Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.16
      1  1.16   msaitoh /* $NetBSD: ixgbe_common.c,v 1.16 2017/12/06 04:08:50 msaitoh Exp $ */
      2  1.14   msaitoh 
      3   1.1    dyoung /******************************************************************************
      4  1.16   msaitoh   SPDX-License-Identifier: BSD-3-Clause
      5   1.1    dyoung 
      6  1.14   msaitoh   Copyright (c) 2001-2017, Intel Corporation
      7   1.1    dyoung   All rights reserved.
      8  1.14   msaitoh 
      9  1.14   msaitoh   Redistribution and use in source and binary forms, with or without
     10   1.1    dyoung   modification, are permitted provided that the following conditions are met:
     11  1.14   msaitoh 
     12  1.14   msaitoh    1. Redistributions of source code must retain the above copyright notice,
     13   1.1    dyoung       this list of conditions and the following disclaimer.
     14  1.14   msaitoh 
     15  1.14   msaitoh    2. Redistributions in binary form must reproduce the above copyright
     16  1.14   msaitoh       notice, this list of conditions and the following disclaimer in the
     17   1.1    dyoung       documentation and/or other materials provided with the distribution.
     18  1.14   msaitoh 
     19  1.14   msaitoh    3. Neither the name of the Intel Corporation nor the names of its
     20  1.14   msaitoh       contributors may be used to endorse or promote products derived from
     21   1.1    dyoung       this software without specific prior written permission.
     22  1.14   msaitoh 
     23   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     24  1.14   msaitoh   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.14   msaitoh   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.14   msaitoh   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     27  1.14   msaitoh   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.14   msaitoh   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.14   msaitoh   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.14   msaitoh   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.14   msaitoh   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     34   1.1    dyoung 
     35   1.1    dyoung ******************************************************************************/
     36  1.14   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
     37   1.1    dyoung 
     38   1.1    dyoung #include "ixgbe_common.h"
     39   1.1    dyoung #include "ixgbe_phy.h"
     40   1.6   msaitoh #include "ixgbe_dcb.h"
     41   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     42   1.1    dyoung #include "ixgbe_api.h"
     43   1.1    dyoung 
     44   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     45   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     46   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     47   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     48   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     49   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     50   1.3   msaitoh 					u16 count);
     51   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     52   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     53   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     54   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     55   1.1    dyoung 
     56   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     57   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     58   1.3   msaitoh 					 u16 *san_mac_offset);
     59   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60   1.3   msaitoh 					     u16 words, u16 *data);
     61   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     62   1.3   msaitoh 					      u16 words, u16 *data);
     63   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     64   1.3   msaitoh 						 u16 offset);
     65   1.1    dyoung 
     66   1.1    dyoung /**
     67   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     68   1.1    dyoung  *  @hw: pointer to the hardware structure
     69   1.1    dyoung  *
     70   1.1    dyoung  *  Initialize the function pointers.
     71   1.1    dyoung  **/
     72   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     73   1.1    dyoung {
     74   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     75   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     76  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     77   1.1    dyoung 
     78   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     79   1.1    dyoung 
     80   1.1    dyoung 	/* EEPROM */
     81   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     82   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     83   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     84   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     85   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     86   1.3   msaitoh 	} else {
     87   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     88   1.3   msaitoh 		eeprom->ops.read_buffer =
     89   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     90   1.3   msaitoh 	}
     91   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     92   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     93   1.1    dyoung 	eeprom->ops.validate_checksum =
     94   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     95   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     96   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     97   1.1    dyoung 
     98   1.1    dyoung 	/* MAC */
     99   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
    100   1.1    dyoung 	mac->ops.reset_hw = NULL;
    101   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    102   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    103   1.1    dyoung 	mac->ops.get_media_type = NULL;
    104   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    105   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    106   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    107   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    108   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    109   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    110   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    111   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    112   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    113   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    114   1.1    dyoung 
    115   1.1    dyoung 	/* LEDs */
    116   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    117   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    118   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    119   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    120  1.14   msaitoh 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    121   1.1    dyoung 
    122   1.1    dyoung 	/* RAR, Multicast, VLAN */
    123   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    124   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    125   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    126   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    127   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    128   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    129   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    130   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    131   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    132   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    133   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    134   1.1    dyoung 	mac->ops.set_vfta = NULL;
    135   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    136   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    137   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    138   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    139   1.1    dyoung 
    140   1.1    dyoung 	/* Flow Control */
    141   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    142   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    143  1.14   msaitoh 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    144   1.1    dyoung 
    145   1.1    dyoung 	/* Link */
    146   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    147   1.1    dyoung 	mac->ops.setup_link = NULL;
    148   1.1    dyoung 	mac->ops.check_link = NULL;
    149   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    150   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    151   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    152   1.1    dyoung 
    153   1.1    dyoung 	return IXGBE_SUCCESS;
    154   1.1    dyoung }
    155   1.1    dyoung 
    156   1.1    dyoung /**
    157   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    158   1.6   msaitoh  * of flow control
    159   1.6   msaitoh  * @hw: pointer to hardware structure
    160   1.6   msaitoh  *
    161   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    162   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    163   1.4   msaitoh  *
    164   1.4   msaitoh  **/
    165   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    166   1.4   msaitoh {
    167   1.6   msaitoh 	bool supported = FALSE;
    168   1.6   msaitoh 	ixgbe_link_speed speed;
    169   1.6   msaitoh 	bool link_up;
    170   1.4   msaitoh 
    171   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    172   1.4   msaitoh 
    173   1.6   msaitoh 	switch (hw->phy.media_type) {
    174   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    175   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    176   1.6   msaitoh 	case ixgbe_media_type_fiber:
    177  1.14   msaitoh 		/* flow control autoneg black list */
    178  1.14   msaitoh 		switch (hw->device_id) {
    179  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP:
    180  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    181  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    182  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    183  1.14   msaitoh 			supported = FALSE;
    184  1.14   msaitoh 			break;
    185  1.14   msaitoh 		default:
    186  1.14   msaitoh 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    187  1.14   msaitoh 			/* if link is down, assume supported */
    188  1.14   msaitoh 			if (link_up)
    189  1.14   msaitoh 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    190  1.14   msaitoh 				    TRUE : FALSE;
    191  1.14   msaitoh 			else
    192  1.14   msaitoh 				supported = TRUE;
    193  1.14   msaitoh 		}
    194  1.14   msaitoh 
    195  1.14   msaitoh 		break;
    196  1.14   msaitoh 	case ixgbe_media_type_backplane:
    197  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    198  1.14   msaitoh 			supported = FALSE;
    199   1.6   msaitoh 		else
    200   1.6   msaitoh 			supported = TRUE;
    201   1.6   msaitoh 		break;
    202   1.6   msaitoh 	case ixgbe_media_type_copper:
    203   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    204   1.6   msaitoh 		switch (hw->device_id) {
    205   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    206   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    207   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    208   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    209   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    210  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    211   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    212  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    213  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    214  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    215   1.6   msaitoh 			supported = TRUE;
    216   1.6   msaitoh 			break;
    217   1.6   msaitoh 		default:
    218   1.6   msaitoh 			supported = FALSE;
    219   1.6   msaitoh 		}
    220   1.4   msaitoh 	default:
    221   1.6   msaitoh 		break;
    222   1.4   msaitoh 	}
    223   1.6   msaitoh 
    224  1.14   msaitoh 	if (!supported)
    225  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    226  1.14   msaitoh 			      "Device %x does not support flow control autoneg",
    227  1.14   msaitoh 			      hw->device_id);
    228   1.6   msaitoh 	return supported;
    229   1.4   msaitoh }
    230   1.4   msaitoh 
    231   1.4   msaitoh /**
    232   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    233   1.4   msaitoh  *  @hw: pointer to hardware structure
    234   1.4   msaitoh  *
    235   1.4   msaitoh  *  Called at init time to set up flow control.
    236   1.4   msaitoh  **/
    237   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    238   1.4   msaitoh {
    239   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    240   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    241   1.4   msaitoh 	u16 reg_cu = 0;
    242   1.8   msaitoh 	bool locked = FALSE;
    243   1.4   msaitoh 
    244   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    245   1.4   msaitoh 
    246   1.8   msaitoh 	/* Validate the requested mode */
    247   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    248   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    249   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    250   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    251   1.4   msaitoh 		goto out;
    252   1.4   msaitoh 	}
    253   1.4   msaitoh 
    254   1.4   msaitoh 	/*
    255   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    256   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    257   1.4   msaitoh 	 */
    258   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    259   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    260   1.4   msaitoh 
    261   1.4   msaitoh 	/*
    262   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    263   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    264   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    265   1.4   msaitoh 	 */
    266   1.4   msaitoh 	switch (hw->phy.media_type) {
    267   1.8   msaitoh 	case ixgbe_media_type_backplane:
    268   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    269   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    270   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    271   1.8   msaitoh 			goto out;
    272   1.8   msaitoh 
    273  1.14   msaitoh 		/* fall through - only backplane uses autoc */
    274   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    275   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    276   1.4   msaitoh 	case ixgbe_media_type_fiber:
    277   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    278   1.8   msaitoh 
    279   1.4   msaitoh 		break;
    280   1.4   msaitoh 	case ixgbe_media_type_copper:
    281   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    282   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    283   1.4   msaitoh 		break;
    284   1.4   msaitoh 	default:
    285   1.4   msaitoh 		break;
    286   1.4   msaitoh 	}
    287   1.4   msaitoh 
    288   1.4   msaitoh 	/*
    289   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    290   1.4   msaitoh 	 * 0: Flow control is completely disabled
    291   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    292   1.4   msaitoh 	 *    but not send pause frames).
    293   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    294   1.4   msaitoh 	 *    we do not support receiving pause frames).
    295   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    296   1.4   msaitoh 	 * other: Invalid.
    297   1.4   msaitoh 	 */
    298   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    299   1.4   msaitoh 	case ixgbe_fc_none:
    300   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    301   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    302   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    303   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    304   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    305   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    306   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    307   1.4   msaitoh 		break;
    308   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    309   1.4   msaitoh 		/*
    310   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    311   1.4   msaitoh 		 * disabled by software override.
    312   1.4   msaitoh 		 */
    313   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    314   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    315   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    316   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    317   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    318   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    319   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    320   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    321   1.4   msaitoh 		}
    322   1.4   msaitoh 		break;
    323   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    324   1.4   msaitoh 		/*
    325   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    326   1.4   msaitoh 		 * disabled by software override. Since there really
    327   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    328   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    329   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    330   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    331   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    332   1.4   msaitoh 		 */
    333   1.4   msaitoh 	case ixgbe_fc_full:
    334   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    335   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    336   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    337   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    338   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    339   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    340   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    341   1.4   msaitoh 		break;
    342   1.4   msaitoh 	default:
    343   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    344   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    345   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    346   1.4   msaitoh 		goto out;
    347   1.4   msaitoh 		break;
    348   1.4   msaitoh 	}
    349   1.4   msaitoh 
    350   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    351   1.4   msaitoh 		/*
    352   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    353   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    354   1.4   msaitoh 		 */
    355   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    356   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    357   1.4   msaitoh 
    358   1.4   msaitoh 		/* Disable AN timeout */
    359   1.4   msaitoh 		if (hw->fc.strict_ieee)
    360   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    361   1.4   msaitoh 
    362   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    363   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    364   1.4   msaitoh 	}
    365   1.4   msaitoh 
    366   1.4   msaitoh 	/*
    367   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    368   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    369   1.4   msaitoh 	 *
    370   1.4   msaitoh 	 */
    371   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    372   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    373   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    374   1.8   msaitoh 		if (ret_val)
    375   1.8   msaitoh 			goto out;
    376   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    377   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    378   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    379   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    380   1.4   msaitoh 	}
    381   1.4   msaitoh 
    382   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    383   1.4   msaitoh out:
    384   1.4   msaitoh 	return ret_val;
    385   1.4   msaitoh }
    386   1.4   msaitoh 
    387   1.4   msaitoh /**
    388   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    389   1.1    dyoung  *  @hw: pointer to hardware structure
    390   1.1    dyoung  *
    391   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    392   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    393   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    394   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    395   1.1    dyoung  **/
    396   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    397   1.1    dyoung {
    398   1.4   msaitoh 	s32 ret_val;
    399   1.1    dyoung 	u32 ctrl_ext;
    400  1.14   msaitoh 	u16 device_caps;
    401   1.1    dyoung 
    402   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    403   1.1    dyoung 
    404   1.1    dyoung 	/* Set the media type */
    405   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    406   1.1    dyoung 
    407   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    408   1.1    dyoung 
    409   1.1    dyoung 	/* Clear the VLAN filter table */
    410   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    411   1.1    dyoung 
    412   1.1    dyoung 	/* Clear statistics registers */
    413   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    414   1.1    dyoung 
    415   1.1    dyoung 	/* Set No Snoop Disable */
    416   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    417   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    418   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    419   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    420   1.1    dyoung 
    421   1.1    dyoung 	/* Setup flow control */
    422   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    423  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    424  1.14   msaitoh 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    425  1.14   msaitoh 		return ret_val;
    426  1.14   msaitoh 	}
    427  1.14   msaitoh 
    428  1.14   msaitoh 	/* Cache bit indicating need for crosstalk fix */
    429  1.14   msaitoh 	switch (hw->mac.type) {
    430  1.14   msaitoh 	case ixgbe_mac_82599EB:
    431  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
    432  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
    433  1.14   msaitoh 		hw->mac.ops.get_device_caps(hw, &device_caps);
    434  1.14   msaitoh 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    435  1.14   msaitoh 			hw->need_crosstalk_fix = FALSE;
    436  1.14   msaitoh 		else
    437  1.14   msaitoh 			hw->need_crosstalk_fix = TRUE;
    438  1.14   msaitoh 		break;
    439  1.14   msaitoh 	default:
    440  1.14   msaitoh 		hw->need_crosstalk_fix = FALSE;
    441  1.14   msaitoh 		break;
    442  1.14   msaitoh 	}
    443   1.1    dyoung 
    444   1.1    dyoung 	/* Clear adapter stopped flag */
    445   1.1    dyoung 	hw->adapter_stopped = FALSE;
    446   1.1    dyoung 
    447  1.14   msaitoh 	return IXGBE_SUCCESS;
    448   1.1    dyoung }
    449   1.1    dyoung 
    450   1.1    dyoung /**
    451   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    452   1.1    dyoung  *  @hw: pointer to hw structure
    453   1.1    dyoung  *
    454   1.1    dyoung  * Performs the init sequence common to the second generation
    455   1.1    dyoung  * of 10 GbE devices.
    456   1.1    dyoung  * Devices in the second generation:
    457   1.1    dyoung  *     82599
    458   1.1    dyoung  *     X540
    459   1.1    dyoung  **/
    460   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    461   1.1    dyoung {
    462   1.1    dyoung 	u32 i;
    463   1.1    dyoung 	u32 regval;
    464   1.1    dyoung 
    465   1.1    dyoung 	/* Clear the rate limiters */
    466   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    467   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    468   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    469   1.1    dyoung 	}
    470   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    471   1.1    dyoung 
    472   1.1    dyoung 	/* Disable relaxed ordering */
    473   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    474   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    475   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    476   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    477   1.1    dyoung 	}
    478   1.1    dyoung 
    479   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    480   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    481   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    482   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    483   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    484   1.1    dyoung 	}
    485   1.1    dyoung 
    486   1.1    dyoung 	return IXGBE_SUCCESS;
    487   1.1    dyoung }
    488   1.1    dyoung 
    489   1.1    dyoung /**
    490   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    491   1.1    dyoung  *  @hw: pointer to hardware structure
    492   1.1    dyoung  *
    493   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    494   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    495   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    496   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    497   1.1    dyoung  *  disabled and uninitialized
    498   1.1    dyoung  **/
    499   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    500   1.1    dyoung {
    501   1.1    dyoung 	s32 status;
    502   1.1    dyoung 
    503   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    504   1.1    dyoung 
    505   1.1    dyoung 	/* Reset the hardware */
    506   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    507   1.1    dyoung 
    508  1.14   msaitoh 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    509   1.1    dyoung 		/* Start the HW */
    510   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    511   1.1    dyoung 	}
    512   1.1    dyoung 
    513  1.14   msaitoh 	/* Initialize the LED link active for LED blink support */
    514  1.14   msaitoh 	if (hw->mac.ops.init_led_link_act)
    515  1.14   msaitoh 		hw->mac.ops.init_led_link_act(hw);
    516  1.14   msaitoh 
    517  1.14   msaitoh 	if (status != IXGBE_SUCCESS)
    518  1.14   msaitoh 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    519  1.14   msaitoh 
    520   1.1    dyoung 	return status;
    521   1.1    dyoung }
    522   1.1    dyoung 
    523   1.1    dyoung /**
    524   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    525   1.1    dyoung  *  @hw: pointer to hardware structure
    526   1.1    dyoung  *
    527   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    528   1.1    dyoung  *  Statistics counters are clear on read.
    529   1.1    dyoung  **/
    530   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    531   1.1    dyoung {
    532   1.1    dyoung 	u16 i = 0;
    533   1.1    dyoung 
    534   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    535   1.1    dyoung 
    536   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    537   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    538   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    539   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    540  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    541  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    542   1.1    dyoung 	for (i = 0; i < 8; i++)
    543   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    544   1.1    dyoung 
    545   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    547   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    548   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    549   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    550   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    551   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    552   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    553   1.1    dyoung 	} else {
    554   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    555   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    556   1.1    dyoung 	}
    557   1.1    dyoung 
    558   1.1    dyoung 	for (i = 0; i < 8; i++) {
    559   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    560   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    561   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    562   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    563   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    564   1.1    dyoung 		} else {
    565   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    566   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    567   1.1    dyoung 		}
    568   1.1    dyoung 	}
    569   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    570   1.1    dyoung 		for (i = 0; i < 8; i++)
    571   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    572   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    573   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    574   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    575   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    576   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    577   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    578   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    579   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    580   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    581   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    582   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    583   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    584   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    585   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    586   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    587   1.3   msaitoh 		for (i = 0; i < 8; i++)
    588   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    589   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    590   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    591   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    592   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    593   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    594   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    595   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    596   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    597   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    598   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    599   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    600   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    601   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    602   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    603   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    604   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    605   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    606   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    607   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    608   1.1    dyoung 	for (i = 0; i < 16; i++) {
    609   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    610   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    611   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    612   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    613   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    614   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    615   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    616   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    617   1.1    dyoung 		} else {
    618   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    619   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    620   1.1    dyoung 		}
    621   1.1    dyoung 	}
    622   1.1    dyoung 
    623   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    624   1.3   msaitoh 		if (hw->phy.id == 0)
    625   1.3   msaitoh 			ixgbe_identify_phy(hw);
    626   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    627   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    628   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    629   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    630   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    631   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    632   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    633   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    634   1.3   msaitoh 	}
    635   1.3   msaitoh 
    636   1.1    dyoung 	return IXGBE_SUCCESS;
    637   1.1    dyoung }
    638   1.1    dyoung 
    639   1.1    dyoung /**
    640   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    641   1.1    dyoung  *  @hw: pointer to hardware structure
    642   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    643   1.1    dyoung  *  @pba_num_size: part number string buffer length
    644   1.1    dyoung  *
    645   1.1    dyoung  *  Reads the part number string from the EEPROM.
    646   1.1    dyoung  **/
    647   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    648   1.3   msaitoh 				  u32 pba_num_size)
    649   1.1    dyoung {
    650   1.1    dyoung 	s32 ret_val;
    651   1.1    dyoung 	u16 data;
    652   1.1    dyoung 	u16 pba_ptr;
    653   1.1    dyoung 	u16 offset;
    654   1.1    dyoung 	u16 length;
    655   1.1    dyoung 
    656   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    657   1.1    dyoung 
    658   1.1    dyoung 	if (pba_num == NULL) {
    659   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    660   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    661   1.1    dyoung 	}
    662   1.1    dyoung 
    663   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    664   1.1    dyoung 	if (ret_val) {
    665   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    666   1.1    dyoung 		return ret_val;
    667   1.1    dyoung 	}
    668   1.1    dyoung 
    669   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    670   1.1    dyoung 	if (ret_val) {
    671   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    672   1.1    dyoung 		return ret_val;
    673   1.1    dyoung 	}
    674   1.1    dyoung 
    675   1.1    dyoung 	/*
    676   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    677   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    678   1.1    dyoung 	 * and we can decode it into an ascii string
    679   1.1    dyoung 	 */
    680   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    681   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    682   1.1    dyoung 
    683   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    684   1.1    dyoung 		if (pba_num_size < 11) {
    685   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    686   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    687   1.1    dyoung 		}
    688   1.1    dyoung 
    689   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    690   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    691   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    692   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    693   1.1    dyoung 		pba_num[3] = data & 0xF;
    694   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    695   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    696   1.1    dyoung 		pba_num[6] = '-';
    697   1.1    dyoung 		pba_num[7] = 0;
    698   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    699   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    700   1.1    dyoung 
    701   1.1    dyoung 		/* put a null character on the end of our string */
    702   1.1    dyoung 		pba_num[10] = '\0';
    703   1.1    dyoung 
    704   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    705   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    706   1.1    dyoung 			if (pba_num[offset] < 0xA)
    707   1.1    dyoung 				pba_num[offset] += '0';
    708   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    709   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    710   1.1    dyoung 		}
    711   1.1    dyoung 
    712   1.1    dyoung 		return IXGBE_SUCCESS;
    713   1.1    dyoung 	}
    714   1.1    dyoung 
    715   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    716   1.1    dyoung 	if (ret_val) {
    717   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    718   1.1    dyoung 		return ret_val;
    719   1.1    dyoung 	}
    720   1.1    dyoung 
    721   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    722   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    723   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    724   1.1    dyoung 	}
    725   1.1    dyoung 
    726   1.1    dyoung 	/* check if pba_num buffer is big enough */
    727   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    728   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    729   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    730   1.1    dyoung 	}
    731   1.1    dyoung 
    732   1.1    dyoung 	/* trim pba length from start of string */
    733   1.1    dyoung 	pba_ptr++;
    734   1.1    dyoung 	length--;
    735   1.1    dyoung 
    736   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    737   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    738   1.1    dyoung 		if (ret_val) {
    739   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    740   1.1    dyoung 			return ret_val;
    741   1.1    dyoung 		}
    742   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    743   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    744   1.1    dyoung 	}
    745   1.1    dyoung 	pba_num[offset * 2] = '\0';
    746   1.1    dyoung 
    747   1.1    dyoung 	return IXGBE_SUCCESS;
    748   1.1    dyoung }
    749   1.1    dyoung 
    750   1.1    dyoung /**
    751   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    752   1.1    dyoung  *  @hw: pointer to hardware structure
    753   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    754   1.1    dyoung  *
    755   1.1    dyoung  *  Reads the part number from the EEPROM.
    756   1.1    dyoung  **/
    757   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    758   1.1    dyoung {
    759   1.1    dyoung 	s32 ret_val;
    760   1.1    dyoung 	u16 data;
    761   1.1    dyoung 
    762   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    763   1.1    dyoung 
    764   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    765   1.1    dyoung 	if (ret_val) {
    766   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    767   1.1    dyoung 		return ret_val;
    768   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    769   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    770   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    771   1.1    dyoung 	}
    772   1.1    dyoung 	*pba_num = (u32)(data << 16);
    773   1.1    dyoung 
    774   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    775   1.1    dyoung 	if (ret_val) {
    776   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    777   1.1    dyoung 		return ret_val;
    778   1.1    dyoung 	}
    779   1.1    dyoung 	*pba_num |= data;
    780   1.1    dyoung 
    781   1.1    dyoung 	return IXGBE_SUCCESS;
    782   1.1    dyoung }
    783   1.1    dyoung 
    784   1.1    dyoung /**
    785   1.5   msaitoh  *  ixgbe_read_pba_raw
    786   1.5   msaitoh  *  @hw: pointer to the HW structure
    787   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    788   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    789   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    790   1.5   msaitoh  *  @pba: pointer to output PBA structure
    791   1.5   msaitoh  *
    792   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    793   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    794   1.5   msaitoh  *
    795   1.5   msaitoh  **/
    796   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    797   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    798   1.5   msaitoh 		       struct ixgbe_pba *pba)
    799   1.5   msaitoh {
    800   1.5   msaitoh 	s32 ret_val;
    801   1.5   msaitoh 	u16 pba_block_size;
    802   1.5   msaitoh 
    803   1.5   msaitoh 	if (pba == NULL)
    804   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    805   1.5   msaitoh 
    806   1.5   msaitoh 	if (eeprom_buf == NULL) {
    807   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    808   1.5   msaitoh 						     &pba->word[0]);
    809   1.5   msaitoh 		if (ret_val)
    810   1.5   msaitoh 			return ret_val;
    811   1.5   msaitoh 	} else {
    812   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    813   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    814   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    815   1.5   msaitoh 		} else {
    816   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    817   1.5   msaitoh 		}
    818   1.5   msaitoh 	}
    819   1.5   msaitoh 
    820   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    821   1.5   msaitoh 		if (pba->pba_block == NULL)
    822   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    823   1.5   msaitoh 
    824   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    825   1.5   msaitoh 						   eeprom_buf_size,
    826   1.5   msaitoh 						   &pba_block_size);
    827   1.5   msaitoh 		if (ret_val)
    828   1.5   msaitoh 			return ret_val;
    829   1.5   msaitoh 
    830   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    831   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    832   1.5   msaitoh 
    833   1.5   msaitoh 		if (eeprom_buf == NULL) {
    834   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    835   1.5   msaitoh 							     pba_block_size,
    836   1.5   msaitoh 							     pba->pba_block);
    837   1.5   msaitoh 			if (ret_val)
    838   1.5   msaitoh 				return ret_val;
    839   1.5   msaitoh 		} else {
    840   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    841   1.8   msaitoh 					      pba_block_size)) {
    842   1.5   msaitoh 				memcpy(pba->pba_block,
    843   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    844   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    845   1.5   msaitoh 			} else {
    846   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    847   1.5   msaitoh 			}
    848   1.5   msaitoh 		}
    849   1.5   msaitoh 	}
    850   1.5   msaitoh 
    851   1.5   msaitoh 	return IXGBE_SUCCESS;
    852   1.5   msaitoh }
    853   1.5   msaitoh 
    854   1.5   msaitoh /**
    855   1.5   msaitoh  *  ixgbe_write_pba_raw
    856   1.5   msaitoh  *  @hw: pointer to the HW structure
    857   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    858   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    859   1.5   msaitoh  *  @pba: pointer to PBA structure
    860   1.5   msaitoh  *
    861   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    862   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    863   1.5   msaitoh  *
    864   1.5   msaitoh  **/
    865   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    866   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    867   1.5   msaitoh {
    868   1.5   msaitoh 	s32 ret_val;
    869   1.5   msaitoh 
    870   1.5   msaitoh 	if (pba == NULL)
    871   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    872   1.5   msaitoh 
    873   1.5   msaitoh 	if (eeprom_buf == NULL) {
    874   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    875   1.5   msaitoh 						      &pba->word[0]);
    876   1.5   msaitoh 		if (ret_val)
    877   1.5   msaitoh 			return ret_val;
    878   1.5   msaitoh 	} else {
    879   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    880   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    881   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    882   1.5   msaitoh 		} else {
    883   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    884   1.5   msaitoh 		}
    885   1.5   msaitoh 	}
    886   1.5   msaitoh 
    887   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    888   1.5   msaitoh 		if (pba->pba_block == NULL)
    889   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    890   1.5   msaitoh 
    891   1.5   msaitoh 		if (eeprom_buf == NULL) {
    892   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    893   1.5   msaitoh 							      pba->pba_block[0],
    894   1.5   msaitoh 							      pba->pba_block);
    895   1.5   msaitoh 			if (ret_val)
    896   1.5   msaitoh 				return ret_val;
    897   1.5   msaitoh 		} else {
    898   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    899   1.5   msaitoh 					      pba->pba_block[0])) {
    900   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    901   1.5   msaitoh 				       pba->pba_block,
    902   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    903   1.5   msaitoh 			} else {
    904   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    905   1.5   msaitoh 			}
    906   1.5   msaitoh 		}
    907   1.5   msaitoh 	}
    908   1.5   msaitoh 
    909   1.5   msaitoh 	return IXGBE_SUCCESS;
    910   1.5   msaitoh }
    911   1.5   msaitoh 
    912   1.5   msaitoh /**
    913   1.5   msaitoh  *  ixgbe_get_pba_block_size
    914   1.5   msaitoh  *  @hw: pointer to the HW structure
    915   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    916   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    917   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    918   1.5   msaitoh  *
    919   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    920   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    921   1.5   msaitoh  *  EEPROM device.
    922   1.5   msaitoh  *
    923   1.5   msaitoh  **/
    924   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    925   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    926   1.5   msaitoh {
    927   1.5   msaitoh 	s32 ret_val;
    928   1.5   msaitoh 	u16 pba_word[2];
    929   1.5   msaitoh 	u16 length;
    930   1.5   msaitoh 
    931   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    932   1.5   msaitoh 
    933   1.5   msaitoh 	if (eeprom_buf == NULL) {
    934   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    935   1.5   msaitoh 						     &pba_word[0]);
    936   1.5   msaitoh 		if (ret_val)
    937   1.5   msaitoh 			return ret_val;
    938   1.5   msaitoh 	} else {
    939   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    940   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    941   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    942   1.5   msaitoh 		} else {
    943   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    944   1.5   msaitoh 		}
    945   1.5   msaitoh 	}
    946   1.5   msaitoh 
    947   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    948   1.5   msaitoh 		if (eeprom_buf == NULL) {
    949   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    950   1.5   msaitoh 						      &length);
    951   1.5   msaitoh 			if (ret_val)
    952   1.5   msaitoh 				return ret_val;
    953   1.5   msaitoh 		} else {
    954   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    955   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    956   1.5   msaitoh 			else
    957   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    958   1.5   msaitoh 		}
    959   1.5   msaitoh 
    960   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    961   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    962   1.5   msaitoh 	} else {
    963   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    964   1.5   msaitoh 		length = 0;
    965   1.5   msaitoh 	}
    966   1.5   msaitoh 
    967   1.5   msaitoh 	if (pba_block_size != NULL)
    968   1.5   msaitoh 		*pba_block_size = length;
    969   1.5   msaitoh 
    970   1.5   msaitoh 	return IXGBE_SUCCESS;
    971   1.5   msaitoh }
    972   1.5   msaitoh 
    973   1.5   msaitoh /**
    974   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    975   1.1    dyoung  *  @hw: pointer to hardware structure
    976   1.1    dyoung  *  @mac_addr: Adapter MAC address
    977   1.1    dyoung  *
    978   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    979   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    980   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    981   1.1    dyoung  **/
    982   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    983   1.1    dyoung {
    984   1.1    dyoung 	u32 rar_high;
    985   1.1    dyoung 	u32 rar_low;
    986   1.1    dyoung 	u16 i;
    987   1.1    dyoung 
    988   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    989   1.1    dyoung 
    990   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    991   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    992   1.1    dyoung 
    993   1.1    dyoung 	for (i = 0; i < 4; i++)
    994   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    995   1.1    dyoung 
    996   1.1    dyoung 	for (i = 0; i < 2; i++)
    997   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    998   1.1    dyoung 
    999   1.1    dyoung 	return IXGBE_SUCCESS;
   1000   1.1    dyoung }
   1001   1.1    dyoung 
   1002   1.1    dyoung /**
   1003   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1004   1.1    dyoung  *  @hw: pointer to hardware structure
   1005   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
   1006   1.1    dyoung  *
   1007   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1008   1.1    dyoung  **/
   1009   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1010   1.1    dyoung {
   1011   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
   1012   1.1    dyoung 
   1013   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1014   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
   1015   1.1    dyoung 
   1016   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1017   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
   1018   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1019   1.1    dyoung 		break;
   1020   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
   1021   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1022   1.1    dyoung 		break;
   1023   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
   1024   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1025   1.1    dyoung 		break;
   1026   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
   1027   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1028   1.1    dyoung 		break;
   1029   1.1    dyoung 	default:
   1030   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
   1031   1.1    dyoung 		break;
   1032   1.1    dyoung 	}
   1033   1.1    dyoung 
   1034   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1035   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
   1036   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
   1037   1.1    dyoung 		break;
   1038   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
   1039   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
   1040   1.1    dyoung 		break;
   1041   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
   1042   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
   1043   1.4   msaitoh 		break;
   1044   1.1    dyoung 	default:
   1045   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1046   1.1    dyoung 		break;
   1047   1.1    dyoung 	}
   1048   1.1    dyoung 
   1049   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1050   1.6   msaitoh }
   1051   1.6   msaitoh 
   1052   1.6   msaitoh /**
   1053   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1054   1.6   msaitoh  *  @hw: pointer to hardware structure
   1055   1.6   msaitoh  *
   1056   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1057   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1058   1.6   msaitoh  **/
   1059   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1060   1.6   msaitoh {
   1061   1.6   msaitoh 	u16 link_status;
   1062   1.6   msaitoh 
   1063   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1064   1.6   msaitoh 
   1065   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1066   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1067   1.6   msaitoh 
   1068   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1069   1.1    dyoung 
   1070   1.1    dyoung 	return IXGBE_SUCCESS;
   1071   1.1    dyoung }
   1072   1.1    dyoung 
   1073   1.1    dyoung /**
   1074   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1075   1.1    dyoung  *  @hw: pointer to the HW structure
   1076   1.1    dyoung  *
   1077  1.14   msaitoh  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1078  1.14   msaitoh  *  the port value if requested, and set MAC instance for devices that share
   1079  1.14   msaitoh  *  CS4227.
   1080   1.1    dyoung  **/
   1081   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1082   1.1    dyoung {
   1083   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1084   1.1    dyoung 	u32 reg;
   1085  1.14   msaitoh 	u16 ee_ctrl_4;
   1086   1.1    dyoung 
   1087   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1088   1.1    dyoung 
   1089   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1090   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1091  1.14   msaitoh 	bus->lan_id = (u8)bus->func;
   1092   1.1    dyoung 
   1093   1.1    dyoung 	/* check for a port swap */
   1094  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1095   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1096   1.1    dyoung 		bus->func ^= 0x1;
   1097  1.14   msaitoh 
   1098  1.14   msaitoh 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1099  1.14   msaitoh 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1100  1.14   msaitoh 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1101  1.14   msaitoh 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1102  1.14   msaitoh 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1103  1.14   msaitoh 	}
   1104   1.1    dyoung }
   1105   1.1    dyoung 
   1106   1.1    dyoung /**
   1107   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1108   1.1    dyoung  *  @hw: pointer to hardware structure
   1109   1.1    dyoung  *
   1110   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1111   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1112   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1113   1.1    dyoung  *  state and should not touch the hardware.
   1114   1.1    dyoung  **/
   1115   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1116   1.1    dyoung {
   1117   1.1    dyoung 	u32 reg_val;
   1118   1.1    dyoung 	u16 i;
   1119   1.1    dyoung 
   1120   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1121   1.1    dyoung 
   1122   1.1    dyoung 	/*
   1123   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1124   1.1    dyoung 	 * the hardware
   1125   1.1    dyoung 	 */
   1126   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1127   1.1    dyoung 
   1128   1.1    dyoung 	/* Disable the receive unit */
   1129   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1130   1.1    dyoung 
   1131   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1132   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1133   1.1    dyoung 
   1134   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1135   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1136   1.1    dyoung 
   1137   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1138   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1139   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1140   1.3   msaitoh 
   1141   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1142   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1143   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1144   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1145   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1146   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1147   1.1    dyoung 	}
   1148   1.1    dyoung 
   1149   1.3   msaitoh 	/* flush all queues disables */
   1150   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1151   1.3   msaitoh 	msec_delay(2);
   1152   1.3   msaitoh 
   1153   1.1    dyoung 	/*
   1154   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1155   1.1    dyoung 	 * access and verify no pending requests
   1156   1.1    dyoung 	 */
   1157   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1158   1.1    dyoung }
   1159   1.1    dyoung 
   1160   1.1    dyoung /**
   1161  1.14   msaitoh  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1162  1.14   msaitoh  *  @hw: pointer to hardware structure
   1163  1.14   msaitoh  *
   1164  1.14   msaitoh  *  Store the index for the link active LED. This will be used to support
   1165  1.14   msaitoh  *  blinking the LED.
   1166  1.14   msaitoh  **/
   1167  1.14   msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1168  1.14   msaitoh {
   1169  1.14   msaitoh 	struct ixgbe_mac_info *mac = &hw->mac;
   1170  1.14   msaitoh 	u32 led_reg, led_mode;
   1171  1.14   msaitoh 	u8 i;
   1172  1.14   msaitoh 
   1173  1.14   msaitoh 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1174  1.14   msaitoh 
   1175  1.14   msaitoh 	/* Get LED link active from the LEDCTL register */
   1176  1.14   msaitoh 	for (i = 0; i < 4; i++) {
   1177  1.14   msaitoh 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1178  1.14   msaitoh 
   1179  1.14   msaitoh 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1180  1.14   msaitoh 		     IXGBE_LED_LINK_ACTIVE) {
   1181  1.14   msaitoh 			mac->led_link_act = i;
   1182  1.14   msaitoh 			return IXGBE_SUCCESS;
   1183  1.14   msaitoh 		}
   1184  1.14   msaitoh 	}
   1185  1.14   msaitoh 
   1186  1.14   msaitoh 	/*
   1187  1.14   msaitoh 	 * If LEDCTL register does not have the LED link active set, then use
   1188  1.14   msaitoh 	 * known MAC defaults.
   1189  1.14   msaitoh 	 */
   1190  1.14   msaitoh 	switch (hw->mac.type) {
   1191  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   1192  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
   1193  1.14   msaitoh 		mac->led_link_act = 1;
   1194  1.14   msaitoh 		break;
   1195  1.14   msaitoh 	default:
   1196  1.14   msaitoh 		mac->led_link_act = 2;
   1197  1.14   msaitoh 	}
   1198  1.14   msaitoh 	return IXGBE_SUCCESS;
   1199  1.14   msaitoh }
   1200  1.14   msaitoh 
   1201  1.14   msaitoh /**
   1202   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1203   1.1    dyoung  *  @hw: pointer to hardware structure
   1204   1.1    dyoung  *  @index: led number to turn on
   1205   1.1    dyoung  **/
   1206   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1207   1.1    dyoung {
   1208   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1209   1.1    dyoung 
   1210   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1211   1.1    dyoung 
   1212  1.14   msaitoh 	if (index > 3)
   1213  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1214  1.14   msaitoh 
   1215   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1216   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1217   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1218   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1219   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1220   1.1    dyoung 
   1221   1.1    dyoung 	return IXGBE_SUCCESS;
   1222   1.1    dyoung }
   1223   1.1    dyoung 
   1224   1.1    dyoung /**
   1225   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1226   1.1    dyoung  *  @hw: pointer to hardware structure
   1227   1.1    dyoung  *  @index: led number to turn off
   1228   1.1    dyoung  **/
   1229   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1230   1.1    dyoung {
   1231   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1232   1.1    dyoung 
   1233   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1234   1.1    dyoung 
   1235  1.14   msaitoh 	if (index > 3)
   1236  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1237  1.14   msaitoh 
   1238   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1239   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1240   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1241   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1242   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1243   1.1    dyoung 
   1244   1.1    dyoung 	return IXGBE_SUCCESS;
   1245   1.1    dyoung }
   1246   1.1    dyoung 
   1247   1.1    dyoung /**
   1248   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1249   1.1    dyoung  *  @hw: pointer to hardware structure
   1250   1.1    dyoung  *
   1251   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1252   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1253   1.1    dyoung  **/
   1254   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1255   1.1    dyoung {
   1256   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1257   1.1    dyoung 	u32 eec;
   1258   1.1    dyoung 	u16 eeprom_size;
   1259   1.1    dyoung 
   1260   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1261   1.1    dyoung 
   1262   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1263   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1264   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1265   1.1    dyoung 		 * tested value */
   1266   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1267   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1268   1.3   msaitoh 		eeprom->word_page_size = 0;
   1269   1.1    dyoung 
   1270   1.1    dyoung 		/*
   1271   1.1    dyoung 		 * Check for EEPROM present first.
   1272   1.1    dyoung 		 * If not present leave as none
   1273   1.1    dyoung 		 */
   1274  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1275   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1276   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1277   1.1    dyoung 
   1278   1.1    dyoung 			/*
   1279   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1280   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1281   1.1    dyoung 			 */
   1282   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1283   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1284   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1285   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1286   1.1    dyoung 		}
   1287   1.1    dyoung 
   1288   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1289   1.1    dyoung 			eeprom->address_bits = 16;
   1290   1.1    dyoung 		else
   1291   1.1    dyoung 			eeprom->address_bits = 8;
   1292   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1293   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1294   1.3   msaitoh 			  eeprom->address_bits);
   1295   1.1    dyoung 	}
   1296   1.1    dyoung 
   1297   1.1    dyoung 	return IXGBE_SUCCESS;
   1298   1.1    dyoung }
   1299   1.1    dyoung 
   1300   1.1    dyoung /**
   1301   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1302   1.3   msaitoh  *  @hw: pointer to hardware structure
   1303   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1304   1.3   msaitoh  *  @words: number of word(s)
   1305   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1306   1.3   msaitoh  *
   1307   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1308   1.3   msaitoh  **/
   1309   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1310   1.3   msaitoh 					       u16 words, u16 *data)
   1311   1.3   msaitoh {
   1312   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1313   1.3   msaitoh 	u16 i, count;
   1314   1.3   msaitoh 
   1315   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1316   1.3   msaitoh 
   1317   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1318   1.3   msaitoh 
   1319   1.3   msaitoh 	if (words == 0) {
   1320   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1321   1.3   msaitoh 		goto out;
   1322   1.3   msaitoh 	}
   1323   1.3   msaitoh 
   1324   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1325   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1326   1.3   msaitoh 		goto out;
   1327   1.3   msaitoh 	}
   1328   1.3   msaitoh 
   1329   1.3   msaitoh 	/*
   1330   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1331   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1332   1.3   msaitoh 	 */
   1333   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1334   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1335   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1336   1.3   msaitoh 
   1337   1.3   msaitoh 	/*
   1338   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1339   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1340   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1341   1.3   msaitoh 	 */
   1342   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1343   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1344   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1345   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1346   1.3   msaitoh 							    count, &data[i]);
   1347   1.3   msaitoh 
   1348   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1349   1.3   msaitoh 			break;
   1350   1.3   msaitoh 	}
   1351   1.3   msaitoh 
   1352   1.3   msaitoh out:
   1353   1.3   msaitoh 	return status;
   1354   1.3   msaitoh }
   1355   1.3   msaitoh 
   1356   1.3   msaitoh /**
   1357   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1358   1.3   msaitoh  *  @hw: pointer to hardware structure
   1359   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1360   1.3   msaitoh  *  @words: number of word(s)
   1361   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1362   1.3   msaitoh  *
   1363   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1364   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1365   1.3   msaitoh  **/
   1366   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1367   1.3   msaitoh 					      u16 words, u16 *data)
   1368   1.3   msaitoh {
   1369   1.3   msaitoh 	s32 status;
   1370   1.3   msaitoh 	u16 word;
   1371   1.3   msaitoh 	u16 page_size;
   1372   1.3   msaitoh 	u16 i;
   1373   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1374   1.3   msaitoh 
   1375   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1376   1.3   msaitoh 
   1377   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1378   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1379   1.3   msaitoh 
   1380   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1381   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1382   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1383   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1384   1.3   msaitoh 		}
   1385   1.3   msaitoh 	}
   1386   1.3   msaitoh 
   1387   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1388   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1389   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1390   1.3   msaitoh 
   1391   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1392   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1393   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1394   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1395   1.3   msaitoh 
   1396   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1397   1.3   msaitoh 
   1398   1.3   msaitoh 			/*
   1399   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1400   1.3   msaitoh 			 * in the opcode
   1401   1.3   msaitoh 			 */
   1402   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1403   1.3   msaitoh 			    ((offset + i) >= 128))
   1404   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1405   1.3   msaitoh 
   1406   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1407   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1408   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1409   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1410   1.3   msaitoh 						    hw->eeprom.address_bits);
   1411   1.3   msaitoh 
   1412   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1413   1.3   msaitoh 
   1414   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1415   1.3   msaitoh 			do {
   1416   1.3   msaitoh 				word = data[i];
   1417   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1418   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1419   1.3   msaitoh 
   1420   1.3   msaitoh 				if (page_size == 0)
   1421   1.3   msaitoh 					break;
   1422   1.3   msaitoh 
   1423   1.3   msaitoh 				/* do not wrap around page */
   1424   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1425   1.3   msaitoh 				    (page_size - 1))
   1426   1.3   msaitoh 					break;
   1427   1.3   msaitoh 			} while (++i < words);
   1428   1.3   msaitoh 
   1429   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1430   1.3   msaitoh 			msec_delay(10);
   1431   1.3   msaitoh 		}
   1432   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1433   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1434   1.3   msaitoh 	}
   1435   1.3   msaitoh 
   1436   1.3   msaitoh 	return status;
   1437   1.3   msaitoh }
   1438   1.3   msaitoh 
   1439   1.3   msaitoh /**
   1440   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1441   1.1    dyoung  *  @hw: pointer to hardware structure
   1442   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1443   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1444   1.1    dyoung  *
   1445   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1446   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1447   1.1    dyoung  **/
   1448   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1449   1.1    dyoung {
   1450   1.1    dyoung 	s32 status;
   1451   1.1    dyoung 
   1452   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1453   1.1    dyoung 
   1454   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1455   1.1    dyoung 
   1456   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1457   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1458   1.1    dyoung 		goto out;
   1459   1.1    dyoung 	}
   1460   1.1    dyoung 
   1461   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1462   1.3   msaitoh 
   1463   1.3   msaitoh out:
   1464   1.3   msaitoh 	return status;
   1465   1.3   msaitoh }
   1466   1.3   msaitoh 
   1467   1.3   msaitoh /**
   1468   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1469   1.3   msaitoh  *  @hw: pointer to hardware structure
   1470   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1471   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1472   1.3   msaitoh  *  @words: number of word(s)
   1473   1.3   msaitoh  *
   1474   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1475   1.3   msaitoh  **/
   1476   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1477   1.3   msaitoh 					      u16 words, u16 *data)
   1478   1.3   msaitoh {
   1479   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1480   1.3   msaitoh 	u16 i, count;
   1481   1.3   msaitoh 
   1482   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1483   1.3   msaitoh 
   1484   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1485   1.3   msaitoh 
   1486   1.3   msaitoh 	if (words == 0) {
   1487   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1488   1.3   msaitoh 		goto out;
   1489   1.3   msaitoh 	}
   1490   1.3   msaitoh 
   1491   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1492   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1493   1.3   msaitoh 		goto out;
   1494   1.3   msaitoh 	}
   1495   1.3   msaitoh 
   1496   1.3   msaitoh 	/*
   1497   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1498   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1499   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1500   1.3   msaitoh 	 */
   1501   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1502   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1503   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1504   1.3   msaitoh 
   1505   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1506   1.3   msaitoh 							   count, &data[i]);
   1507   1.3   msaitoh 
   1508   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1509   1.3   msaitoh 			break;
   1510   1.3   msaitoh 	}
   1511   1.3   msaitoh 
   1512   1.3   msaitoh out:
   1513   1.3   msaitoh 	return status;
   1514   1.3   msaitoh }
   1515   1.3   msaitoh 
   1516   1.3   msaitoh /**
   1517   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1518   1.3   msaitoh  *  @hw: pointer to hardware structure
   1519   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1520   1.3   msaitoh  *  @words: number of word(s)
   1521   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1522   1.3   msaitoh  *
   1523   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1524   1.3   msaitoh  **/
   1525   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1526   1.3   msaitoh 					     u16 words, u16 *data)
   1527   1.3   msaitoh {
   1528   1.3   msaitoh 	s32 status;
   1529   1.3   msaitoh 	u16 word_in;
   1530   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1531   1.3   msaitoh 	u16 i;
   1532   1.3   msaitoh 
   1533   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1534   1.3   msaitoh 
   1535   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1536   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1537   1.1    dyoung 
   1538   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1539   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1540   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1541   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1542   1.1    dyoung 		}
   1543   1.1    dyoung 	}
   1544   1.1    dyoung 
   1545   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1546   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1547   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1548   1.3   msaitoh 			/*
   1549   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1550   1.3   msaitoh 			 * in the opcode
   1551   1.3   msaitoh 			 */
   1552   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1553   1.3   msaitoh 			    ((offset + i) >= 128))
   1554   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1555   1.3   msaitoh 
   1556   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1557   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1558   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1559   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1560   1.3   msaitoh 						    hw->eeprom.address_bits);
   1561   1.3   msaitoh 
   1562   1.3   msaitoh 			/* Read the data. */
   1563   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1564   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1565   1.3   msaitoh 		}
   1566   1.1    dyoung 
   1567   1.3   msaitoh 		/* End this read operation */
   1568   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1569   1.1    dyoung 	}
   1570   1.1    dyoung 
   1571   1.1    dyoung 	return status;
   1572   1.1    dyoung }
   1573   1.1    dyoung 
   1574   1.1    dyoung /**
   1575   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1576   1.1    dyoung  *  @hw: pointer to hardware structure
   1577   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1578   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1579   1.1    dyoung  *
   1580   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1581   1.1    dyoung  **/
   1582   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1583   1.3   msaitoh 				       u16 *data)
   1584   1.1    dyoung {
   1585   1.1    dyoung 	s32 status;
   1586   1.1    dyoung 
   1587   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1588   1.1    dyoung 
   1589   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1590   1.1    dyoung 
   1591   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1592   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1593   1.1    dyoung 		goto out;
   1594   1.1    dyoung 	}
   1595   1.1    dyoung 
   1596   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1597   1.3   msaitoh 
   1598   1.3   msaitoh out:
   1599   1.3   msaitoh 	return status;
   1600   1.3   msaitoh }
   1601   1.3   msaitoh 
   1602   1.3   msaitoh /**
   1603   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1604   1.3   msaitoh  *  @hw: pointer to hardware structure
   1605   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1606   1.3   msaitoh  *  @words: number of word(s)
   1607   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1608   1.3   msaitoh  *
   1609   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1610   1.3   msaitoh  **/
   1611   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1612   1.3   msaitoh 				   u16 words, u16 *data)
   1613   1.3   msaitoh {
   1614   1.3   msaitoh 	u32 eerd;
   1615   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1616   1.3   msaitoh 	u32 i;
   1617   1.3   msaitoh 
   1618   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1619   1.3   msaitoh 
   1620   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1621   1.3   msaitoh 
   1622   1.3   msaitoh 	if (words == 0) {
   1623   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1624   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1625   1.3   msaitoh 		goto out;
   1626   1.3   msaitoh 	}
   1627   1.3   msaitoh 
   1628   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1629   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1630   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1631   1.3   msaitoh 		goto out;
   1632   1.3   msaitoh 	}
   1633   1.3   msaitoh 
   1634   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1635   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1636   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1637   1.3   msaitoh 
   1638   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1639   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1640   1.1    dyoung 
   1641   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1642   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1643   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1644   1.3   msaitoh 		} else {
   1645   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1646   1.3   msaitoh 			goto out;
   1647   1.1    dyoung 		}
   1648   1.1    dyoung 	}
   1649   1.3   msaitoh out:
   1650   1.3   msaitoh 	return status;
   1651   1.3   msaitoh }
   1652   1.1    dyoung 
   1653   1.3   msaitoh /**
   1654   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1655   1.3   msaitoh  *  @hw: pointer to hardware structure
   1656   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1657   1.3   msaitoh  *
   1658   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1659   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1660   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1661   1.3   msaitoh  **/
   1662   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1663   1.3   msaitoh 						 u16 offset)
   1664   1.3   msaitoh {
   1665   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1666   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1667   1.3   msaitoh 	u16 i;
   1668   1.3   msaitoh 
   1669   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1670   1.3   msaitoh 
   1671   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1672   1.3   msaitoh 		data[i] = i;
   1673   1.1    dyoung 
   1674   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1675   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1676   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1677   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1678   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1679   1.3   msaitoh 		goto out;
   1680   1.1    dyoung 
   1681   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1682   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1683   1.3   msaitoh 		goto out;
   1684   1.1    dyoung 
   1685   1.3   msaitoh 	/*
   1686   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1687   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1688   1.3   msaitoh 	 */
   1689   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1690   1.1    dyoung 
   1691   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1692   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1693   1.1    dyoung out:
   1694   1.1    dyoung 	return status;
   1695   1.1    dyoung }
   1696   1.1    dyoung 
   1697   1.1    dyoung /**
   1698   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1699   1.1    dyoung  *  @hw: pointer to hardware structure
   1700   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1701   1.1    dyoung  *  @data: word read from the EEPROM
   1702   1.1    dyoung  *
   1703   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1704   1.1    dyoung  **/
   1705   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1706   1.1    dyoung {
   1707   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1708   1.3   msaitoh }
   1709   1.3   msaitoh 
   1710   1.3   msaitoh /**
   1711   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1712   1.3   msaitoh  *  @hw: pointer to hardware structure
   1713   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1714   1.3   msaitoh  *  @words: number of word(s)
   1715   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1716   1.3   msaitoh  *
   1717   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1718   1.3   msaitoh  **/
   1719   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1720   1.3   msaitoh 				    u16 words, u16 *data)
   1721   1.3   msaitoh {
   1722   1.3   msaitoh 	u32 eewr;
   1723   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1724   1.3   msaitoh 	u16 i;
   1725   1.1    dyoung 
   1726   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1727   1.1    dyoung 
   1728   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1729   1.1    dyoung 
   1730   1.3   msaitoh 	if (words == 0) {
   1731   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1732   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1733   1.3   msaitoh 		goto out;
   1734   1.3   msaitoh 	}
   1735   1.3   msaitoh 
   1736   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1737   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1738   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1739   1.1    dyoung 		goto out;
   1740   1.1    dyoung 	}
   1741   1.1    dyoung 
   1742   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1743   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1744   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1745   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1746   1.3   msaitoh 
   1747   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1748   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1749   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1750   1.3   msaitoh 			goto out;
   1751   1.3   msaitoh 		}
   1752   1.1    dyoung 
   1753   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1754   1.1    dyoung 
   1755   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1756   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1757   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1758   1.3   msaitoh 			goto out;
   1759   1.3   msaitoh 		}
   1760   1.3   msaitoh 	}
   1761   1.1    dyoung 
   1762   1.1    dyoung out:
   1763   1.1    dyoung 	return status;
   1764   1.1    dyoung }
   1765   1.1    dyoung 
   1766   1.1    dyoung /**
   1767   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1768   1.1    dyoung  *  @hw: pointer to hardware structure
   1769   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1770   1.1    dyoung  *  @data: word write to the EEPROM
   1771   1.1    dyoung  *
   1772   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1773   1.1    dyoung  **/
   1774   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1775   1.1    dyoung {
   1776   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1777   1.1    dyoung }
   1778   1.1    dyoung 
   1779   1.1    dyoung /**
   1780   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1781   1.1    dyoung  *  @hw: pointer to hardware structure
   1782   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1783   1.1    dyoung  *
   1784   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1785   1.1    dyoung  *  read or write is done respectively.
   1786   1.1    dyoung  **/
   1787   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1788   1.1    dyoung {
   1789   1.1    dyoung 	u32 i;
   1790   1.1    dyoung 	u32 reg;
   1791   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1792   1.1    dyoung 
   1793   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1794   1.1    dyoung 
   1795   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1796   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1797   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1798   1.1    dyoung 		else
   1799   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1800   1.1    dyoung 
   1801   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1802   1.1    dyoung 			status = IXGBE_SUCCESS;
   1803   1.1    dyoung 			break;
   1804   1.1    dyoung 		}
   1805   1.1    dyoung 		usec_delay(5);
   1806   1.1    dyoung 	}
   1807   1.6   msaitoh 
   1808   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1809   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1810   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1811   1.6   msaitoh 
   1812   1.1    dyoung 	return status;
   1813   1.1    dyoung }
   1814   1.1    dyoung 
   1815   1.1    dyoung /**
   1816   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1817   1.1    dyoung  *  @hw: pointer to hardware structure
   1818   1.1    dyoung  *
   1819   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1820   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1821   1.1    dyoung  **/
   1822   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1823   1.1    dyoung {
   1824   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1825   1.1    dyoung 	u32 eec;
   1826   1.1    dyoung 	u32 i;
   1827   1.1    dyoung 
   1828   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1829   1.1    dyoung 
   1830   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1831   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1832   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1833   1.1    dyoung 
   1834   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1835  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1836   1.1    dyoung 
   1837   1.1    dyoung 		/* Request EEPROM Access */
   1838   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1839  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1840   1.1    dyoung 
   1841   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1842  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1843   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1844   1.1    dyoung 				break;
   1845   1.1    dyoung 			usec_delay(5);
   1846   1.1    dyoung 		}
   1847   1.1    dyoung 
   1848   1.1    dyoung 		/* Release if grant not acquired */
   1849   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1850   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1851  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1852   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1853   1.1    dyoung 
   1854   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1855   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1856   1.1    dyoung 		}
   1857   1.1    dyoung 
   1858   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1859   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1860   1.1    dyoung 			/* Clear CS and SK */
   1861   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1862  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1863   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1864   1.1    dyoung 			usec_delay(1);
   1865   1.1    dyoung 		}
   1866   1.1    dyoung 	}
   1867   1.1    dyoung 	return status;
   1868   1.1    dyoung }
   1869   1.1    dyoung 
   1870   1.1    dyoung /**
   1871   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1872   1.1    dyoung  *  @hw: pointer to hardware structure
   1873   1.1    dyoung  *
   1874   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1875   1.1    dyoung  **/
   1876   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1877   1.1    dyoung {
   1878   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1879   1.1    dyoung 	u32 timeout = 2000;
   1880   1.1    dyoung 	u32 i;
   1881   1.1    dyoung 	u32 swsm;
   1882   1.1    dyoung 
   1883   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1884   1.1    dyoung 
   1885   1.1    dyoung 
   1886   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1887   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1888   1.1    dyoung 		/*
   1889   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1890   1.1    dyoung 		 * set and we have the semaphore
   1891   1.1    dyoung 		 */
   1892  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1893   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1894   1.1    dyoung 			status = IXGBE_SUCCESS;
   1895   1.1    dyoung 			break;
   1896   1.1    dyoung 		}
   1897   1.1    dyoung 		usec_delay(50);
   1898   1.1    dyoung 	}
   1899   1.1    dyoung 
   1900   1.3   msaitoh 	if (i == timeout) {
   1901   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1902   1.3   msaitoh 			 "not granted.\n");
   1903   1.3   msaitoh 		/*
   1904   1.3   msaitoh 		 * this release is particularly important because our attempts
   1905   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1906   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1907   1.3   msaitoh 		 * bits to free the driver to make progress
   1908   1.3   msaitoh 		 */
   1909   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1910   1.3   msaitoh 
   1911   1.3   msaitoh 		usec_delay(50);
   1912   1.3   msaitoh 		/*
   1913   1.3   msaitoh 		 * one last try
   1914   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1915   1.3   msaitoh 		 * set and we have the semaphore
   1916   1.3   msaitoh 		 */
   1917  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1918   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1919   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1920   1.3   msaitoh 	}
   1921   1.3   msaitoh 
   1922   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1923   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1924   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1925  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1926   1.1    dyoung 
   1927   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1928   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1929  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1930   1.1    dyoung 
   1931   1.1    dyoung 			/*
   1932   1.1    dyoung 			 * If we set the bit successfully then we got the
   1933   1.1    dyoung 			 * semaphore.
   1934   1.1    dyoung 			 */
   1935  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1936   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1937   1.1    dyoung 				break;
   1938   1.1    dyoung 
   1939   1.1    dyoung 			usec_delay(50);
   1940   1.1    dyoung 		}
   1941   1.1    dyoung 
   1942   1.1    dyoung 		/*
   1943   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1944   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1945   1.1    dyoung 		 */
   1946   1.1    dyoung 		if (i >= timeout) {
   1947   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1948   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1949   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1950   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1951   1.1    dyoung 		}
   1952   1.1    dyoung 	} else {
   1953   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1954   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1955   1.6   msaitoh 			     "not granted.\n");
   1956   1.1    dyoung 	}
   1957   1.1    dyoung 
   1958   1.1    dyoung 	return status;
   1959   1.1    dyoung }
   1960   1.1    dyoung 
   1961   1.1    dyoung /**
   1962   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1963   1.1    dyoung  *  @hw: pointer to hardware structure
   1964   1.1    dyoung  *
   1965   1.1    dyoung  *  This function clears hardware semaphore bits.
   1966   1.1    dyoung  **/
   1967   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1968   1.1    dyoung {
   1969   1.1    dyoung 	u32 swsm;
   1970   1.1    dyoung 
   1971   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1972   1.1    dyoung 
   1973   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1974   1.1    dyoung 
   1975   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1976   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1977   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1978   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1979   1.1    dyoung }
   1980   1.1    dyoung 
   1981   1.1    dyoung /**
   1982   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1983   1.1    dyoung  *  @hw: pointer to hardware structure
   1984   1.1    dyoung  **/
   1985   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1986   1.1    dyoung {
   1987   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1988   1.1    dyoung 	u16 i;
   1989   1.1    dyoung 	u8 spi_stat_reg;
   1990   1.1    dyoung 
   1991   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1992   1.1    dyoung 
   1993   1.1    dyoung 	/*
   1994   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1995   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1996   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1997   1.1    dyoung 	 * 5 milliseconds, then error out.
   1998   1.1    dyoung 	 */
   1999   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   2000   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2001   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   2002   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2003   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2004   1.1    dyoung 			break;
   2005   1.1    dyoung 
   2006   1.1    dyoung 		usec_delay(5);
   2007   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   2008  1.11   msaitoh 	}
   2009   1.1    dyoung 
   2010   1.1    dyoung 	/*
   2011   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2012   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   2013   1.1    dyoung 	 */
   2014   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2015   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   2016   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   2017   1.1    dyoung 	}
   2018   1.1    dyoung 
   2019   1.1    dyoung 	return status;
   2020   1.1    dyoung }
   2021   1.1    dyoung 
   2022   1.1    dyoung /**
   2023   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2024   1.1    dyoung  *  @hw: pointer to hardware structure
   2025   1.1    dyoung  **/
   2026   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2027   1.1    dyoung {
   2028   1.1    dyoung 	u32 eec;
   2029   1.1    dyoung 
   2030   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   2031   1.1    dyoung 
   2032  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2033   1.1    dyoung 
   2034   1.1    dyoung 	/* Toggle CS to flush commands */
   2035   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   2036  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2037   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2038   1.1    dyoung 	usec_delay(1);
   2039   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   2040  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2041   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2042   1.1    dyoung 	usec_delay(1);
   2043   1.1    dyoung }
   2044   1.1    dyoung 
   2045   1.1    dyoung /**
   2046   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2047   1.1    dyoung  *  @hw: pointer to hardware structure
   2048   1.1    dyoung  *  @data: data to send to the EEPROM
   2049   1.1    dyoung  *  @count: number of bits to shift out
   2050   1.1    dyoung  **/
   2051   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2052   1.3   msaitoh 					u16 count)
   2053   1.1    dyoung {
   2054   1.1    dyoung 	u32 eec;
   2055   1.1    dyoung 	u32 mask;
   2056   1.1    dyoung 	u32 i;
   2057   1.1    dyoung 
   2058   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2059   1.1    dyoung 
   2060  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2061   1.1    dyoung 
   2062   1.1    dyoung 	/*
   2063   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2064   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   2065   1.1    dyoung 	 */
   2066   1.1    dyoung 	mask = 0x01 << (count - 1);
   2067   1.1    dyoung 
   2068   1.1    dyoung 	for (i = 0; i < count; i++) {
   2069   1.1    dyoung 		/*
   2070   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2071   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   2072   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   2073   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2074   1.1    dyoung 		 * raising and then lowering the clock.
   2075   1.1    dyoung 		 */
   2076   1.1    dyoung 		if (data & mask)
   2077   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   2078   1.1    dyoung 		else
   2079   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   2080   1.1    dyoung 
   2081  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2082   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   2083   1.1    dyoung 
   2084   1.1    dyoung 		usec_delay(1);
   2085   1.1    dyoung 
   2086   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2087   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2088   1.1    dyoung 
   2089   1.1    dyoung 		/*
   2090   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   2091   1.1    dyoung 		 * EEPROM
   2092   1.1    dyoung 		 */
   2093   1.1    dyoung 		mask = mask >> 1;
   2094  1.11   msaitoh 	}
   2095   1.1    dyoung 
   2096   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2097   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   2098  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2099   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2100   1.1    dyoung }
   2101   1.1    dyoung 
   2102   1.1    dyoung /**
   2103   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2104   1.1    dyoung  *  @hw: pointer to hardware structure
   2105   1.1    dyoung  **/
   2106   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2107   1.1    dyoung {
   2108   1.1    dyoung 	u32 eec;
   2109   1.1    dyoung 	u32 i;
   2110   1.1    dyoung 	u16 data = 0;
   2111   1.1    dyoung 
   2112   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2113   1.1    dyoung 
   2114   1.1    dyoung 	/*
   2115   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2116   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2117   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2118   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2119   1.1    dyoung 	 * "DI" bit should always be clear.
   2120   1.1    dyoung 	 */
   2121  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2122   1.1    dyoung 
   2123   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2124   1.1    dyoung 
   2125   1.1    dyoung 	for (i = 0; i < count; i++) {
   2126   1.1    dyoung 		data = data << 1;
   2127   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2128   1.1    dyoung 
   2129  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2130   1.1    dyoung 
   2131   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2132   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2133   1.1    dyoung 			data |= 1;
   2134   1.1    dyoung 
   2135   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2136   1.1    dyoung 	}
   2137   1.1    dyoung 
   2138   1.1    dyoung 	return data;
   2139   1.1    dyoung }
   2140   1.1    dyoung 
   2141   1.1    dyoung /**
   2142   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2143   1.1    dyoung  *  @hw: pointer to hardware structure
   2144   1.1    dyoung  *  @eec: EEC register's current value
   2145   1.1    dyoung  **/
   2146   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2147   1.1    dyoung {
   2148   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2149   1.1    dyoung 
   2150   1.1    dyoung 	/*
   2151   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2152   1.1    dyoung 	 * (setting the SK bit), then delay
   2153   1.1    dyoung 	 */
   2154   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2155  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2156   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2157   1.1    dyoung 	usec_delay(1);
   2158   1.1    dyoung }
   2159   1.1    dyoung 
   2160   1.1    dyoung /**
   2161   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2162   1.1    dyoung  *  @hw: pointer to hardware structure
   2163   1.1    dyoung  *  @eecd: EECD's current value
   2164   1.1    dyoung  **/
   2165   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2166   1.1    dyoung {
   2167   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2168   1.1    dyoung 
   2169   1.1    dyoung 	/*
   2170   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2171   1.1    dyoung 	 * delay
   2172   1.1    dyoung 	 */
   2173   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2174  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2175   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2176   1.1    dyoung 	usec_delay(1);
   2177   1.1    dyoung }
   2178   1.1    dyoung 
   2179   1.1    dyoung /**
   2180   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2181   1.1    dyoung  *  @hw: pointer to hardware structure
   2182   1.1    dyoung  **/
   2183   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2184   1.1    dyoung {
   2185   1.1    dyoung 	u32 eec;
   2186   1.1    dyoung 
   2187   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2188   1.1    dyoung 
   2189  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2190   1.1    dyoung 
   2191   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2192   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2193   1.1    dyoung 
   2194  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2195   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2196   1.1    dyoung 
   2197   1.1    dyoung 	usec_delay(1);
   2198   1.1    dyoung 
   2199   1.1    dyoung 	/* Stop requesting EEPROM access */
   2200   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2201  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2202   1.1    dyoung 
   2203   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2204   1.1    dyoung 
   2205   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2206   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2207   1.1    dyoung }
   2208   1.1    dyoung 
   2209   1.1    dyoung /**
   2210   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2211   1.1    dyoung  *  @hw: pointer to hardware structure
   2212   1.8   msaitoh  *
   2213   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2214   1.1    dyoung  **/
   2215   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2216   1.1    dyoung {
   2217   1.1    dyoung 	u16 i;
   2218   1.1    dyoung 	u16 j;
   2219   1.1    dyoung 	u16 checksum = 0;
   2220   1.1    dyoung 	u16 length = 0;
   2221   1.1    dyoung 	u16 pointer = 0;
   2222   1.1    dyoung 	u16 word = 0;
   2223   1.1    dyoung 
   2224   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2225   1.1    dyoung 
   2226   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2227   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2228   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2229   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2230   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2231   1.1    dyoung 		}
   2232   1.1    dyoung 		checksum += word;
   2233   1.1    dyoung 	}
   2234   1.1    dyoung 
   2235   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2236   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2237   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2238   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2239   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2240   1.8   msaitoh 		}
   2241   1.8   msaitoh 
   2242   1.8   msaitoh 		/* If the pointer seems invalid */
   2243   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2244   1.8   msaitoh 			continue;
   2245   1.8   msaitoh 
   2246   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2247   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2248   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2249   1.8   msaitoh 		}
   2250   1.8   msaitoh 
   2251   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2252   1.8   msaitoh 			continue;
   2253   1.1    dyoung 
   2254   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2255   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2256   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2257   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2258   1.1    dyoung 			}
   2259   1.8   msaitoh 			checksum += word;
   2260   1.1    dyoung 		}
   2261   1.1    dyoung 	}
   2262   1.1    dyoung 
   2263   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2264   1.1    dyoung 
   2265   1.8   msaitoh 	return (s32)checksum;
   2266   1.1    dyoung }
   2267   1.1    dyoung 
   2268   1.1    dyoung /**
   2269   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2270   1.1    dyoung  *  @hw: pointer to hardware structure
   2271   1.1    dyoung  *  @checksum_val: calculated checksum
   2272   1.1    dyoung  *
   2273   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2274   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2275   1.1    dyoung  **/
   2276   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2277   1.3   msaitoh 					   u16 *checksum_val)
   2278   1.1    dyoung {
   2279   1.1    dyoung 	s32 status;
   2280   1.1    dyoung 	u16 checksum;
   2281   1.1    dyoung 	u16 read_checksum = 0;
   2282   1.1    dyoung 
   2283   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2284   1.1    dyoung 
   2285   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2286   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2287   1.1    dyoung 	 * EEPROM read fails
   2288   1.1    dyoung 	 */
   2289   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2290   1.8   msaitoh 	if (status) {
   2291   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2292   1.8   msaitoh 		return status;
   2293   1.8   msaitoh 	}
   2294   1.1    dyoung 
   2295   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2296   1.8   msaitoh 	if (status < 0)
   2297   1.8   msaitoh 		return status;
   2298   1.1    dyoung 
   2299   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2300   1.1    dyoung 
   2301   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2302   1.8   msaitoh 	if (status) {
   2303   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2304   1.8   msaitoh 		return status;
   2305   1.1    dyoung 	}
   2306   1.1    dyoung 
   2307   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2308   1.8   msaitoh 	 * calculated checksum
   2309   1.8   msaitoh 	 */
   2310   1.8   msaitoh 	if (read_checksum != checksum)
   2311   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2312   1.8   msaitoh 
   2313   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2314   1.8   msaitoh 	if (checksum_val)
   2315   1.8   msaitoh 		*checksum_val = checksum;
   2316   1.8   msaitoh 
   2317   1.1    dyoung 	return status;
   2318   1.1    dyoung }
   2319   1.1    dyoung 
   2320   1.1    dyoung /**
   2321   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2322   1.1    dyoung  *  @hw: pointer to hardware structure
   2323   1.1    dyoung  **/
   2324   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2325   1.1    dyoung {
   2326   1.1    dyoung 	s32 status;
   2327   1.1    dyoung 	u16 checksum;
   2328   1.1    dyoung 
   2329   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2330   1.1    dyoung 
   2331   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2332   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2333   1.1    dyoung 	 * EEPROM read fails
   2334   1.1    dyoung 	 */
   2335   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2336   1.8   msaitoh 	if (status) {
   2337   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2338   1.8   msaitoh 		return status;
   2339   1.1    dyoung 	}
   2340   1.1    dyoung 
   2341   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2342   1.8   msaitoh 	if (status < 0)
   2343   1.8   msaitoh 		return status;
   2344   1.8   msaitoh 
   2345   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2346   1.8   msaitoh 
   2347   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2348   1.8   msaitoh 
   2349   1.1    dyoung 	return status;
   2350   1.1    dyoung }
   2351   1.1    dyoung 
   2352   1.1    dyoung /**
   2353   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2354   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2355   1.1    dyoung  *
   2356  1.14   msaitoh  *  Tests a MAC address to ensure it is a valid Individual Address.
   2357   1.1    dyoung  **/
   2358   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2359   1.1    dyoung {
   2360   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2361   1.1    dyoung 
   2362   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2363   1.1    dyoung 
   2364   1.1    dyoung 	/* Make sure it is not a multicast address */
   2365   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2366   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2367   1.1    dyoung 	/* Not a broadcast address */
   2368   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2369   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2370   1.1    dyoung 	/* Reject the zero address */
   2371   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2372   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2373   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2374   1.1    dyoung 	}
   2375   1.1    dyoung 	return status;
   2376   1.1    dyoung }
   2377   1.1    dyoung 
   2378   1.1    dyoung /**
   2379   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2380   1.1    dyoung  *  @hw: pointer to hardware structure
   2381   1.1    dyoung  *  @index: Receive address register to write
   2382   1.1    dyoung  *  @addr: Address to put into receive address register
   2383   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2384   1.1    dyoung  *  @enable_addr: set flag that address is active
   2385   1.1    dyoung  *
   2386   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2387   1.1    dyoung  **/
   2388   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2389   1.3   msaitoh 			  u32 enable_addr)
   2390   1.1    dyoung {
   2391   1.1    dyoung 	u32 rar_low, rar_high;
   2392   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2393   1.1    dyoung 
   2394   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2395   1.1    dyoung 
   2396   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2397   1.1    dyoung 	if (index >= rar_entries) {
   2398   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2399   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2400   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2401   1.1    dyoung 	}
   2402   1.1    dyoung 
   2403   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2404   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2405   1.1    dyoung 
   2406   1.1    dyoung 	/*
   2407   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2408   1.1    dyoung 	 * order from network order (big endian) to little endian
   2409   1.1    dyoung 	 */
   2410   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2411   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2412   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2413   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2414   1.1    dyoung 	/*
   2415   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2416   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2417   1.1    dyoung 	 * of the address and the address valid bit.
   2418   1.1    dyoung 	 */
   2419   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2420   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2421   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2422   1.1    dyoung 
   2423   1.1    dyoung 	if (enable_addr != 0)
   2424   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2425   1.1    dyoung 
   2426   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2427   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2428   1.1    dyoung 
   2429   1.1    dyoung 	return IXGBE_SUCCESS;
   2430   1.1    dyoung }
   2431   1.1    dyoung 
   2432   1.1    dyoung /**
   2433   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2434   1.1    dyoung  *  @hw: pointer to hardware structure
   2435   1.1    dyoung  *  @index: Receive address register to write
   2436   1.1    dyoung  *
   2437   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2438   1.1    dyoung  **/
   2439   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2440   1.1    dyoung {
   2441   1.1    dyoung 	u32 rar_high;
   2442   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2443   1.1    dyoung 
   2444   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2445   1.1    dyoung 
   2446   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2447   1.1    dyoung 	if (index >= rar_entries) {
   2448   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2449   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2450   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2451   1.1    dyoung 	}
   2452   1.1    dyoung 
   2453   1.1    dyoung 	/*
   2454   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2455   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2456   1.1    dyoung 	 * of the address and the address valid bit.
   2457   1.1    dyoung 	 */
   2458   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2459   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2460   1.1    dyoung 
   2461   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2462   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2463   1.1    dyoung 
   2464   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2465   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2466   1.1    dyoung 
   2467   1.1    dyoung 	return IXGBE_SUCCESS;
   2468   1.1    dyoung }
   2469   1.1    dyoung 
   2470   1.1    dyoung /**
   2471   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2472   1.1    dyoung  *  @hw: pointer to hardware structure
   2473   1.1    dyoung  *
   2474   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2475   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2476   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2477   1.1    dyoung  **/
   2478   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2479   1.1    dyoung {
   2480   1.1    dyoung 	u32 i;
   2481   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2482   1.1    dyoung 
   2483   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2484   1.1    dyoung 
   2485   1.1    dyoung 	/*
   2486   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2487   1.1    dyoung 	 * to the permanent address.
   2488   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2489   1.1    dyoung 	 */
   2490   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2491   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2492   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2493   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2494   1.1    dyoung 
   2495   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2496   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2497   1.3   msaitoh 			  hw->mac.addr[2]);
   2498   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2499   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2500   1.1    dyoung 	} else {
   2501   1.1    dyoung 		/* Setup the receive address. */
   2502   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2503   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2504   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2505   1.3   msaitoh 			  hw->mac.addr[2]);
   2506   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2507   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2508   1.1    dyoung 
   2509   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2510  1.14   msaitoh 	}
   2511  1.14   msaitoh 
   2512  1.14   msaitoh 	/* clear VMDq pool/queue selection for RAR 0 */
   2513  1.14   msaitoh 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2514   1.1    dyoung 
   2515   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2516   1.1    dyoung 
   2517   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2518   1.1    dyoung 
   2519   1.1    dyoung 	/* Zero out the other receive addresses. */
   2520   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2521   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2522   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2523   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2524   1.1    dyoung 	}
   2525   1.1    dyoung 
   2526   1.1    dyoung 	/* Clear the MTA */
   2527   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2528   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2529   1.1    dyoung 
   2530   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2531   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2532   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2533   1.1    dyoung 
   2534   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2535   1.1    dyoung 
   2536   1.1    dyoung 	return IXGBE_SUCCESS;
   2537   1.1    dyoung }
   2538   1.1    dyoung 
   2539   1.1    dyoung /**
   2540   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2541   1.1    dyoung  *  @hw: pointer to hardware structure
   2542   1.1    dyoung  *  @addr: new address
   2543   1.1    dyoung  *
   2544   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2545   1.1    dyoung  **/
   2546   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2547   1.1    dyoung {
   2548   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2549   1.1    dyoung 	u32 rar;
   2550   1.1    dyoung 
   2551   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2552   1.1    dyoung 
   2553   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2554   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2555   1.1    dyoung 
   2556   1.1    dyoung 	/*
   2557   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2558   1.1    dyoung 	 * else put the controller into promiscuous mode
   2559   1.1    dyoung 	 */
   2560   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2561   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2562   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2563   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2564   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2565   1.1    dyoung 	} else {
   2566   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2567   1.1    dyoung 	}
   2568   1.1    dyoung 
   2569   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2570   1.1    dyoung }
   2571   1.1    dyoung 
   2572   1.1    dyoung /**
   2573   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2574   1.1    dyoung  *  @hw: pointer to hardware structure
   2575   1.1    dyoung  *  @addr_list: the list of new addresses
   2576   1.1    dyoung  *  @addr_count: number of addresses
   2577   1.1    dyoung  *  @next: iterator function to walk the address list
   2578   1.1    dyoung  *
   2579   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2580   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2581   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2582   1.1    dyoung  *
   2583   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2584   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2585   1.1    dyoung  **/
   2586   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2587   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2588   1.1    dyoung {
   2589   1.1    dyoung 	u8 *addr;
   2590   1.1    dyoung 	u32 i;
   2591   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2592   1.1    dyoung 	u32 uc_addr_in_use;
   2593   1.1    dyoung 	u32 fctrl;
   2594   1.1    dyoung 	u32 vmdq;
   2595   1.1    dyoung 
   2596   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2597   1.1    dyoung 
   2598   1.1    dyoung 	/*
   2599   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2600   1.1    dyoung 	 * don't count RAR[0]
   2601   1.1    dyoung 	 */
   2602   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2603   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2604   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2605   1.1    dyoung 
   2606   1.1    dyoung 	/* Zero out the other receive addresses */
   2607   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2608   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2609   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2610   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2611   1.1    dyoung 	}
   2612   1.1    dyoung 
   2613   1.1    dyoung 	/* Add the new addresses */
   2614   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2615   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2616   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2617   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2618   1.1    dyoung 	}
   2619   1.1    dyoung 
   2620   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2621   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2622   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2623   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2624   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2625   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2626   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2627   1.1    dyoung 		}
   2628   1.1    dyoung 	} else {
   2629   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2630   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2631   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2632   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2633   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2634   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2635   1.1    dyoung 		}
   2636   1.1    dyoung 	}
   2637   1.1    dyoung 
   2638   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2639   1.1    dyoung 	return IXGBE_SUCCESS;
   2640   1.1    dyoung }
   2641   1.1    dyoung 
   2642   1.1    dyoung /**
   2643   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2644   1.1    dyoung  *  @hw: pointer to hardware structure
   2645   1.1    dyoung  *  @mc_addr: the multicast address
   2646   1.1    dyoung  *
   2647   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2648   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2649   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2650   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2651   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2652   1.1    dyoung  *  to mc_filter_type.
   2653   1.1    dyoung  **/
   2654   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2655   1.1    dyoung {
   2656   1.1    dyoung 	u32 vector = 0;
   2657   1.1    dyoung 
   2658   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2659   1.1    dyoung 
   2660   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2661   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2662   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2663   1.1    dyoung 		break;
   2664   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2665   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2666   1.1    dyoung 		break;
   2667   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2668   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2669   1.1    dyoung 		break;
   2670   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2671   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2672   1.1    dyoung 		break;
   2673   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2674   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2675   1.1    dyoung 		ASSERT(0);
   2676   1.1    dyoung 		break;
   2677   1.1    dyoung 	}
   2678   1.1    dyoung 
   2679   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2680   1.1    dyoung 	vector &= 0xFFF;
   2681   1.1    dyoung 	return vector;
   2682   1.1    dyoung }
   2683   1.1    dyoung 
   2684   1.1    dyoung /**
   2685   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2686   1.1    dyoung  *  @hw: pointer to hardware structure
   2687   1.1    dyoung  *  @hash_value: Multicast address hash value
   2688   1.1    dyoung  *
   2689   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2690   1.1    dyoung  **/
   2691   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2692   1.1    dyoung {
   2693   1.1    dyoung 	u32 vector;
   2694   1.1    dyoung 	u32 vector_bit;
   2695   1.1    dyoung 	u32 vector_reg;
   2696   1.1    dyoung 
   2697   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2698   1.1    dyoung 
   2699   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2700   1.1    dyoung 
   2701   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2702   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2703   1.1    dyoung 
   2704   1.1    dyoung 	/*
   2705   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2706   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2707   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2708   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2709   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2710   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2711   1.1    dyoung 	 * the value.
   2712   1.1    dyoung 	 */
   2713   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2714   1.1    dyoung 	vector_bit = vector & 0x1F;
   2715   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2716   1.1    dyoung }
   2717   1.1    dyoung 
   2718   1.1    dyoung /**
   2719   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2720   1.1    dyoung  *  @hw: pointer to hardware structure
   2721   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2722   1.1    dyoung  *  @mc_addr_count: number of addresses
   2723   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2724   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2725   1.1    dyoung  *
   2726   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2727   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2728   1.1    dyoung  **/
   2729   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2730   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2731   1.3   msaitoh 				      bool clear)
   2732   1.1    dyoung {
   2733   1.1    dyoung 	u32 i;
   2734   1.1    dyoung 	u32 vmdq;
   2735   1.1    dyoung 
   2736   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2737   1.1    dyoung 
   2738   1.1    dyoung 	/*
   2739   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2740   1.1    dyoung 	 * use.
   2741   1.1    dyoung 	 */
   2742   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2743   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2744   1.1    dyoung 
   2745   1.1    dyoung 	/* Clear mta_shadow */
   2746   1.3   msaitoh 	if (clear) {
   2747   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2748   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2749   1.3   msaitoh 	}
   2750   1.1    dyoung 
   2751   1.1    dyoung 	/* Update mta_shadow */
   2752   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2753   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2754   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2755   1.1    dyoung 	}
   2756   1.1    dyoung 
   2757   1.1    dyoung 	/* Enable mta */
   2758   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2759   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2760   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2761   1.1    dyoung 
   2762   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2763   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2764   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2765   1.1    dyoung 
   2766   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2767   1.1    dyoung 	return IXGBE_SUCCESS;
   2768   1.1    dyoung }
   2769   1.1    dyoung 
   2770   1.1    dyoung /**
   2771   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2772   1.1    dyoung  *  @hw: pointer to hardware structure
   2773   1.1    dyoung  *
   2774   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2775   1.1    dyoung  **/
   2776   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2777   1.1    dyoung {
   2778   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2779   1.1    dyoung 
   2780   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2781   1.1    dyoung 
   2782   1.1    dyoung 	if (a->mta_in_use > 0)
   2783   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2784   1.3   msaitoh 				hw->mac.mc_filter_type);
   2785   1.1    dyoung 
   2786   1.1    dyoung 	return IXGBE_SUCCESS;
   2787   1.1    dyoung }
   2788   1.1    dyoung 
   2789   1.1    dyoung /**
   2790   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2791   1.1    dyoung  *  @hw: pointer to hardware structure
   2792   1.1    dyoung  *
   2793   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2794   1.1    dyoung  **/
   2795   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2796   1.1    dyoung {
   2797   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2798   1.1    dyoung 
   2799   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2800   1.1    dyoung 
   2801   1.1    dyoung 	if (a->mta_in_use > 0)
   2802   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2803   1.1    dyoung 
   2804   1.1    dyoung 	return IXGBE_SUCCESS;
   2805   1.1    dyoung }
   2806   1.1    dyoung 
   2807   1.1    dyoung /**
   2808   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2809   1.1    dyoung  *  @hw: pointer to hardware structure
   2810   1.1    dyoung  *
   2811   1.1    dyoung  *  Enable flow control according to the current settings.
   2812   1.1    dyoung  **/
   2813   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2814   1.1    dyoung {
   2815   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2816   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2817   1.1    dyoung 	u32 reg;
   2818   1.1    dyoung 	u32 fcrtl, fcrth;
   2819   1.4   msaitoh 	int i;
   2820   1.1    dyoung 
   2821   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2822   1.1    dyoung 
   2823   1.4   msaitoh 	/* Validate the water mark configuration */
   2824   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2825   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2826   1.4   msaitoh 		goto out;
   2827   1.4   msaitoh 	}
   2828   1.4   msaitoh 
   2829   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2830   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2831   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2832   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2833   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2834   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2835   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2836   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2837   1.4   msaitoh 				goto out;
   2838   1.4   msaitoh 			}
   2839   1.4   msaitoh 		}
   2840   1.4   msaitoh 	}
   2841   1.4   msaitoh 
   2842   1.1    dyoung 	/* Negotiate the fc mode to use */
   2843  1.14   msaitoh 	hw->mac.ops.fc_autoneg(hw);
   2844   1.1    dyoung 
   2845   1.1    dyoung 	/* Disable any previous flow control settings */
   2846   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2847   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2848   1.1    dyoung 
   2849   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2850   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2851   1.1    dyoung 
   2852   1.1    dyoung 	/*
   2853   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2854   1.1    dyoung 	 * 0: Flow control is completely disabled
   2855   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2856   1.1    dyoung 	 *    but not send pause frames).
   2857   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2858   1.1    dyoung 	 *    we do not support receiving pause frames).
   2859   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2860   1.1    dyoung 	 * other: Invalid.
   2861   1.1    dyoung 	 */
   2862   1.1    dyoung 	switch (hw->fc.current_mode) {
   2863   1.1    dyoung 	case ixgbe_fc_none:
   2864   1.1    dyoung 		/*
   2865   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2866   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2867   1.1    dyoung 		 */
   2868   1.1    dyoung 		break;
   2869   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2870   1.1    dyoung 		/*
   2871   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2872   1.1    dyoung 		 * disabled by software override. Since there really
   2873   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2874   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2875   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2876   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2877   1.1    dyoung 		 */
   2878   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2879   1.1    dyoung 		break;
   2880   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2881   1.1    dyoung 		/*
   2882   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2883   1.1    dyoung 		 * disabled by software override.
   2884   1.1    dyoung 		 */
   2885   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2886   1.1    dyoung 		break;
   2887   1.1    dyoung 	case ixgbe_fc_full:
   2888   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2889   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2890   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2891   1.1    dyoung 		break;
   2892   1.1    dyoung 	default:
   2893   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2894   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2895   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2896   1.1    dyoung 		goto out;
   2897   1.1    dyoung 		break;
   2898   1.1    dyoung 	}
   2899   1.1    dyoung 
   2900   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2901   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2902   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2903   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2904   1.1    dyoung 
   2905   1.1    dyoung 
   2906   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2907   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2908   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2909   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2910   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2911   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2912   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2913   1.4   msaitoh 		} else {
   2914   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2915   1.4   msaitoh 			/*
   2916   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2917   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2918   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2919   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2920   1.8   msaitoh 			 * workloads.
   2921   1.4   msaitoh 			 */
   2922   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2923   1.4   msaitoh 		}
   2924   1.4   msaitoh 
   2925   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2926   1.1    dyoung 	}
   2927   1.1    dyoung 
   2928   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2929   1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2930   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2931   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2932   1.1    dyoung 
   2933   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2934   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2935   1.1    dyoung 
   2936   1.1    dyoung out:
   2937   1.1    dyoung 	return ret_val;
   2938   1.1    dyoung }
   2939   1.1    dyoung 
   2940   1.1    dyoung /**
   2941   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2942   1.1    dyoung  *  @hw: pointer to hardware structure
   2943   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2944   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2945   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2946   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2947   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2948   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2949   1.1    dyoung  *
   2950   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2951   1.4   msaitoh  *  advertised settings
   2952   1.1    dyoung  **/
   2953  1.14   msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2954  1.14   msaitoh 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2955   1.1    dyoung {
   2956   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2957   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2958   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2959   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2960   1.6   msaitoh 			     adv_reg, lp_reg);
   2961   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2962   1.6   msaitoh 	}
   2963   1.1    dyoung 
   2964   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2965   1.4   msaitoh 		/*
   2966   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2967   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2968   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2969   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2970   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2971   1.4   msaitoh 		 */
   2972   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2973   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2974   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2975   1.4   msaitoh 		} else {
   2976   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2977   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2978   1.4   msaitoh 		}
   2979   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2980   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2981   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2982   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2983   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2984   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2985   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2986   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2987   1.4   msaitoh 	} else {
   2988   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2989   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2990   1.4   msaitoh 	}
   2991   1.4   msaitoh 	return IXGBE_SUCCESS;
   2992   1.4   msaitoh }
   2993   1.1    dyoung 
   2994   1.4   msaitoh /**
   2995   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2996   1.4   msaitoh  *  @hw: pointer to hardware structure
   2997   1.4   msaitoh  *
   2998   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2999   1.4   msaitoh  **/
   3000   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3001   1.4   msaitoh {
   3002   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3003   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3004   1.1    dyoung 
   3005   1.1    dyoung 	/*
   3006   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   3007   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   3008   1.4   msaitoh 	 * - link is up and AN completed but timed out
   3009   1.1    dyoung 	 */
   3010   1.4   msaitoh 
   3011   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3012   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3013   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3014   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3015   1.1    dyoung 		goto out;
   3016   1.6   msaitoh 	}
   3017   1.1    dyoung 
   3018   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3019   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3020   1.1    dyoung 
   3021   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3022   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3023   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3024   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3025   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3026   1.1    dyoung 
   3027   1.1    dyoung out:
   3028   1.1    dyoung 	return ret_val;
   3029   1.1    dyoung }
   3030   1.1    dyoung 
   3031   1.1    dyoung /**
   3032   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3033   1.1    dyoung  *  @hw: pointer to hardware structure
   3034   1.1    dyoung  *
   3035   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3036   1.1    dyoung  **/
   3037   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3038   1.1    dyoung {
   3039   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   3040   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3041   1.1    dyoung 
   3042   1.1    dyoung 	/*
   3043   1.1    dyoung 	 * On backplane, bail out if
   3044   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   3045   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   3046   1.1    dyoung 	 */
   3047   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3048   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3049   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3050   1.1    dyoung 		goto out;
   3051   1.6   msaitoh 	}
   3052   1.1    dyoung 
   3053   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3054   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3055   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3056   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   3057   1.1    dyoung 			goto out;
   3058   1.6   msaitoh 		}
   3059   1.1    dyoung 	}
   3060   1.1    dyoung 	/*
   3061   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   3062   1.1    dyoung 	 * local flow control settings accordingly
   3063   1.1    dyoung 	 */
   3064   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3065   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3066   1.1    dyoung 
   3067   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3068   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3069   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3070   1.1    dyoung 
   3071   1.1    dyoung out:
   3072   1.1    dyoung 	return ret_val;
   3073   1.1    dyoung }
   3074   1.1    dyoung 
   3075   1.1    dyoung /**
   3076   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3077   1.1    dyoung  *  @hw: pointer to hardware structure
   3078   1.1    dyoung  *
   3079   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3080   1.1    dyoung  **/
   3081   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3082   1.1    dyoung {
   3083   1.1    dyoung 	u16 technology_ability_reg = 0;
   3084   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   3085   1.1    dyoung 
   3086   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3087   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3088   1.1    dyoung 			     &technology_ability_reg);
   3089   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3090   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3091   1.1    dyoung 			     &lp_technology_ability_reg);
   3092   1.1    dyoung 
   3093   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3094   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   3095   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3096   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3097   1.1    dyoung }
   3098   1.1    dyoung 
   3099   1.1    dyoung /**
   3100   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3101   1.1    dyoung  *  @hw: pointer to hardware structure
   3102   1.1    dyoung  *
   3103   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3104   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3105   1.1    dyoung  **/
   3106   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3107   1.1    dyoung {
   3108   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3109   1.4   msaitoh 	ixgbe_link_speed speed;
   3110   1.4   msaitoh 	bool link_up;
   3111   1.1    dyoung 
   3112   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3113   1.1    dyoung 
   3114   1.1    dyoung 	/*
   3115   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3116   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3117   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3118   1.4   msaitoh 	 * - link is not up.
   3119   1.1    dyoung 	 */
   3120   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3121   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3122   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3123   1.1    dyoung 		goto out;
   3124   1.6   msaitoh 	}
   3125   1.1    dyoung 
   3126   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3127   1.6   msaitoh 	if (!link_up) {
   3128   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3129   1.1    dyoung 		goto out;
   3130   1.6   msaitoh 	}
   3131   1.1    dyoung 
   3132   1.1    dyoung 	switch (hw->phy.media_type) {
   3133   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3134   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3135   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3136   1.1    dyoung 	case ixgbe_media_type_fiber:
   3137   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3138   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3139   1.4   msaitoh 		break;
   3140   1.4   msaitoh 
   3141   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3142   1.1    dyoung 	case ixgbe_media_type_backplane:
   3143   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3144   1.1    dyoung 		break;
   3145   1.1    dyoung 
   3146   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3147   1.1    dyoung 	case ixgbe_media_type_copper:
   3148   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3149   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3150   1.1    dyoung 		break;
   3151   1.1    dyoung 
   3152   1.1    dyoung 	default:
   3153   1.1    dyoung 		break;
   3154   1.1    dyoung 	}
   3155   1.1    dyoung 
   3156   1.4   msaitoh out:
   3157   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3158   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3159   1.4   msaitoh 	} else {
   3160   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3161   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3162   1.3   msaitoh 	}
   3163   1.1    dyoung }
   3164   1.1    dyoung 
   3165   1.6   msaitoh /*
   3166   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3167   1.6   msaitoh  * @hw: pointer to hardware structure
   3168   1.6   msaitoh  *
   3169   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3170   1.6   msaitoh  *
   3171   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3172   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3173   1.6   msaitoh  * 800 = 80 millisec.
   3174   1.6   msaitoh  */
   3175   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3176   1.6   msaitoh {
   3177   1.6   msaitoh 	s16 devctl2;
   3178   1.6   msaitoh 	u32 pollcnt;
   3179   1.6   msaitoh 
   3180   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3181   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3182   1.6   msaitoh 
   3183   1.6   msaitoh 	switch (devctl2) {
   3184   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3185   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3186   1.6   msaitoh 		break;
   3187   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3188   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3189   1.6   msaitoh 		break;
   3190   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3191   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3192   1.6   msaitoh 		break;
   3193   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3194   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3195   1.6   msaitoh 		break;
   3196   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3197   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3198   1.6   msaitoh 		break;
   3199   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3200   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3201   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3202   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3203   1.6   msaitoh 	default:
   3204   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3205   1.6   msaitoh 		break;
   3206   1.6   msaitoh 	}
   3207   1.6   msaitoh 
   3208   1.6   msaitoh 	/* add 10% to spec maximum */
   3209   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3210   1.6   msaitoh }
   3211   1.6   msaitoh 
   3212   1.1    dyoung /**
   3213   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3214   1.1    dyoung  *  @hw: pointer to hardware structure
   3215   1.1    dyoung  *
   3216   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3217   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3218   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3219   1.1    dyoung  *  is returned signifying master requests disabled.
   3220   1.1    dyoung  **/
   3221   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3222   1.1    dyoung {
   3223   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3224   1.6   msaitoh 	u32 i, poll;
   3225   1.8   msaitoh 	u16 value;
   3226   1.1    dyoung 
   3227   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3228   1.1    dyoung 
   3229   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3230   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3231   1.3   msaitoh 
   3232   1.6   msaitoh 	/* Exit if master requests are blocked */
   3233   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3234   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3235   1.1    dyoung 		goto out;
   3236   1.1    dyoung 
   3237   1.3   msaitoh 	/* Poll for master request bit to clear */
   3238   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3239   1.3   msaitoh 		usec_delay(100);
   3240   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3241   1.3   msaitoh 			goto out;
   3242   1.1    dyoung 	}
   3243   1.1    dyoung 
   3244   1.3   msaitoh 	/*
   3245   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3246   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3247   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3248   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3249   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3250   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3251   1.3   msaitoh 	 */
   3252   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3253   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3254   1.1    dyoung 
   3255  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3256  1.10   msaitoh 		goto out;
   3257  1.10   msaitoh 
   3258   1.1    dyoung 	/*
   3259   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3260   1.1    dyoung 	 * transactions pending.
   3261   1.1    dyoung 	 */
   3262   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3263   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3264   1.3   msaitoh 		usec_delay(100);
   3265   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3266   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3267   1.8   msaitoh 			goto out;
   3268   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3269   1.3   msaitoh 			goto out;
   3270   1.1    dyoung 	}
   3271   1.1    dyoung 
   3272   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3273   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3274   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3275   1.1    dyoung 
   3276   1.1    dyoung out:
   3277   1.1    dyoung 	return status;
   3278   1.1    dyoung }
   3279   1.1    dyoung 
   3280   1.1    dyoung /**
   3281   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3282   1.1    dyoung  *  @hw: pointer to hardware structure
   3283   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3284   1.1    dyoung  *
   3285   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3286   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3287   1.1    dyoung  **/
   3288   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3289   1.1    dyoung {
   3290   1.6   msaitoh 	u32 gssr = 0;
   3291   1.1    dyoung 	u32 swmask = mask;
   3292   1.1    dyoung 	u32 fwmask = mask << 5;
   3293   1.6   msaitoh 	u32 timeout = 200;
   3294   1.6   msaitoh 	u32 i;
   3295   1.1    dyoung 
   3296   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3297   1.1    dyoung 
   3298   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3299   1.1    dyoung 		/*
   3300   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3301   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3302   1.1    dyoung 		 */
   3303   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3304   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3305   1.1    dyoung 
   3306   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3307   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3308   1.6   msaitoh 			gssr |= swmask;
   3309   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3310   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3311   1.6   msaitoh 			return IXGBE_SUCCESS;
   3312   1.6   msaitoh 		} else {
   3313   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3314   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3315   1.6   msaitoh 			msec_delay(5);
   3316   1.6   msaitoh 		}
   3317   1.1    dyoung 	}
   3318   1.1    dyoung 
   3319   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3320   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3321   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3322   1.1    dyoung 
   3323   1.6   msaitoh 	msec_delay(5);
   3324   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3325   1.1    dyoung }
   3326   1.1    dyoung 
   3327   1.1    dyoung /**
   3328   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3329   1.1    dyoung  *  @hw: pointer to hardware structure
   3330   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3331   1.1    dyoung  *
   3332   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3333   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3334   1.1    dyoung  **/
   3335   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3336   1.1    dyoung {
   3337   1.1    dyoung 	u32 gssr;
   3338   1.1    dyoung 	u32 swmask = mask;
   3339   1.1    dyoung 
   3340   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3341   1.1    dyoung 
   3342   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3343   1.1    dyoung 
   3344   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3345   1.1    dyoung 	gssr &= ~swmask;
   3346   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3347   1.1    dyoung 
   3348   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3349   1.1    dyoung }
   3350   1.1    dyoung 
   3351   1.1    dyoung /**
   3352   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3353   1.3   msaitoh  *  @hw: pointer to hardware structure
   3354   1.3   msaitoh  *
   3355   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3356   1.3   msaitoh  *  the Rx security block
   3357   1.3   msaitoh  **/
   3358   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3359   1.3   msaitoh {
   3360   1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3361   1.3   msaitoh 
   3362   1.3   msaitoh 	int i;
   3363   1.3   msaitoh 	int secrxreg;
   3364   1.3   msaitoh 
   3365   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3366   1.3   msaitoh 
   3367   1.3   msaitoh 
   3368   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3369   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3370   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3371   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3372   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3373   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3374   1.3   msaitoh 			break;
   3375   1.3   msaitoh 		else
   3376   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3377   1.3   msaitoh 			usec_delay(1000);
   3378   1.3   msaitoh 	}
   3379   1.3   msaitoh 
   3380   1.3   msaitoh 	/* For informational purposes only */
   3381   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3382   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3383   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3384   1.3   msaitoh 
   3385   1.3   msaitoh 	return IXGBE_SUCCESS;
   3386   1.3   msaitoh }
   3387   1.3   msaitoh 
   3388   1.3   msaitoh /**
   3389   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3390   1.8   msaitoh  *  @hw: pointer to hardware structure
   3391   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3392   1.8   msaitoh  *
   3393   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3394   1.8   msaitoh  */
   3395   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3396   1.8   msaitoh {
   3397   1.8   msaitoh 	*locked = FALSE;
   3398   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3399   1.8   msaitoh 	return IXGBE_SUCCESS;
   3400   1.8   msaitoh }
   3401   1.8   msaitoh 
   3402   1.8   msaitoh /**
   3403   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3404   1.8   msaitoh  * @hw: pointer to hardware structure
   3405   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3406   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3407   1.8   msaitoh  *           previous read.
   3408   1.8   msaitoh  *
   3409   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3410   1.8   msaitoh  */
   3411   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3412   1.8   msaitoh {
   3413   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3414   1.8   msaitoh 
   3415   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3416   1.8   msaitoh 	return IXGBE_SUCCESS;
   3417   1.8   msaitoh }
   3418   1.8   msaitoh 
   3419   1.8   msaitoh /**
   3420   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3421   1.3   msaitoh  *  @hw: pointer to hardware structure
   3422   1.3   msaitoh  *
   3423   1.3   msaitoh  *  Enables the receive data path.
   3424   1.3   msaitoh  **/
   3425   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3426   1.3   msaitoh {
   3427  1.14   msaitoh 	u32 secrxreg;
   3428   1.3   msaitoh 
   3429   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3430   1.3   msaitoh 
   3431   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3432   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3433   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3434   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3435   1.3   msaitoh 
   3436   1.3   msaitoh 	return IXGBE_SUCCESS;
   3437   1.3   msaitoh }
   3438   1.3   msaitoh 
   3439   1.3   msaitoh /**
   3440   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3441   1.1    dyoung  *  @hw: pointer to hardware structure
   3442   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3443   1.1    dyoung  *
   3444   1.1    dyoung  *  Enables the Rx DMA unit
   3445   1.1    dyoung  **/
   3446   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3447   1.1    dyoung {
   3448   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3449   1.1    dyoung 
   3450   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3451   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3452   1.8   msaitoh 	else
   3453   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3454   1.1    dyoung 
   3455   1.1    dyoung 	return IXGBE_SUCCESS;
   3456   1.1    dyoung }
   3457   1.1    dyoung 
   3458   1.1    dyoung /**
   3459   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3460   1.1    dyoung  *  @hw: pointer to hardware structure
   3461   1.1    dyoung  *  @index: led number to blink
   3462   1.1    dyoung  **/
   3463   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3464   1.1    dyoung {
   3465   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3466   1.1    dyoung 	bool link_up = 0;
   3467   1.8   msaitoh 	u32 autoc_reg = 0;
   3468   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3469   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3470   1.8   msaitoh 	bool locked = FALSE;
   3471   1.1    dyoung 
   3472   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3473   1.1    dyoung 
   3474  1.14   msaitoh 	if (index > 3)
   3475  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3476  1.14   msaitoh 
   3477   1.1    dyoung 	/*
   3478   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3479   1.1    dyoung 	 * Force it if link is down.
   3480   1.1    dyoung 	 */
   3481   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3482   1.1    dyoung 
   3483   1.1    dyoung 	if (!link_up) {
   3484   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3485   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3486   1.8   msaitoh 			goto out;
   3487   1.5   msaitoh 
   3488   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3489   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3490   1.8   msaitoh 
   3491   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3492   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3493   1.8   msaitoh 			goto out;
   3494   1.8   msaitoh 
   3495   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3496   1.1    dyoung 		msec_delay(10);
   3497   1.1    dyoung 	}
   3498   1.1    dyoung 
   3499   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3500   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3501   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3502   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3503   1.1    dyoung 
   3504   1.5   msaitoh out:
   3505   1.5   msaitoh 	return ret_val;
   3506   1.1    dyoung }
   3507   1.1    dyoung 
   3508   1.1    dyoung /**
   3509   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3510   1.1    dyoung  *  @hw: pointer to hardware structure
   3511   1.1    dyoung  *  @index: led number to stop blinking
   3512   1.1    dyoung  **/
   3513   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3514   1.1    dyoung {
   3515   1.8   msaitoh 	u32 autoc_reg = 0;
   3516   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3517   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3518   1.8   msaitoh 	bool locked = FALSE;
   3519   1.1    dyoung 
   3520   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3521   1.1    dyoung 
   3522  1.14   msaitoh 	if (index > 3)
   3523  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3524  1.14   msaitoh 
   3525  1.14   msaitoh 
   3526   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3527   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3528   1.8   msaitoh 		goto out;
   3529   1.1    dyoung 
   3530   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3531   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3532   1.1    dyoung 
   3533   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3534   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3535   1.8   msaitoh 		goto out;
   3536   1.5   msaitoh 
   3537   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3538   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3539   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3540   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3541   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3542   1.1    dyoung 
   3543   1.5   msaitoh out:
   3544   1.5   msaitoh 	return ret_val;
   3545   1.1    dyoung }
   3546   1.1    dyoung 
   3547   1.1    dyoung /**
   3548   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3549   1.1    dyoung  *  @hw: pointer to hardware structure
   3550   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3551   1.1    dyoung  *
   3552   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3553   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3554   1.1    dyoung  *  get and set mac_addr routines.
   3555   1.1    dyoung  **/
   3556   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3557   1.3   msaitoh 					 u16 *san_mac_offset)
   3558   1.1    dyoung {
   3559   1.6   msaitoh 	s32 ret_val;
   3560   1.6   msaitoh 
   3561   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3562   1.1    dyoung 
   3563   1.1    dyoung 	/*
   3564   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3565   1.1    dyoung 	 * available.
   3566   1.1    dyoung 	 */
   3567   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3568   1.6   msaitoh 				      san_mac_offset);
   3569   1.6   msaitoh 	if (ret_val) {
   3570   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3571   1.6   msaitoh 			      "eeprom at offset %d failed",
   3572   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3573   1.6   msaitoh 	}
   3574   1.1    dyoung 
   3575   1.6   msaitoh 	return ret_val;
   3576   1.1    dyoung }
   3577   1.1    dyoung 
   3578   1.1    dyoung /**
   3579   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3580   1.1    dyoung  *  @hw: pointer to hardware structure
   3581   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3582   1.1    dyoung  *
   3583   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3584   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3585   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3586   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3587   1.1    dyoung  **/
   3588   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3589   1.1    dyoung {
   3590   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3591   1.1    dyoung 	u8 i;
   3592   1.6   msaitoh 	s32 ret_val;
   3593   1.1    dyoung 
   3594   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3595   1.1    dyoung 
   3596   1.1    dyoung 	/*
   3597   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3598   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3599   1.1    dyoung 	 */
   3600   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3601   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3602   1.1    dyoung 		goto san_mac_addr_out;
   3603   1.1    dyoung 
   3604   1.1    dyoung 	/* make sure we know which port we need to program */
   3605   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3606   1.1    dyoung 	/* apply the port offset to the address offset */
   3607   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3608   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3609   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3610   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3611   1.6   msaitoh 					      &san_mac_data);
   3612   1.6   msaitoh 		if (ret_val) {
   3613   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3614   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3615   1.6   msaitoh 				      san_mac_offset);
   3616   1.6   msaitoh 			goto san_mac_addr_out;
   3617   1.6   msaitoh 		}
   3618   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3619   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3620   1.1    dyoung 		san_mac_offset++;
   3621   1.1    dyoung 	}
   3622   1.6   msaitoh 	return IXGBE_SUCCESS;
   3623   1.1    dyoung 
   3624   1.1    dyoung san_mac_addr_out:
   3625   1.6   msaitoh 	/*
   3626   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3627   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3628   1.6   msaitoh 	 */
   3629   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3630   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3631   1.1    dyoung 	return IXGBE_SUCCESS;
   3632   1.1    dyoung }
   3633   1.1    dyoung 
   3634   1.1    dyoung /**
   3635   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3636   1.1    dyoung  *  @hw: pointer to hardware structure
   3637   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3638   1.1    dyoung  *
   3639   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3640   1.1    dyoung  **/
   3641   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3642   1.1    dyoung {
   3643   1.6   msaitoh 	s32 ret_val;
   3644   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3645   1.1    dyoung 	u8 i;
   3646   1.1    dyoung 
   3647   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3648   1.1    dyoung 
   3649   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3650   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3651   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3652   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3653   1.1    dyoung 
   3654   1.1    dyoung 	/* Make sure we know which port we need to write */
   3655   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3656   1.1    dyoung 	/* Apply the port offset to the address offset */
   3657   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3658   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3659   1.1    dyoung 
   3660   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3661   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3662   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3663   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3664   1.1    dyoung 		san_mac_offset++;
   3665   1.1    dyoung 	}
   3666   1.1    dyoung 
   3667   1.6   msaitoh 	return IXGBE_SUCCESS;
   3668   1.1    dyoung }
   3669   1.1    dyoung 
   3670   1.1    dyoung /**
   3671   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3672   1.1    dyoung  *  @hw: pointer to hardware structure
   3673   1.1    dyoung  *
   3674   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3675   1.1    dyoung  *  the capabilities table.
   3676   1.1    dyoung  **/
   3677   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3678   1.1    dyoung {
   3679   1.4   msaitoh 	u16 msix_count = 1;
   3680   1.4   msaitoh 	u16 max_msix_count;
   3681   1.4   msaitoh 	u16 pcie_offset;
   3682   1.4   msaitoh 
   3683   1.4   msaitoh 	switch (hw->mac.type) {
   3684   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3685   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3686   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3687   1.4   msaitoh 		break;
   3688   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3689   1.4   msaitoh 	case ixgbe_mac_X540:
   3690   1.8   msaitoh 	case ixgbe_mac_X550:
   3691   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3692  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   3693   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3694   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3695   1.4   msaitoh 		break;
   3696   1.4   msaitoh 	default:
   3697   1.4   msaitoh 		return msix_count;
   3698   1.4   msaitoh 	}
   3699   1.1    dyoung 
   3700   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3701   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3702   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3703   1.8   msaitoh 		msix_count = 0;
   3704   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3705   1.4   msaitoh 
   3706   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3707   1.4   msaitoh 	msix_count++;
   3708   1.4   msaitoh 
   3709   1.4   msaitoh 	if (msix_count > max_msix_count)
   3710   1.4   msaitoh 		msix_count = max_msix_count;
   3711   1.1    dyoung 
   3712   1.1    dyoung 	return msix_count;
   3713   1.1    dyoung }
   3714   1.1    dyoung 
   3715   1.1    dyoung /**
   3716   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3717   1.1    dyoung  *  @hw: pointer to hardware structure
   3718   1.1    dyoung  *  @addr: Address to put into receive address register
   3719   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3720   1.1    dyoung  *
   3721   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3722  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3723   1.1    dyoung  **/
   3724   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3725   1.1    dyoung {
   3726   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3727   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3728   1.1    dyoung 	u32 rar;
   3729   1.1    dyoung 	u32 rar_low, rar_high;
   3730   1.1    dyoung 	u32 addr_low, addr_high;
   3731   1.1    dyoung 
   3732   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3733   1.1    dyoung 
   3734   1.1    dyoung 	/* swap bytes for HW little endian */
   3735   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3736   1.1    dyoung 			    | (addr[2] << 16)
   3737   1.1    dyoung 			    | (addr[3] << 24);
   3738   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3739   1.1    dyoung 
   3740   1.1    dyoung 	/*
   3741   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3742   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3743   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3744   1.1    dyoung 	 * rar to the top.
   3745   1.1    dyoung 	 */
   3746   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3747   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3748   1.1    dyoung 
   3749   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3750   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3751   1.1    dyoung 			first_empty_rar = rar;
   3752   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3753   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3754   1.1    dyoung 			if (rar_low == addr_low)
   3755   1.1    dyoung 				break;    /* found it already in the rars */
   3756   1.1    dyoung 		}
   3757   1.1    dyoung 	}
   3758   1.1    dyoung 
   3759   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3760   1.1    dyoung 		/* already there so just add to the pool bits */
   3761   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3762   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3763   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3764   1.1    dyoung 		rar = first_empty_rar;
   3765   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3766   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3767   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3768   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3769   1.1    dyoung 		hw->mac.rar_highwater++;
   3770   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3771   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3772   1.1    dyoung 	}
   3773   1.1    dyoung 
   3774   1.1    dyoung 	/*
   3775   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3776   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3777   1.1    dyoung 	 */
   3778   1.1    dyoung 	if (rar == 0)
   3779   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3780   1.1    dyoung 
   3781   1.1    dyoung 	return rar;
   3782   1.1    dyoung }
   3783   1.1    dyoung 
   3784   1.1    dyoung /**
   3785   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3786   1.1    dyoung  *  @hw: pointer to hardware struct
   3787   1.1    dyoung  *  @rar: receive address register index to disassociate
   3788   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3789   1.1    dyoung  **/
   3790   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3791   1.1    dyoung {
   3792   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3793   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3794   1.1    dyoung 
   3795   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3796   1.1    dyoung 
   3797   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3798   1.1    dyoung 	if (rar >= rar_entries) {
   3799   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3800   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3801   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3802   1.1    dyoung 	}
   3803   1.1    dyoung 
   3804   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3805   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3806   1.1    dyoung 
   3807   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3808   1.8   msaitoh 		goto done;
   3809   1.8   msaitoh 
   3810   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3811   1.1    dyoung 		goto done;
   3812   1.1    dyoung 
   3813   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3814   1.1    dyoung 		if (mpsar_lo) {
   3815   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3816   1.1    dyoung 			mpsar_lo = 0;
   3817   1.1    dyoung 		}
   3818   1.1    dyoung 		if (mpsar_hi) {
   3819   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3820   1.1    dyoung 			mpsar_hi = 0;
   3821   1.1    dyoung 		}
   3822   1.1    dyoung 	} else if (vmdq < 32) {
   3823   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3824   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3825   1.1    dyoung 	} else {
   3826   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3827   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3828   1.1    dyoung 	}
   3829   1.1    dyoung 
   3830   1.1    dyoung 	/* was that the last pool using this rar? */
   3831  1.14   msaitoh 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3832  1.14   msaitoh 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3833   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3834   1.1    dyoung done:
   3835   1.1    dyoung 	return IXGBE_SUCCESS;
   3836   1.1    dyoung }
   3837   1.1    dyoung 
   3838   1.1    dyoung /**
   3839   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3840   1.1    dyoung  *  @hw: pointer to hardware struct
   3841   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3842   1.1    dyoung  *  @vmdq: VMDq pool index
   3843   1.1    dyoung  **/
   3844   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3845   1.1    dyoung {
   3846   1.1    dyoung 	u32 mpsar;
   3847   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3848   1.1    dyoung 
   3849   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3850   1.1    dyoung 
   3851   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3852   1.1    dyoung 	if (rar >= rar_entries) {
   3853   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3854   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3855   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3856   1.1    dyoung 	}
   3857   1.1    dyoung 
   3858   1.1    dyoung 	if (vmdq < 32) {
   3859   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3860   1.1    dyoung 		mpsar |= 1 << vmdq;
   3861   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3862   1.1    dyoung 	} else {
   3863   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3864   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3865   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3866   1.1    dyoung 	}
   3867   1.1    dyoung 	return IXGBE_SUCCESS;
   3868   1.1    dyoung }
   3869   1.1    dyoung 
   3870   1.1    dyoung /**
   3871   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3872   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3873   1.4   msaitoh  *  VFs advertized and not 0.
   3874   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3875   1.4   msaitoh  *
   3876   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3877   1.4   msaitoh  *  @hw: pointer to hardware struct
   3878   1.4   msaitoh  *  @vmdq: VMDq pool index
   3879   1.4   msaitoh  **/
   3880   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3881   1.4   msaitoh {
   3882   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3883   1.4   msaitoh 
   3884   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3885   1.4   msaitoh 
   3886   1.4   msaitoh 	if (vmdq < 32) {
   3887   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3888   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3889   1.4   msaitoh 	} else {
   3890   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3891   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3892   1.4   msaitoh 	}
   3893   1.4   msaitoh 
   3894   1.4   msaitoh 	return IXGBE_SUCCESS;
   3895   1.4   msaitoh }
   3896   1.4   msaitoh 
   3897   1.4   msaitoh /**
   3898   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3899   1.1    dyoung  *  @hw: pointer to hardware structure
   3900   1.1    dyoung  **/
   3901   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3902   1.1    dyoung {
   3903   1.1    dyoung 	int i;
   3904   1.1    dyoung 
   3905   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3906   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3907   1.1    dyoung 
   3908   1.1    dyoung 	for (i = 0; i < 128; i++)
   3909   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3910   1.1    dyoung 
   3911   1.1    dyoung 	return IXGBE_SUCCESS;
   3912   1.1    dyoung }
   3913   1.1    dyoung 
   3914   1.1    dyoung /**
   3915   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3916   1.1    dyoung  *  @hw: pointer to hardware structure
   3917   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3918   1.1    dyoung  *
   3919   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3920   1.1    dyoung  *
   3921   1.1    dyoung  **/
   3922  1.14   msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3923   1.1    dyoung {
   3924  1.14   msaitoh 	s32 regindex, first_empty_slot;
   3925  1.14   msaitoh 	u32 bits;
   3926   1.1    dyoung 
   3927   1.1    dyoung 	/* short cut the special case */
   3928   1.1    dyoung 	if (vlan == 0)
   3929   1.1    dyoung 		return 0;
   3930   1.1    dyoung 
   3931  1.14   msaitoh 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3932  1.14   msaitoh 	 * will simply bypass the VLVF if there are no entries present in the
   3933  1.14   msaitoh 	 * VLVF that contain our VLAN
   3934  1.14   msaitoh 	 */
   3935  1.14   msaitoh 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3936  1.14   msaitoh 
   3937  1.14   msaitoh 	/* add VLAN enable bit for comparison */
   3938  1.14   msaitoh 	vlan |= IXGBE_VLVF_VIEN;
   3939  1.14   msaitoh 
   3940  1.14   msaitoh 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3941  1.14   msaitoh 	 * slot found along the way.
   3942  1.14   msaitoh 	 *
   3943  1.14   msaitoh 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3944  1.14   msaitoh 	 */
   3945  1.14   msaitoh 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3946   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3947  1.14   msaitoh 		if (bits == vlan)
   3948  1.14   msaitoh 			return regindex;
   3949  1.14   msaitoh 		if (!first_empty_slot && !bits)
   3950   1.1    dyoung 			first_empty_slot = regindex;
   3951   1.1    dyoung 	}
   3952   1.1    dyoung 
   3953  1.14   msaitoh 	/* If we are here then we didn't find the VLAN.  Return first empty
   3954  1.14   msaitoh 	 * slot we found during our search, else error.
   3955  1.14   msaitoh 	 */
   3956  1.14   msaitoh 	if (!first_empty_slot)
   3957  1.14   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3958   1.1    dyoung 
   3959  1.14   msaitoh 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3960   1.1    dyoung }
   3961   1.1    dyoung 
   3962   1.1    dyoung /**
   3963   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3964   1.1    dyoung  *  @hw: pointer to hardware structure
   3965   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3966  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3967  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN
   3968  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3969   1.1    dyoung  *
   3970   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3971   1.1    dyoung  **/
   3972   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3973  1.14   msaitoh 			   bool vlan_on, bool vlvf_bypass)
   3974   1.1    dyoung {
   3975  1.14   msaitoh 	u32 regidx, vfta_delta, vfta;
   3976  1.14   msaitoh 	s32 ret_val;
   3977   1.1    dyoung 
   3978   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3979   1.1    dyoung 
   3980  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   3981   1.1    dyoung 		return IXGBE_ERR_PARAM;
   3982   1.1    dyoung 
   3983   1.1    dyoung 	/*
   3984   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3985   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3986   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3987   1.1    dyoung 	 */
   3988   1.1    dyoung 
   3989   1.1    dyoung 	/* Part 1
   3990   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3991   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3992   1.1    dyoung 	 *    bits[11-5]: which register
   3993   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3994   1.1    dyoung 	 */
   3995  1.14   msaitoh 	regidx = vlan / 32;
   3996  1.14   msaitoh 	vfta_delta = 1 << (vlan % 32);
   3997  1.14   msaitoh 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   3998  1.14   msaitoh 
   3999  1.14   msaitoh 	/*
   4000  1.14   msaitoh 	 * vfta_delta represents the difference between the current value
   4001  1.14   msaitoh 	 * of vfta and the value we want in the register.  Since the diff
   4002  1.14   msaitoh 	 * is an XOR mask we can just update the vfta using an XOR
   4003  1.14   msaitoh 	 */
   4004  1.14   msaitoh 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4005  1.14   msaitoh 	vfta ^= vfta_delta;
   4006   1.1    dyoung 
   4007   1.1    dyoung 	/* Part 2
   4008   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4009   1.3   msaitoh 	 */
   4010  1.14   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4011  1.14   msaitoh 					 vfta, vlvf_bypass);
   4012  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS) {
   4013  1.14   msaitoh 		if (vlvf_bypass)
   4014  1.14   msaitoh 			goto vfta_update;
   4015   1.3   msaitoh 		return ret_val;
   4016  1.14   msaitoh 	}
   4017   1.3   msaitoh 
   4018  1.14   msaitoh vfta_update:
   4019  1.14   msaitoh 	/* Update VFTA now that we are ready for traffic */
   4020  1.14   msaitoh 	if (vfta_delta)
   4021  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4022   1.3   msaitoh 
   4023   1.3   msaitoh 	return IXGBE_SUCCESS;
   4024   1.3   msaitoh }
   4025   1.3   msaitoh 
   4026   1.3   msaitoh /**
   4027   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4028   1.3   msaitoh  *  @hw: pointer to hardware structure
   4029   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   4030  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4031  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4032  1.14   msaitoh  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4033  1.14   msaitoh  *		 and the desired value
   4034  1.14   msaitoh  *  @vfta: the desired value of the VFTA
   4035  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4036   1.3   msaitoh  *
   4037   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   4038   1.3   msaitoh  **/
   4039   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4040  1.14   msaitoh 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4041  1.14   msaitoh 			   bool vlvf_bypass)
   4042   1.3   msaitoh {
   4043  1.14   msaitoh 	u32 bits;
   4044  1.14   msaitoh 	s32 vlvf_index;
   4045   1.3   msaitoh 
   4046   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4047   1.3   msaitoh 
   4048  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4049   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   4050   1.3   msaitoh 
   4051   1.3   msaitoh 	/* If VT Mode is set
   4052   1.1    dyoung 	 *   Either vlan_on
   4053   1.1    dyoung 	 *     make sure the vlan is in VLVF
   4054   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   4055   1.1    dyoung 	 *   Or !vlan_on
   4056   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   4057   1.1    dyoung 	 */
   4058  1.14   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4059  1.14   msaitoh 		return IXGBE_SUCCESS;
   4060   1.1    dyoung 
   4061  1.14   msaitoh 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4062  1.14   msaitoh 	if (vlvf_index < 0)
   4063  1.14   msaitoh 		return vlvf_index;
   4064  1.14   msaitoh 
   4065  1.14   msaitoh 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4066  1.14   msaitoh 
   4067  1.14   msaitoh 	/* set the pool bit */
   4068  1.14   msaitoh 	bits |= 1 << (vind % 32);
   4069  1.14   msaitoh 	if (vlan_on)
   4070  1.14   msaitoh 		goto vlvf_update;
   4071  1.14   msaitoh 
   4072  1.14   msaitoh 	/* clear the pool bit */
   4073  1.14   msaitoh 	bits ^= 1 << (vind % 32);
   4074  1.14   msaitoh 
   4075  1.14   msaitoh 	if (!bits &&
   4076  1.14   msaitoh 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4077  1.14   msaitoh 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4078  1.14   msaitoh 		 * we run the risk of stray packets leaking into
   4079  1.14   msaitoh 		 * the PF via the default pool
   4080   1.1    dyoung 		 */
   4081  1.14   msaitoh 		if (*vfta_delta)
   4082  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4083  1.14   msaitoh 
   4084  1.14   msaitoh 		/* disable VLVF and clear remaining bit from pool */
   4085  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4086  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4087  1.14   msaitoh 
   4088  1.14   msaitoh 		return IXGBE_SUCCESS;
   4089   1.1    dyoung 	}
   4090   1.1    dyoung 
   4091  1.14   msaitoh 	/* If there are still bits set in the VLVFB registers
   4092  1.14   msaitoh 	 * for the VLAN ID indicated we need to see if the
   4093  1.14   msaitoh 	 * caller is requesting that we clear the VFTA entry bit.
   4094  1.14   msaitoh 	 * If the caller has requested that we clear the VFTA
   4095  1.14   msaitoh 	 * entry bit but there are still pools/VFs using this VLAN
   4096  1.14   msaitoh 	 * ID entry then ignore the request.  We're not worried
   4097  1.14   msaitoh 	 * about the case where we're turning the VFTA VLAN ID
   4098  1.14   msaitoh 	 * entry bit on, only when requested to turn it off as
   4099  1.14   msaitoh 	 * there may be multiple pools and/or VFs using the
   4100  1.14   msaitoh 	 * VLAN ID entry.  In that case we cannot clear the
   4101  1.14   msaitoh 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4102  1.14   msaitoh 	 * been cleared.  This will be indicated by "bits" being
   4103  1.14   msaitoh 	 * zero.
   4104  1.14   msaitoh 	 */
   4105  1.14   msaitoh 	*vfta_delta = 0;
   4106  1.14   msaitoh 
   4107  1.14   msaitoh vlvf_update:
   4108  1.14   msaitoh 	/* record pool change and enable VLAN ID if not already enabled */
   4109  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4110  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4111  1.14   msaitoh 
   4112   1.1    dyoung 	return IXGBE_SUCCESS;
   4113   1.1    dyoung }
   4114   1.1    dyoung 
   4115   1.1    dyoung /**
   4116   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4117   1.1    dyoung  *  @hw: pointer to hardware structure
   4118   1.1    dyoung  *
   4119   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4120   1.1    dyoung  **/
   4121   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4122   1.1    dyoung {
   4123   1.1    dyoung 	u32 offset;
   4124   1.1    dyoung 
   4125   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4126   1.1    dyoung 
   4127   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4128   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4129   1.1    dyoung 
   4130   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4131   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4132   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4133  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
   4134   1.1    dyoung 	}
   4135   1.1    dyoung 
   4136   1.1    dyoung 	return IXGBE_SUCCESS;
   4137   1.1    dyoung }
   4138   1.1    dyoung 
   4139   1.1    dyoung /**
   4140  1.14   msaitoh  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4141  1.14   msaitoh  *  @hw: pointer to hardware structure
   4142  1.14   msaitoh  *
   4143  1.14   msaitoh  *  Contains the logic to identify if we need to verify link for the
   4144  1.14   msaitoh  *  crosstalk fix
   4145  1.14   msaitoh  **/
   4146  1.14   msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4147  1.14   msaitoh {
   4148  1.14   msaitoh 
   4149  1.14   msaitoh 	/* Does FW say we need the fix */
   4150  1.14   msaitoh 	if (!hw->need_crosstalk_fix)
   4151  1.14   msaitoh 		return FALSE;
   4152  1.14   msaitoh 
   4153  1.14   msaitoh 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4154  1.14   msaitoh 	switch (hw->mac.ops.get_media_type(hw)) {
   4155  1.14   msaitoh 	case ixgbe_media_type_fiber:
   4156  1.14   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   4157  1.14   msaitoh 		break;
   4158  1.14   msaitoh 	default:
   4159  1.14   msaitoh 		return FALSE;
   4160  1.14   msaitoh 	}
   4161  1.14   msaitoh 
   4162  1.14   msaitoh 	return TRUE;
   4163  1.14   msaitoh }
   4164  1.14   msaitoh 
   4165  1.14   msaitoh /**
   4166   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4167   1.1    dyoung  *  @hw: pointer to hardware structure
   4168   1.1    dyoung  *  @speed: pointer to link speed
   4169   1.1    dyoung  *  @link_up: TRUE when link is up
   4170   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4171   1.1    dyoung  *
   4172   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4173   1.1    dyoung  **/
   4174   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4175   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4176   1.1    dyoung {
   4177   1.1    dyoung 	u32 links_reg, links_orig;
   4178   1.1    dyoung 	u32 i;
   4179   1.1    dyoung 
   4180   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4181   1.1    dyoung 
   4182  1.14   msaitoh 	/* If Crosstalk fix enabled do the sanity check of making sure
   4183  1.14   msaitoh 	 * the SFP+ cage is full.
   4184  1.14   msaitoh 	 */
   4185  1.14   msaitoh 	if (ixgbe_need_crosstalk_fix(hw)) {
   4186  1.14   msaitoh 		u32 sfp_cage_full;
   4187  1.14   msaitoh 
   4188  1.14   msaitoh 		switch (hw->mac.type) {
   4189  1.14   msaitoh 		case ixgbe_mac_82599EB:
   4190  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4191  1.14   msaitoh 					IXGBE_ESDP_SDP2;
   4192  1.14   msaitoh 			break;
   4193  1.14   msaitoh 		case ixgbe_mac_X550EM_x:
   4194  1.14   msaitoh 		case ixgbe_mac_X550EM_a:
   4195  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4196  1.14   msaitoh 					IXGBE_ESDP_SDP0;
   4197  1.14   msaitoh 			break;
   4198  1.14   msaitoh 		default:
   4199  1.14   msaitoh 			/* sanity check - No SFP+ devices here */
   4200  1.14   msaitoh 			sfp_cage_full = FALSE;
   4201  1.14   msaitoh 			break;
   4202  1.14   msaitoh 		}
   4203  1.14   msaitoh 
   4204  1.14   msaitoh 		if (!sfp_cage_full) {
   4205  1.14   msaitoh 			*link_up = FALSE;
   4206  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4207  1.14   msaitoh 			return IXGBE_SUCCESS;
   4208  1.14   msaitoh 		}
   4209  1.14   msaitoh 	}
   4210  1.14   msaitoh 
   4211   1.1    dyoung 	/* clear the old state */
   4212   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4213   1.1    dyoung 
   4214   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4215   1.1    dyoung 
   4216   1.1    dyoung 	if (links_orig != links_reg) {
   4217   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4218   1.3   msaitoh 			  links_orig, links_reg);
   4219   1.1    dyoung 	}
   4220   1.1    dyoung 
   4221   1.1    dyoung 	if (link_up_wait_to_complete) {
   4222  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4223   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4224   1.1    dyoung 				*link_up = TRUE;
   4225   1.1    dyoung 				break;
   4226   1.1    dyoung 			} else {
   4227   1.1    dyoung 				*link_up = FALSE;
   4228   1.1    dyoung 			}
   4229   1.1    dyoung 			msec_delay(100);
   4230   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4231   1.1    dyoung 		}
   4232   1.1    dyoung 	} else {
   4233   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4234   1.1    dyoung 			*link_up = TRUE;
   4235   1.1    dyoung 		else
   4236   1.1    dyoung 			*link_up = FALSE;
   4237   1.1    dyoung 	}
   4238   1.1    dyoung 
   4239   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4240   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4241   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4242   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4243   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4244   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4245   1.8   msaitoh 		}
   4246   1.8   msaitoh 		break;
   4247   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4248   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4249   1.8   msaitoh 		break;
   4250   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4251   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4252  1.15   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4253   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4254   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4255   1.8   msaitoh 		}
   4256   1.8   msaitoh 		break;
   4257  1.14   msaitoh 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4258  1.14   msaitoh 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4259  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4260  1.14   msaitoh 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
   4261  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4262  1.14   msaitoh 		}
   4263  1.14   msaitoh 		break;
   4264   1.8   msaitoh 	default:
   4265   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4266   1.8   msaitoh 	}
   4267   1.1    dyoung 
   4268   1.1    dyoung 	return IXGBE_SUCCESS;
   4269   1.1    dyoung }
   4270   1.1    dyoung 
   4271   1.1    dyoung /**
   4272   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4273   1.1    dyoung  *  the EEPROM
   4274   1.1    dyoung  *  @hw: pointer to hardware structure
   4275   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4276   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4277   1.1    dyoung  *
   4278   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4279   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4280   1.1    dyoung  **/
   4281   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4282   1.3   msaitoh 				 u16 *wwpn_prefix)
   4283   1.1    dyoung {
   4284   1.1    dyoung 	u16 offset, caps;
   4285   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4286   1.1    dyoung 
   4287   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4288   1.1    dyoung 
   4289   1.1    dyoung 	/* clear output first */
   4290   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4291   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4292   1.1    dyoung 
   4293   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4294   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4295   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4296   1.6   msaitoh 		goto wwn_prefix_err;
   4297   1.1    dyoung 
   4298   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4299   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4300   1.1    dyoung 		goto wwn_prefix_out;
   4301   1.1    dyoung 
   4302   1.1    dyoung 	/* check capability in alternative san mac address block */
   4303   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4304   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4305   1.6   msaitoh 		goto wwn_prefix_err;
   4306   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4307   1.1    dyoung 		goto wwn_prefix_out;
   4308   1.1    dyoung 
   4309   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4310   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4311   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4312   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4313   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4314   1.6   msaitoh 	}
   4315   1.1    dyoung 
   4316   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4317   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4318   1.6   msaitoh 		goto wwn_prefix_err;
   4319   1.1    dyoung 
   4320   1.1    dyoung wwn_prefix_out:
   4321   1.1    dyoung 	return IXGBE_SUCCESS;
   4322   1.6   msaitoh 
   4323   1.6   msaitoh wwn_prefix_err:
   4324   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4325   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4326   1.6   msaitoh 	return IXGBE_SUCCESS;
   4327   1.1    dyoung }
   4328   1.1    dyoung 
   4329   1.1    dyoung /**
   4330   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4331   1.1    dyoung  *  @hw: pointer to hardware structure
   4332   1.1    dyoung  *  @bs: the fcoe boot status
   4333   1.1    dyoung  *
   4334   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4335   1.1    dyoung  **/
   4336   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4337   1.1    dyoung {
   4338   1.1    dyoung 	u16 offset, caps, flags;
   4339   1.1    dyoung 	s32 status;
   4340   1.1    dyoung 
   4341   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4342   1.1    dyoung 
   4343   1.1    dyoung 	/* clear output first */
   4344   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4345   1.1    dyoung 
   4346   1.1    dyoung 	/* check if FCOE IBA block is present */
   4347   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4348   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4349   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4350   1.1    dyoung 		goto out;
   4351   1.1    dyoung 
   4352   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4353   1.1    dyoung 		goto out;
   4354   1.1    dyoung 
   4355   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4356   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4357   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4358   1.1    dyoung 		goto out;
   4359   1.1    dyoung 
   4360   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4361   1.1    dyoung 		goto out;
   4362   1.1    dyoung 
   4363   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4364   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4365   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4366   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4367   1.1    dyoung 		goto out;
   4368   1.1    dyoung 
   4369   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4370   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4371   1.1    dyoung 	else
   4372   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4373   1.1    dyoung 
   4374   1.1    dyoung out:
   4375   1.1    dyoung 	return status;
   4376   1.1    dyoung }
   4377   1.1    dyoung 
   4378   1.1    dyoung /**
   4379   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4380   1.1    dyoung  *  @hw: pointer to hardware structure
   4381  1.14   msaitoh  *  @enable: enable or disable switch for MAC anti-spoofing
   4382  1.14   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4383   1.1    dyoung  *
   4384   1.1    dyoung  **/
   4385  1.14   msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4386   1.1    dyoung {
   4387  1.14   msaitoh 	int vf_target_reg = vf >> 3;
   4388  1.14   msaitoh 	int vf_target_shift = vf % 8;
   4389  1.14   msaitoh 	u32 pfvfspoof;
   4390   1.1    dyoung 
   4391   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4392   1.1    dyoung 		return;
   4393   1.1    dyoung 
   4394  1.14   msaitoh 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4395   1.1    dyoung 	if (enable)
   4396  1.14   msaitoh 		pfvfspoof |= (1 << vf_target_shift);
   4397  1.14   msaitoh 	else
   4398  1.14   msaitoh 		pfvfspoof &= ~(1 << vf_target_shift);
   4399  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4400   1.1    dyoung }
   4401   1.1    dyoung 
   4402   1.1    dyoung /**
   4403   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4404   1.1    dyoung  *  @hw: pointer to hardware structure
   4405   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4406   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4407   1.1    dyoung  *
   4408   1.1    dyoung  **/
   4409   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4410   1.1    dyoung {
   4411   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4412   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4413   1.1    dyoung 	u32 pfvfspoof;
   4414   1.1    dyoung 
   4415   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4416   1.1    dyoung 		return;
   4417   1.1    dyoung 
   4418   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4419   1.1    dyoung 	if (enable)
   4420   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4421   1.1    dyoung 	else
   4422   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4423   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4424   1.1    dyoung }
   4425   1.1    dyoung 
   4426   1.1    dyoung /**
   4427   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4428   1.1    dyoung  *  @hw: pointer to hardware structure
   4429   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4430   1.1    dyoung  *
   4431   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4432   1.1    dyoung  *  and return the word through device_caps.
   4433   1.1    dyoung  **/
   4434   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4435   1.1    dyoung {
   4436   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4437   1.1    dyoung 
   4438   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4439   1.1    dyoung 
   4440   1.1    dyoung 	return IXGBE_SUCCESS;
   4441   1.1    dyoung }
   4442   1.1    dyoung 
   4443   1.1    dyoung /**
   4444   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4445   1.1    dyoung  *  @hw: pointer to hardware structure
   4446   1.1    dyoung  *
   4447   1.1    dyoung  **/
   4448   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4449   1.1    dyoung {
   4450   1.1    dyoung 	u32 regval;
   4451   1.1    dyoung 	u32 i;
   4452   1.1    dyoung 
   4453   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4454   1.1    dyoung 
   4455   1.1    dyoung 	/* Enable relaxed ordering */
   4456   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4457   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4458   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4459   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4460   1.1    dyoung 	}
   4461   1.1    dyoung 
   4462   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4463   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4464   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4465   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4466   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4467   1.1    dyoung 	}
   4468   1.1    dyoung 
   4469   1.1    dyoung }
   4470   1.3   msaitoh 
   4471   1.3   msaitoh /**
   4472   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4473   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4474   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4475   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4476   1.3   msaitoh  *  checksum calculated is returned.
   4477   1.3   msaitoh  **/
   4478   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4479   1.3   msaitoh {
   4480   1.3   msaitoh 	u32 i;
   4481   1.3   msaitoh 	u8 sum = 0;
   4482   1.3   msaitoh 
   4483   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4484   1.3   msaitoh 
   4485   1.3   msaitoh 	if (!buffer)
   4486   1.3   msaitoh 		return 0;
   4487   1.3   msaitoh 
   4488   1.3   msaitoh 	for (i = 0; i < length; i++)
   4489   1.3   msaitoh 		sum += buffer[i];
   4490   1.3   msaitoh 
   4491   1.3   msaitoh 	return (u8) (0 - sum);
   4492   1.3   msaitoh }
   4493   1.3   msaitoh 
   4494   1.3   msaitoh /**
   4495  1.14   msaitoh  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4496   1.3   msaitoh  *  @hw: pointer to the HW structure
   4497  1.14   msaitoh  *  @buffer: command to write and where the return status will be placed
   4498   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4499   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4500   1.3   msaitoh  *
   4501  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4502  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4503  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4504  1.14   msaitoh  *
   4505  1.14   msaitoh  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4506  1.14   msaitoh  *  by the caller.
   4507   1.3   msaitoh  **/
   4508  1.14   msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4509  1.14   msaitoh 		       u32 timeout)
   4510   1.3   msaitoh {
   4511  1.14   msaitoh 	u32 hicr, i, fwsts;
   4512   1.8   msaitoh 	u16 dword_len;
   4513   1.3   msaitoh 
   4514  1.14   msaitoh 	DEBUGFUNC("ixgbe_hic_unlocked");
   4515   1.3   msaitoh 
   4516  1.14   msaitoh 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4517   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4518   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4519   1.8   msaitoh 	}
   4520  1.14   msaitoh 
   4521   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4522   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4523   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4524   1.3   msaitoh 
   4525   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4526   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4527  1.14   msaitoh 	if (!(hicr & IXGBE_HICR_EN)) {
   4528   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4529   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4530   1.8   msaitoh 	}
   4531   1.8   msaitoh 
   4532   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4533  1.14   msaitoh 	if (length % sizeof(u32)) {
   4534   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4535   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4536   1.3   msaitoh 	}
   4537   1.3   msaitoh 
   4538   1.3   msaitoh 	dword_len = length >> 2;
   4539   1.3   msaitoh 
   4540   1.8   msaitoh 	/* The device driver writes the relevant command block
   4541   1.3   msaitoh 	 * into the ram area.
   4542   1.3   msaitoh 	 */
   4543   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4544   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4545   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4546   1.3   msaitoh 
   4547   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4548   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4549   1.3   msaitoh 
   4550   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4551   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4552   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4553   1.3   msaitoh 			break;
   4554   1.3   msaitoh 		msec_delay(1);
   4555   1.3   msaitoh 	}
   4556   1.3   msaitoh 
   4557   1.8   msaitoh 	/* Check command completion */
   4558  1.14   msaitoh 	if ((timeout && i == timeout) ||
   4559   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4560   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4561   1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4562   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4563   1.3   msaitoh 	}
   4564   1.3   msaitoh 
   4565  1.14   msaitoh 	return IXGBE_SUCCESS;
   4566  1.14   msaitoh }
   4567  1.14   msaitoh 
   4568  1.14   msaitoh /**
   4569  1.14   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4570  1.14   msaitoh  *  @hw: pointer to the HW structure
   4571  1.14   msaitoh  *  @buffer: contains the command to write and where the return status will
   4572  1.14   msaitoh  *   be placed
   4573  1.14   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4574  1.14   msaitoh  *  @timeout: time in ms to wait for command completion
   4575  1.14   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4576  1.14   msaitoh  *   Needed because FW structures are big endian and decoding of
   4577  1.14   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4578  1.14   msaitoh  *   is not easily understood without making a table of commands.
   4579  1.14   msaitoh  *   So we will leave this up to the caller to read back the data
   4580  1.14   msaitoh  *   in these cases.
   4581  1.14   msaitoh  *
   4582  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4583  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4584  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4585  1.14   msaitoh  **/
   4586  1.14   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4587  1.14   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4588  1.14   msaitoh {
   4589  1.14   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4590  1.14   msaitoh 	u16 dword_len;
   4591  1.14   msaitoh 	u16 buf_len;
   4592  1.14   msaitoh 	s32 status;
   4593  1.14   msaitoh 	u32 bi;
   4594  1.14   msaitoh 
   4595  1.14   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4596  1.14   msaitoh 
   4597  1.14   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4598  1.14   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4599  1.14   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4600  1.14   msaitoh 	}
   4601  1.14   msaitoh 
   4602  1.14   msaitoh 	/* Take management host interface semaphore */
   4603  1.14   msaitoh 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4604  1.14   msaitoh 	if (status)
   4605  1.14   msaitoh 		return status;
   4606  1.14   msaitoh 
   4607  1.14   msaitoh 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4608  1.14   msaitoh 	if (status)
   4609  1.14   msaitoh 		goto rel_out;
   4610  1.14   msaitoh 
   4611   1.8   msaitoh 	if (!return_data)
   4612  1.14   msaitoh 		goto rel_out;
   4613   1.8   msaitoh 
   4614   1.3   msaitoh 	/* Calculate length in DWORDs */
   4615   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4616   1.3   msaitoh 
   4617   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4618   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4619   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4620   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4621   1.3   msaitoh 	}
   4622   1.3   msaitoh 
   4623   1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4624   1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4625  1.14   msaitoh 	if (!buf_len)
   4626  1.14   msaitoh 		goto rel_out;
   4627   1.3   msaitoh 
   4628   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4629   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4630  1.14   msaitoh 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4631  1.14   msaitoh 		goto rel_out;
   4632   1.3   msaitoh 	}
   4633   1.3   msaitoh 
   4634   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4635   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4636   1.3   msaitoh 
   4637   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4638   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4639   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4640   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4641   1.3   msaitoh 	}
   4642   1.3   msaitoh 
   4643  1.14   msaitoh rel_out:
   4644  1.14   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4645  1.14   msaitoh 
   4646  1.14   msaitoh 	return status;
   4647   1.3   msaitoh }
   4648   1.3   msaitoh 
   4649   1.3   msaitoh /**
   4650   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4651   1.3   msaitoh  *  @hw: pointer to the HW structure
   4652   1.3   msaitoh  *  @maj: driver version major number
   4653   1.7  riastrad  *  @minr: driver version minor number
   4654   1.3   msaitoh  *  @build: driver version build number
   4655   1.3   msaitoh  *  @sub: driver version sub build number
   4656   1.3   msaitoh  *
   4657   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4658   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4659   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4660   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4661   1.3   msaitoh  **/
   4662   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4663  1.14   msaitoh 				 u8 build, u8 sub, u16 len,
   4664  1.14   msaitoh 				 const char *driver_ver)
   4665   1.3   msaitoh {
   4666   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4667   1.3   msaitoh 	int i;
   4668   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4669   1.3   msaitoh 
   4670   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4671  1.14   msaitoh 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4672   1.3   msaitoh 
   4673   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4674   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4675   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4676   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4677   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4678   1.7  riastrad 	fw_cmd.ver_min = minr;
   4679   1.3   msaitoh 	fw_cmd.ver_build = build;
   4680   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4681   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4682   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4683   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4684   1.3   msaitoh 	fw_cmd.pad = 0;
   4685   1.3   msaitoh 	fw_cmd.pad2 = 0;
   4686   1.3   msaitoh 
   4687   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4688   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4689   1.8   msaitoh 						       sizeof(fw_cmd),
   4690   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4691   1.8   msaitoh 						       TRUE);
   4692   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4693   1.3   msaitoh 			continue;
   4694   1.3   msaitoh 
   4695   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4696   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4697   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4698   1.3   msaitoh 		else
   4699   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4700   1.3   msaitoh 
   4701   1.3   msaitoh 		break;
   4702   1.3   msaitoh 	}
   4703   1.3   msaitoh 
   4704   1.3   msaitoh 	return ret_val;
   4705   1.3   msaitoh }
   4706   1.3   msaitoh 
   4707   1.3   msaitoh /**
   4708   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4709   1.3   msaitoh  * @hw: pointer to hardware structure
   4710   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4711   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4712   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4713   1.3   msaitoh  **/
   4714   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4715   1.3   msaitoh 			     int strategy)
   4716   1.3   msaitoh {
   4717   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4718   1.3   msaitoh 	int i = 0;
   4719   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4720   1.3   msaitoh 
   4721   1.3   msaitoh 	/* Reserve headroom */
   4722   1.3   msaitoh 	pbsize -= headroom;
   4723   1.3   msaitoh 
   4724   1.3   msaitoh 	if (!num_pb)
   4725   1.3   msaitoh 		num_pb = 1;
   4726   1.3   msaitoh 
   4727   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4728   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4729   1.3   msaitoh 	 */
   4730   1.3   msaitoh 	switch (strategy) {
   4731   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4732   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4733   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4734   1.3   msaitoh 		 */
   4735   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4736   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4737   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4738   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4739   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4740  1.14   msaitoh 		/* fall through - configure remaining packet buffers */
   4741   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4742   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4743   1.3   msaitoh 		for (; i < num_pb; i++)
   4744   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4745   1.3   msaitoh 		break;
   4746   1.3   msaitoh 	default:
   4747   1.3   msaitoh 		break;
   4748   1.3   msaitoh 	}
   4749   1.3   msaitoh 
   4750   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4751   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4752   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4753   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4754   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4755   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4756   1.3   msaitoh 	}
   4757   1.3   msaitoh 
   4758   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4759   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4760   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4761   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4762   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4763   1.3   msaitoh 	}
   4764   1.3   msaitoh }
   4765   1.3   msaitoh 
   4766   1.3   msaitoh /**
   4767   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4768   1.3   msaitoh  * @hw: pointer to the hardware structure
   4769   1.3   msaitoh  *
   4770   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4771   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4772   1.3   msaitoh  * buffers on the system.
   4773   1.3   msaitoh  **/
   4774   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4775   1.3   msaitoh {
   4776   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4777   1.8   msaitoh 	u16 value;
   4778   1.3   msaitoh 
   4779   1.3   msaitoh 	/*
   4780   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4781   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4782   1.3   msaitoh 	 */
   4783   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4784   1.3   msaitoh 		return;
   4785   1.3   msaitoh 
   4786   1.3   msaitoh 	/*
   4787   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4788   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4789   1.3   msaitoh 	 * has already been cleared.
   4790   1.3   msaitoh 	 */
   4791   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4792   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4793   1.3   msaitoh 
   4794   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4795   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4796   1.8   msaitoh 	msec_delay(3);
   4797   1.8   msaitoh 
   4798   1.8   msaitoh 	/*
   4799   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4800   1.8   msaitoh 	 * transactions pending.
   4801   1.8   msaitoh 	 */
   4802   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4803   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4804   1.8   msaitoh 		usec_delay(100);
   4805   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4806   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4807   1.8   msaitoh 			goto out;
   4808   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4809   1.8   msaitoh 			goto out;
   4810   1.8   msaitoh 	}
   4811   1.8   msaitoh 
   4812   1.8   msaitoh out:
   4813   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4814   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4815   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4816   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4817   1.3   msaitoh 
   4818   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4819   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4820   1.3   msaitoh 	usec_delay(20);
   4821   1.3   msaitoh 
   4822   1.3   msaitoh 	/* restore previous register values */
   4823   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4824   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4825   1.3   msaitoh }
   4826   1.3   msaitoh 
   4827  1.14   msaitoh /**
   4828  1.14   msaitoh  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4829  1.14   msaitoh  *
   4830  1.14   msaitoh  *  @hw: pointer to hardware structure
   4831  1.14   msaitoh  *  @cmd: Command we send to the FW
   4832  1.14   msaitoh  *  @status: The reply from the FW
   4833  1.14   msaitoh  *
   4834  1.14   msaitoh  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4835  1.14   msaitoh  **/
   4836  1.14   msaitoh #define IXGBE_BYPASS_BB_WAIT 1
   4837  1.14   msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4838  1.14   msaitoh {
   4839  1.14   msaitoh 	int i;
   4840  1.14   msaitoh 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4841  1.14   msaitoh 	u32 esdp;
   4842  1.14   msaitoh 
   4843  1.14   msaitoh 	if (!status)
   4844  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   4845  1.14   msaitoh 
   4846  1.14   msaitoh 	*status = 0;
   4847  1.14   msaitoh 
   4848  1.14   msaitoh 	/* SDP vary by MAC type */
   4849  1.14   msaitoh 	switch (hw->mac.type) {
   4850  1.14   msaitoh 	case ixgbe_mac_82599EB:
   4851  1.14   msaitoh 		sck = IXGBE_ESDP_SDP7;
   4852  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4853  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP6;
   4854  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4855  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4856  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4857  1.14   msaitoh 		break;
   4858  1.14   msaitoh 	case ixgbe_mac_X540:
   4859  1.14   msaitoh 		sck = IXGBE_ESDP_SDP2;
   4860  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4861  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP1;
   4862  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4863  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4864  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4865  1.14   msaitoh 		break;
   4866  1.14   msaitoh 	default:
   4867  1.14   msaitoh 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4868  1.14   msaitoh 	}
   4869  1.14   msaitoh 
   4870  1.14   msaitoh 	/* Set SDP pins direction */
   4871  1.14   msaitoh 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4872  1.14   msaitoh 	esdp |= dir_sck;	/* SCK as output */
   4873  1.14   msaitoh 	esdp |= dir_sdi;	/* SDI as output */
   4874  1.14   msaitoh 	esdp &= ~dir_sdo;	/* SDO as input */
   4875  1.14   msaitoh 	esdp |= sck;
   4876  1.14   msaitoh 	esdp |= sdi;
   4877  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4878  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4879  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4880  1.14   msaitoh 
   4881  1.14   msaitoh 	/* Generate start condition */
   4882  1.14   msaitoh 	esdp &= ~sdi;
   4883  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4884  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4885  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4886  1.14   msaitoh 
   4887  1.14   msaitoh 	esdp &= ~sck;
   4888  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4889  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4890  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4891  1.14   msaitoh 
   4892  1.14   msaitoh 	/* Clock out the new control word and clock in the status */
   4893  1.14   msaitoh 	for (i = 0; i < 32; i++) {
   4894  1.14   msaitoh 		if ((cmd >> (31 - i)) & 0x01) {
   4895  1.14   msaitoh 			esdp |= sdi;
   4896  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4897  1.14   msaitoh 		} else {
   4898  1.14   msaitoh 			esdp &= ~sdi;
   4899  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4900  1.14   msaitoh 		}
   4901  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4902  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4903  1.14   msaitoh 
   4904  1.14   msaitoh 		esdp |= sck;
   4905  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4906  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4907  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4908  1.14   msaitoh 
   4909  1.14   msaitoh 		esdp &= ~sck;
   4910  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4911  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4912  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4913  1.14   msaitoh 
   4914  1.14   msaitoh 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4915  1.14   msaitoh 		if (esdp & sdo)
   4916  1.14   msaitoh 			*status = (*status << 1) | 0x01;
   4917  1.14   msaitoh 		else
   4918  1.14   msaitoh 			*status = (*status << 1) | 0x00;
   4919  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4920  1.14   msaitoh 	}
   4921  1.14   msaitoh 
   4922  1.14   msaitoh 	/* stop condition */
   4923  1.14   msaitoh 	esdp |= sck;
   4924  1.14   msaitoh 	esdp &= ~sdi;
   4925  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4926  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4927  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4928  1.14   msaitoh 
   4929  1.14   msaitoh 	esdp |= sdi;
   4930  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4931  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4932  1.14   msaitoh 
   4933  1.14   msaitoh 	/* set the page bits to match the cmd that the status it belongs to */
   4934  1.14   msaitoh 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   4935  1.14   msaitoh 
   4936  1.14   msaitoh 	return IXGBE_SUCCESS;
   4937  1.14   msaitoh }
   4938  1.14   msaitoh 
   4939  1.14   msaitoh /**
   4940  1.14   msaitoh  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   4941  1.14   msaitoh  *
   4942  1.14   msaitoh  * If we send a write we can't be sure it took until we can read back
   4943  1.14   msaitoh  * that same register.  It can be a problem as some of the feilds may
   4944  1.14   msaitoh  * for valid reasons change inbetween the time wrote the register and
   4945  1.14   msaitoh  * we read it again to verify.  So this function check everything we
   4946  1.14   msaitoh  * can check and then assumes it worked.
   4947  1.14   msaitoh  *
   4948  1.14   msaitoh  * @u32 in_reg - The register cmd for the bit-bang read.
   4949  1.14   msaitoh  * @u32 out_reg - The register returned from a bit-bang read.
   4950  1.14   msaitoh  **/
   4951  1.14   msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   4952  1.14   msaitoh {
   4953  1.14   msaitoh 	u32 mask;
   4954  1.14   msaitoh 
   4955  1.14   msaitoh 	/* Page must match for all control pages */
   4956  1.14   msaitoh 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   4957  1.14   msaitoh 		return FALSE;
   4958  1.14   msaitoh 
   4959  1.14   msaitoh 	switch (in_reg & BYPASS_PAGE_M) {
   4960  1.14   msaitoh 	case BYPASS_PAGE_CTL0:
   4961  1.14   msaitoh 		/* All the following can't change since the last write
   4962  1.14   msaitoh 		 *  - All the event actions
   4963  1.14   msaitoh 		 *  - The timeout value
   4964  1.14   msaitoh 		 */
   4965  1.14   msaitoh 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   4966  1.14   msaitoh 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   4967  1.14   msaitoh 		       BYPASS_WDTIMEOUT_M |
   4968  1.14   msaitoh 		       BYPASS_WDT_VALUE_M;
   4969  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   4970  1.14   msaitoh 			return FALSE;
   4971  1.14   msaitoh 
   4972  1.14   msaitoh 		/* 0x0 is never a valid value for bypass status */
   4973  1.14   msaitoh 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   4974  1.14   msaitoh 			return FALSE;
   4975  1.14   msaitoh 		break;
   4976  1.14   msaitoh 	case BYPASS_PAGE_CTL1:
   4977  1.14   msaitoh 		/* All the following can't change since the last write
   4978  1.14   msaitoh 		 *  - time valid bit
   4979  1.14   msaitoh 		 *  - time we last sent
   4980  1.14   msaitoh 		 */
   4981  1.14   msaitoh 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   4982  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   4983  1.14   msaitoh 			return FALSE;
   4984  1.14   msaitoh 		break;
   4985  1.14   msaitoh 	case BYPASS_PAGE_CTL2:
   4986  1.14   msaitoh 		/* All we can check in this page is control number
   4987  1.14   msaitoh 		 * which is already done above.
   4988  1.14   msaitoh 		 */
   4989  1.14   msaitoh 		break;
   4990  1.14   msaitoh 	}
   4991  1.14   msaitoh 
   4992  1.14   msaitoh 	/* We are as sure as we can be return TRUE */
   4993  1.14   msaitoh 	return TRUE;
   4994  1.14   msaitoh }
   4995  1.14   msaitoh 
   4996  1.14   msaitoh /**
   4997  1.14   msaitoh  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
   4998  1.14   msaitoh  *
   4999  1.14   msaitoh  *  @hw: pointer to hardware structure
   5000  1.14   msaitoh  *  @cmd: The control word we are setting.
   5001  1.14   msaitoh  *  @event: The event we are setting in the FW.  This also happens to
   5002  1.14   msaitoh  *	    be the mask for the event we are setting (handy)
   5003  1.14   msaitoh  *  @action: The action we set the event to in the FW. This is in a
   5004  1.14   msaitoh  *	     bit field that happens to be what we want to put in
   5005  1.14   msaitoh  *	     the event spot (also handy)
   5006  1.14   msaitoh  **/
   5007  1.14   msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5008  1.14   msaitoh 			     u32 action)
   5009  1.14   msaitoh {
   5010  1.14   msaitoh 	u32 by_ctl = 0;
   5011  1.14   msaitoh 	u32 cmd, verify;
   5012  1.14   msaitoh 	u32 count = 0;
   5013  1.14   msaitoh 
   5014  1.14   msaitoh 	/* Get current values */
   5015  1.14   msaitoh 	cmd = ctrl;	/* just reading only need control number */
   5016  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5017  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5018  1.14   msaitoh 
   5019  1.14   msaitoh 	/* Set to new action */
   5020  1.14   msaitoh 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5021  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5022  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5023  1.14   msaitoh 
   5024  1.14   msaitoh 	/* Page 0 force a FW eeprom write which is slow so verify */
   5025  1.14   msaitoh 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5026  1.14   msaitoh 		verify = BYPASS_PAGE_CTL0;
   5027  1.14   msaitoh 		do {
   5028  1.14   msaitoh 			if (count++ > 5)
   5029  1.14   msaitoh 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5030  1.14   msaitoh 
   5031  1.14   msaitoh 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5032  1.14   msaitoh 				return IXGBE_ERR_INVALID_ARGUMENT;
   5033  1.14   msaitoh 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5034  1.14   msaitoh 	} else {
   5035  1.14   msaitoh 		/* We have give the FW time for the write to stick */
   5036  1.14   msaitoh 		msec_delay(100);
   5037  1.14   msaitoh 	}
   5038  1.14   msaitoh 
   5039  1.14   msaitoh 	return IXGBE_SUCCESS;
   5040  1.14   msaitoh }
   5041  1.14   msaitoh 
   5042  1.14   msaitoh /**
   5043  1.14   msaitoh  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
   5044  1.14   msaitoh  *
   5045  1.14   msaitoh  *  @hw: pointer to hardware structure
   5046  1.14   msaitoh  *  @addr: The bypass eeprom address to read.
   5047  1.14   msaitoh  *  @value: The 8b of data at the address above.
   5048  1.14   msaitoh  **/
   5049  1.14   msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5050  1.14   msaitoh {
   5051  1.14   msaitoh 	u32 cmd;
   5052  1.14   msaitoh 	u32 status;
   5053  1.14   msaitoh 
   5054  1.14   msaitoh 
   5055  1.14   msaitoh 	/* send the request */
   5056  1.14   msaitoh 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5057  1.14   msaitoh 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5058  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5059  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5060  1.14   msaitoh 
   5061  1.14   msaitoh 	/* We have give the FW time for the write to stick */
   5062  1.14   msaitoh 	msec_delay(100);
   5063  1.14   msaitoh 
   5064  1.14   msaitoh 	/* now read the results */
   5065  1.14   msaitoh 	cmd &= ~BYPASS_WE;
   5066  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5067  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5068  1.14   msaitoh 
   5069  1.14   msaitoh 	*value = status & BYPASS_CTL2_DATA_M;
   5070  1.14   msaitoh 
   5071  1.14   msaitoh 	return IXGBE_SUCCESS;
   5072  1.14   msaitoh }
   5073  1.14   msaitoh 
   5074   1.6   msaitoh 
   5075   1.6   msaitoh /**
   5076   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5077   1.6   msaitoh  * @hw: pointer to hardware structure
   5078   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   5079   1.6   msaitoh  *
   5080   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   5081   1.6   msaitoh  **/
   5082   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5083   1.6   msaitoh {
   5084   1.6   msaitoh 	u32 reg, i;
   5085   1.6   msaitoh 
   5086   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5087   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5088   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5089   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5090   1.6   msaitoh 	return;
   5091   1.6   msaitoh }
   5092   1.8   msaitoh 
   5093   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5094   1.8   msaitoh {
   5095   1.8   msaitoh 	u32 pfdtxgswc;
   5096   1.8   msaitoh 	u32 rxctrl;
   5097   1.8   msaitoh 
   5098   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5099   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5100   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5101   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5102   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5103   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5104   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5105   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   5106   1.8   msaitoh 			} else {
   5107   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   5108   1.8   msaitoh 			}
   5109   1.8   msaitoh 		}
   5110   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5111   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5112   1.8   msaitoh 	}
   5113   1.8   msaitoh }
   5114   1.8   msaitoh 
   5115   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5116   1.8   msaitoh {
   5117   1.8   msaitoh 	u32 pfdtxgswc;
   5118   1.8   msaitoh 	u32 rxctrl;
   5119   1.8   msaitoh 
   5120   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5121   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5122   1.8   msaitoh 
   5123   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5124   1.8   msaitoh 		if (hw->mac.set_lben) {
   5125   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5126   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5127   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5128   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   5129   1.8   msaitoh 		}
   5130   1.8   msaitoh 	}
   5131   1.8   msaitoh }
   5132   1.8   msaitoh 
   5133   1.8   msaitoh /**
   5134   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   5135   1.8   msaitoh  * @hw: pointer to hardware structure
   5136   1.8   msaitoh  */
   5137   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5138   1.8   msaitoh {
   5139   1.8   msaitoh 	u32 fwsm;
   5140   1.8   msaitoh 
   5141   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   5142   1.8   msaitoh 		return FALSE;
   5143   1.8   msaitoh 
   5144  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5145   1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   5146   1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   5147   1.8   msaitoh }
   5148   1.8   msaitoh 
   5149   1.8   msaitoh /**
   5150   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5151   1.8   msaitoh  * @hw: pointer to hardware structure
   5152   1.8   msaitoh  *
   5153   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   5154   1.8   msaitoh  **/
   5155   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5156   1.8   msaitoh {
   5157   1.8   msaitoh 	u32 fwsm, manc, factps;
   5158   1.8   msaitoh 
   5159  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5160   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5161   1.8   msaitoh 		return FALSE;
   5162   1.8   msaitoh 
   5163   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5164   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5165   1.8   msaitoh 		return FALSE;
   5166   1.8   msaitoh 
   5167   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   5168  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5169   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   5170   1.8   msaitoh 			return FALSE;
   5171   1.8   msaitoh 	}
   5172   1.8   msaitoh 
   5173   1.8   msaitoh 	return TRUE;
   5174   1.8   msaitoh }
   5175   1.8   msaitoh 
   5176   1.8   msaitoh /**
   5177   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5178   1.8   msaitoh  *  @hw: pointer to hardware structure
   5179   1.8   msaitoh  *  @speed: new link speed
   5180   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5181   1.8   msaitoh  *
   5182   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5183   1.8   msaitoh  **/
   5184   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5185   1.8   msaitoh 					  ixgbe_link_speed speed,
   5186   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   5187   1.8   msaitoh {
   5188   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5189   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5190   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   5191   1.8   msaitoh 	u32 speedcnt = 0;
   5192   1.8   msaitoh 	u32 i = 0;
   5193   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   5194   1.8   msaitoh 
   5195   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5196   1.8   msaitoh 
   5197   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   5198   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5199   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   5200   1.8   msaitoh 		return status;
   5201   1.8   msaitoh 
   5202   1.8   msaitoh 	speed &= link_speed;
   5203   1.8   msaitoh 
   5204   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   5205   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5206   1.8   msaitoh 	 */
   5207   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5208   1.8   msaitoh 		speedcnt++;
   5209   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5210   1.8   msaitoh 
   5211   1.8   msaitoh 		/* Set the module link speed */
   5212   1.8   msaitoh 		switch (hw->phy.media_type) {
   5213   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5214   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5215   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5216   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   5217   1.8   msaitoh 			break;
   5218   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5219   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   5220   1.8   msaitoh 			break;
   5221   1.8   msaitoh 		default:
   5222   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5223   1.8   msaitoh 			break;
   5224   1.8   msaitoh 		}
   5225   1.8   msaitoh 
   5226   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   5227   1.8   msaitoh 		msec_delay(40);
   5228   1.8   msaitoh 
   5229   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5230   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   5231   1.8   msaitoh 					      autoneg_wait_to_complete);
   5232   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5233   1.8   msaitoh 			return status;
   5234   1.8   msaitoh 
   5235   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5236   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5237   1.8   msaitoh 
   5238   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5239   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5240   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   5241   1.8   msaitoh 		 */
   5242   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   5243   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   5244   1.8   msaitoh 			msec_delay(100);
   5245   1.8   msaitoh 
   5246   1.8   msaitoh 			/* If we have link, just jump out */
   5247   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   5248   1.8   msaitoh 						  &link_up, FALSE);
   5249   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   5250   1.8   msaitoh 				return status;
   5251   1.8   msaitoh 
   5252   1.8   msaitoh 			if (link_up)
   5253   1.8   msaitoh 				goto out;
   5254   1.8   msaitoh 		}
   5255   1.8   msaitoh 	}
   5256   1.8   msaitoh 
   5257   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5258   1.8   msaitoh 		speedcnt++;
   5259   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5260   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5261   1.8   msaitoh 
   5262   1.8   msaitoh 		/* Set the module link speed */
   5263   1.8   msaitoh 		switch (hw->phy.media_type) {
   5264   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5265   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5266   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5267   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   5268   1.8   msaitoh 			break;
   5269   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5270   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   5271   1.8   msaitoh 			break;
   5272   1.8   msaitoh 		default:
   5273   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5274   1.8   msaitoh 			break;
   5275   1.8   msaitoh 		}
   5276   1.8   msaitoh 
   5277   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   5278   1.8   msaitoh 		msec_delay(40);
   5279   1.8   msaitoh 
   5280   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5281   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   5282   1.8   msaitoh 					      autoneg_wait_to_complete);
   5283   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5284   1.8   msaitoh 			return status;
   5285   1.8   msaitoh 
   5286   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5287   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5288   1.8   msaitoh 
   5289   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   5290   1.8   msaitoh 		msec_delay(100);
   5291   1.8   msaitoh 
   5292   1.8   msaitoh 		/* If we have link, just jump out */
   5293   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5294   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5295   1.8   msaitoh 			return status;
   5296   1.8   msaitoh 
   5297   1.8   msaitoh 		if (link_up)
   5298   1.8   msaitoh 			goto out;
   5299   1.8   msaitoh 	}
   5300   1.8   msaitoh 
   5301   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   5302   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   5303   1.8   msaitoh 	 * single highest speed that the user requested.
   5304   1.8   msaitoh 	 */
   5305   1.8   msaitoh 	if (speedcnt > 1)
   5306   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5307   1.8   msaitoh 						      highest_link_speed,
   5308   1.8   msaitoh 						      autoneg_wait_to_complete);
   5309   1.8   msaitoh 
   5310   1.8   msaitoh out:
   5311   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   5312   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   5313   1.8   msaitoh 
   5314   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5315   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5316   1.8   msaitoh 
   5317   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5318   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5319   1.8   msaitoh 
   5320   1.8   msaitoh 	return status;
   5321   1.8   msaitoh }
   5322   1.8   msaitoh 
   5323   1.8   msaitoh /**
   5324   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5325   1.8   msaitoh  *  @hw: pointer to hardware structure
   5326   1.8   msaitoh  *  @speed: link speed to set
   5327   1.8   msaitoh  *
   5328   1.8   msaitoh  *  Set module link speed via the soft rate select.
   5329   1.8   msaitoh  */
   5330   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5331   1.8   msaitoh 					ixgbe_link_speed speed)
   5332   1.8   msaitoh {
   5333   1.8   msaitoh 	s32 status;
   5334   1.8   msaitoh 	u8 rs, eeprom_data;
   5335   1.8   msaitoh 
   5336   1.8   msaitoh 	switch (speed) {
   5337   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   5338   1.8   msaitoh 		/* one bit mask same as setting on */
   5339   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5340   1.8   msaitoh 		break;
   5341   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   5342   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5343   1.8   msaitoh 		break;
   5344   1.8   msaitoh 	default:
   5345   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   5346   1.8   msaitoh 		return;
   5347   1.8   msaitoh 	}
   5348   1.8   msaitoh 
   5349   1.8   msaitoh 	/* Set RS0 */
   5350   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5351   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5352   1.8   msaitoh 					   &eeprom_data);
   5353   1.8   msaitoh 	if (status) {
   5354   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5355   1.8   msaitoh 		goto out;
   5356   1.8   msaitoh 	}
   5357   1.8   msaitoh 
   5358   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5359   1.8   msaitoh 
   5360   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5361   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5362   1.8   msaitoh 					    eeprom_data);
   5363   1.8   msaitoh 	if (status) {
   5364   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5365   1.8   msaitoh 		goto out;
   5366   1.8   msaitoh 	}
   5367   1.8   msaitoh 
   5368   1.8   msaitoh 	/* Set RS1 */
   5369   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5370   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5371   1.8   msaitoh 					   &eeprom_data);
   5372   1.8   msaitoh 	if (status) {
   5373   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5374   1.8   msaitoh 		goto out;
   5375   1.8   msaitoh 	}
   5376   1.8   msaitoh 
   5377   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5378   1.8   msaitoh 
   5379   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5380   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5381   1.8   msaitoh 					    eeprom_data);
   5382   1.8   msaitoh 	if (status) {
   5383   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5384   1.8   msaitoh 		goto out;
   5385   1.8   msaitoh 	}
   5386   1.8   msaitoh out:
   5387   1.8   msaitoh 	return;
   5388   1.8   msaitoh }
   5389