Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.32
      1  1.32    andvar /* $NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $ */
      2  1.14   msaitoh 
      3   1.1    dyoung /******************************************************************************
      4  1.16   msaitoh   SPDX-License-Identifier: BSD-3-Clause
      5   1.1    dyoung 
      6  1.14   msaitoh   Copyright (c) 2001-2017, Intel Corporation
      7   1.1    dyoung   All rights reserved.
      8  1.14   msaitoh 
      9  1.14   msaitoh   Redistribution and use in source and binary forms, with or without
     10   1.1    dyoung   modification, are permitted provided that the following conditions are met:
     11  1.14   msaitoh 
     12  1.14   msaitoh    1. Redistributions of source code must retain the above copyright notice,
     13   1.1    dyoung       this list of conditions and the following disclaimer.
     14  1.14   msaitoh 
     15  1.14   msaitoh    2. Redistributions in binary form must reproduce the above copyright
     16  1.14   msaitoh       notice, this list of conditions and the following disclaimer in the
     17   1.1    dyoung       documentation and/or other materials provided with the distribution.
     18  1.14   msaitoh 
     19  1.14   msaitoh    3. Neither the name of the Intel Corporation nor the names of its
     20  1.14   msaitoh       contributors may be used to endorse or promote products derived from
     21   1.1    dyoung       this software without specific prior written permission.
     22  1.14   msaitoh 
     23   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     24  1.14   msaitoh   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.14   msaitoh   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.14   msaitoh   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     27  1.14   msaitoh   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.14   msaitoh   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.14   msaitoh   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.14   msaitoh   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.14   msaitoh   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     34   1.1    dyoung 
     35   1.1    dyoung ******************************************************************************/
     36  1.22   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
     37   1.1    dyoung 
     38  1.31   msaitoh #include <sys/cdefs.h>
     39  1.32    andvar __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $");
     40  1.31   msaitoh 
     41   1.1    dyoung #include "ixgbe_common.h"
     42   1.1    dyoung #include "ixgbe_phy.h"
     43   1.6   msaitoh #include "ixgbe_dcb.h"
     44   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     45   1.1    dyoung #include "ixgbe_api.h"
     46   1.1    dyoung 
     47   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     48   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     49   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     50   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     51   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     52   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     53   1.3   msaitoh 					u16 count);
     54   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     55   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     56   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     57   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     58   1.1    dyoung 
     59   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     60   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     61   1.3   msaitoh 					 u16 *san_mac_offset);
     62   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     63   1.3   msaitoh 					     u16 words, u16 *data);
     64   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     65   1.3   msaitoh 					      u16 words, u16 *data);
     66   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     67   1.3   msaitoh 						 u16 offset);
     68   1.1    dyoung 
     69   1.1    dyoung /**
     70   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     71   1.1    dyoung  *  @hw: pointer to the hardware structure
     72   1.1    dyoung  *
     73   1.1    dyoung  *  Initialize the function pointers.
     74   1.1    dyoung  **/
     75   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     76   1.1    dyoung {
     77   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     78   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     79  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     80   1.1    dyoung 
     81   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     82   1.1    dyoung 
     83   1.1    dyoung 	/* EEPROM */
     84   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     85   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     86   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     87   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     88   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     89   1.3   msaitoh 	} else {
     90   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     91   1.3   msaitoh 		eeprom->ops.read_buffer =
     92   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     93   1.3   msaitoh 	}
     94   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     95   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     96   1.1    dyoung 	eeprom->ops.validate_checksum =
     97   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     98   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     99   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
    100   1.1    dyoung 
    101   1.1    dyoung 	/* MAC */
    102   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
    103   1.1    dyoung 	mac->ops.reset_hw = NULL;
    104   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    105   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    106   1.1    dyoung 	mac->ops.get_media_type = NULL;
    107   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    108   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    109   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    110   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    111   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    112   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    113   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    114   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    115   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    116   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    117   1.1    dyoung 
    118   1.1    dyoung 	/* LEDs */
    119   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    120   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    121   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    122   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    123  1.14   msaitoh 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    124   1.1    dyoung 
    125   1.1    dyoung 	/* RAR, Multicast, VLAN */
    126   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    127   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    128   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    129   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    130   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    131   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    132   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    133   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    134   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    135   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    136   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    137   1.1    dyoung 	mac->ops.set_vfta = NULL;
    138   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    139   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    140   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    141   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    142  1.23   msaitoh 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
    143   1.1    dyoung 
    144   1.1    dyoung 	/* Flow Control */
    145   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    146   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    147  1.14   msaitoh 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    148   1.1    dyoung 
    149   1.1    dyoung 	/* Link */
    150   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    151   1.1    dyoung 	mac->ops.setup_link = NULL;
    152   1.1    dyoung 	mac->ops.check_link = NULL;
    153   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    154   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    155   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    156   1.1    dyoung 
    157   1.1    dyoung 	return IXGBE_SUCCESS;
    158   1.1    dyoung }
    159   1.1    dyoung 
    160   1.1    dyoung /**
    161   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    162   1.6   msaitoh  * of flow control
    163   1.6   msaitoh  * @hw: pointer to hardware structure
    164   1.6   msaitoh  *
    165   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    166   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    167   1.4   msaitoh  *
    168   1.4   msaitoh  **/
    169   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    170   1.4   msaitoh {
    171   1.6   msaitoh 	bool supported = FALSE;
    172   1.6   msaitoh 	ixgbe_link_speed speed;
    173   1.6   msaitoh 	bool link_up;
    174   1.4   msaitoh 
    175   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    176   1.4   msaitoh 
    177   1.6   msaitoh 	switch (hw->phy.media_type) {
    178   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    179   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    180   1.6   msaitoh 	case ixgbe_media_type_fiber:
    181  1.14   msaitoh 		/* flow control autoneg black list */
    182  1.14   msaitoh 		switch (hw->device_id) {
    183  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP:
    184  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    185  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    186  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    187  1.14   msaitoh 			supported = FALSE;
    188  1.14   msaitoh 			break;
    189  1.14   msaitoh 		default:
    190  1.14   msaitoh 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    191  1.14   msaitoh 			/* if link is down, assume supported */
    192  1.14   msaitoh 			if (link_up)
    193  1.14   msaitoh 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    194  1.14   msaitoh 				    TRUE : FALSE;
    195  1.14   msaitoh 			else
    196  1.14   msaitoh 				supported = TRUE;
    197  1.14   msaitoh 		}
    198  1.14   msaitoh 
    199  1.14   msaitoh 		break;
    200  1.14   msaitoh 	case ixgbe_media_type_backplane:
    201  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    202  1.14   msaitoh 			supported = FALSE;
    203   1.6   msaitoh 		else
    204   1.6   msaitoh 			supported = TRUE;
    205   1.6   msaitoh 		break;
    206   1.6   msaitoh 	case ixgbe_media_type_copper:
    207   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    208   1.6   msaitoh 		switch (hw->device_id) {
    209   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    210   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    211   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    212   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    213   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    214  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    215   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    216  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    217  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    218  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    219   1.6   msaitoh 			supported = TRUE;
    220   1.6   msaitoh 			break;
    221   1.6   msaitoh 		default:
    222   1.6   msaitoh 			supported = FALSE;
    223   1.6   msaitoh 		}
    224   1.4   msaitoh 	default:
    225   1.6   msaitoh 		break;
    226   1.4   msaitoh 	}
    227   1.6   msaitoh 
    228  1.14   msaitoh 	if (!supported)
    229  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    230  1.14   msaitoh 			      "Device %x does not support flow control autoneg",
    231  1.14   msaitoh 			      hw->device_id);
    232  1.17   msaitoh 
    233   1.6   msaitoh 	return supported;
    234   1.4   msaitoh }
    235   1.4   msaitoh 
    236   1.4   msaitoh /**
    237   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    238   1.4   msaitoh  *  @hw: pointer to hardware structure
    239   1.4   msaitoh  *
    240   1.4   msaitoh  *  Called at init time to set up flow control.
    241   1.4   msaitoh  **/
    242   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    243   1.4   msaitoh {
    244   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    245   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    246   1.4   msaitoh 	u16 reg_cu = 0;
    247   1.8   msaitoh 	bool locked = FALSE;
    248   1.4   msaitoh 
    249   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    250   1.4   msaitoh 
    251   1.8   msaitoh 	/* Validate the requested mode */
    252   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    253   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    254   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    255   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    256   1.4   msaitoh 		goto out;
    257   1.4   msaitoh 	}
    258   1.4   msaitoh 
    259   1.4   msaitoh 	/*
    260   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    261   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    262   1.4   msaitoh 	 */
    263   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    264   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    265   1.4   msaitoh 
    266   1.4   msaitoh 	/*
    267   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    268   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    269   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    270   1.4   msaitoh 	 */
    271   1.4   msaitoh 	switch (hw->phy.media_type) {
    272   1.8   msaitoh 	case ixgbe_media_type_backplane:
    273   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    274   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    275   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    276   1.8   msaitoh 			goto out;
    277   1.8   msaitoh 
    278  1.14   msaitoh 		/* fall through - only backplane uses autoc */
    279   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    280   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    281   1.4   msaitoh 	case ixgbe_media_type_fiber:
    282   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    283   1.8   msaitoh 
    284   1.4   msaitoh 		break;
    285   1.4   msaitoh 	case ixgbe_media_type_copper:
    286   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    287   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    288   1.4   msaitoh 		break;
    289   1.4   msaitoh 	default:
    290   1.4   msaitoh 		break;
    291   1.4   msaitoh 	}
    292   1.4   msaitoh 
    293   1.4   msaitoh 	/*
    294   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    295   1.4   msaitoh 	 * 0: Flow control is completely disabled
    296   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    297   1.4   msaitoh 	 *    but not send pause frames).
    298   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    299   1.4   msaitoh 	 *    we do not support receiving pause frames).
    300   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    301   1.4   msaitoh 	 * other: Invalid.
    302   1.4   msaitoh 	 */
    303   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    304   1.4   msaitoh 	case ixgbe_fc_none:
    305   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    306   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    307   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    308   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    309   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    310   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    311   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    312   1.4   msaitoh 		break;
    313   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    314   1.4   msaitoh 		/*
    315   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    316   1.4   msaitoh 		 * disabled by software override.
    317   1.4   msaitoh 		 */
    318   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    319   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    320   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    321   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    322   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    323   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    324   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    325   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    326   1.4   msaitoh 		}
    327   1.4   msaitoh 		break;
    328   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    329   1.4   msaitoh 		/*
    330   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    331   1.4   msaitoh 		 * disabled by software override. Since there really
    332   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    333   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    334   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    335   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    336   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    337   1.4   msaitoh 		 */
    338   1.4   msaitoh 	case ixgbe_fc_full:
    339   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    340   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    341   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    342   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    343   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    344   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    345   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    346   1.4   msaitoh 		break;
    347   1.4   msaitoh 	default:
    348   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    349   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    350   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    351   1.4   msaitoh 		goto out;
    352   1.4   msaitoh 		break;
    353   1.4   msaitoh 	}
    354   1.4   msaitoh 
    355   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    356   1.4   msaitoh 		/*
    357   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    358   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    359   1.4   msaitoh 		 */
    360   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    361   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    362   1.4   msaitoh 
    363   1.4   msaitoh 		/* Disable AN timeout */
    364   1.4   msaitoh 		if (hw->fc.strict_ieee)
    365   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    366   1.4   msaitoh 
    367   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    368   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    369   1.4   msaitoh 	}
    370   1.4   msaitoh 
    371   1.4   msaitoh 	/*
    372   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    373   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    374   1.4   msaitoh 	 *
    375   1.4   msaitoh 	 */
    376   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    377   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    378   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    379   1.8   msaitoh 		if (ret_val)
    380   1.8   msaitoh 			goto out;
    381   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    382   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    383   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    384   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    385   1.4   msaitoh 	}
    386   1.4   msaitoh 
    387   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    388   1.4   msaitoh out:
    389   1.4   msaitoh 	return ret_val;
    390   1.4   msaitoh }
    391   1.4   msaitoh 
    392   1.4   msaitoh /**
    393   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    394   1.1    dyoung  *  @hw: pointer to hardware structure
    395   1.1    dyoung  *
    396   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    397   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    398   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    399   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    400   1.1    dyoung  **/
    401   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    402   1.1    dyoung {
    403   1.4   msaitoh 	s32 ret_val;
    404   1.1    dyoung 	u32 ctrl_ext;
    405  1.14   msaitoh 	u16 device_caps;
    406   1.1    dyoung 
    407   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    408   1.1    dyoung 
    409   1.1    dyoung 	/* Set the media type */
    410   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    411   1.1    dyoung 
    412   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    413   1.1    dyoung 
    414   1.1    dyoung 	/* Clear the VLAN filter table */
    415   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    416   1.1    dyoung 
    417   1.1    dyoung 	/* Clear statistics registers */
    418   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    419   1.1    dyoung 
    420   1.1    dyoung 	/* Set No Snoop Disable */
    421   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    422   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    423   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    424   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    425   1.1    dyoung 
    426   1.1    dyoung 	/* Setup flow control */
    427   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    428  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    429  1.14   msaitoh 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    430  1.14   msaitoh 		return ret_val;
    431  1.14   msaitoh 	}
    432  1.14   msaitoh 
    433  1.14   msaitoh 	/* Cache bit indicating need for crosstalk fix */
    434  1.14   msaitoh 	switch (hw->mac.type) {
    435  1.14   msaitoh 	case ixgbe_mac_82599EB:
    436  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
    437  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
    438  1.14   msaitoh 		hw->mac.ops.get_device_caps(hw, &device_caps);
    439  1.14   msaitoh 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    440  1.14   msaitoh 			hw->need_crosstalk_fix = FALSE;
    441  1.14   msaitoh 		else
    442  1.14   msaitoh 			hw->need_crosstalk_fix = TRUE;
    443  1.14   msaitoh 		break;
    444  1.14   msaitoh 	default:
    445  1.14   msaitoh 		hw->need_crosstalk_fix = FALSE;
    446  1.14   msaitoh 		break;
    447  1.14   msaitoh 	}
    448   1.1    dyoung 
    449   1.1    dyoung 	/* Clear adapter stopped flag */
    450   1.1    dyoung 	hw->adapter_stopped = FALSE;
    451   1.1    dyoung 
    452  1.14   msaitoh 	return IXGBE_SUCCESS;
    453   1.1    dyoung }
    454   1.1    dyoung 
    455   1.1    dyoung /**
    456   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    457   1.1    dyoung  *  @hw: pointer to hw structure
    458   1.1    dyoung  *
    459   1.1    dyoung  * Performs the init sequence common to the second generation
    460   1.1    dyoung  * of 10 GbE devices.
    461   1.1    dyoung  * Devices in the second generation:
    462   1.1    dyoung  *     82599
    463   1.1    dyoung  *     X540
    464   1.1    dyoung  **/
    465   1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    466   1.1    dyoung {
    467   1.1    dyoung 	u32 i;
    468   1.1    dyoung 	u32 regval;
    469   1.1    dyoung 
    470  1.27   msaitoh 	DEBUGFUNC("ixgbe_start_hw_gen2");
    471  1.27   msaitoh 
    472   1.1    dyoung 	/* Clear the rate limiters */
    473   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    474   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    475   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    476   1.1    dyoung 	}
    477   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    478   1.1    dyoung 
    479   1.1    dyoung 	/* Disable relaxed ordering */
    480   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    481   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    482   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    483   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    484   1.1    dyoung 	}
    485   1.1    dyoung 
    486   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    487   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    488   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    489   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    490   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    491   1.1    dyoung 	}
    492   1.1    dyoung 
    493   1.1    dyoung 	return IXGBE_SUCCESS;
    494   1.1    dyoung }
    495   1.1    dyoung 
    496   1.1    dyoung /**
    497   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    498   1.1    dyoung  *  @hw: pointer to hardware structure
    499   1.1    dyoung  *
    500   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    501   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    502   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    503   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    504   1.1    dyoung  *  disabled and uninitialized
    505   1.1    dyoung  **/
    506   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    507   1.1    dyoung {
    508   1.1    dyoung 	s32 status;
    509   1.1    dyoung 
    510   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    511   1.1    dyoung 
    512   1.1    dyoung 	/* Reset the hardware */
    513   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    514   1.1    dyoung 
    515  1.14   msaitoh 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    516   1.1    dyoung 		/* Start the HW */
    517   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    518   1.1    dyoung 	}
    519   1.1    dyoung 
    520  1.14   msaitoh 	/* Initialize the LED link active for LED blink support */
    521  1.14   msaitoh 	if (hw->mac.ops.init_led_link_act)
    522  1.14   msaitoh 		hw->mac.ops.init_led_link_act(hw);
    523  1.14   msaitoh 
    524  1.14   msaitoh 	if (status != IXGBE_SUCCESS)
    525  1.14   msaitoh 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    526  1.14   msaitoh 
    527   1.1    dyoung 	return status;
    528   1.1    dyoung }
    529   1.1    dyoung 
    530   1.1    dyoung /**
    531   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    532   1.1    dyoung  *  @hw: pointer to hardware structure
    533   1.1    dyoung  *
    534   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    535   1.1    dyoung  *  Statistics counters are clear on read.
    536   1.1    dyoung  **/
    537   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    538   1.1    dyoung {
    539   1.1    dyoung 	u16 i = 0;
    540   1.1    dyoung 
    541   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    542   1.1    dyoung 
    543   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    544   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    545   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    546   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    547  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    548  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    549   1.1    dyoung 	for (i = 0; i < 8; i++)
    550   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    551   1.1    dyoung 
    552   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    553   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    554   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    555   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    556   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    557   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    558   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    559   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    560   1.1    dyoung 	} else {
    561   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    562   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    563   1.1    dyoung 	}
    564   1.1    dyoung 
    565   1.1    dyoung 	for (i = 0; i < 8; i++) {
    566   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    567   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    568   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    569   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    570   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    571   1.1    dyoung 		} else {
    572   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    573   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    574   1.1    dyoung 		}
    575   1.1    dyoung 	}
    576   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    577   1.1    dyoung 		for (i = 0; i < 8; i++)
    578   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    579   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    580   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    581   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    582   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    583   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    584   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    585   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    586   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    587   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    588   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    589   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    590   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    591   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    592   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    593   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    594   1.3   msaitoh 		for (i = 0; i < 8; i++)
    595   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    596   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    597   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    598   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    599   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    600   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    601   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    602   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    603   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    604   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    605   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    606   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    607   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    608   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    609   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    610   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    611   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    612   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    613   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    614   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    615   1.1    dyoung 	for (i = 0; i < 16; i++) {
    616   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    617   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    618   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    619   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    620   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    621   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    622   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    623   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    624   1.1    dyoung 		} else {
    625   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    626   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    627   1.1    dyoung 		}
    628   1.1    dyoung 	}
    629   1.1    dyoung 
    630   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    631   1.3   msaitoh 		if (hw->phy.id == 0)
    632   1.3   msaitoh 			ixgbe_identify_phy(hw);
    633   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    634   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    635   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    636   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    637   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    638   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    639   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    640   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    641   1.3   msaitoh 	}
    642   1.3   msaitoh 
    643   1.1    dyoung 	return IXGBE_SUCCESS;
    644   1.1    dyoung }
    645   1.1    dyoung 
    646   1.1    dyoung /**
    647   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    648   1.1    dyoung  *  @hw: pointer to hardware structure
    649   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    650   1.1    dyoung  *  @pba_num_size: part number string buffer length
    651   1.1    dyoung  *
    652   1.1    dyoung  *  Reads the part number string from the EEPROM.
    653   1.1    dyoung  **/
    654   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    655   1.3   msaitoh 				  u32 pba_num_size)
    656   1.1    dyoung {
    657   1.1    dyoung 	s32 ret_val;
    658   1.1    dyoung 	u16 data;
    659   1.1    dyoung 	u16 pba_ptr;
    660   1.1    dyoung 	u16 offset;
    661   1.1    dyoung 	u16 length;
    662   1.1    dyoung 
    663   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    664   1.1    dyoung 
    665   1.1    dyoung 	if (pba_num == NULL) {
    666   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    667   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    668   1.1    dyoung 	}
    669   1.1    dyoung 
    670   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    671   1.1    dyoung 	if (ret_val) {
    672   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    673   1.1    dyoung 		return ret_val;
    674   1.1    dyoung 	}
    675   1.1    dyoung 
    676   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    677   1.1    dyoung 	if (ret_val) {
    678   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    679   1.1    dyoung 		return ret_val;
    680   1.1    dyoung 	}
    681   1.1    dyoung 
    682   1.1    dyoung 	/*
    683   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    684   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    685   1.1    dyoung 	 * and we can decode it into an ascii string
    686   1.1    dyoung 	 */
    687   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    688   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    689   1.1    dyoung 
    690   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    691   1.1    dyoung 		if (pba_num_size < 11) {
    692   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    693   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    694   1.1    dyoung 		}
    695   1.1    dyoung 
    696   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    697   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    698   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    699   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    700   1.1    dyoung 		pba_num[3] = data & 0xF;
    701   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    702   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    703   1.1    dyoung 		pba_num[6] = '-';
    704   1.1    dyoung 		pba_num[7] = 0;
    705   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    706   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    707   1.1    dyoung 
    708   1.1    dyoung 		/* put a null character on the end of our string */
    709   1.1    dyoung 		pba_num[10] = '\0';
    710   1.1    dyoung 
    711   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    712   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    713   1.1    dyoung 			if (pba_num[offset] < 0xA)
    714   1.1    dyoung 				pba_num[offset] += '0';
    715   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    716   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    717   1.1    dyoung 		}
    718   1.1    dyoung 
    719   1.1    dyoung 		return IXGBE_SUCCESS;
    720   1.1    dyoung 	}
    721   1.1    dyoung 
    722   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    723   1.1    dyoung 	if (ret_val) {
    724   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    725   1.1    dyoung 		return ret_val;
    726   1.1    dyoung 	}
    727   1.1    dyoung 
    728   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    729   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    730   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    731   1.1    dyoung 	}
    732   1.1    dyoung 
    733   1.1    dyoung 	/* check if pba_num buffer is big enough */
    734   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    735   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    736   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    737   1.1    dyoung 	}
    738   1.1    dyoung 
    739   1.1    dyoung 	/* trim pba length from start of string */
    740   1.1    dyoung 	pba_ptr++;
    741   1.1    dyoung 	length--;
    742   1.1    dyoung 
    743   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    744   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    745   1.1    dyoung 		if (ret_val) {
    746   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    747   1.1    dyoung 			return ret_val;
    748   1.1    dyoung 		}
    749   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    750   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    751   1.1    dyoung 	}
    752   1.1    dyoung 	pba_num[offset * 2] = '\0';
    753   1.1    dyoung 
    754   1.1    dyoung 	return IXGBE_SUCCESS;
    755   1.1    dyoung }
    756   1.1    dyoung 
    757   1.1    dyoung /**
    758   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    759   1.1    dyoung  *  @hw: pointer to hardware structure
    760   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    761   1.1    dyoung  *
    762   1.1    dyoung  *  Reads the part number from the EEPROM.
    763   1.1    dyoung  **/
    764   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    765   1.1    dyoung {
    766   1.1    dyoung 	s32 ret_val;
    767   1.1    dyoung 	u16 data;
    768   1.1    dyoung 
    769   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    770   1.1    dyoung 
    771   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    772   1.1    dyoung 	if (ret_val) {
    773   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    774   1.1    dyoung 		return ret_val;
    775   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    776   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    777   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    778   1.1    dyoung 	}
    779   1.1    dyoung 	*pba_num = (u32)(data << 16);
    780   1.1    dyoung 
    781   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    782   1.1    dyoung 	if (ret_val) {
    783   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    784   1.1    dyoung 		return ret_val;
    785   1.1    dyoung 	}
    786   1.1    dyoung 	*pba_num |= data;
    787   1.1    dyoung 
    788   1.1    dyoung 	return IXGBE_SUCCESS;
    789   1.1    dyoung }
    790   1.1    dyoung 
    791   1.1    dyoung /**
    792   1.5   msaitoh  *  ixgbe_read_pba_raw
    793   1.5   msaitoh  *  @hw: pointer to the HW structure
    794   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    795   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    796   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    797   1.5   msaitoh  *  @pba: pointer to output PBA structure
    798   1.5   msaitoh  *
    799   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    800   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    801   1.5   msaitoh  *
    802   1.5   msaitoh  **/
    803   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    804   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    805   1.5   msaitoh 		       struct ixgbe_pba *pba)
    806   1.5   msaitoh {
    807   1.5   msaitoh 	s32 ret_val;
    808   1.5   msaitoh 	u16 pba_block_size;
    809   1.5   msaitoh 
    810   1.5   msaitoh 	if (pba == NULL)
    811   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    812   1.5   msaitoh 
    813   1.5   msaitoh 	if (eeprom_buf == NULL) {
    814   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    815   1.5   msaitoh 						     &pba->word[0]);
    816   1.5   msaitoh 		if (ret_val)
    817   1.5   msaitoh 			return ret_val;
    818   1.5   msaitoh 	} else {
    819   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    820   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    821   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    822   1.5   msaitoh 		} else {
    823   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    824   1.5   msaitoh 		}
    825   1.5   msaitoh 	}
    826   1.5   msaitoh 
    827   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    828   1.5   msaitoh 		if (pba->pba_block == NULL)
    829   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    830   1.5   msaitoh 
    831   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    832   1.5   msaitoh 						   eeprom_buf_size,
    833   1.5   msaitoh 						   &pba_block_size);
    834   1.5   msaitoh 		if (ret_val)
    835   1.5   msaitoh 			return ret_val;
    836   1.5   msaitoh 
    837   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    838   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    839   1.5   msaitoh 
    840   1.5   msaitoh 		if (eeprom_buf == NULL) {
    841   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    842   1.5   msaitoh 							     pba_block_size,
    843   1.5   msaitoh 							     pba->pba_block);
    844   1.5   msaitoh 			if (ret_val)
    845   1.5   msaitoh 				return ret_val;
    846   1.5   msaitoh 		} else {
    847   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    848   1.8   msaitoh 					      pba_block_size)) {
    849   1.5   msaitoh 				memcpy(pba->pba_block,
    850   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    851   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    852   1.5   msaitoh 			} else {
    853   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    854   1.5   msaitoh 			}
    855   1.5   msaitoh 		}
    856   1.5   msaitoh 	}
    857   1.5   msaitoh 
    858   1.5   msaitoh 	return IXGBE_SUCCESS;
    859   1.5   msaitoh }
    860   1.5   msaitoh 
    861   1.5   msaitoh /**
    862   1.5   msaitoh  *  ixgbe_write_pba_raw
    863   1.5   msaitoh  *  @hw: pointer to the HW structure
    864   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    865   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    866   1.5   msaitoh  *  @pba: pointer to PBA structure
    867   1.5   msaitoh  *
    868   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    869   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    870   1.5   msaitoh  *
    871   1.5   msaitoh  **/
    872   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    873   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    874   1.5   msaitoh {
    875   1.5   msaitoh 	s32 ret_val;
    876   1.5   msaitoh 
    877   1.5   msaitoh 	if (pba == NULL)
    878   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    879   1.5   msaitoh 
    880   1.5   msaitoh 	if (eeprom_buf == NULL) {
    881   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    882   1.5   msaitoh 						      &pba->word[0]);
    883   1.5   msaitoh 		if (ret_val)
    884   1.5   msaitoh 			return ret_val;
    885   1.5   msaitoh 	} else {
    886   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    887   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    888   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    889   1.5   msaitoh 		} else {
    890   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    891   1.5   msaitoh 		}
    892   1.5   msaitoh 	}
    893   1.5   msaitoh 
    894   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    895   1.5   msaitoh 		if (pba->pba_block == NULL)
    896   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    897   1.5   msaitoh 
    898   1.5   msaitoh 		if (eeprom_buf == NULL) {
    899   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    900   1.5   msaitoh 							      pba->pba_block[0],
    901   1.5   msaitoh 							      pba->pba_block);
    902   1.5   msaitoh 			if (ret_val)
    903   1.5   msaitoh 				return ret_val;
    904   1.5   msaitoh 		} else {
    905   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    906   1.5   msaitoh 					      pba->pba_block[0])) {
    907   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    908   1.5   msaitoh 				       pba->pba_block,
    909   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    910   1.5   msaitoh 			} else {
    911   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    912   1.5   msaitoh 			}
    913   1.5   msaitoh 		}
    914   1.5   msaitoh 	}
    915   1.5   msaitoh 
    916   1.5   msaitoh 	return IXGBE_SUCCESS;
    917   1.5   msaitoh }
    918   1.5   msaitoh 
    919   1.5   msaitoh /**
    920   1.5   msaitoh  *  ixgbe_get_pba_block_size
    921   1.5   msaitoh  *  @hw: pointer to the HW structure
    922   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    923   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    924   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    925   1.5   msaitoh  *
    926   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    927   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    928   1.5   msaitoh  *  EEPROM device.
    929   1.5   msaitoh  *
    930   1.5   msaitoh  **/
    931   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    932   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    933   1.5   msaitoh {
    934   1.5   msaitoh 	s32 ret_val;
    935   1.5   msaitoh 	u16 pba_word[2];
    936   1.5   msaitoh 	u16 length;
    937   1.5   msaitoh 
    938   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    939   1.5   msaitoh 
    940   1.5   msaitoh 	if (eeprom_buf == NULL) {
    941   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    942   1.5   msaitoh 						     &pba_word[0]);
    943   1.5   msaitoh 		if (ret_val)
    944   1.5   msaitoh 			return ret_val;
    945   1.5   msaitoh 	} else {
    946   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    947   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    948   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    949   1.5   msaitoh 		} else {
    950   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    951   1.5   msaitoh 		}
    952   1.5   msaitoh 	}
    953   1.5   msaitoh 
    954   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    955   1.5   msaitoh 		if (eeprom_buf == NULL) {
    956   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    957   1.5   msaitoh 						      &length);
    958   1.5   msaitoh 			if (ret_val)
    959   1.5   msaitoh 				return ret_val;
    960   1.5   msaitoh 		} else {
    961   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    962   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    963   1.5   msaitoh 			else
    964   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    965   1.5   msaitoh 		}
    966   1.5   msaitoh 
    967   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    968   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    969   1.5   msaitoh 	} else {
    970   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    971   1.5   msaitoh 		length = 0;
    972   1.5   msaitoh 	}
    973   1.5   msaitoh 
    974   1.5   msaitoh 	if (pba_block_size != NULL)
    975   1.5   msaitoh 		*pba_block_size = length;
    976   1.5   msaitoh 
    977   1.5   msaitoh 	return IXGBE_SUCCESS;
    978   1.5   msaitoh }
    979   1.5   msaitoh 
    980   1.5   msaitoh /**
    981   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    982   1.1    dyoung  *  @hw: pointer to hardware structure
    983   1.1    dyoung  *  @mac_addr: Adapter MAC address
    984   1.1    dyoung  *
    985   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    986   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    987   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    988   1.1    dyoung  **/
    989   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    990   1.1    dyoung {
    991   1.1    dyoung 	u32 rar_high;
    992   1.1    dyoung 	u32 rar_low;
    993   1.1    dyoung 	u16 i;
    994   1.1    dyoung 
    995   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    996   1.1    dyoung 
    997   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    998   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    999   1.1    dyoung 
   1000   1.1    dyoung 	for (i = 0; i < 4; i++)
   1001   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
   1002   1.1    dyoung 
   1003   1.1    dyoung 	for (i = 0; i < 2; i++)
   1004   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
   1005   1.1    dyoung 
   1006   1.1    dyoung 	return IXGBE_SUCCESS;
   1007   1.1    dyoung }
   1008   1.1    dyoung 
   1009   1.1    dyoung /**
   1010   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1011   1.1    dyoung  *  @hw: pointer to hardware structure
   1012   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
   1013   1.1    dyoung  *
   1014   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1015   1.1    dyoung  **/
   1016   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1017   1.1    dyoung {
   1018   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
   1019   1.1    dyoung 
   1020   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1021   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
   1022   1.1    dyoung 
   1023   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1024   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
   1025   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1026   1.1    dyoung 		break;
   1027   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
   1028   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1029   1.1    dyoung 		break;
   1030   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
   1031   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1032   1.1    dyoung 		break;
   1033   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
   1034   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1035   1.1    dyoung 		break;
   1036   1.1    dyoung 	default:
   1037   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
   1038   1.1    dyoung 		break;
   1039   1.1    dyoung 	}
   1040   1.1    dyoung 
   1041   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1042   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
   1043   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
   1044   1.1    dyoung 		break;
   1045   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
   1046   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
   1047   1.1    dyoung 		break;
   1048   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
   1049   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
   1050   1.4   msaitoh 		break;
   1051   1.1    dyoung 	default:
   1052   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1053   1.1    dyoung 		break;
   1054   1.1    dyoung 	}
   1055   1.1    dyoung 
   1056   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1057   1.6   msaitoh }
   1058   1.6   msaitoh 
   1059   1.6   msaitoh /**
   1060   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1061   1.6   msaitoh  *  @hw: pointer to hardware structure
   1062   1.6   msaitoh  *
   1063   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1064   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1065   1.6   msaitoh  **/
   1066   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1067   1.6   msaitoh {
   1068   1.6   msaitoh 	u16 link_status;
   1069   1.6   msaitoh 
   1070   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1071   1.6   msaitoh 
   1072   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1073   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1074   1.6   msaitoh 
   1075   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1076   1.1    dyoung 
   1077   1.1    dyoung 	return IXGBE_SUCCESS;
   1078   1.1    dyoung }
   1079   1.1    dyoung 
   1080   1.1    dyoung /**
   1081   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1082   1.1    dyoung  *  @hw: pointer to the HW structure
   1083   1.1    dyoung  *
   1084  1.14   msaitoh  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1085  1.14   msaitoh  *  the port value if requested, and set MAC instance for devices that share
   1086  1.14   msaitoh  *  CS4227.
   1087   1.1    dyoung  **/
   1088   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1089   1.1    dyoung {
   1090   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1091   1.1    dyoung 	u32 reg;
   1092  1.14   msaitoh 	u16 ee_ctrl_4;
   1093   1.1    dyoung 
   1094   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1095   1.1    dyoung 
   1096   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1097   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1098  1.14   msaitoh 	bus->lan_id = (u8)bus->func;
   1099   1.1    dyoung 
   1100   1.1    dyoung 	/* check for a port swap */
   1101  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1102   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1103   1.1    dyoung 		bus->func ^= 0x1;
   1104  1.14   msaitoh 
   1105  1.14   msaitoh 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1106  1.14   msaitoh 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1107  1.14   msaitoh 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1108  1.14   msaitoh 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1109  1.14   msaitoh 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1110  1.14   msaitoh 	}
   1111   1.1    dyoung }
   1112   1.1    dyoung 
   1113   1.1    dyoung /**
   1114   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1115   1.1    dyoung  *  @hw: pointer to hardware structure
   1116   1.1    dyoung  *
   1117   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1118   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1119   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1120   1.1    dyoung  *  state and should not touch the hardware.
   1121   1.1    dyoung  **/
   1122   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1123   1.1    dyoung {
   1124   1.1    dyoung 	u32 reg_val;
   1125   1.1    dyoung 	u16 i;
   1126   1.1    dyoung 
   1127   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1128   1.1    dyoung 
   1129   1.1    dyoung 	/*
   1130   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1131   1.1    dyoung 	 * the hardware
   1132   1.1    dyoung 	 */
   1133   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1134   1.1    dyoung 
   1135   1.1    dyoung 	/* Disable the receive unit */
   1136   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1137   1.1    dyoung 
   1138   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1139  1.19  knakahar 	/*
   1140  1.19  knakahar 	 * XXX
   1141  1.19  knakahar 	 * This function is called in the state of both interrupt disabled
   1142  1.19  knakahar 	 * and interrupt enabled, e.g.
   1143  1.19  knakahar 	 * + interrupt disabled case:
   1144  1.30   msaitoh 	 *   - ixgbe_stop_locked()
   1145  1.19  knakahar 	 *     - ixgbe_disable_intr() // interrupt disabled here
   1146  1.19  knakahar 	 *     - ixgbe_stop_adapter()
   1147  1.19  knakahar 	 *       - hw->mac.ops.stop_adapter()
   1148  1.19  knakahar 	 *         == this function
   1149  1.19  knakahar 	 * + interrupt enabled case:
   1150  1.19  knakahar 	 *   - ixgbe_local_timer1()
   1151  1.19  knakahar 	 *     - ixgbe_init_locked()
   1152  1.19  knakahar 	 *       - ixgbe_stop_adapter()
   1153  1.19  knakahar 	 *         - hw->mac.ops.stop_adapter()
   1154  1.19  knakahar 	 *           == this function
   1155  1.19  knakahar 	 * Therefore, it causes nest status breaking to nest the status
   1156  1.19  knakahar 	 * (that is, que->im_nest++) at all times. So, this function must
   1157  1.19  knakahar 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
   1158  1.19  knakahar 	 */
   1159  1.19  knakahar 	ixgbe_ensure_disabled_intr(hw->back);
   1160   1.1    dyoung 
   1161   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1162   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1163   1.1    dyoung 
   1164   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1165   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1166   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1167   1.3   msaitoh 
   1168   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1169   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1170   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1171   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1172   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1173   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1174   1.1    dyoung 	}
   1175   1.1    dyoung 
   1176   1.3   msaitoh 	/* flush all queues disables */
   1177   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1178   1.3   msaitoh 	msec_delay(2);
   1179   1.3   msaitoh 
   1180   1.1    dyoung 	/*
   1181   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1182   1.1    dyoung 	 * access and verify no pending requests
   1183   1.1    dyoung 	 */
   1184   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1185   1.1    dyoung }
   1186   1.1    dyoung 
   1187   1.1    dyoung /**
   1188  1.14   msaitoh  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1189  1.14   msaitoh  *  @hw: pointer to hardware structure
   1190  1.14   msaitoh  *
   1191  1.14   msaitoh  *  Store the index for the link active LED. This will be used to support
   1192  1.14   msaitoh  *  blinking the LED.
   1193  1.14   msaitoh  **/
   1194  1.14   msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1195  1.14   msaitoh {
   1196  1.14   msaitoh 	struct ixgbe_mac_info *mac = &hw->mac;
   1197  1.14   msaitoh 	u32 led_reg, led_mode;
   1198  1.14   msaitoh 	u8 i;
   1199  1.14   msaitoh 
   1200  1.14   msaitoh 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1201  1.14   msaitoh 
   1202  1.14   msaitoh 	/* Get LED link active from the LEDCTL register */
   1203  1.14   msaitoh 	for (i = 0; i < 4; i++) {
   1204  1.14   msaitoh 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1205  1.14   msaitoh 
   1206  1.14   msaitoh 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1207  1.14   msaitoh 		     IXGBE_LED_LINK_ACTIVE) {
   1208  1.14   msaitoh 			mac->led_link_act = i;
   1209  1.14   msaitoh 			return IXGBE_SUCCESS;
   1210  1.14   msaitoh 		}
   1211  1.14   msaitoh 	}
   1212  1.14   msaitoh 
   1213  1.14   msaitoh 	/*
   1214  1.14   msaitoh 	 * If LEDCTL register does not have the LED link active set, then use
   1215  1.14   msaitoh 	 * known MAC defaults.
   1216  1.14   msaitoh 	 */
   1217  1.14   msaitoh 	switch (hw->mac.type) {
   1218  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   1219  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
   1220  1.14   msaitoh 		mac->led_link_act = 1;
   1221  1.14   msaitoh 		break;
   1222  1.14   msaitoh 	default:
   1223  1.14   msaitoh 		mac->led_link_act = 2;
   1224  1.14   msaitoh 	}
   1225  1.14   msaitoh 	return IXGBE_SUCCESS;
   1226  1.14   msaitoh }
   1227  1.14   msaitoh 
   1228  1.14   msaitoh /**
   1229   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1230   1.1    dyoung  *  @hw: pointer to hardware structure
   1231   1.1    dyoung  *  @index: led number to turn on
   1232   1.1    dyoung  **/
   1233   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1234   1.1    dyoung {
   1235   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1236   1.1    dyoung 
   1237   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1238   1.1    dyoung 
   1239  1.14   msaitoh 	if (index > 3)
   1240  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1241  1.14   msaitoh 
   1242   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1243   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1244   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1245   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1246   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1247   1.1    dyoung 
   1248   1.1    dyoung 	return IXGBE_SUCCESS;
   1249   1.1    dyoung }
   1250   1.1    dyoung 
   1251   1.1    dyoung /**
   1252   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1253   1.1    dyoung  *  @hw: pointer to hardware structure
   1254   1.1    dyoung  *  @index: led number to turn off
   1255   1.1    dyoung  **/
   1256   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1257   1.1    dyoung {
   1258   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1259   1.1    dyoung 
   1260   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1261   1.1    dyoung 
   1262  1.14   msaitoh 	if (index > 3)
   1263  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1264  1.14   msaitoh 
   1265   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1266   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1267   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1268   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1269   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1270   1.1    dyoung 
   1271   1.1    dyoung 	return IXGBE_SUCCESS;
   1272   1.1    dyoung }
   1273   1.1    dyoung 
   1274   1.1    dyoung /**
   1275   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1276   1.1    dyoung  *  @hw: pointer to hardware structure
   1277   1.1    dyoung  *
   1278   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1279   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1280   1.1    dyoung  **/
   1281   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1282   1.1    dyoung {
   1283   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1284   1.1    dyoung 	u32 eec;
   1285   1.1    dyoung 	u16 eeprom_size;
   1286   1.1    dyoung 
   1287   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1288   1.1    dyoung 
   1289   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1290   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1291   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1292   1.1    dyoung 		 * tested value */
   1293   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1294   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1295   1.3   msaitoh 		eeprom->word_page_size = 0;
   1296   1.1    dyoung 
   1297   1.1    dyoung 		/*
   1298   1.1    dyoung 		 * Check for EEPROM present first.
   1299   1.1    dyoung 		 * If not present leave as none
   1300   1.1    dyoung 		 */
   1301  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1302   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1303   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1304   1.1    dyoung 
   1305   1.1    dyoung 			/*
   1306   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1307   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1308   1.1    dyoung 			 */
   1309   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1310   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1311   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1312   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1313   1.1    dyoung 		}
   1314   1.1    dyoung 
   1315   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1316   1.1    dyoung 			eeprom->address_bits = 16;
   1317   1.1    dyoung 		else
   1318   1.1    dyoung 			eeprom->address_bits = 8;
   1319   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1320   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1321   1.3   msaitoh 			  eeprom->address_bits);
   1322   1.1    dyoung 	}
   1323   1.1    dyoung 
   1324   1.1    dyoung 	return IXGBE_SUCCESS;
   1325   1.1    dyoung }
   1326   1.1    dyoung 
   1327   1.1    dyoung /**
   1328   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1329   1.3   msaitoh  *  @hw: pointer to hardware structure
   1330   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1331   1.3   msaitoh  *  @words: number of word(s)
   1332   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1333   1.3   msaitoh  *
   1334   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1335   1.3   msaitoh  **/
   1336   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1337   1.3   msaitoh 					       u16 words, u16 *data)
   1338   1.3   msaitoh {
   1339   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1340   1.3   msaitoh 	u16 i, count;
   1341   1.3   msaitoh 
   1342   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1343   1.3   msaitoh 
   1344   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1345   1.3   msaitoh 
   1346   1.3   msaitoh 	if (words == 0) {
   1347   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1348   1.3   msaitoh 		goto out;
   1349   1.3   msaitoh 	}
   1350   1.3   msaitoh 
   1351   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1352   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1353   1.3   msaitoh 		goto out;
   1354   1.3   msaitoh 	}
   1355   1.3   msaitoh 
   1356   1.3   msaitoh 	/*
   1357   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1358   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1359   1.3   msaitoh 	 */
   1360   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1361   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1362   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1363   1.3   msaitoh 
   1364   1.3   msaitoh 	/*
   1365   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1366   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1367   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1368   1.3   msaitoh 	 */
   1369   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1370   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1371   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1372   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1373   1.3   msaitoh 							    count, &data[i]);
   1374   1.3   msaitoh 
   1375   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1376   1.3   msaitoh 			break;
   1377   1.3   msaitoh 	}
   1378   1.3   msaitoh 
   1379   1.3   msaitoh out:
   1380   1.3   msaitoh 	return status;
   1381   1.3   msaitoh }
   1382   1.3   msaitoh 
   1383   1.3   msaitoh /**
   1384   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1385   1.3   msaitoh  *  @hw: pointer to hardware structure
   1386   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1387   1.3   msaitoh  *  @words: number of word(s)
   1388   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1389   1.3   msaitoh  *
   1390   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1391   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1392   1.3   msaitoh  **/
   1393   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1394   1.3   msaitoh 					      u16 words, u16 *data)
   1395   1.3   msaitoh {
   1396   1.3   msaitoh 	s32 status;
   1397   1.3   msaitoh 	u16 word;
   1398   1.3   msaitoh 	u16 page_size;
   1399   1.3   msaitoh 	u16 i;
   1400   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1401   1.3   msaitoh 
   1402   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1403   1.3   msaitoh 
   1404   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1405   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1406   1.3   msaitoh 
   1407   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1408   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1409   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1410   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1411   1.3   msaitoh 		}
   1412   1.3   msaitoh 	}
   1413   1.3   msaitoh 
   1414   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1415   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1416   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1417   1.3   msaitoh 
   1418   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1419   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1420   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1421   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1422   1.3   msaitoh 
   1423   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1424   1.3   msaitoh 
   1425   1.3   msaitoh 			/*
   1426   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1427   1.3   msaitoh 			 * in the opcode
   1428   1.3   msaitoh 			 */
   1429   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1430   1.3   msaitoh 			    ((offset + i) >= 128))
   1431   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1432   1.3   msaitoh 
   1433   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1434   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1435   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1436   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1437   1.3   msaitoh 						    hw->eeprom.address_bits);
   1438   1.3   msaitoh 
   1439   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1440   1.3   msaitoh 
   1441   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1442   1.3   msaitoh 			do {
   1443   1.3   msaitoh 				word = data[i];
   1444   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1445   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1446   1.3   msaitoh 
   1447   1.3   msaitoh 				if (page_size == 0)
   1448   1.3   msaitoh 					break;
   1449   1.3   msaitoh 
   1450   1.3   msaitoh 				/* do not wrap around page */
   1451   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1452   1.3   msaitoh 				    (page_size - 1))
   1453   1.3   msaitoh 					break;
   1454   1.3   msaitoh 			} while (++i < words);
   1455   1.3   msaitoh 
   1456   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1457   1.3   msaitoh 			msec_delay(10);
   1458   1.3   msaitoh 		}
   1459   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1460   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1461   1.3   msaitoh 	}
   1462   1.3   msaitoh 
   1463   1.3   msaitoh 	return status;
   1464   1.3   msaitoh }
   1465   1.3   msaitoh 
   1466   1.3   msaitoh /**
   1467   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1468   1.1    dyoung  *  @hw: pointer to hardware structure
   1469   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1470   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1471   1.1    dyoung  *
   1472   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1473   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1474   1.1    dyoung  **/
   1475   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1476   1.1    dyoung {
   1477   1.1    dyoung 	s32 status;
   1478   1.1    dyoung 
   1479   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1480   1.1    dyoung 
   1481   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1482   1.1    dyoung 
   1483   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1484   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1485   1.1    dyoung 		goto out;
   1486   1.1    dyoung 	}
   1487   1.1    dyoung 
   1488   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1489   1.3   msaitoh 
   1490   1.3   msaitoh out:
   1491   1.3   msaitoh 	return status;
   1492   1.3   msaitoh }
   1493   1.3   msaitoh 
   1494   1.3   msaitoh /**
   1495   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1496   1.3   msaitoh  *  @hw: pointer to hardware structure
   1497   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1498   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1499   1.3   msaitoh  *  @words: number of word(s)
   1500   1.3   msaitoh  *
   1501   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1502   1.3   msaitoh  **/
   1503   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1504   1.3   msaitoh 					      u16 words, u16 *data)
   1505   1.3   msaitoh {
   1506   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1507   1.3   msaitoh 	u16 i, count;
   1508   1.3   msaitoh 
   1509   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1510   1.3   msaitoh 
   1511   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1512   1.3   msaitoh 
   1513   1.3   msaitoh 	if (words == 0) {
   1514   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1515   1.3   msaitoh 		goto out;
   1516   1.3   msaitoh 	}
   1517   1.3   msaitoh 
   1518   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1519   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1520   1.3   msaitoh 		goto out;
   1521   1.3   msaitoh 	}
   1522   1.3   msaitoh 
   1523   1.3   msaitoh 	/*
   1524   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1525   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1526   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1527   1.3   msaitoh 	 */
   1528   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1529   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1530   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1531   1.3   msaitoh 
   1532   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1533   1.3   msaitoh 							   count, &data[i]);
   1534   1.3   msaitoh 
   1535   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1536   1.3   msaitoh 			break;
   1537   1.3   msaitoh 	}
   1538   1.3   msaitoh 
   1539   1.3   msaitoh out:
   1540   1.3   msaitoh 	return status;
   1541   1.3   msaitoh }
   1542   1.3   msaitoh 
   1543   1.3   msaitoh /**
   1544   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1545   1.3   msaitoh  *  @hw: pointer to hardware structure
   1546   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1547   1.3   msaitoh  *  @words: number of word(s)
   1548   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1549   1.3   msaitoh  *
   1550   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1551   1.3   msaitoh  **/
   1552   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1553   1.3   msaitoh 					     u16 words, u16 *data)
   1554   1.3   msaitoh {
   1555   1.3   msaitoh 	s32 status;
   1556   1.3   msaitoh 	u16 word_in;
   1557   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1558   1.3   msaitoh 	u16 i;
   1559   1.3   msaitoh 
   1560   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1561   1.3   msaitoh 
   1562   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1563   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1564   1.1    dyoung 
   1565   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1566   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1567   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1568   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1569   1.1    dyoung 		}
   1570   1.1    dyoung 	}
   1571   1.1    dyoung 
   1572   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1573   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1574   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1575   1.3   msaitoh 			/*
   1576   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1577   1.3   msaitoh 			 * in the opcode
   1578   1.3   msaitoh 			 */
   1579   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1580   1.3   msaitoh 			    ((offset + i) >= 128))
   1581   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1582   1.3   msaitoh 
   1583   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1584   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1585   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1586   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1587   1.3   msaitoh 						    hw->eeprom.address_bits);
   1588   1.3   msaitoh 
   1589   1.3   msaitoh 			/* Read the data. */
   1590   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1591   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1592   1.3   msaitoh 		}
   1593   1.1    dyoung 
   1594   1.3   msaitoh 		/* End this read operation */
   1595   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1596   1.1    dyoung 	}
   1597   1.1    dyoung 
   1598   1.1    dyoung 	return status;
   1599   1.1    dyoung }
   1600   1.1    dyoung 
   1601   1.1    dyoung /**
   1602   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1603   1.1    dyoung  *  @hw: pointer to hardware structure
   1604   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1605   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1606   1.1    dyoung  *
   1607   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1608   1.1    dyoung  **/
   1609   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1610   1.3   msaitoh 				       u16 *data)
   1611   1.1    dyoung {
   1612   1.1    dyoung 	s32 status;
   1613   1.1    dyoung 
   1614   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1615   1.1    dyoung 
   1616   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1617   1.1    dyoung 
   1618   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1619   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1620   1.1    dyoung 		goto out;
   1621   1.1    dyoung 	}
   1622   1.1    dyoung 
   1623   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1624   1.3   msaitoh 
   1625   1.3   msaitoh out:
   1626   1.3   msaitoh 	return status;
   1627   1.3   msaitoh }
   1628   1.3   msaitoh 
   1629   1.3   msaitoh /**
   1630   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1631   1.3   msaitoh  *  @hw: pointer to hardware structure
   1632   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1633   1.3   msaitoh  *  @words: number of word(s)
   1634   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1635   1.3   msaitoh  *
   1636   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1637   1.3   msaitoh  **/
   1638   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1639   1.3   msaitoh 				   u16 words, u16 *data)
   1640   1.3   msaitoh {
   1641   1.3   msaitoh 	u32 eerd;
   1642   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1643   1.3   msaitoh 	u32 i;
   1644   1.3   msaitoh 
   1645   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1646   1.3   msaitoh 
   1647   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1648   1.3   msaitoh 
   1649   1.3   msaitoh 	if (words == 0) {
   1650   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1651   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1652   1.3   msaitoh 		goto out;
   1653   1.3   msaitoh 	}
   1654   1.3   msaitoh 
   1655   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1656   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1657   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1658   1.3   msaitoh 		goto out;
   1659   1.3   msaitoh 	}
   1660   1.3   msaitoh 
   1661   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1662   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1663   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1664   1.3   msaitoh 
   1665   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1666   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1667   1.1    dyoung 
   1668   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1669   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1670   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1671   1.3   msaitoh 		} else {
   1672   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1673   1.3   msaitoh 			goto out;
   1674   1.1    dyoung 		}
   1675   1.1    dyoung 	}
   1676   1.3   msaitoh out:
   1677   1.3   msaitoh 	return status;
   1678   1.3   msaitoh }
   1679   1.1    dyoung 
   1680   1.3   msaitoh /**
   1681   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1682   1.3   msaitoh  *  @hw: pointer to hardware structure
   1683   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1684   1.3   msaitoh  *
   1685   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1686   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1687   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1688   1.3   msaitoh  **/
   1689   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1690   1.3   msaitoh 						 u16 offset)
   1691   1.3   msaitoh {
   1692   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1693   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1694   1.3   msaitoh 	u16 i;
   1695   1.3   msaitoh 
   1696   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1697   1.3   msaitoh 
   1698   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1699   1.3   msaitoh 		data[i] = i;
   1700   1.1    dyoung 
   1701   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1702   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1703   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1704   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1705   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1706   1.3   msaitoh 		goto out;
   1707   1.1    dyoung 
   1708   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1709   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1710   1.3   msaitoh 		goto out;
   1711   1.1    dyoung 
   1712   1.3   msaitoh 	/*
   1713   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1714   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1715   1.3   msaitoh 	 */
   1716   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1717   1.1    dyoung 
   1718   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1719   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1720   1.1    dyoung out:
   1721   1.1    dyoung 	return status;
   1722   1.1    dyoung }
   1723   1.1    dyoung 
   1724   1.1    dyoung /**
   1725   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1726   1.1    dyoung  *  @hw: pointer to hardware structure
   1727   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1728   1.1    dyoung  *  @data: word read from the EEPROM
   1729   1.1    dyoung  *
   1730   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1731   1.1    dyoung  **/
   1732   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1733   1.1    dyoung {
   1734   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1735   1.3   msaitoh }
   1736   1.3   msaitoh 
   1737   1.3   msaitoh /**
   1738   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1739   1.3   msaitoh  *  @hw: pointer to hardware structure
   1740   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1741   1.3   msaitoh  *  @words: number of word(s)
   1742   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1743   1.3   msaitoh  *
   1744   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1745   1.3   msaitoh  **/
   1746   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1747   1.3   msaitoh 				    u16 words, u16 *data)
   1748   1.3   msaitoh {
   1749   1.3   msaitoh 	u32 eewr;
   1750   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1751   1.3   msaitoh 	u16 i;
   1752   1.1    dyoung 
   1753   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1754   1.1    dyoung 
   1755   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1756   1.1    dyoung 
   1757   1.3   msaitoh 	if (words == 0) {
   1758   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1759   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1760   1.3   msaitoh 		goto out;
   1761   1.3   msaitoh 	}
   1762   1.3   msaitoh 
   1763   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1764   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1765   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1766   1.1    dyoung 		goto out;
   1767   1.1    dyoung 	}
   1768   1.1    dyoung 
   1769   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1770   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1771   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1772   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1773   1.3   msaitoh 
   1774   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1775   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1776   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1777   1.3   msaitoh 			goto out;
   1778   1.3   msaitoh 		}
   1779   1.1    dyoung 
   1780   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1781   1.1    dyoung 
   1782   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1783   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1784   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1785   1.3   msaitoh 			goto out;
   1786   1.3   msaitoh 		}
   1787   1.3   msaitoh 	}
   1788   1.1    dyoung 
   1789   1.1    dyoung out:
   1790   1.1    dyoung 	return status;
   1791   1.1    dyoung }
   1792   1.1    dyoung 
   1793   1.1    dyoung /**
   1794   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1795   1.1    dyoung  *  @hw: pointer to hardware structure
   1796   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1797   1.1    dyoung  *  @data: word write to the EEPROM
   1798   1.1    dyoung  *
   1799   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1800   1.1    dyoung  **/
   1801   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1802   1.1    dyoung {
   1803   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1804   1.1    dyoung }
   1805   1.1    dyoung 
   1806   1.1    dyoung /**
   1807   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1808   1.1    dyoung  *  @hw: pointer to hardware structure
   1809   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1810   1.1    dyoung  *
   1811   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1812   1.1    dyoung  *  read or write is done respectively.
   1813   1.1    dyoung  **/
   1814   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1815   1.1    dyoung {
   1816   1.1    dyoung 	u32 i;
   1817   1.1    dyoung 	u32 reg;
   1818   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1819   1.1    dyoung 
   1820   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1821   1.1    dyoung 
   1822   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1823   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1824   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1825   1.1    dyoung 		else
   1826   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1827   1.1    dyoung 
   1828   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1829   1.1    dyoung 			status = IXGBE_SUCCESS;
   1830   1.1    dyoung 			break;
   1831   1.1    dyoung 		}
   1832   1.1    dyoung 		usec_delay(5);
   1833   1.1    dyoung 	}
   1834   1.6   msaitoh 
   1835   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1836   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1837   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1838   1.6   msaitoh 
   1839   1.1    dyoung 	return status;
   1840   1.1    dyoung }
   1841   1.1    dyoung 
   1842   1.1    dyoung /**
   1843   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1844   1.1    dyoung  *  @hw: pointer to hardware structure
   1845   1.1    dyoung  *
   1846   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1847   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1848   1.1    dyoung  **/
   1849   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1850   1.1    dyoung {
   1851   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1852   1.1    dyoung 	u32 eec;
   1853   1.1    dyoung 	u32 i;
   1854   1.1    dyoung 
   1855   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1856   1.1    dyoung 
   1857   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1858   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1859   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1860   1.1    dyoung 
   1861   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1862  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1863   1.1    dyoung 
   1864   1.1    dyoung 		/* Request EEPROM Access */
   1865   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1866  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1867   1.1    dyoung 
   1868   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1869  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1870   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1871   1.1    dyoung 				break;
   1872   1.1    dyoung 			usec_delay(5);
   1873   1.1    dyoung 		}
   1874   1.1    dyoung 
   1875   1.1    dyoung 		/* Release if grant not acquired */
   1876   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1877   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1878  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1879   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1880   1.1    dyoung 
   1881   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1882   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1883   1.1    dyoung 		}
   1884   1.1    dyoung 
   1885   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1886   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1887   1.1    dyoung 			/* Clear CS and SK */
   1888   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1889  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1890   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1891   1.1    dyoung 			usec_delay(1);
   1892   1.1    dyoung 		}
   1893   1.1    dyoung 	}
   1894   1.1    dyoung 	return status;
   1895   1.1    dyoung }
   1896   1.1    dyoung 
   1897   1.1    dyoung /**
   1898   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1899   1.1    dyoung  *  @hw: pointer to hardware structure
   1900   1.1    dyoung  *
   1901   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1902   1.1    dyoung  **/
   1903   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1904   1.1    dyoung {
   1905   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1906   1.1    dyoung 	u32 timeout = 2000;
   1907   1.1    dyoung 	u32 i;
   1908   1.1    dyoung 	u32 swsm;
   1909   1.1    dyoung 
   1910   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1911   1.1    dyoung 
   1912   1.1    dyoung 
   1913   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1914   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1915   1.1    dyoung 		/*
   1916   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1917   1.1    dyoung 		 * set and we have the semaphore
   1918   1.1    dyoung 		 */
   1919  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1920   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1921   1.1    dyoung 			status = IXGBE_SUCCESS;
   1922   1.1    dyoung 			break;
   1923   1.1    dyoung 		}
   1924   1.1    dyoung 		usec_delay(50);
   1925   1.1    dyoung 	}
   1926   1.1    dyoung 
   1927   1.3   msaitoh 	if (i == timeout) {
   1928   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1929   1.3   msaitoh 			 "not granted.\n");
   1930   1.3   msaitoh 		/*
   1931   1.3   msaitoh 		 * this release is particularly important because our attempts
   1932   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1933   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1934   1.3   msaitoh 		 * bits to free the driver to make progress
   1935   1.3   msaitoh 		 */
   1936   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1937   1.3   msaitoh 
   1938   1.3   msaitoh 		usec_delay(50);
   1939   1.3   msaitoh 		/*
   1940   1.3   msaitoh 		 * one last try
   1941   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1942   1.3   msaitoh 		 * set and we have the semaphore
   1943   1.3   msaitoh 		 */
   1944  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1945   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1946   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1947   1.3   msaitoh 	}
   1948   1.3   msaitoh 
   1949   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1950   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1951   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1952  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1953   1.1    dyoung 
   1954   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1955   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1956  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1957   1.1    dyoung 
   1958   1.1    dyoung 			/*
   1959   1.1    dyoung 			 * If we set the bit successfully then we got the
   1960   1.1    dyoung 			 * semaphore.
   1961   1.1    dyoung 			 */
   1962  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1963   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1964   1.1    dyoung 				break;
   1965   1.1    dyoung 
   1966   1.1    dyoung 			usec_delay(50);
   1967   1.1    dyoung 		}
   1968   1.1    dyoung 
   1969   1.1    dyoung 		/*
   1970   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1971   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1972   1.1    dyoung 		 */
   1973   1.1    dyoung 		if (i >= timeout) {
   1974   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1975   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1976   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1977   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1978   1.1    dyoung 		}
   1979   1.1    dyoung 	} else {
   1980   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1981   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1982   1.6   msaitoh 			     "not granted.\n");
   1983   1.1    dyoung 	}
   1984   1.1    dyoung 
   1985   1.1    dyoung 	return status;
   1986   1.1    dyoung }
   1987   1.1    dyoung 
   1988   1.1    dyoung /**
   1989   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1990   1.1    dyoung  *  @hw: pointer to hardware structure
   1991   1.1    dyoung  *
   1992   1.1    dyoung  *  This function clears hardware semaphore bits.
   1993   1.1    dyoung  **/
   1994   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1995   1.1    dyoung {
   1996   1.1    dyoung 	u32 swsm;
   1997   1.1    dyoung 
   1998   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1999   1.1    dyoung 
   2000   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   2001   1.1    dyoung 
   2002   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   2003   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   2004   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   2005   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2006   1.1    dyoung }
   2007   1.1    dyoung 
   2008   1.1    dyoung /**
   2009   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   2010   1.1    dyoung  *  @hw: pointer to hardware structure
   2011   1.1    dyoung  **/
   2012   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   2013   1.1    dyoung {
   2014   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2015   1.1    dyoung 	u16 i;
   2016   1.1    dyoung 	u8 spi_stat_reg;
   2017   1.1    dyoung 
   2018   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   2019   1.1    dyoung 
   2020   1.1    dyoung 	/*
   2021   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   2022   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   2023   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   2024   1.1    dyoung 	 * 5 milliseconds, then error out.
   2025   1.1    dyoung 	 */
   2026   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   2027   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2028   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   2029   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2030   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2031   1.1    dyoung 			break;
   2032   1.1    dyoung 
   2033   1.1    dyoung 		usec_delay(5);
   2034   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   2035  1.11   msaitoh 	}
   2036   1.1    dyoung 
   2037   1.1    dyoung 	/*
   2038   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2039   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   2040   1.1    dyoung 	 */
   2041   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2042   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   2043   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   2044   1.1    dyoung 	}
   2045   1.1    dyoung 
   2046   1.1    dyoung 	return status;
   2047   1.1    dyoung }
   2048   1.1    dyoung 
   2049   1.1    dyoung /**
   2050   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2051   1.1    dyoung  *  @hw: pointer to hardware structure
   2052   1.1    dyoung  **/
   2053   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2054   1.1    dyoung {
   2055   1.1    dyoung 	u32 eec;
   2056   1.1    dyoung 
   2057   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   2058   1.1    dyoung 
   2059  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2060   1.1    dyoung 
   2061   1.1    dyoung 	/* Toggle CS to flush commands */
   2062   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   2063  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2064   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2065   1.1    dyoung 	usec_delay(1);
   2066   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   2067  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2068   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2069   1.1    dyoung 	usec_delay(1);
   2070   1.1    dyoung }
   2071   1.1    dyoung 
   2072   1.1    dyoung /**
   2073   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2074   1.1    dyoung  *  @hw: pointer to hardware structure
   2075   1.1    dyoung  *  @data: data to send to the EEPROM
   2076   1.1    dyoung  *  @count: number of bits to shift out
   2077   1.1    dyoung  **/
   2078   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2079   1.3   msaitoh 					u16 count)
   2080   1.1    dyoung {
   2081   1.1    dyoung 	u32 eec;
   2082   1.1    dyoung 	u32 mask;
   2083   1.1    dyoung 	u32 i;
   2084   1.1    dyoung 
   2085   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2086   1.1    dyoung 
   2087  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2088   1.1    dyoung 
   2089   1.1    dyoung 	/*
   2090   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2091   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   2092   1.1    dyoung 	 */
   2093   1.1    dyoung 	mask = 0x01 << (count - 1);
   2094   1.1    dyoung 
   2095   1.1    dyoung 	for (i = 0; i < count; i++) {
   2096   1.1    dyoung 		/*
   2097   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2098   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   2099   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   2100   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2101   1.1    dyoung 		 * raising and then lowering the clock.
   2102   1.1    dyoung 		 */
   2103   1.1    dyoung 		if (data & mask)
   2104   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   2105   1.1    dyoung 		else
   2106   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   2107   1.1    dyoung 
   2108  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2109   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   2110   1.1    dyoung 
   2111   1.1    dyoung 		usec_delay(1);
   2112   1.1    dyoung 
   2113   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2114   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2115   1.1    dyoung 
   2116   1.1    dyoung 		/*
   2117   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   2118   1.1    dyoung 		 * EEPROM
   2119   1.1    dyoung 		 */
   2120   1.1    dyoung 		mask = mask >> 1;
   2121  1.11   msaitoh 	}
   2122   1.1    dyoung 
   2123   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2124   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   2125  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2126   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2127   1.1    dyoung }
   2128   1.1    dyoung 
   2129   1.1    dyoung /**
   2130   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2131   1.1    dyoung  *  @hw: pointer to hardware structure
   2132  1.22   msaitoh  *  @count: number of bits to shift
   2133   1.1    dyoung  **/
   2134   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2135   1.1    dyoung {
   2136   1.1    dyoung 	u32 eec;
   2137   1.1    dyoung 	u32 i;
   2138   1.1    dyoung 	u16 data = 0;
   2139   1.1    dyoung 
   2140   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2141   1.1    dyoung 
   2142   1.1    dyoung 	/*
   2143   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2144   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2145   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2146   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2147   1.1    dyoung 	 * "DI" bit should always be clear.
   2148   1.1    dyoung 	 */
   2149  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2150   1.1    dyoung 
   2151   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2152   1.1    dyoung 
   2153   1.1    dyoung 	for (i = 0; i < count; i++) {
   2154   1.1    dyoung 		data = data << 1;
   2155   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2156   1.1    dyoung 
   2157  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2158   1.1    dyoung 
   2159   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2160   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2161   1.1    dyoung 			data |= 1;
   2162   1.1    dyoung 
   2163   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2164   1.1    dyoung 	}
   2165   1.1    dyoung 
   2166   1.1    dyoung 	return data;
   2167   1.1    dyoung }
   2168   1.1    dyoung 
   2169   1.1    dyoung /**
   2170   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2171   1.1    dyoung  *  @hw: pointer to hardware structure
   2172   1.1    dyoung  *  @eec: EEC register's current value
   2173   1.1    dyoung  **/
   2174   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2175   1.1    dyoung {
   2176   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2177   1.1    dyoung 
   2178   1.1    dyoung 	/*
   2179   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2180   1.1    dyoung 	 * (setting the SK bit), then delay
   2181   1.1    dyoung 	 */
   2182   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2183  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2184   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2185   1.1    dyoung 	usec_delay(1);
   2186   1.1    dyoung }
   2187   1.1    dyoung 
   2188   1.1    dyoung /**
   2189   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2190   1.1    dyoung  *  @hw: pointer to hardware structure
   2191  1.22   msaitoh  *  @eec: EEC's current value
   2192   1.1    dyoung  **/
   2193   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2194   1.1    dyoung {
   2195   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2196   1.1    dyoung 
   2197   1.1    dyoung 	/*
   2198   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2199   1.1    dyoung 	 * delay
   2200   1.1    dyoung 	 */
   2201   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2202  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2203   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2204   1.1    dyoung 	usec_delay(1);
   2205   1.1    dyoung }
   2206   1.1    dyoung 
   2207   1.1    dyoung /**
   2208   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2209   1.1    dyoung  *  @hw: pointer to hardware structure
   2210   1.1    dyoung  **/
   2211   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2212   1.1    dyoung {
   2213   1.1    dyoung 	u32 eec;
   2214   1.1    dyoung 
   2215   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2216   1.1    dyoung 
   2217  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2218   1.1    dyoung 
   2219   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2220   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2221   1.1    dyoung 
   2222  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2223   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2224   1.1    dyoung 
   2225   1.1    dyoung 	usec_delay(1);
   2226   1.1    dyoung 
   2227   1.1    dyoung 	/* Stop requesting EEPROM access */
   2228   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2229  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2230   1.1    dyoung 
   2231   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2232   1.1    dyoung 
   2233   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2234   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2235   1.1    dyoung }
   2236   1.1    dyoung 
   2237   1.1    dyoung /**
   2238   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2239   1.1    dyoung  *  @hw: pointer to hardware structure
   2240   1.8   msaitoh  *
   2241   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2242   1.1    dyoung  **/
   2243   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2244   1.1    dyoung {
   2245   1.1    dyoung 	u16 i;
   2246   1.1    dyoung 	u16 j;
   2247   1.1    dyoung 	u16 checksum = 0;
   2248   1.1    dyoung 	u16 length = 0;
   2249   1.1    dyoung 	u16 pointer = 0;
   2250   1.1    dyoung 	u16 word = 0;
   2251   1.1    dyoung 
   2252   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2253   1.1    dyoung 
   2254   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2255   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2256   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2257   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2258   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2259   1.1    dyoung 		}
   2260   1.1    dyoung 		checksum += word;
   2261   1.1    dyoung 	}
   2262   1.1    dyoung 
   2263   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2264   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2265   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2266   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2267   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2268   1.8   msaitoh 		}
   2269   1.8   msaitoh 
   2270   1.8   msaitoh 		/* If the pointer seems invalid */
   2271   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2272   1.8   msaitoh 			continue;
   2273   1.8   msaitoh 
   2274   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2275   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2276   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2277   1.8   msaitoh 		}
   2278   1.8   msaitoh 
   2279   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2280   1.8   msaitoh 			continue;
   2281   1.1    dyoung 
   2282   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2283   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2284   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2285   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2286   1.1    dyoung 			}
   2287   1.8   msaitoh 			checksum += word;
   2288   1.1    dyoung 		}
   2289   1.1    dyoung 	}
   2290   1.1    dyoung 
   2291   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2292   1.1    dyoung 
   2293   1.8   msaitoh 	return (s32)checksum;
   2294   1.1    dyoung }
   2295   1.1    dyoung 
   2296   1.1    dyoung /**
   2297   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2298   1.1    dyoung  *  @hw: pointer to hardware structure
   2299   1.1    dyoung  *  @checksum_val: calculated checksum
   2300   1.1    dyoung  *
   2301   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2302   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2303   1.1    dyoung  **/
   2304   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2305   1.3   msaitoh 					   u16 *checksum_val)
   2306   1.1    dyoung {
   2307   1.1    dyoung 	s32 status;
   2308   1.1    dyoung 	u16 checksum;
   2309   1.1    dyoung 	u16 read_checksum = 0;
   2310   1.1    dyoung 
   2311   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2312   1.1    dyoung 
   2313   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2314   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2315   1.1    dyoung 	 * EEPROM read fails
   2316   1.1    dyoung 	 */
   2317   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2318   1.8   msaitoh 	if (status) {
   2319   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2320   1.8   msaitoh 		return status;
   2321   1.8   msaitoh 	}
   2322   1.1    dyoung 
   2323   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2324   1.8   msaitoh 	if (status < 0)
   2325   1.8   msaitoh 		return status;
   2326   1.1    dyoung 
   2327   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2328   1.1    dyoung 
   2329   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2330   1.8   msaitoh 	if (status) {
   2331   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2332   1.8   msaitoh 		return status;
   2333   1.1    dyoung 	}
   2334   1.1    dyoung 
   2335   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2336   1.8   msaitoh 	 * calculated checksum
   2337   1.8   msaitoh 	 */
   2338   1.8   msaitoh 	if (read_checksum != checksum)
   2339   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2340   1.8   msaitoh 
   2341   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2342   1.8   msaitoh 	if (checksum_val)
   2343   1.8   msaitoh 		*checksum_val = checksum;
   2344   1.8   msaitoh 
   2345   1.1    dyoung 	return status;
   2346   1.1    dyoung }
   2347   1.1    dyoung 
   2348   1.1    dyoung /**
   2349   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2350   1.1    dyoung  *  @hw: pointer to hardware structure
   2351   1.1    dyoung  **/
   2352   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2353   1.1    dyoung {
   2354   1.1    dyoung 	s32 status;
   2355   1.1    dyoung 	u16 checksum;
   2356   1.1    dyoung 
   2357   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2358   1.1    dyoung 
   2359   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2360   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2361   1.1    dyoung 	 * EEPROM read fails
   2362   1.1    dyoung 	 */
   2363   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2364   1.8   msaitoh 	if (status) {
   2365   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2366   1.8   msaitoh 		return status;
   2367   1.1    dyoung 	}
   2368   1.1    dyoung 
   2369   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2370   1.8   msaitoh 	if (status < 0)
   2371   1.8   msaitoh 		return status;
   2372   1.8   msaitoh 
   2373   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2374   1.8   msaitoh 
   2375   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2376   1.8   msaitoh 
   2377   1.1    dyoung 	return status;
   2378   1.1    dyoung }
   2379   1.1    dyoung 
   2380   1.1    dyoung /**
   2381   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2382   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2383   1.1    dyoung  *
   2384  1.14   msaitoh  *  Tests a MAC address to ensure it is a valid Individual Address.
   2385   1.1    dyoung  **/
   2386   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2387   1.1    dyoung {
   2388   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2389   1.1    dyoung 
   2390   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2391   1.1    dyoung 
   2392   1.1    dyoung 	/* Make sure it is not a multicast address */
   2393   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2394   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2395   1.1    dyoung 	/* Not a broadcast address */
   2396   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2397   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2398   1.1    dyoung 	/* Reject the zero address */
   2399   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2400   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2401   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2402   1.1    dyoung 	}
   2403   1.1    dyoung 	return status;
   2404   1.1    dyoung }
   2405   1.1    dyoung 
   2406   1.1    dyoung /**
   2407   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2408   1.1    dyoung  *  @hw: pointer to hardware structure
   2409   1.1    dyoung  *  @index: Receive address register to write
   2410   1.1    dyoung  *  @addr: Address to put into receive address register
   2411   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2412   1.1    dyoung  *  @enable_addr: set flag that address is active
   2413   1.1    dyoung  *
   2414   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2415   1.1    dyoung  **/
   2416   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2417   1.3   msaitoh 			  u32 enable_addr)
   2418   1.1    dyoung {
   2419   1.1    dyoung 	u32 rar_low, rar_high;
   2420   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2421   1.1    dyoung 
   2422   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2423   1.1    dyoung 
   2424   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2425   1.1    dyoung 	if (index >= rar_entries) {
   2426   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2427   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2428   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2429   1.1    dyoung 	}
   2430   1.1    dyoung 
   2431   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2432   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2433   1.1    dyoung 
   2434   1.1    dyoung 	/*
   2435   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2436   1.1    dyoung 	 * order from network order (big endian) to little endian
   2437   1.1    dyoung 	 */
   2438   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2439   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2440   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2441   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2442   1.1    dyoung 	/*
   2443   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2444   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2445   1.1    dyoung 	 * of the address and the address valid bit.
   2446   1.1    dyoung 	 */
   2447   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2448   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2449   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2450   1.1    dyoung 
   2451   1.1    dyoung 	if (enable_addr != 0)
   2452   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2453   1.1    dyoung 
   2454   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2455   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2456   1.1    dyoung 
   2457   1.1    dyoung 	return IXGBE_SUCCESS;
   2458   1.1    dyoung }
   2459   1.1    dyoung 
   2460   1.1    dyoung /**
   2461   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2462   1.1    dyoung  *  @hw: pointer to hardware structure
   2463   1.1    dyoung  *  @index: Receive address register to write
   2464   1.1    dyoung  *
   2465   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2466   1.1    dyoung  **/
   2467   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2468   1.1    dyoung {
   2469   1.1    dyoung 	u32 rar_high;
   2470   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2471   1.1    dyoung 
   2472   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2473   1.1    dyoung 
   2474   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2475   1.1    dyoung 	if (index >= rar_entries) {
   2476   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2477   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2478   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2479   1.1    dyoung 	}
   2480   1.1    dyoung 
   2481   1.1    dyoung 	/*
   2482   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2483   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2484   1.1    dyoung 	 * of the address and the address valid bit.
   2485   1.1    dyoung 	 */
   2486   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2487   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2488   1.1    dyoung 
   2489   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2490   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2491   1.1    dyoung 
   2492   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2493   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2494   1.1    dyoung 
   2495   1.1    dyoung 	return IXGBE_SUCCESS;
   2496   1.1    dyoung }
   2497   1.1    dyoung 
   2498   1.1    dyoung /**
   2499   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2500   1.1    dyoung  *  @hw: pointer to hardware structure
   2501   1.1    dyoung  *
   2502   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2503   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2504   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2505   1.1    dyoung  **/
   2506   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2507   1.1    dyoung {
   2508   1.1    dyoung 	u32 i;
   2509   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2510   1.1    dyoung 
   2511   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2512   1.1    dyoung 
   2513   1.1    dyoung 	/*
   2514   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2515   1.1    dyoung 	 * to the permanent address.
   2516   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2517   1.1    dyoung 	 */
   2518   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2519   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2520   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2521   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2522   1.1    dyoung 
   2523   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2524   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2525   1.3   msaitoh 			  hw->mac.addr[2]);
   2526   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2527   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2528   1.1    dyoung 	} else {
   2529   1.1    dyoung 		/* Setup the receive address. */
   2530   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2531   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2532   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2533   1.3   msaitoh 			  hw->mac.addr[2]);
   2534   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2535   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2536   1.1    dyoung 
   2537   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2538  1.14   msaitoh 	}
   2539  1.14   msaitoh 
   2540  1.14   msaitoh 	/* clear VMDq pool/queue selection for RAR 0 */
   2541  1.14   msaitoh 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2542   1.1    dyoung 
   2543   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2544   1.1    dyoung 
   2545   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2546   1.1    dyoung 
   2547   1.1    dyoung 	/* Zero out the other receive addresses. */
   2548   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2549   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2550   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2551   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2552   1.1    dyoung 	}
   2553   1.1    dyoung 
   2554   1.1    dyoung 	/* Clear the MTA */
   2555   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2556   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2557   1.1    dyoung 
   2558   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2559   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2560   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2561   1.1    dyoung 
   2562   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2563   1.1    dyoung 
   2564   1.1    dyoung 	return IXGBE_SUCCESS;
   2565   1.1    dyoung }
   2566   1.1    dyoung 
   2567   1.1    dyoung /**
   2568   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2569   1.1    dyoung  *  @hw: pointer to hardware structure
   2570   1.1    dyoung  *  @addr: new address
   2571  1.22   msaitoh  *  @vmdq: VMDq "set" or "pool" index
   2572   1.1    dyoung  *
   2573   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2574   1.1    dyoung  **/
   2575   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2576   1.1    dyoung {
   2577   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2578   1.1    dyoung 	u32 rar;
   2579   1.1    dyoung 
   2580   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2581   1.1    dyoung 
   2582   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2583   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2584   1.1    dyoung 
   2585   1.1    dyoung 	/*
   2586   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2587   1.1    dyoung 	 * else put the controller into promiscuous mode
   2588   1.1    dyoung 	 */
   2589   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2590   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2591   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2592   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2593   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2594   1.1    dyoung 	} else {
   2595   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2596   1.1    dyoung 	}
   2597   1.1    dyoung 
   2598   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2599   1.1    dyoung }
   2600   1.1    dyoung 
   2601   1.1    dyoung /**
   2602   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2603   1.1    dyoung  *  @hw: pointer to hardware structure
   2604   1.1    dyoung  *  @addr_list: the list of new addresses
   2605   1.1    dyoung  *  @addr_count: number of addresses
   2606   1.1    dyoung  *  @next: iterator function to walk the address list
   2607   1.1    dyoung  *
   2608   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2609   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2610   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2611   1.1    dyoung  *
   2612   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2613   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2614   1.1    dyoung  **/
   2615   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2616   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2617   1.1    dyoung {
   2618   1.1    dyoung 	u8 *addr;
   2619   1.1    dyoung 	u32 i;
   2620   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2621   1.1    dyoung 	u32 uc_addr_in_use;
   2622   1.1    dyoung 	u32 fctrl;
   2623   1.1    dyoung 	u32 vmdq;
   2624   1.1    dyoung 
   2625   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2626   1.1    dyoung 
   2627   1.1    dyoung 	/*
   2628   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2629   1.1    dyoung 	 * don't count RAR[0]
   2630   1.1    dyoung 	 */
   2631   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2632   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2633   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2634   1.1    dyoung 
   2635   1.1    dyoung 	/* Zero out the other receive addresses */
   2636   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2637   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2638   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2639   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2640   1.1    dyoung 	}
   2641   1.1    dyoung 
   2642   1.1    dyoung 	/* Add the new addresses */
   2643   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2644   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2645   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2646   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2647   1.1    dyoung 	}
   2648   1.1    dyoung 
   2649   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2650   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2651   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2652   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2653   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2654   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2655   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2656   1.1    dyoung 		}
   2657   1.1    dyoung 	} else {
   2658   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2659   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2660   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2661   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2662   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2663   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2664   1.1    dyoung 		}
   2665   1.1    dyoung 	}
   2666   1.1    dyoung 
   2667   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2668   1.1    dyoung 	return IXGBE_SUCCESS;
   2669   1.1    dyoung }
   2670   1.1    dyoung 
   2671   1.1    dyoung /**
   2672   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2673   1.1    dyoung  *  @hw: pointer to hardware structure
   2674   1.1    dyoung  *  @mc_addr: the multicast address
   2675   1.1    dyoung  *
   2676   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2677   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2678   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2679   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2680   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2681   1.1    dyoung  *  to mc_filter_type.
   2682   1.1    dyoung  **/
   2683   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2684   1.1    dyoung {
   2685   1.1    dyoung 	u32 vector = 0;
   2686   1.1    dyoung 
   2687   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2688   1.1    dyoung 
   2689   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2690   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2691   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2692   1.1    dyoung 		break;
   2693   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2694   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2695   1.1    dyoung 		break;
   2696   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2697   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2698   1.1    dyoung 		break;
   2699   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2700   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2701   1.1    dyoung 		break;
   2702   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2703   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2704   1.1    dyoung 		ASSERT(0);
   2705   1.1    dyoung 		break;
   2706   1.1    dyoung 	}
   2707   1.1    dyoung 
   2708   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2709   1.1    dyoung 	vector &= 0xFFF;
   2710   1.1    dyoung 	return vector;
   2711   1.1    dyoung }
   2712   1.1    dyoung 
   2713   1.1    dyoung /**
   2714   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2715   1.1    dyoung  *  @hw: pointer to hardware structure
   2716  1.22   msaitoh  *  @mc_addr: Multicast address
   2717   1.1    dyoung  *
   2718   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2719   1.1    dyoung  **/
   2720   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2721   1.1    dyoung {
   2722   1.1    dyoung 	u32 vector;
   2723   1.1    dyoung 	u32 vector_bit;
   2724   1.1    dyoung 	u32 vector_reg;
   2725   1.1    dyoung 
   2726   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2727   1.1    dyoung 
   2728   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2729   1.1    dyoung 
   2730   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2731   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2732   1.1    dyoung 
   2733   1.1    dyoung 	/*
   2734   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2735   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2736   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2737   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2738   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2739   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2740   1.1    dyoung 	 * the value.
   2741   1.1    dyoung 	 */
   2742   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2743   1.1    dyoung 	vector_bit = vector & 0x1F;
   2744   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2745   1.1    dyoung }
   2746   1.1    dyoung 
   2747   1.1    dyoung /**
   2748   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2749   1.1    dyoung  *  @hw: pointer to hardware structure
   2750   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2751   1.1    dyoung  *  @mc_addr_count: number of addresses
   2752   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2753   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2754   1.1    dyoung  *
   2755   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2756   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2757   1.1    dyoung  **/
   2758   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2759   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2760   1.3   msaitoh 				      bool clear)
   2761   1.1    dyoung {
   2762   1.1    dyoung 	u32 i;
   2763   1.1    dyoung 	u32 vmdq;
   2764   1.1    dyoung 
   2765   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2766   1.1    dyoung 
   2767   1.1    dyoung 	/*
   2768   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2769   1.1    dyoung 	 * use.
   2770   1.1    dyoung 	 */
   2771   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2772   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2773   1.1    dyoung 
   2774   1.1    dyoung 	/* Clear mta_shadow */
   2775   1.3   msaitoh 	if (clear) {
   2776   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2777   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2778   1.3   msaitoh 	}
   2779   1.1    dyoung 
   2780   1.1    dyoung 	/* Update mta_shadow */
   2781   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2782   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2783   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2784   1.1    dyoung 	}
   2785   1.1    dyoung 
   2786   1.1    dyoung 	/* Enable mta */
   2787   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2788   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2789   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2790   1.1    dyoung 
   2791   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2792   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2793   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2794   1.1    dyoung 
   2795   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2796   1.1    dyoung 	return IXGBE_SUCCESS;
   2797   1.1    dyoung }
   2798   1.1    dyoung 
   2799   1.1    dyoung /**
   2800   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2801   1.1    dyoung  *  @hw: pointer to hardware structure
   2802   1.1    dyoung  *
   2803   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2804   1.1    dyoung  **/
   2805   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2806   1.1    dyoung {
   2807   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2808   1.1    dyoung 
   2809   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2810   1.1    dyoung 
   2811   1.1    dyoung 	if (a->mta_in_use > 0)
   2812   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2813   1.3   msaitoh 				hw->mac.mc_filter_type);
   2814   1.1    dyoung 
   2815   1.1    dyoung 	return IXGBE_SUCCESS;
   2816   1.1    dyoung }
   2817   1.1    dyoung 
   2818   1.1    dyoung /**
   2819   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2820   1.1    dyoung  *  @hw: pointer to hardware structure
   2821   1.1    dyoung  *
   2822   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2823   1.1    dyoung  **/
   2824   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2825   1.1    dyoung {
   2826   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2827   1.1    dyoung 
   2828   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2829   1.1    dyoung 
   2830   1.1    dyoung 	if (a->mta_in_use > 0)
   2831   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2832   1.1    dyoung 
   2833   1.1    dyoung 	return IXGBE_SUCCESS;
   2834   1.1    dyoung }
   2835   1.1    dyoung 
   2836   1.1    dyoung /**
   2837   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2838   1.1    dyoung  *  @hw: pointer to hardware structure
   2839   1.1    dyoung  *
   2840   1.1    dyoung  *  Enable flow control according to the current settings.
   2841   1.1    dyoung  **/
   2842   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2843   1.1    dyoung {
   2844   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2845   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2846   1.1    dyoung 	u32 reg;
   2847   1.1    dyoung 	u32 fcrtl, fcrth;
   2848   1.4   msaitoh 	int i;
   2849   1.1    dyoung 
   2850   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2851   1.1    dyoung 
   2852   1.4   msaitoh 	/* Validate the water mark configuration */
   2853   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2854   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2855   1.4   msaitoh 		goto out;
   2856   1.4   msaitoh 	}
   2857   1.4   msaitoh 
   2858   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2859   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2860   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2861   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2862   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2863   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2864   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2865   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2866   1.4   msaitoh 				goto out;
   2867   1.4   msaitoh 			}
   2868   1.4   msaitoh 		}
   2869   1.4   msaitoh 	}
   2870   1.4   msaitoh 
   2871   1.1    dyoung 	/* Negotiate the fc mode to use */
   2872  1.14   msaitoh 	hw->mac.ops.fc_autoneg(hw);
   2873   1.1    dyoung 
   2874   1.1    dyoung 	/* Disable any previous flow control settings */
   2875   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2876   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2877   1.1    dyoung 
   2878   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2879   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2880   1.1    dyoung 
   2881   1.1    dyoung 	/*
   2882   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2883   1.1    dyoung 	 * 0: Flow control is completely disabled
   2884   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2885   1.1    dyoung 	 *    but not send pause frames).
   2886   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2887   1.1    dyoung 	 *    we do not support receiving pause frames).
   2888   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2889   1.1    dyoung 	 * other: Invalid.
   2890   1.1    dyoung 	 */
   2891   1.1    dyoung 	switch (hw->fc.current_mode) {
   2892   1.1    dyoung 	case ixgbe_fc_none:
   2893   1.1    dyoung 		/*
   2894   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2895   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2896   1.1    dyoung 		 */
   2897   1.1    dyoung 		break;
   2898   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2899   1.1    dyoung 		/*
   2900   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2901   1.1    dyoung 		 * disabled by software override. Since there really
   2902   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2903   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2904   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2905   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2906   1.1    dyoung 		 */
   2907   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2908   1.1    dyoung 		break;
   2909   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2910   1.1    dyoung 		/*
   2911   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2912   1.1    dyoung 		 * disabled by software override.
   2913   1.1    dyoung 		 */
   2914   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2915   1.1    dyoung 		break;
   2916   1.1    dyoung 	case ixgbe_fc_full:
   2917   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2918   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2919   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2920   1.1    dyoung 		break;
   2921   1.1    dyoung 	default:
   2922   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2923   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2924   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2925   1.1    dyoung 		goto out;
   2926   1.1    dyoung 		break;
   2927   1.1    dyoung 	}
   2928   1.1    dyoung 
   2929   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2930   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2931   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2932   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2933   1.1    dyoung 
   2934   1.1    dyoung 
   2935   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2936   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2937   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2938   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2939   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2940   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2941   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2942   1.4   msaitoh 		} else {
   2943   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2944   1.4   msaitoh 			/*
   2945   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2946   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2947   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2948   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2949   1.8   msaitoh 			 * workloads.
   2950   1.4   msaitoh 			 */
   2951   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2952   1.4   msaitoh 		}
   2953   1.4   msaitoh 
   2954   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2955   1.1    dyoung 	}
   2956   1.1    dyoung 
   2957   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2958  1.24   msaitoh 	reg = (u32)hw->fc.pause_time * 0x00010001;
   2959   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2960   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2961   1.1    dyoung 
   2962   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2963   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2964   1.1    dyoung 
   2965   1.1    dyoung out:
   2966   1.1    dyoung 	return ret_val;
   2967   1.1    dyoung }
   2968   1.1    dyoung 
   2969   1.1    dyoung /**
   2970   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2971   1.1    dyoung  *  @hw: pointer to hardware structure
   2972   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2973   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2974   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2975   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2976   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2977   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2978   1.1    dyoung  *
   2979   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2980   1.4   msaitoh  *  advertised settings
   2981   1.1    dyoung  **/
   2982  1.14   msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2983  1.14   msaitoh 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2984   1.1    dyoung {
   2985   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2986   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2987   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2988   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2989   1.6   msaitoh 			     adv_reg, lp_reg);
   2990   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2991   1.6   msaitoh 	}
   2992   1.1    dyoung 
   2993   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2994   1.4   msaitoh 		/*
   2995   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2996   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2997   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2998   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2999   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   3000   1.4   msaitoh 		 */
   3001   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   3002   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   3003   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   3004   1.4   msaitoh 		} else {
   3005   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   3006   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   3007   1.4   msaitoh 		}
   3008   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3009   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3010   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   3011   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   3012   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3013   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3014   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   3015   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   3016   1.4   msaitoh 	} else {
   3017   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   3018   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   3019   1.4   msaitoh 	}
   3020   1.4   msaitoh 	return IXGBE_SUCCESS;
   3021   1.4   msaitoh }
   3022   1.1    dyoung 
   3023   1.4   msaitoh /**
   3024   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   3025   1.4   msaitoh  *  @hw: pointer to hardware structure
   3026   1.4   msaitoh  *
   3027   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   3028   1.4   msaitoh  **/
   3029   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3030   1.4   msaitoh {
   3031   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3032   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3033   1.1    dyoung 
   3034   1.1    dyoung 	/*
   3035   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   3036   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   3037   1.4   msaitoh 	 * - link is up and AN completed but timed out
   3038   1.1    dyoung 	 */
   3039   1.4   msaitoh 
   3040   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3041   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3042   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3043   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3044   1.1    dyoung 		goto out;
   3045   1.6   msaitoh 	}
   3046   1.1    dyoung 
   3047   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3048   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3049   1.1    dyoung 
   3050   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3051   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3052   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3053   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3054   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3055   1.1    dyoung 
   3056   1.1    dyoung out:
   3057   1.1    dyoung 	return ret_val;
   3058   1.1    dyoung }
   3059   1.1    dyoung 
   3060   1.1    dyoung /**
   3061   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3062   1.1    dyoung  *  @hw: pointer to hardware structure
   3063   1.1    dyoung  *
   3064   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3065   1.1    dyoung  **/
   3066   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3067   1.1    dyoung {
   3068   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   3069   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3070   1.1    dyoung 
   3071   1.1    dyoung 	/*
   3072   1.1    dyoung 	 * On backplane, bail out if
   3073   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   3074   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   3075   1.1    dyoung 	 */
   3076   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3077   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3078   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3079   1.1    dyoung 		goto out;
   3080   1.6   msaitoh 	}
   3081   1.1    dyoung 
   3082   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3083   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3084   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3085   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   3086   1.1    dyoung 			goto out;
   3087   1.6   msaitoh 		}
   3088   1.1    dyoung 	}
   3089   1.1    dyoung 	/*
   3090   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   3091   1.1    dyoung 	 * local flow control settings accordingly
   3092   1.1    dyoung 	 */
   3093   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3094   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3095   1.1    dyoung 
   3096   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3097   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3098   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3099   1.1    dyoung 
   3100   1.1    dyoung out:
   3101   1.1    dyoung 	return ret_val;
   3102   1.1    dyoung }
   3103   1.1    dyoung 
   3104   1.1    dyoung /**
   3105   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3106   1.1    dyoung  *  @hw: pointer to hardware structure
   3107   1.1    dyoung  *
   3108   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3109   1.1    dyoung  **/
   3110   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3111   1.1    dyoung {
   3112   1.1    dyoung 	u16 technology_ability_reg = 0;
   3113   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   3114   1.1    dyoung 
   3115   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3116   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3117   1.1    dyoung 			     &technology_ability_reg);
   3118   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3119   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3120   1.1    dyoung 			     &lp_technology_ability_reg);
   3121   1.1    dyoung 
   3122   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3123   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   3124   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3125   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3126   1.1    dyoung }
   3127   1.1    dyoung 
   3128   1.1    dyoung /**
   3129   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3130   1.1    dyoung  *  @hw: pointer to hardware structure
   3131   1.1    dyoung  *
   3132   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3133   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3134   1.1    dyoung  **/
   3135   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3136   1.1    dyoung {
   3137   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3138   1.4   msaitoh 	ixgbe_link_speed speed;
   3139   1.4   msaitoh 	bool link_up;
   3140   1.1    dyoung 
   3141   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3142   1.1    dyoung 
   3143   1.1    dyoung 	/*
   3144   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3145   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3146   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3147   1.4   msaitoh 	 * - link is not up.
   3148   1.1    dyoung 	 */
   3149   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3150   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3151   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3152   1.1    dyoung 		goto out;
   3153   1.6   msaitoh 	}
   3154   1.1    dyoung 
   3155   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3156   1.6   msaitoh 	if (!link_up) {
   3157   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3158   1.1    dyoung 		goto out;
   3159   1.6   msaitoh 	}
   3160   1.1    dyoung 
   3161   1.1    dyoung 	switch (hw->phy.media_type) {
   3162   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3163   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3164   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3165   1.1    dyoung 	case ixgbe_media_type_fiber:
   3166   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3167   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3168   1.4   msaitoh 		break;
   3169   1.4   msaitoh 
   3170   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3171   1.1    dyoung 	case ixgbe_media_type_backplane:
   3172   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3173   1.1    dyoung 		break;
   3174   1.1    dyoung 
   3175   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3176   1.1    dyoung 	case ixgbe_media_type_copper:
   3177   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3178   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3179   1.1    dyoung 		break;
   3180   1.1    dyoung 
   3181   1.1    dyoung 	default:
   3182   1.1    dyoung 		break;
   3183   1.1    dyoung 	}
   3184   1.1    dyoung 
   3185   1.4   msaitoh out:
   3186   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3187   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3188   1.4   msaitoh 	} else {
   3189   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3190   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3191   1.3   msaitoh 	}
   3192   1.1    dyoung }
   3193   1.1    dyoung 
   3194   1.6   msaitoh /*
   3195   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3196   1.6   msaitoh  * @hw: pointer to hardware structure
   3197   1.6   msaitoh  *
   3198   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3199   1.6   msaitoh  *
   3200   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3201   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3202   1.6   msaitoh  * 800 = 80 millisec.
   3203   1.6   msaitoh  */
   3204   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3205   1.6   msaitoh {
   3206   1.6   msaitoh 	s16 devctl2;
   3207   1.6   msaitoh 	u32 pollcnt;
   3208   1.6   msaitoh 
   3209   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3210   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3211   1.6   msaitoh 
   3212   1.6   msaitoh 	switch (devctl2) {
   3213   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3214   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3215   1.6   msaitoh 		break;
   3216   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3217   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3218   1.6   msaitoh 		break;
   3219   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3220   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3221   1.6   msaitoh 		break;
   3222   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3223   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3224   1.6   msaitoh 		break;
   3225   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3226   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3227   1.6   msaitoh 		break;
   3228   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3229   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3230   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3231   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3232   1.6   msaitoh 	default:
   3233   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3234   1.6   msaitoh 		break;
   3235   1.6   msaitoh 	}
   3236   1.6   msaitoh 
   3237   1.6   msaitoh 	/* add 10% to spec maximum */
   3238   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3239   1.6   msaitoh }
   3240   1.6   msaitoh 
   3241   1.1    dyoung /**
   3242   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3243   1.1    dyoung  *  @hw: pointer to hardware structure
   3244   1.1    dyoung  *
   3245   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3246   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3247   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3248   1.1    dyoung  *  is returned signifying master requests disabled.
   3249   1.1    dyoung  **/
   3250   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3251   1.1    dyoung {
   3252   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3253   1.6   msaitoh 	u32 i, poll;
   3254   1.8   msaitoh 	u16 value;
   3255   1.1    dyoung 
   3256   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3257   1.1    dyoung 
   3258   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3259   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3260   1.3   msaitoh 
   3261   1.6   msaitoh 	/* Exit if master requests are blocked */
   3262   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3263   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3264   1.1    dyoung 		goto out;
   3265   1.1    dyoung 
   3266   1.3   msaitoh 	/* Poll for master request bit to clear */
   3267   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3268   1.3   msaitoh 		usec_delay(100);
   3269   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3270   1.3   msaitoh 			goto out;
   3271   1.1    dyoung 	}
   3272   1.1    dyoung 
   3273   1.3   msaitoh 	/*
   3274   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3275   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3276   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3277   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3278   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3279   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3280   1.3   msaitoh 	 */
   3281   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3282   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3283   1.1    dyoung 
   3284  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3285  1.10   msaitoh 		goto out;
   3286  1.10   msaitoh 
   3287   1.1    dyoung 	/*
   3288   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3289   1.1    dyoung 	 * transactions pending.
   3290   1.1    dyoung 	 */
   3291   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3292   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3293   1.3   msaitoh 		usec_delay(100);
   3294   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3295   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3296   1.8   msaitoh 			goto out;
   3297   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3298   1.3   msaitoh 			goto out;
   3299   1.1    dyoung 	}
   3300   1.1    dyoung 
   3301   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3302   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3303   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3304   1.1    dyoung 
   3305   1.1    dyoung out:
   3306   1.1    dyoung 	return status;
   3307   1.1    dyoung }
   3308   1.1    dyoung 
   3309   1.1    dyoung /**
   3310   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3311   1.1    dyoung  *  @hw: pointer to hardware structure
   3312   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3313   1.1    dyoung  *
   3314   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3315   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3316   1.1    dyoung  **/
   3317   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3318   1.1    dyoung {
   3319   1.6   msaitoh 	u32 gssr = 0;
   3320   1.1    dyoung 	u32 swmask = mask;
   3321   1.1    dyoung 	u32 fwmask = mask << 5;
   3322   1.6   msaitoh 	u32 timeout = 200;
   3323   1.6   msaitoh 	u32 i;
   3324   1.1    dyoung 
   3325   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3326   1.1    dyoung 
   3327   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3328   1.1    dyoung 		/*
   3329   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3330   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3331   1.1    dyoung 		 */
   3332   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3333   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3334   1.1    dyoung 
   3335   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3336   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3337   1.6   msaitoh 			gssr |= swmask;
   3338   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3339   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3340   1.6   msaitoh 			return IXGBE_SUCCESS;
   3341   1.6   msaitoh 		} else {
   3342   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3343   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3344   1.6   msaitoh 			msec_delay(5);
   3345   1.6   msaitoh 		}
   3346   1.1    dyoung 	}
   3347   1.1    dyoung 
   3348   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3349   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3350   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3351   1.1    dyoung 
   3352   1.6   msaitoh 	msec_delay(5);
   3353   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3354   1.1    dyoung }
   3355   1.1    dyoung 
   3356   1.1    dyoung /**
   3357   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3358   1.1    dyoung  *  @hw: pointer to hardware structure
   3359   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3360   1.1    dyoung  *
   3361   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3362   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3363   1.1    dyoung  **/
   3364   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3365   1.1    dyoung {
   3366   1.1    dyoung 	u32 gssr;
   3367   1.1    dyoung 	u32 swmask = mask;
   3368   1.1    dyoung 
   3369   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3370   1.1    dyoung 
   3371   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3372   1.1    dyoung 
   3373   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3374   1.1    dyoung 	gssr &= ~swmask;
   3375   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3376   1.1    dyoung 
   3377   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3378   1.1    dyoung }
   3379   1.1    dyoung 
   3380   1.1    dyoung /**
   3381   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3382   1.3   msaitoh  *  @hw: pointer to hardware structure
   3383   1.3   msaitoh  *
   3384   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3385   1.3   msaitoh  *  the Rx security block
   3386   1.3   msaitoh  **/
   3387   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3388   1.3   msaitoh {
   3389  1.17   msaitoh #define IXGBE_MAX_SECRX_POLL 4000
   3390   1.3   msaitoh 
   3391   1.3   msaitoh 	int i;
   3392   1.3   msaitoh 	int secrxreg;
   3393   1.3   msaitoh 
   3394   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3395   1.3   msaitoh 
   3396   1.3   msaitoh 
   3397   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3398   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3399   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3400   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3401   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3402   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3403   1.3   msaitoh 			break;
   3404   1.3   msaitoh 		else
   3405   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3406  1.17   msaitoh 			usec_delay(10);
   3407   1.3   msaitoh 	}
   3408   1.3   msaitoh 
   3409   1.3   msaitoh 	/* For informational purposes only */
   3410   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3411   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3412   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3413   1.3   msaitoh 
   3414   1.3   msaitoh 	return IXGBE_SUCCESS;
   3415   1.3   msaitoh }
   3416   1.3   msaitoh 
   3417   1.3   msaitoh /**
   3418   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3419   1.8   msaitoh  *  @hw: pointer to hardware structure
   3420  1.22   msaitoh  *  @locked: bool to indicate whether the SW/FW lock was taken
   3421   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3422   1.8   msaitoh  *
   3423   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3424   1.8   msaitoh  */
   3425   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3426   1.8   msaitoh {
   3427   1.8   msaitoh 	*locked = FALSE;
   3428   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3429   1.8   msaitoh 	return IXGBE_SUCCESS;
   3430   1.8   msaitoh }
   3431   1.8   msaitoh 
   3432   1.8   msaitoh /**
   3433   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3434   1.8   msaitoh  * @hw: pointer to hardware structure
   3435   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3436   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3437   1.8   msaitoh  *           previous read.
   3438   1.8   msaitoh  *
   3439   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3440   1.8   msaitoh  */
   3441   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3442   1.8   msaitoh {
   3443   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3444   1.8   msaitoh 
   3445   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3446   1.8   msaitoh 	return IXGBE_SUCCESS;
   3447   1.8   msaitoh }
   3448   1.8   msaitoh 
   3449   1.8   msaitoh /**
   3450   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3451   1.3   msaitoh  *  @hw: pointer to hardware structure
   3452   1.3   msaitoh  *
   3453   1.3   msaitoh  *  Enables the receive data path.
   3454   1.3   msaitoh  **/
   3455   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3456   1.3   msaitoh {
   3457  1.14   msaitoh 	u32 secrxreg;
   3458   1.3   msaitoh 
   3459   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3460   1.3   msaitoh 
   3461   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3462   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3463   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3464   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3465   1.3   msaitoh 
   3466   1.3   msaitoh 	return IXGBE_SUCCESS;
   3467   1.3   msaitoh }
   3468   1.3   msaitoh 
   3469   1.3   msaitoh /**
   3470   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3471   1.1    dyoung  *  @hw: pointer to hardware structure
   3472   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3473   1.1    dyoung  *
   3474   1.1    dyoung  *  Enables the Rx DMA unit
   3475   1.1    dyoung  **/
   3476   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3477   1.1    dyoung {
   3478   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3479   1.1    dyoung 
   3480   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3481   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3482   1.8   msaitoh 	else
   3483   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3484   1.1    dyoung 
   3485   1.1    dyoung 	return IXGBE_SUCCESS;
   3486   1.1    dyoung }
   3487   1.1    dyoung 
   3488   1.1    dyoung /**
   3489   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3490   1.1    dyoung  *  @hw: pointer to hardware structure
   3491   1.1    dyoung  *  @index: led number to blink
   3492   1.1    dyoung  **/
   3493   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3494   1.1    dyoung {
   3495   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3496   1.1    dyoung 	bool link_up = 0;
   3497   1.8   msaitoh 	u32 autoc_reg = 0;
   3498   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3499   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3500   1.8   msaitoh 	bool locked = FALSE;
   3501   1.1    dyoung 
   3502   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3503   1.1    dyoung 
   3504  1.14   msaitoh 	if (index > 3)
   3505  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3506  1.14   msaitoh 
   3507   1.1    dyoung 	/*
   3508   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3509   1.1    dyoung 	 * Force it if link is down.
   3510   1.1    dyoung 	 */
   3511   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3512   1.1    dyoung 
   3513   1.1    dyoung 	if (!link_up) {
   3514   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3515   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3516   1.8   msaitoh 			goto out;
   3517   1.5   msaitoh 
   3518   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3519   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3520   1.8   msaitoh 
   3521   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3522   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3523   1.8   msaitoh 			goto out;
   3524   1.8   msaitoh 
   3525   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3526   1.1    dyoung 		msec_delay(10);
   3527   1.1    dyoung 	}
   3528   1.1    dyoung 
   3529   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3530   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3531   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3532   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3533   1.1    dyoung 
   3534   1.5   msaitoh out:
   3535   1.5   msaitoh 	return ret_val;
   3536   1.1    dyoung }
   3537   1.1    dyoung 
   3538   1.1    dyoung /**
   3539   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3540   1.1    dyoung  *  @hw: pointer to hardware structure
   3541   1.1    dyoung  *  @index: led number to stop blinking
   3542   1.1    dyoung  **/
   3543   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3544   1.1    dyoung {
   3545   1.8   msaitoh 	u32 autoc_reg = 0;
   3546   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3547   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3548   1.8   msaitoh 	bool locked = FALSE;
   3549   1.1    dyoung 
   3550   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3551   1.1    dyoung 
   3552  1.14   msaitoh 	if (index > 3)
   3553  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3554  1.14   msaitoh 
   3555   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3556   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3557   1.8   msaitoh 		goto out;
   3558   1.1    dyoung 
   3559   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3560   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3561   1.1    dyoung 
   3562   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3563   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3564   1.8   msaitoh 		goto out;
   3565   1.5   msaitoh 
   3566   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3567   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3568   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3569   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3570   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3571   1.1    dyoung 
   3572   1.5   msaitoh out:
   3573   1.5   msaitoh 	return ret_val;
   3574   1.1    dyoung }
   3575   1.1    dyoung 
   3576   1.1    dyoung /**
   3577   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3578   1.1    dyoung  *  @hw: pointer to hardware structure
   3579   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3580   1.1    dyoung  *
   3581   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3582   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3583   1.1    dyoung  *  get and set mac_addr routines.
   3584   1.1    dyoung  **/
   3585   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3586   1.3   msaitoh 					 u16 *san_mac_offset)
   3587   1.1    dyoung {
   3588   1.6   msaitoh 	s32 ret_val;
   3589   1.6   msaitoh 
   3590   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3591   1.1    dyoung 
   3592   1.1    dyoung 	/*
   3593   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3594   1.1    dyoung 	 * available.
   3595   1.1    dyoung 	 */
   3596   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3597   1.6   msaitoh 				      san_mac_offset);
   3598   1.6   msaitoh 	if (ret_val) {
   3599   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3600   1.6   msaitoh 			      "eeprom at offset %d failed",
   3601   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3602   1.6   msaitoh 	}
   3603   1.1    dyoung 
   3604   1.6   msaitoh 	return ret_val;
   3605   1.1    dyoung }
   3606   1.1    dyoung 
   3607   1.1    dyoung /**
   3608   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3609   1.1    dyoung  *  @hw: pointer to hardware structure
   3610   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3611   1.1    dyoung  *
   3612   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3613   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3614   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3615   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3616   1.1    dyoung  **/
   3617   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3618   1.1    dyoung {
   3619   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3620   1.1    dyoung 	u8 i;
   3621   1.6   msaitoh 	s32 ret_val;
   3622   1.1    dyoung 
   3623   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3624   1.1    dyoung 
   3625   1.1    dyoung 	/*
   3626   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3627   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3628   1.1    dyoung 	 */
   3629   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3630   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3631   1.1    dyoung 		goto san_mac_addr_out;
   3632   1.1    dyoung 
   3633   1.1    dyoung 	/* make sure we know which port we need to program */
   3634   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3635   1.1    dyoung 	/* apply the port offset to the address offset */
   3636   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3637   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3638   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3639   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3640   1.6   msaitoh 					      &san_mac_data);
   3641   1.6   msaitoh 		if (ret_val) {
   3642   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3643   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3644   1.6   msaitoh 				      san_mac_offset);
   3645   1.6   msaitoh 			goto san_mac_addr_out;
   3646   1.6   msaitoh 		}
   3647   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3648   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3649   1.1    dyoung 		san_mac_offset++;
   3650   1.1    dyoung 	}
   3651   1.6   msaitoh 	return IXGBE_SUCCESS;
   3652   1.1    dyoung 
   3653   1.1    dyoung san_mac_addr_out:
   3654   1.6   msaitoh 	/*
   3655   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3656   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3657   1.6   msaitoh 	 */
   3658   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3659   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3660   1.1    dyoung 	return IXGBE_SUCCESS;
   3661   1.1    dyoung }
   3662   1.1    dyoung 
   3663   1.1    dyoung /**
   3664   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3665   1.1    dyoung  *  @hw: pointer to hardware structure
   3666   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3667   1.1    dyoung  *
   3668   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3669   1.1    dyoung  **/
   3670   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3671   1.1    dyoung {
   3672   1.6   msaitoh 	s32 ret_val;
   3673   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3674   1.1    dyoung 	u8 i;
   3675   1.1    dyoung 
   3676   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3677   1.1    dyoung 
   3678   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3679   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3680   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3681   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3682   1.1    dyoung 
   3683   1.1    dyoung 	/* Make sure we know which port we need to write */
   3684   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3685   1.1    dyoung 	/* Apply the port offset to the address offset */
   3686   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3687   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3688   1.1    dyoung 
   3689   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3690   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3691   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3692   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3693   1.1    dyoung 		san_mac_offset++;
   3694   1.1    dyoung 	}
   3695   1.1    dyoung 
   3696   1.6   msaitoh 	return IXGBE_SUCCESS;
   3697   1.1    dyoung }
   3698   1.1    dyoung 
   3699   1.1    dyoung /**
   3700   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3701   1.1    dyoung  *  @hw: pointer to hardware structure
   3702   1.1    dyoung  *
   3703   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3704   1.1    dyoung  *  the capabilities table.
   3705   1.1    dyoung  **/
   3706   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3707   1.1    dyoung {
   3708   1.4   msaitoh 	u16 msix_count = 1;
   3709   1.4   msaitoh 	u16 max_msix_count;
   3710   1.4   msaitoh 	u16 pcie_offset;
   3711   1.4   msaitoh 
   3712   1.4   msaitoh 	switch (hw->mac.type) {
   3713   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3714   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3715   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3716   1.4   msaitoh 		break;
   3717   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3718   1.4   msaitoh 	case ixgbe_mac_X540:
   3719   1.8   msaitoh 	case ixgbe_mac_X550:
   3720   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3721  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   3722   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3723   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3724   1.4   msaitoh 		break;
   3725   1.4   msaitoh 	default:
   3726   1.4   msaitoh 		return msix_count;
   3727   1.4   msaitoh 	}
   3728   1.1    dyoung 
   3729   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3730   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3731   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3732   1.8   msaitoh 		msix_count = 0;
   3733   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3734   1.4   msaitoh 
   3735   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3736   1.4   msaitoh 	msix_count++;
   3737   1.4   msaitoh 
   3738   1.4   msaitoh 	if (msix_count > max_msix_count)
   3739   1.4   msaitoh 		msix_count = max_msix_count;
   3740   1.1    dyoung 
   3741   1.1    dyoung 	return msix_count;
   3742   1.1    dyoung }
   3743   1.1    dyoung 
   3744   1.1    dyoung /**
   3745   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3746   1.1    dyoung  *  @hw: pointer to hardware structure
   3747   1.1    dyoung  *  @addr: Address to put into receive address register
   3748   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3749   1.1    dyoung  *
   3750   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3751  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3752   1.1    dyoung  **/
   3753   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3754   1.1    dyoung {
   3755   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3756   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3757   1.1    dyoung 	u32 rar;
   3758   1.1    dyoung 	u32 rar_low, rar_high;
   3759   1.1    dyoung 	u32 addr_low, addr_high;
   3760   1.1    dyoung 
   3761   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3762   1.1    dyoung 
   3763   1.1    dyoung 	/* swap bytes for HW little endian */
   3764   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3765   1.1    dyoung 			    | (addr[2] << 16)
   3766   1.1    dyoung 			    | (addr[3] << 24);
   3767   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3768   1.1    dyoung 
   3769   1.1    dyoung 	/*
   3770   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3771   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3772   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3773   1.1    dyoung 	 * rar to the top.
   3774   1.1    dyoung 	 */
   3775   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3776   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3777   1.1    dyoung 
   3778   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3779   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3780   1.1    dyoung 			first_empty_rar = rar;
   3781   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3782   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3783   1.1    dyoung 			if (rar_low == addr_low)
   3784   1.1    dyoung 				break;    /* found it already in the rars */
   3785   1.1    dyoung 		}
   3786   1.1    dyoung 	}
   3787   1.1    dyoung 
   3788   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3789   1.1    dyoung 		/* already there so just add to the pool bits */
   3790   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3791   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3792   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3793   1.1    dyoung 		rar = first_empty_rar;
   3794   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3795   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3796   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3797   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3798   1.1    dyoung 		hw->mac.rar_highwater++;
   3799   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3800   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3801   1.1    dyoung 	}
   3802   1.1    dyoung 
   3803   1.1    dyoung 	/*
   3804   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3805   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3806   1.1    dyoung 	 */
   3807   1.1    dyoung 	if (rar == 0)
   3808   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3809   1.1    dyoung 
   3810   1.1    dyoung 	return rar;
   3811   1.1    dyoung }
   3812   1.1    dyoung 
   3813   1.1    dyoung /**
   3814   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3815   1.1    dyoung  *  @hw: pointer to hardware struct
   3816   1.1    dyoung  *  @rar: receive address register index to disassociate
   3817   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3818   1.1    dyoung  **/
   3819   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3820   1.1    dyoung {
   3821   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3822   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3823   1.1    dyoung 
   3824   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3825   1.1    dyoung 
   3826   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3827   1.1    dyoung 	if (rar >= rar_entries) {
   3828   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3829   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3830   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3831   1.1    dyoung 	}
   3832   1.1    dyoung 
   3833   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3834   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3835   1.1    dyoung 
   3836   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3837   1.8   msaitoh 		goto done;
   3838   1.8   msaitoh 
   3839   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3840   1.1    dyoung 		goto done;
   3841   1.1    dyoung 
   3842   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3843   1.1    dyoung 		if (mpsar_lo) {
   3844   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3845   1.1    dyoung 			mpsar_lo = 0;
   3846   1.1    dyoung 		}
   3847   1.1    dyoung 		if (mpsar_hi) {
   3848   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3849   1.1    dyoung 			mpsar_hi = 0;
   3850   1.1    dyoung 		}
   3851   1.1    dyoung 	} else if (vmdq < 32) {
   3852   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3853   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3854   1.1    dyoung 	} else {
   3855   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3856   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3857   1.1    dyoung 	}
   3858   1.1    dyoung 
   3859   1.1    dyoung 	/* was that the last pool using this rar? */
   3860  1.14   msaitoh 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3861  1.14   msaitoh 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3862   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3863   1.1    dyoung done:
   3864   1.1    dyoung 	return IXGBE_SUCCESS;
   3865   1.1    dyoung }
   3866   1.1    dyoung 
   3867   1.1    dyoung /**
   3868   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3869   1.1    dyoung  *  @hw: pointer to hardware struct
   3870   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3871   1.1    dyoung  *  @vmdq: VMDq pool index
   3872   1.1    dyoung  **/
   3873   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3874   1.1    dyoung {
   3875   1.1    dyoung 	u32 mpsar;
   3876   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3877   1.1    dyoung 
   3878   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3879   1.1    dyoung 
   3880   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3881   1.1    dyoung 	if (rar >= rar_entries) {
   3882   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3883   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3884   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3885   1.1    dyoung 	}
   3886   1.1    dyoung 
   3887   1.1    dyoung 	if (vmdq < 32) {
   3888   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3889   1.1    dyoung 		mpsar |= 1 << vmdq;
   3890   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3891   1.1    dyoung 	} else {
   3892   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3893   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3894   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3895   1.1    dyoung 	}
   3896   1.1    dyoung 	return IXGBE_SUCCESS;
   3897   1.1    dyoung }
   3898   1.1    dyoung 
   3899   1.1    dyoung /**
   3900   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3901   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3902   1.4   msaitoh  *  VFs advertized and not 0.
   3903   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3904   1.4   msaitoh  *
   3905   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3906   1.4   msaitoh  *  @hw: pointer to hardware struct
   3907   1.4   msaitoh  *  @vmdq: VMDq pool index
   3908   1.4   msaitoh  **/
   3909   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3910   1.4   msaitoh {
   3911   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3912   1.4   msaitoh 
   3913   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3914   1.4   msaitoh 
   3915   1.4   msaitoh 	if (vmdq < 32) {
   3916   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3917   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3918   1.4   msaitoh 	} else {
   3919   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3920   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3921   1.4   msaitoh 	}
   3922   1.4   msaitoh 
   3923   1.4   msaitoh 	return IXGBE_SUCCESS;
   3924   1.4   msaitoh }
   3925   1.4   msaitoh 
   3926   1.4   msaitoh /**
   3927   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3928   1.1    dyoung  *  @hw: pointer to hardware structure
   3929   1.1    dyoung  **/
   3930   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3931   1.1    dyoung {
   3932   1.1    dyoung 	int i;
   3933   1.1    dyoung 
   3934   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3935   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3936   1.1    dyoung 
   3937   1.1    dyoung 	for (i = 0; i < 128; i++)
   3938   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3939   1.1    dyoung 
   3940   1.1    dyoung 	return IXGBE_SUCCESS;
   3941   1.1    dyoung }
   3942   1.1    dyoung 
   3943   1.1    dyoung /**
   3944   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3945   1.1    dyoung  *  @hw: pointer to hardware structure
   3946   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3947  1.22   msaitoh  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
   3948  1.22   msaitoh  *		  vlanid not found
   3949  1.22   msaitoh  *
   3950   1.1    dyoung  *
   3951   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3952   1.1    dyoung  *
   3953   1.1    dyoung  **/
   3954  1.14   msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3955   1.1    dyoung {
   3956  1.14   msaitoh 	s32 regindex, first_empty_slot;
   3957  1.14   msaitoh 	u32 bits;
   3958   1.1    dyoung 
   3959   1.1    dyoung 	/* short cut the special case */
   3960   1.1    dyoung 	if (vlan == 0)
   3961   1.1    dyoung 		return 0;
   3962   1.1    dyoung 
   3963  1.14   msaitoh 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3964  1.14   msaitoh 	 * will simply bypass the VLVF if there are no entries present in the
   3965  1.14   msaitoh 	 * VLVF that contain our VLAN
   3966  1.14   msaitoh 	 */
   3967  1.14   msaitoh 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3968  1.14   msaitoh 
   3969  1.14   msaitoh 	/* add VLAN enable bit for comparison */
   3970  1.14   msaitoh 	vlan |= IXGBE_VLVF_VIEN;
   3971  1.14   msaitoh 
   3972  1.14   msaitoh 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3973  1.14   msaitoh 	 * slot found along the way.
   3974  1.14   msaitoh 	 *
   3975  1.14   msaitoh 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3976  1.14   msaitoh 	 */
   3977  1.14   msaitoh 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3978   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3979  1.14   msaitoh 		if (bits == vlan)
   3980  1.14   msaitoh 			return regindex;
   3981  1.14   msaitoh 		if (!first_empty_slot && !bits)
   3982   1.1    dyoung 			first_empty_slot = regindex;
   3983   1.1    dyoung 	}
   3984   1.1    dyoung 
   3985  1.14   msaitoh 	/* If we are here then we didn't find the VLAN.  Return first empty
   3986  1.14   msaitoh 	 * slot we found during our search, else error.
   3987  1.14   msaitoh 	 */
   3988  1.14   msaitoh 	if (!first_empty_slot)
   3989  1.14   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3990   1.1    dyoung 
   3991  1.14   msaitoh 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3992   1.1    dyoung }
   3993   1.1    dyoung 
   3994   1.1    dyoung /**
   3995   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3996   1.1    dyoung  *  @hw: pointer to hardware structure
   3997   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3998  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3999  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN
   4000  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4001   1.1    dyoung  *
   4002   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   4003   1.1    dyoung  **/
   4004   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4005  1.14   msaitoh 			   bool vlan_on, bool vlvf_bypass)
   4006   1.1    dyoung {
   4007  1.14   msaitoh 	u32 regidx, vfta_delta, vfta;
   4008  1.14   msaitoh 	s32 ret_val;
   4009   1.1    dyoung 
   4010   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   4011   1.1    dyoung 
   4012  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4013   1.1    dyoung 		return IXGBE_ERR_PARAM;
   4014   1.1    dyoung 
   4015   1.1    dyoung 	/*
   4016   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   4017   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   4018   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   4019   1.1    dyoung 	 */
   4020   1.1    dyoung 
   4021   1.1    dyoung 	/* Part 1
   4022   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   4023   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   4024   1.1    dyoung 	 *    bits[11-5]: which register
   4025   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   4026   1.1    dyoung 	 */
   4027  1.14   msaitoh 	regidx = vlan / 32;
   4028  1.25   msaitoh 	vfta_delta = (u32)1 << (vlan % 32);
   4029  1.14   msaitoh 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   4030  1.14   msaitoh 
   4031  1.14   msaitoh 	/*
   4032  1.14   msaitoh 	 * vfta_delta represents the difference between the current value
   4033  1.14   msaitoh 	 * of vfta and the value we want in the register.  Since the diff
   4034  1.14   msaitoh 	 * is an XOR mask we can just update the vfta using an XOR
   4035  1.14   msaitoh 	 */
   4036  1.14   msaitoh 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4037  1.14   msaitoh 	vfta ^= vfta_delta;
   4038   1.1    dyoung 
   4039   1.1    dyoung 	/* Part 2
   4040   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4041   1.3   msaitoh 	 */
   4042  1.14   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4043  1.14   msaitoh 					 vfta, vlvf_bypass);
   4044  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS) {
   4045  1.14   msaitoh 		if (vlvf_bypass)
   4046  1.14   msaitoh 			goto vfta_update;
   4047   1.3   msaitoh 		return ret_val;
   4048  1.14   msaitoh 	}
   4049   1.3   msaitoh 
   4050  1.14   msaitoh vfta_update:
   4051  1.14   msaitoh 	/* Update VFTA now that we are ready for traffic */
   4052  1.14   msaitoh 	if (vfta_delta)
   4053  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4054   1.3   msaitoh 
   4055   1.3   msaitoh 	return IXGBE_SUCCESS;
   4056   1.3   msaitoh }
   4057   1.3   msaitoh 
   4058   1.3   msaitoh /**
   4059   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4060   1.3   msaitoh  *  @hw: pointer to hardware structure
   4061   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   4062  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4063  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4064  1.14   msaitoh  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4065  1.14   msaitoh  *		 and the desired value
   4066  1.14   msaitoh  *  @vfta: the desired value of the VFTA
   4067  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4068   1.3   msaitoh  *
   4069   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   4070   1.3   msaitoh  **/
   4071   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4072  1.14   msaitoh 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4073  1.14   msaitoh 			   bool vlvf_bypass)
   4074   1.3   msaitoh {
   4075  1.14   msaitoh 	u32 bits;
   4076  1.14   msaitoh 	s32 vlvf_index;
   4077   1.3   msaitoh 
   4078   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4079   1.3   msaitoh 
   4080  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4081   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   4082   1.3   msaitoh 
   4083   1.3   msaitoh 	/* If VT Mode is set
   4084   1.1    dyoung 	 *   Either vlan_on
   4085   1.1    dyoung 	 *     make sure the vlan is in VLVF
   4086   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   4087   1.1    dyoung 	 *   Or !vlan_on
   4088   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   4089   1.1    dyoung 	 */
   4090  1.14   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4091  1.14   msaitoh 		return IXGBE_SUCCESS;
   4092   1.1    dyoung 
   4093  1.14   msaitoh 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4094  1.14   msaitoh 	if (vlvf_index < 0)
   4095  1.14   msaitoh 		return vlvf_index;
   4096  1.14   msaitoh 
   4097  1.14   msaitoh 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4098  1.14   msaitoh 
   4099  1.14   msaitoh 	/* set the pool bit */
   4100  1.14   msaitoh 	bits |= 1 << (vind % 32);
   4101  1.14   msaitoh 	if (vlan_on)
   4102  1.14   msaitoh 		goto vlvf_update;
   4103  1.14   msaitoh 
   4104  1.14   msaitoh 	/* clear the pool bit */
   4105  1.14   msaitoh 	bits ^= 1 << (vind % 32);
   4106  1.14   msaitoh 
   4107  1.14   msaitoh 	if (!bits &&
   4108  1.14   msaitoh 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4109  1.14   msaitoh 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4110  1.14   msaitoh 		 * we run the risk of stray packets leaking into
   4111  1.14   msaitoh 		 * the PF via the default pool
   4112   1.1    dyoung 		 */
   4113  1.14   msaitoh 		if (*vfta_delta)
   4114  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4115  1.14   msaitoh 
   4116  1.14   msaitoh 		/* disable VLVF and clear remaining bit from pool */
   4117  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4118  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4119  1.14   msaitoh 
   4120  1.14   msaitoh 		return IXGBE_SUCCESS;
   4121   1.1    dyoung 	}
   4122   1.1    dyoung 
   4123  1.14   msaitoh 	/* If there are still bits set in the VLVFB registers
   4124  1.14   msaitoh 	 * for the VLAN ID indicated we need to see if the
   4125  1.14   msaitoh 	 * caller is requesting that we clear the VFTA entry bit.
   4126  1.14   msaitoh 	 * If the caller has requested that we clear the VFTA
   4127  1.14   msaitoh 	 * entry bit but there are still pools/VFs using this VLAN
   4128  1.14   msaitoh 	 * ID entry then ignore the request.  We're not worried
   4129  1.14   msaitoh 	 * about the case where we're turning the VFTA VLAN ID
   4130  1.14   msaitoh 	 * entry bit on, only when requested to turn it off as
   4131  1.14   msaitoh 	 * there may be multiple pools and/or VFs using the
   4132  1.14   msaitoh 	 * VLAN ID entry.  In that case we cannot clear the
   4133  1.14   msaitoh 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4134  1.14   msaitoh 	 * been cleared.  This will be indicated by "bits" being
   4135  1.14   msaitoh 	 * zero.
   4136  1.14   msaitoh 	 */
   4137  1.14   msaitoh 	*vfta_delta = 0;
   4138  1.14   msaitoh 
   4139  1.14   msaitoh vlvf_update:
   4140  1.14   msaitoh 	/* record pool change and enable VLAN ID if not already enabled */
   4141  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4142  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4143  1.14   msaitoh 
   4144   1.1    dyoung 	return IXGBE_SUCCESS;
   4145   1.1    dyoung }
   4146   1.1    dyoung 
   4147   1.1    dyoung /**
   4148   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4149   1.1    dyoung  *  @hw: pointer to hardware structure
   4150   1.1    dyoung  *
   4151   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4152   1.1    dyoung  **/
   4153   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4154   1.1    dyoung {
   4155   1.1    dyoung 	u32 offset;
   4156   1.1    dyoung 
   4157   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4158   1.1    dyoung 
   4159   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4160   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4161   1.1    dyoung 
   4162   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4163   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4164   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4165  1.17   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4166   1.1    dyoung 	}
   4167   1.1    dyoung 
   4168   1.1    dyoung 	return IXGBE_SUCCESS;
   4169   1.1    dyoung }
   4170   1.1    dyoung 
   4171   1.1    dyoung /**
   4172  1.23   msaitoh  *  ixgbe_toggle_txdctl_generic - Toggle VF's queues
   4173  1.23   msaitoh  *  @hw: pointer to hardware structure
   4174  1.23   msaitoh  *  @vf_number: VF index
   4175  1.23   msaitoh  *
   4176  1.23   msaitoh  *  Enable and disable each queue in VF.
   4177  1.23   msaitoh  */
   4178  1.23   msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
   4179  1.23   msaitoh {
   4180  1.23   msaitoh 	u8  queue_count, i;
   4181  1.23   msaitoh 	u32 offset, reg;
   4182  1.23   msaitoh 
   4183  1.23   msaitoh 	if (vf_number > 63)
   4184  1.23   msaitoh 		return IXGBE_ERR_PARAM;
   4185  1.23   msaitoh 
   4186  1.23   msaitoh 	/*
   4187  1.23   msaitoh 	 * Determine number of queues by checking
   4188  1.23   msaitoh 	 * number of virtual functions
   4189  1.23   msaitoh 	 */
   4190  1.23   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4191  1.23   msaitoh 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
   4192  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_64:
   4193  1.23   msaitoh 		queue_count = 2;
   4194  1.23   msaitoh 		break;
   4195  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_32:
   4196  1.23   msaitoh 		queue_count = 4;
   4197  1.23   msaitoh 		break;
   4198  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_16:
   4199  1.23   msaitoh 		queue_count = 8;
   4200  1.23   msaitoh 		break;
   4201  1.23   msaitoh 	default:
   4202  1.23   msaitoh 		return IXGBE_ERR_CONFIG;
   4203  1.23   msaitoh 	}
   4204  1.23   msaitoh 
   4205  1.23   msaitoh 	/* Toggle queues */
   4206  1.23   msaitoh 	for (i = 0; i < queue_count; ++i) {
   4207  1.23   msaitoh 		/* Calculate offset of current queue */
   4208  1.23   msaitoh 		offset = queue_count * vf_number + i;
   4209  1.23   msaitoh 
   4210  1.23   msaitoh 		/* Enable queue */
   4211  1.23   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4212  1.23   msaitoh 		reg |= IXGBE_TXDCTL_ENABLE;
   4213  1.23   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4214  1.23   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4215  1.23   msaitoh 
   4216  1.23   msaitoh 		/* Disable queue */
   4217  1.23   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4218  1.23   msaitoh 		reg &= ~IXGBE_TXDCTL_ENABLE;
   4219  1.23   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4220  1.23   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4221  1.23   msaitoh 	}
   4222  1.23   msaitoh 
   4223  1.23   msaitoh 	return IXGBE_SUCCESS;
   4224  1.23   msaitoh }
   4225  1.23   msaitoh 
   4226  1.23   msaitoh /**
   4227  1.14   msaitoh  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4228  1.14   msaitoh  *  @hw: pointer to hardware structure
   4229  1.14   msaitoh  *
   4230  1.14   msaitoh  *  Contains the logic to identify if we need to verify link for the
   4231  1.14   msaitoh  *  crosstalk fix
   4232  1.14   msaitoh  **/
   4233  1.14   msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4234  1.14   msaitoh {
   4235  1.14   msaitoh 
   4236  1.14   msaitoh 	/* Does FW say we need the fix */
   4237  1.14   msaitoh 	if (!hw->need_crosstalk_fix)
   4238  1.14   msaitoh 		return FALSE;
   4239  1.14   msaitoh 
   4240  1.14   msaitoh 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4241  1.14   msaitoh 	switch (hw->mac.ops.get_media_type(hw)) {
   4242  1.14   msaitoh 	case ixgbe_media_type_fiber:
   4243  1.14   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   4244  1.14   msaitoh 		break;
   4245  1.14   msaitoh 	default:
   4246  1.14   msaitoh 		return FALSE;
   4247  1.14   msaitoh 	}
   4248  1.14   msaitoh 
   4249  1.14   msaitoh 	return TRUE;
   4250  1.14   msaitoh }
   4251  1.14   msaitoh 
   4252  1.14   msaitoh /**
   4253   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4254   1.1    dyoung  *  @hw: pointer to hardware structure
   4255   1.1    dyoung  *  @speed: pointer to link speed
   4256   1.1    dyoung  *  @link_up: TRUE when link is up
   4257   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4258   1.1    dyoung  *
   4259   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4260   1.1    dyoung  **/
   4261   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4262   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4263   1.1    dyoung {
   4264   1.1    dyoung 	u32 links_reg, links_orig;
   4265   1.1    dyoung 	u32 i;
   4266   1.1    dyoung 
   4267   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4268   1.1    dyoung 
   4269  1.14   msaitoh 	/* If Crosstalk fix enabled do the sanity check of making sure
   4270  1.14   msaitoh 	 * the SFP+ cage is full.
   4271  1.14   msaitoh 	 */
   4272  1.14   msaitoh 	if (ixgbe_need_crosstalk_fix(hw)) {
   4273  1.29   msaitoh 		if ((hw->mac.type != ixgbe_mac_82598EB) &&
   4274  1.29   msaitoh 		    !ixgbe_sfp_cage_full(hw)) {
   4275  1.14   msaitoh 			*link_up = FALSE;
   4276  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4277  1.14   msaitoh 			return IXGBE_SUCCESS;
   4278  1.14   msaitoh 		}
   4279  1.14   msaitoh 	}
   4280  1.14   msaitoh 
   4281   1.1    dyoung 	/* clear the old state */
   4282   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4283   1.1    dyoung 
   4284   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4285   1.1    dyoung 
   4286   1.1    dyoung 	if (links_orig != links_reg) {
   4287   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4288   1.3   msaitoh 			  links_orig, links_reg);
   4289   1.1    dyoung 	}
   4290   1.1    dyoung 
   4291   1.1    dyoung 	if (link_up_wait_to_complete) {
   4292  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4293   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4294   1.1    dyoung 				*link_up = TRUE;
   4295   1.1    dyoung 				break;
   4296   1.1    dyoung 			} else {
   4297   1.1    dyoung 				*link_up = FALSE;
   4298   1.1    dyoung 			}
   4299   1.1    dyoung 			msec_delay(100);
   4300   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4301   1.1    dyoung 		}
   4302   1.1    dyoung 	} else {
   4303   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4304   1.1    dyoung 			*link_up = TRUE;
   4305   1.1    dyoung 		else
   4306   1.1    dyoung 			*link_up = FALSE;
   4307   1.1    dyoung 	}
   4308   1.1    dyoung 
   4309   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4310   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4311   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4312   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4313   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4314   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4315   1.8   msaitoh 		}
   4316   1.8   msaitoh 		break;
   4317   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4318   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4319   1.8   msaitoh 		break;
   4320   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4321   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4322  1.15   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4323   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4324   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4325   1.8   msaitoh 		}
   4326   1.8   msaitoh 		break;
   4327  1.14   msaitoh 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4328  1.14   msaitoh 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4329  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4330  1.17   msaitoh 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
   4331  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4332  1.14   msaitoh 		break;
   4333   1.8   msaitoh 	default:
   4334   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4335   1.8   msaitoh 	}
   4336   1.1    dyoung 
   4337   1.1    dyoung 	return IXGBE_SUCCESS;
   4338   1.1    dyoung }
   4339   1.1    dyoung 
   4340   1.1    dyoung /**
   4341   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4342   1.1    dyoung  *  the EEPROM
   4343   1.1    dyoung  *  @hw: pointer to hardware structure
   4344   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4345   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4346   1.1    dyoung  *
   4347   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4348   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4349   1.1    dyoung  **/
   4350   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4351   1.3   msaitoh 				 u16 *wwpn_prefix)
   4352   1.1    dyoung {
   4353   1.1    dyoung 	u16 offset, caps;
   4354   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4355   1.1    dyoung 
   4356   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4357   1.1    dyoung 
   4358   1.1    dyoung 	/* clear output first */
   4359   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4360   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4361   1.1    dyoung 
   4362   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4363   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4364   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4365   1.6   msaitoh 		goto wwn_prefix_err;
   4366   1.1    dyoung 
   4367   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4368   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4369   1.1    dyoung 		goto wwn_prefix_out;
   4370   1.1    dyoung 
   4371   1.1    dyoung 	/* check capability in alternative san mac address block */
   4372   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4373   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4374   1.6   msaitoh 		goto wwn_prefix_err;
   4375   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4376   1.1    dyoung 		goto wwn_prefix_out;
   4377   1.1    dyoung 
   4378   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4379   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4380   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4381   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4382   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4383   1.6   msaitoh 	}
   4384   1.1    dyoung 
   4385   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4386   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4387   1.6   msaitoh 		goto wwn_prefix_err;
   4388   1.1    dyoung 
   4389   1.1    dyoung wwn_prefix_out:
   4390   1.1    dyoung 	return IXGBE_SUCCESS;
   4391   1.6   msaitoh 
   4392   1.6   msaitoh wwn_prefix_err:
   4393   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4394   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4395   1.6   msaitoh 	return IXGBE_SUCCESS;
   4396   1.1    dyoung }
   4397   1.1    dyoung 
   4398   1.1    dyoung /**
   4399   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4400   1.1    dyoung  *  @hw: pointer to hardware structure
   4401   1.1    dyoung  *  @bs: the fcoe boot status
   4402   1.1    dyoung  *
   4403   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4404   1.1    dyoung  **/
   4405   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4406   1.1    dyoung {
   4407   1.1    dyoung 	u16 offset, caps, flags;
   4408   1.1    dyoung 	s32 status;
   4409   1.1    dyoung 
   4410   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4411   1.1    dyoung 
   4412   1.1    dyoung 	/* clear output first */
   4413   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4414   1.1    dyoung 
   4415   1.1    dyoung 	/* check if FCOE IBA block is present */
   4416   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4417   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4418   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4419   1.1    dyoung 		goto out;
   4420   1.1    dyoung 
   4421   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4422   1.1    dyoung 		goto out;
   4423   1.1    dyoung 
   4424   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4425   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4426   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4427   1.1    dyoung 		goto out;
   4428   1.1    dyoung 
   4429   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4430   1.1    dyoung 		goto out;
   4431   1.1    dyoung 
   4432   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4433   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4434   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4435   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4436   1.1    dyoung 		goto out;
   4437   1.1    dyoung 
   4438   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4439   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4440   1.1    dyoung 	else
   4441   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4442   1.1    dyoung 
   4443   1.1    dyoung out:
   4444   1.1    dyoung 	return status;
   4445   1.1    dyoung }
   4446   1.1    dyoung 
   4447   1.1    dyoung /**
   4448   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4449   1.1    dyoung  *  @hw: pointer to hardware structure
   4450  1.14   msaitoh  *  @enable: enable or disable switch for MAC anti-spoofing
   4451  1.14   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4452   1.1    dyoung  *
   4453   1.1    dyoung  **/
   4454  1.14   msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4455   1.1    dyoung {
   4456  1.14   msaitoh 	int vf_target_reg = vf >> 3;
   4457  1.14   msaitoh 	int vf_target_shift = vf % 8;
   4458  1.14   msaitoh 	u32 pfvfspoof;
   4459   1.1    dyoung 
   4460   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4461   1.1    dyoung 		return;
   4462   1.1    dyoung 
   4463  1.14   msaitoh 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4464   1.1    dyoung 	if (enable)
   4465  1.14   msaitoh 		pfvfspoof |= (1 << vf_target_shift);
   4466  1.14   msaitoh 	else
   4467  1.14   msaitoh 		pfvfspoof &= ~(1 << vf_target_shift);
   4468  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4469   1.1    dyoung }
   4470   1.1    dyoung 
   4471   1.1    dyoung /**
   4472   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4473   1.1    dyoung  *  @hw: pointer to hardware structure
   4474   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4475   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4476   1.1    dyoung  *
   4477   1.1    dyoung  **/
   4478   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4479   1.1    dyoung {
   4480   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4481   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4482   1.1    dyoung 	u32 pfvfspoof;
   4483   1.1    dyoung 
   4484   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4485   1.1    dyoung 		return;
   4486   1.1    dyoung 
   4487   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4488   1.1    dyoung 	if (enable)
   4489   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4490   1.1    dyoung 	else
   4491   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4492   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4493   1.1    dyoung }
   4494   1.1    dyoung 
   4495   1.1    dyoung /**
   4496   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4497   1.1    dyoung  *  @hw: pointer to hardware structure
   4498   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4499   1.1    dyoung  *
   4500   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4501   1.1    dyoung  *  and return the word through device_caps.
   4502   1.1    dyoung  **/
   4503   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4504   1.1    dyoung {
   4505   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4506   1.1    dyoung 
   4507   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4508   1.1    dyoung 
   4509   1.1    dyoung 	return IXGBE_SUCCESS;
   4510   1.1    dyoung }
   4511   1.1    dyoung 
   4512   1.1    dyoung /**
   4513   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4514   1.1    dyoung  *  @hw: pointer to hardware structure
   4515   1.1    dyoung  *
   4516   1.1    dyoung  **/
   4517   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4518   1.1    dyoung {
   4519   1.1    dyoung 	u32 regval;
   4520   1.1    dyoung 	u32 i;
   4521   1.1    dyoung 
   4522   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4523   1.1    dyoung 
   4524   1.1    dyoung 	/* Enable relaxed ordering */
   4525   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4526   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4527   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4528   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4529   1.1    dyoung 	}
   4530   1.1    dyoung 
   4531   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4532   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4533   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4534   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4535   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4536   1.1    dyoung 	}
   4537   1.1    dyoung 
   4538   1.1    dyoung }
   4539   1.3   msaitoh 
   4540   1.3   msaitoh /**
   4541   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4542   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4543   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4544   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4545   1.3   msaitoh  *  checksum calculated is returned.
   4546   1.3   msaitoh  **/
   4547   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4548   1.3   msaitoh {
   4549   1.3   msaitoh 	u32 i;
   4550   1.3   msaitoh 	u8 sum = 0;
   4551   1.3   msaitoh 
   4552   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4553   1.3   msaitoh 
   4554   1.3   msaitoh 	if (!buffer)
   4555   1.3   msaitoh 		return 0;
   4556   1.3   msaitoh 
   4557   1.3   msaitoh 	for (i = 0; i < length; i++)
   4558   1.3   msaitoh 		sum += buffer[i];
   4559   1.3   msaitoh 
   4560   1.3   msaitoh 	return (u8) (0 - sum);
   4561   1.3   msaitoh }
   4562   1.3   msaitoh 
   4563   1.3   msaitoh /**
   4564  1.14   msaitoh  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4565   1.3   msaitoh  *  @hw: pointer to the HW structure
   4566  1.14   msaitoh  *  @buffer: command to write and where the return status will be placed
   4567   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4568   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4569   1.3   msaitoh  *
   4570  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4571  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4572  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4573  1.14   msaitoh  *
   4574  1.14   msaitoh  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4575  1.14   msaitoh  *  by the caller.
   4576   1.3   msaitoh  **/
   4577  1.14   msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4578  1.14   msaitoh 		       u32 timeout)
   4579   1.3   msaitoh {
   4580  1.14   msaitoh 	u32 hicr, i, fwsts;
   4581   1.8   msaitoh 	u16 dword_len;
   4582   1.3   msaitoh 
   4583  1.14   msaitoh 	DEBUGFUNC("ixgbe_hic_unlocked");
   4584   1.3   msaitoh 
   4585  1.14   msaitoh 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4586   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4587   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4588   1.8   msaitoh 	}
   4589  1.14   msaitoh 
   4590   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4591   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4592   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4593   1.3   msaitoh 
   4594   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4595   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4596  1.14   msaitoh 	if (!(hicr & IXGBE_HICR_EN)) {
   4597   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4598   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4599   1.8   msaitoh 	}
   4600   1.8   msaitoh 
   4601   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4602  1.14   msaitoh 	if (length % sizeof(u32)) {
   4603   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4604   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4605   1.3   msaitoh 	}
   4606   1.3   msaitoh 
   4607   1.3   msaitoh 	dword_len = length >> 2;
   4608   1.3   msaitoh 
   4609   1.8   msaitoh 	/* The device driver writes the relevant command block
   4610   1.3   msaitoh 	 * into the ram area.
   4611   1.3   msaitoh 	 */
   4612   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4613   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4614   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4615   1.3   msaitoh 
   4616   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4617   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4618   1.3   msaitoh 
   4619   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4620   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4621   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4622   1.3   msaitoh 			break;
   4623   1.3   msaitoh 		msec_delay(1);
   4624   1.3   msaitoh 	}
   4625   1.3   msaitoh 
   4626  1.23   msaitoh 	/* For each command except "Apply Update" perform
   4627  1.23   msaitoh 	 * status checks in the HICR registry.
   4628  1.23   msaitoh 	 */
   4629  1.23   msaitoh 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
   4630  1.23   msaitoh 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
   4631  1.23   msaitoh 		return IXGBE_SUCCESS;
   4632  1.23   msaitoh 
   4633   1.8   msaitoh 	/* Check command completion */
   4634  1.14   msaitoh 	if ((timeout && i == timeout) ||
   4635   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4636   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4637  1.23   msaitoh 			      "Command has failed with no status valid.\n");
   4638   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4639   1.3   msaitoh 	}
   4640   1.3   msaitoh 
   4641  1.14   msaitoh 	return IXGBE_SUCCESS;
   4642  1.14   msaitoh }
   4643  1.14   msaitoh 
   4644  1.14   msaitoh /**
   4645  1.14   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4646  1.14   msaitoh  *  @hw: pointer to the HW structure
   4647  1.14   msaitoh  *  @buffer: contains the command to write and where the return status will
   4648  1.14   msaitoh  *   be placed
   4649  1.14   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4650  1.14   msaitoh  *  @timeout: time in ms to wait for command completion
   4651  1.14   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4652  1.14   msaitoh  *   Needed because FW structures are big endian and decoding of
   4653  1.14   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4654  1.14   msaitoh  *   is not easily understood without making a table of commands.
   4655  1.14   msaitoh  *   So we will leave this up to the caller to read back the data
   4656  1.14   msaitoh  *   in these cases.
   4657  1.14   msaitoh  *
   4658  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4659  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4660  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4661  1.14   msaitoh  **/
   4662  1.14   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4663  1.14   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4664  1.14   msaitoh {
   4665  1.14   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4666  1.22   msaitoh 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
   4667  1.14   msaitoh 	u16 buf_len;
   4668  1.14   msaitoh 	s32 status;
   4669  1.14   msaitoh 	u32 bi;
   4670  1.22   msaitoh 	u32 dword_len;
   4671  1.14   msaitoh 
   4672  1.14   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4673  1.14   msaitoh 
   4674  1.14   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4675  1.14   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4676  1.14   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4677  1.14   msaitoh 	}
   4678  1.14   msaitoh 
   4679  1.14   msaitoh 	/* Take management host interface semaphore */
   4680  1.14   msaitoh 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4681  1.14   msaitoh 	if (status)
   4682  1.14   msaitoh 		return status;
   4683  1.14   msaitoh 
   4684  1.14   msaitoh 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4685  1.14   msaitoh 	if (status)
   4686  1.14   msaitoh 		goto rel_out;
   4687  1.14   msaitoh 
   4688   1.8   msaitoh 	if (!return_data)
   4689  1.14   msaitoh 		goto rel_out;
   4690   1.8   msaitoh 
   4691   1.3   msaitoh 	/* Calculate length in DWORDs */
   4692   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4693   1.3   msaitoh 
   4694   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4695   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4696   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4697   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4698   1.3   msaitoh 	}
   4699   1.3   msaitoh 
   4700  1.22   msaitoh 	/*
   4701  1.22   msaitoh 	 * If there is any thing in data position pull it in
   4702  1.22   msaitoh 	 * Read Flash command requires reading buffer length from
   4703  1.22   msaitoh 	 * two byes instead of one byte
   4704  1.22   msaitoh 	 */
   4705  1.23   msaitoh 	if (resp->cmd == 0x30 || resp->cmd == 0x31) {
   4706  1.22   msaitoh 		for (; bi < dword_len + 2; bi++) {
   4707  1.22   msaitoh 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4708  1.22   msaitoh 							  bi);
   4709  1.22   msaitoh 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4710  1.22   msaitoh 		}
   4711  1.22   msaitoh 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
   4712  1.22   msaitoh 				  & 0xF00) | resp->buf_len;
   4713  1.22   msaitoh 		hdr_size += (2 << 2);
   4714  1.22   msaitoh 	} else {
   4715  1.22   msaitoh 		buf_len = resp->buf_len;
   4716  1.22   msaitoh 	}
   4717  1.14   msaitoh 	if (!buf_len)
   4718  1.14   msaitoh 		goto rel_out;
   4719   1.3   msaitoh 
   4720   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4721   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4722  1.14   msaitoh 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4723  1.14   msaitoh 		goto rel_out;
   4724   1.3   msaitoh 	}
   4725   1.3   msaitoh 
   4726   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4727   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4728   1.3   msaitoh 
   4729   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4730   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4731   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4732   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4733   1.3   msaitoh 	}
   4734   1.3   msaitoh 
   4735  1.14   msaitoh rel_out:
   4736  1.14   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4737  1.14   msaitoh 
   4738  1.14   msaitoh 	return status;
   4739   1.3   msaitoh }
   4740   1.3   msaitoh 
   4741   1.3   msaitoh /**
   4742   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4743   1.3   msaitoh  *  @hw: pointer to the HW structure
   4744   1.3   msaitoh  *  @maj: driver version major number
   4745   1.7  riastrad  *  @minr: driver version minor number
   4746   1.3   msaitoh  *  @build: driver version build number
   4747   1.3   msaitoh  *  @sub: driver version sub build number
   4748  1.22   msaitoh  *  @len: unused
   4749  1.22   msaitoh  *  @driver_ver: unused
   4750   1.3   msaitoh  *
   4751   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4752   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4753   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4754   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4755   1.3   msaitoh  **/
   4756   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4757  1.14   msaitoh 				 u8 build, u8 sub, u16 len,
   4758  1.14   msaitoh 				 const char *driver_ver)
   4759   1.3   msaitoh {
   4760   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4761   1.3   msaitoh 	int i;
   4762   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4763   1.3   msaitoh 
   4764   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4765  1.14   msaitoh 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4766   1.3   msaitoh 
   4767   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4768   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4769   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4770   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4771   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4772   1.7  riastrad 	fw_cmd.ver_min = minr;
   4773   1.3   msaitoh 	fw_cmd.ver_build = build;
   4774   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4775   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4776  1.17   msaitoh 	fw_cmd.pad = 0;
   4777  1.17   msaitoh 	fw_cmd.pad2 = 0;
   4778   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4779   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4780   1.3   msaitoh 
   4781   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4782   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4783   1.8   msaitoh 						       sizeof(fw_cmd),
   4784   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4785   1.8   msaitoh 						       TRUE);
   4786   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4787   1.3   msaitoh 			continue;
   4788   1.3   msaitoh 
   4789   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4790   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4791   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4792   1.3   msaitoh 		else
   4793   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4794   1.3   msaitoh 
   4795   1.3   msaitoh 		break;
   4796   1.3   msaitoh 	}
   4797   1.3   msaitoh 
   4798   1.3   msaitoh 	return ret_val;
   4799   1.3   msaitoh }
   4800   1.3   msaitoh 
   4801   1.3   msaitoh /**
   4802   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4803   1.3   msaitoh  * @hw: pointer to hardware structure
   4804   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4805   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4806   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4807   1.3   msaitoh  **/
   4808   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4809   1.3   msaitoh 			     int strategy)
   4810   1.3   msaitoh {
   4811   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4812   1.3   msaitoh 	int i = 0;
   4813   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4814   1.3   msaitoh 
   4815   1.3   msaitoh 	/* Reserve headroom */
   4816   1.3   msaitoh 	pbsize -= headroom;
   4817   1.3   msaitoh 
   4818   1.3   msaitoh 	if (!num_pb)
   4819   1.3   msaitoh 		num_pb = 1;
   4820   1.3   msaitoh 
   4821   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4822   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4823   1.3   msaitoh 	 */
   4824   1.3   msaitoh 	switch (strategy) {
   4825   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4826   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4827   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4828   1.3   msaitoh 		 */
   4829   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4830   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4831   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4832   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4833   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4834  1.14   msaitoh 		/* fall through - configure remaining packet buffers */
   4835   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4836   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4837   1.3   msaitoh 		for (; i < num_pb; i++)
   4838   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4839   1.3   msaitoh 		break;
   4840   1.3   msaitoh 	default:
   4841   1.3   msaitoh 		break;
   4842   1.3   msaitoh 	}
   4843   1.3   msaitoh 
   4844   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4845   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4846   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4847   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4848   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4849   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4850   1.3   msaitoh 	}
   4851   1.3   msaitoh 
   4852   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4853   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4854   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4855   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4856   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4857   1.3   msaitoh 	}
   4858   1.3   msaitoh }
   4859   1.3   msaitoh 
   4860   1.3   msaitoh /**
   4861   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4862   1.3   msaitoh  * @hw: pointer to the hardware structure
   4863   1.3   msaitoh  *
   4864   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4865   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4866   1.3   msaitoh  * buffers on the system.
   4867   1.3   msaitoh  **/
   4868   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4869   1.3   msaitoh {
   4870   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4871   1.8   msaitoh 	u16 value;
   4872   1.3   msaitoh 
   4873   1.3   msaitoh 	/*
   4874   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4875   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4876   1.3   msaitoh 	 */
   4877   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4878   1.3   msaitoh 		return;
   4879   1.3   msaitoh 
   4880   1.3   msaitoh 	/*
   4881   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4882   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4883   1.3   msaitoh 	 * has already been cleared.
   4884   1.3   msaitoh 	 */
   4885   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4886   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4887   1.3   msaitoh 
   4888   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4889   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4890   1.8   msaitoh 	msec_delay(3);
   4891   1.8   msaitoh 
   4892   1.8   msaitoh 	/*
   4893   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4894   1.8   msaitoh 	 * transactions pending.
   4895   1.8   msaitoh 	 */
   4896   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4897   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4898   1.8   msaitoh 		usec_delay(100);
   4899   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4900   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4901   1.8   msaitoh 			goto out;
   4902   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4903   1.8   msaitoh 			goto out;
   4904   1.8   msaitoh 	}
   4905   1.8   msaitoh 
   4906   1.8   msaitoh out:
   4907   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4908   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4909   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4910   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4911   1.3   msaitoh 
   4912   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4913   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4914   1.3   msaitoh 	usec_delay(20);
   4915   1.3   msaitoh 
   4916   1.3   msaitoh 	/* restore previous register values */
   4917   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4918   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4919   1.3   msaitoh }
   4920   1.3   msaitoh 
   4921  1.14   msaitoh /**
   4922  1.14   msaitoh  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4923  1.14   msaitoh  *
   4924  1.14   msaitoh  *  @hw: pointer to hardware structure
   4925  1.14   msaitoh  *  @cmd: Command we send to the FW
   4926  1.14   msaitoh  *  @status: The reply from the FW
   4927  1.14   msaitoh  *
   4928  1.14   msaitoh  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4929  1.14   msaitoh  **/
   4930  1.14   msaitoh #define IXGBE_BYPASS_BB_WAIT 1
   4931  1.14   msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4932  1.14   msaitoh {
   4933  1.14   msaitoh 	int i;
   4934  1.14   msaitoh 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4935  1.14   msaitoh 	u32 esdp;
   4936  1.14   msaitoh 
   4937  1.14   msaitoh 	if (!status)
   4938  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   4939  1.14   msaitoh 
   4940  1.14   msaitoh 	*status = 0;
   4941  1.14   msaitoh 
   4942  1.14   msaitoh 	/* SDP vary by MAC type */
   4943  1.14   msaitoh 	switch (hw->mac.type) {
   4944  1.14   msaitoh 	case ixgbe_mac_82599EB:
   4945  1.14   msaitoh 		sck = IXGBE_ESDP_SDP7;
   4946  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4947  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP6;
   4948  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4949  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4950  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4951  1.14   msaitoh 		break;
   4952  1.14   msaitoh 	case ixgbe_mac_X540:
   4953  1.14   msaitoh 		sck = IXGBE_ESDP_SDP2;
   4954  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4955  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP1;
   4956  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4957  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4958  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4959  1.14   msaitoh 		break;
   4960  1.14   msaitoh 	default:
   4961  1.14   msaitoh 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4962  1.14   msaitoh 	}
   4963  1.14   msaitoh 
   4964  1.14   msaitoh 	/* Set SDP pins direction */
   4965  1.14   msaitoh 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4966  1.14   msaitoh 	esdp |= dir_sck;	/* SCK as output */
   4967  1.14   msaitoh 	esdp |= dir_sdi;	/* SDI as output */
   4968  1.14   msaitoh 	esdp &= ~dir_sdo;	/* SDO as input */
   4969  1.14   msaitoh 	esdp |= sck;
   4970  1.14   msaitoh 	esdp |= sdi;
   4971  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4972  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4973  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4974  1.14   msaitoh 
   4975  1.14   msaitoh 	/* Generate start condition */
   4976  1.14   msaitoh 	esdp &= ~sdi;
   4977  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4978  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4979  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4980  1.14   msaitoh 
   4981  1.14   msaitoh 	esdp &= ~sck;
   4982  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4983  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4984  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4985  1.14   msaitoh 
   4986  1.14   msaitoh 	/* Clock out the new control word and clock in the status */
   4987  1.14   msaitoh 	for (i = 0; i < 32; i++) {
   4988  1.14   msaitoh 		if ((cmd >> (31 - i)) & 0x01) {
   4989  1.14   msaitoh 			esdp |= sdi;
   4990  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4991  1.14   msaitoh 		} else {
   4992  1.14   msaitoh 			esdp &= ~sdi;
   4993  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4994  1.14   msaitoh 		}
   4995  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4996  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4997  1.14   msaitoh 
   4998  1.14   msaitoh 		esdp |= sck;
   4999  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5000  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   5001  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5002  1.14   msaitoh 
   5003  1.14   msaitoh 		esdp &= ~sck;
   5004  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5005  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   5006  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5007  1.14   msaitoh 
   5008  1.14   msaitoh 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   5009  1.14   msaitoh 		if (esdp & sdo)
   5010  1.14   msaitoh 			*status = (*status << 1) | 0x01;
   5011  1.14   msaitoh 		else
   5012  1.14   msaitoh 			*status = (*status << 1) | 0x00;
   5013  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5014  1.14   msaitoh 	}
   5015  1.14   msaitoh 
   5016  1.14   msaitoh 	/* stop condition */
   5017  1.14   msaitoh 	esdp |= sck;
   5018  1.14   msaitoh 	esdp &= ~sdi;
   5019  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5020  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   5021  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   5022  1.14   msaitoh 
   5023  1.14   msaitoh 	esdp |= sdi;
   5024  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5025  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   5026  1.14   msaitoh 
   5027  1.14   msaitoh 	/* set the page bits to match the cmd that the status it belongs to */
   5028  1.14   msaitoh 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   5029  1.14   msaitoh 
   5030  1.14   msaitoh 	return IXGBE_SUCCESS;
   5031  1.14   msaitoh }
   5032  1.14   msaitoh 
   5033  1.14   msaitoh /**
   5034  1.14   msaitoh  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   5035  1.14   msaitoh  *
   5036  1.14   msaitoh  * If we send a write we can't be sure it took until we can read back
   5037  1.32    andvar  * that same register.  It can be a problem as some of the fields may
   5038  1.32    andvar  * for valid reasons change in-between the time wrote the register and
   5039  1.14   msaitoh  * we read it again to verify.  So this function check everything we
   5040  1.14   msaitoh  * can check and then assumes it worked.
   5041  1.14   msaitoh  *
   5042  1.14   msaitoh  * @u32 in_reg - The register cmd for the bit-bang read.
   5043  1.14   msaitoh  * @u32 out_reg - The register returned from a bit-bang read.
   5044  1.14   msaitoh  **/
   5045  1.14   msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   5046  1.14   msaitoh {
   5047  1.14   msaitoh 	u32 mask;
   5048  1.14   msaitoh 
   5049  1.14   msaitoh 	/* Page must match for all control pages */
   5050  1.14   msaitoh 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   5051  1.14   msaitoh 		return FALSE;
   5052  1.14   msaitoh 
   5053  1.14   msaitoh 	switch (in_reg & BYPASS_PAGE_M) {
   5054  1.14   msaitoh 	case BYPASS_PAGE_CTL0:
   5055  1.14   msaitoh 		/* All the following can't change since the last write
   5056  1.14   msaitoh 		 *  - All the event actions
   5057  1.14   msaitoh 		 *  - The timeout value
   5058  1.14   msaitoh 		 */
   5059  1.14   msaitoh 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   5060  1.14   msaitoh 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   5061  1.14   msaitoh 		       BYPASS_WDTIMEOUT_M |
   5062  1.14   msaitoh 		       BYPASS_WDT_VALUE_M;
   5063  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   5064  1.14   msaitoh 			return FALSE;
   5065  1.14   msaitoh 
   5066  1.14   msaitoh 		/* 0x0 is never a valid value for bypass status */
   5067  1.14   msaitoh 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   5068  1.14   msaitoh 			return FALSE;
   5069  1.14   msaitoh 		break;
   5070  1.14   msaitoh 	case BYPASS_PAGE_CTL1:
   5071  1.14   msaitoh 		/* All the following can't change since the last write
   5072  1.14   msaitoh 		 *  - time valid bit
   5073  1.14   msaitoh 		 *  - time we last sent
   5074  1.14   msaitoh 		 */
   5075  1.14   msaitoh 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   5076  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   5077  1.14   msaitoh 			return FALSE;
   5078  1.14   msaitoh 		break;
   5079  1.14   msaitoh 	case BYPASS_PAGE_CTL2:
   5080  1.14   msaitoh 		/* All we can check in this page is control number
   5081  1.14   msaitoh 		 * which is already done above.
   5082  1.14   msaitoh 		 */
   5083  1.14   msaitoh 		break;
   5084  1.14   msaitoh 	}
   5085  1.14   msaitoh 
   5086  1.14   msaitoh 	/* We are as sure as we can be return TRUE */
   5087  1.14   msaitoh 	return TRUE;
   5088  1.14   msaitoh }
   5089  1.14   msaitoh 
   5090  1.14   msaitoh /**
   5091  1.14   msaitoh  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
   5092  1.14   msaitoh  *
   5093  1.14   msaitoh  *  @hw: pointer to hardware structure
   5094  1.14   msaitoh  *  @cmd: The control word we are setting.
   5095  1.14   msaitoh  *  @event: The event we are setting in the FW.  This also happens to
   5096  1.14   msaitoh  *	    be the mask for the event we are setting (handy)
   5097  1.14   msaitoh  *  @action: The action we set the event to in the FW. This is in a
   5098  1.14   msaitoh  *	     bit field that happens to be what we want to put in
   5099  1.14   msaitoh  *	     the event spot (also handy)
   5100  1.14   msaitoh  **/
   5101  1.14   msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5102  1.14   msaitoh 			     u32 action)
   5103  1.14   msaitoh {
   5104  1.14   msaitoh 	u32 by_ctl = 0;
   5105  1.14   msaitoh 	u32 cmd, verify;
   5106  1.14   msaitoh 	u32 count = 0;
   5107  1.14   msaitoh 
   5108  1.14   msaitoh 	/* Get current values */
   5109  1.14   msaitoh 	cmd = ctrl;	/* just reading only need control number */
   5110  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5111  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5112  1.14   msaitoh 
   5113  1.14   msaitoh 	/* Set to new action */
   5114  1.14   msaitoh 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5115  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5116  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5117  1.14   msaitoh 
   5118  1.14   msaitoh 	/* Page 0 force a FW eeprom write which is slow so verify */
   5119  1.14   msaitoh 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5120  1.14   msaitoh 		verify = BYPASS_PAGE_CTL0;
   5121  1.14   msaitoh 		do {
   5122  1.14   msaitoh 			if (count++ > 5)
   5123  1.14   msaitoh 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5124  1.14   msaitoh 
   5125  1.14   msaitoh 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5126  1.14   msaitoh 				return IXGBE_ERR_INVALID_ARGUMENT;
   5127  1.14   msaitoh 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5128  1.14   msaitoh 	} else {
   5129  1.14   msaitoh 		/* We have give the FW time for the write to stick */
   5130  1.14   msaitoh 		msec_delay(100);
   5131  1.14   msaitoh 	}
   5132  1.14   msaitoh 
   5133  1.14   msaitoh 	return IXGBE_SUCCESS;
   5134  1.14   msaitoh }
   5135  1.14   msaitoh 
   5136  1.14   msaitoh /**
   5137  1.14   msaitoh  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
   5138  1.14   msaitoh  *
   5139  1.14   msaitoh  *  @hw: pointer to hardware structure
   5140  1.14   msaitoh  *  @addr: The bypass eeprom address to read.
   5141  1.14   msaitoh  *  @value: The 8b of data at the address above.
   5142  1.14   msaitoh  **/
   5143  1.14   msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5144  1.14   msaitoh {
   5145  1.14   msaitoh 	u32 cmd;
   5146  1.14   msaitoh 	u32 status;
   5147  1.14   msaitoh 
   5148  1.14   msaitoh 
   5149  1.14   msaitoh 	/* send the request */
   5150  1.14   msaitoh 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5151  1.14   msaitoh 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5152  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5153  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5154  1.14   msaitoh 
   5155  1.14   msaitoh 	/* We have give the FW time for the write to stick */
   5156  1.14   msaitoh 	msec_delay(100);
   5157  1.14   msaitoh 
   5158  1.14   msaitoh 	/* now read the results */
   5159  1.14   msaitoh 	cmd &= ~BYPASS_WE;
   5160  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5161  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5162  1.14   msaitoh 
   5163  1.14   msaitoh 	*value = status & BYPASS_CTL2_DATA_M;
   5164  1.14   msaitoh 
   5165  1.14   msaitoh 	return IXGBE_SUCCESS;
   5166  1.14   msaitoh }
   5167  1.14   msaitoh 
   5168  1.17   msaitoh /**
   5169  1.17   msaitoh  *  ixgbe_get_orom_version - Return option ROM from EEPROM
   5170  1.17   msaitoh  *
   5171  1.17   msaitoh  *  @hw: pointer to hardware structure
   5172  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5173  1.17   msaitoh  *
   5174  1.17   msaitoh  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
   5175  1.17   msaitoh  *  else nvm_ver->or_valid is FALSE.
   5176  1.17   msaitoh  **/
   5177  1.17   msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
   5178  1.17   msaitoh 			    struct ixgbe_nvm_version *nvm_ver)
   5179  1.17   msaitoh {
   5180  1.17   msaitoh 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
   5181  1.17   msaitoh 
   5182  1.17   msaitoh 	nvm_ver->or_valid = FALSE;
   5183  1.17   msaitoh 	/* Option Rom may or may not be present.  Start with pointer */
   5184  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
   5185  1.17   msaitoh 
   5186  1.17   msaitoh 	/* make sure offset is valid */
   5187  1.17   msaitoh 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
   5188  1.17   msaitoh 		return;
   5189  1.17   msaitoh 
   5190  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
   5191  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
   5192  1.17   msaitoh 
   5193  1.17   msaitoh 	/* option rom exists and is valid */
   5194  1.17   msaitoh 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
   5195  1.17   msaitoh 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
   5196  1.17   msaitoh 	    eeprom_cfg_blkh == NVM_VER_INVALID)
   5197  1.17   msaitoh 		return;
   5198  1.17   msaitoh 
   5199  1.17   msaitoh 	nvm_ver->or_valid = TRUE;
   5200  1.17   msaitoh 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
   5201  1.17   msaitoh 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
   5202  1.17   msaitoh 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
   5203  1.17   msaitoh 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
   5204  1.17   msaitoh }
   5205  1.17   msaitoh 
   5206  1.17   msaitoh /**
   5207  1.17   msaitoh  *  ixgbe_get_oem_prod_version - Return OEM Product version
   5208  1.17   msaitoh  *
   5209  1.17   msaitoh  *  @hw: pointer to hardware structure
   5210  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5211  1.17   msaitoh  *
   5212  1.17   msaitoh  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
   5213  1.17   msaitoh  *  else nvm_ver->oem_valid is FALSE.
   5214  1.17   msaitoh  **/
   5215  1.17   msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
   5216  1.17   msaitoh 				struct ixgbe_nvm_version *nvm_ver)
   5217  1.17   msaitoh {
   5218  1.17   msaitoh 	u16 rel_num, prod_ver, mod_len, cap, offset;
   5219  1.17   msaitoh 
   5220  1.17   msaitoh 	nvm_ver->oem_valid = FALSE;
   5221  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
   5222  1.17   msaitoh 
   5223  1.28   msaitoh 	/* Return if offset to OEM Product Version block is invalid */
   5224  1.18   msaitoh 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   5225  1.17   msaitoh 		return;
   5226  1.17   msaitoh 
   5227  1.17   msaitoh 	/* Read product version block */
   5228  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset, &mod_len);
   5229  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
   5230  1.17   msaitoh 
   5231  1.17   msaitoh 	/* Return if OEM product version block is invalid */
   5232  1.17   msaitoh 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
   5233  1.17   msaitoh 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
   5234  1.17   msaitoh 		return;
   5235  1.17   msaitoh 
   5236  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
   5237  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
   5238  1.17   msaitoh 
   5239  1.17   msaitoh 	/* Return if version is invalid */
   5240  1.17   msaitoh 	if ((rel_num | prod_ver) == 0x0 ||
   5241  1.17   msaitoh 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
   5242  1.17   msaitoh 		return;
   5243  1.17   msaitoh 
   5244  1.17   msaitoh 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
   5245  1.17   msaitoh 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
   5246  1.17   msaitoh 	nvm_ver->oem_release = rel_num;
   5247  1.17   msaitoh 	nvm_ver->oem_valid = TRUE;
   5248  1.17   msaitoh }
   5249  1.17   msaitoh 
   5250  1.17   msaitoh /**
   5251  1.17   msaitoh  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
   5252  1.17   msaitoh  *
   5253  1.17   msaitoh  *  @hw: pointer to hardware structure
   5254  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5255  1.17   msaitoh  *
   5256  1.17   msaitoh  *  word read errors will return 0xFFFF
   5257  1.17   msaitoh  **/
   5258  1.17   msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
   5259  1.17   msaitoh {
   5260  1.17   msaitoh 	u16 etk_id_l, etk_id_h;
   5261  1.17   msaitoh 
   5262  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
   5263  1.17   msaitoh 		etk_id_l = NVM_VER_INVALID;
   5264  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
   5265  1.17   msaitoh 		etk_id_h = NVM_VER_INVALID;
   5266  1.17   msaitoh 
   5267  1.17   msaitoh 	/* The word order for the version format is determined by high order
   5268  1.17   msaitoh 	 * word bit 15.
   5269  1.17   msaitoh 	 */
   5270  1.17   msaitoh 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
   5271  1.17   msaitoh 		nvm_ver->etk_id = etk_id_h;
   5272  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
   5273  1.17   msaitoh 	} else {
   5274  1.17   msaitoh 		nvm_ver->etk_id = etk_id_l;
   5275  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
   5276  1.17   msaitoh 	}
   5277  1.17   msaitoh }
   5278  1.17   msaitoh 
   5279   1.6   msaitoh 
   5280   1.6   msaitoh /**
   5281   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5282   1.6   msaitoh  * @hw: pointer to hardware structure
   5283   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   5284   1.6   msaitoh  *
   5285   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   5286   1.6   msaitoh  **/
   5287   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5288   1.6   msaitoh {
   5289   1.6   msaitoh 	u32 reg, i;
   5290   1.6   msaitoh 
   5291   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5292   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5293   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5294   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5295   1.6   msaitoh 	return;
   5296   1.6   msaitoh }
   5297   1.8   msaitoh 
   5298   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5299   1.8   msaitoh {
   5300   1.8   msaitoh 	u32 pfdtxgswc;
   5301   1.8   msaitoh 	u32 rxctrl;
   5302   1.8   msaitoh 
   5303   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5304   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5305   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5306   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5307   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5308   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5309   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5310   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   5311   1.8   msaitoh 			} else {
   5312   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   5313   1.8   msaitoh 			}
   5314   1.8   msaitoh 		}
   5315   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5316   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5317   1.8   msaitoh 	}
   5318   1.8   msaitoh }
   5319   1.8   msaitoh 
   5320   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5321   1.8   msaitoh {
   5322   1.8   msaitoh 	u32 pfdtxgswc;
   5323   1.8   msaitoh 	u32 rxctrl;
   5324   1.8   msaitoh 
   5325   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5326   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5327   1.8   msaitoh 
   5328   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5329   1.8   msaitoh 		if (hw->mac.set_lben) {
   5330   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5331   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5332   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5333   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   5334   1.8   msaitoh 		}
   5335   1.8   msaitoh 	}
   5336   1.8   msaitoh }
   5337   1.8   msaitoh 
   5338   1.8   msaitoh /**
   5339   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   5340   1.8   msaitoh  * @hw: pointer to hardware structure
   5341   1.8   msaitoh  */
   5342   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5343   1.8   msaitoh {
   5344   1.8   msaitoh 	u32 fwsm;
   5345   1.8   msaitoh 
   5346   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   5347   1.8   msaitoh 		return FALSE;
   5348   1.8   msaitoh 
   5349  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5350  1.17   msaitoh 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
   5351   1.8   msaitoh }
   5352   1.8   msaitoh 
   5353   1.8   msaitoh /**
   5354   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5355   1.8   msaitoh  * @hw: pointer to hardware structure
   5356   1.8   msaitoh  *
   5357   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   5358   1.8   msaitoh  **/
   5359   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5360   1.8   msaitoh {
   5361   1.8   msaitoh 	u32 fwsm, manc, factps;
   5362   1.8   msaitoh 
   5363  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5364   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5365   1.8   msaitoh 		return FALSE;
   5366   1.8   msaitoh 
   5367   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5368   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5369   1.8   msaitoh 		return FALSE;
   5370   1.8   msaitoh 
   5371   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   5372  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5373   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   5374   1.8   msaitoh 			return FALSE;
   5375   1.8   msaitoh 	}
   5376   1.8   msaitoh 
   5377   1.8   msaitoh 	return TRUE;
   5378   1.8   msaitoh }
   5379   1.8   msaitoh 
   5380   1.8   msaitoh /**
   5381   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5382   1.8   msaitoh  *  @hw: pointer to hardware structure
   5383   1.8   msaitoh  *  @speed: new link speed
   5384   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5385   1.8   msaitoh  *
   5386   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5387   1.8   msaitoh  **/
   5388   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5389   1.8   msaitoh 					  ixgbe_link_speed speed,
   5390   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   5391   1.8   msaitoh {
   5392   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5393   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5394   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   5395   1.8   msaitoh 	u32 speedcnt = 0;
   5396   1.8   msaitoh 	u32 i = 0;
   5397   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   5398   1.8   msaitoh 
   5399   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5400   1.8   msaitoh 
   5401   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   5402   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5403   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   5404   1.8   msaitoh 		return status;
   5405   1.8   msaitoh 
   5406   1.8   msaitoh 	speed &= link_speed;
   5407   1.8   msaitoh 
   5408   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   5409   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5410   1.8   msaitoh 	 */
   5411   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5412   1.8   msaitoh 		speedcnt++;
   5413   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5414   1.8   msaitoh 
   5415   1.8   msaitoh 		/* Set the module link speed */
   5416   1.8   msaitoh 		switch (hw->phy.media_type) {
   5417   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5418   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5419   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5420   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   5421   1.8   msaitoh 			break;
   5422   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5423   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   5424   1.8   msaitoh 			break;
   5425   1.8   msaitoh 		default:
   5426   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5427   1.8   msaitoh 			break;
   5428   1.8   msaitoh 		}
   5429   1.8   msaitoh 
   5430   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   5431   1.8   msaitoh 		msec_delay(40);
   5432   1.8   msaitoh 
   5433   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5434   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   5435   1.8   msaitoh 					      autoneg_wait_to_complete);
   5436   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5437   1.8   msaitoh 			return status;
   5438   1.8   msaitoh 
   5439   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5440   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5441   1.8   msaitoh 
   5442   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5443   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5444   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   5445   1.8   msaitoh 		 */
   5446   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   5447   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   5448   1.8   msaitoh 			msec_delay(100);
   5449   1.8   msaitoh 
   5450   1.8   msaitoh 			/* If we have link, just jump out */
   5451   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   5452   1.8   msaitoh 						  &link_up, FALSE);
   5453   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   5454   1.8   msaitoh 				return status;
   5455   1.8   msaitoh 
   5456   1.8   msaitoh 			if (link_up)
   5457   1.8   msaitoh 				goto out;
   5458   1.8   msaitoh 		}
   5459   1.8   msaitoh 	}
   5460   1.8   msaitoh 
   5461   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5462   1.8   msaitoh 		speedcnt++;
   5463   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5464   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5465   1.8   msaitoh 
   5466   1.8   msaitoh 		/* Set the module link speed */
   5467   1.8   msaitoh 		switch (hw->phy.media_type) {
   5468   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5469   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5470   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5471   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   5472   1.8   msaitoh 			break;
   5473   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5474   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   5475   1.8   msaitoh 			break;
   5476   1.8   msaitoh 		default:
   5477   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5478   1.8   msaitoh 			break;
   5479   1.8   msaitoh 		}
   5480   1.8   msaitoh 
   5481   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   5482   1.8   msaitoh 		msec_delay(40);
   5483   1.8   msaitoh 
   5484   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5485   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   5486   1.8   msaitoh 					      autoneg_wait_to_complete);
   5487   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5488   1.8   msaitoh 			return status;
   5489   1.8   msaitoh 
   5490   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5491   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5492   1.8   msaitoh 
   5493   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   5494   1.8   msaitoh 		msec_delay(100);
   5495   1.8   msaitoh 
   5496   1.8   msaitoh 		/* If we have link, just jump out */
   5497   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5498   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5499   1.8   msaitoh 			return status;
   5500   1.8   msaitoh 
   5501   1.8   msaitoh 		if (link_up)
   5502   1.8   msaitoh 			goto out;
   5503   1.8   msaitoh 	}
   5504   1.8   msaitoh 
   5505  1.20   msaitoh 	if (speed == 0) {
   5506  1.20   msaitoh 		/* Disable the Tx laser for media none */
   5507  1.20   msaitoh 		ixgbe_disable_tx_laser(hw);
   5508  1.20   msaitoh 
   5509  1.20   msaitoh 		goto out;
   5510  1.20   msaitoh 	}
   5511  1.26   msaitoh 
   5512   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   5513   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   5514   1.8   msaitoh 	 * single highest speed that the user requested.
   5515   1.8   msaitoh 	 */
   5516   1.8   msaitoh 	if (speedcnt > 1)
   5517   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5518   1.8   msaitoh 						      highest_link_speed,
   5519   1.8   msaitoh 						      autoneg_wait_to_complete);
   5520   1.8   msaitoh 
   5521   1.8   msaitoh out:
   5522   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   5523   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   5524   1.8   msaitoh 
   5525   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5526   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5527   1.8   msaitoh 
   5528   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5529   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5530   1.8   msaitoh 
   5531   1.8   msaitoh 	return status;
   5532   1.8   msaitoh }
   5533   1.8   msaitoh 
   5534   1.8   msaitoh /**
   5535   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5536   1.8   msaitoh  *  @hw: pointer to hardware structure
   5537   1.8   msaitoh  *  @speed: link speed to set
   5538   1.8   msaitoh  *
   5539   1.8   msaitoh  *  Set module link speed via the soft rate select.
   5540   1.8   msaitoh  */
   5541   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5542   1.8   msaitoh 					ixgbe_link_speed speed)
   5543   1.8   msaitoh {
   5544   1.8   msaitoh 	s32 status;
   5545   1.8   msaitoh 	u8 rs, eeprom_data;
   5546   1.8   msaitoh 
   5547   1.8   msaitoh 	switch (speed) {
   5548   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   5549   1.8   msaitoh 		/* one bit mask same as setting on */
   5550   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5551   1.8   msaitoh 		break;
   5552   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   5553   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5554   1.8   msaitoh 		break;
   5555   1.8   msaitoh 	default:
   5556   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   5557   1.8   msaitoh 		return;
   5558   1.8   msaitoh 	}
   5559   1.8   msaitoh 
   5560   1.8   msaitoh 	/* Set RS0 */
   5561   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5562   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5563   1.8   msaitoh 					   &eeprom_data);
   5564   1.8   msaitoh 	if (status) {
   5565   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5566   1.8   msaitoh 		goto out;
   5567   1.8   msaitoh 	}
   5568   1.8   msaitoh 
   5569   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5570   1.8   msaitoh 
   5571   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5572   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5573   1.8   msaitoh 					    eeprom_data);
   5574   1.8   msaitoh 	if (status) {
   5575   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5576   1.8   msaitoh 		goto out;
   5577   1.8   msaitoh 	}
   5578   1.8   msaitoh 
   5579   1.8   msaitoh 	/* Set RS1 */
   5580   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5581   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5582   1.8   msaitoh 					   &eeprom_data);
   5583   1.8   msaitoh 	if (status) {
   5584   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5585   1.8   msaitoh 		goto out;
   5586   1.8   msaitoh 	}
   5587   1.8   msaitoh 
   5588   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5589   1.8   msaitoh 
   5590   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5591   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5592   1.8   msaitoh 					    eeprom_data);
   5593   1.8   msaitoh 	if (status) {
   5594   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5595   1.8   msaitoh 		goto out;
   5596   1.8   msaitoh 	}
   5597   1.8   msaitoh out:
   5598   1.8   msaitoh 	return;
   5599   1.8   msaitoh }
   5600