Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.3
      1  1.1   dyoung /******************************************************************************
      2  1.1   dyoung 
      3  1.3  msaitoh   Copyright (c) 2001-2012, Intel Corporation
      4  1.1   dyoung   All rights reserved.
      5  1.1   dyoung 
      6  1.1   dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1   dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1   dyoung 
      9  1.1   dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1   dyoung       this list of conditions and the following disclaimer.
     11  1.1   dyoung 
     12  1.1   dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1   dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1   dyoung       documentation and/or other materials provided with the distribution.
     15  1.1   dyoung 
     16  1.1   dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1   dyoung       contributors may be used to endorse or promote products derived from
     18  1.1   dyoung       this software without specific prior written permission.
     19  1.1   dyoung 
     20  1.1   dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1   dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1   dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1   dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1   dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1   dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1   dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1   dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1   dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1   dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1   dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1   dyoung 
     32  1.1   dyoung ******************************************************************************/
     33  1.1   dyoung /*$FreeBSD: src/sys/dev/ixgbe/ixgbe_common.c,v 1.12 2011/01/19 19:36:27 jfv Exp $*/
     34  1.3  msaitoh /*$NetBSD: ixgbe_common.c,v 1.3 2015/03/27 05:57:28 msaitoh Exp $*/
     35  1.1   dyoung 
     36  1.1   dyoung #include "ixgbe_common.h"
     37  1.1   dyoung #include "ixgbe_phy.h"
     38  1.1   dyoung #include "ixgbe_api.h"
     39  1.1   dyoung 
     40  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     41  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     42  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     43  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     44  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     45  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     46  1.3  msaitoh 					u16 count);
     47  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     48  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     49  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     50  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     51  1.1   dyoung 
     52  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     53  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     54  1.3  msaitoh 					 u16 *san_mac_offset);
     55  1.1   dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
     56  1.1   dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
     57  1.1   dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
     58  1.1   dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
     59  1.1   dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
     60  1.1   dyoung 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
     61  1.3  msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
     62  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     63  1.3  msaitoh 					     u16 words, u16 *data);
     64  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     65  1.3  msaitoh 					      u16 words, u16 *data);
     66  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     67  1.3  msaitoh 						 u16 offset);
     68  1.1   dyoung 
     69  1.1   dyoung /**
     70  1.1   dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     71  1.1   dyoung  *  @hw: pointer to the hardware structure
     72  1.1   dyoung  *
     73  1.1   dyoung  *  Initialize the function pointers.
     74  1.1   dyoung  **/
     75  1.1   dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     76  1.1   dyoung {
     77  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     78  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     79  1.1   dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     80  1.1   dyoung 
     81  1.1   dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     82  1.1   dyoung 
     83  1.1   dyoung 	/* EEPROM */
     84  1.1   dyoung 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     85  1.1   dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     86  1.3  msaitoh 	if (eec & IXGBE_EEC_PRES) {
     87  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     88  1.3  msaitoh 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
     89  1.3  msaitoh 	} else {
     90  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     91  1.3  msaitoh 		eeprom->ops.read_buffer =
     92  1.3  msaitoh 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
     93  1.3  msaitoh 	}
     94  1.1   dyoung 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     95  1.3  msaitoh 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
     96  1.1   dyoung 	eeprom->ops.validate_checksum =
     97  1.3  msaitoh 				      &ixgbe_validate_eeprom_checksum_generic;
     98  1.1   dyoung 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     99  1.1   dyoung 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
    100  1.1   dyoung 
    101  1.1   dyoung 	/* MAC */
    102  1.1   dyoung 	mac->ops.init_hw = &ixgbe_init_hw_generic;
    103  1.1   dyoung 	mac->ops.reset_hw = NULL;
    104  1.1   dyoung 	mac->ops.start_hw = &ixgbe_start_hw_generic;
    105  1.1   dyoung 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
    106  1.1   dyoung 	mac->ops.get_media_type = NULL;
    107  1.1   dyoung 	mac->ops.get_supported_physical_layer = NULL;
    108  1.1   dyoung 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
    109  1.1   dyoung 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    110  1.1   dyoung 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    111  1.1   dyoung 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    112  1.1   dyoung 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    113  1.1   dyoung 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    114  1.1   dyoung 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    115  1.1   dyoung 
    116  1.1   dyoung 	/* LEDs */
    117  1.1   dyoung 	mac->ops.led_on = &ixgbe_led_on_generic;
    118  1.1   dyoung 	mac->ops.led_off = &ixgbe_led_off_generic;
    119  1.1   dyoung 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    120  1.1   dyoung 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    121  1.1   dyoung 
    122  1.1   dyoung 	/* RAR, Multicast, VLAN */
    123  1.1   dyoung 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    124  1.1   dyoung 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    125  1.1   dyoung 	mac->ops.insert_mac_addr = NULL;
    126  1.1   dyoung 	mac->ops.set_vmdq = NULL;
    127  1.1   dyoung 	mac->ops.clear_vmdq = NULL;
    128  1.1   dyoung 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    129  1.1   dyoung 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    130  1.1   dyoung 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    131  1.1   dyoung 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    132  1.1   dyoung 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    133  1.1   dyoung 	mac->ops.clear_vfta = NULL;
    134  1.1   dyoung 	mac->ops.set_vfta = NULL;
    135  1.3  msaitoh 	mac->ops.set_vlvf = NULL;
    136  1.1   dyoung 	mac->ops.init_uta_tables = NULL;
    137  1.1   dyoung 
    138  1.1   dyoung 	/* Flow Control */
    139  1.1   dyoung 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    140  1.1   dyoung 
    141  1.1   dyoung 	/* Link */
    142  1.1   dyoung 	mac->ops.get_link_capabilities = NULL;
    143  1.1   dyoung 	mac->ops.setup_link = NULL;
    144  1.1   dyoung 	mac->ops.check_link = NULL;
    145  1.1   dyoung 
    146  1.1   dyoung 	return IXGBE_SUCCESS;
    147  1.1   dyoung }
    148  1.1   dyoung 
    149  1.1   dyoung /**
    150  1.1   dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    151  1.1   dyoung  *  @hw: pointer to hardware structure
    152  1.1   dyoung  *
    153  1.1   dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    154  1.1   dyoung  *  all on chip counters, initializes receive address registers, multicast
    155  1.1   dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    156  1.1   dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    157  1.1   dyoung  **/
    158  1.1   dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    159  1.1   dyoung {
    160  1.1   dyoung 	u32 ctrl_ext;
    161  1.1   dyoung 
    162  1.1   dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    163  1.1   dyoung 
    164  1.1   dyoung 	/* Set the media type */
    165  1.1   dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    166  1.1   dyoung 
    167  1.1   dyoung 	/* PHY ops initialization must be done in reset_hw() */
    168  1.1   dyoung 
    169  1.1   dyoung 	/* Clear the VLAN filter table */
    170  1.1   dyoung 	hw->mac.ops.clear_vfta(hw);
    171  1.1   dyoung 
    172  1.1   dyoung 	/* Clear statistics registers */
    173  1.1   dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    174  1.1   dyoung 
    175  1.1   dyoung 	/* Set No Snoop Disable */
    176  1.1   dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    177  1.1   dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    178  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    179  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    180  1.1   dyoung 
    181  1.1   dyoung 	/* Setup flow control */
    182  1.1   dyoung 	ixgbe_setup_fc(hw, 0);
    183  1.1   dyoung 
    184  1.1   dyoung 	/* Clear adapter stopped flag */
    185  1.1   dyoung 	hw->adapter_stopped = FALSE;
    186  1.1   dyoung 
    187  1.1   dyoung 	return IXGBE_SUCCESS;
    188  1.1   dyoung }
    189  1.1   dyoung 
    190  1.1   dyoung /**
    191  1.1   dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    192  1.1   dyoung  *  @hw: pointer to hw structure
    193  1.1   dyoung  *
    194  1.1   dyoung  * Performs the init sequence common to the second generation
    195  1.1   dyoung  * of 10 GbE devices.
    196  1.1   dyoung  * Devices in the second generation:
    197  1.1   dyoung  *     82599
    198  1.1   dyoung  *     X540
    199  1.1   dyoung  **/
    200  1.1   dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    201  1.1   dyoung {
    202  1.1   dyoung 	u32 i;
    203  1.1   dyoung 	u32 regval;
    204  1.1   dyoung 
    205  1.1   dyoung 	/* Clear the rate limiters */
    206  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    207  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    208  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    209  1.1   dyoung 	}
    210  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    211  1.1   dyoung 
    212  1.1   dyoung 	/* Disable relaxed ordering */
    213  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    214  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    215  1.1   dyoung 		regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
    216  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    217  1.1   dyoung 	}
    218  1.1   dyoung 
    219  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    220  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    221  1.1   dyoung 		regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
    222  1.3  msaitoh 			    IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
    223  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    224  1.1   dyoung 	}
    225  1.1   dyoung 
    226  1.1   dyoung 	return IXGBE_SUCCESS;
    227  1.1   dyoung }
    228  1.1   dyoung 
    229  1.1   dyoung /**
    230  1.1   dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    231  1.1   dyoung  *  @hw: pointer to hardware structure
    232  1.1   dyoung  *
    233  1.1   dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    234  1.1   dyoung  *  structure and media type, clears all on chip counters, initializes receive
    235  1.1   dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    236  1.1   dyoung  *  up link and flow control settings, and leaves transmit and receive units
    237  1.1   dyoung  *  disabled and uninitialized
    238  1.1   dyoung  **/
    239  1.1   dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    240  1.1   dyoung {
    241  1.1   dyoung 	s32 status;
    242  1.1   dyoung 
    243  1.1   dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    244  1.1   dyoung 
    245  1.1   dyoung 	/* Reset the hardware */
    246  1.1   dyoung 	status = hw->mac.ops.reset_hw(hw);
    247  1.1   dyoung 
    248  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
    249  1.1   dyoung 		/* Start the HW */
    250  1.1   dyoung 		status = hw->mac.ops.start_hw(hw);
    251  1.1   dyoung 	}
    252  1.1   dyoung 
    253  1.1   dyoung 	return status;
    254  1.1   dyoung }
    255  1.1   dyoung 
    256  1.1   dyoung /**
    257  1.1   dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    258  1.1   dyoung  *  @hw: pointer to hardware structure
    259  1.1   dyoung  *
    260  1.1   dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    261  1.1   dyoung  *  Statistics counters are clear on read.
    262  1.1   dyoung  **/
    263  1.1   dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    264  1.1   dyoung {
    265  1.1   dyoung 	u16 i = 0;
    266  1.1   dyoung 
    267  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    268  1.1   dyoung 
    269  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    270  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    271  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    272  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    273  1.1   dyoung 	for (i = 0; i < 8; i++)
    274  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    275  1.1   dyoung 
    276  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    277  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    278  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    279  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    280  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    281  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    282  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    283  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    284  1.1   dyoung 	} else {
    285  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    286  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    287  1.1   dyoung 	}
    288  1.1   dyoung 
    289  1.1   dyoung 	for (i = 0; i < 8; i++) {
    290  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    291  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    292  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    293  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    294  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    295  1.1   dyoung 		} else {
    296  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    297  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    298  1.1   dyoung 		}
    299  1.1   dyoung 	}
    300  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    301  1.1   dyoung 		for (i = 0; i < 8; i++)
    302  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    303  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    304  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    305  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    306  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    307  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    308  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    309  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    310  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    311  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    312  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    313  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    314  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    315  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    316  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    317  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    318  1.3  msaitoh 		for (i = 0; i < 8; i++)
    319  1.3  msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    320  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    321  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    322  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    323  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    324  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    325  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    326  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    327  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    328  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    329  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    330  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    331  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    332  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    333  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    334  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    335  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    336  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    337  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    338  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    339  1.1   dyoung 	for (i = 0; i < 16; i++) {
    340  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    341  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    342  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    343  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    344  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    345  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    346  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    347  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    348  1.1   dyoung 		} else {
    349  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    350  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    351  1.1   dyoung 		}
    352  1.1   dyoung 	}
    353  1.1   dyoung 
    354  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_X540) {
    355  1.3  msaitoh 		if (hw->phy.id == 0)
    356  1.3  msaitoh 			ixgbe_identify_phy(hw);
    357  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    358  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    359  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    360  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    361  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    362  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    363  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    364  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    365  1.3  msaitoh 	}
    366  1.3  msaitoh 
    367  1.1   dyoung 	return IXGBE_SUCCESS;
    368  1.1   dyoung }
    369  1.1   dyoung 
    370  1.1   dyoung /**
    371  1.1   dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    372  1.1   dyoung  *  @hw: pointer to hardware structure
    373  1.1   dyoung  *  @pba_num: stores the part number string from the EEPROM
    374  1.1   dyoung  *  @pba_num_size: part number string buffer length
    375  1.1   dyoung  *
    376  1.1   dyoung  *  Reads the part number string from the EEPROM.
    377  1.1   dyoung  **/
    378  1.1   dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    379  1.3  msaitoh 				  u32 pba_num_size)
    380  1.1   dyoung {
    381  1.1   dyoung 	s32 ret_val;
    382  1.1   dyoung 	u16 data;
    383  1.1   dyoung 	u16 pba_ptr;
    384  1.1   dyoung 	u16 offset;
    385  1.1   dyoung 	u16 length;
    386  1.1   dyoung 
    387  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    388  1.1   dyoung 
    389  1.1   dyoung 	if (pba_num == NULL) {
    390  1.1   dyoung 		DEBUGOUT("PBA string buffer was null\n");
    391  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    392  1.1   dyoung 	}
    393  1.1   dyoung 
    394  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    395  1.1   dyoung 	if (ret_val) {
    396  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    397  1.1   dyoung 		return ret_val;
    398  1.1   dyoung 	}
    399  1.1   dyoung 
    400  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    401  1.1   dyoung 	if (ret_val) {
    402  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    403  1.1   dyoung 		return ret_val;
    404  1.1   dyoung 	}
    405  1.1   dyoung 
    406  1.1   dyoung 	/*
    407  1.1   dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    408  1.1   dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    409  1.1   dyoung 	 * and we can decode it into an ascii string
    410  1.1   dyoung 	 */
    411  1.1   dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    412  1.1   dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    413  1.1   dyoung 
    414  1.1   dyoung 		/* we will need 11 characters to store the PBA */
    415  1.1   dyoung 		if (pba_num_size < 11) {
    416  1.1   dyoung 			DEBUGOUT("PBA string buffer too small\n");
    417  1.1   dyoung 			return IXGBE_ERR_NO_SPACE;
    418  1.1   dyoung 		}
    419  1.1   dyoung 
    420  1.1   dyoung 		/* extract hex string from data and pba_ptr */
    421  1.1   dyoung 		pba_num[0] = (data >> 12) & 0xF;
    422  1.1   dyoung 		pba_num[1] = (data >> 8) & 0xF;
    423  1.1   dyoung 		pba_num[2] = (data >> 4) & 0xF;
    424  1.1   dyoung 		pba_num[3] = data & 0xF;
    425  1.1   dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    426  1.1   dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    427  1.1   dyoung 		pba_num[6] = '-';
    428  1.1   dyoung 		pba_num[7] = 0;
    429  1.1   dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    430  1.1   dyoung 		pba_num[9] = pba_ptr & 0xF;
    431  1.1   dyoung 
    432  1.1   dyoung 		/* put a null character on the end of our string */
    433  1.1   dyoung 		pba_num[10] = '\0';
    434  1.1   dyoung 
    435  1.1   dyoung 		/* switch all the data but the '-' to hex char */
    436  1.1   dyoung 		for (offset = 0; offset < 10; offset++) {
    437  1.1   dyoung 			if (pba_num[offset] < 0xA)
    438  1.1   dyoung 				pba_num[offset] += '0';
    439  1.1   dyoung 			else if (pba_num[offset] < 0x10)
    440  1.1   dyoung 				pba_num[offset] += 'A' - 0xA;
    441  1.1   dyoung 		}
    442  1.1   dyoung 
    443  1.1   dyoung 		return IXGBE_SUCCESS;
    444  1.1   dyoung 	}
    445  1.1   dyoung 
    446  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    447  1.1   dyoung 	if (ret_val) {
    448  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    449  1.1   dyoung 		return ret_val;
    450  1.1   dyoung 	}
    451  1.1   dyoung 
    452  1.1   dyoung 	if (length == 0xFFFF || length == 0) {
    453  1.1   dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    454  1.1   dyoung 		return IXGBE_ERR_PBA_SECTION;
    455  1.1   dyoung 	}
    456  1.1   dyoung 
    457  1.1   dyoung 	/* check if pba_num buffer is big enough */
    458  1.1   dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    459  1.1   dyoung 		DEBUGOUT("PBA string buffer too small\n");
    460  1.1   dyoung 		return IXGBE_ERR_NO_SPACE;
    461  1.1   dyoung 	}
    462  1.1   dyoung 
    463  1.1   dyoung 	/* trim pba length from start of string */
    464  1.1   dyoung 	pba_ptr++;
    465  1.1   dyoung 	length--;
    466  1.1   dyoung 
    467  1.1   dyoung 	for (offset = 0; offset < length; offset++) {
    468  1.1   dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    469  1.1   dyoung 		if (ret_val) {
    470  1.1   dyoung 			DEBUGOUT("NVM Read Error\n");
    471  1.1   dyoung 			return ret_val;
    472  1.1   dyoung 		}
    473  1.1   dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    474  1.1   dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    475  1.1   dyoung 	}
    476  1.1   dyoung 	pba_num[offset * 2] = '\0';
    477  1.1   dyoung 
    478  1.1   dyoung 	return IXGBE_SUCCESS;
    479  1.1   dyoung }
    480  1.1   dyoung 
    481  1.1   dyoung /**
    482  1.1   dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    483  1.1   dyoung  *  @hw: pointer to hardware structure
    484  1.1   dyoung  *  @pba_num: stores the part number from the EEPROM
    485  1.1   dyoung  *
    486  1.1   dyoung  *  Reads the part number from the EEPROM.
    487  1.1   dyoung  **/
    488  1.1   dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    489  1.1   dyoung {
    490  1.1   dyoung 	s32 ret_val;
    491  1.1   dyoung 	u16 data;
    492  1.1   dyoung 
    493  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    494  1.1   dyoung 
    495  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    496  1.1   dyoung 	if (ret_val) {
    497  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    498  1.1   dyoung 		return ret_val;
    499  1.1   dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    500  1.1   dyoung 		DEBUGOUT("NVM Not supported\n");
    501  1.1   dyoung 		return IXGBE_NOT_IMPLEMENTED;
    502  1.1   dyoung 	}
    503  1.1   dyoung 	*pba_num = (u32)(data << 16);
    504  1.1   dyoung 
    505  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    506  1.1   dyoung 	if (ret_val) {
    507  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    508  1.1   dyoung 		return ret_val;
    509  1.1   dyoung 	}
    510  1.1   dyoung 	*pba_num |= data;
    511  1.1   dyoung 
    512  1.1   dyoung 	return IXGBE_SUCCESS;
    513  1.1   dyoung }
    514  1.1   dyoung 
    515  1.1   dyoung /**
    516  1.1   dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    517  1.1   dyoung  *  @hw: pointer to hardware structure
    518  1.1   dyoung  *  @mac_addr: Adapter MAC address
    519  1.1   dyoung  *
    520  1.1   dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    521  1.1   dyoung  *  A reset of the adapter must be performed prior to calling this function
    522  1.1   dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    523  1.1   dyoung  **/
    524  1.1   dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    525  1.1   dyoung {
    526  1.1   dyoung 	u32 rar_high;
    527  1.1   dyoung 	u32 rar_low;
    528  1.1   dyoung 	u16 i;
    529  1.1   dyoung 
    530  1.1   dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    531  1.1   dyoung 
    532  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    533  1.1   dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    534  1.1   dyoung 
    535  1.1   dyoung 	for (i = 0; i < 4; i++)
    536  1.1   dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    537  1.1   dyoung 
    538  1.1   dyoung 	for (i = 0; i < 2; i++)
    539  1.1   dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    540  1.1   dyoung 
    541  1.1   dyoung 	return IXGBE_SUCCESS;
    542  1.1   dyoung }
    543  1.1   dyoung 
    544  1.1   dyoung /**
    545  1.1   dyoung  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    546  1.1   dyoung  *  @hw: pointer to hardware structure
    547  1.1   dyoung  *
    548  1.1   dyoung  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    549  1.1   dyoung  **/
    550  1.1   dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    551  1.1   dyoung {
    552  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    553  1.1   dyoung 	u16 link_status;
    554  1.1   dyoung 
    555  1.1   dyoung 	DEBUGFUNC("ixgbe_get_bus_info_generic");
    556  1.1   dyoung 
    557  1.1   dyoung 	hw->bus.type = ixgbe_bus_type_pci_express;
    558  1.1   dyoung 
    559  1.1   dyoung 	/* Get the negotiated link width and speed from PCI config space */
    560  1.1   dyoung 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
    561  1.1   dyoung 
    562  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    563  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    564  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    565  1.1   dyoung 		break;
    566  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    567  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    568  1.1   dyoung 		break;
    569  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    570  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    571  1.1   dyoung 		break;
    572  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    573  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    574  1.1   dyoung 		break;
    575  1.1   dyoung 	default:
    576  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    577  1.1   dyoung 		break;
    578  1.1   dyoung 	}
    579  1.1   dyoung 
    580  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    581  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    582  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    583  1.1   dyoung 		break;
    584  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    585  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    586  1.1   dyoung 		break;
    587  1.1   dyoung 	default:
    588  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    589  1.1   dyoung 		break;
    590  1.1   dyoung 	}
    591  1.1   dyoung 
    592  1.1   dyoung 	mac->ops.set_lan_id(hw);
    593  1.1   dyoung 
    594  1.1   dyoung 	return IXGBE_SUCCESS;
    595  1.1   dyoung }
    596  1.1   dyoung 
    597  1.1   dyoung /**
    598  1.1   dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    599  1.1   dyoung  *  @hw: pointer to the HW structure
    600  1.1   dyoung  *
    601  1.1   dyoung  *  Determines the LAN function id by reading memory-mapped registers
    602  1.1   dyoung  *  and swaps the port value if requested.
    603  1.1   dyoung  **/
    604  1.1   dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    605  1.1   dyoung {
    606  1.1   dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
    607  1.1   dyoung 	u32 reg;
    608  1.1   dyoung 
    609  1.1   dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
    610  1.1   dyoung 
    611  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    612  1.1   dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    613  1.1   dyoung 	bus->lan_id = bus->func;
    614  1.1   dyoung 
    615  1.1   dyoung 	/* check for a port swap */
    616  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
    617  1.1   dyoung 	if (reg & IXGBE_FACTPS_LFS)
    618  1.1   dyoung 		bus->func ^= 0x1;
    619  1.1   dyoung }
    620  1.1   dyoung 
    621  1.1   dyoung /**
    622  1.1   dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
    623  1.1   dyoung  *  @hw: pointer to hardware structure
    624  1.1   dyoung  *
    625  1.1   dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
    626  1.1   dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
    627  1.1   dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
    628  1.1   dyoung  *  state and should not touch the hardware.
    629  1.1   dyoung  **/
    630  1.1   dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
    631  1.1   dyoung {
    632  1.1   dyoung 	u32 reg_val;
    633  1.1   dyoung 	u16 i;
    634  1.1   dyoung 
    635  1.1   dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
    636  1.1   dyoung 
    637  1.1   dyoung 	/*
    638  1.1   dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
    639  1.1   dyoung 	 * the hardware
    640  1.1   dyoung 	 */
    641  1.1   dyoung 	hw->adapter_stopped = TRUE;
    642  1.1   dyoung 
    643  1.1   dyoung 	/* Disable the receive unit */
    644  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
    645  1.1   dyoung 
    646  1.3  msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
    647  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
    648  1.1   dyoung 
    649  1.3  msaitoh 	/* Clear any pending interrupts, flush previous writes */
    650  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
    651  1.1   dyoung 
    652  1.1   dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
    653  1.3  msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
    654  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
    655  1.3  msaitoh 
    656  1.3  msaitoh 	/* Disable the receive unit by stopping each queue */
    657  1.3  msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    658  1.3  msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
    659  1.3  msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
    660  1.3  msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
    661  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
    662  1.1   dyoung 	}
    663  1.1   dyoung 
    664  1.3  msaitoh 	/* flush all queues disables */
    665  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
    666  1.3  msaitoh 	msec_delay(2);
    667  1.3  msaitoh 
    668  1.1   dyoung 	/*
    669  1.1   dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
    670  1.1   dyoung 	 * access and verify no pending requests
    671  1.1   dyoung 	 */
    672  1.3  msaitoh 	return ixgbe_disable_pcie_master(hw);
    673  1.1   dyoung }
    674  1.1   dyoung 
    675  1.1   dyoung /**
    676  1.1   dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
    677  1.1   dyoung  *  @hw: pointer to hardware structure
    678  1.1   dyoung  *  @index: led number to turn on
    679  1.1   dyoung  **/
    680  1.1   dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
    681  1.1   dyoung {
    682  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    683  1.1   dyoung 
    684  1.1   dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
    685  1.1   dyoung 
    686  1.1   dyoung 	/* To turn on the LED, set mode to ON. */
    687  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    688  1.1   dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
    689  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    690  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    691  1.1   dyoung 
    692  1.1   dyoung 	return IXGBE_SUCCESS;
    693  1.1   dyoung }
    694  1.1   dyoung 
    695  1.1   dyoung /**
    696  1.1   dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
    697  1.1   dyoung  *  @hw: pointer to hardware structure
    698  1.1   dyoung  *  @index: led number to turn off
    699  1.1   dyoung  **/
    700  1.1   dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
    701  1.1   dyoung {
    702  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    703  1.1   dyoung 
    704  1.1   dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
    705  1.1   dyoung 
    706  1.1   dyoung 	/* To turn off the LED, set mode to OFF. */
    707  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    708  1.1   dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
    709  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    710  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    711  1.1   dyoung 
    712  1.1   dyoung 	return IXGBE_SUCCESS;
    713  1.1   dyoung }
    714  1.1   dyoung 
    715  1.1   dyoung /**
    716  1.1   dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
    717  1.1   dyoung  *  @hw: pointer to hardware structure
    718  1.1   dyoung  *
    719  1.1   dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
    720  1.1   dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
    721  1.1   dyoung  **/
    722  1.1   dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
    723  1.1   dyoung {
    724  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
    725  1.1   dyoung 	u32 eec;
    726  1.1   dyoung 	u16 eeprom_size;
    727  1.1   dyoung 
    728  1.1   dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
    729  1.1   dyoung 
    730  1.1   dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
    731  1.1   dyoung 		eeprom->type = ixgbe_eeprom_none;
    732  1.1   dyoung 		/* Set default semaphore delay to 10ms which is a well
    733  1.1   dyoung 		 * tested value */
    734  1.1   dyoung 		eeprom->semaphore_delay = 10;
    735  1.3  msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
    736  1.3  msaitoh 		eeprom->word_page_size = 0;
    737  1.1   dyoung 
    738  1.1   dyoung 		/*
    739  1.1   dyoung 		 * Check for EEPROM present first.
    740  1.1   dyoung 		 * If not present leave as none
    741  1.1   dyoung 		 */
    742  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
    743  1.1   dyoung 		if (eec & IXGBE_EEC_PRES) {
    744  1.1   dyoung 			eeprom->type = ixgbe_eeprom_spi;
    745  1.1   dyoung 
    746  1.1   dyoung 			/*
    747  1.1   dyoung 			 * SPI EEPROM is assumed here.  This code would need to
    748  1.1   dyoung 			 * change if a future EEPROM is not SPI.
    749  1.1   dyoung 			 */
    750  1.1   dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
    751  1.3  msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
    752  1.1   dyoung 			eeprom->word_size = 1 << (eeprom_size +
    753  1.3  msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
    754  1.1   dyoung 		}
    755  1.1   dyoung 
    756  1.1   dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
    757  1.1   dyoung 			eeprom->address_bits = 16;
    758  1.1   dyoung 		else
    759  1.1   dyoung 			eeprom->address_bits = 8;
    760  1.1   dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
    761  1.3  msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
    762  1.3  msaitoh 			  eeprom->address_bits);
    763  1.1   dyoung 	}
    764  1.1   dyoung 
    765  1.1   dyoung 	return IXGBE_SUCCESS;
    766  1.1   dyoung }
    767  1.1   dyoung 
    768  1.1   dyoung /**
    769  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
    770  1.3  msaitoh  *  @hw: pointer to hardware structure
    771  1.3  msaitoh  *  @offset: offset within the EEPROM to write
    772  1.3  msaitoh  *  @words: number of word(s)
    773  1.3  msaitoh  *  @data: 16 bit word(s) to write to EEPROM
    774  1.3  msaitoh  *
    775  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
    776  1.3  msaitoh  **/
    777  1.3  msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    778  1.3  msaitoh 					       u16 words, u16 *data)
    779  1.3  msaitoh {
    780  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
    781  1.3  msaitoh 	u16 i, count;
    782  1.3  msaitoh 
    783  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
    784  1.3  msaitoh 
    785  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
    786  1.3  msaitoh 
    787  1.3  msaitoh 	if (words == 0) {
    788  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
    789  1.3  msaitoh 		goto out;
    790  1.3  msaitoh 	}
    791  1.3  msaitoh 
    792  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
    793  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
    794  1.3  msaitoh 		goto out;
    795  1.3  msaitoh 	}
    796  1.3  msaitoh 
    797  1.3  msaitoh 	/*
    798  1.3  msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
    799  1.3  msaitoh 	 * initialization. It is worth to do that when we write large buffer.
    800  1.3  msaitoh 	 */
    801  1.3  msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
    802  1.3  msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
    803  1.3  msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
    804  1.3  msaitoh 
    805  1.3  msaitoh 	/*
    806  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
    807  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
    808  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
    809  1.3  msaitoh 	 */
    810  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
    811  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
    812  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
    813  1.3  msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
    814  1.3  msaitoh 							    count, &data[i]);
    815  1.3  msaitoh 
    816  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
    817  1.3  msaitoh 			break;
    818  1.3  msaitoh 	}
    819  1.3  msaitoh 
    820  1.3  msaitoh out:
    821  1.3  msaitoh 	return status;
    822  1.3  msaitoh }
    823  1.3  msaitoh 
    824  1.3  msaitoh /**
    825  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
    826  1.3  msaitoh  *  @hw: pointer to hardware structure
    827  1.3  msaitoh  *  @offset: offset within the EEPROM to be written to
    828  1.3  msaitoh  *  @words: number of word(s)
    829  1.3  msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
    830  1.3  msaitoh  *
    831  1.3  msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
    832  1.3  msaitoh  *  EEPROM will most likely contain an invalid checksum.
    833  1.3  msaitoh  **/
    834  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
    835  1.3  msaitoh 					      u16 words, u16 *data)
    836  1.3  msaitoh {
    837  1.3  msaitoh 	s32 status;
    838  1.3  msaitoh 	u16 word;
    839  1.3  msaitoh 	u16 page_size;
    840  1.3  msaitoh 	u16 i;
    841  1.3  msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
    842  1.3  msaitoh 
    843  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
    844  1.3  msaitoh 
    845  1.3  msaitoh 	/* Prepare the EEPROM for writing  */
    846  1.3  msaitoh 	status = ixgbe_acquire_eeprom(hw);
    847  1.3  msaitoh 
    848  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
    849  1.3  msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
    850  1.3  msaitoh 			ixgbe_release_eeprom(hw);
    851  1.3  msaitoh 			status = IXGBE_ERR_EEPROM;
    852  1.3  msaitoh 		}
    853  1.3  msaitoh 	}
    854  1.3  msaitoh 
    855  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
    856  1.3  msaitoh 		for (i = 0; i < words; i++) {
    857  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
    858  1.3  msaitoh 
    859  1.3  msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
    860  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
    861  1.3  msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
    862  1.3  msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
    863  1.3  msaitoh 
    864  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
    865  1.3  msaitoh 
    866  1.3  msaitoh 			/*
    867  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
    868  1.3  msaitoh 			 * in the opcode
    869  1.3  msaitoh 			 */
    870  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
    871  1.3  msaitoh 			    ((offset + i) >= 128))
    872  1.3  msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
    873  1.3  msaitoh 
    874  1.3  msaitoh 			/* Send the Write command (8-bit opcode + addr) */
    875  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
    876  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
    877  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
    878  1.3  msaitoh 						    hw->eeprom.address_bits);
    879  1.3  msaitoh 
    880  1.3  msaitoh 			page_size = hw->eeprom.word_page_size;
    881  1.3  msaitoh 
    882  1.3  msaitoh 			/* Send the data in burst via SPI*/
    883  1.3  msaitoh 			do {
    884  1.3  msaitoh 				word = data[i];
    885  1.3  msaitoh 				word = (word >> 8) | (word << 8);
    886  1.3  msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
    887  1.3  msaitoh 
    888  1.3  msaitoh 				if (page_size == 0)
    889  1.3  msaitoh 					break;
    890  1.3  msaitoh 
    891  1.3  msaitoh 				/* do not wrap around page */
    892  1.3  msaitoh 				if (((offset + i) & (page_size - 1)) ==
    893  1.3  msaitoh 				    (page_size - 1))
    894  1.3  msaitoh 					break;
    895  1.3  msaitoh 			} while (++i < words);
    896  1.3  msaitoh 
    897  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
    898  1.3  msaitoh 			msec_delay(10);
    899  1.3  msaitoh 		}
    900  1.3  msaitoh 		/* Done with writing - release the EEPROM */
    901  1.3  msaitoh 		ixgbe_release_eeprom(hw);
    902  1.3  msaitoh 	}
    903  1.3  msaitoh 
    904  1.3  msaitoh 	return status;
    905  1.3  msaitoh }
    906  1.3  msaitoh 
    907  1.3  msaitoh /**
    908  1.1   dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
    909  1.1   dyoung  *  @hw: pointer to hardware structure
    910  1.1   dyoung  *  @offset: offset within the EEPROM to be written to
    911  1.1   dyoung  *  @data: 16 bit word to be written to the EEPROM
    912  1.1   dyoung  *
    913  1.1   dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
    914  1.1   dyoung  *  EEPROM will most likely contain an invalid checksum.
    915  1.1   dyoung  **/
    916  1.1   dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
    917  1.1   dyoung {
    918  1.1   dyoung 	s32 status;
    919  1.1   dyoung 
    920  1.1   dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
    921  1.1   dyoung 
    922  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
    923  1.1   dyoung 
    924  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
    925  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
    926  1.1   dyoung 		goto out;
    927  1.1   dyoung 	}
    928  1.1   dyoung 
    929  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
    930  1.3  msaitoh 
    931  1.3  msaitoh out:
    932  1.3  msaitoh 	return status;
    933  1.3  msaitoh }
    934  1.3  msaitoh 
    935  1.3  msaitoh /**
    936  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
    937  1.3  msaitoh  *  @hw: pointer to hardware structure
    938  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
    939  1.3  msaitoh  *  @data: read 16 bit words(s) from EEPROM
    940  1.3  msaitoh  *  @words: number of word(s)
    941  1.3  msaitoh  *
    942  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
    943  1.3  msaitoh  **/
    944  1.3  msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    945  1.3  msaitoh 					      u16 words, u16 *data)
    946  1.3  msaitoh {
    947  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
    948  1.3  msaitoh 	u16 i, count;
    949  1.3  msaitoh 
    950  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
    951  1.3  msaitoh 
    952  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
    953  1.3  msaitoh 
    954  1.3  msaitoh 	if (words == 0) {
    955  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
    956  1.3  msaitoh 		goto out;
    957  1.3  msaitoh 	}
    958  1.3  msaitoh 
    959  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
    960  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
    961  1.3  msaitoh 		goto out;
    962  1.3  msaitoh 	}
    963  1.3  msaitoh 
    964  1.3  msaitoh 	/*
    965  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
    966  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
    967  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
    968  1.3  msaitoh 	 */
    969  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
    970  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
    971  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
    972  1.3  msaitoh 
    973  1.3  msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
    974  1.3  msaitoh 							   count, &data[i]);
    975  1.3  msaitoh 
    976  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
    977  1.3  msaitoh 			break;
    978  1.3  msaitoh 	}
    979  1.3  msaitoh 
    980  1.3  msaitoh out:
    981  1.3  msaitoh 	return status;
    982  1.3  msaitoh }
    983  1.3  msaitoh 
    984  1.3  msaitoh /**
    985  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
    986  1.3  msaitoh  *  @hw: pointer to hardware structure
    987  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
    988  1.3  msaitoh  *  @words: number of word(s)
    989  1.3  msaitoh  *  @data: read 16 bit word(s) from EEPROM
    990  1.3  msaitoh  *
    991  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
    992  1.3  msaitoh  **/
    993  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
    994  1.3  msaitoh 					     u16 words, u16 *data)
    995  1.3  msaitoh {
    996  1.3  msaitoh 	s32 status;
    997  1.3  msaitoh 	u16 word_in;
    998  1.3  msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
    999  1.3  msaitoh 	u16 i;
   1000  1.3  msaitoh 
   1001  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1002  1.3  msaitoh 
   1003  1.3  msaitoh 	/* Prepare the EEPROM for reading  */
   1004  1.1   dyoung 	status = ixgbe_acquire_eeprom(hw);
   1005  1.1   dyoung 
   1006  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1007  1.1   dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1008  1.1   dyoung 			ixgbe_release_eeprom(hw);
   1009  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1010  1.1   dyoung 		}
   1011  1.1   dyoung 	}
   1012  1.1   dyoung 
   1013  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1014  1.3  msaitoh 		for (i = 0; i < words; i++) {
   1015  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1016  1.3  msaitoh 			/*
   1017  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1018  1.3  msaitoh 			 * in the opcode
   1019  1.3  msaitoh 			 */
   1020  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1021  1.3  msaitoh 			    ((offset + i) >= 128))
   1022  1.3  msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1023  1.3  msaitoh 
   1024  1.3  msaitoh 			/* Send the READ command (opcode + addr) */
   1025  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1026  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1027  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1028  1.3  msaitoh 						    hw->eeprom.address_bits);
   1029  1.3  msaitoh 
   1030  1.3  msaitoh 			/* Read the data. */
   1031  1.3  msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1032  1.3  msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1033  1.3  msaitoh 		}
   1034  1.1   dyoung 
   1035  1.3  msaitoh 		/* End this read operation */
   1036  1.1   dyoung 		ixgbe_release_eeprom(hw);
   1037  1.1   dyoung 	}
   1038  1.1   dyoung 
   1039  1.1   dyoung 	return status;
   1040  1.1   dyoung }
   1041  1.1   dyoung 
   1042  1.1   dyoung /**
   1043  1.1   dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1044  1.1   dyoung  *  @hw: pointer to hardware structure
   1045  1.1   dyoung  *  @offset: offset within the EEPROM to be read
   1046  1.1   dyoung  *  @data: read 16 bit value from EEPROM
   1047  1.1   dyoung  *
   1048  1.1   dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1049  1.1   dyoung  **/
   1050  1.1   dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1051  1.3  msaitoh 				       u16 *data)
   1052  1.1   dyoung {
   1053  1.1   dyoung 	s32 status;
   1054  1.1   dyoung 
   1055  1.1   dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1056  1.1   dyoung 
   1057  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1058  1.1   dyoung 
   1059  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1060  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1061  1.1   dyoung 		goto out;
   1062  1.1   dyoung 	}
   1063  1.1   dyoung 
   1064  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1065  1.3  msaitoh 
   1066  1.3  msaitoh out:
   1067  1.3  msaitoh 	return status;
   1068  1.3  msaitoh }
   1069  1.3  msaitoh 
   1070  1.3  msaitoh /**
   1071  1.3  msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1072  1.3  msaitoh  *  @hw: pointer to hardware structure
   1073  1.3  msaitoh  *  @offset: offset of word in the EEPROM to read
   1074  1.3  msaitoh  *  @words: number of word(s)
   1075  1.3  msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1076  1.3  msaitoh  *
   1077  1.3  msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1078  1.3  msaitoh  **/
   1079  1.3  msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1080  1.3  msaitoh 				   u16 words, u16 *data)
   1081  1.3  msaitoh {
   1082  1.3  msaitoh 	u32 eerd;
   1083  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1084  1.3  msaitoh 	u32 i;
   1085  1.3  msaitoh 
   1086  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1087  1.3  msaitoh 
   1088  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1089  1.3  msaitoh 
   1090  1.3  msaitoh 	if (words == 0) {
   1091  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1092  1.3  msaitoh 		goto out;
   1093  1.3  msaitoh 	}
   1094  1.3  msaitoh 
   1095  1.3  msaitoh 	if (offset >= hw->eeprom.word_size) {
   1096  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1097  1.3  msaitoh 		goto out;
   1098  1.3  msaitoh 	}
   1099  1.3  msaitoh 
   1100  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1101  1.3  msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
   1102  1.3  msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1103  1.3  msaitoh 
   1104  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1105  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1106  1.1   dyoung 
   1107  1.3  msaitoh 		if (status == IXGBE_SUCCESS) {
   1108  1.3  msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1109  1.3  msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1110  1.3  msaitoh 		} else {
   1111  1.3  msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1112  1.3  msaitoh 			goto out;
   1113  1.1   dyoung 		}
   1114  1.1   dyoung 	}
   1115  1.3  msaitoh out:
   1116  1.3  msaitoh 	return status;
   1117  1.3  msaitoh }
   1118  1.1   dyoung 
   1119  1.3  msaitoh /**
   1120  1.3  msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1121  1.3  msaitoh  *  @hw: pointer to hardware structure
   1122  1.3  msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1123  1.3  msaitoh  *
   1124  1.3  msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1125  1.3  msaitoh  *  This function is called only when we are writing a new large buffer
   1126  1.3  msaitoh  *  at given offset so the data would be overwritten anyway.
   1127  1.3  msaitoh  **/
   1128  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1129  1.3  msaitoh 						 u16 offset)
   1130  1.3  msaitoh {
   1131  1.3  msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1132  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1133  1.3  msaitoh 	u16 i;
   1134  1.3  msaitoh 
   1135  1.3  msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1136  1.3  msaitoh 
   1137  1.3  msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1138  1.3  msaitoh 		data[i] = i;
   1139  1.1   dyoung 
   1140  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1141  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1142  1.3  msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1143  1.3  msaitoh 	hw->eeprom.word_page_size = 0;
   1144  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1145  1.3  msaitoh 		goto out;
   1146  1.1   dyoung 
   1147  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1148  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1149  1.3  msaitoh 		goto out;
   1150  1.1   dyoung 
   1151  1.3  msaitoh 	/*
   1152  1.3  msaitoh 	 * When writing in burst more than the actual page size
   1153  1.3  msaitoh 	 * EEPROM address wraps around current page.
   1154  1.3  msaitoh 	 */
   1155  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1156  1.1   dyoung 
   1157  1.3  msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1158  1.3  msaitoh 		  hw->eeprom.word_page_size);
   1159  1.1   dyoung out:
   1160  1.1   dyoung 	return status;
   1161  1.1   dyoung }
   1162  1.1   dyoung 
   1163  1.1   dyoung /**
   1164  1.1   dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1165  1.1   dyoung  *  @hw: pointer to hardware structure
   1166  1.1   dyoung  *  @offset: offset of  word in the EEPROM to read
   1167  1.1   dyoung  *  @data: word read from the EEPROM
   1168  1.1   dyoung  *
   1169  1.1   dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1170  1.1   dyoung  **/
   1171  1.1   dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1172  1.1   dyoung {
   1173  1.3  msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1174  1.3  msaitoh }
   1175  1.3  msaitoh 
   1176  1.3  msaitoh /**
   1177  1.3  msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1178  1.3  msaitoh  *  @hw: pointer to hardware structure
   1179  1.3  msaitoh  *  @offset: offset of  word in the EEPROM to write
   1180  1.3  msaitoh  *  @words: number of word(s)
   1181  1.3  msaitoh  *  @data: word(s) write to the EEPROM
   1182  1.3  msaitoh  *
   1183  1.3  msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1184  1.3  msaitoh  **/
   1185  1.3  msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1186  1.3  msaitoh 				    u16 words, u16 *data)
   1187  1.3  msaitoh {
   1188  1.3  msaitoh 	u32 eewr;
   1189  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1190  1.3  msaitoh 	u16 i;
   1191  1.1   dyoung 
   1192  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1193  1.1   dyoung 
   1194  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1195  1.1   dyoung 
   1196  1.3  msaitoh 	if (words == 0) {
   1197  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1198  1.3  msaitoh 		goto out;
   1199  1.3  msaitoh 	}
   1200  1.3  msaitoh 
   1201  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1202  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1203  1.1   dyoung 		goto out;
   1204  1.1   dyoung 	}
   1205  1.1   dyoung 
   1206  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1207  1.3  msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1208  1.3  msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1209  1.3  msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1210  1.3  msaitoh 
   1211  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1212  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1213  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1214  1.3  msaitoh 			goto out;
   1215  1.3  msaitoh 		}
   1216  1.1   dyoung 
   1217  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1218  1.1   dyoung 
   1219  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1220  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1221  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1222  1.3  msaitoh 			goto out;
   1223  1.3  msaitoh 		}
   1224  1.3  msaitoh 	}
   1225  1.1   dyoung 
   1226  1.1   dyoung out:
   1227  1.1   dyoung 	return status;
   1228  1.1   dyoung }
   1229  1.1   dyoung 
   1230  1.1   dyoung /**
   1231  1.1   dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1232  1.1   dyoung  *  @hw: pointer to hardware structure
   1233  1.1   dyoung  *  @offset: offset of  word in the EEPROM to write
   1234  1.1   dyoung  *  @data: word write to the EEPROM
   1235  1.1   dyoung  *
   1236  1.1   dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1237  1.1   dyoung  **/
   1238  1.1   dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1239  1.1   dyoung {
   1240  1.3  msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1241  1.1   dyoung }
   1242  1.1   dyoung 
   1243  1.1   dyoung /**
   1244  1.1   dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1245  1.1   dyoung  *  @hw: pointer to hardware structure
   1246  1.1   dyoung  *  @ee_reg: EEPROM flag for polling
   1247  1.1   dyoung  *
   1248  1.1   dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1249  1.1   dyoung  *  read or write is done respectively.
   1250  1.1   dyoung  **/
   1251  1.1   dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1252  1.1   dyoung {
   1253  1.1   dyoung 	u32 i;
   1254  1.1   dyoung 	u32 reg;
   1255  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1256  1.1   dyoung 
   1257  1.1   dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1258  1.1   dyoung 
   1259  1.1   dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1260  1.1   dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1261  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1262  1.1   dyoung 		else
   1263  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1264  1.1   dyoung 
   1265  1.1   dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1266  1.1   dyoung 			status = IXGBE_SUCCESS;
   1267  1.1   dyoung 			break;
   1268  1.1   dyoung 		}
   1269  1.1   dyoung 		usec_delay(5);
   1270  1.1   dyoung 	}
   1271  1.1   dyoung 	return status;
   1272  1.1   dyoung }
   1273  1.1   dyoung 
   1274  1.1   dyoung /**
   1275  1.1   dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1276  1.1   dyoung  *  @hw: pointer to hardware structure
   1277  1.1   dyoung  *
   1278  1.1   dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1279  1.1   dyoung  *  be called before issuing a command to the EEPROM.
   1280  1.1   dyoung  **/
   1281  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1282  1.1   dyoung {
   1283  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1284  1.1   dyoung 	u32 eec;
   1285  1.1   dyoung 	u32 i;
   1286  1.1   dyoung 
   1287  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1288  1.1   dyoung 
   1289  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1290  1.3  msaitoh 	    != IXGBE_SUCCESS)
   1291  1.1   dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1292  1.1   dyoung 
   1293  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1294  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1295  1.1   dyoung 
   1296  1.1   dyoung 		/* Request EEPROM Access */
   1297  1.1   dyoung 		eec |= IXGBE_EEC_REQ;
   1298  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1299  1.1   dyoung 
   1300  1.1   dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1301  1.1   dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1302  1.1   dyoung 			if (eec & IXGBE_EEC_GNT)
   1303  1.1   dyoung 				break;
   1304  1.1   dyoung 			usec_delay(5);
   1305  1.1   dyoung 		}
   1306  1.1   dyoung 
   1307  1.1   dyoung 		/* Release if grant not acquired */
   1308  1.1   dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1309  1.1   dyoung 			eec &= ~IXGBE_EEC_REQ;
   1310  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1311  1.1   dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1312  1.1   dyoung 
   1313  1.3  msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1314  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1315  1.1   dyoung 		}
   1316  1.1   dyoung 
   1317  1.1   dyoung 		/* Setup EEPROM for Read/Write */
   1318  1.1   dyoung 		if (status == IXGBE_SUCCESS) {
   1319  1.1   dyoung 			/* Clear CS and SK */
   1320  1.1   dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1321  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1322  1.1   dyoung 			IXGBE_WRITE_FLUSH(hw);
   1323  1.1   dyoung 			usec_delay(1);
   1324  1.1   dyoung 		}
   1325  1.1   dyoung 	}
   1326  1.1   dyoung 	return status;
   1327  1.1   dyoung }
   1328  1.1   dyoung 
   1329  1.1   dyoung /**
   1330  1.1   dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1331  1.1   dyoung  *  @hw: pointer to hardware structure
   1332  1.1   dyoung  *
   1333  1.1   dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1334  1.1   dyoung  **/
   1335  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1336  1.1   dyoung {
   1337  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1338  1.1   dyoung 	u32 timeout = 2000;
   1339  1.1   dyoung 	u32 i;
   1340  1.1   dyoung 	u32 swsm;
   1341  1.1   dyoung 
   1342  1.1   dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1343  1.1   dyoung 
   1344  1.1   dyoung 
   1345  1.1   dyoung 	/* Get SMBI software semaphore between device drivers first */
   1346  1.1   dyoung 	for (i = 0; i < timeout; i++) {
   1347  1.1   dyoung 		/*
   1348  1.1   dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1349  1.1   dyoung 		 * set and we have the semaphore
   1350  1.1   dyoung 		 */
   1351  1.1   dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1352  1.1   dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1353  1.1   dyoung 			status = IXGBE_SUCCESS;
   1354  1.1   dyoung 			break;
   1355  1.1   dyoung 		}
   1356  1.1   dyoung 		usec_delay(50);
   1357  1.1   dyoung 	}
   1358  1.1   dyoung 
   1359  1.3  msaitoh 	if (i == timeout) {
   1360  1.3  msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1361  1.3  msaitoh 			 "not granted.\n");
   1362  1.3  msaitoh 		/*
   1363  1.3  msaitoh 		 * this release is particularly important because our attempts
   1364  1.3  msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1365  1.3  msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1366  1.3  msaitoh 		 * bits to free the driver to make progress
   1367  1.3  msaitoh 		 */
   1368  1.3  msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1369  1.3  msaitoh 
   1370  1.3  msaitoh 		usec_delay(50);
   1371  1.3  msaitoh 		/*
   1372  1.3  msaitoh 		 * one last try
   1373  1.3  msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1374  1.3  msaitoh 		 * set and we have the semaphore
   1375  1.3  msaitoh 		 */
   1376  1.3  msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1377  1.3  msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1378  1.3  msaitoh 			status = IXGBE_SUCCESS;
   1379  1.3  msaitoh 	}
   1380  1.3  msaitoh 
   1381  1.1   dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1382  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1383  1.1   dyoung 		for (i = 0; i < timeout; i++) {
   1384  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1385  1.1   dyoung 
   1386  1.1   dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1387  1.1   dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1388  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1389  1.1   dyoung 
   1390  1.1   dyoung 			/*
   1391  1.1   dyoung 			 * If we set the bit successfully then we got the
   1392  1.1   dyoung 			 * semaphore.
   1393  1.1   dyoung 			 */
   1394  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1395  1.1   dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1396  1.1   dyoung 				break;
   1397  1.1   dyoung 
   1398  1.1   dyoung 			usec_delay(50);
   1399  1.1   dyoung 		}
   1400  1.1   dyoung 
   1401  1.1   dyoung 		/*
   1402  1.1   dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1403  1.1   dyoung 		 * was not granted because we don't have access to the EEPROM
   1404  1.1   dyoung 		 */
   1405  1.1   dyoung 		if (i >= timeout) {
   1406  1.1   dyoung 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
   1407  1.3  msaitoh 				 "not granted.\n");
   1408  1.1   dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1409  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1410  1.1   dyoung 		}
   1411  1.1   dyoung 	} else {
   1412  1.1   dyoung 		DEBUGOUT("Software semaphore SMBI between device drivers "
   1413  1.3  msaitoh 			 "not granted.\n");
   1414  1.1   dyoung 	}
   1415  1.1   dyoung 
   1416  1.1   dyoung 	return status;
   1417  1.1   dyoung }
   1418  1.1   dyoung 
   1419  1.1   dyoung /**
   1420  1.1   dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1421  1.1   dyoung  *  @hw: pointer to hardware structure
   1422  1.1   dyoung  *
   1423  1.1   dyoung  *  This function clears hardware semaphore bits.
   1424  1.1   dyoung  **/
   1425  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1426  1.1   dyoung {
   1427  1.1   dyoung 	u32 swsm;
   1428  1.1   dyoung 
   1429  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1430  1.1   dyoung 
   1431  1.1   dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1432  1.1   dyoung 
   1433  1.1   dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1434  1.1   dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1435  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1436  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1437  1.1   dyoung }
   1438  1.1   dyoung 
   1439  1.1   dyoung /**
   1440  1.1   dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1441  1.1   dyoung  *  @hw: pointer to hardware structure
   1442  1.1   dyoung  **/
   1443  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1444  1.1   dyoung {
   1445  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1446  1.1   dyoung 	u16 i;
   1447  1.1   dyoung 	u8 spi_stat_reg;
   1448  1.1   dyoung 
   1449  1.1   dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1450  1.1   dyoung 
   1451  1.1   dyoung 	/*
   1452  1.1   dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1453  1.1   dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1454  1.1   dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1455  1.1   dyoung 	 * 5 milliseconds, then error out.
   1456  1.1   dyoung 	 */
   1457  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1458  1.1   dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1459  1.3  msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1460  1.1   dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1461  1.1   dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1462  1.1   dyoung 			break;
   1463  1.1   dyoung 
   1464  1.1   dyoung 		usec_delay(5);
   1465  1.1   dyoung 		ixgbe_standby_eeprom(hw);
   1466  1.1   dyoung 	};
   1467  1.1   dyoung 
   1468  1.1   dyoung 	/*
   1469  1.1   dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1470  1.1   dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1471  1.1   dyoung 	 */
   1472  1.1   dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1473  1.1   dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1474  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1475  1.1   dyoung 	}
   1476  1.1   dyoung 
   1477  1.1   dyoung 	return status;
   1478  1.1   dyoung }
   1479  1.1   dyoung 
   1480  1.1   dyoung /**
   1481  1.1   dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1482  1.1   dyoung  *  @hw: pointer to hardware structure
   1483  1.1   dyoung  **/
   1484  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1485  1.1   dyoung {
   1486  1.1   dyoung 	u32 eec;
   1487  1.1   dyoung 
   1488  1.1   dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1489  1.1   dyoung 
   1490  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1491  1.1   dyoung 
   1492  1.1   dyoung 	/* Toggle CS to flush commands */
   1493  1.1   dyoung 	eec |= IXGBE_EEC_CS;
   1494  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1495  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1496  1.1   dyoung 	usec_delay(1);
   1497  1.1   dyoung 	eec &= ~IXGBE_EEC_CS;
   1498  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1499  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1500  1.1   dyoung 	usec_delay(1);
   1501  1.1   dyoung }
   1502  1.1   dyoung 
   1503  1.1   dyoung /**
   1504  1.1   dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1505  1.1   dyoung  *  @hw: pointer to hardware structure
   1506  1.1   dyoung  *  @data: data to send to the EEPROM
   1507  1.1   dyoung  *  @count: number of bits to shift out
   1508  1.1   dyoung  **/
   1509  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1510  1.3  msaitoh 					u16 count)
   1511  1.1   dyoung {
   1512  1.1   dyoung 	u32 eec;
   1513  1.1   dyoung 	u32 mask;
   1514  1.1   dyoung 	u32 i;
   1515  1.1   dyoung 
   1516  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1517  1.1   dyoung 
   1518  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1519  1.1   dyoung 
   1520  1.1   dyoung 	/*
   1521  1.1   dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1522  1.1   dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1523  1.1   dyoung 	 */
   1524  1.1   dyoung 	mask = 0x01 << (count - 1);
   1525  1.1   dyoung 
   1526  1.1   dyoung 	for (i = 0; i < count; i++) {
   1527  1.1   dyoung 		/*
   1528  1.1   dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1529  1.1   dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1530  1.1   dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1531  1.1   dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1532  1.1   dyoung 		 * raising and then lowering the clock.
   1533  1.1   dyoung 		 */
   1534  1.1   dyoung 		if (data & mask)
   1535  1.1   dyoung 			eec |= IXGBE_EEC_DI;
   1536  1.1   dyoung 		else
   1537  1.1   dyoung 			eec &= ~IXGBE_EEC_DI;
   1538  1.1   dyoung 
   1539  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1540  1.1   dyoung 		IXGBE_WRITE_FLUSH(hw);
   1541  1.1   dyoung 
   1542  1.1   dyoung 		usec_delay(1);
   1543  1.1   dyoung 
   1544  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1545  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1546  1.1   dyoung 
   1547  1.1   dyoung 		/*
   1548  1.1   dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1549  1.1   dyoung 		 * EEPROM
   1550  1.1   dyoung 		 */
   1551  1.1   dyoung 		mask = mask >> 1;
   1552  1.1   dyoung 	};
   1553  1.1   dyoung 
   1554  1.1   dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1555  1.1   dyoung 	eec &= ~IXGBE_EEC_DI;
   1556  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1557  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1558  1.1   dyoung }
   1559  1.1   dyoung 
   1560  1.1   dyoung /**
   1561  1.1   dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1562  1.1   dyoung  *  @hw: pointer to hardware structure
   1563  1.1   dyoung  **/
   1564  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1565  1.1   dyoung {
   1566  1.1   dyoung 	u32 eec;
   1567  1.1   dyoung 	u32 i;
   1568  1.1   dyoung 	u16 data = 0;
   1569  1.1   dyoung 
   1570  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   1571  1.1   dyoung 
   1572  1.1   dyoung 	/*
   1573  1.1   dyoung 	 * In order to read a register from the EEPROM, we need to shift
   1574  1.1   dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1575  1.1   dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1576  1.1   dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   1577  1.1   dyoung 	 * "DI" bit should always be clear.
   1578  1.1   dyoung 	 */
   1579  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1580  1.1   dyoung 
   1581  1.1   dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1582  1.1   dyoung 
   1583  1.1   dyoung 	for (i = 0; i < count; i++) {
   1584  1.1   dyoung 		data = data << 1;
   1585  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1586  1.1   dyoung 
   1587  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1588  1.1   dyoung 
   1589  1.1   dyoung 		eec &= ~(IXGBE_EEC_DI);
   1590  1.1   dyoung 		if (eec & IXGBE_EEC_DO)
   1591  1.1   dyoung 			data |= 1;
   1592  1.1   dyoung 
   1593  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1594  1.1   dyoung 	}
   1595  1.1   dyoung 
   1596  1.1   dyoung 	return data;
   1597  1.1   dyoung }
   1598  1.1   dyoung 
   1599  1.1   dyoung /**
   1600  1.1   dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1601  1.1   dyoung  *  @hw: pointer to hardware structure
   1602  1.1   dyoung  *  @eec: EEC register's current value
   1603  1.1   dyoung  **/
   1604  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1605  1.1   dyoung {
   1606  1.1   dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   1607  1.1   dyoung 
   1608  1.1   dyoung 	/*
   1609  1.1   dyoung 	 * Raise the clock input to the EEPROM
   1610  1.1   dyoung 	 * (setting the SK bit), then delay
   1611  1.1   dyoung 	 */
   1612  1.1   dyoung 	*eec = *eec | IXGBE_EEC_SK;
   1613  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1614  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1615  1.1   dyoung 	usec_delay(1);
   1616  1.1   dyoung }
   1617  1.1   dyoung 
   1618  1.1   dyoung /**
   1619  1.1   dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   1620  1.1   dyoung  *  @hw: pointer to hardware structure
   1621  1.1   dyoung  *  @eecd: EECD's current value
   1622  1.1   dyoung  **/
   1623  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1624  1.1   dyoung {
   1625  1.1   dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   1626  1.1   dyoung 
   1627  1.1   dyoung 	/*
   1628  1.1   dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   1629  1.1   dyoung 	 * delay
   1630  1.1   dyoung 	 */
   1631  1.1   dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   1632  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1633  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1634  1.1   dyoung 	usec_delay(1);
   1635  1.1   dyoung }
   1636  1.1   dyoung 
   1637  1.1   dyoung /**
   1638  1.1   dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   1639  1.1   dyoung  *  @hw: pointer to hardware structure
   1640  1.1   dyoung  **/
   1641  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   1642  1.1   dyoung {
   1643  1.1   dyoung 	u32 eec;
   1644  1.1   dyoung 
   1645  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   1646  1.1   dyoung 
   1647  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1648  1.1   dyoung 
   1649  1.1   dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   1650  1.1   dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   1651  1.1   dyoung 
   1652  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1653  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1654  1.1   dyoung 
   1655  1.1   dyoung 	usec_delay(1);
   1656  1.1   dyoung 
   1657  1.1   dyoung 	/* Stop requesting EEPROM access */
   1658  1.1   dyoung 	eec &= ~IXGBE_EEC_REQ;
   1659  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1660  1.1   dyoung 
   1661  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1662  1.1   dyoung 
   1663  1.1   dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   1664  1.1   dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   1665  1.1   dyoung }
   1666  1.1   dyoung 
   1667  1.1   dyoung /**
   1668  1.1   dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   1669  1.1   dyoung  *  @hw: pointer to hardware structure
   1670  1.1   dyoung  **/
   1671  1.1   dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1672  1.1   dyoung {
   1673  1.1   dyoung 	u16 i;
   1674  1.1   dyoung 	u16 j;
   1675  1.1   dyoung 	u16 checksum = 0;
   1676  1.1   dyoung 	u16 length = 0;
   1677  1.1   dyoung 	u16 pointer = 0;
   1678  1.1   dyoung 	u16 word = 0;
   1679  1.1   dyoung 
   1680  1.1   dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   1681  1.1   dyoung 
   1682  1.1   dyoung 	/* Include 0x0-0x3F in the checksum */
   1683  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   1684  1.1   dyoung 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   1685  1.1   dyoung 			DEBUGOUT("EEPROM read failed\n");
   1686  1.1   dyoung 			break;
   1687  1.1   dyoung 		}
   1688  1.1   dyoung 		checksum += word;
   1689  1.1   dyoung 	}
   1690  1.1   dyoung 
   1691  1.1   dyoung 	/* Include all data from pointers except for the fw pointer */
   1692  1.1   dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   1693  1.1   dyoung 		hw->eeprom.ops.read(hw, i, &pointer);
   1694  1.1   dyoung 
   1695  1.1   dyoung 		/* Make sure the pointer seems valid */
   1696  1.1   dyoung 		if (pointer != 0xFFFF && pointer != 0) {
   1697  1.1   dyoung 			hw->eeprom.ops.read(hw, pointer, &length);
   1698  1.1   dyoung 
   1699  1.1   dyoung 			if (length != 0xFFFF && length != 0) {
   1700  1.1   dyoung 				for (j = pointer+1; j <= pointer+length; j++) {
   1701  1.1   dyoung 					hw->eeprom.ops.read(hw, j, &word);
   1702  1.1   dyoung 					checksum += word;
   1703  1.1   dyoung 				}
   1704  1.1   dyoung 			}
   1705  1.1   dyoung 		}
   1706  1.1   dyoung 	}
   1707  1.1   dyoung 
   1708  1.1   dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   1709  1.1   dyoung 
   1710  1.1   dyoung 	return checksum;
   1711  1.1   dyoung }
   1712  1.1   dyoung 
   1713  1.1   dyoung /**
   1714  1.1   dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   1715  1.1   dyoung  *  @hw: pointer to hardware structure
   1716  1.1   dyoung  *  @checksum_val: calculated checksum
   1717  1.1   dyoung  *
   1718  1.1   dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   1719  1.1   dyoung  *  caller does not need checksum_val, the value can be NULL.
   1720  1.1   dyoung  **/
   1721  1.1   dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   1722  1.3  msaitoh 					   u16 *checksum_val)
   1723  1.1   dyoung {
   1724  1.1   dyoung 	s32 status;
   1725  1.1   dyoung 	u16 checksum;
   1726  1.1   dyoung 	u16 read_checksum = 0;
   1727  1.1   dyoung 
   1728  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   1729  1.1   dyoung 
   1730  1.1   dyoung 	/*
   1731  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1732  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   1733  1.1   dyoung 	 * EEPROM read fails
   1734  1.1   dyoung 	 */
   1735  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1736  1.1   dyoung 
   1737  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1738  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1739  1.1   dyoung 
   1740  1.1   dyoung 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   1741  1.1   dyoung 
   1742  1.1   dyoung 		/*
   1743  1.1   dyoung 		 * Verify read checksum from EEPROM is the same as
   1744  1.1   dyoung 		 * calculated checksum
   1745  1.1   dyoung 		 */
   1746  1.1   dyoung 		if (read_checksum != checksum)
   1747  1.1   dyoung 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   1748  1.1   dyoung 
   1749  1.1   dyoung 		/* If the user cares, return the calculated checksum */
   1750  1.1   dyoung 		if (checksum_val)
   1751  1.1   dyoung 			*checksum_val = checksum;
   1752  1.1   dyoung 	} else {
   1753  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   1754  1.1   dyoung 	}
   1755  1.1   dyoung 
   1756  1.1   dyoung 	return status;
   1757  1.1   dyoung }
   1758  1.1   dyoung 
   1759  1.1   dyoung /**
   1760  1.1   dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   1761  1.1   dyoung  *  @hw: pointer to hardware structure
   1762  1.1   dyoung  **/
   1763  1.1   dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1764  1.1   dyoung {
   1765  1.1   dyoung 	s32 status;
   1766  1.1   dyoung 	u16 checksum;
   1767  1.1   dyoung 
   1768  1.1   dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   1769  1.1   dyoung 
   1770  1.1   dyoung 	/*
   1771  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1772  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   1773  1.1   dyoung 	 * EEPROM read fails
   1774  1.1   dyoung 	 */
   1775  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1776  1.1   dyoung 
   1777  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1778  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1779  1.1   dyoung 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   1780  1.3  msaitoh 					      checksum);
   1781  1.1   dyoung 	} else {
   1782  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   1783  1.1   dyoung 	}
   1784  1.1   dyoung 
   1785  1.1   dyoung 	return status;
   1786  1.1   dyoung }
   1787  1.1   dyoung 
   1788  1.1   dyoung /**
   1789  1.1   dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   1790  1.1   dyoung  *  @mac_addr: pointer to MAC address.
   1791  1.1   dyoung  *
   1792  1.1   dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   1793  1.1   dyoung  **/
   1794  1.1   dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   1795  1.1   dyoung {
   1796  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1797  1.1   dyoung 
   1798  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   1799  1.1   dyoung 
   1800  1.1   dyoung 	/* Make sure it is not a multicast address */
   1801  1.1   dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   1802  1.1   dyoung 		DEBUGOUT("MAC address is multicast\n");
   1803  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1804  1.1   dyoung 	/* Not a broadcast address */
   1805  1.1   dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   1806  1.1   dyoung 		DEBUGOUT("MAC address is broadcast\n");
   1807  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1808  1.1   dyoung 	/* Reject the zero address */
   1809  1.1   dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   1810  1.3  msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   1811  1.1   dyoung 		DEBUGOUT("MAC address is all zeros\n");
   1812  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1813  1.1   dyoung 	}
   1814  1.1   dyoung 	return status;
   1815  1.1   dyoung }
   1816  1.1   dyoung 
   1817  1.1   dyoung /**
   1818  1.1   dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   1819  1.1   dyoung  *  @hw: pointer to hardware structure
   1820  1.1   dyoung  *  @index: Receive address register to write
   1821  1.1   dyoung  *  @addr: Address to put into receive address register
   1822  1.1   dyoung  *  @vmdq: VMDq "set" or "pool" index
   1823  1.1   dyoung  *  @enable_addr: set flag that address is active
   1824  1.1   dyoung  *
   1825  1.1   dyoung  *  Puts an ethernet address into a receive address register.
   1826  1.1   dyoung  **/
   1827  1.1   dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   1828  1.3  msaitoh 			  u32 enable_addr)
   1829  1.1   dyoung {
   1830  1.1   dyoung 	u32 rar_low, rar_high;
   1831  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1832  1.1   dyoung 
   1833  1.1   dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   1834  1.1   dyoung 
   1835  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   1836  1.1   dyoung 	if (index >= rar_entries) {
   1837  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   1838  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   1839  1.1   dyoung 	}
   1840  1.1   dyoung 
   1841  1.1   dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   1842  1.1   dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   1843  1.1   dyoung 
   1844  1.1   dyoung 	/*
   1845  1.1   dyoung 	 * HW expects these in little endian so we reverse the byte
   1846  1.1   dyoung 	 * order from network order (big endian) to little endian
   1847  1.1   dyoung 	 */
   1848  1.1   dyoung 	rar_low = ((u32)addr[0] |
   1849  1.3  msaitoh 		   ((u32)addr[1] << 8) |
   1850  1.3  msaitoh 		   ((u32)addr[2] << 16) |
   1851  1.3  msaitoh 		   ((u32)addr[3] << 24));
   1852  1.1   dyoung 	/*
   1853  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   1854  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   1855  1.1   dyoung 	 * of the address and the address valid bit.
   1856  1.1   dyoung 	 */
   1857  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1858  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1859  1.1   dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   1860  1.1   dyoung 
   1861  1.1   dyoung 	if (enable_addr != 0)
   1862  1.1   dyoung 		rar_high |= IXGBE_RAH_AV;
   1863  1.1   dyoung 
   1864  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   1865  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1866  1.1   dyoung 
   1867  1.1   dyoung 	return IXGBE_SUCCESS;
   1868  1.1   dyoung }
   1869  1.1   dyoung 
   1870  1.1   dyoung /**
   1871  1.1   dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   1872  1.1   dyoung  *  @hw: pointer to hardware structure
   1873  1.1   dyoung  *  @index: Receive address register to write
   1874  1.1   dyoung  *
   1875  1.1   dyoung  *  Clears an ethernet address from a receive address register.
   1876  1.1   dyoung  **/
   1877  1.1   dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   1878  1.1   dyoung {
   1879  1.1   dyoung 	u32 rar_high;
   1880  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1881  1.1   dyoung 
   1882  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   1883  1.1   dyoung 
   1884  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   1885  1.1   dyoung 	if (index >= rar_entries) {
   1886  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   1887  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   1888  1.1   dyoung 	}
   1889  1.1   dyoung 
   1890  1.1   dyoung 	/*
   1891  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   1892  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   1893  1.1   dyoung 	 * of the address and the address valid bit.
   1894  1.1   dyoung 	 */
   1895  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1896  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1897  1.1   dyoung 
   1898  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   1899  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1900  1.1   dyoung 
   1901  1.1   dyoung 	/* clear VMDq pool/queue selection for this RAR */
   1902  1.1   dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   1903  1.1   dyoung 
   1904  1.1   dyoung 	return IXGBE_SUCCESS;
   1905  1.1   dyoung }
   1906  1.1   dyoung 
   1907  1.1   dyoung /**
   1908  1.1   dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   1909  1.1   dyoung  *  @hw: pointer to hardware structure
   1910  1.1   dyoung  *
   1911  1.1   dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   1912  1.1   dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   1913  1.1   dyoung  *  the receiver is in reset when the routine is called.
   1914  1.1   dyoung  **/
   1915  1.1   dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   1916  1.1   dyoung {
   1917  1.1   dyoung 	u32 i;
   1918  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1919  1.1   dyoung 
   1920  1.1   dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   1921  1.1   dyoung 
   1922  1.1   dyoung 	/*
   1923  1.1   dyoung 	 * If the current mac address is valid, assume it is a software override
   1924  1.1   dyoung 	 * to the permanent address.
   1925  1.1   dyoung 	 * Otherwise, use the permanent address from the eeprom.
   1926  1.1   dyoung 	 */
   1927  1.1   dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   1928  1.1   dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   1929  1.1   dyoung 		/* Get the MAC address from the RAR0 for later reference */
   1930  1.1   dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   1931  1.1   dyoung 
   1932  1.1   dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   1933  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   1934  1.3  msaitoh 			  hw->mac.addr[2]);
   1935  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   1936  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   1937  1.1   dyoung 	} else {
   1938  1.1   dyoung 		/* Setup the receive address. */
   1939  1.1   dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   1940  1.1   dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   1941  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   1942  1.3  msaitoh 			  hw->mac.addr[2]);
   1943  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   1944  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   1945  1.1   dyoung 
   1946  1.1   dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   1947  1.1   dyoung 
   1948  1.1   dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   1949  1.1   dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   1950  1.1   dyoung 	}
   1951  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   1952  1.1   dyoung 
   1953  1.1   dyoung 	hw->addr_ctrl.rar_used_count = 1;
   1954  1.1   dyoung 
   1955  1.1   dyoung 	/* Zero out the other receive addresses. */
   1956  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   1957  1.1   dyoung 	for (i = 1; i < rar_entries; i++) {
   1958  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   1959  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   1960  1.1   dyoung 	}
   1961  1.1   dyoung 
   1962  1.1   dyoung 	/* Clear the MTA */
   1963  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   1964  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   1965  1.1   dyoung 
   1966  1.1   dyoung 	DEBUGOUT(" Clearing MTA\n");
   1967  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   1968  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   1969  1.1   dyoung 
   1970  1.1   dyoung 	ixgbe_init_uta_tables(hw);
   1971  1.1   dyoung 
   1972  1.1   dyoung 	return IXGBE_SUCCESS;
   1973  1.1   dyoung }
   1974  1.1   dyoung 
   1975  1.1   dyoung /**
   1976  1.1   dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   1977  1.1   dyoung  *  @hw: pointer to hardware structure
   1978  1.1   dyoung  *  @addr: new address
   1979  1.1   dyoung  *
   1980  1.1   dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   1981  1.1   dyoung  **/
   1982  1.1   dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   1983  1.1   dyoung {
   1984  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   1985  1.1   dyoung 	u32 rar;
   1986  1.1   dyoung 
   1987  1.1   dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   1988  1.1   dyoung 
   1989  1.1   dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   1990  1.3  msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   1991  1.1   dyoung 
   1992  1.1   dyoung 	/*
   1993  1.1   dyoung 	 * Place this address in the RAR if there is room,
   1994  1.1   dyoung 	 * else put the controller into promiscuous mode
   1995  1.1   dyoung 	 */
   1996  1.1   dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   1997  1.1   dyoung 		rar = hw->addr_ctrl.rar_used_count;
   1998  1.1   dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   1999  1.1   dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2000  1.1   dyoung 		hw->addr_ctrl.rar_used_count++;
   2001  1.1   dyoung 	} else {
   2002  1.1   dyoung 		hw->addr_ctrl.overflow_promisc++;
   2003  1.1   dyoung 	}
   2004  1.1   dyoung 
   2005  1.1   dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2006  1.1   dyoung }
   2007  1.1   dyoung 
   2008  1.1   dyoung /**
   2009  1.1   dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2010  1.1   dyoung  *  @hw: pointer to hardware structure
   2011  1.1   dyoung  *  @addr_list: the list of new addresses
   2012  1.1   dyoung  *  @addr_count: number of addresses
   2013  1.1   dyoung  *  @next: iterator function to walk the address list
   2014  1.1   dyoung  *
   2015  1.1   dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2016  1.1   dyoung  *  receive address registers.  Uses unused receive address registers for the
   2017  1.1   dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2018  1.1   dyoung  *
   2019  1.1   dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2020  1.1   dyoung  *  manually putting the device into promiscuous mode.
   2021  1.1   dyoung  **/
   2022  1.1   dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2023  1.3  msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2024  1.1   dyoung {
   2025  1.1   dyoung 	u8 *addr;
   2026  1.1   dyoung 	u32 i;
   2027  1.1   dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2028  1.1   dyoung 	u32 uc_addr_in_use;
   2029  1.1   dyoung 	u32 fctrl;
   2030  1.1   dyoung 	u32 vmdq;
   2031  1.1   dyoung 
   2032  1.1   dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2033  1.1   dyoung 
   2034  1.1   dyoung 	/*
   2035  1.1   dyoung 	 * Clear accounting of old secondary address list,
   2036  1.1   dyoung 	 * don't count RAR[0]
   2037  1.1   dyoung 	 */
   2038  1.1   dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2039  1.1   dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2040  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2041  1.1   dyoung 
   2042  1.1   dyoung 	/* Zero out the other receive addresses */
   2043  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2044  1.1   dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2045  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2046  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2047  1.1   dyoung 	}
   2048  1.1   dyoung 
   2049  1.1   dyoung 	/* Add the new addresses */
   2050  1.1   dyoung 	for (i = 0; i < addr_count; i++) {
   2051  1.1   dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2052  1.1   dyoung 		addr = next(hw, &addr_list, &vmdq);
   2053  1.1   dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2054  1.1   dyoung 	}
   2055  1.1   dyoung 
   2056  1.1   dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2057  1.1   dyoung 		/* enable promisc if not already in overflow or set by user */
   2058  1.1   dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2059  1.1   dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2060  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2061  1.1   dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2062  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2063  1.1   dyoung 		}
   2064  1.1   dyoung 	} else {
   2065  1.1   dyoung 		/* only disable if set by overflow, not by user */
   2066  1.1   dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2067  1.1   dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2068  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2069  1.1   dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2070  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2071  1.1   dyoung 		}
   2072  1.1   dyoung 	}
   2073  1.1   dyoung 
   2074  1.1   dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2075  1.1   dyoung 	return IXGBE_SUCCESS;
   2076  1.1   dyoung }
   2077  1.1   dyoung 
   2078  1.1   dyoung /**
   2079  1.1   dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2080  1.1   dyoung  *  @hw: pointer to hardware structure
   2081  1.1   dyoung  *  @mc_addr: the multicast address
   2082  1.1   dyoung  *
   2083  1.1   dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2084  1.1   dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2085  1.1   dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2086  1.1   dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2087  1.1   dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2088  1.1   dyoung  *  to mc_filter_type.
   2089  1.1   dyoung  **/
   2090  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2091  1.1   dyoung {
   2092  1.1   dyoung 	u32 vector = 0;
   2093  1.1   dyoung 
   2094  1.1   dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2095  1.1   dyoung 
   2096  1.1   dyoung 	switch (hw->mac.mc_filter_type) {
   2097  1.1   dyoung 	case 0:   /* use bits [47:36] of the address */
   2098  1.1   dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2099  1.1   dyoung 		break;
   2100  1.1   dyoung 	case 1:   /* use bits [46:35] of the address */
   2101  1.1   dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2102  1.1   dyoung 		break;
   2103  1.1   dyoung 	case 2:   /* use bits [45:34] of the address */
   2104  1.1   dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2105  1.1   dyoung 		break;
   2106  1.1   dyoung 	case 3:   /* use bits [43:32] of the address */
   2107  1.1   dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2108  1.1   dyoung 		break;
   2109  1.1   dyoung 	default:  /* Invalid mc_filter_type */
   2110  1.1   dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2111  1.1   dyoung 		ASSERT(0);
   2112  1.1   dyoung 		break;
   2113  1.1   dyoung 	}
   2114  1.1   dyoung 
   2115  1.1   dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2116  1.1   dyoung 	vector &= 0xFFF;
   2117  1.1   dyoung 	return vector;
   2118  1.1   dyoung }
   2119  1.1   dyoung 
   2120  1.1   dyoung /**
   2121  1.1   dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2122  1.1   dyoung  *  @hw: pointer to hardware structure
   2123  1.1   dyoung  *  @hash_value: Multicast address hash value
   2124  1.1   dyoung  *
   2125  1.1   dyoung  *  Sets the bit-vector in the multicast table.
   2126  1.1   dyoung  **/
   2127  1.1   dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2128  1.1   dyoung {
   2129  1.1   dyoung 	u32 vector;
   2130  1.1   dyoung 	u32 vector_bit;
   2131  1.1   dyoung 	u32 vector_reg;
   2132  1.1   dyoung 
   2133  1.1   dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2134  1.1   dyoung 
   2135  1.1   dyoung 	hw->addr_ctrl.mta_in_use++;
   2136  1.1   dyoung 
   2137  1.1   dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2138  1.1   dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2139  1.1   dyoung 
   2140  1.1   dyoung 	/*
   2141  1.1   dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2142  1.1   dyoung 	 * like an array of 4096 bits.  We want to set bit
   2143  1.1   dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2144  1.1   dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2145  1.1   dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2146  1.1   dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2147  1.1   dyoung 	 * the value.
   2148  1.1   dyoung 	 */
   2149  1.1   dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2150  1.1   dyoung 	vector_bit = vector & 0x1F;
   2151  1.1   dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2152  1.1   dyoung }
   2153  1.1   dyoung 
   2154  1.1   dyoung /**
   2155  1.1   dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2156  1.1   dyoung  *  @hw: pointer to hardware structure
   2157  1.1   dyoung  *  @mc_addr_list: the list of new multicast addresses
   2158  1.1   dyoung  *  @mc_addr_count: number of addresses
   2159  1.1   dyoung  *  @next: iterator function to walk the multicast address list
   2160  1.3  msaitoh  *  @clear: flag, when set clears the table beforehand
   2161  1.1   dyoung  *
   2162  1.3  msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2163  1.3  msaitoh  *  Hashes the given addresses into the multicast table.
   2164  1.1   dyoung  **/
   2165  1.1   dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2166  1.3  msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2167  1.3  msaitoh 				      bool clear)
   2168  1.1   dyoung {
   2169  1.1   dyoung 	u32 i;
   2170  1.1   dyoung 	u32 vmdq;
   2171  1.1   dyoung 
   2172  1.1   dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2173  1.1   dyoung 
   2174  1.1   dyoung 	/*
   2175  1.1   dyoung 	 * Set the new number of MC addresses that we are being requested to
   2176  1.1   dyoung 	 * use.
   2177  1.1   dyoung 	 */
   2178  1.1   dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2179  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2180  1.1   dyoung 
   2181  1.1   dyoung 	/* Clear mta_shadow */
   2182  1.3  msaitoh 	if (clear) {
   2183  1.3  msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2184  1.3  msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2185  1.3  msaitoh 	}
   2186  1.1   dyoung 
   2187  1.1   dyoung 	/* Update mta_shadow */
   2188  1.1   dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2189  1.1   dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2190  1.1   dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2191  1.1   dyoung 	}
   2192  1.1   dyoung 
   2193  1.1   dyoung 	/* Enable mta */
   2194  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2195  1.1   dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2196  1.1   dyoung 				      hw->mac.mta_shadow[i]);
   2197  1.1   dyoung 
   2198  1.1   dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2199  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2200  1.3  msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2201  1.1   dyoung 
   2202  1.1   dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2203  1.1   dyoung 	return IXGBE_SUCCESS;
   2204  1.1   dyoung }
   2205  1.1   dyoung 
   2206  1.1   dyoung /**
   2207  1.1   dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2208  1.1   dyoung  *  @hw: pointer to hardware structure
   2209  1.1   dyoung  *
   2210  1.1   dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2211  1.1   dyoung  **/
   2212  1.1   dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2213  1.1   dyoung {
   2214  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2215  1.1   dyoung 
   2216  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2217  1.1   dyoung 
   2218  1.1   dyoung 	if (a->mta_in_use > 0)
   2219  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2220  1.3  msaitoh 				hw->mac.mc_filter_type);
   2221  1.1   dyoung 
   2222  1.1   dyoung 	return IXGBE_SUCCESS;
   2223  1.1   dyoung }
   2224  1.1   dyoung 
   2225  1.1   dyoung /**
   2226  1.1   dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2227  1.1   dyoung  *  @hw: pointer to hardware structure
   2228  1.1   dyoung  *
   2229  1.1   dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2230  1.1   dyoung  **/
   2231  1.1   dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2232  1.1   dyoung {
   2233  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2234  1.1   dyoung 
   2235  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2236  1.1   dyoung 
   2237  1.1   dyoung 	if (a->mta_in_use > 0)
   2238  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2239  1.1   dyoung 
   2240  1.1   dyoung 	return IXGBE_SUCCESS;
   2241  1.1   dyoung }
   2242  1.1   dyoung 
   2243  1.1   dyoung /**
   2244  1.1   dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2245  1.1   dyoung  *  @hw: pointer to hardware structure
   2246  1.1   dyoung  *  @packetbuf_num: packet buffer number (0-7)
   2247  1.1   dyoung  *
   2248  1.1   dyoung  *  Enable flow control according to the current settings.
   2249  1.1   dyoung  **/
   2250  1.1   dyoung s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
   2251  1.1   dyoung {
   2252  1.1   dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2253  1.1   dyoung 	u32 mflcn_reg, fccfg_reg;
   2254  1.1   dyoung 	u32 reg;
   2255  1.1   dyoung 	u32 fcrtl, fcrth;
   2256  1.1   dyoung 
   2257  1.1   dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2258  1.1   dyoung 
   2259  1.1   dyoung 	/* Negotiate the fc mode to use */
   2260  1.1   dyoung 	ret_val = ixgbe_fc_autoneg(hw);
   2261  1.1   dyoung 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
   2262  1.1   dyoung 		goto out;
   2263  1.1   dyoung 
   2264  1.1   dyoung 	/* Disable any previous flow control settings */
   2265  1.1   dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2266  1.1   dyoung 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
   2267  1.1   dyoung 
   2268  1.1   dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2269  1.1   dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2270  1.1   dyoung 
   2271  1.1   dyoung 	/*
   2272  1.1   dyoung 	 * The possible values of fc.current_mode are:
   2273  1.1   dyoung 	 * 0: Flow control is completely disabled
   2274  1.1   dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2275  1.1   dyoung 	 *    but not send pause frames).
   2276  1.1   dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2277  1.1   dyoung 	 *    we do not support receiving pause frames).
   2278  1.1   dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2279  1.1   dyoung 	 * other: Invalid.
   2280  1.1   dyoung 	 */
   2281  1.1   dyoung 	switch (hw->fc.current_mode) {
   2282  1.1   dyoung 	case ixgbe_fc_none:
   2283  1.1   dyoung 		/*
   2284  1.1   dyoung 		 * Flow control is disabled by software override or autoneg.
   2285  1.1   dyoung 		 * The code below will actually disable it in the HW.
   2286  1.1   dyoung 		 */
   2287  1.1   dyoung 		break;
   2288  1.1   dyoung 	case ixgbe_fc_rx_pause:
   2289  1.1   dyoung 		/*
   2290  1.1   dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2291  1.1   dyoung 		 * disabled by software override. Since there really
   2292  1.1   dyoung 		 * isn't a way to advertise that we are capable of RX
   2293  1.1   dyoung 		 * Pause ONLY, we will advertise that we support both
   2294  1.1   dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2295  1.1   dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2296  1.1   dyoung 		 */
   2297  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2298  1.1   dyoung 		break;
   2299  1.1   dyoung 	case ixgbe_fc_tx_pause:
   2300  1.1   dyoung 		/*
   2301  1.1   dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2302  1.1   dyoung 		 * disabled by software override.
   2303  1.1   dyoung 		 */
   2304  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2305  1.1   dyoung 		break;
   2306  1.1   dyoung 	case ixgbe_fc_full:
   2307  1.1   dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2308  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2309  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2310  1.1   dyoung 		break;
   2311  1.1   dyoung 	default:
   2312  1.1   dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2313  1.1   dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2314  1.1   dyoung 		goto out;
   2315  1.1   dyoung 		break;
   2316  1.1   dyoung 	}
   2317  1.1   dyoung 
   2318  1.1   dyoung 	/* Set 802.3x based flow control settings. */
   2319  1.1   dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2320  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2321  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2322  1.1   dyoung 
   2323  1.3  msaitoh 	fcrth = hw->fc.high_water[packetbuf_num] << 10;
   2324  1.3  msaitoh 	fcrtl = hw->fc.low_water << 10;
   2325  1.1   dyoung 
   2326  1.1   dyoung 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
   2327  1.1   dyoung 		fcrth |= IXGBE_FCRTH_FCEN;
   2328  1.1   dyoung 		if (hw->fc.send_xon)
   2329  1.1   dyoung 			fcrtl |= IXGBE_FCRTL_XONE;
   2330  1.1   dyoung 	}
   2331  1.1   dyoung 
   2332  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
   2333  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
   2334  1.1   dyoung 
   2335  1.1   dyoung 	/* Configure pause time (2 TCs per register) */
   2336  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
   2337  1.1   dyoung 	if ((packetbuf_num & 1) == 0)
   2338  1.1   dyoung 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
   2339  1.1   dyoung 	else
   2340  1.1   dyoung 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
   2341  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
   2342  1.1   dyoung 
   2343  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
   2344  1.1   dyoung 
   2345  1.1   dyoung out:
   2346  1.1   dyoung 	return ret_val;
   2347  1.1   dyoung }
   2348  1.1   dyoung 
   2349  1.1   dyoung /**
   2350  1.1   dyoung  *  ixgbe_fc_autoneg - Configure flow control
   2351  1.1   dyoung  *  @hw: pointer to hardware structure
   2352  1.1   dyoung  *
   2353  1.1   dyoung  *  Compares our advertised flow control capabilities to those advertised by
   2354  1.1   dyoung  *  our link partner, and determines the proper flow control mode to use.
   2355  1.1   dyoung  **/
   2356  1.1   dyoung s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2357  1.1   dyoung {
   2358  1.1   dyoung 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2359  1.1   dyoung 	ixgbe_link_speed speed;
   2360  1.1   dyoung 	bool link_up;
   2361  1.1   dyoung 
   2362  1.1   dyoung 	DEBUGFUNC("ixgbe_fc_autoneg");
   2363  1.1   dyoung 
   2364  1.1   dyoung 	if (hw->fc.disable_fc_autoneg)
   2365  1.1   dyoung 		goto out;
   2366  1.1   dyoung 
   2367  1.1   dyoung 	/*
   2368  1.1   dyoung 	 * AN should have completed when the cable was plugged in.
   2369  1.1   dyoung 	 * Look for reasons to bail out.  Bail out if:
   2370  1.1   dyoung 	 * - FC autoneg is disabled, or if
   2371  1.1   dyoung 	 * - link is not up.
   2372  1.1   dyoung 	 *
   2373  1.1   dyoung 	 * Since we're being called from an LSC, link is already known to be up.
   2374  1.1   dyoung 	 * So use link_up_wait_to_complete=FALSE.
   2375  1.1   dyoung 	 */
   2376  1.1   dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2377  1.1   dyoung 	if (!link_up) {
   2378  1.1   dyoung 		ret_val = IXGBE_ERR_FLOW_CONTROL;
   2379  1.1   dyoung 		goto out;
   2380  1.1   dyoung 	}
   2381  1.1   dyoung 
   2382  1.1   dyoung 	switch (hw->phy.media_type) {
   2383  1.1   dyoung 	/* Autoneg flow control on fiber adapters */
   2384  1.1   dyoung 	case ixgbe_media_type_fiber:
   2385  1.1   dyoung 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2386  1.1   dyoung 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2387  1.1   dyoung 		break;
   2388  1.1   dyoung 
   2389  1.1   dyoung 	/* Autoneg flow control on backplane adapters */
   2390  1.1   dyoung 	case ixgbe_media_type_backplane:
   2391  1.1   dyoung 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2392  1.1   dyoung 		break;
   2393  1.1   dyoung 
   2394  1.1   dyoung 	/* Autoneg flow control on copper adapters */
   2395  1.1   dyoung 	case ixgbe_media_type_copper:
   2396  1.1   dyoung 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
   2397  1.1   dyoung 			ret_val = ixgbe_fc_autoneg_copper(hw);
   2398  1.1   dyoung 		break;
   2399  1.1   dyoung 
   2400  1.1   dyoung 	default:
   2401  1.1   dyoung 		break;
   2402  1.1   dyoung 	}
   2403  1.1   dyoung 
   2404  1.1   dyoung out:
   2405  1.1   dyoung 	if (ret_val == IXGBE_SUCCESS) {
   2406  1.1   dyoung 		hw->fc.fc_was_autonegged = TRUE;
   2407  1.1   dyoung 	} else {
   2408  1.1   dyoung 		hw->fc.fc_was_autonegged = FALSE;
   2409  1.1   dyoung 		hw->fc.current_mode = hw->fc.requested_mode;
   2410  1.1   dyoung 	}
   2411  1.1   dyoung 	return ret_val;
   2412  1.1   dyoung }
   2413  1.1   dyoung 
   2414  1.1   dyoung /**
   2415  1.1   dyoung  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2416  1.1   dyoung  *  @hw: pointer to hardware structure
   2417  1.1   dyoung  *
   2418  1.1   dyoung  *  Enable flow control according on 1 gig fiber.
   2419  1.1   dyoung  **/
   2420  1.1   dyoung static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2421  1.1   dyoung {
   2422  1.1   dyoung 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2423  1.1   dyoung 	s32 ret_val;
   2424  1.1   dyoung 
   2425  1.1   dyoung 	/*
   2426  1.1   dyoung 	 * On multispeed fiber at 1g, bail out if
   2427  1.1   dyoung 	 * - link is up but AN did not complete, or if
   2428  1.1   dyoung 	 * - link is up and AN completed but timed out
   2429  1.1   dyoung 	 */
   2430  1.1   dyoung 
   2431  1.1   dyoung 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2432  1.3  msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2433  1.3  msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2434  1.1   dyoung 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2435  1.1   dyoung 		goto out;
   2436  1.1   dyoung 	}
   2437  1.1   dyoung 
   2438  1.1   dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2439  1.1   dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2440  1.1   dyoung 
   2441  1.1   dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2442  1.3  msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2443  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2444  1.3  msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2445  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2446  1.1   dyoung 
   2447  1.1   dyoung out:
   2448  1.1   dyoung 	return ret_val;
   2449  1.1   dyoung }
   2450  1.1   dyoung 
   2451  1.1   dyoung /**
   2452  1.1   dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2453  1.1   dyoung  *  @hw: pointer to hardware structure
   2454  1.1   dyoung  *
   2455  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2456  1.1   dyoung  **/
   2457  1.1   dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2458  1.1   dyoung {
   2459  1.1   dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2460  1.1   dyoung 	s32 ret_val;
   2461  1.1   dyoung 
   2462  1.1   dyoung 	/*
   2463  1.1   dyoung 	 * On backplane, bail out if
   2464  1.1   dyoung 	 * - backplane autoneg was not completed, or if
   2465  1.1   dyoung 	 * - we are 82599 and link partner is not AN enabled
   2466  1.1   dyoung 	 */
   2467  1.1   dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2468  1.1   dyoung 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2469  1.1   dyoung 		hw->fc.fc_was_autonegged = FALSE;
   2470  1.1   dyoung 		hw->fc.current_mode = hw->fc.requested_mode;
   2471  1.1   dyoung 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2472  1.1   dyoung 		goto out;
   2473  1.1   dyoung 	}
   2474  1.1   dyoung 
   2475  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2476  1.1   dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2477  1.1   dyoung 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2478  1.1   dyoung 			hw->fc.fc_was_autonegged = FALSE;
   2479  1.1   dyoung 			hw->fc.current_mode = hw->fc.requested_mode;
   2480  1.1   dyoung 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2481  1.1   dyoung 			goto out;
   2482  1.1   dyoung 		}
   2483  1.1   dyoung 	}
   2484  1.1   dyoung 	/*
   2485  1.1   dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2486  1.1   dyoung 	 * local flow control settings accordingly
   2487  1.1   dyoung 	 */
   2488  1.1   dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2489  1.1   dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2490  1.1   dyoung 
   2491  1.1   dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2492  1.1   dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2493  1.1   dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2494  1.1   dyoung 
   2495  1.1   dyoung out:
   2496  1.1   dyoung 	return ret_val;
   2497  1.1   dyoung }
   2498  1.1   dyoung 
   2499  1.1   dyoung /**
   2500  1.1   dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2501  1.1   dyoung  *  @hw: pointer to hardware structure
   2502  1.1   dyoung  *
   2503  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2504  1.1   dyoung  **/
   2505  1.1   dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2506  1.1   dyoung {
   2507  1.1   dyoung 	u16 technology_ability_reg = 0;
   2508  1.1   dyoung 	u16 lp_technology_ability_reg = 0;
   2509  1.1   dyoung 
   2510  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2511  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2512  1.1   dyoung 			     &technology_ability_reg);
   2513  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2514  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2515  1.1   dyoung 			     &lp_technology_ability_reg);
   2516  1.1   dyoung 
   2517  1.1   dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2518  1.1   dyoung 				  (u32)lp_technology_ability_reg,
   2519  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2520  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2521  1.1   dyoung }
   2522  1.1   dyoung 
   2523  1.1   dyoung /**
   2524  1.1   dyoung  *  ixgbe_negotiate_fc - Negotiate flow control
   2525  1.1   dyoung  *  @hw: pointer to hardware structure
   2526  1.1   dyoung  *  @adv_reg: flow control advertised settings
   2527  1.1   dyoung  *  @lp_reg: link partner's flow control settings
   2528  1.1   dyoung  *  @adv_sym: symmetric pause bit in advertisement
   2529  1.1   dyoung  *  @adv_asm: asymmetric pause bit in advertisement
   2530  1.1   dyoung  *  @lp_sym: symmetric pause bit in link partner advertisement
   2531  1.1   dyoung  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2532  1.1   dyoung  *
   2533  1.1   dyoung  *  Find the intersection between advertised settings and link partner's
   2534  1.1   dyoung  *  advertised settings
   2535  1.1   dyoung  **/
   2536  1.1   dyoung static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2537  1.1   dyoung 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2538  1.1   dyoung {
   2539  1.1   dyoung 	if ((!(adv_reg)) ||  (!(lp_reg)))
   2540  1.1   dyoung 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2541  1.1   dyoung 
   2542  1.1   dyoung 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2543  1.1   dyoung 		/*
   2544  1.1   dyoung 		 * Now we need to check if the user selected Rx ONLY
   2545  1.1   dyoung 		 * of pause frames.  In this case, we had to advertise
   2546  1.1   dyoung 		 * FULL flow control because we could not advertise RX
   2547  1.1   dyoung 		 * ONLY. Hence, we must now check to see if we need to
   2548  1.1   dyoung 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2549  1.1   dyoung 		 */
   2550  1.1   dyoung 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2551  1.1   dyoung 			hw->fc.current_mode = ixgbe_fc_full;
   2552  1.1   dyoung 			DEBUGOUT("Flow Control = FULL.\n");
   2553  1.1   dyoung 		} else {
   2554  1.1   dyoung 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2555  1.1   dyoung 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2556  1.1   dyoung 		}
   2557  1.1   dyoung 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2558  1.1   dyoung 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2559  1.1   dyoung 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2560  1.1   dyoung 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2561  1.1   dyoung 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2562  1.1   dyoung 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2563  1.1   dyoung 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2564  1.1   dyoung 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2565  1.1   dyoung 	} else {
   2566  1.1   dyoung 		hw->fc.current_mode = ixgbe_fc_none;
   2567  1.1   dyoung 		DEBUGOUT("Flow Control = NONE.\n");
   2568  1.1   dyoung 	}
   2569  1.1   dyoung 	return IXGBE_SUCCESS;
   2570  1.1   dyoung }
   2571  1.1   dyoung 
   2572  1.1   dyoung /**
   2573  1.1   dyoung  *  ixgbe_setup_fc - Set up flow control
   2574  1.1   dyoung  *  @hw: pointer to hardware structure
   2575  1.1   dyoung  *
   2576  1.1   dyoung  *  Called at init time to set up flow control.
   2577  1.1   dyoung  **/
   2578  1.3  msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
   2579  1.1   dyoung {
   2580  1.1   dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2581  1.1   dyoung 	u32 reg = 0, reg_bp = 0;
   2582  1.1   dyoung 	u16 reg_cu = 0;
   2583  1.1   dyoung 
   2584  1.1   dyoung 	DEBUGFUNC("ixgbe_setup_fc");
   2585  1.1   dyoung 
   2586  1.1   dyoung 	/* Validate the packetbuf configuration */
   2587  1.1   dyoung 	if (packetbuf_num < 0 || packetbuf_num > 7) {
   2588  1.3  msaitoh 		DEBUGOUT1("Invalid packet buffer number [%d], expected range "
   2589  1.3  msaitoh 			  "is 0-7\n", packetbuf_num);
   2590  1.1   dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2591  1.1   dyoung 		goto out;
   2592  1.1   dyoung 	}
   2593  1.1   dyoung 
   2594  1.1   dyoung 	/*
   2595  1.1   dyoung 	 * Validate the water mark configuration.  Zero water marks are invalid
   2596  1.1   dyoung 	 * because it causes the controller to just blast out fc packets.
   2597  1.1   dyoung 	 */
   2598  1.3  msaitoh 	if (!hw->fc.low_water ||
   2599  1.3  msaitoh 	    !hw->fc.high_water[packetbuf_num] ||
   2600  1.3  msaitoh 	    !hw->fc.pause_time) {
   2601  1.1   dyoung 		DEBUGOUT("Invalid water mark configuration\n");
   2602  1.1   dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2603  1.1   dyoung 		goto out;
   2604  1.1   dyoung 	}
   2605  1.1   dyoung 
   2606  1.1   dyoung 	/*
   2607  1.1   dyoung 	 * Validate the requested mode.  Strict IEEE mode does not allow
   2608  1.1   dyoung 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
   2609  1.1   dyoung 	 */
   2610  1.1   dyoung 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
   2611  1.1   dyoung 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
   2612  1.1   dyoung 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2613  1.1   dyoung 		goto out;
   2614  1.1   dyoung 	}
   2615  1.1   dyoung 
   2616  1.1   dyoung 	/*
   2617  1.1   dyoung 	 * 10gig parts do not have a word in the EEPROM to determine the
   2618  1.1   dyoung 	 * default flow control setting, so we explicitly set it to full.
   2619  1.1   dyoung 	 */
   2620  1.1   dyoung 	if (hw->fc.requested_mode == ixgbe_fc_default)
   2621  1.1   dyoung 		hw->fc.requested_mode = ixgbe_fc_full;
   2622  1.1   dyoung 
   2623  1.1   dyoung 	/*
   2624  1.1   dyoung 	 * Set up the 1G and 10G flow control advertisement registers so the
   2625  1.1   dyoung 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
   2626  1.1   dyoung 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
   2627  1.1   dyoung 	 */
   2628  1.1   dyoung 
   2629  1.1   dyoung 	switch (hw->phy.media_type) {
   2630  1.1   dyoung 	case ixgbe_media_type_fiber:
   2631  1.1   dyoung 	case ixgbe_media_type_backplane:
   2632  1.1   dyoung 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2633  1.1   dyoung 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2634  1.1   dyoung 		break;
   2635  1.1   dyoung 
   2636  1.1   dyoung 	case ixgbe_media_type_copper:
   2637  1.1   dyoung 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2638  1.3  msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
   2639  1.1   dyoung 		break;
   2640  1.1   dyoung 
   2641  1.1   dyoung 	default:
   2642  1.1   dyoung 		;
   2643  1.1   dyoung 	}
   2644  1.1   dyoung 
   2645  1.1   dyoung 	/*
   2646  1.1   dyoung 	 * The possible values of fc.requested_mode are:
   2647  1.1   dyoung 	 * 0: Flow control is completely disabled
   2648  1.1   dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2649  1.1   dyoung 	 *    but not send pause frames).
   2650  1.1   dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2651  1.1   dyoung 	 *    we do not support receiving pause frames).
   2652  1.1   dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2653  1.1   dyoung 	 * other: Invalid.
   2654  1.1   dyoung 	 */
   2655  1.1   dyoung 	switch (hw->fc.requested_mode) {
   2656  1.1   dyoung 	case ixgbe_fc_none:
   2657  1.1   dyoung 		/* Flow control completely disabled by software override. */
   2658  1.1   dyoung 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2659  1.1   dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2660  1.1   dyoung 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
   2661  1.1   dyoung 				    IXGBE_AUTOC_ASM_PAUSE);
   2662  1.1   dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2663  1.1   dyoung 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2664  1.1   dyoung 		break;
   2665  1.1   dyoung 	case ixgbe_fc_rx_pause:
   2666  1.1   dyoung 		/*
   2667  1.1   dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2668  1.1   dyoung 		 * disabled by software override. Since there really
   2669  1.1   dyoung 		 * isn't a way to advertise that we are capable of RX
   2670  1.1   dyoung 		 * Pause ONLY, we will advertise that we support both
   2671  1.1   dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2672  1.1   dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2673  1.1   dyoung 		 */
   2674  1.1   dyoung 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2675  1.1   dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2676  1.1   dyoung 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
   2677  1.1   dyoung 				   IXGBE_AUTOC_ASM_PAUSE);
   2678  1.1   dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2679  1.1   dyoung 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2680  1.1   dyoung 		break;
   2681  1.1   dyoung 	case ixgbe_fc_tx_pause:
   2682  1.1   dyoung 		/*
   2683  1.1   dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2684  1.1   dyoung 		 * disabled by software override.
   2685  1.1   dyoung 		 */
   2686  1.1   dyoung 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
   2687  1.1   dyoung 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
   2688  1.1   dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
   2689  1.1   dyoung 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
   2690  1.1   dyoung 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
   2691  1.1   dyoung 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
   2692  1.1   dyoung 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
   2693  1.1   dyoung 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
   2694  1.1   dyoung 		}
   2695  1.1   dyoung 		break;
   2696  1.1   dyoung 	case ixgbe_fc_full:
   2697  1.1   dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2698  1.1   dyoung 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
   2699  1.1   dyoung 		if (hw->phy.media_type == ixgbe_media_type_backplane)
   2700  1.1   dyoung 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
   2701  1.1   dyoung 				   IXGBE_AUTOC_ASM_PAUSE);
   2702  1.1   dyoung 		else if (hw->phy.media_type == ixgbe_media_type_copper)
   2703  1.1   dyoung 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
   2704  1.1   dyoung 		break;
   2705  1.1   dyoung 	default:
   2706  1.1   dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2707  1.1   dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2708  1.1   dyoung 		goto out;
   2709  1.1   dyoung 		break;
   2710  1.1   dyoung 	}
   2711  1.1   dyoung 
   2712  1.3  msaitoh 	if (hw->mac.type != ixgbe_mac_X540) {
   2713  1.3  msaitoh 		/*
   2714  1.3  msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
   2715  1.3  msaitoh 		 * the MAC will advertise clause 37 flow control.
   2716  1.3  msaitoh 		 */
   2717  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
   2718  1.3  msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
   2719  1.1   dyoung 
   2720  1.3  msaitoh 		/* Disable AN timeout */
   2721  1.3  msaitoh 		if (hw->fc.strict_ieee)
   2722  1.3  msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
   2723  1.1   dyoung 
   2724  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
   2725  1.3  msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
   2726  1.3  msaitoh 	}
   2727  1.1   dyoung 
   2728  1.1   dyoung 	/*
   2729  1.1   dyoung 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
   2730  1.1   dyoung 	 * and copper. There is no need to set the PCS1GCTL register.
   2731  1.1   dyoung 	 *
   2732  1.1   dyoung 	 */
   2733  1.1   dyoung 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
   2734  1.1   dyoung 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
   2735  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
   2736  1.1   dyoung 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
   2737  1.1   dyoung 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
   2738  1.1   dyoung 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2739  1.1   dyoung 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
   2740  1.1   dyoung 	}
   2741  1.1   dyoung 
   2742  1.1   dyoung 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
   2743  1.1   dyoung out:
   2744  1.1   dyoung 	return ret_val;
   2745  1.1   dyoung }
   2746  1.1   dyoung 
   2747  1.1   dyoung /**
   2748  1.1   dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   2749  1.1   dyoung  *  @hw: pointer to hardware structure
   2750  1.1   dyoung  *
   2751  1.1   dyoung  *  Disables PCI-Express master access and verifies there are no pending
   2752  1.1   dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   2753  1.1   dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   2754  1.1   dyoung  *  is returned signifying master requests disabled.
   2755  1.1   dyoung  **/
   2756  1.1   dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   2757  1.1   dyoung {
   2758  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   2759  1.1   dyoung 	u32 i;
   2760  1.1   dyoung 
   2761  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   2762  1.1   dyoung 
   2763  1.3  msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   2764  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   2765  1.3  msaitoh 
   2766  1.3  msaitoh 	/* Exit if master requets are blocked */
   2767  1.1   dyoung 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2768  1.1   dyoung 		goto out;
   2769  1.1   dyoung 
   2770  1.3  msaitoh 	/* Poll for master request bit to clear */
   2771  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2772  1.3  msaitoh 		usec_delay(100);
   2773  1.1   dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2774  1.3  msaitoh 			goto out;
   2775  1.1   dyoung 	}
   2776  1.1   dyoung 
   2777  1.3  msaitoh 	/*
   2778  1.3  msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   2779  1.3  msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   2780  1.3  msaitoh 	 * of this need.  The first reset prevents new master requests from
   2781  1.3  msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   2782  1.3  msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   2783  1.3  msaitoh 	 * again to clear out any effects they may have had on our device.
   2784  1.3  msaitoh 	 */
   2785  1.1   dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   2786  1.3  msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   2787  1.1   dyoung 
   2788  1.1   dyoung 	/*
   2789  1.1   dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   2790  1.1   dyoung 	 * transactions pending.
   2791  1.1   dyoung 	 */
   2792  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2793  1.3  msaitoh 		usec_delay(100);
   2794  1.1   dyoung 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   2795  1.3  msaitoh 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   2796  1.3  msaitoh 			goto out;
   2797  1.1   dyoung 	}
   2798  1.1   dyoung 
   2799  1.3  msaitoh 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
   2800  1.3  msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   2801  1.1   dyoung 
   2802  1.1   dyoung out:
   2803  1.1   dyoung 	return status;
   2804  1.1   dyoung }
   2805  1.1   dyoung 
   2806  1.1   dyoung /**
   2807  1.1   dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   2808  1.1   dyoung  *  @hw: pointer to hardware structure
   2809  1.1   dyoung  *  @mask: Mask to specify which semaphore to acquire
   2810  1.1   dyoung  *
   2811  1.3  msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   2812  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2813  1.1   dyoung  **/
   2814  1.1   dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2815  1.1   dyoung {
   2816  1.1   dyoung 	u32 gssr;
   2817  1.1   dyoung 	u32 swmask = mask;
   2818  1.1   dyoung 	u32 fwmask = mask << 5;
   2819  1.1   dyoung 	s32 timeout = 200;
   2820  1.1   dyoung 
   2821  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   2822  1.1   dyoung 
   2823  1.1   dyoung 	while (timeout) {
   2824  1.1   dyoung 		/*
   2825  1.1   dyoung 		 * SW EEPROM semaphore bit is used for access to all
   2826  1.1   dyoung 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
   2827  1.1   dyoung 		 */
   2828  1.1   dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   2829  1.1   dyoung 			return IXGBE_ERR_SWFW_SYNC;
   2830  1.1   dyoung 
   2831  1.1   dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2832  1.1   dyoung 		if (!(gssr & (fwmask | swmask)))
   2833  1.1   dyoung 			break;
   2834  1.1   dyoung 
   2835  1.1   dyoung 		/*
   2836  1.1   dyoung 		 * Firmware currently using resource (fwmask) or other software
   2837  1.1   dyoung 		 * thread currently using resource (swmask)
   2838  1.1   dyoung 		 */
   2839  1.1   dyoung 		ixgbe_release_eeprom_semaphore(hw);
   2840  1.1   dyoung 		msec_delay(5);
   2841  1.1   dyoung 		timeout--;
   2842  1.1   dyoung 	}
   2843  1.1   dyoung 
   2844  1.1   dyoung 	if (!timeout) {
   2845  1.1   dyoung 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
   2846  1.1   dyoung 		return IXGBE_ERR_SWFW_SYNC;
   2847  1.1   dyoung 	}
   2848  1.1   dyoung 
   2849  1.1   dyoung 	gssr |= swmask;
   2850  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2851  1.1   dyoung 
   2852  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2853  1.1   dyoung 	return IXGBE_SUCCESS;
   2854  1.1   dyoung }
   2855  1.1   dyoung 
   2856  1.1   dyoung /**
   2857  1.1   dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   2858  1.1   dyoung  *  @hw: pointer to hardware structure
   2859  1.1   dyoung  *  @mask: Mask to specify which semaphore to release
   2860  1.1   dyoung  *
   2861  1.3  msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   2862  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2863  1.1   dyoung  **/
   2864  1.1   dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2865  1.1   dyoung {
   2866  1.1   dyoung 	u32 gssr;
   2867  1.1   dyoung 	u32 swmask = mask;
   2868  1.1   dyoung 
   2869  1.1   dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   2870  1.1   dyoung 
   2871  1.1   dyoung 	ixgbe_get_eeprom_semaphore(hw);
   2872  1.1   dyoung 
   2873  1.1   dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2874  1.1   dyoung 	gssr &= ~swmask;
   2875  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2876  1.1   dyoung 
   2877  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2878  1.1   dyoung }
   2879  1.1   dyoung 
   2880  1.1   dyoung /**
   2881  1.3  msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   2882  1.3  msaitoh  *  @hw: pointer to hardware structure
   2883  1.3  msaitoh  *
   2884  1.3  msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   2885  1.3  msaitoh  *  the Rx security block
   2886  1.3  msaitoh  **/
   2887  1.3  msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2888  1.3  msaitoh {
   2889  1.3  msaitoh #define IXGBE_MAX_SECRX_POLL 40
   2890  1.3  msaitoh 
   2891  1.3  msaitoh 	int i;
   2892  1.3  msaitoh 	int secrxreg;
   2893  1.3  msaitoh 
   2894  1.3  msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   2895  1.3  msaitoh 
   2896  1.3  msaitoh 
   2897  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2898  1.3  msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   2899  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2900  1.3  msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   2901  1.3  msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   2902  1.3  msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   2903  1.3  msaitoh 			break;
   2904  1.3  msaitoh 		else
   2905  1.3  msaitoh 			/* Use interrupt-safe sleep just in case */
   2906  1.3  msaitoh 			usec_delay(1000);
   2907  1.3  msaitoh 	}
   2908  1.3  msaitoh 
   2909  1.3  msaitoh 	/* For informational purposes only */
   2910  1.3  msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   2911  1.3  msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   2912  1.3  msaitoh 			 "path fully disabled.  Continuing with init.\n");
   2913  1.3  msaitoh 
   2914  1.3  msaitoh 	return IXGBE_SUCCESS;
   2915  1.3  msaitoh }
   2916  1.3  msaitoh 
   2917  1.3  msaitoh /**
   2918  1.3  msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   2919  1.3  msaitoh  *  @hw: pointer to hardware structure
   2920  1.3  msaitoh  *
   2921  1.3  msaitoh  *  Enables the receive data path.
   2922  1.3  msaitoh  **/
   2923  1.3  msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2924  1.3  msaitoh {
   2925  1.3  msaitoh 	int secrxreg;
   2926  1.3  msaitoh 
   2927  1.3  msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   2928  1.3  msaitoh 
   2929  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2930  1.3  msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   2931  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2932  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   2933  1.3  msaitoh 
   2934  1.3  msaitoh 	return IXGBE_SUCCESS;
   2935  1.3  msaitoh }
   2936  1.3  msaitoh 
   2937  1.3  msaitoh /**
   2938  1.1   dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   2939  1.1   dyoung  *  @hw: pointer to hardware structure
   2940  1.1   dyoung  *  @regval: register value to write to RXCTRL
   2941  1.1   dyoung  *
   2942  1.1   dyoung  *  Enables the Rx DMA unit
   2943  1.1   dyoung  **/
   2944  1.1   dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   2945  1.1   dyoung {
   2946  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   2947  1.1   dyoung 
   2948  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   2949  1.1   dyoung 
   2950  1.1   dyoung 	return IXGBE_SUCCESS;
   2951  1.1   dyoung }
   2952  1.1   dyoung 
   2953  1.1   dyoung /**
   2954  1.1   dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   2955  1.1   dyoung  *  @hw: pointer to hardware structure
   2956  1.1   dyoung  *  @index: led number to blink
   2957  1.1   dyoung  **/
   2958  1.1   dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   2959  1.1   dyoung {
   2960  1.1   dyoung 	ixgbe_link_speed speed = 0;
   2961  1.1   dyoung 	bool link_up = 0;
   2962  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2963  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2964  1.1   dyoung 
   2965  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   2966  1.1   dyoung 
   2967  1.1   dyoung 	/*
   2968  1.1   dyoung 	 * Link must be up to auto-blink the LEDs;
   2969  1.1   dyoung 	 * Force it if link is down.
   2970  1.1   dyoung 	 */
   2971  1.1   dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2972  1.1   dyoung 
   2973  1.1   dyoung 	if (!link_up) {
   2974  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2975  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   2976  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   2977  1.3  msaitoh 		IXGBE_WRITE_FLUSH(hw);
   2978  1.1   dyoung 		msec_delay(10);
   2979  1.1   dyoung 	}
   2980  1.1   dyoung 
   2981  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2982  1.1   dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   2983  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2984  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   2985  1.1   dyoung 
   2986  1.1   dyoung 	return IXGBE_SUCCESS;
   2987  1.1   dyoung }
   2988  1.1   dyoung 
   2989  1.1   dyoung /**
   2990  1.1   dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   2991  1.1   dyoung  *  @hw: pointer to hardware structure
   2992  1.1   dyoung  *  @index: led number to stop blinking
   2993  1.1   dyoung  **/
   2994  1.1   dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   2995  1.1   dyoung {
   2996  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2997  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2998  1.1   dyoung 
   2999  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3000  1.1   dyoung 
   3001  1.1   dyoung 
   3002  1.1   dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3003  1.1   dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3004  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3005  1.1   dyoung 
   3006  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3007  1.1   dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3008  1.1   dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3009  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3010  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   3011  1.1   dyoung 
   3012  1.1   dyoung 	return IXGBE_SUCCESS;
   3013  1.1   dyoung }
   3014  1.1   dyoung 
   3015  1.1   dyoung /**
   3016  1.1   dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3017  1.1   dyoung  *  @hw: pointer to hardware structure
   3018  1.1   dyoung  *  @san_mac_offset: SAN MAC address offset
   3019  1.1   dyoung  *
   3020  1.1   dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3021  1.1   dyoung  *  pointer, and returns the value at that location.  This is used in both
   3022  1.1   dyoung  *  get and set mac_addr routines.
   3023  1.1   dyoung  **/
   3024  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3025  1.3  msaitoh 					 u16 *san_mac_offset)
   3026  1.1   dyoung {
   3027  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3028  1.1   dyoung 
   3029  1.1   dyoung 	/*
   3030  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3031  1.1   dyoung 	 * available.
   3032  1.1   dyoung 	 */
   3033  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
   3034  1.1   dyoung 
   3035  1.1   dyoung 	return IXGBE_SUCCESS;
   3036  1.1   dyoung }
   3037  1.1   dyoung 
   3038  1.1   dyoung /**
   3039  1.1   dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3040  1.1   dyoung  *  @hw: pointer to hardware structure
   3041  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3042  1.1   dyoung  *
   3043  1.1   dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3044  1.1   dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3045  1.1   dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3046  1.1   dyoung  *  upon for non-SFP connections, so we must call it here.
   3047  1.1   dyoung  **/
   3048  1.1   dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3049  1.1   dyoung {
   3050  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3051  1.1   dyoung 	u8 i;
   3052  1.1   dyoung 
   3053  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3054  1.1   dyoung 
   3055  1.1   dyoung 	/*
   3056  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3057  1.1   dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3058  1.1   dyoung 	 */
   3059  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3060  1.1   dyoung 
   3061  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3062  1.1   dyoung 		/*
   3063  1.1   dyoung 		 * No addresses available in this EEPROM.  It's not an
   3064  1.1   dyoung 		 * error though, so just wipe the local address and return.
   3065  1.1   dyoung 		 */
   3066  1.1   dyoung 		for (i = 0; i < 6; i++)
   3067  1.1   dyoung 			san_mac_addr[i] = 0xFF;
   3068  1.1   dyoung 
   3069  1.1   dyoung 		goto san_mac_addr_out;
   3070  1.1   dyoung 	}
   3071  1.1   dyoung 
   3072  1.1   dyoung 	/* make sure we know which port we need to program */
   3073  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3074  1.1   dyoung 	/* apply the port offset to the address offset */
   3075  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3076  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3077  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3078  1.1   dyoung 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
   3079  1.1   dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3080  1.1   dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3081  1.1   dyoung 		san_mac_offset++;
   3082  1.1   dyoung 	}
   3083  1.1   dyoung 
   3084  1.1   dyoung san_mac_addr_out:
   3085  1.1   dyoung 	return IXGBE_SUCCESS;
   3086  1.1   dyoung }
   3087  1.1   dyoung 
   3088  1.1   dyoung /**
   3089  1.1   dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3090  1.1   dyoung  *  @hw: pointer to hardware structure
   3091  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3092  1.1   dyoung  *
   3093  1.1   dyoung  *  Write a SAN MAC address to the EEPROM.
   3094  1.1   dyoung  **/
   3095  1.1   dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3096  1.1   dyoung {
   3097  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   3098  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3099  1.1   dyoung 	u8 i;
   3100  1.1   dyoung 
   3101  1.1   dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3102  1.1   dyoung 
   3103  1.1   dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3104  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3105  1.1   dyoung 
   3106  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3107  1.1   dyoung 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
   3108  1.1   dyoung 		goto san_mac_addr_out;
   3109  1.1   dyoung 	}
   3110  1.1   dyoung 
   3111  1.1   dyoung 	/* Make sure we know which port we need to write */
   3112  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3113  1.1   dyoung 	/* Apply the port offset to the address offset */
   3114  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3115  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3116  1.1   dyoung 
   3117  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3118  1.1   dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3119  1.1   dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3120  1.1   dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3121  1.1   dyoung 		san_mac_offset++;
   3122  1.1   dyoung 	}
   3123  1.1   dyoung 
   3124  1.1   dyoung san_mac_addr_out:
   3125  1.1   dyoung 	return status;
   3126  1.1   dyoung }
   3127  1.1   dyoung 
   3128  1.1   dyoung /**
   3129  1.1   dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3130  1.1   dyoung  *  @hw: pointer to hardware structure
   3131  1.1   dyoung  *
   3132  1.1   dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3133  1.1   dyoung  *  the capabilities table.
   3134  1.1   dyoung  **/
   3135  1.1   dyoung u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3136  1.1   dyoung {
   3137  1.1   dyoung 	u32 msix_count = 64;
   3138  1.1   dyoung 
   3139  1.1   dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3140  1.1   dyoung 	if (hw->mac.msix_vectors_from_pcie) {
   3141  1.1   dyoung 		msix_count = IXGBE_READ_PCIE_WORD(hw,
   3142  1.3  msaitoh 						  IXGBE_PCIE_MSIX_82599_CAPS);
   3143  1.1   dyoung 		msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3144  1.1   dyoung 
   3145  1.1   dyoung 		/* MSI-X count is zero-based in HW, so increment to give
   3146  1.1   dyoung 		 * proper value */
   3147  1.1   dyoung 		msix_count++;
   3148  1.1   dyoung 	}
   3149  1.1   dyoung 
   3150  1.1   dyoung 	return msix_count;
   3151  1.1   dyoung }
   3152  1.1   dyoung 
   3153  1.1   dyoung /**
   3154  1.1   dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3155  1.1   dyoung  *  @hw: pointer to hardware structure
   3156  1.1   dyoung  *  @addr: Address to put into receive address register
   3157  1.1   dyoung  *  @vmdq: VMDq pool to assign
   3158  1.1   dyoung  *
   3159  1.1   dyoung  *  Puts an ethernet address into a receive address register, or
   3160  1.1   dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3161  1.1   dyoung  **/
   3162  1.1   dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3163  1.1   dyoung {
   3164  1.1   dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3165  1.1   dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3166  1.1   dyoung 	u32 rar;
   3167  1.1   dyoung 	u32 rar_low, rar_high;
   3168  1.1   dyoung 	u32 addr_low, addr_high;
   3169  1.1   dyoung 
   3170  1.1   dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3171  1.1   dyoung 
   3172  1.1   dyoung 	/* swap bytes for HW little endian */
   3173  1.1   dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3174  1.1   dyoung 			    | (addr[2] << 16)
   3175  1.1   dyoung 			    | (addr[3] << 24);
   3176  1.1   dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3177  1.1   dyoung 
   3178  1.1   dyoung 	/*
   3179  1.1   dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3180  1.1   dyoung 	 * rar_highwater points to just after the highest currently used
   3181  1.1   dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3182  1.1   dyoung 	 * rar to the top.
   3183  1.1   dyoung 	 */
   3184  1.1   dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3185  1.1   dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3186  1.1   dyoung 
   3187  1.1   dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3188  1.1   dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3189  1.1   dyoung 			first_empty_rar = rar;
   3190  1.1   dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3191  1.1   dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3192  1.1   dyoung 			if (rar_low == addr_low)
   3193  1.1   dyoung 				break;    /* found it already in the rars */
   3194  1.1   dyoung 		}
   3195  1.1   dyoung 	}
   3196  1.1   dyoung 
   3197  1.1   dyoung 	if (rar < hw->mac.rar_highwater) {
   3198  1.1   dyoung 		/* already there so just add to the pool bits */
   3199  1.1   dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3200  1.1   dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3201  1.1   dyoung 		/* stick it into first empty RAR slot we found */
   3202  1.1   dyoung 		rar = first_empty_rar;
   3203  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3204  1.1   dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3205  1.1   dyoung 		/* add it to the top of the list and inc the highwater mark */
   3206  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3207  1.1   dyoung 		hw->mac.rar_highwater++;
   3208  1.1   dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3209  1.1   dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3210  1.1   dyoung 	}
   3211  1.1   dyoung 
   3212  1.1   dyoung 	/*
   3213  1.1   dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3214  1.1   dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3215  1.1   dyoung 	 */
   3216  1.1   dyoung 	if (rar == 0)
   3217  1.1   dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3218  1.1   dyoung 
   3219  1.1   dyoung 	return rar;
   3220  1.1   dyoung }
   3221  1.1   dyoung 
   3222  1.1   dyoung /**
   3223  1.1   dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3224  1.1   dyoung  *  @hw: pointer to hardware struct
   3225  1.1   dyoung  *  @rar: receive address register index to disassociate
   3226  1.1   dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3227  1.1   dyoung  **/
   3228  1.1   dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3229  1.1   dyoung {
   3230  1.1   dyoung 	u32 mpsar_lo, mpsar_hi;
   3231  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3232  1.1   dyoung 
   3233  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3234  1.1   dyoung 
   3235  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3236  1.1   dyoung 	if (rar >= rar_entries) {
   3237  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3238  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3239  1.1   dyoung 	}
   3240  1.1   dyoung 
   3241  1.1   dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3242  1.1   dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3243  1.1   dyoung 
   3244  1.1   dyoung 	if (!mpsar_lo && !mpsar_hi)
   3245  1.1   dyoung 		goto done;
   3246  1.1   dyoung 
   3247  1.1   dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3248  1.1   dyoung 		if (mpsar_lo) {
   3249  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3250  1.1   dyoung 			mpsar_lo = 0;
   3251  1.1   dyoung 		}
   3252  1.1   dyoung 		if (mpsar_hi) {
   3253  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3254  1.1   dyoung 			mpsar_hi = 0;
   3255  1.1   dyoung 		}
   3256  1.1   dyoung 	} else if (vmdq < 32) {
   3257  1.1   dyoung 		mpsar_lo &= ~(1 << vmdq);
   3258  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3259  1.1   dyoung 	} else {
   3260  1.1   dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3261  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3262  1.1   dyoung 	}
   3263  1.1   dyoung 
   3264  1.1   dyoung 	/* was that the last pool using this rar? */
   3265  1.1   dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3266  1.1   dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3267  1.1   dyoung done:
   3268  1.1   dyoung 	return IXGBE_SUCCESS;
   3269  1.1   dyoung }
   3270  1.1   dyoung 
   3271  1.1   dyoung /**
   3272  1.1   dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3273  1.1   dyoung  *  @hw: pointer to hardware struct
   3274  1.1   dyoung  *  @rar: receive address register index to associate with a VMDq index
   3275  1.1   dyoung  *  @vmdq: VMDq pool index
   3276  1.1   dyoung  **/
   3277  1.1   dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3278  1.1   dyoung {
   3279  1.1   dyoung 	u32 mpsar;
   3280  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3281  1.1   dyoung 
   3282  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3283  1.1   dyoung 
   3284  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3285  1.1   dyoung 	if (rar >= rar_entries) {
   3286  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3287  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3288  1.1   dyoung 	}
   3289  1.1   dyoung 
   3290  1.1   dyoung 	if (vmdq < 32) {
   3291  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3292  1.1   dyoung 		mpsar |= 1 << vmdq;
   3293  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3294  1.1   dyoung 	} else {
   3295  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3296  1.1   dyoung 		mpsar |= 1 << (vmdq - 32);
   3297  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3298  1.1   dyoung 	}
   3299  1.1   dyoung 	return IXGBE_SUCCESS;
   3300  1.1   dyoung }
   3301  1.1   dyoung 
   3302  1.1   dyoung /**
   3303  1.1   dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3304  1.1   dyoung  *  @hw: pointer to hardware structure
   3305  1.1   dyoung  **/
   3306  1.1   dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3307  1.1   dyoung {
   3308  1.1   dyoung 	int i;
   3309  1.1   dyoung 
   3310  1.1   dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3311  1.1   dyoung 	DEBUGOUT(" Clearing UTA\n");
   3312  1.1   dyoung 
   3313  1.1   dyoung 	for (i = 0; i < 128; i++)
   3314  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3315  1.1   dyoung 
   3316  1.1   dyoung 	return IXGBE_SUCCESS;
   3317  1.1   dyoung }
   3318  1.1   dyoung 
   3319  1.1   dyoung /**
   3320  1.1   dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3321  1.1   dyoung  *  @hw: pointer to hardware structure
   3322  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3323  1.1   dyoung  *
   3324  1.1   dyoung  *  return the VLVF index where this VLAN id should be placed
   3325  1.1   dyoung  *
   3326  1.1   dyoung  **/
   3327  1.1   dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3328  1.1   dyoung {
   3329  1.1   dyoung 	u32 bits = 0;
   3330  1.1   dyoung 	u32 first_empty_slot = 0;
   3331  1.1   dyoung 	s32 regindex;
   3332  1.1   dyoung 
   3333  1.1   dyoung 	/* short cut the special case */
   3334  1.1   dyoung 	if (vlan == 0)
   3335  1.1   dyoung 		return 0;
   3336  1.1   dyoung 
   3337  1.1   dyoung 	/*
   3338  1.1   dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3339  1.1   dyoung 	  * slot found along the way
   3340  1.1   dyoung 	  */
   3341  1.1   dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3342  1.1   dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3343  1.1   dyoung 		if (!bits && !(first_empty_slot))
   3344  1.1   dyoung 			first_empty_slot = regindex;
   3345  1.1   dyoung 		else if ((bits & 0x0FFF) == vlan)
   3346  1.1   dyoung 			break;
   3347  1.1   dyoung 	}
   3348  1.1   dyoung 
   3349  1.1   dyoung 	/*
   3350  1.1   dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3351  1.1   dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3352  1.1   dyoung 	  * vlan id.
   3353  1.1   dyoung 	  */
   3354  1.1   dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3355  1.1   dyoung 		if (first_empty_slot)
   3356  1.1   dyoung 			regindex = first_empty_slot;
   3357  1.1   dyoung 		else {
   3358  1.1   dyoung 			DEBUGOUT("No space in VLVF.\n");
   3359  1.1   dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3360  1.1   dyoung 		}
   3361  1.1   dyoung 	}
   3362  1.1   dyoung 
   3363  1.1   dyoung 	return regindex;
   3364  1.1   dyoung }
   3365  1.1   dyoung 
   3366  1.1   dyoung /**
   3367  1.1   dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3368  1.1   dyoung  *  @hw: pointer to hardware structure
   3369  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3370  1.1   dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3371  1.1   dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3372  1.1   dyoung  *
   3373  1.1   dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3374  1.1   dyoung  **/
   3375  1.1   dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3376  1.3  msaitoh 			   bool vlan_on)
   3377  1.1   dyoung {
   3378  1.1   dyoung 	s32 regindex;
   3379  1.1   dyoung 	u32 bitindex;
   3380  1.1   dyoung 	u32 vfta;
   3381  1.1   dyoung 	u32 targetbit;
   3382  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3383  1.1   dyoung 	bool vfta_changed = FALSE;
   3384  1.1   dyoung 
   3385  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3386  1.1   dyoung 
   3387  1.1   dyoung 	if (vlan > 4095)
   3388  1.1   dyoung 		return IXGBE_ERR_PARAM;
   3389  1.1   dyoung 
   3390  1.1   dyoung 	/*
   3391  1.1   dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3392  1.1   dyoung 	 * VLVF and VLVFB if VT Mode is set
   3393  1.1   dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3394  1.1   dyoung 	 */
   3395  1.1   dyoung 
   3396  1.1   dyoung 	/* Part 1
   3397  1.1   dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3398  1.1   dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3399  1.1   dyoung 	 *    bits[11-5]: which register
   3400  1.1   dyoung 	 *    bits[4-0]:  which bit in the register
   3401  1.1   dyoung 	 */
   3402  1.1   dyoung 	regindex = (vlan >> 5) & 0x7F;
   3403  1.1   dyoung 	bitindex = vlan & 0x1F;
   3404  1.1   dyoung 	targetbit = (1 << bitindex);
   3405  1.1   dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3406  1.1   dyoung 
   3407  1.1   dyoung 	if (vlan_on) {
   3408  1.1   dyoung 		if (!(vfta & targetbit)) {
   3409  1.1   dyoung 			vfta |= targetbit;
   3410  1.1   dyoung 			vfta_changed = TRUE;
   3411  1.1   dyoung 		}
   3412  1.1   dyoung 	} else {
   3413  1.1   dyoung 		if ((vfta & targetbit)) {
   3414  1.1   dyoung 			vfta &= ~targetbit;
   3415  1.1   dyoung 			vfta_changed = TRUE;
   3416  1.1   dyoung 		}
   3417  1.1   dyoung 	}
   3418  1.1   dyoung 
   3419  1.1   dyoung 	/* Part 2
   3420  1.3  msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3421  1.3  msaitoh 	 */
   3422  1.3  msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3423  1.3  msaitoh 					 &vfta_changed);
   3424  1.3  msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3425  1.3  msaitoh 		return ret_val;
   3426  1.3  msaitoh 
   3427  1.3  msaitoh 	if (vfta_changed)
   3428  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3429  1.3  msaitoh 
   3430  1.3  msaitoh 	return IXGBE_SUCCESS;
   3431  1.3  msaitoh }
   3432  1.3  msaitoh 
   3433  1.3  msaitoh /**
   3434  1.3  msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3435  1.3  msaitoh  *  @hw: pointer to hardware structure
   3436  1.3  msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3437  1.3  msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3438  1.3  msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3439  1.3  msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3440  1.3  msaitoh  *                 should be changed
   3441  1.3  msaitoh  *
   3442  1.3  msaitoh  *  Turn on/off specified bit in VLVF table.
   3443  1.3  msaitoh  **/
   3444  1.3  msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3445  1.3  msaitoh 			    bool vlan_on, bool *vfta_changed)
   3446  1.3  msaitoh {
   3447  1.3  msaitoh 	u32 vt;
   3448  1.3  msaitoh 
   3449  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3450  1.3  msaitoh 
   3451  1.3  msaitoh 	if (vlan > 4095)
   3452  1.3  msaitoh 		return IXGBE_ERR_PARAM;
   3453  1.3  msaitoh 
   3454  1.3  msaitoh 	/* If VT Mode is set
   3455  1.1   dyoung 	 *   Either vlan_on
   3456  1.1   dyoung 	 *     make sure the vlan is in VLVF
   3457  1.1   dyoung 	 *     set the vind bit in the matching VLVFB
   3458  1.1   dyoung 	 *   Or !vlan_on
   3459  1.1   dyoung 	 *     clear the pool bit and possibly the vind
   3460  1.1   dyoung 	 */
   3461  1.1   dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3462  1.1   dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3463  1.1   dyoung 		s32 vlvf_index;
   3464  1.3  msaitoh 		u32 bits;
   3465  1.1   dyoung 
   3466  1.1   dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3467  1.1   dyoung 		if (vlvf_index < 0)
   3468  1.1   dyoung 			return vlvf_index;
   3469  1.1   dyoung 
   3470  1.1   dyoung 		if (vlan_on) {
   3471  1.1   dyoung 			/* set the pool bit */
   3472  1.1   dyoung 			if (vind < 32) {
   3473  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3474  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3475  1.1   dyoung 				bits |= (1 << vind);
   3476  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3477  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3478  1.1   dyoung 						bits);
   3479  1.1   dyoung 			} else {
   3480  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3481  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3482  1.3  msaitoh 				bits |= (1 << (vind - 32));
   3483  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3484  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3485  1.3  msaitoh 					bits);
   3486  1.1   dyoung 			}
   3487  1.1   dyoung 		} else {
   3488  1.1   dyoung 			/* clear the pool bit */
   3489  1.1   dyoung 			if (vind < 32) {
   3490  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3491  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3492  1.1   dyoung 				bits &= ~(1 << vind);
   3493  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3494  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3495  1.1   dyoung 						bits);
   3496  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3497  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3498  1.1   dyoung 			} else {
   3499  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3500  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3501  1.3  msaitoh 				bits &= ~(1 << (vind - 32));
   3502  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3503  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3504  1.3  msaitoh 					bits);
   3505  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3506  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3507  1.1   dyoung 			}
   3508  1.1   dyoung 		}
   3509  1.1   dyoung 
   3510  1.1   dyoung 		/*
   3511  1.1   dyoung 		 * If there are still bits set in the VLVFB registers
   3512  1.1   dyoung 		 * for the VLAN ID indicated we need to see if the
   3513  1.1   dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3514  1.1   dyoung 		 * If the caller has requested that we clear the VFTA
   3515  1.1   dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3516  1.1   dyoung 		 * ID entry then ignore the request.  We're not worried
   3517  1.1   dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3518  1.1   dyoung 		 * entry bit on, only when requested to turn it off as
   3519  1.1   dyoung 		 * there may be multiple pools and/or VFs using the
   3520  1.1   dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   3521  1.1   dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3522  1.1   dyoung 		 * been cleared.  This will be indicated by "bits" being
   3523  1.1   dyoung 		 * zero.
   3524  1.1   dyoung 		 */
   3525  1.1   dyoung 		if (bits) {
   3526  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3527  1.1   dyoung 					(IXGBE_VLVF_VIEN | vlan));
   3528  1.3  msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   3529  1.1   dyoung 				/* someone wants to clear the vfta entry
   3530  1.1   dyoung 				 * but some pools/VFs are still using it.
   3531  1.1   dyoung 				 * Ignore it. */
   3532  1.3  msaitoh 				*vfta_changed = FALSE;
   3533  1.1   dyoung 			}
   3534  1.3  msaitoh 		} else
   3535  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3536  1.1   dyoung 	}
   3537  1.1   dyoung 
   3538  1.1   dyoung 	return IXGBE_SUCCESS;
   3539  1.1   dyoung }
   3540  1.1   dyoung 
   3541  1.1   dyoung /**
   3542  1.1   dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3543  1.1   dyoung  *  @hw: pointer to hardware structure
   3544  1.1   dyoung  *
   3545  1.1   dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3546  1.1   dyoung  **/
   3547  1.1   dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3548  1.1   dyoung {
   3549  1.1   dyoung 	u32 offset;
   3550  1.1   dyoung 
   3551  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3552  1.1   dyoung 
   3553  1.1   dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3554  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3555  1.1   dyoung 
   3556  1.1   dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3557  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3558  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   3559  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   3560  1.1   dyoung 	}
   3561  1.1   dyoung 
   3562  1.1   dyoung 	return IXGBE_SUCCESS;
   3563  1.1   dyoung }
   3564  1.1   dyoung 
   3565  1.1   dyoung /**
   3566  1.1   dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   3567  1.1   dyoung  *  @hw: pointer to hardware structure
   3568  1.1   dyoung  *  @speed: pointer to link speed
   3569  1.1   dyoung  *  @link_up: TRUE when link is up
   3570  1.1   dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   3571  1.1   dyoung  *
   3572  1.1   dyoung  *  Reads the links register to determine if link is up and the current speed
   3573  1.1   dyoung  **/
   3574  1.1   dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3575  1.3  msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   3576  1.1   dyoung {
   3577  1.1   dyoung 	u32 links_reg, links_orig;
   3578  1.1   dyoung 	u32 i;
   3579  1.1   dyoung 
   3580  1.1   dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   3581  1.1   dyoung 
   3582  1.1   dyoung 	/* clear the old state */
   3583  1.1   dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3584  1.1   dyoung 
   3585  1.1   dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3586  1.1   dyoung 
   3587  1.1   dyoung 	if (links_orig != links_reg) {
   3588  1.1   dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   3589  1.3  msaitoh 			  links_orig, links_reg);
   3590  1.1   dyoung 	}
   3591  1.1   dyoung 
   3592  1.1   dyoung 	if (link_up_wait_to_complete) {
   3593  1.1   dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3594  1.1   dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   3595  1.1   dyoung 				*link_up = TRUE;
   3596  1.1   dyoung 				break;
   3597  1.1   dyoung 			} else {
   3598  1.1   dyoung 				*link_up = FALSE;
   3599  1.1   dyoung 			}
   3600  1.1   dyoung 			msec_delay(100);
   3601  1.1   dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3602  1.1   dyoung 		}
   3603  1.1   dyoung 	} else {
   3604  1.1   dyoung 		if (links_reg & IXGBE_LINKS_UP)
   3605  1.1   dyoung 			*link_up = TRUE;
   3606  1.1   dyoung 		else
   3607  1.1   dyoung 			*link_up = FALSE;
   3608  1.1   dyoung 	}
   3609  1.1   dyoung 
   3610  1.1   dyoung 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3611  1.1   dyoung 	    IXGBE_LINKS_SPEED_10G_82599)
   3612  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3613  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3614  1.3  msaitoh 		 IXGBE_LINKS_SPEED_1G_82599)
   3615  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3616  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3617  1.3  msaitoh 		 IXGBE_LINKS_SPEED_100_82599)
   3618  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   3619  1.1   dyoung 	else
   3620  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3621  1.1   dyoung 
   3622  1.1   dyoung 	return IXGBE_SUCCESS;
   3623  1.1   dyoung }
   3624  1.1   dyoung 
   3625  1.1   dyoung /**
   3626  1.1   dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3627  1.1   dyoung  *  the EEPROM
   3628  1.1   dyoung  *  @hw: pointer to hardware structure
   3629  1.1   dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   3630  1.1   dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   3631  1.1   dyoung  *
   3632  1.1   dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   3633  1.1   dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   3634  1.1   dyoung  **/
   3635  1.1   dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3636  1.3  msaitoh 				 u16 *wwpn_prefix)
   3637  1.1   dyoung {
   3638  1.1   dyoung 	u16 offset, caps;
   3639  1.1   dyoung 	u16 alt_san_mac_blk_offset;
   3640  1.1   dyoung 
   3641  1.1   dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   3642  1.1   dyoung 
   3643  1.1   dyoung 	/* clear output first */
   3644  1.1   dyoung 	*wwnn_prefix = 0xFFFF;
   3645  1.1   dyoung 	*wwpn_prefix = 0xFFFF;
   3646  1.1   dyoung 
   3647  1.1   dyoung 	/* check if alternative SAN MAC is supported */
   3648  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
   3649  1.3  msaitoh 			    &alt_san_mac_blk_offset);
   3650  1.1   dyoung 
   3651  1.1   dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   3652  1.1   dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   3653  1.1   dyoung 		goto wwn_prefix_out;
   3654  1.1   dyoung 
   3655  1.1   dyoung 	/* check capability in alternative san mac address block */
   3656  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3657  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, &caps);
   3658  1.1   dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3659  1.1   dyoung 		goto wwn_prefix_out;
   3660  1.1   dyoung 
   3661  1.1   dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   3662  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3663  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
   3664  1.1   dyoung 
   3665  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3666  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
   3667  1.1   dyoung 
   3668  1.1   dyoung wwn_prefix_out:
   3669  1.1   dyoung 	return IXGBE_SUCCESS;
   3670  1.1   dyoung }
   3671  1.1   dyoung 
   3672  1.1   dyoung /**
   3673  1.1   dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   3674  1.1   dyoung  *  @hw: pointer to hardware structure
   3675  1.1   dyoung  *  @bs: the fcoe boot status
   3676  1.1   dyoung  *
   3677  1.1   dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   3678  1.1   dyoung  **/
   3679  1.1   dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   3680  1.1   dyoung {
   3681  1.1   dyoung 	u16 offset, caps, flags;
   3682  1.1   dyoung 	s32 status;
   3683  1.1   dyoung 
   3684  1.1   dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   3685  1.1   dyoung 
   3686  1.1   dyoung 	/* clear output first */
   3687  1.1   dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   3688  1.1   dyoung 
   3689  1.1   dyoung 	/* check if FCOE IBA block is present */
   3690  1.1   dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   3691  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   3692  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3693  1.1   dyoung 		goto out;
   3694  1.1   dyoung 
   3695  1.1   dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   3696  1.1   dyoung 		goto out;
   3697  1.1   dyoung 
   3698  1.1   dyoung 	/* check if iSCSI FCOE block is populated */
   3699  1.1   dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   3700  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3701  1.1   dyoung 		goto out;
   3702  1.1   dyoung 
   3703  1.1   dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   3704  1.1   dyoung 		goto out;
   3705  1.1   dyoung 
   3706  1.1   dyoung 	/* read fcoe flags in iSCSI FCOE block */
   3707  1.1   dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   3708  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   3709  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3710  1.1   dyoung 		goto out;
   3711  1.1   dyoung 
   3712  1.1   dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   3713  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   3714  1.1   dyoung 	else
   3715  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   3716  1.1   dyoung 
   3717  1.1   dyoung out:
   3718  1.1   dyoung 	return status;
   3719  1.1   dyoung }
   3720  1.1   dyoung 
   3721  1.1   dyoung /**
   3722  1.1   dyoung  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
   3723  1.1   dyoung  *  control
   3724  1.1   dyoung  *  @hw: pointer to hardware structure
   3725  1.1   dyoung  *
   3726  1.1   dyoung  *  There are several phys that do not support autoneg flow control. This
   3727  1.1   dyoung  *  function check the device id to see if the associated phy supports
   3728  1.1   dyoung  *  autoneg flow control.
   3729  1.1   dyoung  **/
   3730  1.1   dyoung static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
   3731  1.1   dyoung {
   3732  1.1   dyoung 
   3733  1.1   dyoung 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
   3734  1.1   dyoung 
   3735  1.1   dyoung 	switch (hw->device_id) {
   3736  1.3  msaitoh 	case IXGBE_DEV_ID_X540T:
   3737  1.3  msaitoh 		return IXGBE_SUCCESS;
   3738  1.1   dyoung 	case IXGBE_DEV_ID_82599_T3_LOM:
   3739  1.1   dyoung 		return IXGBE_SUCCESS;
   3740  1.1   dyoung 	default:
   3741  1.1   dyoung 		return IXGBE_ERR_FC_NOT_SUPPORTED;
   3742  1.1   dyoung 	}
   3743  1.1   dyoung }
   3744  1.1   dyoung 
   3745  1.1   dyoung /**
   3746  1.1   dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   3747  1.1   dyoung  *  @hw: pointer to hardware structure
   3748  1.1   dyoung  *  @enable: enable or disable switch for anti-spoofing
   3749  1.1   dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   3750  1.1   dyoung  *
   3751  1.1   dyoung  **/
   3752  1.1   dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   3753  1.1   dyoung {
   3754  1.1   dyoung 	int j;
   3755  1.1   dyoung 	int pf_target_reg = pf >> 3;
   3756  1.1   dyoung 	int pf_target_shift = pf % 8;
   3757  1.1   dyoung 	u32 pfvfspoof = 0;
   3758  1.1   dyoung 
   3759  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3760  1.1   dyoung 		return;
   3761  1.1   dyoung 
   3762  1.1   dyoung 	if (enable)
   3763  1.1   dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   3764  1.1   dyoung 
   3765  1.1   dyoung 	/*
   3766  1.1   dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   3767  1.1   dyoung 	 * MAC anti-spoof enables in each register array element.
   3768  1.1   dyoung 	 */
   3769  1.1   dyoung 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   3770  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3771  1.1   dyoung 
   3772  1.1   dyoung 	/* If not enabling anti-spoofing then done */
   3773  1.1   dyoung 	if (!enable)
   3774  1.1   dyoung 		return;
   3775  1.1   dyoung 
   3776  1.1   dyoung 	/*
   3777  1.1   dyoung 	 * The PF should be allowed to spoof so that it can support
   3778  1.1   dyoung 	 * emulation mode NICs.  Reset the bit assigned to the PF
   3779  1.1   dyoung 	 */
   3780  1.1   dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
   3781  1.1   dyoung 	pfvfspoof ^= (1 << pf_target_shift);
   3782  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
   3783  1.1   dyoung }
   3784  1.1   dyoung 
   3785  1.1   dyoung /**
   3786  1.1   dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   3787  1.1   dyoung  *  @hw: pointer to hardware structure
   3788  1.1   dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   3789  1.1   dyoung  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   3790  1.1   dyoung  *
   3791  1.1   dyoung  **/
   3792  1.1   dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3793  1.1   dyoung {
   3794  1.1   dyoung 	int vf_target_reg = vf >> 3;
   3795  1.1   dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   3796  1.1   dyoung 	u32 pfvfspoof;
   3797  1.1   dyoung 
   3798  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3799  1.1   dyoung 		return;
   3800  1.1   dyoung 
   3801  1.1   dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3802  1.1   dyoung 	if (enable)
   3803  1.1   dyoung 		pfvfspoof |= (1 << vf_target_shift);
   3804  1.1   dyoung 	else
   3805  1.1   dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   3806  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3807  1.1   dyoung }
   3808  1.1   dyoung 
   3809  1.1   dyoung /**
   3810  1.1   dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   3811  1.1   dyoung  *  @hw: pointer to hardware structure
   3812  1.1   dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   3813  1.1   dyoung  *
   3814  1.1   dyoung  *  This function will read the EEPROM location for the device capabilities,
   3815  1.1   dyoung  *  and return the word through device_caps.
   3816  1.1   dyoung  **/
   3817  1.1   dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   3818  1.1   dyoung {
   3819  1.1   dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   3820  1.1   dyoung 
   3821  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   3822  1.1   dyoung 
   3823  1.1   dyoung 	return IXGBE_SUCCESS;
   3824  1.1   dyoung }
   3825  1.1   dyoung 
   3826  1.1   dyoung /**
   3827  1.1   dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   3828  1.1   dyoung  *  @hw: pointer to hardware structure
   3829  1.1   dyoung  *
   3830  1.1   dyoung  **/
   3831  1.1   dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   3832  1.1   dyoung {
   3833  1.1   dyoung 	u32 regval;
   3834  1.1   dyoung 	u32 i;
   3835  1.1   dyoung 
   3836  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   3837  1.1   dyoung 
   3838  1.1   dyoung 	/* Enable relaxed ordering */
   3839  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   3840  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   3841  1.1   dyoung 		regval |= IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
   3842  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   3843  1.1   dyoung 	}
   3844  1.1   dyoung 
   3845  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   3846  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   3847  1.1   dyoung 		regval |= (IXGBE_DCA_RXCTRL_DESC_WRO_EN |
   3848  1.3  msaitoh 			   IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
   3849  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   3850  1.1   dyoung 	}
   3851  1.1   dyoung 
   3852  1.1   dyoung }
   3853  1.3  msaitoh 
   3854  1.3  msaitoh /**
   3855  1.3  msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   3856  1.3  msaitoh  *  @buffer: pointer to EEPROM
   3857  1.3  msaitoh  *  @length: size of EEPROM to calculate a checksum for
   3858  1.3  msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   3859  1.3  msaitoh  *  checksum calculated is returned.
   3860  1.3  msaitoh  **/
   3861  1.3  msaitoh static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   3862  1.3  msaitoh {
   3863  1.3  msaitoh 	u32 i;
   3864  1.3  msaitoh 	u8 sum = 0;
   3865  1.3  msaitoh 
   3866  1.3  msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   3867  1.3  msaitoh 
   3868  1.3  msaitoh 	if (!buffer)
   3869  1.3  msaitoh 		return 0;
   3870  1.3  msaitoh 
   3871  1.3  msaitoh 	for (i = 0; i < length; i++)
   3872  1.3  msaitoh 		sum += buffer[i];
   3873  1.3  msaitoh 
   3874  1.3  msaitoh 	return (u8) (0 - sum);
   3875  1.3  msaitoh }
   3876  1.3  msaitoh 
   3877  1.3  msaitoh /**
   3878  1.3  msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   3879  1.3  msaitoh  *  @hw: pointer to the HW structure
   3880  1.3  msaitoh  *  @buffer: contains the command to write and where the return status will
   3881  1.3  msaitoh  *   be placed
   3882  1.3  msaitoh  *  @lenght: lenght of buffer, must be multiple of 4 bytes
   3883  1.3  msaitoh  *
   3884  1.3  msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   3885  1.3  msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   3886  1.3  msaitoh  **/
   3887  1.3  msaitoh static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   3888  1.3  msaitoh 					u32 length)
   3889  1.3  msaitoh {
   3890  1.3  msaitoh 	u32 hicr, i, bi;
   3891  1.3  msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   3892  1.3  msaitoh 	u8 buf_len, dword_len;
   3893  1.3  msaitoh 
   3894  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3895  1.3  msaitoh 
   3896  1.3  msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   3897  1.3  msaitoh 
   3898  1.3  msaitoh 	if (length == 0 || length & 0x3 ||
   3899  1.3  msaitoh 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   3900  1.3  msaitoh 		DEBUGOUT("Buffer length failure.\n");
   3901  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3902  1.3  msaitoh 		goto out;
   3903  1.3  msaitoh 	}
   3904  1.3  msaitoh 
   3905  1.3  msaitoh 	/* Check that the host interface is enabled. */
   3906  1.3  msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3907  1.3  msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   3908  1.3  msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   3909  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3910  1.3  msaitoh 		goto out;
   3911  1.3  msaitoh 	}
   3912  1.3  msaitoh 
   3913  1.3  msaitoh 	/* Calculate length in DWORDs */
   3914  1.3  msaitoh 	dword_len = length >> 2;
   3915  1.3  msaitoh 
   3916  1.3  msaitoh 	/*
   3917  1.3  msaitoh 	 * The device driver writes the relevant command block
   3918  1.3  msaitoh 	 * into the ram area.
   3919  1.3  msaitoh 	 */
   3920  1.3  msaitoh 	for (i = 0; i < dword_len; i++)
   3921  1.3  msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   3922  1.3  msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   3923  1.3  msaitoh 
   3924  1.3  msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   3925  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   3926  1.3  msaitoh 
   3927  1.3  msaitoh 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
   3928  1.3  msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3929  1.3  msaitoh 		if (!(hicr & IXGBE_HICR_C))
   3930  1.3  msaitoh 			break;
   3931  1.3  msaitoh 		msec_delay(1);
   3932  1.3  msaitoh 	}
   3933  1.3  msaitoh 
   3934  1.3  msaitoh 	/* Check command successful completion. */
   3935  1.3  msaitoh 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
   3936  1.3  msaitoh 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
   3937  1.3  msaitoh 		DEBUGOUT("Command has failed with no status valid.\n");
   3938  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3939  1.3  msaitoh 		goto out;
   3940  1.3  msaitoh 	}
   3941  1.3  msaitoh 
   3942  1.3  msaitoh 	/* Calculate length in DWORDs */
   3943  1.3  msaitoh 	dword_len = hdr_size >> 2;
   3944  1.3  msaitoh 
   3945  1.3  msaitoh 	/* first pull in the header so we know the buffer length */
   3946  1.3  msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   3947  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3948  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3949  1.3  msaitoh 	}
   3950  1.3  msaitoh 
   3951  1.3  msaitoh 	/* If there is any thing in data position pull it in */
   3952  1.3  msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   3953  1.3  msaitoh 	if (buf_len == 0)
   3954  1.3  msaitoh 		goto out;
   3955  1.3  msaitoh 
   3956  1.3  msaitoh 	if (length < (buf_len + hdr_size)) {
   3957  1.3  msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   3958  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3959  1.3  msaitoh 		goto out;
   3960  1.3  msaitoh 	}
   3961  1.3  msaitoh 
   3962  1.3  msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   3963  1.3  msaitoh 	dword_len = (buf_len + 3) >> 2;
   3964  1.3  msaitoh 
   3965  1.3  msaitoh 	/* Pull in the rest of the buffer (bi is where we left off)*/
   3966  1.3  msaitoh 	for (; bi <= dword_len; bi++) {
   3967  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3968  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3969  1.3  msaitoh 	}
   3970  1.3  msaitoh 
   3971  1.3  msaitoh out:
   3972  1.3  msaitoh 	return ret_val;
   3973  1.3  msaitoh }
   3974  1.3  msaitoh 
   3975  1.3  msaitoh /**
   3976  1.3  msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   3977  1.3  msaitoh  *  @hw: pointer to the HW structure
   3978  1.3  msaitoh  *  @maj: driver version major number
   3979  1.3  msaitoh  *  @min: driver version minor number
   3980  1.3  msaitoh  *  @build: driver version build number
   3981  1.3  msaitoh  *  @sub: driver version sub build number
   3982  1.3  msaitoh  *
   3983  1.3  msaitoh  *  Sends driver version number to firmware through the manageability
   3984  1.3  msaitoh  *  block.  On success return IXGBE_SUCCESS
   3985  1.3  msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   3986  1.3  msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   3987  1.3  msaitoh  **/
   3988  1.3  msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
   3989  1.3  msaitoh 				 u8 build, u8 sub)
   3990  1.3  msaitoh {
   3991  1.3  msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   3992  1.3  msaitoh 	int i;
   3993  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3994  1.3  msaitoh 
   3995  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   3996  1.3  msaitoh 
   3997  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   3998  1.3  msaitoh 	    != IXGBE_SUCCESS) {
   3999  1.3  msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4000  1.3  msaitoh 		goto out;
   4001  1.3  msaitoh 	}
   4002  1.3  msaitoh 
   4003  1.3  msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4004  1.3  msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4005  1.3  msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4006  1.3  msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4007  1.3  msaitoh 	fw_cmd.ver_maj = maj;
   4008  1.3  msaitoh 	fw_cmd.ver_min = min;
   4009  1.3  msaitoh 	fw_cmd.ver_build = build;
   4010  1.3  msaitoh 	fw_cmd.ver_sub = sub;
   4011  1.3  msaitoh 	fw_cmd.hdr.checksum = 0;
   4012  1.3  msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4013  1.3  msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4014  1.3  msaitoh 	fw_cmd.pad = 0;
   4015  1.3  msaitoh 	fw_cmd.pad2 = 0;
   4016  1.3  msaitoh 
   4017  1.3  msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4018  1.3  msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4019  1.3  msaitoh 						       sizeof(fw_cmd));
   4020  1.3  msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4021  1.3  msaitoh 			continue;
   4022  1.3  msaitoh 
   4023  1.3  msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4024  1.3  msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4025  1.3  msaitoh 			ret_val = IXGBE_SUCCESS;
   4026  1.3  msaitoh 		else
   4027  1.3  msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4028  1.3  msaitoh 
   4029  1.3  msaitoh 		break;
   4030  1.3  msaitoh 	}
   4031  1.3  msaitoh 
   4032  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4033  1.3  msaitoh out:
   4034  1.3  msaitoh 	return ret_val;
   4035  1.3  msaitoh }
   4036  1.3  msaitoh 
   4037  1.3  msaitoh /**
   4038  1.3  msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4039  1.3  msaitoh  * @hw: pointer to hardware structure
   4040  1.3  msaitoh  * @num_pb: number of packet buffers to allocate
   4041  1.3  msaitoh  * @headroom: reserve n KB of headroom
   4042  1.3  msaitoh  * @strategy: packet buffer allocation strategy
   4043  1.3  msaitoh  **/
   4044  1.3  msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4045  1.3  msaitoh 			     int strategy)
   4046  1.3  msaitoh {
   4047  1.3  msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4048  1.3  msaitoh 	int i = 0;
   4049  1.3  msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4050  1.3  msaitoh 
   4051  1.3  msaitoh 	/* Reserve headroom */
   4052  1.3  msaitoh 	pbsize -= headroom;
   4053  1.3  msaitoh 
   4054  1.3  msaitoh 	if (!num_pb)
   4055  1.3  msaitoh 		num_pb = 1;
   4056  1.3  msaitoh 
   4057  1.3  msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4058  1.3  msaitoh 	 * buffers requested using supplied strategy.
   4059  1.3  msaitoh 	 */
   4060  1.3  msaitoh 	switch (strategy) {
   4061  1.3  msaitoh 	case (PBA_STRATEGY_WEIGHTED):
   4062  1.3  msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4063  1.3  msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4064  1.3  msaitoh 		 */
   4065  1.3  msaitoh 		rxpktsize = (pbsize * 5 * 2) / (num_pb * 8);
   4066  1.3  msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4067  1.3  msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4068  1.3  msaitoh 		for (; i < (num_pb / 2); i++)
   4069  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4070  1.3  msaitoh 		/* Fall through to configure remaining packet buffers */
   4071  1.3  msaitoh 	case (PBA_STRATEGY_EQUAL):
   4072  1.3  msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4073  1.3  msaitoh 		for (; i < num_pb; i++)
   4074  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4075  1.3  msaitoh 		break;
   4076  1.3  msaitoh 	default:
   4077  1.3  msaitoh 		break;
   4078  1.3  msaitoh 	}
   4079  1.3  msaitoh 
   4080  1.3  msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4081  1.3  msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4082  1.3  msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4083  1.3  msaitoh 	for (i = 0; i < num_pb; i++) {
   4084  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4085  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4086  1.3  msaitoh 	}
   4087  1.3  msaitoh 
   4088  1.3  msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4089  1.3  msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4090  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4091  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4092  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4093  1.3  msaitoh 	}
   4094  1.3  msaitoh }
   4095  1.3  msaitoh 
   4096  1.3  msaitoh /**
   4097  1.3  msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4098  1.3  msaitoh  * @hw: pointer to the hardware structure
   4099  1.3  msaitoh  *
   4100  1.3  msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4101  1.3  msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4102  1.3  msaitoh  * buffers on the system.
   4103  1.3  msaitoh  **/
   4104  1.3  msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4105  1.3  msaitoh {
   4106  1.3  msaitoh 	u32 gcr_ext, hlreg0;
   4107  1.3  msaitoh 
   4108  1.3  msaitoh 	/*
   4109  1.3  msaitoh 	 * If double reset is not requested then all transactions should
   4110  1.3  msaitoh 	 * already be clear and as such there is no work to do
   4111  1.3  msaitoh 	 */
   4112  1.3  msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4113  1.3  msaitoh 		return;
   4114  1.3  msaitoh 
   4115  1.3  msaitoh 	/*
   4116  1.3  msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4117  1.3  msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4118  1.3  msaitoh 	 * has already been cleared.
   4119  1.3  msaitoh 	 */
   4120  1.3  msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4121  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4122  1.3  msaitoh 
   4123  1.3  msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4124  1.3  msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4125  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4126  1.3  msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4127  1.3  msaitoh 
   4128  1.3  msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4129  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4130  1.3  msaitoh 	usec_delay(20);
   4131  1.3  msaitoh 
   4132  1.3  msaitoh 	/* restore previous register values */
   4133  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4134  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4135  1.3  msaitoh }
   4136  1.3  msaitoh 
   4137