Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.35
      1  1.35   msaitoh /* $NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $ */
      2  1.14   msaitoh 
      3   1.1    dyoung /******************************************************************************
      4  1.16   msaitoh   SPDX-License-Identifier: BSD-3-Clause
      5   1.1    dyoung 
      6  1.14   msaitoh   Copyright (c) 2001-2017, Intel Corporation
      7   1.1    dyoung   All rights reserved.
      8  1.14   msaitoh 
      9  1.14   msaitoh   Redistribution and use in source and binary forms, with or without
     10   1.1    dyoung   modification, are permitted provided that the following conditions are met:
     11  1.14   msaitoh 
     12  1.14   msaitoh    1. Redistributions of source code must retain the above copyright notice,
     13   1.1    dyoung       this list of conditions and the following disclaimer.
     14  1.14   msaitoh 
     15  1.14   msaitoh    2. Redistributions in binary form must reproduce the above copyright
     16  1.14   msaitoh       notice, this list of conditions and the following disclaimer in the
     17   1.1    dyoung       documentation and/or other materials provided with the distribution.
     18  1.14   msaitoh 
     19  1.14   msaitoh    3. Neither the name of the Intel Corporation nor the names of its
     20  1.14   msaitoh       contributors may be used to endorse or promote products derived from
     21   1.1    dyoung       this software without specific prior written permission.
     22  1.14   msaitoh 
     23   1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     24  1.14   msaitoh   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.14   msaitoh   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.14   msaitoh   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     27  1.14   msaitoh   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.14   msaitoh   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.14   msaitoh   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.14   msaitoh   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.14   msaitoh   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     34   1.1    dyoung 
     35   1.1    dyoung ******************************************************************************/
     36  1.22   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
     37   1.1    dyoung 
     38  1.31   msaitoh #include <sys/cdefs.h>
     39  1.35   msaitoh __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $");
     40  1.31   msaitoh 
     41   1.1    dyoung #include "ixgbe_common.h"
     42   1.1    dyoung #include "ixgbe_phy.h"
     43   1.6   msaitoh #include "ixgbe_dcb.h"
     44   1.6   msaitoh #include "ixgbe_dcb_82599.h"
     45   1.1    dyoung #include "ixgbe_api.h"
     46   1.1    dyoung 
     47   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     48   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     49   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     50   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     51   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     52   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     53   1.3   msaitoh 					u16 count);
     54   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     55   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     56   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     57   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     58   1.1    dyoung 
     59   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     60   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     61   1.3   msaitoh 					 u16 *san_mac_offset);
     62   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     63   1.3   msaitoh 					     u16 words, u16 *data);
     64   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     65   1.3   msaitoh 					      u16 words, u16 *data);
     66   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     67   1.3   msaitoh 						 u16 offset);
     68   1.1    dyoung 
     69   1.1    dyoung /**
     70   1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     71   1.1    dyoung  *  @hw: pointer to the hardware structure
     72   1.1    dyoung  *
     73   1.1    dyoung  *  Initialize the function pointers.
     74   1.1    dyoung  **/
     75   1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     76   1.1    dyoung {
     77   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     78   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     79  1.10   msaitoh 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     80   1.1    dyoung 
     81   1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     82   1.1    dyoung 
     83   1.1    dyoung 	/* EEPROM */
     84   1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     85   1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     86   1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     87   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     88   1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     89   1.3   msaitoh 	} else {
     90   1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     91   1.3   msaitoh 		eeprom->ops.read_buffer =
     92   1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     93   1.3   msaitoh 	}
     94   1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     95   1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     96   1.1    dyoung 	eeprom->ops.validate_checksum =
     97   1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     98   1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     99   1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
    100   1.1    dyoung 
    101   1.1    dyoung 	/* MAC */
    102   1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
    103   1.1    dyoung 	mac->ops.reset_hw = NULL;
    104   1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    105   1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    106   1.1    dyoung 	mac->ops.get_media_type = NULL;
    107   1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    108   1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    109   1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    110   1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    111   1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    112   1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    113   1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    114   1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    115   1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    116   1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    117   1.1    dyoung 
    118   1.1    dyoung 	/* LEDs */
    119   1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    120   1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    121   1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    122   1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    123  1.14   msaitoh 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    124   1.1    dyoung 
    125   1.1    dyoung 	/* RAR, Multicast, VLAN */
    126   1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    127   1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    128   1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    129   1.1    dyoung 	mac->ops.set_vmdq = NULL;
    130   1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    131   1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    132   1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    133   1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    134   1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    135   1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    136   1.1    dyoung 	mac->ops.clear_vfta = NULL;
    137   1.1    dyoung 	mac->ops.set_vfta = NULL;
    138   1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    139   1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    140   1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    141   1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    142  1.23   msaitoh 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
    143   1.1    dyoung 
    144   1.1    dyoung 	/* Flow Control */
    145   1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    146   1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    147  1.14   msaitoh 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    148   1.1    dyoung 
    149   1.1    dyoung 	/* Link */
    150   1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    151   1.1    dyoung 	mac->ops.setup_link = NULL;
    152   1.1    dyoung 	mac->ops.check_link = NULL;
    153   1.6   msaitoh 	mac->ops.dmac_config = NULL;
    154   1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    155   1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    156   1.1    dyoung 
    157   1.1    dyoung 	return IXGBE_SUCCESS;
    158   1.1    dyoung }
    159   1.1    dyoung 
    160   1.1    dyoung /**
    161   1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    162   1.6   msaitoh  * of flow control
    163   1.6   msaitoh  * @hw: pointer to hardware structure
    164   1.6   msaitoh  *
    165   1.6   msaitoh  * This function returns TRUE if the device supports flow control
    166   1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    167   1.4   msaitoh  *
    168   1.4   msaitoh  **/
    169   1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    170   1.4   msaitoh {
    171   1.6   msaitoh 	bool supported = FALSE;
    172   1.6   msaitoh 	ixgbe_link_speed speed;
    173   1.6   msaitoh 	bool link_up;
    174   1.4   msaitoh 
    175   1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    176   1.4   msaitoh 
    177   1.6   msaitoh 	switch (hw->phy.media_type) {
    178   1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    179   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    180   1.6   msaitoh 	case ixgbe_media_type_fiber:
    181  1.14   msaitoh 		/* flow control autoneg black list */
    182  1.14   msaitoh 		switch (hw->device_id) {
    183  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP:
    184  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    185  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    186  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    187  1.14   msaitoh 			supported = FALSE;
    188  1.14   msaitoh 			break;
    189  1.14   msaitoh 		default:
    190  1.14   msaitoh 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    191  1.14   msaitoh 			/* if link is down, assume supported */
    192  1.14   msaitoh 			if (link_up)
    193  1.14   msaitoh 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    194  1.14   msaitoh 				    TRUE : FALSE;
    195  1.14   msaitoh 			else
    196  1.14   msaitoh 				supported = TRUE;
    197  1.14   msaitoh 		}
    198  1.14   msaitoh 
    199  1.14   msaitoh 		break;
    200  1.14   msaitoh 	case ixgbe_media_type_backplane:
    201  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    202  1.14   msaitoh 			supported = FALSE;
    203   1.6   msaitoh 		else
    204   1.6   msaitoh 			supported = TRUE;
    205   1.6   msaitoh 		break;
    206   1.6   msaitoh 	case ixgbe_media_type_copper:
    207   1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    208   1.6   msaitoh 		switch (hw->device_id) {
    209   1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    210   1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    211   1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    212   1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    213   1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    214  1.10   msaitoh 		case IXGBE_DEV_ID_X550T1:
    215   1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    216  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    217  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    218  1.14   msaitoh 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    219   1.6   msaitoh 			supported = TRUE;
    220   1.6   msaitoh 			break;
    221   1.6   msaitoh 		default:
    222   1.6   msaitoh 			supported = FALSE;
    223   1.6   msaitoh 		}
    224   1.4   msaitoh 	default:
    225   1.6   msaitoh 		break;
    226   1.4   msaitoh 	}
    227   1.6   msaitoh 
    228  1.14   msaitoh 	if (!supported)
    229  1.12   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    230  1.14   msaitoh 			      "Device %x does not support flow control autoneg",
    231  1.14   msaitoh 			      hw->device_id);
    232  1.17   msaitoh 
    233   1.6   msaitoh 	return supported;
    234   1.4   msaitoh }
    235   1.4   msaitoh 
    236   1.4   msaitoh /**
    237   1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    238   1.4   msaitoh  *  @hw: pointer to hardware structure
    239   1.4   msaitoh  *
    240   1.4   msaitoh  *  Called at init time to set up flow control.
    241   1.4   msaitoh  **/
    242   1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    243   1.4   msaitoh {
    244   1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    245   1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    246   1.4   msaitoh 	u16 reg_cu = 0;
    247   1.8   msaitoh 	bool locked = FALSE;
    248   1.4   msaitoh 
    249   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    250   1.4   msaitoh 
    251   1.8   msaitoh 	/* Validate the requested mode */
    252   1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    253   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    254   1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    255   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    256   1.4   msaitoh 		goto out;
    257   1.4   msaitoh 	}
    258   1.4   msaitoh 
    259   1.4   msaitoh 	/*
    260   1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    261   1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    262   1.4   msaitoh 	 */
    263   1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    264   1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    265   1.4   msaitoh 
    266   1.4   msaitoh 	/*
    267   1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    268   1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    269   1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    270   1.4   msaitoh 	 */
    271   1.4   msaitoh 	switch (hw->phy.media_type) {
    272   1.8   msaitoh 	case ixgbe_media_type_backplane:
    273   1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    274   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    275   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    276   1.8   msaitoh 			goto out;
    277   1.8   msaitoh 
    278  1.14   msaitoh 		/* fall through - only backplane uses autoc */
    279   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    280   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    281   1.4   msaitoh 	case ixgbe_media_type_fiber:
    282   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    283   1.8   msaitoh 
    284   1.4   msaitoh 		break;
    285   1.4   msaitoh 	case ixgbe_media_type_copper:
    286   1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    287   1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    288   1.4   msaitoh 		break;
    289   1.4   msaitoh 	default:
    290   1.4   msaitoh 		break;
    291   1.4   msaitoh 	}
    292   1.4   msaitoh 
    293   1.4   msaitoh 	/*
    294   1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    295   1.4   msaitoh 	 * 0: Flow control is completely disabled
    296   1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    297   1.4   msaitoh 	 *    but not send pause frames).
    298   1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    299   1.4   msaitoh 	 *    we do not support receiving pause frames).
    300   1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    301   1.4   msaitoh 	 * other: Invalid.
    302   1.4   msaitoh 	 */
    303   1.4   msaitoh 	switch (hw->fc.requested_mode) {
    304   1.4   msaitoh 	case ixgbe_fc_none:
    305   1.4   msaitoh 		/* Flow control completely disabled by software override. */
    306   1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    307   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    308   1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    309   1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    310   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    311   1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    312   1.4   msaitoh 		break;
    313   1.4   msaitoh 	case ixgbe_fc_tx_pause:
    314   1.4   msaitoh 		/*
    315   1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    316   1.4   msaitoh 		 * disabled by software override.
    317   1.4   msaitoh 		 */
    318   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    319   1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    320   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    321   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    322   1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    323   1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    324   1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    325   1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    326   1.4   msaitoh 		}
    327   1.4   msaitoh 		break;
    328   1.4   msaitoh 	case ixgbe_fc_rx_pause:
    329   1.4   msaitoh 		/*
    330   1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    331   1.4   msaitoh 		 * disabled by software override. Since there really
    332   1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    333   1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    334   1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    335   1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    336   1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    337   1.4   msaitoh 		 */
    338   1.4   msaitoh 	case ixgbe_fc_full:
    339   1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    340   1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    341   1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    342   1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    343   1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    344   1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    345   1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    346   1.4   msaitoh 		break;
    347   1.4   msaitoh 	default:
    348   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    349   1.6   msaitoh 			     "Flow control param set incorrectly\n");
    350   1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    351   1.4   msaitoh 		goto out;
    352   1.4   msaitoh 		break;
    353   1.4   msaitoh 	}
    354   1.4   msaitoh 
    355   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    356   1.4   msaitoh 		/*
    357   1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    358   1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    359   1.4   msaitoh 		 */
    360   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    361   1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    362   1.4   msaitoh 
    363   1.4   msaitoh 		/* Disable AN timeout */
    364   1.4   msaitoh 		if (hw->fc.strict_ieee)
    365   1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    366   1.4   msaitoh 
    367   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    368   1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    369   1.4   msaitoh 	}
    370   1.4   msaitoh 
    371   1.4   msaitoh 	/*
    372   1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    373   1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    374   1.4   msaitoh 	 *
    375   1.4   msaitoh 	 */
    376   1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    377   1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    378   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    379   1.8   msaitoh 		if (ret_val)
    380   1.8   msaitoh 			goto out;
    381   1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    382   1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    383   1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    384   1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    385   1.4   msaitoh 	}
    386   1.4   msaitoh 
    387   1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    388   1.4   msaitoh out:
    389   1.4   msaitoh 	return ret_val;
    390   1.4   msaitoh }
    391   1.4   msaitoh 
    392   1.4   msaitoh /**
    393   1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    394   1.1    dyoung  *  @hw: pointer to hardware structure
    395   1.1    dyoung  *
    396   1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    397   1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    398   1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    399   1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    400   1.1    dyoung  **/
    401   1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    402   1.1    dyoung {
    403   1.4   msaitoh 	s32 ret_val;
    404   1.1    dyoung 	u32 ctrl_ext;
    405  1.14   msaitoh 	u16 device_caps;
    406   1.1    dyoung 
    407   1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    408   1.1    dyoung 
    409   1.1    dyoung 	/* Set the media type */
    410   1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    411   1.1    dyoung 
    412   1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    413   1.1    dyoung 
    414   1.1    dyoung 	/* Clear the VLAN filter table */
    415   1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    416   1.1    dyoung 
    417   1.1    dyoung 	/* Clear statistics registers */
    418   1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    419   1.1    dyoung 
    420   1.1    dyoung 	/* Set No Snoop Disable */
    421   1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    422   1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    423   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    424   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    425   1.1    dyoung 
    426   1.1    dyoung 	/* Setup flow control */
    427   1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    428  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    429  1.14   msaitoh 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    430  1.14   msaitoh 		return ret_val;
    431  1.14   msaitoh 	}
    432  1.14   msaitoh 
    433  1.14   msaitoh 	/* Cache bit indicating need for crosstalk fix */
    434  1.14   msaitoh 	switch (hw->mac.type) {
    435  1.14   msaitoh 	case ixgbe_mac_82599EB:
    436  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
    437  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
    438  1.14   msaitoh 		hw->mac.ops.get_device_caps(hw, &device_caps);
    439  1.14   msaitoh 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    440  1.14   msaitoh 			hw->need_crosstalk_fix = FALSE;
    441  1.14   msaitoh 		else
    442  1.14   msaitoh 			hw->need_crosstalk_fix = TRUE;
    443  1.14   msaitoh 		break;
    444  1.14   msaitoh 	default:
    445  1.14   msaitoh 		hw->need_crosstalk_fix = FALSE;
    446  1.14   msaitoh 		break;
    447  1.14   msaitoh 	}
    448   1.1    dyoung 
    449   1.1    dyoung 	/* Clear adapter stopped flag */
    450   1.1    dyoung 	hw->adapter_stopped = FALSE;
    451   1.1    dyoung 
    452  1.14   msaitoh 	return IXGBE_SUCCESS;
    453   1.1    dyoung }
    454   1.1    dyoung 
    455   1.1    dyoung /**
    456   1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    457   1.1    dyoung  *  @hw: pointer to hw structure
    458   1.1    dyoung  *
    459   1.1    dyoung  * Performs the init sequence common to the second generation
    460   1.1    dyoung  * of 10 GbE devices.
    461   1.1    dyoung  * Devices in the second generation:
    462   1.1    dyoung  *     82599
    463   1.1    dyoung  *     X540
    464   1.1    dyoung  **/
    465  1.35   msaitoh void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    466   1.1    dyoung {
    467   1.1    dyoung 	u32 i;
    468   1.1    dyoung 	u32 regval;
    469   1.1    dyoung 
    470  1.27   msaitoh 	DEBUGFUNC("ixgbe_start_hw_gen2");
    471  1.27   msaitoh 
    472   1.1    dyoung 	/* Clear the rate limiters */
    473   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    474   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    475   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    476   1.1    dyoung 	}
    477   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    478   1.1    dyoung 
    479   1.1    dyoung 	/* Disable relaxed ordering */
    480   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    481   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    482   1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    483   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    484   1.1    dyoung 	}
    485   1.1    dyoung 
    486   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    487   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    488   1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    489   1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    490   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    491   1.1    dyoung 	}
    492   1.1    dyoung }
    493   1.1    dyoung 
    494   1.1    dyoung /**
    495   1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    496   1.1    dyoung  *  @hw: pointer to hardware structure
    497   1.1    dyoung  *
    498   1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    499   1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    500   1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    501   1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    502   1.1    dyoung  *  disabled and uninitialized
    503   1.1    dyoung  **/
    504   1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    505   1.1    dyoung {
    506   1.1    dyoung 	s32 status;
    507   1.1    dyoung 
    508   1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    509   1.1    dyoung 
    510   1.1    dyoung 	/* Reset the hardware */
    511   1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    512   1.1    dyoung 
    513  1.14   msaitoh 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    514   1.1    dyoung 		/* Start the HW */
    515   1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    516   1.1    dyoung 	}
    517   1.1    dyoung 
    518  1.14   msaitoh 	/* Initialize the LED link active for LED blink support */
    519  1.14   msaitoh 	if (hw->mac.ops.init_led_link_act)
    520  1.14   msaitoh 		hw->mac.ops.init_led_link_act(hw);
    521  1.14   msaitoh 
    522  1.14   msaitoh 	if (status != IXGBE_SUCCESS)
    523  1.14   msaitoh 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    524  1.14   msaitoh 
    525   1.1    dyoung 	return status;
    526   1.1    dyoung }
    527   1.1    dyoung 
    528   1.1    dyoung /**
    529   1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    530   1.1    dyoung  *  @hw: pointer to hardware structure
    531   1.1    dyoung  *
    532   1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    533   1.1    dyoung  *  Statistics counters are clear on read.
    534   1.1    dyoung  **/
    535   1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    536   1.1    dyoung {
    537   1.1    dyoung 	u16 i = 0;
    538   1.1    dyoung 
    539   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    540   1.1    dyoung 
    541   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    542   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    543   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    544   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    545  1.13   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
    546  1.13   msaitoh 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    547   1.1    dyoung 	for (i = 0; i < 8; i++)
    548   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    549   1.1    dyoung 
    550   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    551   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    552   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    553   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    554   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    555   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    556   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    557   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    558   1.1    dyoung 	} else {
    559   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    560   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    561   1.1    dyoung 	}
    562   1.1    dyoung 
    563   1.1    dyoung 	for (i = 0; i < 8; i++) {
    564   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    565   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    566   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    567   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    568   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    569   1.1    dyoung 		} else {
    570   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    571   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    572   1.1    dyoung 		}
    573   1.1    dyoung 	}
    574   1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    575   1.1    dyoung 		for (i = 0; i < 8; i++)
    576   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    577   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    578   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    579   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    580   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    581   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    582   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    583   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    584   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    585   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    586   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    587   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    588   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    589   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    590   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    591   1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    592   1.3   msaitoh 		for (i = 0; i < 8; i++)
    593   1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    594   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    595   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    596   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    597   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    598   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    599   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    600   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    601   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    602   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    603   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    604   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    605   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    606   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    607   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    608   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    609   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    610   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    611   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    612   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    613   1.1    dyoung 	for (i = 0; i < 16; i++) {
    614   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    615   1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    616   1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    617   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    618   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    619   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    620   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    621   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    622   1.1    dyoung 		} else {
    623   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    624   1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    625   1.1    dyoung 		}
    626   1.1    dyoung 	}
    627   1.1    dyoung 
    628   1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    629   1.3   msaitoh 		if (hw->phy.id == 0)
    630   1.3   msaitoh 			ixgbe_identify_phy(hw);
    631   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    632   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    633   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    634   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    635   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    636   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    637   1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    638   1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    639   1.3   msaitoh 	}
    640   1.3   msaitoh 
    641   1.1    dyoung 	return IXGBE_SUCCESS;
    642   1.1    dyoung }
    643   1.1    dyoung 
    644   1.1    dyoung /**
    645   1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    646   1.1    dyoung  *  @hw: pointer to hardware structure
    647   1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    648   1.1    dyoung  *  @pba_num_size: part number string buffer length
    649   1.1    dyoung  *
    650   1.1    dyoung  *  Reads the part number string from the EEPROM.
    651   1.1    dyoung  **/
    652   1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    653   1.3   msaitoh 				  u32 pba_num_size)
    654   1.1    dyoung {
    655   1.1    dyoung 	s32 ret_val;
    656   1.1    dyoung 	u16 data;
    657   1.1    dyoung 	u16 pba_ptr;
    658   1.1    dyoung 	u16 offset;
    659   1.1    dyoung 	u16 length;
    660   1.1    dyoung 
    661   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    662   1.1    dyoung 
    663   1.1    dyoung 	if (pba_num == NULL) {
    664   1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    665   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    666   1.1    dyoung 	}
    667   1.1    dyoung 
    668   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    669   1.1    dyoung 	if (ret_val) {
    670   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    671   1.1    dyoung 		return ret_val;
    672   1.1    dyoung 	}
    673   1.1    dyoung 
    674   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    675   1.1    dyoung 	if (ret_val) {
    676   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    677   1.1    dyoung 		return ret_val;
    678   1.1    dyoung 	}
    679   1.1    dyoung 
    680   1.1    dyoung 	/*
    681   1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    682   1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    683   1.1    dyoung 	 * and we can decode it into an ascii string
    684   1.1    dyoung 	 */
    685   1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    686   1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    687   1.1    dyoung 
    688   1.1    dyoung 		/* we will need 11 characters to store the PBA */
    689   1.1    dyoung 		if (pba_num_size < 11) {
    690   1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    691   1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    692   1.1    dyoung 		}
    693   1.1    dyoung 
    694   1.1    dyoung 		/* extract hex string from data and pba_ptr */
    695   1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    696   1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    697   1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    698   1.1    dyoung 		pba_num[3] = data & 0xF;
    699   1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    700   1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    701   1.1    dyoung 		pba_num[6] = '-';
    702   1.1    dyoung 		pba_num[7] = 0;
    703   1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    704   1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    705   1.1    dyoung 
    706   1.1    dyoung 		/* put a null character on the end of our string */
    707   1.1    dyoung 		pba_num[10] = '\0';
    708   1.1    dyoung 
    709   1.1    dyoung 		/* switch all the data but the '-' to hex char */
    710   1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    711   1.1    dyoung 			if (pba_num[offset] < 0xA)
    712   1.1    dyoung 				pba_num[offset] += '0';
    713   1.1    dyoung 			else if (pba_num[offset] < 0x10)
    714   1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    715   1.1    dyoung 		}
    716   1.1    dyoung 
    717   1.1    dyoung 		return IXGBE_SUCCESS;
    718   1.1    dyoung 	}
    719   1.1    dyoung 
    720   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    721   1.1    dyoung 	if (ret_val) {
    722   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    723   1.1    dyoung 		return ret_val;
    724   1.1    dyoung 	}
    725   1.1    dyoung 
    726   1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    727   1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    728   1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    729   1.1    dyoung 	}
    730   1.1    dyoung 
    731   1.1    dyoung 	/* check if pba_num buffer is big enough */
    732   1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    733   1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    734   1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    735   1.1    dyoung 	}
    736   1.1    dyoung 
    737   1.1    dyoung 	/* trim pba length from start of string */
    738   1.1    dyoung 	pba_ptr++;
    739   1.1    dyoung 	length--;
    740   1.1    dyoung 
    741   1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    742   1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    743   1.1    dyoung 		if (ret_val) {
    744   1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    745   1.1    dyoung 			return ret_val;
    746   1.1    dyoung 		}
    747   1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    748   1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    749   1.1    dyoung 	}
    750   1.1    dyoung 	pba_num[offset * 2] = '\0';
    751   1.1    dyoung 
    752   1.1    dyoung 	return IXGBE_SUCCESS;
    753   1.1    dyoung }
    754   1.1    dyoung 
    755   1.1    dyoung /**
    756   1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    757   1.1    dyoung  *  @hw: pointer to hardware structure
    758   1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    759   1.1    dyoung  *
    760   1.1    dyoung  *  Reads the part number from the EEPROM.
    761   1.1    dyoung  **/
    762   1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    763   1.1    dyoung {
    764   1.1    dyoung 	s32 ret_val;
    765   1.1    dyoung 	u16 data;
    766   1.1    dyoung 
    767   1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    768   1.1    dyoung 
    769   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    770   1.1    dyoung 	if (ret_val) {
    771   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    772   1.1    dyoung 		return ret_val;
    773   1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    774   1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    775   1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    776   1.1    dyoung 	}
    777   1.1    dyoung 	*pba_num = (u32)(data << 16);
    778   1.1    dyoung 
    779   1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    780   1.1    dyoung 	if (ret_val) {
    781   1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    782   1.1    dyoung 		return ret_val;
    783   1.1    dyoung 	}
    784  1.34   msaitoh 	*pba_num |= (u32)data;
    785   1.1    dyoung 
    786   1.1    dyoung 	return IXGBE_SUCCESS;
    787   1.1    dyoung }
    788   1.1    dyoung 
    789   1.1    dyoung /**
    790   1.5   msaitoh  *  ixgbe_read_pba_raw
    791   1.5   msaitoh  *  @hw: pointer to the HW structure
    792   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    793   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    794   1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    795   1.5   msaitoh  *  @pba: pointer to output PBA structure
    796   1.5   msaitoh  *
    797   1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    798   1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    799   1.5   msaitoh  *
    800   1.5   msaitoh  **/
    801   1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    802   1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    803   1.5   msaitoh 		       struct ixgbe_pba *pba)
    804   1.5   msaitoh {
    805   1.5   msaitoh 	s32 ret_val;
    806   1.5   msaitoh 	u16 pba_block_size;
    807   1.5   msaitoh 
    808   1.5   msaitoh 	if (pba == NULL)
    809   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    810   1.5   msaitoh 
    811   1.5   msaitoh 	if (eeprom_buf == NULL) {
    812   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    813   1.5   msaitoh 						     &pba->word[0]);
    814   1.5   msaitoh 		if (ret_val)
    815   1.5   msaitoh 			return ret_val;
    816   1.5   msaitoh 	} else {
    817   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    818   1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    819   1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    820   1.5   msaitoh 		} else {
    821   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    822   1.5   msaitoh 		}
    823   1.5   msaitoh 	}
    824   1.5   msaitoh 
    825   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    826   1.5   msaitoh 		if (pba->pba_block == NULL)
    827   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    828   1.5   msaitoh 
    829   1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    830   1.5   msaitoh 						   eeprom_buf_size,
    831   1.5   msaitoh 						   &pba_block_size);
    832   1.5   msaitoh 		if (ret_val)
    833   1.5   msaitoh 			return ret_val;
    834   1.5   msaitoh 
    835   1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    836   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    837   1.5   msaitoh 
    838   1.5   msaitoh 		if (eeprom_buf == NULL) {
    839   1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    840   1.5   msaitoh 							     pba_block_size,
    841   1.5   msaitoh 							     pba->pba_block);
    842   1.5   msaitoh 			if (ret_val)
    843   1.5   msaitoh 				return ret_val;
    844   1.5   msaitoh 		} else {
    845   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    846   1.8   msaitoh 					      pba_block_size)) {
    847   1.5   msaitoh 				memcpy(pba->pba_block,
    848   1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    849   1.5   msaitoh 				       pba_block_size * sizeof(u16));
    850   1.5   msaitoh 			} else {
    851   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    852   1.5   msaitoh 			}
    853   1.5   msaitoh 		}
    854   1.5   msaitoh 	}
    855   1.5   msaitoh 
    856   1.5   msaitoh 	return IXGBE_SUCCESS;
    857   1.5   msaitoh }
    858   1.5   msaitoh 
    859   1.5   msaitoh /**
    860   1.5   msaitoh  *  ixgbe_write_pba_raw
    861   1.5   msaitoh  *  @hw: pointer to the HW structure
    862   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    863   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    864   1.5   msaitoh  *  @pba: pointer to PBA structure
    865   1.5   msaitoh  *
    866   1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    867   1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    868   1.5   msaitoh  *
    869   1.5   msaitoh  **/
    870   1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    871   1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    872   1.5   msaitoh {
    873   1.5   msaitoh 	s32 ret_val;
    874   1.5   msaitoh 
    875   1.5   msaitoh 	if (pba == NULL)
    876   1.5   msaitoh 		return IXGBE_ERR_PARAM;
    877   1.5   msaitoh 
    878   1.5   msaitoh 	if (eeprom_buf == NULL) {
    879   1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    880   1.5   msaitoh 						      &pba->word[0]);
    881   1.5   msaitoh 		if (ret_val)
    882   1.5   msaitoh 			return ret_val;
    883   1.5   msaitoh 	} else {
    884   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    885   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    886   1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    887   1.5   msaitoh 		} else {
    888   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    889   1.5   msaitoh 		}
    890   1.5   msaitoh 	}
    891   1.5   msaitoh 
    892   1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    893   1.5   msaitoh 		if (pba->pba_block == NULL)
    894   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    895   1.5   msaitoh 
    896   1.5   msaitoh 		if (eeprom_buf == NULL) {
    897   1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    898   1.5   msaitoh 							      pba->pba_block[0],
    899   1.5   msaitoh 							      pba->pba_block);
    900   1.5   msaitoh 			if (ret_val)
    901   1.5   msaitoh 				return ret_val;
    902   1.5   msaitoh 		} else {
    903   1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    904   1.5   msaitoh 					      pba->pba_block[0])) {
    905   1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    906   1.5   msaitoh 				       pba->pba_block,
    907   1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    908   1.5   msaitoh 			} else {
    909   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    910   1.5   msaitoh 			}
    911   1.5   msaitoh 		}
    912   1.5   msaitoh 	}
    913   1.5   msaitoh 
    914   1.5   msaitoh 	return IXGBE_SUCCESS;
    915   1.5   msaitoh }
    916   1.5   msaitoh 
    917   1.5   msaitoh /**
    918   1.5   msaitoh  *  ixgbe_get_pba_block_size
    919   1.5   msaitoh  *  @hw: pointer to the HW structure
    920   1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    921   1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    922   1.5   msaitoh  *  @pba_data_size: pointer to output variable
    923   1.5   msaitoh  *
    924   1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    925   1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    926   1.5   msaitoh  *  EEPROM device.
    927   1.5   msaitoh  *
    928   1.5   msaitoh  **/
    929   1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    930   1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    931   1.5   msaitoh {
    932   1.5   msaitoh 	s32 ret_val;
    933   1.5   msaitoh 	u16 pba_word[2];
    934   1.5   msaitoh 	u16 length;
    935   1.5   msaitoh 
    936   1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    937   1.5   msaitoh 
    938   1.5   msaitoh 	if (eeprom_buf == NULL) {
    939   1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    940   1.5   msaitoh 						     &pba_word[0]);
    941   1.5   msaitoh 		if (ret_val)
    942   1.5   msaitoh 			return ret_val;
    943   1.5   msaitoh 	} else {
    944   1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    945   1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    946   1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    947   1.5   msaitoh 		} else {
    948   1.5   msaitoh 			return IXGBE_ERR_PARAM;
    949   1.5   msaitoh 		}
    950   1.5   msaitoh 	}
    951   1.5   msaitoh 
    952   1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    953   1.5   msaitoh 		if (eeprom_buf == NULL) {
    954   1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    955   1.5   msaitoh 						      &length);
    956   1.5   msaitoh 			if (ret_val)
    957   1.5   msaitoh 				return ret_val;
    958   1.5   msaitoh 		} else {
    959   1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    960   1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    961   1.5   msaitoh 			else
    962   1.5   msaitoh 				return IXGBE_ERR_PARAM;
    963   1.5   msaitoh 		}
    964   1.5   msaitoh 
    965   1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    966   1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    967   1.5   msaitoh 	} else {
    968   1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    969   1.5   msaitoh 		length = 0;
    970   1.5   msaitoh 	}
    971   1.5   msaitoh 
    972   1.5   msaitoh 	if (pba_block_size != NULL)
    973   1.5   msaitoh 		*pba_block_size = length;
    974   1.5   msaitoh 
    975   1.5   msaitoh 	return IXGBE_SUCCESS;
    976   1.5   msaitoh }
    977   1.5   msaitoh 
    978   1.5   msaitoh /**
    979   1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    980   1.1    dyoung  *  @hw: pointer to hardware structure
    981   1.1    dyoung  *  @mac_addr: Adapter MAC address
    982   1.1    dyoung  *
    983   1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    984   1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    985   1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    986   1.1    dyoung  **/
    987   1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    988   1.1    dyoung {
    989   1.1    dyoung 	u32 rar_high;
    990   1.1    dyoung 	u32 rar_low;
    991   1.1    dyoung 	u16 i;
    992   1.1    dyoung 
    993   1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    994   1.1    dyoung 
    995   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    996   1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    997   1.1    dyoung 
    998   1.1    dyoung 	for (i = 0; i < 4; i++)
    999   1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
   1000   1.1    dyoung 
   1001   1.1    dyoung 	for (i = 0; i < 2; i++)
   1002   1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
   1003   1.1    dyoung 
   1004   1.1    dyoung 	return IXGBE_SUCCESS;
   1005   1.1    dyoung }
   1006   1.1    dyoung 
   1007   1.1    dyoung /**
   1008   1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1009   1.1    dyoung  *  @hw: pointer to hardware structure
   1010   1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
   1011   1.1    dyoung  *
   1012   1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1013   1.1    dyoung  **/
   1014   1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1015   1.1    dyoung {
   1016   1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
   1017   1.1    dyoung 
   1018   1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1019   1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
   1020   1.1    dyoung 
   1021   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1022   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
   1023   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1024   1.1    dyoung 		break;
   1025   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
   1026   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1027   1.1    dyoung 		break;
   1028   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
   1029   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1030   1.1    dyoung 		break;
   1031   1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
   1032   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1033   1.1    dyoung 		break;
   1034   1.1    dyoung 	default:
   1035   1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
   1036   1.1    dyoung 		break;
   1037   1.1    dyoung 	}
   1038   1.1    dyoung 
   1039   1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1040   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
   1041   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
   1042   1.1    dyoung 		break;
   1043   1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
   1044   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
   1045   1.1    dyoung 		break;
   1046   1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
   1047   1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
   1048   1.4   msaitoh 		break;
   1049   1.1    dyoung 	default:
   1050   1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1051   1.1    dyoung 		break;
   1052   1.1    dyoung 	}
   1053   1.1    dyoung 
   1054   1.1    dyoung 	mac->ops.set_lan_id(hw);
   1055   1.6   msaitoh }
   1056   1.6   msaitoh 
   1057   1.6   msaitoh /**
   1058   1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1059   1.6   msaitoh  *  @hw: pointer to hardware structure
   1060   1.6   msaitoh  *
   1061   1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1062   1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1063   1.6   msaitoh  **/
   1064   1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1065   1.6   msaitoh {
   1066   1.6   msaitoh 	u16 link_status;
   1067   1.6   msaitoh 
   1068   1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1069   1.6   msaitoh 
   1070   1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1071   1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1072   1.6   msaitoh 
   1073   1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1074   1.1    dyoung 
   1075   1.1    dyoung 	return IXGBE_SUCCESS;
   1076   1.1    dyoung }
   1077   1.1    dyoung 
   1078   1.1    dyoung /**
   1079   1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1080   1.1    dyoung  *  @hw: pointer to the HW structure
   1081   1.1    dyoung  *
   1082  1.14   msaitoh  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1083  1.14   msaitoh  *  the port value if requested, and set MAC instance for devices that share
   1084  1.14   msaitoh  *  CS4227.
   1085   1.1    dyoung  **/
   1086   1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1087   1.1    dyoung {
   1088   1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1089   1.1    dyoung 	u32 reg;
   1090  1.14   msaitoh 	u16 ee_ctrl_4;
   1091   1.1    dyoung 
   1092   1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1093   1.1    dyoung 
   1094   1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1095   1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1096  1.14   msaitoh 	bus->lan_id = (u8)bus->func;
   1097   1.1    dyoung 
   1098   1.1    dyoung 	/* check for a port swap */
   1099  1.10   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1100   1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1101   1.1    dyoung 		bus->func ^= 0x1;
   1102  1.14   msaitoh 
   1103  1.14   msaitoh 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1104  1.14   msaitoh 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1105  1.14   msaitoh 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1106  1.14   msaitoh 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1107  1.14   msaitoh 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1108  1.14   msaitoh 	}
   1109   1.1    dyoung }
   1110   1.1    dyoung 
   1111   1.1    dyoung /**
   1112   1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1113   1.1    dyoung  *  @hw: pointer to hardware structure
   1114   1.1    dyoung  *
   1115   1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1116   1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1117   1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1118   1.1    dyoung  *  state and should not touch the hardware.
   1119   1.1    dyoung  **/
   1120   1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1121   1.1    dyoung {
   1122   1.1    dyoung 	u32 reg_val;
   1123   1.1    dyoung 	u16 i;
   1124   1.1    dyoung 
   1125   1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1126   1.1    dyoung 
   1127   1.1    dyoung 	/*
   1128   1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1129   1.1    dyoung 	 * the hardware
   1130   1.1    dyoung 	 */
   1131   1.1    dyoung 	hw->adapter_stopped = TRUE;
   1132   1.1    dyoung 
   1133   1.1    dyoung 	/* Disable the receive unit */
   1134   1.8   msaitoh 	ixgbe_disable_rx(hw);
   1135   1.1    dyoung 
   1136   1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1137  1.19  knakahar 	/*
   1138  1.19  knakahar 	 * XXX
   1139  1.19  knakahar 	 * This function is called in the state of both interrupt disabled
   1140  1.19  knakahar 	 * and interrupt enabled, e.g.
   1141  1.19  knakahar 	 * + interrupt disabled case:
   1142  1.30   msaitoh 	 *   - ixgbe_stop_locked()
   1143  1.19  knakahar 	 *     - ixgbe_disable_intr() // interrupt disabled here
   1144  1.19  knakahar 	 *     - ixgbe_stop_adapter()
   1145  1.19  knakahar 	 *       - hw->mac.ops.stop_adapter()
   1146  1.19  knakahar 	 *         == this function
   1147  1.19  knakahar 	 * + interrupt enabled case:
   1148  1.19  knakahar 	 *   - ixgbe_local_timer1()
   1149  1.19  knakahar 	 *     - ixgbe_init_locked()
   1150  1.19  knakahar 	 *       - ixgbe_stop_adapter()
   1151  1.19  knakahar 	 *         - hw->mac.ops.stop_adapter()
   1152  1.19  knakahar 	 *           == this function
   1153  1.19  knakahar 	 * Therefore, it causes nest status breaking to nest the status
   1154  1.19  knakahar 	 * (that is, que->im_nest++) at all times. So, this function must
   1155  1.19  knakahar 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
   1156  1.19  knakahar 	 */
   1157  1.19  knakahar 	ixgbe_ensure_disabled_intr(hw->back);
   1158   1.1    dyoung 
   1159   1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1160   1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1161   1.1    dyoung 
   1162   1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1163   1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1164   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1165   1.3   msaitoh 
   1166   1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1167   1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1168   1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1169   1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1170   1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1171   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1172   1.1    dyoung 	}
   1173   1.1    dyoung 
   1174   1.3   msaitoh 	/* flush all queues disables */
   1175   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1176   1.3   msaitoh 	msec_delay(2);
   1177   1.3   msaitoh 
   1178   1.1    dyoung 	/*
   1179   1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1180   1.1    dyoung 	 * access and verify no pending requests
   1181   1.1    dyoung 	 */
   1182   1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1183   1.1    dyoung }
   1184   1.1    dyoung 
   1185   1.1    dyoung /**
   1186  1.14   msaitoh  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1187  1.14   msaitoh  *  @hw: pointer to hardware structure
   1188  1.14   msaitoh  *
   1189  1.14   msaitoh  *  Store the index for the link active LED. This will be used to support
   1190  1.14   msaitoh  *  blinking the LED.
   1191  1.14   msaitoh  **/
   1192  1.14   msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1193  1.14   msaitoh {
   1194  1.14   msaitoh 	struct ixgbe_mac_info *mac = &hw->mac;
   1195  1.14   msaitoh 	u32 led_reg, led_mode;
   1196  1.14   msaitoh 	u8 i;
   1197  1.14   msaitoh 
   1198  1.14   msaitoh 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1199  1.14   msaitoh 
   1200  1.14   msaitoh 	/* Get LED link active from the LEDCTL register */
   1201  1.14   msaitoh 	for (i = 0; i < 4; i++) {
   1202  1.14   msaitoh 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1203  1.14   msaitoh 
   1204  1.14   msaitoh 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1205  1.14   msaitoh 		     IXGBE_LED_LINK_ACTIVE) {
   1206  1.14   msaitoh 			mac->led_link_act = i;
   1207  1.14   msaitoh 			return IXGBE_SUCCESS;
   1208  1.14   msaitoh 		}
   1209  1.14   msaitoh 	}
   1210  1.14   msaitoh 
   1211  1.14   msaitoh 	/*
   1212  1.14   msaitoh 	 * If LEDCTL register does not have the LED link active set, then use
   1213  1.14   msaitoh 	 * known MAC defaults.
   1214  1.14   msaitoh 	 */
   1215  1.14   msaitoh 	switch (hw->mac.type) {
   1216  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   1217  1.14   msaitoh 	case ixgbe_mac_X550EM_x:
   1218  1.14   msaitoh 		mac->led_link_act = 1;
   1219  1.14   msaitoh 		break;
   1220  1.14   msaitoh 	default:
   1221  1.14   msaitoh 		mac->led_link_act = 2;
   1222  1.14   msaitoh 	}
   1223  1.14   msaitoh 	return IXGBE_SUCCESS;
   1224  1.14   msaitoh }
   1225  1.14   msaitoh 
   1226  1.14   msaitoh /**
   1227   1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1228   1.1    dyoung  *  @hw: pointer to hardware structure
   1229   1.1    dyoung  *  @index: led number to turn on
   1230   1.1    dyoung  **/
   1231   1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1232   1.1    dyoung {
   1233   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1234   1.1    dyoung 
   1235   1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1236   1.1    dyoung 
   1237  1.14   msaitoh 	if (index > 3)
   1238  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1239  1.14   msaitoh 
   1240   1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1241   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1242   1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1243   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1244   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1245   1.1    dyoung 
   1246   1.1    dyoung 	return IXGBE_SUCCESS;
   1247   1.1    dyoung }
   1248   1.1    dyoung 
   1249   1.1    dyoung /**
   1250   1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1251   1.1    dyoung  *  @hw: pointer to hardware structure
   1252   1.1    dyoung  *  @index: led number to turn off
   1253   1.1    dyoung  **/
   1254   1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1255   1.1    dyoung {
   1256   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1257   1.1    dyoung 
   1258   1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1259   1.1    dyoung 
   1260  1.14   msaitoh 	if (index > 3)
   1261  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   1262  1.14   msaitoh 
   1263   1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1264   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1265   1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1266   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1267   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1268   1.1    dyoung 
   1269   1.1    dyoung 	return IXGBE_SUCCESS;
   1270   1.1    dyoung }
   1271   1.1    dyoung 
   1272   1.1    dyoung /**
   1273   1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1274   1.1    dyoung  *  @hw: pointer to hardware structure
   1275   1.1    dyoung  *
   1276   1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1277   1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1278   1.1    dyoung  **/
   1279   1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1280   1.1    dyoung {
   1281   1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1282   1.1    dyoung 	u32 eec;
   1283   1.1    dyoung 	u16 eeprom_size;
   1284   1.1    dyoung 
   1285   1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1286   1.1    dyoung 
   1287   1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1288   1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1289   1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1290   1.1    dyoung 		 * tested value */
   1291   1.1    dyoung 		eeprom->semaphore_delay = 10;
   1292   1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1293   1.3   msaitoh 		eeprom->word_page_size = 0;
   1294   1.1    dyoung 
   1295   1.1    dyoung 		/*
   1296   1.1    dyoung 		 * Check for EEPROM present first.
   1297   1.1    dyoung 		 * If not present leave as none
   1298   1.1    dyoung 		 */
   1299  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1300   1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1301   1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1302   1.1    dyoung 
   1303   1.1    dyoung 			/*
   1304   1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1305   1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1306   1.1    dyoung 			 */
   1307   1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1308   1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1309   1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1310   1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1311   1.1    dyoung 		}
   1312   1.1    dyoung 
   1313   1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1314   1.1    dyoung 			eeprom->address_bits = 16;
   1315   1.1    dyoung 		else
   1316   1.1    dyoung 			eeprom->address_bits = 8;
   1317   1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1318   1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1319   1.3   msaitoh 			  eeprom->address_bits);
   1320   1.1    dyoung 	}
   1321   1.1    dyoung 
   1322   1.1    dyoung 	return IXGBE_SUCCESS;
   1323   1.1    dyoung }
   1324   1.1    dyoung 
   1325   1.1    dyoung /**
   1326   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1327   1.3   msaitoh  *  @hw: pointer to hardware structure
   1328   1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1329   1.3   msaitoh  *  @words: number of word(s)
   1330   1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1331   1.3   msaitoh  *
   1332   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1333   1.3   msaitoh  **/
   1334   1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1335   1.3   msaitoh 					       u16 words, u16 *data)
   1336   1.3   msaitoh {
   1337   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1338   1.3   msaitoh 	u16 i, count;
   1339   1.3   msaitoh 
   1340   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1341   1.3   msaitoh 
   1342   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1343   1.3   msaitoh 
   1344   1.3   msaitoh 	if (words == 0) {
   1345   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1346   1.3   msaitoh 		goto out;
   1347   1.3   msaitoh 	}
   1348   1.3   msaitoh 
   1349   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1350   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1351   1.3   msaitoh 		goto out;
   1352   1.3   msaitoh 	}
   1353   1.3   msaitoh 
   1354   1.3   msaitoh 	/*
   1355   1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1356   1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1357   1.3   msaitoh 	 */
   1358   1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1359   1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1360   1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1361   1.3   msaitoh 
   1362   1.3   msaitoh 	/*
   1363   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1364   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1365   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1366   1.3   msaitoh 	 */
   1367   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1368   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1369   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1370   1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1371   1.3   msaitoh 							    count, &data[i]);
   1372   1.3   msaitoh 
   1373   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1374   1.3   msaitoh 			break;
   1375   1.3   msaitoh 	}
   1376   1.3   msaitoh 
   1377   1.3   msaitoh out:
   1378   1.3   msaitoh 	return status;
   1379   1.3   msaitoh }
   1380   1.3   msaitoh 
   1381   1.3   msaitoh /**
   1382   1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1383   1.3   msaitoh  *  @hw: pointer to hardware structure
   1384   1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1385   1.3   msaitoh  *  @words: number of word(s)
   1386   1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1387   1.3   msaitoh  *
   1388   1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1389   1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1390   1.3   msaitoh  **/
   1391   1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1392   1.3   msaitoh 					      u16 words, u16 *data)
   1393   1.3   msaitoh {
   1394   1.3   msaitoh 	s32 status;
   1395   1.3   msaitoh 	u16 word;
   1396   1.3   msaitoh 	u16 page_size;
   1397   1.3   msaitoh 	u16 i;
   1398   1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1399   1.3   msaitoh 
   1400   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1401   1.3   msaitoh 
   1402   1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1403   1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1404   1.3   msaitoh 
   1405   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1406   1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1407   1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1408   1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1409   1.3   msaitoh 		}
   1410   1.3   msaitoh 	}
   1411   1.3   msaitoh 
   1412   1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1413   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1414   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1415   1.3   msaitoh 
   1416   1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1417   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1418   1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1419   1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1420   1.3   msaitoh 
   1421   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1422   1.3   msaitoh 
   1423   1.3   msaitoh 			/*
   1424   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1425   1.3   msaitoh 			 * in the opcode
   1426   1.3   msaitoh 			 */
   1427   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1428   1.3   msaitoh 			    ((offset + i) >= 128))
   1429   1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1430   1.3   msaitoh 
   1431   1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1432   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1433   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1434   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1435   1.3   msaitoh 						    hw->eeprom.address_bits);
   1436   1.3   msaitoh 
   1437   1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1438   1.3   msaitoh 
   1439   1.3   msaitoh 			/* Send the data in burst via SPI*/
   1440   1.3   msaitoh 			do {
   1441   1.3   msaitoh 				word = data[i];
   1442   1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1443   1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1444   1.3   msaitoh 
   1445   1.3   msaitoh 				if (page_size == 0)
   1446   1.3   msaitoh 					break;
   1447   1.3   msaitoh 
   1448   1.3   msaitoh 				/* do not wrap around page */
   1449   1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1450   1.3   msaitoh 				    (page_size - 1))
   1451   1.3   msaitoh 					break;
   1452   1.3   msaitoh 			} while (++i < words);
   1453   1.3   msaitoh 
   1454   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1455   1.3   msaitoh 			msec_delay(10);
   1456   1.3   msaitoh 		}
   1457   1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1458   1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1459   1.3   msaitoh 	}
   1460   1.3   msaitoh 
   1461   1.3   msaitoh 	return status;
   1462   1.3   msaitoh }
   1463   1.3   msaitoh 
   1464   1.3   msaitoh /**
   1465   1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1466   1.1    dyoung  *  @hw: pointer to hardware structure
   1467   1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1468   1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1469   1.1    dyoung  *
   1470   1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1471   1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1472   1.1    dyoung  **/
   1473   1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1474   1.1    dyoung {
   1475   1.1    dyoung 	s32 status;
   1476   1.1    dyoung 
   1477   1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1478   1.1    dyoung 
   1479   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1480   1.1    dyoung 
   1481   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1482   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1483   1.1    dyoung 		goto out;
   1484   1.1    dyoung 	}
   1485   1.1    dyoung 
   1486   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1487   1.3   msaitoh 
   1488   1.3   msaitoh out:
   1489   1.3   msaitoh 	return status;
   1490   1.3   msaitoh }
   1491   1.3   msaitoh 
   1492   1.3   msaitoh /**
   1493   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1494   1.3   msaitoh  *  @hw: pointer to hardware structure
   1495   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1496   1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1497   1.3   msaitoh  *  @words: number of word(s)
   1498   1.3   msaitoh  *
   1499   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1500   1.3   msaitoh  **/
   1501   1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1502   1.3   msaitoh 					      u16 words, u16 *data)
   1503   1.3   msaitoh {
   1504   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1505   1.3   msaitoh 	u16 i, count;
   1506   1.3   msaitoh 
   1507   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1508   1.3   msaitoh 
   1509   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1510   1.3   msaitoh 
   1511   1.3   msaitoh 	if (words == 0) {
   1512   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1513   1.3   msaitoh 		goto out;
   1514   1.3   msaitoh 	}
   1515   1.3   msaitoh 
   1516   1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1517   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1518   1.3   msaitoh 		goto out;
   1519   1.3   msaitoh 	}
   1520   1.3   msaitoh 
   1521   1.3   msaitoh 	/*
   1522   1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1523   1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1524   1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1525   1.3   msaitoh 	 */
   1526   1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1527   1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1528   1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1529   1.3   msaitoh 
   1530   1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1531   1.3   msaitoh 							   count, &data[i]);
   1532   1.3   msaitoh 
   1533   1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1534   1.3   msaitoh 			break;
   1535   1.3   msaitoh 	}
   1536   1.3   msaitoh 
   1537   1.3   msaitoh out:
   1538   1.3   msaitoh 	return status;
   1539   1.3   msaitoh }
   1540   1.3   msaitoh 
   1541   1.3   msaitoh /**
   1542   1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1543   1.3   msaitoh  *  @hw: pointer to hardware structure
   1544   1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1545   1.3   msaitoh  *  @words: number of word(s)
   1546   1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1547   1.3   msaitoh  *
   1548   1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1549   1.3   msaitoh  **/
   1550   1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1551   1.3   msaitoh 					     u16 words, u16 *data)
   1552   1.3   msaitoh {
   1553   1.3   msaitoh 	s32 status;
   1554   1.3   msaitoh 	u16 word_in;
   1555   1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1556   1.3   msaitoh 	u16 i;
   1557   1.3   msaitoh 
   1558   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1559   1.3   msaitoh 
   1560   1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1561   1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1562   1.1    dyoung 
   1563   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1564   1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1565   1.1    dyoung 			ixgbe_release_eeprom(hw);
   1566   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1567   1.1    dyoung 		}
   1568   1.1    dyoung 	}
   1569   1.1    dyoung 
   1570   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1571   1.3   msaitoh 		for (i = 0; i < words; i++) {
   1572   1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1573   1.3   msaitoh 			/*
   1574   1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1575   1.3   msaitoh 			 * in the opcode
   1576   1.3   msaitoh 			 */
   1577   1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1578   1.3   msaitoh 			    ((offset + i) >= 128))
   1579   1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1580   1.3   msaitoh 
   1581   1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1582   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1583   1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1584   1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1585   1.3   msaitoh 						    hw->eeprom.address_bits);
   1586   1.3   msaitoh 
   1587   1.3   msaitoh 			/* Read the data. */
   1588   1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1589   1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1590   1.3   msaitoh 		}
   1591   1.1    dyoung 
   1592   1.3   msaitoh 		/* End this read operation */
   1593   1.1    dyoung 		ixgbe_release_eeprom(hw);
   1594   1.1    dyoung 	}
   1595   1.1    dyoung 
   1596   1.1    dyoung 	return status;
   1597   1.1    dyoung }
   1598   1.1    dyoung 
   1599   1.1    dyoung /**
   1600   1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1601   1.1    dyoung  *  @hw: pointer to hardware structure
   1602   1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1603   1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1604   1.1    dyoung  *
   1605   1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1606   1.1    dyoung  **/
   1607   1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1608   1.3   msaitoh 				       u16 *data)
   1609   1.1    dyoung {
   1610   1.1    dyoung 	s32 status;
   1611   1.1    dyoung 
   1612   1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1613   1.1    dyoung 
   1614   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1615   1.1    dyoung 
   1616   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1617   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1618   1.1    dyoung 		goto out;
   1619   1.1    dyoung 	}
   1620   1.1    dyoung 
   1621   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1622   1.3   msaitoh 
   1623   1.3   msaitoh out:
   1624   1.3   msaitoh 	return status;
   1625   1.3   msaitoh }
   1626   1.3   msaitoh 
   1627   1.3   msaitoh /**
   1628   1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1629   1.3   msaitoh  *  @hw: pointer to hardware structure
   1630   1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1631   1.3   msaitoh  *  @words: number of word(s)
   1632   1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1633   1.3   msaitoh  *
   1634   1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1635   1.3   msaitoh  **/
   1636   1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1637   1.3   msaitoh 				   u16 words, u16 *data)
   1638   1.3   msaitoh {
   1639   1.3   msaitoh 	u32 eerd;
   1640   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1641   1.3   msaitoh 	u32 i;
   1642   1.3   msaitoh 
   1643   1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1644   1.3   msaitoh 
   1645   1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1646   1.3   msaitoh 
   1647   1.3   msaitoh 	if (words == 0) {
   1648   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1649   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1650   1.3   msaitoh 		goto out;
   1651   1.3   msaitoh 	}
   1652   1.3   msaitoh 
   1653   1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1654   1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1655   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1656   1.3   msaitoh 		goto out;
   1657   1.3   msaitoh 	}
   1658   1.3   msaitoh 
   1659   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1660   1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1661   1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1662   1.3   msaitoh 
   1663   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1664   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1665   1.1    dyoung 
   1666   1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1667   1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1668   1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1669   1.3   msaitoh 		} else {
   1670   1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1671   1.3   msaitoh 			goto out;
   1672   1.1    dyoung 		}
   1673   1.1    dyoung 	}
   1674   1.3   msaitoh out:
   1675   1.3   msaitoh 	return status;
   1676   1.3   msaitoh }
   1677   1.1    dyoung 
   1678   1.3   msaitoh /**
   1679   1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1680   1.3   msaitoh  *  @hw: pointer to hardware structure
   1681   1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1682   1.3   msaitoh  *
   1683   1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1684   1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1685   1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1686   1.3   msaitoh  **/
   1687   1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1688   1.3   msaitoh 						 u16 offset)
   1689   1.3   msaitoh {
   1690   1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1691   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1692   1.3   msaitoh 	u16 i;
   1693   1.3   msaitoh 
   1694   1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1695   1.3   msaitoh 
   1696   1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1697   1.3   msaitoh 		data[i] = i;
   1698   1.1    dyoung 
   1699   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1700   1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1701   1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1702   1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1703   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1704   1.3   msaitoh 		goto out;
   1705   1.1    dyoung 
   1706   1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1707   1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1708   1.3   msaitoh 		goto out;
   1709   1.1    dyoung 
   1710   1.3   msaitoh 	/*
   1711   1.3   msaitoh 	 * When writing in burst more than the actual page size
   1712   1.3   msaitoh 	 * EEPROM address wraps around current page.
   1713   1.3   msaitoh 	 */
   1714   1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1715   1.1    dyoung 
   1716   1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1717   1.3   msaitoh 		  hw->eeprom.word_page_size);
   1718   1.1    dyoung out:
   1719   1.1    dyoung 	return status;
   1720   1.1    dyoung }
   1721   1.1    dyoung 
   1722   1.1    dyoung /**
   1723   1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1724   1.1    dyoung  *  @hw: pointer to hardware structure
   1725   1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1726   1.1    dyoung  *  @data: word read from the EEPROM
   1727   1.1    dyoung  *
   1728   1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1729   1.1    dyoung  **/
   1730   1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1731   1.1    dyoung {
   1732   1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1733   1.3   msaitoh }
   1734   1.3   msaitoh 
   1735   1.3   msaitoh /**
   1736   1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1737   1.3   msaitoh  *  @hw: pointer to hardware structure
   1738   1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1739   1.3   msaitoh  *  @words: number of word(s)
   1740   1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1741   1.3   msaitoh  *
   1742   1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1743   1.3   msaitoh  **/
   1744   1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1745   1.3   msaitoh 				    u16 words, u16 *data)
   1746   1.3   msaitoh {
   1747   1.3   msaitoh 	u32 eewr;
   1748   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1749   1.3   msaitoh 	u16 i;
   1750   1.1    dyoung 
   1751   1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1752   1.1    dyoung 
   1753   1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1754   1.1    dyoung 
   1755   1.3   msaitoh 	if (words == 0) {
   1756   1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1757   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1758   1.3   msaitoh 		goto out;
   1759   1.3   msaitoh 	}
   1760   1.3   msaitoh 
   1761   1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1762   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1763   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1764   1.1    dyoung 		goto out;
   1765   1.1    dyoung 	}
   1766   1.1    dyoung 
   1767   1.3   msaitoh 	for (i = 0; i < words; i++) {
   1768   1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1769   1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1770   1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1771   1.3   msaitoh 
   1772   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1773   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1774   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1775   1.3   msaitoh 			goto out;
   1776   1.3   msaitoh 		}
   1777   1.1    dyoung 
   1778   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1779   1.1    dyoung 
   1780   1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1781   1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1782   1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1783   1.3   msaitoh 			goto out;
   1784   1.3   msaitoh 		}
   1785   1.3   msaitoh 	}
   1786   1.1    dyoung 
   1787   1.1    dyoung out:
   1788   1.1    dyoung 	return status;
   1789   1.1    dyoung }
   1790   1.1    dyoung 
   1791   1.1    dyoung /**
   1792   1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1793   1.1    dyoung  *  @hw: pointer to hardware structure
   1794   1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1795   1.1    dyoung  *  @data: word write to the EEPROM
   1796   1.1    dyoung  *
   1797   1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1798   1.1    dyoung  **/
   1799   1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1800   1.1    dyoung {
   1801   1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1802   1.1    dyoung }
   1803   1.1    dyoung 
   1804   1.1    dyoung /**
   1805   1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1806   1.1    dyoung  *  @hw: pointer to hardware structure
   1807   1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1808   1.1    dyoung  *
   1809   1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1810   1.1    dyoung  *  read or write is done respectively.
   1811   1.1    dyoung  **/
   1812   1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1813   1.1    dyoung {
   1814   1.1    dyoung 	u32 i;
   1815   1.1    dyoung 	u32 reg;
   1816   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1817   1.1    dyoung 
   1818   1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1819   1.1    dyoung 
   1820   1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1821   1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1822   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1823   1.1    dyoung 		else
   1824   1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1825   1.1    dyoung 
   1826   1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1827   1.1    dyoung 			status = IXGBE_SUCCESS;
   1828   1.1    dyoung 			break;
   1829   1.1    dyoung 		}
   1830   1.1    dyoung 		usec_delay(5);
   1831   1.1    dyoung 	}
   1832   1.6   msaitoh 
   1833   1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1834   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1835   1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1836   1.6   msaitoh 
   1837   1.1    dyoung 	return status;
   1838   1.1    dyoung }
   1839   1.1    dyoung 
   1840   1.1    dyoung /**
   1841   1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1842   1.1    dyoung  *  @hw: pointer to hardware structure
   1843   1.1    dyoung  *
   1844   1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1845   1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1846   1.1    dyoung  **/
   1847   1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1848   1.1    dyoung {
   1849   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1850   1.1    dyoung 	u32 eec;
   1851   1.1    dyoung 	u32 i;
   1852   1.1    dyoung 
   1853   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1854   1.1    dyoung 
   1855   1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1856   1.3   msaitoh 	    != IXGBE_SUCCESS)
   1857   1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1858   1.1    dyoung 
   1859   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1860  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1861   1.1    dyoung 
   1862   1.1    dyoung 		/* Request EEPROM Access */
   1863   1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1864  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1865   1.1    dyoung 
   1866   1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1867  1.10   msaitoh 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1868   1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1869   1.1    dyoung 				break;
   1870   1.1    dyoung 			usec_delay(5);
   1871   1.1    dyoung 		}
   1872   1.1    dyoung 
   1873   1.1    dyoung 		/* Release if grant not acquired */
   1874   1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1875   1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1876  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1877   1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1878   1.1    dyoung 
   1879   1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1880   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1881   1.1    dyoung 		}
   1882   1.1    dyoung 
   1883   1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1884   1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1885   1.1    dyoung 			/* Clear CS and SK */
   1886   1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1887  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1888   1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1889   1.1    dyoung 			usec_delay(1);
   1890   1.1    dyoung 		}
   1891   1.1    dyoung 	}
   1892   1.1    dyoung 	return status;
   1893   1.1    dyoung }
   1894   1.1    dyoung 
   1895   1.1    dyoung /**
   1896   1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1897   1.1    dyoung  *  @hw: pointer to hardware structure
   1898   1.1    dyoung  *
   1899   1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1900   1.1    dyoung  **/
   1901   1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1902   1.1    dyoung {
   1903   1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1904   1.1    dyoung 	u32 timeout = 2000;
   1905   1.1    dyoung 	u32 i;
   1906   1.1    dyoung 	u32 swsm;
   1907   1.1    dyoung 
   1908   1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1909   1.1    dyoung 
   1910   1.1    dyoung 
   1911   1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1912   1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1913   1.1    dyoung 		/*
   1914   1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1915   1.1    dyoung 		 * set and we have the semaphore
   1916   1.1    dyoung 		 */
   1917  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1918   1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1919   1.1    dyoung 			status = IXGBE_SUCCESS;
   1920   1.1    dyoung 			break;
   1921   1.1    dyoung 		}
   1922   1.1    dyoung 		usec_delay(50);
   1923   1.1    dyoung 	}
   1924   1.1    dyoung 
   1925   1.3   msaitoh 	if (i == timeout) {
   1926   1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1927   1.3   msaitoh 			 "not granted.\n");
   1928   1.3   msaitoh 		/*
   1929   1.3   msaitoh 		 * this release is particularly important because our attempts
   1930   1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1931   1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1932   1.3   msaitoh 		 * bits to free the driver to make progress
   1933   1.3   msaitoh 		 */
   1934   1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1935   1.3   msaitoh 
   1936   1.3   msaitoh 		usec_delay(50);
   1937   1.3   msaitoh 		/*
   1938   1.3   msaitoh 		 * one last try
   1939   1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1940   1.3   msaitoh 		 * set and we have the semaphore
   1941   1.3   msaitoh 		 */
   1942  1.10   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1943   1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1944   1.3   msaitoh 			status = IXGBE_SUCCESS;
   1945   1.3   msaitoh 	}
   1946   1.3   msaitoh 
   1947   1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1948   1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1949   1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1950  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1951   1.1    dyoung 
   1952   1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1953   1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1954  1.10   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1955   1.1    dyoung 
   1956   1.1    dyoung 			/*
   1957   1.1    dyoung 			 * If we set the bit successfully then we got the
   1958   1.1    dyoung 			 * semaphore.
   1959   1.1    dyoung 			 */
   1960  1.10   msaitoh 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1961   1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1962   1.1    dyoung 				break;
   1963   1.1    dyoung 
   1964   1.1    dyoung 			usec_delay(50);
   1965   1.1    dyoung 		}
   1966   1.1    dyoung 
   1967   1.1    dyoung 		/*
   1968   1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1969   1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1970   1.1    dyoung 		 */
   1971   1.1    dyoung 		if (i >= timeout) {
   1972   1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1973   1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1974   1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1975   1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1976   1.1    dyoung 		}
   1977   1.1    dyoung 	} else {
   1978   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1979   1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1980   1.6   msaitoh 			     "not granted.\n");
   1981   1.1    dyoung 	}
   1982   1.1    dyoung 
   1983   1.1    dyoung 	return status;
   1984   1.1    dyoung }
   1985   1.1    dyoung 
   1986   1.1    dyoung /**
   1987   1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1988   1.1    dyoung  *  @hw: pointer to hardware structure
   1989   1.1    dyoung  *
   1990   1.1    dyoung  *  This function clears hardware semaphore bits.
   1991   1.1    dyoung  **/
   1992   1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1993   1.1    dyoung {
   1994   1.1    dyoung 	u32 swsm;
   1995   1.1    dyoung 
   1996   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1997   1.1    dyoung 
   1998   1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1999   1.1    dyoung 
   2000   1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   2001   1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   2002   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   2003   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2004   1.1    dyoung }
   2005   1.1    dyoung 
   2006   1.1    dyoung /**
   2007   1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   2008   1.1    dyoung  *  @hw: pointer to hardware structure
   2009   1.1    dyoung  **/
   2010   1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   2011   1.1    dyoung {
   2012   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2013   1.1    dyoung 	u16 i;
   2014   1.1    dyoung 	u8 spi_stat_reg;
   2015   1.1    dyoung 
   2016   1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   2017   1.1    dyoung 
   2018   1.1    dyoung 	/*
   2019   1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   2020   1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   2021   1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   2022   1.1    dyoung 	 * 5 milliseconds, then error out.
   2023   1.1    dyoung 	 */
   2024   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   2025   1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2026   1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   2027   1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2028   1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2029   1.1    dyoung 			break;
   2030   1.1    dyoung 
   2031   1.1    dyoung 		usec_delay(5);
   2032   1.1    dyoung 		ixgbe_standby_eeprom(hw);
   2033  1.11   msaitoh 	}
   2034   1.1    dyoung 
   2035   1.1    dyoung 	/*
   2036   1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2037   1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   2038   1.1    dyoung 	 */
   2039   1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2040   1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   2041   1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   2042   1.1    dyoung 	}
   2043   1.1    dyoung 
   2044   1.1    dyoung 	return status;
   2045   1.1    dyoung }
   2046   1.1    dyoung 
   2047   1.1    dyoung /**
   2048   1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2049   1.1    dyoung  *  @hw: pointer to hardware structure
   2050   1.1    dyoung  **/
   2051   1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2052   1.1    dyoung {
   2053   1.1    dyoung 	u32 eec;
   2054   1.1    dyoung 
   2055   1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   2056   1.1    dyoung 
   2057  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2058   1.1    dyoung 
   2059   1.1    dyoung 	/* Toggle CS to flush commands */
   2060   1.1    dyoung 	eec |= IXGBE_EEC_CS;
   2061  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2062   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2063   1.1    dyoung 	usec_delay(1);
   2064   1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   2065  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2066   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2067   1.1    dyoung 	usec_delay(1);
   2068   1.1    dyoung }
   2069   1.1    dyoung 
   2070   1.1    dyoung /**
   2071   1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2072   1.1    dyoung  *  @hw: pointer to hardware structure
   2073   1.1    dyoung  *  @data: data to send to the EEPROM
   2074   1.1    dyoung  *  @count: number of bits to shift out
   2075   1.1    dyoung  **/
   2076   1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2077   1.3   msaitoh 					u16 count)
   2078   1.1    dyoung {
   2079   1.1    dyoung 	u32 eec;
   2080   1.1    dyoung 	u32 mask;
   2081   1.1    dyoung 	u32 i;
   2082   1.1    dyoung 
   2083   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2084   1.1    dyoung 
   2085  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2086   1.1    dyoung 
   2087   1.1    dyoung 	/*
   2088   1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2089   1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   2090   1.1    dyoung 	 */
   2091   1.1    dyoung 	mask = 0x01 << (count - 1);
   2092   1.1    dyoung 
   2093   1.1    dyoung 	for (i = 0; i < count; i++) {
   2094   1.1    dyoung 		/*
   2095   1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2096   1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   2097   1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   2098   1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2099   1.1    dyoung 		 * raising and then lowering the clock.
   2100   1.1    dyoung 		 */
   2101   1.1    dyoung 		if (data & mask)
   2102   1.1    dyoung 			eec |= IXGBE_EEC_DI;
   2103   1.1    dyoung 		else
   2104   1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   2105   1.1    dyoung 
   2106  1.10   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2107   1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   2108   1.1    dyoung 
   2109   1.1    dyoung 		usec_delay(1);
   2110   1.1    dyoung 
   2111   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2112   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2113   1.1    dyoung 
   2114   1.1    dyoung 		/*
   2115   1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   2116   1.1    dyoung 		 * EEPROM
   2117   1.1    dyoung 		 */
   2118   1.1    dyoung 		mask = mask >> 1;
   2119  1.11   msaitoh 	}
   2120   1.1    dyoung 
   2121   1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2122   1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   2123  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2124   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2125   1.1    dyoung }
   2126   1.1    dyoung 
   2127   1.1    dyoung /**
   2128   1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2129   1.1    dyoung  *  @hw: pointer to hardware structure
   2130  1.22   msaitoh  *  @count: number of bits to shift
   2131   1.1    dyoung  **/
   2132   1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2133   1.1    dyoung {
   2134   1.1    dyoung 	u32 eec;
   2135   1.1    dyoung 	u32 i;
   2136   1.1    dyoung 	u16 data = 0;
   2137   1.1    dyoung 
   2138   1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2139   1.1    dyoung 
   2140   1.1    dyoung 	/*
   2141   1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2142   1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2143   1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2144   1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2145   1.1    dyoung 	 * "DI" bit should always be clear.
   2146   1.1    dyoung 	 */
   2147  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2148   1.1    dyoung 
   2149   1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2150   1.1    dyoung 
   2151   1.1    dyoung 	for (i = 0; i < count; i++) {
   2152   1.1    dyoung 		data = data << 1;
   2153   1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2154   1.1    dyoung 
   2155  1.10   msaitoh 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2156   1.1    dyoung 
   2157   1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2158   1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2159   1.1    dyoung 			data |= 1;
   2160   1.1    dyoung 
   2161   1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2162   1.1    dyoung 	}
   2163   1.1    dyoung 
   2164   1.1    dyoung 	return data;
   2165   1.1    dyoung }
   2166   1.1    dyoung 
   2167   1.1    dyoung /**
   2168   1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2169   1.1    dyoung  *  @hw: pointer to hardware structure
   2170   1.1    dyoung  *  @eec: EEC register's current value
   2171   1.1    dyoung  **/
   2172   1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2173   1.1    dyoung {
   2174   1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2175   1.1    dyoung 
   2176   1.1    dyoung 	/*
   2177   1.1    dyoung 	 * Raise the clock input to the EEPROM
   2178   1.1    dyoung 	 * (setting the SK bit), then delay
   2179   1.1    dyoung 	 */
   2180   1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2181  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2182   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2183   1.1    dyoung 	usec_delay(1);
   2184   1.1    dyoung }
   2185   1.1    dyoung 
   2186   1.1    dyoung /**
   2187   1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2188   1.1    dyoung  *  @hw: pointer to hardware structure
   2189  1.22   msaitoh  *  @eec: EEC's current value
   2190   1.1    dyoung  **/
   2191   1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2192   1.1    dyoung {
   2193   1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2194   1.1    dyoung 
   2195   1.1    dyoung 	/*
   2196   1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2197   1.1    dyoung 	 * delay
   2198   1.1    dyoung 	 */
   2199   1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2200  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2201   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2202   1.1    dyoung 	usec_delay(1);
   2203   1.1    dyoung }
   2204   1.1    dyoung 
   2205   1.1    dyoung /**
   2206   1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2207   1.1    dyoung  *  @hw: pointer to hardware structure
   2208   1.1    dyoung  **/
   2209   1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2210   1.1    dyoung {
   2211   1.1    dyoung 	u32 eec;
   2212   1.1    dyoung 
   2213   1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2214   1.1    dyoung 
   2215  1.10   msaitoh 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2216   1.1    dyoung 
   2217   1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2218   1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2219   1.1    dyoung 
   2220  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2221   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2222   1.1    dyoung 
   2223   1.1    dyoung 	usec_delay(1);
   2224   1.1    dyoung 
   2225   1.1    dyoung 	/* Stop requesting EEPROM access */
   2226   1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2227  1.10   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2228   1.1    dyoung 
   2229   1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2230   1.1    dyoung 
   2231   1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2232   1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2233   1.1    dyoung }
   2234   1.1    dyoung 
   2235   1.1    dyoung /**
   2236   1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2237   1.1    dyoung  *  @hw: pointer to hardware structure
   2238   1.8   msaitoh  *
   2239   1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2240   1.1    dyoung  **/
   2241   1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2242   1.1    dyoung {
   2243   1.1    dyoung 	u16 i;
   2244   1.1    dyoung 	u16 j;
   2245   1.1    dyoung 	u16 checksum = 0;
   2246   1.1    dyoung 	u16 length = 0;
   2247   1.1    dyoung 	u16 pointer = 0;
   2248   1.1    dyoung 	u16 word = 0;
   2249   1.1    dyoung 
   2250   1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2251   1.1    dyoung 
   2252   1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2253   1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2254   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2255   1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2256   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2257   1.1    dyoung 		}
   2258   1.1    dyoung 		checksum += word;
   2259   1.1    dyoung 	}
   2260   1.1    dyoung 
   2261   1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2262   1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2263   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2264   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2265   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2266   1.8   msaitoh 		}
   2267   1.8   msaitoh 
   2268   1.8   msaitoh 		/* If the pointer seems invalid */
   2269   1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2270   1.8   msaitoh 			continue;
   2271   1.8   msaitoh 
   2272   1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2273   1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2274   1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2275   1.8   msaitoh 		}
   2276   1.8   msaitoh 
   2277   1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2278   1.8   msaitoh 			continue;
   2279   1.1    dyoung 
   2280   1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2281   1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2282   1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2283   1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2284   1.1    dyoung 			}
   2285   1.8   msaitoh 			checksum += word;
   2286   1.1    dyoung 		}
   2287   1.1    dyoung 	}
   2288   1.1    dyoung 
   2289   1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2290   1.1    dyoung 
   2291   1.8   msaitoh 	return (s32)checksum;
   2292   1.1    dyoung }
   2293   1.1    dyoung 
   2294   1.1    dyoung /**
   2295   1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2296   1.1    dyoung  *  @hw: pointer to hardware structure
   2297   1.1    dyoung  *  @checksum_val: calculated checksum
   2298   1.1    dyoung  *
   2299   1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2300   1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2301   1.1    dyoung  **/
   2302   1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2303   1.3   msaitoh 					   u16 *checksum_val)
   2304   1.1    dyoung {
   2305   1.1    dyoung 	s32 status;
   2306   1.1    dyoung 	u16 checksum;
   2307   1.1    dyoung 	u16 read_checksum = 0;
   2308   1.1    dyoung 
   2309   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2310   1.1    dyoung 
   2311   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2312   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2313   1.1    dyoung 	 * EEPROM read fails
   2314   1.1    dyoung 	 */
   2315   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2316   1.8   msaitoh 	if (status) {
   2317   1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2318   1.8   msaitoh 		return status;
   2319   1.8   msaitoh 	}
   2320   1.1    dyoung 
   2321   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2322   1.8   msaitoh 	if (status < 0)
   2323   1.8   msaitoh 		return status;
   2324   1.1    dyoung 
   2325   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2326   1.1    dyoung 
   2327   1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2328   1.8   msaitoh 	if (status) {
   2329   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2330   1.8   msaitoh 		return status;
   2331   1.1    dyoung 	}
   2332   1.1    dyoung 
   2333   1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2334   1.8   msaitoh 	 * calculated checksum
   2335   1.8   msaitoh 	 */
   2336   1.8   msaitoh 	if (read_checksum != checksum)
   2337   1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2338   1.8   msaitoh 
   2339   1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2340   1.8   msaitoh 	if (checksum_val)
   2341   1.8   msaitoh 		*checksum_val = checksum;
   2342   1.8   msaitoh 
   2343   1.1    dyoung 	return status;
   2344   1.1    dyoung }
   2345   1.1    dyoung 
   2346   1.1    dyoung /**
   2347   1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2348   1.1    dyoung  *  @hw: pointer to hardware structure
   2349   1.1    dyoung  **/
   2350   1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2351   1.1    dyoung {
   2352   1.1    dyoung 	s32 status;
   2353   1.1    dyoung 	u16 checksum;
   2354   1.1    dyoung 
   2355   1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2356   1.1    dyoung 
   2357   1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2358   1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2359   1.1    dyoung 	 * EEPROM read fails
   2360   1.1    dyoung 	 */
   2361   1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2362   1.8   msaitoh 	if (status) {
   2363   1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2364   1.8   msaitoh 		return status;
   2365   1.1    dyoung 	}
   2366   1.1    dyoung 
   2367   1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2368   1.8   msaitoh 	if (status < 0)
   2369   1.8   msaitoh 		return status;
   2370   1.8   msaitoh 
   2371   1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2372   1.8   msaitoh 
   2373   1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2374   1.8   msaitoh 
   2375   1.1    dyoung 	return status;
   2376   1.1    dyoung }
   2377   1.1    dyoung 
   2378   1.1    dyoung /**
   2379   1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2380   1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2381   1.1    dyoung  *
   2382  1.14   msaitoh  *  Tests a MAC address to ensure it is a valid Individual Address.
   2383   1.1    dyoung  **/
   2384   1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2385   1.1    dyoung {
   2386   1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2387   1.1    dyoung 
   2388   1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2389   1.1    dyoung 
   2390   1.1    dyoung 	/* Make sure it is not a multicast address */
   2391   1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2392   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2393   1.1    dyoung 	/* Not a broadcast address */
   2394   1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2395   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2396   1.1    dyoung 	/* Reject the zero address */
   2397   1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2398   1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2399   1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2400   1.1    dyoung 	}
   2401   1.1    dyoung 	return status;
   2402   1.1    dyoung }
   2403   1.1    dyoung 
   2404   1.1    dyoung /**
   2405   1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2406   1.1    dyoung  *  @hw: pointer to hardware structure
   2407   1.1    dyoung  *  @index: Receive address register to write
   2408   1.1    dyoung  *  @addr: Address to put into receive address register
   2409   1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2410   1.1    dyoung  *  @enable_addr: set flag that address is active
   2411   1.1    dyoung  *
   2412   1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2413   1.1    dyoung  **/
   2414   1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2415   1.3   msaitoh 			  u32 enable_addr)
   2416   1.1    dyoung {
   2417   1.1    dyoung 	u32 rar_low, rar_high;
   2418   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2419   1.1    dyoung 
   2420   1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2421   1.1    dyoung 
   2422   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2423   1.1    dyoung 	if (index >= rar_entries) {
   2424   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2425   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2426   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2427   1.1    dyoung 	}
   2428   1.1    dyoung 
   2429   1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2430   1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2431   1.1    dyoung 
   2432   1.1    dyoung 	/*
   2433   1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2434   1.1    dyoung 	 * order from network order (big endian) to little endian
   2435   1.1    dyoung 	 */
   2436   1.1    dyoung 	rar_low = ((u32)addr[0] |
   2437   1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2438   1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2439   1.3   msaitoh 		   ((u32)addr[3] << 24));
   2440   1.1    dyoung 	/*
   2441   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2442   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2443   1.1    dyoung 	 * of the address and the address valid bit.
   2444   1.1    dyoung 	 */
   2445   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2446   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2447   1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2448   1.1    dyoung 
   2449   1.1    dyoung 	if (enable_addr != 0)
   2450   1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2451   1.1    dyoung 
   2452   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2453   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2454   1.1    dyoung 
   2455   1.1    dyoung 	return IXGBE_SUCCESS;
   2456   1.1    dyoung }
   2457   1.1    dyoung 
   2458   1.1    dyoung /**
   2459   1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2460   1.1    dyoung  *  @hw: pointer to hardware structure
   2461   1.1    dyoung  *  @index: Receive address register to write
   2462   1.1    dyoung  *
   2463   1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2464   1.1    dyoung  **/
   2465   1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2466   1.1    dyoung {
   2467   1.1    dyoung 	u32 rar_high;
   2468   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2469   1.1    dyoung 
   2470   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2471   1.1    dyoung 
   2472   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2473   1.1    dyoung 	if (index >= rar_entries) {
   2474   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2475   1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2476   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2477   1.1    dyoung 	}
   2478   1.1    dyoung 
   2479   1.1    dyoung 	/*
   2480   1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2481   1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2482   1.1    dyoung 	 * of the address and the address valid bit.
   2483   1.1    dyoung 	 */
   2484   1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2485   1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2486   1.1    dyoung 
   2487   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2488   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2489   1.1    dyoung 
   2490   1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2491   1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2492   1.1    dyoung 
   2493   1.1    dyoung 	return IXGBE_SUCCESS;
   2494   1.1    dyoung }
   2495   1.1    dyoung 
   2496   1.1    dyoung /**
   2497   1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2498   1.1    dyoung  *  @hw: pointer to hardware structure
   2499   1.1    dyoung  *
   2500   1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2501   1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2502   1.1    dyoung  *  the receiver is in reset when the routine is called.
   2503   1.1    dyoung  **/
   2504   1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2505   1.1    dyoung {
   2506   1.1    dyoung 	u32 i;
   2507   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2508   1.1    dyoung 
   2509   1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2510   1.1    dyoung 
   2511   1.1    dyoung 	/*
   2512   1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2513   1.1    dyoung 	 * to the permanent address.
   2514   1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2515   1.1    dyoung 	 */
   2516   1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2517   1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2518   1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2519   1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2520   1.1    dyoung 
   2521   1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2522   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2523   1.3   msaitoh 			  hw->mac.addr[2]);
   2524   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2525   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2526   1.1    dyoung 	} else {
   2527   1.1    dyoung 		/* Setup the receive address. */
   2528   1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2529   1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2530   1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2531   1.3   msaitoh 			  hw->mac.addr[2]);
   2532   1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2533   1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2534   1.1    dyoung 
   2535   1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2536  1.14   msaitoh 	}
   2537  1.14   msaitoh 
   2538  1.14   msaitoh 	/* clear VMDq pool/queue selection for RAR 0 */
   2539  1.14   msaitoh 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2540   1.1    dyoung 
   2541   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2542   1.1    dyoung 
   2543   1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2544   1.1    dyoung 
   2545   1.1    dyoung 	/* Zero out the other receive addresses. */
   2546   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2547   1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2548   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2549   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2550   1.1    dyoung 	}
   2551   1.1    dyoung 
   2552   1.1    dyoung 	/* Clear the MTA */
   2553   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2554   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2555   1.1    dyoung 
   2556   1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2557   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2558   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2559   1.1    dyoung 
   2560   1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2561   1.1    dyoung 
   2562   1.1    dyoung 	return IXGBE_SUCCESS;
   2563   1.1    dyoung }
   2564   1.1    dyoung 
   2565   1.1    dyoung /**
   2566   1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2567   1.1    dyoung  *  @hw: pointer to hardware structure
   2568   1.1    dyoung  *  @addr: new address
   2569  1.22   msaitoh  *  @vmdq: VMDq "set" or "pool" index
   2570   1.1    dyoung  *
   2571   1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2572   1.1    dyoung  **/
   2573   1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2574   1.1    dyoung {
   2575   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2576   1.1    dyoung 	u32 rar;
   2577   1.1    dyoung 
   2578   1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2579   1.1    dyoung 
   2580   1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2581   1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2582   1.1    dyoung 
   2583   1.1    dyoung 	/*
   2584   1.1    dyoung 	 * Place this address in the RAR if there is room,
   2585   1.1    dyoung 	 * else put the controller into promiscuous mode
   2586   1.1    dyoung 	 */
   2587   1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2588   1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2589   1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2590   1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2591   1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2592   1.1    dyoung 	} else {
   2593   1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2594   1.1    dyoung 	}
   2595   1.1    dyoung 
   2596   1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2597   1.1    dyoung }
   2598   1.1    dyoung 
   2599   1.1    dyoung /**
   2600   1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2601   1.1    dyoung  *  @hw: pointer to hardware structure
   2602   1.1    dyoung  *  @addr_list: the list of new addresses
   2603   1.1    dyoung  *  @addr_count: number of addresses
   2604   1.1    dyoung  *  @next: iterator function to walk the address list
   2605   1.1    dyoung  *
   2606   1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2607   1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2608   1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2609   1.1    dyoung  *
   2610   1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2611   1.1    dyoung  *  manually putting the device into promiscuous mode.
   2612   1.1    dyoung  **/
   2613   1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2614   1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2615   1.1    dyoung {
   2616   1.1    dyoung 	u8 *addr;
   2617   1.1    dyoung 	u32 i;
   2618   1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2619   1.1    dyoung 	u32 uc_addr_in_use;
   2620   1.1    dyoung 	u32 fctrl;
   2621   1.1    dyoung 	u32 vmdq;
   2622   1.1    dyoung 
   2623   1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2624   1.1    dyoung 
   2625   1.1    dyoung 	/*
   2626   1.1    dyoung 	 * Clear accounting of old secondary address list,
   2627   1.1    dyoung 	 * don't count RAR[0]
   2628   1.1    dyoung 	 */
   2629   1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2630   1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2631   1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2632   1.1    dyoung 
   2633   1.1    dyoung 	/* Zero out the other receive addresses */
   2634   1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2635   1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2636   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2637   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2638   1.1    dyoung 	}
   2639   1.1    dyoung 
   2640   1.1    dyoung 	/* Add the new addresses */
   2641   1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2642   1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2643   1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2644   1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2645   1.1    dyoung 	}
   2646   1.1    dyoung 
   2647   1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2648   1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2649   1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2650   1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2651   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2652   1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2653   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2654   1.1    dyoung 		}
   2655   1.1    dyoung 	} else {
   2656   1.1    dyoung 		/* only disable if set by overflow, not by user */
   2657   1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2658   1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2659   1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2660   1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2661   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2662   1.1    dyoung 		}
   2663   1.1    dyoung 	}
   2664   1.1    dyoung 
   2665   1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2666   1.1    dyoung 	return IXGBE_SUCCESS;
   2667   1.1    dyoung }
   2668   1.1    dyoung 
   2669   1.1    dyoung /**
   2670   1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2671   1.1    dyoung  *  @hw: pointer to hardware structure
   2672   1.1    dyoung  *  @mc_addr: the multicast address
   2673   1.1    dyoung  *
   2674   1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2675   1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2676   1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2677   1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2678   1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2679   1.1    dyoung  *  to mc_filter_type.
   2680   1.1    dyoung  **/
   2681   1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2682   1.1    dyoung {
   2683   1.1    dyoung 	u32 vector = 0;
   2684   1.1    dyoung 
   2685   1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2686   1.1    dyoung 
   2687   1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2688   1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2689   1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2690   1.1    dyoung 		break;
   2691   1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2692   1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2693   1.1    dyoung 		break;
   2694   1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2695   1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2696   1.1    dyoung 		break;
   2697   1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2698   1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2699   1.1    dyoung 		break;
   2700   1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2701   1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2702   1.1    dyoung 		ASSERT(0);
   2703   1.1    dyoung 		break;
   2704   1.1    dyoung 	}
   2705   1.1    dyoung 
   2706   1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2707   1.1    dyoung 	vector &= 0xFFF;
   2708   1.1    dyoung 	return vector;
   2709   1.1    dyoung }
   2710   1.1    dyoung 
   2711   1.1    dyoung /**
   2712   1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2713   1.1    dyoung  *  @hw: pointer to hardware structure
   2714  1.22   msaitoh  *  @mc_addr: Multicast address
   2715   1.1    dyoung  *
   2716   1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2717   1.1    dyoung  **/
   2718   1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2719   1.1    dyoung {
   2720   1.1    dyoung 	u32 vector;
   2721   1.1    dyoung 	u32 vector_bit;
   2722   1.1    dyoung 	u32 vector_reg;
   2723   1.1    dyoung 
   2724   1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2725   1.1    dyoung 
   2726   1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2727   1.1    dyoung 
   2728   1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2729   1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2730   1.1    dyoung 
   2731   1.1    dyoung 	/*
   2732   1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2733   1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2734   1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2735   1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2736   1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2737   1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2738   1.1    dyoung 	 * the value.
   2739   1.1    dyoung 	 */
   2740   1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2741   1.1    dyoung 	vector_bit = vector & 0x1F;
   2742   1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2743   1.1    dyoung }
   2744   1.1    dyoung 
   2745   1.1    dyoung /**
   2746   1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2747   1.1    dyoung  *  @hw: pointer to hardware structure
   2748   1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2749   1.1    dyoung  *  @mc_addr_count: number of addresses
   2750   1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2751   1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2752   1.1    dyoung  *
   2753   1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2754   1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2755   1.1    dyoung  **/
   2756   1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2757   1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2758   1.3   msaitoh 				      bool clear)
   2759   1.1    dyoung {
   2760   1.1    dyoung 	u32 i;
   2761   1.1    dyoung 	u32 vmdq;
   2762   1.1    dyoung 
   2763   1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2764   1.1    dyoung 
   2765   1.1    dyoung 	/*
   2766   1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2767   1.1    dyoung 	 * use.
   2768   1.1    dyoung 	 */
   2769   1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2770   1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2771   1.1    dyoung 
   2772   1.1    dyoung 	/* Clear mta_shadow */
   2773   1.3   msaitoh 	if (clear) {
   2774   1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2775   1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2776   1.3   msaitoh 	}
   2777   1.1    dyoung 
   2778   1.1    dyoung 	/* Update mta_shadow */
   2779   1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2780   1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2781   1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2782   1.1    dyoung 	}
   2783   1.1    dyoung 
   2784   1.1    dyoung 	/* Enable mta */
   2785   1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2786   1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2787   1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2788   1.1    dyoung 
   2789   1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2790   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2791   1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2792   1.1    dyoung 
   2793   1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2794   1.1    dyoung 	return IXGBE_SUCCESS;
   2795   1.1    dyoung }
   2796   1.1    dyoung 
   2797   1.1    dyoung /**
   2798   1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2799   1.1    dyoung  *  @hw: pointer to hardware structure
   2800   1.1    dyoung  *
   2801   1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2802   1.1    dyoung  **/
   2803   1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2804   1.1    dyoung {
   2805   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2806   1.1    dyoung 
   2807   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2808   1.1    dyoung 
   2809   1.1    dyoung 	if (a->mta_in_use > 0)
   2810   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2811   1.3   msaitoh 				hw->mac.mc_filter_type);
   2812   1.1    dyoung 
   2813   1.1    dyoung 	return IXGBE_SUCCESS;
   2814   1.1    dyoung }
   2815   1.1    dyoung 
   2816   1.1    dyoung /**
   2817   1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2818   1.1    dyoung  *  @hw: pointer to hardware structure
   2819   1.1    dyoung  *
   2820   1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2821   1.1    dyoung  **/
   2822   1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2823   1.1    dyoung {
   2824   1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2825   1.1    dyoung 
   2826   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2827   1.1    dyoung 
   2828   1.1    dyoung 	if (a->mta_in_use > 0)
   2829   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2830   1.1    dyoung 
   2831   1.1    dyoung 	return IXGBE_SUCCESS;
   2832   1.1    dyoung }
   2833   1.1    dyoung 
   2834   1.1    dyoung /**
   2835   1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2836   1.1    dyoung  *  @hw: pointer to hardware structure
   2837   1.1    dyoung  *
   2838   1.1    dyoung  *  Enable flow control according to the current settings.
   2839   1.1    dyoung  **/
   2840   1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2841   1.1    dyoung {
   2842   1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2843   1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2844   1.1    dyoung 	u32 reg;
   2845   1.1    dyoung 	u32 fcrtl, fcrth;
   2846   1.4   msaitoh 	int i;
   2847   1.1    dyoung 
   2848   1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2849   1.1    dyoung 
   2850   1.4   msaitoh 	/* Validate the water mark configuration */
   2851   1.4   msaitoh 	if (!hw->fc.pause_time) {
   2852   1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2853   1.4   msaitoh 		goto out;
   2854   1.4   msaitoh 	}
   2855   1.4   msaitoh 
   2856   1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2857   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2858   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2859   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2860   1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2861   1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2862   1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2863   1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2864   1.4   msaitoh 				goto out;
   2865   1.4   msaitoh 			}
   2866   1.4   msaitoh 		}
   2867   1.4   msaitoh 	}
   2868   1.4   msaitoh 
   2869   1.1    dyoung 	/* Negotiate the fc mode to use */
   2870  1.14   msaitoh 	hw->mac.ops.fc_autoneg(hw);
   2871   1.1    dyoung 
   2872   1.1    dyoung 	/* Disable any previous flow control settings */
   2873   1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2874   1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2875   1.1    dyoung 
   2876   1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2877   1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2878   1.1    dyoung 
   2879   1.1    dyoung 	/*
   2880   1.1    dyoung 	 * The possible values of fc.current_mode are:
   2881   1.1    dyoung 	 * 0: Flow control is completely disabled
   2882   1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2883   1.1    dyoung 	 *    but not send pause frames).
   2884   1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2885   1.1    dyoung 	 *    we do not support receiving pause frames).
   2886   1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2887   1.1    dyoung 	 * other: Invalid.
   2888   1.1    dyoung 	 */
   2889   1.1    dyoung 	switch (hw->fc.current_mode) {
   2890   1.1    dyoung 	case ixgbe_fc_none:
   2891   1.1    dyoung 		/*
   2892   1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2893   1.1    dyoung 		 * The code below will actually disable it in the HW.
   2894   1.1    dyoung 		 */
   2895   1.1    dyoung 		break;
   2896   1.1    dyoung 	case ixgbe_fc_rx_pause:
   2897   1.1    dyoung 		/*
   2898   1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2899   1.1    dyoung 		 * disabled by software override. Since there really
   2900   1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2901   1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2902   1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2903   1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2904   1.1    dyoung 		 */
   2905   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2906   1.1    dyoung 		break;
   2907   1.1    dyoung 	case ixgbe_fc_tx_pause:
   2908   1.1    dyoung 		/*
   2909   1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2910   1.1    dyoung 		 * disabled by software override.
   2911   1.1    dyoung 		 */
   2912   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2913   1.1    dyoung 		break;
   2914   1.1    dyoung 	case ixgbe_fc_full:
   2915   1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2916   1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2917   1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2918   1.1    dyoung 		break;
   2919   1.1    dyoung 	default:
   2920   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2921   1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2922   1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2923   1.1    dyoung 		goto out;
   2924   1.1    dyoung 		break;
   2925   1.1    dyoung 	}
   2926   1.1    dyoung 
   2927   1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2928   1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2929   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2930   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2931   1.1    dyoung 
   2932   1.1    dyoung 
   2933   1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2934   1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2935   1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2936   1.4   msaitoh 		    hw->fc.high_water[i]) {
   2937   1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2938   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2939   1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2940   1.4   msaitoh 		} else {
   2941   1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2942   1.4   msaitoh 			/*
   2943   1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2944   1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2945   1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2946   1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2947   1.8   msaitoh 			 * workloads.
   2948   1.4   msaitoh 			 */
   2949   1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2950   1.4   msaitoh 		}
   2951   1.4   msaitoh 
   2952   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2953   1.1    dyoung 	}
   2954   1.1    dyoung 
   2955   1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2956  1.24   msaitoh 	reg = (u32)hw->fc.pause_time * 0x00010001;
   2957   1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2958   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2959   1.1    dyoung 
   2960   1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2961   1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2962   1.1    dyoung 
   2963   1.1    dyoung out:
   2964   1.1    dyoung 	return ret_val;
   2965   1.1    dyoung }
   2966   1.1    dyoung 
   2967   1.1    dyoung /**
   2968   1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2969   1.1    dyoung  *  @hw: pointer to hardware structure
   2970   1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2971   1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2972   1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2973   1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2974   1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2975   1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2976   1.1    dyoung  *
   2977   1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2978   1.4   msaitoh  *  advertised settings
   2979   1.1    dyoung  **/
   2980  1.14   msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2981  1.14   msaitoh 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2982   1.1    dyoung {
   2983   1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2984   1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2985   1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2986   1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2987   1.6   msaitoh 			     adv_reg, lp_reg);
   2988   1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2989   1.6   msaitoh 	}
   2990   1.1    dyoung 
   2991   1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2992   1.4   msaitoh 		/*
   2993   1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2994   1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2995   1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2996   1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2997   1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2998   1.4   msaitoh 		 */
   2999   1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   3000   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   3001   1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   3002   1.4   msaitoh 		} else {
   3003   1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   3004   1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   3005   1.4   msaitoh 		}
   3006   1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3007   1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3008   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   3009   1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   3010   1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3011   1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3012   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   3013   1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   3014   1.4   msaitoh 	} else {
   3015   1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   3016   1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   3017   1.4   msaitoh 	}
   3018   1.4   msaitoh 	return IXGBE_SUCCESS;
   3019   1.4   msaitoh }
   3020   1.1    dyoung 
   3021   1.4   msaitoh /**
   3022   1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   3023   1.4   msaitoh  *  @hw: pointer to hardware structure
   3024   1.4   msaitoh  *
   3025   1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   3026   1.4   msaitoh  **/
   3027   1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3028   1.4   msaitoh {
   3029   1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3030   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3031   1.1    dyoung 
   3032   1.1    dyoung 	/*
   3033   1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   3034   1.4   msaitoh 	 * - link is up but AN did not complete, or if
   3035   1.4   msaitoh 	 * - link is up and AN completed but timed out
   3036   1.1    dyoung 	 */
   3037   1.4   msaitoh 
   3038   1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3039   1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3040   1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3041   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3042   1.1    dyoung 		goto out;
   3043   1.6   msaitoh 	}
   3044   1.1    dyoung 
   3045   1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3046   1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3047   1.1    dyoung 
   3048   1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3049   1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3050   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3051   1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3052   1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3053   1.1    dyoung 
   3054   1.1    dyoung out:
   3055   1.1    dyoung 	return ret_val;
   3056   1.1    dyoung }
   3057   1.1    dyoung 
   3058   1.1    dyoung /**
   3059   1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3060   1.1    dyoung  *  @hw: pointer to hardware structure
   3061   1.1    dyoung  *
   3062   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3063   1.1    dyoung  **/
   3064   1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3065   1.1    dyoung {
   3066   1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   3067   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3068   1.1    dyoung 
   3069   1.1    dyoung 	/*
   3070   1.1    dyoung 	 * On backplane, bail out if
   3071   1.1    dyoung 	 * - backplane autoneg was not completed, or if
   3072   1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   3073   1.1    dyoung 	 */
   3074   1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3075   1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3076   1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3077   1.1    dyoung 		goto out;
   3078   1.6   msaitoh 	}
   3079   1.1    dyoung 
   3080   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3081   1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3082   1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3083   1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   3084   1.1    dyoung 			goto out;
   3085   1.6   msaitoh 		}
   3086   1.1    dyoung 	}
   3087   1.1    dyoung 	/*
   3088   1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   3089   1.1    dyoung 	 * local flow control settings accordingly
   3090   1.1    dyoung 	 */
   3091   1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3092   1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3093   1.1    dyoung 
   3094   1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3095   1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3096   1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3097   1.1    dyoung 
   3098   1.1    dyoung out:
   3099   1.1    dyoung 	return ret_val;
   3100   1.1    dyoung }
   3101   1.1    dyoung 
   3102   1.1    dyoung /**
   3103   1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3104   1.1    dyoung  *  @hw: pointer to hardware structure
   3105   1.1    dyoung  *
   3106   1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   3107   1.1    dyoung  **/
   3108   1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3109   1.1    dyoung {
   3110   1.1    dyoung 	u16 technology_ability_reg = 0;
   3111   1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   3112   1.1    dyoung 
   3113   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3114   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3115   1.1    dyoung 			     &technology_ability_reg);
   3116   1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3117   1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3118   1.1    dyoung 			     &lp_technology_ability_reg);
   3119   1.1    dyoung 
   3120   1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3121   1.1    dyoung 				  (u32)lp_technology_ability_reg,
   3122   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3123   1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3124   1.1    dyoung }
   3125   1.1    dyoung 
   3126   1.1    dyoung /**
   3127   1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   3128   1.1    dyoung  *  @hw: pointer to hardware structure
   3129   1.1    dyoung  *
   3130   1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3131   1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3132   1.1    dyoung  **/
   3133   1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3134   1.1    dyoung {
   3135   1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3136   1.4   msaitoh 	ixgbe_link_speed speed;
   3137   1.4   msaitoh 	bool link_up;
   3138   1.1    dyoung 
   3139   1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3140   1.1    dyoung 
   3141   1.1    dyoung 	/*
   3142   1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3143   1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3144   1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3145   1.4   msaitoh 	 * - link is not up.
   3146   1.1    dyoung 	 */
   3147   1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3148   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3149   1.6   msaitoh 			     "Flow control autoneg is disabled");
   3150   1.1    dyoung 		goto out;
   3151   1.6   msaitoh 	}
   3152   1.1    dyoung 
   3153   1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3154   1.6   msaitoh 	if (!link_up) {
   3155   1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3156   1.1    dyoung 		goto out;
   3157   1.6   msaitoh 	}
   3158   1.1    dyoung 
   3159   1.1    dyoung 	switch (hw->phy.media_type) {
   3160   1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3161   1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3162   1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3163   1.1    dyoung 	case ixgbe_media_type_fiber:
   3164   1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3165   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3166   1.4   msaitoh 		break;
   3167   1.4   msaitoh 
   3168   1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3169   1.1    dyoung 	case ixgbe_media_type_backplane:
   3170   1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3171   1.1    dyoung 		break;
   3172   1.1    dyoung 
   3173   1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3174   1.1    dyoung 	case ixgbe_media_type_copper:
   3175   1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3176   1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3177   1.1    dyoung 		break;
   3178   1.1    dyoung 
   3179   1.1    dyoung 	default:
   3180   1.1    dyoung 		break;
   3181   1.1    dyoung 	}
   3182   1.1    dyoung 
   3183   1.4   msaitoh out:
   3184   1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3185   1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3186   1.4   msaitoh 	} else {
   3187   1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3188   1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3189   1.3   msaitoh 	}
   3190   1.1    dyoung }
   3191   1.1    dyoung 
   3192   1.6   msaitoh /*
   3193   1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3194   1.6   msaitoh  * @hw: pointer to hardware structure
   3195   1.6   msaitoh  *
   3196   1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3197   1.6   msaitoh  *
   3198   1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3199   1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3200   1.6   msaitoh  * 800 = 80 millisec.
   3201   1.6   msaitoh  */
   3202   1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3203   1.6   msaitoh {
   3204   1.6   msaitoh 	s16 devctl2;
   3205   1.6   msaitoh 	u32 pollcnt;
   3206   1.6   msaitoh 
   3207   1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3208   1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3209   1.6   msaitoh 
   3210   1.6   msaitoh 	switch (devctl2) {
   3211   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3212   1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3213   1.6   msaitoh 		break;
   3214   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3215   1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3216   1.6   msaitoh 		break;
   3217   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3218   1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3219   1.6   msaitoh 		break;
   3220   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3221   1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3222   1.6   msaitoh 		break;
   3223   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3224   1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3225   1.6   msaitoh 		break;
   3226   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3227   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3228   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3229   1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3230   1.6   msaitoh 	default:
   3231   1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3232   1.6   msaitoh 		break;
   3233   1.6   msaitoh 	}
   3234   1.6   msaitoh 
   3235   1.6   msaitoh 	/* add 10% to spec maximum */
   3236   1.6   msaitoh 	return (pollcnt * 11) / 10;
   3237   1.6   msaitoh }
   3238   1.6   msaitoh 
   3239   1.1    dyoung /**
   3240   1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3241   1.1    dyoung  *  @hw: pointer to hardware structure
   3242   1.1    dyoung  *
   3243   1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3244   1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3245   1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3246   1.1    dyoung  *  is returned signifying master requests disabled.
   3247   1.1    dyoung  **/
   3248   1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3249   1.1    dyoung {
   3250   1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3251   1.6   msaitoh 	u32 i, poll;
   3252   1.8   msaitoh 	u16 value;
   3253   1.1    dyoung 
   3254   1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3255   1.1    dyoung 
   3256   1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3257   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3258   1.3   msaitoh 
   3259   1.6   msaitoh 	/* Exit if master requests are blocked */
   3260   1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3261   1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3262   1.1    dyoung 		goto out;
   3263   1.1    dyoung 
   3264   1.3   msaitoh 	/* Poll for master request bit to clear */
   3265   1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3266   1.3   msaitoh 		usec_delay(100);
   3267   1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3268   1.3   msaitoh 			goto out;
   3269   1.1    dyoung 	}
   3270   1.1    dyoung 
   3271   1.3   msaitoh 	/*
   3272   1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3273   1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3274   1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3275   1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3276   1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3277   1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3278   1.3   msaitoh 	 */
   3279   1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3280   1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3281   1.1    dyoung 
   3282  1.10   msaitoh 	if (hw->mac.type >= ixgbe_mac_X550)
   3283  1.10   msaitoh 		goto out;
   3284  1.10   msaitoh 
   3285   1.1    dyoung 	/*
   3286   1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3287   1.1    dyoung 	 * transactions pending.
   3288   1.1    dyoung 	 */
   3289   1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3290   1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3291   1.3   msaitoh 		usec_delay(100);
   3292   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3293   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3294   1.8   msaitoh 			goto out;
   3295   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3296   1.3   msaitoh 			goto out;
   3297   1.1    dyoung 	}
   3298   1.1    dyoung 
   3299   1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3300   1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3301   1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3302   1.1    dyoung 
   3303   1.1    dyoung out:
   3304   1.1    dyoung 	return status;
   3305   1.1    dyoung }
   3306   1.1    dyoung 
   3307   1.1    dyoung /**
   3308   1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3309   1.1    dyoung  *  @hw: pointer to hardware structure
   3310   1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3311   1.1    dyoung  *
   3312   1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3313   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3314   1.1    dyoung  **/
   3315   1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3316   1.1    dyoung {
   3317   1.6   msaitoh 	u32 gssr = 0;
   3318   1.1    dyoung 	u32 swmask = mask;
   3319   1.1    dyoung 	u32 fwmask = mask << 5;
   3320   1.6   msaitoh 	u32 timeout = 200;
   3321   1.6   msaitoh 	u32 i;
   3322   1.1    dyoung 
   3323   1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3324   1.1    dyoung 
   3325   1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3326   1.1    dyoung 		/*
   3327   1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3328   1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3329   1.1    dyoung 		 */
   3330   1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3331   1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3332   1.1    dyoung 
   3333   1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3334   1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3335   1.6   msaitoh 			gssr |= swmask;
   3336   1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3337   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3338   1.6   msaitoh 			return IXGBE_SUCCESS;
   3339   1.6   msaitoh 		} else {
   3340   1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3341   1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3342   1.6   msaitoh 			msec_delay(5);
   3343   1.6   msaitoh 		}
   3344   1.1    dyoung 	}
   3345   1.1    dyoung 
   3346   1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3347   1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3348   1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3349   1.1    dyoung 
   3350   1.6   msaitoh 	msec_delay(5);
   3351   1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3352   1.1    dyoung }
   3353   1.1    dyoung 
   3354   1.1    dyoung /**
   3355   1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3356   1.1    dyoung  *  @hw: pointer to hardware structure
   3357   1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3358   1.1    dyoung  *
   3359   1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3360   1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3361   1.1    dyoung  **/
   3362   1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3363   1.1    dyoung {
   3364   1.1    dyoung 	u32 gssr;
   3365   1.1    dyoung 	u32 swmask = mask;
   3366   1.1    dyoung 
   3367   1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3368   1.1    dyoung 
   3369   1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3370   1.1    dyoung 
   3371   1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3372   1.1    dyoung 	gssr &= ~swmask;
   3373   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3374   1.1    dyoung 
   3375   1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3376   1.1    dyoung }
   3377   1.1    dyoung 
   3378   1.1    dyoung /**
   3379   1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3380   1.3   msaitoh  *  @hw: pointer to hardware structure
   3381   1.3   msaitoh  *
   3382   1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3383   1.3   msaitoh  *  the Rx security block
   3384   1.3   msaitoh  **/
   3385   1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3386   1.3   msaitoh {
   3387  1.17   msaitoh #define IXGBE_MAX_SECRX_POLL 4000
   3388   1.3   msaitoh 
   3389   1.3   msaitoh 	int i;
   3390   1.3   msaitoh 	int secrxreg;
   3391   1.3   msaitoh 
   3392   1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3393   1.3   msaitoh 
   3394   1.3   msaitoh 
   3395   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3396   1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3397   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3398   1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3399   1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3400   1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3401   1.3   msaitoh 			break;
   3402   1.3   msaitoh 		else
   3403   1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3404  1.17   msaitoh 			usec_delay(10);
   3405   1.3   msaitoh 	}
   3406   1.3   msaitoh 
   3407   1.3   msaitoh 	/* For informational purposes only */
   3408   1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3409   1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3410   1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3411   1.3   msaitoh 
   3412   1.3   msaitoh 	return IXGBE_SUCCESS;
   3413   1.3   msaitoh }
   3414   1.3   msaitoh 
   3415   1.3   msaitoh /**
   3416   1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3417   1.8   msaitoh  *  @hw: pointer to hardware structure
   3418  1.22   msaitoh  *  @locked: bool to indicate whether the SW/FW lock was taken
   3419   1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3420   1.8   msaitoh  *
   3421   1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3422   1.8   msaitoh  */
   3423   1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3424   1.8   msaitoh {
   3425   1.8   msaitoh 	*locked = FALSE;
   3426   1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3427   1.8   msaitoh 	return IXGBE_SUCCESS;
   3428   1.8   msaitoh }
   3429   1.8   msaitoh 
   3430   1.8   msaitoh /**
   3431   1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3432   1.8   msaitoh  * @hw: pointer to hardware structure
   3433   1.8   msaitoh  * @reg_val: value to write to AUTOC
   3434   1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3435   1.8   msaitoh  *           previous read.
   3436   1.8   msaitoh  *
   3437   1.8   msaitoh  * The default case requires no protection so just to the register write.
   3438   1.8   msaitoh  */
   3439   1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3440   1.8   msaitoh {
   3441   1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3442   1.8   msaitoh 
   3443   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3444   1.8   msaitoh 	return IXGBE_SUCCESS;
   3445   1.8   msaitoh }
   3446   1.8   msaitoh 
   3447   1.8   msaitoh /**
   3448   1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3449   1.3   msaitoh  *  @hw: pointer to hardware structure
   3450   1.3   msaitoh  *
   3451   1.3   msaitoh  *  Enables the receive data path.
   3452   1.3   msaitoh  **/
   3453   1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3454   1.3   msaitoh {
   3455  1.14   msaitoh 	u32 secrxreg;
   3456   1.3   msaitoh 
   3457   1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3458   1.3   msaitoh 
   3459   1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3460   1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3461   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3462   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3463   1.3   msaitoh 
   3464   1.3   msaitoh 	return IXGBE_SUCCESS;
   3465   1.3   msaitoh }
   3466   1.3   msaitoh 
   3467   1.3   msaitoh /**
   3468   1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3469   1.1    dyoung  *  @hw: pointer to hardware structure
   3470   1.1    dyoung  *  @regval: register value to write to RXCTRL
   3471   1.1    dyoung  *
   3472   1.1    dyoung  *  Enables the Rx DMA unit
   3473   1.1    dyoung  **/
   3474   1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3475   1.1    dyoung {
   3476   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3477   1.1    dyoung 
   3478   1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3479   1.8   msaitoh 		ixgbe_enable_rx(hw);
   3480   1.8   msaitoh 	else
   3481   1.8   msaitoh 		ixgbe_disable_rx(hw);
   3482   1.1    dyoung 
   3483   1.1    dyoung 	return IXGBE_SUCCESS;
   3484   1.1    dyoung }
   3485   1.1    dyoung 
   3486   1.1    dyoung /**
   3487   1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3488   1.1    dyoung  *  @hw: pointer to hardware structure
   3489   1.1    dyoung  *  @index: led number to blink
   3490   1.1    dyoung  **/
   3491   1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3492   1.1    dyoung {
   3493   1.1    dyoung 	ixgbe_link_speed speed = 0;
   3494   1.1    dyoung 	bool link_up = 0;
   3495   1.8   msaitoh 	u32 autoc_reg = 0;
   3496   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3497   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3498   1.8   msaitoh 	bool locked = FALSE;
   3499   1.1    dyoung 
   3500   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3501   1.1    dyoung 
   3502  1.14   msaitoh 	if (index > 3)
   3503  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3504  1.14   msaitoh 
   3505   1.1    dyoung 	/*
   3506   1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3507   1.1    dyoung 	 * Force it if link is down.
   3508   1.1    dyoung 	 */
   3509   1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3510   1.1    dyoung 
   3511   1.1    dyoung 	if (!link_up) {
   3512   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3513   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3514   1.8   msaitoh 			goto out;
   3515   1.5   msaitoh 
   3516   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3517   1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3518   1.8   msaitoh 
   3519   1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3520   1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3521   1.8   msaitoh 			goto out;
   3522   1.8   msaitoh 
   3523   1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3524   1.1    dyoung 		msec_delay(10);
   3525   1.1    dyoung 	}
   3526   1.1    dyoung 
   3527   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3528   1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3529   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3530   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3531   1.1    dyoung 
   3532   1.5   msaitoh out:
   3533   1.5   msaitoh 	return ret_val;
   3534   1.1    dyoung }
   3535   1.1    dyoung 
   3536   1.1    dyoung /**
   3537   1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3538   1.1    dyoung  *  @hw: pointer to hardware structure
   3539   1.1    dyoung  *  @index: led number to stop blinking
   3540   1.1    dyoung  **/
   3541   1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3542   1.1    dyoung {
   3543   1.8   msaitoh 	u32 autoc_reg = 0;
   3544   1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3545   1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3546   1.8   msaitoh 	bool locked = FALSE;
   3547   1.1    dyoung 
   3548   1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3549   1.1    dyoung 
   3550  1.14   msaitoh 	if (index > 3)
   3551  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   3552  1.14   msaitoh 
   3553   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3554   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3555   1.8   msaitoh 		goto out;
   3556   1.1    dyoung 
   3557   1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3558   1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3559   1.1    dyoung 
   3560   1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3561   1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3562   1.8   msaitoh 		goto out;
   3563   1.5   msaitoh 
   3564   1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3565   1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3566   1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3567   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3568   1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3569   1.1    dyoung 
   3570   1.5   msaitoh out:
   3571   1.5   msaitoh 	return ret_val;
   3572   1.1    dyoung }
   3573   1.1    dyoung 
   3574   1.1    dyoung /**
   3575   1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3576   1.1    dyoung  *  @hw: pointer to hardware structure
   3577   1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3578   1.1    dyoung  *
   3579   1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3580   1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3581   1.1    dyoung  *  get and set mac_addr routines.
   3582   1.1    dyoung  **/
   3583   1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3584   1.3   msaitoh 					 u16 *san_mac_offset)
   3585   1.1    dyoung {
   3586   1.6   msaitoh 	s32 ret_val;
   3587   1.6   msaitoh 
   3588   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3589   1.1    dyoung 
   3590   1.1    dyoung 	/*
   3591   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3592   1.1    dyoung 	 * available.
   3593   1.1    dyoung 	 */
   3594   1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3595   1.6   msaitoh 				      san_mac_offset);
   3596   1.6   msaitoh 	if (ret_val) {
   3597   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3598   1.6   msaitoh 			      "eeprom at offset %d failed",
   3599   1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3600   1.6   msaitoh 	}
   3601   1.1    dyoung 
   3602   1.6   msaitoh 	return ret_val;
   3603   1.1    dyoung }
   3604   1.1    dyoung 
   3605   1.1    dyoung /**
   3606   1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3607   1.1    dyoung  *  @hw: pointer to hardware structure
   3608   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3609   1.1    dyoung  *
   3610   1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3611   1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3612   1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3613   1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3614   1.1    dyoung  **/
   3615   1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3616   1.1    dyoung {
   3617   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3618   1.1    dyoung 	u8 i;
   3619   1.6   msaitoh 	s32 ret_val;
   3620   1.1    dyoung 
   3621   1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3622   1.1    dyoung 
   3623   1.1    dyoung 	/*
   3624   1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3625   1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3626   1.1    dyoung 	 */
   3627   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3628   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3629   1.1    dyoung 		goto san_mac_addr_out;
   3630   1.1    dyoung 
   3631   1.1    dyoung 	/* make sure we know which port we need to program */
   3632   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3633   1.1    dyoung 	/* apply the port offset to the address offset */
   3634   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3635   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3636   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3637   1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3638   1.6   msaitoh 					      &san_mac_data);
   3639   1.6   msaitoh 		if (ret_val) {
   3640   1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3641   1.6   msaitoh 				      "eeprom read at offset %d failed",
   3642   1.6   msaitoh 				      san_mac_offset);
   3643   1.6   msaitoh 			goto san_mac_addr_out;
   3644   1.6   msaitoh 		}
   3645   1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3646   1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3647   1.1    dyoung 		san_mac_offset++;
   3648   1.1    dyoung 	}
   3649   1.6   msaitoh 	return IXGBE_SUCCESS;
   3650   1.1    dyoung 
   3651   1.1    dyoung san_mac_addr_out:
   3652   1.6   msaitoh 	/*
   3653   1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3654   1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3655   1.6   msaitoh 	 */
   3656   1.6   msaitoh 	for (i = 0; i < 6; i++)
   3657   1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3658   1.1    dyoung 	return IXGBE_SUCCESS;
   3659   1.1    dyoung }
   3660   1.1    dyoung 
   3661   1.1    dyoung /**
   3662   1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3663   1.1    dyoung  *  @hw: pointer to hardware structure
   3664   1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3665   1.1    dyoung  *
   3666   1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3667   1.1    dyoung  **/
   3668   1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3669   1.1    dyoung {
   3670   1.6   msaitoh 	s32 ret_val;
   3671   1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3672   1.1    dyoung 	u8 i;
   3673   1.1    dyoung 
   3674   1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3675   1.1    dyoung 
   3676   1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3677   1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3678   1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3679   1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3680   1.1    dyoung 
   3681   1.1    dyoung 	/* Make sure we know which port we need to write */
   3682   1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3683   1.1    dyoung 	/* Apply the port offset to the address offset */
   3684   1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3685   1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3686   1.1    dyoung 
   3687   1.1    dyoung 	for (i = 0; i < 3; i++) {
   3688   1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3689   1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3690   1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3691   1.1    dyoung 		san_mac_offset++;
   3692   1.1    dyoung 	}
   3693   1.1    dyoung 
   3694   1.6   msaitoh 	return IXGBE_SUCCESS;
   3695   1.1    dyoung }
   3696   1.1    dyoung 
   3697   1.1    dyoung /**
   3698   1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3699   1.1    dyoung  *  @hw: pointer to hardware structure
   3700   1.1    dyoung  *
   3701   1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3702   1.1    dyoung  *  the capabilities table.
   3703   1.1    dyoung  **/
   3704   1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3705   1.1    dyoung {
   3706   1.4   msaitoh 	u16 msix_count = 1;
   3707   1.4   msaitoh 	u16 max_msix_count;
   3708   1.4   msaitoh 	u16 pcie_offset;
   3709   1.4   msaitoh 
   3710   1.4   msaitoh 	switch (hw->mac.type) {
   3711   1.4   msaitoh 	case ixgbe_mac_82598EB:
   3712   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3713   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3714   1.4   msaitoh 		break;
   3715   1.4   msaitoh 	case ixgbe_mac_82599EB:
   3716   1.4   msaitoh 	case ixgbe_mac_X540:
   3717   1.8   msaitoh 	case ixgbe_mac_X550:
   3718   1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3719  1.14   msaitoh 	case ixgbe_mac_X550EM_a:
   3720   1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3721   1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3722   1.4   msaitoh 		break;
   3723   1.4   msaitoh 	default:
   3724   1.4   msaitoh 		return msix_count;
   3725   1.4   msaitoh 	}
   3726   1.1    dyoung 
   3727   1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3728   1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3729   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3730   1.8   msaitoh 		msix_count = 0;
   3731   1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3732   1.4   msaitoh 
   3733   1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3734   1.4   msaitoh 	msix_count++;
   3735   1.4   msaitoh 
   3736   1.4   msaitoh 	if (msix_count > max_msix_count)
   3737   1.4   msaitoh 		msix_count = max_msix_count;
   3738   1.1    dyoung 
   3739   1.1    dyoung 	return msix_count;
   3740   1.1    dyoung }
   3741   1.1    dyoung 
   3742   1.1    dyoung /**
   3743   1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3744   1.1    dyoung  *  @hw: pointer to hardware structure
   3745   1.1    dyoung  *  @addr: Address to put into receive address register
   3746   1.1    dyoung  *  @vmdq: VMDq pool to assign
   3747   1.1    dyoung  *
   3748   1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3749  1.11   msaitoh  *  finds the rar that it is already in; adds to the pool list
   3750   1.1    dyoung  **/
   3751   1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3752   1.1    dyoung {
   3753   1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3754   1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3755   1.1    dyoung 	u32 rar;
   3756   1.1    dyoung 	u32 rar_low, rar_high;
   3757   1.1    dyoung 	u32 addr_low, addr_high;
   3758   1.1    dyoung 
   3759   1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3760   1.1    dyoung 
   3761   1.1    dyoung 	/* swap bytes for HW little endian */
   3762   1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3763   1.1    dyoung 			    | (addr[2] << 16)
   3764   1.1    dyoung 			    | (addr[3] << 24);
   3765   1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3766   1.1    dyoung 
   3767   1.1    dyoung 	/*
   3768   1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3769   1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3770   1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3771   1.1    dyoung 	 * rar to the top.
   3772   1.1    dyoung 	 */
   3773   1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3774   1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3775   1.1    dyoung 
   3776   1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3777   1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3778   1.1    dyoung 			first_empty_rar = rar;
   3779   1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3780   1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3781   1.1    dyoung 			if (rar_low == addr_low)
   3782   1.1    dyoung 				break;    /* found it already in the rars */
   3783   1.1    dyoung 		}
   3784   1.1    dyoung 	}
   3785   1.1    dyoung 
   3786   1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3787   1.1    dyoung 		/* already there so just add to the pool bits */
   3788   1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3789   1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3790   1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3791   1.1    dyoung 		rar = first_empty_rar;
   3792   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3793   1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3794   1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3795   1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3796   1.1    dyoung 		hw->mac.rar_highwater++;
   3797   1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3798   1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3799   1.1    dyoung 	}
   3800   1.1    dyoung 
   3801   1.1    dyoung 	/*
   3802   1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3803   1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3804   1.1    dyoung 	 */
   3805   1.1    dyoung 	if (rar == 0)
   3806   1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3807   1.1    dyoung 
   3808   1.1    dyoung 	return rar;
   3809   1.1    dyoung }
   3810   1.1    dyoung 
   3811   1.1    dyoung /**
   3812   1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3813   1.1    dyoung  *  @hw: pointer to hardware struct
   3814   1.1    dyoung  *  @rar: receive address register index to disassociate
   3815   1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3816   1.1    dyoung  **/
   3817   1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3818   1.1    dyoung {
   3819   1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3820   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3821   1.1    dyoung 
   3822   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3823   1.1    dyoung 
   3824   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3825   1.1    dyoung 	if (rar >= rar_entries) {
   3826   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3827   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3828   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3829   1.1    dyoung 	}
   3830   1.1    dyoung 
   3831   1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3832   1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3833   1.1    dyoung 
   3834   1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3835   1.8   msaitoh 		goto done;
   3836   1.8   msaitoh 
   3837   1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3838   1.1    dyoung 		goto done;
   3839   1.1    dyoung 
   3840   1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3841   1.1    dyoung 		if (mpsar_lo) {
   3842   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3843   1.1    dyoung 			mpsar_lo = 0;
   3844   1.1    dyoung 		}
   3845   1.1    dyoung 		if (mpsar_hi) {
   3846   1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3847   1.1    dyoung 			mpsar_hi = 0;
   3848   1.1    dyoung 		}
   3849   1.1    dyoung 	} else if (vmdq < 32) {
   3850   1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3851   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3852   1.1    dyoung 	} else {
   3853   1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3854   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3855   1.1    dyoung 	}
   3856   1.1    dyoung 
   3857   1.1    dyoung 	/* was that the last pool using this rar? */
   3858  1.14   msaitoh 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3859  1.14   msaitoh 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3860   1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3861   1.1    dyoung done:
   3862   1.1    dyoung 	return IXGBE_SUCCESS;
   3863   1.1    dyoung }
   3864   1.1    dyoung 
   3865   1.1    dyoung /**
   3866   1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3867   1.1    dyoung  *  @hw: pointer to hardware struct
   3868   1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3869   1.1    dyoung  *  @vmdq: VMDq pool index
   3870   1.1    dyoung  **/
   3871   1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3872   1.1    dyoung {
   3873   1.1    dyoung 	u32 mpsar;
   3874   1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3875   1.1    dyoung 
   3876   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3877   1.1    dyoung 
   3878   1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3879   1.1    dyoung 	if (rar >= rar_entries) {
   3880   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3881   1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3882   1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3883   1.1    dyoung 	}
   3884   1.1    dyoung 
   3885   1.1    dyoung 	if (vmdq < 32) {
   3886   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3887   1.1    dyoung 		mpsar |= 1 << vmdq;
   3888   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3889   1.1    dyoung 	} else {
   3890   1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3891   1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3892   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3893   1.1    dyoung 	}
   3894   1.1    dyoung 	return IXGBE_SUCCESS;
   3895   1.1    dyoung }
   3896   1.1    dyoung 
   3897   1.1    dyoung /**
   3898   1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3899   1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3900   1.4   msaitoh  *  VFs advertized and not 0.
   3901   1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3902   1.4   msaitoh  *
   3903   1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3904   1.4   msaitoh  *  @hw: pointer to hardware struct
   3905   1.4   msaitoh  *  @vmdq: VMDq pool index
   3906   1.4   msaitoh  **/
   3907   1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3908   1.4   msaitoh {
   3909   1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3910   1.4   msaitoh 
   3911   1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3912   1.4   msaitoh 
   3913   1.4   msaitoh 	if (vmdq < 32) {
   3914   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3915   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3916   1.4   msaitoh 	} else {
   3917   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3918   1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3919   1.4   msaitoh 	}
   3920   1.4   msaitoh 
   3921   1.4   msaitoh 	return IXGBE_SUCCESS;
   3922   1.4   msaitoh }
   3923   1.4   msaitoh 
   3924   1.4   msaitoh /**
   3925   1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3926   1.1    dyoung  *  @hw: pointer to hardware structure
   3927   1.1    dyoung  **/
   3928   1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3929   1.1    dyoung {
   3930   1.1    dyoung 	int i;
   3931   1.1    dyoung 
   3932   1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3933   1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3934   1.1    dyoung 
   3935   1.1    dyoung 	for (i = 0; i < 128; i++)
   3936   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3937   1.1    dyoung 
   3938   1.1    dyoung 	return IXGBE_SUCCESS;
   3939   1.1    dyoung }
   3940   1.1    dyoung 
   3941   1.1    dyoung /**
   3942   1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3943   1.1    dyoung  *  @hw: pointer to hardware structure
   3944   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3945  1.22   msaitoh  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
   3946  1.22   msaitoh  *		  vlanid not found
   3947  1.22   msaitoh  *
   3948   1.1    dyoung  *
   3949   1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3950   1.1    dyoung  *
   3951   1.1    dyoung  **/
   3952  1.14   msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3953   1.1    dyoung {
   3954  1.14   msaitoh 	s32 regindex, first_empty_slot;
   3955  1.14   msaitoh 	u32 bits;
   3956   1.1    dyoung 
   3957   1.1    dyoung 	/* short cut the special case */
   3958   1.1    dyoung 	if (vlan == 0)
   3959   1.1    dyoung 		return 0;
   3960   1.1    dyoung 
   3961  1.14   msaitoh 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3962  1.14   msaitoh 	 * will simply bypass the VLVF if there are no entries present in the
   3963  1.14   msaitoh 	 * VLVF that contain our VLAN
   3964  1.14   msaitoh 	 */
   3965  1.14   msaitoh 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3966  1.14   msaitoh 
   3967  1.14   msaitoh 	/* add VLAN enable bit for comparison */
   3968  1.14   msaitoh 	vlan |= IXGBE_VLVF_VIEN;
   3969  1.14   msaitoh 
   3970  1.14   msaitoh 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3971  1.14   msaitoh 	 * slot found along the way.
   3972  1.14   msaitoh 	 *
   3973  1.14   msaitoh 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3974  1.14   msaitoh 	 */
   3975  1.14   msaitoh 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3976   1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3977  1.14   msaitoh 		if (bits == vlan)
   3978  1.14   msaitoh 			return regindex;
   3979  1.14   msaitoh 		if (!first_empty_slot && !bits)
   3980   1.1    dyoung 			first_empty_slot = regindex;
   3981   1.1    dyoung 	}
   3982   1.1    dyoung 
   3983  1.14   msaitoh 	/* If we are here then we didn't find the VLAN.  Return first empty
   3984  1.14   msaitoh 	 * slot we found during our search, else error.
   3985  1.14   msaitoh 	 */
   3986  1.14   msaitoh 	if (!first_empty_slot)
   3987  1.14   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3988   1.1    dyoung 
   3989  1.14   msaitoh 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3990   1.1    dyoung }
   3991   1.1    dyoung 
   3992   1.1    dyoung /**
   3993   1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3994   1.1    dyoung  *  @hw: pointer to hardware structure
   3995   1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3996  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3997  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN
   3998  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3999   1.1    dyoung  *
   4000   1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   4001   1.1    dyoung  **/
   4002   1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4003  1.14   msaitoh 			   bool vlan_on, bool vlvf_bypass)
   4004   1.1    dyoung {
   4005  1.14   msaitoh 	u32 regidx, vfta_delta, vfta;
   4006  1.14   msaitoh 	s32 ret_val;
   4007   1.1    dyoung 
   4008   1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   4009   1.1    dyoung 
   4010  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4011   1.1    dyoung 		return IXGBE_ERR_PARAM;
   4012   1.1    dyoung 
   4013   1.1    dyoung 	/*
   4014   1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   4015   1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   4016   1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   4017   1.1    dyoung 	 */
   4018   1.1    dyoung 
   4019   1.1    dyoung 	/* Part 1
   4020   1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   4021   1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   4022   1.1    dyoung 	 *    bits[11-5]: which register
   4023   1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   4024   1.1    dyoung 	 */
   4025  1.14   msaitoh 	regidx = vlan / 32;
   4026  1.25   msaitoh 	vfta_delta = (u32)1 << (vlan % 32);
   4027  1.14   msaitoh 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   4028  1.14   msaitoh 
   4029  1.14   msaitoh 	/*
   4030  1.14   msaitoh 	 * vfta_delta represents the difference between the current value
   4031  1.14   msaitoh 	 * of vfta and the value we want in the register.  Since the diff
   4032  1.14   msaitoh 	 * is an XOR mask we can just update the vfta using an XOR
   4033  1.14   msaitoh 	 */
   4034  1.14   msaitoh 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4035  1.14   msaitoh 	vfta ^= vfta_delta;
   4036   1.1    dyoung 
   4037   1.1    dyoung 	/* Part 2
   4038   1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4039   1.3   msaitoh 	 */
   4040  1.14   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4041  1.14   msaitoh 					 vfta, vlvf_bypass);
   4042  1.14   msaitoh 	if (ret_val != IXGBE_SUCCESS) {
   4043  1.14   msaitoh 		if (vlvf_bypass)
   4044  1.14   msaitoh 			goto vfta_update;
   4045   1.3   msaitoh 		return ret_val;
   4046  1.14   msaitoh 	}
   4047   1.3   msaitoh 
   4048  1.14   msaitoh vfta_update:
   4049  1.14   msaitoh 	/* Update VFTA now that we are ready for traffic */
   4050  1.14   msaitoh 	if (vfta_delta)
   4051  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4052   1.3   msaitoh 
   4053   1.3   msaitoh 	return IXGBE_SUCCESS;
   4054   1.3   msaitoh }
   4055   1.3   msaitoh 
   4056   1.3   msaitoh /**
   4057   1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4058   1.3   msaitoh  *  @hw: pointer to hardware structure
   4059   1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   4060  1.14   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4061  1.14   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4062  1.14   msaitoh  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4063  1.14   msaitoh  *		 and the desired value
   4064  1.14   msaitoh  *  @vfta: the desired value of the VFTA
   4065  1.14   msaitoh  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4066   1.3   msaitoh  *
   4067   1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   4068   1.3   msaitoh  **/
   4069   1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4070  1.14   msaitoh 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4071  1.14   msaitoh 			   bool vlvf_bypass)
   4072   1.3   msaitoh {
   4073  1.14   msaitoh 	u32 bits;
   4074  1.14   msaitoh 	s32 vlvf_index;
   4075   1.3   msaitoh 
   4076   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4077   1.3   msaitoh 
   4078  1.14   msaitoh 	if (vlan > 4095 || vind > 63)
   4079   1.3   msaitoh 		return IXGBE_ERR_PARAM;
   4080   1.3   msaitoh 
   4081   1.3   msaitoh 	/* If VT Mode is set
   4082   1.1    dyoung 	 *   Either vlan_on
   4083   1.1    dyoung 	 *     make sure the vlan is in VLVF
   4084   1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   4085   1.1    dyoung 	 *   Or !vlan_on
   4086   1.1    dyoung 	 *     clear the pool bit and possibly the vind
   4087   1.1    dyoung 	 */
   4088  1.14   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4089  1.14   msaitoh 		return IXGBE_SUCCESS;
   4090   1.1    dyoung 
   4091  1.14   msaitoh 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4092  1.14   msaitoh 	if (vlvf_index < 0)
   4093  1.14   msaitoh 		return vlvf_index;
   4094  1.14   msaitoh 
   4095  1.14   msaitoh 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4096  1.14   msaitoh 
   4097  1.14   msaitoh 	/* set the pool bit */
   4098  1.14   msaitoh 	bits |= 1 << (vind % 32);
   4099  1.14   msaitoh 	if (vlan_on)
   4100  1.14   msaitoh 		goto vlvf_update;
   4101  1.14   msaitoh 
   4102  1.14   msaitoh 	/* clear the pool bit */
   4103  1.14   msaitoh 	bits ^= 1 << (vind % 32);
   4104  1.14   msaitoh 
   4105  1.14   msaitoh 	if (!bits &&
   4106  1.14   msaitoh 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4107  1.14   msaitoh 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4108  1.14   msaitoh 		 * we run the risk of stray packets leaking into
   4109  1.14   msaitoh 		 * the PF via the default pool
   4110   1.1    dyoung 		 */
   4111  1.14   msaitoh 		if (*vfta_delta)
   4112  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4113  1.14   msaitoh 
   4114  1.14   msaitoh 		/* disable VLVF and clear remaining bit from pool */
   4115  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4116  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4117  1.14   msaitoh 
   4118  1.14   msaitoh 		return IXGBE_SUCCESS;
   4119   1.1    dyoung 	}
   4120   1.1    dyoung 
   4121  1.14   msaitoh 	/* If there are still bits set in the VLVFB registers
   4122  1.14   msaitoh 	 * for the VLAN ID indicated we need to see if the
   4123  1.14   msaitoh 	 * caller is requesting that we clear the VFTA entry bit.
   4124  1.14   msaitoh 	 * If the caller has requested that we clear the VFTA
   4125  1.14   msaitoh 	 * entry bit but there are still pools/VFs using this VLAN
   4126  1.14   msaitoh 	 * ID entry then ignore the request.  We're not worried
   4127  1.14   msaitoh 	 * about the case where we're turning the VFTA VLAN ID
   4128  1.14   msaitoh 	 * entry bit on, only when requested to turn it off as
   4129  1.14   msaitoh 	 * there may be multiple pools and/or VFs using the
   4130  1.14   msaitoh 	 * VLAN ID entry.  In that case we cannot clear the
   4131  1.14   msaitoh 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4132  1.14   msaitoh 	 * been cleared.  This will be indicated by "bits" being
   4133  1.14   msaitoh 	 * zero.
   4134  1.14   msaitoh 	 */
   4135  1.14   msaitoh 	*vfta_delta = 0;
   4136  1.14   msaitoh 
   4137  1.14   msaitoh vlvf_update:
   4138  1.14   msaitoh 	/* record pool change and enable VLAN ID if not already enabled */
   4139  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4140  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4141  1.14   msaitoh 
   4142   1.1    dyoung 	return IXGBE_SUCCESS;
   4143   1.1    dyoung }
   4144   1.1    dyoung 
   4145   1.1    dyoung /**
   4146   1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4147   1.1    dyoung  *  @hw: pointer to hardware structure
   4148   1.1    dyoung  *
   4149   1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4150   1.1    dyoung  **/
   4151   1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4152   1.1    dyoung {
   4153   1.1    dyoung 	u32 offset;
   4154   1.1    dyoung 
   4155   1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4156   1.1    dyoung 
   4157   1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4158   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4159   1.1    dyoung 
   4160   1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4161   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4162   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4163  1.17   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4164   1.1    dyoung 	}
   4165   1.1    dyoung 
   4166   1.1    dyoung 	return IXGBE_SUCCESS;
   4167   1.1    dyoung }
   4168   1.1    dyoung 
   4169   1.1    dyoung /**
   4170  1.23   msaitoh  *  ixgbe_toggle_txdctl_generic - Toggle VF's queues
   4171  1.23   msaitoh  *  @hw: pointer to hardware structure
   4172  1.23   msaitoh  *  @vf_number: VF index
   4173  1.23   msaitoh  *
   4174  1.23   msaitoh  *  Enable and disable each queue in VF.
   4175  1.23   msaitoh  */
   4176  1.23   msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
   4177  1.23   msaitoh {
   4178  1.23   msaitoh 	u8  queue_count, i;
   4179  1.23   msaitoh 	u32 offset, reg;
   4180  1.23   msaitoh 
   4181  1.23   msaitoh 	if (vf_number > 63)
   4182  1.23   msaitoh 		return IXGBE_ERR_PARAM;
   4183  1.23   msaitoh 
   4184  1.23   msaitoh 	/*
   4185  1.23   msaitoh 	 * Determine number of queues by checking
   4186  1.23   msaitoh 	 * number of virtual functions
   4187  1.23   msaitoh 	 */
   4188  1.23   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4189  1.23   msaitoh 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
   4190  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_64:
   4191  1.23   msaitoh 		queue_count = 2;
   4192  1.23   msaitoh 		break;
   4193  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_32:
   4194  1.23   msaitoh 		queue_count = 4;
   4195  1.23   msaitoh 		break;
   4196  1.23   msaitoh 	case IXGBE_GCR_EXT_VT_MODE_16:
   4197  1.23   msaitoh 		queue_count = 8;
   4198  1.23   msaitoh 		break;
   4199  1.23   msaitoh 	default:
   4200  1.23   msaitoh 		return IXGBE_ERR_CONFIG;
   4201  1.23   msaitoh 	}
   4202  1.23   msaitoh 
   4203  1.23   msaitoh 	/* Toggle queues */
   4204  1.23   msaitoh 	for (i = 0; i < queue_count; ++i) {
   4205  1.23   msaitoh 		/* Calculate offset of current queue */
   4206  1.23   msaitoh 		offset = queue_count * vf_number + i;
   4207  1.23   msaitoh 
   4208  1.23   msaitoh 		/* Enable queue */
   4209  1.23   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4210  1.23   msaitoh 		reg |= IXGBE_TXDCTL_ENABLE;
   4211  1.23   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4212  1.23   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4213  1.23   msaitoh 
   4214  1.23   msaitoh 		/* Disable queue */
   4215  1.23   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4216  1.23   msaitoh 		reg &= ~IXGBE_TXDCTL_ENABLE;
   4217  1.23   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4218  1.23   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4219  1.23   msaitoh 	}
   4220  1.23   msaitoh 
   4221  1.23   msaitoh 	return IXGBE_SUCCESS;
   4222  1.23   msaitoh }
   4223  1.23   msaitoh 
   4224  1.23   msaitoh /**
   4225  1.14   msaitoh  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4226  1.14   msaitoh  *  @hw: pointer to hardware structure
   4227  1.14   msaitoh  *
   4228  1.14   msaitoh  *  Contains the logic to identify if we need to verify link for the
   4229  1.14   msaitoh  *  crosstalk fix
   4230  1.14   msaitoh  **/
   4231  1.14   msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4232  1.14   msaitoh {
   4233  1.14   msaitoh 
   4234  1.14   msaitoh 	/* Does FW say we need the fix */
   4235  1.14   msaitoh 	if (!hw->need_crosstalk_fix)
   4236  1.14   msaitoh 		return FALSE;
   4237  1.14   msaitoh 
   4238  1.14   msaitoh 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4239  1.14   msaitoh 	switch (hw->mac.ops.get_media_type(hw)) {
   4240  1.14   msaitoh 	case ixgbe_media_type_fiber:
   4241  1.14   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   4242  1.14   msaitoh 		break;
   4243  1.14   msaitoh 	default:
   4244  1.14   msaitoh 		return FALSE;
   4245  1.14   msaitoh 	}
   4246  1.14   msaitoh 
   4247  1.14   msaitoh 	return TRUE;
   4248  1.14   msaitoh }
   4249  1.14   msaitoh 
   4250  1.14   msaitoh /**
   4251   1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4252   1.1    dyoung  *  @hw: pointer to hardware structure
   4253   1.1    dyoung  *  @speed: pointer to link speed
   4254   1.1    dyoung  *  @link_up: TRUE when link is up
   4255   1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4256   1.1    dyoung  *
   4257   1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4258   1.1    dyoung  **/
   4259   1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4260   1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4261   1.1    dyoung {
   4262   1.1    dyoung 	u32 links_reg, links_orig;
   4263   1.1    dyoung 	u32 i;
   4264   1.1    dyoung 
   4265   1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4266   1.1    dyoung 
   4267  1.14   msaitoh 	/* If Crosstalk fix enabled do the sanity check of making sure
   4268  1.14   msaitoh 	 * the SFP+ cage is full.
   4269  1.14   msaitoh 	 */
   4270  1.14   msaitoh 	if (ixgbe_need_crosstalk_fix(hw)) {
   4271  1.29   msaitoh 		if ((hw->mac.type != ixgbe_mac_82598EB) &&
   4272  1.29   msaitoh 		    !ixgbe_sfp_cage_full(hw)) {
   4273  1.14   msaitoh 			*link_up = FALSE;
   4274  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4275  1.14   msaitoh 			return IXGBE_SUCCESS;
   4276  1.14   msaitoh 		}
   4277  1.14   msaitoh 	}
   4278  1.14   msaitoh 
   4279   1.1    dyoung 	/* clear the old state */
   4280   1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4281   1.1    dyoung 
   4282   1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4283   1.1    dyoung 
   4284   1.1    dyoung 	if (links_orig != links_reg) {
   4285   1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4286   1.3   msaitoh 			  links_orig, links_reg);
   4287   1.1    dyoung 	}
   4288   1.1    dyoung 
   4289   1.1    dyoung 	if (link_up_wait_to_complete) {
   4290  1.10   msaitoh 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4291   1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4292   1.1    dyoung 				*link_up = TRUE;
   4293   1.1    dyoung 				break;
   4294   1.1    dyoung 			} else {
   4295   1.1    dyoung 				*link_up = FALSE;
   4296   1.1    dyoung 			}
   4297   1.1    dyoung 			msec_delay(100);
   4298   1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4299   1.1    dyoung 		}
   4300   1.1    dyoung 	} else {
   4301   1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4302   1.1    dyoung 			*link_up = TRUE;
   4303   1.1    dyoung 		else
   4304   1.1    dyoung 			*link_up = FALSE;
   4305   1.1    dyoung 	}
   4306   1.1    dyoung 
   4307   1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4308   1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4309   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4310   1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4311   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4312   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4313   1.8   msaitoh 		}
   4314   1.8   msaitoh 		break;
   4315   1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4316   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4317   1.8   msaitoh 		break;
   4318   1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4319   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4320  1.15   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4321   1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4322   1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4323   1.8   msaitoh 		}
   4324   1.8   msaitoh 		break;
   4325  1.14   msaitoh 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4326  1.14   msaitoh 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4327  1.14   msaitoh 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4328  1.17   msaitoh 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
   4329  1.14   msaitoh 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4330  1.14   msaitoh 		break;
   4331   1.8   msaitoh 	default:
   4332   1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4333   1.8   msaitoh 	}
   4334   1.1    dyoung 
   4335   1.1    dyoung 	return IXGBE_SUCCESS;
   4336   1.1    dyoung }
   4337   1.1    dyoung 
   4338   1.1    dyoung /**
   4339   1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4340   1.1    dyoung  *  the EEPROM
   4341   1.1    dyoung  *  @hw: pointer to hardware structure
   4342   1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4343   1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4344   1.1    dyoung  *
   4345   1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4346   1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4347   1.1    dyoung  **/
   4348   1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4349   1.3   msaitoh 				 u16 *wwpn_prefix)
   4350   1.1    dyoung {
   4351   1.1    dyoung 	u16 offset, caps;
   4352   1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4353   1.1    dyoung 
   4354   1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4355   1.1    dyoung 
   4356   1.1    dyoung 	/* clear output first */
   4357   1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4358   1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4359   1.1    dyoung 
   4360   1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4361   1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4362   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4363   1.6   msaitoh 		goto wwn_prefix_err;
   4364   1.1    dyoung 
   4365   1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4366   1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4367   1.1    dyoung 		goto wwn_prefix_out;
   4368   1.1    dyoung 
   4369   1.1    dyoung 	/* check capability in alternative san mac address block */
   4370   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4371   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4372   1.6   msaitoh 		goto wwn_prefix_err;
   4373   1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4374   1.1    dyoung 		goto wwn_prefix_out;
   4375   1.1    dyoung 
   4376   1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4377   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4378   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4379   1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4380   1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4381   1.6   msaitoh 	}
   4382   1.1    dyoung 
   4383   1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4384   1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4385   1.6   msaitoh 		goto wwn_prefix_err;
   4386   1.1    dyoung 
   4387   1.1    dyoung wwn_prefix_out:
   4388   1.1    dyoung 	return IXGBE_SUCCESS;
   4389   1.6   msaitoh 
   4390   1.6   msaitoh wwn_prefix_err:
   4391   1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4392   1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4393   1.6   msaitoh 	return IXGBE_SUCCESS;
   4394   1.1    dyoung }
   4395   1.1    dyoung 
   4396   1.1    dyoung /**
   4397   1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4398   1.1    dyoung  *  @hw: pointer to hardware structure
   4399   1.1    dyoung  *  @bs: the fcoe boot status
   4400   1.1    dyoung  *
   4401   1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4402   1.1    dyoung  **/
   4403   1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4404   1.1    dyoung {
   4405   1.1    dyoung 	u16 offset, caps, flags;
   4406   1.1    dyoung 	s32 status;
   4407   1.1    dyoung 
   4408   1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4409   1.1    dyoung 
   4410   1.1    dyoung 	/* clear output first */
   4411   1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4412   1.1    dyoung 
   4413   1.1    dyoung 	/* check if FCOE IBA block is present */
   4414   1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4415   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4416   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4417   1.1    dyoung 		goto out;
   4418   1.1    dyoung 
   4419   1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4420   1.1    dyoung 		goto out;
   4421   1.1    dyoung 
   4422   1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4423   1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4424   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4425   1.1    dyoung 		goto out;
   4426   1.1    dyoung 
   4427   1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4428   1.1    dyoung 		goto out;
   4429   1.1    dyoung 
   4430   1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4431   1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4432   1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4433   1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4434   1.1    dyoung 		goto out;
   4435   1.1    dyoung 
   4436   1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4437   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4438   1.1    dyoung 	else
   4439   1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4440   1.1    dyoung 
   4441   1.1    dyoung out:
   4442   1.1    dyoung 	return status;
   4443   1.1    dyoung }
   4444   1.1    dyoung 
   4445   1.1    dyoung /**
   4446   1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4447   1.1    dyoung  *  @hw: pointer to hardware structure
   4448  1.14   msaitoh  *  @enable: enable or disable switch for MAC anti-spoofing
   4449  1.14   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4450   1.1    dyoung  *
   4451   1.1    dyoung  **/
   4452  1.14   msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4453   1.1    dyoung {
   4454  1.14   msaitoh 	int vf_target_reg = vf >> 3;
   4455  1.14   msaitoh 	int vf_target_shift = vf % 8;
   4456  1.14   msaitoh 	u32 pfvfspoof;
   4457   1.1    dyoung 
   4458   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4459   1.1    dyoung 		return;
   4460   1.1    dyoung 
   4461  1.14   msaitoh 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4462   1.1    dyoung 	if (enable)
   4463  1.14   msaitoh 		pfvfspoof |= (1 << vf_target_shift);
   4464  1.14   msaitoh 	else
   4465  1.14   msaitoh 		pfvfspoof &= ~(1 << vf_target_shift);
   4466  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4467   1.1    dyoung }
   4468   1.1    dyoung 
   4469   1.1    dyoung /**
   4470   1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4471   1.1    dyoung  *  @hw: pointer to hardware structure
   4472   1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4473   1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4474   1.1    dyoung  *
   4475   1.1    dyoung  **/
   4476   1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4477   1.1    dyoung {
   4478   1.1    dyoung 	int vf_target_reg = vf >> 3;
   4479   1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4480   1.1    dyoung 	u32 pfvfspoof;
   4481   1.1    dyoung 
   4482   1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4483   1.1    dyoung 		return;
   4484   1.1    dyoung 
   4485   1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4486   1.1    dyoung 	if (enable)
   4487   1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4488   1.1    dyoung 	else
   4489   1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4490   1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4491   1.1    dyoung }
   4492   1.1    dyoung 
   4493   1.1    dyoung /**
   4494   1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4495   1.1    dyoung  *  @hw: pointer to hardware structure
   4496   1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4497   1.1    dyoung  *
   4498   1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4499   1.1    dyoung  *  and return the word through device_caps.
   4500   1.1    dyoung  **/
   4501   1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4502   1.1    dyoung {
   4503   1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4504   1.1    dyoung 
   4505   1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4506   1.1    dyoung 
   4507   1.1    dyoung 	return IXGBE_SUCCESS;
   4508   1.1    dyoung }
   4509   1.1    dyoung 
   4510   1.1    dyoung /**
   4511   1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4512   1.1    dyoung  *  @hw: pointer to hardware structure
   4513   1.1    dyoung  *
   4514   1.1    dyoung  **/
   4515   1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4516   1.1    dyoung {
   4517   1.1    dyoung 	u32 regval;
   4518   1.1    dyoung 	u32 i;
   4519   1.1    dyoung 
   4520   1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4521   1.1    dyoung 
   4522   1.1    dyoung 	/* Enable relaxed ordering */
   4523   1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4524   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4525   1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4526   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4527   1.1    dyoung 	}
   4528   1.1    dyoung 
   4529   1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4530   1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4531   1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4532   1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4533   1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4534   1.1    dyoung 	}
   4535   1.1    dyoung 
   4536   1.1    dyoung }
   4537   1.3   msaitoh 
   4538   1.3   msaitoh /**
   4539   1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4540   1.3   msaitoh  *  @buffer: pointer to EEPROM
   4541   1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4542   1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4543   1.3   msaitoh  *  checksum calculated is returned.
   4544   1.3   msaitoh  **/
   4545   1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4546   1.3   msaitoh {
   4547   1.3   msaitoh 	u32 i;
   4548   1.3   msaitoh 	u8 sum = 0;
   4549   1.3   msaitoh 
   4550   1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4551   1.3   msaitoh 
   4552   1.3   msaitoh 	if (!buffer)
   4553   1.3   msaitoh 		return 0;
   4554   1.3   msaitoh 
   4555   1.3   msaitoh 	for (i = 0; i < length; i++)
   4556   1.3   msaitoh 		sum += buffer[i];
   4557   1.3   msaitoh 
   4558   1.3   msaitoh 	return (u8) (0 - sum);
   4559   1.3   msaitoh }
   4560   1.3   msaitoh 
   4561   1.3   msaitoh /**
   4562  1.14   msaitoh  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4563   1.3   msaitoh  *  @hw: pointer to the HW structure
   4564  1.14   msaitoh  *  @buffer: command to write and where the return status will be placed
   4565   1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4566   1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4567   1.3   msaitoh  *
   4568  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4569  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4570  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4571  1.14   msaitoh  *
   4572  1.14   msaitoh  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4573  1.14   msaitoh  *  by the caller.
   4574   1.3   msaitoh  **/
   4575  1.14   msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4576  1.14   msaitoh 		       u32 timeout)
   4577   1.3   msaitoh {
   4578  1.14   msaitoh 	u32 hicr, i, fwsts;
   4579   1.8   msaitoh 	u16 dword_len;
   4580   1.3   msaitoh 
   4581  1.14   msaitoh 	DEBUGFUNC("ixgbe_hic_unlocked");
   4582   1.3   msaitoh 
   4583  1.14   msaitoh 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4584   1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4585   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4586   1.8   msaitoh 	}
   4587  1.14   msaitoh 
   4588   1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4589   1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4590   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4591   1.3   msaitoh 
   4592   1.3   msaitoh 	/* Check that the host interface is enabled. */
   4593   1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4594  1.14   msaitoh 	if (!(hicr & IXGBE_HICR_EN)) {
   4595   1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4596   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4597   1.8   msaitoh 	}
   4598   1.8   msaitoh 
   4599   1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4600  1.14   msaitoh 	if (length % sizeof(u32)) {
   4601   1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4602   1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4603   1.3   msaitoh 	}
   4604   1.3   msaitoh 
   4605   1.3   msaitoh 	dword_len = length >> 2;
   4606   1.3   msaitoh 
   4607   1.8   msaitoh 	/* The device driver writes the relevant command block
   4608   1.3   msaitoh 	 * into the ram area.
   4609   1.3   msaitoh 	 */
   4610   1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4611   1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4612   1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4613   1.3   msaitoh 
   4614   1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4615   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4616   1.3   msaitoh 
   4617   1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4618   1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4619   1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4620   1.3   msaitoh 			break;
   4621   1.3   msaitoh 		msec_delay(1);
   4622   1.3   msaitoh 	}
   4623   1.3   msaitoh 
   4624  1.23   msaitoh 	/* For each command except "Apply Update" perform
   4625  1.23   msaitoh 	 * status checks in the HICR registry.
   4626  1.23   msaitoh 	 */
   4627  1.23   msaitoh 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
   4628  1.23   msaitoh 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
   4629  1.23   msaitoh 		return IXGBE_SUCCESS;
   4630  1.23   msaitoh 
   4631   1.8   msaitoh 	/* Check command completion */
   4632  1.14   msaitoh 	if ((timeout && i == timeout) ||
   4633   1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4634   1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4635  1.23   msaitoh 			      "Command has failed with no status valid.\n");
   4636   1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4637   1.3   msaitoh 	}
   4638   1.3   msaitoh 
   4639  1.14   msaitoh 	return IXGBE_SUCCESS;
   4640  1.14   msaitoh }
   4641  1.14   msaitoh 
   4642  1.14   msaitoh /**
   4643  1.14   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4644  1.14   msaitoh  *  @hw: pointer to the HW structure
   4645  1.14   msaitoh  *  @buffer: contains the command to write and where the return status will
   4646  1.14   msaitoh  *   be placed
   4647  1.14   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4648  1.14   msaitoh  *  @timeout: time in ms to wait for command completion
   4649  1.14   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4650  1.14   msaitoh  *   Needed because FW structures are big endian and decoding of
   4651  1.14   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4652  1.14   msaitoh  *   is not easily understood without making a table of commands.
   4653  1.14   msaitoh  *   So we will leave this up to the caller to read back the data
   4654  1.14   msaitoh  *   in these cases.
   4655  1.14   msaitoh  *
   4656  1.14   msaitoh  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4657  1.14   msaitoh  *  else returns semaphore error when encountering an error acquiring
   4658  1.14   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4659  1.14   msaitoh  **/
   4660  1.14   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4661  1.14   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4662  1.14   msaitoh {
   4663  1.14   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4664  1.22   msaitoh 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
   4665  1.14   msaitoh 	u16 buf_len;
   4666  1.14   msaitoh 	s32 status;
   4667  1.14   msaitoh 	u32 bi;
   4668  1.22   msaitoh 	u32 dword_len;
   4669  1.14   msaitoh 
   4670  1.14   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4671  1.14   msaitoh 
   4672  1.14   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4673  1.14   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4674  1.14   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4675  1.14   msaitoh 	}
   4676  1.14   msaitoh 
   4677  1.14   msaitoh 	/* Take management host interface semaphore */
   4678  1.14   msaitoh 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4679  1.14   msaitoh 	if (status)
   4680  1.14   msaitoh 		return status;
   4681  1.14   msaitoh 
   4682  1.14   msaitoh 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4683  1.14   msaitoh 	if (status)
   4684  1.14   msaitoh 		goto rel_out;
   4685  1.14   msaitoh 
   4686   1.8   msaitoh 	if (!return_data)
   4687  1.14   msaitoh 		goto rel_out;
   4688   1.8   msaitoh 
   4689   1.3   msaitoh 	/* Calculate length in DWORDs */
   4690   1.3   msaitoh 	dword_len = hdr_size >> 2;
   4691   1.3   msaitoh 
   4692   1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4693   1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4694   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4695   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4696   1.3   msaitoh 	}
   4697   1.3   msaitoh 
   4698  1.22   msaitoh 	/*
   4699  1.22   msaitoh 	 * If there is any thing in data position pull it in
   4700  1.22   msaitoh 	 * Read Flash command requires reading buffer length from
   4701  1.22   msaitoh 	 * two byes instead of one byte
   4702  1.22   msaitoh 	 */
   4703  1.23   msaitoh 	if (resp->cmd == 0x30 || resp->cmd == 0x31) {
   4704  1.22   msaitoh 		for (; bi < dword_len + 2; bi++) {
   4705  1.22   msaitoh 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4706  1.22   msaitoh 							  bi);
   4707  1.22   msaitoh 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4708  1.22   msaitoh 		}
   4709  1.22   msaitoh 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
   4710  1.22   msaitoh 				  & 0xF00) | resp->buf_len;
   4711  1.22   msaitoh 		hdr_size += (2 << 2);
   4712  1.22   msaitoh 	} else {
   4713  1.22   msaitoh 		buf_len = resp->buf_len;
   4714  1.22   msaitoh 	}
   4715  1.14   msaitoh 	if (!buf_len)
   4716  1.14   msaitoh 		goto rel_out;
   4717   1.3   msaitoh 
   4718   1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4719   1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4720  1.14   msaitoh 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4721  1.14   msaitoh 		goto rel_out;
   4722   1.3   msaitoh 	}
   4723   1.3   msaitoh 
   4724   1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4725   1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4726   1.3   msaitoh 
   4727   1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4728   1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4729   1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4730   1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4731   1.3   msaitoh 	}
   4732   1.3   msaitoh 
   4733  1.14   msaitoh rel_out:
   4734  1.14   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4735  1.14   msaitoh 
   4736  1.14   msaitoh 	return status;
   4737   1.3   msaitoh }
   4738   1.3   msaitoh 
   4739   1.3   msaitoh /**
   4740   1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4741   1.3   msaitoh  *  @hw: pointer to the HW structure
   4742   1.3   msaitoh  *  @maj: driver version major number
   4743   1.7  riastrad  *  @minr: driver version minor number
   4744   1.3   msaitoh  *  @build: driver version build number
   4745   1.3   msaitoh  *  @sub: driver version sub build number
   4746  1.22   msaitoh  *  @len: unused
   4747  1.22   msaitoh  *  @driver_ver: unused
   4748   1.3   msaitoh  *
   4749   1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4750   1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4751   1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4752   1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4753   1.3   msaitoh  **/
   4754   1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4755  1.14   msaitoh 				 u8 build, u8 sub, u16 len,
   4756  1.14   msaitoh 				 const char *driver_ver)
   4757   1.3   msaitoh {
   4758   1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4759   1.3   msaitoh 	int i;
   4760   1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4761   1.3   msaitoh 
   4762   1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4763  1.14   msaitoh 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4764   1.3   msaitoh 
   4765   1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4766   1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4767   1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4768   1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4769   1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4770   1.7  riastrad 	fw_cmd.ver_min = minr;
   4771   1.3   msaitoh 	fw_cmd.ver_build = build;
   4772   1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4773   1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4774  1.17   msaitoh 	fw_cmd.pad = 0;
   4775  1.17   msaitoh 	fw_cmd.pad2 = 0;
   4776   1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4777   1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4778   1.3   msaitoh 
   4779   1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4780   1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4781   1.8   msaitoh 						       sizeof(fw_cmd),
   4782   1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4783   1.8   msaitoh 						       TRUE);
   4784   1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4785   1.3   msaitoh 			continue;
   4786   1.3   msaitoh 
   4787   1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4788   1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4789   1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4790   1.3   msaitoh 		else
   4791   1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4792   1.3   msaitoh 
   4793   1.3   msaitoh 		break;
   4794   1.3   msaitoh 	}
   4795   1.3   msaitoh 
   4796   1.3   msaitoh 	return ret_val;
   4797   1.3   msaitoh }
   4798   1.3   msaitoh 
   4799   1.3   msaitoh /**
   4800   1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4801   1.3   msaitoh  * @hw: pointer to hardware structure
   4802   1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4803   1.3   msaitoh  * @headroom: reserve n KB of headroom
   4804   1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4805   1.3   msaitoh  **/
   4806   1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4807   1.3   msaitoh 			     int strategy)
   4808   1.3   msaitoh {
   4809   1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4810   1.3   msaitoh 	int i = 0;
   4811   1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4812   1.3   msaitoh 
   4813   1.3   msaitoh 	/* Reserve headroom */
   4814   1.3   msaitoh 	pbsize -= headroom;
   4815   1.3   msaitoh 
   4816   1.3   msaitoh 	if (!num_pb)
   4817   1.3   msaitoh 		num_pb = 1;
   4818   1.3   msaitoh 
   4819   1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4820   1.3   msaitoh 	 * buffers requested using supplied strategy.
   4821   1.3   msaitoh 	 */
   4822   1.3   msaitoh 	switch (strategy) {
   4823   1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4824   1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4825   1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4826   1.3   msaitoh 		 */
   4827   1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4828   1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4829   1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4830   1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4831   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4832  1.14   msaitoh 		/* fall through - configure remaining packet buffers */
   4833   1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4834   1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4835   1.3   msaitoh 		for (; i < num_pb; i++)
   4836   1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4837   1.3   msaitoh 		break;
   4838   1.3   msaitoh 	default:
   4839   1.3   msaitoh 		break;
   4840   1.3   msaitoh 	}
   4841   1.3   msaitoh 
   4842   1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4843   1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4844   1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4845   1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4846   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4847   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4848   1.3   msaitoh 	}
   4849   1.3   msaitoh 
   4850   1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4851   1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4852   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4853   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4854   1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4855   1.3   msaitoh 	}
   4856   1.3   msaitoh }
   4857   1.3   msaitoh 
   4858   1.3   msaitoh /**
   4859   1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4860   1.3   msaitoh  * @hw: pointer to the hardware structure
   4861   1.3   msaitoh  *
   4862   1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4863   1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4864   1.3   msaitoh  * buffers on the system.
   4865   1.3   msaitoh  **/
   4866   1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4867   1.3   msaitoh {
   4868   1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4869   1.8   msaitoh 	u16 value;
   4870   1.3   msaitoh 
   4871   1.3   msaitoh 	/*
   4872   1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4873   1.3   msaitoh 	 * already be clear and as such there is no work to do
   4874   1.3   msaitoh 	 */
   4875   1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4876   1.3   msaitoh 		return;
   4877   1.3   msaitoh 
   4878   1.3   msaitoh 	/*
   4879   1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4880   1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4881   1.3   msaitoh 	 * has already been cleared.
   4882   1.3   msaitoh 	 */
   4883   1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4884   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4885   1.3   msaitoh 
   4886   1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4887   1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4888   1.8   msaitoh 	msec_delay(3);
   4889   1.8   msaitoh 
   4890   1.8   msaitoh 	/*
   4891   1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4892   1.8   msaitoh 	 * transactions pending.
   4893   1.8   msaitoh 	 */
   4894   1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4895   1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4896   1.8   msaitoh 		usec_delay(100);
   4897   1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4898   1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4899   1.8   msaitoh 			goto out;
   4900   1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4901   1.8   msaitoh 			goto out;
   4902   1.8   msaitoh 	}
   4903   1.8   msaitoh 
   4904   1.8   msaitoh out:
   4905   1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4906   1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4907   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4908   1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4909   1.3   msaitoh 
   4910   1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4911   1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4912   1.3   msaitoh 	usec_delay(20);
   4913   1.3   msaitoh 
   4914   1.3   msaitoh 	/* restore previous register values */
   4915   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4916   1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4917   1.3   msaitoh }
   4918   1.3   msaitoh 
   4919  1.14   msaitoh /**
   4920  1.14   msaitoh  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4921  1.14   msaitoh  *
   4922  1.14   msaitoh  *  @hw: pointer to hardware structure
   4923  1.14   msaitoh  *  @cmd: Command we send to the FW
   4924  1.14   msaitoh  *  @status: The reply from the FW
   4925  1.14   msaitoh  *
   4926  1.14   msaitoh  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4927  1.14   msaitoh  **/
   4928  1.14   msaitoh #define IXGBE_BYPASS_BB_WAIT 1
   4929  1.14   msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4930  1.14   msaitoh {
   4931  1.14   msaitoh 	int i;
   4932  1.14   msaitoh 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4933  1.14   msaitoh 	u32 esdp;
   4934  1.14   msaitoh 
   4935  1.14   msaitoh 	if (!status)
   4936  1.14   msaitoh 		return IXGBE_ERR_PARAM;
   4937  1.14   msaitoh 
   4938  1.14   msaitoh 	*status = 0;
   4939  1.14   msaitoh 
   4940  1.14   msaitoh 	/* SDP vary by MAC type */
   4941  1.14   msaitoh 	switch (hw->mac.type) {
   4942  1.14   msaitoh 	case ixgbe_mac_82599EB:
   4943  1.14   msaitoh 		sck = IXGBE_ESDP_SDP7;
   4944  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4945  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP6;
   4946  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4947  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4948  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4949  1.14   msaitoh 		break;
   4950  1.14   msaitoh 	case ixgbe_mac_X540:
   4951  1.14   msaitoh 		sck = IXGBE_ESDP_SDP2;
   4952  1.14   msaitoh 		sdi = IXGBE_ESDP_SDP0;
   4953  1.14   msaitoh 		sdo = IXGBE_ESDP_SDP1;
   4954  1.14   msaitoh 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4955  1.14   msaitoh 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4956  1.14   msaitoh 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4957  1.14   msaitoh 		break;
   4958  1.14   msaitoh 	default:
   4959  1.14   msaitoh 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4960  1.14   msaitoh 	}
   4961  1.14   msaitoh 
   4962  1.14   msaitoh 	/* Set SDP pins direction */
   4963  1.14   msaitoh 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4964  1.14   msaitoh 	esdp |= dir_sck;	/* SCK as output */
   4965  1.14   msaitoh 	esdp |= dir_sdi;	/* SDI as output */
   4966  1.14   msaitoh 	esdp &= ~dir_sdo;	/* SDO as input */
   4967  1.14   msaitoh 	esdp |= sck;
   4968  1.14   msaitoh 	esdp |= sdi;
   4969  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4970  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4971  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4972  1.14   msaitoh 
   4973  1.14   msaitoh 	/* Generate start condition */
   4974  1.14   msaitoh 	esdp &= ~sdi;
   4975  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4976  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4977  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4978  1.14   msaitoh 
   4979  1.14   msaitoh 	esdp &= ~sck;
   4980  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4981  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4982  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4983  1.14   msaitoh 
   4984  1.14   msaitoh 	/* Clock out the new control word and clock in the status */
   4985  1.14   msaitoh 	for (i = 0; i < 32; i++) {
   4986  1.14   msaitoh 		if ((cmd >> (31 - i)) & 0x01) {
   4987  1.14   msaitoh 			esdp |= sdi;
   4988  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4989  1.14   msaitoh 		} else {
   4990  1.14   msaitoh 			esdp &= ~sdi;
   4991  1.14   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4992  1.14   msaitoh 		}
   4993  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4994  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4995  1.14   msaitoh 
   4996  1.14   msaitoh 		esdp |= sck;
   4997  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4998  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   4999  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5000  1.14   msaitoh 
   5001  1.14   msaitoh 		esdp &= ~sck;
   5002  1.14   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5003  1.14   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   5004  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5005  1.14   msaitoh 
   5006  1.14   msaitoh 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   5007  1.14   msaitoh 		if (esdp & sdo)
   5008  1.14   msaitoh 			*status = (*status << 1) | 0x01;
   5009  1.14   msaitoh 		else
   5010  1.14   msaitoh 			*status = (*status << 1) | 0x00;
   5011  1.14   msaitoh 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5012  1.14   msaitoh 	}
   5013  1.14   msaitoh 
   5014  1.14   msaitoh 	/* stop condition */
   5015  1.14   msaitoh 	esdp |= sck;
   5016  1.14   msaitoh 	esdp &= ~sdi;
   5017  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5018  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   5019  1.14   msaitoh 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   5020  1.14   msaitoh 
   5021  1.14   msaitoh 	esdp |= sdi;
   5022  1.14   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5023  1.14   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   5024  1.14   msaitoh 
   5025  1.14   msaitoh 	/* set the page bits to match the cmd that the status it belongs to */
   5026  1.14   msaitoh 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   5027  1.14   msaitoh 
   5028  1.14   msaitoh 	return IXGBE_SUCCESS;
   5029  1.14   msaitoh }
   5030  1.14   msaitoh 
   5031  1.14   msaitoh /**
   5032  1.14   msaitoh  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   5033  1.14   msaitoh  *
   5034  1.14   msaitoh  * If we send a write we can't be sure it took until we can read back
   5035  1.32    andvar  * that same register.  It can be a problem as some of the fields may
   5036  1.32    andvar  * for valid reasons change in-between the time wrote the register and
   5037  1.14   msaitoh  * we read it again to verify.  So this function check everything we
   5038  1.14   msaitoh  * can check and then assumes it worked.
   5039  1.14   msaitoh  *
   5040  1.14   msaitoh  * @u32 in_reg - The register cmd for the bit-bang read.
   5041  1.14   msaitoh  * @u32 out_reg - The register returned from a bit-bang read.
   5042  1.14   msaitoh  **/
   5043  1.14   msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   5044  1.14   msaitoh {
   5045  1.14   msaitoh 	u32 mask;
   5046  1.14   msaitoh 
   5047  1.14   msaitoh 	/* Page must match for all control pages */
   5048  1.14   msaitoh 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   5049  1.14   msaitoh 		return FALSE;
   5050  1.14   msaitoh 
   5051  1.14   msaitoh 	switch (in_reg & BYPASS_PAGE_M) {
   5052  1.14   msaitoh 	case BYPASS_PAGE_CTL0:
   5053  1.14   msaitoh 		/* All the following can't change since the last write
   5054  1.14   msaitoh 		 *  - All the event actions
   5055  1.14   msaitoh 		 *  - The timeout value
   5056  1.14   msaitoh 		 */
   5057  1.14   msaitoh 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   5058  1.14   msaitoh 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   5059  1.14   msaitoh 		       BYPASS_WDTIMEOUT_M |
   5060  1.14   msaitoh 		       BYPASS_WDT_VALUE_M;
   5061  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   5062  1.14   msaitoh 			return FALSE;
   5063  1.14   msaitoh 
   5064  1.14   msaitoh 		/* 0x0 is never a valid value for bypass status */
   5065  1.14   msaitoh 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   5066  1.14   msaitoh 			return FALSE;
   5067  1.14   msaitoh 		break;
   5068  1.14   msaitoh 	case BYPASS_PAGE_CTL1:
   5069  1.14   msaitoh 		/* All the following can't change since the last write
   5070  1.14   msaitoh 		 *  - time valid bit
   5071  1.14   msaitoh 		 *  - time we last sent
   5072  1.14   msaitoh 		 */
   5073  1.14   msaitoh 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   5074  1.14   msaitoh 		if ((out_reg & mask) != (in_reg & mask))
   5075  1.14   msaitoh 			return FALSE;
   5076  1.14   msaitoh 		break;
   5077  1.14   msaitoh 	case BYPASS_PAGE_CTL2:
   5078  1.14   msaitoh 		/* All we can check in this page is control number
   5079  1.14   msaitoh 		 * which is already done above.
   5080  1.14   msaitoh 		 */
   5081  1.14   msaitoh 		break;
   5082  1.14   msaitoh 	}
   5083  1.14   msaitoh 
   5084  1.14   msaitoh 	/* We are as sure as we can be return TRUE */
   5085  1.14   msaitoh 	return TRUE;
   5086  1.14   msaitoh }
   5087  1.14   msaitoh 
   5088  1.14   msaitoh /**
   5089  1.33    andvar  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
   5090  1.14   msaitoh  *
   5091  1.14   msaitoh  *  @hw: pointer to hardware structure
   5092  1.14   msaitoh  *  @cmd: The control word we are setting.
   5093  1.14   msaitoh  *  @event: The event we are setting in the FW.  This also happens to
   5094  1.14   msaitoh  *	    be the mask for the event we are setting (handy)
   5095  1.14   msaitoh  *  @action: The action we set the event to in the FW. This is in a
   5096  1.14   msaitoh  *	     bit field that happens to be what we want to put in
   5097  1.14   msaitoh  *	     the event spot (also handy)
   5098  1.14   msaitoh  **/
   5099  1.14   msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5100  1.14   msaitoh 			     u32 action)
   5101  1.14   msaitoh {
   5102  1.14   msaitoh 	u32 by_ctl = 0;
   5103  1.14   msaitoh 	u32 cmd, verify;
   5104  1.14   msaitoh 	u32 count = 0;
   5105  1.14   msaitoh 
   5106  1.14   msaitoh 	/* Get current values */
   5107  1.14   msaitoh 	cmd = ctrl;	/* just reading only need control number */
   5108  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5109  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5110  1.14   msaitoh 
   5111  1.14   msaitoh 	/* Set to new action */
   5112  1.14   msaitoh 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5113  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5114  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5115  1.14   msaitoh 
   5116  1.14   msaitoh 	/* Page 0 force a FW eeprom write which is slow so verify */
   5117  1.14   msaitoh 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5118  1.14   msaitoh 		verify = BYPASS_PAGE_CTL0;
   5119  1.14   msaitoh 		do {
   5120  1.14   msaitoh 			if (count++ > 5)
   5121  1.14   msaitoh 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5122  1.14   msaitoh 
   5123  1.14   msaitoh 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5124  1.14   msaitoh 				return IXGBE_ERR_INVALID_ARGUMENT;
   5125  1.14   msaitoh 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5126  1.14   msaitoh 	} else {
   5127  1.14   msaitoh 		/* We have give the FW time for the write to stick */
   5128  1.14   msaitoh 		msec_delay(100);
   5129  1.14   msaitoh 	}
   5130  1.14   msaitoh 
   5131  1.14   msaitoh 	return IXGBE_SUCCESS;
   5132  1.14   msaitoh }
   5133  1.14   msaitoh 
   5134  1.14   msaitoh /**
   5135  1.33    andvar  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
   5136  1.14   msaitoh  *
   5137  1.14   msaitoh  *  @hw: pointer to hardware structure
   5138  1.14   msaitoh  *  @addr: The bypass eeprom address to read.
   5139  1.14   msaitoh  *  @value: The 8b of data at the address above.
   5140  1.14   msaitoh  **/
   5141  1.14   msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5142  1.14   msaitoh {
   5143  1.14   msaitoh 	u32 cmd;
   5144  1.14   msaitoh 	u32 status;
   5145  1.14   msaitoh 
   5146  1.14   msaitoh 
   5147  1.14   msaitoh 	/* send the request */
   5148  1.14   msaitoh 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5149  1.14   msaitoh 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5150  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5151  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5152  1.14   msaitoh 
   5153  1.14   msaitoh 	/* We have give the FW time for the write to stick */
   5154  1.14   msaitoh 	msec_delay(100);
   5155  1.14   msaitoh 
   5156  1.14   msaitoh 	/* now read the results */
   5157  1.14   msaitoh 	cmd &= ~BYPASS_WE;
   5158  1.14   msaitoh 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5159  1.14   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   5160  1.14   msaitoh 
   5161  1.14   msaitoh 	*value = status & BYPASS_CTL2_DATA_M;
   5162  1.14   msaitoh 
   5163  1.14   msaitoh 	return IXGBE_SUCCESS;
   5164  1.14   msaitoh }
   5165  1.14   msaitoh 
   5166  1.17   msaitoh /**
   5167  1.17   msaitoh  *  ixgbe_get_orom_version - Return option ROM from EEPROM
   5168  1.17   msaitoh  *
   5169  1.17   msaitoh  *  @hw: pointer to hardware structure
   5170  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5171  1.17   msaitoh  *
   5172  1.17   msaitoh  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
   5173  1.17   msaitoh  *  else nvm_ver->or_valid is FALSE.
   5174  1.17   msaitoh  **/
   5175  1.17   msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
   5176  1.17   msaitoh 			    struct ixgbe_nvm_version *nvm_ver)
   5177  1.17   msaitoh {
   5178  1.17   msaitoh 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
   5179  1.17   msaitoh 
   5180  1.17   msaitoh 	nvm_ver->or_valid = FALSE;
   5181  1.17   msaitoh 	/* Option Rom may or may not be present.  Start with pointer */
   5182  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
   5183  1.17   msaitoh 
   5184  1.17   msaitoh 	/* make sure offset is valid */
   5185  1.17   msaitoh 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
   5186  1.17   msaitoh 		return;
   5187  1.17   msaitoh 
   5188  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
   5189  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
   5190  1.17   msaitoh 
   5191  1.17   msaitoh 	/* option rom exists and is valid */
   5192  1.17   msaitoh 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
   5193  1.17   msaitoh 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
   5194  1.17   msaitoh 	    eeprom_cfg_blkh == NVM_VER_INVALID)
   5195  1.17   msaitoh 		return;
   5196  1.17   msaitoh 
   5197  1.17   msaitoh 	nvm_ver->or_valid = TRUE;
   5198  1.17   msaitoh 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
   5199  1.17   msaitoh 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
   5200  1.17   msaitoh 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
   5201  1.17   msaitoh 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
   5202  1.17   msaitoh }
   5203  1.17   msaitoh 
   5204  1.17   msaitoh /**
   5205  1.17   msaitoh  *  ixgbe_get_oem_prod_version - Return OEM Product version
   5206  1.17   msaitoh  *
   5207  1.17   msaitoh  *  @hw: pointer to hardware structure
   5208  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5209  1.17   msaitoh  *
   5210  1.17   msaitoh  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
   5211  1.17   msaitoh  *  else nvm_ver->oem_valid is FALSE.
   5212  1.17   msaitoh  **/
   5213  1.17   msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
   5214  1.17   msaitoh 				struct ixgbe_nvm_version *nvm_ver)
   5215  1.17   msaitoh {
   5216  1.17   msaitoh 	u16 rel_num, prod_ver, mod_len, cap, offset;
   5217  1.17   msaitoh 
   5218  1.17   msaitoh 	nvm_ver->oem_valid = FALSE;
   5219  1.17   msaitoh 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
   5220  1.17   msaitoh 
   5221  1.28   msaitoh 	/* Return if offset to OEM Product Version block is invalid */
   5222  1.18   msaitoh 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   5223  1.17   msaitoh 		return;
   5224  1.17   msaitoh 
   5225  1.17   msaitoh 	/* Read product version block */
   5226  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset, &mod_len);
   5227  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
   5228  1.17   msaitoh 
   5229  1.17   msaitoh 	/* Return if OEM product version block is invalid */
   5230  1.17   msaitoh 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
   5231  1.17   msaitoh 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
   5232  1.17   msaitoh 		return;
   5233  1.17   msaitoh 
   5234  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
   5235  1.17   msaitoh 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
   5236  1.17   msaitoh 
   5237  1.17   msaitoh 	/* Return if version is invalid */
   5238  1.17   msaitoh 	if ((rel_num | prod_ver) == 0x0 ||
   5239  1.17   msaitoh 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
   5240  1.17   msaitoh 		return;
   5241  1.17   msaitoh 
   5242  1.17   msaitoh 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
   5243  1.17   msaitoh 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
   5244  1.17   msaitoh 	nvm_ver->oem_release = rel_num;
   5245  1.17   msaitoh 	nvm_ver->oem_valid = TRUE;
   5246  1.17   msaitoh }
   5247  1.17   msaitoh 
   5248  1.17   msaitoh /**
   5249  1.17   msaitoh  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
   5250  1.17   msaitoh  *
   5251  1.17   msaitoh  *  @hw: pointer to hardware structure
   5252  1.17   msaitoh  *  @nvm_ver: pointer to output structure
   5253  1.17   msaitoh  *
   5254  1.17   msaitoh  *  word read errors will return 0xFFFF
   5255  1.17   msaitoh  **/
   5256  1.17   msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
   5257  1.17   msaitoh {
   5258  1.17   msaitoh 	u16 etk_id_l, etk_id_h;
   5259  1.17   msaitoh 
   5260  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
   5261  1.17   msaitoh 		etk_id_l = NVM_VER_INVALID;
   5262  1.17   msaitoh 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
   5263  1.17   msaitoh 		etk_id_h = NVM_VER_INVALID;
   5264  1.17   msaitoh 
   5265  1.17   msaitoh 	/* The word order for the version format is determined by high order
   5266  1.17   msaitoh 	 * word bit 15.
   5267  1.17   msaitoh 	 */
   5268  1.17   msaitoh 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
   5269  1.17   msaitoh 		nvm_ver->etk_id = etk_id_h;
   5270  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
   5271  1.17   msaitoh 	} else {
   5272  1.17   msaitoh 		nvm_ver->etk_id = etk_id_l;
   5273  1.17   msaitoh 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
   5274  1.17   msaitoh 	}
   5275  1.17   msaitoh }
   5276  1.17   msaitoh 
   5277   1.6   msaitoh 
   5278   1.6   msaitoh /**
   5279   1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5280   1.6   msaitoh  * @hw: pointer to hardware structure
   5281   1.6   msaitoh  * @map: pointer to u8 arr for returning map
   5282   1.6   msaitoh  *
   5283   1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   5284   1.6   msaitoh  **/
   5285   1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5286   1.6   msaitoh {
   5287   1.6   msaitoh 	u32 reg, i;
   5288   1.6   msaitoh 
   5289   1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5290   1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5291   1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5292   1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5293   1.6   msaitoh 	return;
   5294   1.6   msaitoh }
   5295   1.8   msaitoh 
   5296   1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5297   1.8   msaitoh {
   5298   1.8   msaitoh 	u32 pfdtxgswc;
   5299   1.8   msaitoh 	u32 rxctrl;
   5300   1.8   msaitoh 
   5301   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5302   1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5303   1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5304   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5305   1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5306   1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5307   1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5308   1.8   msaitoh 				hw->mac.set_lben = TRUE;
   5309   1.8   msaitoh 			} else {
   5310   1.8   msaitoh 				hw->mac.set_lben = FALSE;
   5311   1.8   msaitoh 			}
   5312   1.8   msaitoh 		}
   5313   1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5314   1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5315   1.8   msaitoh 	}
   5316   1.8   msaitoh }
   5317   1.8   msaitoh 
   5318   1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5319   1.8   msaitoh {
   5320   1.8   msaitoh 	u32 pfdtxgswc;
   5321   1.8   msaitoh 	u32 rxctrl;
   5322   1.8   msaitoh 
   5323   1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5324   1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5325   1.8   msaitoh 
   5326   1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5327   1.8   msaitoh 		if (hw->mac.set_lben) {
   5328   1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5329   1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5330   1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5331   1.8   msaitoh 			hw->mac.set_lben = FALSE;
   5332   1.8   msaitoh 		}
   5333   1.8   msaitoh 	}
   5334   1.8   msaitoh }
   5335   1.8   msaitoh 
   5336   1.8   msaitoh /**
   5337   1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   5338   1.8   msaitoh  * @hw: pointer to hardware structure
   5339   1.8   msaitoh  */
   5340   1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5341   1.8   msaitoh {
   5342   1.8   msaitoh 	u32 fwsm;
   5343   1.8   msaitoh 
   5344   1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   5345   1.8   msaitoh 		return FALSE;
   5346   1.8   msaitoh 
   5347  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5348  1.17   msaitoh 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
   5349   1.8   msaitoh }
   5350   1.8   msaitoh 
   5351   1.8   msaitoh /**
   5352   1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5353   1.8   msaitoh  * @hw: pointer to hardware structure
   5354   1.8   msaitoh  *
   5355   1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   5356   1.8   msaitoh  **/
   5357   1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5358   1.8   msaitoh {
   5359   1.8   msaitoh 	u32 fwsm, manc, factps;
   5360   1.8   msaitoh 
   5361  1.10   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5362   1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5363   1.8   msaitoh 		return FALSE;
   5364   1.8   msaitoh 
   5365   1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5366   1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5367   1.8   msaitoh 		return FALSE;
   5368   1.8   msaitoh 
   5369   1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   5370  1.10   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5371   1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   5372   1.8   msaitoh 			return FALSE;
   5373   1.8   msaitoh 	}
   5374   1.8   msaitoh 
   5375   1.8   msaitoh 	return TRUE;
   5376   1.8   msaitoh }
   5377   1.8   msaitoh 
   5378   1.8   msaitoh /**
   5379   1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5380   1.8   msaitoh  *  @hw: pointer to hardware structure
   5381   1.8   msaitoh  *  @speed: new link speed
   5382   1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5383   1.8   msaitoh  *
   5384   1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5385   1.8   msaitoh  **/
   5386   1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5387   1.8   msaitoh 					  ixgbe_link_speed speed,
   5388   1.8   msaitoh 					  bool autoneg_wait_to_complete)
   5389   1.8   msaitoh {
   5390   1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5391   1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5392   1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   5393   1.8   msaitoh 	u32 speedcnt = 0;
   5394   1.8   msaitoh 	u32 i = 0;
   5395   1.8   msaitoh 	bool autoneg, link_up = FALSE;
   5396   1.8   msaitoh 
   5397   1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5398   1.8   msaitoh 
   5399   1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   5400   1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5401   1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   5402   1.8   msaitoh 		return status;
   5403   1.8   msaitoh 
   5404   1.8   msaitoh 	speed &= link_speed;
   5405   1.8   msaitoh 
   5406   1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   5407   1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5408   1.8   msaitoh 	 */
   5409   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5410   1.8   msaitoh 		speedcnt++;
   5411   1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5412   1.8   msaitoh 
   5413   1.8   msaitoh 		/* Set the module link speed */
   5414   1.8   msaitoh 		switch (hw->phy.media_type) {
   5415   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5416   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5417   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5418   1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   5419   1.8   msaitoh 			break;
   5420   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5421   1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   5422   1.8   msaitoh 			break;
   5423   1.8   msaitoh 		default:
   5424   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5425   1.8   msaitoh 			break;
   5426   1.8   msaitoh 		}
   5427   1.8   msaitoh 
   5428   1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   5429   1.8   msaitoh 		msec_delay(40);
   5430   1.8   msaitoh 
   5431   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5432   1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   5433   1.8   msaitoh 					      autoneg_wait_to_complete);
   5434   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5435   1.8   msaitoh 			return status;
   5436   1.8   msaitoh 
   5437   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5438   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5439   1.8   msaitoh 
   5440   1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5441   1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5442   1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   5443   1.8   msaitoh 		 */
   5444   1.8   msaitoh 		for (i = 0; i < 5; i++) {
   5445   1.8   msaitoh 			/* Wait for the link partner to also set speed */
   5446   1.8   msaitoh 			msec_delay(100);
   5447   1.8   msaitoh 
   5448   1.8   msaitoh 			/* If we have link, just jump out */
   5449   1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   5450   1.8   msaitoh 						  &link_up, FALSE);
   5451   1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   5452   1.8   msaitoh 				return status;
   5453   1.8   msaitoh 
   5454   1.8   msaitoh 			if (link_up)
   5455   1.8   msaitoh 				goto out;
   5456   1.8   msaitoh 		}
   5457   1.8   msaitoh 	}
   5458   1.8   msaitoh 
   5459   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5460   1.8   msaitoh 		speedcnt++;
   5461   1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5462   1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5463   1.8   msaitoh 
   5464   1.8   msaitoh 		/* Set the module link speed */
   5465   1.8   msaitoh 		switch (hw->phy.media_type) {
   5466   1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   5467   1.8   msaitoh 		case ixgbe_media_type_fiber:
   5468   1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   5469   1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   5470   1.8   msaitoh 			break;
   5471   1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   5472   1.8   msaitoh 			/* QSFP module automatically detects link speed */
   5473   1.8   msaitoh 			break;
   5474   1.8   msaitoh 		default:
   5475   1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   5476   1.8   msaitoh 			break;
   5477   1.8   msaitoh 		}
   5478   1.8   msaitoh 
   5479   1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   5480   1.8   msaitoh 		msec_delay(40);
   5481   1.8   msaitoh 
   5482   1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   5483   1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   5484   1.8   msaitoh 					      autoneg_wait_to_complete);
   5485   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5486   1.8   msaitoh 			return status;
   5487   1.8   msaitoh 
   5488   1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   5489   1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   5490   1.8   msaitoh 
   5491   1.8   msaitoh 		/* Wait for the link partner to also set speed */
   5492   1.8   msaitoh 		msec_delay(100);
   5493   1.8   msaitoh 
   5494   1.8   msaitoh 		/* If we have link, just jump out */
   5495   1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5496   1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   5497   1.8   msaitoh 			return status;
   5498   1.8   msaitoh 
   5499   1.8   msaitoh 		if (link_up)
   5500   1.8   msaitoh 			goto out;
   5501   1.8   msaitoh 	}
   5502   1.8   msaitoh 
   5503  1.20   msaitoh 	if (speed == 0) {
   5504  1.20   msaitoh 		/* Disable the Tx laser for media none */
   5505  1.20   msaitoh 		ixgbe_disable_tx_laser(hw);
   5506  1.20   msaitoh 
   5507  1.20   msaitoh 		goto out;
   5508  1.20   msaitoh 	}
   5509  1.26   msaitoh 
   5510   1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   5511   1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   5512   1.8   msaitoh 	 * single highest speed that the user requested.
   5513   1.8   msaitoh 	 */
   5514   1.8   msaitoh 	if (speedcnt > 1)
   5515   1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5516   1.8   msaitoh 						      highest_link_speed,
   5517   1.8   msaitoh 						      autoneg_wait_to_complete);
   5518   1.8   msaitoh 
   5519   1.8   msaitoh out:
   5520   1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   5521   1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   5522   1.8   msaitoh 
   5523   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5524   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5525   1.8   msaitoh 
   5526   1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5527   1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5528   1.8   msaitoh 
   5529   1.8   msaitoh 	return status;
   5530   1.8   msaitoh }
   5531   1.8   msaitoh 
   5532   1.8   msaitoh /**
   5533   1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5534   1.8   msaitoh  *  @hw: pointer to hardware structure
   5535   1.8   msaitoh  *  @speed: link speed to set
   5536   1.8   msaitoh  *
   5537   1.8   msaitoh  *  Set module link speed via the soft rate select.
   5538   1.8   msaitoh  */
   5539   1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5540   1.8   msaitoh 					ixgbe_link_speed speed)
   5541   1.8   msaitoh {
   5542   1.8   msaitoh 	s32 status;
   5543   1.8   msaitoh 	u8 rs, eeprom_data;
   5544   1.8   msaitoh 
   5545   1.8   msaitoh 	switch (speed) {
   5546   1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   5547   1.8   msaitoh 		/* one bit mask same as setting on */
   5548   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5549   1.8   msaitoh 		break;
   5550   1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   5551   1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5552   1.8   msaitoh 		break;
   5553   1.8   msaitoh 	default:
   5554   1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   5555   1.8   msaitoh 		return;
   5556   1.8   msaitoh 	}
   5557   1.8   msaitoh 
   5558   1.8   msaitoh 	/* Set RS0 */
   5559   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5560   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5561   1.8   msaitoh 					   &eeprom_data);
   5562   1.8   msaitoh 	if (status) {
   5563   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5564   1.8   msaitoh 		goto out;
   5565   1.8   msaitoh 	}
   5566   1.8   msaitoh 
   5567   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5568   1.8   msaitoh 
   5569   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5570   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5571   1.8   msaitoh 					    eeprom_data);
   5572   1.8   msaitoh 	if (status) {
   5573   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5574   1.8   msaitoh 		goto out;
   5575   1.8   msaitoh 	}
   5576   1.8   msaitoh 
   5577   1.8   msaitoh 	/* Set RS1 */
   5578   1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5579   1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5580   1.8   msaitoh 					   &eeprom_data);
   5581   1.8   msaitoh 	if (status) {
   5582   1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5583   1.8   msaitoh 		goto out;
   5584   1.8   msaitoh 	}
   5585   1.8   msaitoh 
   5586   1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5587   1.8   msaitoh 
   5588   1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5589   1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5590   1.8   msaitoh 					    eeprom_data);
   5591   1.8   msaitoh 	if (status) {
   5592   1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5593   1.8   msaitoh 		goto out;
   5594   1.8   msaitoh 	}
   5595   1.8   msaitoh out:
   5596   1.8   msaitoh 	return;
   5597   1.8   msaitoh }
   5598