ixgbe_common.c revision 1.35 1 1.35 msaitoh /* $NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 1.1 dyoung
38 1.31 msaitoh #include <sys/cdefs.h>
39 1.35 msaitoh __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $");
40 1.31 msaitoh
41 1.1 dyoung #include "ixgbe_common.h"
42 1.1 dyoung #include "ixgbe_phy.h"
43 1.6 msaitoh #include "ixgbe_dcb.h"
44 1.6 msaitoh #include "ixgbe_dcb_82599.h"
45 1.1 dyoung #include "ixgbe_api.h"
46 1.1 dyoung
47 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 1.3 msaitoh u16 count);
54 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 1.1 dyoung
59 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 1.3 msaitoh u16 *san_mac_offset);
62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 1.3 msaitoh u16 words, u16 *data);
64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 1.3 msaitoh u16 words, u16 *data);
66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 1.3 msaitoh u16 offset);
68 1.1 dyoung
69 1.1 dyoung /**
70 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
71 1.1 dyoung * @hw: pointer to the hardware structure
72 1.1 dyoung *
73 1.1 dyoung * Initialize the function pointers.
74 1.1 dyoung **/
75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 1.1 dyoung {
77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
79 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 1.1 dyoung
81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
82 1.1 dyoung
83 1.1 dyoung /* EEPROM */
84 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
88 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 1.3 msaitoh } else {
90 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 1.3 msaitoh eeprom->ops.read_buffer =
92 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
93 1.3 msaitoh }
94 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
95 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 1.1 dyoung eeprom->ops.validate_checksum =
97 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
98 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 1.1 dyoung
101 1.1 dyoung /* MAC */
102 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
103 1.1 dyoung mac->ops.reset_hw = NULL;
104 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
105 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 1.1 dyoung mac->ops.get_media_type = NULL;
107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
108 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 1.1 dyoung
118 1.1 dyoung /* LEDs */
119 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
120 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
121 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 1.1 dyoung
125 1.1 dyoung /* RAR, Multicast, VLAN */
126 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
127 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 1.1 dyoung mac->ops.insert_mac_addr = NULL;
129 1.1 dyoung mac->ops.set_vmdq = NULL;
130 1.1 dyoung mac->ops.clear_vmdq = NULL;
131 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 1.1 dyoung mac->ops.clear_vfta = NULL;
137 1.1 dyoung mac->ops.set_vfta = NULL;
138 1.3 msaitoh mac->ops.set_vlvf = NULL;
139 1.1 dyoung mac->ops.init_uta_tables = NULL;
140 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 1.1 dyoung
144 1.1 dyoung /* Flow Control */
145 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 1.1 dyoung
149 1.1 dyoung /* Link */
150 1.1 dyoung mac->ops.get_link_capabilities = NULL;
151 1.1 dyoung mac->ops.setup_link = NULL;
152 1.1 dyoung mac->ops.check_link = NULL;
153 1.6 msaitoh mac->ops.dmac_config = NULL;
154 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
155 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
156 1.1 dyoung
157 1.1 dyoung return IXGBE_SUCCESS;
158 1.1 dyoung }
159 1.1 dyoung
160 1.1 dyoung /**
161 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 1.6 msaitoh * of flow control
163 1.6 msaitoh * @hw: pointer to hardware structure
164 1.6 msaitoh *
165 1.6 msaitoh * This function returns TRUE if the device supports flow control
166 1.6 msaitoh * autonegotiation, and FALSE if it does not.
167 1.4 msaitoh *
168 1.4 msaitoh **/
169 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 1.4 msaitoh {
171 1.6 msaitoh bool supported = FALSE;
172 1.6 msaitoh ixgbe_link_speed speed;
173 1.6 msaitoh bool link_up;
174 1.4 msaitoh
175 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 1.4 msaitoh
177 1.6 msaitoh switch (hw->phy.media_type) {
178 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
179 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
180 1.6 msaitoh case ixgbe_media_type_fiber:
181 1.14 msaitoh /* flow control autoneg black list */
182 1.14 msaitoh switch (hw->device_id) {
183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
184 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
186 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 1.14 msaitoh supported = FALSE;
188 1.14 msaitoh break;
189 1.14 msaitoh default:
190 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 1.14 msaitoh /* if link is down, assume supported */
192 1.14 msaitoh if (link_up)
193 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 1.14 msaitoh TRUE : FALSE;
195 1.14 msaitoh else
196 1.14 msaitoh supported = TRUE;
197 1.14 msaitoh }
198 1.14 msaitoh
199 1.14 msaitoh break;
200 1.14 msaitoh case ixgbe_media_type_backplane:
201 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 1.14 msaitoh supported = FALSE;
203 1.6 msaitoh else
204 1.6 msaitoh supported = TRUE;
205 1.6 msaitoh break;
206 1.6 msaitoh case ixgbe_media_type_copper:
207 1.6 msaitoh /* only some copper devices support flow control autoneg */
208 1.6 msaitoh switch (hw->device_id) {
209 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
210 1.6 msaitoh case IXGBE_DEV_ID_X540T:
211 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
212 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
213 1.8 msaitoh case IXGBE_DEV_ID_X550T:
214 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
215 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
216 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
217 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
218 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 1.6 msaitoh supported = TRUE;
220 1.6 msaitoh break;
221 1.6 msaitoh default:
222 1.6 msaitoh supported = FALSE;
223 1.6 msaitoh }
224 1.4 msaitoh default:
225 1.6 msaitoh break;
226 1.4 msaitoh }
227 1.6 msaitoh
228 1.14 msaitoh if (!supported)
229 1.12 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
230 1.14 msaitoh "Device %x does not support flow control autoneg",
231 1.14 msaitoh hw->device_id);
232 1.17 msaitoh
233 1.6 msaitoh return supported;
234 1.4 msaitoh }
235 1.4 msaitoh
236 1.4 msaitoh /**
237 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
238 1.4 msaitoh * @hw: pointer to hardware structure
239 1.4 msaitoh *
240 1.4 msaitoh * Called at init time to set up flow control.
241 1.4 msaitoh **/
242 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
243 1.4 msaitoh {
244 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
245 1.4 msaitoh u32 reg = 0, reg_bp = 0;
246 1.4 msaitoh u16 reg_cu = 0;
247 1.8 msaitoh bool locked = FALSE;
248 1.4 msaitoh
249 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
250 1.4 msaitoh
251 1.8 msaitoh /* Validate the requested mode */
252 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
253 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
254 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
255 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
256 1.4 msaitoh goto out;
257 1.4 msaitoh }
258 1.4 msaitoh
259 1.4 msaitoh /*
260 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
261 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
262 1.4 msaitoh */
263 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
264 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
265 1.4 msaitoh
266 1.4 msaitoh /*
267 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
268 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
269 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
270 1.4 msaitoh */
271 1.4 msaitoh switch (hw->phy.media_type) {
272 1.8 msaitoh case ixgbe_media_type_backplane:
273 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
274 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
275 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
276 1.8 msaitoh goto out;
277 1.8 msaitoh
278 1.14 msaitoh /* fall through - only backplane uses autoc */
279 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
280 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
281 1.4 msaitoh case ixgbe_media_type_fiber:
282 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
283 1.8 msaitoh
284 1.4 msaitoh break;
285 1.4 msaitoh case ixgbe_media_type_copper:
286 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
287 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
288 1.4 msaitoh break;
289 1.4 msaitoh default:
290 1.4 msaitoh break;
291 1.4 msaitoh }
292 1.4 msaitoh
293 1.4 msaitoh /*
294 1.4 msaitoh * The possible values of fc.requested_mode are:
295 1.4 msaitoh * 0: Flow control is completely disabled
296 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
297 1.4 msaitoh * but not send pause frames).
298 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
299 1.4 msaitoh * we do not support receiving pause frames).
300 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
301 1.4 msaitoh * other: Invalid.
302 1.4 msaitoh */
303 1.4 msaitoh switch (hw->fc.requested_mode) {
304 1.4 msaitoh case ixgbe_fc_none:
305 1.4 msaitoh /* Flow control completely disabled by software override. */
306 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
307 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
308 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
309 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
310 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
311 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
312 1.4 msaitoh break;
313 1.4 msaitoh case ixgbe_fc_tx_pause:
314 1.4 msaitoh /*
315 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
316 1.4 msaitoh * disabled by software override.
317 1.4 msaitoh */
318 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
319 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
320 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
321 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
322 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
323 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
324 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
325 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
326 1.4 msaitoh }
327 1.4 msaitoh break;
328 1.4 msaitoh case ixgbe_fc_rx_pause:
329 1.4 msaitoh /*
330 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
331 1.4 msaitoh * disabled by software override. Since there really
332 1.4 msaitoh * isn't a way to advertise that we are capable of RX
333 1.4 msaitoh * Pause ONLY, we will advertise that we support both
334 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
335 1.4 msaitoh * through to the fc_full statement. Later, we will
336 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
337 1.4 msaitoh */
338 1.4 msaitoh case ixgbe_fc_full:
339 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
340 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
341 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
342 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
343 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
344 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
345 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
346 1.4 msaitoh break;
347 1.4 msaitoh default:
348 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
349 1.6 msaitoh "Flow control param set incorrectly\n");
350 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
351 1.4 msaitoh goto out;
352 1.4 msaitoh break;
353 1.4 msaitoh }
354 1.4 msaitoh
355 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
356 1.4 msaitoh /*
357 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
358 1.4 msaitoh * the MAC will advertise clause 37 flow control.
359 1.4 msaitoh */
360 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
361 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
362 1.4 msaitoh
363 1.4 msaitoh /* Disable AN timeout */
364 1.4 msaitoh if (hw->fc.strict_ieee)
365 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
366 1.4 msaitoh
367 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
368 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
369 1.4 msaitoh }
370 1.4 msaitoh
371 1.4 msaitoh /*
372 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
373 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
374 1.4 msaitoh *
375 1.4 msaitoh */
376 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
377 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
378 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
379 1.8 msaitoh if (ret_val)
380 1.8 msaitoh goto out;
381 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
382 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
383 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
384 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
385 1.4 msaitoh }
386 1.4 msaitoh
387 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
388 1.4 msaitoh out:
389 1.4 msaitoh return ret_val;
390 1.4 msaitoh }
391 1.4 msaitoh
392 1.4 msaitoh /**
393 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
394 1.1 dyoung * @hw: pointer to hardware structure
395 1.1 dyoung *
396 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
397 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
398 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
399 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
400 1.1 dyoung **/
401 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
402 1.1 dyoung {
403 1.4 msaitoh s32 ret_val;
404 1.1 dyoung u32 ctrl_ext;
405 1.14 msaitoh u16 device_caps;
406 1.1 dyoung
407 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
408 1.1 dyoung
409 1.1 dyoung /* Set the media type */
410 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
411 1.1 dyoung
412 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
413 1.1 dyoung
414 1.1 dyoung /* Clear the VLAN filter table */
415 1.1 dyoung hw->mac.ops.clear_vfta(hw);
416 1.1 dyoung
417 1.1 dyoung /* Clear statistics registers */
418 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
419 1.1 dyoung
420 1.1 dyoung /* Set No Snoop Disable */
421 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
422 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
423 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
424 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
425 1.1 dyoung
426 1.1 dyoung /* Setup flow control */
427 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
428 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
429 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
430 1.14 msaitoh return ret_val;
431 1.14 msaitoh }
432 1.14 msaitoh
433 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
434 1.14 msaitoh switch (hw->mac.type) {
435 1.14 msaitoh case ixgbe_mac_82599EB:
436 1.14 msaitoh case ixgbe_mac_X550EM_x:
437 1.14 msaitoh case ixgbe_mac_X550EM_a:
438 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
439 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
440 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
441 1.14 msaitoh else
442 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
443 1.14 msaitoh break;
444 1.14 msaitoh default:
445 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
446 1.14 msaitoh break;
447 1.14 msaitoh }
448 1.1 dyoung
449 1.1 dyoung /* Clear adapter stopped flag */
450 1.1 dyoung hw->adapter_stopped = FALSE;
451 1.1 dyoung
452 1.14 msaitoh return IXGBE_SUCCESS;
453 1.1 dyoung }
454 1.1 dyoung
455 1.1 dyoung /**
456 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
457 1.1 dyoung * @hw: pointer to hw structure
458 1.1 dyoung *
459 1.1 dyoung * Performs the init sequence common to the second generation
460 1.1 dyoung * of 10 GbE devices.
461 1.1 dyoung * Devices in the second generation:
462 1.1 dyoung * 82599
463 1.1 dyoung * X540
464 1.1 dyoung **/
465 1.35 msaitoh void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
466 1.1 dyoung {
467 1.1 dyoung u32 i;
468 1.1 dyoung u32 regval;
469 1.1 dyoung
470 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2");
471 1.27 msaitoh
472 1.1 dyoung /* Clear the rate limiters */
473 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
474 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
475 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
476 1.1 dyoung }
477 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
478 1.1 dyoung
479 1.1 dyoung /* Disable relaxed ordering */
480 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
481 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
482 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
483 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
484 1.1 dyoung }
485 1.1 dyoung
486 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
487 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
488 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
489 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
490 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
491 1.1 dyoung }
492 1.1 dyoung }
493 1.1 dyoung
494 1.1 dyoung /**
495 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
496 1.1 dyoung * @hw: pointer to hardware structure
497 1.1 dyoung *
498 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
499 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
500 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
501 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
502 1.1 dyoung * disabled and uninitialized
503 1.1 dyoung **/
504 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
505 1.1 dyoung {
506 1.1 dyoung s32 status;
507 1.1 dyoung
508 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
509 1.1 dyoung
510 1.1 dyoung /* Reset the hardware */
511 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
512 1.1 dyoung
513 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
514 1.1 dyoung /* Start the HW */
515 1.1 dyoung status = hw->mac.ops.start_hw(hw);
516 1.1 dyoung }
517 1.1 dyoung
518 1.14 msaitoh /* Initialize the LED link active for LED blink support */
519 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
520 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
521 1.14 msaitoh
522 1.14 msaitoh if (status != IXGBE_SUCCESS)
523 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
524 1.14 msaitoh
525 1.1 dyoung return status;
526 1.1 dyoung }
527 1.1 dyoung
528 1.1 dyoung /**
529 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
530 1.1 dyoung * @hw: pointer to hardware structure
531 1.1 dyoung *
532 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
533 1.1 dyoung * Statistics counters are clear on read.
534 1.1 dyoung **/
535 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
536 1.1 dyoung {
537 1.1 dyoung u16 i = 0;
538 1.1 dyoung
539 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
540 1.1 dyoung
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
545 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
546 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
547 1.1 dyoung for (i = 0; i < 8; i++)
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
549 1.1 dyoung
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
555 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
558 1.1 dyoung } else {
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
561 1.1 dyoung }
562 1.1 dyoung
563 1.1 dyoung for (i = 0; i < 8; i++) {
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
566 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
569 1.1 dyoung } else {
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
572 1.1 dyoung }
573 1.1 dyoung }
574 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
575 1.1 dyoung for (i = 0; i < 8; i++)
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
586 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
587 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
588 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
590 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
591 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
592 1.3 msaitoh for (i = 0; i < 8; i++)
593 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
610 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
613 1.1 dyoung for (i = 0; i < 16; i++) {
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
616 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
619 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
620 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
621 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
622 1.1 dyoung } else {
623 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
624 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
625 1.1 dyoung }
626 1.1 dyoung }
627 1.1 dyoung
628 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
629 1.3 msaitoh if (hw->phy.id == 0)
630 1.3 msaitoh ixgbe_identify_phy(hw);
631 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
632 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
633 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
634 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
635 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
636 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
637 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
638 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
639 1.3 msaitoh }
640 1.3 msaitoh
641 1.1 dyoung return IXGBE_SUCCESS;
642 1.1 dyoung }
643 1.1 dyoung
644 1.1 dyoung /**
645 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
646 1.1 dyoung * @hw: pointer to hardware structure
647 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
648 1.1 dyoung * @pba_num_size: part number string buffer length
649 1.1 dyoung *
650 1.1 dyoung * Reads the part number string from the EEPROM.
651 1.1 dyoung **/
652 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
653 1.3 msaitoh u32 pba_num_size)
654 1.1 dyoung {
655 1.1 dyoung s32 ret_val;
656 1.1 dyoung u16 data;
657 1.1 dyoung u16 pba_ptr;
658 1.1 dyoung u16 offset;
659 1.1 dyoung u16 length;
660 1.1 dyoung
661 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
662 1.1 dyoung
663 1.1 dyoung if (pba_num == NULL) {
664 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
665 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
666 1.1 dyoung }
667 1.1 dyoung
668 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
669 1.1 dyoung if (ret_val) {
670 1.1 dyoung DEBUGOUT("NVM Read Error\n");
671 1.1 dyoung return ret_val;
672 1.1 dyoung }
673 1.1 dyoung
674 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
675 1.1 dyoung if (ret_val) {
676 1.1 dyoung DEBUGOUT("NVM Read Error\n");
677 1.1 dyoung return ret_val;
678 1.1 dyoung }
679 1.1 dyoung
680 1.1 dyoung /*
681 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
682 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
683 1.1 dyoung * and we can decode it into an ascii string
684 1.1 dyoung */
685 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
686 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
687 1.1 dyoung
688 1.1 dyoung /* we will need 11 characters to store the PBA */
689 1.1 dyoung if (pba_num_size < 11) {
690 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
691 1.1 dyoung return IXGBE_ERR_NO_SPACE;
692 1.1 dyoung }
693 1.1 dyoung
694 1.1 dyoung /* extract hex string from data and pba_ptr */
695 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
696 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
697 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
698 1.1 dyoung pba_num[3] = data & 0xF;
699 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
700 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
701 1.1 dyoung pba_num[6] = '-';
702 1.1 dyoung pba_num[7] = 0;
703 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
704 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
705 1.1 dyoung
706 1.1 dyoung /* put a null character on the end of our string */
707 1.1 dyoung pba_num[10] = '\0';
708 1.1 dyoung
709 1.1 dyoung /* switch all the data but the '-' to hex char */
710 1.1 dyoung for (offset = 0; offset < 10; offset++) {
711 1.1 dyoung if (pba_num[offset] < 0xA)
712 1.1 dyoung pba_num[offset] += '0';
713 1.1 dyoung else if (pba_num[offset] < 0x10)
714 1.1 dyoung pba_num[offset] += 'A' - 0xA;
715 1.1 dyoung }
716 1.1 dyoung
717 1.1 dyoung return IXGBE_SUCCESS;
718 1.1 dyoung }
719 1.1 dyoung
720 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
721 1.1 dyoung if (ret_val) {
722 1.1 dyoung DEBUGOUT("NVM Read Error\n");
723 1.1 dyoung return ret_val;
724 1.1 dyoung }
725 1.1 dyoung
726 1.1 dyoung if (length == 0xFFFF || length == 0) {
727 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
728 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
729 1.1 dyoung }
730 1.1 dyoung
731 1.1 dyoung /* check if pba_num buffer is big enough */
732 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
733 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
734 1.1 dyoung return IXGBE_ERR_NO_SPACE;
735 1.1 dyoung }
736 1.1 dyoung
737 1.1 dyoung /* trim pba length from start of string */
738 1.1 dyoung pba_ptr++;
739 1.1 dyoung length--;
740 1.1 dyoung
741 1.1 dyoung for (offset = 0; offset < length; offset++) {
742 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
743 1.1 dyoung if (ret_val) {
744 1.1 dyoung DEBUGOUT("NVM Read Error\n");
745 1.1 dyoung return ret_val;
746 1.1 dyoung }
747 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
748 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
749 1.1 dyoung }
750 1.1 dyoung pba_num[offset * 2] = '\0';
751 1.1 dyoung
752 1.1 dyoung return IXGBE_SUCCESS;
753 1.1 dyoung }
754 1.1 dyoung
755 1.1 dyoung /**
756 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
757 1.1 dyoung * @hw: pointer to hardware structure
758 1.1 dyoung * @pba_num: stores the part number from the EEPROM
759 1.1 dyoung *
760 1.1 dyoung * Reads the part number from the EEPROM.
761 1.1 dyoung **/
762 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
763 1.1 dyoung {
764 1.1 dyoung s32 ret_val;
765 1.1 dyoung u16 data;
766 1.1 dyoung
767 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
768 1.1 dyoung
769 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
770 1.1 dyoung if (ret_val) {
771 1.1 dyoung DEBUGOUT("NVM Read Error\n");
772 1.1 dyoung return ret_val;
773 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
774 1.1 dyoung DEBUGOUT("NVM Not supported\n");
775 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
776 1.1 dyoung }
777 1.1 dyoung *pba_num = (u32)(data << 16);
778 1.1 dyoung
779 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
780 1.1 dyoung if (ret_val) {
781 1.1 dyoung DEBUGOUT("NVM Read Error\n");
782 1.1 dyoung return ret_val;
783 1.1 dyoung }
784 1.34 msaitoh *pba_num |= (u32)data;
785 1.1 dyoung
786 1.1 dyoung return IXGBE_SUCCESS;
787 1.1 dyoung }
788 1.1 dyoung
789 1.1 dyoung /**
790 1.5 msaitoh * ixgbe_read_pba_raw
791 1.5 msaitoh * @hw: pointer to the HW structure
792 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
793 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
794 1.5 msaitoh * @max_pba_block_size: PBA block size limit
795 1.5 msaitoh * @pba: pointer to output PBA structure
796 1.5 msaitoh *
797 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
798 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
799 1.5 msaitoh *
800 1.5 msaitoh **/
801 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
802 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
803 1.5 msaitoh struct ixgbe_pba *pba)
804 1.5 msaitoh {
805 1.5 msaitoh s32 ret_val;
806 1.5 msaitoh u16 pba_block_size;
807 1.5 msaitoh
808 1.5 msaitoh if (pba == NULL)
809 1.5 msaitoh return IXGBE_ERR_PARAM;
810 1.5 msaitoh
811 1.5 msaitoh if (eeprom_buf == NULL) {
812 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
813 1.5 msaitoh &pba->word[0]);
814 1.5 msaitoh if (ret_val)
815 1.5 msaitoh return ret_val;
816 1.5 msaitoh } else {
817 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
818 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
819 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
820 1.5 msaitoh } else {
821 1.5 msaitoh return IXGBE_ERR_PARAM;
822 1.5 msaitoh }
823 1.5 msaitoh }
824 1.5 msaitoh
825 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
826 1.5 msaitoh if (pba->pba_block == NULL)
827 1.5 msaitoh return IXGBE_ERR_PARAM;
828 1.5 msaitoh
829 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
830 1.5 msaitoh eeprom_buf_size,
831 1.5 msaitoh &pba_block_size);
832 1.5 msaitoh if (ret_val)
833 1.5 msaitoh return ret_val;
834 1.5 msaitoh
835 1.5 msaitoh if (pba_block_size > max_pba_block_size)
836 1.5 msaitoh return IXGBE_ERR_PARAM;
837 1.5 msaitoh
838 1.5 msaitoh if (eeprom_buf == NULL) {
839 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
840 1.5 msaitoh pba_block_size,
841 1.5 msaitoh pba->pba_block);
842 1.5 msaitoh if (ret_val)
843 1.5 msaitoh return ret_val;
844 1.5 msaitoh } else {
845 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
846 1.8 msaitoh pba_block_size)) {
847 1.5 msaitoh memcpy(pba->pba_block,
848 1.5 msaitoh &eeprom_buf[pba->word[1]],
849 1.5 msaitoh pba_block_size * sizeof(u16));
850 1.5 msaitoh } else {
851 1.5 msaitoh return IXGBE_ERR_PARAM;
852 1.5 msaitoh }
853 1.5 msaitoh }
854 1.5 msaitoh }
855 1.5 msaitoh
856 1.5 msaitoh return IXGBE_SUCCESS;
857 1.5 msaitoh }
858 1.5 msaitoh
859 1.5 msaitoh /**
860 1.5 msaitoh * ixgbe_write_pba_raw
861 1.5 msaitoh * @hw: pointer to the HW structure
862 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
863 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
864 1.5 msaitoh * @pba: pointer to PBA structure
865 1.5 msaitoh *
866 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
867 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
868 1.5 msaitoh *
869 1.5 msaitoh **/
870 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
871 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
872 1.5 msaitoh {
873 1.5 msaitoh s32 ret_val;
874 1.5 msaitoh
875 1.5 msaitoh if (pba == NULL)
876 1.5 msaitoh return IXGBE_ERR_PARAM;
877 1.5 msaitoh
878 1.5 msaitoh if (eeprom_buf == NULL) {
879 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
880 1.5 msaitoh &pba->word[0]);
881 1.5 msaitoh if (ret_val)
882 1.5 msaitoh return ret_val;
883 1.5 msaitoh } else {
884 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
885 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
886 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
887 1.5 msaitoh } else {
888 1.5 msaitoh return IXGBE_ERR_PARAM;
889 1.5 msaitoh }
890 1.5 msaitoh }
891 1.5 msaitoh
892 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
893 1.5 msaitoh if (pba->pba_block == NULL)
894 1.5 msaitoh return IXGBE_ERR_PARAM;
895 1.5 msaitoh
896 1.5 msaitoh if (eeprom_buf == NULL) {
897 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
898 1.5 msaitoh pba->pba_block[0],
899 1.5 msaitoh pba->pba_block);
900 1.5 msaitoh if (ret_val)
901 1.5 msaitoh return ret_val;
902 1.5 msaitoh } else {
903 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
904 1.5 msaitoh pba->pba_block[0])) {
905 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
906 1.5 msaitoh pba->pba_block,
907 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
908 1.5 msaitoh } else {
909 1.5 msaitoh return IXGBE_ERR_PARAM;
910 1.5 msaitoh }
911 1.5 msaitoh }
912 1.5 msaitoh }
913 1.5 msaitoh
914 1.5 msaitoh return IXGBE_SUCCESS;
915 1.5 msaitoh }
916 1.5 msaitoh
917 1.5 msaitoh /**
918 1.5 msaitoh * ixgbe_get_pba_block_size
919 1.5 msaitoh * @hw: pointer to the HW structure
920 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
921 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
922 1.5 msaitoh * @pba_data_size: pointer to output variable
923 1.5 msaitoh *
924 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
925 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
926 1.5 msaitoh * EEPROM device.
927 1.5 msaitoh *
928 1.5 msaitoh **/
929 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
930 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
931 1.5 msaitoh {
932 1.5 msaitoh s32 ret_val;
933 1.5 msaitoh u16 pba_word[2];
934 1.5 msaitoh u16 length;
935 1.5 msaitoh
936 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
937 1.5 msaitoh
938 1.5 msaitoh if (eeprom_buf == NULL) {
939 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
940 1.5 msaitoh &pba_word[0]);
941 1.5 msaitoh if (ret_val)
942 1.5 msaitoh return ret_val;
943 1.5 msaitoh } else {
944 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
945 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
946 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
947 1.5 msaitoh } else {
948 1.5 msaitoh return IXGBE_ERR_PARAM;
949 1.5 msaitoh }
950 1.5 msaitoh }
951 1.5 msaitoh
952 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
953 1.5 msaitoh if (eeprom_buf == NULL) {
954 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
955 1.5 msaitoh &length);
956 1.5 msaitoh if (ret_val)
957 1.5 msaitoh return ret_val;
958 1.5 msaitoh } else {
959 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
960 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
961 1.5 msaitoh else
962 1.5 msaitoh return IXGBE_ERR_PARAM;
963 1.5 msaitoh }
964 1.5 msaitoh
965 1.5 msaitoh if (length == 0xFFFF || length == 0)
966 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
967 1.5 msaitoh } else {
968 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
969 1.5 msaitoh length = 0;
970 1.5 msaitoh }
971 1.5 msaitoh
972 1.5 msaitoh if (pba_block_size != NULL)
973 1.5 msaitoh *pba_block_size = length;
974 1.5 msaitoh
975 1.5 msaitoh return IXGBE_SUCCESS;
976 1.5 msaitoh }
977 1.5 msaitoh
978 1.5 msaitoh /**
979 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
980 1.1 dyoung * @hw: pointer to hardware structure
981 1.1 dyoung * @mac_addr: Adapter MAC address
982 1.1 dyoung *
983 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
984 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
985 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
986 1.1 dyoung **/
987 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
988 1.1 dyoung {
989 1.1 dyoung u32 rar_high;
990 1.1 dyoung u32 rar_low;
991 1.1 dyoung u16 i;
992 1.1 dyoung
993 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
994 1.1 dyoung
995 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
996 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
997 1.1 dyoung
998 1.1 dyoung for (i = 0; i < 4; i++)
999 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
1000 1.1 dyoung
1001 1.1 dyoung for (i = 0; i < 2; i++)
1002 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
1003 1.1 dyoung
1004 1.1 dyoung return IXGBE_SUCCESS;
1005 1.1 dyoung }
1006 1.1 dyoung
1007 1.1 dyoung /**
1008 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1009 1.1 dyoung * @hw: pointer to hardware structure
1010 1.6 msaitoh * @link_status: the link status returned by the PCI config space
1011 1.1 dyoung *
1012 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1013 1.1 dyoung **/
1014 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1015 1.1 dyoung {
1016 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1017 1.1 dyoung
1018 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1019 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1020 1.1 dyoung
1021 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1022 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1023 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1024 1.1 dyoung break;
1025 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1026 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1027 1.1 dyoung break;
1028 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1029 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1030 1.1 dyoung break;
1031 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1032 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1033 1.1 dyoung break;
1034 1.1 dyoung default:
1035 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1036 1.1 dyoung break;
1037 1.1 dyoung }
1038 1.1 dyoung
1039 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1040 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1041 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1042 1.1 dyoung break;
1043 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1044 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1045 1.1 dyoung break;
1046 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1047 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1048 1.4 msaitoh break;
1049 1.1 dyoung default:
1050 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1051 1.1 dyoung break;
1052 1.1 dyoung }
1053 1.1 dyoung
1054 1.1 dyoung mac->ops.set_lan_id(hw);
1055 1.6 msaitoh }
1056 1.6 msaitoh
1057 1.6 msaitoh /**
1058 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1059 1.6 msaitoh * @hw: pointer to hardware structure
1060 1.6 msaitoh *
1061 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1062 1.6 msaitoh * store this data within the ixgbe_hw structure.
1063 1.6 msaitoh **/
1064 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1065 1.6 msaitoh {
1066 1.6 msaitoh u16 link_status;
1067 1.6 msaitoh
1068 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1069 1.6 msaitoh
1070 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1071 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1072 1.6 msaitoh
1073 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1074 1.1 dyoung
1075 1.1 dyoung return IXGBE_SUCCESS;
1076 1.1 dyoung }
1077 1.1 dyoung
1078 1.1 dyoung /**
1079 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1080 1.1 dyoung * @hw: pointer to the HW structure
1081 1.1 dyoung *
1082 1.14 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1083 1.14 msaitoh * the port value if requested, and set MAC instance for devices that share
1084 1.14 msaitoh * CS4227.
1085 1.1 dyoung **/
1086 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1087 1.1 dyoung {
1088 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1089 1.1 dyoung u32 reg;
1090 1.14 msaitoh u16 ee_ctrl_4;
1091 1.1 dyoung
1092 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1093 1.1 dyoung
1094 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1095 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1096 1.14 msaitoh bus->lan_id = (u8)bus->func;
1097 1.1 dyoung
1098 1.1 dyoung /* check for a port swap */
1099 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1100 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1101 1.1 dyoung bus->func ^= 0x1;
1102 1.14 msaitoh
1103 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1104 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1105 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1106 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1107 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1108 1.14 msaitoh }
1109 1.1 dyoung }
1110 1.1 dyoung
1111 1.1 dyoung /**
1112 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1113 1.1 dyoung * @hw: pointer to hardware structure
1114 1.1 dyoung *
1115 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1116 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1117 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1118 1.1 dyoung * state and should not touch the hardware.
1119 1.1 dyoung **/
1120 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1121 1.1 dyoung {
1122 1.1 dyoung u32 reg_val;
1123 1.1 dyoung u16 i;
1124 1.1 dyoung
1125 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1126 1.1 dyoung
1127 1.1 dyoung /*
1128 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1129 1.1 dyoung * the hardware
1130 1.1 dyoung */
1131 1.1 dyoung hw->adapter_stopped = TRUE;
1132 1.1 dyoung
1133 1.1 dyoung /* Disable the receive unit */
1134 1.8 msaitoh ixgbe_disable_rx(hw);
1135 1.1 dyoung
1136 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1137 1.19 knakahar /*
1138 1.19 knakahar * XXX
1139 1.19 knakahar * This function is called in the state of both interrupt disabled
1140 1.19 knakahar * and interrupt enabled, e.g.
1141 1.19 knakahar * + interrupt disabled case:
1142 1.30 msaitoh * - ixgbe_stop_locked()
1143 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here
1144 1.19 knakahar * - ixgbe_stop_adapter()
1145 1.19 knakahar * - hw->mac.ops.stop_adapter()
1146 1.19 knakahar * == this function
1147 1.19 knakahar * + interrupt enabled case:
1148 1.19 knakahar * - ixgbe_local_timer1()
1149 1.19 knakahar * - ixgbe_init_locked()
1150 1.19 knakahar * - ixgbe_stop_adapter()
1151 1.19 knakahar * - hw->mac.ops.stop_adapter()
1152 1.19 knakahar * == this function
1153 1.19 knakahar * Therefore, it causes nest status breaking to nest the status
1154 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must
1155 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1156 1.19 knakahar */
1157 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back);
1158 1.1 dyoung
1159 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1160 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1161 1.1 dyoung
1162 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1163 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1164 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1165 1.3 msaitoh
1166 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1167 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1168 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1169 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1170 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1171 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1172 1.1 dyoung }
1173 1.1 dyoung
1174 1.3 msaitoh /* flush all queues disables */
1175 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1176 1.3 msaitoh msec_delay(2);
1177 1.3 msaitoh
1178 1.1 dyoung /*
1179 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1180 1.1 dyoung * access and verify no pending requests
1181 1.1 dyoung */
1182 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1183 1.1 dyoung }
1184 1.1 dyoung
1185 1.1 dyoung /**
1186 1.14 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1187 1.14 msaitoh * @hw: pointer to hardware structure
1188 1.14 msaitoh *
1189 1.14 msaitoh * Store the index for the link active LED. This will be used to support
1190 1.14 msaitoh * blinking the LED.
1191 1.14 msaitoh **/
1192 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1193 1.14 msaitoh {
1194 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1195 1.14 msaitoh u32 led_reg, led_mode;
1196 1.14 msaitoh u8 i;
1197 1.14 msaitoh
1198 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1199 1.14 msaitoh
1200 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1201 1.14 msaitoh for (i = 0; i < 4; i++) {
1202 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1203 1.14 msaitoh
1204 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1205 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1206 1.14 msaitoh mac->led_link_act = i;
1207 1.14 msaitoh return IXGBE_SUCCESS;
1208 1.14 msaitoh }
1209 1.14 msaitoh }
1210 1.14 msaitoh
1211 1.14 msaitoh /*
1212 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1213 1.14 msaitoh * known MAC defaults.
1214 1.14 msaitoh */
1215 1.14 msaitoh switch (hw->mac.type) {
1216 1.14 msaitoh case ixgbe_mac_X550EM_a:
1217 1.14 msaitoh case ixgbe_mac_X550EM_x:
1218 1.14 msaitoh mac->led_link_act = 1;
1219 1.14 msaitoh break;
1220 1.14 msaitoh default:
1221 1.14 msaitoh mac->led_link_act = 2;
1222 1.14 msaitoh }
1223 1.14 msaitoh return IXGBE_SUCCESS;
1224 1.14 msaitoh }
1225 1.14 msaitoh
1226 1.14 msaitoh /**
1227 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1228 1.1 dyoung * @hw: pointer to hardware structure
1229 1.1 dyoung * @index: led number to turn on
1230 1.1 dyoung **/
1231 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1232 1.1 dyoung {
1233 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1234 1.1 dyoung
1235 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1236 1.1 dyoung
1237 1.14 msaitoh if (index > 3)
1238 1.14 msaitoh return IXGBE_ERR_PARAM;
1239 1.14 msaitoh
1240 1.1 dyoung /* To turn on the LED, set mode to ON. */
1241 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1242 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1243 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1244 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1245 1.1 dyoung
1246 1.1 dyoung return IXGBE_SUCCESS;
1247 1.1 dyoung }
1248 1.1 dyoung
1249 1.1 dyoung /**
1250 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1251 1.1 dyoung * @hw: pointer to hardware structure
1252 1.1 dyoung * @index: led number to turn off
1253 1.1 dyoung **/
1254 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1255 1.1 dyoung {
1256 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1257 1.1 dyoung
1258 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1259 1.1 dyoung
1260 1.14 msaitoh if (index > 3)
1261 1.14 msaitoh return IXGBE_ERR_PARAM;
1262 1.14 msaitoh
1263 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1264 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1265 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1266 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1267 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1268 1.1 dyoung
1269 1.1 dyoung return IXGBE_SUCCESS;
1270 1.1 dyoung }
1271 1.1 dyoung
1272 1.1 dyoung /**
1273 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1274 1.1 dyoung * @hw: pointer to hardware structure
1275 1.1 dyoung *
1276 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1277 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1278 1.1 dyoung **/
1279 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1280 1.1 dyoung {
1281 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1282 1.1 dyoung u32 eec;
1283 1.1 dyoung u16 eeprom_size;
1284 1.1 dyoung
1285 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1286 1.1 dyoung
1287 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1288 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1289 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1290 1.1 dyoung * tested value */
1291 1.1 dyoung eeprom->semaphore_delay = 10;
1292 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1293 1.3 msaitoh eeprom->word_page_size = 0;
1294 1.1 dyoung
1295 1.1 dyoung /*
1296 1.1 dyoung * Check for EEPROM present first.
1297 1.1 dyoung * If not present leave as none
1298 1.1 dyoung */
1299 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1300 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1301 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1302 1.1 dyoung
1303 1.1 dyoung /*
1304 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1305 1.1 dyoung * change if a future EEPROM is not SPI.
1306 1.1 dyoung */
1307 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1308 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1309 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1310 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1311 1.1 dyoung }
1312 1.1 dyoung
1313 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1314 1.1 dyoung eeprom->address_bits = 16;
1315 1.1 dyoung else
1316 1.1 dyoung eeprom->address_bits = 8;
1317 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1318 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1319 1.3 msaitoh eeprom->address_bits);
1320 1.1 dyoung }
1321 1.1 dyoung
1322 1.1 dyoung return IXGBE_SUCCESS;
1323 1.1 dyoung }
1324 1.1 dyoung
1325 1.1 dyoung /**
1326 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1327 1.3 msaitoh * @hw: pointer to hardware structure
1328 1.3 msaitoh * @offset: offset within the EEPROM to write
1329 1.3 msaitoh * @words: number of word(s)
1330 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1331 1.3 msaitoh *
1332 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1333 1.3 msaitoh **/
1334 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1335 1.3 msaitoh u16 words, u16 *data)
1336 1.3 msaitoh {
1337 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1338 1.3 msaitoh u16 i, count;
1339 1.3 msaitoh
1340 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1341 1.3 msaitoh
1342 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1343 1.3 msaitoh
1344 1.3 msaitoh if (words == 0) {
1345 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1346 1.3 msaitoh goto out;
1347 1.3 msaitoh }
1348 1.3 msaitoh
1349 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1350 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1351 1.3 msaitoh goto out;
1352 1.3 msaitoh }
1353 1.3 msaitoh
1354 1.3 msaitoh /*
1355 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1356 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1357 1.3 msaitoh */
1358 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1359 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1360 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1361 1.3 msaitoh
1362 1.3 msaitoh /*
1363 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1364 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1365 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1366 1.3 msaitoh */
1367 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1368 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1369 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1370 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1371 1.3 msaitoh count, &data[i]);
1372 1.3 msaitoh
1373 1.3 msaitoh if (status != IXGBE_SUCCESS)
1374 1.3 msaitoh break;
1375 1.3 msaitoh }
1376 1.3 msaitoh
1377 1.3 msaitoh out:
1378 1.3 msaitoh return status;
1379 1.3 msaitoh }
1380 1.3 msaitoh
1381 1.3 msaitoh /**
1382 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1383 1.3 msaitoh * @hw: pointer to hardware structure
1384 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1385 1.3 msaitoh * @words: number of word(s)
1386 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1387 1.3 msaitoh *
1388 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1389 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1390 1.3 msaitoh **/
1391 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1392 1.3 msaitoh u16 words, u16 *data)
1393 1.3 msaitoh {
1394 1.3 msaitoh s32 status;
1395 1.3 msaitoh u16 word;
1396 1.3 msaitoh u16 page_size;
1397 1.3 msaitoh u16 i;
1398 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1399 1.3 msaitoh
1400 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1401 1.3 msaitoh
1402 1.3 msaitoh /* Prepare the EEPROM for writing */
1403 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1404 1.3 msaitoh
1405 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1406 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1407 1.3 msaitoh ixgbe_release_eeprom(hw);
1408 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1409 1.3 msaitoh }
1410 1.3 msaitoh }
1411 1.3 msaitoh
1412 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1413 1.3 msaitoh for (i = 0; i < words; i++) {
1414 1.3 msaitoh ixgbe_standby_eeprom(hw);
1415 1.3 msaitoh
1416 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1417 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1418 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1419 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1420 1.3 msaitoh
1421 1.3 msaitoh ixgbe_standby_eeprom(hw);
1422 1.3 msaitoh
1423 1.3 msaitoh /*
1424 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1425 1.3 msaitoh * in the opcode
1426 1.3 msaitoh */
1427 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1428 1.3 msaitoh ((offset + i) >= 128))
1429 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1430 1.3 msaitoh
1431 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1432 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1433 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1434 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1435 1.3 msaitoh hw->eeprom.address_bits);
1436 1.3 msaitoh
1437 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1438 1.3 msaitoh
1439 1.3 msaitoh /* Send the data in burst via SPI*/
1440 1.3 msaitoh do {
1441 1.3 msaitoh word = data[i];
1442 1.3 msaitoh word = (word >> 8) | (word << 8);
1443 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1444 1.3 msaitoh
1445 1.3 msaitoh if (page_size == 0)
1446 1.3 msaitoh break;
1447 1.3 msaitoh
1448 1.3 msaitoh /* do not wrap around page */
1449 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1450 1.3 msaitoh (page_size - 1))
1451 1.3 msaitoh break;
1452 1.3 msaitoh } while (++i < words);
1453 1.3 msaitoh
1454 1.3 msaitoh ixgbe_standby_eeprom(hw);
1455 1.3 msaitoh msec_delay(10);
1456 1.3 msaitoh }
1457 1.3 msaitoh /* Done with writing - release the EEPROM */
1458 1.3 msaitoh ixgbe_release_eeprom(hw);
1459 1.3 msaitoh }
1460 1.3 msaitoh
1461 1.3 msaitoh return status;
1462 1.3 msaitoh }
1463 1.3 msaitoh
1464 1.3 msaitoh /**
1465 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1466 1.1 dyoung * @hw: pointer to hardware structure
1467 1.1 dyoung * @offset: offset within the EEPROM to be written to
1468 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1469 1.1 dyoung *
1470 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1471 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1472 1.1 dyoung **/
1473 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1474 1.1 dyoung {
1475 1.1 dyoung s32 status;
1476 1.1 dyoung
1477 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1478 1.1 dyoung
1479 1.1 dyoung hw->eeprom.ops.init_params(hw);
1480 1.1 dyoung
1481 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1482 1.1 dyoung status = IXGBE_ERR_EEPROM;
1483 1.1 dyoung goto out;
1484 1.1 dyoung }
1485 1.1 dyoung
1486 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1487 1.3 msaitoh
1488 1.3 msaitoh out:
1489 1.3 msaitoh return status;
1490 1.3 msaitoh }
1491 1.3 msaitoh
1492 1.3 msaitoh /**
1493 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1494 1.3 msaitoh * @hw: pointer to hardware structure
1495 1.3 msaitoh * @offset: offset within the EEPROM to be read
1496 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1497 1.3 msaitoh * @words: number of word(s)
1498 1.3 msaitoh *
1499 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1500 1.3 msaitoh **/
1501 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1502 1.3 msaitoh u16 words, u16 *data)
1503 1.3 msaitoh {
1504 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1505 1.3 msaitoh u16 i, count;
1506 1.3 msaitoh
1507 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1508 1.3 msaitoh
1509 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1510 1.3 msaitoh
1511 1.3 msaitoh if (words == 0) {
1512 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1513 1.3 msaitoh goto out;
1514 1.3 msaitoh }
1515 1.3 msaitoh
1516 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1517 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1518 1.3 msaitoh goto out;
1519 1.3 msaitoh }
1520 1.3 msaitoh
1521 1.3 msaitoh /*
1522 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1523 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1524 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1525 1.3 msaitoh */
1526 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1527 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1528 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1529 1.3 msaitoh
1530 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1531 1.3 msaitoh count, &data[i]);
1532 1.3 msaitoh
1533 1.3 msaitoh if (status != IXGBE_SUCCESS)
1534 1.3 msaitoh break;
1535 1.3 msaitoh }
1536 1.3 msaitoh
1537 1.3 msaitoh out:
1538 1.3 msaitoh return status;
1539 1.3 msaitoh }
1540 1.3 msaitoh
1541 1.3 msaitoh /**
1542 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1543 1.3 msaitoh * @hw: pointer to hardware structure
1544 1.3 msaitoh * @offset: offset within the EEPROM to be read
1545 1.3 msaitoh * @words: number of word(s)
1546 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1547 1.3 msaitoh *
1548 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1549 1.3 msaitoh **/
1550 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1551 1.3 msaitoh u16 words, u16 *data)
1552 1.3 msaitoh {
1553 1.3 msaitoh s32 status;
1554 1.3 msaitoh u16 word_in;
1555 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1556 1.3 msaitoh u16 i;
1557 1.3 msaitoh
1558 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1559 1.3 msaitoh
1560 1.3 msaitoh /* Prepare the EEPROM for reading */
1561 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1562 1.1 dyoung
1563 1.1 dyoung if (status == IXGBE_SUCCESS) {
1564 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1565 1.1 dyoung ixgbe_release_eeprom(hw);
1566 1.1 dyoung status = IXGBE_ERR_EEPROM;
1567 1.1 dyoung }
1568 1.1 dyoung }
1569 1.1 dyoung
1570 1.1 dyoung if (status == IXGBE_SUCCESS) {
1571 1.3 msaitoh for (i = 0; i < words; i++) {
1572 1.3 msaitoh ixgbe_standby_eeprom(hw);
1573 1.3 msaitoh /*
1574 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1575 1.3 msaitoh * in the opcode
1576 1.3 msaitoh */
1577 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1578 1.3 msaitoh ((offset + i) >= 128))
1579 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1580 1.3 msaitoh
1581 1.3 msaitoh /* Send the READ command (opcode + addr) */
1582 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1583 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1584 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1585 1.3 msaitoh hw->eeprom.address_bits);
1586 1.3 msaitoh
1587 1.3 msaitoh /* Read the data. */
1588 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1589 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1590 1.3 msaitoh }
1591 1.1 dyoung
1592 1.3 msaitoh /* End this read operation */
1593 1.1 dyoung ixgbe_release_eeprom(hw);
1594 1.1 dyoung }
1595 1.1 dyoung
1596 1.1 dyoung return status;
1597 1.1 dyoung }
1598 1.1 dyoung
1599 1.1 dyoung /**
1600 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1601 1.1 dyoung * @hw: pointer to hardware structure
1602 1.1 dyoung * @offset: offset within the EEPROM to be read
1603 1.1 dyoung * @data: read 16 bit value from EEPROM
1604 1.1 dyoung *
1605 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1606 1.1 dyoung **/
1607 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1608 1.3 msaitoh u16 *data)
1609 1.1 dyoung {
1610 1.1 dyoung s32 status;
1611 1.1 dyoung
1612 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1613 1.1 dyoung
1614 1.1 dyoung hw->eeprom.ops.init_params(hw);
1615 1.1 dyoung
1616 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1617 1.1 dyoung status = IXGBE_ERR_EEPROM;
1618 1.1 dyoung goto out;
1619 1.1 dyoung }
1620 1.1 dyoung
1621 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1622 1.3 msaitoh
1623 1.3 msaitoh out:
1624 1.3 msaitoh return status;
1625 1.3 msaitoh }
1626 1.3 msaitoh
1627 1.3 msaitoh /**
1628 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1629 1.3 msaitoh * @hw: pointer to hardware structure
1630 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1631 1.3 msaitoh * @words: number of word(s)
1632 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1633 1.3 msaitoh *
1634 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1635 1.3 msaitoh **/
1636 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1637 1.3 msaitoh u16 words, u16 *data)
1638 1.3 msaitoh {
1639 1.3 msaitoh u32 eerd;
1640 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1641 1.3 msaitoh u32 i;
1642 1.3 msaitoh
1643 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1644 1.3 msaitoh
1645 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1646 1.3 msaitoh
1647 1.3 msaitoh if (words == 0) {
1648 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1649 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1650 1.3 msaitoh goto out;
1651 1.3 msaitoh }
1652 1.3 msaitoh
1653 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1654 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1655 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1656 1.3 msaitoh goto out;
1657 1.3 msaitoh }
1658 1.3 msaitoh
1659 1.3 msaitoh for (i = 0; i < words; i++) {
1660 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1661 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1662 1.3 msaitoh
1663 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1664 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1665 1.1 dyoung
1666 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1667 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1668 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1669 1.3 msaitoh } else {
1670 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1671 1.3 msaitoh goto out;
1672 1.1 dyoung }
1673 1.1 dyoung }
1674 1.3 msaitoh out:
1675 1.3 msaitoh return status;
1676 1.3 msaitoh }
1677 1.1 dyoung
1678 1.3 msaitoh /**
1679 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1680 1.3 msaitoh * @hw: pointer to hardware structure
1681 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1682 1.3 msaitoh *
1683 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1684 1.3 msaitoh * This function is called only when we are writing a new large buffer
1685 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1686 1.3 msaitoh **/
1687 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1688 1.3 msaitoh u16 offset)
1689 1.3 msaitoh {
1690 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1691 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1692 1.3 msaitoh u16 i;
1693 1.3 msaitoh
1694 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1695 1.3 msaitoh
1696 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1697 1.3 msaitoh data[i] = i;
1698 1.1 dyoung
1699 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1700 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1701 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1702 1.3 msaitoh hw->eeprom.word_page_size = 0;
1703 1.3 msaitoh if (status != IXGBE_SUCCESS)
1704 1.3 msaitoh goto out;
1705 1.1 dyoung
1706 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1707 1.3 msaitoh if (status != IXGBE_SUCCESS)
1708 1.3 msaitoh goto out;
1709 1.1 dyoung
1710 1.3 msaitoh /*
1711 1.3 msaitoh * When writing in burst more than the actual page size
1712 1.3 msaitoh * EEPROM address wraps around current page.
1713 1.3 msaitoh */
1714 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1715 1.1 dyoung
1716 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1717 1.3 msaitoh hw->eeprom.word_page_size);
1718 1.1 dyoung out:
1719 1.1 dyoung return status;
1720 1.1 dyoung }
1721 1.1 dyoung
1722 1.1 dyoung /**
1723 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1724 1.1 dyoung * @hw: pointer to hardware structure
1725 1.1 dyoung * @offset: offset of word in the EEPROM to read
1726 1.1 dyoung * @data: word read from the EEPROM
1727 1.1 dyoung *
1728 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1729 1.1 dyoung **/
1730 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1731 1.1 dyoung {
1732 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1733 1.3 msaitoh }
1734 1.3 msaitoh
1735 1.3 msaitoh /**
1736 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1737 1.3 msaitoh * @hw: pointer to hardware structure
1738 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1739 1.3 msaitoh * @words: number of word(s)
1740 1.3 msaitoh * @data: word(s) write to the EEPROM
1741 1.3 msaitoh *
1742 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1743 1.3 msaitoh **/
1744 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1745 1.3 msaitoh u16 words, u16 *data)
1746 1.3 msaitoh {
1747 1.3 msaitoh u32 eewr;
1748 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1749 1.3 msaitoh u16 i;
1750 1.1 dyoung
1751 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1752 1.1 dyoung
1753 1.1 dyoung hw->eeprom.ops.init_params(hw);
1754 1.1 dyoung
1755 1.3 msaitoh if (words == 0) {
1756 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1757 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1758 1.3 msaitoh goto out;
1759 1.3 msaitoh }
1760 1.3 msaitoh
1761 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1762 1.1 dyoung status = IXGBE_ERR_EEPROM;
1763 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1764 1.1 dyoung goto out;
1765 1.1 dyoung }
1766 1.1 dyoung
1767 1.3 msaitoh for (i = 0; i < words; i++) {
1768 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1769 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1770 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1771 1.3 msaitoh
1772 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1773 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1774 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1775 1.3 msaitoh goto out;
1776 1.3 msaitoh }
1777 1.1 dyoung
1778 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1779 1.1 dyoung
1780 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1781 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1782 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1783 1.3 msaitoh goto out;
1784 1.3 msaitoh }
1785 1.3 msaitoh }
1786 1.1 dyoung
1787 1.1 dyoung out:
1788 1.1 dyoung return status;
1789 1.1 dyoung }
1790 1.1 dyoung
1791 1.1 dyoung /**
1792 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1793 1.1 dyoung * @hw: pointer to hardware structure
1794 1.1 dyoung * @offset: offset of word in the EEPROM to write
1795 1.1 dyoung * @data: word write to the EEPROM
1796 1.1 dyoung *
1797 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1798 1.1 dyoung **/
1799 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1800 1.1 dyoung {
1801 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1802 1.1 dyoung }
1803 1.1 dyoung
1804 1.1 dyoung /**
1805 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1806 1.1 dyoung * @hw: pointer to hardware structure
1807 1.1 dyoung * @ee_reg: EEPROM flag for polling
1808 1.1 dyoung *
1809 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1810 1.1 dyoung * read or write is done respectively.
1811 1.1 dyoung **/
1812 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1813 1.1 dyoung {
1814 1.1 dyoung u32 i;
1815 1.1 dyoung u32 reg;
1816 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1817 1.1 dyoung
1818 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1819 1.1 dyoung
1820 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1821 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1822 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1823 1.1 dyoung else
1824 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1825 1.1 dyoung
1826 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1827 1.1 dyoung status = IXGBE_SUCCESS;
1828 1.1 dyoung break;
1829 1.1 dyoung }
1830 1.1 dyoung usec_delay(5);
1831 1.1 dyoung }
1832 1.6 msaitoh
1833 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1834 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1835 1.6 msaitoh "EEPROM read/write done polling timed out");
1836 1.6 msaitoh
1837 1.1 dyoung return status;
1838 1.1 dyoung }
1839 1.1 dyoung
1840 1.1 dyoung /**
1841 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1842 1.1 dyoung * @hw: pointer to hardware structure
1843 1.1 dyoung *
1844 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1845 1.1 dyoung * be called before issuing a command to the EEPROM.
1846 1.1 dyoung **/
1847 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1848 1.1 dyoung {
1849 1.1 dyoung s32 status = IXGBE_SUCCESS;
1850 1.1 dyoung u32 eec;
1851 1.1 dyoung u32 i;
1852 1.1 dyoung
1853 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1854 1.1 dyoung
1855 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1856 1.3 msaitoh != IXGBE_SUCCESS)
1857 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1858 1.1 dyoung
1859 1.1 dyoung if (status == IXGBE_SUCCESS) {
1860 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1861 1.1 dyoung
1862 1.1 dyoung /* Request EEPROM Access */
1863 1.1 dyoung eec |= IXGBE_EEC_REQ;
1864 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1865 1.1 dyoung
1866 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1867 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1868 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1869 1.1 dyoung break;
1870 1.1 dyoung usec_delay(5);
1871 1.1 dyoung }
1872 1.1 dyoung
1873 1.1 dyoung /* Release if grant not acquired */
1874 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1875 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1876 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1877 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1878 1.1 dyoung
1879 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1880 1.1 dyoung status = IXGBE_ERR_EEPROM;
1881 1.1 dyoung }
1882 1.1 dyoung
1883 1.1 dyoung /* Setup EEPROM for Read/Write */
1884 1.1 dyoung if (status == IXGBE_SUCCESS) {
1885 1.1 dyoung /* Clear CS and SK */
1886 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1887 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1888 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1889 1.1 dyoung usec_delay(1);
1890 1.1 dyoung }
1891 1.1 dyoung }
1892 1.1 dyoung return status;
1893 1.1 dyoung }
1894 1.1 dyoung
1895 1.1 dyoung /**
1896 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1897 1.1 dyoung * @hw: pointer to hardware structure
1898 1.1 dyoung *
1899 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1900 1.1 dyoung **/
1901 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1902 1.1 dyoung {
1903 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1904 1.1 dyoung u32 timeout = 2000;
1905 1.1 dyoung u32 i;
1906 1.1 dyoung u32 swsm;
1907 1.1 dyoung
1908 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1909 1.1 dyoung
1910 1.1 dyoung
1911 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1912 1.1 dyoung for (i = 0; i < timeout; i++) {
1913 1.1 dyoung /*
1914 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1915 1.1 dyoung * set and we have the semaphore
1916 1.1 dyoung */
1917 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1918 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1919 1.1 dyoung status = IXGBE_SUCCESS;
1920 1.1 dyoung break;
1921 1.1 dyoung }
1922 1.1 dyoung usec_delay(50);
1923 1.1 dyoung }
1924 1.1 dyoung
1925 1.3 msaitoh if (i == timeout) {
1926 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1927 1.3 msaitoh "not granted.\n");
1928 1.3 msaitoh /*
1929 1.3 msaitoh * this release is particularly important because our attempts
1930 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1931 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1932 1.3 msaitoh * bits to free the driver to make progress
1933 1.3 msaitoh */
1934 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1935 1.3 msaitoh
1936 1.3 msaitoh usec_delay(50);
1937 1.3 msaitoh /*
1938 1.3 msaitoh * one last try
1939 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1940 1.3 msaitoh * set and we have the semaphore
1941 1.3 msaitoh */
1942 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1943 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1944 1.3 msaitoh status = IXGBE_SUCCESS;
1945 1.3 msaitoh }
1946 1.3 msaitoh
1947 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1948 1.1 dyoung if (status == IXGBE_SUCCESS) {
1949 1.1 dyoung for (i = 0; i < timeout; i++) {
1950 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1951 1.1 dyoung
1952 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1953 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1954 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1955 1.1 dyoung
1956 1.1 dyoung /*
1957 1.1 dyoung * If we set the bit successfully then we got the
1958 1.1 dyoung * semaphore.
1959 1.1 dyoung */
1960 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1961 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1962 1.1 dyoung break;
1963 1.1 dyoung
1964 1.1 dyoung usec_delay(50);
1965 1.1 dyoung }
1966 1.1 dyoung
1967 1.1 dyoung /*
1968 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1969 1.1 dyoung * was not granted because we don't have access to the EEPROM
1970 1.1 dyoung */
1971 1.1 dyoung if (i >= timeout) {
1972 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1973 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1974 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1975 1.1 dyoung status = IXGBE_ERR_EEPROM;
1976 1.1 dyoung }
1977 1.1 dyoung } else {
1978 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1979 1.6 msaitoh "Software semaphore SMBI between device drivers "
1980 1.6 msaitoh "not granted.\n");
1981 1.1 dyoung }
1982 1.1 dyoung
1983 1.1 dyoung return status;
1984 1.1 dyoung }
1985 1.1 dyoung
1986 1.1 dyoung /**
1987 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1988 1.1 dyoung * @hw: pointer to hardware structure
1989 1.1 dyoung *
1990 1.1 dyoung * This function clears hardware semaphore bits.
1991 1.1 dyoung **/
1992 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1993 1.1 dyoung {
1994 1.1 dyoung u32 swsm;
1995 1.1 dyoung
1996 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1997 1.1 dyoung
1998 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1999 1.1 dyoung
2000 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
2001 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
2002 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2003 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2004 1.1 dyoung }
2005 1.1 dyoung
2006 1.1 dyoung /**
2007 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
2008 1.1 dyoung * @hw: pointer to hardware structure
2009 1.1 dyoung **/
2010 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2011 1.1 dyoung {
2012 1.1 dyoung s32 status = IXGBE_SUCCESS;
2013 1.1 dyoung u16 i;
2014 1.1 dyoung u8 spi_stat_reg;
2015 1.1 dyoung
2016 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
2017 1.1 dyoung
2018 1.1 dyoung /*
2019 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
2020 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
2021 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
2022 1.1 dyoung * 5 milliseconds, then error out.
2023 1.1 dyoung */
2024 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2025 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2026 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2027 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2028 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2029 1.1 dyoung break;
2030 1.1 dyoung
2031 1.1 dyoung usec_delay(5);
2032 1.1 dyoung ixgbe_standby_eeprom(hw);
2033 1.11 msaitoh }
2034 1.1 dyoung
2035 1.1 dyoung /*
2036 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2037 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2038 1.1 dyoung */
2039 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2040 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2041 1.1 dyoung status = IXGBE_ERR_EEPROM;
2042 1.1 dyoung }
2043 1.1 dyoung
2044 1.1 dyoung return status;
2045 1.1 dyoung }
2046 1.1 dyoung
2047 1.1 dyoung /**
2048 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2049 1.1 dyoung * @hw: pointer to hardware structure
2050 1.1 dyoung **/
2051 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2052 1.1 dyoung {
2053 1.1 dyoung u32 eec;
2054 1.1 dyoung
2055 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2056 1.1 dyoung
2057 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2058 1.1 dyoung
2059 1.1 dyoung /* Toggle CS to flush commands */
2060 1.1 dyoung eec |= IXGBE_EEC_CS;
2061 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2062 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2063 1.1 dyoung usec_delay(1);
2064 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2065 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2066 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2067 1.1 dyoung usec_delay(1);
2068 1.1 dyoung }
2069 1.1 dyoung
2070 1.1 dyoung /**
2071 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2072 1.1 dyoung * @hw: pointer to hardware structure
2073 1.1 dyoung * @data: data to send to the EEPROM
2074 1.1 dyoung * @count: number of bits to shift out
2075 1.1 dyoung **/
2076 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2077 1.3 msaitoh u16 count)
2078 1.1 dyoung {
2079 1.1 dyoung u32 eec;
2080 1.1 dyoung u32 mask;
2081 1.1 dyoung u32 i;
2082 1.1 dyoung
2083 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2084 1.1 dyoung
2085 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2086 1.1 dyoung
2087 1.1 dyoung /*
2088 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2089 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2090 1.1 dyoung */
2091 1.1 dyoung mask = 0x01 << (count - 1);
2092 1.1 dyoung
2093 1.1 dyoung for (i = 0; i < count; i++) {
2094 1.1 dyoung /*
2095 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2096 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2097 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2098 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2099 1.1 dyoung * raising and then lowering the clock.
2100 1.1 dyoung */
2101 1.1 dyoung if (data & mask)
2102 1.1 dyoung eec |= IXGBE_EEC_DI;
2103 1.1 dyoung else
2104 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2105 1.1 dyoung
2106 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2107 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2108 1.1 dyoung
2109 1.1 dyoung usec_delay(1);
2110 1.1 dyoung
2111 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2112 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2113 1.1 dyoung
2114 1.1 dyoung /*
2115 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2116 1.1 dyoung * EEPROM
2117 1.1 dyoung */
2118 1.1 dyoung mask = mask >> 1;
2119 1.11 msaitoh }
2120 1.1 dyoung
2121 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2122 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2123 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2124 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2125 1.1 dyoung }
2126 1.1 dyoung
2127 1.1 dyoung /**
2128 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2129 1.1 dyoung * @hw: pointer to hardware structure
2130 1.22 msaitoh * @count: number of bits to shift
2131 1.1 dyoung **/
2132 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2133 1.1 dyoung {
2134 1.1 dyoung u32 eec;
2135 1.1 dyoung u32 i;
2136 1.1 dyoung u16 data = 0;
2137 1.1 dyoung
2138 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2139 1.1 dyoung
2140 1.1 dyoung /*
2141 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2142 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2143 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2144 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2145 1.1 dyoung * "DI" bit should always be clear.
2146 1.1 dyoung */
2147 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2148 1.1 dyoung
2149 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2150 1.1 dyoung
2151 1.1 dyoung for (i = 0; i < count; i++) {
2152 1.1 dyoung data = data << 1;
2153 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2154 1.1 dyoung
2155 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2156 1.1 dyoung
2157 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2158 1.1 dyoung if (eec & IXGBE_EEC_DO)
2159 1.1 dyoung data |= 1;
2160 1.1 dyoung
2161 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2162 1.1 dyoung }
2163 1.1 dyoung
2164 1.1 dyoung return data;
2165 1.1 dyoung }
2166 1.1 dyoung
2167 1.1 dyoung /**
2168 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2169 1.1 dyoung * @hw: pointer to hardware structure
2170 1.1 dyoung * @eec: EEC register's current value
2171 1.1 dyoung **/
2172 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2173 1.1 dyoung {
2174 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2175 1.1 dyoung
2176 1.1 dyoung /*
2177 1.1 dyoung * Raise the clock input to the EEPROM
2178 1.1 dyoung * (setting the SK bit), then delay
2179 1.1 dyoung */
2180 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2181 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2182 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2183 1.1 dyoung usec_delay(1);
2184 1.1 dyoung }
2185 1.1 dyoung
2186 1.1 dyoung /**
2187 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2188 1.1 dyoung * @hw: pointer to hardware structure
2189 1.22 msaitoh * @eec: EEC's current value
2190 1.1 dyoung **/
2191 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2192 1.1 dyoung {
2193 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2194 1.1 dyoung
2195 1.1 dyoung /*
2196 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2197 1.1 dyoung * delay
2198 1.1 dyoung */
2199 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2200 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2201 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2202 1.1 dyoung usec_delay(1);
2203 1.1 dyoung }
2204 1.1 dyoung
2205 1.1 dyoung /**
2206 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2207 1.1 dyoung * @hw: pointer to hardware structure
2208 1.1 dyoung **/
2209 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2210 1.1 dyoung {
2211 1.1 dyoung u32 eec;
2212 1.1 dyoung
2213 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2214 1.1 dyoung
2215 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2216 1.1 dyoung
2217 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2218 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2219 1.1 dyoung
2220 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2221 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2222 1.1 dyoung
2223 1.1 dyoung usec_delay(1);
2224 1.1 dyoung
2225 1.1 dyoung /* Stop requesting EEPROM access */
2226 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2227 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2228 1.1 dyoung
2229 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2230 1.1 dyoung
2231 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2232 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2233 1.1 dyoung }
2234 1.1 dyoung
2235 1.1 dyoung /**
2236 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2237 1.1 dyoung * @hw: pointer to hardware structure
2238 1.8 msaitoh *
2239 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2240 1.1 dyoung **/
2241 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2242 1.1 dyoung {
2243 1.1 dyoung u16 i;
2244 1.1 dyoung u16 j;
2245 1.1 dyoung u16 checksum = 0;
2246 1.1 dyoung u16 length = 0;
2247 1.1 dyoung u16 pointer = 0;
2248 1.1 dyoung u16 word = 0;
2249 1.1 dyoung
2250 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2251 1.1 dyoung
2252 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2253 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2254 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2255 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2256 1.8 msaitoh return IXGBE_ERR_EEPROM;
2257 1.1 dyoung }
2258 1.1 dyoung checksum += word;
2259 1.1 dyoung }
2260 1.1 dyoung
2261 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2262 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2263 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2264 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2265 1.8 msaitoh return IXGBE_ERR_EEPROM;
2266 1.8 msaitoh }
2267 1.8 msaitoh
2268 1.8 msaitoh /* If the pointer seems invalid */
2269 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2270 1.8 msaitoh continue;
2271 1.8 msaitoh
2272 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2273 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2274 1.8 msaitoh return IXGBE_ERR_EEPROM;
2275 1.8 msaitoh }
2276 1.8 msaitoh
2277 1.8 msaitoh if (length == 0xFFFF || length == 0)
2278 1.8 msaitoh continue;
2279 1.1 dyoung
2280 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2281 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2282 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2283 1.8 msaitoh return IXGBE_ERR_EEPROM;
2284 1.1 dyoung }
2285 1.8 msaitoh checksum += word;
2286 1.1 dyoung }
2287 1.1 dyoung }
2288 1.1 dyoung
2289 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2290 1.1 dyoung
2291 1.8 msaitoh return (s32)checksum;
2292 1.1 dyoung }
2293 1.1 dyoung
2294 1.1 dyoung /**
2295 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2296 1.1 dyoung * @hw: pointer to hardware structure
2297 1.1 dyoung * @checksum_val: calculated checksum
2298 1.1 dyoung *
2299 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2300 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2301 1.1 dyoung **/
2302 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2303 1.3 msaitoh u16 *checksum_val)
2304 1.1 dyoung {
2305 1.1 dyoung s32 status;
2306 1.1 dyoung u16 checksum;
2307 1.1 dyoung u16 read_checksum = 0;
2308 1.1 dyoung
2309 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2310 1.1 dyoung
2311 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2312 1.1 dyoung * not continue or we could be in for a very long wait while every
2313 1.1 dyoung * EEPROM read fails
2314 1.1 dyoung */
2315 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2316 1.8 msaitoh if (status) {
2317 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2318 1.8 msaitoh return status;
2319 1.8 msaitoh }
2320 1.1 dyoung
2321 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2322 1.8 msaitoh if (status < 0)
2323 1.8 msaitoh return status;
2324 1.1 dyoung
2325 1.8 msaitoh checksum = (u16)(status & 0xffff);
2326 1.1 dyoung
2327 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2328 1.8 msaitoh if (status) {
2329 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2330 1.8 msaitoh return status;
2331 1.1 dyoung }
2332 1.1 dyoung
2333 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2334 1.8 msaitoh * calculated checksum
2335 1.8 msaitoh */
2336 1.8 msaitoh if (read_checksum != checksum)
2337 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2338 1.8 msaitoh
2339 1.8 msaitoh /* If the user cares, return the calculated checksum */
2340 1.8 msaitoh if (checksum_val)
2341 1.8 msaitoh *checksum_val = checksum;
2342 1.8 msaitoh
2343 1.1 dyoung return status;
2344 1.1 dyoung }
2345 1.1 dyoung
2346 1.1 dyoung /**
2347 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2348 1.1 dyoung * @hw: pointer to hardware structure
2349 1.1 dyoung **/
2350 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2351 1.1 dyoung {
2352 1.1 dyoung s32 status;
2353 1.1 dyoung u16 checksum;
2354 1.1 dyoung
2355 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2356 1.1 dyoung
2357 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2358 1.1 dyoung * not continue or we could be in for a very long wait while every
2359 1.1 dyoung * EEPROM read fails
2360 1.1 dyoung */
2361 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2362 1.8 msaitoh if (status) {
2363 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2364 1.8 msaitoh return status;
2365 1.1 dyoung }
2366 1.1 dyoung
2367 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2368 1.8 msaitoh if (status < 0)
2369 1.8 msaitoh return status;
2370 1.8 msaitoh
2371 1.8 msaitoh checksum = (u16)(status & 0xffff);
2372 1.8 msaitoh
2373 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2374 1.8 msaitoh
2375 1.1 dyoung return status;
2376 1.1 dyoung }
2377 1.1 dyoung
2378 1.1 dyoung /**
2379 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2380 1.1 dyoung * @mac_addr: pointer to MAC address.
2381 1.1 dyoung *
2382 1.14 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2383 1.1 dyoung **/
2384 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2385 1.1 dyoung {
2386 1.1 dyoung s32 status = IXGBE_SUCCESS;
2387 1.1 dyoung
2388 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2389 1.1 dyoung
2390 1.1 dyoung /* Make sure it is not a multicast address */
2391 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2392 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2393 1.1 dyoung /* Not a broadcast address */
2394 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2395 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2396 1.1 dyoung /* Reject the zero address */
2397 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2398 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2399 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2400 1.1 dyoung }
2401 1.1 dyoung return status;
2402 1.1 dyoung }
2403 1.1 dyoung
2404 1.1 dyoung /**
2405 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2406 1.1 dyoung * @hw: pointer to hardware structure
2407 1.1 dyoung * @index: Receive address register to write
2408 1.1 dyoung * @addr: Address to put into receive address register
2409 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2410 1.1 dyoung * @enable_addr: set flag that address is active
2411 1.1 dyoung *
2412 1.1 dyoung * Puts an ethernet address into a receive address register.
2413 1.1 dyoung **/
2414 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2415 1.3 msaitoh u32 enable_addr)
2416 1.1 dyoung {
2417 1.1 dyoung u32 rar_low, rar_high;
2418 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2419 1.1 dyoung
2420 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2421 1.1 dyoung
2422 1.1 dyoung /* Make sure we are using a valid rar index range */
2423 1.1 dyoung if (index >= rar_entries) {
2424 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2425 1.6 msaitoh "RAR index %d is out of range.\n", index);
2426 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2427 1.1 dyoung }
2428 1.1 dyoung
2429 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2430 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2431 1.1 dyoung
2432 1.1 dyoung /*
2433 1.1 dyoung * HW expects these in little endian so we reverse the byte
2434 1.1 dyoung * order from network order (big endian) to little endian
2435 1.1 dyoung */
2436 1.1 dyoung rar_low = ((u32)addr[0] |
2437 1.3 msaitoh ((u32)addr[1] << 8) |
2438 1.3 msaitoh ((u32)addr[2] << 16) |
2439 1.3 msaitoh ((u32)addr[3] << 24));
2440 1.1 dyoung /*
2441 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2442 1.1 dyoung * so save everything except the lower 16 bits that hold part
2443 1.1 dyoung * of the address and the address valid bit.
2444 1.1 dyoung */
2445 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2446 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2447 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2448 1.1 dyoung
2449 1.1 dyoung if (enable_addr != 0)
2450 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2451 1.1 dyoung
2452 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2453 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2454 1.1 dyoung
2455 1.1 dyoung return IXGBE_SUCCESS;
2456 1.1 dyoung }
2457 1.1 dyoung
2458 1.1 dyoung /**
2459 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2460 1.1 dyoung * @hw: pointer to hardware structure
2461 1.1 dyoung * @index: Receive address register to write
2462 1.1 dyoung *
2463 1.1 dyoung * Clears an ethernet address from a receive address register.
2464 1.1 dyoung **/
2465 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2466 1.1 dyoung {
2467 1.1 dyoung u32 rar_high;
2468 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2469 1.1 dyoung
2470 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2471 1.1 dyoung
2472 1.1 dyoung /* Make sure we are using a valid rar index range */
2473 1.1 dyoung if (index >= rar_entries) {
2474 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2475 1.6 msaitoh "RAR index %d is out of range.\n", index);
2476 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2477 1.1 dyoung }
2478 1.1 dyoung
2479 1.1 dyoung /*
2480 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2481 1.1 dyoung * so save everything except the lower 16 bits that hold part
2482 1.1 dyoung * of the address and the address valid bit.
2483 1.1 dyoung */
2484 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2485 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2486 1.1 dyoung
2487 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2488 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2489 1.1 dyoung
2490 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2491 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2492 1.1 dyoung
2493 1.1 dyoung return IXGBE_SUCCESS;
2494 1.1 dyoung }
2495 1.1 dyoung
2496 1.1 dyoung /**
2497 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2498 1.1 dyoung * @hw: pointer to hardware structure
2499 1.1 dyoung *
2500 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2501 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2502 1.1 dyoung * the receiver is in reset when the routine is called.
2503 1.1 dyoung **/
2504 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2505 1.1 dyoung {
2506 1.1 dyoung u32 i;
2507 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2508 1.1 dyoung
2509 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2510 1.1 dyoung
2511 1.1 dyoung /*
2512 1.1 dyoung * If the current mac address is valid, assume it is a software override
2513 1.1 dyoung * to the permanent address.
2514 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2515 1.1 dyoung */
2516 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2517 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2518 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2519 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2520 1.1 dyoung
2521 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2522 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2523 1.3 msaitoh hw->mac.addr[2]);
2524 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2525 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2526 1.1 dyoung } else {
2527 1.1 dyoung /* Setup the receive address. */
2528 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2529 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2530 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2531 1.3 msaitoh hw->mac.addr[2]);
2532 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2533 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2534 1.1 dyoung
2535 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2536 1.14 msaitoh }
2537 1.14 msaitoh
2538 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2539 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2540 1.1 dyoung
2541 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2542 1.1 dyoung
2543 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2544 1.1 dyoung
2545 1.1 dyoung /* Zero out the other receive addresses. */
2546 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2547 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2548 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2549 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2550 1.1 dyoung }
2551 1.1 dyoung
2552 1.1 dyoung /* Clear the MTA */
2553 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2554 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2555 1.1 dyoung
2556 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2557 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2558 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2559 1.1 dyoung
2560 1.1 dyoung ixgbe_init_uta_tables(hw);
2561 1.1 dyoung
2562 1.1 dyoung return IXGBE_SUCCESS;
2563 1.1 dyoung }
2564 1.1 dyoung
2565 1.1 dyoung /**
2566 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2567 1.1 dyoung * @hw: pointer to hardware structure
2568 1.1 dyoung * @addr: new address
2569 1.22 msaitoh * @vmdq: VMDq "set" or "pool" index
2570 1.1 dyoung *
2571 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2572 1.1 dyoung **/
2573 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2574 1.1 dyoung {
2575 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2576 1.1 dyoung u32 rar;
2577 1.1 dyoung
2578 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2579 1.1 dyoung
2580 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2581 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2582 1.1 dyoung
2583 1.1 dyoung /*
2584 1.1 dyoung * Place this address in the RAR if there is room,
2585 1.1 dyoung * else put the controller into promiscuous mode
2586 1.1 dyoung */
2587 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2588 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2589 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2590 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2591 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2592 1.1 dyoung } else {
2593 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2594 1.1 dyoung }
2595 1.1 dyoung
2596 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2597 1.1 dyoung }
2598 1.1 dyoung
2599 1.1 dyoung /**
2600 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2601 1.1 dyoung * @hw: pointer to hardware structure
2602 1.1 dyoung * @addr_list: the list of new addresses
2603 1.1 dyoung * @addr_count: number of addresses
2604 1.1 dyoung * @next: iterator function to walk the address list
2605 1.1 dyoung *
2606 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2607 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2608 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2609 1.1 dyoung *
2610 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2611 1.1 dyoung * manually putting the device into promiscuous mode.
2612 1.1 dyoung **/
2613 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2614 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2615 1.1 dyoung {
2616 1.1 dyoung u8 *addr;
2617 1.1 dyoung u32 i;
2618 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2619 1.1 dyoung u32 uc_addr_in_use;
2620 1.1 dyoung u32 fctrl;
2621 1.1 dyoung u32 vmdq;
2622 1.1 dyoung
2623 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2624 1.1 dyoung
2625 1.1 dyoung /*
2626 1.1 dyoung * Clear accounting of old secondary address list,
2627 1.1 dyoung * don't count RAR[0]
2628 1.1 dyoung */
2629 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2630 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2631 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2632 1.1 dyoung
2633 1.1 dyoung /* Zero out the other receive addresses */
2634 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2635 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2636 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2637 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2638 1.1 dyoung }
2639 1.1 dyoung
2640 1.1 dyoung /* Add the new addresses */
2641 1.1 dyoung for (i = 0; i < addr_count; i++) {
2642 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2643 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2644 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2645 1.1 dyoung }
2646 1.1 dyoung
2647 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2648 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2649 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2650 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2651 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2652 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2653 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2654 1.1 dyoung }
2655 1.1 dyoung } else {
2656 1.1 dyoung /* only disable if set by overflow, not by user */
2657 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2658 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2659 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2660 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2661 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2662 1.1 dyoung }
2663 1.1 dyoung }
2664 1.1 dyoung
2665 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2666 1.1 dyoung return IXGBE_SUCCESS;
2667 1.1 dyoung }
2668 1.1 dyoung
2669 1.1 dyoung /**
2670 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2671 1.1 dyoung * @hw: pointer to hardware structure
2672 1.1 dyoung * @mc_addr: the multicast address
2673 1.1 dyoung *
2674 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2675 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2676 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2677 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2678 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2679 1.1 dyoung * to mc_filter_type.
2680 1.1 dyoung **/
2681 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2682 1.1 dyoung {
2683 1.1 dyoung u32 vector = 0;
2684 1.1 dyoung
2685 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2686 1.1 dyoung
2687 1.1 dyoung switch (hw->mac.mc_filter_type) {
2688 1.1 dyoung case 0: /* use bits [47:36] of the address */
2689 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2690 1.1 dyoung break;
2691 1.1 dyoung case 1: /* use bits [46:35] of the address */
2692 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2693 1.1 dyoung break;
2694 1.1 dyoung case 2: /* use bits [45:34] of the address */
2695 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2696 1.1 dyoung break;
2697 1.1 dyoung case 3: /* use bits [43:32] of the address */
2698 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2699 1.1 dyoung break;
2700 1.1 dyoung default: /* Invalid mc_filter_type */
2701 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2702 1.1 dyoung ASSERT(0);
2703 1.1 dyoung break;
2704 1.1 dyoung }
2705 1.1 dyoung
2706 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2707 1.1 dyoung vector &= 0xFFF;
2708 1.1 dyoung return vector;
2709 1.1 dyoung }
2710 1.1 dyoung
2711 1.1 dyoung /**
2712 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2713 1.1 dyoung * @hw: pointer to hardware structure
2714 1.22 msaitoh * @mc_addr: Multicast address
2715 1.1 dyoung *
2716 1.1 dyoung * Sets the bit-vector in the multicast table.
2717 1.1 dyoung **/
2718 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2719 1.1 dyoung {
2720 1.1 dyoung u32 vector;
2721 1.1 dyoung u32 vector_bit;
2722 1.1 dyoung u32 vector_reg;
2723 1.1 dyoung
2724 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2725 1.1 dyoung
2726 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2727 1.1 dyoung
2728 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2729 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2730 1.1 dyoung
2731 1.1 dyoung /*
2732 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2733 1.1 dyoung * like an array of 4096 bits. We want to set bit
2734 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2735 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2736 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2737 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2738 1.1 dyoung * the value.
2739 1.1 dyoung */
2740 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2741 1.1 dyoung vector_bit = vector & 0x1F;
2742 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2743 1.1 dyoung }
2744 1.1 dyoung
2745 1.1 dyoung /**
2746 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2747 1.1 dyoung * @hw: pointer to hardware structure
2748 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2749 1.1 dyoung * @mc_addr_count: number of addresses
2750 1.1 dyoung * @next: iterator function to walk the multicast address list
2751 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2752 1.1 dyoung *
2753 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2754 1.3 msaitoh * Hashes the given addresses into the multicast table.
2755 1.1 dyoung **/
2756 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2757 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2758 1.3 msaitoh bool clear)
2759 1.1 dyoung {
2760 1.1 dyoung u32 i;
2761 1.1 dyoung u32 vmdq;
2762 1.1 dyoung
2763 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2764 1.1 dyoung
2765 1.1 dyoung /*
2766 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2767 1.1 dyoung * use.
2768 1.1 dyoung */
2769 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2770 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2771 1.1 dyoung
2772 1.1 dyoung /* Clear mta_shadow */
2773 1.3 msaitoh if (clear) {
2774 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2775 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2776 1.3 msaitoh }
2777 1.1 dyoung
2778 1.1 dyoung /* Update mta_shadow */
2779 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2780 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2781 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2782 1.1 dyoung }
2783 1.1 dyoung
2784 1.1 dyoung /* Enable mta */
2785 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2786 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2787 1.1 dyoung hw->mac.mta_shadow[i]);
2788 1.1 dyoung
2789 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2790 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2791 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2792 1.1 dyoung
2793 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2794 1.1 dyoung return IXGBE_SUCCESS;
2795 1.1 dyoung }
2796 1.1 dyoung
2797 1.1 dyoung /**
2798 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2799 1.1 dyoung * @hw: pointer to hardware structure
2800 1.1 dyoung *
2801 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2802 1.1 dyoung **/
2803 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2804 1.1 dyoung {
2805 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2806 1.1 dyoung
2807 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2808 1.1 dyoung
2809 1.1 dyoung if (a->mta_in_use > 0)
2810 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2811 1.3 msaitoh hw->mac.mc_filter_type);
2812 1.1 dyoung
2813 1.1 dyoung return IXGBE_SUCCESS;
2814 1.1 dyoung }
2815 1.1 dyoung
2816 1.1 dyoung /**
2817 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2818 1.1 dyoung * @hw: pointer to hardware structure
2819 1.1 dyoung *
2820 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2821 1.1 dyoung **/
2822 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2823 1.1 dyoung {
2824 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2825 1.1 dyoung
2826 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2827 1.1 dyoung
2828 1.1 dyoung if (a->mta_in_use > 0)
2829 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2830 1.1 dyoung
2831 1.1 dyoung return IXGBE_SUCCESS;
2832 1.1 dyoung }
2833 1.1 dyoung
2834 1.1 dyoung /**
2835 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2836 1.1 dyoung * @hw: pointer to hardware structure
2837 1.1 dyoung *
2838 1.1 dyoung * Enable flow control according to the current settings.
2839 1.1 dyoung **/
2840 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2841 1.1 dyoung {
2842 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2843 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2844 1.1 dyoung u32 reg;
2845 1.1 dyoung u32 fcrtl, fcrth;
2846 1.4 msaitoh int i;
2847 1.1 dyoung
2848 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2849 1.1 dyoung
2850 1.4 msaitoh /* Validate the water mark configuration */
2851 1.4 msaitoh if (!hw->fc.pause_time) {
2852 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2853 1.4 msaitoh goto out;
2854 1.4 msaitoh }
2855 1.4 msaitoh
2856 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2857 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2858 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2859 1.4 msaitoh hw->fc.high_water[i]) {
2860 1.4 msaitoh if (!hw->fc.low_water[i] ||
2861 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2862 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2863 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2864 1.4 msaitoh goto out;
2865 1.4 msaitoh }
2866 1.4 msaitoh }
2867 1.4 msaitoh }
2868 1.4 msaitoh
2869 1.1 dyoung /* Negotiate the fc mode to use */
2870 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2871 1.1 dyoung
2872 1.1 dyoung /* Disable any previous flow control settings */
2873 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2874 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2875 1.1 dyoung
2876 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2877 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2878 1.1 dyoung
2879 1.1 dyoung /*
2880 1.1 dyoung * The possible values of fc.current_mode are:
2881 1.1 dyoung * 0: Flow control is completely disabled
2882 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2883 1.1 dyoung * but not send pause frames).
2884 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2885 1.1 dyoung * we do not support receiving pause frames).
2886 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2887 1.1 dyoung * other: Invalid.
2888 1.1 dyoung */
2889 1.1 dyoung switch (hw->fc.current_mode) {
2890 1.1 dyoung case ixgbe_fc_none:
2891 1.1 dyoung /*
2892 1.1 dyoung * Flow control is disabled by software override or autoneg.
2893 1.1 dyoung * The code below will actually disable it in the HW.
2894 1.1 dyoung */
2895 1.1 dyoung break;
2896 1.1 dyoung case ixgbe_fc_rx_pause:
2897 1.1 dyoung /*
2898 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2899 1.1 dyoung * disabled by software override. Since there really
2900 1.1 dyoung * isn't a way to advertise that we are capable of RX
2901 1.1 dyoung * Pause ONLY, we will advertise that we support both
2902 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2903 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2904 1.1 dyoung */
2905 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2906 1.1 dyoung break;
2907 1.1 dyoung case ixgbe_fc_tx_pause:
2908 1.1 dyoung /*
2909 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2910 1.1 dyoung * disabled by software override.
2911 1.1 dyoung */
2912 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2913 1.1 dyoung break;
2914 1.1 dyoung case ixgbe_fc_full:
2915 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2916 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2917 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2918 1.1 dyoung break;
2919 1.1 dyoung default:
2920 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2921 1.6 msaitoh "Flow control param set incorrectly\n");
2922 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2923 1.1 dyoung goto out;
2924 1.1 dyoung break;
2925 1.1 dyoung }
2926 1.1 dyoung
2927 1.1 dyoung /* Set 802.3x based flow control settings. */
2928 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2929 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2930 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2931 1.1 dyoung
2932 1.1 dyoung
2933 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2934 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2935 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2936 1.4 msaitoh hw->fc.high_water[i]) {
2937 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2938 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2939 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2940 1.4 msaitoh } else {
2941 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2942 1.4 msaitoh /*
2943 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2944 1.4 msaitoh * switch is enabled we must set the high water mark
2945 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2946 1.8 msaitoh * the Tx switch to function even under heavy Rx
2947 1.8 msaitoh * workloads.
2948 1.4 msaitoh */
2949 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2950 1.4 msaitoh }
2951 1.4 msaitoh
2952 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2953 1.1 dyoung }
2954 1.1 dyoung
2955 1.1 dyoung /* Configure pause time (2 TCs per register) */
2956 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001;
2957 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2958 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2959 1.1 dyoung
2960 1.4 msaitoh /* Configure flow control refresh threshold value */
2961 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2962 1.1 dyoung
2963 1.1 dyoung out:
2964 1.1 dyoung return ret_val;
2965 1.1 dyoung }
2966 1.1 dyoung
2967 1.1 dyoung /**
2968 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2969 1.1 dyoung * @hw: pointer to hardware structure
2970 1.4 msaitoh * @adv_reg: flow control advertised settings
2971 1.4 msaitoh * @lp_reg: link partner's flow control settings
2972 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2973 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2974 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2975 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2976 1.1 dyoung *
2977 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2978 1.4 msaitoh * advertised settings
2979 1.1 dyoung **/
2980 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2981 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2982 1.1 dyoung {
2983 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2984 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2985 1.6 msaitoh "Local or link partner's advertised flow control "
2986 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2987 1.6 msaitoh adv_reg, lp_reg);
2988 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2989 1.6 msaitoh }
2990 1.1 dyoung
2991 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2992 1.4 msaitoh /*
2993 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2994 1.4 msaitoh * of pause frames. In this case, we had to advertise
2995 1.4 msaitoh * FULL flow control because we could not advertise RX
2996 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2997 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2998 1.4 msaitoh */
2999 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
3000 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
3001 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
3002 1.4 msaitoh } else {
3003 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3004 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3005 1.4 msaitoh }
3006 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3007 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3008 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
3009 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3010 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3011 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3012 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3013 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3014 1.4 msaitoh } else {
3015 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
3016 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
3017 1.4 msaitoh }
3018 1.4 msaitoh return IXGBE_SUCCESS;
3019 1.4 msaitoh }
3020 1.1 dyoung
3021 1.4 msaitoh /**
3022 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3023 1.4 msaitoh * @hw: pointer to hardware structure
3024 1.4 msaitoh *
3025 1.4 msaitoh * Enable flow control according on 1 gig fiber.
3026 1.4 msaitoh **/
3027 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3028 1.4 msaitoh {
3029 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3030 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3031 1.1 dyoung
3032 1.1 dyoung /*
3033 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3034 1.4 msaitoh * - link is up but AN did not complete, or if
3035 1.4 msaitoh * - link is up and AN completed but timed out
3036 1.1 dyoung */
3037 1.4 msaitoh
3038 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3039 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3040 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3041 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3042 1.1 dyoung goto out;
3043 1.6 msaitoh }
3044 1.1 dyoung
3045 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3046 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3047 1.1 dyoung
3048 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3049 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3050 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3051 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3052 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3053 1.1 dyoung
3054 1.1 dyoung out:
3055 1.1 dyoung return ret_val;
3056 1.1 dyoung }
3057 1.1 dyoung
3058 1.1 dyoung /**
3059 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3060 1.1 dyoung * @hw: pointer to hardware structure
3061 1.1 dyoung *
3062 1.1 dyoung * Enable flow control according to IEEE clause 37.
3063 1.1 dyoung **/
3064 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3065 1.1 dyoung {
3066 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3067 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3068 1.1 dyoung
3069 1.1 dyoung /*
3070 1.1 dyoung * On backplane, bail out if
3071 1.1 dyoung * - backplane autoneg was not completed, or if
3072 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3073 1.1 dyoung */
3074 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3075 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3076 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3077 1.1 dyoung goto out;
3078 1.6 msaitoh }
3079 1.1 dyoung
3080 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3081 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3082 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3083 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3084 1.1 dyoung goto out;
3085 1.6 msaitoh }
3086 1.1 dyoung }
3087 1.1 dyoung /*
3088 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3089 1.1 dyoung * local flow control settings accordingly
3090 1.1 dyoung */
3091 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3092 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3093 1.1 dyoung
3094 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3095 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3096 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3097 1.1 dyoung
3098 1.1 dyoung out:
3099 1.1 dyoung return ret_val;
3100 1.1 dyoung }
3101 1.1 dyoung
3102 1.1 dyoung /**
3103 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3104 1.1 dyoung * @hw: pointer to hardware structure
3105 1.1 dyoung *
3106 1.1 dyoung * Enable flow control according to IEEE clause 37.
3107 1.1 dyoung **/
3108 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3109 1.1 dyoung {
3110 1.1 dyoung u16 technology_ability_reg = 0;
3111 1.1 dyoung u16 lp_technology_ability_reg = 0;
3112 1.1 dyoung
3113 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3114 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3115 1.1 dyoung &technology_ability_reg);
3116 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3117 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3118 1.1 dyoung &lp_technology_ability_reg);
3119 1.1 dyoung
3120 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3121 1.1 dyoung (u32)lp_technology_ability_reg,
3122 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3123 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3124 1.1 dyoung }
3125 1.1 dyoung
3126 1.1 dyoung /**
3127 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
3128 1.1 dyoung * @hw: pointer to hardware structure
3129 1.1 dyoung *
3130 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3131 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3132 1.1 dyoung **/
3133 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3134 1.1 dyoung {
3135 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3136 1.4 msaitoh ixgbe_link_speed speed;
3137 1.4 msaitoh bool link_up;
3138 1.1 dyoung
3139 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3140 1.1 dyoung
3141 1.1 dyoung /*
3142 1.4 msaitoh * AN should have completed when the cable was plugged in.
3143 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3144 1.4 msaitoh * - FC autoneg is disabled, or if
3145 1.4 msaitoh * - link is not up.
3146 1.1 dyoung */
3147 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3148 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3149 1.6 msaitoh "Flow control autoneg is disabled");
3150 1.1 dyoung goto out;
3151 1.6 msaitoh }
3152 1.1 dyoung
3153 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3154 1.6 msaitoh if (!link_up) {
3155 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3156 1.1 dyoung goto out;
3157 1.6 msaitoh }
3158 1.1 dyoung
3159 1.1 dyoung switch (hw->phy.media_type) {
3160 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3161 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3162 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3163 1.1 dyoung case ixgbe_media_type_fiber:
3164 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3165 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3166 1.4 msaitoh break;
3167 1.4 msaitoh
3168 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3169 1.1 dyoung case ixgbe_media_type_backplane:
3170 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3171 1.1 dyoung break;
3172 1.1 dyoung
3173 1.4 msaitoh /* Autoneg flow control on copper adapters */
3174 1.1 dyoung case ixgbe_media_type_copper:
3175 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3176 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3177 1.1 dyoung break;
3178 1.1 dyoung
3179 1.1 dyoung default:
3180 1.1 dyoung break;
3181 1.1 dyoung }
3182 1.1 dyoung
3183 1.4 msaitoh out:
3184 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3185 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3186 1.4 msaitoh } else {
3187 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3188 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3189 1.3 msaitoh }
3190 1.1 dyoung }
3191 1.1 dyoung
3192 1.6 msaitoh /*
3193 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3194 1.6 msaitoh * @hw: pointer to hardware structure
3195 1.6 msaitoh *
3196 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3197 1.6 msaitoh *
3198 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3199 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3200 1.6 msaitoh * 800 = 80 millisec.
3201 1.6 msaitoh */
3202 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3203 1.6 msaitoh {
3204 1.6 msaitoh s16 devctl2;
3205 1.6 msaitoh u32 pollcnt;
3206 1.6 msaitoh
3207 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3208 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3209 1.6 msaitoh
3210 1.6 msaitoh switch (devctl2) {
3211 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3212 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3213 1.6 msaitoh break;
3214 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3215 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3216 1.6 msaitoh break;
3217 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3218 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3219 1.6 msaitoh break;
3220 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3221 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3222 1.6 msaitoh break;
3223 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3224 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3225 1.6 msaitoh break;
3226 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3227 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3228 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3229 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3230 1.6 msaitoh default:
3231 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3232 1.6 msaitoh break;
3233 1.6 msaitoh }
3234 1.6 msaitoh
3235 1.6 msaitoh /* add 10% to spec maximum */
3236 1.6 msaitoh return (pollcnt * 11) / 10;
3237 1.6 msaitoh }
3238 1.6 msaitoh
3239 1.1 dyoung /**
3240 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3241 1.1 dyoung * @hw: pointer to hardware structure
3242 1.1 dyoung *
3243 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3244 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3245 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3246 1.1 dyoung * is returned signifying master requests disabled.
3247 1.1 dyoung **/
3248 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3249 1.1 dyoung {
3250 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3251 1.6 msaitoh u32 i, poll;
3252 1.8 msaitoh u16 value;
3253 1.1 dyoung
3254 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3255 1.1 dyoung
3256 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3257 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3258 1.3 msaitoh
3259 1.6 msaitoh /* Exit if master requests are blocked */
3260 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3261 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3262 1.1 dyoung goto out;
3263 1.1 dyoung
3264 1.3 msaitoh /* Poll for master request bit to clear */
3265 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3266 1.3 msaitoh usec_delay(100);
3267 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3268 1.3 msaitoh goto out;
3269 1.1 dyoung }
3270 1.1 dyoung
3271 1.3 msaitoh /*
3272 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3273 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3274 1.3 msaitoh * of this need. The first reset prevents new master requests from
3275 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3276 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3277 1.3 msaitoh * again to clear out any effects they may have had on our device.
3278 1.3 msaitoh */
3279 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3280 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3281 1.1 dyoung
3282 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3283 1.10 msaitoh goto out;
3284 1.10 msaitoh
3285 1.1 dyoung /*
3286 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3287 1.1 dyoung * transactions pending.
3288 1.1 dyoung */
3289 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3290 1.6 msaitoh for (i = 0; i < poll; i++) {
3291 1.3 msaitoh usec_delay(100);
3292 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3293 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3294 1.8 msaitoh goto out;
3295 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3296 1.3 msaitoh goto out;
3297 1.1 dyoung }
3298 1.1 dyoung
3299 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3300 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3301 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3302 1.1 dyoung
3303 1.1 dyoung out:
3304 1.1 dyoung return status;
3305 1.1 dyoung }
3306 1.1 dyoung
3307 1.1 dyoung /**
3308 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3309 1.1 dyoung * @hw: pointer to hardware structure
3310 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3311 1.1 dyoung *
3312 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3313 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3314 1.1 dyoung **/
3315 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3316 1.1 dyoung {
3317 1.6 msaitoh u32 gssr = 0;
3318 1.1 dyoung u32 swmask = mask;
3319 1.1 dyoung u32 fwmask = mask << 5;
3320 1.6 msaitoh u32 timeout = 200;
3321 1.6 msaitoh u32 i;
3322 1.1 dyoung
3323 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3324 1.1 dyoung
3325 1.6 msaitoh for (i = 0; i < timeout; i++) {
3326 1.1 dyoung /*
3327 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3328 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3329 1.1 dyoung */
3330 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3331 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3332 1.1 dyoung
3333 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3334 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3335 1.6 msaitoh gssr |= swmask;
3336 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3337 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3338 1.6 msaitoh return IXGBE_SUCCESS;
3339 1.6 msaitoh } else {
3340 1.6 msaitoh /* Resource is currently in use by FW or SW */
3341 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3342 1.6 msaitoh msec_delay(5);
3343 1.6 msaitoh }
3344 1.1 dyoung }
3345 1.1 dyoung
3346 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3347 1.6 msaitoh if (gssr & (fwmask | swmask))
3348 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3349 1.1 dyoung
3350 1.6 msaitoh msec_delay(5);
3351 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3352 1.1 dyoung }
3353 1.1 dyoung
3354 1.1 dyoung /**
3355 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3356 1.1 dyoung * @hw: pointer to hardware structure
3357 1.1 dyoung * @mask: Mask to specify which semaphore to release
3358 1.1 dyoung *
3359 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3360 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3361 1.1 dyoung **/
3362 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3363 1.1 dyoung {
3364 1.1 dyoung u32 gssr;
3365 1.1 dyoung u32 swmask = mask;
3366 1.1 dyoung
3367 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3368 1.1 dyoung
3369 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3370 1.1 dyoung
3371 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3372 1.1 dyoung gssr &= ~swmask;
3373 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3374 1.1 dyoung
3375 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3376 1.1 dyoung }
3377 1.1 dyoung
3378 1.1 dyoung /**
3379 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3380 1.3 msaitoh * @hw: pointer to hardware structure
3381 1.3 msaitoh *
3382 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3383 1.3 msaitoh * the Rx security block
3384 1.3 msaitoh **/
3385 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3386 1.3 msaitoh {
3387 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000
3388 1.3 msaitoh
3389 1.3 msaitoh int i;
3390 1.3 msaitoh int secrxreg;
3391 1.3 msaitoh
3392 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3393 1.3 msaitoh
3394 1.3 msaitoh
3395 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3396 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3397 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3398 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3399 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3400 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3401 1.3 msaitoh break;
3402 1.3 msaitoh else
3403 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3404 1.17 msaitoh usec_delay(10);
3405 1.3 msaitoh }
3406 1.3 msaitoh
3407 1.3 msaitoh /* For informational purposes only */
3408 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3409 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3410 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3411 1.3 msaitoh
3412 1.3 msaitoh return IXGBE_SUCCESS;
3413 1.3 msaitoh }
3414 1.3 msaitoh
3415 1.3 msaitoh /**
3416 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3417 1.8 msaitoh * @hw: pointer to hardware structure
3418 1.22 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken
3419 1.8 msaitoh * @reg_val: Value we read from AUTOC
3420 1.8 msaitoh *
3421 1.8 msaitoh * The default case requires no protection so just to the register read.
3422 1.8 msaitoh */
3423 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3424 1.8 msaitoh {
3425 1.8 msaitoh *locked = FALSE;
3426 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3427 1.8 msaitoh return IXGBE_SUCCESS;
3428 1.8 msaitoh }
3429 1.8 msaitoh
3430 1.8 msaitoh /**
3431 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3432 1.8 msaitoh * @hw: pointer to hardware structure
3433 1.8 msaitoh * @reg_val: value to write to AUTOC
3434 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3435 1.8 msaitoh * previous read.
3436 1.8 msaitoh *
3437 1.8 msaitoh * The default case requires no protection so just to the register write.
3438 1.8 msaitoh */
3439 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3440 1.8 msaitoh {
3441 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3442 1.8 msaitoh
3443 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3444 1.8 msaitoh return IXGBE_SUCCESS;
3445 1.8 msaitoh }
3446 1.8 msaitoh
3447 1.8 msaitoh /**
3448 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3449 1.3 msaitoh * @hw: pointer to hardware structure
3450 1.3 msaitoh *
3451 1.3 msaitoh * Enables the receive data path.
3452 1.3 msaitoh **/
3453 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3454 1.3 msaitoh {
3455 1.14 msaitoh u32 secrxreg;
3456 1.3 msaitoh
3457 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3458 1.3 msaitoh
3459 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3460 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3461 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3462 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3463 1.3 msaitoh
3464 1.3 msaitoh return IXGBE_SUCCESS;
3465 1.3 msaitoh }
3466 1.3 msaitoh
3467 1.3 msaitoh /**
3468 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3469 1.1 dyoung * @hw: pointer to hardware structure
3470 1.1 dyoung * @regval: register value to write to RXCTRL
3471 1.1 dyoung *
3472 1.1 dyoung * Enables the Rx DMA unit
3473 1.1 dyoung **/
3474 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3475 1.1 dyoung {
3476 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3477 1.1 dyoung
3478 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3479 1.8 msaitoh ixgbe_enable_rx(hw);
3480 1.8 msaitoh else
3481 1.8 msaitoh ixgbe_disable_rx(hw);
3482 1.1 dyoung
3483 1.1 dyoung return IXGBE_SUCCESS;
3484 1.1 dyoung }
3485 1.1 dyoung
3486 1.1 dyoung /**
3487 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3488 1.1 dyoung * @hw: pointer to hardware structure
3489 1.1 dyoung * @index: led number to blink
3490 1.1 dyoung **/
3491 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3492 1.1 dyoung {
3493 1.1 dyoung ixgbe_link_speed speed = 0;
3494 1.1 dyoung bool link_up = 0;
3495 1.8 msaitoh u32 autoc_reg = 0;
3496 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3497 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3498 1.8 msaitoh bool locked = FALSE;
3499 1.1 dyoung
3500 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3501 1.1 dyoung
3502 1.14 msaitoh if (index > 3)
3503 1.14 msaitoh return IXGBE_ERR_PARAM;
3504 1.14 msaitoh
3505 1.1 dyoung /*
3506 1.1 dyoung * Link must be up to auto-blink the LEDs;
3507 1.1 dyoung * Force it if link is down.
3508 1.1 dyoung */
3509 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3510 1.1 dyoung
3511 1.1 dyoung if (!link_up) {
3512 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3513 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3514 1.8 msaitoh goto out;
3515 1.5 msaitoh
3516 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3517 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3518 1.8 msaitoh
3519 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3520 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3521 1.8 msaitoh goto out;
3522 1.8 msaitoh
3523 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3524 1.1 dyoung msec_delay(10);
3525 1.1 dyoung }
3526 1.1 dyoung
3527 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3528 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3529 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3530 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3531 1.1 dyoung
3532 1.5 msaitoh out:
3533 1.5 msaitoh return ret_val;
3534 1.1 dyoung }
3535 1.1 dyoung
3536 1.1 dyoung /**
3537 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3538 1.1 dyoung * @hw: pointer to hardware structure
3539 1.1 dyoung * @index: led number to stop blinking
3540 1.1 dyoung **/
3541 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3542 1.1 dyoung {
3543 1.8 msaitoh u32 autoc_reg = 0;
3544 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3545 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3546 1.8 msaitoh bool locked = FALSE;
3547 1.1 dyoung
3548 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3549 1.1 dyoung
3550 1.14 msaitoh if (index > 3)
3551 1.14 msaitoh return IXGBE_ERR_PARAM;
3552 1.14 msaitoh
3553 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3554 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3555 1.8 msaitoh goto out;
3556 1.1 dyoung
3557 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3558 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3559 1.1 dyoung
3560 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3561 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3562 1.8 msaitoh goto out;
3563 1.5 msaitoh
3564 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3565 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3566 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3567 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3568 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3569 1.1 dyoung
3570 1.5 msaitoh out:
3571 1.5 msaitoh return ret_val;
3572 1.1 dyoung }
3573 1.1 dyoung
3574 1.1 dyoung /**
3575 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3576 1.1 dyoung * @hw: pointer to hardware structure
3577 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3578 1.1 dyoung *
3579 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3580 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3581 1.1 dyoung * get and set mac_addr routines.
3582 1.1 dyoung **/
3583 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3584 1.3 msaitoh u16 *san_mac_offset)
3585 1.1 dyoung {
3586 1.6 msaitoh s32 ret_val;
3587 1.6 msaitoh
3588 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3589 1.1 dyoung
3590 1.1 dyoung /*
3591 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3592 1.1 dyoung * available.
3593 1.1 dyoung */
3594 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3595 1.6 msaitoh san_mac_offset);
3596 1.6 msaitoh if (ret_val) {
3597 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3598 1.6 msaitoh "eeprom at offset %d failed",
3599 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3600 1.6 msaitoh }
3601 1.1 dyoung
3602 1.6 msaitoh return ret_val;
3603 1.1 dyoung }
3604 1.1 dyoung
3605 1.1 dyoung /**
3606 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3607 1.1 dyoung * @hw: pointer to hardware structure
3608 1.1 dyoung * @san_mac_addr: SAN MAC address
3609 1.1 dyoung *
3610 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3611 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3612 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3613 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3614 1.1 dyoung **/
3615 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3616 1.1 dyoung {
3617 1.1 dyoung u16 san_mac_data, san_mac_offset;
3618 1.1 dyoung u8 i;
3619 1.6 msaitoh s32 ret_val;
3620 1.1 dyoung
3621 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3622 1.1 dyoung
3623 1.1 dyoung /*
3624 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3625 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3626 1.1 dyoung */
3627 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3628 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3629 1.1 dyoung goto san_mac_addr_out;
3630 1.1 dyoung
3631 1.1 dyoung /* make sure we know which port we need to program */
3632 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3633 1.1 dyoung /* apply the port offset to the address offset */
3634 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3635 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3636 1.1 dyoung for (i = 0; i < 3; i++) {
3637 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3638 1.6 msaitoh &san_mac_data);
3639 1.6 msaitoh if (ret_val) {
3640 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3641 1.6 msaitoh "eeprom read at offset %d failed",
3642 1.6 msaitoh san_mac_offset);
3643 1.6 msaitoh goto san_mac_addr_out;
3644 1.6 msaitoh }
3645 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3646 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3647 1.1 dyoung san_mac_offset++;
3648 1.1 dyoung }
3649 1.6 msaitoh return IXGBE_SUCCESS;
3650 1.1 dyoung
3651 1.1 dyoung san_mac_addr_out:
3652 1.6 msaitoh /*
3653 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3654 1.6 msaitoh * error though, so just wipe the local address and return.
3655 1.6 msaitoh */
3656 1.6 msaitoh for (i = 0; i < 6; i++)
3657 1.6 msaitoh san_mac_addr[i] = 0xFF;
3658 1.1 dyoung return IXGBE_SUCCESS;
3659 1.1 dyoung }
3660 1.1 dyoung
3661 1.1 dyoung /**
3662 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3663 1.1 dyoung * @hw: pointer to hardware structure
3664 1.1 dyoung * @san_mac_addr: SAN MAC address
3665 1.1 dyoung *
3666 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3667 1.1 dyoung **/
3668 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3669 1.1 dyoung {
3670 1.6 msaitoh s32 ret_val;
3671 1.1 dyoung u16 san_mac_data, san_mac_offset;
3672 1.1 dyoung u8 i;
3673 1.1 dyoung
3674 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3675 1.1 dyoung
3676 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3677 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3678 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3679 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3680 1.1 dyoung
3681 1.1 dyoung /* Make sure we know which port we need to write */
3682 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3683 1.1 dyoung /* Apply the port offset to the address offset */
3684 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3685 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3686 1.1 dyoung
3687 1.1 dyoung for (i = 0; i < 3; i++) {
3688 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3689 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3690 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3691 1.1 dyoung san_mac_offset++;
3692 1.1 dyoung }
3693 1.1 dyoung
3694 1.6 msaitoh return IXGBE_SUCCESS;
3695 1.1 dyoung }
3696 1.1 dyoung
3697 1.1 dyoung /**
3698 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3699 1.1 dyoung * @hw: pointer to hardware structure
3700 1.1 dyoung *
3701 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3702 1.1 dyoung * the capabilities table.
3703 1.1 dyoung **/
3704 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3705 1.1 dyoung {
3706 1.4 msaitoh u16 msix_count = 1;
3707 1.4 msaitoh u16 max_msix_count;
3708 1.4 msaitoh u16 pcie_offset;
3709 1.4 msaitoh
3710 1.4 msaitoh switch (hw->mac.type) {
3711 1.4 msaitoh case ixgbe_mac_82598EB:
3712 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3713 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3714 1.4 msaitoh break;
3715 1.4 msaitoh case ixgbe_mac_82599EB:
3716 1.4 msaitoh case ixgbe_mac_X540:
3717 1.8 msaitoh case ixgbe_mac_X550:
3718 1.8 msaitoh case ixgbe_mac_X550EM_x:
3719 1.14 msaitoh case ixgbe_mac_X550EM_a:
3720 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3721 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3722 1.4 msaitoh break;
3723 1.4 msaitoh default:
3724 1.4 msaitoh return msix_count;
3725 1.4 msaitoh }
3726 1.1 dyoung
3727 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3728 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3729 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3730 1.8 msaitoh msix_count = 0;
3731 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3732 1.4 msaitoh
3733 1.4 msaitoh /* MSI-X count is zero-based in HW */
3734 1.4 msaitoh msix_count++;
3735 1.4 msaitoh
3736 1.4 msaitoh if (msix_count > max_msix_count)
3737 1.4 msaitoh msix_count = max_msix_count;
3738 1.1 dyoung
3739 1.1 dyoung return msix_count;
3740 1.1 dyoung }
3741 1.1 dyoung
3742 1.1 dyoung /**
3743 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3744 1.1 dyoung * @hw: pointer to hardware structure
3745 1.1 dyoung * @addr: Address to put into receive address register
3746 1.1 dyoung * @vmdq: VMDq pool to assign
3747 1.1 dyoung *
3748 1.1 dyoung * Puts an ethernet address into a receive address register, or
3749 1.11 msaitoh * finds the rar that it is already in; adds to the pool list
3750 1.1 dyoung **/
3751 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3752 1.1 dyoung {
3753 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3754 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3755 1.1 dyoung u32 rar;
3756 1.1 dyoung u32 rar_low, rar_high;
3757 1.1 dyoung u32 addr_low, addr_high;
3758 1.1 dyoung
3759 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3760 1.1 dyoung
3761 1.1 dyoung /* swap bytes for HW little endian */
3762 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3763 1.1 dyoung | (addr[2] << 16)
3764 1.1 dyoung | (addr[3] << 24);
3765 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3766 1.1 dyoung
3767 1.1 dyoung /*
3768 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3769 1.1 dyoung * rar_highwater points to just after the highest currently used
3770 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3771 1.1 dyoung * rar to the top.
3772 1.1 dyoung */
3773 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3774 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3775 1.1 dyoung
3776 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3777 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3778 1.1 dyoung first_empty_rar = rar;
3779 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3780 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3781 1.1 dyoung if (rar_low == addr_low)
3782 1.1 dyoung break; /* found it already in the rars */
3783 1.1 dyoung }
3784 1.1 dyoung }
3785 1.1 dyoung
3786 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3787 1.1 dyoung /* already there so just add to the pool bits */
3788 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3789 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3790 1.1 dyoung /* stick it into first empty RAR slot we found */
3791 1.1 dyoung rar = first_empty_rar;
3792 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3793 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3794 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3795 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3796 1.1 dyoung hw->mac.rar_highwater++;
3797 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3798 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3799 1.1 dyoung }
3800 1.1 dyoung
3801 1.1 dyoung /*
3802 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3803 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3804 1.1 dyoung */
3805 1.1 dyoung if (rar == 0)
3806 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3807 1.1 dyoung
3808 1.1 dyoung return rar;
3809 1.1 dyoung }
3810 1.1 dyoung
3811 1.1 dyoung /**
3812 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3813 1.1 dyoung * @hw: pointer to hardware struct
3814 1.1 dyoung * @rar: receive address register index to disassociate
3815 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3816 1.1 dyoung **/
3817 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3818 1.1 dyoung {
3819 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3820 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3821 1.1 dyoung
3822 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3823 1.1 dyoung
3824 1.1 dyoung /* Make sure we are using a valid rar index range */
3825 1.1 dyoung if (rar >= rar_entries) {
3826 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3827 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3828 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3829 1.1 dyoung }
3830 1.1 dyoung
3831 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3832 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3833 1.1 dyoung
3834 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3835 1.8 msaitoh goto done;
3836 1.8 msaitoh
3837 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3838 1.1 dyoung goto done;
3839 1.1 dyoung
3840 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3841 1.1 dyoung if (mpsar_lo) {
3842 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3843 1.1 dyoung mpsar_lo = 0;
3844 1.1 dyoung }
3845 1.1 dyoung if (mpsar_hi) {
3846 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3847 1.1 dyoung mpsar_hi = 0;
3848 1.1 dyoung }
3849 1.1 dyoung } else if (vmdq < 32) {
3850 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3851 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3852 1.1 dyoung } else {
3853 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3854 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3855 1.1 dyoung }
3856 1.1 dyoung
3857 1.1 dyoung /* was that the last pool using this rar? */
3858 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3859 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3860 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3861 1.1 dyoung done:
3862 1.1 dyoung return IXGBE_SUCCESS;
3863 1.1 dyoung }
3864 1.1 dyoung
3865 1.1 dyoung /**
3866 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3867 1.1 dyoung * @hw: pointer to hardware struct
3868 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3869 1.1 dyoung * @vmdq: VMDq pool index
3870 1.1 dyoung **/
3871 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3872 1.1 dyoung {
3873 1.1 dyoung u32 mpsar;
3874 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3875 1.1 dyoung
3876 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3877 1.1 dyoung
3878 1.1 dyoung /* Make sure we are using a valid rar index range */
3879 1.1 dyoung if (rar >= rar_entries) {
3880 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3881 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3882 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3883 1.1 dyoung }
3884 1.1 dyoung
3885 1.1 dyoung if (vmdq < 32) {
3886 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3887 1.1 dyoung mpsar |= 1 << vmdq;
3888 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3889 1.1 dyoung } else {
3890 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3891 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3892 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3893 1.1 dyoung }
3894 1.1 dyoung return IXGBE_SUCCESS;
3895 1.1 dyoung }
3896 1.1 dyoung
3897 1.1 dyoung /**
3898 1.4 msaitoh * This function should only be involved in the IOV mode.
3899 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3900 1.4 msaitoh * VFs advertized and not 0.
3901 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3902 1.4 msaitoh *
3903 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3904 1.4 msaitoh * @hw: pointer to hardware struct
3905 1.4 msaitoh * @vmdq: VMDq pool index
3906 1.4 msaitoh **/
3907 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3908 1.4 msaitoh {
3909 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3910 1.4 msaitoh
3911 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3912 1.4 msaitoh
3913 1.4 msaitoh if (vmdq < 32) {
3914 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3915 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3916 1.4 msaitoh } else {
3917 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3918 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3919 1.4 msaitoh }
3920 1.4 msaitoh
3921 1.4 msaitoh return IXGBE_SUCCESS;
3922 1.4 msaitoh }
3923 1.4 msaitoh
3924 1.4 msaitoh /**
3925 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3926 1.1 dyoung * @hw: pointer to hardware structure
3927 1.1 dyoung **/
3928 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3929 1.1 dyoung {
3930 1.1 dyoung int i;
3931 1.1 dyoung
3932 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3933 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3934 1.1 dyoung
3935 1.1 dyoung for (i = 0; i < 128; i++)
3936 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3937 1.1 dyoung
3938 1.1 dyoung return IXGBE_SUCCESS;
3939 1.1 dyoung }
3940 1.1 dyoung
3941 1.1 dyoung /**
3942 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3943 1.1 dyoung * @hw: pointer to hardware structure
3944 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3945 1.22 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3946 1.22 msaitoh * vlanid not found
3947 1.22 msaitoh *
3948 1.1 dyoung *
3949 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3950 1.1 dyoung *
3951 1.1 dyoung **/
3952 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3953 1.1 dyoung {
3954 1.14 msaitoh s32 regindex, first_empty_slot;
3955 1.14 msaitoh u32 bits;
3956 1.1 dyoung
3957 1.1 dyoung /* short cut the special case */
3958 1.1 dyoung if (vlan == 0)
3959 1.1 dyoung return 0;
3960 1.1 dyoung
3961 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3962 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3963 1.14 msaitoh * VLVF that contain our VLAN
3964 1.14 msaitoh */
3965 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3966 1.14 msaitoh
3967 1.14 msaitoh /* add VLAN enable bit for comparison */
3968 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3969 1.14 msaitoh
3970 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3971 1.14 msaitoh * slot found along the way.
3972 1.14 msaitoh *
3973 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3974 1.14 msaitoh */
3975 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3976 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3977 1.14 msaitoh if (bits == vlan)
3978 1.14 msaitoh return regindex;
3979 1.14 msaitoh if (!first_empty_slot && !bits)
3980 1.1 dyoung first_empty_slot = regindex;
3981 1.1 dyoung }
3982 1.1 dyoung
3983 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3984 1.14 msaitoh * slot we found during our search, else error.
3985 1.14 msaitoh */
3986 1.14 msaitoh if (!first_empty_slot)
3987 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3988 1.1 dyoung
3989 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3990 1.1 dyoung }
3991 1.1 dyoung
3992 1.1 dyoung /**
3993 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3994 1.1 dyoung * @hw: pointer to hardware structure
3995 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3996 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3997 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3998 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3999 1.1 dyoung *
4000 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
4001 1.1 dyoung **/
4002 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4003 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
4004 1.1 dyoung {
4005 1.14 msaitoh u32 regidx, vfta_delta, vfta;
4006 1.14 msaitoh s32 ret_val;
4007 1.1 dyoung
4008 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
4009 1.1 dyoung
4010 1.14 msaitoh if (vlan > 4095 || vind > 63)
4011 1.1 dyoung return IXGBE_ERR_PARAM;
4012 1.1 dyoung
4013 1.1 dyoung /*
4014 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
4015 1.1 dyoung * VLVF and VLVFB if VT Mode is set
4016 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
4017 1.1 dyoung */
4018 1.1 dyoung
4019 1.1 dyoung /* Part 1
4020 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
4021 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
4022 1.1 dyoung * bits[11-5]: which register
4023 1.1 dyoung * bits[4-0]: which bit in the register
4024 1.1 dyoung */
4025 1.14 msaitoh regidx = vlan / 32;
4026 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32);
4027 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4028 1.14 msaitoh
4029 1.14 msaitoh /*
4030 1.14 msaitoh * vfta_delta represents the difference between the current value
4031 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4032 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4033 1.14 msaitoh */
4034 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4035 1.14 msaitoh vfta ^= vfta_delta;
4036 1.1 dyoung
4037 1.1 dyoung /* Part 2
4038 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4039 1.3 msaitoh */
4040 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4041 1.14 msaitoh vfta, vlvf_bypass);
4042 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4043 1.14 msaitoh if (vlvf_bypass)
4044 1.14 msaitoh goto vfta_update;
4045 1.3 msaitoh return ret_val;
4046 1.14 msaitoh }
4047 1.3 msaitoh
4048 1.14 msaitoh vfta_update:
4049 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4050 1.14 msaitoh if (vfta_delta)
4051 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4052 1.3 msaitoh
4053 1.3 msaitoh return IXGBE_SUCCESS;
4054 1.3 msaitoh }
4055 1.3 msaitoh
4056 1.3 msaitoh /**
4057 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4058 1.3 msaitoh * @hw: pointer to hardware structure
4059 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
4060 1.14 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4061 1.14 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4062 1.14 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4063 1.14 msaitoh * and the desired value
4064 1.14 msaitoh * @vfta: the desired value of the VFTA
4065 1.14 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4066 1.3 msaitoh *
4067 1.3 msaitoh * Turn on/off specified bit in VLVF table.
4068 1.3 msaitoh **/
4069 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4070 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4071 1.14 msaitoh bool vlvf_bypass)
4072 1.3 msaitoh {
4073 1.14 msaitoh u32 bits;
4074 1.14 msaitoh s32 vlvf_index;
4075 1.3 msaitoh
4076 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4077 1.3 msaitoh
4078 1.14 msaitoh if (vlan > 4095 || vind > 63)
4079 1.3 msaitoh return IXGBE_ERR_PARAM;
4080 1.3 msaitoh
4081 1.3 msaitoh /* If VT Mode is set
4082 1.1 dyoung * Either vlan_on
4083 1.1 dyoung * make sure the vlan is in VLVF
4084 1.1 dyoung * set the vind bit in the matching VLVFB
4085 1.1 dyoung * Or !vlan_on
4086 1.1 dyoung * clear the pool bit and possibly the vind
4087 1.1 dyoung */
4088 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4089 1.14 msaitoh return IXGBE_SUCCESS;
4090 1.1 dyoung
4091 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4092 1.14 msaitoh if (vlvf_index < 0)
4093 1.14 msaitoh return vlvf_index;
4094 1.14 msaitoh
4095 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4096 1.14 msaitoh
4097 1.14 msaitoh /* set the pool bit */
4098 1.14 msaitoh bits |= 1 << (vind % 32);
4099 1.14 msaitoh if (vlan_on)
4100 1.14 msaitoh goto vlvf_update;
4101 1.14 msaitoh
4102 1.14 msaitoh /* clear the pool bit */
4103 1.14 msaitoh bits ^= 1 << (vind % 32);
4104 1.14 msaitoh
4105 1.14 msaitoh if (!bits &&
4106 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4107 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4108 1.14 msaitoh * we run the risk of stray packets leaking into
4109 1.14 msaitoh * the PF via the default pool
4110 1.1 dyoung */
4111 1.14 msaitoh if (*vfta_delta)
4112 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4113 1.14 msaitoh
4114 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4115 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4116 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4117 1.14 msaitoh
4118 1.14 msaitoh return IXGBE_SUCCESS;
4119 1.1 dyoung }
4120 1.1 dyoung
4121 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4122 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4123 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4124 1.14 msaitoh * If the caller has requested that we clear the VFTA
4125 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4126 1.14 msaitoh * ID entry then ignore the request. We're not worried
4127 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4128 1.14 msaitoh * entry bit on, only when requested to turn it off as
4129 1.14 msaitoh * there may be multiple pools and/or VFs using the
4130 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4131 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4132 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4133 1.14 msaitoh * zero.
4134 1.14 msaitoh */
4135 1.14 msaitoh *vfta_delta = 0;
4136 1.14 msaitoh
4137 1.14 msaitoh vlvf_update:
4138 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4139 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4140 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4141 1.14 msaitoh
4142 1.1 dyoung return IXGBE_SUCCESS;
4143 1.1 dyoung }
4144 1.1 dyoung
4145 1.1 dyoung /**
4146 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4147 1.1 dyoung * @hw: pointer to hardware structure
4148 1.1 dyoung *
4149 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4150 1.1 dyoung **/
4151 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4152 1.1 dyoung {
4153 1.1 dyoung u32 offset;
4154 1.1 dyoung
4155 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4156 1.1 dyoung
4157 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4158 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4159 1.1 dyoung
4160 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4161 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4162 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4163 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4164 1.1 dyoung }
4165 1.1 dyoung
4166 1.1 dyoung return IXGBE_SUCCESS;
4167 1.1 dyoung }
4168 1.1 dyoung
4169 1.1 dyoung /**
4170 1.23 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4171 1.23 msaitoh * @hw: pointer to hardware structure
4172 1.23 msaitoh * @vf_number: VF index
4173 1.23 msaitoh *
4174 1.23 msaitoh * Enable and disable each queue in VF.
4175 1.23 msaitoh */
4176 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4177 1.23 msaitoh {
4178 1.23 msaitoh u8 queue_count, i;
4179 1.23 msaitoh u32 offset, reg;
4180 1.23 msaitoh
4181 1.23 msaitoh if (vf_number > 63)
4182 1.23 msaitoh return IXGBE_ERR_PARAM;
4183 1.23 msaitoh
4184 1.23 msaitoh /*
4185 1.23 msaitoh * Determine number of queues by checking
4186 1.23 msaitoh * number of virtual functions
4187 1.23 msaitoh */
4188 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4189 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4190 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64:
4191 1.23 msaitoh queue_count = 2;
4192 1.23 msaitoh break;
4193 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32:
4194 1.23 msaitoh queue_count = 4;
4195 1.23 msaitoh break;
4196 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16:
4197 1.23 msaitoh queue_count = 8;
4198 1.23 msaitoh break;
4199 1.23 msaitoh default:
4200 1.23 msaitoh return IXGBE_ERR_CONFIG;
4201 1.23 msaitoh }
4202 1.23 msaitoh
4203 1.23 msaitoh /* Toggle queues */
4204 1.23 msaitoh for (i = 0; i < queue_count; ++i) {
4205 1.23 msaitoh /* Calculate offset of current queue */
4206 1.23 msaitoh offset = queue_count * vf_number + i;
4207 1.23 msaitoh
4208 1.23 msaitoh /* Enable queue */
4209 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4210 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE;
4211 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4212 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4213 1.23 msaitoh
4214 1.23 msaitoh /* Disable queue */
4215 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4216 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE;
4217 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4218 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4219 1.23 msaitoh }
4220 1.23 msaitoh
4221 1.23 msaitoh return IXGBE_SUCCESS;
4222 1.23 msaitoh }
4223 1.23 msaitoh
4224 1.23 msaitoh /**
4225 1.14 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4226 1.14 msaitoh * @hw: pointer to hardware structure
4227 1.14 msaitoh *
4228 1.14 msaitoh * Contains the logic to identify if we need to verify link for the
4229 1.14 msaitoh * crosstalk fix
4230 1.14 msaitoh **/
4231 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4232 1.14 msaitoh {
4233 1.14 msaitoh
4234 1.14 msaitoh /* Does FW say we need the fix */
4235 1.14 msaitoh if (!hw->need_crosstalk_fix)
4236 1.14 msaitoh return FALSE;
4237 1.14 msaitoh
4238 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4239 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4240 1.14 msaitoh case ixgbe_media_type_fiber:
4241 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4242 1.14 msaitoh break;
4243 1.14 msaitoh default:
4244 1.14 msaitoh return FALSE;
4245 1.14 msaitoh }
4246 1.14 msaitoh
4247 1.14 msaitoh return TRUE;
4248 1.14 msaitoh }
4249 1.14 msaitoh
4250 1.14 msaitoh /**
4251 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4252 1.1 dyoung * @hw: pointer to hardware structure
4253 1.1 dyoung * @speed: pointer to link speed
4254 1.1 dyoung * @link_up: TRUE when link is up
4255 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4256 1.1 dyoung *
4257 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4258 1.1 dyoung **/
4259 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4260 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4261 1.1 dyoung {
4262 1.1 dyoung u32 links_reg, links_orig;
4263 1.1 dyoung u32 i;
4264 1.1 dyoung
4265 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4266 1.1 dyoung
4267 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4268 1.14 msaitoh * the SFP+ cage is full.
4269 1.14 msaitoh */
4270 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4271 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) &&
4272 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) {
4273 1.14 msaitoh *link_up = FALSE;
4274 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4275 1.14 msaitoh return IXGBE_SUCCESS;
4276 1.14 msaitoh }
4277 1.14 msaitoh }
4278 1.14 msaitoh
4279 1.1 dyoung /* clear the old state */
4280 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4281 1.1 dyoung
4282 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4283 1.1 dyoung
4284 1.1 dyoung if (links_orig != links_reg) {
4285 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4286 1.3 msaitoh links_orig, links_reg);
4287 1.1 dyoung }
4288 1.1 dyoung
4289 1.1 dyoung if (link_up_wait_to_complete) {
4290 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4291 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4292 1.1 dyoung *link_up = TRUE;
4293 1.1 dyoung break;
4294 1.1 dyoung } else {
4295 1.1 dyoung *link_up = FALSE;
4296 1.1 dyoung }
4297 1.1 dyoung msec_delay(100);
4298 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4299 1.1 dyoung }
4300 1.1 dyoung } else {
4301 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4302 1.1 dyoung *link_up = TRUE;
4303 1.1 dyoung else
4304 1.1 dyoung *link_up = FALSE;
4305 1.1 dyoung }
4306 1.1 dyoung
4307 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4308 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4309 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4310 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4311 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4312 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4313 1.8 msaitoh }
4314 1.8 msaitoh break;
4315 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4316 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4317 1.8 msaitoh break;
4318 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4319 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4320 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4321 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4322 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4323 1.8 msaitoh }
4324 1.8 msaitoh break;
4325 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4326 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4327 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4328 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4329 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4330 1.14 msaitoh break;
4331 1.8 msaitoh default:
4332 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4333 1.8 msaitoh }
4334 1.1 dyoung
4335 1.1 dyoung return IXGBE_SUCCESS;
4336 1.1 dyoung }
4337 1.1 dyoung
4338 1.1 dyoung /**
4339 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4340 1.1 dyoung * the EEPROM
4341 1.1 dyoung * @hw: pointer to hardware structure
4342 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4343 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4344 1.1 dyoung *
4345 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4346 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4347 1.1 dyoung **/
4348 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4349 1.3 msaitoh u16 *wwpn_prefix)
4350 1.1 dyoung {
4351 1.1 dyoung u16 offset, caps;
4352 1.1 dyoung u16 alt_san_mac_blk_offset;
4353 1.1 dyoung
4354 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4355 1.1 dyoung
4356 1.1 dyoung /* clear output first */
4357 1.1 dyoung *wwnn_prefix = 0xFFFF;
4358 1.1 dyoung *wwpn_prefix = 0xFFFF;
4359 1.1 dyoung
4360 1.1 dyoung /* check if alternative SAN MAC is supported */
4361 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4362 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4363 1.6 msaitoh goto wwn_prefix_err;
4364 1.1 dyoung
4365 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4366 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4367 1.1 dyoung goto wwn_prefix_out;
4368 1.1 dyoung
4369 1.1 dyoung /* check capability in alternative san mac address block */
4370 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4371 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4372 1.6 msaitoh goto wwn_prefix_err;
4373 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4374 1.1 dyoung goto wwn_prefix_out;
4375 1.1 dyoung
4376 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4377 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4378 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4379 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4380 1.6 msaitoh "eeprom read at offset %d failed", offset);
4381 1.6 msaitoh }
4382 1.1 dyoung
4383 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4384 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4385 1.6 msaitoh goto wwn_prefix_err;
4386 1.1 dyoung
4387 1.1 dyoung wwn_prefix_out:
4388 1.1 dyoung return IXGBE_SUCCESS;
4389 1.6 msaitoh
4390 1.6 msaitoh wwn_prefix_err:
4391 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4392 1.6 msaitoh "eeprom read at offset %d failed", offset);
4393 1.6 msaitoh return IXGBE_SUCCESS;
4394 1.1 dyoung }
4395 1.1 dyoung
4396 1.1 dyoung /**
4397 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4398 1.1 dyoung * @hw: pointer to hardware structure
4399 1.1 dyoung * @bs: the fcoe boot status
4400 1.1 dyoung *
4401 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4402 1.1 dyoung **/
4403 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4404 1.1 dyoung {
4405 1.1 dyoung u16 offset, caps, flags;
4406 1.1 dyoung s32 status;
4407 1.1 dyoung
4408 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4409 1.1 dyoung
4410 1.1 dyoung /* clear output first */
4411 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4412 1.1 dyoung
4413 1.1 dyoung /* check if FCOE IBA block is present */
4414 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4415 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4416 1.1 dyoung if (status != IXGBE_SUCCESS)
4417 1.1 dyoung goto out;
4418 1.1 dyoung
4419 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4420 1.1 dyoung goto out;
4421 1.1 dyoung
4422 1.1 dyoung /* check if iSCSI FCOE block is populated */
4423 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4424 1.1 dyoung if (status != IXGBE_SUCCESS)
4425 1.1 dyoung goto out;
4426 1.1 dyoung
4427 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4428 1.1 dyoung goto out;
4429 1.1 dyoung
4430 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4431 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4432 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4433 1.1 dyoung if (status != IXGBE_SUCCESS)
4434 1.1 dyoung goto out;
4435 1.1 dyoung
4436 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4437 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4438 1.1 dyoung else
4439 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4440 1.1 dyoung
4441 1.1 dyoung out:
4442 1.1 dyoung return status;
4443 1.1 dyoung }
4444 1.1 dyoung
4445 1.1 dyoung /**
4446 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4447 1.1 dyoung * @hw: pointer to hardware structure
4448 1.14 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4449 1.14 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4450 1.1 dyoung *
4451 1.1 dyoung **/
4452 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4453 1.1 dyoung {
4454 1.14 msaitoh int vf_target_reg = vf >> 3;
4455 1.14 msaitoh int vf_target_shift = vf % 8;
4456 1.14 msaitoh u32 pfvfspoof;
4457 1.1 dyoung
4458 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4459 1.1 dyoung return;
4460 1.1 dyoung
4461 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4462 1.1 dyoung if (enable)
4463 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4464 1.14 msaitoh else
4465 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4466 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4467 1.1 dyoung }
4468 1.1 dyoung
4469 1.1 dyoung /**
4470 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4471 1.1 dyoung * @hw: pointer to hardware structure
4472 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4473 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4474 1.1 dyoung *
4475 1.1 dyoung **/
4476 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4477 1.1 dyoung {
4478 1.1 dyoung int vf_target_reg = vf >> 3;
4479 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4480 1.1 dyoung u32 pfvfspoof;
4481 1.1 dyoung
4482 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4483 1.1 dyoung return;
4484 1.1 dyoung
4485 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4486 1.1 dyoung if (enable)
4487 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4488 1.1 dyoung else
4489 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4490 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4491 1.1 dyoung }
4492 1.1 dyoung
4493 1.1 dyoung /**
4494 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4495 1.1 dyoung * @hw: pointer to hardware structure
4496 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4497 1.1 dyoung *
4498 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4499 1.1 dyoung * and return the word through device_caps.
4500 1.1 dyoung **/
4501 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4502 1.1 dyoung {
4503 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4504 1.1 dyoung
4505 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4506 1.1 dyoung
4507 1.1 dyoung return IXGBE_SUCCESS;
4508 1.1 dyoung }
4509 1.1 dyoung
4510 1.1 dyoung /**
4511 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4512 1.1 dyoung * @hw: pointer to hardware structure
4513 1.1 dyoung *
4514 1.1 dyoung **/
4515 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4516 1.1 dyoung {
4517 1.1 dyoung u32 regval;
4518 1.1 dyoung u32 i;
4519 1.1 dyoung
4520 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4521 1.1 dyoung
4522 1.1 dyoung /* Enable relaxed ordering */
4523 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4524 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4525 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4526 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4527 1.1 dyoung }
4528 1.1 dyoung
4529 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4530 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4531 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4532 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4533 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4534 1.1 dyoung }
4535 1.1 dyoung
4536 1.1 dyoung }
4537 1.3 msaitoh
4538 1.3 msaitoh /**
4539 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4540 1.3 msaitoh * @buffer: pointer to EEPROM
4541 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4542 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4543 1.3 msaitoh * checksum calculated is returned.
4544 1.3 msaitoh **/
4545 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4546 1.3 msaitoh {
4547 1.3 msaitoh u32 i;
4548 1.3 msaitoh u8 sum = 0;
4549 1.3 msaitoh
4550 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4551 1.3 msaitoh
4552 1.3 msaitoh if (!buffer)
4553 1.3 msaitoh return 0;
4554 1.3 msaitoh
4555 1.3 msaitoh for (i = 0; i < length; i++)
4556 1.3 msaitoh sum += buffer[i];
4557 1.3 msaitoh
4558 1.3 msaitoh return (u8) (0 - sum);
4559 1.3 msaitoh }
4560 1.3 msaitoh
4561 1.3 msaitoh /**
4562 1.14 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4563 1.3 msaitoh * @hw: pointer to the HW structure
4564 1.14 msaitoh * @buffer: command to write and where the return status will be placed
4565 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4566 1.8 msaitoh * @timeout: time in ms to wait for command completion
4567 1.3 msaitoh *
4568 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4569 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4570 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4571 1.14 msaitoh *
4572 1.14 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4573 1.14 msaitoh * by the caller.
4574 1.3 msaitoh **/
4575 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4576 1.14 msaitoh u32 timeout)
4577 1.3 msaitoh {
4578 1.14 msaitoh u32 hicr, i, fwsts;
4579 1.8 msaitoh u16 dword_len;
4580 1.3 msaitoh
4581 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4582 1.3 msaitoh
4583 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4584 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4585 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4586 1.8 msaitoh }
4587 1.14 msaitoh
4588 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4589 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4590 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4591 1.3 msaitoh
4592 1.3 msaitoh /* Check that the host interface is enabled. */
4593 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4594 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4595 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4596 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4597 1.8 msaitoh }
4598 1.8 msaitoh
4599 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4600 1.14 msaitoh if (length % sizeof(u32)) {
4601 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4602 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4603 1.3 msaitoh }
4604 1.3 msaitoh
4605 1.3 msaitoh dword_len = length >> 2;
4606 1.3 msaitoh
4607 1.8 msaitoh /* The device driver writes the relevant command block
4608 1.3 msaitoh * into the ram area.
4609 1.3 msaitoh */
4610 1.3 msaitoh for (i = 0; i < dword_len; i++)
4611 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4612 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4613 1.3 msaitoh
4614 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4615 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4616 1.3 msaitoh
4617 1.8 msaitoh for (i = 0; i < timeout; i++) {
4618 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4619 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4620 1.3 msaitoh break;
4621 1.3 msaitoh msec_delay(1);
4622 1.3 msaitoh }
4623 1.3 msaitoh
4624 1.23 msaitoh /* For each command except "Apply Update" perform
4625 1.23 msaitoh * status checks in the HICR registry.
4626 1.23 msaitoh */
4627 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4628 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4629 1.23 msaitoh return IXGBE_SUCCESS;
4630 1.23 msaitoh
4631 1.8 msaitoh /* Check command completion */
4632 1.14 msaitoh if ((timeout && i == timeout) ||
4633 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4634 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4635 1.23 msaitoh "Command has failed with no status valid.\n");
4636 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4637 1.3 msaitoh }
4638 1.3 msaitoh
4639 1.14 msaitoh return IXGBE_SUCCESS;
4640 1.14 msaitoh }
4641 1.14 msaitoh
4642 1.14 msaitoh /**
4643 1.14 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4644 1.14 msaitoh * @hw: pointer to the HW structure
4645 1.14 msaitoh * @buffer: contains the command to write and where the return status will
4646 1.14 msaitoh * be placed
4647 1.14 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4648 1.14 msaitoh * @timeout: time in ms to wait for command completion
4649 1.14 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4650 1.14 msaitoh * Needed because FW structures are big endian and decoding of
4651 1.14 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4652 1.14 msaitoh * is not easily understood without making a table of commands.
4653 1.14 msaitoh * So we will leave this up to the caller to read back the data
4654 1.14 msaitoh * in these cases.
4655 1.14 msaitoh *
4656 1.14 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4657 1.14 msaitoh * else returns semaphore error when encountering an error acquiring
4658 1.14 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4659 1.14 msaitoh **/
4660 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4661 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4662 1.14 msaitoh {
4663 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4664 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4665 1.14 msaitoh u16 buf_len;
4666 1.14 msaitoh s32 status;
4667 1.14 msaitoh u32 bi;
4668 1.22 msaitoh u32 dword_len;
4669 1.14 msaitoh
4670 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4671 1.14 msaitoh
4672 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4673 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4674 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4675 1.14 msaitoh }
4676 1.14 msaitoh
4677 1.14 msaitoh /* Take management host interface semaphore */
4678 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4679 1.14 msaitoh if (status)
4680 1.14 msaitoh return status;
4681 1.14 msaitoh
4682 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4683 1.14 msaitoh if (status)
4684 1.14 msaitoh goto rel_out;
4685 1.14 msaitoh
4686 1.8 msaitoh if (!return_data)
4687 1.14 msaitoh goto rel_out;
4688 1.8 msaitoh
4689 1.3 msaitoh /* Calculate length in DWORDs */
4690 1.3 msaitoh dword_len = hdr_size >> 2;
4691 1.3 msaitoh
4692 1.3 msaitoh /* first pull in the header so we know the buffer length */
4693 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4694 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4695 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4696 1.3 msaitoh }
4697 1.3 msaitoh
4698 1.22 msaitoh /*
4699 1.22 msaitoh * If there is any thing in data position pull it in
4700 1.22 msaitoh * Read Flash command requires reading buffer length from
4701 1.22 msaitoh * two byes instead of one byte
4702 1.22 msaitoh */
4703 1.23 msaitoh if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4704 1.22 msaitoh for (; bi < dword_len + 2; bi++) {
4705 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4706 1.22 msaitoh bi);
4707 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4708 1.22 msaitoh }
4709 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4710 1.22 msaitoh & 0xF00) | resp->buf_len;
4711 1.22 msaitoh hdr_size += (2 << 2);
4712 1.22 msaitoh } else {
4713 1.22 msaitoh buf_len = resp->buf_len;
4714 1.22 msaitoh }
4715 1.14 msaitoh if (!buf_len)
4716 1.14 msaitoh goto rel_out;
4717 1.3 msaitoh
4718 1.8 msaitoh if (length < buf_len + hdr_size) {
4719 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4720 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4721 1.14 msaitoh goto rel_out;
4722 1.3 msaitoh }
4723 1.3 msaitoh
4724 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4725 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4726 1.3 msaitoh
4727 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4728 1.3 msaitoh for (; bi <= dword_len; bi++) {
4729 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4730 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4731 1.3 msaitoh }
4732 1.3 msaitoh
4733 1.14 msaitoh rel_out:
4734 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4735 1.14 msaitoh
4736 1.14 msaitoh return status;
4737 1.3 msaitoh }
4738 1.3 msaitoh
4739 1.3 msaitoh /**
4740 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4741 1.3 msaitoh * @hw: pointer to the HW structure
4742 1.3 msaitoh * @maj: driver version major number
4743 1.7 riastrad * @minr: driver version minor number
4744 1.3 msaitoh * @build: driver version build number
4745 1.3 msaitoh * @sub: driver version sub build number
4746 1.22 msaitoh * @len: unused
4747 1.22 msaitoh * @driver_ver: unused
4748 1.3 msaitoh *
4749 1.3 msaitoh * Sends driver version number to firmware through the manageability
4750 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4751 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4752 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4753 1.3 msaitoh **/
4754 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4755 1.14 msaitoh u8 build, u8 sub, u16 len,
4756 1.14 msaitoh const char *driver_ver)
4757 1.3 msaitoh {
4758 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4759 1.3 msaitoh int i;
4760 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4761 1.3 msaitoh
4762 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4763 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4764 1.3 msaitoh
4765 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4766 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4767 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4768 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4769 1.3 msaitoh fw_cmd.ver_maj = maj;
4770 1.7 riastrad fw_cmd.ver_min = minr;
4771 1.3 msaitoh fw_cmd.ver_build = build;
4772 1.3 msaitoh fw_cmd.ver_sub = sub;
4773 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4774 1.17 msaitoh fw_cmd.pad = 0;
4775 1.17 msaitoh fw_cmd.pad2 = 0;
4776 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4777 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4778 1.3 msaitoh
4779 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4780 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4781 1.8 msaitoh sizeof(fw_cmd),
4782 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4783 1.8 msaitoh TRUE);
4784 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4785 1.3 msaitoh continue;
4786 1.3 msaitoh
4787 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4788 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4789 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4790 1.3 msaitoh else
4791 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4792 1.3 msaitoh
4793 1.3 msaitoh break;
4794 1.3 msaitoh }
4795 1.3 msaitoh
4796 1.3 msaitoh return ret_val;
4797 1.3 msaitoh }
4798 1.3 msaitoh
4799 1.3 msaitoh /**
4800 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4801 1.3 msaitoh * @hw: pointer to hardware structure
4802 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4803 1.3 msaitoh * @headroom: reserve n KB of headroom
4804 1.3 msaitoh * @strategy: packet buffer allocation strategy
4805 1.3 msaitoh **/
4806 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4807 1.3 msaitoh int strategy)
4808 1.3 msaitoh {
4809 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4810 1.3 msaitoh int i = 0;
4811 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4812 1.3 msaitoh
4813 1.3 msaitoh /* Reserve headroom */
4814 1.3 msaitoh pbsize -= headroom;
4815 1.3 msaitoh
4816 1.3 msaitoh if (!num_pb)
4817 1.3 msaitoh num_pb = 1;
4818 1.3 msaitoh
4819 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4820 1.3 msaitoh * buffers requested using supplied strategy.
4821 1.3 msaitoh */
4822 1.3 msaitoh switch (strategy) {
4823 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4824 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4825 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4826 1.3 msaitoh */
4827 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4828 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4829 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4830 1.3 msaitoh for (; i < (num_pb / 2); i++)
4831 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4832 1.14 msaitoh /* fall through - configure remaining packet buffers */
4833 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4834 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4835 1.3 msaitoh for (; i < num_pb; i++)
4836 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4837 1.3 msaitoh break;
4838 1.3 msaitoh default:
4839 1.3 msaitoh break;
4840 1.3 msaitoh }
4841 1.3 msaitoh
4842 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4843 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4844 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4845 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4846 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4847 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4848 1.3 msaitoh }
4849 1.3 msaitoh
4850 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4851 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4852 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4853 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4854 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4855 1.3 msaitoh }
4856 1.3 msaitoh }
4857 1.3 msaitoh
4858 1.3 msaitoh /**
4859 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4860 1.3 msaitoh * @hw: pointer to the hardware structure
4861 1.3 msaitoh *
4862 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4863 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4864 1.3 msaitoh * buffers on the system.
4865 1.3 msaitoh **/
4866 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4867 1.3 msaitoh {
4868 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4869 1.8 msaitoh u16 value;
4870 1.3 msaitoh
4871 1.3 msaitoh /*
4872 1.3 msaitoh * If double reset is not requested then all transactions should
4873 1.3 msaitoh * already be clear and as such there is no work to do
4874 1.3 msaitoh */
4875 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4876 1.3 msaitoh return;
4877 1.3 msaitoh
4878 1.3 msaitoh /*
4879 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4880 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4881 1.3 msaitoh * has already been cleared.
4882 1.3 msaitoh */
4883 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4884 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4885 1.3 msaitoh
4886 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4887 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4888 1.8 msaitoh msec_delay(3);
4889 1.8 msaitoh
4890 1.8 msaitoh /*
4891 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4892 1.8 msaitoh * transactions pending.
4893 1.8 msaitoh */
4894 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4895 1.8 msaitoh for (i = 0; i < poll; i++) {
4896 1.8 msaitoh usec_delay(100);
4897 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4898 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4899 1.8 msaitoh goto out;
4900 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4901 1.8 msaitoh goto out;
4902 1.8 msaitoh }
4903 1.8 msaitoh
4904 1.8 msaitoh out:
4905 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4906 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4907 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4908 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4909 1.3 msaitoh
4910 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4911 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4912 1.3 msaitoh usec_delay(20);
4913 1.3 msaitoh
4914 1.3 msaitoh /* restore previous register values */
4915 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4916 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4917 1.3 msaitoh }
4918 1.3 msaitoh
4919 1.14 msaitoh /**
4920 1.14 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4921 1.14 msaitoh *
4922 1.14 msaitoh * @hw: pointer to hardware structure
4923 1.14 msaitoh * @cmd: Command we send to the FW
4924 1.14 msaitoh * @status: The reply from the FW
4925 1.14 msaitoh *
4926 1.14 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4927 1.14 msaitoh **/
4928 1.14 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4929 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4930 1.14 msaitoh {
4931 1.14 msaitoh int i;
4932 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4933 1.14 msaitoh u32 esdp;
4934 1.14 msaitoh
4935 1.14 msaitoh if (!status)
4936 1.14 msaitoh return IXGBE_ERR_PARAM;
4937 1.14 msaitoh
4938 1.14 msaitoh *status = 0;
4939 1.14 msaitoh
4940 1.14 msaitoh /* SDP vary by MAC type */
4941 1.14 msaitoh switch (hw->mac.type) {
4942 1.14 msaitoh case ixgbe_mac_82599EB:
4943 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4944 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4945 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4946 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4947 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4948 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4949 1.14 msaitoh break;
4950 1.14 msaitoh case ixgbe_mac_X540:
4951 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4952 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4953 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4954 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4955 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4956 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4957 1.14 msaitoh break;
4958 1.14 msaitoh default:
4959 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4960 1.14 msaitoh }
4961 1.14 msaitoh
4962 1.14 msaitoh /* Set SDP pins direction */
4963 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4964 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4965 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4966 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4967 1.14 msaitoh esdp |= sck;
4968 1.14 msaitoh esdp |= sdi;
4969 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4970 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4971 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4972 1.14 msaitoh
4973 1.14 msaitoh /* Generate start condition */
4974 1.14 msaitoh esdp &= ~sdi;
4975 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4976 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4977 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4978 1.14 msaitoh
4979 1.14 msaitoh esdp &= ~sck;
4980 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4981 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4982 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4983 1.14 msaitoh
4984 1.14 msaitoh /* Clock out the new control word and clock in the status */
4985 1.14 msaitoh for (i = 0; i < 32; i++) {
4986 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4987 1.14 msaitoh esdp |= sdi;
4988 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4989 1.14 msaitoh } else {
4990 1.14 msaitoh esdp &= ~sdi;
4991 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4992 1.14 msaitoh }
4993 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4994 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4995 1.14 msaitoh
4996 1.14 msaitoh esdp |= sck;
4997 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4998 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4999 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5000 1.14 msaitoh
5001 1.14 msaitoh esdp &= ~sck;
5002 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5003 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5004 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5005 1.14 msaitoh
5006 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5007 1.14 msaitoh if (esdp & sdo)
5008 1.14 msaitoh *status = (*status << 1) | 0x01;
5009 1.14 msaitoh else
5010 1.14 msaitoh *status = (*status << 1) | 0x00;
5011 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5012 1.14 msaitoh }
5013 1.14 msaitoh
5014 1.14 msaitoh /* stop condition */
5015 1.14 msaitoh esdp |= sck;
5016 1.14 msaitoh esdp &= ~sdi;
5017 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5018 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5019 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5020 1.14 msaitoh
5021 1.14 msaitoh esdp |= sdi;
5022 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5023 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5024 1.14 msaitoh
5025 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
5026 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5027 1.14 msaitoh
5028 1.14 msaitoh return IXGBE_SUCCESS;
5029 1.14 msaitoh }
5030 1.14 msaitoh
5031 1.14 msaitoh /**
5032 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5033 1.14 msaitoh *
5034 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
5035 1.32 andvar * that same register. It can be a problem as some of the fields may
5036 1.32 andvar * for valid reasons change in-between the time wrote the register and
5037 1.14 msaitoh * we read it again to verify. So this function check everything we
5038 1.14 msaitoh * can check and then assumes it worked.
5039 1.14 msaitoh *
5040 1.14 msaitoh * @u32 in_reg - The register cmd for the bit-bang read.
5041 1.14 msaitoh * @u32 out_reg - The register returned from a bit-bang read.
5042 1.14 msaitoh **/
5043 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5044 1.14 msaitoh {
5045 1.14 msaitoh u32 mask;
5046 1.14 msaitoh
5047 1.14 msaitoh /* Page must match for all control pages */
5048 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5049 1.14 msaitoh return FALSE;
5050 1.14 msaitoh
5051 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
5052 1.14 msaitoh case BYPASS_PAGE_CTL0:
5053 1.14 msaitoh /* All the following can't change since the last write
5054 1.14 msaitoh * - All the event actions
5055 1.14 msaitoh * - The timeout value
5056 1.14 msaitoh */
5057 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5058 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5059 1.14 msaitoh BYPASS_WDTIMEOUT_M |
5060 1.14 msaitoh BYPASS_WDT_VALUE_M;
5061 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5062 1.14 msaitoh return FALSE;
5063 1.14 msaitoh
5064 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
5065 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
5066 1.14 msaitoh return FALSE;
5067 1.14 msaitoh break;
5068 1.14 msaitoh case BYPASS_PAGE_CTL1:
5069 1.14 msaitoh /* All the following can't change since the last write
5070 1.14 msaitoh * - time valid bit
5071 1.14 msaitoh * - time we last sent
5072 1.14 msaitoh */
5073 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5074 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5075 1.14 msaitoh return FALSE;
5076 1.14 msaitoh break;
5077 1.14 msaitoh case BYPASS_PAGE_CTL2:
5078 1.14 msaitoh /* All we can check in this page is control number
5079 1.14 msaitoh * which is already done above.
5080 1.14 msaitoh */
5081 1.14 msaitoh break;
5082 1.14 msaitoh }
5083 1.14 msaitoh
5084 1.14 msaitoh /* We are as sure as we can be return TRUE */
5085 1.14 msaitoh return TRUE;
5086 1.14 msaitoh }
5087 1.14 msaitoh
5088 1.14 msaitoh /**
5089 1.33 andvar * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5090 1.14 msaitoh *
5091 1.14 msaitoh * @hw: pointer to hardware structure
5092 1.14 msaitoh * @cmd: The control word we are setting.
5093 1.14 msaitoh * @event: The event we are setting in the FW. This also happens to
5094 1.14 msaitoh * be the mask for the event we are setting (handy)
5095 1.14 msaitoh * @action: The action we set the event to in the FW. This is in a
5096 1.14 msaitoh * bit field that happens to be what we want to put in
5097 1.14 msaitoh * the event spot (also handy)
5098 1.14 msaitoh **/
5099 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5100 1.14 msaitoh u32 action)
5101 1.14 msaitoh {
5102 1.14 msaitoh u32 by_ctl = 0;
5103 1.14 msaitoh u32 cmd, verify;
5104 1.14 msaitoh u32 count = 0;
5105 1.14 msaitoh
5106 1.14 msaitoh /* Get current values */
5107 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5108 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5109 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5110 1.14 msaitoh
5111 1.14 msaitoh /* Set to new action */
5112 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5113 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5114 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5115 1.14 msaitoh
5116 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5117 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5118 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5119 1.14 msaitoh do {
5120 1.14 msaitoh if (count++ > 5)
5121 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5122 1.14 msaitoh
5123 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5124 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5125 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5126 1.14 msaitoh } else {
5127 1.14 msaitoh /* We have give the FW time for the write to stick */
5128 1.14 msaitoh msec_delay(100);
5129 1.14 msaitoh }
5130 1.14 msaitoh
5131 1.14 msaitoh return IXGBE_SUCCESS;
5132 1.14 msaitoh }
5133 1.14 msaitoh
5134 1.14 msaitoh /**
5135 1.33 andvar * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5136 1.14 msaitoh *
5137 1.14 msaitoh * @hw: pointer to hardware structure
5138 1.14 msaitoh * @addr: The bypass eeprom address to read.
5139 1.14 msaitoh * @value: The 8b of data at the address above.
5140 1.14 msaitoh **/
5141 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5142 1.14 msaitoh {
5143 1.14 msaitoh u32 cmd;
5144 1.14 msaitoh u32 status;
5145 1.14 msaitoh
5146 1.14 msaitoh
5147 1.14 msaitoh /* send the request */
5148 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5149 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5150 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5151 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5152 1.14 msaitoh
5153 1.14 msaitoh /* We have give the FW time for the write to stick */
5154 1.14 msaitoh msec_delay(100);
5155 1.14 msaitoh
5156 1.14 msaitoh /* now read the results */
5157 1.14 msaitoh cmd &= ~BYPASS_WE;
5158 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5159 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5160 1.14 msaitoh
5161 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5162 1.14 msaitoh
5163 1.14 msaitoh return IXGBE_SUCCESS;
5164 1.14 msaitoh }
5165 1.14 msaitoh
5166 1.17 msaitoh /**
5167 1.17 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM
5168 1.17 msaitoh *
5169 1.17 msaitoh * @hw: pointer to hardware structure
5170 1.17 msaitoh * @nvm_ver: pointer to output structure
5171 1.17 msaitoh *
5172 1.17 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE
5173 1.17 msaitoh * else nvm_ver->or_valid is FALSE.
5174 1.17 msaitoh **/
5175 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5176 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5177 1.17 msaitoh {
5178 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5179 1.17 msaitoh
5180 1.17 msaitoh nvm_ver->or_valid = FALSE;
5181 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */
5182 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5183 1.17 msaitoh
5184 1.17 msaitoh /* make sure offset is valid */
5185 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5186 1.17 msaitoh return;
5187 1.17 msaitoh
5188 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5189 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5190 1.17 msaitoh
5191 1.17 msaitoh /* option rom exists and is valid */
5192 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5193 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID ||
5194 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID)
5195 1.17 msaitoh return;
5196 1.17 msaitoh
5197 1.17 msaitoh nvm_ver->or_valid = TRUE;
5198 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5199 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5200 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5201 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5202 1.17 msaitoh }
5203 1.17 msaitoh
5204 1.17 msaitoh /**
5205 1.17 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version
5206 1.17 msaitoh *
5207 1.17 msaitoh * @hw: pointer to hardware structure
5208 1.17 msaitoh * @nvm_ver: pointer to output structure
5209 1.17 msaitoh *
5210 1.17 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5211 1.17 msaitoh * else nvm_ver->oem_valid is FALSE.
5212 1.17 msaitoh **/
5213 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5214 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5215 1.17 msaitoh {
5216 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset;
5217 1.17 msaitoh
5218 1.17 msaitoh nvm_ver->oem_valid = FALSE;
5219 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5220 1.17 msaitoh
5221 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */
5222 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR)
5223 1.17 msaitoh return;
5224 1.17 msaitoh
5225 1.17 msaitoh /* Read product version block */
5226 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len);
5227 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5228 1.17 msaitoh
5229 1.17 msaitoh /* Return if OEM product version block is invalid */
5230 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5231 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5232 1.17 msaitoh return;
5233 1.17 msaitoh
5234 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5235 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5236 1.17 msaitoh
5237 1.17 msaitoh /* Return if version is invalid */
5238 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 ||
5239 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5240 1.17 msaitoh return;
5241 1.17 msaitoh
5242 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5243 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5244 1.17 msaitoh nvm_ver->oem_release = rel_num;
5245 1.17 msaitoh nvm_ver->oem_valid = TRUE;
5246 1.17 msaitoh }
5247 1.17 msaitoh
5248 1.17 msaitoh /**
5249 1.17 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5250 1.17 msaitoh *
5251 1.17 msaitoh * @hw: pointer to hardware structure
5252 1.17 msaitoh * @nvm_ver: pointer to output structure
5253 1.17 msaitoh *
5254 1.17 msaitoh * word read errors will return 0xFFFF
5255 1.17 msaitoh **/
5256 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5257 1.17 msaitoh {
5258 1.17 msaitoh u16 etk_id_l, etk_id_h;
5259 1.17 msaitoh
5260 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5261 1.17 msaitoh etk_id_l = NVM_VER_INVALID;
5262 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5263 1.17 msaitoh etk_id_h = NVM_VER_INVALID;
5264 1.17 msaitoh
5265 1.17 msaitoh /* The word order for the version format is determined by high order
5266 1.17 msaitoh * word bit 15.
5267 1.17 msaitoh */
5268 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) {
5269 1.17 msaitoh nvm_ver->etk_id = etk_id_h;
5270 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5271 1.17 msaitoh } else {
5272 1.17 msaitoh nvm_ver->etk_id = etk_id_l;
5273 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5274 1.17 msaitoh }
5275 1.17 msaitoh }
5276 1.17 msaitoh
5277 1.6 msaitoh
5278 1.6 msaitoh /**
5279 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5280 1.6 msaitoh * @hw: pointer to hardware structure
5281 1.6 msaitoh * @map: pointer to u8 arr for returning map
5282 1.6 msaitoh *
5283 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5284 1.6 msaitoh **/
5285 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5286 1.6 msaitoh {
5287 1.6 msaitoh u32 reg, i;
5288 1.6 msaitoh
5289 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5290 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5291 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5292 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5293 1.6 msaitoh return;
5294 1.6 msaitoh }
5295 1.8 msaitoh
5296 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5297 1.8 msaitoh {
5298 1.8 msaitoh u32 pfdtxgswc;
5299 1.8 msaitoh u32 rxctrl;
5300 1.8 msaitoh
5301 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5302 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5303 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5304 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5305 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5306 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5307 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5308 1.8 msaitoh hw->mac.set_lben = TRUE;
5309 1.8 msaitoh } else {
5310 1.8 msaitoh hw->mac.set_lben = FALSE;
5311 1.8 msaitoh }
5312 1.8 msaitoh }
5313 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5314 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5315 1.8 msaitoh }
5316 1.8 msaitoh }
5317 1.8 msaitoh
5318 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5319 1.8 msaitoh {
5320 1.8 msaitoh u32 pfdtxgswc;
5321 1.8 msaitoh u32 rxctrl;
5322 1.8 msaitoh
5323 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5324 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5325 1.8 msaitoh
5326 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5327 1.8 msaitoh if (hw->mac.set_lben) {
5328 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5329 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5330 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5331 1.8 msaitoh hw->mac.set_lben = FALSE;
5332 1.8 msaitoh }
5333 1.8 msaitoh }
5334 1.8 msaitoh }
5335 1.8 msaitoh
5336 1.8 msaitoh /**
5337 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5338 1.8 msaitoh * @hw: pointer to hardware structure
5339 1.8 msaitoh */
5340 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5341 1.8 msaitoh {
5342 1.8 msaitoh u32 fwsm;
5343 1.8 msaitoh
5344 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5345 1.8 msaitoh return FALSE;
5346 1.8 msaitoh
5347 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5348 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5349 1.8 msaitoh }
5350 1.8 msaitoh
5351 1.8 msaitoh /**
5352 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5353 1.8 msaitoh * @hw: pointer to hardware structure
5354 1.8 msaitoh *
5355 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5356 1.8 msaitoh **/
5357 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5358 1.8 msaitoh {
5359 1.8 msaitoh u32 fwsm, manc, factps;
5360 1.8 msaitoh
5361 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5362 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5363 1.8 msaitoh return FALSE;
5364 1.8 msaitoh
5365 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5366 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5367 1.8 msaitoh return FALSE;
5368 1.8 msaitoh
5369 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5370 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5371 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5372 1.8 msaitoh return FALSE;
5373 1.8 msaitoh }
5374 1.8 msaitoh
5375 1.8 msaitoh return TRUE;
5376 1.8 msaitoh }
5377 1.8 msaitoh
5378 1.8 msaitoh /**
5379 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5380 1.8 msaitoh * @hw: pointer to hardware structure
5381 1.8 msaitoh * @speed: new link speed
5382 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5383 1.8 msaitoh *
5384 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5385 1.8 msaitoh **/
5386 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5387 1.8 msaitoh ixgbe_link_speed speed,
5388 1.8 msaitoh bool autoneg_wait_to_complete)
5389 1.8 msaitoh {
5390 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5391 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5392 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5393 1.8 msaitoh u32 speedcnt = 0;
5394 1.8 msaitoh u32 i = 0;
5395 1.8 msaitoh bool autoneg, link_up = FALSE;
5396 1.8 msaitoh
5397 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5398 1.8 msaitoh
5399 1.8 msaitoh /* Mask off requested but non-supported speeds */
5400 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5401 1.8 msaitoh if (status != IXGBE_SUCCESS)
5402 1.8 msaitoh return status;
5403 1.8 msaitoh
5404 1.8 msaitoh speed &= link_speed;
5405 1.8 msaitoh
5406 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5407 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5408 1.8 msaitoh */
5409 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5410 1.8 msaitoh speedcnt++;
5411 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5412 1.8 msaitoh
5413 1.8 msaitoh /* Set the module link speed */
5414 1.8 msaitoh switch (hw->phy.media_type) {
5415 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5416 1.8 msaitoh case ixgbe_media_type_fiber:
5417 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5418 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5419 1.8 msaitoh break;
5420 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5421 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5422 1.8 msaitoh break;
5423 1.8 msaitoh default:
5424 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5425 1.8 msaitoh break;
5426 1.8 msaitoh }
5427 1.8 msaitoh
5428 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5429 1.8 msaitoh msec_delay(40);
5430 1.8 msaitoh
5431 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5432 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5433 1.8 msaitoh autoneg_wait_to_complete);
5434 1.8 msaitoh if (status != IXGBE_SUCCESS)
5435 1.8 msaitoh return status;
5436 1.8 msaitoh
5437 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5438 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5439 1.8 msaitoh
5440 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5441 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
5442 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5443 1.8 msaitoh */
5444 1.8 msaitoh for (i = 0; i < 5; i++) {
5445 1.8 msaitoh /* Wait for the link partner to also set speed */
5446 1.8 msaitoh msec_delay(100);
5447 1.8 msaitoh
5448 1.8 msaitoh /* If we have link, just jump out */
5449 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5450 1.8 msaitoh &link_up, FALSE);
5451 1.8 msaitoh if (status != IXGBE_SUCCESS)
5452 1.8 msaitoh return status;
5453 1.8 msaitoh
5454 1.8 msaitoh if (link_up)
5455 1.8 msaitoh goto out;
5456 1.8 msaitoh }
5457 1.8 msaitoh }
5458 1.8 msaitoh
5459 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5460 1.8 msaitoh speedcnt++;
5461 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5462 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5463 1.8 msaitoh
5464 1.8 msaitoh /* Set the module link speed */
5465 1.8 msaitoh switch (hw->phy.media_type) {
5466 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5467 1.8 msaitoh case ixgbe_media_type_fiber:
5468 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5469 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5470 1.8 msaitoh break;
5471 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5472 1.8 msaitoh /* QSFP module automatically detects link speed */
5473 1.8 msaitoh break;
5474 1.8 msaitoh default:
5475 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5476 1.8 msaitoh break;
5477 1.8 msaitoh }
5478 1.8 msaitoh
5479 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5480 1.8 msaitoh msec_delay(40);
5481 1.8 msaitoh
5482 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5483 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5484 1.8 msaitoh autoneg_wait_to_complete);
5485 1.8 msaitoh if (status != IXGBE_SUCCESS)
5486 1.8 msaitoh return status;
5487 1.8 msaitoh
5488 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5489 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5490 1.8 msaitoh
5491 1.8 msaitoh /* Wait for the link partner to also set speed */
5492 1.8 msaitoh msec_delay(100);
5493 1.8 msaitoh
5494 1.8 msaitoh /* If we have link, just jump out */
5495 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5496 1.8 msaitoh if (status != IXGBE_SUCCESS)
5497 1.8 msaitoh return status;
5498 1.8 msaitoh
5499 1.8 msaitoh if (link_up)
5500 1.8 msaitoh goto out;
5501 1.8 msaitoh }
5502 1.8 msaitoh
5503 1.20 msaitoh if (speed == 0) {
5504 1.20 msaitoh /* Disable the Tx laser for media none */
5505 1.20 msaitoh ixgbe_disable_tx_laser(hw);
5506 1.20 msaitoh
5507 1.20 msaitoh goto out;
5508 1.20 msaitoh }
5509 1.26 msaitoh
5510 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5511 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5512 1.8 msaitoh * single highest speed that the user requested.
5513 1.8 msaitoh */
5514 1.8 msaitoh if (speedcnt > 1)
5515 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5516 1.8 msaitoh highest_link_speed,
5517 1.8 msaitoh autoneg_wait_to_complete);
5518 1.8 msaitoh
5519 1.8 msaitoh out:
5520 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5521 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5522 1.8 msaitoh
5523 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5524 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5525 1.8 msaitoh
5526 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5527 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5528 1.8 msaitoh
5529 1.8 msaitoh return status;
5530 1.8 msaitoh }
5531 1.8 msaitoh
5532 1.8 msaitoh /**
5533 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5534 1.8 msaitoh * @hw: pointer to hardware structure
5535 1.8 msaitoh * @speed: link speed to set
5536 1.8 msaitoh *
5537 1.8 msaitoh * Set module link speed via the soft rate select.
5538 1.8 msaitoh */
5539 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5540 1.8 msaitoh ixgbe_link_speed speed)
5541 1.8 msaitoh {
5542 1.8 msaitoh s32 status;
5543 1.8 msaitoh u8 rs, eeprom_data;
5544 1.8 msaitoh
5545 1.8 msaitoh switch (speed) {
5546 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5547 1.8 msaitoh /* one bit mask same as setting on */
5548 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5549 1.8 msaitoh break;
5550 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5551 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5552 1.8 msaitoh break;
5553 1.8 msaitoh default:
5554 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5555 1.8 msaitoh return;
5556 1.8 msaitoh }
5557 1.8 msaitoh
5558 1.8 msaitoh /* Set RS0 */
5559 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5560 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5561 1.8 msaitoh &eeprom_data);
5562 1.8 msaitoh if (status) {
5563 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5564 1.8 msaitoh goto out;
5565 1.8 msaitoh }
5566 1.8 msaitoh
5567 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5568 1.8 msaitoh
5569 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5570 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5571 1.8 msaitoh eeprom_data);
5572 1.8 msaitoh if (status) {
5573 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5574 1.8 msaitoh goto out;
5575 1.8 msaitoh }
5576 1.8 msaitoh
5577 1.8 msaitoh /* Set RS1 */
5578 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5579 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5580 1.8 msaitoh &eeprom_data);
5581 1.8 msaitoh if (status) {
5582 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5583 1.8 msaitoh goto out;
5584 1.8 msaitoh }
5585 1.8 msaitoh
5586 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5587 1.8 msaitoh
5588 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5589 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5590 1.8 msaitoh eeprom_data);
5591 1.8 msaitoh if (status) {
5592 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5593 1.8 msaitoh goto out;
5594 1.8 msaitoh }
5595 1.8 msaitoh out:
5596 1.8 msaitoh return;
5597 1.8 msaitoh }
5598