ixgbe_common.c revision 1.29 1 1.29 msaitoh /* $NetBSD: ixgbe_common.c,v 1.29 2020/08/31 11:19:54 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 1.1 dyoung
38 1.1 dyoung #include "ixgbe_common.h"
39 1.1 dyoung #include "ixgbe_phy.h"
40 1.6 msaitoh #include "ixgbe_dcb.h"
41 1.6 msaitoh #include "ixgbe_dcb_82599.h"
42 1.1 dyoung #include "ixgbe_api.h"
43 1.1 dyoung
44 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
47 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
50 1.3 msaitoh u16 count);
51 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
52 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
53 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
54 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
55 1.1 dyoung
56 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
57 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
58 1.3 msaitoh u16 *san_mac_offset);
59 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
62 1.3 msaitoh u16 words, u16 *data);
63 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
64 1.3 msaitoh u16 offset);
65 1.1 dyoung
66 1.1 dyoung /**
67 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
68 1.1 dyoung * @hw: pointer to the hardware structure
69 1.1 dyoung *
70 1.1 dyoung * Initialize the function pointers.
71 1.1 dyoung **/
72 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
73 1.1 dyoung {
74 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
75 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
76 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
77 1.1 dyoung
78 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
79 1.1 dyoung
80 1.1 dyoung /* EEPROM */
81 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
82 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
83 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
84 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
85 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
86 1.3 msaitoh } else {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
88 1.3 msaitoh eeprom->ops.read_buffer =
89 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
90 1.3 msaitoh }
91 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
92 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
93 1.1 dyoung eeprom->ops.validate_checksum =
94 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
95 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
96 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
97 1.1 dyoung
98 1.1 dyoung /* MAC */
99 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
100 1.1 dyoung mac->ops.reset_hw = NULL;
101 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
102 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
103 1.1 dyoung mac->ops.get_media_type = NULL;
104 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
105 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
106 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
107 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
108 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
109 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
110 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
111 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
112 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
113 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
114 1.1 dyoung
115 1.1 dyoung /* LEDs */
116 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
117 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
118 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
119 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
120 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
121 1.1 dyoung
122 1.1 dyoung /* RAR, Multicast, VLAN */
123 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
124 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
125 1.1 dyoung mac->ops.insert_mac_addr = NULL;
126 1.1 dyoung mac->ops.set_vmdq = NULL;
127 1.1 dyoung mac->ops.clear_vmdq = NULL;
128 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
129 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
130 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
131 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
132 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
133 1.1 dyoung mac->ops.clear_vfta = NULL;
134 1.1 dyoung mac->ops.set_vfta = NULL;
135 1.3 msaitoh mac->ops.set_vlvf = NULL;
136 1.1 dyoung mac->ops.init_uta_tables = NULL;
137 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
138 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
139 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
140 1.1 dyoung
141 1.1 dyoung /* Flow Control */
142 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
143 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
144 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
145 1.1 dyoung
146 1.1 dyoung /* Link */
147 1.1 dyoung mac->ops.get_link_capabilities = NULL;
148 1.1 dyoung mac->ops.setup_link = NULL;
149 1.1 dyoung mac->ops.check_link = NULL;
150 1.6 msaitoh mac->ops.dmac_config = NULL;
151 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
152 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
153 1.1 dyoung
154 1.1 dyoung return IXGBE_SUCCESS;
155 1.1 dyoung }
156 1.1 dyoung
157 1.1 dyoung /**
158 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
159 1.6 msaitoh * of flow control
160 1.6 msaitoh * @hw: pointer to hardware structure
161 1.6 msaitoh *
162 1.6 msaitoh * This function returns TRUE if the device supports flow control
163 1.6 msaitoh * autonegotiation, and FALSE if it does not.
164 1.4 msaitoh *
165 1.4 msaitoh **/
166 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
167 1.4 msaitoh {
168 1.6 msaitoh bool supported = FALSE;
169 1.6 msaitoh ixgbe_link_speed speed;
170 1.6 msaitoh bool link_up;
171 1.4 msaitoh
172 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
173 1.4 msaitoh
174 1.6 msaitoh switch (hw->phy.media_type) {
175 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
176 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
177 1.6 msaitoh case ixgbe_media_type_fiber:
178 1.14 msaitoh /* flow control autoneg black list */
179 1.14 msaitoh switch (hw->device_id) {
180 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
181 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
182 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
184 1.14 msaitoh supported = FALSE;
185 1.14 msaitoh break;
186 1.14 msaitoh default:
187 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
188 1.14 msaitoh /* if link is down, assume supported */
189 1.14 msaitoh if (link_up)
190 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
191 1.14 msaitoh TRUE : FALSE;
192 1.14 msaitoh else
193 1.14 msaitoh supported = TRUE;
194 1.14 msaitoh }
195 1.14 msaitoh
196 1.14 msaitoh break;
197 1.14 msaitoh case ixgbe_media_type_backplane:
198 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
199 1.14 msaitoh supported = FALSE;
200 1.6 msaitoh else
201 1.6 msaitoh supported = TRUE;
202 1.6 msaitoh break;
203 1.6 msaitoh case ixgbe_media_type_copper:
204 1.6 msaitoh /* only some copper devices support flow control autoneg */
205 1.6 msaitoh switch (hw->device_id) {
206 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
207 1.6 msaitoh case IXGBE_DEV_ID_X540T:
208 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
209 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
210 1.8 msaitoh case IXGBE_DEV_ID_X550T:
211 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
212 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
213 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
214 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
215 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
216 1.6 msaitoh supported = TRUE;
217 1.6 msaitoh break;
218 1.6 msaitoh default:
219 1.6 msaitoh supported = FALSE;
220 1.6 msaitoh }
221 1.4 msaitoh default:
222 1.6 msaitoh break;
223 1.4 msaitoh }
224 1.6 msaitoh
225 1.14 msaitoh if (!supported)
226 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
227 1.14 msaitoh "Device %x does not support flow control autoneg",
228 1.14 msaitoh hw->device_id);
229 1.17 msaitoh
230 1.6 msaitoh return supported;
231 1.4 msaitoh }
232 1.4 msaitoh
233 1.4 msaitoh /**
234 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
235 1.4 msaitoh * @hw: pointer to hardware structure
236 1.4 msaitoh *
237 1.4 msaitoh * Called at init time to set up flow control.
238 1.4 msaitoh **/
239 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
240 1.4 msaitoh {
241 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
242 1.4 msaitoh u32 reg = 0, reg_bp = 0;
243 1.4 msaitoh u16 reg_cu = 0;
244 1.8 msaitoh bool locked = FALSE;
245 1.4 msaitoh
246 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
247 1.4 msaitoh
248 1.8 msaitoh /* Validate the requested mode */
249 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
250 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
251 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
252 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
253 1.4 msaitoh goto out;
254 1.4 msaitoh }
255 1.4 msaitoh
256 1.4 msaitoh /*
257 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
258 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
259 1.4 msaitoh */
260 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
261 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
262 1.4 msaitoh
263 1.4 msaitoh /*
264 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
265 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
266 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
267 1.4 msaitoh */
268 1.4 msaitoh switch (hw->phy.media_type) {
269 1.8 msaitoh case ixgbe_media_type_backplane:
270 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
271 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
272 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
273 1.8 msaitoh goto out;
274 1.8 msaitoh
275 1.14 msaitoh /* fall through - only backplane uses autoc */
276 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
277 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
278 1.4 msaitoh case ixgbe_media_type_fiber:
279 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
280 1.8 msaitoh
281 1.4 msaitoh break;
282 1.4 msaitoh case ixgbe_media_type_copper:
283 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
284 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
285 1.4 msaitoh break;
286 1.4 msaitoh default:
287 1.4 msaitoh break;
288 1.4 msaitoh }
289 1.4 msaitoh
290 1.4 msaitoh /*
291 1.4 msaitoh * The possible values of fc.requested_mode are:
292 1.4 msaitoh * 0: Flow control is completely disabled
293 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
294 1.4 msaitoh * but not send pause frames).
295 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
296 1.4 msaitoh * we do not support receiving pause frames).
297 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
298 1.4 msaitoh * other: Invalid.
299 1.4 msaitoh */
300 1.4 msaitoh switch (hw->fc.requested_mode) {
301 1.4 msaitoh case ixgbe_fc_none:
302 1.4 msaitoh /* Flow control completely disabled by software override. */
303 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
304 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
305 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
306 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
307 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
308 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
309 1.4 msaitoh break;
310 1.4 msaitoh case ixgbe_fc_tx_pause:
311 1.4 msaitoh /*
312 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
313 1.4 msaitoh * disabled by software override.
314 1.4 msaitoh */
315 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
316 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
317 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
318 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
319 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
320 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
321 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
322 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
323 1.4 msaitoh }
324 1.4 msaitoh break;
325 1.4 msaitoh case ixgbe_fc_rx_pause:
326 1.4 msaitoh /*
327 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
328 1.4 msaitoh * disabled by software override. Since there really
329 1.4 msaitoh * isn't a way to advertise that we are capable of RX
330 1.4 msaitoh * Pause ONLY, we will advertise that we support both
331 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
332 1.4 msaitoh * through to the fc_full statement. Later, we will
333 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
334 1.4 msaitoh */
335 1.4 msaitoh case ixgbe_fc_full:
336 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
337 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
338 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
339 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
340 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
341 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
342 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
343 1.4 msaitoh break;
344 1.4 msaitoh default:
345 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
346 1.6 msaitoh "Flow control param set incorrectly\n");
347 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
348 1.4 msaitoh goto out;
349 1.4 msaitoh break;
350 1.4 msaitoh }
351 1.4 msaitoh
352 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
353 1.4 msaitoh /*
354 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
355 1.4 msaitoh * the MAC will advertise clause 37 flow control.
356 1.4 msaitoh */
357 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
358 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
359 1.4 msaitoh
360 1.4 msaitoh /* Disable AN timeout */
361 1.4 msaitoh if (hw->fc.strict_ieee)
362 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
363 1.4 msaitoh
364 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
365 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
366 1.4 msaitoh }
367 1.4 msaitoh
368 1.4 msaitoh /*
369 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
370 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
371 1.4 msaitoh *
372 1.4 msaitoh */
373 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
374 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
375 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
376 1.8 msaitoh if (ret_val)
377 1.8 msaitoh goto out;
378 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
379 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
380 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
381 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
382 1.4 msaitoh }
383 1.4 msaitoh
384 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
385 1.4 msaitoh out:
386 1.4 msaitoh return ret_val;
387 1.4 msaitoh }
388 1.4 msaitoh
389 1.4 msaitoh /**
390 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
391 1.1 dyoung * @hw: pointer to hardware structure
392 1.1 dyoung *
393 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
394 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
395 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
396 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
397 1.1 dyoung **/
398 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
399 1.1 dyoung {
400 1.4 msaitoh s32 ret_val;
401 1.1 dyoung u32 ctrl_ext;
402 1.14 msaitoh u16 device_caps;
403 1.1 dyoung
404 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
405 1.1 dyoung
406 1.1 dyoung /* Set the media type */
407 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
408 1.1 dyoung
409 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
410 1.1 dyoung
411 1.1 dyoung /* Clear the VLAN filter table */
412 1.1 dyoung hw->mac.ops.clear_vfta(hw);
413 1.1 dyoung
414 1.1 dyoung /* Clear statistics registers */
415 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
416 1.1 dyoung
417 1.1 dyoung /* Set No Snoop Disable */
418 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
419 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
420 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
421 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
422 1.1 dyoung
423 1.1 dyoung /* Setup flow control */
424 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
425 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
426 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
427 1.14 msaitoh return ret_val;
428 1.14 msaitoh }
429 1.14 msaitoh
430 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
431 1.14 msaitoh switch (hw->mac.type) {
432 1.14 msaitoh case ixgbe_mac_82599EB:
433 1.14 msaitoh case ixgbe_mac_X550EM_x:
434 1.14 msaitoh case ixgbe_mac_X550EM_a:
435 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
436 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
437 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
438 1.14 msaitoh else
439 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
440 1.14 msaitoh break;
441 1.14 msaitoh default:
442 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
443 1.14 msaitoh break;
444 1.14 msaitoh }
445 1.1 dyoung
446 1.1 dyoung /* Clear adapter stopped flag */
447 1.1 dyoung hw->adapter_stopped = FALSE;
448 1.1 dyoung
449 1.14 msaitoh return IXGBE_SUCCESS;
450 1.1 dyoung }
451 1.1 dyoung
452 1.1 dyoung /**
453 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
454 1.1 dyoung * @hw: pointer to hw structure
455 1.1 dyoung *
456 1.1 dyoung * Performs the init sequence common to the second generation
457 1.1 dyoung * of 10 GbE devices.
458 1.1 dyoung * Devices in the second generation:
459 1.1 dyoung * 82599
460 1.1 dyoung * X540
461 1.1 dyoung **/
462 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
463 1.1 dyoung {
464 1.1 dyoung u32 i;
465 1.1 dyoung u32 regval;
466 1.1 dyoung
467 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2");
468 1.27 msaitoh
469 1.1 dyoung /* Clear the rate limiters */
470 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
471 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
472 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
473 1.1 dyoung }
474 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
475 1.1 dyoung
476 1.1 dyoung /* Disable relaxed ordering */
477 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
478 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
479 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
480 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
481 1.1 dyoung }
482 1.1 dyoung
483 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
484 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
485 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
486 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
487 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
488 1.1 dyoung }
489 1.1 dyoung
490 1.1 dyoung return IXGBE_SUCCESS;
491 1.1 dyoung }
492 1.1 dyoung
493 1.1 dyoung /**
494 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
495 1.1 dyoung * @hw: pointer to hardware structure
496 1.1 dyoung *
497 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
498 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
499 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
500 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
501 1.1 dyoung * disabled and uninitialized
502 1.1 dyoung **/
503 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
504 1.1 dyoung {
505 1.1 dyoung s32 status;
506 1.1 dyoung
507 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
508 1.1 dyoung
509 1.1 dyoung /* Reset the hardware */
510 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
511 1.1 dyoung
512 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
513 1.1 dyoung /* Start the HW */
514 1.1 dyoung status = hw->mac.ops.start_hw(hw);
515 1.1 dyoung }
516 1.1 dyoung
517 1.14 msaitoh /* Initialize the LED link active for LED blink support */
518 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
519 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
520 1.14 msaitoh
521 1.14 msaitoh if (status != IXGBE_SUCCESS)
522 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
523 1.14 msaitoh
524 1.1 dyoung return status;
525 1.1 dyoung }
526 1.1 dyoung
527 1.1 dyoung /**
528 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
529 1.1 dyoung * @hw: pointer to hardware structure
530 1.1 dyoung *
531 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
532 1.1 dyoung * Statistics counters are clear on read.
533 1.1 dyoung **/
534 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
535 1.1 dyoung {
536 1.1 dyoung u16 i = 0;
537 1.1 dyoung
538 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
539 1.1 dyoung
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
544 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
545 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
546 1.1 dyoung for (i = 0; i < 8; i++)
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
548 1.1 dyoung
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
554 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
557 1.1 dyoung } else {
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
560 1.1 dyoung }
561 1.1 dyoung
562 1.1 dyoung for (i = 0; i < 8; i++) {
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
565 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
568 1.1 dyoung } else {
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
571 1.1 dyoung }
572 1.1 dyoung }
573 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
574 1.1 dyoung for (i = 0; i < 8; i++)
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
586 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
587 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
588 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
590 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
591 1.3 msaitoh for (i = 0; i < 8; i++)
592 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
610 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
612 1.1 dyoung for (i = 0; i < 16; i++) {
613 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
615 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
619 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
620 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
621 1.1 dyoung } else {
622 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
623 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
624 1.1 dyoung }
625 1.1 dyoung }
626 1.1 dyoung
627 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
628 1.3 msaitoh if (hw->phy.id == 0)
629 1.3 msaitoh ixgbe_identify_phy(hw);
630 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
631 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
633 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
635 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
636 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
637 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
638 1.3 msaitoh }
639 1.3 msaitoh
640 1.1 dyoung return IXGBE_SUCCESS;
641 1.1 dyoung }
642 1.1 dyoung
643 1.1 dyoung /**
644 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
645 1.1 dyoung * @hw: pointer to hardware structure
646 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
647 1.1 dyoung * @pba_num_size: part number string buffer length
648 1.1 dyoung *
649 1.1 dyoung * Reads the part number string from the EEPROM.
650 1.1 dyoung **/
651 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
652 1.3 msaitoh u32 pba_num_size)
653 1.1 dyoung {
654 1.1 dyoung s32 ret_val;
655 1.1 dyoung u16 data;
656 1.1 dyoung u16 pba_ptr;
657 1.1 dyoung u16 offset;
658 1.1 dyoung u16 length;
659 1.1 dyoung
660 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
661 1.1 dyoung
662 1.1 dyoung if (pba_num == NULL) {
663 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
664 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
665 1.1 dyoung }
666 1.1 dyoung
667 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
668 1.1 dyoung if (ret_val) {
669 1.1 dyoung DEBUGOUT("NVM Read Error\n");
670 1.1 dyoung return ret_val;
671 1.1 dyoung }
672 1.1 dyoung
673 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
674 1.1 dyoung if (ret_val) {
675 1.1 dyoung DEBUGOUT("NVM Read Error\n");
676 1.1 dyoung return ret_val;
677 1.1 dyoung }
678 1.1 dyoung
679 1.1 dyoung /*
680 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
681 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
682 1.1 dyoung * and we can decode it into an ascii string
683 1.1 dyoung */
684 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
685 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
686 1.1 dyoung
687 1.1 dyoung /* we will need 11 characters to store the PBA */
688 1.1 dyoung if (pba_num_size < 11) {
689 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
690 1.1 dyoung return IXGBE_ERR_NO_SPACE;
691 1.1 dyoung }
692 1.1 dyoung
693 1.1 dyoung /* extract hex string from data and pba_ptr */
694 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
695 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
696 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
697 1.1 dyoung pba_num[3] = data & 0xF;
698 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
699 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
700 1.1 dyoung pba_num[6] = '-';
701 1.1 dyoung pba_num[7] = 0;
702 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
703 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
704 1.1 dyoung
705 1.1 dyoung /* put a null character on the end of our string */
706 1.1 dyoung pba_num[10] = '\0';
707 1.1 dyoung
708 1.1 dyoung /* switch all the data but the '-' to hex char */
709 1.1 dyoung for (offset = 0; offset < 10; offset++) {
710 1.1 dyoung if (pba_num[offset] < 0xA)
711 1.1 dyoung pba_num[offset] += '0';
712 1.1 dyoung else if (pba_num[offset] < 0x10)
713 1.1 dyoung pba_num[offset] += 'A' - 0xA;
714 1.1 dyoung }
715 1.1 dyoung
716 1.1 dyoung return IXGBE_SUCCESS;
717 1.1 dyoung }
718 1.1 dyoung
719 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
720 1.1 dyoung if (ret_val) {
721 1.1 dyoung DEBUGOUT("NVM Read Error\n");
722 1.1 dyoung return ret_val;
723 1.1 dyoung }
724 1.1 dyoung
725 1.1 dyoung if (length == 0xFFFF || length == 0) {
726 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
727 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
728 1.1 dyoung }
729 1.1 dyoung
730 1.1 dyoung /* check if pba_num buffer is big enough */
731 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
732 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
733 1.1 dyoung return IXGBE_ERR_NO_SPACE;
734 1.1 dyoung }
735 1.1 dyoung
736 1.1 dyoung /* trim pba length from start of string */
737 1.1 dyoung pba_ptr++;
738 1.1 dyoung length--;
739 1.1 dyoung
740 1.1 dyoung for (offset = 0; offset < length; offset++) {
741 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
742 1.1 dyoung if (ret_val) {
743 1.1 dyoung DEBUGOUT("NVM Read Error\n");
744 1.1 dyoung return ret_val;
745 1.1 dyoung }
746 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
747 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
748 1.1 dyoung }
749 1.1 dyoung pba_num[offset * 2] = '\0';
750 1.1 dyoung
751 1.1 dyoung return IXGBE_SUCCESS;
752 1.1 dyoung }
753 1.1 dyoung
754 1.1 dyoung /**
755 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
756 1.1 dyoung * @hw: pointer to hardware structure
757 1.1 dyoung * @pba_num: stores the part number from the EEPROM
758 1.1 dyoung *
759 1.1 dyoung * Reads the part number from the EEPROM.
760 1.1 dyoung **/
761 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
762 1.1 dyoung {
763 1.1 dyoung s32 ret_val;
764 1.1 dyoung u16 data;
765 1.1 dyoung
766 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
767 1.1 dyoung
768 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
769 1.1 dyoung if (ret_val) {
770 1.1 dyoung DEBUGOUT("NVM Read Error\n");
771 1.1 dyoung return ret_val;
772 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
773 1.1 dyoung DEBUGOUT("NVM Not supported\n");
774 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
775 1.1 dyoung }
776 1.1 dyoung *pba_num = (u32)(data << 16);
777 1.1 dyoung
778 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
779 1.1 dyoung if (ret_val) {
780 1.1 dyoung DEBUGOUT("NVM Read Error\n");
781 1.1 dyoung return ret_val;
782 1.1 dyoung }
783 1.1 dyoung *pba_num |= data;
784 1.1 dyoung
785 1.1 dyoung return IXGBE_SUCCESS;
786 1.1 dyoung }
787 1.1 dyoung
788 1.1 dyoung /**
789 1.5 msaitoh * ixgbe_read_pba_raw
790 1.5 msaitoh * @hw: pointer to the HW structure
791 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
792 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
793 1.5 msaitoh * @max_pba_block_size: PBA block size limit
794 1.5 msaitoh * @pba: pointer to output PBA structure
795 1.5 msaitoh *
796 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
797 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
798 1.5 msaitoh *
799 1.5 msaitoh **/
800 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
801 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
802 1.5 msaitoh struct ixgbe_pba *pba)
803 1.5 msaitoh {
804 1.5 msaitoh s32 ret_val;
805 1.5 msaitoh u16 pba_block_size;
806 1.5 msaitoh
807 1.5 msaitoh if (pba == NULL)
808 1.5 msaitoh return IXGBE_ERR_PARAM;
809 1.5 msaitoh
810 1.5 msaitoh if (eeprom_buf == NULL) {
811 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
812 1.5 msaitoh &pba->word[0]);
813 1.5 msaitoh if (ret_val)
814 1.5 msaitoh return ret_val;
815 1.5 msaitoh } else {
816 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
817 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
818 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
819 1.5 msaitoh } else {
820 1.5 msaitoh return IXGBE_ERR_PARAM;
821 1.5 msaitoh }
822 1.5 msaitoh }
823 1.5 msaitoh
824 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
825 1.5 msaitoh if (pba->pba_block == NULL)
826 1.5 msaitoh return IXGBE_ERR_PARAM;
827 1.5 msaitoh
828 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
829 1.5 msaitoh eeprom_buf_size,
830 1.5 msaitoh &pba_block_size);
831 1.5 msaitoh if (ret_val)
832 1.5 msaitoh return ret_val;
833 1.5 msaitoh
834 1.5 msaitoh if (pba_block_size > max_pba_block_size)
835 1.5 msaitoh return IXGBE_ERR_PARAM;
836 1.5 msaitoh
837 1.5 msaitoh if (eeprom_buf == NULL) {
838 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
839 1.5 msaitoh pba_block_size,
840 1.5 msaitoh pba->pba_block);
841 1.5 msaitoh if (ret_val)
842 1.5 msaitoh return ret_val;
843 1.5 msaitoh } else {
844 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
845 1.8 msaitoh pba_block_size)) {
846 1.5 msaitoh memcpy(pba->pba_block,
847 1.5 msaitoh &eeprom_buf[pba->word[1]],
848 1.5 msaitoh pba_block_size * sizeof(u16));
849 1.5 msaitoh } else {
850 1.5 msaitoh return IXGBE_ERR_PARAM;
851 1.5 msaitoh }
852 1.5 msaitoh }
853 1.5 msaitoh }
854 1.5 msaitoh
855 1.5 msaitoh return IXGBE_SUCCESS;
856 1.5 msaitoh }
857 1.5 msaitoh
858 1.5 msaitoh /**
859 1.5 msaitoh * ixgbe_write_pba_raw
860 1.5 msaitoh * @hw: pointer to the HW structure
861 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
862 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
863 1.5 msaitoh * @pba: pointer to PBA structure
864 1.5 msaitoh *
865 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
866 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
867 1.5 msaitoh *
868 1.5 msaitoh **/
869 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
870 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
871 1.5 msaitoh {
872 1.5 msaitoh s32 ret_val;
873 1.5 msaitoh
874 1.5 msaitoh if (pba == NULL)
875 1.5 msaitoh return IXGBE_ERR_PARAM;
876 1.5 msaitoh
877 1.5 msaitoh if (eeprom_buf == NULL) {
878 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
879 1.5 msaitoh &pba->word[0]);
880 1.5 msaitoh if (ret_val)
881 1.5 msaitoh return ret_val;
882 1.5 msaitoh } else {
883 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
884 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
885 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
886 1.5 msaitoh } else {
887 1.5 msaitoh return IXGBE_ERR_PARAM;
888 1.5 msaitoh }
889 1.5 msaitoh }
890 1.5 msaitoh
891 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
892 1.5 msaitoh if (pba->pba_block == NULL)
893 1.5 msaitoh return IXGBE_ERR_PARAM;
894 1.5 msaitoh
895 1.5 msaitoh if (eeprom_buf == NULL) {
896 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
897 1.5 msaitoh pba->pba_block[0],
898 1.5 msaitoh pba->pba_block);
899 1.5 msaitoh if (ret_val)
900 1.5 msaitoh return ret_val;
901 1.5 msaitoh } else {
902 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
903 1.5 msaitoh pba->pba_block[0])) {
904 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
905 1.5 msaitoh pba->pba_block,
906 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
907 1.5 msaitoh } else {
908 1.5 msaitoh return IXGBE_ERR_PARAM;
909 1.5 msaitoh }
910 1.5 msaitoh }
911 1.5 msaitoh }
912 1.5 msaitoh
913 1.5 msaitoh return IXGBE_SUCCESS;
914 1.5 msaitoh }
915 1.5 msaitoh
916 1.5 msaitoh /**
917 1.5 msaitoh * ixgbe_get_pba_block_size
918 1.5 msaitoh * @hw: pointer to the HW structure
919 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
920 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
921 1.5 msaitoh * @pba_data_size: pointer to output variable
922 1.5 msaitoh *
923 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
924 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
925 1.5 msaitoh * EEPROM device.
926 1.5 msaitoh *
927 1.5 msaitoh **/
928 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
929 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
930 1.5 msaitoh {
931 1.5 msaitoh s32 ret_val;
932 1.5 msaitoh u16 pba_word[2];
933 1.5 msaitoh u16 length;
934 1.5 msaitoh
935 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
936 1.5 msaitoh
937 1.5 msaitoh if (eeprom_buf == NULL) {
938 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
939 1.5 msaitoh &pba_word[0]);
940 1.5 msaitoh if (ret_val)
941 1.5 msaitoh return ret_val;
942 1.5 msaitoh } else {
943 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
944 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
945 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
946 1.5 msaitoh } else {
947 1.5 msaitoh return IXGBE_ERR_PARAM;
948 1.5 msaitoh }
949 1.5 msaitoh }
950 1.5 msaitoh
951 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
952 1.5 msaitoh if (eeprom_buf == NULL) {
953 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
954 1.5 msaitoh &length);
955 1.5 msaitoh if (ret_val)
956 1.5 msaitoh return ret_val;
957 1.5 msaitoh } else {
958 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
959 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
960 1.5 msaitoh else
961 1.5 msaitoh return IXGBE_ERR_PARAM;
962 1.5 msaitoh }
963 1.5 msaitoh
964 1.5 msaitoh if (length == 0xFFFF || length == 0)
965 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
966 1.5 msaitoh } else {
967 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
968 1.5 msaitoh length = 0;
969 1.5 msaitoh }
970 1.5 msaitoh
971 1.5 msaitoh if (pba_block_size != NULL)
972 1.5 msaitoh *pba_block_size = length;
973 1.5 msaitoh
974 1.5 msaitoh return IXGBE_SUCCESS;
975 1.5 msaitoh }
976 1.5 msaitoh
977 1.5 msaitoh /**
978 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
979 1.1 dyoung * @hw: pointer to hardware structure
980 1.1 dyoung * @mac_addr: Adapter MAC address
981 1.1 dyoung *
982 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
983 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
984 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
985 1.1 dyoung **/
986 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
987 1.1 dyoung {
988 1.1 dyoung u32 rar_high;
989 1.1 dyoung u32 rar_low;
990 1.1 dyoung u16 i;
991 1.1 dyoung
992 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
993 1.1 dyoung
994 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
995 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
996 1.1 dyoung
997 1.1 dyoung for (i = 0; i < 4; i++)
998 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
999 1.1 dyoung
1000 1.1 dyoung for (i = 0; i < 2; i++)
1001 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
1002 1.1 dyoung
1003 1.1 dyoung return IXGBE_SUCCESS;
1004 1.1 dyoung }
1005 1.1 dyoung
1006 1.1 dyoung /**
1007 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1008 1.1 dyoung * @hw: pointer to hardware structure
1009 1.6 msaitoh * @link_status: the link status returned by the PCI config space
1010 1.1 dyoung *
1011 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1012 1.1 dyoung **/
1013 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1014 1.1 dyoung {
1015 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1016 1.1 dyoung
1017 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1018 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1019 1.1 dyoung
1020 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1021 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1022 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1023 1.1 dyoung break;
1024 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1025 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1026 1.1 dyoung break;
1027 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1028 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1029 1.1 dyoung break;
1030 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1031 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1032 1.1 dyoung break;
1033 1.1 dyoung default:
1034 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1035 1.1 dyoung break;
1036 1.1 dyoung }
1037 1.1 dyoung
1038 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1039 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1040 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1041 1.1 dyoung break;
1042 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1043 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1044 1.1 dyoung break;
1045 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1046 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1047 1.4 msaitoh break;
1048 1.1 dyoung default:
1049 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1050 1.1 dyoung break;
1051 1.1 dyoung }
1052 1.1 dyoung
1053 1.1 dyoung mac->ops.set_lan_id(hw);
1054 1.6 msaitoh }
1055 1.6 msaitoh
1056 1.6 msaitoh /**
1057 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1058 1.6 msaitoh * @hw: pointer to hardware structure
1059 1.6 msaitoh *
1060 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1061 1.6 msaitoh * store this data within the ixgbe_hw structure.
1062 1.6 msaitoh **/
1063 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1064 1.6 msaitoh {
1065 1.6 msaitoh u16 link_status;
1066 1.6 msaitoh
1067 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1068 1.6 msaitoh
1069 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1070 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1071 1.6 msaitoh
1072 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1073 1.1 dyoung
1074 1.1 dyoung return IXGBE_SUCCESS;
1075 1.1 dyoung }
1076 1.1 dyoung
1077 1.1 dyoung /**
1078 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1079 1.1 dyoung * @hw: pointer to the HW structure
1080 1.1 dyoung *
1081 1.14 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1082 1.14 msaitoh * the port value if requested, and set MAC instance for devices that share
1083 1.14 msaitoh * CS4227.
1084 1.1 dyoung **/
1085 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1086 1.1 dyoung {
1087 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1088 1.1 dyoung u32 reg;
1089 1.14 msaitoh u16 ee_ctrl_4;
1090 1.1 dyoung
1091 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1092 1.1 dyoung
1093 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1094 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1095 1.14 msaitoh bus->lan_id = (u8)bus->func;
1096 1.1 dyoung
1097 1.1 dyoung /* check for a port swap */
1098 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1099 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1100 1.1 dyoung bus->func ^= 0x1;
1101 1.14 msaitoh
1102 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1103 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1104 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1105 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1106 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1107 1.14 msaitoh }
1108 1.1 dyoung }
1109 1.1 dyoung
1110 1.1 dyoung /**
1111 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1112 1.1 dyoung * @hw: pointer to hardware structure
1113 1.1 dyoung *
1114 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1115 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1116 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1117 1.1 dyoung * state and should not touch the hardware.
1118 1.1 dyoung **/
1119 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1120 1.1 dyoung {
1121 1.1 dyoung u32 reg_val;
1122 1.1 dyoung u16 i;
1123 1.1 dyoung
1124 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1125 1.1 dyoung
1126 1.1 dyoung /*
1127 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1128 1.1 dyoung * the hardware
1129 1.1 dyoung */
1130 1.1 dyoung hw->adapter_stopped = TRUE;
1131 1.1 dyoung
1132 1.1 dyoung /* Disable the receive unit */
1133 1.8 msaitoh ixgbe_disable_rx(hw);
1134 1.1 dyoung
1135 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1136 1.19 knakahar /*
1137 1.19 knakahar * XXX
1138 1.19 knakahar * This function is called in the state of both interrupt disabled
1139 1.19 knakahar * and interrupt enabled, e.g.
1140 1.19 knakahar * + interrupt disabled case:
1141 1.19 knakahar * - ixgbe_stop()
1142 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here
1143 1.19 knakahar * - ixgbe_stop_adapter()
1144 1.19 knakahar * - hw->mac.ops.stop_adapter()
1145 1.19 knakahar * == this function
1146 1.19 knakahar * + interrupt enabled case:
1147 1.19 knakahar * - ixgbe_local_timer1()
1148 1.19 knakahar * - ixgbe_init_locked()
1149 1.19 knakahar * - ixgbe_stop_adapter()
1150 1.19 knakahar * - hw->mac.ops.stop_adapter()
1151 1.19 knakahar * == this function
1152 1.19 knakahar * Therefore, it causes nest status breaking to nest the status
1153 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must
1154 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1155 1.19 knakahar */
1156 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back);
1157 1.1 dyoung
1158 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1159 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1160 1.1 dyoung
1161 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1162 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1163 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1164 1.3 msaitoh
1165 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1166 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1167 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1168 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1169 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1170 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1171 1.1 dyoung }
1172 1.1 dyoung
1173 1.3 msaitoh /* flush all queues disables */
1174 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1175 1.3 msaitoh msec_delay(2);
1176 1.3 msaitoh
1177 1.1 dyoung /*
1178 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1179 1.1 dyoung * access and verify no pending requests
1180 1.1 dyoung */
1181 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1182 1.1 dyoung }
1183 1.1 dyoung
1184 1.1 dyoung /**
1185 1.14 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1186 1.14 msaitoh * @hw: pointer to hardware structure
1187 1.14 msaitoh *
1188 1.14 msaitoh * Store the index for the link active LED. This will be used to support
1189 1.14 msaitoh * blinking the LED.
1190 1.14 msaitoh **/
1191 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1192 1.14 msaitoh {
1193 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1194 1.14 msaitoh u32 led_reg, led_mode;
1195 1.14 msaitoh u8 i;
1196 1.14 msaitoh
1197 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1198 1.14 msaitoh
1199 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1200 1.14 msaitoh for (i = 0; i < 4; i++) {
1201 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1202 1.14 msaitoh
1203 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1204 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1205 1.14 msaitoh mac->led_link_act = i;
1206 1.14 msaitoh return IXGBE_SUCCESS;
1207 1.14 msaitoh }
1208 1.14 msaitoh }
1209 1.14 msaitoh
1210 1.14 msaitoh /*
1211 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1212 1.14 msaitoh * known MAC defaults.
1213 1.14 msaitoh */
1214 1.14 msaitoh switch (hw->mac.type) {
1215 1.14 msaitoh case ixgbe_mac_X550EM_a:
1216 1.14 msaitoh case ixgbe_mac_X550EM_x:
1217 1.14 msaitoh mac->led_link_act = 1;
1218 1.14 msaitoh break;
1219 1.14 msaitoh default:
1220 1.14 msaitoh mac->led_link_act = 2;
1221 1.14 msaitoh }
1222 1.14 msaitoh return IXGBE_SUCCESS;
1223 1.14 msaitoh }
1224 1.14 msaitoh
1225 1.14 msaitoh /**
1226 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1227 1.1 dyoung * @hw: pointer to hardware structure
1228 1.1 dyoung * @index: led number to turn on
1229 1.1 dyoung **/
1230 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1231 1.1 dyoung {
1232 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1233 1.1 dyoung
1234 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1235 1.1 dyoung
1236 1.14 msaitoh if (index > 3)
1237 1.14 msaitoh return IXGBE_ERR_PARAM;
1238 1.14 msaitoh
1239 1.1 dyoung /* To turn on the LED, set mode to ON. */
1240 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1241 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1242 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1243 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1244 1.1 dyoung
1245 1.1 dyoung return IXGBE_SUCCESS;
1246 1.1 dyoung }
1247 1.1 dyoung
1248 1.1 dyoung /**
1249 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1250 1.1 dyoung * @hw: pointer to hardware structure
1251 1.1 dyoung * @index: led number to turn off
1252 1.1 dyoung **/
1253 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1254 1.1 dyoung {
1255 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1256 1.1 dyoung
1257 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1258 1.1 dyoung
1259 1.14 msaitoh if (index > 3)
1260 1.14 msaitoh return IXGBE_ERR_PARAM;
1261 1.14 msaitoh
1262 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1263 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1264 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1265 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1266 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1267 1.1 dyoung
1268 1.1 dyoung return IXGBE_SUCCESS;
1269 1.1 dyoung }
1270 1.1 dyoung
1271 1.1 dyoung /**
1272 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1273 1.1 dyoung * @hw: pointer to hardware structure
1274 1.1 dyoung *
1275 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1276 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1277 1.1 dyoung **/
1278 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1279 1.1 dyoung {
1280 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1281 1.1 dyoung u32 eec;
1282 1.1 dyoung u16 eeprom_size;
1283 1.1 dyoung
1284 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1285 1.1 dyoung
1286 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1287 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1288 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1289 1.1 dyoung * tested value */
1290 1.1 dyoung eeprom->semaphore_delay = 10;
1291 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1292 1.3 msaitoh eeprom->word_page_size = 0;
1293 1.1 dyoung
1294 1.1 dyoung /*
1295 1.1 dyoung * Check for EEPROM present first.
1296 1.1 dyoung * If not present leave as none
1297 1.1 dyoung */
1298 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1299 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1300 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1301 1.1 dyoung
1302 1.1 dyoung /*
1303 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1304 1.1 dyoung * change if a future EEPROM is not SPI.
1305 1.1 dyoung */
1306 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1307 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1308 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1309 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1310 1.1 dyoung }
1311 1.1 dyoung
1312 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1313 1.1 dyoung eeprom->address_bits = 16;
1314 1.1 dyoung else
1315 1.1 dyoung eeprom->address_bits = 8;
1316 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1317 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1318 1.3 msaitoh eeprom->address_bits);
1319 1.1 dyoung }
1320 1.1 dyoung
1321 1.1 dyoung return IXGBE_SUCCESS;
1322 1.1 dyoung }
1323 1.1 dyoung
1324 1.1 dyoung /**
1325 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1326 1.3 msaitoh * @hw: pointer to hardware structure
1327 1.3 msaitoh * @offset: offset within the EEPROM to write
1328 1.3 msaitoh * @words: number of word(s)
1329 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1330 1.3 msaitoh *
1331 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1332 1.3 msaitoh **/
1333 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1334 1.3 msaitoh u16 words, u16 *data)
1335 1.3 msaitoh {
1336 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1337 1.3 msaitoh u16 i, count;
1338 1.3 msaitoh
1339 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1340 1.3 msaitoh
1341 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1342 1.3 msaitoh
1343 1.3 msaitoh if (words == 0) {
1344 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1345 1.3 msaitoh goto out;
1346 1.3 msaitoh }
1347 1.3 msaitoh
1348 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1349 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1350 1.3 msaitoh goto out;
1351 1.3 msaitoh }
1352 1.3 msaitoh
1353 1.3 msaitoh /*
1354 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1355 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1356 1.3 msaitoh */
1357 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1358 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1359 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1360 1.3 msaitoh
1361 1.3 msaitoh /*
1362 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1363 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1364 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1365 1.3 msaitoh */
1366 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1367 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1368 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1369 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1370 1.3 msaitoh count, &data[i]);
1371 1.3 msaitoh
1372 1.3 msaitoh if (status != IXGBE_SUCCESS)
1373 1.3 msaitoh break;
1374 1.3 msaitoh }
1375 1.3 msaitoh
1376 1.3 msaitoh out:
1377 1.3 msaitoh return status;
1378 1.3 msaitoh }
1379 1.3 msaitoh
1380 1.3 msaitoh /**
1381 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1382 1.3 msaitoh * @hw: pointer to hardware structure
1383 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1384 1.3 msaitoh * @words: number of word(s)
1385 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1386 1.3 msaitoh *
1387 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1388 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1389 1.3 msaitoh **/
1390 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1391 1.3 msaitoh u16 words, u16 *data)
1392 1.3 msaitoh {
1393 1.3 msaitoh s32 status;
1394 1.3 msaitoh u16 word;
1395 1.3 msaitoh u16 page_size;
1396 1.3 msaitoh u16 i;
1397 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1398 1.3 msaitoh
1399 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1400 1.3 msaitoh
1401 1.3 msaitoh /* Prepare the EEPROM for writing */
1402 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1403 1.3 msaitoh
1404 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1405 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1406 1.3 msaitoh ixgbe_release_eeprom(hw);
1407 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1408 1.3 msaitoh }
1409 1.3 msaitoh }
1410 1.3 msaitoh
1411 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1412 1.3 msaitoh for (i = 0; i < words; i++) {
1413 1.3 msaitoh ixgbe_standby_eeprom(hw);
1414 1.3 msaitoh
1415 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1416 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1417 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1418 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1419 1.3 msaitoh
1420 1.3 msaitoh ixgbe_standby_eeprom(hw);
1421 1.3 msaitoh
1422 1.3 msaitoh /*
1423 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1424 1.3 msaitoh * in the opcode
1425 1.3 msaitoh */
1426 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1427 1.3 msaitoh ((offset + i) >= 128))
1428 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1429 1.3 msaitoh
1430 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1431 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1432 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1433 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1434 1.3 msaitoh hw->eeprom.address_bits);
1435 1.3 msaitoh
1436 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1437 1.3 msaitoh
1438 1.3 msaitoh /* Send the data in burst via SPI*/
1439 1.3 msaitoh do {
1440 1.3 msaitoh word = data[i];
1441 1.3 msaitoh word = (word >> 8) | (word << 8);
1442 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1443 1.3 msaitoh
1444 1.3 msaitoh if (page_size == 0)
1445 1.3 msaitoh break;
1446 1.3 msaitoh
1447 1.3 msaitoh /* do not wrap around page */
1448 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1449 1.3 msaitoh (page_size - 1))
1450 1.3 msaitoh break;
1451 1.3 msaitoh } while (++i < words);
1452 1.3 msaitoh
1453 1.3 msaitoh ixgbe_standby_eeprom(hw);
1454 1.3 msaitoh msec_delay(10);
1455 1.3 msaitoh }
1456 1.3 msaitoh /* Done with writing - release the EEPROM */
1457 1.3 msaitoh ixgbe_release_eeprom(hw);
1458 1.3 msaitoh }
1459 1.3 msaitoh
1460 1.3 msaitoh return status;
1461 1.3 msaitoh }
1462 1.3 msaitoh
1463 1.3 msaitoh /**
1464 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1465 1.1 dyoung * @hw: pointer to hardware structure
1466 1.1 dyoung * @offset: offset within the EEPROM to be written to
1467 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1468 1.1 dyoung *
1469 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1470 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1471 1.1 dyoung **/
1472 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1473 1.1 dyoung {
1474 1.1 dyoung s32 status;
1475 1.1 dyoung
1476 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1477 1.1 dyoung
1478 1.1 dyoung hw->eeprom.ops.init_params(hw);
1479 1.1 dyoung
1480 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1481 1.1 dyoung status = IXGBE_ERR_EEPROM;
1482 1.1 dyoung goto out;
1483 1.1 dyoung }
1484 1.1 dyoung
1485 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1486 1.3 msaitoh
1487 1.3 msaitoh out:
1488 1.3 msaitoh return status;
1489 1.3 msaitoh }
1490 1.3 msaitoh
1491 1.3 msaitoh /**
1492 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1493 1.3 msaitoh * @hw: pointer to hardware structure
1494 1.3 msaitoh * @offset: offset within the EEPROM to be read
1495 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1496 1.3 msaitoh * @words: number of word(s)
1497 1.3 msaitoh *
1498 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1499 1.3 msaitoh **/
1500 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1501 1.3 msaitoh u16 words, u16 *data)
1502 1.3 msaitoh {
1503 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1504 1.3 msaitoh u16 i, count;
1505 1.3 msaitoh
1506 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1507 1.3 msaitoh
1508 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1509 1.3 msaitoh
1510 1.3 msaitoh if (words == 0) {
1511 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1512 1.3 msaitoh goto out;
1513 1.3 msaitoh }
1514 1.3 msaitoh
1515 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1516 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1517 1.3 msaitoh goto out;
1518 1.3 msaitoh }
1519 1.3 msaitoh
1520 1.3 msaitoh /*
1521 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1522 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1523 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1524 1.3 msaitoh */
1525 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1526 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1527 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1528 1.3 msaitoh
1529 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1530 1.3 msaitoh count, &data[i]);
1531 1.3 msaitoh
1532 1.3 msaitoh if (status != IXGBE_SUCCESS)
1533 1.3 msaitoh break;
1534 1.3 msaitoh }
1535 1.3 msaitoh
1536 1.3 msaitoh out:
1537 1.3 msaitoh return status;
1538 1.3 msaitoh }
1539 1.3 msaitoh
1540 1.3 msaitoh /**
1541 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1542 1.3 msaitoh * @hw: pointer to hardware structure
1543 1.3 msaitoh * @offset: offset within the EEPROM to be read
1544 1.3 msaitoh * @words: number of word(s)
1545 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1546 1.3 msaitoh *
1547 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1548 1.3 msaitoh **/
1549 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1550 1.3 msaitoh u16 words, u16 *data)
1551 1.3 msaitoh {
1552 1.3 msaitoh s32 status;
1553 1.3 msaitoh u16 word_in;
1554 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1555 1.3 msaitoh u16 i;
1556 1.3 msaitoh
1557 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1558 1.3 msaitoh
1559 1.3 msaitoh /* Prepare the EEPROM for reading */
1560 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1561 1.1 dyoung
1562 1.1 dyoung if (status == IXGBE_SUCCESS) {
1563 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1564 1.1 dyoung ixgbe_release_eeprom(hw);
1565 1.1 dyoung status = IXGBE_ERR_EEPROM;
1566 1.1 dyoung }
1567 1.1 dyoung }
1568 1.1 dyoung
1569 1.1 dyoung if (status == IXGBE_SUCCESS) {
1570 1.3 msaitoh for (i = 0; i < words; i++) {
1571 1.3 msaitoh ixgbe_standby_eeprom(hw);
1572 1.3 msaitoh /*
1573 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1574 1.3 msaitoh * in the opcode
1575 1.3 msaitoh */
1576 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1577 1.3 msaitoh ((offset + i) >= 128))
1578 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1579 1.3 msaitoh
1580 1.3 msaitoh /* Send the READ command (opcode + addr) */
1581 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1582 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1583 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1584 1.3 msaitoh hw->eeprom.address_bits);
1585 1.3 msaitoh
1586 1.3 msaitoh /* Read the data. */
1587 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1588 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1589 1.3 msaitoh }
1590 1.1 dyoung
1591 1.3 msaitoh /* End this read operation */
1592 1.1 dyoung ixgbe_release_eeprom(hw);
1593 1.1 dyoung }
1594 1.1 dyoung
1595 1.1 dyoung return status;
1596 1.1 dyoung }
1597 1.1 dyoung
1598 1.1 dyoung /**
1599 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1600 1.1 dyoung * @hw: pointer to hardware structure
1601 1.1 dyoung * @offset: offset within the EEPROM to be read
1602 1.1 dyoung * @data: read 16 bit value from EEPROM
1603 1.1 dyoung *
1604 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1605 1.1 dyoung **/
1606 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1607 1.3 msaitoh u16 *data)
1608 1.1 dyoung {
1609 1.1 dyoung s32 status;
1610 1.1 dyoung
1611 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1612 1.1 dyoung
1613 1.1 dyoung hw->eeprom.ops.init_params(hw);
1614 1.1 dyoung
1615 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1616 1.1 dyoung status = IXGBE_ERR_EEPROM;
1617 1.1 dyoung goto out;
1618 1.1 dyoung }
1619 1.1 dyoung
1620 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1621 1.3 msaitoh
1622 1.3 msaitoh out:
1623 1.3 msaitoh return status;
1624 1.3 msaitoh }
1625 1.3 msaitoh
1626 1.3 msaitoh /**
1627 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1628 1.3 msaitoh * @hw: pointer to hardware structure
1629 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1630 1.3 msaitoh * @words: number of word(s)
1631 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1632 1.3 msaitoh *
1633 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1634 1.3 msaitoh **/
1635 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1636 1.3 msaitoh u16 words, u16 *data)
1637 1.3 msaitoh {
1638 1.3 msaitoh u32 eerd;
1639 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1640 1.3 msaitoh u32 i;
1641 1.3 msaitoh
1642 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1643 1.3 msaitoh
1644 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1645 1.3 msaitoh
1646 1.3 msaitoh if (words == 0) {
1647 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1648 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1649 1.3 msaitoh goto out;
1650 1.3 msaitoh }
1651 1.3 msaitoh
1652 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1653 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1654 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1655 1.3 msaitoh goto out;
1656 1.3 msaitoh }
1657 1.3 msaitoh
1658 1.3 msaitoh for (i = 0; i < words; i++) {
1659 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1660 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1661 1.3 msaitoh
1662 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1663 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1664 1.1 dyoung
1665 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1666 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1667 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1668 1.3 msaitoh } else {
1669 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1670 1.3 msaitoh goto out;
1671 1.1 dyoung }
1672 1.1 dyoung }
1673 1.3 msaitoh out:
1674 1.3 msaitoh return status;
1675 1.3 msaitoh }
1676 1.1 dyoung
1677 1.3 msaitoh /**
1678 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1679 1.3 msaitoh * @hw: pointer to hardware structure
1680 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1681 1.3 msaitoh *
1682 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1683 1.3 msaitoh * This function is called only when we are writing a new large buffer
1684 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1685 1.3 msaitoh **/
1686 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1687 1.3 msaitoh u16 offset)
1688 1.3 msaitoh {
1689 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1690 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1691 1.3 msaitoh u16 i;
1692 1.3 msaitoh
1693 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1694 1.3 msaitoh
1695 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1696 1.3 msaitoh data[i] = i;
1697 1.1 dyoung
1698 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1699 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1700 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1701 1.3 msaitoh hw->eeprom.word_page_size = 0;
1702 1.3 msaitoh if (status != IXGBE_SUCCESS)
1703 1.3 msaitoh goto out;
1704 1.1 dyoung
1705 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1706 1.3 msaitoh if (status != IXGBE_SUCCESS)
1707 1.3 msaitoh goto out;
1708 1.1 dyoung
1709 1.3 msaitoh /*
1710 1.3 msaitoh * When writing in burst more than the actual page size
1711 1.3 msaitoh * EEPROM address wraps around current page.
1712 1.3 msaitoh */
1713 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1714 1.1 dyoung
1715 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1716 1.3 msaitoh hw->eeprom.word_page_size);
1717 1.1 dyoung out:
1718 1.1 dyoung return status;
1719 1.1 dyoung }
1720 1.1 dyoung
1721 1.1 dyoung /**
1722 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1723 1.1 dyoung * @hw: pointer to hardware structure
1724 1.1 dyoung * @offset: offset of word in the EEPROM to read
1725 1.1 dyoung * @data: word read from the EEPROM
1726 1.1 dyoung *
1727 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1728 1.1 dyoung **/
1729 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1730 1.1 dyoung {
1731 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1732 1.3 msaitoh }
1733 1.3 msaitoh
1734 1.3 msaitoh /**
1735 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1736 1.3 msaitoh * @hw: pointer to hardware structure
1737 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1738 1.3 msaitoh * @words: number of word(s)
1739 1.3 msaitoh * @data: word(s) write to the EEPROM
1740 1.3 msaitoh *
1741 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1742 1.3 msaitoh **/
1743 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1744 1.3 msaitoh u16 words, u16 *data)
1745 1.3 msaitoh {
1746 1.3 msaitoh u32 eewr;
1747 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1748 1.3 msaitoh u16 i;
1749 1.1 dyoung
1750 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1751 1.1 dyoung
1752 1.1 dyoung hw->eeprom.ops.init_params(hw);
1753 1.1 dyoung
1754 1.3 msaitoh if (words == 0) {
1755 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1756 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1757 1.3 msaitoh goto out;
1758 1.3 msaitoh }
1759 1.3 msaitoh
1760 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1761 1.1 dyoung status = IXGBE_ERR_EEPROM;
1762 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1763 1.1 dyoung goto out;
1764 1.1 dyoung }
1765 1.1 dyoung
1766 1.3 msaitoh for (i = 0; i < words; i++) {
1767 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1768 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1769 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1770 1.3 msaitoh
1771 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1772 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1773 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1774 1.3 msaitoh goto out;
1775 1.3 msaitoh }
1776 1.1 dyoung
1777 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1778 1.1 dyoung
1779 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1780 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1781 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1782 1.3 msaitoh goto out;
1783 1.3 msaitoh }
1784 1.3 msaitoh }
1785 1.1 dyoung
1786 1.1 dyoung out:
1787 1.1 dyoung return status;
1788 1.1 dyoung }
1789 1.1 dyoung
1790 1.1 dyoung /**
1791 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1792 1.1 dyoung * @hw: pointer to hardware structure
1793 1.1 dyoung * @offset: offset of word in the EEPROM to write
1794 1.1 dyoung * @data: word write to the EEPROM
1795 1.1 dyoung *
1796 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1797 1.1 dyoung **/
1798 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1799 1.1 dyoung {
1800 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1801 1.1 dyoung }
1802 1.1 dyoung
1803 1.1 dyoung /**
1804 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1805 1.1 dyoung * @hw: pointer to hardware structure
1806 1.1 dyoung * @ee_reg: EEPROM flag for polling
1807 1.1 dyoung *
1808 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1809 1.1 dyoung * read or write is done respectively.
1810 1.1 dyoung **/
1811 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1812 1.1 dyoung {
1813 1.1 dyoung u32 i;
1814 1.1 dyoung u32 reg;
1815 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1816 1.1 dyoung
1817 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1818 1.1 dyoung
1819 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1820 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1821 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1822 1.1 dyoung else
1823 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1824 1.1 dyoung
1825 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1826 1.1 dyoung status = IXGBE_SUCCESS;
1827 1.1 dyoung break;
1828 1.1 dyoung }
1829 1.1 dyoung usec_delay(5);
1830 1.1 dyoung }
1831 1.6 msaitoh
1832 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1833 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1834 1.6 msaitoh "EEPROM read/write done polling timed out");
1835 1.6 msaitoh
1836 1.1 dyoung return status;
1837 1.1 dyoung }
1838 1.1 dyoung
1839 1.1 dyoung /**
1840 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1841 1.1 dyoung * @hw: pointer to hardware structure
1842 1.1 dyoung *
1843 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1844 1.1 dyoung * be called before issuing a command to the EEPROM.
1845 1.1 dyoung **/
1846 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1847 1.1 dyoung {
1848 1.1 dyoung s32 status = IXGBE_SUCCESS;
1849 1.1 dyoung u32 eec;
1850 1.1 dyoung u32 i;
1851 1.1 dyoung
1852 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1853 1.1 dyoung
1854 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1855 1.3 msaitoh != IXGBE_SUCCESS)
1856 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1857 1.1 dyoung
1858 1.1 dyoung if (status == IXGBE_SUCCESS) {
1859 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1860 1.1 dyoung
1861 1.1 dyoung /* Request EEPROM Access */
1862 1.1 dyoung eec |= IXGBE_EEC_REQ;
1863 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1864 1.1 dyoung
1865 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1866 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1867 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1868 1.1 dyoung break;
1869 1.1 dyoung usec_delay(5);
1870 1.1 dyoung }
1871 1.1 dyoung
1872 1.1 dyoung /* Release if grant not acquired */
1873 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1874 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1875 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1876 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1877 1.1 dyoung
1878 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1879 1.1 dyoung status = IXGBE_ERR_EEPROM;
1880 1.1 dyoung }
1881 1.1 dyoung
1882 1.1 dyoung /* Setup EEPROM for Read/Write */
1883 1.1 dyoung if (status == IXGBE_SUCCESS) {
1884 1.1 dyoung /* Clear CS and SK */
1885 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1886 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1887 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1888 1.1 dyoung usec_delay(1);
1889 1.1 dyoung }
1890 1.1 dyoung }
1891 1.1 dyoung return status;
1892 1.1 dyoung }
1893 1.1 dyoung
1894 1.1 dyoung /**
1895 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1896 1.1 dyoung * @hw: pointer to hardware structure
1897 1.1 dyoung *
1898 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1899 1.1 dyoung **/
1900 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1901 1.1 dyoung {
1902 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1903 1.1 dyoung u32 timeout = 2000;
1904 1.1 dyoung u32 i;
1905 1.1 dyoung u32 swsm;
1906 1.1 dyoung
1907 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1908 1.1 dyoung
1909 1.1 dyoung
1910 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1911 1.1 dyoung for (i = 0; i < timeout; i++) {
1912 1.1 dyoung /*
1913 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1914 1.1 dyoung * set and we have the semaphore
1915 1.1 dyoung */
1916 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1917 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1918 1.1 dyoung status = IXGBE_SUCCESS;
1919 1.1 dyoung break;
1920 1.1 dyoung }
1921 1.1 dyoung usec_delay(50);
1922 1.1 dyoung }
1923 1.1 dyoung
1924 1.3 msaitoh if (i == timeout) {
1925 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1926 1.3 msaitoh "not granted.\n");
1927 1.3 msaitoh /*
1928 1.3 msaitoh * this release is particularly important because our attempts
1929 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1930 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1931 1.3 msaitoh * bits to free the driver to make progress
1932 1.3 msaitoh */
1933 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1934 1.3 msaitoh
1935 1.3 msaitoh usec_delay(50);
1936 1.3 msaitoh /*
1937 1.3 msaitoh * one last try
1938 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1939 1.3 msaitoh * set and we have the semaphore
1940 1.3 msaitoh */
1941 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1942 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1943 1.3 msaitoh status = IXGBE_SUCCESS;
1944 1.3 msaitoh }
1945 1.3 msaitoh
1946 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1947 1.1 dyoung if (status == IXGBE_SUCCESS) {
1948 1.1 dyoung for (i = 0; i < timeout; i++) {
1949 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1950 1.1 dyoung
1951 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1952 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1953 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1954 1.1 dyoung
1955 1.1 dyoung /*
1956 1.1 dyoung * If we set the bit successfully then we got the
1957 1.1 dyoung * semaphore.
1958 1.1 dyoung */
1959 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1960 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1961 1.1 dyoung break;
1962 1.1 dyoung
1963 1.1 dyoung usec_delay(50);
1964 1.1 dyoung }
1965 1.1 dyoung
1966 1.1 dyoung /*
1967 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1968 1.1 dyoung * was not granted because we don't have access to the EEPROM
1969 1.1 dyoung */
1970 1.1 dyoung if (i >= timeout) {
1971 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1972 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1973 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1974 1.1 dyoung status = IXGBE_ERR_EEPROM;
1975 1.1 dyoung }
1976 1.1 dyoung } else {
1977 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1978 1.6 msaitoh "Software semaphore SMBI between device drivers "
1979 1.6 msaitoh "not granted.\n");
1980 1.1 dyoung }
1981 1.1 dyoung
1982 1.1 dyoung return status;
1983 1.1 dyoung }
1984 1.1 dyoung
1985 1.1 dyoung /**
1986 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1987 1.1 dyoung * @hw: pointer to hardware structure
1988 1.1 dyoung *
1989 1.1 dyoung * This function clears hardware semaphore bits.
1990 1.1 dyoung **/
1991 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1992 1.1 dyoung {
1993 1.1 dyoung u32 swsm;
1994 1.1 dyoung
1995 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1996 1.1 dyoung
1997 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1998 1.1 dyoung
1999 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
2000 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
2001 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2002 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2003 1.1 dyoung }
2004 1.1 dyoung
2005 1.1 dyoung /**
2006 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
2007 1.1 dyoung * @hw: pointer to hardware structure
2008 1.1 dyoung **/
2009 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2010 1.1 dyoung {
2011 1.1 dyoung s32 status = IXGBE_SUCCESS;
2012 1.1 dyoung u16 i;
2013 1.1 dyoung u8 spi_stat_reg;
2014 1.1 dyoung
2015 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
2016 1.1 dyoung
2017 1.1 dyoung /*
2018 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
2019 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
2020 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
2021 1.1 dyoung * 5 milliseconds, then error out.
2022 1.1 dyoung */
2023 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2024 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2025 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2026 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2027 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2028 1.1 dyoung break;
2029 1.1 dyoung
2030 1.1 dyoung usec_delay(5);
2031 1.1 dyoung ixgbe_standby_eeprom(hw);
2032 1.11 msaitoh }
2033 1.1 dyoung
2034 1.1 dyoung /*
2035 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2036 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2037 1.1 dyoung */
2038 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2039 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2040 1.1 dyoung status = IXGBE_ERR_EEPROM;
2041 1.1 dyoung }
2042 1.1 dyoung
2043 1.1 dyoung return status;
2044 1.1 dyoung }
2045 1.1 dyoung
2046 1.1 dyoung /**
2047 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2048 1.1 dyoung * @hw: pointer to hardware structure
2049 1.1 dyoung **/
2050 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2051 1.1 dyoung {
2052 1.1 dyoung u32 eec;
2053 1.1 dyoung
2054 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2055 1.1 dyoung
2056 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2057 1.1 dyoung
2058 1.1 dyoung /* Toggle CS to flush commands */
2059 1.1 dyoung eec |= IXGBE_EEC_CS;
2060 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2061 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2062 1.1 dyoung usec_delay(1);
2063 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2064 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2065 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2066 1.1 dyoung usec_delay(1);
2067 1.1 dyoung }
2068 1.1 dyoung
2069 1.1 dyoung /**
2070 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2071 1.1 dyoung * @hw: pointer to hardware structure
2072 1.1 dyoung * @data: data to send to the EEPROM
2073 1.1 dyoung * @count: number of bits to shift out
2074 1.1 dyoung **/
2075 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2076 1.3 msaitoh u16 count)
2077 1.1 dyoung {
2078 1.1 dyoung u32 eec;
2079 1.1 dyoung u32 mask;
2080 1.1 dyoung u32 i;
2081 1.1 dyoung
2082 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2083 1.1 dyoung
2084 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2085 1.1 dyoung
2086 1.1 dyoung /*
2087 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2088 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2089 1.1 dyoung */
2090 1.1 dyoung mask = 0x01 << (count - 1);
2091 1.1 dyoung
2092 1.1 dyoung for (i = 0; i < count; i++) {
2093 1.1 dyoung /*
2094 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2095 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2096 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2097 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2098 1.1 dyoung * raising and then lowering the clock.
2099 1.1 dyoung */
2100 1.1 dyoung if (data & mask)
2101 1.1 dyoung eec |= IXGBE_EEC_DI;
2102 1.1 dyoung else
2103 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2104 1.1 dyoung
2105 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2106 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2107 1.1 dyoung
2108 1.1 dyoung usec_delay(1);
2109 1.1 dyoung
2110 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2111 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2112 1.1 dyoung
2113 1.1 dyoung /*
2114 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2115 1.1 dyoung * EEPROM
2116 1.1 dyoung */
2117 1.1 dyoung mask = mask >> 1;
2118 1.11 msaitoh }
2119 1.1 dyoung
2120 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2121 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2122 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2123 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2124 1.1 dyoung }
2125 1.1 dyoung
2126 1.1 dyoung /**
2127 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2128 1.1 dyoung * @hw: pointer to hardware structure
2129 1.22 msaitoh * @count: number of bits to shift
2130 1.1 dyoung **/
2131 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2132 1.1 dyoung {
2133 1.1 dyoung u32 eec;
2134 1.1 dyoung u32 i;
2135 1.1 dyoung u16 data = 0;
2136 1.1 dyoung
2137 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2138 1.1 dyoung
2139 1.1 dyoung /*
2140 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2141 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2142 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2143 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2144 1.1 dyoung * "DI" bit should always be clear.
2145 1.1 dyoung */
2146 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2147 1.1 dyoung
2148 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2149 1.1 dyoung
2150 1.1 dyoung for (i = 0; i < count; i++) {
2151 1.1 dyoung data = data << 1;
2152 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2153 1.1 dyoung
2154 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2155 1.1 dyoung
2156 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2157 1.1 dyoung if (eec & IXGBE_EEC_DO)
2158 1.1 dyoung data |= 1;
2159 1.1 dyoung
2160 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2161 1.1 dyoung }
2162 1.1 dyoung
2163 1.1 dyoung return data;
2164 1.1 dyoung }
2165 1.1 dyoung
2166 1.1 dyoung /**
2167 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2168 1.1 dyoung * @hw: pointer to hardware structure
2169 1.1 dyoung * @eec: EEC register's current value
2170 1.1 dyoung **/
2171 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2172 1.1 dyoung {
2173 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2174 1.1 dyoung
2175 1.1 dyoung /*
2176 1.1 dyoung * Raise the clock input to the EEPROM
2177 1.1 dyoung * (setting the SK bit), then delay
2178 1.1 dyoung */
2179 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2180 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2181 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2182 1.1 dyoung usec_delay(1);
2183 1.1 dyoung }
2184 1.1 dyoung
2185 1.1 dyoung /**
2186 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2187 1.1 dyoung * @hw: pointer to hardware structure
2188 1.22 msaitoh * @eec: EEC's current value
2189 1.1 dyoung **/
2190 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2191 1.1 dyoung {
2192 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2193 1.1 dyoung
2194 1.1 dyoung /*
2195 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2196 1.1 dyoung * delay
2197 1.1 dyoung */
2198 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2199 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2200 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2201 1.1 dyoung usec_delay(1);
2202 1.1 dyoung }
2203 1.1 dyoung
2204 1.1 dyoung /**
2205 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2206 1.1 dyoung * @hw: pointer to hardware structure
2207 1.1 dyoung **/
2208 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2209 1.1 dyoung {
2210 1.1 dyoung u32 eec;
2211 1.1 dyoung
2212 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2213 1.1 dyoung
2214 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2215 1.1 dyoung
2216 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2217 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2218 1.1 dyoung
2219 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2220 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2221 1.1 dyoung
2222 1.1 dyoung usec_delay(1);
2223 1.1 dyoung
2224 1.1 dyoung /* Stop requesting EEPROM access */
2225 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2226 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2227 1.1 dyoung
2228 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2229 1.1 dyoung
2230 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2231 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2232 1.1 dyoung }
2233 1.1 dyoung
2234 1.1 dyoung /**
2235 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2236 1.1 dyoung * @hw: pointer to hardware structure
2237 1.8 msaitoh *
2238 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2239 1.1 dyoung **/
2240 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2241 1.1 dyoung {
2242 1.1 dyoung u16 i;
2243 1.1 dyoung u16 j;
2244 1.1 dyoung u16 checksum = 0;
2245 1.1 dyoung u16 length = 0;
2246 1.1 dyoung u16 pointer = 0;
2247 1.1 dyoung u16 word = 0;
2248 1.1 dyoung
2249 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2250 1.1 dyoung
2251 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2252 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2253 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2254 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2255 1.8 msaitoh return IXGBE_ERR_EEPROM;
2256 1.1 dyoung }
2257 1.1 dyoung checksum += word;
2258 1.1 dyoung }
2259 1.1 dyoung
2260 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2261 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2262 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2263 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2264 1.8 msaitoh return IXGBE_ERR_EEPROM;
2265 1.8 msaitoh }
2266 1.8 msaitoh
2267 1.8 msaitoh /* If the pointer seems invalid */
2268 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2269 1.8 msaitoh continue;
2270 1.8 msaitoh
2271 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2272 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2273 1.8 msaitoh return IXGBE_ERR_EEPROM;
2274 1.8 msaitoh }
2275 1.8 msaitoh
2276 1.8 msaitoh if (length == 0xFFFF || length == 0)
2277 1.8 msaitoh continue;
2278 1.1 dyoung
2279 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2280 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2281 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2282 1.8 msaitoh return IXGBE_ERR_EEPROM;
2283 1.1 dyoung }
2284 1.8 msaitoh checksum += word;
2285 1.1 dyoung }
2286 1.1 dyoung }
2287 1.1 dyoung
2288 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2289 1.1 dyoung
2290 1.8 msaitoh return (s32)checksum;
2291 1.1 dyoung }
2292 1.1 dyoung
2293 1.1 dyoung /**
2294 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2295 1.1 dyoung * @hw: pointer to hardware structure
2296 1.1 dyoung * @checksum_val: calculated checksum
2297 1.1 dyoung *
2298 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2299 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2300 1.1 dyoung **/
2301 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2302 1.3 msaitoh u16 *checksum_val)
2303 1.1 dyoung {
2304 1.1 dyoung s32 status;
2305 1.1 dyoung u16 checksum;
2306 1.1 dyoung u16 read_checksum = 0;
2307 1.1 dyoung
2308 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2309 1.1 dyoung
2310 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2311 1.1 dyoung * not continue or we could be in for a very long wait while every
2312 1.1 dyoung * EEPROM read fails
2313 1.1 dyoung */
2314 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2315 1.8 msaitoh if (status) {
2316 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2317 1.8 msaitoh return status;
2318 1.8 msaitoh }
2319 1.1 dyoung
2320 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2321 1.8 msaitoh if (status < 0)
2322 1.8 msaitoh return status;
2323 1.1 dyoung
2324 1.8 msaitoh checksum = (u16)(status & 0xffff);
2325 1.1 dyoung
2326 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2327 1.8 msaitoh if (status) {
2328 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2329 1.8 msaitoh return status;
2330 1.1 dyoung }
2331 1.1 dyoung
2332 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2333 1.8 msaitoh * calculated checksum
2334 1.8 msaitoh */
2335 1.8 msaitoh if (read_checksum != checksum)
2336 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2337 1.8 msaitoh
2338 1.8 msaitoh /* If the user cares, return the calculated checksum */
2339 1.8 msaitoh if (checksum_val)
2340 1.8 msaitoh *checksum_val = checksum;
2341 1.8 msaitoh
2342 1.1 dyoung return status;
2343 1.1 dyoung }
2344 1.1 dyoung
2345 1.1 dyoung /**
2346 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2347 1.1 dyoung * @hw: pointer to hardware structure
2348 1.1 dyoung **/
2349 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2350 1.1 dyoung {
2351 1.1 dyoung s32 status;
2352 1.1 dyoung u16 checksum;
2353 1.1 dyoung
2354 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2355 1.1 dyoung
2356 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2357 1.1 dyoung * not continue or we could be in for a very long wait while every
2358 1.1 dyoung * EEPROM read fails
2359 1.1 dyoung */
2360 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2361 1.8 msaitoh if (status) {
2362 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2363 1.8 msaitoh return status;
2364 1.1 dyoung }
2365 1.1 dyoung
2366 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2367 1.8 msaitoh if (status < 0)
2368 1.8 msaitoh return status;
2369 1.8 msaitoh
2370 1.8 msaitoh checksum = (u16)(status & 0xffff);
2371 1.8 msaitoh
2372 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2373 1.8 msaitoh
2374 1.1 dyoung return status;
2375 1.1 dyoung }
2376 1.1 dyoung
2377 1.1 dyoung /**
2378 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2379 1.1 dyoung * @mac_addr: pointer to MAC address.
2380 1.1 dyoung *
2381 1.14 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2382 1.1 dyoung **/
2383 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2384 1.1 dyoung {
2385 1.1 dyoung s32 status = IXGBE_SUCCESS;
2386 1.1 dyoung
2387 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2388 1.1 dyoung
2389 1.1 dyoung /* Make sure it is not a multicast address */
2390 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2391 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2392 1.1 dyoung /* Not a broadcast address */
2393 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2394 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2395 1.1 dyoung /* Reject the zero address */
2396 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2397 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2398 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2399 1.1 dyoung }
2400 1.1 dyoung return status;
2401 1.1 dyoung }
2402 1.1 dyoung
2403 1.1 dyoung /**
2404 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2405 1.1 dyoung * @hw: pointer to hardware structure
2406 1.1 dyoung * @index: Receive address register to write
2407 1.1 dyoung * @addr: Address to put into receive address register
2408 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2409 1.1 dyoung * @enable_addr: set flag that address is active
2410 1.1 dyoung *
2411 1.1 dyoung * Puts an ethernet address into a receive address register.
2412 1.1 dyoung **/
2413 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2414 1.3 msaitoh u32 enable_addr)
2415 1.1 dyoung {
2416 1.1 dyoung u32 rar_low, rar_high;
2417 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2418 1.1 dyoung
2419 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2420 1.1 dyoung
2421 1.1 dyoung /* Make sure we are using a valid rar index range */
2422 1.1 dyoung if (index >= rar_entries) {
2423 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2424 1.6 msaitoh "RAR index %d is out of range.\n", index);
2425 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2426 1.1 dyoung }
2427 1.1 dyoung
2428 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2429 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2430 1.1 dyoung
2431 1.1 dyoung /*
2432 1.1 dyoung * HW expects these in little endian so we reverse the byte
2433 1.1 dyoung * order from network order (big endian) to little endian
2434 1.1 dyoung */
2435 1.1 dyoung rar_low = ((u32)addr[0] |
2436 1.3 msaitoh ((u32)addr[1] << 8) |
2437 1.3 msaitoh ((u32)addr[2] << 16) |
2438 1.3 msaitoh ((u32)addr[3] << 24));
2439 1.1 dyoung /*
2440 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2441 1.1 dyoung * so save everything except the lower 16 bits that hold part
2442 1.1 dyoung * of the address and the address valid bit.
2443 1.1 dyoung */
2444 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2445 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2446 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2447 1.1 dyoung
2448 1.1 dyoung if (enable_addr != 0)
2449 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2450 1.1 dyoung
2451 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2452 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2453 1.1 dyoung
2454 1.1 dyoung return IXGBE_SUCCESS;
2455 1.1 dyoung }
2456 1.1 dyoung
2457 1.1 dyoung /**
2458 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2459 1.1 dyoung * @hw: pointer to hardware structure
2460 1.1 dyoung * @index: Receive address register to write
2461 1.1 dyoung *
2462 1.1 dyoung * Clears an ethernet address from a receive address register.
2463 1.1 dyoung **/
2464 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2465 1.1 dyoung {
2466 1.1 dyoung u32 rar_high;
2467 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2468 1.1 dyoung
2469 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2470 1.1 dyoung
2471 1.1 dyoung /* Make sure we are using a valid rar index range */
2472 1.1 dyoung if (index >= rar_entries) {
2473 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2474 1.6 msaitoh "RAR index %d is out of range.\n", index);
2475 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2476 1.1 dyoung }
2477 1.1 dyoung
2478 1.1 dyoung /*
2479 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2480 1.1 dyoung * so save everything except the lower 16 bits that hold part
2481 1.1 dyoung * of the address and the address valid bit.
2482 1.1 dyoung */
2483 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2484 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2485 1.1 dyoung
2486 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2487 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2488 1.1 dyoung
2489 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2490 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2491 1.1 dyoung
2492 1.1 dyoung return IXGBE_SUCCESS;
2493 1.1 dyoung }
2494 1.1 dyoung
2495 1.1 dyoung /**
2496 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2497 1.1 dyoung * @hw: pointer to hardware structure
2498 1.1 dyoung *
2499 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2500 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2501 1.1 dyoung * the receiver is in reset when the routine is called.
2502 1.1 dyoung **/
2503 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2504 1.1 dyoung {
2505 1.1 dyoung u32 i;
2506 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2507 1.1 dyoung
2508 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2509 1.1 dyoung
2510 1.1 dyoung /*
2511 1.1 dyoung * If the current mac address is valid, assume it is a software override
2512 1.1 dyoung * to the permanent address.
2513 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2514 1.1 dyoung */
2515 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2516 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2517 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2518 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2519 1.1 dyoung
2520 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2521 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2522 1.3 msaitoh hw->mac.addr[2]);
2523 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2524 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2525 1.1 dyoung } else {
2526 1.1 dyoung /* Setup the receive address. */
2527 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2528 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2529 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2530 1.3 msaitoh hw->mac.addr[2]);
2531 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2532 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2533 1.1 dyoung
2534 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2535 1.14 msaitoh }
2536 1.14 msaitoh
2537 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2538 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2539 1.1 dyoung
2540 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2541 1.1 dyoung
2542 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2543 1.1 dyoung
2544 1.1 dyoung /* Zero out the other receive addresses. */
2545 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2546 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2547 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2548 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2549 1.1 dyoung }
2550 1.1 dyoung
2551 1.1 dyoung /* Clear the MTA */
2552 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2553 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2554 1.1 dyoung
2555 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2556 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2557 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2558 1.1 dyoung
2559 1.1 dyoung ixgbe_init_uta_tables(hw);
2560 1.1 dyoung
2561 1.1 dyoung return IXGBE_SUCCESS;
2562 1.1 dyoung }
2563 1.1 dyoung
2564 1.1 dyoung /**
2565 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2566 1.1 dyoung * @hw: pointer to hardware structure
2567 1.1 dyoung * @addr: new address
2568 1.22 msaitoh * @vmdq: VMDq "set" or "pool" index
2569 1.1 dyoung *
2570 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2571 1.1 dyoung **/
2572 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2573 1.1 dyoung {
2574 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2575 1.1 dyoung u32 rar;
2576 1.1 dyoung
2577 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2578 1.1 dyoung
2579 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2580 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2581 1.1 dyoung
2582 1.1 dyoung /*
2583 1.1 dyoung * Place this address in the RAR if there is room,
2584 1.1 dyoung * else put the controller into promiscuous mode
2585 1.1 dyoung */
2586 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2587 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2588 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2589 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2590 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2591 1.1 dyoung } else {
2592 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2593 1.1 dyoung }
2594 1.1 dyoung
2595 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2596 1.1 dyoung }
2597 1.1 dyoung
2598 1.1 dyoung /**
2599 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2600 1.1 dyoung * @hw: pointer to hardware structure
2601 1.1 dyoung * @addr_list: the list of new addresses
2602 1.1 dyoung * @addr_count: number of addresses
2603 1.1 dyoung * @next: iterator function to walk the address list
2604 1.1 dyoung *
2605 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2606 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2607 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2608 1.1 dyoung *
2609 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2610 1.1 dyoung * manually putting the device into promiscuous mode.
2611 1.1 dyoung **/
2612 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2613 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2614 1.1 dyoung {
2615 1.1 dyoung u8 *addr;
2616 1.1 dyoung u32 i;
2617 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2618 1.1 dyoung u32 uc_addr_in_use;
2619 1.1 dyoung u32 fctrl;
2620 1.1 dyoung u32 vmdq;
2621 1.1 dyoung
2622 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2623 1.1 dyoung
2624 1.1 dyoung /*
2625 1.1 dyoung * Clear accounting of old secondary address list,
2626 1.1 dyoung * don't count RAR[0]
2627 1.1 dyoung */
2628 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2629 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2630 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2631 1.1 dyoung
2632 1.1 dyoung /* Zero out the other receive addresses */
2633 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2634 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2635 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2636 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2637 1.1 dyoung }
2638 1.1 dyoung
2639 1.1 dyoung /* Add the new addresses */
2640 1.1 dyoung for (i = 0; i < addr_count; i++) {
2641 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2642 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2643 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2644 1.1 dyoung }
2645 1.1 dyoung
2646 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2647 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2648 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2649 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2650 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2651 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2652 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2653 1.1 dyoung }
2654 1.1 dyoung } else {
2655 1.1 dyoung /* only disable if set by overflow, not by user */
2656 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2657 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2658 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2659 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2660 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2661 1.1 dyoung }
2662 1.1 dyoung }
2663 1.1 dyoung
2664 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2665 1.1 dyoung return IXGBE_SUCCESS;
2666 1.1 dyoung }
2667 1.1 dyoung
2668 1.1 dyoung /**
2669 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2670 1.1 dyoung * @hw: pointer to hardware structure
2671 1.1 dyoung * @mc_addr: the multicast address
2672 1.1 dyoung *
2673 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2674 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2675 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2676 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2677 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2678 1.1 dyoung * to mc_filter_type.
2679 1.1 dyoung **/
2680 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2681 1.1 dyoung {
2682 1.1 dyoung u32 vector = 0;
2683 1.1 dyoung
2684 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2685 1.1 dyoung
2686 1.1 dyoung switch (hw->mac.mc_filter_type) {
2687 1.1 dyoung case 0: /* use bits [47:36] of the address */
2688 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2689 1.1 dyoung break;
2690 1.1 dyoung case 1: /* use bits [46:35] of the address */
2691 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2692 1.1 dyoung break;
2693 1.1 dyoung case 2: /* use bits [45:34] of the address */
2694 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2695 1.1 dyoung break;
2696 1.1 dyoung case 3: /* use bits [43:32] of the address */
2697 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2698 1.1 dyoung break;
2699 1.1 dyoung default: /* Invalid mc_filter_type */
2700 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2701 1.1 dyoung ASSERT(0);
2702 1.1 dyoung break;
2703 1.1 dyoung }
2704 1.1 dyoung
2705 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2706 1.1 dyoung vector &= 0xFFF;
2707 1.1 dyoung return vector;
2708 1.1 dyoung }
2709 1.1 dyoung
2710 1.1 dyoung /**
2711 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2712 1.1 dyoung * @hw: pointer to hardware structure
2713 1.22 msaitoh * @mc_addr: Multicast address
2714 1.1 dyoung *
2715 1.1 dyoung * Sets the bit-vector in the multicast table.
2716 1.1 dyoung **/
2717 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2718 1.1 dyoung {
2719 1.1 dyoung u32 vector;
2720 1.1 dyoung u32 vector_bit;
2721 1.1 dyoung u32 vector_reg;
2722 1.1 dyoung
2723 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2724 1.1 dyoung
2725 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2726 1.1 dyoung
2727 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2728 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2729 1.1 dyoung
2730 1.1 dyoung /*
2731 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2732 1.1 dyoung * like an array of 4096 bits. We want to set bit
2733 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2734 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2735 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2736 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2737 1.1 dyoung * the value.
2738 1.1 dyoung */
2739 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2740 1.1 dyoung vector_bit = vector & 0x1F;
2741 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2742 1.1 dyoung }
2743 1.1 dyoung
2744 1.1 dyoung /**
2745 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2746 1.1 dyoung * @hw: pointer to hardware structure
2747 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2748 1.1 dyoung * @mc_addr_count: number of addresses
2749 1.1 dyoung * @next: iterator function to walk the multicast address list
2750 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2751 1.1 dyoung *
2752 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2753 1.3 msaitoh * Hashes the given addresses into the multicast table.
2754 1.1 dyoung **/
2755 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2756 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2757 1.3 msaitoh bool clear)
2758 1.1 dyoung {
2759 1.1 dyoung u32 i;
2760 1.1 dyoung u32 vmdq;
2761 1.1 dyoung
2762 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2763 1.1 dyoung
2764 1.1 dyoung /*
2765 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2766 1.1 dyoung * use.
2767 1.1 dyoung */
2768 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2769 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2770 1.1 dyoung
2771 1.1 dyoung /* Clear mta_shadow */
2772 1.3 msaitoh if (clear) {
2773 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2774 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2775 1.3 msaitoh }
2776 1.1 dyoung
2777 1.1 dyoung /* Update mta_shadow */
2778 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2779 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2780 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2781 1.1 dyoung }
2782 1.1 dyoung
2783 1.1 dyoung /* Enable mta */
2784 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2785 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2786 1.1 dyoung hw->mac.mta_shadow[i]);
2787 1.1 dyoung
2788 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2789 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2790 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2791 1.1 dyoung
2792 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2793 1.1 dyoung return IXGBE_SUCCESS;
2794 1.1 dyoung }
2795 1.1 dyoung
2796 1.1 dyoung /**
2797 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2798 1.1 dyoung * @hw: pointer to hardware structure
2799 1.1 dyoung *
2800 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2801 1.1 dyoung **/
2802 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2803 1.1 dyoung {
2804 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2805 1.1 dyoung
2806 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2807 1.1 dyoung
2808 1.1 dyoung if (a->mta_in_use > 0)
2809 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2810 1.3 msaitoh hw->mac.mc_filter_type);
2811 1.1 dyoung
2812 1.1 dyoung return IXGBE_SUCCESS;
2813 1.1 dyoung }
2814 1.1 dyoung
2815 1.1 dyoung /**
2816 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2817 1.1 dyoung * @hw: pointer to hardware structure
2818 1.1 dyoung *
2819 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2820 1.1 dyoung **/
2821 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2822 1.1 dyoung {
2823 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2824 1.1 dyoung
2825 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2826 1.1 dyoung
2827 1.1 dyoung if (a->mta_in_use > 0)
2828 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2829 1.1 dyoung
2830 1.1 dyoung return IXGBE_SUCCESS;
2831 1.1 dyoung }
2832 1.1 dyoung
2833 1.1 dyoung /**
2834 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2835 1.1 dyoung * @hw: pointer to hardware structure
2836 1.1 dyoung *
2837 1.1 dyoung * Enable flow control according to the current settings.
2838 1.1 dyoung **/
2839 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2840 1.1 dyoung {
2841 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2842 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2843 1.1 dyoung u32 reg;
2844 1.1 dyoung u32 fcrtl, fcrth;
2845 1.4 msaitoh int i;
2846 1.1 dyoung
2847 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2848 1.1 dyoung
2849 1.4 msaitoh /* Validate the water mark configuration */
2850 1.4 msaitoh if (!hw->fc.pause_time) {
2851 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2852 1.4 msaitoh goto out;
2853 1.4 msaitoh }
2854 1.4 msaitoh
2855 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2856 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2857 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2858 1.4 msaitoh hw->fc.high_water[i]) {
2859 1.4 msaitoh if (!hw->fc.low_water[i] ||
2860 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2861 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2862 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2863 1.4 msaitoh goto out;
2864 1.4 msaitoh }
2865 1.4 msaitoh }
2866 1.4 msaitoh }
2867 1.4 msaitoh
2868 1.1 dyoung /* Negotiate the fc mode to use */
2869 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2870 1.1 dyoung
2871 1.1 dyoung /* Disable any previous flow control settings */
2872 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2873 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2874 1.1 dyoung
2875 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2876 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2877 1.1 dyoung
2878 1.1 dyoung /*
2879 1.1 dyoung * The possible values of fc.current_mode are:
2880 1.1 dyoung * 0: Flow control is completely disabled
2881 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2882 1.1 dyoung * but not send pause frames).
2883 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2884 1.1 dyoung * we do not support receiving pause frames).
2885 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2886 1.1 dyoung * other: Invalid.
2887 1.1 dyoung */
2888 1.1 dyoung switch (hw->fc.current_mode) {
2889 1.1 dyoung case ixgbe_fc_none:
2890 1.1 dyoung /*
2891 1.1 dyoung * Flow control is disabled by software override or autoneg.
2892 1.1 dyoung * The code below will actually disable it in the HW.
2893 1.1 dyoung */
2894 1.1 dyoung break;
2895 1.1 dyoung case ixgbe_fc_rx_pause:
2896 1.1 dyoung /*
2897 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2898 1.1 dyoung * disabled by software override. Since there really
2899 1.1 dyoung * isn't a way to advertise that we are capable of RX
2900 1.1 dyoung * Pause ONLY, we will advertise that we support both
2901 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2902 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2903 1.1 dyoung */
2904 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2905 1.1 dyoung break;
2906 1.1 dyoung case ixgbe_fc_tx_pause:
2907 1.1 dyoung /*
2908 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2909 1.1 dyoung * disabled by software override.
2910 1.1 dyoung */
2911 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2912 1.1 dyoung break;
2913 1.1 dyoung case ixgbe_fc_full:
2914 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2915 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2916 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2917 1.1 dyoung break;
2918 1.1 dyoung default:
2919 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2920 1.6 msaitoh "Flow control param set incorrectly\n");
2921 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2922 1.1 dyoung goto out;
2923 1.1 dyoung break;
2924 1.1 dyoung }
2925 1.1 dyoung
2926 1.1 dyoung /* Set 802.3x based flow control settings. */
2927 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2928 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2929 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2930 1.1 dyoung
2931 1.1 dyoung
2932 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2933 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2934 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2935 1.4 msaitoh hw->fc.high_water[i]) {
2936 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2937 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2938 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2939 1.4 msaitoh } else {
2940 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2941 1.4 msaitoh /*
2942 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2943 1.4 msaitoh * switch is enabled we must set the high water mark
2944 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2945 1.8 msaitoh * the Tx switch to function even under heavy Rx
2946 1.8 msaitoh * workloads.
2947 1.4 msaitoh */
2948 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2949 1.4 msaitoh }
2950 1.4 msaitoh
2951 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2952 1.1 dyoung }
2953 1.1 dyoung
2954 1.1 dyoung /* Configure pause time (2 TCs per register) */
2955 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001;
2956 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2957 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2958 1.1 dyoung
2959 1.4 msaitoh /* Configure flow control refresh threshold value */
2960 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2961 1.1 dyoung
2962 1.1 dyoung out:
2963 1.1 dyoung return ret_val;
2964 1.1 dyoung }
2965 1.1 dyoung
2966 1.1 dyoung /**
2967 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2968 1.1 dyoung * @hw: pointer to hardware structure
2969 1.4 msaitoh * @adv_reg: flow control advertised settings
2970 1.4 msaitoh * @lp_reg: link partner's flow control settings
2971 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2972 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2973 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2974 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2975 1.1 dyoung *
2976 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2977 1.4 msaitoh * advertised settings
2978 1.1 dyoung **/
2979 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2980 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2981 1.1 dyoung {
2982 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2983 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2984 1.6 msaitoh "Local or link partner's advertised flow control "
2985 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2986 1.6 msaitoh adv_reg, lp_reg);
2987 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2988 1.6 msaitoh }
2989 1.1 dyoung
2990 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2991 1.4 msaitoh /*
2992 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2993 1.4 msaitoh * of pause frames. In this case, we had to advertise
2994 1.4 msaitoh * FULL flow control because we could not advertise RX
2995 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2996 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2997 1.4 msaitoh */
2998 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2999 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
3000 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
3001 1.4 msaitoh } else {
3002 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3003 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3004 1.4 msaitoh }
3005 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3006 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3007 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
3008 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3009 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3010 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3011 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3012 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3013 1.4 msaitoh } else {
3014 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
3015 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
3016 1.4 msaitoh }
3017 1.4 msaitoh return IXGBE_SUCCESS;
3018 1.4 msaitoh }
3019 1.1 dyoung
3020 1.4 msaitoh /**
3021 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3022 1.4 msaitoh * @hw: pointer to hardware structure
3023 1.4 msaitoh *
3024 1.4 msaitoh * Enable flow control according on 1 gig fiber.
3025 1.4 msaitoh **/
3026 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3027 1.4 msaitoh {
3028 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3029 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3030 1.1 dyoung
3031 1.1 dyoung /*
3032 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3033 1.4 msaitoh * - link is up but AN did not complete, or if
3034 1.4 msaitoh * - link is up and AN completed but timed out
3035 1.1 dyoung */
3036 1.4 msaitoh
3037 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3038 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3039 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3040 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3041 1.1 dyoung goto out;
3042 1.6 msaitoh }
3043 1.1 dyoung
3044 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3045 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3046 1.1 dyoung
3047 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3048 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3049 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3050 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3051 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3052 1.1 dyoung
3053 1.1 dyoung out:
3054 1.1 dyoung return ret_val;
3055 1.1 dyoung }
3056 1.1 dyoung
3057 1.1 dyoung /**
3058 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3059 1.1 dyoung * @hw: pointer to hardware structure
3060 1.1 dyoung *
3061 1.1 dyoung * Enable flow control according to IEEE clause 37.
3062 1.1 dyoung **/
3063 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3064 1.1 dyoung {
3065 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3066 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3067 1.1 dyoung
3068 1.1 dyoung /*
3069 1.1 dyoung * On backplane, bail out if
3070 1.1 dyoung * - backplane autoneg was not completed, or if
3071 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3072 1.1 dyoung */
3073 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3074 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3075 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3076 1.1 dyoung goto out;
3077 1.6 msaitoh }
3078 1.1 dyoung
3079 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3080 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3081 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3082 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3083 1.1 dyoung goto out;
3084 1.6 msaitoh }
3085 1.1 dyoung }
3086 1.1 dyoung /*
3087 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3088 1.1 dyoung * local flow control settings accordingly
3089 1.1 dyoung */
3090 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3091 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3092 1.1 dyoung
3093 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3094 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3095 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3096 1.1 dyoung
3097 1.1 dyoung out:
3098 1.1 dyoung return ret_val;
3099 1.1 dyoung }
3100 1.1 dyoung
3101 1.1 dyoung /**
3102 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3103 1.1 dyoung * @hw: pointer to hardware structure
3104 1.1 dyoung *
3105 1.1 dyoung * Enable flow control according to IEEE clause 37.
3106 1.1 dyoung **/
3107 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3108 1.1 dyoung {
3109 1.1 dyoung u16 technology_ability_reg = 0;
3110 1.1 dyoung u16 lp_technology_ability_reg = 0;
3111 1.1 dyoung
3112 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3113 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3114 1.1 dyoung &technology_ability_reg);
3115 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3116 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3117 1.1 dyoung &lp_technology_ability_reg);
3118 1.1 dyoung
3119 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3120 1.1 dyoung (u32)lp_technology_ability_reg,
3121 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3122 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3123 1.1 dyoung }
3124 1.1 dyoung
3125 1.1 dyoung /**
3126 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3127 1.1 dyoung * @hw: pointer to hardware structure
3128 1.1 dyoung *
3129 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3130 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3131 1.1 dyoung **/
3132 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3133 1.1 dyoung {
3134 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3135 1.4 msaitoh ixgbe_link_speed speed;
3136 1.4 msaitoh bool link_up;
3137 1.1 dyoung
3138 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3139 1.1 dyoung
3140 1.1 dyoung /*
3141 1.4 msaitoh * AN should have completed when the cable was plugged in.
3142 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3143 1.4 msaitoh * - FC autoneg is disabled, or if
3144 1.4 msaitoh * - link is not up.
3145 1.1 dyoung */
3146 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3147 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3148 1.6 msaitoh "Flow control autoneg is disabled");
3149 1.1 dyoung goto out;
3150 1.6 msaitoh }
3151 1.1 dyoung
3152 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3153 1.6 msaitoh if (!link_up) {
3154 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3155 1.1 dyoung goto out;
3156 1.6 msaitoh }
3157 1.1 dyoung
3158 1.1 dyoung switch (hw->phy.media_type) {
3159 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3160 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3161 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3162 1.1 dyoung case ixgbe_media_type_fiber:
3163 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3164 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3165 1.4 msaitoh break;
3166 1.4 msaitoh
3167 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3168 1.1 dyoung case ixgbe_media_type_backplane:
3169 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3170 1.1 dyoung break;
3171 1.1 dyoung
3172 1.4 msaitoh /* Autoneg flow control on copper adapters */
3173 1.1 dyoung case ixgbe_media_type_copper:
3174 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3175 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3176 1.1 dyoung break;
3177 1.1 dyoung
3178 1.1 dyoung default:
3179 1.1 dyoung break;
3180 1.1 dyoung }
3181 1.1 dyoung
3182 1.4 msaitoh out:
3183 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3184 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3185 1.4 msaitoh } else {
3186 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3187 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3188 1.3 msaitoh }
3189 1.1 dyoung }
3190 1.1 dyoung
3191 1.6 msaitoh /*
3192 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3193 1.6 msaitoh * @hw: pointer to hardware structure
3194 1.6 msaitoh *
3195 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3196 1.6 msaitoh *
3197 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3198 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3199 1.6 msaitoh * 800 = 80 millisec.
3200 1.6 msaitoh */
3201 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3202 1.6 msaitoh {
3203 1.6 msaitoh s16 devctl2;
3204 1.6 msaitoh u32 pollcnt;
3205 1.6 msaitoh
3206 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3207 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3208 1.6 msaitoh
3209 1.6 msaitoh switch (devctl2) {
3210 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3211 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3212 1.6 msaitoh break;
3213 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3214 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3215 1.6 msaitoh break;
3216 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3217 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3218 1.6 msaitoh break;
3219 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3220 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3221 1.6 msaitoh break;
3222 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3223 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3224 1.6 msaitoh break;
3225 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3226 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3227 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3228 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3229 1.6 msaitoh default:
3230 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3231 1.6 msaitoh break;
3232 1.6 msaitoh }
3233 1.6 msaitoh
3234 1.6 msaitoh /* add 10% to spec maximum */
3235 1.6 msaitoh return (pollcnt * 11) / 10;
3236 1.6 msaitoh }
3237 1.6 msaitoh
3238 1.1 dyoung /**
3239 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3240 1.1 dyoung * @hw: pointer to hardware structure
3241 1.1 dyoung *
3242 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3243 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3244 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3245 1.1 dyoung * is returned signifying master requests disabled.
3246 1.1 dyoung **/
3247 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3248 1.1 dyoung {
3249 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3250 1.6 msaitoh u32 i, poll;
3251 1.8 msaitoh u16 value;
3252 1.1 dyoung
3253 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3254 1.1 dyoung
3255 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3256 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3257 1.3 msaitoh
3258 1.6 msaitoh /* Exit if master requests are blocked */
3259 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3260 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3261 1.1 dyoung goto out;
3262 1.1 dyoung
3263 1.3 msaitoh /* Poll for master request bit to clear */
3264 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3265 1.3 msaitoh usec_delay(100);
3266 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3267 1.3 msaitoh goto out;
3268 1.1 dyoung }
3269 1.1 dyoung
3270 1.3 msaitoh /*
3271 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3272 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3273 1.3 msaitoh * of this need. The first reset prevents new master requests from
3274 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3275 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3276 1.3 msaitoh * again to clear out any effects they may have had on our device.
3277 1.3 msaitoh */
3278 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3279 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3280 1.1 dyoung
3281 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3282 1.10 msaitoh goto out;
3283 1.10 msaitoh
3284 1.1 dyoung /*
3285 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3286 1.1 dyoung * transactions pending.
3287 1.1 dyoung */
3288 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3289 1.6 msaitoh for (i = 0; i < poll; i++) {
3290 1.3 msaitoh usec_delay(100);
3291 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3292 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3293 1.8 msaitoh goto out;
3294 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3295 1.3 msaitoh goto out;
3296 1.1 dyoung }
3297 1.1 dyoung
3298 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3299 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3300 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3301 1.1 dyoung
3302 1.1 dyoung out:
3303 1.1 dyoung return status;
3304 1.1 dyoung }
3305 1.1 dyoung
3306 1.1 dyoung /**
3307 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3308 1.1 dyoung * @hw: pointer to hardware structure
3309 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3310 1.1 dyoung *
3311 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3312 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3313 1.1 dyoung **/
3314 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3315 1.1 dyoung {
3316 1.6 msaitoh u32 gssr = 0;
3317 1.1 dyoung u32 swmask = mask;
3318 1.1 dyoung u32 fwmask = mask << 5;
3319 1.6 msaitoh u32 timeout = 200;
3320 1.6 msaitoh u32 i;
3321 1.1 dyoung
3322 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3323 1.1 dyoung
3324 1.6 msaitoh for (i = 0; i < timeout; i++) {
3325 1.1 dyoung /*
3326 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3327 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3328 1.1 dyoung */
3329 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3330 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3331 1.1 dyoung
3332 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3333 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3334 1.6 msaitoh gssr |= swmask;
3335 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3336 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3337 1.6 msaitoh return IXGBE_SUCCESS;
3338 1.6 msaitoh } else {
3339 1.6 msaitoh /* Resource is currently in use by FW or SW */
3340 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3341 1.6 msaitoh msec_delay(5);
3342 1.6 msaitoh }
3343 1.1 dyoung }
3344 1.1 dyoung
3345 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3346 1.6 msaitoh if (gssr & (fwmask | swmask))
3347 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3348 1.1 dyoung
3349 1.6 msaitoh msec_delay(5);
3350 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3351 1.1 dyoung }
3352 1.1 dyoung
3353 1.1 dyoung /**
3354 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3355 1.1 dyoung * @hw: pointer to hardware structure
3356 1.1 dyoung * @mask: Mask to specify which semaphore to release
3357 1.1 dyoung *
3358 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3359 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3360 1.1 dyoung **/
3361 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3362 1.1 dyoung {
3363 1.1 dyoung u32 gssr;
3364 1.1 dyoung u32 swmask = mask;
3365 1.1 dyoung
3366 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3367 1.1 dyoung
3368 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3369 1.1 dyoung
3370 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3371 1.1 dyoung gssr &= ~swmask;
3372 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3373 1.1 dyoung
3374 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3375 1.1 dyoung }
3376 1.1 dyoung
3377 1.1 dyoung /**
3378 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3379 1.3 msaitoh * @hw: pointer to hardware structure
3380 1.3 msaitoh *
3381 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3382 1.3 msaitoh * the Rx security block
3383 1.3 msaitoh **/
3384 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3385 1.3 msaitoh {
3386 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000
3387 1.3 msaitoh
3388 1.3 msaitoh int i;
3389 1.3 msaitoh int secrxreg;
3390 1.3 msaitoh
3391 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3392 1.3 msaitoh
3393 1.3 msaitoh
3394 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3395 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3396 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3397 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3398 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3399 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3400 1.3 msaitoh break;
3401 1.3 msaitoh else
3402 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3403 1.17 msaitoh usec_delay(10);
3404 1.3 msaitoh }
3405 1.3 msaitoh
3406 1.3 msaitoh /* For informational purposes only */
3407 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3408 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3409 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3410 1.3 msaitoh
3411 1.3 msaitoh return IXGBE_SUCCESS;
3412 1.3 msaitoh }
3413 1.3 msaitoh
3414 1.3 msaitoh /**
3415 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3416 1.8 msaitoh * @hw: pointer to hardware structure
3417 1.22 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken
3418 1.8 msaitoh * @reg_val: Value we read from AUTOC
3419 1.8 msaitoh *
3420 1.8 msaitoh * The default case requires no protection so just to the register read.
3421 1.8 msaitoh */
3422 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3423 1.8 msaitoh {
3424 1.8 msaitoh *locked = FALSE;
3425 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3426 1.8 msaitoh return IXGBE_SUCCESS;
3427 1.8 msaitoh }
3428 1.8 msaitoh
3429 1.8 msaitoh /**
3430 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3431 1.8 msaitoh * @hw: pointer to hardware structure
3432 1.8 msaitoh * @reg_val: value to write to AUTOC
3433 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3434 1.8 msaitoh * previous read.
3435 1.8 msaitoh *
3436 1.8 msaitoh * The default case requires no protection so just to the register write.
3437 1.8 msaitoh */
3438 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3439 1.8 msaitoh {
3440 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3441 1.8 msaitoh
3442 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3443 1.8 msaitoh return IXGBE_SUCCESS;
3444 1.8 msaitoh }
3445 1.8 msaitoh
3446 1.8 msaitoh /**
3447 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3448 1.3 msaitoh * @hw: pointer to hardware structure
3449 1.3 msaitoh *
3450 1.3 msaitoh * Enables the receive data path.
3451 1.3 msaitoh **/
3452 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3453 1.3 msaitoh {
3454 1.14 msaitoh u32 secrxreg;
3455 1.3 msaitoh
3456 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3457 1.3 msaitoh
3458 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3459 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3460 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3461 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3462 1.3 msaitoh
3463 1.3 msaitoh return IXGBE_SUCCESS;
3464 1.3 msaitoh }
3465 1.3 msaitoh
3466 1.3 msaitoh /**
3467 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3468 1.1 dyoung * @hw: pointer to hardware structure
3469 1.1 dyoung * @regval: register value to write to RXCTRL
3470 1.1 dyoung *
3471 1.1 dyoung * Enables the Rx DMA unit
3472 1.1 dyoung **/
3473 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3474 1.1 dyoung {
3475 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3476 1.1 dyoung
3477 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3478 1.8 msaitoh ixgbe_enable_rx(hw);
3479 1.8 msaitoh else
3480 1.8 msaitoh ixgbe_disable_rx(hw);
3481 1.1 dyoung
3482 1.1 dyoung return IXGBE_SUCCESS;
3483 1.1 dyoung }
3484 1.1 dyoung
3485 1.1 dyoung /**
3486 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3487 1.1 dyoung * @hw: pointer to hardware structure
3488 1.1 dyoung * @index: led number to blink
3489 1.1 dyoung **/
3490 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3491 1.1 dyoung {
3492 1.1 dyoung ixgbe_link_speed speed = 0;
3493 1.1 dyoung bool link_up = 0;
3494 1.8 msaitoh u32 autoc_reg = 0;
3495 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3496 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3497 1.8 msaitoh bool locked = FALSE;
3498 1.1 dyoung
3499 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3500 1.1 dyoung
3501 1.14 msaitoh if (index > 3)
3502 1.14 msaitoh return IXGBE_ERR_PARAM;
3503 1.14 msaitoh
3504 1.1 dyoung /*
3505 1.1 dyoung * Link must be up to auto-blink the LEDs;
3506 1.1 dyoung * Force it if link is down.
3507 1.1 dyoung */
3508 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3509 1.1 dyoung
3510 1.1 dyoung if (!link_up) {
3511 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3512 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3513 1.8 msaitoh goto out;
3514 1.5 msaitoh
3515 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3516 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3517 1.8 msaitoh
3518 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3519 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3520 1.8 msaitoh goto out;
3521 1.8 msaitoh
3522 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3523 1.1 dyoung msec_delay(10);
3524 1.1 dyoung }
3525 1.1 dyoung
3526 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3527 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3528 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3529 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3530 1.1 dyoung
3531 1.5 msaitoh out:
3532 1.5 msaitoh return ret_val;
3533 1.1 dyoung }
3534 1.1 dyoung
3535 1.1 dyoung /**
3536 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3537 1.1 dyoung * @hw: pointer to hardware structure
3538 1.1 dyoung * @index: led number to stop blinking
3539 1.1 dyoung **/
3540 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3541 1.1 dyoung {
3542 1.8 msaitoh u32 autoc_reg = 0;
3543 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3544 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3545 1.8 msaitoh bool locked = FALSE;
3546 1.1 dyoung
3547 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3548 1.1 dyoung
3549 1.14 msaitoh if (index > 3)
3550 1.14 msaitoh return IXGBE_ERR_PARAM;
3551 1.14 msaitoh
3552 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3553 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3554 1.8 msaitoh goto out;
3555 1.1 dyoung
3556 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3557 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3558 1.1 dyoung
3559 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3560 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3561 1.8 msaitoh goto out;
3562 1.5 msaitoh
3563 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3564 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3565 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3566 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3567 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3568 1.1 dyoung
3569 1.5 msaitoh out:
3570 1.5 msaitoh return ret_val;
3571 1.1 dyoung }
3572 1.1 dyoung
3573 1.1 dyoung /**
3574 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3575 1.1 dyoung * @hw: pointer to hardware structure
3576 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3577 1.1 dyoung *
3578 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3579 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3580 1.1 dyoung * get and set mac_addr routines.
3581 1.1 dyoung **/
3582 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3583 1.3 msaitoh u16 *san_mac_offset)
3584 1.1 dyoung {
3585 1.6 msaitoh s32 ret_val;
3586 1.6 msaitoh
3587 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3588 1.1 dyoung
3589 1.1 dyoung /*
3590 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3591 1.1 dyoung * available.
3592 1.1 dyoung */
3593 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3594 1.6 msaitoh san_mac_offset);
3595 1.6 msaitoh if (ret_val) {
3596 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3597 1.6 msaitoh "eeprom at offset %d failed",
3598 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3599 1.6 msaitoh }
3600 1.1 dyoung
3601 1.6 msaitoh return ret_val;
3602 1.1 dyoung }
3603 1.1 dyoung
3604 1.1 dyoung /**
3605 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3606 1.1 dyoung * @hw: pointer to hardware structure
3607 1.1 dyoung * @san_mac_addr: SAN MAC address
3608 1.1 dyoung *
3609 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3610 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3611 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3612 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3613 1.1 dyoung **/
3614 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3615 1.1 dyoung {
3616 1.1 dyoung u16 san_mac_data, san_mac_offset;
3617 1.1 dyoung u8 i;
3618 1.6 msaitoh s32 ret_val;
3619 1.1 dyoung
3620 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3621 1.1 dyoung
3622 1.1 dyoung /*
3623 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3624 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3625 1.1 dyoung */
3626 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3627 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3628 1.1 dyoung goto san_mac_addr_out;
3629 1.1 dyoung
3630 1.1 dyoung /* make sure we know which port we need to program */
3631 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3632 1.1 dyoung /* apply the port offset to the address offset */
3633 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3634 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3635 1.1 dyoung for (i = 0; i < 3; i++) {
3636 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3637 1.6 msaitoh &san_mac_data);
3638 1.6 msaitoh if (ret_val) {
3639 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3640 1.6 msaitoh "eeprom read at offset %d failed",
3641 1.6 msaitoh san_mac_offset);
3642 1.6 msaitoh goto san_mac_addr_out;
3643 1.6 msaitoh }
3644 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3645 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3646 1.1 dyoung san_mac_offset++;
3647 1.1 dyoung }
3648 1.6 msaitoh return IXGBE_SUCCESS;
3649 1.1 dyoung
3650 1.1 dyoung san_mac_addr_out:
3651 1.6 msaitoh /*
3652 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3653 1.6 msaitoh * error though, so just wipe the local address and return.
3654 1.6 msaitoh */
3655 1.6 msaitoh for (i = 0; i < 6; i++)
3656 1.6 msaitoh san_mac_addr[i] = 0xFF;
3657 1.1 dyoung return IXGBE_SUCCESS;
3658 1.1 dyoung }
3659 1.1 dyoung
3660 1.1 dyoung /**
3661 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3662 1.1 dyoung * @hw: pointer to hardware structure
3663 1.1 dyoung * @san_mac_addr: SAN MAC address
3664 1.1 dyoung *
3665 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3666 1.1 dyoung **/
3667 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3668 1.1 dyoung {
3669 1.6 msaitoh s32 ret_val;
3670 1.1 dyoung u16 san_mac_data, san_mac_offset;
3671 1.1 dyoung u8 i;
3672 1.1 dyoung
3673 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3674 1.1 dyoung
3675 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3676 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3677 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3678 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3679 1.1 dyoung
3680 1.1 dyoung /* Make sure we know which port we need to write */
3681 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3682 1.1 dyoung /* Apply the port offset to the address offset */
3683 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3684 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3685 1.1 dyoung
3686 1.1 dyoung for (i = 0; i < 3; i++) {
3687 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3688 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3689 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3690 1.1 dyoung san_mac_offset++;
3691 1.1 dyoung }
3692 1.1 dyoung
3693 1.6 msaitoh return IXGBE_SUCCESS;
3694 1.1 dyoung }
3695 1.1 dyoung
3696 1.1 dyoung /**
3697 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3698 1.1 dyoung * @hw: pointer to hardware structure
3699 1.1 dyoung *
3700 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3701 1.1 dyoung * the capabilities table.
3702 1.1 dyoung **/
3703 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3704 1.1 dyoung {
3705 1.4 msaitoh u16 msix_count = 1;
3706 1.4 msaitoh u16 max_msix_count;
3707 1.4 msaitoh u16 pcie_offset;
3708 1.4 msaitoh
3709 1.4 msaitoh switch (hw->mac.type) {
3710 1.4 msaitoh case ixgbe_mac_82598EB:
3711 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3712 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3713 1.4 msaitoh break;
3714 1.4 msaitoh case ixgbe_mac_82599EB:
3715 1.4 msaitoh case ixgbe_mac_X540:
3716 1.8 msaitoh case ixgbe_mac_X550:
3717 1.8 msaitoh case ixgbe_mac_X550EM_x:
3718 1.14 msaitoh case ixgbe_mac_X550EM_a:
3719 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3720 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3721 1.4 msaitoh break;
3722 1.4 msaitoh default:
3723 1.4 msaitoh return msix_count;
3724 1.4 msaitoh }
3725 1.1 dyoung
3726 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3727 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3728 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3729 1.8 msaitoh msix_count = 0;
3730 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3731 1.4 msaitoh
3732 1.4 msaitoh /* MSI-X count is zero-based in HW */
3733 1.4 msaitoh msix_count++;
3734 1.4 msaitoh
3735 1.4 msaitoh if (msix_count > max_msix_count)
3736 1.4 msaitoh msix_count = max_msix_count;
3737 1.1 dyoung
3738 1.1 dyoung return msix_count;
3739 1.1 dyoung }
3740 1.1 dyoung
3741 1.1 dyoung /**
3742 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3743 1.1 dyoung * @hw: pointer to hardware structure
3744 1.1 dyoung * @addr: Address to put into receive address register
3745 1.1 dyoung * @vmdq: VMDq pool to assign
3746 1.1 dyoung *
3747 1.1 dyoung * Puts an ethernet address into a receive address register, or
3748 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3749 1.1 dyoung **/
3750 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3751 1.1 dyoung {
3752 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3753 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3754 1.1 dyoung u32 rar;
3755 1.1 dyoung u32 rar_low, rar_high;
3756 1.1 dyoung u32 addr_low, addr_high;
3757 1.1 dyoung
3758 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3759 1.1 dyoung
3760 1.1 dyoung /* swap bytes for HW little endian */
3761 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3762 1.1 dyoung | (addr[2] << 16)
3763 1.1 dyoung | (addr[3] << 24);
3764 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3765 1.1 dyoung
3766 1.1 dyoung /*
3767 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3768 1.1 dyoung * rar_highwater points to just after the highest currently used
3769 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3770 1.1 dyoung * rar to the top.
3771 1.1 dyoung */
3772 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3773 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3774 1.1 dyoung
3775 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3776 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3777 1.1 dyoung first_empty_rar = rar;
3778 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3779 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3780 1.1 dyoung if (rar_low == addr_low)
3781 1.1 dyoung break; /* found it already in the rars */
3782 1.1 dyoung }
3783 1.1 dyoung }
3784 1.1 dyoung
3785 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3786 1.1 dyoung /* already there so just add to the pool bits */
3787 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3788 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3789 1.1 dyoung /* stick it into first empty RAR slot we found */
3790 1.1 dyoung rar = first_empty_rar;
3791 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3792 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3793 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3794 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3795 1.1 dyoung hw->mac.rar_highwater++;
3796 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3797 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3798 1.1 dyoung }
3799 1.1 dyoung
3800 1.1 dyoung /*
3801 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3802 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3803 1.1 dyoung */
3804 1.1 dyoung if (rar == 0)
3805 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3806 1.1 dyoung
3807 1.1 dyoung return rar;
3808 1.1 dyoung }
3809 1.1 dyoung
3810 1.1 dyoung /**
3811 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3812 1.1 dyoung * @hw: pointer to hardware struct
3813 1.1 dyoung * @rar: receive address register index to disassociate
3814 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3815 1.1 dyoung **/
3816 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3817 1.1 dyoung {
3818 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3819 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3820 1.1 dyoung
3821 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3822 1.1 dyoung
3823 1.1 dyoung /* Make sure we are using a valid rar index range */
3824 1.1 dyoung if (rar >= rar_entries) {
3825 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3826 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3827 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3828 1.1 dyoung }
3829 1.1 dyoung
3830 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3831 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3832 1.1 dyoung
3833 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3834 1.8 msaitoh goto done;
3835 1.8 msaitoh
3836 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3837 1.1 dyoung goto done;
3838 1.1 dyoung
3839 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3840 1.1 dyoung if (mpsar_lo) {
3841 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3842 1.1 dyoung mpsar_lo = 0;
3843 1.1 dyoung }
3844 1.1 dyoung if (mpsar_hi) {
3845 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3846 1.1 dyoung mpsar_hi = 0;
3847 1.1 dyoung }
3848 1.1 dyoung } else if (vmdq < 32) {
3849 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3850 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3851 1.1 dyoung } else {
3852 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3853 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3854 1.1 dyoung }
3855 1.1 dyoung
3856 1.1 dyoung /* was that the last pool using this rar? */
3857 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3858 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3859 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3860 1.1 dyoung done:
3861 1.1 dyoung return IXGBE_SUCCESS;
3862 1.1 dyoung }
3863 1.1 dyoung
3864 1.1 dyoung /**
3865 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3866 1.1 dyoung * @hw: pointer to hardware struct
3867 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3868 1.1 dyoung * @vmdq: VMDq pool index
3869 1.1 dyoung **/
3870 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3871 1.1 dyoung {
3872 1.1 dyoung u32 mpsar;
3873 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3874 1.1 dyoung
3875 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3876 1.1 dyoung
3877 1.1 dyoung /* Make sure we are using a valid rar index range */
3878 1.1 dyoung if (rar >= rar_entries) {
3879 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3880 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3881 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3882 1.1 dyoung }
3883 1.1 dyoung
3884 1.1 dyoung if (vmdq < 32) {
3885 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3886 1.1 dyoung mpsar |= 1 << vmdq;
3887 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3888 1.1 dyoung } else {
3889 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3890 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3891 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3892 1.1 dyoung }
3893 1.1 dyoung return IXGBE_SUCCESS;
3894 1.1 dyoung }
3895 1.1 dyoung
3896 1.1 dyoung /**
3897 1.4 msaitoh * This function should only be involved in the IOV mode.
3898 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3899 1.4 msaitoh * VFs advertized and not 0.
3900 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3901 1.4 msaitoh *
3902 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3903 1.4 msaitoh * @hw: pointer to hardware struct
3904 1.4 msaitoh * @vmdq: VMDq pool index
3905 1.4 msaitoh **/
3906 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3907 1.4 msaitoh {
3908 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3909 1.4 msaitoh
3910 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3911 1.4 msaitoh
3912 1.4 msaitoh if (vmdq < 32) {
3913 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3914 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3915 1.4 msaitoh } else {
3916 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3917 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3918 1.4 msaitoh }
3919 1.4 msaitoh
3920 1.4 msaitoh return IXGBE_SUCCESS;
3921 1.4 msaitoh }
3922 1.4 msaitoh
3923 1.4 msaitoh /**
3924 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3925 1.1 dyoung * @hw: pointer to hardware structure
3926 1.1 dyoung **/
3927 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3928 1.1 dyoung {
3929 1.1 dyoung int i;
3930 1.1 dyoung
3931 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3932 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3933 1.1 dyoung
3934 1.1 dyoung for (i = 0; i < 128; i++)
3935 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3936 1.1 dyoung
3937 1.1 dyoung return IXGBE_SUCCESS;
3938 1.1 dyoung }
3939 1.1 dyoung
3940 1.1 dyoung /**
3941 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3942 1.1 dyoung * @hw: pointer to hardware structure
3943 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3944 1.22 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3945 1.22 msaitoh * vlanid not found
3946 1.22 msaitoh *
3947 1.1 dyoung *
3948 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3949 1.1 dyoung *
3950 1.1 dyoung **/
3951 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3952 1.1 dyoung {
3953 1.14 msaitoh s32 regindex, first_empty_slot;
3954 1.14 msaitoh u32 bits;
3955 1.1 dyoung
3956 1.1 dyoung /* short cut the special case */
3957 1.1 dyoung if (vlan == 0)
3958 1.1 dyoung return 0;
3959 1.1 dyoung
3960 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3961 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3962 1.14 msaitoh * VLVF that contain our VLAN
3963 1.14 msaitoh */
3964 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3965 1.14 msaitoh
3966 1.14 msaitoh /* add VLAN enable bit for comparison */
3967 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3968 1.14 msaitoh
3969 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3970 1.14 msaitoh * slot found along the way.
3971 1.14 msaitoh *
3972 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3973 1.14 msaitoh */
3974 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3975 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3976 1.14 msaitoh if (bits == vlan)
3977 1.14 msaitoh return regindex;
3978 1.14 msaitoh if (!first_empty_slot && !bits)
3979 1.1 dyoung first_empty_slot = regindex;
3980 1.1 dyoung }
3981 1.1 dyoung
3982 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3983 1.14 msaitoh * slot we found during our search, else error.
3984 1.14 msaitoh */
3985 1.14 msaitoh if (!first_empty_slot)
3986 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3987 1.1 dyoung
3988 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3989 1.1 dyoung }
3990 1.1 dyoung
3991 1.1 dyoung /**
3992 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3993 1.1 dyoung * @hw: pointer to hardware structure
3994 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3995 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3996 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3997 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3998 1.1 dyoung *
3999 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
4000 1.1 dyoung **/
4001 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4002 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
4003 1.1 dyoung {
4004 1.14 msaitoh u32 regidx, vfta_delta, vfta;
4005 1.14 msaitoh s32 ret_val;
4006 1.1 dyoung
4007 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
4008 1.1 dyoung
4009 1.14 msaitoh if (vlan > 4095 || vind > 63)
4010 1.1 dyoung return IXGBE_ERR_PARAM;
4011 1.1 dyoung
4012 1.1 dyoung /*
4013 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
4014 1.1 dyoung * VLVF and VLVFB if VT Mode is set
4015 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
4016 1.1 dyoung */
4017 1.1 dyoung
4018 1.1 dyoung /* Part 1
4019 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
4020 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
4021 1.1 dyoung * bits[11-5]: which register
4022 1.1 dyoung * bits[4-0]: which bit in the register
4023 1.1 dyoung */
4024 1.14 msaitoh regidx = vlan / 32;
4025 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32);
4026 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4027 1.14 msaitoh
4028 1.14 msaitoh /*
4029 1.14 msaitoh * vfta_delta represents the difference between the current value
4030 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4031 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4032 1.14 msaitoh */
4033 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4034 1.14 msaitoh vfta ^= vfta_delta;
4035 1.1 dyoung
4036 1.1 dyoung /* Part 2
4037 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4038 1.3 msaitoh */
4039 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4040 1.14 msaitoh vfta, vlvf_bypass);
4041 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4042 1.14 msaitoh if (vlvf_bypass)
4043 1.14 msaitoh goto vfta_update;
4044 1.3 msaitoh return ret_val;
4045 1.14 msaitoh }
4046 1.3 msaitoh
4047 1.14 msaitoh vfta_update:
4048 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4049 1.14 msaitoh if (vfta_delta)
4050 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4051 1.3 msaitoh
4052 1.3 msaitoh return IXGBE_SUCCESS;
4053 1.3 msaitoh }
4054 1.3 msaitoh
4055 1.3 msaitoh /**
4056 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4057 1.3 msaitoh * @hw: pointer to hardware structure
4058 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
4059 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4060 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4061 1.14 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4062 1.14 msaitoh * and the desired value
4063 1.14 msaitoh * @vfta: the desired value of the VFTA
4064 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4065 1.3 msaitoh *
4066 1.3 msaitoh * Turn on/off specified bit in VLVF table.
4067 1.3 msaitoh **/
4068 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4069 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4070 1.14 msaitoh bool vlvf_bypass)
4071 1.3 msaitoh {
4072 1.14 msaitoh u32 bits;
4073 1.14 msaitoh s32 vlvf_index;
4074 1.3 msaitoh
4075 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4076 1.3 msaitoh
4077 1.14 msaitoh if (vlan > 4095 || vind > 63)
4078 1.3 msaitoh return IXGBE_ERR_PARAM;
4079 1.3 msaitoh
4080 1.3 msaitoh /* If VT Mode is set
4081 1.1 dyoung * Either vlan_on
4082 1.1 dyoung * make sure the vlan is in VLVF
4083 1.1 dyoung * set the vind bit in the matching VLVFB
4084 1.1 dyoung * Or !vlan_on
4085 1.1 dyoung * clear the pool bit and possibly the vind
4086 1.1 dyoung */
4087 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4088 1.14 msaitoh return IXGBE_SUCCESS;
4089 1.1 dyoung
4090 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4091 1.14 msaitoh if (vlvf_index < 0)
4092 1.14 msaitoh return vlvf_index;
4093 1.14 msaitoh
4094 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4095 1.14 msaitoh
4096 1.14 msaitoh /* set the pool bit */
4097 1.14 msaitoh bits |= 1 << (vind % 32);
4098 1.14 msaitoh if (vlan_on)
4099 1.14 msaitoh goto vlvf_update;
4100 1.14 msaitoh
4101 1.14 msaitoh /* clear the pool bit */
4102 1.14 msaitoh bits ^= 1 << (vind % 32);
4103 1.14 msaitoh
4104 1.14 msaitoh if (!bits &&
4105 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4106 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4107 1.14 msaitoh * we run the risk of stray packets leaking into
4108 1.14 msaitoh * the PF via the default pool
4109 1.1 dyoung */
4110 1.14 msaitoh if (*vfta_delta)
4111 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4112 1.14 msaitoh
4113 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4114 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4115 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4116 1.14 msaitoh
4117 1.14 msaitoh return IXGBE_SUCCESS;
4118 1.1 dyoung }
4119 1.1 dyoung
4120 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4121 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4122 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4123 1.14 msaitoh * If the caller has requested that we clear the VFTA
4124 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4125 1.14 msaitoh * ID entry then ignore the request. We're not worried
4126 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4127 1.14 msaitoh * entry bit on, only when requested to turn it off as
4128 1.14 msaitoh * there may be multiple pools and/or VFs using the
4129 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4130 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4131 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4132 1.14 msaitoh * zero.
4133 1.14 msaitoh */
4134 1.14 msaitoh *vfta_delta = 0;
4135 1.14 msaitoh
4136 1.14 msaitoh vlvf_update:
4137 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4138 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4139 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4140 1.14 msaitoh
4141 1.1 dyoung return IXGBE_SUCCESS;
4142 1.1 dyoung }
4143 1.1 dyoung
4144 1.1 dyoung /**
4145 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4146 1.1 dyoung * @hw: pointer to hardware structure
4147 1.1 dyoung *
4148 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4149 1.1 dyoung **/
4150 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4151 1.1 dyoung {
4152 1.1 dyoung u32 offset;
4153 1.1 dyoung
4154 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4155 1.1 dyoung
4156 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4157 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4158 1.1 dyoung
4159 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4160 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4161 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4162 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4163 1.1 dyoung }
4164 1.1 dyoung
4165 1.1 dyoung return IXGBE_SUCCESS;
4166 1.1 dyoung }
4167 1.1 dyoung
4168 1.1 dyoung /**
4169 1.23 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4170 1.23 msaitoh * @hw: pointer to hardware structure
4171 1.23 msaitoh * @vf_number: VF index
4172 1.23 msaitoh *
4173 1.23 msaitoh * Enable and disable each queue in VF.
4174 1.23 msaitoh */
4175 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4176 1.23 msaitoh {
4177 1.23 msaitoh u8 queue_count, i;
4178 1.23 msaitoh u32 offset, reg;
4179 1.23 msaitoh
4180 1.23 msaitoh if (vf_number > 63)
4181 1.23 msaitoh return IXGBE_ERR_PARAM;
4182 1.23 msaitoh
4183 1.23 msaitoh /*
4184 1.23 msaitoh * Determine number of queues by checking
4185 1.23 msaitoh * number of virtual functions
4186 1.23 msaitoh */
4187 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4188 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4189 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64:
4190 1.23 msaitoh queue_count = 2;
4191 1.23 msaitoh break;
4192 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32:
4193 1.23 msaitoh queue_count = 4;
4194 1.23 msaitoh break;
4195 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16:
4196 1.23 msaitoh queue_count = 8;
4197 1.23 msaitoh break;
4198 1.23 msaitoh default:
4199 1.23 msaitoh return IXGBE_ERR_CONFIG;
4200 1.23 msaitoh }
4201 1.23 msaitoh
4202 1.23 msaitoh /* Toggle queues */
4203 1.23 msaitoh for (i = 0; i < queue_count; ++i) {
4204 1.23 msaitoh /* Calculate offset of current queue */
4205 1.23 msaitoh offset = queue_count * vf_number + i;
4206 1.23 msaitoh
4207 1.23 msaitoh /* Enable queue */
4208 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4209 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE;
4210 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4211 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4212 1.23 msaitoh
4213 1.23 msaitoh /* Disable queue */
4214 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4215 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE;
4216 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4217 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4218 1.23 msaitoh }
4219 1.23 msaitoh
4220 1.23 msaitoh return IXGBE_SUCCESS;
4221 1.23 msaitoh }
4222 1.23 msaitoh
4223 1.23 msaitoh /**
4224 1.14 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4225 1.14 msaitoh * @hw: pointer to hardware structure
4226 1.14 msaitoh *
4227 1.14 msaitoh * Contains the logic to identify if we need to verify link for the
4228 1.14 msaitoh * crosstalk fix
4229 1.14 msaitoh **/
4230 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4231 1.14 msaitoh {
4232 1.14 msaitoh
4233 1.14 msaitoh /* Does FW say we need the fix */
4234 1.14 msaitoh if (!hw->need_crosstalk_fix)
4235 1.14 msaitoh return FALSE;
4236 1.14 msaitoh
4237 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4238 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4239 1.14 msaitoh case ixgbe_media_type_fiber:
4240 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4241 1.14 msaitoh break;
4242 1.14 msaitoh default:
4243 1.14 msaitoh return FALSE;
4244 1.14 msaitoh }
4245 1.14 msaitoh
4246 1.14 msaitoh return TRUE;
4247 1.14 msaitoh }
4248 1.14 msaitoh
4249 1.14 msaitoh /**
4250 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4251 1.1 dyoung * @hw: pointer to hardware structure
4252 1.1 dyoung * @speed: pointer to link speed
4253 1.1 dyoung * @link_up: TRUE when link is up
4254 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4255 1.1 dyoung *
4256 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4257 1.1 dyoung **/
4258 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4259 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4260 1.1 dyoung {
4261 1.1 dyoung u32 links_reg, links_orig;
4262 1.1 dyoung u32 i;
4263 1.1 dyoung
4264 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4265 1.1 dyoung
4266 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4267 1.14 msaitoh * the SFP+ cage is full.
4268 1.14 msaitoh */
4269 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4270 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) &&
4271 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) {
4272 1.14 msaitoh *link_up = FALSE;
4273 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4274 1.14 msaitoh return IXGBE_SUCCESS;
4275 1.14 msaitoh }
4276 1.14 msaitoh }
4277 1.14 msaitoh
4278 1.1 dyoung /* clear the old state */
4279 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4280 1.1 dyoung
4281 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4282 1.1 dyoung
4283 1.1 dyoung if (links_orig != links_reg) {
4284 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4285 1.3 msaitoh links_orig, links_reg);
4286 1.1 dyoung }
4287 1.1 dyoung
4288 1.1 dyoung if (link_up_wait_to_complete) {
4289 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4290 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4291 1.1 dyoung *link_up = TRUE;
4292 1.1 dyoung break;
4293 1.1 dyoung } else {
4294 1.1 dyoung *link_up = FALSE;
4295 1.1 dyoung }
4296 1.1 dyoung msec_delay(100);
4297 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4298 1.1 dyoung }
4299 1.1 dyoung } else {
4300 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4301 1.1 dyoung *link_up = TRUE;
4302 1.1 dyoung else
4303 1.1 dyoung *link_up = FALSE;
4304 1.1 dyoung }
4305 1.1 dyoung
4306 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4307 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4308 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4309 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4310 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4311 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4312 1.8 msaitoh }
4313 1.8 msaitoh break;
4314 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4315 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4316 1.8 msaitoh break;
4317 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4318 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4319 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4320 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4321 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4322 1.8 msaitoh }
4323 1.8 msaitoh break;
4324 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4325 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4326 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4327 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4328 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4329 1.14 msaitoh break;
4330 1.8 msaitoh default:
4331 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4332 1.8 msaitoh }
4333 1.1 dyoung
4334 1.1 dyoung return IXGBE_SUCCESS;
4335 1.1 dyoung }
4336 1.1 dyoung
4337 1.1 dyoung /**
4338 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4339 1.1 dyoung * the EEPROM
4340 1.1 dyoung * @hw: pointer to hardware structure
4341 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4342 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4343 1.1 dyoung *
4344 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4345 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4346 1.1 dyoung **/
4347 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4348 1.3 msaitoh u16 *wwpn_prefix)
4349 1.1 dyoung {
4350 1.1 dyoung u16 offset, caps;
4351 1.1 dyoung u16 alt_san_mac_blk_offset;
4352 1.1 dyoung
4353 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4354 1.1 dyoung
4355 1.1 dyoung /* clear output first */
4356 1.1 dyoung *wwnn_prefix = 0xFFFF;
4357 1.1 dyoung *wwpn_prefix = 0xFFFF;
4358 1.1 dyoung
4359 1.1 dyoung /* check if alternative SAN MAC is supported */
4360 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4361 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4362 1.6 msaitoh goto wwn_prefix_err;
4363 1.1 dyoung
4364 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4365 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4366 1.1 dyoung goto wwn_prefix_out;
4367 1.1 dyoung
4368 1.1 dyoung /* check capability in alternative san mac address block */
4369 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4370 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4371 1.6 msaitoh goto wwn_prefix_err;
4372 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4373 1.1 dyoung goto wwn_prefix_out;
4374 1.1 dyoung
4375 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4376 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4377 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4378 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4379 1.6 msaitoh "eeprom read at offset %d failed", offset);
4380 1.6 msaitoh }
4381 1.1 dyoung
4382 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4383 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4384 1.6 msaitoh goto wwn_prefix_err;
4385 1.1 dyoung
4386 1.1 dyoung wwn_prefix_out:
4387 1.1 dyoung return IXGBE_SUCCESS;
4388 1.6 msaitoh
4389 1.6 msaitoh wwn_prefix_err:
4390 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4391 1.6 msaitoh "eeprom read at offset %d failed", offset);
4392 1.6 msaitoh return IXGBE_SUCCESS;
4393 1.1 dyoung }
4394 1.1 dyoung
4395 1.1 dyoung /**
4396 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4397 1.1 dyoung * @hw: pointer to hardware structure
4398 1.1 dyoung * @bs: the fcoe boot status
4399 1.1 dyoung *
4400 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4401 1.1 dyoung **/
4402 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4403 1.1 dyoung {
4404 1.1 dyoung u16 offset, caps, flags;
4405 1.1 dyoung s32 status;
4406 1.1 dyoung
4407 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4408 1.1 dyoung
4409 1.1 dyoung /* clear output first */
4410 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4411 1.1 dyoung
4412 1.1 dyoung /* check if FCOE IBA block is present */
4413 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4414 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4415 1.1 dyoung if (status != IXGBE_SUCCESS)
4416 1.1 dyoung goto out;
4417 1.1 dyoung
4418 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4419 1.1 dyoung goto out;
4420 1.1 dyoung
4421 1.1 dyoung /* check if iSCSI FCOE block is populated */
4422 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4423 1.1 dyoung if (status != IXGBE_SUCCESS)
4424 1.1 dyoung goto out;
4425 1.1 dyoung
4426 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4427 1.1 dyoung goto out;
4428 1.1 dyoung
4429 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4430 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4431 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4432 1.1 dyoung if (status != IXGBE_SUCCESS)
4433 1.1 dyoung goto out;
4434 1.1 dyoung
4435 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4436 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4437 1.1 dyoung else
4438 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4439 1.1 dyoung
4440 1.1 dyoung out:
4441 1.1 dyoung return status;
4442 1.1 dyoung }
4443 1.1 dyoung
4444 1.1 dyoung /**
4445 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4446 1.1 dyoung * @hw: pointer to hardware structure
4447 1.14 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4448 1.14 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4449 1.1 dyoung *
4450 1.1 dyoung **/
4451 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4452 1.1 dyoung {
4453 1.14 msaitoh int vf_target_reg = vf >> 3;
4454 1.14 msaitoh int vf_target_shift = vf % 8;
4455 1.14 msaitoh u32 pfvfspoof;
4456 1.1 dyoung
4457 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4458 1.1 dyoung return;
4459 1.1 dyoung
4460 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4461 1.1 dyoung if (enable)
4462 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4463 1.14 msaitoh else
4464 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4465 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4466 1.1 dyoung }
4467 1.1 dyoung
4468 1.1 dyoung /**
4469 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4470 1.1 dyoung * @hw: pointer to hardware structure
4471 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4472 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4473 1.1 dyoung *
4474 1.1 dyoung **/
4475 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4476 1.1 dyoung {
4477 1.1 dyoung int vf_target_reg = vf >> 3;
4478 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4479 1.1 dyoung u32 pfvfspoof;
4480 1.1 dyoung
4481 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4482 1.1 dyoung return;
4483 1.1 dyoung
4484 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4485 1.1 dyoung if (enable)
4486 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4487 1.1 dyoung else
4488 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4489 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4490 1.1 dyoung }
4491 1.1 dyoung
4492 1.1 dyoung /**
4493 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4494 1.1 dyoung * @hw: pointer to hardware structure
4495 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4496 1.1 dyoung *
4497 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4498 1.1 dyoung * and return the word through device_caps.
4499 1.1 dyoung **/
4500 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4501 1.1 dyoung {
4502 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4503 1.1 dyoung
4504 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4505 1.1 dyoung
4506 1.1 dyoung return IXGBE_SUCCESS;
4507 1.1 dyoung }
4508 1.1 dyoung
4509 1.1 dyoung /**
4510 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4511 1.1 dyoung * @hw: pointer to hardware structure
4512 1.1 dyoung *
4513 1.1 dyoung **/
4514 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4515 1.1 dyoung {
4516 1.1 dyoung u32 regval;
4517 1.1 dyoung u32 i;
4518 1.1 dyoung
4519 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4520 1.1 dyoung
4521 1.1 dyoung /* Enable relaxed ordering */
4522 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4523 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4524 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4525 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4526 1.1 dyoung }
4527 1.1 dyoung
4528 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4529 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4530 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4531 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4532 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4533 1.1 dyoung }
4534 1.1 dyoung
4535 1.1 dyoung }
4536 1.3 msaitoh
4537 1.3 msaitoh /**
4538 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4539 1.3 msaitoh * @buffer: pointer to EEPROM
4540 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4541 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4542 1.3 msaitoh * checksum calculated is returned.
4543 1.3 msaitoh **/
4544 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4545 1.3 msaitoh {
4546 1.3 msaitoh u32 i;
4547 1.3 msaitoh u8 sum = 0;
4548 1.3 msaitoh
4549 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4550 1.3 msaitoh
4551 1.3 msaitoh if (!buffer)
4552 1.3 msaitoh return 0;
4553 1.3 msaitoh
4554 1.3 msaitoh for (i = 0; i < length; i++)
4555 1.3 msaitoh sum += buffer[i];
4556 1.3 msaitoh
4557 1.3 msaitoh return (u8) (0 - sum);
4558 1.3 msaitoh }
4559 1.3 msaitoh
4560 1.3 msaitoh /**
4561 1.14 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4562 1.3 msaitoh * @hw: pointer to the HW structure
4563 1.14 msaitoh * @buffer: command to write and where the return status will be placed
4564 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4565 1.8 msaitoh * @timeout: time in ms to wait for command completion
4566 1.3 msaitoh *
4567 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4568 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4569 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4570 1.14 msaitoh *
4571 1.14 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4572 1.14 msaitoh * by the caller.
4573 1.3 msaitoh **/
4574 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4575 1.14 msaitoh u32 timeout)
4576 1.3 msaitoh {
4577 1.14 msaitoh u32 hicr, i, fwsts;
4578 1.8 msaitoh u16 dword_len;
4579 1.3 msaitoh
4580 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4581 1.3 msaitoh
4582 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4583 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4584 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4585 1.8 msaitoh }
4586 1.14 msaitoh
4587 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4588 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4589 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4590 1.3 msaitoh
4591 1.3 msaitoh /* Check that the host interface is enabled. */
4592 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4593 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4594 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4595 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4596 1.8 msaitoh }
4597 1.8 msaitoh
4598 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4599 1.14 msaitoh if (length % sizeof(u32)) {
4600 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4601 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4602 1.3 msaitoh }
4603 1.3 msaitoh
4604 1.3 msaitoh dword_len = length >> 2;
4605 1.3 msaitoh
4606 1.8 msaitoh /* The device driver writes the relevant command block
4607 1.3 msaitoh * into the ram area.
4608 1.3 msaitoh */
4609 1.3 msaitoh for (i = 0; i < dword_len; i++)
4610 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4611 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4612 1.3 msaitoh
4613 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4614 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4615 1.3 msaitoh
4616 1.8 msaitoh for (i = 0; i < timeout; i++) {
4617 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4618 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4619 1.3 msaitoh break;
4620 1.3 msaitoh msec_delay(1);
4621 1.3 msaitoh }
4622 1.3 msaitoh
4623 1.23 msaitoh /* For each command except "Apply Update" perform
4624 1.23 msaitoh * status checks in the HICR registry.
4625 1.23 msaitoh */
4626 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4627 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4628 1.23 msaitoh return IXGBE_SUCCESS;
4629 1.23 msaitoh
4630 1.8 msaitoh /* Check command completion */
4631 1.14 msaitoh if ((timeout && i == timeout) ||
4632 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4633 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4634 1.23 msaitoh "Command has failed with no status valid.\n");
4635 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4636 1.3 msaitoh }
4637 1.3 msaitoh
4638 1.14 msaitoh return IXGBE_SUCCESS;
4639 1.14 msaitoh }
4640 1.14 msaitoh
4641 1.14 msaitoh /**
4642 1.14 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4643 1.14 msaitoh * @hw: pointer to the HW structure
4644 1.14 msaitoh * @buffer: contains the command to write and where the return status will
4645 1.14 msaitoh * be placed
4646 1.14 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4647 1.14 msaitoh * @timeout: time in ms to wait for command completion
4648 1.14 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4649 1.14 msaitoh * Needed because FW structures are big endian and decoding of
4650 1.14 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4651 1.14 msaitoh * is not easily understood without making a table of commands.
4652 1.14 msaitoh * So we will leave this up to the caller to read back the data
4653 1.14 msaitoh * in these cases.
4654 1.14 msaitoh *
4655 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4656 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4657 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4658 1.14 msaitoh **/
4659 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4660 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4661 1.14 msaitoh {
4662 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4663 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4664 1.14 msaitoh u16 buf_len;
4665 1.14 msaitoh s32 status;
4666 1.14 msaitoh u32 bi;
4667 1.22 msaitoh u32 dword_len;
4668 1.14 msaitoh
4669 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4670 1.14 msaitoh
4671 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4672 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4673 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4674 1.14 msaitoh }
4675 1.14 msaitoh
4676 1.14 msaitoh /* Take management host interface semaphore */
4677 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4678 1.14 msaitoh if (status)
4679 1.14 msaitoh return status;
4680 1.14 msaitoh
4681 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4682 1.14 msaitoh if (status)
4683 1.14 msaitoh goto rel_out;
4684 1.14 msaitoh
4685 1.8 msaitoh if (!return_data)
4686 1.14 msaitoh goto rel_out;
4687 1.8 msaitoh
4688 1.3 msaitoh /* Calculate length in DWORDs */
4689 1.3 msaitoh dword_len = hdr_size >> 2;
4690 1.3 msaitoh
4691 1.3 msaitoh /* first pull in the header so we know the buffer length */
4692 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4693 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4694 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4695 1.3 msaitoh }
4696 1.3 msaitoh
4697 1.22 msaitoh /*
4698 1.22 msaitoh * If there is any thing in data position pull it in
4699 1.22 msaitoh * Read Flash command requires reading buffer length from
4700 1.22 msaitoh * two byes instead of one byte
4701 1.22 msaitoh */
4702 1.23 msaitoh if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4703 1.22 msaitoh for (; bi < dword_len + 2; bi++) {
4704 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4705 1.22 msaitoh bi);
4706 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4707 1.22 msaitoh }
4708 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4709 1.22 msaitoh & 0xF00) | resp->buf_len;
4710 1.22 msaitoh hdr_size += (2 << 2);
4711 1.22 msaitoh } else {
4712 1.22 msaitoh buf_len = resp->buf_len;
4713 1.22 msaitoh }
4714 1.14 msaitoh if (!buf_len)
4715 1.14 msaitoh goto rel_out;
4716 1.3 msaitoh
4717 1.8 msaitoh if (length < buf_len + hdr_size) {
4718 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4719 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4720 1.14 msaitoh goto rel_out;
4721 1.3 msaitoh }
4722 1.3 msaitoh
4723 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4724 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4725 1.3 msaitoh
4726 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4727 1.3 msaitoh for (; bi <= dword_len; bi++) {
4728 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4729 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4730 1.3 msaitoh }
4731 1.3 msaitoh
4732 1.14 msaitoh rel_out:
4733 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4734 1.14 msaitoh
4735 1.14 msaitoh return status;
4736 1.3 msaitoh }
4737 1.3 msaitoh
4738 1.3 msaitoh /**
4739 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4740 1.3 msaitoh * @hw: pointer to the HW structure
4741 1.3 msaitoh * @maj: driver version major number
4742 1.7 riastrad * @minr: driver version minor number
4743 1.3 msaitoh * @build: driver version build number
4744 1.3 msaitoh * @sub: driver version sub build number
4745 1.22 msaitoh * @len: unused
4746 1.22 msaitoh * @driver_ver: unused
4747 1.3 msaitoh *
4748 1.3 msaitoh * Sends driver version number to firmware through the manageability
4749 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4750 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4751 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4752 1.3 msaitoh **/
4753 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4754 1.14 msaitoh u8 build, u8 sub, u16 len,
4755 1.14 msaitoh const char *driver_ver)
4756 1.3 msaitoh {
4757 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4758 1.3 msaitoh int i;
4759 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4760 1.3 msaitoh
4761 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4762 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4763 1.3 msaitoh
4764 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4765 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4766 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4767 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4768 1.3 msaitoh fw_cmd.ver_maj = maj;
4769 1.7 riastrad fw_cmd.ver_min = minr;
4770 1.3 msaitoh fw_cmd.ver_build = build;
4771 1.3 msaitoh fw_cmd.ver_sub = sub;
4772 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4773 1.17 msaitoh fw_cmd.pad = 0;
4774 1.17 msaitoh fw_cmd.pad2 = 0;
4775 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4776 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4777 1.3 msaitoh
4778 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4779 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4780 1.8 msaitoh sizeof(fw_cmd),
4781 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4782 1.8 msaitoh TRUE);
4783 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4784 1.3 msaitoh continue;
4785 1.3 msaitoh
4786 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4787 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4788 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4789 1.3 msaitoh else
4790 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4791 1.3 msaitoh
4792 1.3 msaitoh break;
4793 1.3 msaitoh }
4794 1.3 msaitoh
4795 1.3 msaitoh return ret_val;
4796 1.3 msaitoh }
4797 1.3 msaitoh
4798 1.3 msaitoh /**
4799 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4800 1.3 msaitoh * @hw: pointer to hardware structure
4801 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4802 1.3 msaitoh * @headroom: reserve n KB of headroom
4803 1.3 msaitoh * @strategy: packet buffer allocation strategy
4804 1.3 msaitoh **/
4805 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4806 1.3 msaitoh int strategy)
4807 1.3 msaitoh {
4808 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4809 1.3 msaitoh int i = 0;
4810 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4811 1.3 msaitoh
4812 1.3 msaitoh /* Reserve headroom */
4813 1.3 msaitoh pbsize -= headroom;
4814 1.3 msaitoh
4815 1.3 msaitoh if (!num_pb)
4816 1.3 msaitoh num_pb = 1;
4817 1.3 msaitoh
4818 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4819 1.3 msaitoh * buffers requested using supplied strategy.
4820 1.3 msaitoh */
4821 1.3 msaitoh switch (strategy) {
4822 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4823 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4824 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4825 1.3 msaitoh */
4826 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4827 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4828 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4829 1.3 msaitoh for (; i < (num_pb / 2); i++)
4830 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4831 1.14 msaitoh /* fall through - configure remaining packet buffers */
4832 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4833 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4834 1.3 msaitoh for (; i < num_pb; i++)
4835 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4836 1.3 msaitoh break;
4837 1.3 msaitoh default:
4838 1.3 msaitoh break;
4839 1.3 msaitoh }
4840 1.3 msaitoh
4841 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4842 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4843 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4844 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4845 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4846 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4847 1.3 msaitoh }
4848 1.3 msaitoh
4849 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4850 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4851 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4852 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4853 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4854 1.3 msaitoh }
4855 1.3 msaitoh }
4856 1.3 msaitoh
4857 1.3 msaitoh /**
4858 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4859 1.3 msaitoh * @hw: pointer to the hardware structure
4860 1.3 msaitoh *
4861 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4862 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4863 1.3 msaitoh * buffers on the system.
4864 1.3 msaitoh **/
4865 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4866 1.3 msaitoh {
4867 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4868 1.8 msaitoh u16 value;
4869 1.3 msaitoh
4870 1.3 msaitoh /*
4871 1.3 msaitoh * If double reset is not requested then all transactions should
4872 1.3 msaitoh * already be clear and as such there is no work to do
4873 1.3 msaitoh */
4874 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4875 1.3 msaitoh return;
4876 1.3 msaitoh
4877 1.3 msaitoh /*
4878 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4879 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4880 1.3 msaitoh * has already been cleared.
4881 1.3 msaitoh */
4882 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4883 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4884 1.3 msaitoh
4885 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4886 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4887 1.8 msaitoh msec_delay(3);
4888 1.8 msaitoh
4889 1.8 msaitoh /*
4890 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4891 1.8 msaitoh * transactions pending.
4892 1.8 msaitoh */
4893 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4894 1.8 msaitoh for (i = 0; i < poll; i++) {
4895 1.8 msaitoh usec_delay(100);
4896 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4897 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4898 1.8 msaitoh goto out;
4899 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4900 1.8 msaitoh goto out;
4901 1.8 msaitoh }
4902 1.8 msaitoh
4903 1.8 msaitoh out:
4904 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4905 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4906 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4907 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4908 1.3 msaitoh
4909 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4910 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4911 1.3 msaitoh usec_delay(20);
4912 1.3 msaitoh
4913 1.3 msaitoh /* restore previous register values */
4914 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4915 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4916 1.3 msaitoh }
4917 1.3 msaitoh
4918 1.14 msaitoh /**
4919 1.14 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4920 1.14 msaitoh *
4921 1.14 msaitoh * @hw: pointer to hardware structure
4922 1.14 msaitoh * @cmd: Command we send to the FW
4923 1.14 msaitoh * @status: The reply from the FW
4924 1.14 msaitoh *
4925 1.14 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4926 1.14 msaitoh **/
4927 1.14 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4928 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4929 1.14 msaitoh {
4930 1.14 msaitoh int i;
4931 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4932 1.14 msaitoh u32 esdp;
4933 1.14 msaitoh
4934 1.14 msaitoh if (!status)
4935 1.14 msaitoh return IXGBE_ERR_PARAM;
4936 1.14 msaitoh
4937 1.14 msaitoh *status = 0;
4938 1.14 msaitoh
4939 1.14 msaitoh /* SDP vary by MAC type */
4940 1.14 msaitoh switch (hw->mac.type) {
4941 1.14 msaitoh case ixgbe_mac_82599EB:
4942 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4943 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4944 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4945 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4946 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4947 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4948 1.14 msaitoh break;
4949 1.14 msaitoh case ixgbe_mac_X540:
4950 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4951 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4952 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4953 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4954 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4955 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4956 1.14 msaitoh break;
4957 1.14 msaitoh default:
4958 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4959 1.14 msaitoh }
4960 1.14 msaitoh
4961 1.14 msaitoh /* Set SDP pins direction */
4962 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4963 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4964 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4965 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4966 1.14 msaitoh esdp |= sck;
4967 1.14 msaitoh esdp |= sdi;
4968 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4969 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4970 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4971 1.14 msaitoh
4972 1.14 msaitoh /* Generate start condition */
4973 1.14 msaitoh esdp &= ~sdi;
4974 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4975 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4976 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4977 1.14 msaitoh
4978 1.14 msaitoh esdp &= ~sck;
4979 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4980 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4981 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4982 1.14 msaitoh
4983 1.14 msaitoh /* Clock out the new control word and clock in the status */
4984 1.14 msaitoh for (i = 0; i < 32; i++) {
4985 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4986 1.14 msaitoh esdp |= sdi;
4987 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4988 1.14 msaitoh } else {
4989 1.14 msaitoh esdp &= ~sdi;
4990 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4991 1.14 msaitoh }
4992 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4993 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4994 1.14 msaitoh
4995 1.14 msaitoh esdp |= sck;
4996 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4997 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4998 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4999 1.14 msaitoh
5000 1.14 msaitoh esdp &= ~sck;
5001 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5002 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5003 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5004 1.14 msaitoh
5005 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5006 1.14 msaitoh if (esdp & sdo)
5007 1.14 msaitoh *status = (*status << 1) | 0x01;
5008 1.14 msaitoh else
5009 1.14 msaitoh *status = (*status << 1) | 0x00;
5010 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5011 1.14 msaitoh }
5012 1.14 msaitoh
5013 1.14 msaitoh /* stop condition */
5014 1.14 msaitoh esdp |= sck;
5015 1.14 msaitoh esdp &= ~sdi;
5016 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5017 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5018 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5019 1.14 msaitoh
5020 1.14 msaitoh esdp |= sdi;
5021 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5022 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5023 1.14 msaitoh
5024 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
5025 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5026 1.14 msaitoh
5027 1.14 msaitoh return IXGBE_SUCCESS;
5028 1.14 msaitoh }
5029 1.14 msaitoh
5030 1.14 msaitoh /**
5031 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5032 1.14 msaitoh *
5033 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
5034 1.14 msaitoh * that same register. It can be a problem as some of the feilds may
5035 1.14 msaitoh * for valid reasons change inbetween the time wrote the register and
5036 1.14 msaitoh * we read it again to verify. So this function check everything we
5037 1.14 msaitoh * can check and then assumes it worked.
5038 1.14 msaitoh *
5039 1.14 msaitoh * @u32 in_reg - The register cmd for the bit-bang read.
5040 1.14 msaitoh * @u32 out_reg - The register returned from a bit-bang read.
5041 1.14 msaitoh **/
5042 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5043 1.14 msaitoh {
5044 1.14 msaitoh u32 mask;
5045 1.14 msaitoh
5046 1.14 msaitoh /* Page must match for all control pages */
5047 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5048 1.14 msaitoh return FALSE;
5049 1.14 msaitoh
5050 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
5051 1.14 msaitoh case BYPASS_PAGE_CTL0:
5052 1.14 msaitoh /* All the following can't change since the last write
5053 1.14 msaitoh * - All the event actions
5054 1.14 msaitoh * - The timeout value
5055 1.14 msaitoh */
5056 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5057 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5058 1.14 msaitoh BYPASS_WDTIMEOUT_M |
5059 1.14 msaitoh BYPASS_WDT_VALUE_M;
5060 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5061 1.14 msaitoh return FALSE;
5062 1.14 msaitoh
5063 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
5064 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
5065 1.14 msaitoh return FALSE;
5066 1.14 msaitoh break;
5067 1.14 msaitoh case BYPASS_PAGE_CTL1:
5068 1.14 msaitoh /* All the following can't change since the last write
5069 1.14 msaitoh * - time valid bit
5070 1.14 msaitoh * - time we last sent
5071 1.14 msaitoh */
5072 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5073 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5074 1.14 msaitoh return FALSE;
5075 1.14 msaitoh break;
5076 1.14 msaitoh case BYPASS_PAGE_CTL2:
5077 1.14 msaitoh /* All we can check in this page is control number
5078 1.14 msaitoh * which is already done above.
5079 1.14 msaitoh */
5080 1.14 msaitoh break;
5081 1.14 msaitoh }
5082 1.14 msaitoh
5083 1.14 msaitoh /* We are as sure as we can be return TRUE */
5084 1.14 msaitoh return TRUE;
5085 1.14 msaitoh }
5086 1.14 msaitoh
5087 1.14 msaitoh /**
5088 1.14 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5089 1.14 msaitoh *
5090 1.14 msaitoh * @hw: pointer to hardware structure
5091 1.14 msaitoh * @cmd: The control word we are setting.
5092 1.14 msaitoh * @event: The event we are setting in the FW. This also happens to
5093 1.14 msaitoh * be the mask for the event we are setting (handy)
5094 1.14 msaitoh * @action: The action we set the event to in the FW. This is in a
5095 1.14 msaitoh * bit field that happens to be what we want to put in
5096 1.14 msaitoh * the event spot (also handy)
5097 1.14 msaitoh **/
5098 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5099 1.14 msaitoh u32 action)
5100 1.14 msaitoh {
5101 1.14 msaitoh u32 by_ctl = 0;
5102 1.14 msaitoh u32 cmd, verify;
5103 1.14 msaitoh u32 count = 0;
5104 1.14 msaitoh
5105 1.14 msaitoh /* Get current values */
5106 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5107 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5108 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5109 1.14 msaitoh
5110 1.14 msaitoh /* Set to new action */
5111 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5112 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5113 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5114 1.14 msaitoh
5115 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5116 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5117 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5118 1.14 msaitoh do {
5119 1.14 msaitoh if (count++ > 5)
5120 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5121 1.14 msaitoh
5122 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5123 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5124 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5125 1.14 msaitoh } else {
5126 1.14 msaitoh /* We have give the FW time for the write to stick */
5127 1.14 msaitoh msec_delay(100);
5128 1.14 msaitoh }
5129 1.14 msaitoh
5130 1.14 msaitoh return IXGBE_SUCCESS;
5131 1.14 msaitoh }
5132 1.14 msaitoh
5133 1.14 msaitoh /**
5134 1.14 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5135 1.14 msaitoh *
5136 1.14 msaitoh * @hw: pointer to hardware structure
5137 1.14 msaitoh * @addr: The bypass eeprom address to read.
5138 1.14 msaitoh * @value: The 8b of data at the address above.
5139 1.14 msaitoh **/
5140 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5141 1.14 msaitoh {
5142 1.14 msaitoh u32 cmd;
5143 1.14 msaitoh u32 status;
5144 1.14 msaitoh
5145 1.14 msaitoh
5146 1.14 msaitoh /* send the request */
5147 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5148 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5149 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5150 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5151 1.14 msaitoh
5152 1.14 msaitoh /* We have give the FW time for the write to stick */
5153 1.14 msaitoh msec_delay(100);
5154 1.14 msaitoh
5155 1.14 msaitoh /* now read the results */
5156 1.14 msaitoh cmd &= ~BYPASS_WE;
5157 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5158 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5159 1.14 msaitoh
5160 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5161 1.14 msaitoh
5162 1.14 msaitoh return IXGBE_SUCCESS;
5163 1.14 msaitoh }
5164 1.14 msaitoh
5165 1.17 msaitoh /**
5166 1.17 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM
5167 1.17 msaitoh *
5168 1.17 msaitoh * @hw: pointer to hardware structure
5169 1.17 msaitoh * @nvm_ver: pointer to output structure
5170 1.17 msaitoh *
5171 1.17 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE
5172 1.17 msaitoh * else nvm_ver->or_valid is FALSE.
5173 1.17 msaitoh **/
5174 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5175 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5176 1.17 msaitoh {
5177 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5178 1.17 msaitoh
5179 1.17 msaitoh nvm_ver->or_valid = FALSE;
5180 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */
5181 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5182 1.17 msaitoh
5183 1.17 msaitoh /* make sure offset is valid */
5184 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5185 1.17 msaitoh return;
5186 1.17 msaitoh
5187 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5188 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5189 1.17 msaitoh
5190 1.17 msaitoh /* option rom exists and is valid */
5191 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5192 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID ||
5193 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID)
5194 1.17 msaitoh return;
5195 1.17 msaitoh
5196 1.17 msaitoh nvm_ver->or_valid = TRUE;
5197 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5198 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5199 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5200 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5201 1.17 msaitoh }
5202 1.17 msaitoh
5203 1.17 msaitoh /**
5204 1.17 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version
5205 1.17 msaitoh *
5206 1.17 msaitoh * @hw: pointer to hardware structure
5207 1.17 msaitoh * @nvm_ver: pointer to output structure
5208 1.17 msaitoh *
5209 1.17 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5210 1.17 msaitoh * else nvm_ver->oem_valid is FALSE.
5211 1.17 msaitoh **/
5212 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5213 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5214 1.17 msaitoh {
5215 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset;
5216 1.17 msaitoh
5217 1.17 msaitoh nvm_ver->oem_valid = FALSE;
5218 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5219 1.17 msaitoh
5220 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */
5221 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR)
5222 1.17 msaitoh return;
5223 1.17 msaitoh
5224 1.17 msaitoh /* Read product version block */
5225 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len);
5226 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5227 1.17 msaitoh
5228 1.17 msaitoh /* Return if OEM product version block is invalid */
5229 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5230 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5231 1.17 msaitoh return;
5232 1.17 msaitoh
5233 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5234 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5235 1.17 msaitoh
5236 1.17 msaitoh /* Return if version is invalid */
5237 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 ||
5238 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5239 1.17 msaitoh return;
5240 1.17 msaitoh
5241 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5242 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5243 1.17 msaitoh nvm_ver->oem_release = rel_num;
5244 1.17 msaitoh nvm_ver->oem_valid = TRUE;
5245 1.17 msaitoh }
5246 1.17 msaitoh
5247 1.17 msaitoh /**
5248 1.17 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5249 1.17 msaitoh *
5250 1.17 msaitoh * @hw: pointer to hardware structure
5251 1.17 msaitoh * @nvm_ver: pointer to output structure
5252 1.17 msaitoh *
5253 1.17 msaitoh * word read errors will return 0xFFFF
5254 1.17 msaitoh **/
5255 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5256 1.17 msaitoh {
5257 1.17 msaitoh u16 etk_id_l, etk_id_h;
5258 1.17 msaitoh
5259 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5260 1.17 msaitoh etk_id_l = NVM_VER_INVALID;
5261 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5262 1.17 msaitoh etk_id_h = NVM_VER_INVALID;
5263 1.17 msaitoh
5264 1.17 msaitoh /* The word order for the version format is determined by high order
5265 1.17 msaitoh * word bit 15.
5266 1.17 msaitoh */
5267 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) {
5268 1.17 msaitoh nvm_ver->etk_id = etk_id_h;
5269 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5270 1.17 msaitoh } else {
5271 1.17 msaitoh nvm_ver->etk_id = etk_id_l;
5272 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5273 1.17 msaitoh }
5274 1.17 msaitoh }
5275 1.17 msaitoh
5276 1.6 msaitoh
5277 1.6 msaitoh /**
5278 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5279 1.6 msaitoh * @hw: pointer to hardware structure
5280 1.6 msaitoh * @map: pointer to u8 arr for returning map
5281 1.6 msaitoh *
5282 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5283 1.6 msaitoh **/
5284 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5285 1.6 msaitoh {
5286 1.6 msaitoh u32 reg, i;
5287 1.6 msaitoh
5288 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5289 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5290 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5291 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5292 1.6 msaitoh return;
5293 1.6 msaitoh }
5294 1.8 msaitoh
5295 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5296 1.8 msaitoh {
5297 1.8 msaitoh u32 pfdtxgswc;
5298 1.8 msaitoh u32 rxctrl;
5299 1.8 msaitoh
5300 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5301 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5302 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5303 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5304 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5305 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5306 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5307 1.8 msaitoh hw->mac.set_lben = TRUE;
5308 1.8 msaitoh } else {
5309 1.8 msaitoh hw->mac.set_lben = FALSE;
5310 1.8 msaitoh }
5311 1.8 msaitoh }
5312 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5313 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5314 1.8 msaitoh }
5315 1.8 msaitoh }
5316 1.8 msaitoh
5317 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5318 1.8 msaitoh {
5319 1.8 msaitoh u32 pfdtxgswc;
5320 1.8 msaitoh u32 rxctrl;
5321 1.8 msaitoh
5322 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5323 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5324 1.8 msaitoh
5325 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5326 1.8 msaitoh if (hw->mac.set_lben) {
5327 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5328 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5329 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5330 1.8 msaitoh hw->mac.set_lben = FALSE;
5331 1.8 msaitoh }
5332 1.8 msaitoh }
5333 1.8 msaitoh }
5334 1.8 msaitoh
5335 1.8 msaitoh /**
5336 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5337 1.8 msaitoh * @hw: pointer to hardware structure
5338 1.8 msaitoh */
5339 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5340 1.8 msaitoh {
5341 1.8 msaitoh u32 fwsm;
5342 1.8 msaitoh
5343 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5344 1.8 msaitoh return FALSE;
5345 1.8 msaitoh
5346 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5347 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5348 1.8 msaitoh }
5349 1.8 msaitoh
5350 1.8 msaitoh /**
5351 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5352 1.8 msaitoh * @hw: pointer to hardware structure
5353 1.8 msaitoh *
5354 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5355 1.8 msaitoh **/
5356 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5357 1.8 msaitoh {
5358 1.8 msaitoh u32 fwsm, manc, factps;
5359 1.8 msaitoh
5360 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5361 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5362 1.8 msaitoh return FALSE;
5363 1.8 msaitoh
5364 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5365 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5366 1.8 msaitoh return FALSE;
5367 1.8 msaitoh
5368 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5369 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5370 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5371 1.8 msaitoh return FALSE;
5372 1.8 msaitoh }
5373 1.8 msaitoh
5374 1.8 msaitoh return TRUE;
5375 1.8 msaitoh }
5376 1.8 msaitoh
5377 1.8 msaitoh /**
5378 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5379 1.8 msaitoh * @hw: pointer to hardware structure
5380 1.8 msaitoh * @speed: new link speed
5381 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5382 1.8 msaitoh *
5383 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5384 1.8 msaitoh **/
5385 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5386 1.8 msaitoh ixgbe_link_speed speed,
5387 1.8 msaitoh bool autoneg_wait_to_complete)
5388 1.8 msaitoh {
5389 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5390 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5391 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5392 1.8 msaitoh u32 speedcnt = 0;
5393 1.8 msaitoh u32 i = 0;
5394 1.8 msaitoh bool autoneg, link_up = FALSE;
5395 1.8 msaitoh
5396 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5397 1.8 msaitoh
5398 1.8 msaitoh /* Mask off requested but non-supported speeds */
5399 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5400 1.8 msaitoh if (status != IXGBE_SUCCESS)
5401 1.8 msaitoh return status;
5402 1.8 msaitoh
5403 1.8 msaitoh speed &= link_speed;
5404 1.8 msaitoh
5405 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5406 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5407 1.8 msaitoh */
5408 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5409 1.8 msaitoh speedcnt++;
5410 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5411 1.8 msaitoh
5412 1.8 msaitoh /* Set the module link speed */
5413 1.8 msaitoh switch (hw->phy.media_type) {
5414 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5415 1.8 msaitoh case ixgbe_media_type_fiber:
5416 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5417 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5418 1.8 msaitoh break;
5419 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5420 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5421 1.8 msaitoh break;
5422 1.8 msaitoh default:
5423 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5424 1.8 msaitoh break;
5425 1.8 msaitoh }
5426 1.8 msaitoh
5427 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5428 1.8 msaitoh msec_delay(40);
5429 1.8 msaitoh
5430 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5431 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5432 1.8 msaitoh autoneg_wait_to_complete);
5433 1.8 msaitoh if (status != IXGBE_SUCCESS)
5434 1.8 msaitoh return status;
5435 1.8 msaitoh
5436 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5437 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5438 1.8 msaitoh
5439 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5440 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
5441 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5442 1.8 msaitoh */
5443 1.8 msaitoh for (i = 0; i < 5; i++) {
5444 1.8 msaitoh /* Wait for the link partner to also set speed */
5445 1.8 msaitoh msec_delay(100);
5446 1.8 msaitoh
5447 1.8 msaitoh /* If we have link, just jump out */
5448 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5449 1.8 msaitoh &link_up, FALSE);
5450 1.8 msaitoh if (status != IXGBE_SUCCESS)
5451 1.8 msaitoh return status;
5452 1.8 msaitoh
5453 1.8 msaitoh if (link_up)
5454 1.8 msaitoh goto out;
5455 1.8 msaitoh }
5456 1.8 msaitoh }
5457 1.8 msaitoh
5458 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5459 1.8 msaitoh speedcnt++;
5460 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5461 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5462 1.8 msaitoh
5463 1.8 msaitoh /* Set the module link speed */
5464 1.8 msaitoh switch (hw->phy.media_type) {
5465 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5466 1.8 msaitoh case ixgbe_media_type_fiber:
5467 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5468 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5469 1.8 msaitoh break;
5470 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5471 1.8 msaitoh /* QSFP module automatically detects link speed */
5472 1.8 msaitoh break;
5473 1.8 msaitoh default:
5474 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5475 1.8 msaitoh break;
5476 1.8 msaitoh }
5477 1.8 msaitoh
5478 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5479 1.8 msaitoh msec_delay(40);
5480 1.8 msaitoh
5481 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5482 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5483 1.8 msaitoh autoneg_wait_to_complete);
5484 1.8 msaitoh if (status != IXGBE_SUCCESS)
5485 1.8 msaitoh return status;
5486 1.8 msaitoh
5487 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5488 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5489 1.8 msaitoh
5490 1.8 msaitoh /* Wait for the link partner to also set speed */
5491 1.8 msaitoh msec_delay(100);
5492 1.8 msaitoh
5493 1.8 msaitoh /* If we have link, just jump out */
5494 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5495 1.8 msaitoh if (status != IXGBE_SUCCESS)
5496 1.8 msaitoh return status;
5497 1.8 msaitoh
5498 1.8 msaitoh if (link_up)
5499 1.8 msaitoh goto out;
5500 1.8 msaitoh }
5501 1.8 msaitoh
5502 1.20 msaitoh if (speed == 0) {
5503 1.20 msaitoh /* Disable the Tx laser for media none */
5504 1.20 msaitoh ixgbe_disable_tx_laser(hw);
5505 1.20 msaitoh
5506 1.20 msaitoh goto out;
5507 1.20 msaitoh }
5508 1.26 msaitoh
5509 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5510 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5511 1.8 msaitoh * single highest speed that the user requested.
5512 1.8 msaitoh */
5513 1.8 msaitoh if (speedcnt > 1)
5514 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5515 1.8 msaitoh highest_link_speed,
5516 1.8 msaitoh autoneg_wait_to_complete);
5517 1.8 msaitoh
5518 1.8 msaitoh out:
5519 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5520 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5521 1.8 msaitoh
5522 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5523 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5524 1.8 msaitoh
5525 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5526 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5527 1.8 msaitoh
5528 1.8 msaitoh return status;
5529 1.8 msaitoh }
5530 1.8 msaitoh
5531 1.8 msaitoh /**
5532 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5533 1.8 msaitoh * @hw: pointer to hardware structure
5534 1.8 msaitoh * @speed: link speed to set
5535 1.8 msaitoh *
5536 1.8 msaitoh * Set module link speed via the soft rate select.
5537 1.8 msaitoh */
5538 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5539 1.8 msaitoh ixgbe_link_speed speed)
5540 1.8 msaitoh {
5541 1.8 msaitoh s32 status;
5542 1.8 msaitoh u8 rs, eeprom_data;
5543 1.8 msaitoh
5544 1.8 msaitoh switch (speed) {
5545 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5546 1.8 msaitoh /* one bit mask same as setting on */
5547 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5548 1.8 msaitoh break;
5549 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5550 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5551 1.8 msaitoh break;
5552 1.8 msaitoh default:
5553 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5554 1.8 msaitoh return;
5555 1.8 msaitoh }
5556 1.8 msaitoh
5557 1.8 msaitoh /* Set RS0 */
5558 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5559 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5560 1.8 msaitoh &eeprom_data);
5561 1.8 msaitoh if (status) {
5562 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5563 1.8 msaitoh goto out;
5564 1.8 msaitoh }
5565 1.8 msaitoh
5566 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5567 1.8 msaitoh
5568 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5569 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5570 1.8 msaitoh eeprom_data);
5571 1.8 msaitoh if (status) {
5572 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5573 1.8 msaitoh goto out;
5574 1.8 msaitoh }
5575 1.8 msaitoh
5576 1.8 msaitoh /* Set RS1 */
5577 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5578 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5579 1.8 msaitoh &eeprom_data);
5580 1.8 msaitoh if (status) {
5581 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5582 1.8 msaitoh goto out;
5583 1.8 msaitoh }
5584 1.8 msaitoh
5585 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5586 1.8 msaitoh
5587 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5588 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5589 1.8 msaitoh eeprom_data);
5590 1.8 msaitoh if (status) {
5591 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5592 1.8 msaitoh goto out;
5593 1.8 msaitoh }
5594 1.8 msaitoh out:
5595 1.8 msaitoh return;
5596 1.8 msaitoh }
5597