Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.19
      1  1.19  knakahar /* $NetBSD: ixgbe_common.c,v 1.19 2018/03/30 03:58:20 knakahara Exp $ */
      2  1.14   msaitoh 
      3   1.1    dyoung /******************************************************************************
      4  1.16   msaitoh   SPDX-License-Identifier: BSD-3-Clause
      5   1.1    dyoung 
      6  1.14   msaitoh   Copyright (c) 2001-2017, Intel Corporation
      7   1.1    dyoung   All rights reserved.
      8  1.14   msaitoh 
      9  1.14   msaitoh   Redistribution and use in source and binary forms, with or without
     10   1.1    dyoung   modification, are permitted provided that the following conditions are met:
     11  1.14   msaitoh 
     12  1.14   msaitoh    1. Redistributions of source code must retain the above copyright notice,
     13   1.1    dyoung       this list of conditions and the following disclaimer.
     14  1.14   msaitoh 
     15  1.14   msaitoh    2. Redistributions in binary form must reproduce the above copyright
     16  1.14   msaitoh       notice, this list of conditions and the following disclaimer in the
     17   1.1    dyoung       documentation and/or other materials provided with the distribution.
     18  1.14   msaitoh 
     19  1.14   msaitoh    3. Neither the name of the Intel Corporation nor the names of its
     20  1.14   msaitoh       contributors may be used to endorse or promote products derived from
     21   1.1    dyoung       this software without specific prior written permission.
     22  1.14   msaitoh 
     23   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     24  1.14   msaitoh   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.14   msaitoh   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.14   msaitoh   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     27  1.14   msaitoh   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.14   msaitoh   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.14   msaitoh   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.14   msaitoh   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.14   msaitoh   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     34   1.1    dyoung 
     35   1.1    dyoung ******************************************************************************/
     36  1.14   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
     37   1.1    dyoung 
     38   1.1    dyoung #include "ixgbe_common.h"
     39   1.1    dyoung #include "ixgbe_phy.h"
     40   1.6   msaitoh #include "ixgbe_dcb.h"
     41   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     42   1.1    dyoung #include "ixgbe_api.h"
     43   1.1    dyoung 
     44   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     45   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     46   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     47   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     48   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     49   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     50   1.3   msaitoh 					u16 count);
     51   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     52   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     53   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     54   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     55   1.1    dyoung 
     56   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     57   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     58   1.3   msaitoh 					 u16 *san_mac_offset);
     59   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60   1.3   msaitoh 					     u16 words, u16 *data);
     61   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     62   1.3   msaitoh 					      u16 words, u16 *data);
     63   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     64   1.3   msaitoh 						 u16 offset);
     65   1.1    dyoung 
     66   1.1    dyoung /**
     67   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     68   1.1    dyoung  *  @hw: pointer to the hardware structure
     69   1.1    dyoung  *
     70   1.1    dyoung  *  Initialize the function pointers.
     71   1.1    dyoung  **/
     72   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     73   1.1    dyoung {
     74   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     75   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     76  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     77   1.1    dyoung 
     78   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     79   1.1    dyoung 
     80   1.1    dyoung 	/* EEPROM */
     81   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     82   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     83   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     84   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     85   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     86   1.3   msaitoh 	} else {
     87   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     88   1.3   msaitoh 		eeprom->ops.read_buffer =
     89   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     90   1.3   msaitoh 	}
     91   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     92   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     93   1.1    dyoung 	eeprom->ops.validate_checksum =
     94   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     95   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     96   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     97   1.1    dyoung 
     98   1.1    dyoung 	/* MAC */
     99   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
    100   1.1    dyoung 	mac->ops.reset_hw = NULL;
    101   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    102   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    103   1.1    dyoung 	mac->ops.get_media_type = NULL;
    104   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    105   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    106   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    107   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    108   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    109   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    110   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    111   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    112   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    113   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    114   1.1    dyoung 
    115   1.1    dyoung 	/* LEDs */
    116   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    117   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    118   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    119   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    120  1.14   msaitoh 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    121   1.1    dyoung 
    122   1.1    dyoung 	/* RAR, Multicast, VLAN */
    123   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    124   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    125   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    126   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    127   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    128   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    129   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    130   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    131   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    132   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    133   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    134   1.1    dyoung 	mac->ops.set_vfta = NULL;
    135   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    136   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    137   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    138   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    139   1.1    dyoung 
    140   1.1    dyoung 	/* Flow Control */
    141   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    142   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    143  1.14   msaitoh 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    144   1.1    dyoung 
    145   1.1    dyoung 	/* Link */
    146   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    147   1.1    dyoung 	mac->ops.setup_link = NULL;
    148   1.1    dyoung 	mac->ops.check_link = NULL;
    149   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    150   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    151   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    152   1.1    dyoung 
    153   1.1    dyoung 	return IXGBE_SUCCESS;
    154   1.1    dyoung }
    155   1.1    dyoung 
    156   1.1    dyoung /**
    157   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    158   1.6   msaitoh  * of flow control
    159   1.6   msaitoh  * @hw: pointer to hardware structure
    160   1.6   msaitoh  *
    161   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    162   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    163   1.4   msaitoh  *
    164   1.4   msaitoh  **/
    165   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    166   1.4   msaitoh {
    167   1.6   msaitoh 	bool supported = FALSE;
    168   1.6   msaitoh 	ixgbe_link_speed speed;
    169   1.6   msaitoh 	bool link_up;
    170   1.4   msaitoh 
    171   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    172   1.4   msaitoh 
    173   1.6   msaitoh 	switch (hw->phy.media_type) {
    174   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    175   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    176   1.6   msaitoh 	case ixgbe_media_type_fiber:
    177  1.14   msaitoh 		/* flow control autoneg black list */
    178  1.14   msaitoh 		switch (hw->device_id) {
    179  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP:
    180  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    181  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    182  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    183  1.14   msaitoh 			supported = FALSE;
    184  1.14   msaitoh 			break;
    185  1.14   msaitoh 		default:
    186  1.14   msaitoh 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    187  1.14   msaitoh 			/* if link is down, assume supported */
    188  1.14   msaitoh 			if (link_up)
    189  1.14   msaitoh 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    190  1.14   msaitoh 				    TRUE : FALSE;
    191  1.14   msaitoh 			else
    192  1.14   msaitoh 				supported = TRUE;
    193  1.14   msaitoh 		}
    194  1.14   msaitoh 
    195  1.14   msaitoh 		break;
    196  1.14   msaitoh 	case ixgbe_media_type_backplane:
    197  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    198  1.14   msaitoh 			supported = FALSE;
    199   1.6   msaitoh 		else
    200   1.6   msaitoh 			supported = TRUE;
    201   1.6   msaitoh 		break;
    202   1.6   msaitoh 	case ixgbe_media_type_copper:
    203   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    204   1.6   msaitoh 		switch (hw->device_id) {
    205   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    206   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    207   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    208   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    209   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    210  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    211   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    212  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    213  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    214  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    215   1.6   msaitoh 			supported = TRUE;
    216   1.6   msaitoh 			break;
    217   1.6   msaitoh 		default:
    218   1.6   msaitoh 			supported = FALSE;
    219   1.6   msaitoh 		}
    220   1.4   msaitoh 	default:
    221   1.6   msaitoh 		break;
    222   1.4   msaitoh 	}
    223   1.6   msaitoh 
    224  1.14   msaitoh 	if (!supported)
    225  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    226  1.14   msaitoh 			      "Device %x does not support flow control autoneg",
    227  1.14   msaitoh 			      hw->device_id);
    228  1.17   msaitoh 
    229   1.6   msaitoh 	return supported;
    230   1.4   msaitoh }
    231   1.4   msaitoh 
    232   1.4   msaitoh /**
    233   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    234   1.4   msaitoh  *  @hw: pointer to hardware structure
    235   1.4   msaitoh  *
    236   1.4   msaitoh  *  Called at init time to set up flow control.
    237   1.4   msaitoh  **/
    238   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    239   1.4   msaitoh {
    240   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    241   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    242   1.4   msaitoh 	u16 reg_cu = 0;
    243   1.8   msaitoh 	bool locked = FALSE;
    244   1.4   msaitoh 
    245   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    246   1.4   msaitoh 
    247   1.8   msaitoh 	/* Validate the requested mode */
    248   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    249   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    250   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    251   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    252   1.4   msaitoh 		goto out;
    253   1.4   msaitoh 	}
    254   1.4   msaitoh 
    255   1.4   msaitoh 	/*
    256   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    257   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    258   1.4   msaitoh 	 */
    259   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    260   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    261   1.4   msaitoh 
    262   1.4   msaitoh 	/*
    263   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    264   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    265   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    266   1.4   msaitoh 	 */
    267   1.4   msaitoh 	switch (hw->phy.media_type) {
    268   1.8   msaitoh 	case ixgbe_media_type_backplane:
    269   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    270   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    271   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    272   1.8   msaitoh 			goto out;
    273   1.8   msaitoh 
    274  1.14   msaitoh 		/* fall through - only backplane uses autoc */
    275   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    276   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    277   1.4   msaitoh 	case ixgbe_media_type_fiber:
    278   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    279   1.8   msaitoh 
    280   1.4   msaitoh 		break;
    281   1.4   msaitoh 	case ixgbe_media_type_copper:
    282   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    283   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    284   1.4   msaitoh 		break;
    285   1.4   msaitoh 	default:
    286   1.4   msaitoh 		break;
    287   1.4   msaitoh 	}
    288   1.4   msaitoh 
    289   1.4   msaitoh 	/*
    290   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    291   1.4   msaitoh 	 * 0: Flow control is completely disabled
    292   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    293   1.4   msaitoh 	 *    but not send pause frames).
    294   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    295   1.4   msaitoh 	 *    we do not support receiving pause frames).
    296   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    297   1.4   msaitoh 	 * other: Invalid.
    298   1.4   msaitoh 	 */
    299   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    300   1.4   msaitoh 	case ixgbe_fc_none:
    301   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    302   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    303   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    304   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    305   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    306   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    307   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    308   1.4   msaitoh 		break;
    309   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    310   1.4   msaitoh 		/*
    311   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    312   1.4   msaitoh 		 * disabled by software override.
    313   1.4   msaitoh 		 */
    314   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    315   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    316   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    317   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    318   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    319   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    320   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    321   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    322   1.4   msaitoh 		}
    323   1.4   msaitoh 		break;
    324   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    325   1.4   msaitoh 		/*
    326   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    327   1.4   msaitoh 		 * disabled by software override. Since there really
    328   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    329   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    330   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    331   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    332   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    333   1.4   msaitoh 		 */
    334   1.4   msaitoh 	case ixgbe_fc_full:
    335   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    336   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    337   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    338   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    339   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    340   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    341   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    342   1.4   msaitoh 		break;
    343   1.4   msaitoh 	default:
    344   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    345   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    346   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    347   1.4   msaitoh 		goto out;
    348   1.4   msaitoh 		break;
    349   1.4   msaitoh 	}
    350   1.4   msaitoh 
    351   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    352   1.4   msaitoh 		/*
    353   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    354   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    355   1.4   msaitoh 		 */
    356   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    357   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    358   1.4   msaitoh 
    359   1.4   msaitoh 		/* Disable AN timeout */
    360   1.4   msaitoh 		if (hw->fc.strict_ieee)
    361   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    362   1.4   msaitoh 
    363   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    364   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    365   1.4   msaitoh 	}
    366   1.4   msaitoh 
    367   1.4   msaitoh 	/*
    368   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    369   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    370   1.4   msaitoh 	 *
    371   1.4   msaitoh 	 */
    372   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    373   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    374   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    375   1.8   msaitoh 		if (ret_val)
    376   1.8   msaitoh 			goto out;
    377   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    378   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    379   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    380   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    381   1.4   msaitoh 	}
    382   1.4   msaitoh 
    383   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    384   1.4   msaitoh out:
    385   1.4   msaitoh 	return ret_val;
    386   1.4   msaitoh }
    387   1.4   msaitoh 
    388   1.4   msaitoh /**
    389   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    390   1.1    dyoung  *  @hw: pointer to hardware structure
    391   1.1    dyoung  *
    392   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    393   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    394   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    395   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    396   1.1    dyoung  **/
    397   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    398   1.1    dyoung {
    399   1.4   msaitoh 	s32 ret_val;
    400   1.1    dyoung 	u32 ctrl_ext;
    401  1.14   msaitoh 	u16 device_caps;
    402   1.1    dyoung 
    403   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    404   1.1    dyoung 
    405   1.1    dyoung 	/* Set the media type */
    406   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    407   1.1    dyoung 
    408   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    409   1.1    dyoung 
    410   1.1    dyoung 	/* Clear the VLAN filter table */
    411   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    412   1.1    dyoung 
    413   1.1    dyoung 	/* Clear statistics registers */
    414   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    415   1.1    dyoung 
    416   1.1    dyoung 	/* Set No Snoop Disable */
    417   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    418   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    419   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    420   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    421   1.1    dyoung 
    422   1.1    dyoung 	/* Setup flow control */
    423   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    424  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    425  1.14   msaitoh 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    426  1.14   msaitoh 		return ret_val;
    427  1.14   msaitoh 	}
    428  1.14   msaitoh 
    429  1.14   msaitoh 	/* Cache bit indicating need for crosstalk fix */
    430  1.14   msaitoh 	switch (hw->mac.type) {
    431  1.14   msaitoh 	case ixgbe_mac_82599EB:
    432  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
    433  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
    434  1.14   msaitoh 		hw->mac.ops.get_device_caps(hw, &device_caps);
    435  1.14   msaitoh 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    436  1.14   msaitoh 			hw->need_crosstalk_fix = FALSE;
    437  1.14   msaitoh 		else
    438  1.14   msaitoh 			hw->need_crosstalk_fix = TRUE;
    439  1.14   msaitoh 		break;
    440  1.14   msaitoh 	default:
    441  1.14   msaitoh 		hw->need_crosstalk_fix = FALSE;
    442  1.14   msaitoh 		break;
    443  1.14   msaitoh 	}
    444   1.1    dyoung 
    445   1.1    dyoung 	/* Clear adapter stopped flag */
    446   1.1    dyoung 	hw->adapter_stopped = FALSE;
    447   1.1    dyoung 
    448  1.14   msaitoh 	return IXGBE_SUCCESS;
    449   1.1    dyoung }
    450   1.1    dyoung 
    451   1.1    dyoung /**
    452   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    453   1.1    dyoung  *  @hw: pointer to hw structure
    454   1.1    dyoung  *
    455   1.1    dyoung  * Performs the init sequence common to the second generation
    456   1.1    dyoung  * of 10 GbE devices.
    457   1.1    dyoung  * Devices in the second generation:
    458   1.1    dyoung  *     82599
    459   1.1    dyoung  *     X540
    460   1.1    dyoung  **/
    461   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    462   1.1    dyoung {
    463   1.1    dyoung 	u32 i;
    464   1.1    dyoung 	u32 regval;
    465   1.1    dyoung 
    466   1.1    dyoung 	/* Clear the rate limiters */
    467   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    468   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    469   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    470   1.1    dyoung 	}
    471   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    472   1.1    dyoung 
    473   1.1    dyoung 	/* Disable relaxed ordering */
    474   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    475   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    476   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    477   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    478   1.1    dyoung 	}
    479   1.1    dyoung 
    480   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    481   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    482   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    483   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    484   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    485   1.1    dyoung 	}
    486   1.1    dyoung 
    487   1.1    dyoung 	return IXGBE_SUCCESS;
    488   1.1    dyoung }
    489   1.1    dyoung 
    490   1.1    dyoung /**
    491   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    492   1.1    dyoung  *  @hw: pointer to hardware structure
    493   1.1    dyoung  *
    494   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    495   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    496   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    497   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    498   1.1    dyoung  *  disabled and uninitialized
    499   1.1    dyoung  **/
    500   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    501   1.1    dyoung {
    502   1.1    dyoung 	s32 status;
    503   1.1    dyoung 
    504   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    505   1.1    dyoung 
    506   1.1    dyoung 	/* Reset the hardware */
    507   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    508   1.1    dyoung 
    509  1.14   msaitoh 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    510   1.1    dyoung 		/* Start the HW */
    511   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    512   1.1    dyoung 	}
    513   1.1    dyoung 
    514  1.14   msaitoh 	/* Initialize the LED link active for LED blink support */
    515  1.14   msaitoh 	if (hw->mac.ops.init_led_link_act)
    516  1.14   msaitoh 		hw->mac.ops.init_led_link_act(hw);
    517  1.14   msaitoh 
    518  1.14   msaitoh 	if (status != IXGBE_SUCCESS)
    519  1.14   msaitoh 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    520  1.14   msaitoh 
    521   1.1    dyoung 	return status;
    522   1.1    dyoung }
    523   1.1    dyoung 
    524   1.1    dyoung /**
    525   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    526   1.1    dyoung  *  @hw: pointer to hardware structure
    527   1.1    dyoung  *
    528   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    529   1.1    dyoung  *  Statistics counters are clear on read.
    530   1.1    dyoung  **/
    531   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    532   1.1    dyoung {
    533   1.1    dyoung 	u16 i = 0;
    534   1.1    dyoung 
    535   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    536   1.1    dyoung 
    537   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    538   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    539   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    540   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    541  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    542  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    543   1.1    dyoung 	for (i = 0; i < 8; i++)
    544   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    545   1.1    dyoung 
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    547   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    548   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    549   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    550   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    551   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    552   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    553   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    554   1.1    dyoung 	} else {
    555   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    556   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    557   1.1    dyoung 	}
    558   1.1    dyoung 
    559   1.1    dyoung 	for (i = 0; i < 8; i++) {
    560   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    561   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    562   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    563   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    564   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    565   1.1    dyoung 		} else {
    566   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    567   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    568   1.1    dyoung 		}
    569   1.1    dyoung 	}
    570   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    571   1.1    dyoung 		for (i = 0; i < 8; i++)
    572   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    573   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    574   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    575   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    576   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    577   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    578   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    579   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    580   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    581   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    582   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    583   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    584   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    585   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    586   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    587   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    588   1.3   msaitoh 		for (i = 0; i < 8; i++)
    589   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    590   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    591   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    592   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    593   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    594   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    595   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    596   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    597   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    598   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    599   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    600   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    601   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    602   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    603   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    604   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    605   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    606   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    607   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    608   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    609   1.1    dyoung 	for (i = 0; i < 16; i++) {
    610   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    611   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    612   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    613   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    614   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    615   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    616   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    617   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    618   1.1    dyoung 		} else {
    619   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    620   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    621   1.1    dyoung 		}
    622   1.1    dyoung 	}
    623   1.1    dyoung 
    624   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    625   1.3   msaitoh 		if (hw->phy.id == 0)
    626   1.3   msaitoh 			ixgbe_identify_phy(hw);
    627   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    628   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    629   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    630   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    631   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    632   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    633   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    634   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    635   1.3   msaitoh 	}
    636   1.3   msaitoh 
    637   1.1    dyoung 	return IXGBE_SUCCESS;
    638   1.1    dyoung }
    639   1.1    dyoung 
    640   1.1    dyoung /**
    641   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    642   1.1    dyoung  *  @hw: pointer to hardware structure
    643   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    644   1.1    dyoung  *  @pba_num_size: part number string buffer length
    645   1.1    dyoung  *
    646   1.1    dyoung  *  Reads the part number string from the EEPROM.
    647   1.1    dyoung  **/
    648   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    649   1.3   msaitoh 				  u32 pba_num_size)
    650   1.1    dyoung {
    651   1.1    dyoung 	s32 ret_val;
    652   1.1    dyoung 	u16 data;
    653   1.1    dyoung 	u16 pba_ptr;
    654   1.1    dyoung 	u16 offset;
    655   1.1    dyoung 	u16 length;
    656   1.1    dyoung 
    657   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    658   1.1    dyoung 
    659   1.1    dyoung 	if (pba_num == NULL) {
    660   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    661   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    662   1.1    dyoung 	}
    663   1.1    dyoung 
    664   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    665   1.1    dyoung 	if (ret_val) {
    666   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    667   1.1    dyoung 		return ret_val;
    668   1.1    dyoung 	}
    669   1.1    dyoung 
    670   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    671   1.1    dyoung 	if (ret_val) {
    672   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    673   1.1    dyoung 		return ret_val;
    674   1.1    dyoung 	}
    675   1.1    dyoung 
    676   1.1    dyoung 	/*
    677   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    678   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    679   1.1    dyoung 	 * and we can decode it into an ascii string
    680   1.1    dyoung 	 */
    681   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    682   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    683   1.1    dyoung 
    684   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    685   1.1    dyoung 		if (pba_num_size < 11) {
    686   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    687   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    688   1.1    dyoung 		}
    689   1.1    dyoung 
    690   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    691   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    692   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    693   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    694   1.1    dyoung 		pba_num[3] = data & 0xF;
    695   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    696   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    697   1.1    dyoung 		pba_num[6] = '-';
    698   1.1    dyoung 		pba_num[7] = 0;
    699   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    700   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    701   1.1    dyoung 
    702   1.1    dyoung 		/* put a null character on the end of our string */
    703   1.1    dyoung 		pba_num[10] = '\0';
    704   1.1    dyoung 
    705   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    706   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    707   1.1    dyoung 			if (pba_num[offset] < 0xA)
    708   1.1    dyoung 				pba_num[offset] += '0';
    709   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    710   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    711   1.1    dyoung 		}
    712   1.1    dyoung 
    713   1.1    dyoung 		return IXGBE_SUCCESS;
    714   1.1    dyoung 	}
    715   1.1    dyoung 
    716   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    717   1.1    dyoung 	if (ret_val) {
    718   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    719   1.1    dyoung 		return ret_val;
    720   1.1    dyoung 	}
    721   1.1    dyoung 
    722   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    723   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    724   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    725   1.1    dyoung 	}
    726   1.1    dyoung 
    727   1.1    dyoung 	/* check if pba_num buffer is big enough */
    728   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    729   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    730   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    731   1.1    dyoung 	}
    732   1.1    dyoung 
    733   1.1    dyoung 	/* trim pba length from start of string */
    734   1.1    dyoung 	pba_ptr++;
    735   1.1    dyoung 	length--;
    736   1.1    dyoung 
    737   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    738   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    739   1.1    dyoung 		if (ret_val) {
    740   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    741   1.1    dyoung 			return ret_val;
    742   1.1    dyoung 		}
    743   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    744   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    745   1.1    dyoung 	}
    746   1.1    dyoung 	pba_num[offset * 2] = '\0';
    747   1.1    dyoung 
    748   1.1    dyoung 	return IXGBE_SUCCESS;
    749   1.1    dyoung }
    750   1.1    dyoung 
    751   1.1    dyoung /**
    752   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    753   1.1    dyoung  *  @hw: pointer to hardware structure
    754   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    755   1.1    dyoung  *
    756   1.1    dyoung  *  Reads the part number from the EEPROM.
    757   1.1    dyoung  **/
    758   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    759   1.1    dyoung {
    760   1.1    dyoung 	s32 ret_val;
    761   1.1    dyoung 	u16 data;
    762   1.1    dyoung 
    763   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    764   1.1    dyoung 
    765   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    766   1.1    dyoung 	if (ret_val) {
    767   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    768   1.1    dyoung 		return ret_val;
    769   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    770   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    771   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    772   1.1    dyoung 	}
    773   1.1    dyoung 	*pba_num = (u32)(data << 16);
    774   1.1    dyoung 
    775   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    776   1.1    dyoung 	if (ret_val) {
    777   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    778   1.1    dyoung 		return ret_val;
    779   1.1    dyoung 	}
    780   1.1    dyoung 	*pba_num |= data;
    781   1.1    dyoung 
    782   1.1    dyoung 	return IXGBE_SUCCESS;
    783   1.1    dyoung }
    784   1.1    dyoung 
    785   1.1    dyoung /**
    786   1.5   msaitoh  *  ixgbe_read_pba_raw
    787   1.5   msaitoh  *  @hw: pointer to the HW structure
    788   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    789   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    790   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    791   1.5   msaitoh  *  @pba: pointer to output PBA structure
    792   1.5   msaitoh  *
    793   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    794   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    795   1.5   msaitoh  *
    796   1.5   msaitoh  **/
    797   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    798   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    799   1.5   msaitoh 		       struct ixgbe_pba *pba)
    800   1.5   msaitoh {
    801   1.5   msaitoh 	s32 ret_val;
    802   1.5   msaitoh 	u16 pba_block_size;
    803   1.5   msaitoh 
    804   1.5   msaitoh 	if (pba == NULL)
    805   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    806   1.5   msaitoh 
    807   1.5   msaitoh 	if (eeprom_buf == NULL) {
    808   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    809   1.5   msaitoh 						     &pba->word[0]);
    810   1.5   msaitoh 		if (ret_val)
    811   1.5   msaitoh 			return ret_val;
    812   1.5   msaitoh 	} else {
    813   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    814   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    815   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    816   1.5   msaitoh 		} else {
    817   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    818   1.5   msaitoh 		}
    819   1.5   msaitoh 	}
    820   1.5   msaitoh 
    821   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    822   1.5   msaitoh 		if (pba->pba_block == NULL)
    823   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    824   1.5   msaitoh 
    825   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    826   1.5   msaitoh 						   eeprom_buf_size,
    827   1.5   msaitoh 						   &pba_block_size);
    828   1.5   msaitoh 		if (ret_val)
    829   1.5   msaitoh 			return ret_val;
    830   1.5   msaitoh 
    831   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    832   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    833   1.5   msaitoh 
    834   1.5   msaitoh 		if (eeprom_buf == NULL) {
    835   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    836   1.5   msaitoh 							     pba_block_size,
    837   1.5   msaitoh 							     pba->pba_block);
    838   1.5   msaitoh 			if (ret_val)
    839   1.5   msaitoh 				return ret_val;
    840   1.5   msaitoh 		} else {
    841   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    842   1.8   msaitoh 					      pba_block_size)) {
    843   1.5   msaitoh 				memcpy(pba->pba_block,
    844   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    845   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    846   1.5   msaitoh 			} else {
    847   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    848   1.5   msaitoh 			}
    849   1.5   msaitoh 		}
    850   1.5   msaitoh 	}
    851   1.5   msaitoh 
    852   1.5   msaitoh 	return IXGBE_SUCCESS;
    853   1.5   msaitoh }
    854   1.5   msaitoh 
    855   1.5   msaitoh /**
    856   1.5   msaitoh  *  ixgbe_write_pba_raw
    857   1.5   msaitoh  *  @hw: pointer to the HW structure
    858   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    859   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    860   1.5   msaitoh  *  @pba: pointer to PBA structure
    861   1.5   msaitoh  *
    862   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    863   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    864   1.5   msaitoh  *
    865   1.5   msaitoh  **/
    866   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    867   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    868   1.5   msaitoh {
    869   1.5   msaitoh 	s32 ret_val;
    870   1.5   msaitoh 
    871   1.5   msaitoh 	if (pba == NULL)
    872   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    873   1.5   msaitoh 
    874   1.5   msaitoh 	if (eeprom_buf == NULL) {
    875   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    876   1.5   msaitoh 						      &pba->word[0]);
    877   1.5   msaitoh 		if (ret_val)
    878   1.5   msaitoh 			return ret_val;
    879   1.5   msaitoh 	} else {
    880   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    881   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    882   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    883   1.5   msaitoh 		} else {
    884   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    885   1.5   msaitoh 		}
    886   1.5   msaitoh 	}
    887   1.5   msaitoh 
    888   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    889   1.5   msaitoh 		if (pba->pba_block == NULL)
    890   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    891   1.5   msaitoh 
    892   1.5   msaitoh 		if (eeprom_buf == NULL) {
    893   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    894   1.5   msaitoh 							      pba->pba_block[0],
    895   1.5   msaitoh 							      pba->pba_block);
    896   1.5   msaitoh 			if (ret_val)
    897   1.5   msaitoh 				return ret_val;
    898   1.5   msaitoh 		} else {
    899   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    900   1.5   msaitoh 					      pba->pba_block[0])) {
    901   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    902   1.5   msaitoh 				       pba->pba_block,
    903   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    904   1.5   msaitoh 			} else {
    905   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    906   1.5   msaitoh 			}
    907   1.5   msaitoh 		}
    908   1.5   msaitoh 	}
    909   1.5   msaitoh 
    910   1.5   msaitoh 	return IXGBE_SUCCESS;
    911   1.5   msaitoh }
    912   1.5   msaitoh 
    913   1.5   msaitoh /**
    914   1.5   msaitoh  *  ixgbe_get_pba_block_size
    915   1.5   msaitoh  *  @hw: pointer to the HW structure
    916   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    917   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    918   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    919   1.5   msaitoh  *
    920   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    921   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    922   1.5   msaitoh  *  EEPROM device.
    923   1.5   msaitoh  *
    924   1.5   msaitoh  **/
    925   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    926   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    927   1.5   msaitoh {
    928   1.5   msaitoh 	s32 ret_val;
    929   1.5   msaitoh 	u16 pba_word[2];
    930   1.5   msaitoh 	u16 length;
    931   1.5   msaitoh 
    932   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    933   1.5   msaitoh 
    934   1.5   msaitoh 	if (eeprom_buf == NULL) {
    935   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    936   1.5   msaitoh 						     &pba_word[0]);
    937   1.5   msaitoh 		if (ret_val)
    938   1.5   msaitoh 			return ret_val;
    939   1.5   msaitoh 	} else {
    940   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    941   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    942   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    943   1.5   msaitoh 		} else {
    944   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    945   1.5   msaitoh 		}
    946   1.5   msaitoh 	}
    947   1.5   msaitoh 
    948   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    949   1.5   msaitoh 		if (eeprom_buf == NULL) {
    950   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    951   1.5   msaitoh 						      &length);
    952   1.5   msaitoh 			if (ret_val)
    953   1.5   msaitoh 				return ret_val;
    954   1.5   msaitoh 		} else {
    955   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    956   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    957   1.5   msaitoh 			else
    958   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    959   1.5   msaitoh 		}
    960   1.5   msaitoh 
    961   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    962   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    963   1.5   msaitoh 	} else {
    964   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    965   1.5   msaitoh 		length = 0;
    966   1.5   msaitoh 	}
    967   1.5   msaitoh 
    968   1.5   msaitoh 	if (pba_block_size != NULL)
    969   1.5   msaitoh 		*pba_block_size = length;
    970   1.5   msaitoh 
    971   1.5   msaitoh 	return IXGBE_SUCCESS;
    972   1.5   msaitoh }
    973   1.5   msaitoh 
    974   1.5   msaitoh /**
    975   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    976   1.1    dyoung  *  @hw: pointer to hardware structure
    977   1.1    dyoung  *  @mac_addr: Adapter MAC address
    978   1.1    dyoung  *
    979   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    980   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    981   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    982   1.1    dyoung  **/
    983   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    984   1.1    dyoung {
    985   1.1    dyoung 	u32 rar_high;
    986   1.1    dyoung 	u32 rar_low;
    987   1.1    dyoung 	u16 i;
    988   1.1    dyoung 
    989   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    990   1.1    dyoung 
    991   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    992   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    993   1.1    dyoung 
    994   1.1    dyoung 	for (i = 0; i < 4; i++)
    995   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    996   1.1    dyoung 
    997   1.1    dyoung 	for (i = 0; i < 2; i++)
    998   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    999   1.1    dyoung 
   1000   1.1    dyoung 	return IXGBE_SUCCESS;
   1001   1.1    dyoung }
   1002   1.1    dyoung 
   1003   1.1    dyoung /**
   1004   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1005   1.1    dyoung  *  @hw: pointer to hardware structure
   1006   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
   1007   1.1    dyoung  *
   1008   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1009   1.1    dyoung  **/
   1010   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1011   1.1    dyoung {
   1012   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
   1013   1.1    dyoung 
   1014   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1015   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
   1016   1.1    dyoung 
   1017   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1018   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
   1019   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1020   1.1    dyoung 		break;
   1021   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
   1022   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1023   1.1    dyoung 		break;
   1024   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
   1025   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1026   1.1    dyoung 		break;
   1027   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
   1028   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1029   1.1    dyoung 		break;
   1030   1.1    dyoung 	default:
   1031   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
   1032   1.1    dyoung 		break;
   1033   1.1    dyoung 	}
   1034   1.1    dyoung 
   1035   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1036   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
   1037   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
   1038   1.1    dyoung 		break;
   1039   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
   1040   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
   1041   1.1    dyoung 		break;
   1042   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
   1043   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
   1044   1.4   msaitoh 		break;
   1045   1.1    dyoung 	default:
   1046   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1047   1.1    dyoung 		break;
   1048   1.1    dyoung 	}
   1049   1.1    dyoung 
   1050   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1051   1.6   msaitoh }
   1052   1.6   msaitoh 
   1053   1.6   msaitoh /**
   1054   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1055   1.6   msaitoh  *  @hw: pointer to hardware structure
   1056   1.6   msaitoh  *
   1057   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1058   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1059   1.6   msaitoh  **/
   1060   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1061   1.6   msaitoh {
   1062   1.6   msaitoh 	u16 link_status;
   1063   1.6   msaitoh 
   1064   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1065   1.6   msaitoh 
   1066   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1067   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1068   1.6   msaitoh 
   1069   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1070   1.1    dyoung 
   1071   1.1    dyoung 	return IXGBE_SUCCESS;
   1072   1.1    dyoung }
   1073   1.1    dyoung 
   1074   1.1    dyoung /**
   1075   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1076   1.1    dyoung  *  @hw: pointer to the HW structure
   1077   1.1    dyoung  *
   1078  1.14   msaitoh  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1079  1.14   msaitoh  *  the port value if requested, and set MAC instance for devices that share
   1080  1.14   msaitoh  *  CS4227.
   1081   1.1    dyoung  **/
   1082   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1083   1.1    dyoung {
   1084   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1085   1.1    dyoung 	u32 reg;
   1086  1.14   msaitoh 	u16 ee_ctrl_4;
   1087   1.1    dyoung 
   1088   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1089   1.1    dyoung 
   1090   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1091   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1092  1.14   msaitoh 	bus->lan_id = (u8)bus->func;
   1093   1.1    dyoung 
   1094   1.1    dyoung 	/* check for a port swap */
   1095  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1096   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1097   1.1    dyoung 		bus->func ^= 0x1;
   1098  1.14   msaitoh 
   1099  1.14   msaitoh 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1100  1.14   msaitoh 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1101  1.14   msaitoh 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1102  1.14   msaitoh 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1103  1.14   msaitoh 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1104  1.14   msaitoh 	}
   1105   1.1    dyoung }
   1106   1.1    dyoung 
   1107   1.1    dyoung /**
   1108   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1109   1.1    dyoung  *  @hw: pointer to hardware structure
   1110   1.1    dyoung  *
   1111   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1112   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1113   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1114   1.1    dyoung  *  state and should not touch the hardware.
   1115   1.1    dyoung  **/
   1116   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1117   1.1    dyoung {
   1118   1.1    dyoung 	u32 reg_val;
   1119   1.1    dyoung 	u16 i;
   1120   1.1    dyoung 
   1121   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1122   1.1    dyoung 
   1123   1.1    dyoung 	/*
   1124   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1125   1.1    dyoung 	 * the hardware
   1126   1.1    dyoung 	 */
   1127   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1128   1.1    dyoung 
   1129   1.1    dyoung 	/* Disable the receive unit */
   1130   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1131   1.1    dyoung 
   1132   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1133  1.19  knakahar 	/*
   1134  1.19  knakahar 	 * XXX
   1135  1.19  knakahar 	 * This function is called in the state of both interrupt disabled
   1136  1.19  knakahar 	 * and interrupt enabled, e.g.
   1137  1.19  knakahar 	 * + interrupt disabled case:
   1138  1.19  knakahar 	 *   - ixgbe_stop()
   1139  1.19  knakahar 	 *     - ixgbe_disable_intr() // interrupt disabled here
   1140  1.19  knakahar 	 *     - ixgbe_stop_adapter()
   1141  1.19  knakahar 	 *       - hw->mac.ops.stop_adapter()
   1142  1.19  knakahar 	 *         == this function
   1143  1.19  knakahar 	 * + interrupt enabled case:
   1144  1.19  knakahar 	 *   - ixgbe_local_timer1()
   1145  1.19  knakahar 	 *     - ixgbe_init_locked()
   1146  1.19  knakahar 	 *       - ixgbe_stop_adapter()
   1147  1.19  knakahar 	 *         - hw->mac.ops.stop_adapter()
   1148  1.19  knakahar 	 *           == this function
   1149  1.19  knakahar 	 * Therefore, it causes nest status breaking to nest the status
   1150  1.19  knakahar 	 * (that is, que->im_nest++) at all times. So, this function must
   1151  1.19  knakahar 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
   1152  1.19  knakahar 	 */
   1153  1.19  knakahar 	ixgbe_ensure_disabled_intr(hw->back);
   1154   1.1    dyoung 
   1155   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1156   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1157   1.1    dyoung 
   1158   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1159   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1160   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1161   1.3   msaitoh 
   1162   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1163   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1164   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1165   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1166   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1167   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1168   1.1    dyoung 	}
   1169   1.1    dyoung 
   1170   1.3   msaitoh 	/* flush all queues disables */
   1171   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1172   1.3   msaitoh 	msec_delay(2);
   1173   1.3   msaitoh 
   1174   1.1    dyoung 	/*
   1175   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1176   1.1    dyoung 	 * access and verify no pending requests
   1177   1.1    dyoung 	 */
   1178   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1179   1.1    dyoung }
   1180   1.1    dyoung 
   1181   1.1    dyoung /**
   1182  1.14   msaitoh  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1183  1.14   msaitoh  *  @hw: pointer to hardware structure
   1184  1.14   msaitoh  *
   1185  1.14   msaitoh  *  Store the index for the link active LED. This will be used to support
   1186  1.14   msaitoh  *  blinking the LED.
   1187  1.14   msaitoh  **/
   1188  1.14   msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1189  1.14   msaitoh {
   1190  1.14   msaitoh 	struct ixgbe_mac_info *mac = &hw->mac;
   1191  1.14   msaitoh 	u32 led_reg, led_mode;
   1192  1.14   msaitoh 	u8 i;
   1193  1.14   msaitoh 
   1194  1.14   msaitoh 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1195  1.14   msaitoh 
   1196  1.14   msaitoh 	/* Get LED link active from the LEDCTL register */
   1197  1.14   msaitoh 	for (i = 0; i < 4; i++) {
   1198  1.14   msaitoh 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1199  1.14   msaitoh 
   1200  1.14   msaitoh 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1201  1.14   msaitoh 		     IXGBE_LED_LINK_ACTIVE) {
   1202  1.14   msaitoh 			mac->led_link_act = i;
   1203  1.14   msaitoh 			return IXGBE_SUCCESS;
   1204  1.14   msaitoh 		}
   1205  1.14   msaitoh 	}
   1206  1.14   msaitoh 
   1207  1.14   msaitoh 	/*
   1208  1.14   msaitoh 	 * If LEDCTL register does not have the LED link active set, then use
   1209  1.14   msaitoh 	 * known MAC defaults.
   1210  1.14   msaitoh 	 */
   1211  1.14   msaitoh 	switch (hw->mac.type) {
   1212  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   1213  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
   1214  1.14   msaitoh 		mac->led_link_act = 1;
   1215  1.14   msaitoh 		break;
   1216  1.14   msaitoh 	default:
   1217  1.14   msaitoh 		mac->led_link_act = 2;
   1218  1.14   msaitoh 	}
   1219  1.14   msaitoh 	return IXGBE_SUCCESS;
   1220  1.14   msaitoh }
   1221  1.14   msaitoh 
   1222  1.14   msaitoh /**
   1223   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1224   1.1    dyoung  *  @hw: pointer to hardware structure
   1225   1.1    dyoung  *  @index: led number to turn on
   1226   1.1    dyoung  **/
   1227   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1228   1.1    dyoung {
   1229   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1230   1.1    dyoung 
   1231   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1232   1.1    dyoung 
   1233  1.14   msaitoh 	if (index > 3)
   1234  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1235  1.14   msaitoh 
   1236   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1237   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1238   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1239   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1240   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1241   1.1    dyoung 
   1242   1.1    dyoung 	return IXGBE_SUCCESS;
   1243   1.1    dyoung }
   1244   1.1    dyoung 
   1245   1.1    dyoung /**
   1246   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1247   1.1    dyoung  *  @hw: pointer to hardware structure
   1248   1.1    dyoung  *  @index: led number to turn off
   1249   1.1    dyoung  **/
   1250   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1251   1.1    dyoung {
   1252   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1253   1.1    dyoung 
   1254   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1255   1.1    dyoung 
   1256  1.14   msaitoh 	if (index > 3)
   1257  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1258  1.14   msaitoh 
   1259   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1260   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1261   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1262   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1263   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1264   1.1    dyoung 
   1265   1.1    dyoung 	return IXGBE_SUCCESS;
   1266   1.1    dyoung }
   1267   1.1    dyoung 
   1268   1.1    dyoung /**
   1269   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1270   1.1    dyoung  *  @hw: pointer to hardware structure
   1271   1.1    dyoung  *
   1272   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1273   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1274   1.1    dyoung  **/
   1275   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1276   1.1    dyoung {
   1277   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1278   1.1    dyoung 	u32 eec;
   1279   1.1    dyoung 	u16 eeprom_size;
   1280   1.1    dyoung 
   1281   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1282   1.1    dyoung 
   1283   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1284   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1285   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1286   1.1    dyoung 		 * tested value */
   1287   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1288   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1289   1.3   msaitoh 		eeprom->word_page_size = 0;
   1290   1.1    dyoung 
   1291   1.1    dyoung 		/*
   1292   1.1    dyoung 		 * Check for EEPROM present first.
   1293   1.1    dyoung 		 * If not present leave as none
   1294   1.1    dyoung 		 */
   1295  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1296   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1297   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1298   1.1    dyoung 
   1299   1.1    dyoung 			/*
   1300   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1301   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1302   1.1    dyoung 			 */
   1303   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1304   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1305   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1306   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1307   1.1    dyoung 		}
   1308   1.1    dyoung 
   1309   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1310   1.1    dyoung 			eeprom->address_bits = 16;
   1311   1.1    dyoung 		else
   1312   1.1    dyoung 			eeprom->address_bits = 8;
   1313   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1314   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1315   1.3   msaitoh 			  eeprom->address_bits);
   1316   1.1    dyoung 	}
   1317   1.1    dyoung 
   1318   1.1    dyoung 	return IXGBE_SUCCESS;
   1319   1.1    dyoung }
   1320   1.1    dyoung 
   1321   1.1    dyoung /**
   1322   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1323   1.3   msaitoh  *  @hw: pointer to hardware structure
   1324   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1325   1.3   msaitoh  *  @words: number of word(s)
   1326   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1327   1.3   msaitoh  *
   1328   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1329   1.3   msaitoh  **/
   1330   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1331   1.3   msaitoh 					       u16 words, u16 *data)
   1332   1.3   msaitoh {
   1333   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1334   1.3   msaitoh 	u16 i, count;
   1335   1.3   msaitoh 
   1336   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1337   1.3   msaitoh 
   1338   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1339   1.3   msaitoh 
   1340   1.3   msaitoh 	if (words == 0) {
   1341   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1342   1.3   msaitoh 		goto out;
   1343   1.3   msaitoh 	}
   1344   1.3   msaitoh 
   1345   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1346   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1347   1.3   msaitoh 		goto out;
   1348   1.3   msaitoh 	}
   1349   1.3   msaitoh 
   1350   1.3   msaitoh 	/*
   1351   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1352   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1353   1.3   msaitoh 	 */
   1354   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1355   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1356   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1357   1.3   msaitoh 
   1358   1.3   msaitoh 	/*
   1359   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1360   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1361   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1362   1.3   msaitoh 	 */
   1363   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1364   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1365   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1366   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1367   1.3   msaitoh 							    count, &data[i]);
   1368   1.3   msaitoh 
   1369   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1370   1.3   msaitoh 			break;
   1371   1.3   msaitoh 	}
   1372   1.3   msaitoh 
   1373   1.3   msaitoh out:
   1374   1.3   msaitoh 	return status;
   1375   1.3   msaitoh }
   1376   1.3   msaitoh 
   1377   1.3   msaitoh /**
   1378   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1379   1.3   msaitoh  *  @hw: pointer to hardware structure
   1380   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1381   1.3   msaitoh  *  @words: number of word(s)
   1382   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1383   1.3   msaitoh  *
   1384   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1385   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1386   1.3   msaitoh  **/
   1387   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1388   1.3   msaitoh 					      u16 words, u16 *data)
   1389   1.3   msaitoh {
   1390   1.3   msaitoh 	s32 status;
   1391   1.3   msaitoh 	u16 word;
   1392   1.3   msaitoh 	u16 page_size;
   1393   1.3   msaitoh 	u16 i;
   1394   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1395   1.3   msaitoh 
   1396   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1397   1.3   msaitoh 
   1398   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1399   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1400   1.3   msaitoh 
   1401   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1402   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1403   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1404   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1405   1.3   msaitoh 		}
   1406   1.3   msaitoh 	}
   1407   1.3   msaitoh 
   1408   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1409   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1410   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1411   1.3   msaitoh 
   1412   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1413   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1414   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1415   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1416   1.3   msaitoh 
   1417   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1418   1.3   msaitoh 
   1419   1.3   msaitoh 			/*
   1420   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1421   1.3   msaitoh 			 * in the opcode
   1422   1.3   msaitoh 			 */
   1423   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1424   1.3   msaitoh 			    ((offset + i) >= 128))
   1425   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1426   1.3   msaitoh 
   1427   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1428   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1429   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1430   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1431   1.3   msaitoh 						    hw->eeprom.address_bits);
   1432   1.3   msaitoh 
   1433   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1434   1.3   msaitoh 
   1435   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1436   1.3   msaitoh 			do {
   1437   1.3   msaitoh 				word = data[i];
   1438   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1439   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1440   1.3   msaitoh 
   1441   1.3   msaitoh 				if (page_size == 0)
   1442   1.3   msaitoh 					break;
   1443   1.3   msaitoh 
   1444   1.3   msaitoh 				/* do not wrap around page */
   1445   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1446   1.3   msaitoh 				    (page_size - 1))
   1447   1.3   msaitoh 					break;
   1448   1.3   msaitoh 			} while (++i < words);
   1449   1.3   msaitoh 
   1450   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1451   1.3   msaitoh 			msec_delay(10);
   1452   1.3   msaitoh 		}
   1453   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1454   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1455   1.3   msaitoh 	}
   1456   1.3   msaitoh 
   1457   1.3   msaitoh 	return status;
   1458   1.3   msaitoh }
   1459   1.3   msaitoh 
   1460   1.3   msaitoh /**
   1461   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1462   1.1    dyoung  *  @hw: pointer to hardware structure
   1463   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1464   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1465   1.1    dyoung  *
   1466   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1467   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1468   1.1    dyoung  **/
   1469   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1470   1.1    dyoung {
   1471   1.1    dyoung 	s32 status;
   1472   1.1    dyoung 
   1473   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1474   1.1    dyoung 
   1475   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1476   1.1    dyoung 
   1477   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1478   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1479   1.1    dyoung 		goto out;
   1480   1.1    dyoung 	}
   1481   1.1    dyoung 
   1482   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1483   1.3   msaitoh 
   1484   1.3   msaitoh out:
   1485   1.3   msaitoh 	return status;
   1486   1.3   msaitoh }
   1487   1.3   msaitoh 
   1488   1.3   msaitoh /**
   1489   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1490   1.3   msaitoh  *  @hw: pointer to hardware structure
   1491   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1492   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1493   1.3   msaitoh  *  @words: number of word(s)
   1494   1.3   msaitoh  *
   1495   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1496   1.3   msaitoh  **/
   1497   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1498   1.3   msaitoh 					      u16 words, u16 *data)
   1499   1.3   msaitoh {
   1500   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1501   1.3   msaitoh 	u16 i, count;
   1502   1.3   msaitoh 
   1503   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1504   1.3   msaitoh 
   1505   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1506   1.3   msaitoh 
   1507   1.3   msaitoh 	if (words == 0) {
   1508   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1509   1.3   msaitoh 		goto out;
   1510   1.3   msaitoh 	}
   1511   1.3   msaitoh 
   1512   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1513   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1514   1.3   msaitoh 		goto out;
   1515   1.3   msaitoh 	}
   1516   1.3   msaitoh 
   1517   1.3   msaitoh 	/*
   1518   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1519   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1520   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1521   1.3   msaitoh 	 */
   1522   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1523   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1524   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1525   1.3   msaitoh 
   1526   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1527   1.3   msaitoh 							   count, &data[i]);
   1528   1.3   msaitoh 
   1529   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1530   1.3   msaitoh 			break;
   1531   1.3   msaitoh 	}
   1532   1.3   msaitoh 
   1533   1.3   msaitoh out:
   1534   1.3   msaitoh 	return status;
   1535   1.3   msaitoh }
   1536   1.3   msaitoh 
   1537   1.3   msaitoh /**
   1538   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1539   1.3   msaitoh  *  @hw: pointer to hardware structure
   1540   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1541   1.3   msaitoh  *  @words: number of word(s)
   1542   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1543   1.3   msaitoh  *
   1544   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1545   1.3   msaitoh  **/
   1546   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1547   1.3   msaitoh 					     u16 words, u16 *data)
   1548   1.3   msaitoh {
   1549   1.3   msaitoh 	s32 status;
   1550   1.3   msaitoh 	u16 word_in;
   1551   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1552   1.3   msaitoh 	u16 i;
   1553   1.3   msaitoh 
   1554   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1555   1.3   msaitoh 
   1556   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1557   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1558   1.1    dyoung 
   1559   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1560   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1561   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1562   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1563   1.1    dyoung 		}
   1564   1.1    dyoung 	}
   1565   1.1    dyoung 
   1566   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1567   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1568   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1569   1.3   msaitoh 			/*
   1570   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1571   1.3   msaitoh 			 * in the opcode
   1572   1.3   msaitoh 			 */
   1573   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1574   1.3   msaitoh 			    ((offset + i) >= 128))
   1575   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1576   1.3   msaitoh 
   1577   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1578   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1579   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1580   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1581   1.3   msaitoh 						    hw->eeprom.address_bits);
   1582   1.3   msaitoh 
   1583   1.3   msaitoh 			/* Read the data. */
   1584   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1585   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1586   1.3   msaitoh 		}
   1587   1.1    dyoung 
   1588   1.3   msaitoh 		/* End this read operation */
   1589   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1590   1.1    dyoung 	}
   1591   1.1    dyoung 
   1592   1.1    dyoung 	return status;
   1593   1.1    dyoung }
   1594   1.1    dyoung 
   1595   1.1    dyoung /**
   1596   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1597   1.1    dyoung  *  @hw: pointer to hardware structure
   1598   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1599   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1600   1.1    dyoung  *
   1601   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1602   1.1    dyoung  **/
   1603   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1604   1.3   msaitoh 				       u16 *data)
   1605   1.1    dyoung {
   1606   1.1    dyoung 	s32 status;
   1607   1.1    dyoung 
   1608   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1609   1.1    dyoung 
   1610   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1611   1.1    dyoung 
   1612   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1613   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1614   1.1    dyoung 		goto out;
   1615   1.1    dyoung 	}
   1616   1.1    dyoung 
   1617   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1618   1.3   msaitoh 
   1619   1.3   msaitoh out:
   1620   1.3   msaitoh 	return status;
   1621   1.3   msaitoh }
   1622   1.3   msaitoh 
   1623   1.3   msaitoh /**
   1624   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1625   1.3   msaitoh  *  @hw: pointer to hardware structure
   1626   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1627   1.3   msaitoh  *  @words: number of word(s)
   1628   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1629   1.3   msaitoh  *
   1630   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1631   1.3   msaitoh  **/
   1632   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1633   1.3   msaitoh 				   u16 words, u16 *data)
   1634   1.3   msaitoh {
   1635   1.3   msaitoh 	u32 eerd;
   1636   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1637   1.3   msaitoh 	u32 i;
   1638   1.3   msaitoh 
   1639   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1640   1.3   msaitoh 
   1641   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1642   1.3   msaitoh 
   1643   1.3   msaitoh 	if (words == 0) {
   1644   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1645   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1646   1.3   msaitoh 		goto out;
   1647   1.3   msaitoh 	}
   1648   1.3   msaitoh 
   1649   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1650   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1651   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1652   1.3   msaitoh 		goto out;
   1653   1.3   msaitoh 	}
   1654   1.3   msaitoh 
   1655   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1656   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1657   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1658   1.3   msaitoh 
   1659   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1660   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1661   1.1    dyoung 
   1662   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1663   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1664   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1665   1.3   msaitoh 		} else {
   1666   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1667   1.3   msaitoh 			goto out;
   1668   1.1    dyoung 		}
   1669   1.1    dyoung 	}
   1670   1.3   msaitoh out:
   1671   1.3   msaitoh 	return status;
   1672   1.3   msaitoh }
   1673   1.1    dyoung 
   1674   1.3   msaitoh /**
   1675   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1676   1.3   msaitoh  *  @hw: pointer to hardware structure
   1677   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1678   1.3   msaitoh  *
   1679   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1680   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1681   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1682   1.3   msaitoh  **/
   1683   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1684   1.3   msaitoh 						 u16 offset)
   1685   1.3   msaitoh {
   1686   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1687   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1688   1.3   msaitoh 	u16 i;
   1689   1.3   msaitoh 
   1690   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1691   1.3   msaitoh 
   1692   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1693   1.3   msaitoh 		data[i] = i;
   1694   1.1    dyoung 
   1695   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1696   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1697   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1698   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1699   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1700   1.3   msaitoh 		goto out;
   1701   1.1    dyoung 
   1702   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1703   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1704   1.3   msaitoh 		goto out;
   1705   1.1    dyoung 
   1706   1.3   msaitoh 	/*
   1707   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1708   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1709   1.3   msaitoh 	 */
   1710   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1711   1.1    dyoung 
   1712   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1713   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1714   1.1    dyoung out:
   1715   1.1    dyoung 	return status;
   1716   1.1    dyoung }
   1717   1.1    dyoung 
   1718   1.1    dyoung /**
   1719   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1720   1.1    dyoung  *  @hw: pointer to hardware structure
   1721   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1722   1.1    dyoung  *  @data: word read from the EEPROM
   1723   1.1    dyoung  *
   1724   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1725   1.1    dyoung  **/
   1726   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1727   1.1    dyoung {
   1728   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1729   1.3   msaitoh }
   1730   1.3   msaitoh 
   1731   1.3   msaitoh /**
   1732   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1733   1.3   msaitoh  *  @hw: pointer to hardware structure
   1734   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1735   1.3   msaitoh  *  @words: number of word(s)
   1736   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1737   1.3   msaitoh  *
   1738   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1739   1.3   msaitoh  **/
   1740   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1741   1.3   msaitoh 				    u16 words, u16 *data)
   1742   1.3   msaitoh {
   1743   1.3   msaitoh 	u32 eewr;
   1744   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1745   1.3   msaitoh 	u16 i;
   1746   1.1    dyoung 
   1747   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1748   1.1    dyoung 
   1749   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1750   1.1    dyoung 
   1751   1.3   msaitoh 	if (words == 0) {
   1752   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1753   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1754   1.3   msaitoh 		goto out;
   1755   1.3   msaitoh 	}
   1756   1.3   msaitoh 
   1757   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1758   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1759   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1760   1.1    dyoung 		goto out;
   1761   1.1    dyoung 	}
   1762   1.1    dyoung 
   1763   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1764   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1765   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1766   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1767   1.3   msaitoh 
   1768   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1769   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1770   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1771   1.3   msaitoh 			goto out;
   1772   1.3   msaitoh 		}
   1773   1.1    dyoung 
   1774   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1775   1.1    dyoung 
   1776   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1777   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1778   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1779   1.3   msaitoh 			goto out;
   1780   1.3   msaitoh 		}
   1781   1.3   msaitoh 	}
   1782   1.1    dyoung 
   1783   1.1    dyoung out:
   1784   1.1    dyoung 	return status;
   1785   1.1    dyoung }
   1786   1.1    dyoung 
   1787   1.1    dyoung /**
   1788   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1789   1.1    dyoung  *  @hw: pointer to hardware structure
   1790   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1791   1.1    dyoung  *  @data: word write to the EEPROM
   1792   1.1    dyoung  *
   1793   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1794   1.1    dyoung  **/
   1795   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1796   1.1    dyoung {
   1797   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1798   1.1    dyoung }
   1799   1.1    dyoung 
   1800   1.1    dyoung /**
   1801   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1802   1.1    dyoung  *  @hw: pointer to hardware structure
   1803   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1804   1.1    dyoung  *
   1805   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1806   1.1    dyoung  *  read or write is done respectively.
   1807   1.1    dyoung  **/
   1808   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1809   1.1    dyoung {
   1810   1.1    dyoung 	u32 i;
   1811   1.1    dyoung 	u32 reg;
   1812   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1813   1.1    dyoung 
   1814   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1815   1.1    dyoung 
   1816   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1817   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1818   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1819   1.1    dyoung 		else
   1820   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1821   1.1    dyoung 
   1822   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1823   1.1    dyoung 			status = IXGBE_SUCCESS;
   1824   1.1    dyoung 			break;
   1825   1.1    dyoung 		}
   1826   1.1    dyoung 		usec_delay(5);
   1827   1.1    dyoung 	}
   1828   1.6   msaitoh 
   1829   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1830   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1831   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1832   1.6   msaitoh 
   1833   1.1    dyoung 	return status;
   1834   1.1    dyoung }
   1835   1.1    dyoung 
   1836   1.1    dyoung /**
   1837   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1838   1.1    dyoung  *  @hw: pointer to hardware structure
   1839   1.1    dyoung  *
   1840   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1841   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1842   1.1    dyoung  **/
   1843   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1844   1.1    dyoung {
   1845   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1846   1.1    dyoung 	u32 eec;
   1847   1.1    dyoung 	u32 i;
   1848   1.1    dyoung 
   1849   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1850   1.1    dyoung 
   1851   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1852   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1853   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1854   1.1    dyoung 
   1855   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1856  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1857   1.1    dyoung 
   1858   1.1    dyoung 		/* Request EEPROM Access */
   1859   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1860  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1861   1.1    dyoung 
   1862   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1863  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1864   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1865   1.1    dyoung 				break;
   1866   1.1    dyoung 			usec_delay(5);
   1867   1.1    dyoung 		}
   1868   1.1    dyoung 
   1869   1.1    dyoung 		/* Release if grant not acquired */
   1870   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1871   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1872  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1873   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1874   1.1    dyoung 
   1875   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1876   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1877   1.1    dyoung 		}
   1878   1.1    dyoung 
   1879   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1880   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1881   1.1    dyoung 			/* Clear CS and SK */
   1882   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1883  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1884   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1885   1.1    dyoung 			usec_delay(1);
   1886   1.1    dyoung 		}
   1887   1.1    dyoung 	}
   1888   1.1    dyoung 	return status;
   1889   1.1    dyoung }
   1890   1.1    dyoung 
   1891   1.1    dyoung /**
   1892   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1893   1.1    dyoung  *  @hw: pointer to hardware structure
   1894   1.1    dyoung  *
   1895   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1896   1.1    dyoung  **/
   1897   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1898   1.1    dyoung {
   1899   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1900   1.1    dyoung 	u32 timeout = 2000;
   1901   1.1    dyoung 	u32 i;
   1902   1.1    dyoung 	u32 swsm;
   1903   1.1    dyoung 
   1904   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1905   1.1    dyoung 
   1906   1.1    dyoung 
   1907   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1908   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1909   1.1    dyoung 		/*
   1910   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1911   1.1    dyoung 		 * set and we have the semaphore
   1912   1.1    dyoung 		 */
   1913  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1914   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1915   1.1    dyoung 			status = IXGBE_SUCCESS;
   1916   1.1    dyoung 			break;
   1917   1.1    dyoung 		}
   1918   1.1    dyoung 		usec_delay(50);
   1919   1.1    dyoung 	}
   1920   1.1    dyoung 
   1921   1.3   msaitoh 	if (i == timeout) {
   1922   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1923   1.3   msaitoh 			 "not granted.\n");
   1924   1.3   msaitoh 		/*
   1925   1.3   msaitoh 		 * this release is particularly important because our attempts
   1926   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1927   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1928   1.3   msaitoh 		 * bits to free the driver to make progress
   1929   1.3   msaitoh 		 */
   1930   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1931   1.3   msaitoh 
   1932   1.3   msaitoh 		usec_delay(50);
   1933   1.3   msaitoh 		/*
   1934   1.3   msaitoh 		 * one last try
   1935   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1936   1.3   msaitoh 		 * set and we have the semaphore
   1937   1.3   msaitoh 		 */
   1938  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1939   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1940   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1941   1.3   msaitoh 	}
   1942   1.3   msaitoh 
   1943   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1944   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1945   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1946  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1947   1.1    dyoung 
   1948   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1949   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1950  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1951   1.1    dyoung 
   1952   1.1    dyoung 			/*
   1953   1.1    dyoung 			 * If we set the bit successfully then we got the
   1954   1.1    dyoung 			 * semaphore.
   1955   1.1    dyoung 			 */
   1956  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1957   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1958   1.1    dyoung 				break;
   1959   1.1    dyoung 
   1960   1.1    dyoung 			usec_delay(50);
   1961   1.1    dyoung 		}
   1962   1.1    dyoung 
   1963   1.1    dyoung 		/*
   1964   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1965   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1966   1.1    dyoung 		 */
   1967   1.1    dyoung 		if (i >= timeout) {
   1968   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1969   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1970   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1971   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1972   1.1    dyoung 		}
   1973   1.1    dyoung 	} else {
   1974   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1975   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1976   1.6   msaitoh 			     "not granted.\n");
   1977   1.1    dyoung 	}
   1978   1.1    dyoung 
   1979   1.1    dyoung 	return status;
   1980   1.1    dyoung }
   1981   1.1    dyoung 
   1982   1.1    dyoung /**
   1983   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1984   1.1    dyoung  *  @hw: pointer to hardware structure
   1985   1.1    dyoung  *
   1986   1.1    dyoung  *  This function clears hardware semaphore bits.
   1987   1.1    dyoung  **/
   1988   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1989   1.1    dyoung {
   1990   1.1    dyoung 	u32 swsm;
   1991   1.1    dyoung 
   1992   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1993   1.1    dyoung 
   1994   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1995   1.1    dyoung 
   1996   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1997   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1998   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1999   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2000   1.1    dyoung }
   2001   1.1    dyoung 
   2002   1.1    dyoung /**
   2003   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   2004   1.1    dyoung  *  @hw: pointer to hardware structure
   2005   1.1    dyoung  **/
   2006   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   2007   1.1    dyoung {
   2008   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2009   1.1    dyoung 	u16 i;
   2010   1.1    dyoung 	u8 spi_stat_reg;
   2011   1.1    dyoung 
   2012   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   2013   1.1    dyoung 
   2014   1.1    dyoung 	/*
   2015   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   2016   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   2017   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   2018   1.1    dyoung 	 * 5 milliseconds, then error out.
   2019   1.1    dyoung 	 */
   2020   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   2021   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2022   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   2023   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2024   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2025   1.1    dyoung 			break;
   2026   1.1    dyoung 
   2027   1.1    dyoung 		usec_delay(5);
   2028   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   2029  1.11   msaitoh 	}
   2030   1.1    dyoung 
   2031   1.1    dyoung 	/*
   2032   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2033   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   2034   1.1    dyoung 	 */
   2035   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2036   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   2037   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   2038   1.1    dyoung 	}
   2039   1.1    dyoung 
   2040   1.1    dyoung 	return status;
   2041   1.1    dyoung }
   2042   1.1    dyoung 
   2043   1.1    dyoung /**
   2044   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2045   1.1    dyoung  *  @hw: pointer to hardware structure
   2046   1.1    dyoung  **/
   2047   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2048   1.1    dyoung {
   2049   1.1    dyoung 	u32 eec;
   2050   1.1    dyoung 
   2051   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   2052   1.1    dyoung 
   2053  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2054   1.1    dyoung 
   2055   1.1    dyoung 	/* Toggle CS to flush commands */
   2056   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   2057  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2058   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2059   1.1    dyoung 	usec_delay(1);
   2060   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   2061  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2062   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2063   1.1    dyoung 	usec_delay(1);
   2064   1.1    dyoung }
   2065   1.1    dyoung 
   2066   1.1    dyoung /**
   2067   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2068   1.1    dyoung  *  @hw: pointer to hardware structure
   2069   1.1    dyoung  *  @data: data to send to the EEPROM
   2070   1.1    dyoung  *  @count: number of bits to shift out
   2071   1.1    dyoung  **/
   2072   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2073   1.3   msaitoh 					u16 count)
   2074   1.1    dyoung {
   2075   1.1    dyoung 	u32 eec;
   2076   1.1    dyoung 	u32 mask;
   2077   1.1    dyoung 	u32 i;
   2078   1.1    dyoung 
   2079   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2080   1.1    dyoung 
   2081  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2082   1.1    dyoung 
   2083   1.1    dyoung 	/*
   2084   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2085   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   2086   1.1    dyoung 	 */
   2087   1.1    dyoung 	mask = 0x01 << (count - 1);
   2088   1.1    dyoung 
   2089   1.1    dyoung 	for (i = 0; i < count; i++) {
   2090   1.1    dyoung 		/*
   2091   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2092   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   2093   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   2094   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2095   1.1    dyoung 		 * raising and then lowering the clock.
   2096   1.1    dyoung 		 */
   2097   1.1    dyoung 		if (data & mask)
   2098   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   2099   1.1    dyoung 		else
   2100   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   2101   1.1    dyoung 
   2102  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2103   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   2104   1.1    dyoung 
   2105   1.1    dyoung 		usec_delay(1);
   2106   1.1    dyoung 
   2107   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2108   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2109   1.1    dyoung 
   2110   1.1    dyoung 		/*
   2111   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   2112   1.1    dyoung 		 * EEPROM
   2113   1.1    dyoung 		 */
   2114   1.1    dyoung 		mask = mask >> 1;
   2115  1.11   msaitoh 	}
   2116   1.1    dyoung 
   2117   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2118   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   2119  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2120   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2121   1.1    dyoung }
   2122   1.1    dyoung 
   2123   1.1    dyoung /**
   2124   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2125   1.1    dyoung  *  @hw: pointer to hardware structure
   2126   1.1    dyoung  **/
   2127   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2128   1.1    dyoung {
   2129   1.1    dyoung 	u32 eec;
   2130   1.1    dyoung 	u32 i;
   2131   1.1    dyoung 	u16 data = 0;
   2132   1.1    dyoung 
   2133   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2134   1.1    dyoung 
   2135   1.1    dyoung 	/*
   2136   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2137   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2138   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2139   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2140   1.1    dyoung 	 * "DI" bit should always be clear.
   2141   1.1    dyoung 	 */
   2142  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2143   1.1    dyoung 
   2144   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2145   1.1    dyoung 
   2146   1.1    dyoung 	for (i = 0; i < count; i++) {
   2147   1.1    dyoung 		data = data << 1;
   2148   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2149   1.1    dyoung 
   2150  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2151   1.1    dyoung 
   2152   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2153   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2154   1.1    dyoung 			data |= 1;
   2155   1.1    dyoung 
   2156   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2157   1.1    dyoung 	}
   2158   1.1    dyoung 
   2159   1.1    dyoung 	return data;
   2160   1.1    dyoung }
   2161   1.1    dyoung 
   2162   1.1    dyoung /**
   2163   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2164   1.1    dyoung  *  @hw: pointer to hardware structure
   2165   1.1    dyoung  *  @eec: EEC register's current value
   2166   1.1    dyoung  **/
   2167   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2168   1.1    dyoung {
   2169   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2170   1.1    dyoung 
   2171   1.1    dyoung 	/*
   2172   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2173   1.1    dyoung 	 * (setting the SK bit), then delay
   2174   1.1    dyoung 	 */
   2175   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2176  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2177   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2178   1.1    dyoung 	usec_delay(1);
   2179   1.1    dyoung }
   2180   1.1    dyoung 
   2181   1.1    dyoung /**
   2182   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2183   1.1    dyoung  *  @hw: pointer to hardware structure
   2184   1.1    dyoung  *  @eecd: EECD's current value
   2185   1.1    dyoung  **/
   2186   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2187   1.1    dyoung {
   2188   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2189   1.1    dyoung 
   2190   1.1    dyoung 	/*
   2191   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2192   1.1    dyoung 	 * delay
   2193   1.1    dyoung 	 */
   2194   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2195  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2196   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2197   1.1    dyoung 	usec_delay(1);
   2198   1.1    dyoung }
   2199   1.1    dyoung 
   2200   1.1    dyoung /**
   2201   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2202   1.1    dyoung  *  @hw: pointer to hardware structure
   2203   1.1    dyoung  **/
   2204   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2205   1.1    dyoung {
   2206   1.1    dyoung 	u32 eec;
   2207   1.1    dyoung 
   2208   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2209   1.1    dyoung 
   2210  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2211   1.1    dyoung 
   2212   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2213   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2214   1.1    dyoung 
   2215  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2216   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2217   1.1    dyoung 
   2218   1.1    dyoung 	usec_delay(1);
   2219   1.1    dyoung 
   2220   1.1    dyoung 	/* Stop requesting EEPROM access */
   2221   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2222  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2223   1.1    dyoung 
   2224   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2225   1.1    dyoung 
   2226   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2227   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2228   1.1    dyoung }
   2229   1.1    dyoung 
   2230   1.1    dyoung /**
   2231   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2232   1.1    dyoung  *  @hw: pointer to hardware structure
   2233   1.8   msaitoh  *
   2234   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2235   1.1    dyoung  **/
   2236   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2237   1.1    dyoung {
   2238   1.1    dyoung 	u16 i;
   2239   1.1    dyoung 	u16 j;
   2240   1.1    dyoung 	u16 checksum = 0;
   2241   1.1    dyoung 	u16 length = 0;
   2242   1.1    dyoung 	u16 pointer = 0;
   2243   1.1    dyoung 	u16 word = 0;
   2244   1.1    dyoung 
   2245   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2246   1.1    dyoung 
   2247   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2248   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2249   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2250   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2251   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2252   1.1    dyoung 		}
   2253   1.1    dyoung 		checksum += word;
   2254   1.1    dyoung 	}
   2255   1.1    dyoung 
   2256   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2257   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2258   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2259   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2260   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2261   1.8   msaitoh 		}
   2262   1.8   msaitoh 
   2263   1.8   msaitoh 		/* If the pointer seems invalid */
   2264   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2265   1.8   msaitoh 			continue;
   2266   1.8   msaitoh 
   2267   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2268   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2269   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2270   1.8   msaitoh 		}
   2271   1.8   msaitoh 
   2272   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2273   1.8   msaitoh 			continue;
   2274   1.1    dyoung 
   2275   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2276   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2277   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2278   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2279   1.1    dyoung 			}
   2280   1.8   msaitoh 			checksum += word;
   2281   1.1    dyoung 		}
   2282   1.1    dyoung 	}
   2283   1.1    dyoung 
   2284   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2285   1.1    dyoung 
   2286   1.8   msaitoh 	return (s32)checksum;
   2287   1.1    dyoung }
   2288   1.1    dyoung 
   2289   1.1    dyoung /**
   2290   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2291   1.1    dyoung  *  @hw: pointer to hardware structure
   2292   1.1    dyoung  *  @checksum_val: calculated checksum
   2293   1.1    dyoung  *
   2294   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2295   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2296   1.1    dyoung  **/
   2297   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2298   1.3   msaitoh 					   u16 *checksum_val)
   2299   1.1    dyoung {
   2300   1.1    dyoung 	s32 status;
   2301   1.1    dyoung 	u16 checksum;
   2302   1.1    dyoung 	u16 read_checksum = 0;
   2303   1.1    dyoung 
   2304   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2305   1.1    dyoung 
   2306   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2307   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2308   1.1    dyoung 	 * EEPROM read fails
   2309   1.1    dyoung 	 */
   2310   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2311   1.8   msaitoh 	if (status) {
   2312   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2313   1.8   msaitoh 		return status;
   2314   1.8   msaitoh 	}
   2315   1.1    dyoung 
   2316   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2317   1.8   msaitoh 	if (status < 0)
   2318   1.8   msaitoh 		return status;
   2319   1.1    dyoung 
   2320   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2321   1.1    dyoung 
   2322   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2323   1.8   msaitoh 	if (status) {
   2324   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2325   1.8   msaitoh 		return status;
   2326   1.1    dyoung 	}
   2327   1.1    dyoung 
   2328   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2329   1.8   msaitoh 	 * calculated checksum
   2330   1.8   msaitoh 	 */
   2331   1.8   msaitoh 	if (read_checksum != checksum)
   2332   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2333   1.8   msaitoh 
   2334   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2335   1.8   msaitoh 	if (checksum_val)
   2336   1.8   msaitoh 		*checksum_val = checksum;
   2337   1.8   msaitoh 
   2338   1.1    dyoung 	return status;
   2339   1.1    dyoung }
   2340   1.1    dyoung 
   2341   1.1    dyoung /**
   2342   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2343   1.1    dyoung  *  @hw: pointer to hardware structure
   2344   1.1    dyoung  **/
   2345   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2346   1.1    dyoung {
   2347   1.1    dyoung 	s32 status;
   2348   1.1    dyoung 	u16 checksum;
   2349   1.1    dyoung 
   2350   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2351   1.1    dyoung 
   2352   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2353   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2354   1.1    dyoung 	 * EEPROM read fails
   2355   1.1    dyoung 	 */
   2356   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2357   1.8   msaitoh 	if (status) {
   2358   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2359   1.8   msaitoh 		return status;
   2360   1.1    dyoung 	}
   2361   1.1    dyoung 
   2362   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2363   1.8   msaitoh 	if (status < 0)
   2364   1.8   msaitoh 		return status;
   2365   1.8   msaitoh 
   2366   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2367   1.8   msaitoh 
   2368   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2369   1.8   msaitoh 
   2370   1.1    dyoung 	return status;
   2371   1.1    dyoung }
   2372   1.1    dyoung 
   2373   1.1    dyoung /**
   2374   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2375   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2376   1.1    dyoung  *
   2377  1.14   msaitoh  *  Tests a MAC address to ensure it is a valid Individual Address.
   2378   1.1    dyoung  **/
   2379   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2380   1.1    dyoung {
   2381   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2382   1.1    dyoung 
   2383   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2384   1.1    dyoung 
   2385   1.1    dyoung 	/* Make sure it is not a multicast address */
   2386   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2387   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2388   1.1    dyoung 	/* Not a broadcast address */
   2389   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2390   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2391   1.1    dyoung 	/* Reject the zero address */
   2392   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2393   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2394   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2395   1.1    dyoung 	}
   2396   1.1    dyoung 	return status;
   2397   1.1    dyoung }
   2398   1.1    dyoung 
   2399   1.1    dyoung /**
   2400   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2401   1.1    dyoung  *  @hw: pointer to hardware structure
   2402   1.1    dyoung  *  @index: Receive address register to write
   2403   1.1    dyoung  *  @addr: Address to put into receive address register
   2404   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2405   1.1    dyoung  *  @enable_addr: set flag that address is active
   2406   1.1    dyoung  *
   2407   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2408   1.1    dyoung  **/
   2409   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2410   1.3   msaitoh 			  u32 enable_addr)
   2411   1.1    dyoung {
   2412   1.1    dyoung 	u32 rar_low, rar_high;
   2413   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2414   1.1    dyoung 
   2415   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2416   1.1    dyoung 
   2417   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2418   1.1    dyoung 	if (index >= rar_entries) {
   2419   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2420   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2421   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2422   1.1    dyoung 	}
   2423   1.1    dyoung 
   2424   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2425   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2426   1.1    dyoung 
   2427   1.1    dyoung 	/*
   2428   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2429   1.1    dyoung 	 * order from network order (big endian) to little endian
   2430   1.1    dyoung 	 */
   2431   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2432   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2433   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2434   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2435   1.1    dyoung 	/*
   2436   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2437   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2438   1.1    dyoung 	 * of the address and the address valid bit.
   2439   1.1    dyoung 	 */
   2440   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2441   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2442   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2443   1.1    dyoung 
   2444   1.1    dyoung 	if (enable_addr != 0)
   2445   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2446   1.1    dyoung 
   2447   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2448   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2449   1.1    dyoung 
   2450   1.1    dyoung 	return IXGBE_SUCCESS;
   2451   1.1    dyoung }
   2452   1.1    dyoung 
   2453   1.1    dyoung /**
   2454   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2455   1.1    dyoung  *  @hw: pointer to hardware structure
   2456   1.1    dyoung  *  @index: Receive address register to write
   2457   1.1    dyoung  *
   2458   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2459   1.1    dyoung  **/
   2460   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2461   1.1    dyoung {
   2462   1.1    dyoung 	u32 rar_high;
   2463   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2464   1.1    dyoung 
   2465   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2466   1.1    dyoung 
   2467   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2468   1.1    dyoung 	if (index >= rar_entries) {
   2469   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2470   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2471   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2472   1.1    dyoung 	}
   2473   1.1    dyoung 
   2474   1.1    dyoung 	/*
   2475   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2476   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2477   1.1    dyoung 	 * of the address and the address valid bit.
   2478   1.1    dyoung 	 */
   2479   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2480   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2481   1.1    dyoung 
   2482   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2483   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2484   1.1    dyoung 
   2485   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2486   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2487   1.1    dyoung 
   2488   1.1    dyoung 	return IXGBE_SUCCESS;
   2489   1.1    dyoung }
   2490   1.1    dyoung 
   2491   1.1    dyoung /**
   2492   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2493   1.1    dyoung  *  @hw: pointer to hardware structure
   2494   1.1    dyoung  *
   2495   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2496   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2497   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2498   1.1    dyoung  **/
   2499   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2500   1.1    dyoung {
   2501   1.1    dyoung 	u32 i;
   2502   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2503   1.1    dyoung 
   2504   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2505   1.1    dyoung 
   2506   1.1    dyoung 	/*
   2507   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2508   1.1    dyoung 	 * to the permanent address.
   2509   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2510   1.1    dyoung 	 */
   2511   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2512   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2513   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2514   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2515   1.1    dyoung 
   2516   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2517   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2518   1.3   msaitoh 			  hw->mac.addr[2]);
   2519   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2520   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2521   1.1    dyoung 	} else {
   2522   1.1    dyoung 		/* Setup the receive address. */
   2523   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2524   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2525   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2526   1.3   msaitoh 			  hw->mac.addr[2]);
   2527   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2528   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2529   1.1    dyoung 
   2530   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2531  1.14   msaitoh 	}
   2532  1.14   msaitoh 
   2533  1.14   msaitoh 	/* clear VMDq pool/queue selection for RAR 0 */
   2534  1.14   msaitoh 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2535   1.1    dyoung 
   2536   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2537   1.1    dyoung 
   2538   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2539   1.1    dyoung 
   2540   1.1    dyoung 	/* Zero out the other receive addresses. */
   2541   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2542   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2543   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2544   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2545   1.1    dyoung 	}
   2546   1.1    dyoung 
   2547   1.1    dyoung 	/* Clear the MTA */
   2548   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2549   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2550   1.1    dyoung 
   2551   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2552   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2553   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2554   1.1    dyoung 
   2555   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2556   1.1    dyoung 
   2557   1.1    dyoung 	return IXGBE_SUCCESS;
   2558   1.1    dyoung }
   2559   1.1    dyoung 
   2560   1.1    dyoung /**
   2561   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2562   1.1    dyoung  *  @hw: pointer to hardware structure
   2563   1.1    dyoung  *  @addr: new address
   2564   1.1    dyoung  *
   2565   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2566   1.1    dyoung  **/
   2567   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2568   1.1    dyoung {
   2569   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2570   1.1    dyoung 	u32 rar;
   2571   1.1    dyoung 
   2572   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2573   1.1    dyoung 
   2574   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2575   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2576   1.1    dyoung 
   2577   1.1    dyoung 	/*
   2578   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2579   1.1    dyoung 	 * else put the controller into promiscuous mode
   2580   1.1    dyoung 	 */
   2581   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2582   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2583   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2584   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2585   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2586   1.1    dyoung 	} else {
   2587   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2588   1.1    dyoung 	}
   2589   1.1    dyoung 
   2590   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2591   1.1    dyoung }
   2592   1.1    dyoung 
   2593   1.1    dyoung /**
   2594   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2595   1.1    dyoung  *  @hw: pointer to hardware structure
   2596   1.1    dyoung  *  @addr_list: the list of new addresses
   2597   1.1    dyoung  *  @addr_count: number of addresses
   2598   1.1    dyoung  *  @next: iterator function to walk the address list
   2599   1.1    dyoung  *
   2600   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2601   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2602   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2603   1.1    dyoung  *
   2604   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2605   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2606   1.1    dyoung  **/
   2607   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2608   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2609   1.1    dyoung {
   2610   1.1    dyoung 	u8 *addr;
   2611   1.1    dyoung 	u32 i;
   2612   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2613   1.1    dyoung 	u32 uc_addr_in_use;
   2614   1.1    dyoung 	u32 fctrl;
   2615   1.1    dyoung 	u32 vmdq;
   2616   1.1    dyoung 
   2617   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2618   1.1    dyoung 
   2619   1.1    dyoung 	/*
   2620   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2621   1.1    dyoung 	 * don't count RAR[0]
   2622   1.1    dyoung 	 */
   2623   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2624   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2625   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2626   1.1    dyoung 
   2627   1.1    dyoung 	/* Zero out the other receive addresses */
   2628   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2629   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2630   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2631   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2632   1.1    dyoung 	}
   2633   1.1    dyoung 
   2634   1.1    dyoung 	/* Add the new addresses */
   2635   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2636   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2637   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2638   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2639   1.1    dyoung 	}
   2640   1.1    dyoung 
   2641   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2642   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2643   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2644   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2645   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2646   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2647   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2648   1.1    dyoung 		}
   2649   1.1    dyoung 	} else {
   2650   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2651   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2652   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2653   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2654   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2655   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2656   1.1    dyoung 		}
   2657   1.1    dyoung 	}
   2658   1.1    dyoung 
   2659   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2660   1.1    dyoung 	return IXGBE_SUCCESS;
   2661   1.1    dyoung }
   2662   1.1    dyoung 
   2663   1.1    dyoung /**
   2664   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2665   1.1    dyoung  *  @hw: pointer to hardware structure
   2666   1.1    dyoung  *  @mc_addr: the multicast address
   2667   1.1    dyoung  *
   2668   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2669   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2670   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2671   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2672   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2673   1.1    dyoung  *  to mc_filter_type.
   2674   1.1    dyoung  **/
   2675   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2676   1.1    dyoung {
   2677   1.1    dyoung 	u32 vector = 0;
   2678   1.1    dyoung 
   2679   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2680   1.1    dyoung 
   2681   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2682   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2683   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2684   1.1    dyoung 		break;
   2685   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2686   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2687   1.1    dyoung 		break;
   2688   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2689   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2690   1.1    dyoung 		break;
   2691   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2692   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2693   1.1    dyoung 		break;
   2694   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2695   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2696   1.1    dyoung 		ASSERT(0);
   2697   1.1    dyoung 		break;
   2698   1.1    dyoung 	}
   2699   1.1    dyoung 
   2700   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2701   1.1    dyoung 	vector &= 0xFFF;
   2702   1.1    dyoung 	return vector;
   2703   1.1    dyoung }
   2704   1.1    dyoung 
   2705   1.1    dyoung /**
   2706   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2707   1.1    dyoung  *  @hw: pointer to hardware structure
   2708   1.1    dyoung  *  @hash_value: Multicast address hash value
   2709   1.1    dyoung  *
   2710   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2711   1.1    dyoung  **/
   2712   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2713   1.1    dyoung {
   2714   1.1    dyoung 	u32 vector;
   2715   1.1    dyoung 	u32 vector_bit;
   2716   1.1    dyoung 	u32 vector_reg;
   2717   1.1    dyoung 
   2718   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2719   1.1    dyoung 
   2720   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2721   1.1    dyoung 
   2722   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2723   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2724   1.1    dyoung 
   2725   1.1    dyoung 	/*
   2726   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2727   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2728   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2729   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2730   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2731   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2732   1.1    dyoung 	 * the value.
   2733   1.1    dyoung 	 */
   2734   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2735   1.1    dyoung 	vector_bit = vector & 0x1F;
   2736   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2737   1.1    dyoung }
   2738   1.1    dyoung 
   2739   1.1    dyoung /**
   2740   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2741   1.1    dyoung  *  @hw: pointer to hardware structure
   2742   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2743   1.1    dyoung  *  @mc_addr_count: number of addresses
   2744   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2745   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2746   1.1    dyoung  *
   2747   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2748   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2749   1.1    dyoung  **/
   2750   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2751   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2752   1.3   msaitoh 				      bool clear)
   2753   1.1    dyoung {
   2754   1.1    dyoung 	u32 i;
   2755   1.1    dyoung 	u32 vmdq;
   2756   1.1    dyoung 
   2757   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2758   1.1    dyoung 
   2759   1.1    dyoung 	/*
   2760   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2761   1.1    dyoung 	 * use.
   2762   1.1    dyoung 	 */
   2763   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2764   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2765   1.1    dyoung 
   2766   1.1    dyoung 	/* Clear mta_shadow */
   2767   1.3   msaitoh 	if (clear) {
   2768   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2769   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2770   1.3   msaitoh 	}
   2771   1.1    dyoung 
   2772   1.1    dyoung 	/* Update mta_shadow */
   2773   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2774   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2775   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2776   1.1    dyoung 	}
   2777   1.1    dyoung 
   2778   1.1    dyoung 	/* Enable mta */
   2779   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2780   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2781   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2782   1.1    dyoung 
   2783   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2784   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2785   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2786   1.1    dyoung 
   2787   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2788   1.1    dyoung 	return IXGBE_SUCCESS;
   2789   1.1    dyoung }
   2790   1.1    dyoung 
   2791   1.1    dyoung /**
   2792   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2793   1.1    dyoung  *  @hw: pointer to hardware structure
   2794   1.1    dyoung  *
   2795   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2796   1.1    dyoung  **/
   2797   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2798   1.1    dyoung {
   2799   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2800   1.1    dyoung 
   2801   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2802   1.1    dyoung 
   2803   1.1    dyoung 	if (a->mta_in_use > 0)
   2804   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2805   1.3   msaitoh 				hw->mac.mc_filter_type);
   2806   1.1    dyoung 
   2807   1.1    dyoung 	return IXGBE_SUCCESS;
   2808   1.1    dyoung }
   2809   1.1    dyoung 
   2810   1.1    dyoung /**
   2811   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2812   1.1    dyoung  *  @hw: pointer to hardware structure
   2813   1.1    dyoung  *
   2814   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2815   1.1    dyoung  **/
   2816   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2817   1.1    dyoung {
   2818   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2819   1.1    dyoung 
   2820   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2821   1.1    dyoung 
   2822   1.1    dyoung 	if (a->mta_in_use > 0)
   2823   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2824   1.1    dyoung 
   2825   1.1    dyoung 	return IXGBE_SUCCESS;
   2826   1.1    dyoung }
   2827   1.1    dyoung 
   2828   1.1    dyoung /**
   2829   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2830   1.1    dyoung  *  @hw: pointer to hardware structure
   2831   1.1    dyoung  *
   2832   1.1    dyoung  *  Enable flow control according to the current settings.
   2833   1.1    dyoung  **/
   2834   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2835   1.1    dyoung {
   2836   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2837   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2838   1.1    dyoung 	u32 reg;
   2839   1.1    dyoung 	u32 fcrtl, fcrth;
   2840   1.4   msaitoh 	int i;
   2841   1.1    dyoung 
   2842   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2843   1.1    dyoung 
   2844   1.4   msaitoh 	/* Validate the water mark configuration */
   2845   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2846   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2847   1.4   msaitoh 		goto out;
   2848   1.4   msaitoh 	}
   2849   1.4   msaitoh 
   2850   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2851   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2852   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2853   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2854   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2855   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2856   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2857   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2858   1.4   msaitoh 				goto out;
   2859   1.4   msaitoh 			}
   2860   1.4   msaitoh 		}
   2861   1.4   msaitoh 	}
   2862   1.4   msaitoh 
   2863   1.1    dyoung 	/* Negotiate the fc mode to use */
   2864  1.14   msaitoh 	hw->mac.ops.fc_autoneg(hw);
   2865   1.1    dyoung 
   2866   1.1    dyoung 	/* Disable any previous flow control settings */
   2867   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2868   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2869   1.1    dyoung 
   2870   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2871   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2872   1.1    dyoung 
   2873   1.1    dyoung 	/*
   2874   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2875   1.1    dyoung 	 * 0: Flow control is completely disabled
   2876   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2877   1.1    dyoung 	 *    but not send pause frames).
   2878   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2879   1.1    dyoung 	 *    we do not support receiving pause frames).
   2880   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2881   1.1    dyoung 	 * other: Invalid.
   2882   1.1    dyoung 	 */
   2883   1.1    dyoung 	switch (hw->fc.current_mode) {
   2884   1.1    dyoung 	case ixgbe_fc_none:
   2885   1.1    dyoung 		/*
   2886   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2887   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2888   1.1    dyoung 		 */
   2889   1.1    dyoung 		break;
   2890   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2891   1.1    dyoung 		/*
   2892   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2893   1.1    dyoung 		 * disabled by software override. Since there really
   2894   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2895   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2896   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2897   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2898   1.1    dyoung 		 */
   2899   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2900   1.1    dyoung 		break;
   2901   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2902   1.1    dyoung 		/*
   2903   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2904   1.1    dyoung 		 * disabled by software override.
   2905   1.1    dyoung 		 */
   2906   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2907   1.1    dyoung 		break;
   2908   1.1    dyoung 	case ixgbe_fc_full:
   2909   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2910   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2911   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2912   1.1    dyoung 		break;
   2913   1.1    dyoung 	default:
   2914   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2915   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2916   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2917   1.1    dyoung 		goto out;
   2918   1.1    dyoung 		break;
   2919   1.1    dyoung 	}
   2920   1.1    dyoung 
   2921   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2922   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2923   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2924   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2925   1.1    dyoung 
   2926   1.1    dyoung 
   2927   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2928   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2929   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2930   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2931   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2932   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2933   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2934   1.4   msaitoh 		} else {
   2935   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2936   1.4   msaitoh 			/*
   2937   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2938   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2939   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2940   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2941   1.8   msaitoh 			 * workloads.
   2942   1.4   msaitoh 			 */
   2943   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2944   1.4   msaitoh 		}
   2945   1.4   msaitoh 
   2946   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2947   1.1    dyoung 	}
   2948   1.1    dyoung 
   2949   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2950   1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2951   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2952   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2953   1.1    dyoung 
   2954   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2955   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2956   1.1    dyoung 
   2957   1.1    dyoung out:
   2958   1.1    dyoung 	return ret_val;
   2959   1.1    dyoung }
   2960   1.1    dyoung 
   2961   1.1    dyoung /**
   2962   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2963   1.1    dyoung  *  @hw: pointer to hardware structure
   2964   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2965   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2966   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2967   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2968   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2969   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2970   1.1    dyoung  *
   2971   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2972   1.4   msaitoh  *  advertised settings
   2973   1.1    dyoung  **/
   2974  1.14   msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2975  1.14   msaitoh 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2976   1.1    dyoung {
   2977   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2978   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2979   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2980   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2981   1.6   msaitoh 			     adv_reg, lp_reg);
   2982   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2983   1.6   msaitoh 	}
   2984   1.1    dyoung 
   2985   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2986   1.4   msaitoh 		/*
   2987   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2988   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2989   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2990   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2991   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2992   1.4   msaitoh 		 */
   2993   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2994   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2995   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2996   1.4   msaitoh 		} else {
   2997   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2998   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2999   1.4   msaitoh 		}
   3000   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3001   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3002   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   3003   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   3004   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3005   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3006   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   3007   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   3008   1.4   msaitoh 	} else {
   3009   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   3010   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   3011   1.4   msaitoh 	}
   3012   1.4   msaitoh 	return IXGBE_SUCCESS;
   3013   1.4   msaitoh }
   3014   1.1    dyoung 
   3015   1.4   msaitoh /**
   3016   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   3017   1.4   msaitoh  *  @hw: pointer to hardware structure
   3018   1.4   msaitoh  *
   3019   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   3020   1.4   msaitoh  **/
   3021   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3022   1.4   msaitoh {
   3023   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3024   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3025   1.1    dyoung 
   3026   1.1    dyoung 	/*
   3027   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   3028   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   3029   1.4   msaitoh 	 * - link is up and AN completed but timed out
   3030   1.1    dyoung 	 */
   3031   1.4   msaitoh 
   3032   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3033   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3034   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3035   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3036   1.1    dyoung 		goto out;
   3037   1.6   msaitoh 	}
   3038   1.1    dyoung 
   3039   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3040   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3041   1.1    dyoung 
   3042   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3043   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3044   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3045   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3046   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3047   1.1    dyoung 
   3048   1.1    dyoung out:
   3049   1.1    dyoung 	return ret_val;
   3050   1.1    dyoung }
   3051   1.1    dyoung 
   3052   1.1    dyoung /**
   3053   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3054   1.1    dyoung  *  @hw: pointer to hardware structure
   3055   1.1    dyoung  *
   3056   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3057   1.1    dyoung  **/
   3058   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3059   1.1    dyoung {
   3060   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   3061   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3062   1.1    dyoung 
   3063   1.1    dyoung 	/*
   3064   1.1    dyoung 	 * On backplane, bail out if
   3065   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   3066   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   3067   1.1    dyoung 	 */
   3068   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3069   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3070   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3071   1.1    dyoung 		goto out;
   3072   1.6   msaitoh 	}
   3073   1.1    dyoung 
   3074   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3075   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3076   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3077   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   3078   1.1    dyoung 			goto out;
   3079   1.6   msaitoh 		}
   3080   1.1    dyoung 	}
   3081   1.1    dyoung 	/*
   3082   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   3083   1.1    dyoung 	 * local flow control settings accordingly
   3084   1.1    dyoung 	 */
   3085   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3086   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3087   1.1    dyoung 
   3088   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3089   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3090   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3091   1.1    dyoung 
   3092   1.1    dyoung out:
   3093   1.1    dyoung 	return ret_val;
   3094   1.1    dyoung }
   3095   1.1    dyoung 
   3096   1.1    dyoung /**
   3097   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3098   1.1    dyoung  *  @hw: pointer to hardware structure
   3099   1.1    dyoung  *
   3100   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3101   1.1    dyoung  **/
   3102   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3103   1.1    dyoung {
   3104   1.1    dyoung 	u16 technology_ability_reg = 0;
   3105   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   3106   1.1    dyoung 
   3107   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3108   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3109   1.1    dyoung 			     &technology_ability_reg);
   3110   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3111   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3112   1.1    dyoung 			     &lp_technology_ability_reg);
   3113   1.1    dyoung 
   3114   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3115   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   3116   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3117   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3118   1.1    dyoung }
   3119   1.1    dyoung 
   3120   1.1    dyoung /**
   3121   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3122   1.1    dyoung  *  @hw: pointer to hardware structure
   3123   1.1    dyoung  *
   3124   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3125   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3126   1.1    dyoung  **/
   3127   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3128   1.1    dyoung {
   3129   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3130   1.4   msaitoh 	ixgbe_link_speed speed;
   3131   1.4   msaitoh 	bool link_up;
   3132   1.1    dyoung 
   3133   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3134   1.1    dyoung 
   3135   1.1    dyoung 	/*
   3136   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3137   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3138   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3139   1.4   msaitoh 	 * - link is not up.
   3140   1.1    dyoung 	 */
   3141   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3142   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3143   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3144   1.1    dyoung 		goto out;
   3145   1.6   msaitoh 	}
   3146   1.1    dyoung 
   3147   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3148   1.6   msaitoh 	if (!link_up) {
   3149   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3150   1.1    dyoung 		goto out;
   3151   1.6   msaitoh 	}
   3152   1.1    dyoung 
   3153   1.1    dyoung 	switch (hw->phy.media_type) {
   3154   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3155   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3156   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3157   1.1    dyoung 	case ixgbe_media_type_fiber:
   3158   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3159   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3160   1.4   msaitoh 		break;
   3161   1.4   msaitoh 
   3162   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3163   1.1    dyoung 	case ixgbe_media_type_backplane:
   3164   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3165   1.1    dyoung 		break;
   3166   1.1    dyoung 
   3167   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3168   1.1    dyoung 	case ixgbe_media_type_copper:
   3169   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3170   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3171   1.1    dyoung 		break;
   3172   1.1    dyoung 
   3173   1.1    dyoung 	default:
   3174   1.1    dyoung 		break;
   3175   1.1    dyoung 	}
   3176   1.1    dyoung 
   3177   1.4   msaitoh out:
   3178   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3179   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3180   1.4   msaitoh 	} else {
   3181   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3182   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3183   1.3   msaitoh 	}
   3184   1.1    dyoung }
   3185   1.1    dyoung 
   3186   1.6   msaitoh /*
   3187   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3188   1.6   msaitoh  * @hw: pointer to hardware structure
   3189   1.6   msaitoh  *
   3190   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3191   1.6   msaitoh  *
   3192   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3193   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3194   1.6   msaitoh  * 800 = 80 millisec.
   3195   1.6   msaitoh  */
   3196   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3197   1.6   msaitoh {
   3198   1.6   msaitoh 	s16 devctl2;
   3199   1.6   msaitoh 	u32 pollcnt;
   3200   1.6   msaitoh 
   3201   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3202   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3203   1.6   msaitoh 
   3204   1.6   msaitoh 	switch (devctl2) {
   3205   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3206   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3207   1.6   msaitoh 		break;
   3208   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3209   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3210   1.6   msaitoh 		break;
   3211   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3212   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3213   1.6   msaitoh 		break;
   3214   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3215   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3216   1.6   msaitoh 		break;
   3217   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3218   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3219   1.6   msaitoh 		break;
   3220   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3221   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3222   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3223   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3224   1.6   msaitoh 	default:
   3225   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3226   1.6   msaitoh 		break;
   3227   1.6   msaitoh 	}
   3228   1.6   msaitoh 
   3229   1.6   msaitoh 	/* add 10% to spec maximum */
   3230   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3231   1.6   msaitoh }
   3232   1.6   msaitoh 
   3233   1.1    dyoung /**
   3234   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3235   1.1    dyoung  *  @hw: pointer to hardware structure
   3236   1.1    dyoung  *
   3237   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3238   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3239   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3240   1.1    dyoung  *  is returned signifying master requests disabled.
   3241   1.1    dyoung  **/
   3242   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3243   1.1    dyoung {
   3244   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3245   1.6   msaitoh 	u32 i, poll;
   3246   1.8   msaitoh 	u16 value;
   3247   1.1    dyoung 
   3248   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3249   1.1    dyoung 
   3250   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3251   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3252   1.3   msaitoh 
   3253   1.6   msaitoh 	/* Exit if master requests are blocked */
   3254   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3255   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3256   1.1    dyoung 		goto out;
   3257   1.1    dyoung 
   3258   1.3   msaitoh 	/* Poll for master request bit to clear */
   3259   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3260   1.3   msaitoh 		usec_delay(100);
   3261   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3262   1.3   msaitoh 			goto out;
   3263   1.1    dyoung 	}
   3264   1.1    dyoung 
   3265   1.3   msaitoh 	/*
   3266   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3267   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3268   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3269   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3270   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3271   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3272   1.3   msaitoh 	 */
   3273   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3274   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3275   1.1    dyoung 
   3276  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3277  1.10   msaitoh 		goto out;
   3278  1.10   msaitoh 
   3279   1.1    dyoung 	/*
   3280   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3281   1.1    dyoung 	 * transactions pending.
   3282   1.1    dyoung 	 */
   3283   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3284   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3285   1.3   msaitoh 		usec_delay(100);
   3286   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3287   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3288   1.8   msaitoh 			goto out;
   3289   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3290   1.3   msaitoh 			goto out;
   3291   1.1    dyoung 	}
   3292   1.1    dyoung 
   3293   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3294   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3295   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3296   1.1    dyoung 
   3297   1.1    dyoung out:
   3298   1.1    dyoung 	return status;
   3299   1.1    dyoung }
   3300   1.1    dyoung 
   3301   1.1    dyoung /**
   3302   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3303   1.1    dyoung  *  @hw: pointer to hardware structure
   3304   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3305   1.1    dyoung  *
   3306   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3307   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3308   1.1    dyoung  **/
   3309   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3310   1.1    dyoung {
   3311   1.6   msaitoh 	u32 gssr = 0;
   3312   1.1    dyoung 	u32 swmask = mask;
   3313   1.1    dyoung 	u32 fwmask = mask << 5;
   3314   1.6   msaitoh 	u32 timeout = 200;
   3315   1.6   msaitoh 	u32 i;
   3316   1.1    dyoung 
   3317   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3318   1.1    dyoung 
   3319   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3320   1.1    dyoung 		/*
   3321   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3322   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3323   1.1    dyoung 		 */
   3324   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3325   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3326   1.1    dyoung 
   3327   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3328   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3329   1.6   msaitoh 			gssr |= swmask;
   3330   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3331   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3332   1.6   msaitoh 			return IXGBE_SUCCESS;
   3333   1.6   msaitoh 		} else {
   3334   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3335   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3336   1.6   msaitoh 			msec_delay(5);
   3337   1.6   msaitoh 		}
   3338   1.1    dyoung 	}
   3339   1.1    dyoung 
   3340   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3341   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3342   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3343   1.1    dyoung 
   3344   1.6   msaitoh 	msec_delay(5);
   3345   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3346   1.1    dyoung }
   3347   1.1    dyoung 
   3348   1.1    dyoung /**
   3349   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3350   1.1    dyoung  *  @hw: pointer to hardware structure
   3351   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3352   1.1    dyoung  *
   3353   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3354   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3355   1.1    dyoung  **/
   3356   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3357   1.1    dyoung {
   3358   1.1    dyoung 	u32 gssr;
   3359   1.1    dyoung 	u32 swmask = mask;
   3360   1.1    dyoung 
   3361   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3362   1.1    dyoung 
   3363   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3364   1.1    dyoung 
   3365   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3366   1.1    dyoung 	gssr &= ~swmask;
   3367   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3368   1.1    dyoung 
   3369   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3370   1.1    dyoung }
   3371   1.1    dyoung 
   3372   1.1    dyoung /**
   3373   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3374   1.3   msaitoh  *  @hw: pointer to hardware structure
   3375   1.3   msaitoh  *
   3376   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3377   1.3   msaitoh  *  the Rx security block
   3378   1.3   msaitoh  **/
   3379   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3380   1.3   msaitoh {
   3381  1.17   msaitoh #define IXGBE_MAX_SECRX_POLL 4000
   3382   1.3   msaitoh 
   3383   1.3   msaitoh 	int i;
   3384   1.3   msaitoh 	int secrxreg;
   3385   1.3   msaitoh 
   3386   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3387   1.3   msaitoh 
   3388   1.3   msaitoh 
   3389   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3390   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3391   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3392   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3393   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3394   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3395   1.3   msaitoh 			break;
   3396   1.3   msaitoh 		else
   3397   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3398  1.17   msaitoh 			usec_delay(10);
   3399   1.3   msaitoh 	}
   3400   1.3   msaitoh 
   3401   1.3   msaitoh 	/* For informational purposes only */
   3402   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3403   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3404   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3405   1.3   msaitoh 
   3406   1.3   msaitoh 	return IXGBE_SUCCESS;
   3407   1.3   msaitoh }
   3408   1.3   msaitoh 
   3409   1.3   msaitoh /**
   3410   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3411   1.8   msaitoh  *  @hw: pointer to hardware structure
   3412   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3413   1.8   msaitoh  *
   3414   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3415   1.8   msaitoh  */
   3416   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3417   1.8   msaitoh {
   3418   1.8   msaitoh 	*locked = FALSE;
   3419   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3420   1.8   msaitoh 	return IXGBE_SUCCESS;
   3421   1.8   msaitoh }
   3422   1.8   msaitoh 
   3423   1.8   msaitoh /**
   3424   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3425   1.8   msaitoh  * @hw: pointer to hardware structure
   3426   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3427   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3428   1.8   msaitoh  *           previous read.
   3429   1.8   msaitoh  *
   3430   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3431   1.8   msaitoh  */
   3432   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3433   1.8   msaitoh {
   3434   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3435   1.8   msaitoh 
   3436   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3437   1.8   msaitoh 	return IXGBE_SUCCESS;
   3438   1.8   msaitoh }
   3439   1.8   msaitoh 
   3440   1.8   msaitoh /**
   3441   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3442   1.3   msaitoh  *  @hw: pointer to hardware structure
   3443   1.3   msaitoh  *
   3444   1.3   msaitoh  *  Enables the receive data path.
   3445   1.3   msaitoh  **/
   3446   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3447   1.3   msaitoh {
   3448  1.14   msaitoh 	u32 secrxreg;
   3449   1.3   msaitoh 
   3450   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3451   1.3   msaitoh 
   3452   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3453   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3454   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3455   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3456   1.3   msaitoh 
   3457   1.3   msaitoh 	return IXGBE_SUCCESS;
   3458   1.3   msaitoh }
   3459   1.3   msaitoh 
   3460   1.3   msaitoh /**
   3461   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3462   1.1    dyoung  *  @hw: pointer to hardware structure
   3463   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3464   1.1    dyoung  *
   3465   1.1    dyoung  *  Enables the Rx DMA unit
   3466   1.1    dyoung  **/
   3467   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3468   1.1    dyoung {
   3469   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3470   1.1    dyoung 
   3471   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3472   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3473   1.8   msaitoh 	else
   3474   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3475   1.1    dyoung 
   3476   1.1    dyoung 	return IXGBE_SUCCESS;
   3477   1.1    dyoung }
   3478   1.1    dyoung 
   3479   1.1    dyoung /**
   3480   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3481   1.1    dyoung  *  @hw: pointer to hardware structure
   3482   1.1    dyoung  *  @index: led number to blink
   3483   1.1    dyoung  **/
   3484   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3485   1.1    dyoung {
   3486   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3487   1.1    dyoung 	bool link_up = 0;
   3488   1.8   msaitoh 	u32 autoc_reg = 0;
   3489   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3490   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3491   1.8   msaitoh 	bool locked = FALSE;
   3492   1.1    dyoung 
   3493   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3494   1.1    dyoung 
   3495  1.14   msaitoh 	if (index > 3)
   3496  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3497  1.14   msaitoh 
   3498   1.1    dyoung 	/*
   3499   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3500   1.1    dyoung 	 * Force it if link is down.
   3501   1.1    dyoung 	 */
   3502   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3503   1.1    dyoung 
   3504   1.1    dyoung 	if (!link_up) {
   3505   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3506   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3507   1.8   msaitoh 			goto out;
   3508   1.5   msaitoh 
   3509   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3510   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3511   1.8   msaitoh 
   3512   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3513   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3514   1.8   msaitoh 			goto out;
   3515   1.8   msaitoh 
   3516   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3517   1.1    dyoung 		msec_delay(10);
   3518   1.1    dyoung 	}
   3519   1.1    dyoung 
   3520   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3521   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3522   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3523   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3524   1.1    dyoung 
   3525   1.5   msaitoh out:
   3526   1.5   msaitoh 	return ret_val;
   3527   1.1    dyoung }
   3528   1.1    dyoung 
   3529   1.1    dyoung /**
   3530   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3531   1.1    dyoung  *  @hw: pointer to hardware structure
   3532   1.1    dyoung  *  @index: led number to stop blinking
   3533   1.1    dyoung  **/
   3534   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3535   1.1    dyoung {
   3536   1.8   msaitoh 	u32 autoc_reg = 0;
   3537   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3538   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3539   1.8   msaitoh 	bool locked = FALSE;
   3540   1.1    dyoung 
   3541   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3542   1.1    dyoung 
   3543  1.14   msaitoh 	if (index > 3)
   3544  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3545  1.14   msaitoh 
   3546   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3547   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3548   1.8   msaitoh 		goto out;
   3549   1.1    dyoung 
   3550   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3551   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3552   1.1    dyoung 
   3553   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3554   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3555   1.8   msaitoh 		goto out;
   3556   1.5   msaitoh 
   3557   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3558   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3559   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3560   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3561   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3562   1.1    dyoung 
   3563   1.5   msaitoh out:
   3564   1.5   msaitoh 	return ret_val;
   3565   1.1    dyoung }
   3566   1.1    dyoung 
   3567   1.1    dyoung /**
   3568   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3569   1.1    dyoung  *  @hw: pointer to hardware structure
   3570   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3571   1.1    dyoung  *
   3572   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3573   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3574   1.1    dyoung  *  get and set mac_addr routines.
   3575   1.1    dyoung  **/
   3576   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3577   1.3   msaitoh 					 u16 *san_mac_offset)
   3578   1.1    dyoung {
   3579   1.6   msaitoh 	s32 ret_val;
   3580   1.6   msaitoh 
   3581   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3582   1.1    dyoung 
   3583   1.1    dyoung 	/*
   3584   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3585   1.1    dyoung 	 * available.
   3586   1.1    dyoung 	 */
   3587   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3588   1.6   msaitoh 				      san_mac_offset);
   3589   1.6   msaitoh 	if (ret_val) {
   3590   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3591   1.6   msaitoh 			      "eeprom at offset %d failed",
   3592   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3593   1.6   msaitoh 	}
   3594   1.1    dyoung 
   3595   1.6   msaitoh 	return ret_val;
   3596   1.1    dyoung }
   3597   1.1    dyoung 
   3598   1.1    dyoung /**
   3599   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3600   1.1    dyoung  *  @hw: pointer to hardware structure
   3601   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3602   1.1    dyoung  *
   3603   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3604   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3605   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3606   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3607   1.1    dyoung  **/
   3608   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3609   1.1    dyoung {
   3610   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3611   1.1    dyoung 	u8 i;
   3612   1.6   msaitoh 	s32 ret_val;
   3613   1.1    dyoung 
   3614   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3615   1.1    dyoung 
   3616   1.1    dyoung 	/*
   3617   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3618   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3619   1.1    dyoung 	 */
   3620   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3621   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3622   1.1    dyoung 		goto san_mac_addr_out;
   3623   1.1    dyoung 
   3624   1.1    dyoung 	/* make sure we know which port we need to program */
   3625   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3626   1.1    dyoung 	/* apply the port offset to the address offset */
   3627   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3628   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3629   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3630   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3631   1.6   msaitoh 					      &san_mac_data);
   3632   1.6   msaitoh 		if (ret_val) {
   3633   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3634   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3635   1.6   msaitoh 				      san_mac_offset);
   3636   1.6   msaitoh 			goto san_mac_addr_out;
   3637   1.6   msaitoh 		}
   3638   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3639   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3640   1.1    dyoung 		san_mac_offset++;
   3641   1.1    dyoung 	}
   3642   1.6   msaitoh 	return IXGBE_SUCCESS;
   3643   1.1    dyoung 
   3644   1.1    dyoung san_mac_addr_out:
   3645   1.6   msaitoh 	/*
   3646   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3647   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3648   1.6   msaitoh 	 */
   3649   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3650   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3651   1.1    dyoung 	return IXGBE_SUCCESS;
   3652   1.1    dyoung }
   3653   1.1    dyoung 
   3654   1.1    dyoung /**
   3655   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3656   1.1    dyoung  *  @hw: pointer to hardware structure
   3657   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3658   1.1    dyoung  *
   3659   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3660   1.1    dyoung  **/
   3661   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3662   1.1    dyoung {
   3663   1.6   msaitoh 	s32 ret_val;
   3664   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3665   1.1    dyoung 	u8 i;
   3666   1.1    dyoung 
   3667   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3668   1.1    dyoung 
   3669   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3670   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3671   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3672   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3673   1.1    dyoung 
   3674   1.1    dyoung 	/* Make sure we know which port we need to write */
   3675   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3676   1.1    dyoung 	/* Apply the port offset to the address offset */
   3677   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3678   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3679   1.1    dyoung 
   3680   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3681   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3682   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3683   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3684   1.1    dyoung 		san_mac_offset++;
   3685   1.1    dyoung 	}
   3686   1.1    dyoung 
   3687   1.6   msaitoh 	return IXGBE_SUCCESS;
   3688   1.1    dyoung }
   3689   1.1    dyoung 
   3690   1.1    dyoung /**
   3691   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3692   1.1    dyoung  *  @hw: pointer to hardware structure
   3693   1.1    dyoung  *
   3694   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3695   1.1    dyoung  *  the capabilities table.
   3696   1.1    dyoung  **/
   3697   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3698   1.1    dyoung {
   3699   1.4   msaitoh 	u16 msix_count = 1;
   3700   1.4   msaitoh 	u16 max_msix_count;
   3701   1.4   msaitoh 	u16 pcie_offset;
   3702   1.4   msaitoh 
   3703   1.4   msaitoh 	switch (hw->mac.type) {
   3704   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3705   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3706   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3707   1.4   msaitoh 		break;
   3708   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3709   1.4   msaitoh 	case ixgbe_mac_X540:
   3710   1.8   msaitoh 	case ixgbe_mac_X550:
   3711   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3712  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   3713   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3714   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3715   1.4   msaitoh 		break;
   3716   1.4   msaitoh 	default:
   3717   1.4   msaitoh 		return msix_count;
   3718   1.4   msaitoh 	}
   3719   1.1    dyoung 
   3720   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3721   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3722   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3723   1.8   msaitoh 		msix_count = 0;
   3724   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3725   1.4   msaitoh 
   3726   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3727   1.4   msaitoh 	msix_count++;
   3728   1.4   msaitoh 
   3729   1.4   msaitoh 	if (msix_count > max_msix_count)
   3730   1.4   msaitoh 		msix_count = max_msix_count;
   3731   1.1    dyoung 
   3732   1.1    dyoung 	return msix_count;
   3733   1.1    dyoung }
   3734   1.1    dyoung 
   3735   1.1    dyoung /**
   3736   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3737   1.1    dyoung  *  @hw: pointer to hardware structure
   3738   1.1    dyoung  *  @addr: Address to put into receive address register
   3739   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3740   1.1    dyoung  *
   3741   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3742  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3743   1.1    dyoung  **/
   3744   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3745   1.1    dyoung {
   3746   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3747   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3748   1.1    dyoung 	u32 rar;
   3749   1.1    dyoung 	u32 rar_low, rar_high;
   3750   1.1    dyoung 	u32 addr_low, addr_high;
   3751   1.1    dyoung 
   3752   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3753   1.1    dyoung 
   3754   1.1    dyoung 	/* swap bytes for HW little endian */
   3755   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3756   1.1    dyoung 			    | (addr[2] << 16)
   3757   1.1    dyoung 			    | (addr[3] << 24);
   3758   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3759   1.1    dyoung 
   3760   1.1    dyoung 	/*
   3761   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3762   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3763   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3764   1.1    dyoung 	 * rar to the top.
   3765   1.1    dyoung 	 */
   3766   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3767   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3768   1.1    dyoung 
   3769   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3770   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3771   1.1    dyoung 			first_empty_rar = rar;
   3772   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3773   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3774   1.1    dyoung 			if (rar_low == addr_low)
   3775   1.1    dyoung 				break;    /* found it already in the rars */
   3776   1.1    dyoung 		}
   3777   1.1    dyoung 	}
   3778   1.1    dyoung 
   3779   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3780   1.1    dyoung 		/* already there so just add to the pool bits */
   3781   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3782   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3783   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3784   1.1    dyoung 		rar = first_empty_rar;
   3785   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3786   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3787   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3788   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3789   1.1    dyoung 		hw->mac.rar_highwater++;
   3790   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3791   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3792   1.1    dyoung 	}
   3793   1.1    dyoung 
   3794   1.1    dyoung 	/*
   3795   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3796   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3797   1.1    dyoung 	 */
   3798   1.1    dyoung 	if (rar == 0)
   3799   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3800   1.1    dyoung 
   3801   1.1    dyoung 	return rar;
   3802   1.1    dyoung }
   3803   1.1    dyoung 
   3804   1.1    dyoung /**
   3805   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3806   1.1    dyoung  *  @hw: pointer to hardware struct
   3807   1.1    dyoung  *  @rar: receive address register index to disassociate
   3808   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3809   1.1    dyoung  **/
   3810   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3811   1.1    dyoung {
   3812   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3813   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3814   1.1    dyoung 
   3815   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3816   1.1    dyoung 
   3817   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3818   1.1    dyoung 	if (rar >= rar_entries) {
   3819   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3820   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3821   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3822   1.1    dyoung 	}
   3823   1.1    dyoung 
   3824   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3825   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3826   1.1    dyoung 
   3827   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3828   1.8   msaitoh 		goto done;
   3829   1.8   msaitoh 
   3830   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3831   1.1    dyoung 		goto done;
   3832   1.1    dyoung 
   3833   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3834   1.1    dyoung 		if (mpsar_lo) {
   3835   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3836   1.1    dyoung 			mpsar_lo = 0;
   3837   1.1    dyoung 		}
   3838   1.1    dyoung 		if (mpsar_hi) {
   3839   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3840   1.1    dyoung 			mpsar_hi = 0;
   3841   1.1    dyoung 		}
   3842   1.1    dyoung 	} else if (vmdq < 32) {
   3843   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3844   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3845   1.1    dyoung 	} else {
   3846   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3847   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3848   1.1    dyoung 	}
   3849   1.1    dyoung 
   3850   1.1    dyoung 	/* was that the last pool using this rar? */
   3851  1.14   msaitoh 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3852  1.14   msaitoh 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3853   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3854   1.1    dyoung done:
   3855   1.1    dyoung 	return IXGBE_SUCCESS;
   3856   1.1    dyoung }
   3857   1.1    dyoung 
   3858   1.1    dyoung /**
   3859   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3860   1.1    dyoung  *  @hw: pointer to hardware struct
   3861   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3862   1.1    dyoung  *  @vmdq: VMDq pool index
   3863   1.1    dyoung  **/
   3864   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3865   1.1    dyoung {
   3866   1.1    dyoung 	u32 mpsar;
   3867   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3868   1.1    dyoung 
   3869   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3870   1.1    dyoung 
   3871   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3872   1.1    dyoung 	if (rar >= rar_entries) {
   3873   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3874   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3875   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3876   1.1    dyoung 	}
   3877   1.1    dyoung 
   3878   1.1    dyoung 	if (vmdq < 32) {
   3879   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3880   1.1    dyoung 		mpsar |= 1 << vmdq;
   3881   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3882   1.1    dyoung 	} else {
   3883   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3884   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3885   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3886   1.1    dyoung 	}
   3887   1.1    dyoung 	return IXGBE_SUCCESS;
   3888   1.1    dyoung }
   3889   1.1    dyoung 
   3890   1.1    dyoung /**
   3891   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3892   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3893   1.4   msaitoh  *  VFs advertized and not 0.
   3894   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3895   1.4   msaitoh  *
   3896   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3897   1.4   msaitoh  *  @hw: pointer to hardware struct
   3898   1.4   msaitoh  *  @vmdq: VMDq pool index
   3899   1.4   msaitoh  **/
   3900   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3901   1.4   msaitoh {
   3902   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3903   1.4   msaitoh 
   3904   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3905   1.4   msaitoh 
   3906   1.4   msaitoh 	if (vmdq < 32) {
   3907   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3908   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3909   1.4   msaitoh 	} else {
   3910   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3911   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3912   1.4   msaitoh 	}
   3913   1.4   msaitoh 
   3914   1.4   msaitoh 	return IXGBE_SUCCESS;
   3915   1.4   msaitoh }
   3916   1.4   msaitoh 
   3917   1.4   msaitoh /**
   3918   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3919   1.1    dyoung  *  @hw: pointer to hardware structure
   3920   1.1    dyoung  **/
   3921   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3922   1.1    dyoung {
   3923   1.1    dyoung 	int i;
   3924   1.1    dyoung 
   3925   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3926   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3927   1.1    dyoung 
   3928   1.1    dyoung 	for (i = 0; i < 128; i++)
   3929   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3930   1.1    dyoung 
   3931   1.1    dyoung 	return IXGBE_SUCCESS;
   3932   1.1    dyoung }
   3933   1.1    dyoung 
   3934   1.1    dyoung /**
   3935   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3936   1.1    dyoung  *  @hw: pointer to hardware structure
   3937   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3938   1.1    dyoung  *
   3939   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3940   1.1    dyoung  *
   3941   1.1    dyoung  **/
   3942  1.14   msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3943   1.1    dyoung {
   3944  1.14   msaitoh 	s32 regindex, first_empty_slot;
   3945  1.14   msaitoh 	u32 bits;
   3946   1.1    dyoung 
   3947   1.1    dyoung 	/* short cut the special case */
   3948   1.1    dyoung 	if (vlan == 0)
   3949   1.1    dyoung 		return 0;
   3950   1.1    dyoung 
   3951  1.14   msaitoh 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3952  1.14   msaitoh 	 * will simply bypass the VLVF if there are no entries present in the
   3953  1.14   msaitoh 	 * VLVF that contain our VLAN
   3954  1.14   msaitoh 	 */
   3955  1.14   msaitoh 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3956  1.14   msaitoh 
   3957  1.14   msaitoh 	/* add VLAN enable bit for comparison */
   3958  1.14   msaitoh 	vlan |= IXGBE_VLVF_VIEN;
   3959  1.14   msaitoh 
   3960  1.14   msaitoh 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3961  1.14   msaitoh 	 * slot found along the way.
   3962  1.14   msaitoh 	 *
   3963  1.14   msaitoh 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3964  1.14   msaitoh 	 */
   3965  1.14   msaitoh 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3966   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3967  1.14   msaitoh 		if (bits == vlan)
   3968  1.14   msaitoh 			return regindex;
   3969  1.14   msaitoh 		if (!first_empty_slot && !bits)
   3970   1.1    dyoung 			first_empty_slot = regindex;
   3971   1.1    dyoung 	}
   3972   1.1    dyoung 
   3973  1.14   msaitoh 	/* If we are here then we didn't find the VLAN.  Return first empty
   3974  1.14   msaitoh 	 * slot we found during our search, else error.
   3975  1.14   msaitoh 	 */
   3976  1.14   msaitoh 	if (!first_empty_slot)
   3977  1.14   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3978   1.1    dyoung 
   3979  1.14   msaitoh 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3980   1.1    dyoung }
   3981   1.1    dyoung 
   3982   1.1    dyoung /**
   3983   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3984   1.1    dyoung  *  @hw: pointer to hardware structure
   3985   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3986  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3987  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN
   3988  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3989   1.1    dyoung  *
   3990   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3991   1.1    dyoung  **/
   3992   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3993  1.14   msaitoh 			   bool vlan_on, bool vlvf_bypass)
   3994   1.1    dyoung {
   3995  1.14   msaitoh 	u32 regidx, vfta_delta, vfta;
   3996  1.14   msaitoh 	s32 ret_val;
   3997   1.1    dyoung 
   3998   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3999   1.1    dyoung 
   4000  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4001   1.1    dyoung 		return IXGBE_ERR_PARAM;
   4002   1.1    dyoung 
   4003   1.1    dyoung 	/*
   4004   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   4005   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   4006   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   4007   1.1    dyoung 	 */
   4008   1.1    dyoung 
   4009   1.1    dyoung 	/* Part 1
   4010   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   4011   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   4012   1.1    dyoung 	 *    bits[11-5]: which register
   4013   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   4014   1.1    dyoung 	 */
   4015  1.14   msaitoh 	regidx = vlan / 32;
   4016  1.14   msaitoh 	vfta_delta = 1 << (vlan % 32);
   4017  1.14   msaitoh 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   4018  1.14   msaitoh 
   4019  1.14   msaitoh 	/*
   4020  1.14   msaitoh 	 * vfta_delta represents the difference between the current value
   4021  1.14   msaitoh 	 * of vfta and the value we want in the register.  Since the diff
   4022  1.14   msaitoh 	 * is an XOR mask we can just update the vfta using an XOR
   4023  1.14   msaitoh 	 */
   4024  1.14   msaitoh 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4025  1.14   msaitoh 	vfta ^= vfta_delta;
   4026   1.1    dyoung 
   4027   1.1    dyoung 	/* Part 2
   4028   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4029   1.3   msaitoh 	 */
   4030  1.14   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4031  1.14   msaitoh 					 vfta, vlvf_bypass);
   4032  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS) {
   4033  1.14   msaitoh 		if (vlvf_bypass)
   4034  1.14   msaitoh 			goto vfta_update;
   4035   1.3   msaitoh 		return ret_val;
   4036  1.14   msaitoh 	}
   4037   1.3   msaitoh 
   4038  1.14   msaitoh vfta_update:
   4039  1.14   msaitoh 	/* Update VFTA now that we are ready for traffic */
   4040  1.14   msaitoh 	if (vfta_delta)
   4041  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4042   1.3   msaitoh 
   4043   1.3   msaitoh 	return IXGBE_SUCCESS;
   4044   1.3   msaitoh }
   4045   1.3   msaitoh 
   4046   1.3   msaitoh /**
   4047   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4048   1.3   msaitoh  *  @hw: pointer to hardware structure
   4049   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   4050  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4051  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4052  1.14   msaitoh  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4053  1.14   msaitoh  *		 and the desired value
   4054  1.14   msaitoh  *  @vfta: the desired value of the VFTA
   4055  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4056   1.3   msaitoh  *
   4057   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   4058   1.3   msaitoh  **/
   4059   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4060  1.14   msaitoh 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4061  1.14   msaitoh 			   bool vlvf_bypass)
   4062   1.3   msaitoh {
   4063  1.14   msaitoh 	u32 bits;
   4064  1.14   msaitoh 	s32 vlvf_index;
   4065   1.3   msaitoh 
   4066   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4067   1.3   msaitoh 
   4068  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4069   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   4070   1.3   msaitoh 
   4071   1.3   msaitoh 	/* If VT Mode is set
   4072   1.1    dyoung 	 *   Either vlan_on
   4073   1.1    dyoung 	 *     make sure the vlan is in VLVF
   4074   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   4075   1.1    dyoung 	 *   Or !vlan_on
   4076   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   4077   1.1    dyoung 	 */
   4078  1.14   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4079  1.14   msaitoh 		return IXGBE_SUCCESS;
   4080   1.1    dyoung 
   4081  1.14   msaitoh 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4082  1.14   msaitoh 	if (vlvf_index < 0)
   4083  1.14   msaitoh 		return vlvf_index;
   4084  1.14   msaitoh 
   4085  1.14   msaitoh 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4086  1.14   msaitoh 
   4087  1.14   msaitoh 	/* set the pool bit */
   4088  1.14   msaitoh 	bits |= 1 << (vind % 32);
   4089  1.14   msaitoh 	if (vlan_on)
   4090  1.14   msaitoh 		goto vlvf_update;
   4091  1.14   msaitoh 
   4092  1.14   msaitoh 	/* clear the pool bit */
   4093  1.14   msaitoh 	bits ^= 1 << (vind % 32);
   4094  1.14   msaitoh 
   4095  1.14   msaitoh 	if (!bits &&
   4096  1.14   msaitoh 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4097  1.14   msaitoh 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4098  1.14   msaitoh 		 * we run the risk of stray packets leaking into
   4099  1.14   msaitoh 		 * the PF via the default pool
   4100   1.1    dyoung 		 */
   4101  1.14   msaitoh 		if (*vfta_delta)
   4102  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4103  1.14   msaitoh 
   4104  1.14   msaitoh 		/* disable VLVF and clear remaining bit from pool */
   4105  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4106  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4107  1.14   msaitoh 
   4108  1.14   msaitoh 		return IXGBE_SUCCESS;
   4109   1.1    dyoung 	}
   4110   1.1    dyoung 
   4111  1.14   msaitoh 	/* If there are still bits set in the VLVFB registers
   4112  1.14   msaitoh 	 * for the VLAN ID indicated we need to see if the
   4113  1.14   msaitoh 	 * caller is requesting that we clear the VFTA entry bit.
   4114  1.14   msaitoh 	 * If the caller has requested that we clear the VFTA
   4115  1.14   msaitoh 	 * entry bit but there are still pools/VFs using this VLAN
   4116  1.14   msaitoh 	 * ID entry then ignore the request.  We're not worried
   4117  1.14   msaitoh 	 * about the case where we're turning the VFTA VLAN ID
   4118  1.14   msaitoh 	 * entry bit on, only when requested to turn it off as
   4119  1.14   msaitoh 	 * there may be multiple pools and/or VFs using the
   4120  1.14   msaitoh 	 * VLAN ID entry.  In that case we cannot clear the
   4121  1.14   msaitoh 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4122  1.14   msaitoh 	 * been cleared.  This will be indicated by "bits" being
   4123  1.14   msaitoh 	 * zero.
   4124  1.14   msaitoh 	 */
   4125  1.14   msaitoh 	*vfta_delta = 0;
   4126  1.14   msaitoh 
   4127  1.14   msaitoh vlvf_update:
   4128  1.14   msaitoh 	/* record pool change and enable VLAN ID if not already enabled */
   4129  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4130  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4131  1.14   msaitoh 
   4132   1.1    dyoung 	return IXGBE_SUCCESS;
   4133   1.1    dyoung }
   4134   1.1    dyoung 
   4135   1.1    dyoung /**
   4136   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4137   1.1    dyoung  *  @hw: pointer to hardware structure
   4138   1.1    dyoung  *
   4139   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4140   1.1    dyoung  **/
   4141   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4142   1.1    dyoung {
   4143   1.1    dyoung 	u32 offset;
   4144   1.1    dyoung 
   4145   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4146   1.1    dyoung 
   4147   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4148   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4149   1.1    dyoung 
   4150   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4151   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4152   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4153  1.17   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4154   1.1    dyoung 	}
   4155   1.1    dyoung 
   4156   1.1    dyoung 	return IXGBE_SUCCESS;
   4157   1.1    dyoung }
   4158   1.1    dyoung 
   4159   1.1    dyoung /**
   4160  1.14   msaitoh  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4161  1.14   msaitoh  *  @hw: pointer to hardware structure
   4162  1.14   msaitoh  *
   4163  1.14   msaitoh  *  Contains the logic to identify if we need to verify link for the
   4164  1.14   msaitoh  *  crosstalk fix
   4165  1.14   msaitoh  **/
   4166  1.14   msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4167  1.14   msaitoh {
   4168  1.14   msaitoh 
   4169  1.14   msaitoh 	/* Does FW say we need the fix */
   4170  1.14   msaitoh 	if (!hw->need_crosstalk_fix)
   4171  1.14   msaitoh 		return FALSE;
   4172  1.14   msaitoh 
   4173  1.14   msaitoh 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4174  1.14   msaitoh 	switch (hw->mac.ops.get_media_type(hw)) {
   4175  1.14   msaitoh 	case ixgbe_media_type_fiber:
   4176  1.14   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   4177  1.14   msaitoh 		break;
   4178  1.14   msaitoh 	default:
   4179  1.14   msaitoh 		return FALSE;
   4180  1.14   msaitoh 	}
   4181  1.14   msaitoh 
   4182  1.14   msaitoh 	return TRUE;
   4183  1.14   msaitoh }
   4184  1.14   msaitoh 
   4185  1.14   msaitoh /**
   4186   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4187   1.1    dyoung  *  @hw: pointer to hardware structure
   4188   1.1    dyoung  *  @speed: pointer to link speed
   4189   1.1    dyoung  *  @link_up: TRUE when link is up
   4190   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4191   1.1    dyoung  *
   4192   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4193   1.1    dyoung  **/
   4194   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4195   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4196   1.1    dyoung {
   4197   1.1    dyoung 	u32 links_reg, links_orig;
   4198   1.1    dyoung 	u32 i;
   4199   1.1    dyoung 
   4200   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4201   1.1    dyoung 
   4202  1.14   msaitoh 	/* If Crosstalk fix enabled do the sanity check of making sure
   4203  1.14   msaitoh 	 * the SFP+ cage is full.
   4204  1.14   msaitoh 	 */
   4205  1.14   msaitoh 	if (ixgbe_need_crosstalk_fix(hw)) {
   4206  1.14   msaitoh 		u32 sfp_cage_full;
   4207  1.14   msaitoh 
   4208  1.14   msaitoh 		switch (hw->mac.type) {
   4209  1.14   msaitoh 		case ixgbe_mac_82599EB:
   4210  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4211  1.14   msaitoh 					IXGBE_ESDP_SDP2;
   4212  1.14   msaitoh 			break;
   4213  1.14   msaitoh 		case ixgbe_mac_X550EM_x:
   4214  1.14   msaitoh 		case ixgbe_mac_X550EM_a:
   4215  1.14   msaitoh 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4216  1.14   msaitoh 					IXGBE_ESDP_SDP0;
   4217  1.14   msaitoh 			break;
   4218  1.14   msaitoh 		default:
   4219  1.14   msaitoh 			/* sanity check - No SFP+ devices here */
   4220  1.14   msaitoh 			sfp_cage_full = FALSE;
   4221  1.14   msaitoh 			break;
   4222  1.14   msaitoh 		}
   4223  1.14   msaitoh 
   4224  1.14   msaitoh 		if (!sfp_cage_full) {
   4225  1.14   msaitoh 			*link_up = FALSE;
   4226  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4227  1.14   msaitoh 			return IXGBE_SUCCESS;
   4228  1.14   msaitoh 		}
   4229  1.14   msaitoh 	}
   4230  1.14   msaitoh 
   4231   1.1    dyoung 	/* clear the old state */
   4232   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4233   1.1    dyoung 
   4234   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4235   1.1    dyoung 
   4236   1.1    dyoung 	if (links_orig != links_reg) {
   4237   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4238   1.3   msaitoh 			  links_orig, links_reg);
   4239   1.1    dyoung 	}
   4240   1.1    dyoung 
   4241   1.1    dyoung 	if (link_up_wait_to_complete) {
   4242  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4243   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4244   1.1    dyoung 				*link_up = TRUE;
   4245   1.1    dyoung 				break;
   4246   1.1    dyoung 			} else {
   4247   1.1    dyoung 				*link_up = FALSE;
   4248   1.1    dyoung 			}
   4249   1.1    dyoung 			msec_delay(100);
   4250   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4251   1.1    dyoung 		}
   4252   1.1    dyoung 	} else {
   4253   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4254   1.1    dyoung 			*link_up = TRUE;
   4255   1.1    dyoung 		else
   4256   1.1    dyoung 			*link_up = FALSE;
   4257   1.1    dyoung 	}
   4258   1.1    dyoung 
   4259   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4260   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4261   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4262   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4263   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4264   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4265   1.8   msaitoh 		}
   4266   1.8   msaitoh 		break;
   4267   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4268   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4269   1.8   msaitoh 		break;
   4270   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4271   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4272  1.15   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4273   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4274   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4275   1.8   msaitoh 		}
   4276   1.8   msaitoh 		break;
   4277  1.14   msaitoh 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4278  1.14   msaitoh 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4279  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4280  1.17   msaitoh 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
   4281  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4282  1.14   msaitoh 		break;
   4283   1.8   msaitoh 	default:
   4284   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4285   1.8   msaitoh 	}
   4286   1.1    dyoung 
   4287   1.1    dyoung 	return IXGBE_SUCCESS;
   4288   1.1    dyoung }
   4289   1.1    dyoung 
   4290   1.1    dyoung /**
   4291   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4292   1.1    dyoung  *  the EEPROM
   4293   1.1    dyoung  *  @hw: pointer to hardware structure
   4294   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4295   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4296   1.1    dyoung  *
   4297   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4298   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4299   1.1    dyoung  **/
   4300   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4301   1.3   msaitoh 				 u16 *wwpn_prefix)
   4302   1.1    dyoung {
   4303   1.1    dyoung 	u16 offset, caps;
   4304   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4305   1.1    dyoung 
   4306   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4307   1.1    dyoung 
   4308   1.1    dyoung 	/* clear output first */
   4309   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4310   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4311   1.1    dyoung 
   4312   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4313   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4314   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4315   1.6   msaitoh 		goto wwn_prefix_err;
   4316   1.1    dyoung 
   4317   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4318   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4319   1.1    dyoung 		goto wwn_prefix_out;
   4320   1.1    dyoung 
   4321   1.1    dyoung 	/* check capability in alternative san mac address block */
   4322   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4323   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4324   1.6   msaitoh 		goto wwn_prefix_err;
   4325   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4326   1.1    dyoung 		goto wwn_prefix_out;
   4327   1.1    dyoung 
   4328   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4329   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4330   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4331   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4332   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4333   1.6   msaitoh 	}
   4334   1.1    dyoung 
   4335   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4336   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4337   1.6   msaitoh 		goto wwn_prefix_err;
   4338   1.1    dyoung 
   4339   1.1    dyoung wwn_prefix_out:
   4340   1.1    dyoung 	return IXGBE_SUCCESS;
   4341   1.6   msaitoh 
   4342   1.6   msaitoh wwn_prefix_err:
   4343   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4344   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4345   1.6   msaitoh 	return IXGBE_SUCCESS;
   4346   1.1    dyoung }
   4347   1.1    dyoung 
   4348   1.1    dyoung /**
   4349   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4350   1.1    dyoung  *  @hw: pointer to hardware structure
   4351   1.1    dyoung  *  @bs: the fcoe boot status
   4352   1.1    dyoung  *
   4353   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4354   1.1    dyoung  **/
   4355   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4356   1.1    dyoung {
   4357   1.1    dyoung 	u16 offset, caps, flags;
   4358   1.1    dyoung 	s32 status;
   4359   1.1    dyoung 
   4360   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4361   1.1    dyoung 
   4362   1.1    dyoung 	/* clear output first */
   4363   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4364   1.1    dyoung 
   4365   1.1    dyoung 	/* check if FCOE IBA block is present */
   4366   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4367   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4368   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4369   1.1    dyoung 		goto out;
   4370   1.1    dyoung 
   4371   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4372   1.1    dyoung 		goto out;
   4373   1.1    dyoung 
   4374   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4375   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4376   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4377   1.1    dyoung 		goto out;
   4378   1.1    dyoung 
   4379   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4380   1.1    dyoung 		goto out;
   4381   1.1    dyoung 
   4382   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4383   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4384   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4385   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4386   1.1    dyoung 		goto out;
   4387   1.1    dyoung 
   4388   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4389   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4390   1.1    dyoung 	else
   4391   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4392   1.1    dyoung 
   4393   1.1    dyoung out:
   4394   1.1    dyoung 	return status;
   4395   1.1    dyoung }
   4396   1.1    dyoung 
   4397   1.1    dyoung /**
   4398   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4399   1.1    dyoung  *  @hw: pointer to hardware structure
   4400  1.14   msaitoh  *  @enable: enable or disable switch for MAC anti-spoofing
   4401  1.14   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4402   1.1    dyoung  *
   4403   1.1    dyoung  **/
   4404  1.14   msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4405   1.1    dyoung {
   4406  1.14   msaitoh 	int vf_target_reg = vf >> 3;
   4407  1.14   msaitoh 	int vf_target_shift = vf % 8;
   4408  1.14   msaitoh 	u32 pfvfspoof;
   4409   1.1    dyoung 
   4410   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4411   1.1    dyoung 		return;
   4412   1.1    dyoung 
   4413  1.14   msaitoh 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4414   1.1    dyoung 	if (enable)
   4415  1.14   msaitoh 		pfvfspoof |= (1 << vf_target_shift);
   4416  1.14   msaitoh 	else
   4417  1.14   msaitoh 		pfvfspoof &= ~(1 << vf_target_shift);
   4418  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4419   1.1    dyoung }
   4420   1.1    dyoung 
   4421   1.1    dyoung /**
   4422   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4423   1.1    dyoung  *  @hw: pointer to hardware structure
   4424   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4425   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4426   1.1    dyoung  *
   4427   1.1    dyoung  **/
   4428   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4429   1.1    dyoung {
   4430   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4431   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4432   1.1    dyoung 	u32 pfvfspoof;
   4433   1.1    dyoung 
   4434   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4435   1.1    dyoung 		return;
   4436   1.1    dyoung 
   4437   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4438   1.1    dyoung 	if (enable)
   4439   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4440   1.1    dyoung 	else
   4441   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4442   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4443   1.1    dyoung }
   4444   1.1    dyoung 
   4445   1.1    dyoung /**
   4446   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4447   1.1    dyoung  *  @hw: pointer to hardware structure
   4448   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4449   1.1    dyoung  *
   4450   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4451   1.1    dyoung  *  and return the word through device_caps.
   4452   1.1    dyoung  **/
   4453   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4454   1.1    dyoung {
   4455   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4456   1.1    dyoung 
   4457   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4458   1.1    dyoung 
   4459   1.1    dyoung 	return IXGBE_SUCCESS;
   4460   1.1    dyoung }
   4461   1.1    dyoung 
   4462   1.1    dyoung /**
   4463   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4464   1.1    dyoung  *  @hw: pointer to hardware structure
   4465   1.1    dyoung  *
   4466   1.1    dyoung  **/
   4467   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4468   1.1    dyoung {
   4469   1.1    dyoung 	u32 regval;
   4470   1.1    dyoung 	u32 i;
   4471   1.1    dyoung 
   4472   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4473   1.1    dyoung 
   4474   1.1    dyoung 	/* Enable relaxed ordering */
   4475   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4476   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4477   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4478   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4479   1.1    dyoung 	}
   4480   1.1    dyoung 
   4481   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4482   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4483   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4484   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4485   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4486   1.1    dyoung 	}
   4487   1.1    dyoung 
   4488   1.1    dyoung }
   4489   1.3   msaitoh 
   4490   1.3   msaitoh /**
   4491   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4492   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4493   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4494   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4495   1.3   msaitoh  *  checksum calculated is returned.
   4496   1.3   msaitoh  **/
   4497   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4498   1.3   msaitoh {
   4499   1.3   msaitoh 	u32 i;
   4500   1.3   msaitoh 	u8 sum = 0;
   4501   1.3   msaitoh 
   4502   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4503   1.3   msaitoh 
   4504   1.3   msaitoh 	if (!buffer)
   4505   1.3   msaitoh 		return 0;
   4506   1.3   msaitoh 
   4507   1.3   msaitoh 	for (i = 0; i < length; i++)
   4508   1.3   msaitoh 		sum += buffer[i];
   4509   1.3   msaitoh 
   4510   1.3   msaitoh 	return (u8) (0 - sum);
   4511   1.3   msaitoh }
   4512   1.3   msaitoh 
   4513   1.3   msaitoh /**
   4514  1.14   msaitoh  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4515   1.3   msaitoh  *  @hw: pointer to the HW structure
   4516  1.14   msaitoh  *  @buffer: command to write and where the return status will be placed
   4517   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4518   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4519   1.3   msaitoh  *
   4520  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4521  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4522  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4523  1.14   msaitoh  *
   4524  1.14   msaitoh  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4525  1.14   msaitoh  *  by the caller.
   4526   1.3   msaitoh  **/
   4527  1.14   msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4528  1.14   msaitoh 		       u32 timeout)
   4529   1.3   msaitoh {
   4530  1.14   msaitoh 	u32 hicr, i, fwsts;
   4531   1.8   msaitoh 	u16 dword_len;
   4532   1.3   msaitoh 
   4533  1.14   msaitoh 	DEBUGFUNC("ixgbe_hic_unlocked");
   4534   1.3   msaitoh 
   4535  1.14   msaitoh 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4536   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4537   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4538   1.8   msaitoh 	}
   4539  1.14   msaitoh 
   4540   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4541   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4542   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4543   1.3   msaitoh 
   4544   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4545   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4546  1.14   msaitoh 	if (!(hicr & IXGBE_HICR_EN)) {
   4547   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4548   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4549   1.8   msaitoh 	}
   4550   1.8   msaitoh 
   4551   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4552  1.14   msaitoh 	if (length % sizeof(u32)) {
   4553   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4554   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4555   1.3   msaitoh 	}
   4556   1.3   msaitoh 
   4557   1.3   msaitoh 	dword_len = length >> 2;
   4558   1.3   msaitoh 
   4559   1.8   msaitoh 	/* The device driver writes the relevant command block
   4560   1.3   msaitoh 	 * into the ram area.
   4561   1.3   msaitoh 	 */
   4562   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4563   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4564   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4565   1.3   msaitoh 
   4566   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4567   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4568   1.3   msaitoh 
   4569   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4570   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4571   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4572   1.3   msaitoh 			break;
   4573   1.3   msaitoh 		msec_delay(1);
   4574   1.3   msaitoh 	}
   4575   1.3   msaitoh 
   4576   1.8   msaitoh 	/* Check command completion */
   4577  1.14   msaitoh 	if ((timeout && i == timeout) ||
   4578   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4579   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4580   1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4581   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4582   1.3   msaitoh 	}
   4583   1.3   msaitoh 
   4584  1.14   msaitoh 	return IXGBE_SUCCESS;
   4585  1.14   msaitoh }
   4586  1.14   msaitoh 
   4587  1.14   msaitoh /**
   4588  1.14   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4589  1.14   msaitoh  *  @hw: pointer to the HW structure
   4590  1.14   msaitoh  *  @buffer: contains the command to write and where the return status will
   4591  1.14   msaitoh  *   be placed
   4592  1.14   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4593  1.14   msaitoh  *  @timeout: time in ms to wait for command completion
   4594  1.14   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4595  1.14   msaitoh  *   Needed because FW structures are big endian and decoding of
   4596  1.14   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4597  1.14   msaitoh  *   is not easily understood without making a table of commands.
   4598  1.14   msaitoh  *   So we will leave this up to the caller to read back the data
   4599  1.14   msaitoh  *   in these cases.
   4600  1.14   msaitoh  *
   4601  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4602  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4603  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4604  1.14   msaitoh  **/
   4605  1.14   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4606  1.14   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4607  1.14   msaitoh {
   4608  1.14   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4609  1.14   msaitoh 	u16 dword_len;
   4610  1.14   msaitoh 	u16 buf_len;
   4611  1.14   msaitoh 	s32 status;
   4612  1.14   msaitoh 	u32 bi;
   4613  1.14   msaitoh 
   4614  1.14   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4615  1.14   msaitoh 
   4616  1.14   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4617  1.14   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4618  1.14   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4619  1.14   msaitoh 	}
   4620  1.14   msaitoh 
   4621  1.14   msaitoh 	/* Take management host interface semaphore */
   4622  1.14   msaitoh 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4623  1.14   msaitoh 	if (status)
   4624  1.14   msaitoh 		return status;
   4625  1.14   msaitoh 
   4626  1.14   msaitoh 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4627  1.14   msaitoh 	if (status)
   4628  1.14   msaitoh 		goto rel_out;
   4629  1.14   msaitoh 
   4630   1.8   msaitoh 	if (!return_data)
   4631  1.14   msaitoh 		goto rel_out;
   4632   1.8   msaitoh 
   4633   1.3   msaitoh 	/* Calculate length in DWORDs */
   4634   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4635   1.3   msaitoh 
   4636   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4637   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4638   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4639   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4640   1.3   msaitoh 	}
   4641   1.3   msaitoh 
   4642   1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4643   1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4644  1.14   msaitoh 	if (!buf_len)
   4645  1.14   msaitoh 		goto rel_out;
   4646   1.3   msaitoh 
   4647   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4648   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4649  1.14   msaitoh 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4650  1.14   msaitoh 		goto rel_out;
   4651   1.3   msaitoh 	}
   4652   1.3   msaitoh 
   4653   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4654   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4655   1.3   msaitoh 
   4656   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4657   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4658   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4659   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4660   1.3   msaitoh 	}
   4661   1.3   msaitoh 
   4662  1.14   msaitoh rel_out:
   4663  1.14   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4664  1.14   msaitoh 
   4665  1.14   msaitoh 	return status;
   4666   1.3   msaitoh }
   4667   1.3   msaitoh 
   4668   1.3   msaitoh /**
   4669   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4670   1.3   msaitoh  *  @hw: pointer to the HW structure
   4671   1.3   msaitoh  *  @maj: driver version major number
   4672   1.7  riastrad  *  @minr: driver version minor number
   4673   1.3   msaitoh  *  @build: driver version build number
   4674   1.3   msaitoh  *  @sub: driver version sub build number
   4675   1.3   msaitoh  *
   4676   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4677   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4678   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4679   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4680   1.3   msaitoh  **/
   4681   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4682  1.14   msaitoh 				 u8 build, u8 sub, u16 len,
   4683  1.14   msaitoh 				 const char *driver_ver)
   4684   1.3   msaitoh {
   4685   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4686   1.3   msaitoh 	int i;
   4687   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4688   1.3   msaitoh 
   4689   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4690  1.14   msaitoh 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4691   1.3   msaitoh 
   4692   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4693   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4694   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4695   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4696   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4697   1.7  riastrad 	fw_cmd.ver_min = minr;
   4698   1.3   msaitoh 	fw_cmd.ver_build = build;
   4699   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4700   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4701  1.17   msaitoh 	fw_cmd.pad = 0;
   4702  1.17   msaitoh 	fw_cmd.pad2 = 0;
   4703   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4704   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4705   1.3   msaitoh 
   4706   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4707   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4708   1.8   msaitoh 						       sizeof(fw_cmd),
   4709   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4710   1.8   msaitoh 						       TRUE);
   4711   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4712   1.3   msaitoh 			continue;
   4713   1.3   msaitoh 
   4714   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4715   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4716   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4717   1.3   msaitoh 		else
   4718   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4719   1.3   msaitoh 
   4720   1.3   msaitoh 		break;
   4721   1.3   msaitoh 	}
   4722   1.3   msaitoh 
   4723   1.3   msaitoh 	return ret_val;
   4724   1.3   msaitoh }
   4725   1.3   msaitoh 
   4726   1.3   msaitoh /**
   4727   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4728   1.3   msaitoh  * @hw: pointer to hardware structure
   4729   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4730   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4731   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4732   1.3   msaitoh  **/
   4733   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4734   1.3   msaitoh 			     int strategy)
   4735   1.3   msaitoh {
   4736   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4737   1.3   msaitoh 	int i = 0;
   4738   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4739   1.3   msaitoh 
   4740   1.3   msaitoh 	/* Reserve headroom */
   4741   1.3   msaitoh 	pbsize -= headroom;
   4742   1.3   msaitoh 
   4743   1.3   msaitoh 	if (!num_pb)
   4744   1.3   msaitoh 		num_pb = 1;
   4745   1.3   msaitoh 
   4746   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4747   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4748   1.3   msaitoh 	 */
   4749   1.3   msaitoh 	switch (strategy) {
   4750   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4751   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4752   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4753   1.3   msaitoh 		 */
   4754   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4755   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4756   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4757   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4758   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4759  1.14   msaitoh 		/* fall through - configure remaining packet buffers */
   4760   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4761   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4762   1.3   msaitoh 		for (; i < num_pb; i++)
   4763   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4764   1.3   msaitoh 		break;
   4765   1.3   msaitoh 	default:
   4766   1.3   msaitoh 		break;
   4767   1.3   msaitoh 	}
   4768   1.3   msaitoh 
   4769   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4770   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4771   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4772   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4773   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4774   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4775   1.3   msaitoh 	}
   4776   1.3   msaitoh 
   4777   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4778   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4779   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4780   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4781   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4782   1.3   msaitoh 	}
   4783   1.3   msaitoh }
   4784   1.3   msaitoh 
   4785   1.3   msaitoh /**
   4786   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4787   1.3   msaitoh  * @hw: pointer to the hardware structure
   4788   1.3   msaitoh  *
   4789   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4790   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4791   1.3   msaitoh  * buffers on the system.
   4792   1.3   msaitoh  **/
   4793   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4794   1.3   msaitoh {
   4795   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4796   1.8   msaitoh 	u16 value;
   4797   1.3   msaitoh 
   4798   1.3   msaitoh 	/*
   4799   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4800   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4801   1.3   msaitoh 	 */
   4802   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4803   1.3   msaitoh 		return;
   4804   1.3   msaitoh 
   4805   1.3   msaitoh 	/*
   4806   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4807   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4808   1.3   msaitoh 	 * has already been cleared.
   4809   1.3   msaitoh 	 */
   4810   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4811   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4812   1.3   msaitoh 
   4813   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4814   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4815   1.8   msaitoh 	msec_delay(3);
   4816   1.8   msaitoh 
   4817   1.8   msaitoh 	/*
   4818   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4819   1.8   msaitoh 	 * transactions pending.
   4820   1.8   msaitoh 	 */
   4821   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4822   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4823   1.8   msaitoh 		usec_delay(100);
   4824   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4825   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4826   1.8   msaitoh 			goto out;
   4827   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4828   1.8   msaitoh 			goto out;
   4829   1.8   msaitoh 	}
   4830   1.8   msaitoh 
   4831   1.8   msaitoh out:
   4832   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4833   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4834   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4835   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4836   1.3   msaitoh 
   4837   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4838   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4839   1.3   msaitoh 	usec_delay(20);
   4840   1.3   msaitoh 
   4841   1.3   msaitoh 	/* restore previous register values */
   4842   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4843   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4844   1.3   msaitoh }
   4845   1.3   msaitoh 
   4846  1.14   msaitoh /**
   4847  1.14   msaitoh  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4848  1.14   msaitoh  *
   4849  1.14   msaitoh  *  @hw: pointer to hardware structure
   4850  1.14   msaitoh  *  @cmd: Command we send to the FW
   4851  1.14   msaitoh  *  @status: The reply from the FW
   4852  1.14   msaitoh  *
   4853  1.14   msaitoh  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4854  1.14   msaitoh  **/
   4855  1.14   msaitoh #define IXGBE_BYPASS_BB_WAIT 1
   4856  1.14   msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4857  1.14   msaitoh {
   4858  1.14   msaitoh 	int i;
   4859  1.14   msaitoh 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4860  1.14   msaitoh 	u32 esdp;
   4861  1.14   msaitoh 
   4862  1.14   msaitoh 	if (!status)
   4863  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   4864  1.14   msaitoh 
   4865  1.14   msaitoh 	*status = 0;
   4866  1.14   msaitoh 
   4867  1.14   msaitoh 	/* SDP vary by MAC type */
   4868  1.14   msaitoh 	switch (hw->mac.type) {
   4869  1.14   msaitoh 	case ixgbe_mac_82599EB:
   4870  1.14   msaitoh 		sck = IXGBE_ESDP_SDP7;
   4871  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4872  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP6;
   4873  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4874  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4875  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4876  1.14   msaitoh 		break;
   4877  1.14   msaitoh 	case ixgbe_mac_X540:
   4878  1.14   msaitoh 		sck = IXGBE_ESDP_SDP2;
   4879  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4880  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP1;
   4881  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4882  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4883  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4884  1.14   msaitoh 		break;
   4885  1.14   msaitoh 	default:
   4886  1.14   msaitoh 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4887  1.14   msaitoh 	}
   4888  1.14   msaitoh 
   4889  1.14   msaitoh 	/* Set SDP pins direction */
   4890  1.14   msaitoh 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4891  1.14   msaitoh 	esdp |= dir_sck;	/* SCK as output */
   4892  1.14   msaitoh 	esdp |= dir_sdi;	/* SDI as output */
   4893  1.14   msaitoh 	esdp &= ~dir_sdo;	/* SDO as input */
   4894  1.14   msaitoh 	esdp |= sck;
   4895  1.14   msaitoh 	esdp |= sdi;
   4896  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4897  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4898  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4899  1.14   msaitoh 
   4900  1.14   msaitoh 	/* Generate start condition */
   4901  1.14   msaitoh 	esdp &= ~sdi;
   4902  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4903  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4904  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4905  1.14   msaitoh 
   4906  1.14   msaitoh 	esdp &= ~sck;
   4907  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4908  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4909  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4910  1.14   msaitoh 
   4911  1.14   msaitoh 	/* Clock out the new control word and clock in the status */
   4912  1.14   msaitoh 	for (i = 0; i < 32; i++) {
   4913  1.14   msaitoh 		if ((cmd >> (31 - i)) & 0x01) {
   4914  1.14   msaitoh 			esdp |= sdi;
   4915  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4916  1.14   msaitoh 		} else {
   4917  1.14   msaitoh 			esdp &= ~sdi;
   4918  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4919  1.14   msaitoh 		}
   4920  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4921  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4922  1.14   msaitoh 
   4923  1.14   msaitoh 		esdp |= sck;
   4924  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4925  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4926  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4927  1.14   msaitoh 
   4928  1.14   msaitoh 		esdp &= ~sck;
   4929  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4930  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4931  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4932  1.14   msaitoh 
   4933  1.14   msaitoh 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4934  1.14   msaitoh 		if (esdp & sdo)
   4935  1.14   msaitoh 			*status = (*status << 1) | 0x01;
   4936  1.14   msaitoh 		else
   4937  1.14   msaitoh 			*status = (*status << 1) | 0x00;
   4938  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4939  1.14   msaitoh 	}
   4940  1.14   msaitoh 
   4941  1.14   msaitoh 	/* stop condition */
   4942  1.14   msaitoh 	esdp |= sck;
   4943  1.14   msaitoh 	esdp &= ~sdi;
   4944  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4945  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4946  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4947  1.14   msaitoh 
   4948  1.14   msaitoh 	esdp |= sdi;
   4949  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4950  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4951  1.14   msaitoh 
   4952  1.14   msaitoh 	/* set the page bits to match the cmd that the status it belongs to */
   4953  1.14   msaitoh 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   4954  1.14   msaitoh 
   4955  1.14   msaitoh 	return IXGBE_SUCCESS;
   4956  1.14   msaitoh }
   4957  1.14   msaitoh 
   4958  1.14   msaitoh /**
   4959  1.14   msaitoh  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   4960  1.14   msaitoh  *
   4961  1.14   msaitoh  * If we send a write we can't be sure it took until we can read back
   4962  1.14   msaitoh  * that same register.  It can be a problem as some of the feilds may
   4963  1.14   msaitoh  * for valid reasons change inbetween the time wrote the register and
   4964  1.14   msaitoh  * we read it again to verify.  So this function check everything we
   4965  1.14   msaitoh  * can check and then assumes it worked.
   4966  1.14   msaitoh  *
   4967  1.14   msaitoh  * @u32 in_reg - The register cmd for the bit-bang read.
   4968  1.14   msaitoh  * @u32 out_reg - The register returned from a bit-bang read.
   4969  1.14   msaitoh  **/
   4970  1.14   msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   4971  1.14   msaitoh {
   4972  1.14   msaitoh 	u32 mask;
   4973  1.14   msaitoh 
   4974  1.14   msaitoh 	/* Page must match for all control pages */
   4975  1.14   msaitoh 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   4976  1.14   msaitoh 		return FALSE;
   4977  1.14   msaitoh 
   4978  1.14   msaitoh 	switch (in_reg & BYPASS_PAGE_M) {
   4979  1.14   msaitoh 	case BYPASS_PAGE_CTL0:
   4980  1.14   msaitoh 		/* All the following can't change since the last write
   4981  1.14   msaitoh 		 *  - All the event actions
   4982  1.14   msaitoh 		 *  - The timeout value
   4983  1.14   msaitoh 		 */
   4984  1.14   msaitoh 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   4985  1.14   msaitoh 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   4986  1.14   msaitoh 		       BYPASS_WDTIMEOUT_M |
   4987  1.14   msaitoh 		       BYPASS_WDT_VALUE_M;
   4988  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   4989  1.14   msaitoh 			return FALSE;
   4990  1.14   msaitoh 
   4991  1.14   msaitoh 		/* 0x0 is never a valid value for bypass status */
   4992  1.14   msaitoh 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   4993  1.14   msaitoh 			return FALSE;
   4994  1.14   msaitoh 		break;
   4995  1.14   msaitoh 	case BYPASS_PAGE_CTL1:
   4996  1.14   msaitoh 		/* All the following can't change since the last write
   4997  1.14   msaitoh 		 *  - time valid bit
   4998  1.14   msaitoh 		 *  - time we last sent
   4999  1.14   msaitoh 		 */
   5000  1.14   msaitoh 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   5001  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   5002  1.14   msaitoh 			return FALSE;
   5003  1.14   msaitoh 		break;
   5004  1.14   msaitoh 	case BYPASS_PAGE_CTL2:
   5005  1.14   msaitoh 		/* All we can check in this page is control number
   5006  1.14   msaitoh 		 * which is already done above.
   5007  1.14   msaitoh 		 */
   5008  1.14   msaitoh 		break;
   5009  1.14   msaitoh 	}
   5010  1.14   msaitoh 
   5011  1.14   msaitoh 	/* We are as sure as we can be return TRUE */
   5012  1.14   msaitoh 	return TRUE;
   5013  1.14   msaitoh }
   5014  1.14   msaitoh 
   5015  1.14   msaitoh /**
   5016  1.14   msaitoh  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
   5017  1.14   msaitoh  *
   5018  1.14   msaitoh  *  @hw: pointer to hardware structure
   5019  1.14   msaitoh  *  @cmd: The control word we are setting.
   5020  1.14   msaitoh  *  @event: The event we are setting in the FW.  This also happens to
   5021  1.14   msaitoh  *	    be the mask for the event we are setting (handy)
   5022  1.14   msaitoh  *  @action: The action we set the event to in the FW. This is in a
   5023  1.14   msaitoh  *	     bit field that happens to be what we want to put in
   5024  1.14   msaitoh  *	     the event spot (also handy)
   5025  1.14   msaitoh  **/
   5026  1.14   msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5027  1.14   msaitoh 			     u32 action)
   5028  1.14   msaitoh {
   5029  1.14   msaitoh 	u32 by_ctl = 0;
   5030  1.14   msaitoh 	u32 cmd, verify;
   5031  1.14   msaitoh 	u32 count = 0;
   5032  1.14   msaitoh 
   5033  1.14   msaitoh 	/* Get current values */
   5034  1.14   msaitoh 	cmd = ctrl;	/* just reading only need control number */
   5035  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5036  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5037  1.14   msaitoh 
   5038  1.14   msaitoh 	/* Set to new action */
   5039  1.14   msaitoh 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5040  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5041  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5042  1.14   msaitoh 
   5043  1.14   msaitoh 	/* Page 0 force a FW eeprom write which is slow so verify */
   5044  1.14   msaitoh 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5045  1.14   msaitoh 		verify = BYPASS_PAGE_CTL0;
   5046  1.14   msaitoh 		do {
   5047  1.14   msaitoh 			if (count++ > 5)
   5048  1.14   msaitoh 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5049  1.14   msaitoh 
   5050  1.14   msaitoh 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5051  1.14   msaitoh 				return IXGBE_ERR_INVALID_ARGUMENT;
   5052  1.14   msaitoh 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5053  1.14   msaitoh 	} else {
   5054  1.14   msaitoh 		/* We have give the FW time for the write to stick */
   5055  1.14   msaitoh 		msec_delay(100);
   5056  1.14   msaitoh 	}
   5057  1.14   msaitoh 
   5058  1.14   msaitoh 	return IXGBE_SUCCESS;
   5059  1.14   msaitoh }
   5060  1.14   msaitoh 
   5061  1.14   msaitoh /**
   5062  1.14   msaitoh  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
   5063  1.14   msaitoh  *
   5064  1.14   msaitoh  *  @hw: pointer to hardware structure
   5065  1.14   msaitoh  *  @addr: The bypass eeprom address to read.
   5066  1.14   msaitoh  *  @value: The 8b of data at the address above.
   5067  1.14   msaitoh  **/
   5068  1.14   msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5069  1.14   msaitoh {
   5070  1.14   msaitoh 	u32 cmd;
   5071  1.14   msaitoh 	u32 status;
   5072  1.14   msaitoh 
   5073  1.14   msaitoh 
   5074  1.14   msaitoh 	/* send the request */
   5075  1.14   msaitoh 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5076  1.14   msaitoh 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5077  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5078  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5079  1.14   msaitoh 
   5080  1.14   msaitoh 	/* We have give the FW time for the write to stick */
   5081  1.14   msaitoh 	msec_delay(100);
   5082  1.14   msaitoh 
   5083  1.14   msaitoh 	/* now read the results */
   5084  1.14   msaitoh 	cmd &= ~BYPASS_WE;
   5085  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5086  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5087  1.14   msaitoh 
   5088  1.14   msaitoh 	*value = status & BYPASS_CTL2_DATA_M;
   5089  1.14   msaitoh 
   5090  1.14   msaitoh 	return IXGBE_SUCCESS;
   5091  1.14   msaitoh }
   5092  1.14   msaitoh 
   5093  1.17   msaitoh /**
   5094  1.17   msaitoh  *  ixgbe_get_orom_version - Return option ROM from EEPROM
   5095  1.17   msaitoh  *
   5096  1.17   msaitoh  *  @hw: pointer to hardware structure
   5097  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5098  1.17   msaitoh  *
   5099  1.17   msaitoh  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
   5100  1.17   msaitoh  *  else nvm_ver->or_valid is FALSE.
   5101  1.17   msaitoh  **/
   5102  1.17   msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
   5103  1.17   msaitoh 			    struct ixgbe_nvm_version *nvm_ver)
   5104  1.17   msaitoh {
   5105  1.17   msaitoh 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
   5106  1.17   msaitoh 
   5107  1.17   msaitoh 	nvm_ver->or_valid = FALSE;
   5108  1.17   msaitoh 	/* Option Rom may or may not be present.  Start with pointer */
   5109  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
   5110  1.17   msaitoh 
   5111  1.17   msaitoh 	/* make sure offset is valid */
   5112  1.17   msaitoh 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
   5113  1.17   msaitoh 		return;
   5114  1.17   msaitoh 
   5115  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
   5116  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
   5117  1.17   msaitoh 
   5118  1.17   msaitoh 	/* option rom exists and is valid */
   5119  1.17   msaitoh 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
   5120  1.17   msaitoh 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
   5121  1.17   msaitoh 	    eeprom_cfg_blkh == NVM_VER_INVALID)
   5122  1.17   msaitoh 		return;
   5123  1.17   msaitoh 
   5124  1.17   msaitoh 	nvm_ver->or_valid = TRUE;
   5125  1.17   msaitoh 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
   5126  1.17   msaitoh 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
   5127  1.17   msaitoh 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
   5128  1.17   msaitoh 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
   5129  1.17   msaitoh }
   5130  1.17   msaitoh 
   5131  1.17   msaitoh /**
   5132  1.17   msaitoh  *  ixgbe_get_oem_prod_version - Return OEM Product version
   5133  1.17   msaitoh  *
   5134  1.17   msaitoh  *  @hw: pointer to hardware structure
   5135  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5136  1.17   msaitoh  *
   5137  1.17   msaitoh  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
   5138  1.17   msaitoh  *  else nvm_ver->oem_valid is FALSE.
   5139  1.17   msaitoh  **/
   5140  1.17   msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
   5141  1.17   msaitoh 				struct ixgbe_nvm_version *nvm_ver)
   5142  1.17   msaitoh {
   5143  1.17   msaitoh 	u16 rel_num, prod_ver, mod_len, cap, offset;
   5144  1.17   msaitoh 
   5145  1.17   msaitoh 	nvm_ver->oem_valid = FALSE;
   5146  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
   5147  1.17   msaitoh 
   5148  1.17   msaitoh 	/* Return is offset to OEM Product Version block is invalid */
   5149  1.18   msaitoh 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   5150  1.17   msaitoh 		return;
   5151  1.17   msaitoh 
   5152  1.17   msaitoh 	/* Read product version block */
   5153  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset, &mod_len);
   5154  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
   5155  1.17   msaitoh 
   5156  1.17   msaitoh 	/* Return if OEM product version block is invalid */
   5157  1.17   msaitoh 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
   5158  1.17   msaitoh 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
   5159  1.17   msaitoh 		return;
   5160  1.17   msaitoh 
   5161  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
   5162  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
   5163  1.17   msaitoh 
   5164  1.17   msaitoh 	/* Return if version is invalid */
   5165  1.17   msaitoh 	if ((rel_num | prod_ver) == 0x0 ||
   5166  1.17   msaitoh 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
   5167  1.17   msaitoh 		return;
   5168  1.17   msaitoh 
   5169  1.17   msaitoh 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
   5170  1.17   msaitoh 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
   5171  1.17   msaitoh 	nvm_ver->oem_release = rel_num;
   5172  1.17   msaitoh 	nvm_ver->oem_valid = TRUE;
   5173  1.17   msaitoh }
   5174  1.17   msaitoh 
   5175  1.17   msaitoh /**
   5176  1.17   msaitoh  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
   5177  1.17   msaitoh  *
   5178  1.17   msaitoh  *  @hw: pointer to hardware structure
   5179  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5180  1.17   msaitoh  *
   5181  1.17   msaitoh  *  word read errors will return 0xFFFF
   5182  1.17   msaitoh  **/
   5183  1.17   msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
   5184  1.17   msaitoh {
   5185  1.17   msaitoh 	u16 etk_id_l, etk_id_h;
   5186  1.17   msaitoh 
   5187  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
   5188  1.17   msaitoh 		etk_id_l = NVM_VER_INVALID;
   5189  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
   5190  1.17   msaitoh 		etk_id_h = NVM_VER_INVALID;
   5191  1.17   msaitoh 
   5192  1.17   msaitoh 	/* The word order for the version format is determined by high order
   5193  1.17   msaitoh 	 * word bit 15.
   5194  1.17   msaitoh 	 */
   5195  1.17   msaitoh 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
   5196  1.17   msaitoh 		nvm_ver->etk_id = etk_id_h;
   5197  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
   5198  1.17   msaitoh 	} else {
   5199  1.17   msaitoh 		nvm_ver->etk_id = etk_id_l;
   5200  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
   5201  1.17   msaitoh 	}
   5202  1.17   msaitoh }
   5203  1.17   msaitoh 
   5204   1.6   msaitoh 
   5205   1.6   msaitoh /**
   5206   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5207   1.6   msaitoh  * @hw: pointer to hardware structure
   5208   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   5209   1.6   msaitoh  *
   5210   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   5211   1.6   msaitoh  **/
   5212   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5213   1.6   msaitoh {
   5214   1.6   msaitoh 	u32 reg, i;
   5215   1.6   msaitoh 
   5216   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5217   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5218   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5219   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5220   1.6   msaitoh 	return;
   5221   1.6   msaitoh }
   5222   1.8   msaitoh 
   5223   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5224   1.8   msaitoh {
   5225   1.8   msaitoh 	u32 pfdtxgswc;
   5226   1.8   msaitoh 	u32 rxctrl;
   5227   1.8   msaitoh 
   5228   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5229   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5230   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5231   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5232   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5233   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5234   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5235   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   5236   1.8   msaitoh 			} else {
   5237   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   5238   1.8   msaitoh 			}
   5239   1.8   msaitoh 		}
   5240   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5241   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5242   1.8   msaitoh 	}
   5243   1.8   msaitoh }
   5244   1.8   msaitoh 
   5245   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5246   1.8   msaitoh {
   5247   1.8   msaitoh 	u32 pfdtxgswc;
   5248   1.8   msaitoh 	u32 rxctrl;
   5249   1.8   msaitoh 
   5250   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5251   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5252   1.8   msaitoh 
   5253   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5254   1.8   msaitoh 		if (hw->mac.set_lben) {
   5255   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5256   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5257   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5258   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   5259   1.8   msaitoh 		}
   5260   1.8   msaitoh 	}
   5261   1.8   msaitoh }
   5262   1.8   msaitoh 
   5263   1.8   msaitoh /**
   5264   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   5265   1.8   msaitoh  * @hw: pointer to hardware structure
   5266   1.8   msaitoh  */
   5267   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5268   1.8   msaitoh {
   5269   1.8   msaitoh 	u32 fwsm;
   5270   1.8   msaitoh 
   5271   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   5272   1.8   msaitoh 		return FALSE;
   5273   1.8   msaitoh 
   5274  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5275  1.17   msaitoh 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
   5276   1.8   msaitoh }
   5277   1.8   msaitoh 
   5278   1.8   msaitoh /**
   5279   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5280   1.8   msaitoh  * @hw: pointer to hardware structure
   5281   1.8   msaitoh  *
   5282   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   5283   1.8   msaitoh  **/
   5284   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5285   1.8   msaitoh {
   5286   1.8   msaitoh 	u32 fwsm, manc, factps;
   5287   1.8   msaitoh 
   5288  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5289   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5290   1.8   msaitoh 		return FALSE;
   5291   1.8   msaitoh 
   5292   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5293   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5294   1.8   msaitoh 		return FALSE;
   5295   1.8   msaitoh 
   5296   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   5297  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5298   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   5299   1.8   msaitoh 			return FALSE;
   5300   1.8   msaitoh 	}
   5301   1.8   msaitoh 
   5302   1.8   msaitoh 	return TRUE;
   5303   1.8   msaitoh }
   5304   1.8   msaitoh 
   5305   1.8   msaitoh /**
   5306   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5307   1.8   msaitoh  *  @hw: pointer to hardware structure
   5308   1.8   msaitoh  *  @speed: new link speed
   5309   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5310   1.8   msaitoh  *
   5311   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5312   1.8   msaitoh  **/
   5313   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5314   1.8   msaitoh 					  ixgbe_link_speed speed,
   5315   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   5316   1.8   msaitoh {
   5317   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5318   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5319   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   5320   1.8   msaitoh 	u32 speedcnt = 0;
   5321   1.8   msaitoh 	u32 i = 0;
   5322   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   5323   1.8   msaitoh 
   5324   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5325   1.8   msaitoh 
   5326   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   5327   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5328   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   5329   1.8   msaitoh 		return status;
   5330   1.8   msaitoh 
   5331   1.8   msaitoh 	speed &= link_speed;
   5332   1.8   msaitoh 
   5333   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   5334   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5335   1.8   msaitoh 	 */
   5336   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5337   1.8   msaitoh 		speedcnt++;
   5338   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5339   1.8   msaitoh 
   5340   1.8   msaitoh 		/* Set the module link speed */
   5341   1.8   msaitoh 		switch (hw->phy.media_type) {
   5342   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5343   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5344   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5345   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   5346   1.8   msaitoh 			break;
   5347   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5348   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   5349   1.8   msaitoh 			break;
   5350   1.8   msaitoh 		default:
   5351   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5352   1.8   msaitoh 			break;
   5353   1.8   msaitoh 		}
   5354   1.8   msaitoh 
   5355   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   5356   1.8   msaitoh 		msec_delay(40);
   5357   1.8   msaitoh 
   5358   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5359   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   5360   1.8   msaitoh 					      autoneg_wait_to_complete);
   5361   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5362   1.8   msaitoh 			return status;
   5363   1.8   msaitoh 
   5364   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5365   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5366   1.8   msaitoh 
   5367   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5368   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5369   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   5370   1.8   msaitoh 		 */
   5371   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   5372   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   5373   1.8   msaitoh 			msec_delay(100);
   5374   1.8   msaitoh 
   5375   1.8   msaitoh 			/* If we have link, just jump out */
   5376   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   5377   1.8   msaitoh 						  &link_up, FALSE);
   5378   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   5379   1.8   msaitoh 				return status;
   5380   1.8   msaitoh 
   5381   1.8   msaitoh 			if (link_up)
   5382   1.8   msaitoh 				goto out;
   5383   1.8   msaitoh 		}
   5384   1.8   msaitoh 	}
   5385   1.8   msaitoh 
   5386   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5387   1.8   msaitoh 		speedcnt++;
   5388   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5389   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5390   1.8   msaitoh 
   5391   1.8   msaitoh 		/* Set the module link speed */
   5392   1.8   msaitoh 		switch (hw->phy.media_type) {
   5393   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5394   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5395   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5396   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   5397   1.8   msaitoh 			break;
   5398   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5399   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   5400   1.8   msaitoh 			break;
   5401   1.8   msaitoh 		default:
   5402   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5403   1.8   msaitoh 			break;
   5404   1.8   msaitoh 		}
   5405   1.8   msaitoh 
   5406   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   5407   1.8   msaitoh 		msec_delay(40);
   5408   1.8   msaitoh 
   5409   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5410   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   5411   1.8   msaitoh 					      autoneg_wait_to_complete);
   5412   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5413   1.8   msaitoh 			return status;
   5414   1.8   msaitoh 
   5415   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5416   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5417   1.8   msaitoh 
   5418   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   5419   1.8   msaitoh 		msec_delay(100);
   5420   1.8   msaitoh 
   5421   1.8   msaitoh 		/* If we have link, just jump out */
   5422   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5423   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5424   1.8   msaitoh 			return status;
   5425   1.8   msaitoh 
   5426   1.8   msaitoh 		if (link_up)
   5427   1.8   msaitoh 			goto out;
   5428   1.8   msaitoh 	}
   5429   1.8   msaitoh 
   5430   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   5431   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   5432   1.8   msaitoh 	 * single highest speed that the user requested.
   5433   1.8   msaitoh 	 */
   5434   1.8   msaitoh 	if (speedcnt > 1)
   5435   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5436   1.8   msaitoh 						      highest_link_speed,
   5437   1.8   msaitoh 						      autoneg_wait_to_complete);
   5438   1.8   msaitoh 
   5439   1.8   msaitoh out:
   5440   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   5441   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   5442   1.8   msaitoh 
   5443   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5444   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5445   1.8   msaitoh 
   5446   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5447   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5448   1.8   msaitoh 
   5449   1.8   msaitoh 	return status;
   5450   1.8   msaitoh }
   5451   1.8   msaitoh 
   5452   1.8   msaitoh /**
   5453   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5454   1.8   msaitoh  *  @hw: pointer to hardware structure
   5455   1.8   msaitoh  *  @speed: link speed to set
   5456   1.8   msaitoh  *
   5457   1.8   msaitoh  *  Set module link speed via the soft rate select.
   5458   1.8   msaitoh  */
   5459   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5460   1.8   msaitoh 					ixgbe_link_speed speed)
   5461   1.8   msaitoh {
   5462   1.8   msaitoh 	s32 status;
   5463   1.8   msaitoh 	u8 rs, eeprom_data;
   5464   1.8   msaitoh 
   5465   1.8   msaitoh 	switch (speed) {
   5466   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   5467   1.8   msaitoh 		/* one bit mask same as setting on */
   5468   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5469   1.8   msaitoh 		break;
   5470   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   5471   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5472   1.8   msaitoh 		break;
   5473   1.8   msaitoh 	default:
   5474   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   5475   1.8   msaitoh 		return;
   5476   1.8   msaitoh 	}
   5477   1.8   msaitoh 
   5478   1.8   msaitoh 	/* Set RS0 */
   5479   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5480   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5481   1.8   msaitoh 					   &eeprom_data);
   5482   1.8   msaitoh 	if (status) {
   5483   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5484   1.8   msaitoh 		goto out;
   5485   1.8   msaitoh 	}
   5486   1.8   msaitoh 
   5487   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5488   1.8   msaitoh 
   5489   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5490   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5491   1.8   msaitoh 					    eeprom_data);
   5492   1.8   msaitoh 	if (status) {
   5493   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5494   1.8   msaitoh 		goto out;
   5495   1.8   msaitoh 	}
   5496   1.8   msaitoh 
   5497   1.8   msaitoh 	/* Set RS1 */
   5498   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5499   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5500   1.8   msaitoh 					   &eeprom_data);
   5501   1.8   msaitoh 	if (status) {
   5502   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5503   1.8   msaitoh 		goto out;
   5504   1.8   msaitoh 	}
   5505   1.8   msaitoh 
   5506   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5507   1.8   msaitoh 
   5508   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5509   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5510   1.8   msaitoh 					    eeprom_data);
   5511   1.8   msaitoh 	if (status) {
   5512   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5513   1.8   msaitoh 		goto out;
   5514   1.8   msaitoh 	}
   5515   1.8   msaitoh out:
   5516   1.8   msaitoh 	return;
   5517   1.8   msaitoh }
   5518