ixgbe_common.c revision 1.32 1 1.32 andvar /* $NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 1.1 dyoung
38 1.31 msaitoh #include <sys/cdefs.h>
39 1.32 andvar __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $");
40 1.31 msaitoh
41 1.1 dyoung #include "ixgbe_common.h"
42 1.1 dyoung #include "ixgbe_phy.h"
43 1.6 msaitoh #include "ixgbe_dcb.h"
44 1.6 msaitoh #include "ixgbe_dcb_82599.h"
45 1.1 dyoung #include "ixgbe_api.h"
46 1.1 dyoung
47 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 1.3 msaitoh u16 count);
54 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 1.1 dyoung
59 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 1.3 msaitoh u16 *san_mac_offset);
62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 1.3 msaitoh u16 words, u16 *data);
64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 1.3 msaitoh u16 words, u16 *data);
66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 1.3 msaitoh u16 offset);
68 1.1 dyoung
69 1.1 dyoung /**
70 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
71 1.1 dyoung * @hw: pointer to the hardware structure
72 1.1 dyoung *
73 1.1 dyoung * Initialize the function pointers.
74 1.1 dyoung **/
75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 1.1 dyoung {
77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
79 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 1.1 dyoung
81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
82 1.1 dyoung
83 1.1 dyoung /* EEPROM */
84 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
88 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 1.3 msaitoh } else {
90 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 1.3 msaitoh eeprom->ops.read_buffer =
92 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
93 1.3 msaitoh }
94 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
95 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 1.1 dyoung eeprom->ops.validate_checksum =
97 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
98 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 1.1 dyoung
101 1.1 dyoung /* MAC */
102 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
103 1.1 dyoung mac->ops.reset_hw = NULL;
104 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
105 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 1.1 dyoung mac->ops.get_media_type = NULL;
107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
108 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 1.1 dyoung
118 1.1 dyoung /* LEDs */
119 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
120 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
121 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 1.1 dyoung
125 1.1 dyoung /* RAR, Multicast, VLAN */
126 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
127 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 1.1 dyoung mac->ops.insert_mac_addr = NULL;
129 1.1 dyoung mac->ops.set_vmdq = NULL;
130 1.1 dyoung mac->ops.clear_vmdq = NULL;
131 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 1.1 dyoung mac->ops.clear_vfta = NULL;
137 1.1 dyoung mac->ops.set_vfta = NULL;
138 1.3 msaitoh mac->ops.set_vlvf = NULL;
139 1.1 dyoung mac->ops.init_uta_tables = NULL;
140 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 1.1 dyoung
144 1.1 dyoung /* Flow Control */
145 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 1.1 dyoung
149 1.1 dyoung /* Link */
150 1.1 dyoung mac->ops.get_link_capabilities = NULL;
151 1.1 dyoung mac->ops.setup_link = NULL;
152 1.1 dyoung mac->ops.check_link = NULL;
153 1.6 msaitoh mac->ops.dmac_config = NULL;
154 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
155 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
156 1.1 dyoung
157 1.1 dyoung return IXGBE_SUCCESS;
158 1.1 dyoung }
159 1.1 dyoung
160 1.1 dyoung /**
161 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 1.6 msaitoh * of flow control
163 1.6 msaitoh * @hw: pointer to hardware structure
164 1.6 msaitoh *
165 1.6 msaitoh * This function returns TRUE if the device supports flow control
166 1.6 msaitoh * autonegotiation, and FALSE if it does not.
167 1.4 msaitoh *
168 1.4 msaitoh **/
169 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 1.4 msaitoh {
171 1.6 msaitoh bool supported = FALSE;
172 1.6 msaitoh ixgbe_link_speed speed;
173 1.6 msaitoh bool link_up;
174 1.4 msaitoh
175 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 1.4 msaitoh
177 1.6 msaitoh switch (hw->phy.media_type) {
178 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
179 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
180 1.6 msaitoh case ixgbe_media_type_fiber:
181 1.14 msaitoh /* flow control autoneg black list */
182 1.14 msaitoh switch (hw->device_id) {
183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
184 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
186 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 1.14 msaitoh supported = FALSE;
188 1.14 msaitoh break;
189 1.14 msaitoh default:
190 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 1.14 msaitoh /* if link is down, assume supported */
192 1.14 msaitoh if (link_up)
193 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 1.14 msaitoh TRUE : FALSE;
195 1.14 msaitoh else
196 1.14 msaitoh supported = TRUE;
197 1.14 msaitoh }
198 1.14 msaitoh
199 1.14 msaitoh break;
200 1.14 msaitoh case ixgbe_media_type_backplane:
201 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 1.14 msaitoh supported = FALSE;
203 1.6 msaitoh else
204 1.6 msaitoh supported = TRUE;
205 1.6 msaitoh break;
206 1.6 msaitoh case ixgbe_media_type_copper:
207 1.6 msaitoh /* only some copper devices support flow control autoneg */
208 1.6 msaitoh switch (hw->device_id) {
209 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
210 1.6 msaitoh case IXGBE_DEV_ID_X540T:
211 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
212 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
213 1.8 msaitoh case IXGBE_DEV_ID_X550T:
214 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
215 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
216 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
217 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
218 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 1.6 msaitoh supported = TRUE;
220 1.6 msaitoh break;
221 1.6 msaitoh default:
222 1.6 msaitoh supported = FALSE;
223 1.6 msaitoh }
224 1.4 msaitoh default:
225 1.6 msaitoh break;
226 1.4 msaitoh }
227 1.6 msaitoh
228 1.14 msaitoh if (!supported)
229 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
230 1.14 msaitoh "Device %x does not support flow control autoneg",
231 1.14 msaitoh hw->device_id);
232 1.17 msaitoh
233 1.6 msaitoh return supported;
234 1.4 msaitoh }
235 1.4 msaitoh
236 1.4 msaitoh /**
237 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
238 1.4 msaitoh * @hw: pointer to hardware structure
239 1.4 msaitoh *
240 1.4 msaitoh * Called at init time to set up flow control.
241 1.4 msaitoh **/
242 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
243 1.4 msaitoh {
244 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
245 1.4 msaitoh u32 reg = 0, reg_bp = 0;
246 1.4 msaitoh u16 reg_cu = 0;
247 1.8 msaitoh bool locked = FALSE;
248 1.4 msaitoh
249 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
250 1.4 msaitoh
251 1.8 msaitoh /* Validate the requested mode */
252 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
253 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
254 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
255 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
256 1.4 msaitoh goto out;
257 1.4 msaitoh }
258 1.4 msaitoh
259 1.4 msaitoh /*
260 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
261 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
262 1.4 msaitoh */
263 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
264 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
265 1.4 msaitoh
266 1.4 msaitoh /*
267 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
268 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
269 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
270 1.4 msaitoh */
271 1.4 msaitoh switch (hw->phy.media_type) {
272 1.8 msaitoh case ixgbe_media_type_backplane:
273 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
274 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
275 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
276 1.8 msaitoh goto out;
277 1.8 msaitoh
278 1.14 msaitoh /* fall through - only backplane uses autoc */
279 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
280 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
281 1.4 msaitoh case ixgbe_media_type_fiber:
282 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
283 1.8 msaitoh
284 1.4 msaitoh break;
285 1.4 msaitoh case ixgbe_media_type_copper:
286 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
287 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
288 1.4 msaitoh break;
289 1.4 msaitoh default:
290 1.4 msaitoh break;
291 1.4 msaitoh }
292 1.4 msaitoh
293 1.4 msaitoh /*
294 1.4 msaitoh * The possible values of fc.requested_mode are:
295 1.4 msaitoh * 0: Flow control is completely disabled
296 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
297 1.4 msaitoh * but not send pause frames).
298 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
299 1.4 msaitoh * we do not support receiving pause frames).
300 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
301 1.4 msaitoh * other: Invalid.
302 1.4 msaitoh */
303 1.4 msaitoh switch (hw->fc.requested_mode) {
304 1.4 msaitoh case ixgbe_fc_none:
305 1.4 msaitoh /* Flow control completely disabled by software override. */
306 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
307 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
308 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
309 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
310 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
311 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
312 1.4 msaitoh break;
313 1.4 msaitoh case ixgbe_fc_tx_pause:
314 1.4 msaitoh /*
315 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
316 1.4 msaitoh * disabled by software override.
317 1.4 msaitoh */
318 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
319 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
320 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
321 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
322 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
323 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
324 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
325 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
326 1.4 msaitoh }
327 1.4 msaitoh break;
328 1.4 msaitoh case ixgbe_fc_rx_pause:
329 1.4 msaitoh /*
330 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
331 1.4 msaitoh * disabled by software override. Since there really
332 1.4 msaitoh * isn't a way to advertise that we are capable of RX
333 1.4 msaitoh * Pause ONLY, we will advertise that we support both
334 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
335 1.4 msaitoh * through to the fc_full statement. Later, we will
336 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
337 1.4 msaitoh */
338 1.4 msaitoh case ixgbe_fc_full:
339 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
340 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
341 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
342 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
343 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
344 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
345 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
346 1.4 msaitoh break;
347 1.4 msaitoh default:
348 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
349 1.6 msaitoh "Flow control param set incorrectly\n");
350 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
351 1.4 msaitoh goto out;
352 1.4 msaitoh break;
353 1.4 msaitoh }
354 1.4 msaitoh
355 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
356 1.4 msaitoh /*
357 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
358 1.4 msaitoh * the MAC will advertise clause 37 flow control.
359 1.4 msaitoh */
360 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
361 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
362 1.4 msaitoh
363 1.4 msaitoh /* Disable AN timeout */
364 1.4 msaitoh if (hw->fc.strict_ieee)
365 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
366 1.4 msaitoh
367 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
368 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
369 1.4 msaitoh }
370 1.4 msaitoh
371 1.4 msaitoh /*
372 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
373 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
374 1.4 msaitoh *
375 1.4 msaitoh */
376 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
377 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
378 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
379 1.8 msaitoh if (ret_val)
380 1.8 msaitoh goto out;
381 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
382 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
383 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
384 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
385 1.4 msaitoh }
386 1.4 msaitoh
387 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
388 1.4 msaitoh out:
389 1.4 msaitoh return ret_val;
390 1.4 msaitoh }
391 1.4 msaitoh
392 1.4 msaitoh /**
393 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
394 1.1 dyoung * @hw: pointer to hardware structure
395 1.1 dyoung *
396 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
397 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
398 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
399 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
400 1.1 dyoung **/
401 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
402 1.1 dyoung {
403 1.4 msaitoh s32 ret_val;
404 1.1 dyoung u32 ctrl_ext;
405 1.14 msaitoh u16 device_caps;
406 1.1 dyoung
407 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
408 1.1 dyoung
409 1.1 dyoung /* Set the media type */
410 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
411 1.1 dyoung
412 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
413 1.1 dyoung
414 1.1 dyoung /* Clear the VLAN filter table */
415 1.1 dyoung hw->mac.ops.clear_vfta(hw);
416 1.1 dyoung
417 1.1 dyoung /* Clear statistics registers */
418 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
419 1.1 dyoung
420 1.1 dyoung /* Set No Snoop Disable */
421 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
422 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
423 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
424 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
425 1.1 dyoung
426 1.1 dyoung /* Setup flow control */
427 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
428 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
429 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
430 1.14 msaitoh return ret_val;
431 1.14 msaitoh }
432 1.14 msaitoh
433 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
434 1.14 msaitoh switch (hw->mac.type) {
435 1.14 msaitoh case ixgbe_mac_82599EB:
436 1.14 msaitoh case ixgbe_mac_X550EM_x:
437 1.14 msaitoh case ixgbe_mac_X550EM_a:
438 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
439 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
440 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
441 1.14 msaitoh else
442 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
443 1.14 msaitoh break;
444 1.14 msaitoh default:
445 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
446 1.14 msaitoh break;
447 1.14 msaitoh }
448 1.1 dyoung
449 1.1 dyoung /* Clear adapter stopped flag */
450 1.1 dyoung hw->adapter_stopped = FALSE;
451 1.1 dyoung
452 1.14 msaitoh return IXGBE_SUCCESS;
453 1.1 dyoung }
454 1.1 dyoung
455 1.1 dyoung /**
456 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
457 1.1 dyoung * @hw: pointer to hw structure
458 1.1 dyoung *
459 1.1 dyoung * Performs the init sequence common to the second generation
460 1.1 dyoung * of 10 GbE devices.
461 1.1 dyoung * Devices in the second generation:
462 1.1 dyoung * 82599
463 1.1 dyoung * X540
464 1.1 dyoung **/
465 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
466 1.1 dyoung {
467 1.1 dyoung u32 i;
468 1.1 dyoung u32 regval;
469 1.1 dyoung
470 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2");
471 1.27 msaitoh
472 1.1 dyoung /* Clear the rate limiters */
473 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
474 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
475 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
476 1.1 dyoung }
477 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
478 1.1 dyoung
479 1.1 dyoung /* Disable relaxed ordering */
480 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
481 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
482 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
483 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
484 1.1 dyoung }
485 1.1 dyoung
486 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
487 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
488 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
489 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
490 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
491 1.1 dyoung }
492 1.1 dyoung
493 1.1 dyoung return IXGBE_SUCCESS;
494 1.1 dyoung }
495 1.1 dyoung
496 1.1 dyoung /**
497 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
498 1.1 dyoung * @hw: pointer to hardware structure
499 1.1 dyoung *
500 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
501 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
502 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
503 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
504 1.1 dyoung * disabled and uninitialized
505 1.1 dyoung **/
506 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
507 1.1 dyoung {
508 1.1 dyoung s32 status;
509 1.1 dyoung
510 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
511 1.1 dyoung
512 1.1 dyoung /* Reset the hardware */
513 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
514 1.1 dyoung
515 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
516 1.1 dyoung /* Start the HW */
517 1.1 dyoung status = hw->mac.ops.start_hw(hw);
518 1.1 dyoung }
519 1.1 dyoung
520 1.14 msaitoh /* Initialize the LED link active for LED blink support */
521 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
522 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
523 1.14 msaitoh
524 1.14 msaitoh if (status != IXGBE_SUCCESS)
525 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
526 1.14 msaitoh
527 1.1 dyoung return status;
528 1.1 dyoung }
529 1.1 dyoung
530 1.1 dyoung /**
531 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
532 1.1 dyoung * @hw: pointer to hardware structure
533 1.1 dyoung *
534 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
535 1.1 dyoung * Statistics counters are clear on read.
536 1.1 dyoung **/
537 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
538 1.1 dyoung {
539 1.1 dyoung u16 i = 0;
540 1.1 dyoung
541 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
542 1.1 dyoung
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
547 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
548 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
549 1.1 dyoung for (i = 0; i < 8; i++)
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
551 1.1 dyoung
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
557 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
560 1.1 dyoung } else {
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
563 1.1 dyoung }
564 1.1 dyoung
565 1.1 dyoung for (i = 0; i < 8; i++) {
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
568 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
571 1.1 dyoung } else {
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
574 1.1 dyoung }
575 1.1 dyoung }
576 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
577 1.1 dyoung for (i = 0; i < 8; i++)
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
586 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
587 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
588 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
590 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
593 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
594 1.3 msaitoh for (i = 0; i < 8; i++)
595 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
610 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
613 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
615 1.1 dyoung for (i = 0; i < 16; i++) {
616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
618 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
619 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
620 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
621 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
622 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
623 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
624 1.1 dyoung } else {
625 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
626 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
627 1.1 dyoung }
628 1.1 dyoung }
629 1.1 dyoung
630 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
631 1.3 msaitoh if (hw->phy.id == 0)
632 1.3 msaitoh ixgbe_identify_phy(hw);
633 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
634 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
635 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
636 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
637 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
638 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
639 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
640 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
641 1.3 msaitoh }
642 1.3 msaitoh
643 1.1 dyoung return IXGBE_SUCCESS;
644 1.1 dyoung }
645 1.1 dyoung
646 1.1 dyoung /**
647 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
648 1.1 dyoung * @hw: pointer to hardware structure
649 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
650 1.1 dyoung * @pba_num_size: part number string buffer length
651 1.1 dyoung *
652 1.1 dyoung * Reads the part number string from the EEPROM.
653 1.1 dyoung **/
654 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
655 1.3 msaitoh u32 pba_num_size)
656 1.1 dyoung {
657 1.1 dyoung s32 ret_val;
658 1.1 dyoung u16 data;
659 1.1 dyoung u16 pba_ptr;
660 1.1 dyoung u16 offset;
661 1.1 dyoung u16 length;
662 1.1 dyoung
663 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
664 1.1 dyoung
665 1.1 dyoung if (pba_num == NULL) {
666 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
667 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
668 1.1 dyoung }
669 1.1 dyoung
670 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
671 1.1 dyoung if (ret_val) {
672 1.1 dyoung DEBUGOUT("NVM Read Error\n");
673 1.1 dyoung return ret_val;
674 1.1 dyoung }
675 1.1 dyoung
676 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
677 1.1 dyoung if (ret_val) {
678 1.1 dyoung DEBUGOUT("NVM Read Error\n");
679 1.1 dyoung return ret_val;
680 1.1 dyoung }
681 1.1 dyoung
682 1.1 dyoung /*
683 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
684 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
685 1.1 dyoung * and we can decode it into an ascii string
686 1.1 dyoung */
687 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
688 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
689 1.1 dyoung
690 1.1 dyoung /* we will need 11 characters to store the PBA */
691 1.1 dyoung if (pba_num_size < 11) {
692 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
693 1.1 dyoung return IXGBE_ERR_NO_SPACE;
694 1.1 dyoung }
695 1.1 dyoung
696 1.1 dyoung /* extract hex string from data and pba_ptr */
697 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
698 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
699 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
700 1.1 dyoung pba_num[3] = data & 0xF;
701 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
702 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
703 1.1 dyoung pba_num[6] = '-';
704 1.1 dyoung pba_num[7] = 0;
705 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
706 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
707 1.1 dyoung
708 1.1 dyoung /* put a null character on the end of our string */
709 1.1 dyoung pba_num[10] = '\0';
710 1.1 dyoung
711 1.1 dyoung /* switch all the data but the '-' to hex char */
712 1.1 dyoung for (offset = 0; offset < 10; offset++) {
713 1.1 dyoung if (pba_num[offset] < 0xA)
714 1.1 dyoung pba_num[offset] += '0';
715 1.1 dyoung else if (pba_num[offset] < 0x10)
716 1.1 dyoung pba_num[offset] += 'A' - 0xA;
717 1.1 dyoung }
718 1.1 dyoung
719 1.1 dyoung return IXGBE_SUCCESS;
720 1.1 dyoung }
721 1.1 dyoung
722 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
723 1.1 dyoung if (ret_val) {
724 1.1 dyoung DEBUGOUT("NVM Read Error\n");
725 1.1 dyoung return ret_val;
726 1.1 dyoung }
727 1.1 dyoung
728 1.1 dyoung if (length == 0xFFFF || length == 0) {
729 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
730 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
731 1.1 dyoung }
732 1.1 dyoung
733 1.1 dyoung /* check if pba_num buffer is big enough */
734 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
735 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
736 1.1 dyoung return IXGBE_ERR_NO_SPACE;
737 1.1 dyoung }
738 1.1 dyoung
739 1.1 dyoung /* trim pba length from start of string */
740 1.1 dyoung pba_ptr++;
741 1.1 dyoung length--;
742 1.1 dyoung
743 1.1 dyoung for (offset = 0; offset < length; offset++) {
744 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
745 1.1 dyoung if (ret_val) {
746 1.1 dyoung DEBUGOUT("NVM Read Error\n");
747 1.1 dyoung return ret_val;
748 1.1 dyoung }
749 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
750 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
751 1.1 dyoung }
752 1.1 dyoung pba_num[offset * 2] = '\0';
753 1.1 dyoung
754 1.1 dyoung return IXGBE_SUCCESS;
755 1.1 dyoung }
756 1.1 dyoung
757 1.1 dyoung /**
758 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
759 1.1 dyoung * @hw: pointer to hardware structure
760 1.1 dyoung * @pba_num: stores the part number from the EEPROM
761 1.1 dyoung *
762 1.1 dyoung * Reads the part number from the EEPROM.
763 1.1 dyoung **/
764 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
765 1.1 dyoung {
766 1.1 dyoung s32 ret_val;
767 1.1 dyoung u16 data;
768 1.1 dyoung
769 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
770 1.1 dyoung
771 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
772 1.1 dyoung if (ret_val) {
773 1.1 dyoung DEBUGOUT("NVM Read Error\n");
774 1.1 dyoung return ret_val;
775 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
776 1.1 dyoung DEBUGOUT("NVM Not supported\n");
777 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
778 1.1 dyoung }
779 1.1 dyoung *pba_num = (u32)(data << 16);
780 1.1 dyoung
781 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
782 1.1 dyoung if (ret_val) {
783 1.1 dyoung DEBUGOUT("NVM Read Error\n");
784 1.1 dyoung return ret_val;
785 1.1 dyoung }
786 1.1 dyoung *pba_num |= data;
787 1.1 dyoung
788 1.1 dyoung return IXGBE_SUCCESS;
789 1.1 dyoung }
790 1.1 dyoung
791 1.1 dyoung /**
792 1.5 msaitoh * ixgbe_read_pba_raw
793 1.5 msaitoh * @hw: pointer to the HW structure
794 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
795 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
796 1.5 msaitoh * @max_pba_block_size: PBA block size limit
797 1.5 msaitoh * @pba: pointer to output PBA structure
798 1.5 msaitoh *
799 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
800 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
801 1.5 msaitoh *
802 1.5 msaitoh **/
803 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
804 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
805 1.5 msaitoh struct ixgbe_pba *pba)
806 1.5 msaitoh {
807 1.5 msaitoh s32 ret_val;
808 1.5 msaitoh u16 pba_block_size;
809 1.5 msaitoh
810 1.5 msaitoh if (pba == NULL)
811 1.5 msaitoh return IXGBE_ERR_PARAM;
812 1.5 msaitoh
813 1.5 msaitoh if (eeprom_buf == NULL) {
814 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
815 1.5 msaitoh &pba->word[0]);
816 1.5 msaitoh if (ret_val)
817 1.5 msaitoh return ret_val;
818 1.5 msaitoh } else {
819 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
820 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
821 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
822 1.5 msaitoh } else {
823 1.5 msaitoh return IXGBE_ERR_PARAM;
824 1.5 msaitoh }
825 1.5 msaitoh }
826 1.5 msaitoh
827 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
828 1.5 msaitoh if (pba->pba_block == NULL)
829 1.5 msaitoh return IXGBE_ERR_PARAM;
830 1.5 msaitoh
831 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
832 1.5 msaitoh eeprom_buf_size,
833 1.5 msaitoh &pba_block_size);
834 1.5 msaitoh if (ret_val)
835 1.5 msaitoh return ret_val;
836 1.5 msaitoh
837 1.5 msaitoh if (pba_block_size > max_pba_block_size)
838 1.5 msaitoh return IXGBE_ERR_PARAM;
839 1.5 msaitoh
840 1.5 msaitoh if (eeprom_buf == NULL) {
841 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
842 1.5 msaitoh pba_block_size,
843 1.5 msaitoh pba->pba_block);
844 1.5 msaitoh if (ret_val)
845 1.5 msaitoh return ret_val;
846 1.5 msaitoh } else {
847 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
848 1.8 msaitoh pba_block_size)) {
849 1.5 msaitoh memcpy(pba->pba_block,
850 1.5 msaitoh &eeprom_buf[pba->word[1]],
851 1.5 msaitoh pba_block_size * sizeof(u16));
852 1.5 msaitoh } else {
853 1.5 msaitoh return IXGBE_ERR_PARAM;
854 1.5 msaitoh }
855 1.5 msaitoh }
856 1.5 msaitoh }
857 1.5 msaitoh
858 1.5 msaitoh return IXGBE_SUCCESS;
859 1.5 msaitoh }
860 1.5 msaitoh
861 1.5 msaitoh /**
862 1.5 msaitoh * ixgbe_write_pba_raw
863 1.5 msaitoh * @hw: pointer to the HW structure
864 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
865 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
866 1.5 msaitoh * @pba: pointer to PBA structure
867 1.5 msaitoh *
868 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
869 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
870 1.5 msaitoh *
871 1.5 msaitoh **/
872 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
873 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
874 1.5 msaitoh {
875 1.5 msaitoh s32 ret_val;
876 1.5 msaitoh
877 1.5 msaitoh if (pba == NULL)
878 1.5 msaitoh return IXGBE_ERR_PARAM;
879 1.5 msaitoh
880 1.5 msaitoh if (eeprom_buf == NULL) {
881 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
882 1.5 msaitoh &pba->word[0]);
883 1.5 msaitoh if (ret_val)
884 1.5 msaitoh return ret_val;
885 1.5 msaitoh } else {
886 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
887 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
888 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
889 1.5 msaitoh } else {
890 1.5 msaitoh return IXGBE_ERR_PARAM;
891 1.5 msaitoh }
892 1.5 msaitoh }
893 1.5 msaitoh
894 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
895 1.5 msaitoh if (pba->pba_block == NULL)
896 1.5 msaitoh return IXGBE_ERR_PARAM;
897 1.5 msaitoh
898 1.5 msaitoh if (eeprom_buf == NULL) {
899 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
900 1.5 msaitoh pba->pba_block[0],
901 1.5 msaitoh pba->pba_block);
902 1.5 msaitoh if (ret_val)
903 1.5 msaitoh return ret_val;
904 1.5 msaitoh } else {
905 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
906 1.5 msaitoh pba->pba_block[0])) {
907 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
908 1.5 msaitoh pba->pba_block,
909 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
910 1.5 msaitoh } else {
911 1.5 msaitoh return IXGBE_ERR_PARAM;
912 1.5 msaitoh }
913 1.5 msaitoh }
914 1.5 msaitoh }
915 1.5 msaitoh
916 1.5 msaitoh return IXGBE_SUCCESS;
917 1.5 msaitoh }
918 1.5 msaitoh
919 1.5 msaitoh /**
920 1.5 msaitoh * ixgbe_get_pba_block_size
921 1.5 msaitoh * @hw: pointer to the HW structure
922 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
923 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
924 1.5 msaitoh * @pba_data_size: pointer to output variable
925 1.5 msaitoh *
926 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
927 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
928 1.5 msaitoh * EEPROM device.
929 1.5 msaitoh *
930 1.5 msaitoh **/
931 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
932 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
933 1.5 msaitoh {
934 1.5 msaitoh s32 ret_val;
935 1.5 msaitoh u16 pba_word[2];
936 1.5 msaitoh u16 length;
937 1.5 msaitoh
938 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
939 1.5 msaitoh
940 1.5 msaitoh if (eeprom_buf == NULL) {
941 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
942 1.5 msaitoh &pba_word[0]);
943 1.5 msaitoh if (ret_val)
944 1.5 msaitoh return ret_val;
945 1.5 msaitoh } else {
946 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
947 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
948 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
949 1.5 msaitoh } else {
950 1.5 msaitoh return IXGBE_ERR_PARAM;
951 1.5 msaitoh }
952 1.5 msaitoh }
953 1.5 msaitoh
954 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
955 1.5 msaitoh if (eeprom_buf == NULL) {
956 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
957 1.5 msaitoh &length);
958 1.5 msaitoh if (ret_val)
959 1.5 msaitoh return ret_val;
960 1.5 msaitoh } else {
961 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
962 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
963 1.5 msaitoh else
964 1.5 msaitoh return IXGBE_ERR_PARAM;
965 1.5 msaitoh }
966 1.5 msaitoh
967 1.5 msaitoh if (length == 0xFFFF || length == 0)
968 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
969 1.5 msaitoh } else {
970 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
971 1.5 msaitoh length = 0;
972 1.5 msaitoh }
973 1.5 msaitoh
974 1.5 msaitoh if (pba_block_size != NULL)
975 1.5 msaitoh *pba_block_size = length;
976 1.5 msaitoh
977 1.5 msaitoh return IXGBE_SUCCESS;
978 1.5 msaitoh }
979 1.5 msaitoh
980 1.5 msaitoh /**
981 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
982 1.1 dyoung * @hw: pointer to hardware structure
983 1.1 dyoung * @mac_addr: Adapter MAC address
984 1.1 dyoung *
985 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
986 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
987 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
988 1.1 dyoung **/
989 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
990 1.1 dyoung {
991 1.1 dyoung u32 rar_high;
992 1.1 dyoung u32 rar_low;
993 1.1 dyoung u16 i;
994 1.1 dyoung
995 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
996 1.1 dyoung
997 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
998 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
999 1.1 dyoung
1000 1.1 dyoung for (i = 0; i < 4; i++)
1001 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
1002 1.1 dyoung
1003 1.1 dyoung for (i = 0; i < 2; i++)
1004 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
1005 1.1 dyoung
1006 1.1 dyoung return IXGBE_SUCCESS;
1007 1.1 dyoung }
1008 1.1 dyoung
1009 1.1 dyoung /**
1010 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1011 1.1 dyoung * @hw: pointer to hardware structure
1012 1.6 msaitoh * @link_status: the link status returned by the PCI config space
1013 1.1 dyoung *
1014 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1015 1.1 dyoung **/
1016 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1017 1.1 dyoung {
1018 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1019 1.1 dyoung
1020 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1021 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1022 1.1 dyoung
1023 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1024 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1025 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1026 1.1 dyoung break;
1027 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1028 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1029 1.1 dyoung break;
1030 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1031 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1032 1.1 dyoung break;
1033 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1034 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1035 1.1 dyoung break;
1036 1.1 dyoung default:
1037 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1038 1.1 dyoung break;
1039 1.1 dyoung }
1040 1.1 dyoung
1041 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1042 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1043 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1044 1.1 dyoung break;
1045 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1046 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1047 1.1 dyoung break;
1048 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1049 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1050 1.4 msaitoh break;
1051 1.1 dyoung default:
1052 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1053 1.1 dyoung break;
1054 1.1 dyoung }
1055 1.1 dyoung
1056 1.1 dyoung mac->ops.set_lan_id(hw);
1057 1.6 msaitoh }
1058 1.6 msaitoh
1059 1.6 msaitoh /**
1060 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1061 1.6 msaitoh * @hw: pointer to hardware structure
1062 1.6 msaitoh *
1063 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1064 1.6 msaitoh * store this data within the ixgbe_hw structure.
1065 1.6 msaitoh **/
1066 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1067 1.6 msaitoh {
1068 1.6 msaitoh u16 link_status;
1069 1.6 msaitoh
1070 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1071 1.6 msaitoh
1072 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1073 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1074 1.6 msaitoh
1075 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1076 1.1 dyoung
1077 1.1 dyoung return IXGBE_SUCCESS;
1078 1.1 dyoung }
1079 1.1 dyoung
1080 1.1 dyoung /**
1081 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1082 1.1 dyoung * @hw: pointer to the HW structure
1083 1.1 dyoung *
1084 1.14 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1085 1.14 msaitoh * the port value if requested, and set MAC instance for devices that share
1086 1.14 msaitoh * CS4227.
1087 1.1 dyoung **/
1088 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1089 1.1 dyoung {
1090 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1091 1.1 dyoung u32 reg;
1092 1.14 msaitoh u16 ee_ctrl_4;
1093 1.1 dyoung
1094 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1095 1.1 dyoung
1096 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1097 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1098 1.14 msaitoh bus->lan_id = (u8)bus->func;
1099 1.1 dyoung
1100 1.1 dyoung /* check for a port swap */
1101 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1102 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1103 1.1 dyoung bus->func ^= 0x1;
1104 1.14 msaitoh
1105 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1106 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1107 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1108 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1109 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1110 1.14 msaitoh }
1111 1.1 dyoung }
1112 1.1 dyoung
1113 1.1 dyoung /**
1114 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1115 1.1 dyoung * @hw: pointer to hardware structure
1116 1.1 dyoung *
1117 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1118 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1119 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1120 1.1 dyoung * state and should not touch the hardware.
1121 1.1 dyoung **/
1122 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1123 1.1 dyoung {
1124 1.1 dyoung u32 reg_val;
1125 1.1 dyoung u16 i;
1126 1.1 dyoung
1127 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1128 1.1 dyoung
1129 1.1 dyoung /*
1130 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1131 1.1 dyoung * the hardware
1132 1.1 dyoung */
1133 1.1 dyoung hw->adapter_stopped = TRUE;
1134 1.1 dyoung
1135 1.1 dyoung /* Disable the receive unit */
1136 1.8 msaitoh ixgbe_disable_rx(hw);
1137 1.1 dyoung
1138 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1139 1.19 knakahar /*
1140 1.19 knakahar * XXX
1141 1.19 knakahar * This function is called in the state of both interrupt disabled
1142 1.19 knakahar * and interrupt enabled, e.g.
1143 1.19 knakahar * + interrupt disabled case:
1144 1.30 msaitoh * - ixgbe_stop_locked()
1145 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here
1146 1.19 knakahar * - ixgbe_stop_adapter()
1147 1.19 knakahar * - hw->mac.ops.stop_adapter()
1148 1.19 knakahar * == this function
1149 1.19 knakahar * + interrupt enabled case:
1150 1.19 knakahar * - ixgbe_local_timer1()
1151 1.19 knakahar * - ixgbe_init_locked()
1152 1.19 knakahar * - ixgbe_stop_adapter()
1153 1.19 knakahar * - hw->mac.ops.stop_adapter()
1154 1.19 knakahar * == this function
1155 1.19 knakahar * Therefore, it causes nest status breaking to nest the status
1156 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must
1157 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1158 1.19 knakahar */
1159 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back);
1160 1.1 dyoung
1161 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1162 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1163 1.1 dyoung
1164 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1165 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1166 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1167 1.3 msaitoh
1168 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1169 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1170 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1171 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1172 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1173 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1174 1.1 dyoung }
1175 1.1 dyoung
1176 1.3 msaitoh /* flush all queues disables */
1177 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1178 1.3 msaitoh msec_delay(2);
1179 1.3 msaitoh
1180 1.1 dyoung /*
1181 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1182 1.1 dyoung * access and verify no pending requests
1183 1.1 dyoung */
1184 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1185 1.1 dyoung }
1186 1.1 dyoung
1187 1.1 dyoung /**
1188 1.14 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1189 1.14 msaitoh * @hw: pointer to hardware structure
1190 1.14 msaitoh *
1191 1.14 msaitoh * Store the index for the link active LED. This will be used to support
1192 1.14 msaitoh * blinking the LED.
1193 1.14 msaitoh **/
1194 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1195 1.14 msaitoh {
1196 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1197 1.14 msaitoh u32 led_reg, led_mode;
1198 1.14 msaitoh u8 i;
1199 1.14 msaitoh
1200 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1201 1.14 msaitoh
1202 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1203 1.14 msaitoh for (i = 0; i < 4; i++) {
1204 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1205 1.14 msaitoh
1206 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1207 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1208 1.14 msaitoh mac->led_link_act = i;
1209 1.14 msaitoh return IXGBE_SUCCESS;
1210 1.14 msaitoh }
1211 1.14 msaitoh }
1212 1.14 msaitoh
1213 1.14 msaitoh /*
1214 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1215 1.14 msaitoh * known MAC defaults.
1216 1.14 msaitoh */
1217 1.14 msaitoh switch (hw->mac.type) {
1218 1.14 msaitoh case ixgbe_mac_X550EM_a:
1219 1.14 msaitoh case ixgbe_mac_X550EM_x:
1220 1.14 msaitoh mac->led_link_act = 1;
1221 1.14 msaitoh break;
1222 1.14 msaitoh default:
1223 1.14 msaitoh mac->led_link_act = 2;
1224 1.14 msaitoh }
1225 1.14 msaitoh return IXGBE_SUCCESS;
1226 1.14 msaitoh }
1227 1.14 msaitoh
1228 1.14 msaitoh /**
1229 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1230 1.1 dyoung * @hw: pointer to hardware structure
1231 1.1 dyoung * @index: led number to turn on
1232 1.1 dyoung **/
1233 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1234 1.1 dyoung {
1235 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1236 1.1 dyoung
1237 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1238 1.1 dyoung
1239 1.14 msaitoh if (index > 3)
1240 1.14 msaitoh return IXGBE_ERR_PARAM;
1241 1.14 msaitoh
1242 1.1 dyoung /* To turn on the LED, set mode to ON. */
1243 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1244 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1245 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1246 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1247 1.1 dyoung
1248 1.1 dyoung return IXGBE_SUCCESS;
1249 1.1 dyoung }
1250 1.1 dyoung
1251 1.1 dyoung /**
1252 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1253 1.1 dyoung * @hw: pointer to hardware structure
1254 1.1 dyoung * @index: led number to turn off
1255 1.1 dyoung **/
1256 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1257 1.1 dyoung {
1258 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1259 1.1 dyoung
1260 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1261 1.1 dyoung
1262 1.14 msaitoh if (index > 3)
1263 1.14 msaitoh return IXGBE_ERR_PARAM;
1264 1.14 msaitoh
1265 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1266 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1267 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1268 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1269 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1270 1.1 dyoung
1271 1.1 dyoung return IXGBE_SUCCESS;
1272 1.1 dyoung }
1273 1.1 dyoung
1274 1.1 dyoung /**
1275 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1276 1.1 dyoung * @hw: pointer to hardware structure
1277 1.1 dyoung *
1278 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1279 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1280 1.1 dyoung **/
1281 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1282 1.1 dyoung {
1283 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1284 1.1 dyoung u32 eec;
1285 1.1 dyoung u16 eeprom_size;
1286 1.1 dyoung
1287 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1288 1.1 dyoung
1289 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1290 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1291 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1292 1.1 dyoung * tested value */
1293 1.1 dyoung eeprom->semaphore_delay = 10;
1294 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1295 1.3 msaitoh eeprom->word_page_size = 0;
1296 1.1 dyoung
1297 1.1 dyoung /*
1298 1.1 dyoung * Check for EEPROM present first.
1299 1.1 dyoung * If not present leave as none
1300 1.1 dyoung */
1301 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1302 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1303 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1304 1.1 dyoung
1305 1.1 dyoung /*
1306 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1307 1.1 dyoung * change if a future EEPROM is not SPI.
1308 1.1 dyoung */
1309 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1310 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1311 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1312 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1313 1.1 dyoung }
1314 1.1 dyoung
1315 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1316 1.1 dyoung eeprom->address_bits = 16;
1317 1.1 dyoung else
1318 1.1 dyoung eeprom->address_bits = 8;
1319 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1320 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1321 1.3 msaitoh eeprom->address_bits);
1322 1.1 dyoung }
1323 1.1 dyoung
1324 1.1 dyoung return IXGBE_SUCCESS;
1325 1.1 dyoung }
1326 1.1 dyoung
1327 1.1 dyoung /**
1328 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1329 1.3 msaitoh * @hw: pointer to hardware structure
1330 1.3 msaitoh * @offset: offset within the EEPROM to write
1331 1.3 msaitoh * @words: number of word(s)
1332 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1333 1.3 msaitoh *
1334 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1335 1.3 msaitoh **/
1336 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1337 1.3 msaitoh u16 words, u16 *data)
1338 1.3 msaitoh {
1339 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1340 1.3 msaitoh u16 i, count;
1341 1.3 msaitoh
1342 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1343 1.3 msaitoh
1344 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1345 1.3 msaitoh
1346 1.3 msaitoh if (words == 0) {
1347 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1348 1.3 msaitoh goto out;
1349 1.3 msaitoh }
1350 1.3 msaitoh
1351 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1352 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1353 1.3 msaitoh goto out;
1354 1.3 msaitoh }
1355 1.3 msaitoh
1356 1.3 msaitoh /*
1357 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1358 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1359 1.3 msaitoh */
1360 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1361 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1362 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1363 1.3 msaitoh
1364 1.3 msaitoh /*
1365 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1366 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1367 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1368 1.3 msaitoh */
1369 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1370 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1371 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1372 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1373 1.3 msaitoh count, &data[i]);
1374 1.3 msaitoh
1375 1.3 msaitoh if (status != IXGBE_SUCCESS)
1376 1.3 msaitoh break;
1377 1.3 msaitoh }
1378 1.3 msaitoh
1379 1.3 msaitoh out:
1380 1.3 msaitoh return status;
1381 1.3 msaitoh }
1382 1.3 msaitoh
1383 1.3 msaitoh /**
1384 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1385 1.3 msaitoh * @hw: pointer to hardware structure
1386 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1387 1.3 msaitoh * @words: number of word(s)
1388 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1389 1.3 msaitoh *
1390 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1391 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1392 1.3 msaitoh **/
1393 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1394 1.3 msaitoh u16 words, u16 *data)
1395 1.3 msaitoh {
1396 1.3 msaitoh s32 status;
1397 1.3 msaitoh u16 word;
1398 1.3 msaitoh u16 page_size;
1399 1.3 msaitoh u16 i;
1400 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1401 1.3 msaitoh
1402 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1403 1.3 msaitoh
1404 1.3 msaitoh /* Prepare the EEPROM for writing */
1405 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1406 1.3 msaitoh
1407 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1408 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1409 1.3 msaitoh ixgbe_release_eeprom(hw);
1410 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1411 1.3 msaitoh }
1412 1.3 msaitoh }
1413 1.3 msaitoh
1414 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1415 1.3 msaitoh for (i = 0; i < words; i++) {
1416 1.3 msaitoh ixgbe_standby_eeprom(hw);
1417 1.3 msaitoh
1418 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1419 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1420 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1421 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1422 1.3 msaitoh
1423 1.3 msaitoh ixgbe_standby_eeprom(hw);
1424 1.3 msaitoh
1425 1.3 msaitoh /*
1426 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1427 1.3 msaitoh * in the opcode
1428 1.3 msaitoh */
1429 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1430 1.3 msaitoh ((offset + i) >= 128))
1431 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1432 1.3 msaitoh
1433 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1434 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1435 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1436 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1437 1.3 msaitoh hw->eeprom.address_bits);
1438 1.3 msaitoh
1439 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1440 1.3 msaitoh
1441 1.3 msaitoh /* Send the data in burst via SPI*/
1442 1.3 msaitoh do {
1443 1.3 msaitoh word = data[i];
1444 1.3 msaitoh word = (word >> 8) | (word << 8);
1445 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1446 1.3 msaitoh
1447 1.3 msaitoh if (page_size == 0)
1448 1.3 msaitoh break;
1449 1.3 msaitoh
1450 1.3 msaitoh /* do not wrap around page */
1451 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1452 1.3 msaitoh (page_size - 1))
1453 1.3 msaitoh break;
1454 1.3 msaitoh } while (++i < words);
1455 1.3 msaitoh
1456 1.3 msaitoh ixgbe_standby_eeprom(hw);
1457 1.3 msaitoh msec_delay(10);
1458 1.3 msaitoh }
1459 1.3 msaitoh /* Done with writing - release the EEPROM */
1460 1.3 msaitoh ixgbe_release_eeprom(hw);
1461 1.3 msaitoh }
1462 1.3 msaitoh
1463 1.3 msaitoh return status;
1464 1.3 msaitoh }
1465 1.3 msaitoh
1466 1.3 msaitoh /**
1467 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1468 1.1 dyoung * @hw: pointer to hardware structure
1469 1.1 dyoung * @offset: offset within the EEPROM to be written to
1470 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1471 1.1 dyoung *
1472 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1473 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1474 1.1 dyoung **/
1475 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1476 1.1 dyoung {
1477 1.1 dyoung s32 status;
1478 1.1 dyoung
1479 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1480 1.1 dyoung
1481 1.1 dyoung hw->eeprom.ops.init_params(hw);
1482 1.1 dyoung
1483 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1484 1.1 dyoung status = IXGBE_ERR_EEPROM;
1485 1.1 dyoung goto out;
1486 1.1 dyoung }
1487 1.1 dyoung
1488 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1489 1.3 msaitoh
1490 1.3 msaitoh out:
1491 1.3 msaitoh return status;
1492 1.3 msaitoh }
1493 1.3 msaitoh
1494 1.3 msaitoh /**
1495 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1496 1.3 msaitoh * @hw: pointer to hardware structure
1497 1.3 msaitoh * @offset: offset within the EEPROM to be read
1498 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1499 1.3 msaitoh * @words: number of word(s)
1500 1.3 msaitoh *
1501 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1502 1.3 msaitoh **/
1503 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1504 1.3 msaitoh u16 words, u16 *data)
1505 1.3 msaitoh {
1506 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1507 1.3 msaitoh u16 i, count;
1508 1.3 msaitoh
1509 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1510 1.3 msaitoh
1511 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1512 1.3 msaitoh
1513 1.3 msaitoh if (words == 0) {
1514 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1515 1.3 msaitoh goto out;
1516 1.3 msaitoh }
1517 1.3 msaitoh
1518 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1519 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1520 1.3 msaitoh goto out;
1521 1.3 msaitoh }
1522 1.3 msaitoh
1523 1.3 msaitoh /*
1524 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1525 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1526 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1527 1.3 msaitoh */
1528 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1529 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1530 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1531 1.3 msaitoh
1532 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1533 1.3 msaitoh count, &data[i]);
1534 1.3 msaitoh
1535 1.3 msaitoh if (status != IXGBE_SUCCESS)
1536 1.3 msaitoh break;
1537 1.3 msaitoh }
1538 1.3 msaitoh
1539 1.3 msaitoh out:
1540 1.3 msaitoh return status;
1541 1.3 msaitoh }
1542 1.3 msaitoh
1543 1.3 msaitoh /**
1544 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1545 1.3 msaitoh * @hw: pointer to hardware structure
1546 1.3 msaitoh * @offset: offset within the EEPROM to be read
1547 1.3 msaitoh * @words: number of word(s)
1548 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1549 1.3 msaitoh *
1550 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1551 1.3 msaitoh **/
1552 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1553 1.3 msaitoh u16 words, u16 *data)
1554 1.3 msaitoh {
1555 1.3 msaitoh s32 status;
1556 1.3 msaitoh u16 word_in;
1557 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1558 1.3 msaitoh u16 i;
1559 1.3 msaitoh
1560 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1561 1.3 msaitoh
1562 1.3 msaitoh /* Prepare the EEPROM for reading */
1563 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1564 1.1 dyoung
1565 1.1 dyoung if (status == IXGBE_SUCCESS) {
1566 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1567 1.1 dyoung ixgbe_release_eeprom(hw);
1568 1.1 dyoung status = IXGBE_ERR_EEPROM;
1569 1.1 dyoung }
1570 1.1 dyoung }
1571 1.1 dyoung
1572 1.1 dyoung if (status == IXGBE_SUCCESS) {
1573 1.3 msaitoh for (i = 0; i < words; i++) {
1574 1.3 msaitoh ixgbe_standby_eeprom(hw);
1575 1.3 msaitoh /*
1576 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1577 1.3 msaitoh * in the opcode
1578 1.3 msaitoh */
1579 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1580 1.3 msaitoh ((offset + i) >= 128))
1581 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1582 1.3 msaitoh
1583 1.3 msaitoh /* Send the READ command (opcode + addr) */
1584 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1585 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1586 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1587 1.3 msaitoh hw->eeprom.address_bits);
1588 1.3 msaitoh
1589 1.3 msaitoh /* Read the data. */
1590 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1591 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1592 1.3 msaitoh }
1593 1.1 dyoung
1594 1.3 msaitoh /* End this read operation */
1595 1.1 dyoung ixgbe_release_eeprom(hw);
1596 1.1 dyoung }
1597 1.1 dyoung
1598 1.1 dyoung return status;
1599 1.1 dyoung }
1600 1.1 dyoung
1601 1.1 dyoung /**
1602 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1603 1.1 dyoung * @hw: pointer to hardware structure
1604 1.1 dyoung * @offset: offset within the EEPROM to be read
1605 1.1 dyoung * @data: read 16 bit value from EEPROM
1606 1.1 dyoung *
1607 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1608 1.1 dyoung **/
1609 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1610 1.3 msaitoh u16 *data)
1611 1.1 dyoung {
1612 1.1 dyoung s32 status;
1613 1.1 dyoung
1614 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1615 1.1 dyoung
1616 1.1 dyoung hw->eeprom.ops.init_params(hw);
1617 1.1 dyoung
1618 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1619 1.1 dyoung status = IXGBE_ERR_EEPROM;
1620 1.1 dyoung goto out;
1621 1.1 dyoung }
1622 1.1 dyoung
1623 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1624 1.3 msaitoh
1625 1.3 msaitoh out:
1626 1.3 msaitoh return status;
1627 1.3 msaitoh }
1628 1.3 msaitoh
1629 1.3 msaitoh /**
1630 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1631 1.3 msaitoh * @hw: pointer to hardware structure
1632 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1633 1.3 msaitoh * @words: number of word(s)
1634 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1635 1.3 msaitoh *
1636 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1637 1.3 msaitoh **/
1638 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1639 1.3 msaitoh u16 words, u16 *data)
1640 1.3 msaitoh {
1641 1.3 msaitoh u32 eerd;
1642 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1643 1.3 msaitoh u32 i;
1644 1.3 msaitoh
1645 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1646 1.3 msaitoh
1647 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1648 1.3 msaitoh
1649 1.3 msaitoh if (words == 0) {
1650 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1651 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1652 1.3 msaitoh goto out;
1653 1.3 msaitoh }
1654 1.3 msaitoh
1655 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1656 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1657 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1658 1.3 msaitoh goto out;
1659 1.3 msaitoh }
1660 1.3 msaitoh
1661 1.3 msaitoh for (i = 0; i < words; i++) {
1662 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1663 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1664 1.3 msaitoh
1665 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1666 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1667 1.1 dyoung
1668 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1669 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1670 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1671 1.3 msaitoh } else {
1672 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1673 1.3 msaitoh goto out;
1674 1.1 dyoung }
1675 1.1 dyoung }
1676 1.3 msaitoh out:
1677 1.3 msaitoh return status;
1678 1.3 msaitoh }
1679 1.1 dyoung
1680 1.3 msaitoh /**
1681 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1682 1.3 msaitoh * @hw: pointer to hardware structure
1683 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1684 1.3 msaitoh *
1685 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1686 1.3 msaitoh * This function is called only when we are writing a new large buffer
1687 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1688 1.3 msaitoh **/
1689 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1690 1.3 msaitoh u16 offset)
1691 1.3 msaitoh {
1692 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1693 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1694 1.3 msaitoh u16 i;
1695 1.3 msaitoh
1696 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1697 1.3 msaitoh
1698 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1699 1.3 msaitoh data[i] = i;
1700 1.1 dyoung
1701 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1702 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1703 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1704 1.3 msaitoh hw->eeprom.word_page_size = 0;
1705 1.3 msaitoh if (status != IXGBE_SUCCESS)
1706 1.3 msaitoh goto out;
1707 1.1 dyoung
1708 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1709 1.3 msaitoh if (status != IXGBE_SUCCESS)
1710 1.3 msaitoh goto out;
1711 1.1 dyoung
1712 1.3 msaitoh /*
1713 1.3 msaitoh * When writing in burst more than the actual page size
1714 1.3 msaitoh * EEPROM address wraps around current page.
1715 1.3 msaitoh */
1716 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1717 1.1 dyoung
1718 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1719 1.3 msaitoh hw->eeprom.word_page_size);
1720 1.1 dyoung out:
1721 1.1 dyoung return status;
1722 1.1 dyoung }
1723 1.1 dyoung
1724 1.1 dyoung /**
1725 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1726 1.1 dyoung * @hw: pointer to hardware structure
1727 1.1 dyoung * @offset: offset of word in the EEPROM to read
1728 1.1 dyoung * @data: word read from the EEPROM
1729 1.1 dyoung *
1730 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1731 1.1 dyoung **/
1732 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1733 1.1 dyoung {
1734 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1735 1.3 msaitoh }
1736 1.3 msaitoh
1737 1.3 msaitoh /**
1738 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1739 1.3 msaitoh * @hw: pointer to hardware structure
1740 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1741 1.3 msaitoh * @words: number of word(s)
1742 1.3 msaitoh * @data: word(s) write to the EEPROM
1743 1.3 msaitoh *
1744 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1745 1.3 msaitoh **/
1746 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1747 1.3 msaitoh u16 words, u16 *data)
1748 1.3 msaitoh {
1749 1.3 msaitoh u32 eewr;
1750 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1751 1.3 msaitoh u16 i;
1752 1.1 dyoung
1753 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1754 1.1 dyoung
1755 1.1 dyoung hw->eeprom.ops.init_params(hw);
1756 1.1 dyoung
1757 1.3 msaitoh if (words == 0) {
1758 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1759 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1760 1.3 msaitoh goto out;
1761 1.3 msaitoh }
1762 1.3 msaitoh
1763 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1764 1.1 dyoung status = IXGBE_ERR_EEPROM;
1765 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1766 1.1 dyoung goto out;
1767 1.1 dyoung }
1768 1.1 dyoung
1769 1.3 msaitoh for (i = 0; i < words; i++) {
1770 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1771 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1772 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1773 1.3 msaitoh
1774 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1775 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1776 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1777 1.3 msaitoh goto out;
1778 1.3 msaitoh }
1779 1.1 dyoung
1780 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1781 1.1 dyoung
1782 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1783 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1784 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1785 1.3 msaitoh goto out;
1786 1.3 msaitoh }
1787 1.3 msaitoh }
1788 1.1 dyoung
1789 1.1 dyoung out:
1790 1.1 dyoung return status;
1791 1.1 dyoung }
1792 1.1 dyoung
1793 1.1 dyoung /**
1794 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1795 1.1 dyoung * @hw: pointer to hardware structure
1796 1.1 dyoung * @offset: offset of word in the EEPROM to write
1797 1.1 dyoung * @data: word write to the EEPROM
1798 1.1 dyoung *
1799 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1800 1.1 dyoung **/
1801 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1802 1.1 dyoung {
1803 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1804 1.1 dyoung }
1805 1.1 dyoung
1806 1.1 dyoung /**
1807 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1808 1.1 dyoung * @hw: pointer to hardware structure
1809 1.1 dyoung * @ee_reg: EEPROM flag for polling
1810 1.1 dyoung *
1811 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1812 1.1 dyoung * read or write is done respectively.
1813 1.1 dyoung **/
1814 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1815 1.1 dyoung {
1816 1.1 dyoung u32 i;
1817 1.1 dyoung u32 reg;
1818 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1819 1.1 dyoung
1820 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1821 1.1 dyoung
1822 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1823 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1824 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1825 1.1 dyoung else
1826 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1827 1.1 dyoung
1828 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1829 1.1 dyoung status = IXGBE_SUCCESS;
1830 1.1 dyoung break;
1831 1.1 dyoung }
1832 1.1 dyoung usec_delay(5);
1833 1.1 dyoung }
1834 1.6 msaitoh
1835 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1836 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1837 1.6 msaitoh "EEPROM read/write done polling timed out");
1838 1.6 msaitoh
1839 1.1 dyoung return status;
1840 1.1 dyoung }
1841 1.1 dyoung
1842 1.1 dyoung /**
1843 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1844 1.1 dyoung * @hw: pointer to hardware structure
1845 1.1 dyoung *
1846 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1847 1.1 dyoung * be called before issuing a command to the EEPROM.
1848 1.1 dyoung **/
1849 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1850 1.1 dyoung {
1851 1.1 dyoung s32 status = IXGBE_SUCCESS;
1852 1.1 dyoung u32 eec;
1853 1.1 dyoung u32 i;
1854 1.1 dyoung
1855 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1856 1.1 dyoung
1857 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1858 1.3 msaitoh != IXGBE_SUCCESS)
1859 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1860 1.1 dyoung
1861 1.1 dyoung if (status == IXGBE_SUCCESS) {
1862 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1863 1.1 dyoung
1864 1.1 dyoung /* Request EEPROM Access */
1865 1.1 dyoung eec |= IXGBE_EEC_REQ;
1866 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1867 1.1 dyoung
1868 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1869 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1870 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1871 1.1 dyoung break;
1872 1.1 dyoung usec_delay(5);
1873 1.1 dyoung }
1874 1.1 dyoung
1875 1.1 dyoung /* Release if grant not acquired */
1876 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1877 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1878 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1879 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1880 1.1 dyoung
1881 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1882 1.1 dyoung status = IXGBE_ERR_EEPROM;
1883 1.1 dyoung }
1884 1.1 dyoung
1885 1.1 dyoung /* Setup EEPROM for Read/Write */
1886 1.1 dyoung if (status == IXGBE_SUCCESS) {
1887 1.1 dyoung /* Clear CS and SK */
1888 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1889 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1890 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1891 1.1 dyoung usec_delay(1);
1892 1.1 dyoung }
1893 1.1 dyoung }
1894 1.1 dyoung return status;
1895 1.1 dyoung }
1896 1.1 dyoung
1897 1.1 dyoung /**
1898 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1899 1.1 dyoung * @hw: pointer to hardware structure
1900 1.1 dyoung *
1901 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1902 1.1 dyoung **/
1903 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1904 1.1 dyoung {
1905 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1906 1.1 dyoung u32 timeout = 2000;
1907 1.1 dyoung u32 i;
1908 1.1 dyoung u32 swsm;
1909 1.1 dyoung
1910 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1911 1.1 dyoung
1912 1.1 dyoung
1913 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1914 1.1 dyoung for (i = 0; i < timeout; i++) {
1915 1.1 dyoung /*
1916 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1917 1.1 dyoung * set and we have the semaphore
1918 1.1 dyoung */
1919 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1920 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1921 1.1 dyoung status = IXGBE_SUCCESS;
1922 1.1 dyoung break;
1923 1.1 dyoung }
1924 1.1 dyoung usec_delay(50);
1925 1.1 dyoung }
1926 1.1 dyoung
1927 1.3 msaitoh if (i == timeout) {
1928 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1929 1.3 msaitoh "not granted.\n");
1930 1.3 msaitoh /*
1931 1.3 msaitoh * this release is particularly important because our attempts
1932 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1933 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1934 1.3 msaitoh * bits to free the driver to make progress
1935 1.3 msaitoh */
1936 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1937 1.3 msaitoh
1938 1.3 msaitoh usec_delay(50);
1939 1.3 msaitoh /*
1940 1.3 msaitoh * one last try
1941 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1942 1.3 msaitoh * set and we have the semaphore
1943 1.3 msaitoh */
1944 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1945 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1946 1.3 msaitoh status = IXGBE_SUCCESS;
1947 1.3 msaitoh }
1948 1.3 msaitoh
1949 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1950 1.1 dyoung if (status == IXGBE_SUCCESS) {
1951 1.1 dyoung for (i = 0; i < timeout; i++) {
1952 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1953 1.1 dyoung
1954 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1955 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1956 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1957 1.1 dyoung
1958 1.1 dyoung /*
1959 1.1 dyoung * If we set the bit successfully then we got the
1960 1.1 dyoung * semaphore.
1961 1.1 dyoung */
1962 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1963 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1964 1.1 dyoung break;
1965 1.1 dyoung
1966 1.1 dyoung usec_delay(50);
1967 1.1 dyoung }
1968 1.1 dyoung
1969 1.1 dyoung /*
1970 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1971 1.1 dyoung * was not granted because we don't have access to the EEPROM
1972 1.1 dyoung */
1973 1.1 dyoung if (i >= timeout) {
1974 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1975 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1976 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1977 1.1 dyoung status = IXGBE_ERR_EEPROM;
1978 1.1 dyoung }
1979 1.1 dyoung } else {
1980 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1981 1.6 msaitoh "Software semaphore SMBI between device drivers "
1982 1.6 msaitoh "not granted.\n");
1983 1.1 dyoung }
1984 1.1 dyoung
1985 1.1 dyoung return status;
1986 1.1 dyoung }
1987 1.1 dyoung
1988 1.1 dyoung /**
1989 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1990 1.1 dyoung * @hw: pointer to hardware structure
1991 1.1 dyoung *
1992 1.1 dyoung * This function clears hardware semaphore bits.
1993 1.1 dyoung **/
1994 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1995 1.1 dyoung {
1996 1.1 dyoung u32 swsm;
1997 1.1 dyoung
1998 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1999 1.1 dyoung
2000 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
2001 1.1 dyoung
2002 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
2003 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
2004 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2005 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2006 1.1 dyoung }
2007 1.1 dyoung
2008 1.1 dyoung /**
2009 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
2010 1.1 dyoung * @hw: pointer to hardware structure
2011 1.1 dyoung **/
2012 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2013 1.1 dyoung {
2014 1.1 dyoung s32 status = IXGBE_SUCCESS;
2015 1.1 dyoung u16 i;
2016 1.1 dyoung u8 spi_stat_reg;
2017 1.1 dyoung
2018 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
2019 1.1 dyoung
2020 1.1 dyoung /*
2021 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
2022 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
2023 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
2024 1.1 dyoung * 5 milliseconds, then error out.
2025 1.1 dyoung */
2026 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2027 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2028 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2029 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2030 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2031 1.1 dyoung break;
2032 1.1 dyoung
2033 1.1 dyoung usec_delay(5);
2034 1.1 dyoung ixgbe_standby_eeprom(hw);
2035 1.11 msaitoh }
2036 1.1 dyoung
2037 1.1 dyoung /*
2038 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2039 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2040 1.1 dyoung */
2041 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2042 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2043 1.1 dyoung status = IXGBE_ERR_EEPROM;
2044 1.1 dyoung }
2045 1.1 dyoung
2046 1.1 dyoung return status;
2047 1.1 dyoung }
2048 1.1 dyoung
2049 1.1 dyoung /**
2050 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2051 1.1 dyoung * @hw: pointer to hardware structure
2052 1.1 dyoung **/
2053 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2054 1.1 dyoung {
2055 1.1 dyoung u32 eec;
2056 1.1 dyoung
2057 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2058 1.1 dyoung
2059 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2060 1.1 dyoung
2061 1.1 dyoung /* Toggle CS to flush commands */
2062 1.1 dyoung eec |= IXGBE_EEC_CS;
2063 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2064 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2065 1.1 dyoung usec_delay(1);
2066 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2067 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2068 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2069 1.1 dyoung usec_delay(1);
2070 1.1 dyoung }
2071 1.1 dyoung
2072 1.1 dyoung /**
2073 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2074 1.1 dyoung * @hw: pointer to hardware structure
2075 1.1 dyoung * @data: data to send to the EEPROM
2076 1.1 dyoung * @count: number of bits to shift out
2077 1.1 dyoung **/
2078 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2079 1.3 msaitoh u16 count)
2080 1.1 dyoung {
2081 1.1 dyoung u32 eec;
2082 1.1 dyoung u32 mask;
2083 1.1 dyoung u32 i;
2084 1.1 dyoung
2085 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2086 1.1 dyoung
2087 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2088 1.1 dyoung
2089 1.1 dyoung /*
2090 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2091 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2092 1.1 dyoung */
2093 1.1 dyoung mask = 0x01 << (count - 1);
2094 1.1 dyoung
2095 1.1 dyoung for (i = 0; i < count; i++) {
2096 1.1 dyoung /*
2097 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2098 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2099 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2100 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2101 1.1 dyoung * raising and then lowering the clock.
2102 1.1 dyoung */
2103 1.1 dyoung if (data & mask)
2104 1.1 dyoung eec |= IXGBE_EEC_DI;
2105 1.1 dyoung else
2106 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2107 1.1 dyoung
2108 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2109 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2110 1.1 dyoung
2111 1.1 dyoung usec_delay(1);
2112 1.1 dyoung
2113 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2114 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2115 1.1 dyoung
2116 1.1 dyoung /*
2117 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2118 1.1 dyoung * EEPROM
2119 1.1 dyoung */
2120 1.1 dyoung mask = mask >> 1;
2121 1.11 msaitoh }
2122 1.1 dyoung
2123 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2124 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2125 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2126 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2127 1.1 dyoung }
2128 1.1 dyoung
2129 1.1 dyoung /**
2130 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2131 1.1 dyoung * @hw: pointer to hardware structure
2132 1.22 msaitoh * @count: number of bits to shift
2133 1.1 dyoung **/
2134 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2135 1.1 dyoung {
2136 1.1 dyoung u32 eec;
2137 1.1 dyoung u32 i;
2138 1.1 dyoung u16 data = 0;
2139 1.1 dyoung
2140 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2141 1.1 dyoung
2142 1.1 dyoung /*
2143 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2144 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2145 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2146 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2147 1.1 dyoung * "DI" bit should always be clear.
2148 1.1 dyoung */
2149 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2150 1.1 dyoung
2151 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2152 1.1 dyoung
2153 1.1 dyoung for (i = 0; i < count; i++) {
2154 1.1 dyoung data = data << 1;
2155 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2156 1.1 dyoung
2157 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2158 1.1 dyoung
2159 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2160 1.1 dyoung if (eec & IXGBE_EEC_DO)
2161 1.1 dyoung data |= 1;
2162 1.1 dyoung
2163 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2164 1.1 dyoung }
2165 1.1 dyoung
2166 1.1 dyoung return data;
2167 1.1 dyoung }
2168 1.1 dyoung
2169 1.1 dyoung /**
2170 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2171 1.1 dyoung * @hw: pointer to hardware structure
2172 1.1 dyoung * @eec: EEC register's current value
2173 1.1 dyoung **/
2174 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2175 1.1 dyoung {
2176 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2177 1.1 dyoung
2178 1.1 dyoung /*
2179 1.1 dyoung * Raise the clock input to the EEPROM
2180 1.1 dyoung * (setting the SK bit), then delay
2181 1.1 dyoung */
2182 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2183 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2184 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2185 1.1 dyoung usec_delay(1);
2186 1.1 dyoung }
2187 1.1 dyoung
2188 1.1 dyoung /**
2189 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2190 1.1 dyoung * @hw: pointer to hardware structure
2191 1.22 msaitoh * @eec: EEC's current value
2192 1.1 dyoung **/
2193 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2194 1.1 dyoung {
2195 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2196 1.1 dyoung
2197 1.1 dyoung /*
2198 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2199 1.1 dyoung * delay
2200 1.1 dyoung */
2201 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2202 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2203 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2204 1.1 dyoung usec_delay(1);
2205 1.1 dyoung }
2206 1.1 dyoung
2207 1.1 dyoung /**
2208 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2209 1.1 dyoung * @hw: pointer to hardware structure
2210 1.1 dyoung **/
2211 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2212 1.1 dyoung {
2213 1.1 dyoung u32 eec;
2214 1.1 dyoung
2215 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2216 1.1 dyoung
2217 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2218 1.1 dyoung
2219 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2220 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2221 1.1 dyoung
2222 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2223 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2224 1.1 dyoung
2225 1.1 dyoung usec_delay(1);
2226 1.1 dyoung
2227 1.1 dyoung /* Stop requesting EEPROM access */
2228 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2229 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2230 1.1 dyoung
2231 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2232 1.1 dyoung
2233 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2234 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2235 1.1 dyoung }
2236 1.1 dyoung
2237 1.1 dyoung /**
2238 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2239 1.1 dyoung * @hw: pointer to hardware structure
2240 1.8 msaitoh *
2241 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2242 1.1 dyoung **/
2243 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2244 1.1 dyoung {
2245 1.1 dyoung u16 i;
2246 1.1 dyoung u16 j;
2247 1.1 dyoung u16 checksum = 0;
2248 1.1 dyoung u16 length = 0;
2249 1.1 dyoung u16 pointer = 0;
2250 1.1 dyoung u16 word = 0;
2251 1.1 dyoung
2252 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2253 1.1 dyoung
2254 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2255 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2256 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2257 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2258 1.8 msaitoh return IXGBE_ERR_EEPROM;
2259 1.1 dyoung }
2260 1.1 dyoung checksum += word;
2261 1.1 dyoung }
2262 1.1 dyoung
2263 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2264 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2265 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2266 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2267 1.8 msaitoh return IXGBE_ERR_EEPROM;
2268 1.8 msaitoh }
2269 1.8 msaitoh
2270 1.8 msaitoh /* If the pointer seems invalid */
2271 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2272 1.8 msaitoh continue;
2273 1.8 msaitoh
2274 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2275 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2276 1.8 msaitoh return IXGBE_ERR_EEPROM;
2277 1.8 msaitoh }
2278 1.8 msaitoh
2279 1.8 msaitoh if (length == 0xFFFF || length == 0)
2280 1.8 msaitoh continue;
2281 1.1 dyoung
2282 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2283 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2284 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2285 1.8 msaitoh return IXGBE_ERR_EEPROM;
2286 1.1 dyoung }
2287 1.8 msaitoh checksum += word;
2288 1.1 dyoung }
2289 1.1 dyoung }
2290 1.1 dyoung
2291 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2292 1.1 dyoung
2293 1.8 msaitoh return (s32)checksum;
2294 1.1 dyoung }
2295 1.1 dyoung
2296 1.1 dyoung /**
2297 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2298 1.1 dyoung * @hw: pointer to hardware structure
2299 1.1 dyoung * @checksum_val: calculated checksum
2300 1.1 dyoung *
2301 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2302 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2303 1.1 dyoung **/
2304 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2305 1.3 msaitoh u16 *checksum_val)
2306 1.1 dyoung {
2307 1.1 dyoung s32 status;
2308 1.1 dyoung u16 checksum;
2309 1.1 dyoung u16 read_checksum = 0;
2310 1.1 dyoung
2311 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2312 1.1 dyoung
2313 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2314 1.1 dyoung * not continue or we could be in for a very long wait while every
2315 1.1 dyoung * EEPROM read fails
2316 1.1 dyoung */
2317 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2318 1.8 msaitoh if (status) {
2319 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2320 1.8 msaitoh return status;
2321 1.8 msaitoh }
2322 1.1 dyoung
2323 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2324 1.8 msaitoh if (status < 0)
2325 1.8 msaitoh return status;
2326 1.1 dyoung
2327 1.8 msaitoh checksum = (u16)(status & 0xffff);
2328 1.1 dyoung
2329 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2330 1.8 msaitoh if (status) {
2331 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2332 1.8 msaitoh return status;
2333 1.1 dyoung }
2334 1.1 dyoung
2335 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2336 1.8 msaitoh * calculated checksum
2337 1.8 msaitoh */
2338 1.8 msaitoh if (read_checksum != checksum)
2339 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2340 1.8 msaitoh
2341 1.8 msaitoh /* If the user cares, return the calculated checksum */
2342 1.8 msaitoh if (checksum_val)
2343 1.8 msaitoh *checksum_val = checksum;
2344 1.8 msaitoh
2345 1.1 dyoung return status;
2346 1.1 dyoung }
2347 1.1 dyoung
2348 1.1 dyoung /**
2349 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2350 1.1 dyoung * @hw: pointer to hardware structure
2351 1.1 dyoung **/
2352 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2353 1.1 dyoung {
2354 1.1 dyoung s32 status;
2355 1.1 dyoung u16 checksum;
2356 1.1 dyoung
2357 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2358 1.1 dyoung
2359 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2360 1.1 dyoung * not continue or we could be in for a very long wait while every
2361 1.1 dyoung * EEPROM read fails
2362 1.1 dyoung */
2363 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2364 1.8 msaitoh if (status) {
2365 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2366 1.8 msaitoh return status;
2367 1.1 dyoung }
2368 1.1 dyoung
2369 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2370 1.8 msaitoh if (status < 0)
2371 1.8 msaitoh return status;
2372 1.8 msaitoh
2373 1.8 msaitoh checksum = (u16)(status & 0xffff);
2374 1.8 msaitoh
2375 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2376 1.8 msaitoh
2377 1.1 dyoung return status;
2378 1.1 dyoung }
2379 1.1 dyoung
2380 1.1 dyoung /**
2381 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2382 1.1 dyoung * @mac_addr: pointer to MAC address.
2383 1.1 dyoung *
2384 1.14 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2385 1.1 dyoung **/
2386 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2387 1.1 dyoung {
2388 1.1 dyoung s32 status = IXGBE_SUCCESS;
2389 1.1 dyoung
2390 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2391 1.1 dyoung
2392 1.1 dyoung /* Make sure it is not a multicast address */
2393 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2394 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2395 1.1 dyoung /* Not a broadcast address */
2396 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2397 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2398 1.1 dyoung /* Reject the zero address */
2399 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2400 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2401 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2402 1.1 dyoung }
2403 1.1 dyoung return status;
2404 1.1 dyoung }
2405 1.1 dyoung
2406 1.1 dyoung /**
2407 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2408 1.1 dyoung * @hw: pointer to hardware structure
2409 1.1 dyoung * @index: Receive address register to write
2410 1.1 dyoung * @addr: Address to put into receive address register
2411 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2412 1.1 dyoung * @enable_addr: set flag that address is active
2413 1.1 dyoung *
2414 1.1 dyoung * Puts an ethernet address into a receive address register.
2415 1.1 dyoung **/
2416 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2417 1.3 msaitoh u32 enable_addr)
2418 1.1 dyoung {
2419 1.1 dyoung u32 rar_low, rar_high;
2420 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2421 1.1 dyoung
2422 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2423 1.1 dyoung
2424 1.1 dyoung /* Make sure we are using a valid rar index range */
2425 1.1 dyoung if (index >= rar_entries) {
2426 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2427 1.6 msaitoh "RAR index %d is out of range.\n", index);
2428 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2429 1.1 dyoung }
2430 1.1 dyoung
2431 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2432 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2433 1.1 dyoung
2434 1.1 dyoung /*
2435 1.1 dyoung * HW expects these in little endian so we reverse the byte
2436 1.1 dyoung * order from network order (big endian) to little endian
2437 1.1 dyoung */
2438 1.1 dyoung rar_low = ((u32)addr[0] |
2439 1.3 msaitoh ((u32)addr[1] << 8) |
2440 1.3 msaitoh ((u32)addr[2] << 16) |
2441 1.3 msaitoh ((u32)addr[3] << 24));
2442 1.1 dyoung /*
2443 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2444 1.1 dyoung * so save everything except the lower 16 bits that hold part
2445 1.1 dyoung * of the address and the address valid bit.
2446 1.1 dyoung */
2447 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2448 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2449 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2450 1.1 dyoung
2451 1.1 dyoung if (enable_addr != 0)
2452 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2453 1.1 dyoung
2454 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2455 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2456 1.1 dyoung
2457 1.1 dyoung return IXGBE_SUCCESS;
2458 1.1 dyoung }
2459 1.1 dyoung
2460 1.1 dyoung /**
2461 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2462 1.1 dyoung * @hw: pointer to hardware structure
2463 1.1 dyoung * @index: Receive address register to write
2464 1.1 dyoung *
2465 1.1 dyoung * Clears an ethernet address from a receive address register.
2466 1.1 dyoung **/
2467 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2468 1.1 dyoung {
2469 1.1 dyoung u32 rar_high;
2470 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2471 1.1 dyoung
2472 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2473 1.1 dyoung
2474 1.1 dyoung /* Make sure we are using a valid rar index range */
2475 1.1 dyoung if (index >= rar_entries) {
2476 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2477 1.6 msaitoh "RAR index %d is out of range.\n", index);
2478 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2479 1.1 dyoung }
2480 1.1 dyoung
2481 1.1 dyoung /*
2482 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2483 1.1 dyoung * so save everything except the lower 16 bits that hold part
2484 1.1 dyoung * of the address and the address valid bit.
2485 1.1 dyoung */
2486 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2487 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2488 1.1 dyoung
2489 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2490 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2491 1.1 dyoung
2492 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2493 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2494 1.1 dyoung
2495 1.1 dyoung return IXGBE_SUCCESS;
2496 1.1 dyoung }
2497 1.1 dyoung
2498 1.1 dyoung /**
2499 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2500 1.1 dyoung * @hw: pointer to hardware structure
2501 1.1 dyoung *
2502 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2503 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2504 1.1 dyoung * the receiver is in reset when the routine is called.
2505 1.1 dyoung **/
2506 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2507 1.1 dyoung {
2508 1.1 dyoung u32 i;
2509 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2510 1.1 dyoung
2511 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2512 1.1 dyoung
2513 1.1 dyoung /*
2514 1.1 dyoung * If the current mac address is valid, assume it is a software override
2515 1.1 dyoung * to the permanent address.
2516 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2517 1.1 dyoung */
2518 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2519 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2520 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2521 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2522 1.1 dyoung
2523 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2524 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2525 1.3 msaitoh hw->mac.addr[2]);
2526 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2527 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2528 1.1 dyoung } else {
2529 1.1 dyoung /* Setup the receive address. */
2530 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2531 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2532 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2533 1.3 msaitoh hw->mac.addr[2]);
2534 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2535 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2536 1.1 dyoung
2537 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2538 1.14 msaitoh }
2539 1.14 msaitoh
2540 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2541 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2542 1.1 dyoung
2543 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2544 1.1 dyoung
2545 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2546 1.1 dyoung
2547 1.1 dyoung /* Zero out the other receive addresses. */
2548 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2549 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2550 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2551 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2552 1.1 dyoung }
2553 1.1 dyoung
2554 1.1 dyoung /* Clear the MTA */
2555 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2556 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2557 1.1 dyoung
2558 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2559 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2560 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2561 1.1 dyoung
2562 1.1 dyoung ixgbe_init_uta_tables(hw);
2563 1.1 dyoung
2564 1.1 dyoung return IXGBE_SUCCESS;
2565 1.1 dyoung }
2566 1.1 dyoung
2567 1.1 dyoung /**
2568 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2569 1.1 dyoung * @hw: pointer to hardware structure
2570 1.1 dyoung * @addr: new address
2571 1.22 msaitoh * @vmdq: VMDq "set" or "pool" index
2572 1.1 dyoung *
2573 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2574 1.1 dyoung **/
2575 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2576 1.1 dyoung {
2577 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2578 1.1 dyoung u32 rar;
2579 1.1 dyoung
2580 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2581 1.1 dyoung
2582 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2583 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2584 1.1 dyoung
2585 1.1 dyoung /*
2586 1.1 dyoung * Place this address in the RAR if there is room,
2587 1.1 dyoung * else put the controller into promiscuous mode
2588 1.1 dyoung */
2589 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2590 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2591 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2592 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2593 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2594 1.1 dyoung } else {
2595 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2596 1.1 dyoung }
2597 1.1 dyoung
2598 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2599 1.1 dyoung }
2600 1.1 dyoung
2601 1.1 dyoung /**
2602 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2603 1.1 dyoung * @hw: pointer to hardware structure
2604 1.1 dyoung * @addr_list: the list of new addresses
2605 1.1 dyoung * @addr_count: number of addresses
2606 1.1 dyoung * @next: iterator function to walk the address list
2607 1.1 dyoung *
2608 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2609 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2610 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2611 1.1 dyoung *
2612 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2613 1.1 dyoung * manually putting the device into promiscuous mode.
2614 1.1 dyoung **/
2615 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2616 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2617 1.1 dyoung {
2618 1.1 dyoung u8 *addr;
2619 1.1 dyoung u32 i;
2620 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2621 1.1 dyoung u32 uc_addr_in_use;
2622 1.1 dyoung u32 fctrl;
2623 1.1 dyoung u32 vmdq;
2624 1.1 dyoung
2625 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2626 1.1 dyoung
2627 1.1 dyoung /*
2628 1.1 dyoung * Clear accounting of old secondary address list,
2629 1.1 dyoung * don't count RAR[0]
2630 1.1 dyoung */
2631 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2632 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2633 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2634 1.1 dyoung
2635 1.1 dyoung /* Zero out the other receive addresses */
2636 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2637 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2638 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2639 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2640 1.1 dyoung }
2641 1.1 dyoung
2642 1.1 dyoung /* Add the new addresses */
2643 1.1 dyoung for (i = 0; i < addr_count; i++) {
2644 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2645 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2646 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2647 1.1 dyoung }
2648 1.1 dyoung
2649 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2650 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2651 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2652 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2653 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2654 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2655 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2656 1.1 dyoung }
2657 1.1 dyoung } else {
2658 1.1 dyoung /* only disable if set by overflow, not by user */
2659 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2660 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2661 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2662 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2663 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2664 1.1 dyoung }
2665 1.1 dyoung }
2666 1.1 dyoung
2667 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2668 1.1 dyoung return IXGBE_SUCCESS;
2669 1.1 dyoung }
2670 1.1 dyoung
2671 1.1 dyoung /**
2672 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2673 1.1 dyoung * @hw: pointer to hardware structure
2674 1.1 dyoung * @mc_addr: the multicast address
2675 1.1 dyoung *
2676 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2677 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2678 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2679 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2680 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2681 1.1 dyoung * to mc_filter_type.
2682 1.1 dyoung **/
2683 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2684 1.1 dyoung {
2685 1.1 dyoung u32 vector = 0;
2686 1.1 dyoung
2687 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2688 1.1 dyoung
2689 1.1 dyoung switch (hw->mac.mc_filter_type) {
2690 1.1 dyoung case 0: /* use bits [47:36] of the address */
2691 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2692 1.1 dyoung break;
2693 1.1 dyoung case 1: /* use bits [46:35] of the address */
2694 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2695 1.1 dyoung break;
2696 1.1 dyoung case 2: /* use bits [45:34] of the address */
2697 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2698 1.1 dyoung break;
2699 1.1 dyoung case 3: /* use bits [43:32] of the address */
2700 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2701 1.1 dyoung break;
2702 1.1 dyoung default: /* Invalid mc_filter_type */
2703 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2704 1.1 dyoung ASSERT(0);
2705 1.1 dyoung break;
2706 1.1 dyoung }
2707 1.1 dyoung
2708 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2709 1.1 dyoung vector &= 0xFFF;
2710 1.1 dyoung return vector;
2711 1.1 dyoung }
2712 1.1 dyoung
2713 1.1 dyoung /**
2714 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2715 1.1 dyoung * @hw: pointer to hardware structure
2716 1.22 msaitoh * @mc_addr: Multicast address
2717 1.1 dyoung *
2718 1.1 dyoung * Sets the bit-vector in the multicast table.
2719 1.1 dyoung **/
2720 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2721 1.1 dyoung {
2722 1.1 dyoung u32 vector;
2723 1.1 dyoung u32 vector_bit;
2724 1.1 dyoung u32 vector_reg;
2725 1.1 dyoung
2726 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2727 1.1 dyoung
2728 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2729 1.1 dyoung
2730 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2731 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2732 1.1 dyoung
2733 1.1 dyoung /*
2734 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2735 1.1 dyoung * like an array of 4096 bits. We want to set bit
2736 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2737 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2738 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2739 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2740 1.1 dyoung * the value.
2741 1.1 dyoung */
2742 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2743 1.1 dyoung vector_bit = vector & 0x1F;
2744 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2745 1.1 dyoung }
2746 1.1 dyoung
2747 1.1 dyoung /**
2748 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2749 1.1 dyoung * @hw: pointer to hardware structure
2750 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2751 1.1 dyoung * @mc_addr_count: number of addresses
2752 1.1 dyoung * @next: iterator function to walk the multicast address list
2753 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2754 1.1 dyoung *
2755 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2756 1.3 msaitoh * Hashes the given addresses into the multicast table.
2757 1.1 dyoung **/
2758 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2759 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2760 1.3 msaitoh bool clear)
2761 1.1 dyoung {
2762 1.1 dyoung u32 i;
2763 1.1 dyoung u32 vmdq;
2764 1.1 dyoung
2765 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2766 1.1 dyoung
2767 1.1 dyoung /*
2768 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2769 1.1 dyoung * use.
2770 1.1 dyoung */
2771 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2772 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2773 1.1 dyoung
2774 1.1 dyoung /* Clear mta_shadow */
2775 1.3 msaitoh if (clear) {
2776 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2777 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2778 1.3 msaitoh }
2779 1.1 dyoung
2780 1.1 dyoung /* Update mta_shadow */
2781 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2782 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2783 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2784 1.1 dyoung }
2785 1.1 dyoung
2786 1.1 dyoung /* Enable mta */
2787 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2788 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2789 1.1 dyoung hw->mac.mta_shadow[i]);
2790 1.1 dyoung
2791 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2792 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2793 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2794 1.1 dyoung
2795 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2796 1.1 dyoung return IXGBE_SUCCESS;
2797 1.1 dyoung }
2798 1.1 dyoung
2799 1.1 dyoung /**
2800 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2801 1.1 dyoung * @hw: pointer to hardware structure
2802 1.1 dyoung *
2803 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2804 1.1 dyoung **/
2805 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2806 1.1 dyoung {
2807 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2808 1.1 dyoung
2809 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2810 1.1 dyoung
2811 1.1 dyoung if (a->mta_in_use > 0)
2812 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2813 1.3 msaitoh hw->mac.mc_filter_type);
2814 1.1 dyoung
2815 1.1 dyoung return IXGBE_SUCCESS;
2816 1.1 dyoung }
2817 1.1 dyoung
2818 1.1 dyoung /**
2819 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2820 1.1 dyoung * @hw: pointer to hardware structure
2821 1.1 dyoung *
2822 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2823 1.1 dyoung **/
2824 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2825 1.1 dyoung {
2826 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2827 1.1 dyoung
2828 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2829 1.1 dyoung
2830 1.1 dyoung if (a->mta_in_use > 0)
2831 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2832 1.1 dyoung
2833 1.1 dyoung return IXGBE_SUCCESS;
2834 1.1 dyoung }
2835 1.1 dyoung
2836 1.1 dyoung /**
2837 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2838 1.1 dyoung * @hw: pointer to hardware structure
2839 1.1 dyoung *
2840 1.1 dyoung * Enable flow control according to the current settings.
2841 1.1 dyoung **/
2842 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2843 1.1 dyoung {
2844 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2845 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2846 1.1 dyoung u32 reg;
2847 1.1 dyoung u32 fcrtl, fcrth;
2848 1.4 msaitoh int i;
2849 1.1 dyoung
2850 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2851 1.1 dyoung
2852 1.4 msaitoh /* Validate the water mark configuration */
2853 1.4 msaitoh if (!hw->fc.pause_time) {
2854 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2855 1.4 msaitoh goto out;
2856 1.4 msaitoh }
2857 1.4 msaitoh
2858 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2859 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2860 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2861 1.4 msaitoh hw->fc.high_water[i]) {
2862 1.4 msaitoh if (!hw->fc.low_water[i] ||
2863 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2864 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2865 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2866 1.4 msaitoh goto out;
2867 1.4 msaitoh }
2868 1.4 msaitoh }
2869 1.4 msaitoh }
2870 1.4 msaitoh
2871 1.1 dyoung /* Negotiate the fc mode to use */
2872 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2873 1.1 dyoung
2874 1.1 dyoung /* Disable any previous flow control settings */
2875 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2876 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2877 1.1 dyoung
2878 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2879 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2880 1.1 dyoung
2881 1.1 dyoung /*
2882 1.1 dyoung * The possible values of fc.current_mode are:
2883 1.1 dyoung * 0: Flow control is completely disabled
2884 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2885 1.1 dyoung * but not send pause frames).
2886 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2887 1.1 dyoung * we do not support receiving pause frames).
2888 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2889 1.1 dyoung * other: Invalid.
2890 1.1 dyoung */
2891 1.1 dyoung switch (hw->fc.current_mode) {
2892 1.1 dyoung case ixgbe_fc_none:
2893 1.1 dyoung /*
2894 1.1 dyoung * Flow control is disabled by software override or autoneg.
2895 1.1 dyoung * The code below will actually disable it in the HW.
2896 1.1 dyoung */
2897 1.1 dyoung break;
2898 1.1 dyoung case ixgbe_fc_rx_pause:
2899 1.1 dyoung /*
2900 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2901 1.1 dyoung * disabled by software override. Since there really
2902 1.1 dyoung * isn't a way to advertise that we are capable of RX
2903 1.1 dyoung * Pause ONLY, we will advertise that we support both
2904 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2905 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2906 1.1 dyoung */
2907 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2908 1.1 dyoung break;
2909 1.1 dyoung case ixgbe_fc_tx_pause:
2910 1.1 dyoung /*
2911 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2912 1.1 dyoung * disabled by software override.
2913 1.1 dyoung */
2914 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2915 1.1 dyoung break;
2916 1.1 dyoung case ixgbe_fc_full:
2917 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2918 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2919 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2920 1.1 dyoung break;
2921 1.1 dyoung default:
2922 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2923 1.6 msaitoh "Flow control param set incorrectly\n");
2924 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2925 1.1 dyoung goto out;
2926 1.1 dyoung break;
2927 1.1 dyoung }
2928 1.1 dyoung
2929 1.1 dyoung /* Set 802.3x based flow control settings. */
2930 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2931 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2932 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2933 1.1 dyoung
2934 1.1 dyoung
2935 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2936 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2937 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2938 1.4 msaitoh hw->fc.high_water[i]) {
2939 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2940 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2941 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2942 1.4 msaitoh } else {
2943 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2944 1.4 msaitoh /*
2945 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2946 1.4 msaitoh * switch is enabled we must set the high water mark
2947 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2948 1.8 msaitoh * the Tx switch to function even under heavy Rx
2949 1.8 msaitoh * workloads.
2950 1.4 msaitoh */
2951 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2952 1.4 msaitoh }
2953 1.4 msaitoh
2954 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2955 1.1 dyoung }
2956 1.1 dyoung
2957 1.1 dyoung /* Configure pause time (2 TCs per register) */
2958 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001;
2959 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2960 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2961 1.1 dyoung
2962 1.4 msaitoh /* Configure flow control refresh threshold value */
2963 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2964 1.1 dyoung
2965 1.1 dyoung out:
2966 1.1 dyoung return ret_val;
2967 1.1 dyoung }
2968 1.1 dyoung
2969 1.1 dyoung /**
2970 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2971 1.1 dyoung * @hw: pointer to hardware structure
2972 1.4 msaitoh * @adv_reg: flow control advertised settings
2973 1.4 msaitoh * @lp_reg: link partner's flow control settings
2974 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2975 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2976 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2977 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2978 1.1 dyoung *
2979 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2980 1.4 msaitoh * advertised settings
2981 1.1 dyoung **/
2982 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2983 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2984 1.1 dyoung {
2985 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2986 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2987 1.6 msaitoh "Local or link partner's advertised flow control "
2988 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2989 1.6 msaitoh adv_reg, lp_reg);
2990 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2991 1.6 msaitoh }
2992 1.1 dyoung
2993 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2994 1.4 msaitoh /*
2995 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2996 1.4 msaitoh * of pause frames. In this case, we had to advertise
2997 1.4 msaitoh * FULL flow control because we could not advertise RX
2998 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2999 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
3000 1.4 msaitoh */
3001 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
3002 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
3003 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
3004 1.4 msaitoh } else {
3005 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3006 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3007 1.4 msaitoh }
3008 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3009 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3010 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
3011 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3012 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3013 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3014 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3015 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3016 1.4 msaitoh } else {
3017 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
3018 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
3019 1.4 msaitoh }
3020 1.4 msaitoh return IXGBE_SUCCESS;
3021 1.4 msaitoh }
3022 1.1 dyoung
3023 1.4 msaitoh /**
3024 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3025 1.4 msaitoh * @hw: pointer to hardware structure
3026 1.4 msaitoh *
3027 1.4 msaitoh * Enable flow control according on 1 gig fiber.
3028 1.4 msaitoh **/
3029 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3030 1.4 msaitoh {
3031 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3032 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3033 1.1 dyoung
3034 1.1 dyoung /*
3035 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3036 1.4 msaitoh * - link is up but AN did not complete, or if
3037 1.4 msaitoh * - link is up and AN completed but timed out
3038 1.1 dyoung */
3039 1.4 msaitoh
3040 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3041 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3042 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3043 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3044 1.1 dyoung goto out;
3045 1.6 msaitoh }
3046 1.1 dyoung
3047 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3048 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3049 1.1 dyoung
3050 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3051 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3052 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3053 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3054 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3055 1.1 dyoung
3056 1.1 dyoung out:
3057 1.1 dyoung return ret_val;
3058 1.1 dyoung }
3059 1.1 dyoung
3060 1.1 dyoung /**
3061 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3062 1.1 dyoung * @hw: pointer to hardware structure
3063 1.1 dyoung *
3064 1.1 dyoung * Enable flow control according to IEEE clause 37.
3065 1.1 dyoung **/
3066 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3067 1.1 dyoung {
3068 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3069 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3070 1.1 dyoung
3071 1.1 dyoung /*
3072 1.1 dyoung * On backplane, bail out if
3073 1.1 dyoung * - backplane autoneg was not completed, or if
3074 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3075 1.1 dyoung */
3076 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3077 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3078 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3079 1.1 dyoung goto out;
3080 1.6 msaitoh }
3081 1.1 dyoung
3082 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3083 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3084 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3085 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3086 1.1 dyoung goto out;
3087 1.6 msaitoh }
3088 1.1 dyoung }
3089 1.1 dyoung /*
3090 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3091 1.1 dyoung * local flow control settings accordingly
3092 1.1 dyoung */
3093 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3094 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3095 1.1 dyoung
3096 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3097 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3098 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3099 1.1 dyoung
3100 1.1 dyoung out:
3101 1.1 dyoung return ret_val;
3102 1.1 dyoung }
3103 1.1 dyoung
3104 1.1 dyoung /**
3105 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3106 1.1 dyoung * @hw: pointer to hardware structure
3107 1.1 dyoung *
3108 1.1 dyoung * Enable flow control according to IEEE clause 37.
3109 1.1 dyoung **/
3110 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3111 1.1 dyoung {
3112 1.1 dyoung u16 technology_ability_reg = 0;
3113 1.1 dyoung u16 lp_technology_ability_reg = 0;
3114 1.1 dyoung
3115 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3116 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3117 1.1 dyoung &technology_ability_reg);
3118 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3119 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3120 1.1 dyoung &lp_technology_ability_reg);
3121 1.1 dyoung
3122 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3123 1.1 dyoung (u32)lp_technology_ability_reg,
3124 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3125 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3126 1.1 dyoung }
3127 1.1 dyoung
3128 1.1 dyoung /**
3129 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3130 1.1 dyoung * @hw: pointer to hardware structure
3131 1.1 dyoung *
3132 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3133 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3134 1.1 dyoung **/
3135 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3136 1.1 dyoung {
3137 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3138 1.4 msaitoh ixgbe_link_speed speed;
3139 1.4 msaitoh bool link_up;
3140 1.1 dyoung
3141 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3142 1.1 dyoung
3143 1.1 dyoung /*
3144 1.4 msaitoh * AN should have completed when the cable was plugged in.
3145 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3146 1.4 msaitoh * - FC autoneg is disabled, or if
3147 1.4 msaitoh * - link is not up.
3148 1.1 dyoung */
3149 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3150 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3151 1.6 msaitoh "Flow control autoneg is disabled");
3152 1.1 dyoung goto out;
3153 1.6 msaitoh }
3154 1.1 dyoung
3155 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3156 1.6 msaitoh if (!link_up) {
3157 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3158 1.1 dyoung goto out;
3159 1.6 msaitoh }
3160 1.1 dyoung
3161 1.1 dyoung switch (hw->phy.media_type) {
3162 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3163 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3164 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3165 1.1 dyoung case ixgbe_media_type_fiber:
3166 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3167 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3168 1.4 msaitoh break;
3169 1.4 msaitoh
3170 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3171 1.1 dyoung case ixgbe_media_type_backplane:
3172 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3173 1.1 dyoung break;
3174 1.1 dyoung
3175 1.4 msaitoh /* Autoneg flow control on copper adapters */
3176 1.1 dyoung case ixgbe_media_type_copper:
3177 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3178 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3179 1.1 dyoung break;
3180 1.1 dyoung
3181 1.1 dyoung default:
3182 1.1 dyoung break;
3183 1.1 dyoung }
3184 1.1 dyoung
3185 1.4 msaitoh out:
3186 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3187 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3188 1.4 msaitoh } else {
3189 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3190 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3191 1.3 msaitoh }
3192 1.1 dyoung }
3193 1.1 dyoung
3194 1.6 msaitoh /*
3195 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3196 1.6 msaitoh * @hw: pointer to hardware structure
3197 1.6 msaitoh *
3198 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3199 1.6 msaitoh *
3200 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3201 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3202 1.6 msaitoh * 800 = 80 millisec.
3203 1.6 msaitoh */
3204 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3205 1.6 msaitoh {
3206 1.6 msaitoh s16 devctl2;
3207 1.6 msaitoh u32 pollcnt;
3208 1.6 msaitoh
3209 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3210 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3211 1.6 msaitoh
3212 1.6 msaitoh switch (devctl2) {
3213 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3214 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3215 1.6 msaitoh break;
3216 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3217 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3218 1.6 msaitoh break;
3219 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3220 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3221 1.6 msaitoh break;
3222 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3223 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3224 1.6 msaitoh break;
3225 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3226 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3227 1.6 msaitoh break;
3228 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3229 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3230 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3231 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3232 1.6 msaitoh default:
3233 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3234 1.6 msaitoh break;
3235 1.6 msaitoh }
3236 1.6 msaitoh
3237 1.6 msaitoh /* add 10% to spec maximum */
3238 1.6 msaitoh return (pollcnt * 11) / 10;
3239 1.6 msaitoh }
3240 1.6 msaitoh
3241 1.1 dyoung /**
3242 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3243 1.1 dyoung * @hw: pointer to hardware structure
3244 1.1 dyoung *
3245 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3246 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3247 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3248 1.1 dyoung * is returned signifying master requests disabled.
3249 1.1 dyoung **/
3250 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3251 1.1 dyoung {
3252 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3253 1.6 msaitoh u32 i, poll;
3254 1.8 msaitoh u16 value;
3255 1.1 dyoung
3256 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3257 1.1 dyoung
3258 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3259 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3260 1.3 msaitoh
3261 1.6 msaitoh /* Exit if master requests are blocked */
3262 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3263 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3264 1.1 dyoung goto out;
3265 1.1 dyoung
3266 1.3 msaitoh /* Poll for master request bit to clear */
3267 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3268 1.3 msaitoh usec_delay(100);
3269 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3270 1.3 msaitoh goto out;
3271 1.1 dyoung }
3272 1.1 dyoung
3273 1.3 msaitoh /*
3274 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3275 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3276 1.3 msaitoh * of this need. The first reset prevents new master requests from
3277 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3278 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3279 1.3 msaitoh * again to clear out any effects they may have had on our device.
3280 1.3 msaitoh */
3281 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3282 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3283 1.1 dyoung
3284 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3285 1.10 msaitoh goto out;
3286 1.10 msaitoh
3287 1.1 dyoung /*
3288 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3289 1.1 dyoung * transactions pending.
3290 1.1 dyoung */
3291 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3292 1.6 msaitoh for (i = 0; i < poll; i++) {
3293 1.3 msaitoh usec_delay(100);
3294 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3295 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3296 1.8 msaitoh goto out;
3297 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3298 1.3 msaitoh goto out;
3299 1.1 dyoung }
3300 1.1 dyoung
3301 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3302 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3303 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3304 1.1 dyoung
3305 1.1 dyoung out:
3306 1.1 dyoung return status;
3307 1.1 dyoung }
3308 1.1 dyoung
3309 1.1 dyoung /**
3310 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3311 1.1 dyoung * @hw: pointer to hardware structure
3312 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3313 1.1 dyoung *
3314 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3315 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3316 1.1 dyoung **/
3317 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3318 1.1 dyoung {
3319 1.6 msaitoh u32 gssr = 0;
3320 1.1 dyoung u32 swmask = mask;
3321 1.1 dyoung u32 fwmask = mask << 5;
3322 1.6 msaitoh u32 timeout = 200;
3323 1.6 msaitoh u32 i;
3324 1.1 dyoung
3325 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3326 1.1 dyoung
3327 1.6 msaitoh for (i = 0; i < timeout; i++) {
3328 1.1 dyoung /*
3329 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3330 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3331 1.1 dyoung */
3332 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3333 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3334 1.1 dyoung
3335 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3336 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3337 1.6 msaitoh gssr |= swmask;
3338 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3339 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3340 1.6 msaitoh return IXGBE_SUCCESS;
3341 1.6 msaitoh } else {
3342 1.6 msaitoh /* Resource is currently in use by FW or SW */
3343 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3344 1.6 msaitoh msec_delay(5);
3345 1.6 msaitoh }
3346 1.1 dyoung }
3347 1.1 dyoung
3348 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3349 1.6 msaitoh if (gssr & (fwmask | swmask))
3350 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3351 1.1 dyoung
3352 1.6 msaitoh msec_delay(5);
3353 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3354 1.1 dyoung }
3355 1.1 dyoung
3356 1.1 dyoung /**
3357 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3358 1.1 dyoung * @hw: pointer to hardware structure
3359 1.1 dyoung * @mask: Mask to specify which semaphore to release
3360 1.1 dyoung *
3361 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3362 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3363 1.1 dyoung **/
3364 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3365 1.1 dyoung {
3366 1.1 dyoung u32 gssr;
3367 1.1 dyoung u32 swmask = mask;
3368 1.1 dyoung
3369 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3370 1.1 dyoung
3371 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3372 1.1 dyoung
3373 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3374 1.1 dyoung gssr &= ~swmask;
3375 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3376 1.1 dyoung
3377 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3378 1.1 dyoung }
3379 1.1 dyoung
3380 1.1 dyoung /**
3381 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3382 1.3 msaitoh * @hw: pointer to hardware structure
3383 1.3 msaitoh *
3384 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3385 1.3 msaitoh * the Rx security block
3386 1.3 msaitoh **/
3387 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3388 1.3 msaitoh {
3389 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000
3390 1.3 msaitoh
3391 1.3 msaitoh int i;
3392 1.3 msaitoh int secrxreg;
3393 1.3 msaitoh
3394 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3395 1.3 msaitoh
3396 1.3 msaitoh
3397 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3398 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3399 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3400 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3401 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3402 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3403 1.3 msaitoh break;
3404 1.3 msaitoh else
3405 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3406 1.17 msaitoh usec_delay(10);
3407 1.3 msaitoh }
3408 1.3 msaitoh
3409 1.3 msaitoh /* For informational purposes only */
3410 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3411 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3412 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3413 1.3 msaitoh
3414 1.3 msaitoh return IXGBE_SUCCESS;
3415 1.3 msaitoh }
3416 1.3 msaitoh
3417 1.3 msaitoh /**
3418 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3419 1.8 msaitoh * @hw: pointer to hardware structure
3420 1.22 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken
3421 1.8 msaitoh * @reg_val: Value we read from AUTOC
3422 1.8 msaitoh *
3423 1.8 msaitoh * The default case requires no protection so just to the register read.
3424 1.8 msaitoh */
3425 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3426 1.8 msaitoh {
3427 1.8 msaitoh *locked = FALSE;
3428 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3429 1.8 msaitoh return IXGBE_SUCCESS;
3430 1.8 msaitoh }
3431 1.8 msaitoh
3432 1.8 msaitoh /**
3433 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3434 1.8 msaitoh * @hw: pointer to hardware structure
3435 1.8 msaitoh * @reg_val: value to write to AUTOC
3436 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3437 1.8 msaitoh * previous read.
3438 1.8 msaitoh *
3439 1.8 msaitoh * The default case requires no protection so just to the register write.
3440 1.8 msaitoh */
3441 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3442 1.8 msaitoh {
3443 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3444 1.8 msaitoh
3445 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3446 1.8 msaitoh return IXGBE_SUCCESS;
3447 1.8 msaitoh }
3448 1.8 msaitoh
3449 1.8 msaitoh /**
3450 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3451 1.3 msaitoh * @hw: pointer to hardware structure
3452 1.3 msaitoh *
3453 1.3 msaitoh * Enables the receive data path.
3454 1.3 msaitoh **/
3455 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3456 1.3 msaitoh {
3457 1.14 msaitoh u32 secrxreg;
3458 1.3 msaitoh
3459 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3460 1.3 msaitoh
3461 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3462 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3463 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3464 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3465 1.3 msaitoh
3466 1.3 msaitoh return IXGBE_SUCCESS;
3467 1.3 msaitoh }
3468 1.3 msaitoh
3469 1.3 msaitoh /**
3470 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3471 1.1 dyoung * @hw: pointer to hardware structure
3472 1.1 dyoung * @regval: register value to write to RXCTRL
3473 1.1 dyoung *
3474 1.1 dyoung * Enables the Rx DMA unit
3475 1.1 dyoung **/
3476 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3477 1.1 dyoung {
3478 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3479 1.1 dyoung
3480 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3481 1.8 msaitoh ixgbe_enable_rx(hw);
3482 1.8 msaitoh else
3483 1.8 msaitoh ixgbe_disable_rx(hw);
3484 1.1 dyoung
3485 1.1 dyoung return IXGBE_SUCCESS;
3486 1.1 dyoung }
3487 1.1 dyoung
3488 1.1 dyoung /**
3489 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3490 1.1 dyoung * @hw: pointer to hardware structure
3491 1.1 dyoung * @index: led number to blink
3492 1.1 dyoung **/
3493 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3494 1.1 dyoung {
3495 1.1 dyoung ixgbe_link_speed speed = 0;
3496 1.1 dyoung bool link_up = 0;
3497 1.8 msaitoh u32 autoc_reg = 0;
3498 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3499 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3500 1.8 msaitoh bool locked = FALSE;
3501 1.1 dyoung
3502 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3503 1.1 dyoung
3504 1.14 msaitoh if (index > 3)
3505 1.14 msaitoh return IXGBE_ERR_PARAM;
3506 1.14 msaitoh
3507 1.1 dyoung /*
3508 1.1 dyoung * Link must be up to auto-blink the LEDs;
3509 1.1 dyoung * Force it if link is down.
3510 1.1 dyoung */
3511 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3512 1.1 dyoung
3513 1.1 dyoung if (!link_up) {
3514 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3515 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3516 1.8 msaitoh goto out;
3517 1.5 msaitoh
3518 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3519 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3520 1.8 msaitoh
3521 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3522 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3523 1.8 msaitoh goto out;
3524 1.8 msaitoh
3525 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3526 1.1 dyoung msec_delay(10);
3527 1.1 dyoung }
3528 1.1 dyoung
3529 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3530 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3531 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3532 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3533 1.1 dyoung
3534 1.5 msaitoh out:
3535 1.5 msaitoh return ret_val;
3536 1.1 dyoung }
3537 1.1 dyoung
3538 1.1 dyoung /**
3539 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3540 1.1 dyoung * @hw: pointer to hardware structure
3541 1.1 dyoung * @index: led number to stop blinking
3542 1.1 dyoung **/
3543 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3544 1.1 dyoung {
3545 1.8 msaitoh u32 autoc_reg = 0;
3546 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3547 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3548 1.8 msaitoh bool locked = FALSE;
3549 1.1 dyoung
3550 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3551 1.1 dyoung
3552 1.14 msaitoh if (index > 3)
3553 1.14 msaitoh return IXGBE_ERR_PARAM;
3554 1.14 msaitoh
3555 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3556 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3557 1.8 msaitoh goto out;
3558 1.1 dyoung
3559 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3560 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3561 1.1 dyoung
3562 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3563 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3564 1.8 msaitoh goto out;
3565 1.5 msaitoh
3566 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3567 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3568 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3569 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3570 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3571 1.1 dyoung
3572 1.5 msaitoh out:
3573 1.5 msaitoh return ret_val;
3574 1.1 dyoung }
3575 1.1 dyoung
3576 1.1 dyoung /**
3577 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3578 1.1 dyoung * @hw: pointer to hardware structure
3579 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3580 1.1 dyoung *
3581 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3582 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3583 1.1 dyoung * get and set mac_addr routines.
3584 1.1 dyoung **/
3585 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3586 1.3 msaitoh u16 *san_mac_offset)
3587 1.1 dyoung {
3588 1.6 msaitoh s32 ret_val;
3589 1.6 msaitoh
3590 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3591 1.1 dyoung
3592 1.1 dyoung /*
3593 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3594 1.1 dyoung * available.
3595 1.1 dyoung */
3596 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3597 1.6 msaitoh san_mac_offset);
3598 1.6 msaitoh if (ret_val) {
3599 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3600 1.6 msaitoh "eeprom at offset %d failed",
3601 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3602 1.6 msaitoh }
3603 1.1 dyoung
3604 1.6 msaitoh return ret_val;
3605 1.1 dyoung }
3606 1.1 dyoung
3607 1.1 dyoung /**
3608 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3609 1.1 dyoung * @hw: pointer to hardware structure
3610 1.1 dyoung * @san_mac_addr: SAN MAC address
3611 1.1 dyoung *
3612 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3613 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3614 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3615 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3616 1.1 dyoung **/
3617 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3618 1.1 dyoung {
3619 1.1 dyoung u16 san_mac_data, san_mac_offset;
3620 1.1 dyoung u8 i;
3621 1.6 msaitoh s32 ret_val;
3622 1.1 dyoung
3623 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3624 1.1 dyoung
3625 1.1 dyoung /*
3626 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3627 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3628 1.1 dyoung */
3629 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3630 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3631 1.1 dyoung goto san_mac_addr_out;
3632 1.1 dyoung
3633 1.1 dyoung /* make sure we know which port we need to program */
3634 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3635 1.1 dyoung /* apply the port offset to the address offset */
3636 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3637 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3638 1.1 dyoung for (i = 0; i < 3; i++) {
3639 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3640 1.6 msaitoh &san_mac_data);
3641 1.6 msaitoh if (ret_val) {
3642 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3643 1.6 msaitoh "eeprom read at offset %d failed",
3644 1.6 msaitoh san_mac_offset);
3645 1.6 msaitoh goto san_mac_addr_out;
3646 1.6 msaitoh }
3647 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3648 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3649 1.1 dyoung san_mac_offset++;
3650 1.1 dyoung }
3651 1.6 msaitoh return IXGBE_SUCCESS;
3652 1.1 dyoung
3653 1.1 dyoung san_mac_addr_out:
3654 1.6 msaitoh /*
3655 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3656 1.6 msaitoh * error though, so just wipe the local address and return.
3657 1.6 msaitoh */
3658 1.6 msaitoh for (i = 0; i < 6; i++)
3659 1.6 msaitoh san_mac_addr[i] = 0xFF;
3660 1.1 dyoung return IXGBE_SUCCESS;
3661 1.1 dyoung }
3662 1.1 dyoung
3663 1.1 dyoung /**
3664 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3665 1.1 dyoung * @hw: pointer to hardware structure
3666 1.1 dyoung * @san_mac_addr: SAN MAC address
3667 1.1 dyoung *
3668 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3669 1.1 dyoung **/
3670 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3671 1.1 dyoung {
3672 1.6 msaitoh s32 ret_val;
3673 1.1 dyoung u16 san_mac_data, san_mac_offset;
3674 1.1 dyoung u8 i;
3675 1.1 dyoung
3676 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3677 1.1 dyoung
3678 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3679 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3680 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3681 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3682 1.1 dyoung
3683 1.1 dyoung /* Make sure we know which port we need to write */
3684 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3685 1.1 dyoung /* Apply the port offset to the address offset */
3686 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3687 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3688 1.1 dyoung
3689 1.1 dyoung for (i = 0; i < 3; i++) {
3690 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3691 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3692 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3693 1.1 dyoung san_mac_offset++;
3694 1.1 dyoung }
3695 1.1 dyoung
3696 1.6 msaitoh return IXGBE_SUCCESS;
3697 1.1 dyoung }
3698 1.1 dyoung
3699 1.1 dyoung /**
3700 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3701 1.1 dyoung * @hw: pointer to hardware structure
3702 1.1 dyoung *
3703 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3704 1.1 dyoung * the capabilities table.
3705 1.1 dyoung **/
3706 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3707 1.1 dyoung {
3708 1.4 msaitoh u16 msix_count = 1;
3709 1.4 msaitoh u16 max_msix_count;
3710 1.4 msaitoh u16 pcie_offset;
3711 1.4 msaitoh
3712 1.4 msaitoh switch (hw->mac.type) {
3713 1.4 msaitoh case ixgbe_mac_82598EB:
3714 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3715 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3716 1.4 msaitoh break;
3717 1.4 msaitoh case ixgbe_mac_82599EB:
3718 1.4 msaitoh case ixgbe_mac_X540:
3719 1.8 msaitoh case ixgbe_mac_X550:
3720 1.8 msaitoh case ixgbe_mac_X550EM_x:
3721 1.14 msaitoh case ixgbe_mac_X550EM_a:
3722 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3723 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3724 1.4 msaitoh break;
3725 1.4 msaitoh default:
3726 1.4 msaitoh return msix_count;
3727 1.4 msaitoh }
3728 1.1 dyoung
3729 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3730 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3731 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3732 1.8 msaitoh msix_count = 0;
3733 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3734 1.4 msaitoh
3735 1.4 msaitoh /* MSI-X count is zero-based in HW */
3736 1.4 msaitoh msix_count++;
3737 1.4 msaitoh
3738 1.4 msaitoh if (msix_count > max_msix_count)
3739 1.4 msaitoh msix_count = max_msix_count;
3740 1.1 dyoung
3741 1.1 dyoung return msix_count;
3742 1.1 dyoung }
3743 1.1 dyoung
3744 1.1 dyoung /**
3745 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3746 1.1 dyoung * @hw: pointer to hardware structure
3747 1.1 dyoung * @addr: Address to put into receive address register
3748 1.1 dyoung * @vmdq: VMDq pool to assign
3749 1.1 dyoung *
3750 1.1 dyoung * Puts an ethernet address into a receive address register, or
3751 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3752 1.1 dyoung **/
3753 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3754 1.1 dyoung {
3755 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3756 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3757 1.1 dyoung u32 rar;
3758 1.1 dyoung u32 rar_low, rar_high;
3759 1.1 dyoung u32 addr_low, addr_high;
3760 1.1 dyoung
3761 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3762 1.1 dyoung
3763 1.1 dyoung /* swap bytes for HW little endian */
3764 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3765 1.1 dyoung | (addr[2] << 16)
3766 1.1 dyoung | (addr[3] << 24);
3767 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3768 1.1 dyoung
3769 1.1 dyoung /*
3770 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3771 1.1 dyoung * rar_highwater points to just after the highest currently used
3772 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3773 1.1 dyoung * rar to the top.
3774 1.1 dyoung */
3775 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3776 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3777 1.1 dyoung
3778 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3779 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3780 1.1 dyoung first_empty_rar = rar;
3781 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3782 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3783 1.1 dyoung if (rar_low == addr_low)
3784 1.1 dyoung break; /* found it already in the rars */
3785 1.1 dyoung }
3786 1.1 dyoung }
3787 1.1 dyoung
3788 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3789 1.1 dyoung /* already there so just add to the pool bits */
3790 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3791 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3792 1.1 dyoung /* stick it into first empty RAR slot we found */
3793 1.1 dyoung rar = first_empty_rar;
3794 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3795 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3796 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3797 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3798 1.1 dyoung hw->mac.rar_highwater++;
3799 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3800 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3801 1.1 dyoung }
3802 1.1 dyoung
3803 1.1 dyoung /*
3804 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3805 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3806 1.1 dyoung */
3807 1.1 dyoung if (rar == 0)
3808 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3809 1.1 dyoung
3810 1.1 dyoung return rar;
3811 1.1 dyoung }
3812 1.1 dyoung
3813 1.1 dyoung /**
3814 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3815 1.1 dyoung * @hw: pointer to hardware struct
3816 1.1 dyoung * @rar: receive address register index to disassociate
3817 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3818 1.1 dyoung **/
3819 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3820 1.1 dyoung {
3821 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3822 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3823 1.1 dyoung
3824 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3825 1.1 dyoung
3826 1.1 dyoung /* Make sure we are using a valid rar index range */
3827 1.1 dyoung if (rar >= rar_entries) {
3828 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3829 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3830 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3831 1.1 dyoung }
3832 1.1 dyoung
3833 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3834 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3835 1.1 dyoung
3836 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3837 1.8 msaitoh goto done;
3838 1.8 msaitoh
3839 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3840 1.1 dyoung goto done;
3841 1.1 dyoung
3842 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3843 1.1 dyoung if (mpsar_lo) {
3844 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3845 1.1 dyoung mpsar_lo = 0;
3846 1.1 dyoung }
3847 1.1 dyoung if (mpsar_hi) {
3848 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3849 1.1 dyoung mpsar_hi = 0;
3850 1.1 dyoung }
3851 1.1 dyoung } else if (vmdq < 32) {
3852 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3853 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3854 1.1 dyoung } else {
3855 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3856 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3857 1.1 dyoung }
3858 1.1 dyoung
3859 1.1 dyoung /* was that the last pool using this rar? */
3860 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3861 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3862 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3863 1.1 dyoung done:
3864 1.1 dyoung return IXGBE_SUCCESS;
3865 1.1 dyoung }
3866 1.1 dyoung
3867 1.1 dyoung /**
3868 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3869 1.1 dyoung * @hw: pointer to hardware struct
3870 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3871 1.1 dyoung * @vmdq: VMDq pool index
3872 1.1 dyoung **/
3873 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3874 1.1 dyoung {
3875 1.1 dyoung u32 mpsar;
3876 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3877 1.1 dyoung
3878 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3879 1.1 dyoung
3880 1.1 dyoung /* Make sure we are using a valid rar index range */
3881 1.1 dyoung if (rar >= rar_entries) {
3882 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3883 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3884 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3885 1.1 dyoung }
3886 1.1 dyoung
3887 1.1 dyoung if (vmdq < 32) {
3888 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3889 1.1 dyoung mpsar |= 1 << vmdq;
3890 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3891 1.1 dyoung } else {
3892 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3893 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3894 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3895 1.1 dyoung }
3896 1.1 dyoung return IXGBE_SUCCESS;
3897 1.1 dyoung }
3898 1.1 dyoung
3899 1.1 dyoung /**
3900 1.4 msaitoh * This function should only be involved in the IOV mode.
3901 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3902 1.4 msaitoh * VFs advertized and not 0.
3903 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3904 1.4 msaitoh *
3905 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3906 1.4 msaitoh * @hw: pointer to hardware struct
3907 1.4 msaitoh * @vmdq: VMDq pool index
3908 1.4 msaitoh **/
3909 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3910 1.4 msaitoh {
3911 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3912 1.4 msaitoh
3913 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3914 1.4 msaitoh
3915 1.4 msaitoh if (vmdq < 32) {
3916 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3917 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3918 1.4 msaitoh } else {
3919 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3920 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3921 1.4 msaitoh }
3922 1.4 msaitoh
3923 1.4 msaitoh return IXGBE_SUCCESS;
3924 1.4 msaitoh }
3925 1.4 msaitoh
3926 1.4 msaitoh /**
3927 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3928 1.1 dyoung * @hw: pointer to hardware structure
3929 1.1 dyoung **/
3930 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3931 1.1 dyoung {
3932 1.1 dyoung int i;
3933 1.1 dyoung
3934 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3935 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3936 1.1 dyoung
3937 1.1 dyoung for (i = 0; i < 128; i++)
3938 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3939 1.1 dyoung
3940 1.1 dyoung return IXGBE_SUCCESS;
3941 1.1 dyoung }
3942 1.1 dyoung
3943 1.1 dyoung /**
3944 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3945 1.1 dyoung * @hw: pointer to hardware structure
3946 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3947 1.22 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3948 1.22 msaitoh * vlanid not found
3949 1.22 msaitoh *
3950 1.1 dyoung *
3951 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3952 1.1 dyoung *
3953 1.1 dyoung **/
3954 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3955 1.1 dyoung {
3956 1.14 msaitoh s32 regindex, first_empty_slot;
3957 1.14 msaitoh u32 bits;
3958 1.1 dyoung
3959 1.1 dyoung /* short cut the special case */
3960 1.1 dyoung if (vlan == 0)
3961 1.1 dyoung return 0;
3962 1.1 dyoung
3963 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3964 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3965 1.14 msaitoh * VLVF that contain our VLAN
3966 1.14 msaitoh */
3967 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3968 1.14 msaitoh
3969 1.14 msaitoh /* add VLAN enable bit for comparison */
3970 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3971 1.14 msaitoh
3972 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3973 1.14 msaitoh * slot found along the way.
3974 1.14 msaitoh *
3975 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3976 1.14 msaitoh */
3977 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3978 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3979 1.14 msaitoh if (bits == vlan)
3980 1.14 msaitoh return regindex;
3981 1.14 msaitoh if (!first_empty_slot && !bits)
3982 1.1 dyoung first_empty_slot = regindex;
3983 1.1 dyoung }
3984 1.1 dyoung
3985 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3986 1.14 msaitoh * slot we found during our search, else error.
3987 1.14 msaitoh */
3988 1.14 msaitoh if (!first_empty_slot)
3989 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3990 1.1 dyoung
3991 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3992 1.1 dyoung }
3993 1.1 dyoung
3994 1.1 dyoung /**
3995 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3996 1.1 dyoung * @hw: pointer to hardware structure
3997 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3998 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3999 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
4000 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4001 1.1 dyoung *
4002 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
4003 1.1 dyoung **/
4004 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4005 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
4006 1.1 dyoung {
4007 1.14 msaitoh u32 regidx, vfta_delta, vfta;
4008 1.14 msaitoh s32 ret_val;
4009 1.1 dyoung
4010 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
4011 1.1 dyoung
4012 1.14 msaitoh if (vlan > 4095 || vind > 63)
4013 1.1 dyoung return IXGBE_ERR_PARAM;
4014 1.1 dyoung
4015 1.1 dyoung /*
4016 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
4017 1.1 dyoung * VLVF and VLVFB if VT Mode is set
4018 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
4019 1.1 dyoung */
4020 1.1 dyoung
4021 1.1 dyoung /* Part 1
4022 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
4023 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
4024 1.1 dyoung * bits[11-5]: which register
4025 1.1 dyoung * bits[4-0]: which bit in the register
4026 1.1 dyoung */
4027 1.14 msaitoh regidx = vlan / 32;
4028 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32);
4029 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4030 1.14 msaitoh
4031 1.14 msaitoh /*
4032 1.14 msaitoh * vfta_delta represents the difference between the current value
4033 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4034 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4035 1.14 msaitoh */
4036 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4037 1.14 msaitoh vfta ^= vfta_delta;
4038 1.1 dyoung
4039 1.1 dyoung /* Part 2
4040 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4041 1.3 msaitoh */
4042 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4043 1.14 msaitoh vfta, vlvf_bypass);
4044 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4045 1.14 msaitoh if (vlvf_bypass)
4046 1.14 msaitoh goto vfta_update;
4047 1.3 msaitoh return ret_val;
4048 1.14 msaitoh }
4049 1.3 msaitoh
4050 1.14 msaitoh vfta_update:
4051 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4052 1.14 msaitoh if (vfta_delta)
4053 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4054 1.3 msaitoh
4055 1.3 msaitoh return IXGBE_SUCCESS;
4056 1.3 msaitoh }
4057 1.3 msaitoh
4058 1.3 msaitoh /**
4059 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4060 1.3 msaitoh * @hw: pointer to hardware structure
4061 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
4062 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4063 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4064 1.14 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4065 1.14 msaitoh * and the desired value
4066 1.14 msaitoh * @vfta: the desired value of the VFTA
4067 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4068 1.3 msaitoh *
4069 1.3 msaitoh * Turn on/off specified bit in VLVF table.
4070 1.3 msaitoh **/
4071 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4072 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4073 1.14 msaitoh bool vlvf_bypass)
4074 1.3 msaitoh {
4075 1.14 msaitoh u32 bits;
4076 1.14 msaitoh s32 vlvf_index;
4077 1.3 msaitoh
4078 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4079 1.3 msaitoh
4080 1.14 msaitoh if (vlan > 4095 || vind > 63)
4081 1.3 msaitoh return IXGBE_ERR_PARAM;
4082 1.3 msaitoh
4083 1.3 msaitoh /* If VT Mode is set
4084 1.1 dyoung * Either vlan_on
4085 1.1 dyoung * make sure the vlan is in VLVF
4086 1.1 dyoung * set the vind bit in the matching VLVFB
4087 1.1 dyoung * Or !vlan_on
4088 1.1 dyoung * clear the pool bit and possibly the vind
4089 1.1 dyoung */
4090 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4091 1.14 msaitoh return IXGBE_SUCCESS;
4092 1.1 dyoung
4093 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4094 1.14 msaitoh if (vlvf_index < 0)
4095 1.14 msaitoh return vlvf_index;
4096 1.14 msaitoh
4097 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4098 1.14 msaitoh
4099 1.14 msaitoh /* set the pool bit */
4100 1.14 msaitoh bits |= 1 << (vind % 32);
4101 1.14 msaitoh if (vlan_on)
4102 1.14 msaitoh goto vlvf_update;
4103 1.14 msaitoh
4104 1.14 msaitoh /* clear the pool bit */
4105 1.14 msaitoh bits ^= 1 << (vind % 32);
4106 1.14 msaitoh
4107 1.14 msaitoh if (!bits &&
4108 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4109 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4110 1.14 msaitoh * we run the risk of stray packets leaking into
4111 1.14 msaitoh * the PF via the default pool
4112 1.1 dyoung */
4113 1.14 msaitoh if (*vfta_delta)
4114 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4115 1.14 msaitoh
4116 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4117 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4118 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4119 1.14 msaitoh
4120 1.14 msaitoh return IXGBE_SUCCESS;
4121 1.1 dyoung }
4122 1.1 dyoung
4123 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4124 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4125 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4126 1.14 msaitoh * If the caller has requested that we clear the VFTA
4127 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4128 1.14 msaitoh * ID entry then ignore the request. We're not worried
4129 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4130 1.14 msaitoh * entry bit on, only when requested to turn it off as
4131 1.14 msaitoh * there may be multiple pools and/or VFs using the
4132 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4133 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4134 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4135 1.14 msaitoh * zero.
4136 1.14 msaitoh */
4137 1.14 msaitoh *vfta_delta = 0;
4138 1.14 msaitoh
4139 1.14 msaitoh vlvf_update:
4140 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4141 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4142 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4143 1.14 msaitoh
4144 1.1 dyoung return IXGBE_SUCCESS;
4145 1.1 dyoung }
4146 1.1 dyoung
4147 1.1 dyoung /**
4148 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4149 1.1 dyoung * @hw: pointer to hardware structure
4150 1.1 dyoung *
4151 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4152 1.1 dyoung **/
4153 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4154 1.1 dyoung {
4155 1.1 dyoung u32 offset;
4156 1.1 dyoung
4157 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4158 1.1 dyoung
4159 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4160 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4161 1.1 dyoung
4162 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4163 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4164 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4165 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4166 1.1 dyoung }
4167 1.1 dyoung
4168 1.1 dyoung return IXGBE_SUCCESS;
4169 1.1 dyoung }
4170 1.1 dyoung
4171 1.1 dyoung /**
4172 1.23 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4173 1.23 msaitoh * @hw: pointer to hardware structure
4174 1.23 msaitoh * @vf_number: VF index
4175 1.23 msaitoh *
4176 1.23 msaitoh * Enable and disable each queue in VF.
4177 1.23 msaitoh */
4178 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4179 1.23 msaitoh {
4180 1.23 msaitoh u8 queue_count, i;
4181 1.23 msaitoh u32 offset, reg;
4182 1.23 msaitoh
4183 1.23 msaitoh if (vf_number > 63)
4184 1.23 msaitoh return IXGBE_ERR_PARAM;
4185 1.23 msaitoh
4186 1.23 msaitoh /*
4187 1.23 msaitoh * Determine number of queues by checking
4188 1.23 msaitoh * number of virtual functions
4189 1.23 msaitoh */
4190 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4191 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4192 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64:
4193 1.23 msaitoh queue_count = 2;
4194 1.23 msaitoh break;
4195 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32:
4196 1.23 msaitoh queue_count = 4;
4197 1.23 msaitoh break;
4198 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16:
4199 1.23 msaitoh queue_count = 8;
4200 1.23 msaitoh break;
4201 1.23 msaitoh default:
4202 1.23 msaitoh return IXGBE_ERR_CONFIG;
4203 1.23 msaitoh }
4204 1.23 msaitoh
4205 1.23 msaitoh /* Toggle queues */
4206 1.23 msaitoh for (i = 0; i < queue_count; ++i) {
4207 1.23 msaitoh /* Calculate offset of current queue */
4208 1.23 msaitoh offset = queue_count * vf_number + i;
4209 1.23 msaitoh
4210 1.23 msaitoh /* Enable queue */
4211 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4212 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE;
4213 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4214 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4215 1.23 msaitoh
4216 1.23 msaitoh /* Disable queue */
4217 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4218 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE;
4219 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4220 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4221 1.23 msaitoh }
4222 1.23 msaitoh
4223 1.23 msaitoh return IXGBE_SUCCESS;
4224 1.23 msaitoh }
4225 1.23 msaitoh
4226 1.23 msaitoh /**
4227 1.14 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4228 1.14 msaitoh * @hw: pointer to hardware structure
4229 1.14 msaitoh *
4230 1.14 msaitoh * Contains the logic to identify if we need to verify link for the
4231 1.14 msaitoh * crosstalk fix
4232 1.14 msaitoh **/
4233 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4234 1.14 msaitoh {
4235 1.14 msaitoh
4236 1.14 msaitoh /* Does FW say we need the fix */
4237 1.14 msaitoh if (!hw->need_crosstalk_fix)
4238 1.14 msaitoh return FALSE;
4239 1.14 msaitoh
4240 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4241 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4242 1.14 msaitoh case ixgbe_media_type_fiber:
4243 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4244 1.14 msaitoh break;
4245 1.14 msaitoh default:
4246 1.14 msaitoh return FALSE;
4247 1.14 msaitoh }
4248 1.14 msaitoh
4249 1.14 msaitoh return TRUE;
4250 1.14 msaitoh }
4251 1.14 msaitoh
4252 1.14 msaitoh /**
4253 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4254 1.1 dyoung * @hw: pointer to hardware structure
4255 1.1 dyoung * @speed: pointer to link speed
4256 1.1 dyoung * @link_up: TRUE when link is up
4257 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4258 1.1 dyoung *
4259 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4260 1.1 dyoung **/
4261 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4262 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4263 1.1 dyoung {
4264 1.1 dyoung u32 links_reg, links_orig;
4265 1.1 dyoung u32 i;
4266 1.1 dyoung
4267 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4268 1.1 dyoung
4269 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4270 1.14 msaitoh * the SFP+ cage is full.
4271 1.14 msaitoh */
4272 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4273 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) &&
4274 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) {
4275 1.14 msaitoh *link_up = FALSE;
4276 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4277 1.14 msaitoh return IXGBE_SUCCESS;
4278 1.14 msaitoh }
4279 1.14 msaitoh }
4280 1.14 msaitoh
4281 1.1 dyoung /* clear the old state */
4282 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4283 1.1 dyoung
4284 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4285 1.1 dyoung
4286 1.1 dyoung if (links_orig != links_reg) {
4287 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4288 1.3 msaitoh links_orig, links_reg);
4289 1.1 dyoung }
4290 1.1 dyoung
4291 1.1 dyoung if (link_up_wait_to_complete) {
4292 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4293 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4294 1.1 dyoung *link_up = TRUE;
4295 1.1 dyoung break;
4296 1.1 dyoung } else {
4297 1.1 dyoung *link_up = FALSE;
4298 1.1 dyoung }
4299 1.1 dyoung msec_delay(100);
4300 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4301 1.1 dyoung }
4302 1.1 dyoung } else {
4303 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4304 1.1 dyoung *link_up = TRUE;
4305 1.1 dyoung else
4306 1.1 dyoung *link_up = FALSE;
4307 1.1 dyoung }
4308 1.1 dyoung
4309 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4310 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4311 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4312 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4313 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4314 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4315 1.8 msaitoh }
4316 1.8 msaitoh break;
4317 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4318 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4319 1.8 msaitoh break;
4320 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4321 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4322 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4323 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4324 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4325 1.8 msaitoh }
4326 1.8 msaitoh break;
4327 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4328 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4329 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4330 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4331 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4332 1.14 msaitoh break;
4333 1.8 msaitoh default:
4334 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4335 1.8 msaitoh }
4336 1.1 dyoung
4337 1.1 dyoung return IXGBE_SUCCESS;
4338 1.1 dyoung }
4339 1.1 dyoung
4340 1.1 dyoung /**
4341 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4342 1.1 dyoung * the EEPROM
4343 1.1 dyoung * @hw: pointer to hardware structure
4344 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4345 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4346 1.1 dyoung *
4347 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4348 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4349 1.1 dyoung **/
4350 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4351 1.3 msaitoh u16 *wwpn_prefix)
4352 1.1 dyoung {
4353 1.1 dyoung u16 offset, caps;
4354 1.1 dyoung u16 alt_san_mac_blk_offset;
4355 1.1 dyoung
4356 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4357 1.1 dyoung
4358 1.1 dyoung /* clear output first */
4359 1.1 dyoung *wwnn_prefix = 0xFFFF;
4360 1.1 dyoung *wwpn_prefix = 0xFFFF;
4361 1.1 dyoung
4362 1.1 dyoung /* check if alternative SAN MAC is supported */
4363 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4364 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4365 1.6 msaitoh goto wwn_prefix_err;
4366 1.1 dyoung
4367 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4368 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4369 1.1 dyoung goto wwn_prefix_out;
4370 1.1 dyoung
4371 1.1 dyoung /* check capability in alternative san mac address block */
4372 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4373 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4374 1.6 msaitoh goto wwn_prefix_err;
4375 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4376 1.1 dyoung goto wwn_prefix_out;
4377 1.1 dyoung
4378 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4379 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4380 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4381 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4382 1.6 msaitoh "eeprom read at offset %d failed", offset);
4383 1.6 msaitoh }
4384 1.1 dyoung
4385 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4386 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4387 1.6 msaitoh goto wwn_prefix_err;
4388 1.1 dyoung
4389 1.1 dyoung wwn_prefix_out:
4390 1.1 dyoung return IXGBE_SUCCESS;
4391 1.6 msaitoh
4392 1.6 msaitoh wwn_prefix_err:
4393 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4394 1.6 msaitoh "eeprom read at offset %d failed", offset);
4395 1.6 msaitoh return IXGBE_SUCCESS;
4396 1.1 dyoung }
4397 1.1 dyoung
4398 1.1 dyoung /**
4399 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4400 1.1 dyoung * @hw: pointer to hardware structure
4401 1.1 dyoung * @bs: the fcoe boot status
4402 1.1 dyoung *
4403 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4404 1.1 dyoung **/
4405 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4406 1.1 dyoung {
4407 1.1 dyoung u16 offset, caps, flags;
4408 1.1 dyoung s32 status;
4409 1.1 dyoung
4410 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4411 1.1 dyoung
4412 1.1 dyoung /* clear output first */
4413 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4414 1.1 dyoung
4415 1.1 dyoung /* check if FCOE IBA block is present */
4416 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4417 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4418 1.1 dyoung if (status != IXGBE_SUCCESS)
4419 1.1 dyoung goto out;
4420 1.1 dyoung
4421 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4422 1.1 dyoung goto out;
4423 1.1 dyoung
4424 1.1 dyoung /* check if iSCSI FCOE block is populated */
4425 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4426 1.1 dyoung if (status != IXGBE_SUCCESS)
4427 1.1 dyoung goto out;
4428 1.1 dyoung
4429 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4430 1.1 dyoung goto out;
4431 1.1 dyoung
4432 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4433 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4434 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4435 1.1 dyoung if (status != IXGBE_SUCCESS)
4436 1.1 dyoung goto out;
4437 1.1 dyoung
4438 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4439 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4440 1.1 dyoung else
4441 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4442 1.1 dyoung
4443 1.1 dyoung out:
4444 1.1 dyoung return status;
4445 1.1 dyoung }
4446 1.1 dyoung
4447 1.1 dyoung /**
4448 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4449 1.1 dyoung * @hw: pointer to hardware structure
4450 1.14 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4451 1.14 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4452 1.1 dyoung *
4453 1.1 dyoung **/
4454 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4455 1.1 dyoung {
4456 1.14 msaitoh int vf_target_reg = vf >> 3;
4457 1.14 msaitoh int vf_target_shift = vf % 8;
4458 1.14 msaitoh u32 pfvfspoof;
4459 1.1 dyoung
4460 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4461 1.1 dyoung return;
4462 1.1 dyoung
4463 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4464 1.1 dyoung if (enable)
4465 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4466 1.14 msaitoh else
4467 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4468 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4469 1.1 dyoung }
4470 1.1 dyoung
4471 1.1 dyoung /**
4472 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4473 1.1 dyoung * @hw: pointer to hardware structure
4474 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4475 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4476 1.1 dyoung *
4477 1.1 dyoung **/
4478 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4479 1.1 dyoung {
4480 1.1 dyoung int vf_target_reg = vf >> 3;
4481 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4482 1.1 dyoung u32 pfvfspoof;
4483 1.1 dyoung
4484 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4485 1.1 dyoung return;
4486 1.1 dyoung
4487 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4488 1.1 dyoung if (enable)
4489 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4490 1.1 dyoung else
4491 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4492 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4493 1.1 dyoung }
4494 1.1 dyoung
4495 1.1 dyoung /**
4496 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4497 1.1 dyoung * @hw: pointer to hardware structure
4498 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4499 1.1 dyoung *
4500 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4501 1.1 dyoung * and return the word through device_caps.
4502 1.1 dyoung **/
4503 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4504 1.1 dyoung {
4505 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4506 1.1 dyoung
4507 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4508 1.1 dyoung
4509 1.1 dyoung return IXGBE_SUCCESS;
4510 1.1 dyoung }
4511 1.1 dyoung
4512 1.1 dyoung /**
4513 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4514 1.1 dyoung * @hw: pointer to hardware structure
4515 1.1 dyoung *
4516 1.1 dyoung **/
4517 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4518 1.1 dyoung {
4519 1.1 dyoung u32 regval;
4520 1.1 dyoung u32 i;
4521 1.1 dyoung
4522 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4523 1.1 dyoung
4524 1.1 dyoung /* Enable relaxed ordering */
4525 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4526 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4527 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4528 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4529 1.1 dyoung }
4530 1.1 dyoung
4531 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4532 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4533 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4534 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4535 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4536 1.1 dyoung }
4537 1.1 dyoung
4538 1.1 dyoung }
4539 1.3 msaitoh
4540 1.3 msaitoh /**
4541 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4542 1.3 msaitoh * @buffer: pointer to EEPROM
4543 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4544 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4545 1.3 msaitoh * checksum calculated is returned.
4546 1.3 msaitoh **/
4547 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4548 1.3 msaitoh {
4549 1.3 msaitoh u32 i;
4550 1.3 msaitoh u8 sum = 0;
4551 1.3 msaitoh
4552 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4553 1.3 msaitoh
4554 1.3 msaitoh if (!buffer)
4555 1.3 msaitoh return 0;
4556 1.3 msaitoh
4557 1.3 msaitoh for (i = 0; i < length; i++)
4558 1.3 msaitoh sum += buffer[i];
4559 1.3 msaitoh
4560 1.3 msaitoh return (u8) (0 - sum);
4561 1.3 msaitoh }
4562 1.3 msaitoh
4563 1.3 msaitoh /**
4564 1.14 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4565 1.3 msaitoh * @hw: pointer to the HW structure
4566 1.14 msaitoh * @buffer: command to write and where the return status will be placed
4567 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4568 1.8 msaitoh * @timeout: time in ms to wait for command completion
4569 1.3 msaitoh *
4570 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4571 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4572 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4573 1.14 msaitoh *
4574 1.14 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4575 1.14 msaitoh * by the caller.
4576 1.3 msaitoh **/
4577 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4578 1.14 msaitoh u32 timeout)
4579 1.3 msaitoh {
4580 1.14 msaitoh u32 hicr, i, fwsts;
4581 1.8 msaitoh u16 dword_len;
4582 1.3 msaitoh
4583 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4584 1.3 msaitoh
4585 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4586 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4587 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4588 1.8 msaitoh }
4589 1.14 msaitoh
4590 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4591 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4592 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4593 1.3 msaitoh
4594 1.3 msaitoh /* Check that the host interface is enabled. */
4595 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4596 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4597 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4598 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4599 1.8 msaitoh }
4600 1.8 msaitoh
4601 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4602 1.14 msaitoh if (length % sizeof(u32)) {
4603 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4604 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4605 1.3 msaitoh }
4606 1.3 msaitoh
4607 1.3 msaitoh dword_len = length >> 2;
4608 1.3 msaitoh
4609 1.8 msaitoh /* The device driver writes the relevant command block
4610 1.3 msaitoh * into the ram area.
4611 1.3 msaitoh */
4612 1.3 msaitoh for (i = 0; i < dword_len; i++)
4613 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4614 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4615 1.3 msaitoh
4616 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4617 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4618 1.3 msaitoh
4619 1.8 msaitoh for (i = 0; i < timeout; i++) {
4620 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4621 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4622 1.3 msaitoh break;
4623 1.3 msaitoh msec_delay(1);
4624 1.3 msaitoh }
4625 1.3 msaitoh
4626 1.23 msaitoh /* For each command except "Apply Update" perform
4627 1.23 msaitoh * status checks in the HICR registry.
4628 1.23 msaitoh */
4629 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4630 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4631 1.23 msaitoh return IXGBE_SUCCESS;
4632 1.23 msaitoh
4633 1.8 msaitoh /* Check command completion */
4634 1.14 msaitoh if ((timeout && i == timeout) ||
4635 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4636 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4637 1.23 msaitoh "Command has failed with no status valid.\n");
4638 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4639 1.3 msaitoh }
4640 1.3 msaitoh
4641 1.14 msaitoh return IXGBE_SUCCESS;
4642 1.14 msaitoh }
4643 1.14 msaitoh
4644 1.14 msaitoh /**
4645 1.14 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4646 1.14 msaitoh * @hw: pointer to the HW structure
4647 1.14 msaitoh * @buffer: contains the command to write and where the return status will
4648 1.14 msaitoh * be placed
4649 1.14 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4650 1.14 msaitoh * @timeout: time in ms to wait for command completion
4651 1.14 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4652 1.14 msaitoh * Needed because FW structures are big endian and decoding of
4653 1.14 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4654 1.14 msaitoh * is not easily understood without making a table of commands.
4655 1.14 msaitoh * So we will leave this up to the caller to read back the data
4656 1.14 msaitoh * in these cases.
4657 1.14 msaitoh *
4658 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4659 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4660 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4661 1.14 msaitoh **/
4662 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4663 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4664 1.14 msaitoh {
4665 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4666 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4667 1.14 msaitoh u16 buf_len;
4668 1.14 msaitoh s32 status;
4669 1.14 msaitoh u32 bi;
4670 1.22 msaitoh u32 dword_len;
4671 1.14 msaitoh
4672 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4673 1.14 msaitoh
4674 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4675 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4676 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4677 1.14 msaitoh }
4678 1.14 msaitoh
4679 1.14 msaitoh /* Take management host interface semaphore */
4680 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4681 1.14 msaitoh if (status)
4682 1.14 msaitoh return status;
4683 1.14 msaitoh
4684 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4685 1.14 msaitoh if (status)
4686 1.14 msaitoh goto rel_out;
4687 1.14 msaitoh
4688 1.8 msaitoh if (!return_data)
4689 1.14 msaitoh goto rel_out;
4690 1.8 msaitoh
4691 1.3 msaitoh /* Calculate length in DWORDs */
4692 1.3 msaitoh dword_len = hdr_size >> 2;
4693 1.3 msaitoh
4694 1.3 msaitoh /* first pull in the header so we know the buffer length */
4695 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4696 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4697 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4698 1.3 msaitoh }
4699 1.3 msaitoh
4700 1.22 msaitoh /*
4701 1.22 msaitoh * If there is any thing in data position pull it in
4702 1.22 msaitoh * Read Flash command requires reading buffer length from
4703 1.22 msaitoh * two byes instead of one byte
4704 1.22 msaitoh */
4705 1.23 msaitoh if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4706 1.22 msaitoh for (; bi < dword_len + 2; bi++) {
4707 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4708 1.22 msaitoh bi);
4709 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4710 1.22 msaitoh }
4711 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4712 1.22 msaitoh & 0xF00) | resp->buf_len;
4713 1.22 msaitoh hdr_size += (2 << 2);
4714 1.22 msaitoh } else {
4715 1.22 msaitoh buf_len = resp->buf_len;
4716 1.22 msaitoh }
4717 1.14 msaitoh if (!buf_len)
4718 1.14 msaitoh goto rel_out;
4719 1.3 msaitoh
4720 1.8 msaitoh if (length < buf_len + hdr_size) {
4721 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4722 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4723 1.14 msaitoh goto rel_out;
4724 1.3 msaitoh }
4725 1.3 msaitoh
4726 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4727 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4728 1.3 msaitoh
4729 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4730 1.3 msaitoh for (; bi <= dword_len; bi++) {
4731 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4732 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4733 1.3 msaitoh }
4734 1.3 msaitoh
4735 1.14 msaitoh rel_out:
4736 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4737 1.14 msaitoh
4738 1.14 msaitoh return status;
4739 1.3 msaitoh }
4740 1.3 msaitoh
4741 1.3 msaitoh /**
4742 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4743 1.3 msaitoh * @hw: pointer to the HW structure
4744 1.3 msaitoh * @maj: driver version major number
4745 1.7 riastrad * @minr: driver version minor number
4746 1.3 msaitoh * @build: driver version build number
4747 1.3 msaitoh * @sub: driver version sub build number
4748 1.22 msaitoh * @len: unused
4749 1.22 msaitoh * @driver_ver: unused
4750 1.3 msaitoh *
4751 1.3 msaitoh * Sends driver version number to firmware through the manageability
4752 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4753 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4754 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4755 1.3 msaitoh **/
4756 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4757 1.14 msaitoh u8 build, u8 sub, u16 len,
4758 1.14 msaitoh const char *driver_ver)
4759 1.3 msaitoh {
4760 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4761 1.3 msaitoh int i;
4762 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4763 1.3 msaitoh
4764 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4765 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4766 1.3 msaitoh
4767 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4768 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4769 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4770 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4771 1.3 msaitoh fw_cmd.ver_maj = maj;
4772 1.7 riastrad fw_cmd.ver_min = minr;
4773 1.3 msaitoh fw_cmd.ver_build = build;
4774 1.3 msaitoh fw_cmd.ver_sub = sub;
4775 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4776 1.17 msaitoh fw_cmd.pad = 0;
4777 1.17 msaitoh fw_cmd.pad2 = 0;
4778 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4779 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4780 1.3 msaitoh
4781 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4782 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4783 1.8 msaitoh sizeof(fw_cmd),
4784 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4785 1.8 msaitoh TRUE);
4786 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4787 1.3 msaitoh continue;
4788 1.3 msaitoh
4789 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4790 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4791 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4792 1.3 msaitoh else
4793 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4794 1.3 msaitoh
4795 1.3 msaitoh break;
4796 1.3 msaitoh }
4797 1.3 msaitoh
4798 1.3 msaitoh return ret_val;
4799 1.3 msaitoh }
4800 1.3 msaitoh
4801 1.3 msaitoh /**
4802 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4803 1.3 msaitoh * @hw: pointer to hardware structure
4804 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4805 1.3 msaitoh * @headroom: reserve n KB of headroom
4806 1.3 msaitoh * @strategy: packet buffer allocation strategy
4807 1.3 msaitoh **/
4808 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4809 1.3 msaitoh int strategy)
4810 1.3 msaitoh {
4811 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4812 1.3 msaitoh int i = 0;
4813 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4814 1.3 msaitoh
4815 1.3 msaitoh /* Reserve headroom */
4816 1.3 msaitoh pbsize -= headroom;
4817 1.3 msaitoh
4818 1.3 msaitoh if (!num_pb)
4819 1.3 msaitoh num_pb = 1;
4820 1.3 msaitoh
4821 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4822 1.3 msaitoh * buffers requested using supplied strategy.
4823 1.3 msaitoh */
4824 1.3 msaitoh switch (strategy) {
4825 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4826 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4827 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4828 1.3 msaitoh */
4829 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4830 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4831 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4832 1.3 msaitoh for (; i < (num_pb / 2); i++)
4833 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4834 1.14 msaitoh /* fall through - configure remaining packet buffers */
4835 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4836 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4837 1.3 msaitoh for (; i < num_pb; i++)
4838 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4839 1.3 msaitoh break;
4840 1.3 msaitoh default:
4841 1.3 msaitoh break;
4842 1.3 msaitoh }
4843 1.3 msaitoh
4844 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4845 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4846 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4847 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4848 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4849 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4850 1.3 msaitoh }
4851 1.3 msaitoh
4852 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4853 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4854 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4855 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4856 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4857 1.3 msaitoh }
4858 1.3 msaitoh }
4859 1.3 msaitoh
4860 1.3 msaitoh /**
4861 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4862 1.3 msaitoh * @hw: pointer to the hardware structure
4863 1.3 msaitoh *
4864 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4865 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4866 1.3 msaitoh * buffers on the system.
4867 1.3 msaitoh **/
4868 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4869 1.3 msaitoh {
4870 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4871 1.8 msaitoh u16 value;
4872 1.3 msaitoh
4873 1.3 msaitoh /*
4874 1.3 msaitoh * If double reset is not requested then all transactions should
4875 1.3 msaitoh * already be clear and as such there is no work to do
4876 1.3 msaitoh */
4877 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4878 1.3 msaitoh return;
4879 1.3 msaitoh
4880 1.3 msaitoh /*
4881 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4882 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4883 1.3 msaitoh * has already been cleared.
4884 1.3 msaitoh */
4885 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4886 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4887 1.3 msaitoh
4888 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4889 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4890 1.8 msaitoh msec_delay(3);
4891 1.8 msaitoh
4892 1.8 msaitoh /*
4893 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4894 1.8 msaitoh * transactions pending.
4895 1.8 msaitoh */
4896 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4897 1.8 msaitoh for (i = 0; i < poll; i++) {
4898 1.8 msaitoh usec_delay(100);
4899 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4900 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4901 1.8 msaitoh goto out;
4902 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4903 1.8 msaitoh goto out;
4904 1.8 msaitoh }
4905 1.8 msaitoh
4906 1.8 msaitoh out:
4907 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4908 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4909 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4910 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4911 1.3 msaitoh
4912 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4913 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4914 1.3 msaitoh usec_delay(20);
4915 1.3 msaitoh
4916 1.3 msaitoh /* restore previous register values */
4917 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4918 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4919 1.3 msaitoh }
4920 1.3 msaitoh
4921 1.14 msaitoh /**
4922 1.14 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4923 1.14 msaitoh *
4924 1.14 msaitoh * @hw: pointer to hardware structure
4925 1.14 msaitoh * @cmd: Command we send to the FW
4926 1.14 msaitoh * @status: The reply from the FW
4927 1.14 msaitoh *
4928 1.14 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4929 1.14 msaitoh **/
4930 1.14 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4931 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4932 1.14 msaitoh {
4933 1.14 msaitoh int i;
4934 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4935 1.14 msaitoh u32 esdp;
4936 1.14 msaitoh
4937 1.14 msaitoh if (!status)
4938 1.14 msaitoh return IXGBE_ERR_PARAM;
4939 1.14 msaitoh
4940 1.14 msaitoh *status = 0;
4941 1.14 msaitoh
4942 1.14 msaitoh /* SDP vary by MAC type */
4943 1.14 msaitoh switch (hw->mac.type) {
4944 1.14 msaitoh case ixgbe_mac_82599EB:
4945 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4946 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4947 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4948 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4949 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4950 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4951 1.14 msaitoh break;
4952 1.14 msaitoh case ixgbe_mac_X540:
4953 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4954 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4955 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4956 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4957 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4958 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4959 1.14 msaitoh break;
4960 1.14 msaitoh default:
4961 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4962 1.14 msaitoh }
4963 1.14 msaitoh
4964 1.14 msaitoh /* Set SDP pins direction */
4965 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4966 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4967 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4968 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4969 1.14 msaitoh esdp |= sck;
4970 1.14 msaitoh esdp |= sdi;
4971 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4972 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4973 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4974 1.14 msaitoh
4975 1.14 msaitoh /* Generate start condition */
4976 1.14 msaitoh esdp &= ~sdi;
4977 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4978 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4979 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4980 1.14 msaitoh
4981 1.14 msaitoh esdp &= ~sck;
4982 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4983 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4984 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4985 1.14 msaitoh
4986 1.14 msaitoh /* Clock out the new control word and clock in the status */
4987 1.14 msaitoh for (i = 0; i < 32; i++) {
4988 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4989 1.14 msaitoh esdp |= sdi;
4990 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4991 1.14 msaitoh } else {
4992 1.14 msaitoh esdp &= ~sdi;
4993 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4994 1.14 msaitoh }
4995 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4996 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4997 1.14 msaitoh
4998 1.14 msaitoh esdp |= sck;
4999 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5000 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5001 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5002 1.14 msaitoh
5003 1.14 msaitoh esdp &= ~sck;
5004 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5005 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5006 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5007 1.14 msaitoh
5008 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5009 1.14 msaitoh if (esdp & sdo)
5010 1.14 msaitoh *status = (*status << 1) | 0x01;
5011 1.14 msaitoh else
5012 1.14 msaitoh *status = (*status << 1) | 0x00;
5013 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5014 1.14 msaitoh }
5015 1.14 msaitoh
5016 1.14 msaitoh /* stop condition */
5017 1.14 msaitoh esdp |= sck;
5018 1.14 msaitoh esdp &= ~sdi;
5019 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5020 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5021 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5022 1.14 msaitoh
5023 1.14 msaitoh esdp |= sdi;
5024 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5025 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5026 1.14 msaitoh
5027 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
5028 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5029 1.14 msaitoh
5030 1.14 msaitoh return IXGBE_SUCCESS;
5031 1.14 msaitoh }
5032 1.14 msaitoh
5033 1.14 msaitoh /**
5034 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5035 1.14 msaitoh *
5036 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
5037 1.32 andvar * that same register. It can be a problem as some of the fields may
5038 1.32 andvar * for valid reasons change in-between the time wrote the register and
5039 1.14 msaitoh * we read it again to verify. So this function check everything we
5040 1.14 msaitoh * can check and then assumes it worked.
5041 1.14 msaitoh *
5042 1.14 msaitoh * @u32 in_reg - The register cmd for the bit-bang read.
5043 1.14 msaitoh * @u32 out_reg - The register returned from a bit-bang read.
5044 1.14 msaitoh **/
5045 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5046 1.14 msaitoh {
5047 1.14 msaitoh u32 mask;
5048 1.14 msaitoh
5049 1.14 msaitoh /* Page must match for all control pages */
5050 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5051 1.14 msaitoh return FALSE;
5052 1.14 msaitoh
5053 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
5054 1.14 msaitoh case BYPASS_PAGE_CTL0:
5055 1.14 msaitoh /* All the following can't change since the last write
5056 1.14 msaitoh * - All the event actions
5057 1.14 msaitoh * - The timeout value
5058 1.14 msaitoh */
5059 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5060 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5061 1.14 msaitoh BYPASS_WDTIMEOUT_M |
5062 1.14 msaitoh BYPASS_WDT_VALUE_M;
5063 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5064 1.14 msaitoh return FALSE;
5065 1.14 msaitoh
5066 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
5067 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
5068 1.14 msaitoh return FALSE;
5069 1.14 msaitoh break;
5070 1.14 msaitoh case BYPASS_PAGE_CTL1:
5071 1.14 msaitoh /* All the following can't change since the last write
5072 1.14 msaitoh * - time valid bit
5073 1.14 msaitoh * - time we last sent
5074 1.14 msaitoh */
5075 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5076 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5077 1.14 msaitoh return FALSE;
5078 1.14 msaitoh break;
5079 1.14 msaitoh case BYPASS_PAGE_CTL2:
5080 1.14 msaitoh /* All we can check in this page is control number
5081 1.14 msaitoh * which is already done above.
5082 1.14 msaitoh */
5083 1.14 msaitoh break;
5084 1.14 msaitoh }
5085 1.14 msaitoh
5086 1.14 msaitoh /* We are as sure as we can be return TRUE */
5087 1.14 msaitoh return TRUE;
5088 1.14 msaitoh }
5089 1.14 msaitoh
5090 1.14 msaitoh /**
5091 1.14 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5092 1.14 msaitoh *
5093 1.14 msaitoh * @hw: pointer to hardware structure
5094 1.14 msaitoh * @cmd: The control word we are setting.
5095 1.14 msaitoh * @event: The event we are setting in the FW. This also happens to
5096 1.14 msaitoh * be the mask for the event we are setting (handy)
5097 1.14 msaitoh * @action: The action we set the event to in the FW. This is in a
5098 1.14 msaitoh * bit field that happens to be what we want to put in
5099 1.14 msaitoh * the event spot (also handy)
5100 1.14 msaitoh **/
5101 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5102 1.14 msaitoh u32 action)
5103 1.14 msaitoh {
5104 1.14 msaitoh u32 by_ctl = 0;
5105 1.14 msaitoh u32 cmd, verify;
5106 1.14 msaitoh u32 count = 0;
5107 1.14 msaitoh
5108 1.14 msaitoh /* Get current values */
5109 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5110 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5111 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5112 1.14 msaitoh
5113 1.14 msaitoh /* Set to new action */
5114 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5115 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5116 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5117 1.14 msaitoh
5118 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5119 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5120 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5121 1.14 msaitoh do {
5122 1.14 msaitoh if (count++ > 5)
5123 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5124 1.14 msaitoh
5125 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5126 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5127 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5128 1.14 msaitoh } else {
5129 1.14 msaitoh /* We have give the FW time for the write to stick */
5130 1.14 msaitoh msec_delay(100);
5131 1.14 msaitoh }
5132 1.14 msaitoh
5133 1.14 msaitoh return IXGBE_SUCCESS;
5134 1.14 msaitoh }
5135 1.14 msaitoh
5136 1.14 msaitoh /**
5137 1.14 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5138 1.14 msaitoh *
5139 1.14 msaitoh * @hw: pointer to hardware structure
5140 1.14 msaitoh * @addr: The bypass eeprom address to read.
5141 1.14 msaitoh * @value: The 8b of data at the address above.
5142 1.14 msaitoh **/
5143 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5144 1.14 msaitoh {
5145 1.14 msaitoh u32 cmd;
5146 1.14 msaitoh u32 status;
5147 1.14 msaitoh
5148 1.14 msaitoh
5149 1.14 msaitoh /* send the request */
5150 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5151 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5152 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5153 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5154 1.14 msaitoh
5155 1.14 msaitoh /* We have give the FW time for the write to stick */
5156 1.14 msaitoh msec_delay(100);
5157 1.14 msaitoh
5158 1.14 msaitoh /* now read the results */
5159 1.14 msaitoh cmd &= ~BYPASS_WE;
5160 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5161 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5162 1.14 msaitoh
5163 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5164 1.14 msaitoh
5165 1.14 msaitoh return IXGBE_SUCCESS;
5166 1.14 msaitoh }
5167 1.14 msaitoh
5168 1.17 msaitoh /**
5169 1.17 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM
5170 1.17 msaitoh *
5171 1.17 msaitoh * @hw: pointer to hardware structure
5172 1.17 msaitoh * @nvm_ver: pointer to output structure
5173 1.17 msaitoh *
5174 1.17 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE
5175 1.17 msaitoh * else nvm_ver->or_valid is FALSE.
5176 1.17 msaitoh **/
5177 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5178 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5179 1.17 msaitoh {
5180 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5181 1.17 msaitoh
5182 1.17 msaitoh nvm_ver->or_valid = FALSE;
5183 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */
5184 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5185 1.17 msaitoh
5186 1.17 msaitoh /* make sure offset is valid */
5187 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5188 1.17 msaitoh return;
5189 1.17 msaitoh
5190 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5191 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5192 1.17 msaitoh
5193 1.17 msaitoh /* option rom exists and is valid */
5194 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5195 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID ||
5196 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID)
5197 1.17 msaitoh return;
5198 1.17 msaitoh
5199 1.17 msaitoh nvm_ver->or_valid = TRUE;
5200 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5201 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5202 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5203 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5204 1.17 msaitoh }
5205 1.17 msaitoh
5206 1.17 msaitoh /**
5207 1.17 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version
5208 1.17 msaitoh *
5209 1.17 msaitoh * @hw: pointer to hardware structure
5210 1.17 msaitoh * @nvm_ver: pointer to output structure
5211 1.17 msaitoh *
5212 1.17 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5213 1.17 msaitoh * else nvm_ver->oem_valid is FALSE.
5214 1.17 msaitoh **/
5215 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5216 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5217 1.17 msaitoh {
5218 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset;
5219 1.17 msaitoh
5220 1.17 msaitoh nvm_ver->oem_valid = FALSE;
5221 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5222 1.17 msaitoh
5223 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */
5224 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR)
5225 1.17 msaitoh return;
5226 1.17 msaitoh
5227 1.17 msaitoh /* Read product version block */
5228 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len);
5229 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5230 1.17 msaitoh
5231 1.17 msaitoh /* Return if OEM product version block is invalid */
5232 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5233 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5234 1.17 msaitoh return;
5235 1.17 msaitoh
5236 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5237 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5238 1.17 msaitoh
5239 1.17 msaitoh /* Return if version is invalid */
5240 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 ||
5241 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5242 1.17 msaitoh return;
5243 1.17 msaitoh
5244 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5245 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5246 1.17 msaitoh nvm_ver->oem_release = rel_num;
5247 1.17 msaitoh nvm_ver->oem_valid = TRUE;
5248 1.17 msaitoh }
5249 1.17 msaitoh
5250 1.17 msaitoh /**
5251 1.17 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5252 1.17 msaitoh *
5253 1.17 msaitoh * @hw: pointer to hardware structure
5254 1.17 msaitoh * @nvm_ver: pointer to output structure
5255 1.17 msaitoh *
5256 1.17 msaitoh * word read errors will return 0xFFFF
5257 1.17 msaitoh **/
5258 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5259 1.17 msaitoh {
5260 1.17 msaitoh u16 etk_id_l, etk_id_h;
5261 1.17 msaitoh
5262 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5263 1.17 msaitoh etk_id_l = NVM_VER_INVALID;
5264 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5265 1.17 msaitoh etk_id_h = NVM_VER_INVALID;
5266 1.17 msaitoh
5267 1.17 msaitoh /* The word order for the version format is determined by high order
5268 1.17 msaitoh * word bit 15.
5269 1.17 msaitoh */
5270 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) {
5271 1.17 msaitoh nvm_ver->etk_id = etk_id_h;
5272 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5273 1.17 msaitoh } else {
5274 1.17 msaitoh nvm_ver->etk_id = etk_id_l;
5275 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5276 1.17 msaitoh }
5277 1.17 msaitoh }
5278 1.17 msaitoh
5279 1.6 msaitoh
5280 1.6 msaitoh /**
5281 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5282 1.6 msaitoh * @hw: pointer to hardware structure
5283 1.6 msaitoh * @map: pointer to u8 arr for returning map
5284 1.6 msaitoh *
5285 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5286 1.6 msaitoh **/
5287 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5288 1.6 msaitoh {
5289 1.6 msaitoh u32 reg, i;
5290 1.6 msaitoh
5291 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5292 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5293 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5294 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5295 1.6 msaitoh return;
5296 1.6 msaitoh }
5297 1.8 msaitoh
5298 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5299 1.8 msaitoh {
5300 1.8 msaitoh u32 pfdtxgswc;
5301 1.8 msaitoh u32 rxctrl;
5302 1.8 msaitoh
5303 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5304 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5305 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5306 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5307 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5308 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5309 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5310 1.8 msaitoh hw->mac.set_lben = TRUE;
5311 1.8 msaitoh } else {
5312 1.8 msaitoh hw->mac.set_lben = FALSE;
5313 1.8 msaitoh }
5314 1.8 msaitoh }
5315 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5316 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5317 1.8 msaitoh }
5318 1.8 msaitoh }
5319 1.8 msaitoh
5320 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5321 1.8 msaitoh {
5322 1.8 msaitoh u32 pfdtxgswc;
5323 1.8 msaitoh u32 rxctrl;
5324 1.8 msaitoh
5325 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5326 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5327 1.8 msaitoh
5328 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5329 1.8 msaitoh if (hw->mac.set_lben) {
5330 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5331 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5332 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5333 1.8 msaitoh hw->mac.set_lben = FALSE;
5334 1.8 msaitoh }
5335 1.8 msaitoh }
5336 1.8 msaitoh }
5337 1.8 msaitoh
5338 1.8 msaitoh /**
5339 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5340 1.8 msaitoh * @hw: pointer to hardware structure
5341 1.8 msaitoh */
5342 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5343 1.8 msaitoh {
5344 1.8 msaitoh u32 fwsm;
5345 1.8 msaitoh
5346 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5347 1.8 msaitoh return FALSE;
5348 1.8 msaitoh
5349 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5350 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5351 1.8 msaitoh }
5352 1.8 msaitoh
5353 1.8 msaitoh /**
5354 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5355 1.8 msaitoh * @hw: pointer to hardware structure
5356 1.8 msaitoh *
5357 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5358 1.8 msaitoh **/
5359 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5360 1.8 msaitoh {
5361 1.8 msaitoh u32 fwsm, manc, factps;
5362 1.8 msaitoh
5363 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5364 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5365 1.8 msaitoh return FALSE;
5366 1.8 msaitoh
5367 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5368 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5369 1.8 msaitoh return FALSE;
5370 1.8 msaitoh
5371 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5372 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5373 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5374 1.8 msaitoh return FALSE;
5375 1.8 msaitoh }
5376 1.8 msaitoh
5377 1.8 msaitoh return TRUE;
5378 1.8 msaitoh }
5379 1.8 msaitoh
5380 1.8 msaitoh /**
5381 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5382 1.8 msaitoh * @hw: pointer to hardware structure
5383 1.8 msaitoh * @speed: new link speed
5384 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5385 1.8 msaitoh *
5386 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5387 1.8 msaitoh **/
5388 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5389 1.8 msaitoh ixgbe_link_speed speed,
5390 1.8 msaitoh bool autoneg_wait_to_complete)
5391 1.8 msaitoh {
5392 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5393 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5394 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5395 1.8 msaitoh u32 speedcnt = 0;
5396 1.8 msaitoh u32 i = 0;
5397 1.8 msaitoh bool autoneg, link_up = FALSE;
5398 1.8 msaitoh
5399 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5400 1.8 msaitoh
5401 1.8 msaitoh /* Mask off requested but non-supported speeds */
5402 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5403 1.8 msaitoh if (status != IXGBE_SUCCESS)
5404 1.8 msaitoh return status;
5405 1.8 msaitoh
5406 1.8 msaitoh speed &= link_speed;
5407 1.8 msaitoh
5408 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5409 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5410 1.8 msaitoh */
5411 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5412 1.8 msaitoh speedcnt++;
5413 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5414 1.8 msaitoh
5415 1.8 msaitoh /* Set the module link speed */
5416 1.8 msaitoh switch (hw->phy.media_type) {
5417 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5418 1.8 msaitoh case ixgbe_media_type_fiber:
5419 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5420 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5421 1.8 msaitoh break;
5422 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5423 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5424 1.8 msaitoh break;
5425 1.8 msaitoh default:
5426 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5427 1.8 msaitoh break;
5428 1.8 msaitoh }
5429 1.8 msaitoh
5430 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5431 1.8 msaitoh msec_delay(40);
5432 1.8 msaitoh
5433 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5434 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5435 1.8 msaitoh autoneg_wait_to_complete);
5436 1.8 msaitoh if (status != IXGBE_SUCCESS)
5437 1.8 msaitoh return status;
5438 1.8 msaitoh
5439 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5440 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5441 1.8 msaitoh
5442 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5443 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
5444 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5445 1.8 msaitoh */
5446 1.8 msaitoh for (i = 0; i < 5; i++) {
5447 1.8 msaitoh /* Wait for the link partner to also set speed */
5448 1.8 msaitoh msec_delay(100);
5449 1.8 msaitoh
5450 1.8 msaitoh /* If we have link, just jump out */
5451 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5452 1.8 msaitoh &link_up, FALSE);
5453 1.8 msaitoh if (status != IXGBE_SUCCESS)
5454 1.8 msaitoh return status;
5455 1.8 msaitoh
5456 1.8 msaitoh if (link_up)
5457 1.8 msaitoh goto out;
5458 1.8 msaitoh }
5459 1.8 msaitoh }
5460 1.8 msaitoh
5461 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5462 1.8 msaitoh speedcnt++;
5463 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5464 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5465 1.8 msaitoh
5466 1.8 msaitoh /* Set the module link speed */
5467 1.8 msaitoh switch (hw->phy.media_type) {
5468 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5469 1.8 msaitoh case ixgbe_media_type_fiber:
5470 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5471 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5472 1.8 msaitoh break;
5473 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5474 1.8 msaitoh /* QSFP module automatically detects link speed */
5475 1.8 msaitoh break;
5476 1.8 msaitoh default:
5477 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5478 1.8 msaitoh break;
5479 1.8 msaitoh }
5480 1.8 msaitoh
5481 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5482 1.8 msaitoh msec_delay(40);
5483 1.8 msaitoh
5484 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5485 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5486 1.8 msaitoh autoneg_wait_to_complete);
5487 1.8 msaitoh if (status != IXGBE_SUCCESS)
5488 1.8 msaitoh return status;
5489 1.8 msaitoh
5490 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5491 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5492 1.8 msaitoh
5493 1.8 msaitoh /* Wait for the link partner to also set speed */
5494 1.8 msaitoh msec_delay(100);
5495 1.8 msaitoh
5496 1.8 msaitoh /* If we have link, just jump out */
5497 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5498 1.8 msaitoh if (status != IXGBE_SUCCESS)
5499 1.8 msaitoh return status;
5500 1.8 msaitoh
5501 1.8 msaitoh if (link_up)
5502 1.8 msaitoh goto out;
5503 1.8 msaitoh }
5504 1.8 msaitoh
5505 1.20 msaitoh if (speed == 0) {
5506 1.20 msaitoh /* Disable the Tx laser for media none */
5507 1.20 msaitoh ixgbe_disable_tx_laser(hw);
5508 1.20 msaitoh
5509 1.20 msaitoh goto out;
5510 1.20 msaitoh }
5511 1.26 msaitoh
5512 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5513 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5514 1.8 msaitoh * single highest speed that the user requested.
5515 1.8 msaitoh */
5516 1.8 msaitoh if (speedcnt > 1)
5517 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5518 1.8 msaitoh highest_link_speed,
5519 1.8 msaitoh autoneg_wait_to_complete);
5520 1.8 msaitoh
5521 1.8 msaitoh out:
5522 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5523 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5524 1.8 msaitoh
5525 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5526 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5527 1.8 msaitoh
5528 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5529 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5530 1.8 msaitoh
5531 1.8 msaitoh return status;
5532 1.8 msaitoh }
5533 1.8 msaitoh
5534 1.8 msaitoh /**
5535 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5536 1.8 msaitoh * @hw: pointer to hardware structure
5537 1.8 msaitoh * @speed: link speed to set
5538 1.8 msaitoh *
5539 1.8 msaitoh * Set module link speed via the soft rate select.
5540 1.8 msaitoh */
5541 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5542 1.8 msaitoh ixgbe_link_speed speed)
5543 1.8 msaitoh {
5544 1.8 msaitoh s32 status;
5545 1.8 msaitoh u8 rs, eeprom_data;
5546 1.8 msaitoh
5547 1.8 msaitoh switch (speed) {
5548 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5549 1.8 msaitoh /* one bit mask same as setting on */
5550 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5551 1.8 msaitoh break;
5552 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5553 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5554 1.8 msaitoh break;
5555 1.8 msaitoh default:
5556 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5557 1.8 msaitoh return;
5558 1.8 msaitoh }
5559 1.8 msaitoh
5560 1.8 msaitoh /* Set RS0 */
5561 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5562 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5563 1.8 msaitoh &eeprom_data);
5564 1.8 msaitoh if (status) {
5565 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5566 1.8 msaitoh goto out;
5567 1.8 msaitoh }
5568 1.8 msaitoh
5569 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5570 1.8 msaitoh
5571 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5572 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5573 1.8 msaitoh eeprom_data);
5574 1.8 msaitoh if (status) {
5575 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5576 1.8 msaitoh goto out;
5577 1.8 msaitoh }
5578 1.8 msaitoh
5579 1.8 msaitoh /* Set RS1 */
5580 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5581 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5582 1.8 msaitoh &eeprom_data);
5583 1.8 msaitoh if (status) {
5584 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5585 1.8 msaitoh goto out;
5586 1.8 msaitoh }
5587 1.8 msaitoh
5588 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5589 1.8 msaitoh
5590 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5591 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5592 1.8 msaitoh eeprom_data);
5593 1.8 msaitoh if (status) {
5594 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5595 1.8 msaitoh goto out;
5596 1.8 msaitoh }
5597 1.8 msaitoh out:
5598 1.8 msaitoh return;
5599 1.8 msaitoh }
5600