ixgbe_common.c revision 1.3 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.3 msaitoh Copyright (c) 2001-2012, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.1 dyoung /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.12 2011/01/19 19:36:27 jfv Exp $*/
34 1.3 msaitoh /*$NetBSD: ixgbe_common.c,v 1.3 2015/03/27 05:57:28 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.1 dyoung #include "ixgbe_api.h"
39 1.1 dyoung
40 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
41 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
42 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
46 1.3 msaitoh u16 count);
47 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
48 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung
52 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
54 1.3 msaitoh u16 *san_mac_offset);
55 1.1 dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
56 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
57 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
58 1.1 dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
59 1.1 dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
60 1.1 dyoung u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
61 1.3 msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 1.3 msaitoh u16 words, u16 *data);
64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 1.3 msaitoh u16 words, u16 *data);
66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 1.3 msaitoh u16 offset);
68 1.1 dyoung
69 1.1 dyoung /**
70 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
71 1.1 dyoung * @hw: pointer to the hardware structure
72 1.1 dyoung *
73 1.1 dyoung * Initialize the function pointers.
74 1.1 dyoung **/
75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 1.1 dyoung {
77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
79 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
80 1.1 dyoung
81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
82 1.1 dyoung
83 1.1 dyoung /* EEPROM */
84 1.1 dyoung eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
87 1.1 dyoung eeprom->ops.read = &ixgbe_read_eerd_generic;
88 1.3 msaitoh eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
89 1.3 msaitoh } else {
90 1.1 dyoung eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
91 1.3 msaitoh eeprom->ops.read_buffer =
92 1.3 msaitoh &ixgbe_read_eeprom_buffer_bit_bang_generic;
93 1.3 msaitoh }
94 1.1 dyoung eeprom->ops.write = &ixgbe_write_eeprom_generic;
95 1.3 msaitoh eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
96 1.1 dyoung eeprom->ops.validate_checksum =
97 1.3 msaitoh &ixgbe_validate_eeprom_checksum_generic;
98 1.1 dyoung eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
99 1.1 dyoung eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
100 1.1 dyoung
101 1.1 dyoung /* MAC */
102 1.1 dyoung mac->ops.init_hw = &ixgbe_init_hw_generic;
103 1.1 dyoung mac->ops.reset_hw = NULL;
104 1.1 dyoung mac->ops.start_hw = &ixgbe_start_hw_generic;
105 1.1 dyoung mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
106 1.1 dyoung mac->ops.get_media_type = NULL;
107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
108 1.1 dyoung mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
109 1.1 dyoung mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
110 1.1 dyoung mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
111 1.1 dyoung mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
112 1.1 dyoung mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
113 1.1 dyoung mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
114 1.1 dyoung mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
115 1.1 dyoung
116 1.1 dyoung /* LEDs */
117 1.1 dyoung mac->ops.led_on = &ixgbe_led_on_generic;
118 1.1 dyoung mac->ops.led_off = &ixgbe_led_off_generic;
119 1.1 dyoung mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
120 1.1 dyoung mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
121 1.1 dyoung
122 1.1 dyoung /* RAR, Multicast, VLAN */
123 1.1 dyoung mac->ops.set_rar = &ixgbe_set_rar_generic;
124 1.1 dyoung mac->ops.clear_rar = &ixgbe_clear_rar_generic;
125 1.1 dyoung mac->ops.insert_mac_addr = NULL;
126 1.1 dyoung mac->ops.set_vmdq = NULL;
127 1.1 dyoung mac->ops.clear_vmdq = NULL;
128 1.1 dyoung mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
129 1.1 dyoung mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
130 1.1 dyoung mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
131 1.1 dyoung mac->ops.enable_mc = &ixgbe_enable_mc_generic;
132 1.1 dyoung mac->ops.disable_mc = &ixgbe_disable_mc_generic;
133 1.1 dyoung mac->ops.clear_vfta = NULL;
134 1.1 dyoung mac->ops.set_vfta = NULL;
135 1.3 msaitoh mac->ops.set_vlvf = NULL;
136 1.1 dyoung mac->ops.init_uta_tables = NULL;
137 1.1 dyoung
138 1.1 dyoung /* Flow Control */
139 1.1 dyoung mac->ops.fc_enable = &ixgbe_fc_enable_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.1 dyoung
146 1.1 dyoung return IXGBE_SUCCESS;
147 1.1 dyoung }
148 1.1 dyoung
149 1.1 dyoung /**
150 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
151 1.1 dyoung * @hw: pointer to hardware structure
152 1.1 dyoung *
153 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
154 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
155 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
156 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
157 1.1 dyoung **/
158 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
159 1.1 dyoung {
160 1.1 dyoung u32 ctrl_ext;
161 1.1 dyoung
162 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
163 1.1 dyoung
164 1.1 dyoung /* Set the media type */
165 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
166 1.1 dyoung
167 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
168 1.1 dyoung
169 1.1 dyoung /* Clear the VLAN filter table */
170 1.1 dyoung hw->mac.ops.clear_vfta(hw);
171 1.1 dyoung
172 1.1 dyoung /* Clear statistics registers */
173 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
174 1.1 dyoung
175 1.1 dyoung /* Set No Snoop Disable */
176 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
177 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
178 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
179 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
180 1.1 dyoung
181 1.1 dyoung /* Setup flow control */
182 1.1 dyoung ixgbe_setup_fc(hw, 0);
183 1.1 dyoung
184 1.1 dyoung /* Clear adapter stopped flag */
185 1.1 dyoung hw->adapter_stopped = FALSE;
186 1.1 dyoung
187 1.1 dyoung return IXGBE_SUCCESS;
188 1.1 dyoung }
189 1.1 dyoung
190 1.1 dyoung /**
191 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
192 1.1 dyoung * @hw: pointer to hw structure
193 1.1 dyoung *
194 1.1 dyoung * Performs the init sequence common to the second generation
195 1.1 dyoung * of 10 GbE devices.
196 1.1 dyoung * Devices in the second generation:
197 1.1 dyoung * 82599
198 1.1 dyoung * X540
199 1.1 dyoung **/
200 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
201 1.1 dyoung {
202 1.1 dyoung u32 i;
203 1.1 dyoung u32 regval;
204 1.1 dyoung
205 1.1 dyoung /* Clear the rate limiters */
206 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
207 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
208 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
209 1.1 dyoung }
210 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
211 1.1 dyoung
212 1.1 dyoung /* Disable relaxed ordering */
213 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
214 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
215 1.1 dyoung regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
216 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
217 1.1 dyoung }
218 1.1 dyoung
219 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
220 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
221 1.1 dyoung regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
222 1.3 msaitoh IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
223 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
224 1.1 dyoung }
225 1.1 dyoung
226 1.1 dyoung return IXGBE_SUCCESS;
227 1.1 dyoung }
228 1.1 dyoung
229 1.1 dyoung /**
230 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
231 1.1 dyoung * @hw: pointer to hardware structure
232 1.1 dyoung *
233 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
234 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
235 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
236 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
237 1.1 dyoung * disabled and uninitialized
238 1.1 dyoung **/
239 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
240 1.1 dyoung {
241 1.1 dyoung s32 status;
242 1.1 dyoung
243 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
244 1.1 dyoung
245 1.1 dyoung /* Reset the hardware */
246 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
247 1.1 dyoung
248 1.1 dyoung if (status == IXGBE_SUCCESS) {
249 1.1 dyoung /* Start the HW */
250 1.1 dyoung status = hw->mac.ops.start_hw(hw);
251 1.1 dyoung }
252 1.1 dyoung
253 1.1 dyoung return status;
254 1.1 dyoung }
255 1.1 dyoung
256 1.1 dyoung /**
257 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
258 1.1 dyoung * @hw: pointer to hardware structure
259 1.1 dyoung *
260 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
261 1.1 dyoung * Statistics counters are clear on read.
262 1.1 dyoung **/
263 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
264 1.1 dyoung {
265 1.1 dyoung u16 i = 0;
266 1.1 dyoung
267 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
268 1.1 dyoung
269 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
270 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
271 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
272 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
273 1.1 dyoung for (i = 0; i < 8; i++)
274 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
275 1.1 dyoung
276 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
277 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
278 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
279 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
280 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
281 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
282 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
283 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
284 1.1 dyoung } else {
285 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
286 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
287 1.1 dyoung }
288 1.1 dyoung
289 1.1 dyoung for (i = 0; i < 8; i++) {
290 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
291 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
292 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
293 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
294 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
295 1.1 dyoung } else {
296 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
297 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
298 1.1 dyoung }
299 1.1 dyoung }
300 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
301 1.1 dyoung for (i = 0; i < 8; i++)
302 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
303 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
304 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
305 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
306 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
307 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
308 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
309 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
310 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
311 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
312 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
313 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
314 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
315 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
316 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
317 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
318 1.3 msaitoh for (i = 0; i < 8; i++)
319 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
320 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
321 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
322 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
323 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
324 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
325 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
326 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
327 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
328 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
329 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
330 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
331 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
332 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
333 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
334 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
335 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
336 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
337 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
338 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
339 1.1 dyoung for (i = 0; i < 16; i++) {
340 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
341 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
342 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
343 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
344 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
345 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
346 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
347 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
348 1.1 dyoung } else {
349 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
350 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
351 1.1 dyoung }
352 1.1 dyoung }
353 1.1 dyoung
354 1.3 msaitoh if (hw->mac.type == ixgbe_mac_X540) {
355 1.3 msaitoh if (hw->phy.id == 0)
356 1.3 msaitoh ixgbe_identify_phy(hw);
357 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
358 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
359 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
360 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
361 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
362 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
363 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
364 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
365 1.3 msaitoh }
366 1.3 msaitoh
367 1.1 dyoung return IXGBE_SUCCESS;
368 1.1 dyoung }
369 1.1 dyoung
370 1.1 dyoung /**
371 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
372 1.1 dyoung * @hw: pointer to hardware structure
373 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
374 1.1 dyoung * @pba_num_size: part number string buffer length
375 1.1 dyoung *
376 1.1 dyoung * Reads the part number string from the EEPROM.
377 1.1 dyoung **/
378 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
379 1.3 msaitoh u32 pba_num_size)
380 1.1 dyoung {
381 1.1 dyoung s32 ret_val;
382 1.1 dyoung u16 data;
383 1.1 dyoung u16 pba_ptr;
384 1.1 dyoung u16 offset;
385 1.1 dyoung u16 length;
386 1.1 dyoung
387 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
388 1.1 dyoung
389 1.1 dyoung if (pba_num == NULL) {
390 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
391 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
392 1.1 dyoung }
393 1.1 dyoung
394 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
395 1.1 dyoung if (ret_val) {
396 1.1 dyoung DEBUGOUT("NVM Read Error\n");
397 1.1 dyoung return ret_val;
398 1.1 dyoung }
399 1.1 dyoung
400 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
401 1.1 dyoung if (ret_val) {
402 1.1 dyoung DEBUGOUT("NVM Read Error\n");
403 1.1 dyoung return ret_val;
404 1.1 dyoung }
405 1.1 dyoung
406 1.1 dyoung /*
407 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
408 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
409 1.1 dyoung * and we can decode it into an ascii string
410 1.1 dyoung */
411 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
412 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
413 1.1 dyoung
414 1.1 dyoung /* we will need 11 characters to store the PBA */
415 1.1 dyoung if (pba_num_size < 11) {
416 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
417 1.1 dyoung return IXGBE_ERR_NO_SPACE;
418 1.1 dyoung }
419 1.1 dyoung
420 1.1 dyoung /* extract hex string from data and pba_ptr */
421 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
422 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
423 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
424 1.1 dyoung pba_num[3] = data & 0xF;
425 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
426 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
427 1.1 dyoung pba_num[6] = '-';
428 1.1 dyoung pba_num[7] = 0;
429 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
430 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
431 1.1 dyoung
432 1.1 dyoung /* put a null character on the end of our string */
433 1.1 dyoung pba_num[10] = '\0';
434 1.1 dyoung
435 1.1 dyoung /* switch all the data but the '-' to hex char */
436 1.1 dyoung for (offset = 0; offset < 10; offset++) {
437 1.1 dyoung if (pba_num[offset] < 0xA)
438 1.1 dyoung pba_num[offset] += '0';
439 1.1 dyoung else if (pba_num[offset] < 0x10)
440 1.1 dyoung pba_num[offset] += 'A' - 0xA;
441 1.1 dyoung }
442 1.1 dyoung
443 1.1 dyoung return IXGBE_SUCCESS;
444 1.1 dyoung }
445 1.1 dyoung
446 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
447 1.1 dyoung if (ret_val) {
448 1.1 dyoung DEBUGOUT("NVM Read Error\n");
449 1.1 dyoung return ret_val;
450 1.1 dyoung }
451 1.1 dyoung
452 1.1 dyoung if (length == 0xFFFF || length == 0) {
453 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
454 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
455 1.1 dyoung }
456 1.1 dyoung
457 1.1 dyoung /* check if pba_num buffer is big enough */
458 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
459 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
460 1.1 dyoung return IXGBE_ERR_NO_SPACE;
461 1.1 dyoung }
462 1.1 dyoung
463 1.1 dyoung /* trim pba length from start of string */
464 1.1 dyoung pba_ptr++;
465 1.1 dyoung length--;
466 1.1 dyoung
467 1.1 dyoung for (offset = 0; offset < length; offset++) {
468 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
469 1.1 dyoung if (ret_val) {
470 1.1 dyoung DEBUGOUT("NVM Read Error\n");
471 1.1 dyoung return ret_val;
472 1.1 dyoung }
473 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
474 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
475 1.1 dyoung }
476 1.1 dyoung pba_num[offset * 2] = '\0';
477 1.1 dyoung
478 1.1 dyoung return IXGBE_SUCCESS;
479 1.1 dyoung }
480 1.1 dyoung
481 1.1 dyoung /**
482 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
483 1.1 dyoung * @hw: pointer to hardware structure
484 1.1 dyoung * @pba_num: stores the part number from the EEPROM
485 1.1 dyoung *
486 1.1 dyoung * Reads the part number from the EEPROM.
487 1.1 dyoung **/
488 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
489 1.1 dyoung {
490 1.1 dyoung s32 ret_val;
491 1.1 dyoung u16 data;
492 1.1 dyoung
493 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
494 1.1 dyoung
495 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
496 1.1 dyoung if (ret_val) {
497 1.1 dyoung DEBUGOUT("NVM Read Error\n");
498 1.1 dyoung return ret_val;
499 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
500 1.1 dyoung DEBUGOUT("NVM Not supported\n");
501 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
502 1.1 dyoung }
503 1.1 dyoung *pba_num = (u32)(data << 16);
504 1.1 dyoung
505 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
506 1.1 dyoung if (ret_val) {
507 1.1 dyoung DEBUGOUT("NVM Read Error\n");
508 1.1 dyoung return ret_val;
509 1.1 dyoung }
510 1.1 dyoung *pba_num |= data;
511 1.1 dyoung
512 1.1 dyoung return IXGBE_SUCCESS;
513 1.1 dyoung }
514 1.1 dyoung
515 1.1 dyoung /**
516 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
517 1.1 dyoung * @hw: pointer to hardware structure
518 1.1 dyoung * @mac_addr: Adapter MAC address
519 1.1 dyoung *
520 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
521 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
522 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
523 1.1 dyoung **/
524 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
525 1.1 dyoung {
526 1.1 dyoung u32 rar_high;
527 1.1 dyoung u32 rar_low;
528 1.1 dyoung u16 i;
529 1.1 dyoung
530 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
531 1.1 dyoung
532 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
533 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
534 1.1 dyoung
535 1.1 dyoung for (i = 0; i < 4; i++)
536 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
537 1.1 dyoung
538 1.1 dyoung for (i = 0; i < 2; i++)
539 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
540 1.1 dyoung
541 1.1 dyoung return IXGBE_SUCCESS;
542 1.1 dyoung }
543 1.1 dyoung
544 1.1 dyoung /**
545 1.1 dyoung * ixgbe_get_bus_info_generic - Generic set PCI bus info
546 1.1 dyoung * @hw: pointer to hardware structure
547 1.1 dyoung *
548 1.1 dyoung * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
549 1.1 dyoung **/
550 1.1 dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
551 1.1 dyoung {
552 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
553 1.1 dyoung u16 link_status;
554 1.1 dyoung
555 1.1 dyoung DEBUGFUNC("ixgbe_get_bus_info_generic");
556 1.1 dyoung
557 1.1 dyoung hw->bus.type = ixgbe_bus_type_pci_express;
558 1.1 dyoung
559 1.1 dyoung /* Get the negotiated link width and speed from PCI config space */
560 1.1 dyoung link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
561 1.1 dyoung
562 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
563 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
564 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
565 1.1 dyoung break;
566 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
567 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
568 1.1 dyoung break;
569 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
570 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
571 1.1 dyoung break;
572 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
573 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
574 1.1 dyoung break;
575 1.1 dyoung default:
576 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
577 1.1 dyoung break;
578 1.1 dyoung }
579 1.1 dyoung
580 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
581 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
582 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
583 1.1 dyoung break;
584 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
585 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
586 1.1 dyoung break;
587 1.1 dyoung default:
588 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
589 1.1 dyoung break;
590 1.1 dyoung }
591 1.1 dyoung
592 1.1 dyoung mac->ops.set_lan_id(hw);
593 1.1 dyoung
594 1.1 dyoung return IXGBE_SUCCESS;
595 1.1 dyoung }
596 1.1 dyoung
597 1.1 dyoung /**
598 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
599 1.1 dyoung * @hw: pointer to the HW structure
600 1.1 dyoung *
601 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
602 1.1 dyoung * and swaps the port value if requested.
603 1.1 dyoung **/
604 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
605 1.1 dyoung {
606 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
607 1.1 dyoung u32 reg;
608 1.1 dyoung
609 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
610 1.1 dyoung
611 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
612 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
613 1.1 dyoung bus->lan_id = bus->func;
614 1.1 dyoung
615 1.1 dyoung /* check for a port swap */
616 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
617 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
618 1.1 dyoung bus->func ^= 0x1;
619 1.1 dyoung }
620 1.1 dyoung
621 1.1 dyoung /**
622 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
623 1.1 dyoung * @hw: pointer to hardware structure
624 1.1 dyoung *
625 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
626 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
627 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
628 1.1 dyoung * state and should not touch the hardware.
629 1.1 dyoung **/
630 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
631 1.1 dyoung {
632 1.1 dyoung u32 reg_val;
633 1.1 dyoung u16 i;
634 1.1 dyoung
635 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
636 1.1 dyoung
637 1.1 dyoung /*
638 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
639 1.1 dyoung * the hardware
640 1.1 dyoung */
641 1.1 dyoung hw->adapter_stopped = TRUE;
642 1.1 dyoung
643 1.1 dyoung /* Disable the receive unit */
644 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
645 1.1 dyoung
646 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
647 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
648 1.1 dyoung
649 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
650 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
651 1.1 dyoung
652 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
653 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
654 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
655 1.3 msaitoh
656 1.3 msaitoh /* Disable the receive unit by stopping each queue */
657 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
658 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
659 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
660 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
661 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
662 1.1 dyoung }
663 1.1 dyoung
664 1.3 msaitoh /* flush all queues disables */
665 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
666 1.3 msaitoh msec_delay(2);
667 1.3 msaitoh
668 1.1 dyoung /*
669 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
670 1.1 dyoung * access and verify no pending requests
671 1.1 dyoung */
672 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
673 1.1 dyoung }
674 1.1 dyoung
675 1.1 dyoung /**
676 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
677 1.1 dyoung * @hw: pointer to hardware structure
678 1.1 dyoung * @index: led number to turn on
679 1.1 dyoung **/
680 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
681 1.1 dyoung {
682 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
683 1.1 dyoung
684 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
685 1.1 dyoung
686 1.1 dyoung /* To turn on the LED, set mode to ON. */
687 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
688 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
689 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
690 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
691 1.1 dyoung
692 1.1 dyoung return IXGBE_SUCCESS;
693 1.1 dyoung }
694 1.1 dyoung
695 1.1 dyoung /**
696 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
697 1.1 dyoung * @hw: pointer to hardware structure
698 1.1 dyoung * @index: led number to turn off
699 1.1 dyoung **/
700 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
701 1.1 dyoung {
702 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
703 1.1 dyoung
704 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
705 1.1 dyoung
706 1.1 dyoung /* To turn off the LED, set mode to OFF. */
707 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
708 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
709 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
710 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
711 1.1 dyoung
712 1.1 dyoung return IXGBE_SUCCESS;
713 1.1 dyoung }
714 1.1 dyoung
715 1.1 dyoung /**
716 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
717 1.1 dyoung * @hw: pointer to hardware structure
718 1.1 dyoung *
719 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
720 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
721 1.1 dyoung **/
722 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
723 1.1 dyoung {
724 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
725 1.1 dyoung u32 eec;
726 1.1 dyoung u16 eeprom_size;
727 1.1 dyoung
728 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
729 1.1 dyoung
730 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
731 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
732 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
733 1.1 dyoung * tested value */
734 1.1 dyoung eeprom->semaphore_delay = 10;
735 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
736 1.3 msaitoh eeprom->word_page_size = 0;
737 1.1 dyoung
738 1.1 dyoung /*
739 1.1 dyoung * Check for EEPROM present first.
740 1.1 dyoung * If not present leave as none
741 1.1 dyoung */
742 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
743 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
744 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
745 1.1 dyoung
746 1.1 dyoung /*
747 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
748 1.1 dyoung * change if a future EEPROM is not SPI.
749 1.1 dyoung */
750 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
751 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
752 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
753 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
754 1.1 dyoung }
755 1.1 dyoung
756 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
757 1.1 dyoung eeprom->address_bits = 16;
758 1.1 dyoung else
759 1.1 dyoung eeprom->address_bits = 8;
760 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
761 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
762 1.3 msaitoh eeprom->address_bits);
763 1.1 dyoung }
764 1.1 dyoung
765 1.1 dyoung return IXGBE_SUCCESS;
766 1.1 dyoung }
767 1.1 dyoung
768 1.1 dyoung /**
769 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
770 1.3 msaitoh * @hw: pointer to hardware structure
771 1.3 msaitoh * @offset: offset within the EEPROM to write
772 1.3 msaitoh * @words: number of word(s)
773 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
774 1.3 msaitoh *
775 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
776 1.3 msaitoh **/
777 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
778 1.3 msaitoh u16 words, u16 *data)
779 1.3 msaitoh {
780 1.3 msaitoh s32 status = IXGBE_SUCCESS;
781 1.3 msaitoh u16 i, count;
782 1.3 msaitoh
783 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
784 1.3 msaitoh
785 1.3 msaitoh hw->eeprom.ops.init_params(hw);
786 1.3 msaitoh
787 1.3 msaitoh if (words == 0) {
788 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
789 1.3 msaitoh goto out;
790 1.3 msaitoh }
791 1.3 msaitoh
792 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
793 1.3 msaitoh status = IXGBE_ERR_EEPROM;
794 1.3 msaitoh goto out;
795 1.3 msaitoh }
796 1.3 msaitoh
797 1.3 msaitoh /*
798 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
799 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
800 1.3 msaitoh */
801 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
802 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
803 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
804 1.3 msaitoh
805 1.3 msaitoh /*
806 1.3 msaitoh * We cannot hold synchronization semaphores for too long
807 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
808 1.3 msaitoh * to read in bursts than synchronizing access for each word.
809 1.3 msaitoh */
810 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
811 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
812 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
813 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
814 1.3 msaitoh count, &data[i]);
815 1.3 msaitoh
816 1.3 msaitoh if (status != IXGBE_SUCCESS)
817 1.3 msaitoh break;
818 1.3 msaitoh }
819 1.3 msaitoh
820 1.3 msaitoh out:
821 1.3 msaitoh return status;
822 1.3 msaitoh }
823 1.3 msaitoh
824 1.3 msaitoh /**
825 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
826 1.3 msaitoh * @hw: pointer to hardware structure
827 1.3 msaitoh * @offset: offset within the EEPROM to be written to
828 1.3 msaitoh * @words: number of word(s)
829 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
830 1.3 msaitoh *
831 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
832 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
833 1.3 msaitoh **/
834 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
835 1.3 msaitoh u16 words, u16 *data)
836 1.3 msaitoh {
837 1.3 msaitoh s32 status;
838 1.3 msaitoh u16 word;
839 1.3 msaitoh u16 page_size;
840 1.3 msaitoh u16 i;
841 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
842 1.3 msaitoh
843 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
844 1.3 msaitoh
845 1.3 msaitoh /* Prepare the EEPROM for writing */
846 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
847 1.3 msaitoh
848 1.3 msaitoh if (status == IXGBE_SUCCESS) {
849 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
850 1.3 msaitoh ixgbe_release_eeprom(hw);
851 1.3 msaitoh status = IXGBE_ERR_EEPROM;
852 1.3 msaitoh }
853 1.3 msaitoh }
854 1.3 msaitoh
855 1.3 msaitoh if (status == IXGBE_SUCCESS) {
856 1.3 msaitoh for (i = 0; i < words; i++) {
857 1.3 msaitoh ixgbe_standby_eeprom(hw);
858 1.3 msaitoh
859 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
860 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
861 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
862 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
863 1.3 msaitoh
864 1.3 msaitoh ixgbe_standby_eeprom(hw);
865 1.3 msaitoh
866 1.3 msaitoh /*
867 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
868 1.3 msaitoh * in the opcode
869 1.3 msaitoh */
870 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
871 1.3 msaitoh ((offset + i) >= 128))
872 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
873 1.3 msaitoh
874 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
875 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
876 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
877 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
878 1.3 msaitoh hw->eeprom.address_bits);
879 1.3 msaitoh
880 1.3 msaitoh page_size = hw->eeprom.word_page_size;
881 1.3 msaitoh
882 1.3 msaitoh /* Send the data in burst via SPI*/
883 1.3 msaitoh do {
884 1.3 msaitoh word = data[i];
885 1.3 msaitoh word = (word >> 8) | (word << 8);
886 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
887 1.3 msaitoh
888 1.3 msaitoh if (page_size == 0)
889 1.3 msaitoh break;
890 1.3 msaitoh
891 1.3 msaitoh /* do not wrap around page */
892 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
893 1.3 msaitoh (page_size - 1))
894 1.3 msaitoh break;
895 1.3 msaitoh } while (++i < words);
896 1.3 msaitoh
897 1.3 msaitoh ixgbe_standby_eeprom(hw);
898 1.3 msaitoh msec_delay(10);
899 1.3 msaitoh }
900 1.3 msaitoh /* Done with writing - release the EEPROM */
901 1.3 msaitoh ixgbe_release_eeprom(hw);
902 1.3 msaitoh }
903 1.3 msaitoh
904 1.3 msaitoh return status;
905 1.3 msaitoh }
906 1.3 msaitoh
907 1.3 msaitoh /**
908 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
909 1.1 dyoung * @hw: pointer to hardware structure
910 1.1 dyoung * @offset: offset within the EEPROM to be written to
911 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
912 1.1 dyoung *
913 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
914 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
915 1.1 dyoung **/
916 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
917 1.1 dyoung {
918 1.1 dyoung s32 status;
919 1.1 dyoung
920 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
921 1.1 dyoung
922 1.1 dyoung hw->eeprom.ops.init_params(hw);
923 1.1 dyoung
924 1.1 dyoung if (offset >= hw->eeprom.word_size) {
925 1.1 dyoung status = IXGBE_ERR_EEPROM;
926 1.1 dyoung goto out;
927 1.1 dyoung }
928 1.1 dyoung
929 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
930 1.3 msaitoh
931 1.3 msaitoh out:
932 1.3 msaitoh return status;
933 1.3 msaitoh }
934 1.3 msaitoh
935 1.3 msaitoh /**
936 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
937 1.3 msaitoh * @hw: pointer to hardware structure
938 1.3 msaitoh * @offset: offset within the EEPROM to be read
939 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
940 1.3 msaitoh * @words: number of word(s)
941 1.3 msaitoh *
942 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
943 1.3 msaitoh **/
944 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
945 1.3 msaitoh u16 words, u16 *data)
946 1.3 msaitoh {
947 1.3 msaitoh s32 status = IXGBE_SUCCESS;
948 1.3 msaitoh u16 i, count;
949 1.3 msaitoh
950 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
951 1.3 msaitoh
952 1.3 msaitoh hw->eeprom.ops.init_params(hw);
953 1.3 msaitoh
954 1.3 msaitoh if (words == 0) {
955 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
956 1.3 msaitoh goto out;
957 1.3 msaitoh }
958 1.3 msaitoh
959 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
960 1.3 msaitoh status = IXGBE_ERR_EEPROM;
961 1.3 msaitoh goto out;
962 1.3 msaitoh }
963 1.3 msaitoh
964 1.3 msaitoh /*
965 1.3 msaitoh * We cannot hold synchronization semaphores for too long
966 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
967 1.3 msaitoh * to read in bursts than synchronizing access for each word.
968 1.3 msaitoh */
969 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
970 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
971 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
972 1.3 msaitoh
973 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
974 1.3 msaitoh count, &data[i]);
975 1.3 msaitoh
976 1.3 msaitoh if (status != IXGBE_SUCCESS)
977 1.3 msaitoh break;
978 1.3 msaitoh }
979 1.3 msaitoh
980 1.3 msaitoh out:
981 1.3 msaitoh return status;
982 1.3 msaitoh }
983 1.3 msaitoh
984 1.3 msaitoh /**
985 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
986 1.3 msaitoh * @hw: pointer to hardware structure
987 1.3 msaitoh * @offset: offset within the EEPROM to be read
988 1.3 msaitoh * @words: number of word(s)
989 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
990 1.3 msaitoh *
991 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
992 1.3 msaitoh **/
993 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
994 1.3 msaitoh u16 words, u16 *data)
995 1.3 msaitoh {
996 1.3 msaitoh s32 status;
997 1.3 msaitoh u16 word_in;
998 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
999 1.3 msaitoh u16 i;
1000 1.3 msaitoh
1001 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1002 1.3 msaitoh
1003 1.3 msaitoh /* Prepare the EEPROM for reading */
1004 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1005 1.1 dyoung
1006 1.1 dyoung if (status == IXGBE_SUCCESS) {
1007 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1008 1.1 dyoung ixgbe_release_eeprom(hw);
1009 1.1 dyoung status = IXGBE_ERR_EEPROM;
1010 1.1 dyoung }
1011 1.1 dyoung }
1012 1.1 dyoung
1013 1.1 dyoung if (status == IXGBE_SUCCESS) {
1014 1.3 msaitoh for (i = 0; i < words; i++) {
1015 1.3 msaitoh ixgbe_standby_eeprom(hw);
1016 1.3 msaitoh /*
1017 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1018 1.3 msaitoh * in the opcode
1019 1.3 msaitoh */
1020 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1021 1.3 msaitoh ((offset + i) >= 128))
1022 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1023 1.3 msaitoh
1024 1.3 msaitoh /* Send the READ command (opcode + addr) */
1025 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1026 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1027 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1028 1.3 msaitoh hw->eeprom.address_bits);
1029 1.3 msaitoh
1030 1.3 msaitoh /* Read the data. */
1031 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1032 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1033 1.3 msaitoh }
1034 1.1 dyoung
1035 1.3 msaitoh /* End this read operation */
1036 1.1 dyoung ixgbe_release_eeprom(hw);
1037 1.1 dyoung }
1038 1.1 dyoung
1039 1.1 dyoung return status;
1040 1.1 dyoung }
1041 1.1 dyoung
1042 1.1 dyoung /**
1043 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1044 1.1 dyoung * @hw: pointer to hardware structure
1045 1.1 dyoung * @offset: offset within the EEPROM to be read
1046 1.1 dyoung * @data: read 16 bit value from EEPROM
1047 1.1 dyoung *
1048 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1049 1.1 dyoung **/
1050 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1051 1.3 msaitoh u16 *data)
1052 1.1 dyoung {
1053 1.1 dyoung s32 status;
1054 1.1 dyoung
1055 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1056 1.1 dyoung
1057 1.1 dyoung hw->eeprom.ops.init_params(hw);
1058 1.1 dyoung
1059 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1060 1.1 dyoung status = IXGBE_ERR_EEPROM;
1061 1.1 dyoung goto out;
1062 1.1 dyoung }
1063 1.1 dyoung
1064 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1065 1.3 msaitoh
1066 1.3 msaitoh out:
1067 1.3 msaitoh return status;
1068 1.3 msaitoh }
1069 1.3 msaitoh
1070 1.3 msaitoh /**
1071 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1072 1.3 msaitoh * @hw: pointer to hardware structure
1073 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1074 1.3 msaitoh * @words: number of word(s)
1075 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1076 1.3 msaitoh *
1077 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1078 1.3 msaitoh **/
1079 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1080 1.3 msaitoh u16 words, u16 *data)
1081 1.3 msaitoh {
1082 1.3 msaitoh u32 eerd;
1083 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1084 1.3 msaitoh u32 i;
1085 1.3 msaitoh
1086 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1087 1.3 msaitoh
1088 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1089 1.3 msaitoh
1090 1.3 msaitoh if (words == 0) {
1091 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1092 1.3 msaitoh goto out;
1093 1.3 msaitoh }
1094 1.3 msaitoh
1095 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1096 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1097 1.3 msaitoh goto out;
1098 1.3 msaitoh }
1099 1.3 msaitoh
1100 1.3 msaitoh for (i = 0; i < words; i++) {
1101 1.3 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1102 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1103 1.3 msaitoh
1104 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1105 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1106 1.1 dyoung
1107 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1108 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1109 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1110 1.3 msaitoh } else {
1111 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1112 1.3 msaitoh goto out;
1113 1.1 dyoung }
1114 1.1 dyoung }
1115 1.3 msaitoh out:
1116 1.3 msaitoh return status;
1117 1.3 msaitoh }
1118 1.1 dyoung
1119 1.3 msaitoh /**
1120 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1121 1.3 msaitoh * @hw: pointer to hardware structure
1122 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1123 1.3 msaitoh *
1124 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1125 1.3 msaitoh * This function is called only when we are writing a new large buffer
1126 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1127 1.3 msaitoh **/
1128 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1129 1.3 msaitoh u16 offset)
1130 1.3 msaitoh {
1131 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1132 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1133 1.3 msaitoh u16 i;
1134 1.3 msaitoh
1135 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1136 1.3 msaitoh
1137 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1138 1.3 msaitoh data[i] = i;
1139 1.1 dyoung
1140 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1141 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1142 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1143 1.3 msaitoh hw->eeprom.word_page_size = 0;
1144 1.3 msaitoh if (status != IXGBE_SUCCESS)
1145 1.3 msaitoh goto out;
1146 1.1 dyoung
1147 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148 1.3 msaitoh if (status != IXGBE_SUCCESS)
1149 1.3 msaitoh goto out;
1150 1.1 dyoung
1151 1.3 msaitoh /*
1152 1.3 msaitoh * When writing in burst more than the actual page size
1153 1.3 msaitoh * EEPROM address wraps around current page.
1154 1.3 msaitoh */
1155 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1156 1.1 dyoung
1157 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1158 1.3 msaitoh hw->eeprom.word_page_size);
1159 1.1 dyoung out:
1160 1.1 dyoung return status;
1161 1.1 dyoung }
1162 1.1 dyoung
1163 1.1 dyoung /**
1164 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1165 1.1 dyoung * @hw: pointer to hardware structure
1166 1.1 dyoung * @offset: offset of word in the EEPROM to read
1167 1.1 dyoung * @data: word read from the EEPROM
1168 1.1 dyoung *
1169 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1170 1.1 dyoung **/
1171 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1172 1.1 dyoung {
1173 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1174 1.3 msaitoh }
1175 1.3 msaitoh
1176 1.3 msaitoh /**
1177 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1178 1.3 msaitoh * @hw: pointer to hardware structure
1179 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1180 1.3 msaitoh * @words: number of word(s)
1181 1.3 msaitoh * @data: word(s) write to the EEPROM
1182 1.3 msaitoh *
1183 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1184 1.3 msaitoh **/
1185 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1186 1.3 msaitoh u16 words, u16 *data)
1187 1.3 msaitoh {
1188 1.3 msaitoh u32 eewr;
1189 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1190 1.3 msaitoh u16 i;
1191 1.1 dyoung
1192 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1193 1.1 dyoung
1194 1.1 dyoung hw->eeprom.ops.init_params(hw);
1195 1.1 dyoung
1196 1.3 msaitoh if (words == 0) {
1197 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1198 1.3 msaitoh goto out;
1199 1.3 msaitoh }
1200 1.3 msaitoh
1201 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1202 1.1 dyoung status = IXGBE_ERR_EEPROM;
1203 1.1 dyoung goto out;
1204 1.1 dyoung }
1205 1.1 dyoung
1206 1.3 msaitoh for (i = 0; i < words; i++) {
1207 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1208 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1209 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1210 1.3 msaitoh
1211 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1212 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1213 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1214 1.3 msaitoh goto out;
1215 1.3 msaitoh }
1216 1.1 dyoung
1217 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1218 1.1 dyoung
1219 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1220 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1221 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1222 1.3 msaitoh goto out;
1223 1.3 msaitoh }
1224 1.3 msaitoh }
1225 1.1 dyoung
1226 1.1 dyoung out:
1227 1.1 dyoung return status;
1228 1.1 dyoung }
1229 1.1 dyoung
1230 1.1 dyoung /**
1231 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1232 1.1 dyoung * @hw: pointer to hardware structure
1233 1.1 dyoung * @offset: offset of word in the EEPROM to write
1234 1.1 dyoung * @data: word write to the EEPROM
1235 1.1 dyoung *
1236 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1237 1.1 dyoung **/
1238 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1239 1.1 dyoung {
1240 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1241 1.1 dyoung }
1242 1.1 dyoung
1243 1.1 dyoung /**
1244 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1245 1.1 dyoung * @hw: pointer to hardware structure
1246 1.1 dyoung * @ee_reg: EEPROM flag for polling
1247 1.1 dyoung *
1248 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1249 1.1 dyoung * read or write is done respectively.
1250 1.1 dyoung **/
1251 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1252 1.1 dyoung {
1253 1.1 dyoung u32 i;
1254 1.1 dyoung u32 reg;
1255 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1256 1.1 dyoung
1257 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1258 1.1 dyoung
1259 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1260 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1261 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1262 1.1 dyoung else
1263 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1264 1.1 dyoung
1265 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1266 1.1 dyoung status = IXGBE_SUCCESS;
1267 1.1 dyoung break;
1268 1.1 dyoung }
1269 1.1 dyoung usec_delay(5);
1270 1.1 dyoung }
1271 1.1 dyoung return status;
1272 1.1 dyoung }
1273 1.1 dyoung
1274 1.1 dyoung /**
1275 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1276 1.1 dyoung * @hw: pointer to hardware structure
1277 1.1 dyoung *
1278 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1279 1.1 dyoung * be called before issuing a command to the EEPROM.
1280 1.1 dyoung **/
1281 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1282 1.1 dyoung {
1283 1.1 dyoung s32 status = IXGBE_SUCCESS;
1284 1.1 dyoung u32 eec;
1285 1.1 dyoung u32 i;
1286 1.1 dyoung
1287 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1288 1.1 dyoung
1289 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1290 1.3 msaitoh != IXGBE_SUCCESS)
1291 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1292 1.1 dyoung
1293 1.1 dyoung if (status == IXGBE_SUCCESS) {
1294 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1295 1.1 dyoung
1296 1.1 dyoung /* Request EEPROM Access */
1297 1.1 dyoung eec |= IXGBE_EEC_REQ;
1298 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1299 1.1 dyoung
1300 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1301 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1302 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1303 1.1 dyoung break;
1304 1.1 dyoung usec_delay(5);
1305 1.1 dyoung }
1306 1.1 dyoung
1307 1.1 dyoung /* Release if grant not acquired */
1308 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1309 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1310 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1311 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1312 1.1 dyoung
1313 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1314 1.1 dyoung status = IXGBE_ERR_EEPROM;
1315 1.1 dyoung }
1316 1.1 dyoung
1317 1.1 dyoung /* Setup EEPROM for Read/Write */
1318 1.1 dyoung if (status == IXGBE_SUCCESS) {
1319 1.1 dyoung /* Clear CS and SK */
1320 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1321 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1322 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1323 1.1 dyoung usec_delay(1);
1324 1.1 dyoung }
1325 1.1 dyoung }
1326 1.1 dyoung return status;
1327 1.1 dyoung }
1328 1.1 dyoung
1329 1.1 dyoung /**
1330 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1331 1.1 dyoung * @hw: pointer to hardware structure
1332 1.1 dyoung *
1333 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1334 1.1 dyoung **/
1335 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1336 1.1 dyoung {
1337 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1338 1.1 dyoung u32 timeout = 2000;
1339 1.1 dyoung u32 i;
1340 1.1 dyoung u32 swsm;
1341 1.1 dyoung
1342 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1343 1.1 dyoung
1344 1.1 dyoung
1345 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1346 1.1 dyoung for (i = 0; i < timeout; i++) {
1347 1.1 dyoung /*
1348 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1349 1.1 dyoung * set and we have the semaphore
1350 1.1 dyoung */
1351 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1352 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1353 1.1 dyoung status = IXGBE_SUCCESS;
1354 1.1 dyoung break;
1355 1.1 dyoung }
1356 1.1 dyoung usec_delay(50);
1357 1.1 dyoung }
1358 1.1 dyoung
1359 1.3 msaitoh if (i == timeout) {
1360 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1361 1.3 msaitoh "not granted.\n");
1362 1.3 msaitoh /*
1363 1.3 msaitoh * this release is particularly important because our attempts
1364 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1365 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1366 1.3 msaitoh * bits to free the driver to make progress
1367 1.3 msaitoh */
1368 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1369 1.3 msaitoh
1370 1.3 msaitoh usec_delay(50);
1371 1.3 msaitoh /*
1372 1.3 msaitoh * one last try
1373 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1374 1.3 msaitoh * set and we have the semaphore
1375 1.3 msaitoh */
1376 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1377 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1378 1.3 msaitoh status = IXGBE_SUCCESS;
1379 1.3 msaitoh }
1380 1.3 msaitoh
1381 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1382 1.1 dyoung if (status == IXGBE_SUCCESS) {
1383 1.1 dyoung for (i = 0; i < timeout; i++) {
1384 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1385 1.1 dyoung
1386 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1387 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1388 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1389 1.1 dyoung
1390 1.1 dyoung /*
1391 1.1 dyoung * If we set the bit successfully then we got the
1392 1.1 dyoung * semaphore.
1393 1.1 dyoung */
1394 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1395 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1396 1.1 dyoung break;
1397 1.1 dyoung
1398 1.1 dyoung usec_delay(50);
1399 1.1 dyoung }
1400 1.1 dyoung
1401 1.1 dyoung /*
1402 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1403 1.1 dyoung * was not granted because we don't have access to the EEPROM
1404 1.1 dyoung */
1405 1.1 dyoung if (i >= timeout) {
1406 1.1 dyoung DEBUGOUT("SWESMBI Software EEPROM semaphore "
1407 1.3 msaitoh "not granted.\n");
1408 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1409 1.1 dyoung status = IXGBE_ERR_EEPROM;
1410 1.1 dyoung }
1411 1.1 dyoung } else {
1412 1.1 dyoung DEBUGOUT("Software semaphore SMBI between device drivers "
1413 1.3 msaitoh "not granted.\n");
1414 1.1 dyoung }
1415 1.1 dyoung
1416 1.1 dyoung return status;
1417 1.1 dyoung }
1418 1.1 dyoung
1419 1.1 dyoung /**
1420 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1421 1.1 dyoung * @hw: pointer to hardware structure
1422 1.1 dyoung *
1423 1.1 dyoung * This function clears hardware semaphore bits.
1424 1.1 dyoung **/
1425 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1426 1.1 dyoung {
1427 1.1 dyoung u32 swsm;
1428 1.1 dyoung
1429 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1430 1.1 dyoung
1431 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1432 1.1 dyoung
1433 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1434 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1435 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1436 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1437 1.1 dyoung }
1438 1.1 dyoung
1439 1.1 dyoung /**
1440 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1441 1.1 dyoung * @hw: pointer to hardware structure
1442 1.1 dyoung **/
1443 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1444 1.1 dyoung {
1445 1.1 dyoung s32 status = IXGBE_SUCCESS;
1446 1.1 dyoung u16 i;
1447 1.1 dyoung u8 spi_stat_reg;
1448 1.1 dyoung
1449 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1450 1.1 dyoung
1451 1.1 dyoung /*
1452 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1453 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1454 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1455 1.1 dyoung * 5 milliseconds, then error out.
1456 1.1 dyoung */
1457 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1458 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1459 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1460 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1461 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1462 1.1 dyoung break;
1463 1.1 dyoung
1464 1.1 dyoung usec_delay(5);
1465 1.1 dyoung ixgbe_standby_eeprom(hw);
1466 1.1 dyoung };
1467 1.1 dyoung
1468 1.1 dyoung /*
1469 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1470 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1471 1.1 dyoung */
1472 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1473 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1474 1.1 dyoung status = IXGBE_ERR_EEPROM;
1475 1.1 dyoung }
1476 1.1 dyoung
1477 1.1 dyoung return status;
1478 1.1 dyoung }
1479 1.1 dyoung
1480 1.1 dyoung /**
1481 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1482 1.1 dyoung * @hw: pointer to hardware structure
1483 1.1 dyoung **/
1484 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1485 1.1 dyoung {
1486 1.1 dyoung u32 eec;
1487 1.1 dyoung
1488 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1489 1.1 dyoung
1490 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1491 1.1 dyoung
1492 1.1 dyoung /* Toggle CS to flush commands */
1493 1.1 dyoung eec |= IXGBE_EEC_CS;
1494 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1495 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1496 1.1 dyoung usec_delay(1);
1497 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1498 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1499 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1500 1.1 dyoung usec_delay(1);
1501 1.1 dyoung }
1502 1.1 dyoung
1503 1.1 dyoung /**
1504 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1505 1.1 dyoung * @hw: pointer to hardware structure
1506 1.1 dyoung * @data: data to send to the EEPROM
1507 1.1 dyoung * @count: number of bits to shift out
1508 1.1 dyoung **/
1509 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1510 1.3 msaitoh u16 count)
1511 1.1 dyoung {
1512 1.1 dyoung u32 eec;
1513 1.1 dyoung u32 mask;
1514 1.1 dyoung u32 i;
1515 1.1 dyoung
1516 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1517 1.1 dyoung
1518 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1519 1.1 dyoung
1520 1.1 dyoung /*
1521 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1522 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1523 1.1 dyoung */
1524 1.1 dyoung mask = 0x01 << (count - 1);
1525 1.1 dyoung
1526 1.1 dyoung for (i = 0; i < count; i++) {
1527 1.1 dyoung /*
1528 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1529 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1530 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1531 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1532 1.1 dyoung * raising and then lowering the clock.
1533 1.1 dyoung */
1534 1.1 dyoung if (data & mask)
1535 1.1 dyoung eec |= IXGBE_EEC_DI;
1536 1.1 dyoung else
1537 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1538 1.1 dyoung
1539 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1540 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1541 1.1 dyoung
1542 1.1 dyoung usec_delay(1);
1543 1.1 dyoung
1544 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1545 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1546 1.1 dyoung
1547 1.1 dyoung /*
1548 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1549 1.1 dyoung * EEPROM
1550 1.1 dyoung */
1551 1.1 dyoung mask = mask >> 1;
1552 1.1 dyoung };
1553 1.1 dyoung
1554 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1555 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1556 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1557 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1558 1.1 dyoung }
1559 1.1 dyoung
1560 1.1 dyoung /**
1561 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1562 1.1 dyoung * @hw: pointer to hardware structure
1563 1.1 dyoung **/
1564 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1565 1.1 dyoung {
1566 1.1 dyoung u32 eec;
1567 1.1 dyoung u32 i;
1568 1.1 dyoung u16 data = 0;
1569 1.1 dyoung
1570 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1571 1.1 dyoung
1572 1.1 dyoung /*
1573 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
1574 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1575 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
1576 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
1577 1.1 dyoung * "DI" bit should always be clear.
1578 1.1 dyoung */
1579 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1580 1.1 dyoung
1581 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1582 1.1 dyoung
1583 1.1 dyoung for (i = 0; i < count; i++) {
1584 1.1 dyoung data = data << 1;
1585 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1586 1.1 dyoung
1587 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1588 1.1 dyoung
1589 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
1590 1.1 dyoung if (eec & IXGBE_EEC_DO)
1591 1.1 dyoung data |= 1;
1592 1.1 dyoung
1593 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1594 1.1 dyoung }
1595 1.1 dyoung
1596 1.1 dyoung return data;
1597 1.1 dyoung }
1598 1.1 dyoung
1599 1.1 dyoung /**
1600 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1601 1.1 dyoung * @hw: pointer to hardware structure
1602 1.1 dyoung * @eec: EEC register's current value
1603 1.1 dyoung **/
1604 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1605 1.1 dyoung {
1606 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
1607 1.1 dyoung
1608 1.1 dyoung /*
1609 1.1 dyoung * Raise the clock input to the EEPROM
1610 1.1 dyoung * (setting the SK bit), then delay
1611 1.1 dyoung */
1612 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
1613 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1614 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1615 1.1 dyoung usec_delay(1);
1616 1.1 dyoung }
1617 1.1 dyoung
1618 1.1 dyoung /**
1619 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1620 1.1 dyoung * @hw: pointer to hardware structure
1621 1.1 dyoung * @eecd: EECD's current value
1622 1.1 dyoung **/
1623 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1624 1.1 dyoung {
1625 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
1626 1.1 dyoung
1627 1.1 dyoung /*
1628 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
1629 1.1 dyoung * delay
1630 1.1 dyoung */
1631 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
1632 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1633 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1634 1.1 dyoung usec_delay(1);
1635 1.1 dyoung }
1636 1.1 dyoung
1637 1.1 dyoung /**
1638 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
1639 1.1 dyoung * @hw: pointer to hardware structure
1640 1.1 dyoung **/
1641 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1642 1.1 dyoung {
1643 1.1 dyoung u32 eec;
1644 1.1 dyoung
1645 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
1646 1.1 dyoung
1647 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1648 1.1 dyoung
1649 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
1650 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1651 1.1 dyoung
1652 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1653 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1654 1.1 dyoung
1655 1.1 dyoung usec_delay(1);
1656 1.1 dyoung
1657 1.1 dyoung /* Stop requesting EEPROM access */
1658 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1659 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1660 1.1 dyoung
1661 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1662 1.1 dyoung
1663 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
1664 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
1665 1.1 dyoung }
1666 1.1 dyoung
1667 1.1 dyoung /**
1668 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1669 1.1 dyoung * @hw: pointer to hardware structure
1670 1.1 dyoung **/
1671 1.1 dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1672 1.1 dyoung {
1673 1.1 dyoung u16 i;
1674 1.1 dyoung u16 j;
1675 1.1 dyoung u16 checksum = 0;
1676 1.1 dyoung u16 length = 0;
1677 1.1 dyoung u16 pointer = 0;
1678 1.1 dyoung u16 word = 0;
1679 1.1 dyoung
1680 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1681 1.1 dyoung
1682 1.1 dyoung /* Include 0x0-0x3F in the checksum */
1683 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1684 1.1 dyoung if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1685 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1686 1.1 dyoung break;
1687 1.1 dyoung }
1688 1.1 dyoung checksum += word;
1689 1.1 dyoung }
1690 1.1 dyoung
1691 1.1 dyoung /* Include all data from pointers except for the fw pointer */
1692 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1693 1.1 dyoung hw->eeprom.ops.read(hw, i, &pointer);
1694 1.1 dyoung
1695 1.1 dyoung /* Make sure the pointer seems valid */
1696 1.1 dyoung if (pointer != 0xFFFF && pointer != 0) {
1697 1.1 dyoung hw->eeprom.ops.read(hw, pointer, &length);
1698 1.1 dyoung
1699 1.1 dyoung if (length != 0xFFFF && length != 0) {
1700 1.1 dyoung for (j = pointer+1; j <= pointer+length; j++) {
1701 1.1 dyoung hw->eeprom.ops.read(hw, j, &word);
1702 1.1 dyoung checksum += word;
1703 1.1 dyoung }
1704 1.1 dyoung }
1705 1.1 dyoung }
1706 1.1 dyoung }
1707 1.1 dyoung
1708 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1709 1.1 dyoung
1710 1.1 dyoung return checksum;
1711 1.1 dyoung }
1712 1.1 dyoung
1713 1.1 dyoung /**
1714 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1715 1.1 dyoung * @hw: pointer to hardware structure
1716 1.1 dyoung * @checksum_val: calculated checksum
1717 1.1 dyoung *
1718 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
1719 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
1720 1.1 dyoung **/
1721 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1722 1.3 msaitoh u16 *checksum_val)
1723 1.1 dyoung {
1724 1.1 dyoung s32 status;
1725 1.1 dyoung u16 checksum;
1726 1.1 dyoung u16 read_checksum = 0;
1727 1.1 dyoung
1728 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1729 1.1 dyoung
1730 1.1 dyoung /*
1731 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1732 1.1 dyoung * not continue or we could be in for a very long wait while every
1733 1.1 dyoung * EEPROM read fails
1734 1.1 dyoung */
1735 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1736 1.1 dyoung
1737 1.1 dyoung if (status == IXGBE_SUCCESS) {
1738 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1739 1.1 dyoung
1740 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1741 1.1 dyoung
1742 1.1 dyoung /*
1743 1.1 dyoung * Verify read checksum from EEPROM is the same as
1744 1.1 dyoung * calculated checksum
1745 1.1 dyoung */
1746 1.1 dyoung if (read_checksum != checksum)
1747 1.1 dyoung status = IXGBE_ERR_EEPROM_CHECKSUM;
1748 1.1 dyoung
1749 1.1 dyoung /* If the user cares, return the calculated checksum */
1750 1.1 dyoung if (checksum_val)
1751 1.1 dyoung *checksum_val = checksum;
1752 1.1 dyoung } else {
1753 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1754 1.1 dyoung }
1755 1.1 dyoung
1756 1.1 dyoung return status;
1757 1.1 dyoung }
1758 1.1 dyoung
1759 1.1 dyoung /**
1760 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1761 1.1 dyoung * @hw: pointer to hardware structure
1762 1.1 dyoung **/
1763 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1764 1.1 dyoung {
1765 1.1 dyoung s32 status;
1766 1.1 dyoung u16 checksum;
1767 1.1 dyoung
1768 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1769 1.1 dyoung
1770 1.1 dyoung /*
1771 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1772 1.1 dyoung * not continue or we could be in for a very long wait while every
1773 1.1 dyoung * EEPROM read fails
1774 1.1 dyoung */
1775 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1776 1.1 dyoung
1777 1.1 dyoung if (status == IXGBE_SUCCESS) {
1778 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1779 1.1 dyoung status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1780 1.3 msaitoh checksum);
1781 1.1 dyoung } else {
1782 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1783 1.1 dyoung }
1784 1.1 dyoung
1785 1.1 dyoung return status;
1786 1.1 dyoung }
1787 1.1 dyoung
1788 1.1 dyoung /**
1789 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
1790 1.1 dyoung * @mac_addr: pointer to MAC address.
1791 1.1 dyoung *
1792 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
1793 1.1 dyoung **/
1794 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1795 1.1 dyoung {
1796 1.1 dyoung s32 status = IXGBE_SUCCESS;
1797 1.1 dyoung
1798 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
1799 1.1 dyoung
1800 1.1 dyoung /* Make sure it is not a multicast address */
1801 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
1802 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
1803 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1804 1.1 dyoung /* Not a broadcast address */
1805 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1806 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
1807 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1808 1.1 dyoung /* Reject the zero address */
1809 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1810 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1811 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
1812 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1813 1.1 dyoung }
1814 1.1 dyoung return status;
1815 1.1 dyoung }
1816 1.1 dyoung
1817 1.1 dyoung /**
1818 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
1819 1.1 dyoung * @hw: pointer to hardware structure
1820 1.1 dyoung * @index: Receive address register to write
1821 1.1 dyoung * @addr: Address to put into receive address register
1822 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
1823 1.1 dyoung * @enable_addr: set flag that address is active
1824 1.1 dyoung *
1825 1.1 dyoung * Puts an ethernet address into a receive address register.
1826 1.1 dyoung **/
1827 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1828 1.3 msaitoh u32 enable_addr)
1829 1.1 dyoung {
1830 1.1 dyoung u32 rar_low, rar_high;
1831 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1832 1.1 dyoung
1833 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
1834 1.1 dyoung
1835 1.1 dyoung /* Make sure we are using a valid rar index range */
1836 1.1 dyoung if (index >= rar_entries) {
1837 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
1838 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
1839 1.1 dyoung }
1840 1.1 dyoung
1841 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
1842 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
1843 1.1 dyoung
1844 1.1 dyoung /*
1845 1.1 dyoung * HW expects these in little endian so we reverse the byte
1846 1.1 dyoung * order from network order (big endian) to little endian
1847 1.1 dyoung */
1848 1.1 dyoung rar_low = ((u32)addr[0] |
1849 1.3 msaitoh ((u32)addr[1] << 8) |
1850 1.3 msaitoh ((u32)addr[2] << 16) |
1851 1.3 msaitoh ((u32)addr[3] << 24));
1852 1.1 dyoung /*
1853 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
1854 1.1 dyoung * so save everything except the lower 16 bits that hold part
1855 1.1 dyoung * of the address and the address valid bit.
1856 1.1 dyoung */
1857 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1858 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1859 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1860 1.1 dyoung
1861 1.1 dyoung if (enable_addr != 0)
1862 1.1 dyoung rar_high |= IXGBE_RAH_AV;
1863 1.1 dyoung
1864 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1865 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1866 1.1 dyoung
1867 1.1 dyoung return IXGBE_SUCCESS;
1868 1.1 dyoung }
1869 1.1 dyoung
1870 1.1 dyoung /**
1871 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
1872 1.1 dyoung * @hw: pointer to hardware structure
1873 1.1 dyoung * @index: Receive address register to write
1874 1.1 dyoung *
1875 1.1 dyoung * Clears an ethernet address from a receive address register.
1876 1.1 dyoung **/
1877 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1878 1.1 dyoung {
1879 1.1 dyoung u32 rar_high;
1880 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1881 1.1 dyoung
1882 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
1883 1.1 dyoung
1884 1.1 dyoung /* Make sure we are using a valid rar index range */
1885 1.1 dyoung if (index >= rar_entries) {
1886 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
1887 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
1888 1.1 dyoung }
1889 1.1 dyoung
1890 1.1 dyoung /*
1891 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
1892 1.1 dyoung * so save everything except the lower 16 bits that hold part
1893 1.1 dyoung * of the address and the address valid bit.
1894 1.1 dyoung */
1895 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897 1.1 dyoung
1898 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1899 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1900 1.1 dyoung
1901 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
1902 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1903 1.1 dyoung
1904 1.1 dyoung return IXGBE_SUCCESS;
1905 1.1 dyoung }
1906 1.1 dyoung
1907 1.1 dyoung /**
1908 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1909 1.1 dyoung * @hw: pointer to hardware structure
1910 1.1 dyoung *
1911 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
1912 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
1913 1.1 dyoung * the receiver is in reset when the routine is called.
1914 1.1 dyoung **/
1915 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1916 1.1 dyoung {
1917 1.1 dyoung u32 i;
1918 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1919 1.1 dyoung
1920 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
1921 1.1 dyoung
1922 1.1 dyoung /*
1923 1.1 dyoung * If the current mac address is valid, assume it is a software override
1924 1.1 dyoung * to the permanent address.
1925 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
1926 1.1 dyoung */
1927 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1928 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
1929 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
1930 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1931 1.1 dyoung
1932 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1933 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
1934 1.3 msaitoh hw->mac.addr[2]);
1935 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1936 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
1937 1.1 dyoung } else {
1938 1.1 dyoung /* Setup the receive address. */
1939 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
1940 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
1941 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
1942 1.3 msaitoh hw->mac.addr[2]);
1943 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
1944 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
1945 1.1 dyoung
1946 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1947 1.1 dyoung
1948 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
1949 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1950 1.1 dyoung }
1951 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
1952 1.1 dyoung
1953 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
1954 1.1 dyoung
1955 1.1 dyoung /* Zero out the other receive addresses. */
1956 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
1957 1.1 dyoung for (i = 1; i < rar_entries; i++) {
1958 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1959 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1960 1.1 dyoung }
1961 1.1 dyoung
1962 1.1 dyoung /* Clear the MTA */
1963 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
1964 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1965 1.1 dyoung
1966 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
1967 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
1968 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1969 1.1 dyoung
1970 1.1 dyoung ixgbe_init_uta_tables(hw);
1971 1.1 dyoung
1972 1.1 dyoung return IXGBE_SUCCESS;
1973 1.1 dyoung }
1974 1.1 dyoung
1975 1.1 dyoung /**
1976 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
1977 1.1 dyoung * @hw: pointer to hardware structure
1978 1.1 dyoung * @addr: new address
1979 1.1 dyoung *
1980 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
1981 1.1 dyoung **/
1982 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1983 1.1 dyoung {
1984 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
1985 1.1 dyoung u32 rar;
1986 1.1 dyoung
1987 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
1988 1.1 dyoung
1989 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1990 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1991 1.1 dyoung
1992 1.1 dyoung /*
1993 1.1 dyoung * Place this address in the RAR if there is room,
1994 1.1 dyoung * else put the controller into promiscuous mode
1995 1.1 dyoung */
1996 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
1997 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
1998 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1999 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2000 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2001 1.1 dyoung } else {
2002 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2003 1.1 dyoung }
2004 1.1 dyoung
2005 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2006 1.1 dyoung }
2007 1.1 dyoung
2008 1.1 dyoung /**
2009 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2010 1.1 dyoung * @hw: pointer to hardware structure
2011 1.1 dyoung * @addr_list: the list of new addresses
2012 1.1 dyoung * @addr_count: number of addresses
2013 1.1 dyoung * @next: iterator function to walk the address list
2014 1.1 dyoung *
2015 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2016 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2017 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2018 1.1 dyoung *
2019 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2020 1.1 dyoung * manually putting the device into promiscuous mode.
2021 1.1 dyoung **/
2022 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2023 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2024 1.1 dyoung {
2025 1.1 dyoung u8 *addr;
2026 1.1 dyoung u32 i;
2027 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2028 1.1 dyoung u32 uc_addr_in_use;
2029 1.1 dyoung u32 fctrl;
2030 1.1 dyoung u32 vmdq;
2031 1.1 dyoung
2032 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2033 1.1 dyoung
2034 1.1 dyoung /*
2035 1.1 dyoung * Clear accounting of old secondary address list,
2036 1.1 dyoung * don't count RAR[0]
2037 1.1 dyoung */
2038 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2039 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2040 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2041 1.1 dyoung
2042 1.1 dyoung /* Zero out the other receive addresses */
2043 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2044 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2045 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2046 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2047 1.1 dyoung }
2048 1.1 dyoung
2049 1.1 dyoung /* Add the new addresses */
2050 1.1 dyoung for (i = 0; i < addr_count; i++) {
2051 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2052 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2053 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2054 1.1 dyoung }
2055 1.1 dyoung
2056 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2057 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2058 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2059 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2060 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2061 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2062 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2063 1.1 dyoung }
2064 1.1 dyoung } else {
2065 1.1 dyoung /* only disable if set by overflow, not by user */
2066 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2067 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2068 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2069 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2070 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2071 1.1 dyoung }
2072 1.1 dyoung }
2073 1.1 dyoung
2074 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2075 1.1 dyoung return IXGBE_SUCCESS;
2076 1.1 dyoung }
2077 1.1 dyoung
2078 1.1 dyoung /**
2079 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2080 1.1 dyoung * @hw: pointer to hardware structure
2081 1.1 dyoung * @mc_addr: the multicast address
2082 1.1 dyoung *
2083 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2084 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2085 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2086 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2087 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2088 1.1 dyoung * to mc_filter_type.
2089 1.1 dyoung **/
2090 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2091 1.1 dyoung {
2092 1.1 dyoung u32 vector = 0;
2093 1.1 dyoung
2094 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2095 1.1 dyoung
2096 1.1 dyoung switch (hw->mac.mc_filter_type) {
2097 1.1 dyoung case 0: /* use bits [47:36] of the address */
2098 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2099 1.1 dyoung break;
2100 1.1 dyoung case 1: /* use bits [46:35] of the address */
2101 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2102 1.1 dyoung break;
2103 1.1 dyoung case 2: /* use bits [45:34] of the address */
2104 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2105 1.1 dyoung break;
2106 1.1 dyoung case 3: /* use bits [43:32] of the address */
2107 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2108 1.1 dyoung break;
2109 1.1 dyoung default: /* Invalid mc_filter_type */
2110 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2111 1.1 dyoung ASSERT(0);
2112 1.1 dyoung break;
2113 1.1 dyoung }
2114 1.1 dyoung
2115 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2116 1.1 dyoung vector &= 0xFFF;
2117 1.1 dyoung return vector;
2118 1.1 dyoung }
2119 1.1 dyoung
2120 1.1 dyoung /**
2121 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2122 1.1 dyoung * @hw: pointer to hardware structure
2123 1.1 dyoung * @hash_value: Multicast address hash value
2124 1.1 dyoung *
2125 1.1 dyoung * Sets the bit-vector in the multicast table.
2126 1.1 dyoung **/
2127 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2128 1.1 dyoung {
2129 1.1 dyoung u32 vector;
2130 1.1 dyoung u32 vector_bit;
2131 1.1 dyoung u32 vector_reg;
2132 1.1 dyoung
2133 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2134 1.1 dyoung
2135 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2136 1.1 dyoung
2137 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2138 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2139 1.1 dyoung
2140 1.1 dyoung /*
2141 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2142 1.1 dyoung * like an array of 4096 bits. We want to set bit
2143 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2144 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2145 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2146 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2147 1.1 dyoung * the value.
2148 1.1 dyoung */
2149 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2150 1.1 dyoung vector_bit = vector & 0x1F;
2151 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2152 1.1 dyoung }
2153 1.1 dyoung
2154 1.1 dyoung /**
2155 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2156 1.1 dyoung * @hw: pointer to hardware structure
2157 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2158 1.1 dyoung * @mc_addr_count: number of addresses
2159 1.1 dyoung * @next: iterator function to walk the multicast address list
2160 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2161 1.1 dyoung *
2162 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2163 1.3 msaitoh * Hashes the given addresses into the multicast table.
2164 1.1 dyoung **/
2165 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2166 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2167 1.3 msaitoh bool clear)
2168 1.1 dyoung {
2169 1.1 dyoung u32 i;
2170 1.1 dyoung u32 vmdq;
2171 1.1 dyoung
2172 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2173 1.1 dyoung
2174 1.1 dyoung /*
2175 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2176 1.1 dyoung * use.
2177 1.1 dyoung */
2178 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2179 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2180 1.1 dyoung
2181 1.1 dyoung /* Clear mta_shadow */
2182 1.3 msaitoh if (clear) {
2183 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2184 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2185 1.3 msaitoh }
2186 1.1 dyoung
2187 1.1 dyoung /* Update mta_shadow */
2188 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2189 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2190 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2191 1.1 dyoung }
2192 1.1 dyoung
2193 1.1 dyoung /* Enable mta */
2194 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2195 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2196 1.1 dyoung hw->mac.mta_shadow[i]);
2197 1.1 dyoung
2198 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2199 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2200 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2201 1.1 dyoung
2202 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2203 1.1 dyoung return IXGBE_SUCCESS;
2204 1.1 dyoung }
2205 1.1 dyoung
2206 1.1 dyoung /**
2207 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2208 1.1 dyoung * @hw: pointer to hardware structure
2209 1.1 dyoung *
2210 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2211 1.1 dyoung **/
2212 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2213 1.1 dyoung {
2214 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2215 1.1 dyoung
2216 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2217 1.1 dyoung
2218 1.1 dyoung if (a->mta_in_use > 0)
2219 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2220 1.3 msaitoh hw->mac.mc_filter_type);
2221 1.1 dyoung
2222 1.1 dyoung return IXGBE_SUCCESS;
2223 1.1 dyoung }
2224 1.1 dyoung
2225 1.1 dyoung /**
2226 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2227 1.1 dyoung * @hw: pointer to hardware structure
2228 1.1 dyoung *
2229 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2230 1.1 dyoung **/
2231 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2232 1.1 dyoung {
2233 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2234 1.1 dyoung
2235 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2236 1.1 dyoung
2237 1.1 dyoung if (a->mta_in_use > 0)
2238 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2239 1.1 dyoung
2240 1.1 dyoung return IXGBE_SUCCESS;
2241 1.1 dyoung }
2242 1.1 dyoung
2243 1.1 dyoung /**
2244 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2245 1.1 dyoung * @hw: pointer to hardware structure
2246 1.1 dyoung * @packetbuf_num: packet buffer number (0-7)
2247 1.1 dyoung *
2248 1.1 dyoung * Enable flow control according to the current settings.
2249 1.1 dyoung **/
2250 1.1 dyoung s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
2251 1.1 dyoung {
2252 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2253 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2254 1.1 dyoung u32 reg;
2255 1.1 dyoung u32 fcrtl, fcrth;
2256 1.1 dyoung
2257 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2258 1.1 dyoung
2259 1.1 dyoung /* Negotiate the fc mode to use */
2260 1.1 dyoung ret_val = ixgbe_fc_autoneg(hw);
2261 1.1 dyoung if (ret_val == IXGBE_ERR_FLOW_CONTROL)
2262 1.1 dyoung goto out;
2263 1.1 dyoung
2264 1.1 dyoung /* Disable any previous flow control settings */
2265 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2266 1.1 dyoung mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
2267 1.1 dyoung
2268 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2269 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2270 1.1 dyoung
2271 1.1 dyoung /*
2272 1.1 dyoung * The possible values of fc.current_mode are:
2273 1.1 dyoung * 0: Flow control is completely disabled
2274 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2275 1.1 dyoung * but not send pause frames).
2276 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2277 1.1 dyoung * we do not support receiving pause frames).
2278 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2279 1.1 dyoung * other: Invalid.
2280 1.1 dyoung */
2281 1.1 dyoung switch (hw->fc.current_mode) {
2282 1.1 dyoung case ixgbe_fc_none:
2283 1.1 dyoung /*
2284 1.1 dyoung * Flow control is disabled by software override or autoneg.
2285 1.1 dyoung * The code below will actually disable it in the HW.
2286 1.1 dyoung */
2287 1.1 dyoung break;
2288 1.1 dyoung case ixgbe_fc_rx_pause:
2289 1.1 dyoung /*
2290 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2291 1.1 dyoung * disabled by software override. Since there really
2292 1.1 dyoung * isn't a way to advertise that we are capable of RX
2293 1.1 dyoung * Pause ONLY, we will advertise that we support both
2294 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2295 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2296 1.1 dyoung */
2297 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2298 1.1 dyoung break;
2299 1.1 dyoung case ixgbe_fc_tx_pause:
2300 1.1 dyoung /*
2301 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2302 1.1 dyoung * disabled by software override.
2303 1.1 dyoung */
2304 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2305 1.1 dyoung break;
2306 1.1 dyoung case ixgbe_fc_full:
2307 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2308 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2309 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2310 1.1 dyoung break;
2311 1.1 dyoung default:
2312 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2313 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2314 1.1 dyoung goto out;
2315 1.1 dyoung break;
2316 1.1 dyoung }
2317 1.1 dyoung
2318 1.1 dyoung /* Set 802.3x based flow control settings. */
2319 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2320 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2321 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2322 1.1 dyoung
2323 1.3 msaitoh fcrth = hw->fc.high_water[packetbuf_num] << 10;
2324 1.3 msaitoh fcrtl = hw->fc.low_water << 10;
2325 1.1 dyoung
2326 1.1 dyoung if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2327 1.1 dyoung fcrth |= IXGBE_FCRTH_FCEN;
2328 1.1 dyoung if (hw->fc.send_xon)
2329 1.1 dyoung fcrtl |= IXGBE_FCRTL_XONE;
2330 1.1 dyoung }
2331 1.1 dyoung
2332 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2333 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2334 1.1 dyoung
2335 1.1 dyoung /* Configure pause time (2 TCs per register) */
2336 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2337 1.1 dyoung if ((packetbuf_num & 1) == 0)
2338 1.1 dyoung reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2339 1.1 dyoung else
2340 1.1 dyoung reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2341 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2342 1.1 dyoung
2343 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2344 1.1 dyoung
2345 1.1 dyoung out:
2346 1.1 dyoung return ret_val;
2347 1.1 dyoung }
2348 1.1 dyoung
2349 1.1 dyoung /**
2350 1.1 dyoung * ixgbe_fc_autoneg - Configure flow control
2351 1.1 dyoung * @hw: pointer to hardware structure
2352 1.1 dyoung *
2353 1.1 dyoung * Compares our advertised flow control capabilities to those advertised by
2354 1.1 dyoung * our link partner, and determines the proper flow control mode to use.
2355 1.1 dyoung **/
2356 1.1 dyoung s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2357 1.1 dyoung {
2358 1.1 dyoung s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2359 1.1 dyoung ixgbe_link_speed speed;
2360 1.1 dyoung bool link_up;
2361 1.1 dyoung
2362 1.1 dyoung DEBUGFUNC("ixgbe_fc_autoneg");
2363 1.1 dyoung
2364 1.1 dyoung if (hw->fc.disable_fc_autoneg)
2365 1.1 dyoung goto out;
2366 1.1 dyoung
2367 1.1 dyoung /*
2368 1.1 dyoung * AN should have completed when the cable was plugged in.
2369 1.1 dyoung * Look for reasons to bail out. Bail out if:
2370 1.1 dyoung * - FC autoneg is disabled, or if
2371 1.1 dyoung * - link is not up.
2372 1.1 dyoung *
2373 1.1 dyoung * Since we're being called from an LSC, link is already known to be up.
2374 1.1 dyoung * So use link_up_wait_to_complete=FALSE.
2375 1.1 dyoung */
2376 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2377 1.1 dyoung if (!link_up) {
2378 1.1 dyoung ret_val = IXGBE_ERR_FLOW_CONTROL;
2379 1.1 dyoung goto out;
2380 1.1 dyoung }
2381 1.1 dyoung
2382 1.1 dyoung switch (hw->phy.media_type) {
2383 1.1 dyoung /* Autoneg flow control on fiber adapters */
2384 1.1 dyoung case ixgbe_media_type_fiber:
2385 1.1 dyoung if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2386 1.1 dyoung ret_val = ixgbe_fc_autoneg_fiber(hw);
2387 1.1 dyoung break;
2388 1.1 dyoung
2389 1.1 dyoung /* Autoneg flow control on backplane adapters */
2390 1.1 dyoung case ixgbe_media_type_backplane:
2391 1.1 dyoung ret_val = ixgbe_fc_autoneg_backplane(hw);
2392 1.1 dyoung break;
2393 1.1 dyoung
2394 1.1 dyoung /* Autoneg flow control on copper adapters */
2395 1.1 dyoung case ixgbe_media_type_copper:
2396 1.1 dyoung if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2397 1.1 dyoung ret_val = ixgbe_fc_autoneg_copper(hw);
2398 1.1 dyoung break;
2399 1.1 dyoung
2400 1.1 dyoung default:
2401 1.1 dyoung break;
2402 1.1 dyoung }
2403 1.1 dyoung
2404 1.1 dyoung out:
2405 1.1 dyoung if (ret_val == IXGBE_SUCCESS) {
2406 1.1 dyoung hw->fc.fc_was_autonegged = TRUE;
2407 1.1 dyoung } else {
2408 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2409 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2410 1.1 dyoung }
2411 1.1 dyoung return ret_val;
2412 1.1 dyoung }
2413 1.1 dyoung
2414 1.1 dyoung /**
2415 1.1 dyoung * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2416 1.1 dyoung * @hw: pointer to hardware structure
2417 1.1 dyoung *
2418 1.1 dyoung * Enable flow control according on 1 gig fiber.
2419 1.1 dyoung **/
2420 1.1 dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2421 1.1 dyoung {
2422 1.1 dyoung u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2423 1.1 dyoung s32 ret_val;
2424 1.1 dyoung
2425 1.1 dyoung /*
2426 1.1 dyoung * On multispeed fiber at 1g, bail out if
2427 1.1 dyoung * - link is up but AN did not complete, or if
2428 1.1 dyoung * - link is up and AN completed but timed out
2429 1.1 dyoung */
2430 1.1 dyoung
2431 1.1 dyoung linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2432 1.3 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2433 1.3 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2434 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2435 1.1 dyoung goto out;
2436 1.1 dyoung }
2437 1.1 dyoung
2438 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2439 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2440 1.1 dyoung
2441 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2442 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2443 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2444 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2445 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2446 1.1 dyoung
2447 1.1 dyoung out:
2448 1.1 dyoung return ret_val;
2449 1.1 dyoung }
2450 1.1 dyoung
2451 1.1 dyoung /**
2452 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2453 1.1 dyoung * @hw: pointer to hardware structure
2454 1.1 dyoung *
2455 1.1 dyoung * Enable flow control according to IEEE clause 37.
2456 1.1 dyoung **/
2457 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2458 1.1 dyoung {
2459 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2460 1.1 dyoung s32 ret_val;
2461 1.1 dyoung
2462 1.1 dyoung /*
2463 1.1 dyoung * On backplane, bail out if
2464 1.1 dyoung * - backplane autoneg was not completed, or if
2465 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2466 1.1 dyoung */
2467 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2468 1.1 dyoung if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2469 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2470 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2471 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2472 1.1 dyoung goto out;
2473 1.1 dyoung }
2474 1.1 dyoung
2475 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2476 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2477 1.1 dyoung if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2478 1.1 dyoung hw->fc.fc_was_autonegged = FALSE;
2479 1.1 dyoung hw->fc.current_mode = hw->fc.requested_mode;
2480 1.1 dyoung ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2481 1.1 dyoung goto out;
2482 1.1 dyoung }
2483 1.1 dyoung }
2484 1.1 dyoung /*
2485 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2486 1.1 dyoung * local flow control settings accordingly
2487 1.1 dyoung */
2488 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2489 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2490 1.1 dyoung
2491 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2492 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2493 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2494 1.1 dyoung
2495 1.1 dyoung out:
2496 1.1 dyoung return ret_val;
2497 1.1 dyoung }
2498 1.1 dyoung
2499 1.1 dyoung /**
2500 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2501 1.1 dyoung * @hw: pointer to hardware structure
2502 1.1 dyoung *
2503 1.1 dyoung * Enable flow control according to IEEE clause 37.
2504 1.1 dyoung **/
2505 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2506 1.1 dyoung {
2507 1.1 dyoung u16 technology_ability_reg = 0;
2508 1.1 dyoung u16 lp_technology_ability_reg = 0;
2509 1.1 dyoung
2510 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2511 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2512 1.1 dyoung &technology_ability_reg);
2513 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2514 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2515 1.1 dyoung &lp_technology_ability_reg);
2516 1.1 dyoung
2517 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2518 1.1 dyoung (u32)lp_technology_ability_reg,
2519 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2520 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2521 1.1 dyoung }
2522 1.1 dyoung
2523 1.1 dyoung /**
2524 1.1 dyoung * ixgbe_negotiate_fc - Negotiate flow control
2525 1.1 dyoung * @hw: pointer to hardware structure
2526 1.1 dyoung * @adv_reg: flow control advertised settings
2527 1.1 dyoung * @lp_reg: link partner's flow control settings
2528 1.1 dyoung * @adv_sym: symmetric pause bit in advertisement
2529 1.1 dyoung * @adv_asm: asymmetric pause bit in advertisement
2530 1.1 dyoung * @lp_sym: symmetric pause bit in link partner advertisement
2531 1.1 dyoung * @lp_asm: asymmetric pause bit in link partner advertisement
2532 1.1 dyoung *
2533 1.1 dyoung * Find the intersection between advertised settings and link partner's
2534 1.1 dyoung * advertised settings
2535 1.1 dyoung **/
2536 1.1 dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2537 1.1 dyoung u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2538 1.1 dyoung {
2539 1.1 dyoung if ((!(adv_reg)) || (!(lp_reg)))
2540 1.1 dyoung return IXGBE_ERR_FC_NOT_NEGOTIATED;
2541 1.1 dyoung
2542 1.1 dyoung if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2543 1.1 dyoung /*
2544 1.1 dyoung * Now we need to check if the user selected Rx ONLY
2545 1.1 dyoung * of pause frames. In this case, we had to advertise
2546 1.1 dyoung * FULL flow control because we could not advertise RX
2547 1.1 dyoung * ONLY. Hence, we must now check to see if we need to
2548 1.1 dyoung * turn OFF the TRANSMISSION of PAUSE frames.
2549 1.1 dyoung */
2550 1.1 dyoung if (hw->fc.requested_mode == ixgbe_fc_full) {
2551 1.1 dyoung hw->fc.current_mode = ixgbe_fc_full;
2552 1.1 dyoung DEBUGOUT("Flow Control = FULL.\n");
2553 1.1 dyoung } else {
2554 1.1 dyoung hw->fc.current_mode = ixgbe_fc_rx_pause;
2555 1.1 dyoung DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2556 1.1 dyoung }
2557 1.1 dyoung } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2558 1.1 dyoung (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2559 1.1 dyoung hw->fc.current_mode = ixgbe_fc_tx_pause;
2560 1.1 dyoung DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2561 1.1 dyoung } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2562 1.1 dyoung !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2563 1.1 dyoung hw->fc.current_mode = ixgbe_fc_rx_pause;
2564 1.1 dyoung DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2565 1.1 dyoung } else {
2566 1.1 dyoung hw->fc.current_mode = ixgbe_fc_none;
2567 1.1 dyoung DEBUGOUT("Flow Control = NONE.\n");
2568 1.1 dyoung }
2569 1.1 dyoung return IXGBE_SUCCESS;
2570 1.1 dyoung }
2571 1.1 dyoung
2572 1.1 dyoung /**
2573 1.1 dyoung * ixgbe_setup_fc - Set up flow control
2574 1.1 dyoung * @hw: pointer to hardware structure
2575 1.1 dyoung *
2576 1.1 dyoung * Called at init time to set up flow control.
2577 1.1 dyoung **/
2578 1.3 msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2579 1.1 dyoung {
2580 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2581 1.1 dyoung u32 reg = 0, reg_bp = 0;
2582 1.1 dyoung u16 reg_cu = 0;
2583 1.1 dyoung
2584 1.1 dyoung DEBUGFUNC("ixgbe_setup_fc");
2585 1.1 dyoung
2586 1.1 dyoung /* Validate the packetbuf configuration */
2587 1.1 dyoung if (packetbuf_num < 0 || packetbuf_num > 7) {
2588 1.3 msaitoh DEBUGOUT1("Invalid packet buffer number [%d], expected range "
2589 1.3 msaitoh "is 0-7\n", packetbuf_num);
2590 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2591 1.1 dyoung goto out;
2592 1.1 dyoung }
2593 1.1 dyoung
2594 1.1 dyoung /*
2595 1.1 dyoung * Validate the water mark configuration. Zero water marks are invalid
2596 1.1 dyoung * because it causes the controller to just blast out fc packets.
2597 1.1 dyoung */
2598 1.3 msaitoh if (!hw->fc.low_water ||
2599 1.3 msaitoh !hw->fc.high_water[packetbuf_num] ||
2600 1.3 msaitoh !hw->fc.pause_time) {
2601 1.1 dyoung DEBUGOUT("Invalid water mark configuration\n");
2602 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2603 1.1 dyoung goto out;
2604 1.1 dyoung }
2605 1.1 dyoung
2606 1.1 dyoung /*
2607 1.1 dyoung * Validate the requested mode. Strict IEEE mode does not allow
2608 1.1 dyoung * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2609 1.1 dyoung */
2610 1.1 dyoung if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2611 1.1 dyoung DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
2612 1.1 dyoung ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2613 1.1 dyoung goto out;
2614 1.1 dyoung }
2615 1.1 dyoung
2616 1.1 dyoung /*
2617 1.1 dyoung * 10gig parts do not have a word in the EEPROM to determine the
2618 1.1 dyoung * default flow control setting, so we explicitly set it to full.
2619 1.1 dyoung */
2620 1.1 dyoung if (hw->fc.requested_mode == ixgbe_fc_default)
2621 1.1 dyoung hw->fc.requested_mode = ixgbe_fc_full;
2622 1.1 dyoung
2623 1.1 dyoung /*
2624 1.1 dyoung * Set up the 1G and 10G flow control advertisement registers so the
2625 1.1 dyoung * HW will be able to do fc autoneg once the cable is plugged in. If
2626 1.1 dyoung * we link at 10G, the 1G advertisement is harmless and vice versa.
2627 1.1 dyoung */
2628 1.1 dyoung
2629 1.1 dyoung switch (hw->phy.media_type) {
2630 1.1 dyoung case ixgbe_media_type_fiber:
2631 1.1 dyoung case ixgbe_media_type_backplane:
2632 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2633 1.1 dyoung reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2634 1.1 dyoung break;
2635 1.1 dyoung
2636 1.1 dyoung case ixgbe_media_type_copper:
2637 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2638 1.3 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
2639 1.1 dyoung break;
2640 1.1 dyoung
2641 1.1 dyoung default:
2642 1.1 dyoung ;
2643 1.1 dyoung }
2644 1.1 dyoung
2645 1.1 dyoung /*
2646 1.1 dyoung * The possible values of fc.requested_mode are:
2647 1.1 dyoung * 0: Flow control is completely disabled
2648 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2649 1.1 dyoung * but not send pause frames).
2650 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2651 1.1 dyoung * we do not support receiving pause frames).
2652 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2653 1.1 dyoung * other: Invalid.
2654 1.1 dyoung */
2655 1.1 dyoung switch (hw->fc.requested_mode) {
2656 1.1 dyoung case ixgbe_fc_none:
2657 1.1 dyoung /* Flow control completely disabled by software override. */
2658 1.1 dyoung reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2659 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2660 1.1 dyoung reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2661 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2662 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2663 1.1 dyoung reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2664 1.1 dyoung break;
2665 1.1 dyoung case ixgbe_fc_rx_pause:
2666 1.1 dyoung /*
2667 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2668 1.1 dyoung * disabled by software override. Since there really
2669 1.1 dyoung * isn't a way to advertise that we are capable of RX
2670 1.1 dyoung * Pause ONLY, we will advertise that we support both
2671 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2672 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2673 1.1 dyoung */
2674 1.1 dyoung reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2675 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2676 1.1 dyoung reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2677 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2678 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2679 1.1 dyoung reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2680 1.1 dyoung break;
2681 1.1 dyoung case ixgbe_fc_tx_pause:
2682 1.1 dyoung /*
2683 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2684 1.1 dyoung * disabled by software override.
2685 1.1 dyoung */
2686 1.1 dyoung reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2687 1.1 dyoung reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2688 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane) {
2689 1.1 dyoung reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2690 1.1 dyoung reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2691 1.1 dyoung } else if (hw->phy.media_type == ixgbe_media_type_copper) {
2692 1.1 dyoung reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2693 1.1 dyoung reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2694 1.1 dyoung }
2695 1.1 dyoung break;
2696 1.1 dyoung case ixgbe_fc_full:
2697 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2698 1.1 dyoung reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2699 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane)
2700 1.1 dyoung reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2701 1.1 dyoung IXGBE_AUTOC_ASM_PAUSE);
2702 1.1 dyoung else if (hw->phy.media_type == ixgbe_media_type_copper)
2703 1.1 dyoung reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2704 1.1 dyoung break;
2705 1.1 dyoung default:
2706 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2707 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2708 1.1 dyoung goto out;
2709 1.1 dyoung break;
2710 1.1 dyoung }
2711 1.1 dyoung
2712 1.3 msaitoh if (hw->mac.type != ixgbe_mac_X540) {
2713 1.3 msaitoh /*
2714 1.3 msaitoh * Enable auto-negotiation between the MAC & PHY;
2715 1.3 msaitoh * the MAC will advertise clause 37 flow control.
2716 1.3 msaitoh */
2717 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2718 1.3 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2719 1.1 dyoung
2720 1.3 msaitoh /* Disable AN timeout */
2721 1.3 msaitoh if (hw->fc.strict_ieee)
2722 1.3 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2723 1.1 dyoung
2724 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2725 1.3 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2726 1.3 msaitoh }
2727 1.1 dyoung
2728 1.1 dyoung /*
2729 1.1 dyoung * AUTOC restart handles negotiation of 1G and 10G on backplane
2730 1.1 dyoung * and copper. There is no need to set the PCS1GCTL register.
2731 1.1 dyoung *
2732 1.1 dyoung */
2733 1.1 dyoung if (hw->phy.media_type == ixgbe_media_type_backplane) {
2734 1.1 dyoung reg_bp |= IXGBE_AUTOC_AN_RESTART;
2735 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2736 1.1 dyoung } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2737 1.1 dyoung (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
2738 1.1 dyoung hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2739 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
2740 1.1 dyoung }
2741 1.1 dyoung
2742 1.1 dyoung DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2743 1.1 dyoung out:
2744 1.1 dyoung return ret_val;
2745 1.1 dyoung }
2746 1.1 dyoung
2747 1.1 dyoung /**
2748 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
2749 1.1 dyoung * @hw: pointer to hardware structure
2750 1.1 dyoung *
2751 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
2752 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2753 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2754 1.1 dyoung * is returned signifying master requests disabled.
2755 1.1 dyoung **/
2756 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2757 1.1 dyoung {
2758 1.3 msaitoh s32 status = IXGBE_SUCCESS;
2759 1.1 dyoung u32 i;
2760 1.1 dyoung
2761 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
2762 1.1 dyoung
2763 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
2764 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2765 1.3 msaitoh
2766 1.3 msaitoh /* Exit if master requets are blocked */
2767 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2768 1.1 dyoung goto out;
2769 1.1 dyoung
2770 1.3 msaitoh /* Poll for master request bit to clear */
2771 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2772 1.3 msaitoh usec_delay(100);
2773 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2774 1.3 msaitoh goto out;
2775 1.1 dyoung }
2776 1.1 dyoung
2777 1.3 msaitoh /*
2778 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
2779 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2780 1.3 msaitoh * of this need. The first reset prevents new master requests from
2781 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
2782 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
2783 1.3 msaitoh * again to clear out any effects they may have had on our device.
2784 1.3 msaitoh */
2785 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2786 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2787 1.1 dyoung
2788 1.1 dyoung /*
2789 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
2790 1.1 dyoung * transactions pending.
2791 1.1 dyoung */
2792 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2793 1.3 msaitoh usec_delay(100);
2794 1.1 dyoung if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2795 1.3 msaitoh IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2796 1.3 msaitoh goto out;
2797 1.1 dyoung }
2798 1.1 dyoung
2799 1.3 msaitoh DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2800 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2801 1.1 dyoung
2802 1.1 dyoung out:
2803 1.1 dyoung return status;
2804 1.1 dyoung }
2805 1.1 dyoung
2806 1.1 dyoung /**
2807 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2808 1.1 dyoung * @hw: pointer to hardware structure
2809 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
2810 1.1 dyoung *
2811 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
2812 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2813 1.1 dyoung **/
2814 1.1 dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2815 1.1 dyoung {
2816 1.1 dyoung u32 gssr;
2817 1.1 dyoung u32 swmask = mask;
2818 1.1 dyoung u32 fwmask = mask << 5;
2819 1.1 dyoung s32 timeout = 200;
2820 1.1 dyoung
2821 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
2822 1.1 dyoung
2823 1.1 dyoung while (timeout) {
2824 1.1 dyoung /*
2825 1.1 dyoung * SW EEPROM semaphore bit is used for access to all
2826 1.1 dyoung * SW_FW_SYNC/GSSR bits (not just EEPROM)
2827 1.1 dyoung */
2828 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
2829 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2830 1.1 dyoung
2831 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2832 1.1 dyoung if (!(gssr & (fwmask | swmask)))
2833 1.1 dyoung break;
2834 1.1 dyoung
2835 1.1 dyoung /*
2836 1.1 dyoung * Firmware currently using resource (fwmask) or other software
2837 1.1 dyoung * thread currently using resource (swmask)
2838 1.1 dyoung */
2839 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2840 1.1 dyoung msec_delay(5);
2841 1.1 dyoung timeout--;
2842 1.1 dyoung }
2843 1.1 dyoung
2844 1.1 dyoung if (!timeout) {
2845 1.1 dyoung DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2846 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2847 1.1 dyoung }
2848 1.1 dyoung
2849 1.1 dyoung gssr |= swmask;
2850 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2851 1.1 dyoung
2852 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2853 1.1 dyoung return IXGBE_SUCCESS;
2854 1.1 dyoung }
2855 1.1 dyoung
2856 1.1 dyoung /**
2857 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
2858 1.1 dyoung * @hw: pointer to hardware structure
2859 1.1 dyoung * @mask: Mask to specify which semaphore to release
2860 1.1 dyoung *
2861 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
2862 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2863 1.1 dyoung **/
2864 1.1 dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2865 1.1 dyoung {
2866 1.1 dyoung u32 gssr;
2867 1.1 dyoung u32 swmask = mask;
2868 1.1 dyoung
2869 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
2870 1.1 dyoung
2871 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
2872 1.1 dyoung
2873 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2874 1.1 dyoung gssr &= ~swmask;
2875 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2876 1.1 dyoung
2877 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2878 1.1 dyoung }
2879 1.1 dyoung
2880 1.1 dyoung /**
2881 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2882 1.3 msaitoh * @hw: pointer to hardware structure
2883 1.3 msaitoh *
2884 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
2885 1.3 msaitoh * the Rx security block
2886 1.3 msaitoh **/
2887 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2888 1.3 msaitoh {
2889 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
2890 1.3 msaitoh
2891 1.3 msaitoh int i;
2892 1.3 msaitoh int secrxreg;
2893 1.3 msaitoh
2894 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2895 1.3 msaitoh
2896 1.3 msaitoh
2897 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2898 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2899 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2900 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2901 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2902 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2903 1.3 msaitoh break;
2904 1.3 msaitoh else
2905 1.3 msaitoh /* Use interrupt-safe sleep just in case */
2906 1.3 msaitoh usec_delay(1000);
2907 1.3 msaitoh }
2908 1.3 msaitoh
2909 1.3 msaitoh /* For informational purposes only */
2910 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
2911 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
2912 1.3 msaitoh "path fully disabled. Continuing with init.\n");
2913 1.3 msaitoh
2914 1.3 msaitoh return IXGBE_SUCCESS;
2915 1.3 msaitoh }
2916 1.3 msaitoh
2917 1.3 msaitoh /**
2918 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2919 1.3 msaitoh * @hw: pointer to hardware structure
2920 1.3 msaitoh *
2921 1.3 msaitoh * Enables the receive data path.
2922 1.3 msaitoh **/
2923 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2924 1.3 msaitoh {
2925 1.3 msaitoh int secrxreg;
2926 1.3 msaitoh
2927 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2928 1.3 msaitoh
2929 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2930 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2931 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2932 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
2933 1.3 msaitoh
2934 1.3 msaitoh return IXGBE_SUCCESS;
2935 1.3 msaitoh }
2936 1.3 msaitoh
2937 1.3 msaitoh /**
2938 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2939 1.1 dyoung * @hw: pointer to hardware structure
2940 1.1 dyoung * @regval: register value to write to RXCTRL
2941 1.1 dyoung *
2942 1.1 dyoung * Enables the Rx DMA unit
2943 1.1 dyoung **/
2944 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2945 1.1 dyoung {
2946 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2947 1.1 dyoung
2948 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2949 1.1 dyoung
2950 1.1 dyoung return IXGBE_SUCCESS;
2951 1.1 dyoung }
2952 1.1 dyoung
2953 1.1 dyoung /**
2954 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
2955 1.1 dyoung * @hw: pointer to hardware structure
2956 1.1 dyoung * @index: led number to blink
2957 1.1 dyoung **/
2958 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2959 1.1 dyoung {
2960 1.1 dyoung ixgbe_link_speed speed = 0;
2961 1.1 dyoung bool link_up = 0;
2962 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2963 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2964 1.1 dyoung
2965 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
2966 1.1 dyoung
2967 1.1 dyoung /*
2968 1.1 dyoung * Link must be up to auto-blink the LEDs;
2969 1.1 dyoung * Force it if link is down.
2970 1.1 dyoung */
2971 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2972 1.1 dyoung
2973 1.1 dyoung if (!link_up) {
2974 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2975 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
2976 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2977 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
2978 1.1 dyoung msec_delay(10);
2979 1.1 dyoung }
2980 1.1 dyoung
2981 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
2982 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
2983 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2984 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2985 1.1 dyoung
2986 1.1 dyoung return IXGBE_SUCCESS;
2987 1.1 dyoung }
2988 1.1 dyoung
2989 1.1 dyoung /**
2990 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2991 1.1 dyoung * @hw: pointer to hardware structure
2992 1.1 dyoung * @index: led number to stop blinking
2993 1.1 dyoung **/
2994 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2995 1.1 dyoung {
2996 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2997 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2998 1.1 dyoung
2999 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3000 1.1 dyoung
3001 1.1 dyoung
3002 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3003 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3004 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3005 1.1 dyoung
3006 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3007 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3008 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3009 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3010 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3011 1.1 dyoung
3012 1.1 dyoung return IXGBE_SUCCESS;
3013 1.1 dyoung }
3014 1.1 dyoung
3015 1.1 dyoung /**
3016 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3017 1.1 dyoung * @hw: pointer to hardware structure
3018 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3019 1.1 dyoung *
3020 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3021 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3022 1.1 dyoung * get and set mac_addr routines.
3023 1.1 dyoung **/
3024 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3025 1.3 msaitoh u16 *san_mac_offset)
3026 1.1 dyoung {
3027 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3028 1.1 dyoung
3029 1.1 dyoung /*
3030 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3031 1.1 dyoung * available.
3032 1.1 dyoung */
3033 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3034 1.1 dyoung
3035 1.1 dyoung return IXGBE_SUCCESS;
3036 1.1 dyoung }
3037 1.1 dyoung
3038 1.1 dyoung /**
3039 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3040 1.1 dyoung * @hw: pointer to hardware structure
3041 1.1 dyoung * @san_mac_addr: SAN MAC address
3042 1.1 dyoung *
3043 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3044 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3045 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3046 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3047 1.1 dyoung **/
3048 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3049 1.1 dyoung {
3050 1.1 dyoung u16 san_mac_data, san_mac_offset;
3051 1.1 dyoung u8 i;
3052 1.1 dyoung
3053 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3054 1.1 dyoung
3055 1.1 dyoung /*
3056 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3057 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3058 1.1 dyoung */
3059 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3060 1.1 dyoung
3061 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3062 1.1 dyoung /*
3063 1.1 dyoung * No addresses available in this EEPROM. It's not an
3064 1.1 dyoung * error though, so just wipe the local address and return.
3065 1.1 dyoung */
3066 1.1 dyoung for (i = 0; i < 6; i++)
3067 1.1 dyoung san_mac_addr[i] = 0xFF;
3068 1.1 dyoung
3069 1.1 dyoung goto san_mac_addr_out;
3070 1.1 dyoung }
3071 1.1 dyoung
3072 1.1 dyoung /* make sure we know which port we need to program */
3073 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3074 1.1 dyoung /* apply the port offset to the address offset */
3075 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3076 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3077 1.1 dyoung for (i = 0; i < 3; i++) {
3078 1.1 dyoung hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3079 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3080 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3081 1.1 dyoung san_mac_offset++;
3082 1.1 dyoung }
3083 1.1 dyoung
3084 1.1 dyoung san_mac_addr_out:
3085 1.1 dyoung return IXGBE_SUCCESS;
3086 1.1 dyoung }
3087 1.1 dyoung
3088 1.1 dyoung /**
3089 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3090 1.1 dyoung * @hw: pointer to hardware structure
3091 1.1 dyoung * @san_mac_addr: SAN MAC address
3092 1.1 dyoung *
3093 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3094 1.1 dyoung **/
3095 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3096 1.1 dyoung {
3097 1.1 dyoung s32 status = IXGBE_SUCCESS;
3098 1.1 dyoung u16 san_mac_data, san_mac_offset;
3099 1.1 dyoung u8 i;
3100 1.1 dyoung
3101 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3102 1.1 dyoung
3103 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3104 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3105 1.1 dyoung
3106 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3107 1.1 dyoung status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3108 1.1 dyoung goto san_mac_addr_out;
3109 1.1 dyoung }
3110 1.1 dyoung
3111 1.1 dyoung /* Make sure we know which port we need to write */
3112 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3113 1.1 dyoung /* Apply the port offset to the address offset */
3114 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3115 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3116 1.1 dyoung
3117 1.1 dyoung for (i = 0; i < 3; i++) {
3118 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3119 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3120 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3121 1.1 dyoung san_mac_offset++;
3122 1.1 dyoung }
3123 1.1 dyoung
3124 1.1 dyoung san_mac_addr_out:
3125 1.1 dyoung return status;
3126 1.1 dyoung }
3127 1.1 dyoung
3128 1.1 dyoung /**
3129 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3130 1.1 dyoung * @hw: pointer to hardware structure
3131 1.1 dyoung *
3132 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3133 1.1 dyoung * the capabilities table.
3134 1.1 dyoung **/
3135 1.1 dyoung u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3136 1.1 dyoung {
3137 1.1 dyoung u32 msix_count = 64;
3138 1.1 dyoung
3139 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3140 1.1 dyoung if (hw->mac.msix_vectors_from_pcie) {
3141 1.1 dyoung msix_count = IXGBE_READ_PCIE_WORD(hw,
3142 1.3 msaitoh IXGBE_PCIE_MSIX_82599_CAPS);
3143 1.1 dyoung msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3144 1.1 dyoung
3145 1.1 dyoung /* MSI-X count is zero-based in HW, so increment to give
3146 1.1 dyoung * proper value */
3147 1.1 dyoung msix_count++;
3148 1.1 dyoung }
3149 1.1 dyoung
3150 1.1 dyoung return msix_count;
3151 1.1 dyoung }
3152 1.1 dyoung
3153 1.1 dyoung /**
3154 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3155 1.1 dyoung * @hw: pointer to hardware structure
3156 1.1 dyoung * @addr: Address to put into receive address register
3157 1.1 dyoung * @vmdq: VMDq pool to assign
3158 1.1 dyoung *
3159 1.1 dyoung * Puts an ethernet address into a receive address register, or
3160 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3161 1.1 dyoung **/
3162 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3163 1.1 dyoung {
3164 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3165 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3166 1.1 dyoung u32 rar;
3167 1.1 dyoung u32 rar_low, rar_high;
3168 1.1 dyoung u32 addr_low, addr_high;
3169 1.1 dyoung
3170 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3171 1.1 dyoung
3172 1.1 dyoung /* swap bytes for HW little endian */
3173 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3174 1.1 dyoung | (addr[2] << 16)
3175 1.1 dyoung | (addr[3] << 24);
3176 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3177 1.1 dyoung
3178 1.1 dyoung /*
3179 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3180 1.1 dyoung * rar_highwater points to just after the highest currently used
3181 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3182 1.1 dyoung * rar to the top.
3183 1.1 dyoung */
3184 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3185 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3186 1.1 dyoung
3187 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3188 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3189 1.1 dyoung first_empty_rar = rar;
3190 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3191 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3192 1.1 dyoung if (rar_low == addr_low)
3193 1.1 dyoung break; /* found it already in the rars */
3194 1.1 dyoung }
3195 1.1 dyoung }
3196 1.1 dyoung
3197 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3198 1.1 dyoung /* already there so just add to the pool bits */
3199 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3200 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3201 1.1 dyoung /* stick it into first empty RAR slot we found */
3202 1.1 dyoung rar = first_empty_rar;
3203 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3204 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3205 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3206 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3207 1.1 dyoung hw->mac.rar_highwater++;
3208 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3209 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3210 1.1 dyoung }
3211 1.1 dyoung
3212 1.1 dyoung /*
3213 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3214 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3215 1.1 dyoung */
3216 1.1 dyoung if (rar == 0)
3217 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3218 1.1 dyoung
3219 1.1 dyoung return rar;
3220 1.1 dyoung }
3221 1.1 dyoung
3222 1.1 dyoung /**
3223 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3224 1.1 dyoung * @hw: pointer to hardware struct
3225 1.1 dyoung * @rar: receive address register index to disassociate
3226 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3227 1.1 dyoung **/
3228 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3229 1.1 dyoung {
3230 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3231 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3232 1.1 dyoung
3233 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3234 1.1 dyoung
3235 1.1 dyoung /* Make sure we are using a valid rar index range */
3236 1.1 dyoung if (rar >= rar_entries) {
3237 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3238 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3239 1.1 dyoung }
3240 1.1 dyoung
3241 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3242 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3243 1.1 dyoung
3244 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3245 1.1 dyoung goto done;
3246 1.1 dyoung
3247 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3248 1.1 dyoung if (mpsar_lo) {
3249 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3250 1.1 dyoung mpsar_lo = 0;
3251 1.1 dyoung }
3252 1.1 dyoung if (mpsar_hi) {
3253 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3254 1.1 dyoung mpsar_hi = 0;
3255 1.1 dyoung }
3256 1.1 dyoung } else if (vmdq < 32) {
3257 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3258 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3259 1.1 dyoung } else {
3260 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3261 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3262 1.1 dyoung }
3263 1.1 dyoung
3264 1.1 dyoung /* was that the last pool using this rar? */
3265 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3266 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3267 1.1 dyoung done:
3268 1.1 dyoung return IXGBE_SUCCESS;
3269 1.1 dyoung }
3270 1.1 dyoung
3271 1.1 dyoung /**
3272 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3273 1.1 dyoung * @hw: pointer to hardware struct
3274 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3275 1.1 dyoung * @vmdq: VMDq pool index
3276 1.1 dyoung **/
3277 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3278 1.1 dyoung {
3279 1.1 dyoung u32 mpsar;
3280 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3281 1.1 dyoung
3282 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3283 1.1 dyoung
3284 1.1 dyoung /* Make sure we are using a valid rar index range */
3285 1.1 dyoung if (rar >= rar_entries) {
3286 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3287 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3288 1.1 dyoung }
3289 1.1 dyoung
3290 1.1 dyoung if (vmdq < 32) {
3291 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3292 1.1 dyoung mpsar |= 1 << vmdq;
3293 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3294 1.1 dyoung } else {
3295 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3296 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3297 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3298 1.1 dyoung }
3299 1.1 dyoung return IXGBE_SUCCESS;
3300 1.1 dyoung }
3301 1.1 dyoung
3302 1.1 dyoung /**
3303 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3304 1.1 dyoung * @hw: pointer to hardware structure
3305 1.1 dyoung **/
3306 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3307 1.1 dyoung {
3308 1.1 dyoung int i;
3309 1.1 dyoung
3310 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3311 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3312 1.1 dyoung
3313 1.1 dyoung for (i = 0; i < 128; i++)
3314 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3315 1.1 dyoung
3316 1.1 dyoung return IXGBE_SUCCESS;
3317 1.1 dyoung }
3318 1.1 dyoung
3319 1.1 dyoung /**
3320 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3321 1.1 dyoung * @hw: pointer to hardware structure
3322 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3323 1.1 dyoung *
3324 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3325 1.1 dyoung *
3326 1.1 dyoung **/
3327 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3328 1.1 dyoung {
3329 1.1 dyoung u32 bits = 0;
3330 1.1 dyoung u32 first_empty_slot = 0;
3331 1.1 dyoung s32 regindex;
3332 1.1 dyoung
3333 1.1 dyoung /* short cut the special case */
3334 1.1 dyoung if (vlan == 0)
3335 1.1 dyoung return 0;
3336 1.1 dyoung
3337 1.1 dyoung /*
3338 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3339 1.1 dyoung * slot found along the way
3340 1.1 dyoung */
3341 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3342 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3343 1.1 dyoung if (!bits && !(first_empty_slot))
3344 1.1 dyoung first_empty_slot = regindex;
3345 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3346 1.1 dyoung break;
3347 1.1 dyoung }
3348 1.1 dyoung
3349 1.1 dyoung /*
3350 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3351 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3352 1.1 dyoung * vlan id.
3353 1.1 dyoung */
3354 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3355 1.1 dyoung if (first_empty_slot)
3356 1.1 dyoung regindex = first_empty_slot;
3357 1.1 dyoung else {
3358 1.1 dyoung DEBUGOUT("No space in VLVF.\n");
3359 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3360 1.1 dyoung }
3361 1.1 dyoung }
3362 1.1 dyoung
3363 1.1 dyoung return regindex;
3364 1.1 dyoung }
3365 1.1 dyoung
3366 1.1 dyoung /**
3367 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3368 1.1 dyoung * @hw: pointer to hardware structure
3369 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3370 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3371 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3372 1.1 dyoung *
3373 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3374 1.1 dyoung **/
3375 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3376 1.3 msaitoh bool vlan_on)
3377 1.1 dyoung {
3378 1.1 dyoung s32 regindex;
3379 1.1 dyoung u32 bitindex;
3380 1.1 dyoung u32 vfta;
3381 1.1 dyoung u32 targetbit;
3382 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3383 1.1 dyoung bool vfta_changed = FALSE;
3384 1.1 dyoung
3385 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3386 1.1 dyoung
3387 1.1 dyoung if (vlan > 4095)
3388 1.1 dyoung return IXGBE_ERR_PARAM;
3389 1.1 dyoung
3390 1.1 dyoung /*
3391 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3392 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3393 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3394 1.1 dyoung */
3395 1.1 dyoung
3396 1.1 dyoung /* Part 1
3397 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3398 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3399 1.1 dyoung * bits[11-5]: which register
3400 1.1 dyoung * bits[4-0]: which bit in the register
3401 1.1 dyoung */
3402 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3403 1.1 dyoung bitindex = vlan & 0x1F;
3404 1.1 dyoung targetbit = (1 << bitindex);
3405 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3406 1.1 dyoung
3407 1.1 dyoung if (vlan_on) {
3408 1.1 dyoung if (!(vfta & targetbit)) {
3409 1.1 dyoung vfta |= targetbit;
3410 1.1 dyoung vfta_changed = TRUE;
3411 1.1 dyoung }
3412 1.1 dyoung } else {
3413 1.1 dyoung if ((vfta & targetbit)) {
3414 1.1 dyoung vfta &= ~targetbit;
3415 1.1 dyoung vfta_changed = TRUE;
3416 1.1 dyoung }
3417 1.1 dyoung }
3418 1.1 dyoung
3419 1.1 dyoung /* Part 2
3420 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3421 1.3 msaitoh */
3422 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3423 1.3 msaitoh &vfta_changed);
3424 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3425 1.3 msaitoh return ret_val;
3426 1.3 msaitoh
3427 1.3 msaitoh if (vfta_changed)
3428 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3429 1.3 msaitoh
3430 1.3 msaitoh return IXGBE_SUCCESS;
3431 1.3 msaitoh }
3432 1.3 msaitoh
3433 1.3 msaitoh /**
3434 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3435 1.3 msaitoh * @hw: pointer to hardware structure
3436 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3437 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3438 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3439 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3440 1.3 msaitoh * should be changed
3441 1.3 msaitoh *
3442 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3443 1.3 msaitoh **/
3444 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3445 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3446 1.3 msaitoh {
3447 1.3 msaitoh u32 vt;
3448 1.3 msaitoh
3449 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3450 1.3 msaitoh
3451 1.3 msaitoh if (vlan > 4095)
3452 1.3 msaitoh return IXGBE_ERR_PARAM;
3453 1.3 msaitoh
3454 1.3 msaitoh /* If VT Mode is set
3455 1.1 dyoung * Either vlan_on
3456 1.1 dyoung * make sure the vlan is in VLVF
3457 1.1 dyoung * set the vind bit in the matching VLVFB
3458 1.1 dyoung * Or !vlan_on
3459 1.1 dyoung * clear the pool bit and possibly the vind
3460 1.1 dyoung */
3461 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3462 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3463 1.1 dyoung s32 vlvf_index;
3464 1.3 msaitoh u32 bits;
3465 1.1 dyoung
3466 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3467 1.1 dyoung if (vlvf_index < 0)
3468 1.1 dyoung return vlvf_index;
3469 1.1 dyoung
3470 1.1 dyoung if (vlan_on) {
3471 1.1 dyoung /* set the pool bit */
3472 1.1 dyoung if (vind < 32) {
3473 1.1 dyoung bits = IXGBE_READ_REG(hw,
3474 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3475 1.1 dyoung bits |= (1 << vind);
3476 1.1 dyoung IXGBE_WRITE_REG(hw,
3477 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3478 1.1 dyoung bits);
3479 1.1 dyoung } else {
3480 1.1 dyoung bits = IXGBE_READ_REG(hw,
3481 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3482 1.3 msaitoh bits |= (1 << (vind - 32));
3483 1.1 dyoung IXGBE_WRITE_REG(hw,
3484 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3485 1.3 msaitoh bits);
3486 1.1 dyoung }
3487 1.1 dyoung } else {
3488 1.1 dyoung /* clear the pool bit */
3489 1.1 dyoung if (vind < 32) {
3490 1.1 dyoung bits = IXGBE_READ_REG(hw,
3491 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3492 1.1 dyoung bits &= ~(1 << vind);
3493 1.1 dyoung IXGBE_WRITE_REG(hw,
3494 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3495 1.1 dyoung bits);
3496 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3497 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3498 1.1 dyoung } else {
3499 1.1 dyoung bits = IXGBE_READ_REG(hw,
3500 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3501 1.3 msaitoh bits &= ~(1 << (vind - 32));
3502 1.1 dyoung IXGBE_WRITE_REG(hw,
3503 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3504 1.3 msaitoh bits);
3505 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3506 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3507 1.1 dyoung }
3508 1.1 dyoung }
3509 1.1 dyoung
3510 1.1 dyoung /*
3511 1.1 dyoung * If there are still bits set in the VLVFB registers
3512 1.1 dyoung * for the VLAN ID indicated we need to see if the
3513 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3514 1.1 dyoung * If the caller has requested that we clear the VFTA
3515 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3516 1.1 dyoung * ID entry then ignore the request. We're not worried
3517 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3518 1.1 dyoung * entry bit on, only when requested to turn it off as
3519 1.1 dyoung * there may be multiple pools and/or VFs using the
3520 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
3521 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
3522 1.1 dyoung * been cleared. This will be indicated by "bits" being
3523 1.1 dyoung * zero.
3524 1.1 dyoung */
3525 1.1 dyoung if (bits) {
3526 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3527 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
3528 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
3529 1.1 dyoung /* someone wants to clear the vfta entry
3530 1.1 dyoung * but some pools/VFs are still using it.
3531 1.1 dyoung * Ignore it. */
3532 1.3 msaitoh *vfta_changed = FALSE;
3533 1.1 dyoung }
3534 1.3 msaitoh } else
3535 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3536 1.1 dyoung }
3537 1.1 dyoung
3538 1.1 dyoung return IXGBE_SUCCESS;
3539 1.1 dyoung }
3540 1.1 dyoung
3541 1.1 dyoung /**
3542 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
3543 1.1 dyoung * @hw: pointer to hardware structure
3544 1.1 dyoung *
3545 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
3546 1.1 dyoung **/
3547 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3548 1.1 dyoung {
3549 1.1 dyoung u32 offset;
3550 1.1 dyoung
3551 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
3552 1.1 dyoung
3553 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
3554 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3555 1.1 dyoung
3556 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3557 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3558 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3559 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3560 1.1 dyoung }
3561 1.1 dyoung
3562 1.1 dyoung return IXGBE_SUCCESS;
3563 1.1 dyoung }
3564 1.1 dyoung
3565 1.1 dyoung /**
3566 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
3567 1.1 dyoung * @hw: pointer to hardware structure
3568 1.1 dyoung * @speed: pointer to link speed
3569 1.1 dyoung * @link_up: TRUE when link is up
3570 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
3571 1.1 dyoung *
3572 1.1 dyoung * Reads the links register to determine if link is up and the current speed
3573 1.1 dyoung **/
3574 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3575 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
3576 1.1 dyoung {
3577 1.1 dyoung u32 links_reg, links_orig;
3578 1.1 dyoung u32 i;
3579 1.1 dyoung
3580 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
3581 1.1 dyoung
3582 1.1 dyoung /* clear the old state */
3583 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3584 1.1 dyoung
3585 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3586 1.1 dyoung
3587 1.1 dyoung if (links_orig != links_reg) {
3588 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
3589 1.3 msaitoh links_orig, links_reg);
3590 1.1 dyoung }
3591 1.1 dyoung
3592 1.1 dyoung if (link_up_wait_to_complete) {
3593 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3594 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
3595 1.1 dyoung *link_up = TRUE;
3596 1.1 dyoung break;
3597 1.1 dyoung } else {
3598 1.1 dyoung *link_up = FALSE;
3599 1.1 dyoung }
3600 1.1 dyoung msec_delay(100);
3601 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3602 1.1 dyoung }
3603 1.1 dyoung } else {
3604 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
3605 1.1 dyoung *link_up = TRUE;
3606 1.1 dyoung else
3607 1.1 dyoung *link_up = FALSE;
3608 1.1 dyoung }
3609 1.1 dyoung
3610 1.1 dyoung if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3611 1.1 dyoung IXGBE_LINKS_SPEED_10G_82599)
3612 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
3613 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3614 1.3 msaitoh IXGBE_LINKS_SPEED_1G_82599)
3615 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
3616 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3617 1.3 msaitoh IXGBE_LINKS_SPEED_100_82599)
3618 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
3619 1.1 dyoung else
3620 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
3621 1.1 dyoung
3622 1.1 dyoung return IXGBE_SUCCESS;
3623 1.1 dyoung }
3624 1.1 dyoung
3625 1.1 dyoung /**
3626 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3627 1.1 dyoung * the EEPROM
3628 1.1 dyoung * @hw: pointer to hardware structure
3629 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
3630 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
3631 1.1 dyoung *
3632 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
3633 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
3634 1.1 dyoung **/
3635 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3636 1.3 msaitoh u16 *wwpn_prefix)
3637 1.1 dyoung {
3638 1.1 dyoung u16 offset, caps;
3639 1.1 dyoung u16 alt_san_mac_blk_offset;
3640 1.1 dyoung
3641 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3642 1.1 dyoung
3643 1.1 dyoung /* clear output first */
3644 1.1 dyoung *wwnn_prefix = 0xFFFF;
3645 1.1 dyoung *wwpn_prefix = 0xFFFF;
3646 1.1 dyoung
3647 1.1 dyoung /* check if alternative SAN MAC is supported */
3648 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3649 1.3 msaitoh &alt_san_mac_blk_offset);
3650 1.1 dyoung
3651 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
3652 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
3653 1.1 dyoung goto wwn_prefix_out;
3654 1.1 dyoung
3655 1.1 dyoung /* check capability in alternative san mac address block */
3656 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3657 1.1 dyoung hw->eeprom.ops.read(hw, offset, &caps);
3658 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3659 1.1 dyoung goto wwn_prefix_out;
3660 1.1 dyoung
3661 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
3662 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3663 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3664 1.1 dyoung
3665 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3666 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3667 1.1 dyoung
3668 1.1 dyoung wwn_prefix_out:
3669 1.1 dyoung return IXGBE_SUCCESS;
3670 1.1 dyoung }
3671 1.1 dyoung
3672 1.1 dyoung /**
3673 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3674 1.1 dyoung * @hw: pointer to hardware structure
3675 1.1 dyoung * @bs: the fcoe boot status
3676 1.1 dyoung *
3677 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
3678 1.1 dyoung **/
3679 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3680 1.1 dyoung {
3681 1.1 dyoung u16 offset, caps, flags;
3682 1.1 dyoung s32 status;
3683 1.1 dyoung
3684 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3685 1.1 dyoung
3686 1.1 dyoung /* clear output first */
3687 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
3688 1.1 dyoung
3689 1.1 dyoung /* check if FCOE IBA block is present */
3690 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3691 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
3692 1.1 dyoung if (status != IXGBE_SUCCESS)
3693 1.1 dyoung goto out;
3694 1.1 dyoung
3695 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3696 1.1 dyoung goto out;
3697 1.1 dyoung
3698 1.1 dyoung /* check if iSCSI FCOE block is populated */
3699 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3700 1.1 dyoung if (status != IXGBE_SUCCESS)
3701 1.1 dyoung goto out;
3702 1.1 dyoung
3703 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
3704 1.1 dyoung goto out;
3705 1.1 dyoung
3706 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
3707 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3708 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
3709 1.1 dyoung if (status != IXGBE_SUCCESS)
3710 1.1 dyoung goto out;
3711 1.1 dyoung
3712 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3713 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
3714 1.1 dyoung else
3715 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
3716 1.1 dyoung
3717 1.1 dyoung out:
3718 1.1 dyoung return status;
3719 1.1 dyoung }
3720 1.1 dyoung
3721 1.1 dyoung /**
3722 1.1 dyoung * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3723 1.1 dyoung * control
3724 1.1 dyoung * @hw: pointer to hardware structure
3725 1.1 dyoung *
3726 1.1 dyoung * There are several phys that do not support autoneg flow control. This
3727 1.1 dyoung * function check the device id to see if the associated phy supports
3728 1.1 dyoung * autoneg flow control.
3729 1.1 dyoung **/
3730 1.1 dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3731 1.1 dyoung {
3732 1.1 dyoung
3733 1.1 dyoung DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
3734 1.1 dyoung
3735 1.1 dyoung switch (hw->device_id) {
3736 1.3 msaitoh case IXGBE_DEV_ID_X540T:
3737 1.3 msaitoh return IXGBE_SUCCESS;
3738 1.1 dyoung case IXGBE_DEV_ID_82599_T3_LOM:
3739 1.1 dyoung return IXGBE_SUCCESS;
3740 1.1 dyoung default:
3741 1.1 dyoung return IXGBE_ERR_FC_NOT_SUPPORTED;
3742 1.1 dyoung }
3743 1.1 dyoung }
3744 1.1 dyoung
3745 1.1 dyoung /**
3746 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3747 1.1 dyoung * @hw: pointer to hardware structure
3748 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
3749 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3750 1.1 dyoung *
3751 1.1 dyoung **/
3752 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3753 1.1 dyoung {
3754 1.1 dyoung int j;
3755 1.1 dyoung int pf_target_reg = pf >> 3;
3756 1.1 dyoung int pf_target_shift = pf % 8;
3757 1.1 dyoung u32 pfvfspoof = 0;
3758 1.1 dyoung
3759 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3760 1.1 dyoung return;
3761 1.1 dyoung
3762 1.1 dyoung if (enable)
3763 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3764 1.1 dyoung
3765 1.1 dyoung /*
3766 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
3767 1.1 dyoung * MAC anti-spoof enables in each register array element.
3768 1.1 dyoung */
3769 1.1 dyoung for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3770 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3771 1.1 dyoung
3772 1.1 dyoung /* If not enabling anti-spoofing then done */
3773 1.1 dyoung if (!enable)
3774 1.1 dyoung return;
3775 1.1 dyoung
3776 1.1 dyoung /*
3777 1.1 dyoung * The PF should be allowed to spoof so that it can support
3778 1.1 dyoung * emulation mode NICs. Reset the bit assigned to the PF
3779 1.1 dyoung */
3780 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3781 1.1 dyoung pfvfspoof ^= (1 << pf_target_shift);
3782 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3783 1.1 dyoung }
3784 1.1 dyoung
3785 1.1 dyoung /**
3786 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3787 1.1 dyoung * @hw: pointer to hardware structure
3788 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
3789 1.1 dyoung * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3790 1.1 dyoung *
3791 1.1 dyoung **/
3792 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3793 1.1 dyoung {
3794 1.1 dyoung int vf_target_reg = vf >> 3;
3795 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3796 1.1 dyoung u32 pfvfspoof;
3797 1.1 dyoung
3798 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3799 1.1 dyoung return;
3800 1.1 dyoung
3801 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3802 1.1 dyoung if (enable)
3803 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
3804 1.1 dyoung else
3805 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
3806 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3807 1.1 dyoung }
3808 1.1 dyoung
3809 1.1 dyoung /**
3810 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
3811 1.1 dyoung * @hw: pointer to hardware structure
3812 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
3813 1.1 dyoung *
3814 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
3815 1.1 dyoung * and return the word through device_caps.
3816 1.1 dyoung **/
3817 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3818 1.1 dyoung {
3819 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
3820 1.1 dyoung
3821 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3822 1.1 dyoung
3823 1.1 dyoung return IXGBE_SUCCESS;
3824 1.1 dyoung }
3825 1.1 dyoung
3826 1.1 dyoung /**
3827 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3828 1.1 dyoung * @hw: pointer to hardware structure
3829 1.1 dyoung *
3830 1.1 dyoung **/
3831 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3832 1.1 dyoung {
3833 1.1 dyoung u32 regval;
3834 1.1 dyoung u32 i;
3835 1.1 dyoung
3836 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3837 1.1 dyoung
3838 1.1 dyoung /* Enable relaxed ordering */
3839 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
3840 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3841 1.1 dyoung regval |= IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
3842 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3843 1.1 dyoung }
3844 1.1 dyoung
3845 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
3846 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3847 1.1 dyoung regval |= (IXGBE_DCA_RXCTRL_DESC_WRO_EN |
3848 1.3 msaitoh IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
3849 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3850 1.1 dyoung }
3851 1.1 dyoung
3852 1.1 dyoung }
3853 1.3 msaitoh
3854 1.3 msaitoh /**
3855 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
3856 1.3 msaitoh * @buffer: pointer to EEPROM
3857 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
3858 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
3859 1.3 msaitoh * checksum calculated is returned.
3860 1.3 msaitoh **/
3861 1.3 msaitoh static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3862 1.3 msaitoh {
3863 1.3 msaitoh u32 i;
3864 1.3 msaitoh u8 sum = 0;
3865 1.3 msaitoh
3866 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
3867 1.3 msaitoh
3868 1.3 msaitoh if (!buffer)
3869 1.3 msaitoh return 0;
3870 1.3 msaitoh
3871 1.3 msaitoh for (i = 0; i < length; i++)
3872 1.3 msaitoh sum += buffer[i];
3873 1.3 msaitoh
3874 1.3 msaitoh return (u8) (0 - sum);
3875 1.3 msaitoh }
3876 1.3 msaitoh
3877 1.3 msaitoh /**
3878 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
3879 1.3 msaitoh * @hw: pointer to the HW structure
3880 1.3 msaitoh * @buffer: contains the command to write and where the return status will
3881 1.3 msaitoh * be placed
3882 1.3 msaitoh * @lenght: lenght of buffer, must be multiple of 4 bytes
3883 1.3 msaitoh *
3884 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
3885 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3886 1.3 msaitoh **/
3887 1.3 msaitoh static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3888 1.3 msaitoh u32 length)
3889 1.3 msaitoh {
3890 1.3 msaitoh u32 hicr, i, bi;
3891 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3892 1.3 msaitoh u8 buf_len, dword_len;
3893 1.3 msaitoh
3894 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3895 1.3 msaitoh
3896 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
3897 1.3 msaitoh
3898 1.3 msaitoh if (length == 0 || length & 0x3 ||
3899 1.3 msaitoh length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3900 1.3 msaitoh DEBUGOUT("Buffer length failure.\n");
3901 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3902 1.3 msaitoh goto out;
3903 1.3 msaitoh }
3904 1.3 msaitoh
3905 1.3 msaitoh /* Check that the host interface is enabled. */
3906 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3907 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
3908 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3909 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3910 1.3 msaitoh goto out;
3911 1.3 msaitoh }
3912 1.3 msaitoh
3913 1.3 msaitoh /* Calculate length in DWORDs */
3914 1.3 msaitoh dword_len = length >> 2;
3915 1.3 msaitoh
3916 1.3 msaitoh /*
3917 1.3 msaitoh * The device driver writes the relevant command block
3918 1.3 msaitoh * into the ram area.
3919 1.3 msaitoh */
3920 1.3 msaitoh for (i = 0; i < dword_len; i++)
3921 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3922 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
3923 1.3 msaitoh
3924 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
3925 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3926 1.3 msaitoh
3927 1.3 msaitoh for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3928 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3929 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
3930 1.3 msaitoh break;
3931 1.3 msaitoh msec_delay(1);
3932 1.3 msaitoh }
3933 1.3 msaitoh
3934 1.3 msaitoh /* Check command successful completion. */
3935 1.3 msaitoh if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3936 1.3 msaitoh (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3937 1.3 msaitoh DEBUGOUT("Command has failed with no status valid.\n");
3938 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3939 1.3 msaitoh goto out;
3940 1.3 msaitoh }
3941 1.3 msaitoh
3942 1.3 msaitoh /* Calculate length in DWORDs */
3943 1.3 msaitoh dword_len = hdr_size >> 2;
3944 1.3 msaitoh
3945 1.3 msaitoh /* first pull in the header so we know the buffer length */
3946 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
3947 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3948 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
3949 1.3 msaitoh }
3950 1.3 msaitoh
3951 1.3 msaitoh /* If there is any thing in data position pull it in */
3952 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3953 1.3 msaitoh if (buf_len == 0)
3954 1.3 msaitoh goto out;
3955 1.3 msaitoh
3956 1.3 msaitoh if (length < (buf_len + hdr_size)) {
3957 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
3958 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3959 1.3 msaitoh goto out;
3960 1.3 msaitoh }
3961 1.3 msaitoh
3962 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
3963 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
3964 1.3 msaitoh
3965 1.3 msaitoh /* Pull in the rest of the buffer (bi is where we left off)*/
3966 1.3 msaitoh for (; bi <= dword_len; bi++) {
3967 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3968 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
3969 1.3 msaitoh }
3970 1.3 msaitoh
3971 1.3 msaitoh out:
3972 1.3 msaitoh return ret_val;
3973 1.3 msaitoh }
3974 1.3 msaitoh
3975 1.3 msaitoh /**
3976 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3977 1.3 msaitoh * @hw: pointer to the HW structure
3978 1.3 msaitoh * @maj: driver version major number
3979 1.3 msaitoh * @min: driver version minor number
3980 1.3 msaitoh * @build: driver version build number
3981 1.3 msaitoh * @sub: driver version sub build number
3982 1.3 msaitoh *
3983 1.3 msaitoh * Sends driver version number to firmware through the manageability
3984 1.3 msaitoh * block. On success return IXGBE_SUCCESS
3985 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3986 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3987 1.3 msaitoh **/
3988 1.3 msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3989 1.3 msaitoh u8 build, u8 sub)
3990 1.3 msaitoh {
3991 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
3992 1.3 msaitoh int i;
3993 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3994 1.3 msaitoh
3995 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
3996 1.3 msaitoh
3997 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
3998 1.3 msaitoh != IXGBE_SUCCESS) {
3999 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4000 1.3 msaitoh goto out;
4001 1.3 msaitoh }
4002 1.3 msaitoh
4003 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4004 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4005 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4006 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4007 1.3 msaitoh fw_cmd.ver_maj = maj;
4008 1.3 msaitoh fw_cmd.ver_min = min;
4009 1.3 msaitoh fw_cmd.ver_build = build;
4010 1.3 msaitoh fw_cmd.ver_sub = sub;
4011 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4012 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4013 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4014 1.3 msaitoh fw_cmd.pad = 0;
4015 1.3 msaitoh fw_cmd.pad2 = 0;
4016 1.3 msaitoh
4017 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4018 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4019 1.3 msaitoh sizeof(fw_cmd));
4020 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4021 1.3 msaitoh continue;
4022 1.3 msaitoh
4023 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4024 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4025 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4026 1.3 msaitoh else
4027 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4028 1.3 msaitoh
4029 1.3 msaitoh break;
4030 1.3 msaitoh }
4031 1.3 msaitoh
4032 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4033 1.3 msaitoh out:
4034 1.3 msaitoh return ret_val;
4035 1.3 msaitoh }
4036 1.3 msaitoh
4037 1.3 msaitoh /**
4038 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4039 1.3 msaitoh * @hw: pointer to hardware structure
4040 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4041 1.3 msaitoh * @headroom: reserve n KB of headroom
4042 1.3 msaitoh * @strategy: packet buffer allocation strategy
4043 1.3 msaitoh **/
4044 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4045 1.3 msaitoh int strategy)
4046 1.3 msaitoh {
4047 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4048 1.3 msaitoh int i = 0;
4049 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4050 1.3 msaitoh
4051 1.3 msaitoh /* Reserve headroom */
4052 1.3 msaitoh pbsize -= headroom;
4053 1.3 msaitoh
4054 1.3 msaitoh if (!num_pb)
4055 1.3 msaitoh num_pb = 1;
4056 1.3 msaitoh
4057 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4058 1.3 msaitoh * buffers requested using supplied strategy.
4059 1.3 msaitoh */
4060 1.3 msaitoh switch (strategy) {
4061 1.3 msaitoh case (PBA_STRATEGY_WEIGHTED):
4062 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4063 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4064 1.3 msaitoh */
4065 1.3 msaitoh rxpktsize = (pbsize * 5 * 2) / (num_pb * 8);
4066 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4067 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4068 1.3 msaitoh for (; i < (num_pb / 2); i++)
4069 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4070 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4071 1.3 msaitoh case (PBA_STRATEGY_EQUAL):
4072 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4073 1.3 msaitoh for (; i < num_pb; i++)
4074 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4075 1.3 msaitoh break;
4076 1.3 msaitoh default:
4077 1.3 msaitoh break;
4078 1.3 msaitoh }
4079 1.3 msaitoh
4080 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4081 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4082 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4083 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4084 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4085 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4086 1.3 msaitoh }
4087 1.3 msaitoh
4088 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4089 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4090 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4091 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4092 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4093 1.3 msaitoh }
4094 1.3 msaitoh }
4095 1.3 msaitoh
4096 1.3 msaitoh /**
4097 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4098 1.3 msaitoh * @hw: pointer to the hardware structure
4099 1.3 msaitoh *
4100 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4101 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4102 1.3 msaitoh * buffers on the system.
4103 1.3 msaitoh **/
4104 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4105 1.3 msaitoh {
4106 1.3 msaitoh u32 gcr_ext, hlreg0;
4107 1.3 msaitoh
4108 1.3 msaitoh /*
4109 1.3 msaitoh * If double reset is not requested then all transactions should
4110 1.3 msaitoh * already be clear and as such there is no work to do
4111 1.3 msaitoh */
4112 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4113 1.3 msaitoh return;
4114 1.3 msaitoh
4115 1.3 msaitoh /*
4116 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4117 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4118 1.3 msaitoh * has already been cleared.
4119 1.3 msaitoh */
4120 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4121 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4122 1.3 msaitoh
4123 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4124 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4125 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4126 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4127 1.3 msaitoh
4128 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4129 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4130 1.3 msaitoh usec_delay(20);
4131 1.3 msaitoh
4132 1.3 msaitoh /* restore previous register values */
4133 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4134 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4135 1.3 msaitoh }
4136 1.3 msaitoh
4137