {
2148 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2149 1.1 dyoung
2150 1.1 dyoung /*
2151 1.1 dyoung * Raise the clock input to the EEPROM
2152 1.1 dyoung * (setting the SK bit), then delay
2153 1.1 dyoung */
2154 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2155 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2156 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2157 1.1 dyoung usec_delay(1);
2158 1.1 dyoung }
2159 1.1 dyoung
2160 1.1 dyoung /**
2161 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2162 1.1 dyoung * @hw: pointer to hardware structure
2163 1.1 dyoung * @eecd: EECD's current value
2164 1.1 dyoung **/
2165 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2166 1.1 dyoung {
2167 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2168 1.1 dyoung
2169 1.1 dyoung /*
2170 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2171 1.1 dyoung * delay
2172 1.1 dyoung */
2173 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2174 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2175 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2176 1.1 dyoung usec_delay(1);
2177 1.1 dyoung }
2178 1.1 dyoung
2179 1.1 dyoung /**
2180 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2181 1.1 dyoung * @hw: pointer to hardware structure
2182 1.1 dyoung **/
2183 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2184 1.1 dyoung {
2185 1.1 dyoung u32 eec;
2186 1.1 dyoung
2187 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2188 1.1 dyoung
2189 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2190 1.1 dyoung
2191 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2192 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2193 1.1 dyoung
2194 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2195 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2196 1.1 dyoung
2197 1.1 dyoung usec_delay(1);
2198 1.1 dyoung
2199 1.1 dyoung /* Stop requesting EEPROM access */
2200 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2201 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2202 1.1 dyoung
2203 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2204 1.1 dyoung
2205 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2206 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2207 1.1 dyoung }
2208 1.1 dyoung
2209 1.1 dyoung /**
2210 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2211 1.1 dyoung * @hw: pointer to hardware structure
2212 1.8 msaitoh *
2213 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2214 1.1 dyoung **/
2215 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2216 1.1 dyoung {
2217 1.1 dyoung u16 i;
2218 1.1 dyoung u16 j;
2219 1.1 dyoung u16 checksum = 0;
2220 1.1 dyoung u16 length = 0;
2221 1.1 dyoung u16 pointer = 0;
2222 1.1 dyoung u16 word = 0;
2223 1.1 dyoung
2224 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2225 1.1 dyoung
2226 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2227 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2228 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2229 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2230 1.8 msaitoh return IXGBE_ERR_EEPROM;
2231 1.1 dyoung }
2232 1.1 dyoung checksum += word;
2233 1.1 dyoung }
2234 1.1 dyoung
2235 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2236 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2237 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2238 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2239 1.8 msaitoh return IXGBE_ERR_EEPROM;
2240 1.8 msaitoh }
2241 1.8 msaitoh
2242 1.8 msaitoh /* If the pointer seems invalid */
2243 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2244 1.8 msaitoh continue;
2245 1.8 msaitoh
2246 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2247 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2248 1.8 msaitoh return IXGBE_ERR_EEPROM;
2249 1.8 msaitoh }
2250 1.8 msaitoh
2251 1.8 msaitoh if (length == 0xFFFF || length == 0)
2252 1.8 msaitoh continue;
2253 1.1 dyoung
2254 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2255 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2256 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2257 1.8 msaitoh return IXGBE_ERR_EEPROM;
2258 1.1 dyoung }
2259 1.8 msaitoh checksum += word;
2260 1.1 dyoung }
2261 1.1 dyoung }
2262 1.1 dyoung
2263 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2264 1.1 dyoung
2265 1.8 msaitoh return (s32)checksum;
2266 1.1 dyoung }
2267 1.1 dyoung
2268 1.1 dyoung /**
2269 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2270 1.1 dyoung * @hw: pointer to hardware structure
2271 1.1 dyoung * @checksum_val: calculated checksum
2272 1.1 dyoung *
2273 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2274 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2275 1.1 dyoung **/
2276 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2277 1.3 msaitoh u16 *checksum_val)
2278 1.1 dyoung {
2279 1.1 dyoung s32 status;
2280 1.1 dyoung u16 checksum;
2281 1.1 dyoung u16 read_checksum = 0;
2282 1.1 dyoung
2283 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2284 1.1 dyoung
2285 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2286 1.1 dyoung * not continue or we could be in for a very long wait while every
2287 1.1 dyoung * EEPROM read fails
2288 1.1 dyoung */
2289 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2290 1.8 msaitoh if (status) {
2291 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2292 1.8 msaitoh return status;
2293 1.8 msaitoh }
2294 1.1 dyoung
2295 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2296 1.8 msaitoh if (status < 0)
2297 1.8 msaitoh return status;
2298 1.1 dyoung
2299 1.8 msaitoh checksum = (u16)(status & 0xffff);
2300 1.1 dyoung
2301 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2302 1.8 msaitoh if (status) {
2303 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2304 1.8 msaitoh return status;
2305 1.1 dyoung }
2306 1.1 dyoung
2307 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2308 1.8 msaitoh * calculated checksum
2309 1.8 msaitoh */
2310 1.8 msaitoh if (read_checksum != checksum)
2311 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2312 1.8 msaitoh
2313 1.8 msaitoh /* If the user cares, return the calculated checksum */
2314 1.8 msaitoh if (checksum_val)
2315 1.8 msaitoh *checksum_val = checksum;
2316 1.8 msaitoh
2317 1.1 dyoung return status;
2318 1.1 dyoung }
2319 1.1 dyoung
2320 1.1 dyoung /**
2321 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2322 1.1 dyoung * @hw: pointer to hardware structure
2323 1.1 dyoung **/
2324 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2325 1.1 dyoung {
2326 1.1 dyoung s32 status;
2327 1.1 dyoung u16 checksum;
2328 1.1 dyoung
2329 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2330 1.1 dyoung
2331 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2332 1.1 dyoung * not continue or we could be in for a very long wait while every
2333 1.1 dyoung * EEPROM read fails
2334 1.1 dyoung */
2335 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2336 1.8 msaitoh if (status) {
2337 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2338 1.8 msaitoh return status;
2339 1.1 dyoung }
2340 1.1 dyoung
2341 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2342 1.8 msaitoh if (status < 0)
2343 1.8 msaitoh return status;
2344 1.8 msaitoh
2345 1.8 msaitoh checksum = (u16)(status & 0xffff);
2346 1.8 msaitoh
2347 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2348 1.8 msaitoh
2349 1.1 dyoung return status;
2350 1.1 dyoung }
2351 1.1 dyoung
2352 1.1 dyoung /**
2353 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2354 1.1 dyoung * @mac_addr: pointer to MAC address.
2355 1.1 dyoung *
2356 1.14 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2357 1.1 dyoung **/
2358 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2359 1.1 dyoung {
2360 1.1 dyoung s32 status = IXGBE_SUCCESS;
2361 1.1 dyoung
2362 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2363 1.1 dyoung
2364 1.1 dyoung /* Make sure it is not a multicast address */
2365 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2366 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2367 1.1 dyoung /* Not a broadcast address */
2368 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2369 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2370 1.1 dyoung /* Reject the zero address */
2371 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2372 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2373 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2374 1.1 dyoung }
2375 1.1 dyoung return status;
2376 1.1 dyoung }
2377 1.1 dyoung
2378 1.1 dyoung /**
2379 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2380 1.1 dyoung * @hw: pointer to hardware structure
2381 1.1 dyoung * @index: Receive address register to write
2382 1.1 dyoung * @addr: Address to put into receive address register
2383 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2384 1.1 dyoung * @enable_addr: set flag that address is active
2385 1.1 dyoung *
2386 1.1 dyoung * Puts an ethernet address into a receive address register.
2387 1.1 dyoung **/
2388 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2389 1.3 msaitoh u32 enable_addr)
2390 1.1 dyoung {
2391 1.1 dyoung u32 rar_low, rar_high;
2392 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2393 1.1 dyoung
2394 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2395 1.1 dyoung
2396 1.1 dyoung /* Make sure we are using a valid rar index range */
2397 1.1 dyoung if (index >= rar_entries) {
2398 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2399 1.6 msaitoh "RAR index %d is out of range.\n", index);
2400 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2401 1.1 dyoung }
2402 1.1 dyoung
2403 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2404 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2405 1.1 dyoung
2406 1.1 dyoung /*
2407 1.1 dyoung * HW expects these in little endian so we reverse the byte
2408 1.1 dyoung * order from network order (big endian) to little endian
2409 1.1 dyoung */
2410 1.1 dyoung rar_low = ((u32)addr[0] |
2411 1.3 msaitoh ((u32)addr[1] << 8) |
2412 1.3 msaitoh ((u32)addr[2] << 16) |
2413 1.3 msaitoh ((u32)addr[3] << 24));
2414 1.1 dyoung /*
2415 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2416 1.1 dyoung * so save everything except the lower 16 bits that hold part
2417 1.1 dyoung * of the address and the address valid bit.
2418 1.1 dyoung */
2419 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2420 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2421 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2422 1.1 dyoung
2423 1.1 dyoung if (enable_addr != 0)
2424 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2425 1.1 dyoung
2426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2427 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2428 1.1 dyoung
2429 1.1 dyoung return IXGBE_SUCCESS;
2430 1.1 dyoung }
2431 1.1 dyoung
2432 1.1 dyoung /**
2433 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2434 1.1 dyoung * @hw: pointer to hardware structure
2435 1.1 dyoung * @index: Receive address register to write
2436 1.1 dyoung *
2437 1.1 dyoung * Clears an ethernet address from a receive address register.
2438 1.1 dyoung **/
2439 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2440 1.1 dyoung {
2441 1.1 dyoung u32 rar_high;
2442 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2443 1.1 dyoung
2444 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2445 1.1 dyoung
2446 1.1 dyoung /* Make sure we are using a valid rar index range */
2447 1.1 dyoung if (index >= rar_entries) {
2448 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2449 1.6 msaitoh "RAR index %d is out of range.\n", index);
2450 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2451 1.1 dyoung }
2452 1.1 dyoung
2453 1.1 dyoung /*
2454 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2455 1.1 dyoung * so save everything except the lower 16 bits that hold part
2456 1.1 dyoung * of the address and the address valid bit.
2457 1.1 dyoung */
2458 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2459 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2460 1.1 dyoung
2461 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2462 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2463 1.1 dyoung
2464 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2465 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2466 1.1 dyoung
2467 1.1 dyoung return IXGBE_SUCCESS;
2468 1.1 dyoung }
2469 1.1 dyoung
2470 1.1 dyoung /**
2471 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2472 1.1 dyoung * @hw: pointer to hardware structure
2473 1.1 dyoung *
2474 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2475 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2476 1.1 dyoung * the receiver is in reset when the routine is called.
2477 1.1 dyoung **/
2478 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2479 1.1 dyoung {
2480 1.1 dyoung u32 i;
2481 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2482 1.1 dyoung
2483 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2484 1.1 dyoung
2485 1.1 dyoung /*
2486 1.1 dyoung * If the current mac address is valid, assume it is a software override
2487 1.1 dyoung * to the permanent address.
2488 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2489 1.1 dyoung */
2490 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2491 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2492 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2493 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2494 1.1 dyoung
2495 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2496 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2497 1.3 msaitoh hw->mac.addr[2]);
2498 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2499 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2500 1.1 dyoung } else {
2501 1.1 dyoung /* Setup the receive address. */
2502 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2503 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2504 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2505 1.3 msaitoh hw->mac.addr[2]);
2506 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2507 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2508 1.1 dyoung
2509 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2510 1.14 msaitoh }
2511 1.14 msaitoh
2512 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2513 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2514 1.1 dyoung
2515 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2516 1.1 dyoung
2517 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2518 1.1 dyoung
2519 1.1 dyoung /* Zero out the other receive addresses. */
2520 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2521 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2522 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2523 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2524 1.1 dyoung }
2525 1.1 dyoung
2526 1.1 dyoung /* Clear the MTA */
2527 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2528 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2529 1.1 dyoung
2530 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2531 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2532 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2533 1.1 dyoung
2534 1.1 dyoung ixgbe_init_uta_tables(hw);
2535 1.1 dyoung
2536 1.1 dyoung return IXGBE_SUCCESS;
2537 1.1 dyoung }
2538 1.1 dyoung
2539 1.1 dyoung /**
2540 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2541 1.1 dyoung * @hw: pointer to hardware structure
2542 1.1 dyoung * @addr: new address
2543 1.1 dyoung *
2544 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2545 1.1 dyoung **/
2546 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2547 1.1 dyoung {
2548 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2549 1.1 dyoung u32 rar;
2550 1.1 dyoung
2551 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2552 1.1 dyoung
2553 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2554 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2555 1.1 dyoung
2556 1.1 dyoung /*
2557 1.1 dyoung * Place this address in the RAR if there is room,
2558 1.1 dyoung * else put the controller into promiscuous mode
2559 1.1 dyoung */
2560 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2561 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2562 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2563 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2564 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2565 1.1 dyoung } else {
2566 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2567 1.1 dyoung }
2568 1.1 dyoung
2569 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2570 1.1 dyoung }
2571 1.1 dyoung
2572 1.1 dyoung /**
2573 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2574 1.1 dyoung * @hw: pointer to hardware structure
2575 1.1 dyoung * @addr_list: the list of new addresses
2576 1.1 dyoung * @addr_count: number of addresses
2577 1.1 dyoung * @next: iterator function to walk the address list
2578 1.1 dyoung *
2579 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2580 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2581 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2582 1.1 dyoung *
2583 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2584 1.1 dyoung * manually putting the device into promiscuous mode.
2585 1.1 dyoung **/
2586 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2587 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2588 1.1 dyoung {
2589 1.1 dyoung u8 *addr;
2590 1.1 dyoung u32 i;
2591 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2592 1.1 dyoung u32 uc_addr_in_use;
2593 1.1 dyoung u32 fctrl;
2594 1.1 dyoung u32 vmdq;
2595 1.1 dyoung
2596 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2597 1.1 dyoung
2598 1.1 dyoung /*
2599 1.1 dyoung * Clear accounting of old secondary address list,
2600 1.1 dyoung * don't count RAR[0]
2601 1.1 dyoung */
2602 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2603 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2604 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2605 1.1 dyoung
2606 1.1 dyoung /* Zero out the other receive addresses */
2607 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2608 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2609 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2610 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2611 1.1 dyoung }
2612 1.1 dyoung
2613 1.1 dyoung /* Add the new addresses */
2614 1.1 dyoung for (i = 0; i < addr_count; i++) {
2615 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2616 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2617 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2618 1.1 dyoung }
2619 1.1 dyoung
2620 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2621 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2622 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2623 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2624 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2625 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2626 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2627 1.1 dyoung }
2628 1.1 dyoung } else {
2629 1.1 dyoung /* only disable if set by overflow, not by user */
2630 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2631 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2632 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2633 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2634 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2635 1.1 dyoung }
2636 1.1 dyoung }
2637 1.1 dyoung
2638 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2639 1.1 dyoung return IXGBE_SUCCESS;
2640 1.1 dyoung }
2641 1.1 dyoung
2642 1.1 dyoung /**
2643 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2644 1.1 dyoung * @hw: pointer to hardware structure
2645 1.1 dyoung * @mc_addr: the multicast address
2646 1.1 dyoung *
2647 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2648 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2649 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2650 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2651 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2652 1.1 dyoung * to mc_filter_type.
2653 1.1 dyoung **/
2654 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2655 1.1 dyoung {
2656 1.1 dyoung u32 vector = 0;
2657 1.1 dyoung
2658 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2659 1.1 dyoung
2660 1.1 dyoung switch (hw->mac.mc_filter_type) {
2661 1.1 dyoung case 0: /* use bits [47:36] of the address */
2662 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2663 1.1 dyoung break;
2664 1.1 dyoung case 1: /* use bits [46:35] of the address */
2665 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2666 1.1 dyoung break;
2667 1.1 dyoung case 2: /* use bits [45:34] of the address */
2668 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2669 1.1 dyoung break;
2670 1.1 dyoung case 3: /* use bits [43:32] of the address */
2671 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2672 1.1 dyoung break;
2673 1.1 dyoung default: /* Invalid mc_filter_type */
2674 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2675 1.1 dyoung ASSERT(0);
2676 1.1 dyoung break;
2677 1.1 dyoung }
2678 1.1 dyoung
2679 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2680 1.1 dyoung vector &= 0xFFF;
2681 1.1 dyoung return vector;
2682 1.1 dyoung }
2683 1.1 dyoung
2684 1.1 dyoung /**
2685 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2686 1.1 dyoung * @hw: pointer to hardware structure
2687 1.1 dyoung * @hash_value: Multicast address hash value
2688 1.1 dyoung *
2689 1.1 dyoung * Sets the bit-vector in the multicast table.
2690 1.1 dyoung **/
2691 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2692 1.1 dyoung {
2693 1.1 dyoung u32 vector;
2694 1.1 dyoung u32 vector_bit;
2695 1.1 dyoung u32 vector_reg;
2696 1.1 dyoung
2697 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2698 1.1 dyoung
2699 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2700 1.1 dyoung
2701 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2702 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2703 1.1 dyoung
2704 1.1 dyoung /*
2705 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2706 1.1 dyoung * like an array of 4096 bits. We want to set bit
2707 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2708 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2709 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2710 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2711 1.1 dyoung * the value.
2712 1.1 dyoung */
2713 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2714 1.1 dyoung vector_bit = vector & 0x1F;
2715 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2716 1.1 dyoung }
2717 1.1 dyoung
2718 1.1 dyoung /**
2719 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2720 1.1 dyoung * @hw: pointer to hardware structure
2721 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2722 1.1 dyoung * @mc_addr_count: number of addresses
2723 1.1 dyoung * @next: iterator function to walk the multicast address list
2724 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2725 1.1 dyoung *
2726 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2727 1.3 msaitoh * Hashes the given addresses into the multicast table.
2728 1.1 dyoung **/
2729 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2730 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2731 1.3 msaitoh bool clear)
2732 1.1 dyoung {
2733 1.1 dyoung u32 i;
2734 1.1 dyoung u32 vmdq;
2735 1.1 dyoung
2736 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2737 1.1 dyoung
2738 1.1 dyoung /*
2739 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2740 1.1 dyoung * use.
2741 1.1 dyoung */
2742 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2743 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2744 1.1 dyoung
2745 1.1 dyoung /* Clear mta_shadow */
2746 1.3 msaitoh if (clear) {
2747 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2748 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2749 1.3 msaitoh }
2750 1.1 dyoung
2751 1.1 dyoung /* Update mta_shadow */
2752 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2753 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2754 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2755 1.1 dyoung }
2756 1.1 dyoung
2757 1.1 dyoung /* Enable mta */
2758 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2759 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2760 1.1 dyoung hw->mac.mta_shadow[i]);
2761 1.1 dyoung
2762 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2763 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2764 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2765 1.1 dyoung
2766 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2767 1.1 dyoung return IXGBE_SUCCESS;
2768 1.1 dyoung }
2769 1.1 dyoung
2770 1.1 dyoung /**
2771 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2772 1.1 dyoung * @hw: pointer to hardware structure
2773 1.1 dyoung *
2774 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2775 1.1 dyoung **/
2776 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2777 1.1 dyoung {
2778 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2779 1.1 dyoung
2780 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2781 1.1 dyoung
2782 1.1 dyoung if (a->mta_in_use > 0)
2783 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2784 1.3 msaitoh hw->mac.mc_filter_type);
2785 1.1 dyoung
2786 1.1 dyoung return IXGBE_SUCCESS;
2787 1.1 dyoung }
2788 1.1 dyoung
2789 1.1 dyoung /**
2790 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2791 1.1 dyoung * @hw: pointer to hardware structure
2792 1.1 dyoung *
2793 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2794 1.1 dyoung **/
2795 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2796 1.1 dyoung {
2797 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2798 1.1 dyoung
2799 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2800 1.1 dyoung
2801 1.1 dyoung if (a->mta_in_use > 0)
2802 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2803 1.1 dyoung
2804 1.1 dyoung return IXGBE_SUCCESS;
2805 1.1 dyoung }
2806 1.1 dyoung
2807 1.1 dyoung /**
2808 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2809 1.1 dyoung * @hw: pointer to hardware structure
2810 1.1 dyoung *
2811 1.1 dyoung * Enable flow control according to the current settings.
2812 1.1 dyoung **/
2813 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2814 1.1 dyoung {
2815 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2816 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2817 1.1 dyoung u32 reg;
2818 1.1 dyoung u32 fcrtl, fcrth;
2819 1.4 msaitoh int i;
2820 1.1 dyoung
2821 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2822 1.1 dyoung
2823 1.4 msaitoh /* Validate the water mark configuration */
2824 1.4 msaitoh if (!hw->fc.pause_time) {
2825 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2826 1.4 msaitoh goto out;
2827 1.4 msaitoh }
2828 1.4 msaitoh
2829 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2830 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2831 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2832 1.4 msaitoh hw->fc.high_water[i]) {
2833 1.4 msaitoh if (!hw->fc.low_water[i] ||
2834 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2835 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2836 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2837 1.4 msaitoh goto out;
2838 1.4 msaitoh }
2839 1.4 msaitoh }
2840 1.4 msaitoh }
2841 1.4 msaitoh
2842 1.1 dyoung /* Negotiate the fc mode to use */
2843 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2844 1.1 dyoung
2845 1.1 dyoung /* Disable any previous flow control settings */
2846 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2847 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2848 1.1 dyoung
2849 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2850 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2851 1.1 dyoung
2852 1.1 dyoung /*
2853 1.1 dyoung * The possible values of fc.current_mode are:
2854 1.1 dyoung * 0: Flow control is completely disabled
2855 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2856 1.1 dyoung * but not send pause frames).
2857 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2858 1.1 dyoung * we do not support receiving pause frames).
2859 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2860 1.1 dyoung * other: Invalid.
2861 1.1 dyoung */
2862 1.1 dyoung switch (hw->fc.current_mode) {
2863 1.1 dyoung case ixgbe_fc_none:
2864 1.1 dyoung /*
2865 1.1 dyoung * Flow control is disabled by software override or autoneg.
2866 1.1 dyoung * The code below will actually disable it in the HW.
2867 1.1 dyoung */
2868 1.1 dyoung break;
2869 1.1 dyoung case ixgbe_fc_rx_pause:
2870 1.1 dyoung /*
2871 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2872 1.1 dyoung * disabled by software override. Since there really
2873 1.1 dyoung * isn't a way to advertise that we are capable of RX
2874 1.1 dyoung * Pause ONLY, we will advertise that we support both
2875 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2876 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2877 1.1 dyoung */
2878 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2879 1.1 dyoung break;
2880 1.1 dyoung case ixgbe_fc_tx_pause:
2881 1.1 dyoung /*
2882 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2883 1.1 dyoung * disabled by software override.
2884 1.1 dyoung */
2885 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2886 1.1 dyoung break;
2887 1.1 dyoung case ixgbe_fc_full:
2888 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2889 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2890 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2891 1.1 dyoung break;
2892 1.1 dyoung default:
2893 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2894 1.6 msaitoh "Flow control param set incorrectly\n");
2895 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2896 1.1 dyoung goto out;
2897 1.1 dyoung break;
2898 1.1 dyoung }
2899 1.1 dyoung
2900 1.1 dyoung /* Set 802.3x based flow control settings. */
2901 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2902 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2903 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2904 1.1 dyoung
2905 1.1 dyoung
2906 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2907 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2908 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2909 1.4 msaitoh hw->fc.high_water[i]) {
2910 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2911 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2912 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2913 1.4 msaitoh } else {
2914 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2915 1.4 msaitoh /*
2916 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2917 1.4 msaitoh * switch is enabled we must set the high water mark
2918 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2919 1.8 msaitoh * the Tx switch to function even under heavy Rx
2920 1.8 msaitoh * workloads.
2921 1.4 msaitoh */
2922 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2923 1.4 msaitoh }
2924 1.4 msaitoh
2925 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2926 1.1 dyoung }
2927 1.1 dyoung
2928 1.1 dyoung /* Configure pause time (2 TCs per register) */
2929 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2930 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2931 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2932 1.1 dyoung
2933 1.4 msaitoh /* Configure flow control refresh threshold value */
2934 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2935 1.1 dyoung
2936 1.1 dyoung out:
2937 1.1 dyoung return ret_val;
2938 1.1 dyoung }
2939 1.1 dyoung
2940 1.1 dyoung /**
2941 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2942 1.1 dyoung * @hw: pointer to hardware structure
2943 1.4 msaitoh * @adv_reg: flow control advertised settings
2944 1.4 msaitoh * @lp_reg: link partner's flow control settings
2945 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2946 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2947 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2948 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2949 1.1 dyoung *
2950 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2951 1.4 msaitoh * advertised settings
2952 1.1 dyoung **/
2953 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2954 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2955 1.1 dyoung {
2956 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2957 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2958 1.6 msaitoh "Local or link partner's advertised flow control "
2959 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2960 1.6 msaitoh adv_reg, lp_reg);
2961 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2962 1.6 msaitoh }
2963 1.1 dyoung
2964 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2965 1.4 msaitoh /*
2966 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2967 1.4 msaitoh * of pause frames. In this case, we had to advertise
2968 1.4 msaitoh * FULL flow control because we could not advertise RX
2969 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2970 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2971 1.4 msaitoh */
2972 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2973 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2974 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2975 1.4 msaitoh } else {
2976 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2977 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2978 1.4 msaitoh }
2979 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2980 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2981 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2982 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2983 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2984 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2985 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2986 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2987 1.4 msaitoh } else {
2988 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2989 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2990 1.4 msaitoh }
2991 1.4 msaitoh return IXGBE_SUCCESS;
2992 1.4 msaitoh }
2993 1.1 dyoung
2994 1.4 msaitoh /**
2995 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2996 1.4 msaitoh * @hw: pointer to hardware structure
2997 1.4 msaitoh *
2998 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2999 1.4 msaitoh **/
3000 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3001 1.4 msaitoh {
3002 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3003 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3004 1.1 dyoung
3005 1.1 dyoung /*
3006 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3007 1.4 msaitoh * - link is up but AN did not complete, or if
3008 1.4 msaitoh * - link is up and AN completed but timed out
3009 1.1 dyoung */
3010 1.4 msaitoh
3011 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3012 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3013 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3014 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3015 1.1 dyoung goto out;
3016 1.6 msaitoh }
3017 1.1 dyoung
3018 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3019 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3020 1.1 dyoung
3021 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3022 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3023 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3024 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3025 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3026 1.1 dyoung
3027 1.1 dyoung out:
3028 1.1 dyoung return ret_val;
3029 1.1 dyoung }
3030 1.1 dyoung
3031 1.1 dyoung /**
3032 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3033 1.1 dyoung * @hw: pointer to hardware structure
3034 1.1 dyoung *
3035 1.1 dyoung * Enable flow control according to IEEE clause 37.
3036 1.1 dyoung **/
3037 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3038 1.1 dyoung {
3039 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3040 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3041 1.1 dyoung
3042 1.1 dyoung /*
3043 1.1 dyoung * On backplane, bail out if
3044 1.1 dyoung * - backplane autoneg was not completed, or if
3045 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3046 1.1 dyoung */
3047 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3048 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3049 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3050 1.1 dyoung goto out;
3051 1.6 msaitoh }
3052 1.1 dyoung
3053 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3054 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3055 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3056 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3057 1.1 dyoung goto out;
3058 1.6 msaitoh }
3059 1.1 dyoung }
3060 1.1 dyoung /*
3061 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3062 1.1 dyoung * local flow control settings accordingly
3063 1.1 dyoung */
3064 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3065 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3066 1.1 dyoung
3067 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3068 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3069 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3070 1.1 dyoung
3071 1.1 dyoung out:
3072 1.1 dyoung return ret_val;
3073 1.1 dyoung }
3074 1.1 dyoung
3075 1.1 dyoung /**
3076 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3077 1.1 dyoung * @hw: pointer to hardware structure
3078 1.1 dyoung *
3079 1.1 dyoung * Enable flow control according to IEEE clause 37.
3080 1.1 dyoung **/
3081 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3082 1.1 dyoung {
3083 1.1 dyoung u16 technology_ability_reg = 0;
3084 1.1 dyoung u16 lp_technology_ability_reg = 0;
3085 1.1 dyoung
3086 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3087 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3088 1.1 dyoung &technology_ability_reg);
3089 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3090 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3091 1.1 dyoung &lp_technology_ability_reg);
3092 1.1 dyoung
3093 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3094 1.1 dyoung (u32)lp_technology_ability_reg,
3095 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3096 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3097 1.1 dyoung }
3098 1.1 dyoung
3099 1.1 dyoung /**
3100 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3101 1.1 dyoung * @hw: pointer to hardware structure
3102 1.1 dyoung *
3103 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3104 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3105 1.1 dyoung **/
3106 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3107 1.1 dyoung {
3108 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3109 1.4 msaitoh ixgbe_link_speed speed;
3110 1.4 msaitoh bool link_up;
3111 1.1 dyoung
3112 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3113 1.1 dyoung
3114 1.1 dyoung /*
3115 1.4 msaitoh * AN should have completed when the cable was plugged in.
3116 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3117 1.4 msaitoh * - FC autoneg is disabled, or if
3118 1.4 msaitoh * - link is not up.
3119 1.1 dyoung */
3120 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3121 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3122 1.6 msaitoh "Flow control autoneg is disabled");
3123 1.1 dyoung goto out;
3124 1.6 msaitoh }
3125 1.1 dyoung
3126 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3127 1.6 msaitoh if (!link_up) {
3128 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3129 1.1 dyoung goto out;
3130 1.6 msaitoh }
3131 1.1 dyoung
3132 1.1 dyoung switch (hw->phy.media_type) {
3133 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3134 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3135 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3136 1.1 dyoung case ixgbe_media_type_fiber:
3137 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3138 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3139 1.4 msaitoh break;
3140 1.4 msaitoh
3141 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3142 1.1 dyoung case ixgbe_media_type_backplane:
3143 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3144 1.1 dyoung break;
3145 1.1 dyoung
3146 1.4 msaitoh /* Autoneg flow control on copper adapters */
3147 1.1 dyoung case ixgbe_media_type_copper:
3148 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3149 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3150 1.1 dyoung break;
3151 1.1 dyoung
3152 1.1 dyoung default:
3153 1.1 dyoung break;
3154 1.1 dyoung }
3155 1.1 dyoung
3156 1.4 msaitoh out:
3157 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3158 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3159 1.4 msaitoh } else {
3160 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3161 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3162 1.3 msaitoh }
3163 1.1 dyoung }
3164 1.1 dyoung
3165 1.6 msaitoh /*
3166 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3167 1.6 msaitoh * @hw: pointer to hardware structure
3168 1.6 msaitoh *
3169 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3170 1.6 msaitoh *
3171 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3172 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3173 1.6 msaitoh * 800 = 80 millisec.
3174 1.6 msaitoh */
3175 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3176 1.6 msaitoh {
3177 1.6 msaitoh s16 devctl2;
3178 1.6 msaitoh u32 pollcnt;
3179 1.6 msaitoh
3180 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3181 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3182 1.6 msaitoh
3183 1.6 msaitoh switch (devctl2) {
3184 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3185 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3186 1.6 msaitoh break;
3187 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3188 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3189 1.6 msaitoh break;
3190 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3191 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3192 1.6 msaitoh break;
3193 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3194 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3195 1.6 msaitoh break;
3196 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3197 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3198 1.6 msaitoh break;
3199 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3200 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3201 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3202 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3203 1.6 msaitoh default:
3204 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3205 1.6 msaitoh break;
3206 1.6 msaitoh }
3207 1.6 msaitoh
3208 1.6 msaitoh /* add 10% to spec maximum */
3209 1.6 msaitoh return (pollcnt * 11) / 10;
3210 1.6 msaitoh }
3211 1.6 msaitoh
3212 1.1 dyoung /**
3213 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3214 1.1 dyoung * @hw: pointer to hardware structure
3215 1.1 dyoung *
3216 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3217 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3218 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3219 1.1 dyoung * is returned signifying master requests disabled.
3220 1.1 dyoung **/
3221 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3222 1.1 dyoung {
3223 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3224 1.6 msaitoh u32 i, poll;
3225 1.8 msaitoh u16 value;
3226 1.1 dyoung
3227 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3228 1.1 dyoung
3229 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3230 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3231 1.3 msaitoh
3232 1.6 msaitoh /* Exit if master requests are blocked */
3233 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3234 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3235 1.1 dyoung goto out;
3236 1.1 dyoung
3237 1.3 msaitoh /* Poll for master request bit to clear */
3238 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3239 1.3 msaitoh usec_delay(100);
3240 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3241 1.3 msaitoh goto out;
3242 1.1 dyoung }
3243 1.1 dyoung
3244 1.3 msaitoh /*
3245 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3246 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3247 1.3 msaitoh * of this need. The first reset prevents new master requests from
3248 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3249 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3250 1.3 msaitoh * again to clear out any effects they may have had on our device.
3251 1.3 msaitoh */
3252 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3253 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3254 1.1 dyoung
3255 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3256 1.10 msaitoh goto out;
3257 1.10 msaitoh
3258 1.1 dyoung /*
3259 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3260 1.1 dyoung * transactions pending.
3261 1.1 dyoung */
3262 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3263 1.6 msaitoh for (i = 0; i < poll; i++) {
3264 1.3 msaitoh usec_delay(100);
3265 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3266 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3267 1.8 msaitoh goto out;
3268 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3269 1.3 msaitoh goto out;
3270 1.1 dyoung }
3271 1.1 dyoung
3272 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3273 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3274 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3275 1.1 dyoung
3276 1.1 dyoung out:
3277 1.1 dyoung return status;
3278 1.1 dyoung }
3279 1.1 dyoung
3280 1.1 dyoung /**
3281 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3282 1.1 dyoung * @hw: pointer to hardware structure
3283 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3284 1.1 dyoung *
3285 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3286 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3287 1.1 dyoung **/
3288 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3289 1.1 dyoung {
3290 1.6 msaitoh u32 gssr = 0;
3291 1.1 dyoung u32 swmask = mask;
3292 1.1 dyoung u32 fwmask = mask << 5;
3293 1.6 msaitoh u32 timeout = 200;
3294 1.6 msaitoh u32 i;
3295 1.1 dyoung
3296 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3297 1.1 dyoung
3298 1.6 msaitoh for (i = 0; i < timeout; i++) {
3299 1.1 dyoung /*
3300 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3301 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3302 1.1 dyoung */
3303 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3304 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3305 1.1 dyoung
3306 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3307 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3308 1.6 msaitoh gssr |= swmask;
3309 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3310 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3311 1.6 msaitoh return IXGBE_SUCCESS;
3312 1.6 msaitoh } else {
3313 1.6 msaitoh /* Resource is currently in use by FW or SW */
3314 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3315 1.6 msaitoh msec_delay(5);
3316 1.6 msaitoh }
3317 1.1 dyoung }
3318 1.1 dyoung
3319 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3320 1.6 msaitoh if (gssr & (fwmask | swmask))
3321 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3322 1.1 dyoung
3323 1.6 msaitoh msec_delay(5);
3324 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3325 1.1 dyoung }
3326 1.1 dyoung
3327 1.1 dyoung /**
3328 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3329 1.1 dyoung * @hw: pointer to hardware structure
3330 1.1 dyoung * @mask: Mask to specify which semaphore to release
3331 1.1 dyoung *
3332 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3333 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3334 1.1 dyoung **/
3335 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3336 1.1 dyoung {
3337 1.1 dyoung u32 gssr;
3338 1.1 dyoung u32 swmask = mask;
3339 1.1 dyoung
3340 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3341 1.1 dyoung
3342 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3343 1.1 dyoung
3344 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3345 1.1 dyoung gssr &= ~swmask;
3346 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3347 1.1 dyoung
3348 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3349 1.1 dyoung }
3350 1.1 dyoung
3351 1.1 dyoung /**
3352 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3353 1.3 msaitoh * @hw: pointer to hardware structure
3354 1.3 msaitoh *
3355 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3356 1.3 msaitoh * the Rx security block
3357 1.3 msaitoh **/
3358 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3359 1.3 msaitoh {
3360 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3361 1.3 msaitoh
3362 1.3 msaitoh int i;
3363 1.3 msaitoh int secrxreg;
3364 1.3 msaitoh
3365 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3366 1.3 msaitoh
3367 1.3 msaitoh
3368 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3369 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3370 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3371 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3372 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3373 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3374 1.3 msaitoh break;
3375 1.3 msaitoh else
3376 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3377 1.3 msaitoh usec_delay(1000);
3378 1.3 msaitoh }
3379 1.3 msaitoh
3380 1.3 msaitoh /* For informational purposes only */
3381 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3382 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3383 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3384 1.3 msaitoh
3385 1.3 msaitoh return IXGBE_SUCCESS;
3386 1.3 msaitoh }
3387 1.3 msaitoh
3388 1.3 msaitoh /**
3389 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3390 1.8 msaitoh * @hw: pointer to hardware structure
3391 1.8 msaitoh * @reg_val: Value we read from AUTOC
3392 1.8 msaitoh *
3393 1.8 msaitoh * The default case requires no protection so just to the register read.
3394 1.8 msaitoh */
3395 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3396 1.8 msaitoh {
3397 1.8 msaitoh *locked = FALSE;
3398 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3399 1.8 msaitoh return IXGBE_SUCCESS;
3400 1.8 msaitoh }
3401 1.8 msaitoh
3402 1.8 msaitoh /**
3403 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3404 1.8 msaitoh * @hw: pointer to hardware structure
3405 1.8 msaitoh * @reg_val: value to write to AUTOC
3406 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3407 1.8 msaitoh * previous read.
3408 1.8 msaitoh *
3409 1.8 msaitoh * The default case requires no protection so just to the register write.
3410 1.8 msaitoh */
3411 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3412 1.8 msaitoh {
3413 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3414 1.8 msaitoh
3415 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3416 1.8 msaitoh return IXGBE_SUCCESS;
3417 1.8 msaitoh }
3418 1.8 msaitoh
3419 1.8 msaitoh /**
3420 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3421 1.3 msaitoh * @hw: pointer to hardware structure
3422 1.3 msaitoh *
3423 1.3 msaitoh * Enables the receive data path.
3424 1.3 msaitoh **/
3425 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3426 1.3 msaitoh {
3427 1.14 msaitoh u32 secrxreg;
3428 1.3 msaitoh
3429 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3430 1.3 msaitoh
3431 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3432 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3433 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3434 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3435 1.3 msaitoh
3436 1.3 msaitoh return IXGBE_SUCCESS;
3437 1.3 msaitoh }
3438 1.3 msaitoh
3439 1.3 msaitoh /**
3440 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3441 1.1 dyoung * @hw: pointer to hardware structure
3442 1.1 dyoung * @regval: register value to write to RXCTRL
3443 1.1 dyoung *
3444 1.1 dyoung * Enables the Rx DMA unit
3445 1.1 dyoung **/
3446 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3447 1.1 dyoung {
3448 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3449 1.1 dyoung
3450 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3451 1.8 msaitoh ixgbe_enable_rx(hw);
3452 1.8 msaitoh else
3453 1.8 msaitoh ixgbe_disable_rx(hw);
3454 1.1 dyoung
3455 1.1 dyoung return IXGBE_SUCCESS;
3456 1.1 dyoung }
3457 1.1 dyoung
3458 1.1 dyoung /**
3459 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3460 1.1 dyoung * @hw: pointer to hardware structure
3461 1.1 dyoung * @index: led number to blink
3462 1.1 dyoung **/
3463 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3464 1.1 dyoung {
3465 1.1 dyoung ixgbe_link_speed speed = 0;
3466 1.1 dyoung bool link_up = 0;
3467 1.8 msaitoh u32 autoc_reg = 0;
3468 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3469 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3470 1.8 msaitoh bool locked = FALSE;
3471 1.1 dyoung
3472 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3473 1.1 dyoung
3474 1.14 msaitoh if (index > 3)
3475 1.14 msaitoh return IXGBE_ERR_PARAM;
3476 1.14 msaitoh
3477 1.1 dyoung /*
3478 1.1 dyoung * Link must be up to auto-blink the LEDs;
3479 1.1 dyoung * Force it if link is down.
3480 1.1 dyoung */
3481 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3482 1.1 dyoung
3483 1.1 dyoung if (!link_up) {
3484 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3485 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3486 1.8 msaitoh goto out;
3487 1.5 msaitoh
3488 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3489 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3490 1.8 msaitoh
3491 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3492 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3493 1.8 msaitoh goto out;
3494 1.8 msaitoh
3495 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3496 1.1 dyoung msec_delay(10);
3497 1.1 dyoung }
3498 1.1 dyoung
3499 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3500 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3501 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3502 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3503 1.1 dyoung
3504 1.5 msaitoh out:
3505 1.5 msaitoh return ret_val;
3506 1.1 dyoung }
3507 1.1 dyoung
3508 1.1 dyoung /**
3509 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3510 1.1 dyoung * @hw: pointer to hardware structure
3511 1.1 dyoung * @index: led number to stop blinking
3512 1.1 dyoung **/
3513 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3514 1.1 dyoung {
3515 1.8 msaitoh u32 autoc_reg = 0;
3516 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3517 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3518 1.8 msaitoh bool locked = FALSE;
3519 1.1 dyoung
3520 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3521 1.1 dyoung
3522 1.14 msaitoh if (index > 3)
3523 1.14 msaitoh return IXGBE_ERR_PARAM;
3524 1.14 msaitoh
3525 1.14 msaitoh
3526 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3527 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3528 1.8 msaitoh goto out;
3529 1.1 dyoung
3530 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3531 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3532 1.1 dyoung
3533 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3534 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3535 1.8 msaitoh goto out;
3536 1.5 msaitoh
3537 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3538 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3539 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3540 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3541 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3542 1.1 dyoung
3543 1.5 msaitoh out:
3544 1.5 msaitoh return ret_val;
3545 1.1 dyoung }
3546 1.1 dyoung
3547 1.1 dyoung /**
3548 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3549 1.1 dyoung * @hw: pointer to hardware structure
3550 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3551 1.1 dyoung *
3552 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3553 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3554 1.1 dyoung * get and set mac_addr routines.
3555 1.1 dyoung **/
3556 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3557 1.3 msaitoh u16 *san_mac_offset)
3558 1.1 dyoung {
3559 1.6 msaitoh s32 ret_val;
3560 1.6 msaitoh
3561 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3562 1.1 dyoung
3563 1.1 dyoung /*
3564 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3565 1.1 dyoung * available.
3566 1.1 dyoung */
3567 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3568 1.6 msaitoh san_mac_offset);
3569 1.6 msaitoh if (ret_val) {
3570 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3571 1.6 msaitoh "eeprom at offset %d failed",
3572 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3573 1.6 msaitoh }
3574 1.1 dyoung
3575 1.6 msaitoh return ret_val;
3576 1.1 dyoung }
3577 1.1 dyoung
3578 1.1 dyoung /**
3579 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3580 1.1 dyoung * @hw: pointer to hardware structure
3581 1.1 dyoung * @san_mac_addr: SAN MAC address
3582 1.1 dyoung *
3583 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3584 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3585 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3586 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3587 1.1 dyoung **/
3588 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3589 1.1 dyoung {
3590 1.1 dyoung u16 san_mac_data, san_mac_offset;
3591 1.1 dyoung u8 i;
3592 1.6 msaitoh s32 ret_val;
3593 1.1 dyoung
3594 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3595 1.1 dyoung
3596 1.1 dyoung /*
3597 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3598 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3599 1.1 dyoung */
3600 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3601 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3602 1.1 dyoung goto san_mac_addr_out;
3603 1.1 dyoung
3604 1.1 dyoung /* make sure we know which port we need to program */
3605 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3606 1.1 dyoung /* apply the port offset to the address offset */
3607 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3608 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3609 1.1 dyoung for (i = 0; i < 3; i++) {
3610 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3611 1.6 msaitoh &san_mac_data);
3612 1.6 msaitoh if (ret_val) {
3613 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3614 1.6 msaitoh "eeprom read at offset %d failed",
3615 1.6 msaitoh san_mac_offset);
3616 1.6 msaitoh goto san_mac_addr_out;
3617 1.6 msaitoh }
3618 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3619 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3620 1.1 dyoung san_mac_offset++;
3621 1.1 dyoung }
3622 1.6 msaitoh return IXGBE_SUCCESS;
3623 1.1 dyoung
3624 1.1 dyoung san_mac_addr_out:
3625 1.6 msaitoh /*
3626 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3627 1.6 msaitoh * error though, so just wipe the local address and return.
3628 1.6 msaitoh */
3629 1.6 msaitoh for (i = 0; i < 6; i++)
3630 1.6 msaitoh san_mac_addr[i] = 0xFF;
3631 1.1 dyoung return IXGBE_SUCCESS;
3632 1.1 dyoung }
3633 1.1 dyoung
3634 1.1 dyoung /**
3635 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3636 1.1 dyoung * @hw: pointer to hardware structure
3637 1.1 dyoung * @san_mac_addr: SAN MAC address
3638 1.1 dyoung *
3639 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3640 1.1 dyoung **/
3641 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3642 1.1 dyoung {
3643 1.6 msaitoh s32 ret_val;
3644 1.1 dyoung u16 san_mac_data, san_mac_offset;
3645 1.1 dyoung u8 i;
3646 1.1 dyoung
3647 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3648 1.1 dyoung
3649 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3650 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3651 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3652 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3653 1.1 dyoung
3654 1.1 dyoung /* Make sure we know which port we need to write */
3655 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3656 1.1 dyoung /* Apply the port offset to the address offset */
3657 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3658 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3659 1.1 dyoung
3660 1.1 dyoung for (i = 0; i < 3; i++) {
3661 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3662 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3663 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3664 1.1 dyoung san_mac_offset++;
3665 1.1 dyoung }
3666 1.1 dyoung
3667 1.6 msaitoh return IXGBE_SUCCESS;
3668 1.1 dyoung }
3669 1.1 dyoung
3670 1.1 dyoung /**
3671 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3672 1.1 dyoung * @hw: pointer to hardware structure
3673 1.1 dyoung *
3674 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3675 1.1 dyoung * the capabilities table.
3676 1.1 dyoung **/
3677 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3678 1.1 dyoung {
3679 1.4 msaitoh u16 msix_count = 1;
3680 1.4 msaitoh u16 max_msix_count;
3681 1.4 msaitoh u16 pcie_offset;
3682 1.4 msaitoh
3683 1.4 msaitoh switch (hw->mac.type) {
3684 1.4 msaitoh case ixgbe_mac_82598EB:
3685 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3686 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3687 1.4 msaitoh break;
3688 1.4 msaitoh case ixgbe_mac_82599EB:
3689 1.4 msaitoh case ixgbe_mac_X540:
3690 1.8 msaitoh case ixgbe_mac_X550:
3691 1.8 msaitoh case ixgbe_mac_X550EM_x:
3692 1.14 msaitoh case ixgbe_mac_X550EM_a:
3693 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3694 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3695 1.4 msaitoh break;
3696 1.4 msaitoh default:
3697 1.4 msaitoh return msix_count;
3698 1.4 msaitoh }
3699 1.1 dyoung
3700 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3701 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3702 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3703 1.8 msaitoh msix_count = 0;
3704 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3705 1.4 msaitoh
3706 1.4 msaitoh /* MSI-X count is zero-based in HW */
3707 1.4 msaitoh msix_count++;
3708 1.4 msaitoh
3709 1.4 msaitoh if (msix_count > max_msix_count)
3710 1.4 msaitoh msix_count = max_msix_count;
3711 1.1 dyoung
3712 1.1 dyoung return msix_count;
3713 1.1 dyoung }
3714 1.1 dyoung
3715 1.1 dyoung /**
3716 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3717 1.1 dyoung * @hw: pointer to hardware structure
3718 1.1 dyoung * @addr: Address to put into receive address register
3719 1.1 dyoung * @vmdq: VMDq pool to assign
3720 1.1 dyoung *
3721 1.1 dyoung * Puts an ethernet address into a receive address register, or
3722 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3723 1.1 dyoung **/
3724 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3725 1.1 dyoung {
3726 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3727 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3728 1.1 dyoung u32 rar;
3729 1.1 dyoung u32 rar_low, rar_high;
3730 1.1 dyoung u32 addr_low, addr_high;
3731 1.1 dyoung
3732 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3733 1.1 dyoung
3734 1.1 dyoung /* swap bytes for HW little endian */
3735 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3736 1.1 dyoung | (addr[2] << 16)
3737 1.1 dyoung | (addr[3] << 24);
3738 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3739 1.1 dyoung
3740 1.1 dyoung /*
3741 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3742 1.1 dyoung * rar_highwater points to just after the highest currently used
3743 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3744 1.1 dyoung * rar to the top.
3745 1.1 dyoung */
3746 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3747 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3748 1.1 dyoung
3749 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3750 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3751 1.1 dyoung first_empty_rar = rar;
3752 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3753 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3754 1.1 dyoung if (rar_low == addr_low)
3755 1.1 dyoung break; /* found it already in the rars */
3756 1.1 dyoung }
3757 1.1 dyoung }
3758 1.1 dyoung
3759 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3760 1.1 dyoung /* already there so just add to the pool bits */
3761 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3762 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3763 1.1 dyoung /* stick it into first empty RAR slot we found */
3764 1.1 dyoung rar = first_empty_rar;
3765 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3766 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3767 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3768 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3769 1.1 dyoung hw->mac.rar_highwater++;
3770 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3771 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3772 1.1 dyoung }
3773 1.1 dyoung
3774 1.1 dyoung /*
3775 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3776 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3777 1.1 dyoung */
3778 1.1 dyoung if (rar == 0)
3779 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3780 1.1 dyoung
3781 1.1 dyoung return rar;
3782 1.1 dyoung }
3783 1.1 dyoung
3784 1.1 dyoung /**
3785 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3786 1.1 dyoung * @hw: pointer to hardware struct
3787 1.1 dyoung * @rar: receive address register index to disassociate
3788 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3789 1.1 dyoung **/
3790 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3791 1.1 dyoung {
3792 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3793 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3794 1.1 dyoung
3795 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3796 1.1 dyoung
3797 1.1 dyoung /* Make sure we are using a valid rar index range */
3798 1.1 dyoung if (rar >= rar_entries) {
3799 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3800 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3801 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3802 1.1 dyoung }
3803 1.1 dyoung
3804 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3805 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3806 1.1 dyoung
3807 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3808 1.8 msaitoh goto done;
3809 1.8 msaitoh
3810 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3811 1.1 dyoung goto done;
3812 1.1 dyoung
3813 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3814 1.1 dyoung if (mpsar_lo) {
3815 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3816 1.1 dyoung mpsar_lo = 0;
3817 1.1 dyoung }
3818 1.1 dyoung if (mpsar_hi) {
3819 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3820 1.1 dyoung mpsar_hi = 0;
3821 1.1 dyoung }
3822 1.1 dyoung } else if (vmdq < 32) {
3823 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3824 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3825 1.1 dyoung } else {
3826 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3827 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3828 1.1 dyoung }
3829 1.1 dyoung
3830 1.1 dyoung /* was that the last pool using this rar? */
3831 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3832 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3833 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3834 1.1 dyoung done:
3835 1.1 dyoung return IXGBE_SUCCESS;
3836 1.1 dyoung }
3837 1.1 dyoung
3838 1.1 dyoung /**
3839 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3840 1.1 dyoung * @hw: pointer to hardware struct
3841 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3842 1.1 dyoung * @vmdq: VMDq pool index
3843 1.1 dyoung **/
3844 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3845 1.1 dyoung {
3846 1.1 dyoung u32 mpsar;
3847 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3848 1.1 dyoung
3849 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3850 1.1 dyoung
3851 1.1 dyoung /* Make sure we are using a valid rar index range */
3852 1.1 dyoung if (rar >= rar_entries) {
3853 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3854 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3855 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3856 1.1 dyoung }
3857 1.1 dyoung
3858 1.1 dyoung if (vmdq < 32) {
3859 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3860 1.1 dyoung mpsar |= 1 << vmdq;
3861 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3862 1.1 dyoung } else {
3863 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3864 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3865 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3866 1.1 dyoung }
3867 1.1 dyoung return IXGBE_SUCCESS;
3868 1.1 dyoung }
3869 1.1 dyoung
3870 1.1 dyoung /**
3871 1.4 msaitoh * This function should only be involved in the IOV mode.
3872 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3873 1.4 msaitoh * VFs advertized and not 0.
3874 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3875 1.4 msaitoh *
3876 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3877 1.4 msaitoh * @hw: pointer to hardware struct
3878 1.4 msaitoh * @vmdq: VMDq pool index
3879 1.4 msaitoh **/
3880 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3881 1.4 msaitoh {
3882 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3883 1.4 msaitoh
3884 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3885 1.4 msaitoh
3886 1.4 msaitoh if (vmdq < 32) {
3887 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3888 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3889 1.4 msaitoh } else {
3890 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3891 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3892 1.4 msaitoh }
3893 1.4 msaitoh
3894 1.4 msaitoh return IXGBE_SUCCESS;
3895 1.4 msaitoh }
3896 1.4 msaitoh
3897 1.4 msaitoh /**
3898 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3899 1.1 dyoung * @hw: pointer to hardware structure
3900 1.1 dyoung **/
3901 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3902 1.1 dyoung {
3903 1.1 dyoung int i;
3904 1.1 dyoung
3905 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3906 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3907 1.1 dyoung
3908 1.1 dyoung for (i = 0; i < 128; i++)
3909 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3910 1.1 dyoung
3911 1.1 dyoung return IXGBE_SUCCESS;
3912 1.1 dyoung }
3913 1.1 dyoung
3914 1.1 dyoung /**
3915 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3916 1.1 dyoung * @hw: pointer to hardware structure
3917 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3918 1.1 dyoung *
3919 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3920 1.1 dyoung *
3921 1.1 dyoung **/
3922 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3923 1.1 dyoung {
3924 1.14 msaitoh s32 regindex, first_empty_slot;
3925 1.14 msaitoh u32 bits;
3926 1.1 dyoung
3927 1.1 dyoung /* short cut the special case */
3928 1.1 dyoung if (vlan == 0)
3929 1.1 dyoung return 0;
3930 1.1 dyoung
3931 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3932 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3933 1.14 msaitoh * VLVF that contain our VLAN
3934 1.14 msaitoh */
3935 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3936 1.14 msaitoh
3937 1.14 msaitoh /* add VLAN enable bit for comparison */
3938 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3939 1.14 msaitoh
3940 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3941 1.14 msaitoh * slot found along the way.
3942 1.14 msaitoh *
3943 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3944 1.14 msaitoh */
3945 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3946 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3947 1.14 msaitoh if (bits == vlan)
3948 1.14 msaitoh return regindex;
3949 1.14 msaitoh if (!first_empty_slot && !bits)
3950 1.1 dyoung first_empty_slot = regindex;
3951 1.1 dyoung }
3952 1.1 dyoung
3953 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3954 1.14 msaitoh * slot we found during our search, else error.
3955 1.14 msaitoh */
3956 1.14 msaitoh if (!first_empty_slot)
3957 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3958 1.1 dyoung
3959 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3960 1.1 dyoung }
3961 1.1 dyoung
3962 1.1 dyoung /**
3963 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3964 1.1 dyoung * @hw: pointer to hardware structure
3965 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3966 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3967 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3968 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3969 1.1 dyoung *
3970 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3971 1.1 dyoung **/
3972 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3973 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
3974 1.1 dyoung {
3975 1.14 msaitoh u32 regidx, vfta_delta, vfta;
3976 1.14 msaitoh s32 ret_val;
3977 1.1 dyoung
3978 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3979 1.1 dyoung
3980 1.14 msaitoh if (vlan > 4095 || vind > 63)
3981 1.1 dyoung return IXGBE_ERR_PARAM;
3982 1.1 dyoung
3983 1.1 dyoung /*
3984 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3985 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3986 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3987 1.1 dyoung */
3988 1.1 dyoung
3989 1.1 dyoung /* Part 1
3990 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3991 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3992 1.1 dyoung * bits[11-5]: which register
3993 1.1 dyoung * bits[4-0]: which bit in the register
3994 1.1 dyoung */
3995 1.14 msaitoh regidx = vlan / 32;
3996 1.14 msaitoh vfta_delta = 1 << (vlan % 32);
3997 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3998 1.14 msaitoh
3999 1.14 msaitoh /*
4000 1.14 msaitoh * vfta_delta represents the difference between the current value
4001 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4002 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4003 1.14 msaitoh */
4004 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4005 1.14 msaitoh vfta ^= vfta_delta;
4006 1.1 dyoung
4007 1.1 dyoung /* Part 2
4008 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4009 1.3 msaitoh */
4010 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4011 1.14 msaitoh vfta, vlvf_bypass);
4012 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4013 1.14 msaitoh if (vlvf_bypass)
4014 1.14 msaitoh goto vfta_update;
4015 1.3 msaitoh return ret_val;
4016 1.14 msaitoh }
4017 1.3 msaitoh
4018 1.14 msaitoh vfta_update:
4019 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4020 1.14 msaitoh if (vfta_delta)
4021 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4022 1.3 msaitoh
4023 1.3 msaitoh return IXGBE_SUCCESS;
4024 1.3 msaitoh }
4025 1.3 msaitoh
4026 1.3 msaitoh /**
4027 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4028 1.3 msaitoh * @hw: pointer to hardware structure
4029 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
4030 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4031 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4032 1.14 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4033 1.14 msaitoh * and the desired value
4034 1.14 msaitoh * @vfta: the desired value of the VFTA
4035 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4036 1.3 msaitoh *
4037 1.3 msaitoh * Turn on/off specified bit in VLVF table.
4038 1.3 msaitoh **/
4039 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4040 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4041 1.14 msaitoh bool vlvf_bypass)
4042 1.3 msaitoh {
4043 1.14 msaitoh u32 bits;
4044 1.14 msaitoh s32 vlvf_index;
4045 1.3 msaitoh
4046 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4047 1.3 msaitoh
4048 1.14 msaitoh if (vlan > 4095 || vind > 63)
4049 1.3 msaitoh return IXGBE_ERR_PARAM;
4050 1.3 msaitoh
4051 1.3 msaitoh /* If VT Mode is set
4052 1.1 dyoung * Either vlan_on
4053 1.1 dyoung * make sure the vlan is in VLVF
4054 1.1 dyoung * set the vind bit in the matching VLVFB
4055 1.1 dyoung * Or !vlan_on
4056 1.1 dyoung * clear the pool bit and possibly the vind
4057 1.1 dyoung */
4058 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4059 1.14 msaitoh return IXGBE_SUCCESS;
4060 1.1 dyoung
4061 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4062 1.14 msaitoh if (vlvf_index < 0)
4063 1.14 msaitoh return vlvf_index;
4064 1.14 msaitoh
4065 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4066 1.14 msaitoh
4067 1.14 msaitoh /* set the pool bit */
4068 1.14 msaitoh bits |= 1 << (vind % 32);
4069 1.14 msaitoh if (vlan_on)
4070 1.14 msaitoh goto vlvf_update;
4071 1.14 msaitoh
4072 1.14 msaitoh /* clear the pool bit */
4073 1.14 msaitoh bits ^= 1 << (vind % 32);
4074 1.14 msaitoh
4075 1.14 msaitoh if (!bits &&
4076 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4077 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4078 1.14 msaitoh * we run the risk of stray packets leaking into
4079 1.14 msaitoh * the PF via the default pool
4080 1.1 dyoung */
4081 1.14 msaitoh if (*vfta_delta)
4082 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4083 1.14 msaitoh
4084 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4085 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4086 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4087 1.14 msaitoh
4088 1.14 msaitoh return IXGBE_SUCCESS;
4089 1.1 dyoung }
4090 1.1 dyoung
4091 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4092 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4093 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4094 1.14 msaitoh * If the caller has requested that we clear the VFTA
4095 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4096 1.14 msaitoh * ID entry then ignore the request. We're not worried
4097 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4098 1.14 msaitoh * entry bit on, only when requested to turn it off as
4099 1.14 msaitoh * there may be multiple pools and/or VFs using the
4100 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4101 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4102 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4103 1.14 msaitoh * zero.
4104 1.14 msaitoh */
4105 1.14 msaitoh *vfta_delta = 0;
4106 1.14 msaitoh
4107 1.14 msaitoh vlvf_update:
4108 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4109 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4110 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4111 1.14 msaitoh
4112 1.1 dyoung return IXGBE_SUCCESS;
4113 1.1 dyoung }
4114 1.1 dyoung
4115 1.1 dyoung /**
4116 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4117 1.1 dyoung * @hw: pointer to hardware structure
4118 1.1 dyoung *
4119 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4120 1.1 dyoung **/
4121 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4122 1.1 dyoung {
4123 1.1 dyoung u32 offset;
4124 1.1 dyoung
4125 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4126 1.1 dyoung
4127 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4128 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4129 1.1 dyoung
4130 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4131 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4132 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4133 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4134 1.1 dyoung }
4135 1.1 dyoung
4136 1.1 dyoung return IXGBE_SUCCESS;
4137 1.1 dyoung }
4138 1.1 dyoung
4139 1.1 dyoung /**
4140 1.14 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4141 1.14 msaitoh * @hw: pointer to hardware structure
4142 1.14 msaitoh *
4143 1.14 msaitoh * Contains the logic to identify if we need to verify link for the
4144 1.14 msaitoh * crosstalk fix
4145 1.14 msaitoh **/
4146 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4147 1.14 msaitoh {
4148 1.14 msaitoh
4149 1.14 msaitoh /* Does FW say we need the fix */
4150 1.14 msaitoh if (!hw->need_crosstalk_fix)
4151 1.14 msaitoh return FALSE;
4152 1.14 msaitoh
4153 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4154 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4155 1.14 msaitoh case ixgbe_media_type_fiber:
4156 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4157 1.14 msaitoh break;
4158 1.14 msaitoh default:
4159 1.14 msaitoh return FALSE;
4160 1.14 msaitoh }
4161 1.14 msaitoh
4162 1.14 msaitoh return TRUE;
4163 1.14 msaitoh }
4164 1.14 msaitoh
4165 1.14 msaitoh /**
4166 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4167 1.1 dyoung * @hw: pointer to hardware structure
4168 1.1 dyoung * @speed: pointer to link speed
4169 1.1 dyoung * @link_up: TRUE when link is up
4170 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4171 1.1 dyoung *
4172 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4173 1.1 dyoung **/
4174 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4175 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4176 1.1 dyoung {
4177 1.1 dyoung u32 links_reg, links_orig;
4178 1.1 dyoung u32 i;
4179 1.1 dyoung
4180 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4181 1.1 dyoung
4182 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4183 1.14 msaitoh * the SFP+ cage is full.
4184 1.14 msaitoh */
4185 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4186 1.14 msaitoh u32 sfp_cage_full;
4187 1.14 msaitoh
4188 1.14 msaitoh switch (hw->mac.type) {
4189 1.14 msaitoh case ixgbe_mac_82599EB:
4190 1.14 msaitoh sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4191 1.14 msaitoh IXGBE_ESDP_SDP2;
4192 1.14 msaitoh break;
4193 1.14 msaitoh case ixgbe_mac_X550EM_x:
4194 1.14 msaitoh case ixgbe_mac_X550EM_a:
4195 1.14 msaitoh sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4196 1.14 msaitoh IXGBE_ESDP_SDP0;
4197 1.14 msaitoh break;
4198 1.14 msaitoh default:
4199 1.14 msaitoh /* sanity check - No SFP+ devices here */
4200 1.14 msaitoh sfp_cage_full = FALSE;
4201 1.14 msaitoh break;
4202 1.14 msaitoh }
4203 1.14 msaitoh
4204 1.14 msaitoh if (!sfp_cage_full) {
4205 1.14 msaitoh *link_up = FALSE;
4206 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4207 1.14 msaitoh return IXGBE_SUCCESS;
4208 1.14 msaitoh }
4209 1.14 msaitoh }
4210 1.14 msaitoh
4211 1.1 dyoung /* clear the old state */
4212 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4213 1.1 dyoung
4214 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4215 1.1 dyoung
4216 1.1 dyoung if (links_orig != links_reg) {
4217 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4218 1.3 msaitoh links_orig, links_reg);
4219 1.1 dyoung }
4220 1.1 dyoung
4221 1.1 dyoung if (link_up_wait_to_complete) {
4222 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4223 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4224 1.1 dyoung *link_up = TRUE;
4225 1.1 dyoung break;
4226 1.1 dyoung } else {
4227 1.1 dyoung *link_up = FALSE;
4228 1.1 dyoung }
4229 1.1 dyoung msec_delay(100);
4230 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4231 1.1 dyoung }
4232 1.1 dyoung } else {
4233 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4234 1.1 dyoung *link_up = TRUE;
4235 1.1 dyoung else
4236 1.1 dyoung *link_up = FALSE;
4237 1.1 dyoung }
4238 1.1 dyoung
4239 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4240 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4241 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4242 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4243 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4244 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4245 1.8 msaitoh }
4246 1.8 msaitoh break;
4247 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4248 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4249 1.8 msaitoh break;
4250 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4251 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4252 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4253 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4254 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4255 1.8 msaitoh }
4256 1.8 msaitoh break;
4257 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4258 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4259 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4260 1.14 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
4261 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4262 1.14 msaitoh }
4263 1.14 msaitoh break;
4264 1.8 msaitoh default:
4265 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4266 1.8 msaitoh }
4267 1.1 dyoung
4268 1.1 dyoung return IXGBE_SUCCESS;
4269 1.1 dyoung }
4270 1.1 dyoung
4271 1.1 dyoung /**
4272 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4273 1.1 dyoung * the EEPROM
4274 1.1 dyoung * @hw: pointer to hardware structure
4275 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4276 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4277 1.1 dyoung *
4278 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4279 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4280 1.1 dyoung **/
4281 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4282 1.3 msaitoh u16 *wwpn_prefix)
4283 1.1 dyoung {
4284 1.1 dyoung u16 offset, caps;
4285 1.1 dyoung u16 alt_san_mac_blk_offset;
4286 1.1 dyoung
4287 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4288 1.1 dyoung
4289 1.1 dyoung /* clear output first */
4290 1.1 dyoung *wwnn_prefix = 0xFFFF;
4291 1.1 dyoung *wwpn_prefix = 0xFFFF;
4292 1.1 dyoung
4293 1.1 dyoung /* check if alternative SAN MAC is supported */
4294 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4295 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4296 1.6 msaitoh goto wwn_prefix_err;
4297 1.1 dyoung
4298 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4299 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4300 1.1 dyoung goto wwn_prefix_out;
4301 1.1 dyoung
4302 1.1 dyoung /* check capability in alternative san mac address block */
4303 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4304 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4305 1.6 msaitoh goto wwn_prefix_err;
4306 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4307 1.1 dyoung goto wwn_prefix_out;
4308 1.1 dyoung
4309 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4310 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4311 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4312 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4313 1.6 msaitoh "eeprom read at offset %d failed", offset);
4314 1.6 msaitoh }
4315 1.1 dyoung
4316 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4317 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4318 1.6 msaitoh goto wwn_prefix_err;
4319 1.1 dyoung
4320 1.1 dyoung wwn_prefix_out:
4321 1.1 dyoung return IXGBE_SUCCESS;
4322 1.6 msaitoh
4323 1.6 msaitoh wwn_prefix_err:
4324 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4325 1.6 msaitoh "eeprom read at offset %d failed", offset);
4326 1.6 msaitoh return IXGBE_SUCCESS;
4327 1.1 dyoung }
4328 1.1 dyoung
4329 1.1 dyoung /**
4330 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4331 1.1 dyoung * @hw: pointer to hardware structure
4332 1.1 dyoung * @bs: the fcoe boot status
4333 1.1 dyoung *
4334 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4335 1.1 dyoung **/
4336 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4337 1.1 dyoung {
4338 1.1 dyoung u16 offset, caps, flags;
4339 1.1 dyoung s32 status;
4340 1.1 dyoung
4341 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4342 1.1 dyoung
4343 1.1 dyoung /* clear output first */
4344 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4345 1.1 dyoung
4346 1.1 dyoung /* check if FCOE IBA block is present */
4347 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4348 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4349 1.1 dyoung if (status != IXGBE_SUCCESS)
4350 1.1 dyoung goto out;
4351 1.1 dyoung
4352 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4353 1.1 dyoung goto out;
4354 1.1 dyoung
4355 1.1 dyoung /* check if iSCSI FCOE block is populated */
4356 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4357 1.1 dyoung if (status != IXGBE_SUCCESS)
4358 1.1 dyoung goto out;
4359 1.1 dyoung
4360 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4361 1.1 dyoung goto out;
4362 1.1 dyoung
4363 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4364 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4365 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4366 1.1 dyoung if (status != IXGBE_SUCCESS)
4367 1.1 dyoung goto out;
4368 1.1 dyoung
4369 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4370 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4371 1.1 dyoung else
4372 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4373 1.1 dyoung
4374 1.1 dyoung out:
4375 1.1 dyoung return status;
4376 1.1 dyoung }
4377 1.1 dyoung
4378 1.1 dyoung /**
4379 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4380 1.1 dyoung * @hw: pointer to hardware structure
4381 1.14 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4382 1.14 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4383 1.1 dyoung *
4384 1.1 dyoung **/
4385 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4386 1.1 dyoung {
4387 1.14 msaitoh int vf_target_reg = vf >> 3;
4388 1.14 msaitoh int vf_target_shift = vf % 8;
4389 1.14 msaitoh u32 pfvfspoof;
4390 1.1 dyoung
4391 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4392 1.1 dyoung return;
4393 1.1 dyoung
4394 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4395 1.1 dyoung if (enable)
4396 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4397 1.14 msaitoh else
4398 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4399 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4400 1.1 dyoung }
4401 1.1 dyoung
4402 1.1 dyoung /**
4403 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4404 1.1 dyoung * @hw: pointer to hardware structure
4405 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4406 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4407 1.1 dyoung *
4408 1.1 dyoung **/
4409 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4410 1.1 dyoung {
4411 1.1 dyoung int vf_target_reg = vf >> 3;
4412 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4413 1.1 dyoung u32 pfvfspoof;
4414 1.1 dyoung
4415 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4416 1.1 dyoung return;
4417 1.1 dyoung
4418 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4419 1.1 dyoung if (enable)
4420 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4421 1.1 dyoung else
4422 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4423 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4424 1.1 dyoung }
4425 1.1 dyoung
4426 1.1 dyoung /**
4427 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4428 1.1 dyoung * @hw: pointer to hardware structure
4429 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4430 1.1 dyoung *
4431 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4432 1.1 dyoung * and return the word through device_caps.
4433 1.1 dyoung **/
4434 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4435 1.1 dyoung {
4436 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4437 1.1 dyoung
4438 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4439 1.1 dyoung
4440 1.1 dyoung return IXGBE_SUCCESS;
4441 1.1 dyoung }
4442 1.1 dyoung
4443 1.1 dyoung /**
4444 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4445 1.1 dyoung * @hw: pointer to hardware structure
4446 1.1 dyoung *
4447 1.1 dyoung **/
4448 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4449 1.1 dyoung {
4450 1.1 dyoung u32 regval;
4451 1.1 dyoung u32 i;
4452 1.1 dyoung
4453 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4454 1.1 dyoung
4455 1.1 dyoung /* Enable relaxed ordering */
4456 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4457 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4458 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4459 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4460 1.1 dyoung }
4461 1.1 dyoung
4462 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4463 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4464 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4465 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4466 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4467 1.1 dyoung }
4468 1.1 dyoung
4469 1.1 dyoung }
4470 1.3 msaitoh
4471 1.3 msaitoh /**
4472 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4473 1.3 msaitoh * @buffer: pointer to EEPROM
4474 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4475 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4476 1.3 msaitoh * checksum calculated is returned.
4477 1.3 msaitoh **/
4478 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4479 1.3 msaitoh {
4480 1.3 msaitoh u32 i;
4481 1.3 msaitoh u8 sum = 0;
4482 1.3 msaitoh
4483 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4484 1.3 msaitoh
4485 1.3 msaitoh if (!buffer)
4486 1.3 msaitoh return 0;
4487 1.3 msaitoh
4488 1.3 msaitoh for (i = 0; i < length; i++)
4489 1.3 msaitoh sum += buffer[i];
4490 1.3 msaitoh
4491 1.3 msaitoh return (u8) (0 - sum);
4492 1.3 msaitoh }
4493 1.3 msaitoh
4494 1.3 msaitoh /**
4495 1.14 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4496 1.3 msaitoh * @hw: pointer to the HW structure
4497 1.14 msaitoh * @buffer: command to write and where the return status will be placed
4498 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4499 1.8 msaitoh * @timeout: time in ms to wait for command completion
4500 1.3 msaitoh *
4501 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4502 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4503 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4504 1.14 msaitoh *
4505 1.14 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4506 1.14 msaitoh * by the caller.
4507 1.3 msaitoh **/
4508 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4509 1.14 msaitoh u32 timeout)
4510 1.3 msaitoh {
4511 1.14 msaitoh u32 hicr, i, fwsts;
4512 1.8 msaitoh u16 dword_len;
4513 1.3 msaitoh
4514 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4515 1.3 msaitoh
4516 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4517 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4518 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4519 1.8 msaitoh }
4520 1.14 msaitoh
4521 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4522 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4523 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4524 1.3 msaitoh
4525 1.3 msaitoh /* Check that the host interface is enabled. */
4526 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4527 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4528 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4529 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4530 1.8 msaitoh }
4531 1.8 msaitoh
4532 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4533 1.14 msaitoh if (length % sizeof(u32)) {
4534 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4535 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4536 1.3 msaitoh }
4537 1.3 msaitoh
4538 1.3 msaitoh dword_len = length >> 2;
4539 1.3 msaitoh
4540 1.8 msaitoh /* The device driver writes the relevant command block
4541 1.3 msaitoh * into the ram area.
4542 1.3 msaitoh */
4543 1.3 msaitoh for (i = 0; i < dword_len; i++)
4544 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4545 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4546 1.3 msaitoh
4547 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4548 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4549 1.3 msaitoh
4550 1.8 msaitoh for (i = 0; i < timeout; i++) {
4551 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4552 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4553 1.3 msaitoh break;
4554 1.3 msaitoh msec_delay(1);
4555 1.3 msaitoh }
4556 1.3 msaitoh
4557 1.8 msaitoh /* Check command completion */
4558 1.14 msaitoh if ((timeout && i == timeout) ||
4559 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4560 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4561 1.8 msaitoh "Command has failed with no status valid.\n");
4562 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4563 1.3 msaitoh }
4564 1.3 msaitoh
4565 1.14 msaitoh return IXGBE_SUCCESS;
4566 1.14 msaitoh }
4567 1.14 msaitoh
4568 1.14 msaitoh /**
4569 1.14 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4570 1.14 msaitoh * @hw: pointer to the HW structure
4571 1.14 msaitoh * @buffer: contains the command to write and where the return status will
4572 1.14 msaitoh * be placed
4573 1.14 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4574 1.14 msaitoh * @timeout: time in ms to wait for command completion
4575 1.14 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4576 1.14 msaitoh * Needed because FW structures are big endian and decoding of
4577 1.14 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4578 1.14 msaitoh * is not easily understood without making a table of commands.
4579 1.14 msaitoh * So we will leave this up to the caller to read back the data
4580 1.14 msaitoh * in these cases.
4581 1.14 msaitoh *
4582 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4583 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4584 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4585 1.14 msaitoh **/
4586 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4587 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4588 1.14 msaitoh {
4589 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4590 1.14 msaitoh u16 dword_len;
4591 1.14 msaitoh u16 buf_len;
4592 1.14 msaitoh s32 status;
4593 1.14 msaitoh u32 bi;
4594 1.14 msaitoh
4595 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4596 1.14 msaitoh
4597 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4598 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4599 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4600 1.14 msaitoh }
4601 1.14 msaitoh
4602 1.14 msaitoh /* Take management host interface semaphore */
4603 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4604 1.14 msaitoh if (status)
4605 1.14 msaitoh return status;
4606 1.14 msaitoh
4607 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4608 1.14 msaitoh if (status)
4609 1.14 msaitoh goto rel_out;
4610 1.14 msaitoh
4611 1.8 msaitoh if (!return_data)
4612 1.14 msaitoh goto rel_out;
4613 1.8 msaitoh
4614 1.3 msaitoh /* Calculate length in DWORDs */
4615 1.3 msaitoh dword_len = hdr_size >> 2;
4616 1.3 msaitoh
4617 1.3 msaitoh /* first pull in the header so we know the buffer length */
4618 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4619 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4620 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4621 1.3 msaitoh }
4622 1.3 msaitoh
4623 1.3 msaitoh /* If there is any thing in data position pull it in */
4624 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4625 1.14 msaitoh if (!buf_len)
4626 1.14 msaitoh goto rel_out;
4627 1.3 msaitoh
4628 1.8 msaitoh if (length < buf_len + hdr_size) {
4629 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4630 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4631 1.14 msaitoh goto rel_out;
4632 1.3 msaitoh }
4633 1.3 msaitoh
4634 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4635 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4636 1.3 msaitoh
4637 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4638 1.3 msaitoh for (; bi <= dword_len; bi++) {
4639 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4640 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4641 1.3 msaitoh }
4642 1.3 msaitoh
4643 1.14 msaitoh rel_out:
4644 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4645 1.14 msaitoh
4646 1.14 msaitoh return status;
4647 1.3 msaitoh }
4648 1.3 msaitoh
4649 1.3 msaitoh /**
4650 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4651 1.3 msaitoh * @hw: pointer to the HW structure
4652 1.3 msaitoh * @maj: driver version major number
4653 1.7 riastrad * @minr: driver version minor number
4654 1.3 msaitoh * @build: driver version build number
4655 1.3 msaitoh * @sub: driver version sub build number
4656 1.3 msaitoh *
4657 1.3 msaitoh * Sends driver version number to firmware through the manageability
4658 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4659 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4660 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4661 1.3 msaitoh **/
4662 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4663 1.14 msaitoh u8 build, u8 sub, u16 len,
4664 1.14 msaitoh const char *driver_ver)
4665 1.3 msaitoh {
4666 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4667 1.3 msaitoh int i;
4668 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4669 1.3 msaitoh
4670 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4671 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4672 1.3 msaitoh
4673 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4674 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4675 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4676 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4677 1.3 msaitoh fw_cmd.ver_maj = maj;
4678 1.7 riastrad fw_cmd.ver_min = minr;
4679 1.3 msaitoh fw_cmd.ver_build = build;
4680 1.3 msaitoh fw_cmd.ver_sub = sub;
4681 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4682 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4683 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4684 1.3 msaitoh fw_cmd.pad = 0;
4685 1.3 msaitoh fw_cmd.pad2 = 0;
4686 1.3 msaitoh
4687 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4688 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4689 1.8 msaitoh sizeof(fw_cmd),
4690 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4691 1.8 msaitoh TRUE);
4692 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4693 1.3 msaitoh continue;
4694 1.3 msaitoh
4695 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4696 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4697 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4698 1.3 msaitoh else
4699 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4700 1.3 msaitoh
4701 1.3 msaitoh break;
4702 1.3 msaitoh }
4703 1.3 msaitoh
4704 1.3 msaitoh return ret_val;
4705 1.3 msaitoh }
4706 1.3 msaitoh
4707 1.3 msaitoh /**
4708 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4709 1.3 msaitoh * @hw: pointer to hardware structure
4710 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4711 1.3 msaitoh * @headroom: reserve n KB of headroom
4712 1.3 msaitoh * @strategy: packet buffer allocation strategy
4713 1.3 msaitoh **/
4714 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4715 1.3 msaitoh int strategy)
4716 1.3 msaitoh {
4717 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4718 1.3 msaitoh int i = 0;
4719 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4720 1.3 msaitoh
4721 1.3 msaitoh /* Reserve headroom */
4722 1.3 msaitoh pbsize -= headroom;
4723 1.3 msaitoh
4724 1.3 msaitoh if (!num_pb)
4725 1.3 msaitoh num_pb = 1;
4726 1.3 msaitoh
4727 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4728 1.3 msaitoh * buffers requested using supplied strategy.
4729 1.3 msaitoh */
4730 1.3 msaitoh switch (strategy) {
4731 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4732 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4733 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4734 1.3 msaitoh */
4735 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4736 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4737 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4738 1.3 msaitoh for (; i < (num_pb / 2); i++)
4739 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4740 1.14 msaitoh /* fall through - configure remaining packet buffers */
4741 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4742 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4743 1.3 msaitoh for (; i < num_pb; i++)
4744 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4745 1.3 msaitoh break;
4746 1.3 msaitoh default:
4747 1.3 msaitoh break;
4748 1.3 msaitoh }
4749 1.3 msaitoh
4750 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4751 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4752 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4753 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4754 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4755 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4756 1.3 msaitoh }
4757 1.3 msaitoh
4758 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4759 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4760 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4761 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4762 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4763 1.3 msaitoh }
4764 1.3 msaitoh }
4765 1.3 msaitoh
4766 1.3 msaitoh /**
4767 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4768 1.3 msaitoh * @hw: pointer to the hardware structure
4769 1.3 msaitoh *
4770 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4771 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4772 1.3 msaitoh * buffers on the system.
4773 1.3 msaitoh **/
4774 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4775 1.3 msaitoh {
4776 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4777 1.8 msaitoh u16 value;
4778 1.3 msaitoh
4779 1.3 msaitoh /*
4780 1.3 msaitoh * If double reset is not requested then all transactions should
4781 1.3 msaitoh * already be clear and as such there is no work to do
4782 1.3 msaitoh */
4783 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4784 1.3 msaitoh return;
4785 1.3 msaitoh
4786 1.3 msaitoh /*
4787 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4788 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4789 1.3 msaitoh * has already been cleared.
4790 1.3 msaitoh */
4791 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4792 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4793 1.3 msaitoh
4794 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4795 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4796 1.8 msaitoh msec_delay(3);
4797 1.8 msaitoh
4798 1.8 msaitoh /*
4799 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4800 1.8 msaitoh * transactions pending.
4801 1.8 msaitoh */
4802 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4803 1.8 msaitoh for (i = 0; i < poll; i++) {
4804 1.8 msaitoh usec_delay(100);
4805 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4806 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4807 1.8 msaitoh goto out;
4808 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4809 1.8 msaitoh goto out;
4810 1.8 msaitoh }
4811 1.8 msaitoh
4812 1.8 msaitoh out:
4813 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4814 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4815 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4816 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4817 1.3 msaitoh
4818 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4819 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4820 1.3 msaitoh usec_delay(20);
4821 1.3 msaitoh
4822 1.3 msaitoh /* restore previous register values */
4823 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4824 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4825 1.3 msaitoh }
4826 1.3 msaitoh
4827 1.14 msaitoh /**
4828 1.14 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4829 1.14 msaitoh *
4830 1.14 msaitoh * @hw: pointer to hardware structure
4831 1.14 msaitoh * @cmd: Command we send to the FW
4832 1.14 msaitoh * @status: The reply from the FW
4833 1.14 msaitoh *
4834 1.14 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4835 1.14 msaitoh **/
4836 1.14 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4837 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4838 1.14 msaitoh {
4839 1.14 msaitoh int i;
4840 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4841 1.14 msaitoh u32 esdp;
4842 1.14 msaitoh
4843 1.14 msaitoh if (!status)
4844 1.14 msaitoh return IXGBE_ERR_PARAM;
4845 1.14 msaitoh
4846 1.14 msaitoh *status = 0;
4847 1.14 msaitoh
4848 1.14 msaitoh /* SDP vary by MAC type */
4849 1.14 msaitoh switch (hw->mac.type) {
4850 1.14 msaitoh case ixgbe_mac_82599EB:
4851 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4852 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4853 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4854 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4855 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4856 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4857 1.14 msaitoh break;
4858 1.14 msaitoh case ixgbe_mac_X540:
4859 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4860 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4861 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4862 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4863 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4864 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4865 1.14 msaitoh break;
4866 1.14 msaitoh default:
4867 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4868 1.14 msaitoh }
4869 1.14 msaitoh
4870 1.14 msaitoh /* Set SDP pins direction */
4871 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4872 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4873 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4874 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4875 1.14 msaitoh esdp |= sck;
4876 1.14 msaitoh esdp |= sdi;
4877 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4878 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4879 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4880 1.14 msaitoh
4881 1.14 msaitoh /* Generate start condition */
4882 1.14 msaitoh esdp &= ~sdi;
4883 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4884 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4885 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4886 1.14 msaitoh
4887 1.14 msaitoh esdp &= ~sck;
4888 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4889 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4890 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4891 1.14 msaitoh
4892 1.14 msaitoh /* Clock out the new control word and clock in the status */
4893 1.14 msaitoh for (i = 0; i < 32; i++) {
4894 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4895 1.14 msaitoh esdp |= sdi;
4896 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4897 1.14 msaitoh } else {
4898 1.14 msaitoh esdp &= ~sdi;
4899 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4900 1.14 msaitoh }
4901 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4902 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4903 1.14 msaitoh
4904 1.14 msaitoh esdp |= sck;
4905 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4906 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4907 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4908 1.14 msaitoh
4909 1.14 msaitoh esdp &= ~sck;
4910 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4911 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4912 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4913 1.14 msaitoh
4914 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4915 1.14 msaitoh if (esdp & sdo)
4916 1.14 msaitoh *status = (*status << 1) | 0x01;
4917 1.14 msaitoh else
4918 1.14 msaitoh *status = (*status << 1) | 0x00;
4919 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4920 1.14 msaitoh }
4921 1.14 msaitoh
4922 1.14 msaitoh /* stop condition */
4923 1.14 msaitoh esdp |= sck;
4924 1.14 msaitoh esdp &= ~sdi;
4925 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4926 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4927 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4928 1.14 msaitoh
4929 1.14 msaitoh esdp |= sdi;
4930 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4931 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4932 1.14 msaitoh
4933 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
4934 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4935 1.14 msaitoh
4936 1.14 msaitoh return IXGBE_SUCCESS;
4937 1.14 msaitoh }
4938 1.14 msaitoh
4939 1.14 msaitoh /**
4940 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4941 1.14 msaitoh *
4942 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
4943 1.14 msaitoh * that same register. It can be a problem as some of the feilds may
4944 1.14 msaitoh * for valid reasons change inbetween the time wrote the register and
4945 1.14 msaitoh * we read it again to verify. So this function check everything we
4946 1.14 msaitoh * can check and then assumes it worked.
4947 1.14 msaitoh *
4948 1.14 msaitoh * @u32 in_reg - The register cmd for the bit-bang read.
4949 1.14 msaitoh * @u32 out_reg - The register returned from a bit-bang read.
4950 1.14 msaitoh **/
4951 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4952 1.14 msaitoh {
4953 1.14 msaitoh u32 mask;
4954 1.14 msaitoh
4955 1.14 msaitoh /* Page must match for all control pages */
4956 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4957 1.14 msaitoh return FALSE;
4958 1.14 msaitoh
4959 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
4960 1.14 msaitoh case BYPASS_PAGE_CTL0:
4961 1.14 msaitoh /* All the following can't change since the last write
4962 1.14 msaitoh * - All the event actions
4963 1.14 msaitoh * - The timeout value
4964 1.14 msaitoh */
4965 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4966 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4967 1.14 msaitoh BYPASS_WDTIMEOUT_M |
4968 1.14 msaitoh BYPASS_WDT_VALUE_M;
4969 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
4970 1.14 msaitoh return FALSE;
4971 1.14 msaitoh
4972 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
4973 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
4974 1.14 msaitoh return FALSE;
4975 1.14 msaitoh break;
4976 1.14 msaitoh case BYPASS_PAGE_CTL1:
4977 1.14 msaitoh /* All the following can't change since the last write
4978 1.14 msaitoh * - time valid bit
4979 1.14 msaitoh * - time we last sent
4980 1.14 msaitoh */
4981 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4982 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
4983 1.14 msaitoh return FALSE;
4984 1.14 msaitoh break;
4985 1.14 msaitoh case BYPASS_PAGE_CTL2:
4986 1.14 msaitoh /* All we can check in this page is control number
4987 1.14 msaitoh * which is already done above.
4988 1.14 msaitoh */
4989 1.14 msaitoh break;
4990 1.14 msaitoh }
4991 1.14 msaitoh
4992 1.14 msaitoh /* We are as sure as we can be return TRUE */
4993 1.14 msaitoh return TRUE;
4994 1.14 msaitoh }
4995 1.14 msaitoh
4996 1.14 msaitoh /**
4997 1.14 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4998 1.14 msaitoh *
4999 1.14 msaitoh * @hw: pointer to hardware structure
5000 1.14 msaitoh * @cmd: The control word we are setting.
5001 1.14 msaitoh * @event: The event we are setting in the FW. This also happens to
5002 1.14 msaitoh * be the mask for the event we are setting (handy)
5003 1.14 msaitoh * @action: The action we set the event to in the FW. This is in a
5004 1.14 msaitoh * bit field that happens to be what we want to put in
5005 1.14 msaitoh * the event spot (also handy)
5006 1.14 msaitoh **/
5007 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5008 1.14 msaitoh u32 action)
5009 1.14 msaitoh {
5010 1.14 msaitoh u32 by_ctl = 0;
5011 1.14 msaitoh u32 cmd, verify;
5012 1.14 msaitoh u32 count = 0;
5013 1.14 msaitoh
5014 1.14 msaitoh /* Get current values */
5015 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5016 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5017 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5018 1.14 msaitoh
5019 1.14 msaitoh /* Set to new action */
5020 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5021 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5022 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5023 1.14 msaitoh
5024 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5025 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5026 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5027 1.14 msaitoh do {
5028 1.14 msaitoh if (count++ > 5)
5029 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5030 1.14 msaitoh
5031 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5032 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5033 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5034 1.14 msaitoh } else {
5035 1.14 msaitoh /* We have give the FW time for the write to stick */
5036 1.14 msaitoh msec_delay(100);
5037 1.14 msaitoh }
5038 1.14 msaitoh
5039 1.14 msaitoh return IXGBE_SUCCESS;
5040 1.14 msaitoh }
5041 1.14 msaitoh
5042 1.14 msaitoh /**
5043 1.14 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5044 1.14 msaitoh *
5045 1.14 msaitoh * @hw: pointer to hardware structure
5046 1.14 msaitoh * @addr: The bypass eeprom address to read.
5047 1.14 msaitoh * @value: The 8b of data at the address above.
5048 1.14 msaitoh **/
5049 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5050 1.14 msaitoh {
5051 1.14 msaitoh u32 cmd;
5052 1.14 msaitoh u32 status;
5053 1.14 msaitoh
5054 1.14 msaitoh
5055 1.14 msaitoh /* send the request */
5056 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5057 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5058 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5059 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5060 1.14 msaitoh
5061 1.14 msaitoh /* We have give the FW time for the write to stick */
5062 1.14 msaitoh msec_delay(100);
5063 1.14 msaitoh
5064 1.14 msaitoh /* now read the results */
5065 1.14 msaitoh cmd &= ~BYPASS_WE;
5066 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5067 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5068 1.14 msaitoh
5069 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5070 1.14 msaitoh
5071 1.14 msaitoh return IXGBE_SUCCESS;
5072 1.14 msaitoh }
5073 1.14 msaitoh
5074 1.6 msaitoh
5075 1.6 msaitoh /**
5076 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5077 1.6 msaitoh * @hw: pointer to hardware structure
5078 1.6 msaitoh * @map: pointer to u8 arr for returning map
5079 1.6 msaitoh *
5080 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5081 1.6 msaitoh **/
5082 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5083 1.6 msaitoh {
5084 1.6 msaitoh u32 reg, i;
5085 1.6 msaitoh
5086 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5087 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5088 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5089 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5090 1.6 msaitoh return;
5091 1.6 msaitoh }
5092 1.8 msaitoh
5093 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5094 1.8 msaitoh {
5095 1.8 msaitoh u32 pfdtxgswc;
5096 1.8 msaitoh u32 rxctrl;
5097 1.8 msaitoh
5098 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5099 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5100 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5101 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5102 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5103 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5104 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5105 1.8 msaitoh hw->mac.set_lben = TRUE;
5106 1.8 msaitoh } else {
5107 1.8 msaitoh hw->mac.set_lben = FALSE;
5108 1.8 msaitoh }
5109 1.8 msaitoh }
5110 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5111 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5112 1.8 msaitoh }
5113 1.8 msaitoh }
5114 1.8 msaitoh
5115 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5116 1.8 msaitoh {
5117 1.8 msaitoh u32 pfdtxgswc;
5118 1.8 msaitoh u32 rxctrl;
5119 1.8 msaitoh
5120 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5121 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5122 1.8 msaitoh
5123 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5124 1.8 msaitoh if (hw->mac.set_lben) {
5125 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5126 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5127 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5128 1.8 msaitoh hw->mac.set_lben = FALSE;
5129 1.8 msaitoh }
5130 1.8 msaitoh }
5131 1.8 msaitoh }
5132 1.8 msaitoh
5133 1.8 msaitoh /**
5134 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5135 1.8 msaitoh * @hw: pointer to hardware structure
5136 1.8 msaitoh */
5137 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5138 1.8 msaitoh {
5139 1.8 msaitoh u32 fwsm;
5140 1.8 msaitoh
5141 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5142 1.8 msaitoh return FALSE;
5143 1.8 msaitoh
5144 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5145 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
5146 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
5147 1.8 msaitoh }
5148 1.8 msaitoh
5149 1.8 msaitoh /**
5150 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5151 1.8 msaitoh * @hw: pointer to hardware structure
5152 1.8 msaitoh *
5153 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5154 1.8 msaitoh **/
5155 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5156 1.8 msaitoh {
5157 1.8 msaitoh u32 fwsm, manc, factps;
5158 1.8 msaitoh
5159 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5160 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5161 1.8 msaitoh return FALSE;
5162 1.8 msaitoh
5163 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5164 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5165 1.8 msaitoh return FALSE;
5166 1.8 msaitoh
5167 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5168 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5169 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5170 1.8 msaitoh return FALSE;
5171 1.8 msaitoh }
5172 1.8 msaitoh
5173 1.8 msaitoh return TRUE;
5174 1.8 msaitoh }
5175 1.8 msaitoh
5176 1.8 msaitoh /**
5177 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5178 1.8 msaitoh * @hw: pointer to hardware structure
5179 1.8 msaitoh * @speed: new link speed
5180 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5181 1.8 msaitoh *
5182 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5183 1.8 msaitoh **/
5184 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5185 1.8 msaitoh ixgbe_link_speed speed,
5186 1.8 msaitoh bool autoneg_wait_to_complete)
5187 1.8 msaitoh {
5188 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5189 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5190 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5191 1.8 msaitoh u32 speedcnt = 0;
5192 1.8 msaitoh u32 i = 0;
5193 1.8 msaitoh bool autoneg, link_up = FALSE;
5194 1.8 msaitoh
5195 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5196 1.8 msaitoh
5197 1.8 msaitoh /* Mask off requested but non-supported speeds */
5198 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5199 1.8 msaitoh if (status != IXGBE_SUCCESS)
5200 1.8 msaitoh return status;
5201 1.8 msaitoh
5202 1.8 msaitoh speed &= link_speed;
5203 1.8 msaitoh
5204 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5205 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5206 1.8 msaitoh */
5207 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5208 1.8 msaitoh speedcnt++;
5209 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5210 1.8 msaitoh
5211 1.8 msaitoh /* Set the module link speed */
5212 1.8 msaitoh switch (hw->phy.media_type) {
5213 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5214 1.8 msaitoh case ixgbe_media_type_fiber:
5215 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5216 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5217 1.8 msaitoh break;
5218 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5219 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5220 1.8 msaitoh break;
5221 1.8 msaitoh default:
5222 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5223 1.8 msaitoh break;
5224 1.8 msaitoh }
5225 1.8 msaitoh
5226 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5227 1.8 msaitoh msec_delay(40);
5228 1.8 msaitoh
5229 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5230 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5231 1.8 msaitoh autoneg_wait_to_complete);
5232 1.8 msaitoh if (status != IXGBE_SUCCESS)
5233 1.8 msaitoh return status;
5234 1.8 msaitoh
5235 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5236 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5237 1.8 msaitoh
5238 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5239 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
5240 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5241 1.8 msaitoh */
5242 1.8 msaitoh for (i = 0; i < 5; i++) {
5243 1.8 msaitoh /* Wait for the link partner to also set speed */
5244 1.8 msaitoh msec_delay(100);
5245 1.8 msaitoh
5246 1.8 msaitoh /* If we have link, just jump out */
5247 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5248 1.8 msaitoh &link_up, FALSE);
5249 1.8 msaitoh if (status != IXGBE_SUCCESS)
5250 1.8 msaitoh return status;
5251 1.8 msaitoh
5252 1.8 msaitoh if (link_up)
5253 1.8 msaitoh goto out;
5254 1.8 msaitoh }
5255 1.8 msaitoh }
5256 1.8 msaitoh
5257 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5258 1.8 msaitoh speedcnt++;
5259 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5260 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5261 1.8 msaitoh
5262 1.8 msaitoh /* Set the module link speed */
5263 1.8 msaitoh switch (hw->phy.media_type) {
5264 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5265 1.8 msaitoh case ixgbe_media_type_fiber:
5266 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5267 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5268 1.8 msaitoh break;
5269 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5270 1.8 msaitoh /* QSFP module automatically detects link speed */
5271 1.8 msaitoh break;
5272 1.8 msaitoh default:
5273 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5274 1.8 msaitoh break;
5275 1.8 msaitoh }
5276 1.8 msaitoh
5277 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5278 1.8 msaitoh msec_delay(40);
5279 1.8 msaitoh
5280 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5281 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5282 1.8 msaitoh autoneg_wait_to_complete);
5283 1.8 msaitoh if (status != IXGBE_SUCCESS)
5284 1.8 msaitoh return status;
5285 1.8 msaitoh
5286 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5287 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5288 1.8 msaitoh
5289 1.8 msaitoh /* Wait for the link partner to also set speed */
5290 1.8 msaitoh msec_delay(100);
5291 1.8 msaitoh
5292 1.8 msaitoh /* If we have link, just jump out */
5293 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5294 1.8 msaitoh if (status != IXGBE_SUCCESS)
5295 1.8 msaitoh return status;
5296 1.8 msaitoh
5297 1.8 msaitoh if (link_up)
5298 1.8 msaitoh goto out;
5299 1.8 msaitoh }
5300 1.8 msaitoh
5301 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5302 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5303 1.8 msaitoh * single highest speed that the user requested.
5304 1.8 msaitoh */
5305 1.8 msaitoh if (speedcnt > 1)
5306 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5307 1.8 msaitoh highest_link_speed,
5308 1.8 msaitoh autoneg_wait_to_complete);
5309 1.8 msaitoh
5310 1.8 msaitoh out:
5311 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5312 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5313 1.8 msaitoh
5314 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5315 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5316 1.8 msaitoh
5317 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5318 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5319 1.8 msaitoh
5320 1.8 msaitoh return status;
5321 1.8 msaitoh }
5322 1.8 msaitoh
5323 1.8 msaitoh /**
5324 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5325 1.8 msaitoh * @hw: pointer to hardware structure
5326 1.8 msaitoh * @speed: link speed to set
5327 1.8 msaitoh *
5328 1.8 msaitoh * Set module link speed via the soft rate select.
5329 1.8 msaitoh */
5330 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5331 1.8 msaitoh ixgbe_link_speed speed)
5332 1.8 msaitoh {
5333 1.8 msaitoh s32 status;
5334 1.8 msaitoh u8 rs, eeprom_data;
5335 1.8 msaitoh
5336 1.8 msaitoh switch (speed) {
5337 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5338 1.8 msaitoh /* one bit mask same as setting on */
5339 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5340 1.8 msaitoh break;
5341 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5342 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5343 1.8 msaitoh break;
5344 1.8 msaitoh default:
5345 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5346 1.8 msaitoh return;
5347 1.8 msaitoh }
5348 1.8 msaitoh
5349 1.8 msaitoh /* Set RS0 */
5350 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5351 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5352 1.8 msaitoh &eeprom_data);
5353 1.8 msaitoh if (status) {
5354 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5355 1.8 msaitoh goto out;
5356 1.8 msaitoh }
5357 1.8 msaitoh
5358 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5359 1.8 msaitoh
5360 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5361 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5362 1.8 msaitoh eeprom_data);
5363 1.8 msaitoh if (status) {
5364 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5365 1.8 msaitoh goto out;
5366 1.8 msaitoh }
5367 1.8 msaitoh
5368 1.8 msaitoh /* Set RS1 */
5369 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5370 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5371 1.8 msaitoh &eeprom_data);
5372 1.8 msaitoh if (status) {
5373 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5374 1.8 msaitoh goto out;
5375 1.8 msaitoh }
5376 1.8 msaitoh
5377 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5378 1.8 msaitoh
5379 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5380 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5381 1.8 msaitoh eeprom_data);
5382 1.8 msaitoh if (status) {
5383 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5384 1.8 msaitoh goto out;
5385 1.8 msaitoh }
5386 1.8 msaitoh out:
5387 1.8 msaitoh return;
5388 1.8 msaitoh }
5389