Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.4
      1  1.1   dyoung /******************************************************************************
      2  1.1   dyoung 
      3  1.3  msaitoh   Copyright (c) 2001-2012, Intel Corporation
      4  1.1   dyoung   All rights reserved.
      5  1.1   dyoung 
      6  1.1   dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1   dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1   dyoung 
      9  1.1   dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1   dyoung       this list of conditions and the following disclaimer.
     11  1.1   dyoung 
     12  1.1   dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1   dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1   dyoung       documentation and/or other materials provided with the distribution.
     15  1.1   dyoung 
     16  1.1   dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1   dyoung       contributors may be used to endorse or promote products derived from
     18  1.1   dyoung       this software without specific prior written permission.
     19  1.1   dyoung 
     20  1.1   dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1   dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1   dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1   dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1   dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1   dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1   dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1   dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1   dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1   dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1   dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1   dyoung 
     32  1.1   dyoung ******************************************************************************/
     33  1.4  msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 238149 2012-07-05 20:51:44Z jfv $*/
     34  1.3  msaitoh /*$NetBSD: ixgbe_common.c,v 1.4 2015/04/02 09:26:55 msaitoh Exp $*/
     35  1.1   dyoung 
     36  1.1   dyoung #include "ixgbe_common.h"
     37  1.1   dyoung #include "ixgbe_phy.h"
     38  1.1   dyoung #include "ixgbe_api.h"
     39  1.1   dyoung 
     40  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     41  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     42  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     43  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     44  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     45  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     46  1.3  msaitoh 					u16 count);
     47  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     48  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     49  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     50  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     51  1.1   dyoung 
     52  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     53  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     54  1.3  msaitoh 					 u16 *san_mac_offset);
     55  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     56  1.3  msaitoh 					     u16 words, u16 *data);
     57  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58  1.3  msaitoh 					      u16 words, u16 *data);
     59  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     60  1.3  msaitoh 						 u16 offset);
     61  1.1   dyoung 
     62  1.1   dyoung /**
     63  1.1   dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     64  1.1   dyoung  *  @hw: pointer to the hardware structure
     65  1.1   dyoung  *
     66  1.1   dyoung  *  Initialize the function pointers.
     67  1.1   dyoung  **/
     68  1.1   dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     69  1.1   dyoung {
     70  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     71  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     72  1.1   dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     73  1.1   dyoung 
     74  1.1   dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     75  1.1   dyoung 
     76  1.1   dyoung 	/* EEPROM */
     77  1.1   dyoung 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     78  1.1   dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     79  1.3  msaitoh 	if (eec & IXGBE_EEC_PRES) {
     80  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     81  1.3  msaitoh 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
     82  1.3  msaitoh 	} else {
     83  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     84  1.3  msaitoh 		eeprom->ops.read_buffer =
     85  1.3  msaitoh 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
     86  1.3  msaitoh 	}
     87  1.1   dyoung 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     88  1.3  msaitoh 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
     89  1.1   dyoung 	eeprom->ops.validate_checksum =
     90  1.3  msaitoh 				      &ixgbe_validate_eeprom_checksum_generic;
     91  1.1   dyoung 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     92  1.1   dyoung 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
     93  1.1   dyoung 
     94  1.1   dyoung 	/* MAC */
     95  1.1   dyoung 	mac->ops.init_hw = &ixgbe_init_hw_generic;
     96  1.1   dyoung 	mac->ops.reset_hw = NULL;
     97  1.1   dyoung 	mac->ops.start_hw = &ixgbe_start_hw_generic;
     98  1.1   dyoung 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
     99  1.1   dyoung 	mac->ops.get_media_type = NULL;
    100  1.1   dyoung 	mac->ops.get_supported_physical_layer = NULL;
    101  1.1   dyoung 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
    102  1.1   dyoung 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    103  1.1   dyoung 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    104  1.1   dyoung 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    105  1.1   dyoung 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    106  1.1   dyoung 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    107  1.1   dyoung 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    108  1.1   dyoung 
    109  1.1   dyoung 	/* LEDs */
    110  1.1   dyoung 	mac->ops.led_on = &ixgbe_led_on_generic;
    111  1.1   dyoung 	mac->ops.led_off = &ixgbe_led_off_generic;
    112  1.1   dyoung 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    113  1.1   dyoung 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    114  1.1   dyoung 
    115  1.1   dyoung 	/* RAR, Multicast, VLAN */
    116  1.1   dyoung 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    117  1.1   dyoung 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    118  1.1   dyoung 	mac->ops.insert_mac_addr = NULL;
    119  1.1   dyoung 	mac->ops.set_vmdq = NULL;
    120  1.1   dyoung 	mac->ops.clear_vmdq = NULL;
    121  1.1   dyoung 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    122  1.1   dyoung 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    123  1.1   dyoung 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    124  1.1   dyoung 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    125  1.1   dyoung 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    126  1.1   dyoung 	mac->ops.clear_vfta = NULL;
    127  1.1   dyoung 	mac->ops.set_vfta = NULL;
    128  1.3  msaitoh 	mac->ops.set_vlvf = NULL;
    129  1.1   dyoung 	mac->ops.init_uta_tables = NULL;
    130  1.1   dyoung 
    131  1.1   dyoung 	/* Flow Control */
    132  1.1   dyoung 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    133  1.1   dyoung 
    134  1.1   dyoung 	/* Link */
    135  1.1   dyoung 	mac->ops.get_link_capabilities = NULL;
    136  1.1   dyoung 	mac->ops.setup_link = NULL;
    137  1.1   dyoung 	mac->ops.check_link = NULL;
    138  1.1   dyoung 
    139  1.1   dyoung 	return IXGBE_SUCCESS;
    140  1.1   dyoung }
    141  1.1   dyoung 
    142  1.1   dyoung /**
    143  1.4  msaitoh  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
    144  1.4  msaitoh  *  control
    145  1.4  msaitoh  *  @hw: pointer to hardware structure
    146  1.4  msaitoh  *
    147  1.4  msaitoh  *  There are several phys that do not support autoneg flow control. This
    148  1.4  msaitoh  *  function check the device id to see if the associated phy supports
    149  1.4  msaitoh  *  autoneg flow control.
    150  1.4  msaitoh  **/
    151  1.4  msaitoh static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    152  1.4  msaitoh {
    153  1.4  msaitoh 
    154  1.4  msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    155  1.4  msaitoh 
    156  1.4  msaitoh 	switch (hw->device_id) {
    157  1.4  msaitoh 	case IXGBE_DEV_ID_X540T:
    158  1.4  msaitoh 	case IXGBE_DEV_ID_X540T1:
    159  1.4  msaitoh 		return IXGBE_SUCCESS;
    160  1.4  msaitoh 	case IXGBE_DEV_ID_82599_T3_LOM:
    161  1.4  msaitoh 		return IXGBE_SUCCESS;
    162  1.4  msaitoh 	default:
    163  1.4  msaitoh 		return IXGBE_ERR_FC_NOT_SUPPORTED;
    164  1.4  msaitoh 	}
    165  1.4  msaitoh }
    166  1.4  msaitoh 
    167  1.4  msaitoh /**
    168  1.4  msaitoh  *  ixgbe_setup_fc - Set up flow control
    169  1.4  msaitoh  *  @hw: pointer to hardware structure
    170  1.4  msaitoh  *
    171  1.4  msaitoh  *  Called at init time to set up flow control.
    172  1.4  msaitoh  **/
    173  1.4  msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
    174  1.4  msaitoh {
    175  1.4  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    176  1.4  msaitoh 	u32 reg = 0, reg_bp = 0;
    177  1.4  msaitoh 	u16 reg_cu = 0;
    178  1.4  msaitoh 
    179  1.4  msaitoh 	DEBUGFUNC("ixgbe_setup_fc");
    180  1.4  msaitoh 
    181  1.4  msaitoh 	/*
    182  1.4  msaitoh 	 * Validate the requested mode.  Strict IEEE mode does not allow
    183  1.4  msaitoh 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
    184  1.4  msaitoh 	 */
    185  1.4  msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    186  1.4  msaitoh 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    187  1.4  msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    188  1.4  msaitoh 		goto out;
    189  1.4  msaitoh 	}
    190  1.4  msaitoh 
    191  1.4  msaitoh 	/*
    192  1.4  msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    193  1.4  msaitoh 	 * default flow control setting, so we explicitly set it to full.
    194  1.4  msaitoh 	 */
    195  1.4  msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    196  1.4  msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    197  1.4  msaitoh 
    198  1.4  msaitoh 	/*
    199  1.4  msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    200  1.4  msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    201  1.4  msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    202  1.4  msaitoh 	 */
    203  1.4  msaitoh 	switch (hw->phy.media_type) {
    204  1.4  msaitoh 	case ixgbe_media_type_fiber:
    205  1.4  msaitoh 	case ixgbe_media_type_backplane:
    206  1.4  msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    207  1.4  msaitoh 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
    208  1.4  msaitoh 		break;
    209  1.4  msaitoh 	case ixgbe_media_type_copper:
    210  1.4  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    211  1.4  msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    212  1.4  msaitoh 		break;
    213  1.4  msaitoh 	default:
    214  1.4  msaitoh 		break;
    215  1.4  msaitoh 	}
    216  1.4  msaitoh 
    217  1.4  msaitoh 	/*
    218  1.4  msaitoh 	 * The possible values of fc.requested_mode are:
    219  1.4  msaitoh 	 * 0: Flow control is completely disabled
    220  1.4  msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    221  1.4  msaitoh 	 *    but not send pause frames).
    222  1.4  msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    223  1.4  msaitoh 	 *    we do not support receiving pause frames).
    224  1.4  msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    225  1.4  msaitoh 	 * other: Invalid.
    226  1.4  msaitoh 	 */
    227  1.4  msaitoh 	switch (hw->fc.requested_mode) {
    228  1.4  msaitoh 	case ixgbe_fc_none:
    229  1.4  msaitoh 		/* Flow control completely disabled by software override. */
    230  1.4  msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    231  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    232  1.4  msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    233  1.4  msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    234  1.4  msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    235  1.4  msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    236  1.4  msaitoh 		break;
    237  1.4  msaitoh 	case ixgbe_fc_tx_pause:
    238  1.4  msaitoh 		/*
    239  1.4  msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    240  1.4  msaitoh 		 * disabled by software override.
    241  1.4  msaitoh 		 */
    242  1.4  msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    243  1.4  msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    244  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    245  1.4  msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    246  1.4  msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    247  1.4  msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    248  1.4  msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    249  1.4  msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    250  1.4  msaitoh 		}
    251  1.4  msaitoh 		break;
    252  1.4  msaitoh 	case ixgbe_fc_rx_pause:
    253  1.4  msaitoh 		/*
    254  1.4  msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    255  1.4  msaitoh 		 * disabled by software override. Since there really
    256  1.4  msaitoh 		 * isn't a way to advertise that we are capable of RX
    257  1.4  msaitoh 		 * Pause ONLY, we will advertise that we support both
    258  1.4  msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    259  1.4  msaitoh 		 * through to the fc_full statement.  Later, we will
    260  1.4  msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    261  1.4  msaitoh 		 */
    262  1.4  msaitoh 	case ixgbe_fc_full:
    263  1.4  msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    264  1.4  msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    265  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    266  1.4  msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    267  1.4  msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    268  1.4  msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    269  1.4  msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    270  1.4  msaitoh 		break;
    271  1.4  msaitoh 	default:
    272  1.4  msaitoh 		DEBUGOUT("Flow control param set incorrectly\n");
    273  1.4  msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    274  1.4  msaitoh 		goto out;
    275  1.4  msaitoh 		break;
    276  1.4  msaitoh 	}
    277  1.4  msaitoh 
    278  1.4  msaitoh 	if (hw->mac.type != ixgbe_mac_X540) {
    279  1.4  msaitoh 		/*
    280  1.4  msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    281  1.4  msaitoh 		 * the MAC will advertise clause 37 flow control.
    282  1.4  msaitoh 		 */
    283  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    284  1.4  msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    285  1.4  msaitoh 
    286  1.4  msaitoh 		/* Disable AN timeout */
    287  1.4  msaitoh 		if (hw->fc.strict_ieee)
    288  1.4  msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    289  1.4  msaitoh 
    290  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    291  1.4  msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    292  1.4  msaitoh 	}
    293  1.4  msaitoh 
    294  1.4  msaitoh 	/*
    295  1.4  msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    296  1.4  msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    297  1.4  msaitoh 	 *
    298  1.4  msaitoh 	 */
    299  1.4  msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    300  1.4  msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    301  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
    302  1.4  msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    303  1.4  msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
    304  1.4  msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    305  1.4  msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    306  1.4  msaitoh 	}
    307  1.4  msaitoh 
    308  1.4  msaitoh 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
    309  1.4  msaitoh out:
    310  1.4  msaitoh 	return ret_val;
    311  1.4  msaitoh }
    312  1.4  msaitoh 
    313  1.4  msaitoh /**
    314  1.1   dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    315  1.1   dyoung  *  @hw: pointer to hardware structure
    316  1.1   dyoung  *
    317  1.1   dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    318  1.1   dyoung  *  all on chip counters, initializes receive address registers, multicast
    319  1.1   dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    320  1.1   dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    321  1.1   dyoung  **/
    322  1.1   dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    323  1.1   dyoung {
    324  1.4  msaitoh 	s32 ret_val;
    325  1.1   dyoung 	u32 ctrl_ext;
    326  1.1   dyoung 
    327  1.1   dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    328  1.1   dyoung 
    329  1.1   dyoung 	/* Set the media type */
    330  1.1   dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    331  1.1   dyoung 
    332  1.1   dyoung 	/* PHY ops initialization must be done in reset_hw() */
    333  1.1   dyoung 
    334  1.1   dyoung 	/* Clear the VLAN filter table */
    335  1.1   dyoung 	hw->mac.ops.clear_vfta(hw);
    336  1.1   dyoung 
    337  1.1   dyoung 	/* Clear statistics registers */
    338  1.1   dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    339  1.1   dyoung 
    340  1.1   dyoung 	/* Set No Snoop Disable */
    341  1.1   dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    342  1.1   dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    343  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    344  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    345  1.1   dyoung 
    346  1.1   dyoung 	/* Setup flow control */
    347  1.4  msaitoh 	ret_val = ixgbe_setup_fc(hw);
    348  1.4  msaitoh 	if (ret_val != IXGBE_SUCCESS)
    349  1.4  msaitoh 		goto out;
    350  1.1   dyoung 
    351  1.1   dyoung 	/* Clear adapter stopped flag */
    352  1.1   dyoung 	hw->adapter_stopped = FALSE;
    353  1.1   dyoung 
    354  1.4  msaitoh out:
    355  1.4  msaitoh 	return ret_val;
    356  1.1   dyoung }
    357  1.1   dyoung 
    358  1.1   dyoung /**
    359  1.1   dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    360  1.1   dyoung  *  @hw: pointer to hw structure
    361  1.1   dyoung  *
    362  1.1   dyoung  * Performs the init sequence common to the second generation
    363  1.1   dyoung  * of 10 GbE devices.
    364  1.1   dyoung  * Devices in the second generation:
    365  1.1   dyoung  *     82599
    366  1.1   dyoung  *     X540
    367  1.1   dyoung  **/
    368  1.1   dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    369  1.1   dyoung {
    370  1.1   dyoung 	u32 i;
    371  1.1   dyoung 	u32 regval;
    372  1.1   dyoung 
    373  1.1   dyoung 	/* Clear the rate limiters */
    374  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    375  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    376  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    377  1.1   dyoung 	}
    378  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    379  1.1   dyoung 
    380  1.1   dyoung 	/* Disable relaxed ordering */
    381  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    382  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    383  1.4  msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    384  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    385  1.1   dyoung 	}
    386  1.1   dyoung 
    387  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    388  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    389  1.4  msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    390  1.4  msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    391  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    392  1.1   dyoung 	}
    393  1.1   dyoung 
    394  1.1   dyoung 	return IXGBE_SUCCESS;
    395  1.1   dyoung }
    396  1.1   dyoung 
    397  1.1   dyoung /**
    398  1.1   dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    399  1.1   dyoung  *  @hw: pointer to hardware structure
    400  1.1   dyoung  *
    401  1.1   dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    402  1.1   dyoung  *  structure and media type, clears all on chip counters, initializes receive
    403  1.1   dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    404  1.1   dyoung  *  up link and flow control settings, and leaves transmit and receive units
    405  1.1   dyoung  *  disabled and uninitialized
    406  1.1   dyoung  **/
    407  1.1   dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    408  1.1   dyoung {
    409  1.1   dyoung 	s32 status;
    410  1.1   dyoung 
    411  1.1   dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    412  1.1   dyoung 
    413  1.1   dyoung 	/* Reset the hardware */
    414  1.1   dyoung 	status = hw->mac.ops.reset_hw(hw);
    415  1.1   dyoung 
    416  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
    417  1.1   dyoung 		/* Start the HW */
    418  1.1   dyoung 		status = hw->mac.ops.start_hw(hw);
    419  1.1   dyoung 	}
    420  1.1   dyoung 
    421  1.1   dyoung 	return status;
    422  1.1   dyoung }
    423  1.1   dyoung 
    424  1.1   dyoung /**
    425  1.1   dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    426  1.1   dyoung  *  @hw: pointer to hardware structure
    427  1.1   dyoung  *
    428  1.1   dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    429  1.1   dyoung  *  Statistics counters are clear on read.
    430  1.1   dyoung  **/
    431  1.1   dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    432  1.1   dyoung {
    433  1.1   dyoung 	u16 i = 0;
    434  1.1   dyoung 
    435  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    436  1.1   dyoung 
    437  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    438  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    439  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    440  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    441  1.1   dyoung 	for (i = 0; i < 8; i++)
    442  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    443  1.1   dyoung 
    444  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    445  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    446  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    447  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    448  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    449  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    450  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    451  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    452  1.1   dyoung 	} else {
    453  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    454  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    455  1.1   dyoung 	}
    456  1.1   dyoung 
    457  1.1   dyoung 	for (i = 0; i < 8; i++) {
    458  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    459  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    460  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    461  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    462  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    463  1.1   dyoung 		} else {
    464  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    465  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    466  1.1   dyoung 		}
    467  1.1   dyoung 	}
    468  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    469  1.1   dyoung 		for (i = 0; i < 8; i++)
    470  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    471  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    472  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    473  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    474  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    475  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    476  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    477  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    478  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    479  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    480  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    481  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    482  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    483  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    484  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    485  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    486  1.3  msaitoh 		for (i = 0; i < 8; i++)
    487  1.3  msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    488  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    489  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    490  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    491  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    492  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    493  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    494  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    495  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    496  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    497  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    498  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    499  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    500  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    501  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    502  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    503  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    504  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    505  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    506  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    507  1.1   dyoung 	for (i = 0; i < 16; i++) {
    508  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    509  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    510  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    511  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    512  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    513  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    514  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    515  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    516  1.1   dyoung 		} else {
    517  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    518  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    519  1.1   dyoung 		}
    520  1.1   dyoung 	}
    521  1.1   dyoung 
    522  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_X540) {
    523  1.3  msaitoh 		if (hw->phy.id == 0)
    524  1.3  msaitoh 			ixgbe_identify_phy(hw);
    525  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    526  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    527  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    528  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    529  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    530  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    531  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    532  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    533  1.3  msaitoh 	}
    534  1.3  msaitoh 
    535  1.1   dyoung 	return IXGBE_SUCCESS;
    536  1.1   dyoung }
    537  1.1   dyoung 
    538  1.1   dyoung /**
    539  1.1   dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    540  1.1   dyoung  *  @hw: pointer to hardware structure
    541  1.1   dyoung  *  @pba_num: stores the part number string from the EEPROM
    542  1.1   dyoung  *  @pba_num_size: part number string buffer length
    543  1.1   dyoung  *
    544  1.1   dyoung  *  Reads the part number string from the EEPROM.
    545  1.1   dyoung  **/
    546  1.1   dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    547  1.3  msaitoh 				  u32 pba_num_size)
    548  1.1   dyoung {
    549  1.1   dyoung 	s32 ret_val;
    550  1.1   dyoung 	u16 data;
    551  1.1   dyoung 	u16 pba_ptr;
    552  1.1   dyoung 	u16 offset;
    553  1.1   dyoung 	u16 length;
    554  1.1   dyoung 
    555  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    556  1.1   dyoung 
    557  1.1   dyoung 	if (pba_num == NULL) {
    558  1.1   dyoung 		DEBUGOUT("PBA string buffer was null\n");
    559  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    560  1.1   dyoung 	}
    561  1.1   dyoung 
    562  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    563  1.1   dyoung 	if (ret_val) {
    564  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    565  1.1   dyoung 		return ret_val;
    566  1.1   dyoung 	}
    567  1.1   dyoung 
    568  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    569  1.1   dyoung 	if (ret_val) {
    570  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    571  1.1   dyoung 		return ret_val;
    572  1.1   dyoung 	}
    573  1.1   dyoung 
    574  1.1   dyoung 	/*
    575  1.1   dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    576  1.1   dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    577  1.1   dyoung 	 * and we can decode it into an ascii string
    578  1.1   dyoung 	 */
    579  1.1   dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    580  1.1   dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    581  1.1   dyoung 
    582  1.1   dyoung 		/* we will need 11 characters to store the PBA */
    583  1.1   dyoung 		if (pba_num_size < 11) {
    584  1.1   dyoung 			DEBUGOUT("PBA string buffer too small\n");
    585  1.1   dyoung 			return IXGBE_ERR_NO_SPACE;
    586  1.1   dyoung 		}
    587  1.1   dyoung 
    588  1.1   dyoung 		/* extract hex string from data and pba_ptr */
    589  1.1   dyoung 		pba_num[0] = (data >> 12) & 0xF;
    590  1.1   dyoung 		pba_num[1] = (data >> 8) & 0xF;
    591  1.1   dyoung 		pba_num[2] = (data >> 4) & 0xF;
    592  1.1   dyoung 		pba_num[3] = data & 0xF;
    593  1.1   dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    594  1.1   dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    595  1.1   dyoung 		pba_num[6] = '-';
    596  1.1   dyoung 		pba_num[7] = 0;
    597  1.1   dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    598  1.1   dyoung 		pba_num[9] = pba_ptr & 0xF;
    599  1.1   dyoung 
    600  1.1   dyoung 		/* put a null character on the end of our string */
    601  1.1   dyoung 		pba_num[10] = '\0';
    602  1.1   dyoung 
    603  1.1   dyoung 		/* switch all the data but the '-' to hex char */
    604  1.1   dyoung 		for (offset = 0; offset < 10; offset++) {
    605  1.1   dyoung 			if (pba_num[offset] < 0xA)
    606  1.1   dyoung 				pba_num[offset] += '0';
    607  1.1   dyoung 			else if (pba_num[offset] < 0x10)
    608  1.1   dyoung 				pba_num[offset] += 'A' - 0xA;
    609  1.1   dyoung 		}
    610  1.1   dyoung 
    611  1.1   dyoung 		return IXGBE_SUCCESS;
    612  1.1   dyoung 	}
    613  1.1   dyoung 
    614  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    615  1.1   dyoung 	if (ret_val) {
    616  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    617  1.1   dyoung 		return ret_val;
    618  1.1   dyoung 	}
    619  1.1   dyoung 
    620  1.1   dyoung 	if (length == 0xFFFF || length == 0) {
    621  1.1   dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    622  1.1   dyoung 		return IXGBE_ERR_PBA_SECTION;
    623  1.1   dyoung 	}
    624  1.1   dyoung 
    625  1.1   dyoung 	/* check if pba_num buffer is big enough */
    626  1.1   dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    627  1.1   dyoung 		DEBUGOUT("PBA string buffer too small\n");
    628  1.1   dyoung 		return IXGBE_ERR_NO_SPACE;
    629  1.1   dyoung 	}
    630  1.1   dyoung 
    631  1.1   dyoung 	/* trim pba length from start of string */
    632  1.1   dyoung 	pba_ptr++;
    633  1.1   dyoung 	length--;
    634  1.1   dyoung 
    635  1.1   dyoung 	for (offset = 0; offset < length; offset++) {
    636  1.1   dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    637  1.1   dyoung 		if (ret_val) {
    638  1.1   dyoung 			DEBUGOUT("NVM Read Error\n");
    639  1.1   dyoung 			return ret_val;
    640  1.1   dyoung 		}
    641  1.1   dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    642  1.1   dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    643  1.1   dyoung 	}
    644  1.1   dyoung 	pba_num[offset * 2] = '\0';
    645  1.1   dyoung 
    646  1.1   dyoung 	return IXGBE_SUCCESS;
    647  1.1   dyoung }
    648  1.1   dyoung 
    649  1.1   dyoung /**
    650  1.1   dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    651  1.1   dyoung  *  @hw: pointer to hardware structure
    652  1.1   dyoung  *  @pba_num: stores the part number from the EEPROM
    653  1.1   dyoung  *
    654  1.1   dyoung  *  Reads the part number from the EEPROM.
    655  1.1   dyoung  **/
    656  1.1   dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    657  1.1   dyoung {
    658  1.1   dyoung 	s32 ret_val;
    659  1.1   dyoung 	u16 data;
    660  1.1   dyoung 
    661  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    662  1.1   dyoung 
    663  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    664  1.1   dyoung 	if (ret_val) {
    665  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    666  1.1   dyoung 		return ret_val;
    667  1.1   dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    668  1.1   dyoung 		DEBUGOUT("NVM Not supported\n");
    669  1.1   dyoung 		return IXGBE_NOT_IMPLEMENTED;
    670  1.1   dyoung 	}
    671  1.1   dyoung 	*pba_num = (u32)(data << 16);
    672  1.1   dyoung 
    673  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    674  1.1   dyoung 	if (ret_val) {
    675  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    676  1.1   dyoung 		return ret_val;
    677  1.1   dyoung 	}
    678  1.1   dyoung 	*pba_num |= data;
    679  1.1   dyoung 
    680  1.1   dyoung 	return IXGBE_SUCCESS;
    681  1.1   dyoung }
    682  1.1   dyoung 
    683  1.1   dyoung /**
    684  1.1   dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    685  1.1   dyoung  *  @hw: pointer to hardware structure
    686  1.1   dyoung  *  @mac_addr: Adapter MAC address
    687  1.1   dyoung  *
    688  1.1   dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    689  1.1   dyoung  *  A reset of the adapter must be performed prior to calling this function
    690  1.1   dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    691  1.1   dyoung  **/
    692  1.1   dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    693  1.1   dyoung {
    694  1.1   dyoung 	u32 rar_high;
    695  1.1   dyoung 	u32 rar_low;
    696  1.1   dyoung 	u16 i;
    697  1.1   dyoung 
    698  1.1   dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    699  1.1   dyoung 
    700  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    701  1.1   dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    702  1.1   dyoung 
    703  1.1   dyoung 	for (i = 0; i < 4; i++)
    704  1.1   dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    705  1.1   dyoung 
    706  1.1   dyoung 	for (i = 0; i < 2; i++)
    707  1.1   dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    708  1.1   dyoung 
    709  1.1   dyoung 	return IXGBE_SUCCESS;
    710  1.1   dyoung }
    711  1.1   dyoung 
    712  1.1   dyoung /**
    713  1.1   dyoung  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    714  1.1   dyoung  *  @hw: pointer to hardware structure
    715  1.1   dyoung  *
    716  1.1   dyoung  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    717  1.1   dyoung  **/
    718  1.1   dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    719  1.1   dyoung {
    720  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    721  1.1   dyoung 	u16 link_status;
    722  1.1   dyoung 
    723  1.1   dyoung 	DEBUGFUNC("ixgbe_get_bus_info_generic");
    724  1.1   dyoung 
    725  1.1   dyoung 	hw->bus.type = ixgbe_bus_type_pci_express;
    726  1.1   dyoung 
    727  1.1   dyoung 	/* Get the negotiated link width and speed from PCI config space */
    728  1.1   dyoung 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
    729  1.1   dyoung 
    730  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    731  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    732  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    733  1.1   dyoung 		break;
    734  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    735  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    736  1.1   dyoung 		break;
    737  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    738  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    739  1.1   dyoung 		break;
    740  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    741  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    742  1.1   dyoung 		break;
    743  1.1   dyoung 	default:
    744  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    745  1.1   dyoung 		break;
    746  1.1   dyoung 	}
    747  1.1   dyoung 
    748  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    749  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    750  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    751  1.1   dyoung 		break;
    752  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    753  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    754  1.1   dyoung 		break;
    755  1.4  msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    756  1.4  msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    757  1.4  msaitoh 		break;
    758  1.1   dyoung 	default:
    759  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    760  1.1   dyoung 		break;
    761  1.1   dyoung 	}
    762  1.1   dyoung 
    763  1.1   dyoung 	mac->ops.set_lan_id(hw);
    764  1.1   dyoung 
    765  1.1   dyoung 	return IXGBE_SUCCESS;
    766  1.1   dyoung }
    767  1.1   dyoung 
    768  1.1   dyoung /**
    769  1.1   dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    770  1.1   dyoung  *  @hw: pointer to the HW structure
    771  1.1   dyoung  *
    772  1.1   dyoung  *  Determines the LAN function id by reading memory-mapped registers
    773  1.1   dyoung  *  and swaps the port value if requested.
    774  1.1   dyoung  **/
    775  1.1   dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    776  1.1   dyoung {
    777  1.1   dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
    778  1.1   dyoung 	u32 reg;
    779  1.1   dyoung 
    780  1.1   dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
    781  1.1   dyoung 
    782  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    783  1.1   dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    784  1.1   dyoung 	bus->lan_id = bus->func;
    785  1.1   dyoung 
    786  1.1   dyoung 	/* check for a port swap */
    787  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
    788  1.1   dyoung 	if (reg & IXGBE_FACTPS_LFS)
    789  1.1   dyoung 		bus->func ^= 0x1;
    790  1.1   dyoung }
    791  1.1   dyoung 
    792  1.1   dyoung /**
    793  1.1   dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
    794  1.1   dyoung  *  @hw: pointer to hardware structure
    795  1.1   dyoung  *
    796  1.1   dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
    797  1.1   dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
    798  1.1   dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
    799  1.1   dyoung  *  state and should not touch the hardware.
    800  1.1   dyoung  **/
    801  1.1   dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
    802  1.1   dyoung {
    803  1.1   dyoung 	u32 reg_val;
    804  1.1   dyoung 	u16 i;
    805  1.1   dyoung 
    806  1.1   dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
    807  1.1   dyoung 
    808  1.1   dyoung 	/*
    809  1.1   dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
    810  1.1   dyoung 	 * the hardware
    811  1.1   dyoung 	 */
    812  1.1   dyoung 	hw->adapter_stopped = TRUE;
    813  1.1   dyoung 
    814  1.1   dyoung 	/* Disable the receive unit */
    815  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
    816  1.1   dyoung 
    817  1.3  msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
    818  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
    819  1.1   dyoung 
    820  1.3  msaitoh 	/* Clear any pending interrupts, flush previous writes */
    821  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
    822  1.1   dyoung 
    823  1.1   dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
    824  1.3  msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
    825  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
    826  1.3  msaitoh 
    827  1.3  msaitoh 	/* Disable the receive unit by stopping each queue */
    828  1.3  msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    829  1.3  msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
    830  1.3  msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
    831  1.3  msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
    832  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
    833  1.1   dyoung 	}
    834  1.1   dyoung 
    835  1.3  msaitoh 	/* flush all queues disables */
    836  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
    837  1.3  msaitoh 	msec_delay(2);
    838  1.3  msaitoh 
    839  1.1   dyoung 	/*
    840  1.1   dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
    841  1.1   dyoung 	 * access and verify no pending requests
    842  1.1   dyoung 	 */
    843  1.3  msaitoh 	return ixgbe_disable_pcie_master(hw);
    844  1.1   dyoung }
    845  1.1   dyoung 
    846  1.1   dyoung /**
    847  1.1   dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
    848  1.1   dyoung  *  @hw: pointer to hardware structure
    849  1.1   dyoung  *  @index: led number to turn on
    850  1.1   dyoung  **/
    851  1.1   dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
    852  1.1   dyoung {
    853  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    854  1.1   dyoung 
    855  1.1   dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
    856  1.1   dyoung 
    857  1.1   dyoung 	/* To turn on the LED, set mode to ON. */
    858  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    859  1.1   dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
    860  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    861  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    862  1.1   dyoung 
    863  1.1   dyoung 	return IXGBE_SUCCESS;
    864  1.1   dyoung }
    865  1.1   dyoung 
    866  1.1   dyoung /**
    867  1.1   dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
    868  1.1   dyoung  *  @hw: pointer to hardware structure
    869  1.1   dyoung  *  @index: led number to turn off
    870  1.1   dyoung  **/
    871  1.1   dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
    872  1.1   dyoung {
    873  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    874  1.1   dyoung 
    875  1.1   dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
    876  1.1   dyoung 
    877  1.1   dyoung 	/* To turn off the LED, set mode to OFF. */
    878  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    879  1.1   dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
    880  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    881  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    882  1.1   dyoung 
    883  1.1   dyoung 	return IXGBE_SUCCESS;
    884  1.1   dyoung }
    885  1.1   dyoung 
    886  1.1   dyoung /**
    887  1.1   dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
    888  1.1   dyoung  *  @hw: pointer to hardware structure
    889  1.1   dyoung  *
    890  1.1   dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
    891  1.1   dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
    892  1.1   dyoung  **/
    893  1.1   dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
    894  1.1   dyoung {
    895  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
    896  1.1   dyoung 	u32 eec;
    897  1.1   dyoung 	u16 eeprom_size;
    898  1.1   dyoung 
    899  1.1   dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
    900  1.1   dyoung 
    901  1.1   dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
    902  1.1   dyoung 		eeprom->type = ixgbe_eeprom_none;
    903  1.1   dyoung 		/* Set default semaphore delay to 10ms which is a well
    904  1.1   dyoung 		 * tested value */
    905  1.1   dyoung 		eeprom->semaphore_delay = 10;
    906  1.3  msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
    907  1.3  msaitoh 		eeprom->word_page_size = 0;
    908  1.1   dyoung 
    909  1.1   dyoung 		/*
    910  1.1   dyoung 		 * Check for EEPROM present first.
    911  1.1   dyoung 		 * If not present leave as none
    912  1.1   dyoung 		 */
    913  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
    914  1.1   dyoung 		if (eec & IXGBE_EEC_PRES) {
    915  1.1   dyoung 			eeprom->type = ixgbe_eeprom_spi;
    916  1.1   dyoung 
    917  1.1   dyoung 			/*
    918  1.1   dyoung 			 * SPI EEPROM is assumed here.  This code would need to
    919  1.1   dyoung 			 * change if a future EEPROM is not SPI.
    920  1.1   dyoung 			 */
    921  1.1   dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
    922  1.3  msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
    923  1.1   dyoung 			eeprom->word_size = 1 << (eeprom_size +
    924  1.3  msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
    925  1.1   dyoung 		}
    926  1.1   dyoung 
    927  1.1   dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
    928  1.1   dyoung 			eeprom->address_bits = 16;
    929  1.1   dyoung 		else
    930  1.1   dyoung 			eeprom->address_bits = 8;
    931  1.1   dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
    932  1.3  msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
    933  1.3  msaitoh 			  eeprom->address_bits);
    934  1.1   dyoung 	}
    935  1.1   dyoung 
    936  1.1   dyoung 	return IXGBE_SUCCESS;
    937  1.1   dyoung }
    938  1.1   dyoung 
    939  1.1   dyoung /**
    940  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
    941  1.3  msaitoh  *  @hw: pointer to hardware structure
    942  1.3  msaitoh  *  @offset: offset within the EEPROM to write
    943  1.3  msaitoh  *  @words: number of word(s)
    944  1.3  msaitoh  *  @data: 16 bit word(s) to write to EEPROM
    945  1.3  msaitoh  *
    946  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
    947  1.3  msaitoh  **/
    948  1.3  msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    949  1.3  msaitoh 					       u16 words, u16 *data)
    950  1.3  msaitoh {
    951  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
    952  1.3  msaitoh 	u16 i, count;
    953  1.3  msaitoh 
    954  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
    955  1.3  msaitoh 
    956  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
    957  1.3  msaitoh 
    958  1.3  msaitoh 	if (words == 0) {
    959  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
    960  1.3  msaitoh 		goto out;
    961  1.3  msaitoh 	}
    962  1.3  msaitoh 
    963  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
    964  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
    965  1.3  msaitoh 		goto out;
    966  1.3  msaitoh 	}
    967  1.3  msaitoh 
    968  1.3  msaitoh 	/*
    969  1.3  msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
    970  1.3  msaitoh 	 * initialization. It is worth to do that when we write large buffer.
    971  1.3  msaitoh 	 */
    972  1.3  msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
    973  1.3  msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
    974  1.3  msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
    975  1.3  msaitoh 
    976  1.3  msaitoh 	/*
    977  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
    978  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
    979  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
    980  1.3  msaitoh 	 */
    981  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
    982  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
    983  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
    984  1.3  msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
    985  1.3  msaitoh 							    count, &data[i]);
    986  1.3  msaitoh 
    987  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
    988  1.3  msaitoh 			break;
    989  1.3  msaitoh 	}
    990  1.3  msaitoh 
    991  1.3  msaitoh out:
    992  1.3  msaitoh 	return status;
    993  1.3  msaitoh }
    994  1.3  msaitoh 
    995  1.3  msaitoh /**
    996  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
    997  1.3  msaitoh  *  @hw: pointer to hardware structure
    998  1.3  msaitoh  *  @offset: offset within the EEPROM to be written to
    999  1.3  msaitoh  *  @words: number of word(s)
   1000  1.3  msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1001  1.3  msaitoh  *
   1002  1.3  msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1003  1.3  msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1004  1.3  msaitoh  **/
   1005  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1006  1.3  msaitoh 					      u16 words, u16 *data)
   1007  1.3  msaitoh {
   1008  1.3  msaitoh 	s32 status;
   1009  1.3  msaitoh 	u16 word;
   1010  1.3  msaitoh 	u16 page_size;
   1011  1.3  msaitoh 	u16 i;
   1012  1.3  msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1013  1.3  msaitoh 
   1014  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1015  1.3  msaitoh 
   1016  1.3  msaitoh 	/* Prepare the EEPROM for writing  */
   1017  1.3  msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1018  1.3  msaitoh 
   1019  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
   1020  1.3  msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1021  1.3  msaitoh 			ixgbe_release_eeprom(hw);
   1022  1.3  msaitoh 			status = IXGBE_ERR_EEPROM;
   1023  1.3  msaitoh 		}
   1024  1.3  msaitoh 	}
   1025  1.3  msaitoh 
   1026  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
   1027  1.3  msaitoh 		for (i = 0; i < words; i++) {
   1028  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1029  1.3  msaitoh 
   1030  1.3  msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1031  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1032  1.3  msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1033  1.3  msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1034  1.3  msaitoh 
   1035  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1036  1.3  msaitoh 
   1037  1.3  msaitoh 			/*
   1038  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1039  1.3  msaitoh 			 * in the opcode
   1040  1.3  msaitoh 			 */
   1041  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1042  1.3  msaitoh 			    ((offset + i) >= 128))
   1043  1.3  msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1044  1.3  msaitoh 
   1045  1.3  msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1046  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1047  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1048  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1049  1.3  msaitoh 						    hw->eeprom.address_bits);
   1050  1.3  msaitoh 
   1051  1.3  msaitoh 			page_size = hw->eeprom.word_page_size;
   1052  1.3  msaitoh 
   1053  1.3  msaitoh 			/* Send the data in burst via SPI*/
   1054  1.3  msaitoh 			do {
   1055  1.3  msaitoh 				word = data[i];
   1056  1.3  msaitoh 				word = (word >> 8) | (word << 8);
   1057  1.3  msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1058  1.3  msaitoh 
   1059  1.3  msaitoh 				if (page_size == 0)
   1060  1.3  msaitoh 					break;
   1061  1.3  msaitoh 
   1062  1.3  msaitoh 				/* do not wrap around page */
   1063  1.3  msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1064  1.3  msaitoh 				    (page_size - 1))
   1065  1.3  msaitoh 					break;
   1066  1.3  msaitoh 			} while (++i < words);
   1067  1.3  msaitoh 
   1068  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1069  1.3  msaitoh 			msec_delay(10);
   1070  1.3  msaitoh 		}
   1071  1.3  msaitoh 		/* Done with writing - release the EEPROM */
   1072  1.3  msaitoh 		ixgbe_release_eeprom(hw);
   1073  1.3  msaitoh 	}
   1074  1.3  msaitoh 
   1075  1.3  msaitoh 	return status;
   1076  1.3  msaitoh }
   1077  1.3  msaitoh 
   1078  1.3  msaitoh /**
   1079  1.1   dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1080  1.1   dyoung  *  @hw: pointer to hardware structure
   1081  1.1   dyoung  *  @offset: offset within the EEPROM to be written to
   1082  1.1   dyoung  *  @data: 16 bit word to be written to the EEPROM
   1083  1.1   dyoung  *
   1084  1.1   dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1085  1.1   dyoung  *  EEPROM will most likely contain an invalid checksum.
   1086  1.1   dyoung  **/
   1087  1.1   dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1088  1.1   dyoung {
   1089  1.1   dyoung 	s32 status;
   1090  1.1   dyoung 
   1091  1.1   dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1092  1.1   dyoung 
   1093  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1094  1.1   dyoung 
   1095  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1096  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1097  1.1   dyoung 		goto out;
   1098  1.1   dyoung 	}
   1099  1.1   dyoung 
   1100  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1101  1.3  msaitoh 
   1102  1.3  msaitoh out:
   1103  1.3  msaitoh 	return status;
   1104  1.3  msaitoh }
   1105  1.3  msaitoh 
   1106  1.3  msaitoh /**
   1107  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1108  1.3  msaitoh  *  @hw: pointer to hardware structure
   1109  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
   1110  1.3  msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1111  1.3  msaitoh  *  @words: number of word(s)
   1112  1.3  msaitoh  *
   1113  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1114  1.3  msaitoh  **/
   1115  1.3  msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1116  1.3  msaitoh 					      u16 words, u16 *data)
   1117  1.3  msaitoh {
   1118  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1119  1.3  msaitoh 	u16 i, count;
   1120  1.3  msaitoh 
   1121  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1122  1.3  msaitoh 
   1123  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1124  1.3  msaitoh 
   1125  1.3  msaitoh 	if (words == 0) {
   1126  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1127  1.3  msaitoh 		goto out;
   1128  1.3  msaitoh 	}
   1129  1.3  msaitoh 
   1130  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1131  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1132  1.3  msaitoh 		goto out;
   1133  1.3  msaitoh 	}
   1134  1.3  msaitoh 
   1135  1.3  msaitoh 	/*
   1136  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
   1137  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1138  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
   1139  1.3  msaitoh 	 */
   1140  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1141  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1142  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1143  1.3  msaitoh 
   1144  1.3  msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1145  1.3  msaitoh 							   count, &data[i]);
   1146  1.3  msaitoh 
   1147  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
   1148  1.3  msaitoh 			break;
   1149  1.3  msaitoh 	}
   1150  1.3  msaitoh 
   1151  1.3  msaitoh out:
   1152  1.3  msaitoh 	return status;
   1153  1.3  msaitoh }
   1154  1.3  msaitoh 
   1155  1.3  msaitoh /**
   1156  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1157  1.3  msaitoh  *  @hw: pointer to hardware structure
   1158  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
   1159  1.3  msaitoh  *  @words: number of word(s)
   1160  1.3  msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1161  1.3  msaitoh  *
   1162  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1163  1.3  msaitoh  **/
   1164  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1165  1.3  msaitoh 					     u16 words, u16 *data)
   1166  1.3  msaitoh {
   1167  1.3  msaitoh 	s32 status;
   1168  1.3  msaitoh 	u16 word_in;
   1169  1.3  msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1170  1.3  msaitoh 	u16 i;
   1171  1.3  msaitoh 
   1172  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1173  1.3  msaitoh 
   1174  1.3  msaitoh 	/* Prepare the EEPROM for reading  */
   1175  1.1   dyoung 	status = ixgbe_acquire_eeprom(hw);
   1176  1.1   dyoung 
   1177  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1178  1.1   dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1179  1.1   dyoung 			ixgbe_release_eeprom(hw);
   1180  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1181  1.1   dyoung 		}
   1182  1.1   dyoung 	}
   1183  1.1   dyoung 
   1184  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1185  1.3  msaitoh 		for (i = 0; i < words; i++) {
   1186  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1187  1.3  msaitoh 			/*
   1188  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1189  1.3  msaitoh 			 * in the opcode
   1190  1.3  msaitoh 			 */
   1191  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1192  1.3  msaitoh 			    ((offset + i) >= 128))
   1193  1.3  msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1194  1.3  msaitoh 
   1195  1.3  msaitoh 			/* Send the READ command (opcode + addr) */
   1196  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1197  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1198  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1199  1.3  msaitoh 						    hw->eeprom.address_bits);
   1200  1.3  msaitoh 
   1201  1.3  msaitoh 			/* Read the data. */
   1202  1.3  msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1203  1.3  msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1204  1.3  msaitoh 		}
   1205  1.1   dyoung 
   1206  1.3  msaitoh 		/* End this read operation */
   1207  1.1   dyoung 		ixgbe_release_eeprom(hw);
   1208  1.1   dyoung 	}
   1209  1.1   dyoung 
   1210  1.1   dyoung 	return status;
   1211  1.1   dyoung }
   1212  1.1   dyoung 
   1213  1.1   dyoung /**
   1214  1.1   dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1215  1.1   dyoung  *  @hw: pointer to hardware structure
   1216  1.1   dyoung  *  @offset: offset within the EEPROM to be read
   1217  1.1   dyoung  *  @data: read 16 bit value from EEPROM
   1218  1.1   dyoung  *
   1219  1.1   dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1220  1.1   dyoung  **/
   1221  1.1   dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1222  1.3  msaitoh 				       u16 *data)
   1223  1.1   dyoung {
   1224  1.1   dyoung 	s32 status;
   1225  1.1   dyoung 
   1226  1.1   dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1227  1.1   dyoung 
   1228  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1229  1.1   dyoung 
   1230  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1231  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1232  1.1   dyoung 		goto out;
   1233  1.1   dyoung 	}
   1234  1.1   dyoung 
   1235  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1236  1.3  msaitoh 
   1237  1.3  msaitoh out:
   1238  1.3  msaitoh 	return status;
   1239  1.3  msaitoh }
   1240  1.3  msaitoh 
   1241  1.3  msaitoh /**
   1242  1.3  msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1243  1.3  msaitoh  *  @hw: pointer to hardware structure
   1244  1.3  msaitoh  *  @offset: offset of word in the EEPROM to read
   1245  1.3  msaitoh  *  @words: number of word(s)
   1246  1.3  msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1247  1.3  msaitoh  *
   1248  1.3  msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1249  1.3  msaitoh  **/
   1250  1.3  msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1251  1.3  msaitoh 				   u16 words, u16 *data)
   1252  1.3  msaitoh {
   1253  1.3  msaitoh 	u32 eerd;
   1254  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1255  1.3  msaitoh 	u32 i;
   1256  1.3  msaitoh 
   1257  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1258  1.3  msaitoh 
   1259  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1260  1.3  msaitoh 
   1261  1.3  msaitoh 	if (words == 0) {
   1262  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1263  1.3  msaitoh 		goto out;
   1264  1.3  msaitoh 	}
   1265  1.3  msaitoh 
   1266  1.3  msaitoh 	if (offset >= hw->eeprom.word_size) {
   1267  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1268  1.3  msaitoh 		goto out;
   1269  1.3  msaitoh 	}
   1270  1.3  msaitoh 
   1271  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1272  1.3  msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
   1273  1.3  msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1274  1.3  msaitoh 
   1275  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1276  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1277  1.1   dyoung 
   1278  1.3  msaitoh 		if (status == IXGBE_SUCCESS) {
   1279  1.3  msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1280  1.3  msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1281  1.3  msaitoh 		} else {
   1282  1.3  msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1283  1.3  msaitoh 			goto out;
   1284  1.1   dyoung 		}
   1285  1.1   dyoung 	}
   1286  1.3  msaitoh out:
   1287  1.3  msaitoh 	return status;
   1288  1.3  msaitoh }
   1289  1.1   dyoung 
   1290  1.3  msaitoh /**
   1291  1.3  msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1292  1.3  msaitoh  *  @hw: pointer to hardware structure
   1293  1.3  msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1294  1.3  msaitoh  *
   1295  1.3  msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1296  1.3  msaitoh  *  This function is called only when we are writing a new large buffer
   1297  1.3  msaitoh  *  at given offset so the data would be overwritten anyway.
   1298  1.3  msaitoh  **/
   1299  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1300  1.3  msaitoh 						 u16 offset)
   1301  1.3  msaitoh {
   1302  1.3  msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1303  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1304  1.3  msaitoh 	u16 i;
   1305  1.3  msaitoh 
   1306  1.3  msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1307  1.3  msaitoh 
   1308  1.3  msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1309  1.3  msaitoh 		data[i] = i;
   1310  1.1   dyoung 
   1311  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1312  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1313  1.3  msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1314  1.3  msaitoh 	hw->eeprom.word_page_size = 0;
   1315  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1316  1.3  msaitoh 		goto out;
   1317  1.1   dyoung 
   1318  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1319  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1320  1.3  msaitoh 		goto out;
   1321  1.1   dyoung 
   1322  1.3  msaitoh 	/*
   1323  1.3  msaitoh 	 * When writing in burst more than the actual page size
   1324  1.3  msaitoh 	 * EEPROM address wraps around current page.
   1325  1.3  msaitoh 	 */
   1326  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1327  1.1   dyoung 
   1328  1.3  msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1329  1.3  msaitoh 		  hw->eeprom.word_page_size);
   1330  1.1   dyoung out:
   1331  1.1   dyoung 	return status;
   1332  1.1   dyoung }
   1333  1.1   dyoung 
   1334  1.1   dyoung /**
   1335  1.1   dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1336  1.1   dyoung  *  @hw: pointer to hardware structure
   1337  1.1   dyoung  *  @offset: offset of  word in the EEPROM to read
   1338  1.1   dyoung  *  @data: word read from the EEPROM
   1339  1.1   dyoung  *
   1340  1.1   dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1341  1.1   dyoung  **/
   1342  1.1   dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1343  1.1   dyoung {
   1344  1.3  msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1345  1.3  msaitoh }
   1346  1.3  msaitoh 
   1347  1.3  msaitoh /**
   1348  1.3  msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1349  1.3  msaitoh  *  @hw: pointer to hardware structure
   1350  1.3  msaitoh  *  @offset: offset of  word in the EEPROM to write
   1351  1.3  msaitoh  *  @words: number of word(s)
   1352  1.3  msaitoh  *  @data: word(s) write to the EEPROM
   1353  1.3  msaitoh  *
   1354  1.3  msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1355  1.3  msaitoh  **/
   1356  1.3  msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1357  1.3  msaitoh 				    u16 words, u16 *data)
   1358  1.3  msaitoh {
   1359  1.3  msaitoh 	u32 eewr;
   1360  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1361  1.3  msaitoh 	u16 i;
   1362  1.1   dyoung 
   1363  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1364  1.1   dyoung 
   1365  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1366  1.1   dyoung 
   1367  1.3  msaitoh 	if (words == 0) {
   1368  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1369  1.3  msaitoh 		goto out;
   1370  1.3  msaitoh 	}
   1371  1.3  msaitoh 
   1372  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1373  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1374  1.1   dyoung 		goto out;
   1375  1.1   dyoung 	}
   1376  1.1   dyoung 
   1377  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1378  1.3  msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1379  1.3  msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1380  1.3  msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1381  1.3  msaitoh 
   1382  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1383  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1384  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1385  1.3  msaitoh 			goto out;
   1386  1.3  msaitoh 		}
   1387  1.1   dyoung 
   1388  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1389  1.1   dyoung 
   1390  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1391  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1392  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1393  1.3  msaitoh 			goto out;
   1394  1.3  msaitoh 		}
   1395  1.3  msaitoh 	}
   1396  1.1   dyoung 
   1397  1.1   dyoung out:
   1398  1.1   dyoung 	return status;
   1399  1.1   dyoung }
   1400  1.1   dyoung 
   1401  1.1   dyoung /**
   1402  1.1   dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1403  1.1   dyoung  *  @hw: pointer to hardware structure
   1404  1.1   dyoung  *  @offset: offset of  word in the EEPROM to write
   1405  1.1   dyoung  *  @data: word write to the EEPROM
   1406  1.1   dyoung  *
   1407  1.1   dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1408  1.1   dyoung  **/
   1409  1.1   dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1410  1.1   dyoung {
   1411  1.3  msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1412  1.1   dyoung }
   1413  1.1   dyoung 
   1414  1.1   dyoung /**
   1415  1.1   dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1416  1.1   dyoung  *  @hw: pointer to hardware structure
   1417  1.1   dyoung  *  @ee_reg: EEPROM flag for polling
   1418  1.1   dyoung  *
   1419  1.1   dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1420  1.1   dyoung  *  read or write is done respectively.
   1421  1.1   dyoung  **/
   1422  1.1   dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1423  1.1   dyoung {
   1424  1.1   dyoung 	u32 i;
   1425  1.1   dyoung 	u32 reg;
   1426  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1427  1.1   dyoung 
   1428  1.1   dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1429  1.1   dyoung 
   1430  1.1   dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1431  1.1   dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1432  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1433  1.1   dyoung 		else
   1434  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1435  1.1   dyoung 
   1436  1.1   dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1437  1.1   dyoung 			status = IXGBE_SUCCESS;
   1438  1.1   dyoung 			break;
   1439  1.1   dyoung 		}
   1440  1.1   dyoung 		usec_delay(5);
   1441  1.1   dyoung 	}
   1442  1.1   dyoung 	return status;
   1443  1.1   dyoung }
   1444  1.1   dyoung 
   1445  1.1   dyoung /**
   1446  1.1   dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1447  1.1   dyoung  *  @hw: pointer to hardware structure
   1448  1.1   dyoung  *
   1449  1.1   dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1450  1.1   dyoung  *  be called before issuing a command to the EEPROM.
   1451  1.1   dyoung  **/
   1452  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1453  1.1   dyoung {
   1454  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1455  1.1   dyoung 	u32 eec;
   1456  1.1   dyoung 	u32 i;
   1457  1.1   dyoung 
   1458  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1459  1.1   dyoung 
   1460  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1461  1.3  msaitoh 	    != IXGBE_SUCCESS)
   1462  1.1   dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1463  1.1   dyoung 
   1464  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1465  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1466  1.1   dyoung 
   1467  1.1   dyoung 		/* Request EEPROM Access */
   1468  1.1   dyoung 		eec |= IXGBE_EEC_REQ;
   1469  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1470  1.1   dyoung 
   1471  1.1   dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1472  1.1   dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1473  1.1   dyoung 			if (eec & IXGBE_EEC_GNT)
   1474  1.1   dyoung 				break;
   1475  1.1   dyoung 			usec_delay(5);
   1476  1.1   dyoung 		}
   1477  1.1   dyoung 
   1478  1.1   dyoung 		/* Release if grant not acquired */
   1479  1.1   dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1480  1.1   dyoung 			eec &= ~IXGBE_EEC_REQ;
   1481  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1482  1.1   dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1483  1.1   dyoung 
   1484  1.3  msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1485  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1486  1.1   dyoung 		}
   1487  1.1   dyoung 
   1488  1.1   dyoung 		/* Setup EEPROM for Read/Write */
   1489  1.1   dyoung 		if (status == IXGBE_SUCCESS) {
   1490  1.1   dyoung 			/* Clear CS and SK */
   1491  1.1   dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1492  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1493  1.1   dyoung 			IXGBE_WRITE_FLUSH(hw);
   1494  1.1   dyoung 			usec_delay(1);
   1495  1.1   dyoung 		}
   1496  1.1   dyoung 	}
   1497  1.1   dyoung 	return status;
   1498  1.1   dyoung }
   1499  1.1   dyoung 
   1500  1.1   dyoung /**
   1501  1.1   dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1502  1.1   dyoung  *  @hw: pointer to hardware structure
   1503  1.1   dyoung  *
   1504  1.1   dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1505  1.1   dyoung  **/
   1506  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1507  1.1   dyoung {
   1508  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1509  1.1   dyoung 	u32 timeout = 2000;
   1510  1.1   dyoung 	u32 i;
   1511  1.1   dyoung 	u32 swsm;
   1512  1.1   dyoung 
   1513  1.1   dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1514  1.1   dyoung 
   1515  1.1   dyoung 
   1516  1.1   dyoung 	/* Get SMBI software semaphore between device drivers first */
   1517  1.1   dyoung 	for (i = 0; i < timeout; i++) {
   1518  1.1   dyoung 		/*
   1519  1.1   dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1520  1.1   dyoung 		 * set and we have the semaphore
   1521  1.1   dyoung 		 */
   1522  1.1   dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1523  1.1   dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1524  1.1   dyoung 			status = IXGBE_SUCCESS;
   1525  1.1   dyoung 			break;
   1526  1.1   dyoung 		}
   1527  1.1   dyoung 		usec_delay(50);
   1528  1.1   dyoung 	}
   1529  1.1   dyoung 
   1530  1.3  msaitoh 	if (i == timeout) {
   1531  1.3  msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1532  1.3  msaitoh 			 "not granted.\n");
   1533  1.3  msaitoh 		/*
   1534  1.3  msaitoh 		 * this release is particularly important because our attempts
   1535  1.3  msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1536  1.3  msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1537  1.3  msaitoh 		 * bits to free the driver to make progress
   1538  1.3  msaitoh 		 */
   1539  1.3  msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1540  1.3  msaitoh 
   1541  1.3  msaitoh 		usec_delay(50);
   1542  1.3  msaitoh 		/*
   1543  1.3  msaitoh 		 * one last try
   1544  1.3  msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1545  1.3  msaitoh 		 * set and we have the semaphore
   1546  1.3  msaitoh 		 */
   1547  1.3  msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1548  1.3  msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1549  1.3  msaitoh 			status = IXGBE_SUCCESS;
   1550  1.3  msaitoh 	}
   1551  1.3  msaitoh 
   1552  1.1   dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1553  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1554  1.1   dyoung 		for (i = 0; i < timeout; i++) {
   1555  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1556  1.1   dyoung 
   1557  1.1   dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1558  1.1   dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1559  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1560  1.1   dyoung 
   1561  1.1   dyoung 			/*
   1562  1.1   dyoung 			 * If we set the bit successfully then we got the
   1563  1.1   dyoung 			 * semaphore.
   1564  1.1   dyoung 			 */
   1565  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1566  1.1   dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1567  1.1   dyoung 				break;
   1568  1.1   dyoung 
   1569  1.1   dyoung 			usec_delay(50);
   1570  1.1   dyoung 		}
   1571  1.1   dyoung 
   1572  1.1   dyoung 		/*
   1573  1.1   dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1574  1.1   dyoung 		 * was not granted because we don't have access to the EEPROM
   1575  1.1   dyoung 		 */
   1576  1.1   dyoung 		if (i >= timeout) {
   1577  1.1   dyoung 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
   1578  1.3  msaitoh 				 "not granted.\n");
   1579  1.1   dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1580  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1581  1.1   dyoung 		}
   1582  1.1   dyoung 	} else {
   1583  1.1   dyoung 		DEBUGOUT("Software semaphore SMBI between device drivers "
   1584  1.3  msaitoh 			 "not granted.\n");
   1585  1.1   dyoung 	}
   1586  1.1   dyoung 
   1587  1.1   dyoung 	return status;
   1588  1.1   dyoung }
   1589  1.1   dyoung 
   1590  1.1   dyoung /**
   1591  1.1   dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1592  1.1   dyoung  *  @hw: pointer to hardware structure
   1593  1.1   dyoung  *
   1594  1.1   dyoung  *  This function clears hardware semaphore bits.
   1595  1.1   dyoung  **/
   1596  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1597  1.1   dyoung {
   1598  1.1   dyoung 	u32 swsm;
   1599  1.1   dyoung 
   1600  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1601  1.1   dyoung 
   1602  1.1   dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1603  1.1   dyoung 
   1604  1.1   dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1605  1.1   dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1606  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1607  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1608  1.1   dyoung }
   1609  1.1   dyoung 
   1610  1.1   dyoung /**
   1611  1.1   dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1612  1.1   dyoung  *  @hw: pointer to hardware structure
   1613  1.1   dyoung  **/
   1614  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1615  1.1   dyoung {
   1616  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1617  1.1   dyoung 	u16 i;
   1618  1.1   dyoung 	u8 spi_stat_reg;
   1619  1.1   dyoung 
   1620  1.1   dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1621  1.1   dyoung 
   1622  1.1   dyoung 	/*
   1623  1.1   dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1624  1.1   dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1625  1.1   dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1626  1.1   dyoung 	 * 5 milliseconds, then error out.
   1627  1.1   dyoung 	 */
   1628  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1629  1.1   dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1630  1.3  msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1631  1.1   dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1632  1.1   dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1633  1.1   dyoung 			break;
   1634  1.1   dyoung 
   1635  1.1   dyoung 		usec_delay(5);
   1636  1.1   dyoung 		ixgbe_standby_eeprom(hw);
   1637  1.1   dyoung 	};
   1638  1.1   dyoung 
   1639  1.1   dyoung 	/*
   1640  1.1   dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1641  1.1   dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1642  1.1   dyoung 	 */
   1643  1.1   dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1644  1.1   dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1645  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1646  1.1   dyoung 	}
   1647  1.1   dyoung 
   1648  1.1   dyoung 	return status;
   1649  1.1   dyoung }
   1650  1.1   dyoung 
   1651  1.1   dyoung /**
   1652  1.1   dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1653  1.1   dyoung  *  @hw: pointer to hardware structure
   1654  1.1   dyoung  **/
   1655  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1656  1.1   dyoung {
   1657  1.1   dyoung 	u32 eec;
   1658  1.1   dyoung 
   1659  1.1   dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1660  1.1   dyoung 
   1661  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1662  1.1   dyoung 
   1663  1.1   dyoung 	/* Toggle CS to flush commands */
   1664  1.1   dyoung 	eec |= IXGBE_EEC_CS;
   1665  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1666  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1667  1.1   dyoung 	usec_delay(1);
   1668  1.1   dyoung 	eec &= ~IXGBE_EEC_CS;
   1669  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1670  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1671  1.1   dyoung 	usec_delay(1);
   1672  1.1   dyoung }
   1673  1.1   dyoung 
   1674  1.1   dyoung /**
   1675  1.1   dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1676  1.1   dyoung  *  @hw: pointer to hardware structure
   1677  1.1   dyoung  *  @data: data to send to the EEPROM
   1678  1.1   dyoung  *  @count: number of bits to shift out
   1679  1.1   dyoung  **/
   1680  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1681  1.3  msaitoh 					u16 count)
   1682  1.1   dyoung {
   1683  1.1   dyoung 	u32 eec;
   1684  1.1   dyoung 	u32 mask;
   1685  1.1   dyoung 	u32 i;
   1686  1.1   dyoung 
   1687  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1688  1.1   dyoung 
   1689  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1690  1.1   dyoung 
   1691  1.1   dyoung 	/*
   1692  1.1   dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1693  1.1   dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1694  1.1   dyoung 	 */
   1695  1.1   dyoung 	mask = 0x01 << (count - 1);
   1696  1.1   dyoung 
   1697  1.1   dyoung 	for (i = 0; i < count; i++) {
   1698  1.1   dyoung 		/*
   1699  1.1   dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1700  1.1   dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1701  1.1   dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1702  1.1   dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1703  1.1   dyoung 		 * raising and then lowering the clock.
   1704  1.1   dyoung 		 */
   1705  1.1   dyoung 		if (data & mask)
   1706  1.1   dyoung 			eec |= IXGBE_EEC_DI;
   1707  1.1   dyoung 		else
   1708  1.1   dyoung 			eec &= ~IXGBE_EEC_DI;
   1709  1.1   dyoung 
   1710  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1711  1.1   dyoung 		IXGBE_WRITE_FLUSH(hw);
   1712  1.1   dyoung 
   1713  1.1   dyoung 		usec_delay(1);
   1714  1.1   dyoung 
   1715  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1716  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1717  1.1   dyoung 
   1718  1.1   dyoung 		/*
   1719  1.1   dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1720  1.1   dyoung 		 * EEPROM
   1721  1.1   dyoung 		 */
   1722  1.1   dyoung 		mask = mask >> 1;
   1723  1.1   dyoung 	};
   1724  1.1   dyoung 
   1725  1.1   dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1726  1.1   dyoung 	eec &= ~IXGBE_EEC_DI;
   1727  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1728  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1729  1.1   dyoung }
   1730  1.1   dyoung 
   1731  1.1   dyoung /**
   1732  1.1   dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1733  1.1   dyoung  *  @hw: pointer to hardware structure
   1734  1.1   dyoung  **/
   1735  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1736  1.1   dyoung {
   1737  1.1   dyoung 	u32 eec;
   1738  1.1   dyoung 	u32 i;
   1739  1.1   dyoung 	u16 data = 0;
   1740  1.1   dyoung 
   1741  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   1742  1.1   dyoung 
   1743  1.1   dyoung 	/*
   1744  1.1   dyoung 	 * In order to read a register from the EEPROM, we need to shift
   1745  1.1   dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1746  1.1   dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1747  1.1   dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   1748  1.1   dyoung 	 * "DI" bit should always be clear.
   1749  1.1   dyoung 	 */
   1750  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1751  1.1   dyoung 
   1752  1.1   dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1753  1.1   dyoung 
   1754  1.1   dyoung 	for (i = 0; i < count; i++) {
   1755  1.1   dyoung 		data = data << 1;
   1756  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1757  1.1   dyoung 
   1758  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1759  1.1   dyoung 
   1760  1.1   dyoung 		eec &= ~(IXGBE_EEC_DI);
   1761  1.1   dyoung 		if (eec & IXGBE_EEC_DO)
   1762  1.1   dyoung 			data |= 1;
   1763  1.1   dyoung 
   1764  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1765  1.1   dyoung 	}
   1766  1.1   dyoung 
   1767  1.1   dyoung 	return data;
   1768  1.1   dyoung }
   1769  1.1   dyoung 
   1770  1.1   dyoung /**
   1771  1.1   dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1772  1.1   dyoung  *  @hw: pointer to hardware structure
   1773  1.1   dyoung  *  @eec: EEC register's current value
   1774  1.1   dyoung  **/
   1775  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1776  1.1   dyoung {
   1777  1.1   dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   1778  1.1   dyoung 
   1779  1.1   dyoung 	/*
   1780  1.1   dyoung 	 * Raise the clock input to the EEPROM
   1781  1.1   dyoung 	 * (setting the SK bit), then delay
   1782  1.1   dyoung 	 */
   1783  1.1   dyoung 	*eec = *eec | IXGBE_EEC_SK;
   1784  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1785  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1786  1.1   dyoung 	usec_delay(1);
   1787  1.1   dyoung }
   1788  1.1   dyoung 
   1789  1.1   dyoung /**
   1790  1.1   dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   1791  1.1   dyoung  *  @hw: pointer to hardware structure
   1792  1.1   dyoung  *  @eecd: EECD's current value
   1793  1.1   dyoung  **/
   1794  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1795  1.1   dyoung {
   1796  1.1   dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   1797  1.1   dyoung 
   1798  1.1   dyoung 	/*
   1799  1.1   dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   1800  1.1   dyoung 	 * delay
   1801  1.1   dyoung 	 */
   1802  1.1   dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   1803  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1804  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1805  1.1   dyoung 	usec_delay(1);
   1806  1.1   dyoung }
   1807  1.1   dyoung 
   1808  1.1   dyoung /**
   1809  1.1   dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   1810  1.1   dyoung  *  @hw: pointer to hardware structure
   1811  1.1   dyoung  **/
   1812  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   1813  1.1   dyoung {
   1814  1.1   dyoung 	u32 eec;
   1815  1.1   dyoung 
   1816  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   1817  1.1   dyoung 
   1818  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1819  1.1   dyoung 
   1820  1.1   dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   1821  1.1   dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   1822  1.1   dyoung 
   1823  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1824  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1825  1.1   dyoung 
   1826  1.1   dyoung 	usec_delay(1);
   1827  1.1   dyoung 
   1828  1.1   dyoung 	/* Stop requesting EEPROM access */
   1829  1.1   dyoung 	eec &= ~IXGBE_EEC_REQ;
   1830  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1831  1.1   dyoung 
   1832  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1833  1.1   dyoung 
   1834  1.1   dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   1835  1.1   dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   1836  1.1   dyoung }
   1837  1.1   dyoung 
   1838  1.1   dyoung /**
   1839  1.1   dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   1840  1.1   dyoung  *  @hw: pointer to hardware structure
   1841  1.1   dyoung  **/
   1842  1.1   dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1843  1.1   dyoung {
   1844  1.1   dyoung 	u16 i;
   1845  1.1   dyoung 	u16 j;
   1846  1.1   dyoung 	u16 checksum = 0;
   1847  1.1   dyoung 	u16 length = 0;
   1848  1.1   dyoung 	u16 pointer = 0;
   1849  1.1   dyoung 	u16 word = 0;
   1850  1.1   dyoung 
   1851  1.1   dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   1852  1.1   dyoung 
   1853  1.1   dyoung 	/* Include 0x0-0x3F in the checksum */
   1854  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   1855  1.1   dyoung 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   1856  1.1   dyoung 			DEBUGOUT("EEPROM read failed\n");
   1857  1.1   dyoung 			break;
   1858  1.1   dyoung 		}
   1859  1.1   dyoung 		checksum += word;
   1860  1.1   dyoung 	}
   1861  1.1   dyoung 
   1862  1.1   dyoung 	/* Include all data from pointers except for the fw pointer */
   1863  1.1   dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   1864  1.1   dyoung 		hw->eeprom.ops.read(hw, i, &pointer);
   1865  1.1   dyoung 
   1866  1.1   dyoung 		/* Make sure the pointer seems valid */
   1867  1.1   dyoung 		if (pointer != 0xFFFF && pointer != 0) {
   1868  1.1   dyoung 			hw->eeprom.ops.read(hw, pointer, &length);
   1869  1.1   dyoung 
   1870  1.1   dyoung 			if (length != 0xFFFF && length != 0) {
   1871  1.1   dyoung 				for (j = pointer+1; j <= pointer+length; j++) {
   1872  1.1   dyoung 					hw->eeprom.ops.read(hw, j, &word);
   1873  1.1   dyoung 					checksum += word;
   1874  1.1   dyoung 				}
   1875  1.1   dyoung 			}
   1876  1.1   dyoung 		}
   1877  1.1   dyoung 	}
   1878  1.1   dyoung 
   1879  1.1   dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   1880  1.1   dyoung 
   1881  1.1   dyoung 	return checksum;
   1882  1.1   dyoung }
   1883  1.1   dyoung 
   1884  1.1   dyoung /**
   1885  1.1   dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   1886  1.1   dyoung  *  @hw: pointer to hardware structure
   1887  1.1   dyoung  *  @checksum_val: calculated checksum
   1888  1.1   dyoung  *
   1889  1.1   dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   1890  1.1   dyoung  *  caller does not need checksum_val, the value can be NULL.
   1891  1.1   dyoung  **/
   1892  1.1   dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   1893  1.3  msaitoh 					   u16 *checksum_val)
   1894  1.1   dyoung {
   1895  1.1   dyoung 	s32 status;
   1896  1.1   dyoung 	u16 checksum;
   1897  1.1   dyoung 	u16 read_checksum = 0;
   1898  1.1   dyoung 
   1899  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   1900  1.1   dyoung 
   1901  1.1   dyoung 	/*
   1902  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1903  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   1904  1.1   dyoung 	 * EEPROM read fails
   1905  1.1   dyoung 	 */
   1906  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1907  1.1   dyoung 
   1908  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1909  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1910  1.1   dyoung 
   1911  1.1   dyoung 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   1912  1.1   dyoung 
   1913  1.1   dyoung 		/*
   1914  1.1   dyoung 		 * Verify read checksum from EEPROM is the same as
   1915  1.1   dyoung 		 * calculated checksum
   1916  1.1   dyoung 		 */
   1917  1.1   dyoung 		if (read_checksum != checksum)
   1918  1.1   dyoung 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   1919  1.1   dyoung 
   1920  1.1   dyoung 		/* If the user cares, return the calculated checksum */
   1921  1.1   dyoung 		if (checksum_val)
   1922  1.1   dyoung 			*checksum_val = checksum;
   1923  1.1   dyoung 	} else {
   1924  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   1925  1.1   dyoung 	}
   1926  1.1   dyoung 
   1927  1.1   dyoung 	return status;
   1928  1.1   dyoung }
   1929  1.1   dyoung 
   1930  1.1   dyoung /**
   1931  1.1   dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   1932  1.1   dyoung  *  @hw: pointer to hardware structure
   1933  1.1   dyoung  **/
   1934  1.1   dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1935  1.1   dyoung {
   1936  1.1   dyoung 	s32 status;
   1937  1.1   dyoung 	u16 checksum;
   1938  1.1   dyoung 
   1939  1.1   dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   1940  1.1   dyoung 
   1941  1.1   dyoung 	/*
   1942  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   1943  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   1944  1.1   dyoung 	 * EEPROM read fails
   1945  1.1   dyoung 	 */
   1946  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1947  1.1   dyoung 
   1948  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1949  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1950  1.1   dyoung 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   1951  1.3  msaitoh 					      checksum);
   1952  1.1   dyoung 	} else {
   1953  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   1954  1.1   dyoung 	}
   1955  1.1   dyoung 
   1956  1.1   dyoung 	return status;
   1957  1.1   dyoung }
   1958  1.1   dyoung 
   1959  1.1   dyoung /**
   1960  1.1   dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   1961  1.1   dyoung  *  @mac_addr: pointer to MAC address.
   1962  1.1   dyoung  *
   1963  1.1   dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   1964  1.1   dyoung  **/
   1965  1.1   dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   1966  1.1   dyoung {
   1967  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1968  1.1   dyoung 
   1969  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   1970  1.1   dyoung 
   1971  1.1   dyoung 	/* Make sure it is not a multicast address */
   1972  1.1   dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   1973  1.1   dyoung 		DEBUGOUT("MAC address is multicast\n");
   1974  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1975  1.1   dyoung 	/* Not a broadcast address */
   1976  1.1   dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   1977  1.1   dyoung 		DEBUGOUT("MAC address is broadcast\n");
   1978  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1979  1.1   dyoung 	/* Reject the zero address */
   1980  1.1   dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   1981  1.3  msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   1982  1.1   dyoung 		DEBUGOUT("MAC address is all zeros\n");
   1983  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1984  1.1   dyoung 	}
   1985  1.1   dyoung 	return status;
   1986  1.1   dyoung }
   1987  1.1   dyoung 
   1988  1.1   dyoung /**
   1989  1.1   dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   1990  1.1   dyoung  *  @hw: pointer to hardware structure
   1991  1.1   dyoung  *  @index: Receive address register to write
   1992  1.1   dyoung  *  @addr: Address to put into receive address register
   1993  1.1   dyoung  *  @vmdq: VMDq "set" or "pool" index
   1994  1.1   dyoung  *  @enable_addr: set flag that address is active
   1995  1.1   dyoung  *
   1996  1.1   dyoung  *  Puts an ethernet address into a receive address register.
   1997  1.1   dyoung  **/
   1998  1.1   dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   1999  1.3  msaitoh 			  u32 enable_addr)
   2000  1.1   dyoung {
   2001  1.1   dyoung 	u32 rar_low, rar_high;
   2002  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2003  1.1   dyoung 
   2004  1.1   dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2005  1.1   dyoung 
   2006  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   2007  1.1   dyoung 	if (index >= rar_entries) {
   2008  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2009  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2010  1.1   dyoung 	}
   2011  1.1   dyoung 
   2012  1.1   dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2013  1.1   dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2014  1.1   dyoung 
   2015  1.1   dyoung 	/*
   2016  1.1   dyoung 	 * HW expects these in little endian so we reverse the byte
   2017  1.1   dyoung 	 * order from network order (big endian) to little endian
   2018  1.1   dyoung 	 */
   2019  1.1   dyoung 	rar_low = ((u32)addr[0] |
   2020  1.3  msaitoh 		   ((u32)addr[1] << 8) |
   2021  1.3  msaitoh 		   ((u32)addr[2] << 16) |
   2022  1.3  msaitoh 		   ((u32)addr[3] << 24));
   2023  1.1   dyoung 	/*
   2024  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2025  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   2026  1.1   dyoung 	 * of the address and the address valid bit.
   2027  1.1   dyoung 	 */
   2028  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2029  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2030  1.1   dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2031  1.1   dyoung 
   2032  1.1   dyoung 	if (enable_addr != 0)
   2033  1.1   dyoung 		rar_high |= IXGBE_RAH_AV;
   2034  1.1   dyoung 
   2035  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2036  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2037  1.1   dyoung 
   2038  1.1   dyoung 	return IXGBE_SUCCESS;
   2039  1.1   dyoung }
   2040  1.1   dyoung 
   2041  1.1   dyoung /**
   2042  1.1   dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2043  1.1   dyoung  *  @hw: pointer to hardware structure
   2044  1.1   dyoung  *  @index: Receive address register to write
   2045  1.1   dyoung  *
   2046  1.1   dyoung  *  Clears an ethernet address from a receive address register.
   2047  1.1   dyoung  **/
   2048  1.1   dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2049  1.1   dyoung {
   2050  1.1   dyoung 	u32 rar_high;
   2051  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2052  1.1   dyoung 
   2053  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2054  1.1   dyoung 
   2055  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   2056  1.1   dyoung 	if (index >= rar_entries) {
   2057  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2058  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2059  1.1   dyoung 	}
   2060  1.1   dyoung 
   2061  1.1   dyoung 	/*
   2062  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2063  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   2064  1.1   dyoung 	 * of the address and the address valid bit.
   2065  1.1   dyoung 	 */
   2066  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2067  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2068  1.1   dyoung 
   2069  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2070  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2071  1.1   dyoung 
   2072  1.1   dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2073  1.1   dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2074  1.1   dyoung 
   2075  1.1   dyoung 	return IXGBE_SUCCESS;
   2076  1.1   dyoung }
   2077  1.1   dyoung 
   2078  1.1   dyoung /**
   2079  1.1   dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2080  1.1   dyoung  *  @hw: pointer to hardware structure
   2081  1.1   dyoung  *
   2082  1.1   dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2083  1.1   dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2084  1.1   dyoung  *  the receiver is in reset when the routine is called.
   2085  1.1   dyoung  **/
   2086  1.1   dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2087  1.1   dyoung {
   2088  1.1   dyoung 	u32 i;
   2089  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2090  1.1   dyoung 
   2091  1.1   dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2092  1.1   dyoung 
   2093  1.1   dyoung 	/*
   2094  1.1   dyoung 	 * If the current mac address is valid, assume it is a software override
   2095  1.1   dyoung 	 * to the permanent address.
   2096  1.1   dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2097  1.1   dyoung 	 */
   2098  1.1   dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2099  1.1   dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2100  1.1   dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2101  1.1   dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2102  1.1   dyoung 
   2103  1.1   dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2104  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2105  1.3  msaitoh 			  hw->mac.addr[2]);
   2106  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2107  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2108  1.1   dyoung 	} else {
   2109  1.1   dyoung 		/* Setup the receive address. */
   2110  1.1   dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2111  1.1   dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2112  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2113  1.3  msaitoh 			  hw->mac.addr[2]);
   2114  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2115  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2116  1.1   dyoung 
   2117  1.1   dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2118  1.1   dyoung 
   2119  1.1   dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2120  1.1   dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2121  1.1   dyoung 	}
   2122  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2123  1.1   dyoung 
   2124  1.1   dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2125  1.1   dyoung 
   2126  1.1   dyoung 	/* Zero out the other receive addresses. */
   2127  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2128  1.1   dyoung 	for (i = 1; i < rar_entries; i++) {
   2129  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2130  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2131  1.1   dyoung 	}
   2132  1.1   dyoung 
   2133  1.1   dyoung 	/* Clear the MTA */
   2134  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2135  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2136  1.1   dyoung 
   2137  1.1   dyoung 	DEBUGOUT(" Clearing MTA\n");
   2138  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2139  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2140  1.1   dyoung 
   2141  1.1   dyoung 	ixgbe_init_uta_tables(hw);
   2142  1.1   dyoung 
   2143  1.1   dyoung 	return IXGBE_SUCCESS;
   2144  1.1   dyoung }
   2145  1.1   dyoung 
   2146  1.1   dyoung /**
   2147  1.1   dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2148  1.1   dyoung  *  @hw: pointer to hardware structure
   2149  1.1   dyoung  *  @addr: new address
   2150  1.1   dyoung  *
   2151  1.1   dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2152  1.1   dyoung  **/
   2153  1.1   dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2154  1.1   dyoung {
   2155  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2156  1.1   dyoung 	u32 rar;
   2157  1.1   dyoung 
   2158  1.1   dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2159  1.1   dyoung 
   2160  1.1   dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2161  1.3  msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2162  1.1   dyoung 
   2163  1.1   dyoung 	/*
   2164  1.1   dyoung 	 * Place this address in the RAR if there is room,
   2165  1.1   dyoung 	 * else put the controller into promiscuous mode
   2166  1.1   dyoung 	 */
   2167  1.1   dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2168  1.1   dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2169  1.1   dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2170  1.1   dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2171  1.1   dyoung 		hw->addr_ctrl.rar_used_count++;
   2172  1.1   dyoung 	} else {
   2173  1.1   dyoung 		hw->addr_ctrl.overflow_promisc++;
   2174  1.1   dyoung 	}
   2175  1.1   dyoung 
   2176  1.1   dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2177  1.1   dyoung }
   2178  1.1   dyoung 
   2179  1.1   dyoung /**
   2180  1.1   dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2181  1.1   dyoung  *  @hw: pointer to hardware structure
   2182  1.1   dyoung  *  @addr_list: the list of new addresses
   2183  1.1   dyoung  *  @addr_count: number of addresses
   2184  1.1   dyoung  *  @next: iterator function to walk the address list
   2185  1.1   dyoung  *
   2186  1.1   dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2187  1.1   dyoung  *  receive address registers.  Uses unused receive address registers for the
   2188  1.1   dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2189  1.1   dyoung  *
   2190  1.1   dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2191  1.1   dyoung  *  manually putting the device into promiscuous mode.
   2192  1.1   dyoung  **/
   2193  1.1   dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2194  1.3  msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2195  1.1   dyoung {
   2196  1.1   dyoung 	u8 *addr;
   2197  1.1   dyoung 	u32 i;
   2198  1.1   dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2199  1.1   dyoung 	u32 uc_addr_in_use;
   2200  1.1   dyoung 	u32 fctrl;
   2201  1.1   dyoung 	u32 vmdq;
   2202  1.1   dyoung 
   2203  1.1   dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2204  1.1   dyoung 
   2205  1.1   dyoung 	/*
   2206  1.1   dyoung 	 * Clear accounting of old secondary address list,
   2207  1.1   dyoung 	 * don't count RAR[0]
   2208  1.1   dyoung 	 */
   2209  1.1   dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2210  1.1   dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2211  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2212  1.1   dyoung 
   2213  1.1   dyoung 	/* Zero out the other receive addresses */
   2214  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2215  1.1   dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2216  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2217  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2218  1.1   dyoung 	}
   2219  1.1   dyoung 
   2220  1.1   dyoung 	/* Add the new addresses */
   2221  1.1   dyoung 	for (i = 0; i < addr_count; i++) {
   2222  1.1   dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2223  1.1   dyoung 		addr = next(hw, &addr_list, &vmdq);
   2224  1.1   dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2225  1.1   dyoung 	}
   2226  1.1   dyoung 
   2227  1.1   dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2228  1.1   dyoung 		/* enable promisc if not already in overflow or set by user */
   2229  1.1   dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2230  1.1   dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2231  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2232  1.1   dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2233  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2234  1.1   dyoung 		}
   2235  1.1   dyoung 	} else {
   2236  1.1   dyoung 		/* only disable if set by overflow, not by user */
   2237  1.1   dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2238  1.1   dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2239  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2240  1.1   dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2241  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2242  1.1   dyoung 		}
   2243  1.1   dyoung 	}
   2244  1.1   dyoung 
   2245  1.1   dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2246  1.1   dyoung 	return IXGBE_SUCCESS;
   2247  1.1   dyoung }
   2248  1.1   dyoung 
   2249  1.1   dyoung /**
   2250  1.1   dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2251  1.1   dyoung  *  @hw: pointer to hardware structure
   2252  1.1   dyoung  *  @mc_addr: the multicast address
   2253  1.1   dyoung  *
   2254  1.1   dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2255  1.1   dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2256  1.1   dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2257  1.1   dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2258  1.1   dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2259  1.1   dyoung  *  to mc_filter_type.
   2260  1.1   dyoung  **/
   2261  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2262  1.1   dyoung {
   2263  1.1   dyoung 	u32 vector = 0;
   2264  1.1   dyoung 
   2265  1.1   dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2266  1.1   dyoung 
   2267  1.1   dyoung 	switch (hw->mac.mc_filter_type) {
   2268  1.1   dyoung 	case 0:   /* use bits [47:36] of the address */
   2269  1.1   dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2270  1.1   dyoung 		break;
   2271  1.1   dyoung 	case 1:   /* use bits [46:35] of the address */
   2272  1.1   dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2273  1.1   dyoung 		break;
   2274  1.1   dyoung 	case 2:   /* use bits [45:34] of the address */
   2275  1.1   dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2276  1.1   dyoung 		break;
   2277  1.1   dyoung 	case 3:   /* use bits [43:32] of the address */
   2278  1.1   dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2279  1.1   dyoung 		break;
   2280  1.1   dyoung 	default:  /* Invalid mc_filter_type */
   2281  1.1   dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2282  1.1   dyoung 		ASSERT(0);
   2283  1.1   dyoung 		break;
   2284  1.1   dyoung 	}
   2285  1.1   dyoung 
   2286  1.1   dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2287  1.1   dyoung 	vector &= 0xFFF;
   2288  1.1   dyoung 	return vector;
   2289  1.1   dyoung }
   2290  1.1   dyoung 
   2291  1.1   dyoung /**
   2292  1.1   dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2293  1.1   dyoung  *  @hw: pointer to hardware structure
   2294  1.1   dyoung  *  @hash_value: Multicast address hash value
   2295  1.1   dyoung  *
   2296  1.1   dyoung  *  Sets the bit-vector in the multicast table.
   2297  1.1   dyoung  **/
   2298  1.1   dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2299  1.1   dyoung {
   2300  1.1   dyoung 	u32 vector;
   2301  1.1   dyoung 	u32 vector_bit;
   2302  1.1   dyoung 	u32 vector_reg;
   2303  1.1   dyoung 
   2304  1.1   dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2305  1.1   dyoung 
   2306  1.1   dyoung 	hw->addr_ctrl.mta_in_use++;
   2307  1.1   dyoung 
   2308  1.1   dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2309  1.1   dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2310  1.1   dyoung 
   2311  1.1   dyoung 	/*
   2312  1.1   dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2313  1.1   dyoung 	 * like an array of 4096 bits.  We want to set bit
   2314  1.1   dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2315  1.1   dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2316  1.1   dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2317  1.1   dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2318  1.1   dyoung 	 * the value.
   2319  1.1   dyoung 	 */
   2320  1.1   dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2321  1.1   dyoung 	vector_bit = vector & 0x1F;
   2322  1.1   dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2323  1.1   dyoung }
   2324  1.1   dyoung 
   2325  1.1   dyoung /**
   2326  1.1   dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2327  1.1   dyoung  *  @hw: pointer to hardware structure
   2328  1.1   dyoung  *  @mc_addr_list: the list of new multicast addresses
   2329  1.1   dyoung  *  @mc_addr_count: number of addresses
   2330  1.1   dyoung  *  @next: iterator function to walk the multicast address list
   2331  1.3  msaitoh  *  @clear: flag, when set clears the table beforehand
   2332  1.1   dyoung  *
   2333  1.3  msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2334  1.3  msaitoh  *  Hashes the given addresses into the multicast table.
   2335  1.1   dyoung  **/
   2336  1.1   dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2337  1.3  msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2338  1.3  msaitoh 				      bool clear)
   2339  1.1   dyoung {
   2340  1.1   dyoung 	u32 i;
   2341  1.1   dyoung 	u32 vmdq;
   2342  1.1   dyoung 
   2343  1.1   dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2344  1.1   dyoung 
   2345  1.1   dyoung 	/*
   2346  1.1   dyoung 	 * Set the new number of MC addresses that we are being requested to
   2347  1.1   dyoung 	 * use.
   2348  1.1   dyoung 	 */
   2349  1.1   dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2350  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2351  1.1   dyoung 
   2352  1.1   dyoung 	/* Clear mta_shadow */
   2353  1.3  msaitoh 	if (clear) {
   2354  1.3  msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2355  1.3  msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2356  1.3  msaitoh 	}
   2357  1.1   dyoung 
   2358  1.1   dyoung 	/* Update mta_shadow */
   2359  1.1   dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2360  1.1   dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2361  1.1   dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2362  1.1   dyoung 	}
   2363  1.1   dyoung 
   2364  1.1   dyoung 	/* Enable mta */
   2365  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2366  1.1   dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2367  1.1   dyoung 				      hw->mac.mta_shadow[i]);
   2368  1.1   dyoung 
   2369  1.1   dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2370  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2371  1.3  msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2372  1.1   dyoung 
   2373  1.1   dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2374  1.1   dyoung 	return IXGBE_SUCCESS;
   2375  1.1   dyoung }
   2376  1.1   dyoung 
   2377  1.1   dyoung /**
   2378  1.1   dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2379  1.1   dyoung  *  @hw: pointer to hardware structure
   2380  1.1   dyoung  *
   2381  1.1   dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2382  1.1   dyoung  **/
   2383  1.1   dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2384  1.1   dyoung {
   2385  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2386  1.1   dyoung 
   2387  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2388  1.1   dyoung 
   2389  1.1   dyoung 	if (a->mta_in_use > 0)
   2390  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2391  1.3  msaitoh 				hw->mac.mc_filter_type);
   2392  1.1   dyoung 
   2393  1.1   dyoung 	return IXGBE_SUCCESS;
   2394  1.1   dyoung }
   2395  1.1   dyoung 
   2396  1.1   dyoung /**
   2397  1.1   dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2398  1.1   dyoung  *  @hw: pointer to hardware structure
   2399  1.1   dyoung  *
   2400  1.1   dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2401  1.1   dyoung  **/
   2402  1.1   dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2403  1.1   dyoung {
   2404  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2405  1.1   dyoung 
   2406  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2407  1.1   dyoung 
   2408  1.1   dyoung 	if (a->mta_in_use > 0)
   2409  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2410  1.1   dyoung 
   2411  1.1   dyoung 	return IXGBE_SUCCESS;
   2412  1.1   dyoung }
   2413  1.1   dyoung 
   2414  1.1   dyoung /**
   2415  1.1   dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2416  1.1   dyoung  *  @hw: pointer to hardware structure
   2417  1.1   dyoung  *
   2418  1.1   dyoung  *  Enable flow control according to the current settings.
   2419  1.1   dyoung  **/
   2420  1.4  msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2421  1.1   dyoung {
   2422  1.1   dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2423  1.1   dyoung 	u32 mflcn_reg, fccfg_reg;
   2424  1.1   dyoung 	u32 reg;
   2425  1.1   dyoung 	u32 fcrtl, fcrth;
   2426  1.4  msaitoh 	int i;
   2427  1.1   dyoung 
   2428  1.1   dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2429  1.1   dyoung 
   2430  1.4  msaitoh 	/* Validate the water mark configuration */
   2431  1.4  msaitoh 	if (!hw->fc.pause_time) {
   2432  1.4  msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2433  1.4  msaitoh 		goto out;
   2434  1.4  msaitoh 	}
   2435  1.4  msaitoh 
   2436  1.4  msaitoh 	/* Low water mark of zero causes XOFF floods */
   2437  1.4  msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2438  1.4  msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2439  1.4  msaitoh 		    hw->fc.high_water[i]) {
   2440  1.4  msaitoh 			if (!hw->fc.low_water[i] ||
   2441  1.4  msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2442  1.4  msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2443  1.4  msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2444  1.4  msaitoh 				goto out;
   2445  1.4  msaitoh 			}
   2446  1.4  msaitoh 		}
   2447  1.4  msaitoh 	}
   2448  1.4  msaitoh 
   2449  1.1   dyoung 	/* Negotiate the fc mode to use */
   2450  1.4  msaitoh 	ixgbe_fc_autoneg(hw);
   2451  1.1   dyoung 
   2452  1.1   dyoung 	/* Disable any previous flow control settings */
   2453  1.1   dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2454  1.4  msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2455  1.1   dyoung 
   2456  1.1   dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2457  1.1   dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2458  1.1   dyoung 
   2459  1.1   dyoung 	/*
   2460  1.1   dyoung 	 * The possible values of fc.current_mode are:
   2461  1.1   dyoung 	 * 0: Flow control is completely disabled
   2462  1.1   dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2463  1.1   dyoung 	 *    but not send pause frames).
   2464  1.1   dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2465  1.1   dyoung 	 *    we do not support receiving pause frames).
   2466  1.1   dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2467  1.1   dyoung 	 * other: Invalid.
   2468  1.1   dyoung 	 */
   2469  1.1   dyoung 	switch (hw->fc.current_mode) {
   2470  1.1   dyoung 	case ixgbe_fc_none:
   2471  1.1   dyoung 		/*
   2472  1.1   dyoung 		 * Flow control is disabled by software override or autoneg.
   2473  1.1   dyoung 		 * The code below will actually disable it in the HW.
   2474  1.1   dyoung 		 */
   2475  1.1   dyoung 		break;
   2476  1.1   dyoung 	case ixgbe_fc_rx_pause:
   2477  1.1   dyoung 		/*
   2478  1.1   dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2479  1.1   dyoung 		 * disabled by software override. Since there really
   2480  1.1   dyoung 		 * isn't a way to advertise that we are capable of RX
   2481  1.1   dyoung 		 * Pause ONLY, we will advertise that we support both
   2482  1.1   dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2483  1.1   dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2484  1.1   dyoung 		 */
   2485  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2486  1.1   dyoung 		break;
   2487  1.1   dyoung 	case ixgbe_fc_tx_pause:
   2488  1.1   dyoung 		/*
   2489  1.1   dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2490  1.1   dyoung 		 * disabled by software override.
   2491  1.1   dyoung 		 */
   2492  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2493  1.1   dyoung 		break;
   2494  1.1   dyoung 	case ixgbe_fc_full:
   2495  1.1   dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2496  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2497  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2498  1.1   dyoung 		break;
   2499  1.1   dyoung 	default:
   2500  1.1   dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2501  1.1   dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2502  1.1   dyoung 		goto out;
   2503  1.1   dyoung 		break;
   2504  1.1   dyoung 	}
   2505  1.1   dyoung 
   2506  1.1   dyoung 	/* Set 802.3x based flow control settings. */
   2507  1.1   dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2508  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2509  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2510  1.1   dyoung 
   2511  1.1   dyoung 
   2512  1.4  msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2513  1.4  msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2514  1.4  msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2515  1.4  msaitoh 		    hw->fc.high_water[i]) {
   2516  1.4  msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2517  1.4  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2518  1.4  msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2519  1.4  msaitoh 		} else {
   2520  1.4  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2521  1.4  msaitoh 			/*
   2522  1.4  msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2523  1.4  msaitoh 			 * switch is enabled we must set the high water mark
   2524  1.4  msaitoh 			 * to the maximum FCRTH value.  This allows the Tx
   2525  1.4  msaitoh 			 * switch to function even under heavy Rx workloads.
   2526  1.4  msaitoh 			 */
   2527  1.4  msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
   2528  1.4  msaitoh 		}
   2529  1.4  msaitoh 
   2530  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2531  1.1   dyoung 	}
   2532  1.1   dyoung 
   2533  1.1   dyoung 	/* Configure pause time (2 TCs per register) */
   2534  1.4  msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2535  1.4  msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2536  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2537  1.1   dyoung 
   2538  1.4  msaitoh 	/* Configure flow control refresh threshold value */
   2539  1.4  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2540  1.1   dyoung 
   2541  1.1   dyoung out:
   2542  1.1   dyoung 	return ret_val;
   2543  1.1   dyoung }
   2544  1.1   dyoung 
   2545  1.1   dyoung /**
   2546  1.4  msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2547  1.1   dyoung  *  @hw: pointer to hardware structure
   2548  1.4  msaitoh  *  @adv_reg: flow control advertised settings
   2549  1.4  msaitoh  *  @lp_reg: link partner's flow control settings
   2550  1.4  msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2551  1.4  msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2552  1.4  msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2553  1.4  msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2554  1.1   dyoung  *
   2555  1.4  msaitoh  *  Find the intersection between advertised settings and link partner's
   2556  1.4  msaitoh  *  advertised settings
   2557  1.1   dyoung  **/
   2558  1.4  msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2559  1.4  msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2560  1.1   dyoung {
   2561  1.4  msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg)))
   2562  1.4  msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2563  1.1   dyoung 
   2564  1.4  msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2565  1.4  msaitoh 		/*
   2566  1.4  msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2567  1.4  msaitoh 		 * of pause frames.  In this case, we had to advertise
   2568  1.4  msaitoh 		 * FULL flow control because we could not advertise RX
   2569  1.4  msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2570  1.4  msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2571  1.4  msaitoh 		 */
   2572  1.4  msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2573  1.4  msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2574  1.4  msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2575  1.4  msaitoh 		} else {
   2576  1.4  msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2577  1.4  msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2578  1.4  msaitoh 		}
   2579  1.4  msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2580  1.4  msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2581  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2582  1.4  msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2583  1.4  msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2584  1.4  msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2585  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2586  1.4  msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2587  1.4  msaitoh 	} else {
   2588  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2589  1.4  msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2590  1.4  msaitoh 	}
   2591  1.4  msaitoh 	return IXGBE_SUCCESS;
   2592  1.4  msaitoh }
   2593  1.1   dyoung 
   2594  1.4  msaitoh /**
   2595  1.4  msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2596  1.4  msaitoh  *  @hw: pointer to hardware structure
   2597  1.4  msaitoh  *
   2598  1.4  msaitoh  *  Enable flow control according on 1 gig fiber.
   2599  1.4  msaitoh  **/
   2600  1.4  msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2601  1.4  msaitoh {
   2602  1.4  msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2603  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2604  1.1   dyoung 
   2605  1.1   dyoung 	/*
   2606  1.4  msaitoh 	 * On multispeed fiber at 1g, bail out if
   2607  1.4  msaitoh 	 * - link is up but AN did not complete, or if
   2608  1.4  msaitoh 	 * - link is up and AN completed but timed out
   2609  1.1   dyoung 	 */
   2610  1.4  msaitoh 
   2611  1.4  msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2612  1.4  msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2613  1.4  msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
   2614  1.1   dyoung 		goto out;
   2615  1.1   dyoung 
   2616  1.1   dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2617  1.1   dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2618  1.1   dyoung 
   2619  1.1   dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2620  1.3  msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2621  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2622  1.3  msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2623  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2624  1.1   dyoung 
   2625  1.1   dyoung out:
   2626  1.1   dyoung 	return ret_val;
   2627  1.1   dyoung }
   2628  1.1   dyoung 
   2629  1.1   dyoung /**
   2630  1.1   dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2631  1.1   dyoung  *  @hw: pointer to hardware structure
   2632  1.1   dyoung  *
   2633  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2634  1.1   dyoung  **/
   2635  1.1   dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2636  1.1   dyoung {
   2637  1.1   dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2638  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2639  1.1   dyoung 
   2640  1.1   dyoung 	/*
   2641  1.1   dyoung 	 * On backplane, bail out if
   2642  1.1   dyoung 	 * - backplane autoneg was not completed, or if
   2643  1.1   dyoung 	 * - we are 82599 and link partner is not AN enabled
   2644  1.1   dyoung 	 */
   2645  1.1   dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2646  1.4  msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
   2647  1.1   dyoung 		goto out;
   2648  1.1   dyoung 
   2649  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2650  1.1   dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2651  1.4  msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
   2652  1.1   dyoung 			goto out;
   2653  1.1   dyoung 	}
   2654  1.1   dyoung 	/*
   2655  1.1   dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2656  1.1   dyoung 	 * local flow control settings accordingly
   2657  1.1   dyoung 	 */
   2658  1.1   dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2659  1.1   dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2660  1.1   dyoung 
   2661  1.1   dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2662  1.1   dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2663  1.1   dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2664  1.1   dyoung 
   2665  1.1   dyoung out:
   2666  1.1   dyoung 	return ret_val;
   2667  1.1   dyoung }
   2668  1.1   dyoung 
   2669  1.1   dyoung /**
   2670  1.1   dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2671  1.1   dyoung  *  @hw: pointer to hardware structure
   2672  1.1   dyoung  *
   2673  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2674  1.1   dyoung  **/
   2675  1.1   dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2676  1.1   dyoung {
   2677  1.1   dyoung 	u16 technology_ability_reg = 0;
   2678  1.1   dyoung 	u16 lp_technology_ability_reg = 0;
   2679  1.1   dyoung 
   2680  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2681  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2682  1.1   dyoung 			     &technology_ability_reg);
   2683  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2684  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2685  1.1   dyoung 			     &lp_technology_ability_reg);
   2686  1.1   dyoung 
   2687  1.1   dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2688  1.1   dyoung 				  (u32)lp_technology_ability_reg,
   2689  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2690  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2691  1.1   dyoung }
   2692  1.1   dyoung 
   2693  1.1   dyoung /**
   2694  1.4  msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2695  1.1   dyoung  *  @hw: pointer to hardware structure
   2696  1.1   dyoung  *
   2697  1.4  msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   2698  1.4  msaitoh  *  our link partner, and determines the proper flow control mode to use.
   2699  1.1   dyoung  **/
   2700  1.4  msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2701  1.1   dyoung {
   2702  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2703  1.4  msaitoh 	ixgbe_link_speed speed;
   2704  1.4  msaitoh 	bool link_up;
   2705  1.1   dyoung 
   2706  1.4  msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   2707  1.1   dyoung 
   2708  1.1   dyoung 	/*
   2709  1.4  msaitoh 	 * AN should have completed when the cable was plugged in.
   2710  1.4  msaitoh 	 * Look for reasons to bail out.  Bail out if:
   2711  1.4  msaitoh 	 * - FC autoneg is disabled, or if
   2712  1.4  msaitoh 	 * - link is not up.
   2713  1.1   dyoung 	 */
   2714  1.4  msaitoh 	if (hw->fc.disable_fc_autoneg)
   2715  1.1   dyoung 		goto out;
   2716  1.1   dyoung 
   2717  1.4  msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2718  1.4  msaitoh 	if (!link_up)
   2719  1.1   dyoung 		goto out;
   2720  1.1   dyoung 
   2721  1.1   dyoung 	switch (hw->phy.media_type) {
   2722  1.4  msaitoh 	/* Autoneg flow control on fiber adapters */
   2723  1.1   dyoung 	case ixgbe_media_type_fiber:
   2724  1.4  msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2725  1.4  msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2726  1.4  msaitoh 		break;
   2727  1.4  msaitoh 
   2728  1.4  msaitoh 	/* Autoneg flow control on backplane adapters */
   2729  1.1   dyoung 	case ixgbe_media_type_backplane:
   2730  1.4  msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2731  1.1   dyoung 		break;
   2732  1.1   dyoung 
   2733  1.4  msaitoh 	/* Autoneg flow control on copper adapters */
   2734  1.1   dyoung 	case ixgbe_media_type_copper:
   2735  1.4  msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
   2736  1.4  msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   2737  1.1   dyoung 		break;
   2738  1.1   dyoung 
   2739  1.1   dyoung 	default:
   2740  1.1   dyoung 		break;
   2741  1.1   dyoung 	}
   2742  1.1   dyoung 
   2743  1.4  msaitoh out:
   2744  1.4  msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   2745  1.4  msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   2746  1.4  msaitoh 	} else {
   2747  1.4  msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   2748  1.4  msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   2749  1.3  msaitoh 	}
   2750  1.1   dyoung }
   2751  1.1   dyoung 
   2752  1.1   dyoung /**
   2753  1.1   dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   2754  1.1   dyoung  *  @hw: pointer to hardware structure
   2755  1.1   dyoung  *
   2756  1.1   dyoung  *  Disables PCI-Express master access and verifies there are no pending
   2757  1.1   dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   2758  1.1   dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   2759  1.1   dyoung  *  is returned signifying master requests disabled.
   2760  1.1   dyoung  **/
   2761  1.1   dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   2762  1.1   dyoung {
   2763  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   2764  1.1   dyoung 	u32 i;
   2765  1.1   dyoung 
   2766  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   2767  1.1   dyoung 
   2768  1.3  msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   2769  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   2770  1.3  msaitoh 
   2771  1.3  msaitoh 	/* Exit if master requets are blocked */
   2772  1.1   dyoung 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2773  1.1   dyoung 		goto out;
   2774  1.1   dyoung 
   2775  1.3  msaitoh 	/* Poll for master request bit to clear */
   2776  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2777  1.3  msaitoh 		usec_delay(100);
   2778  1.1   dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2779  1.3  msaitoh 			goto out;
   2780  1.1   dyoung 	}
   2781  1.1   dyoung 
   2782  1.3  msaitoh 	/*
   2783  1.3  msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   2784  1.3  msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   2785  1.3  msaitoh 	 * of this need.  The first reset prevents new master requests from
   2786  1.3  msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   2787  1.3  msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   2788  1.3  msaitoh 	 * again to clear out any effects they may have had on our device.
   2789  1.3  msaitoh 	 */
   2790  1.1   dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   2791  1.3  msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   2792  1.1   dyoung 
   2793  1.1   dyoung 	/*
   2794  1.1   dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   2795  1.1   dyoung 	 * transactions pending.
   2796  1.1   dyoung 	 */
   2797  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2798  1.3  msaitoh 		usec_delay(100);
   2799  1.1   dyoung 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   2800  1.3  msaitoh 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   2801  1.3  msaitoh 			goto out;
   2802  1.1   dyoung 	}
   2803  1.1   dyoung 
   2804  1.3  msaitoh 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
   2805  1.3  msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   2806  1.1   dyoung 
   2807  1.1   dyoung out:
   2808  1.1   dyoung 	return status;
   2809  1.1   dyoung }
   2810  1.1   dyoung 
   2811  1.1   dyoung /**
   2812  1.1   dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   2813  1.1   dyoung  *  @hw: pointer to hardware structure
   2814  1.1   dyoung  *  @mask: Mask to specify which semaphore to acquire
   2815  1.1   dyoung  *
   2816  1.3  msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   2817  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2818  1.1   dyoung  **/
   2819  1.1   dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2820  1.1   dyoung {
   2821  1.1   dyoung 	u32 gssr;
   2822  1.1   dyoung 	u32 swmask = mask;
   2823  1.1   dyoung 	u32 fwmask = mask << 5;
   2824  1.1   dyoung 	s32 timeout = 200;
   2825  1.1   dyoung 
   2826  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   2827  1.1   dyoung 
   2828  1.1   dyoung 	while (timeout) {
   2829  1.1   dyoung 		/*
   2830  1.1   dyoung 		 * SW EEPROM semaphore bit is used for access to all
   2831  1.1   dyoung 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
   2832  1.1   dyoung 		 */
   2833  1.1   dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   2834  1.1   dyoung 			return IXGBE_ERR_SWFW_SYNC;
   2835  1.1   dyoung 
   2836  1.1   dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2837  1.1   dyoung 		if (!(gssr & (fwmask | swmask)))
   2838  1.1   dyoung 			break;
   2839  1.1   dyoung 
   2840  1.1   dyoung 		/*
   2841  1.1   dyoung 		 * Firmware currently using resource (fwmask) or other software
   2842  1.1   dyoung 		 * thread currently using resource (swmask)
   2843  1.1   dyoung 		 */
   2844  1.1   dyoung 		ixgbe_release_eeprom_semaphore(hw);
   2845  1.1   dyoung 		msec_delay(5);
   2846  1.1   dyoung 		timeout--;
   2847  1.1   dyoung 	}
   2848  1.1   dyoung 
   2849  1.1   dyoung 	if (!timeout) {
   2850  1.1   dyoung 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
   2851  1.1   dyoung 		return IXGBE_ERR_SWFW_SYNC;
   2852  1.1   dyoung 	}
   2853  1.1   dyoung 
   2854  1.1   dyoung 	gssr |= swmask;
   2855  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2856  1.1   dyoung 
   2857  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2858  1.1   dyoung 	return IXGBE_SUCCESS;
   2859  1.1   dyoung }
   2860  1.1   dyoung 
   2861  1.1   dyoung /**
   2862  1.1   dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   2863  1.1   dyoung  *  @hw: pointer to hardware structure
   2864  1.1   dyoung  *  @mask: Mask to specify which semaphore to release
   2865  1.1   dyoung  *
   2866  1.3  msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   2867  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2868  1.1   dyoung  **/
   2869  1.1   dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2870  1.1   dyoung {
   2871  1.1   dyoung 	u32 gssr;
   2872  1.1   dyoung 	u32 swmask = mask;
   2873  1.1   dyoung 
   2874  1.1   dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   2875  1.1   dyoung 
   2876  1.1   dyoung 	ixgbe_get_eeprom_semaphore(hw);
   2877  1.1   dyoung 
   2878  1.1   dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2879  1.1   dyoung 	gssr &= ~swmask;
   2880  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2881  1.1   dyoung 
   2882  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   2883  1.1   dyoung }
   2884  1.1   dyoung 
   2885  1.1   dyoung /**
   2886  1.3  msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   2887  1.3  msaitoh  *  @hw: pointer to hardware structure
   2888  1.3  msaitoh  *
   2889  1.3  msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   2890  1.3  msaitoh  *  the Rx security block
   2891  1.3  msaitoh  **/
   2892  1.3  msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2893  1.3  msaitoh {
   2894  1.3  msaitoh #define IXGBE_MAX_SECRX_POLL 40
   2895  1.3  msaitoh 
   2896  1.3  msaitoh 	int i;
   2897  1.3  msaitoh 	int secrxreg;
   2898  1.3  msaitoh 
   2899  1.3  msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   2900  1.3  msaitoh 
   2901  1.3  msaitoh 
   2902  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2903  1.3  msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   2904  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2905  1.3  msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   2906  1.3  msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   2907  1.3  msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   2908  1.3  msaitoh 			break;
   2909  1.3  msaitoh 		else
   2910  1.3  msaitoh 			/* Use interrupt-safe sleep just in case */
   2911  1.3  msaitoh 			usec_delay(1000);
   2912  1.3  msaitoh 	}
   2913  1.3  msaitoh 
   2914  1.3  msaitoh 	/* For informational purposes only */
   2915  1.3  msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   2916  1.3  msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   2917  1.3  msaitoh 			 "path fully disabled.  Continuing with init.\n");
   2918  1.3  msaitoh 
   2919  1.3  msaitoh 	return IXGBE_SUCCESS;
   2920  1.3  msaitoh }
   2921  1.3  msaitoh 
   2922  1.3  msaitoh /**
   2923  1.3  msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   2924  1.3  msaitoh  *  @hw: pointer to hardware structure
   2925  1.3  msaitoh  *
   2926  1.3  msaitoh  *  Enables the receive data path.
   2927  1.3  msaitoh  **/
   2928  1.3  msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2929  1.3  msaitoh {
   2930  1.3  msaitoh 	int secrxreg;
   2931  1.3  msaitoh 
   2932  1.3  msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   2933  1.3  msaitoh 
   2934  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2935  1.3  msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   2936  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2937  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   2938  1.3  msaitoh 
   2939  1.3  msaitoh 	return IXGBE_SUCCESS;
   2940  1.3  msaitoh }
   2941  1.3  msaitoh 
   2942  1.3  msaitoh /**
   2943  1.1   dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   2944  1.1   dyoung  *  @hw: pointer to hardware structure
   2945  1.1   dyoung  *  @regval: register value to write to RXCTRL
   2946  1.1   dyoung  *
   2947  1.1   dyoung  *  Enables the Rx DMA unit
   2948  1.1   dyoung  **/
   2949  1.1   dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   2950  1.1   dyoung {
   2951  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   2952  1.1   dyoung 
   2953  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   2954  1.1   dyoung 
   2955  1.1   dyoung 	return IXGBE_SUCCESS;
   2956  1.1   dyoung }
   2957  1.1   dyoung 
   2958  1.1   dyoung /**
   2959  1.1   dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   2960  1.1   dyoung  *  @hw: pointer to hardware structure
   2961  1.1   dyoung  *  @index: led number to blink
   2962  1.1   dyoung  **/
   2963  1.1   dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   2964  1.1   dyoung {
   2965  1.1   dyoung 	ixgbe_link_speed speed = 0;
   2966  1.1   dyoung 	bool link_up = 0;
   2967  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2968  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2969  1.1   dyoung 
   2970  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   2971  1.1   dyoung 
   2972  1.1   dyoung 	/*
   2973  1.1   dyoung 	 * Link must be up to auto-blink the LEDs;
   2974  1.1   dyoung 	 * Force it if link is down.
   2975  1.1   dyoung 	 */
   2976  1.1   dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2977  1.1   dyoung 
   2978  1.1   dyoung 	if (!link_up) {
   2979  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2980  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   2981  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   2982  1.3  msaitoh 		IXGBE_WRITE_FLUSH(hw);
   2983  1.1   dyoung 		msec_delay(10);
   2984  1.1   dyoung 	}
   2985  1.1   dyoung 
   2986  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2987  1.1   dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   2988  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2989  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   2990  1.1   dyoung 
   2991  1.1   dyoung 	return IXGBE_SUCCESS;
   2992  1.1   dyoung }
   2993  1.1   dyoung 
   2994  1.1   dyoung /**
   2995  1.1   dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   2996  1.1   dyoung  *  @hw: pointer to hardware structure
   2997  1.1   dyoung  *  @index: led number to stop blinking
   2998  1.1   dyoung  **/
   2999  1.1   dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3000  1.1   dyoung {
   3001  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3002  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3003  1.1   dyoung 
   3004  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3005  1.1   dyoung 
   3006  1.1   dyoung 
   3007  1.1   dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3008  1.1   dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3009  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3010  1.1   dyoung 
   3011  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3012  1.1   dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3013  1.1   dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3014  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3015  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   3016  1.1   dyoung 
   3017  1.1   dyoung 	return IXGBE_SUCCESS;
   3018  1.1   dyoung }
   3019  1.1   dyoung 
   3020  1.1   dyoung /**
   3021  1.1   dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3022  1.1   dyoung  *  @hw: pointer to hardware structure
   3023  1.1   dyoung  *  @san_mac_offset: SAN MAC address offset
   3024  1.1   dyoung  *
   3025  1.1   dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3026  1.1   dyoung  *  pointer, and returns the value at that location.  This is used in both
   3027  1.1   dyoung  *  get and set mac_addr routines.
   3028  1.1   dyoung  **/
   3029  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3030  1.3  msaitoh 					 u16 *san_mac_offset)
   3031  1.1   dyoung {
   3032  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3033  1.1   dyoung 
   3034  1.1   dyoung 	/*
   3035  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3036  1.1   dyoung 	 * available.
   3037  1.1   dyoung 	 */
   3038  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
   3039  1.1   dyoung 
   3040  1.1   dyoung 	return IXGBE_SUCCESS;
   3041  1.1   dyoung }
   3042  1.1   dyoung 
   3043  1.1   dyoung /**
   3044  1.1   dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3045  1.1   dyoung  *  @hw: pointer to hardware structure
   3046  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3047  1.1   dyoung  *
   3048  1.1   dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3049  1.1   dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3050  1.1   dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3051  1.1   dyoung  *  upon for non-SFP connections, so we must call it here.
   3052  1.1   dyoung  **/
   3053  1.1   dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3054  1.1   dyoung {
   3055  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3056  1.1   dyoung 	u8 i;
   3057  1.1   dyoung 
   3058  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3059  1.1   dyoung 
   3060  1.1   dyoung 	/*
   3061  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3062  1.1   dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3063  1.1   dyoung 	 */
   3064  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3065  1.1   dyoung 
   3066  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3067  1.1   dyoung 		/*
   3068  1.1   dyoung 		 * No addresses available in this EEPROM.  It's not an
   3069  1.1   dyoung 		 * error though, so just wipe the local address and return.
   3070  1.1   dyoung 		 */
   3071  1.1   dyoung 		for (i = 0; i < 6; i++)
   3072  1.1   dyoung 			san_mac_addr[i] = 0xFF;
   3073  1.1   dyoung 
   3074  1.1   dyoung 		goto san_mac_addr_out;
   3075  1.1   dyoung 	}
   3076  1.1   dyoung 
   3077  1.1   dyoung 	/* make sure we know which port we need to program */
   3078  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3079  1.1   dyoung 	/* apply the port offset to the address offset */
   3080  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3081  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3082  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3083  1.1   dyoung 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
   3084  1.1   dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3085  1.1   dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3086  1.1   dyoung 		san_mac_offset++;
   3087  1.1   dyoung 	}
   3088  1.1   dyoung 
   3089  1.1   dyoung san_mac_addr_out:
   3090  1.1   dyoung 	return IXGBE_SUCCESS;
   3091  1.1   dyoung }
   3092  1.1   dyoung 
   3093  1.1   dyoung /**
   3094  1.1   dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3095  1.1   dyoung  *  @hw: pointer to hardware structure
   3096  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3097  1.1   dyoung  *
   3098  1.1   dyoung  *  Write a SAN MAC address to the EEPROM.
   3099  1.1   dyoung  **/
   3100  1.1   dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3101  1.1   dyoung {
   3102  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   3103  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3104  1.1   dyoung 	u8 i;
   3105  1.1   dyoung 
   3106  1.1   dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3107  1.1   dyoung 
   3108  1.1   dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3109  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3110  1.1   dyoung 
   3111  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3112  1.1   dyoung 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
   3113  1.1   dyoung 		goto san_mac_addr_out;
   3114  1.1   dyoung 	}
   3115  1.1   dyoung 
   3116  1.1   dyoung 	/* Make sure we know which port we need to write */
   3117  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3118  1.1   dyoung 	/* Apply the port offset to the address offset */
   3119  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3120  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3121  1.1   dyoung 
   3122  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3123  1.1   dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3124  1.1   dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3125  1.1   dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3126  1.1   dyoung 		san_mac_offset++;
   3127  1.1   dyoung 	}
   3128  1.1   dyoung 
   3129  1.1   dyoung san_mac_addr_out:
   3130  1.1   dyoung 	return status;
   3131  1.1   dyoung }
   3132  1.1   dyoung 
   3133  1.1   dyoung /**
   3134  1.1   dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3135  1.1   dyoung  *  @hw: pointer to hardware structure
   3136  1.1   dyoung  *
   3137  1.1   dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3138  1.1   dyoung  *  the capabilities table.
   3139  1.1   dyoung  **/
   3140  1.4  msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3141  1.1   dyoung {
   3142  1.4  msaitoh 	u16 msix_count = 1;
   3143  1.4  msaitoh 	u16 max_msix_count;
   3144  1.4  msaitoh 	u16 pcie_offset;
   3145  1.4  msaitoh 
   3146  1.4  msaitoh 	switch (hw->mac.type) {
   3147  1.4  msaitoh 	case ixgbe_mac_82598EB:
   3148  1.4  msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3149  1.4  msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3150  1.4  msaitoh 		break;
   3151  1.4  msaitoh 	case ixgbe_mac_82599EB:
   3152  1.4  msaitoh 	case ixgbe_mac_X540:
   3153  1.4  msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3154  1.4  msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3155  1.4  msaitoh 		break;
   3156  1.4  msaitoh 	default:
   3157  1.4  msaitoh 		return msix_count;
   3158  1.4  msaitoh 	}
   3159  1.1   dyoung 
   3160  1.1   dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3161  1.4  msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3162  1.4  msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3163  1.4  msaitoh 
   3164  1.4  msaitoh 	/* MSI-X count is zero-based in HW */
   3165  1.4  msaitoh 	msix_count++;
   3166  1.4  msaitoh 
   3167  1.4  msaitoh 	if (msix_count > max_msix_count)
   3168  1.4  msaitoh 		msix_count = max_msix_count;
   3169  1.1   dyoung 
   3170  1.1   dyoung 	return msix_count;
   3171  1.1   dyoung }
   3172  1.1   dyoung 
   3173  1.1   dyoung /**
   3174  1.1   dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3175  1.1   dyoung  *  @hw: pointer to hardware structure
   3176  1.1   dyoung  *  @addr: Address to put into receive address register
   3177  1.1   dyoung  *  @vmdq: VMDq pool to assign
   3178  1.1   dyoung  *
   3179  1.1   dyoung  *  Puts an ethernet address into a receive address register, or
   3180  1.1   dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3181  1.1   dyoung  **/
   3182  1.1   dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3183  1.1   dyoung {
   3184  1.1   dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3185  1.1   dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3186  1.1   dyoung 	u32 rar;
   3187  1.1   dyoung 	u32 rar_low, rar_high;
   3188  1.1   dyoung 	u32 addr_low, addr_high;
   3189  1.1   dyoung 
   3190  1.1   dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3191  1.1   dyoung 
   3192  1.1   dyoung 	/* swap bytes for HW little endian */
   3193  1.1   dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3194  1.1   dyoung 			    | (addr[2] << 16)
   3195  1.1   dyoung 			    | (addr[3] << 24);
   3196  1.1   dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3197  1.1   dyoung 
   3198  1.1   dyoung 	/*
   3199  1.1   dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3200  1.1   dyoung 	 * rar_highwater points to just after the highest currently used
   3201  1.1   dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3202  1.1   dyoung 	 * rar to the top.
   3203  1.1   dyoung 	 */
   3204  1.1   dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3205  1.1   dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3206  1.1   dyoung 
   3207  1.1   dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3208  1.1   dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3209  1.1   dyoung 			first_empty_rar = rar;
   3210  1.1   dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3211  1.1   dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3212  1.1   dyoung 			if (rar_low == addr_low)
   3213  1.1   dyoung 				break;    /* found it already in the rars */
   3214  1.1   dyoung 		}
   3215  1.1   dyoung 	}
   3216  1.1   dyoung 
   3217  1.1   dyoung 	if (rar < hw->mac.rar_highwater) {
   3218  1.1   dyoung 		/* already there so just add to the pool bits */
   3219  1.1   dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3220  1.1   dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3221  1.1   dyoung 		/* stick it into first empty RAR slot we found */
   3222  1.1   dyoung 		rar = first_empty_rar;
   3223  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3224  1.1   dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3225  1.1   dyoung 		/* add it to the top of the list and inc the highwater mark */
   3226  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3227  1.1   dyoung 		hw->mac.rar_highwater++;
   3228  1.1   dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3229  1.1   dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3230  1.1   dyoung 	}
   3231  1.1   dyoung 
   3232  1.1   dyoung 	/*
   3233  1.1   dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3234  1.1   dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3235  1.1   dyoung 	 */
   3236  1.1   dyoung 	if (rar == 0)
   3237  1.1   dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3238  1.1   dyoung 
   3239  1.1   dyoung 	return rar;
   3240  1.1   dyoung }
   3241  1.1   dyoung 
   3242  1.1   dyoung /**
   3243  1.1   dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3244  1.1   dyoung  *  @hw: pointer to hardware struct
   3245  1.1   dyoung  *  @rar: receive address register index to disassociate
   3246  1.1   dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3247  1.1   dyoung  **/
   3248  1.1   dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3249  1.1   dyoung {
   3250  1.1   dyoung 	u32 mpsar_lo, mpsar_hi;
   3251  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3252  1.1   dyoung 
   3253  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3254  1.1   dyoung 
   3255  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3256  1.1   dyoung 	if (rar >= rar_entries) {
   3257  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3258  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3259  1.1   dyoung 	}
   3260  1.1   dyoung 
   3261  1.1   dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3262  1.1   dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3263  1.1   dyoung 
   3264  1.1   dyoung 	if (!mpsar_lo && !mpsar_hi)
   3265  1.1   dyoung 		goto done;
   3266  1.1   dyoung 
   3267  1.1   dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3268  1.1   dyoung 		if (mpsar_lo) {
   3269  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3270  1.1   dyoung 			mpsar_lo = 0;
   3271  1.1   dyoung 		}
   3272  1.1   dyoung 		if (mpsar_hi) {
   3273  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3274  1.1   dyoung 			mpsar_hi = 0;
   3275  1.1   dyoung 		}
   3276  1.1   dyoung 	} else if (vmdq < 32) {
   3277  1.1   dyoung 		mpsar_lo &= ~(1 << vmdq);
   3278  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3279  1.1   dyoung 	} else {
   3280  1.1   dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3281  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3282  1.1   dyoung 	}
   3283  1.1   dyoung 
   3284  1.1   dyoung 	/* was that the last pool using this rar? */
   3285  1.1   dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3286  1.1   dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3287  1.1   dyoung done:
   3288  1.1   dyoung 	return IXGBE_SUCCESS;
   3289  1.1   dyoung }
   3290  1.1   dyoung 
   3291  1.1   dyoung /**
   3292  1.1   dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3293  1.1   dyoung  *  @hw: pointer to hardware struct
   3294  1.1   dyoung  *  @rar: receive address register index to associate with a VMDq index
   3295  1.1   dyoung  *  @vmdq: VMDq pool index
   3296  1.1   dyoung  **/
   3297  1.1   dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3298  1.1   dyoung {
   3299  1.1   dyoung 	u32 mpsar;
   3300  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3301  1.1   dyoung 
   3302  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3303  1.1   dyoung 
   3304  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3305  1.1   dyoung 	if (rar >= rar_entries) {
   3306  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3307  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3308  1.1   dyoung 	}
   3309  1.1   dyoung 
   3310  1.1   dyoung 	if (vmdq < 32) {
   3311  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3312  1.1   dyoung 		mpsar |= 1 << vmdq;
   3313  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3314  1.1   dyoung 	} else {
   3315  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3316  1.1   dyoung 		mpsar |= 1 << (vmdq - 32);
   3317  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3318  1.1   dyoung 	}
   3319  1.1   dyoung 	return IXGBE_SUCCESS;
   3320  1.1   dyoung }
   3321  1.1   dyoung 
   3322  1.1   dyoung /**
   3323  1.4  msaitoh  *  This function should only be involved in the IOV mode.
   3324  1.4  msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3325  1.4  msaitoh  *  VFs advertized and not 0.
   3326  1.4  msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3327  1.4  msaitoh  *
   3328  1.4  msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3329  1.4  msaitoh  *  @hw: pointer to hardware struct
   3330  1.4  msaitoh  *  @vmdq: VMDq pool index
   3331  1.4  msaitoh  **/
   3332  1.4  msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3333  1.4  msaitoh {
   3334  1.4  msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3335  1.4  msaitoh 
   3336  1.4  msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3337  1.4  msaitoh 
   3338  1.4  msaitoh 	if (vmdq < 32) {
   3339  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3340  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3341  1.4  msaitoh 	} else {
   3342  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3343  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3344  1.4  msaitoh 	}
   3345  1.4  msaitoh 
   3346  1.4  msaitoh 	return IXGBE_SUCCESS;
   3347  1.4  msaitoh }
   3348  1.4  msaitoh 
   3349  1.4  msaitoh /**
   3350  1.1   dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3351  1.1   dyoung  *  @hw: pointer to hardware structure
   3352  1.1   dyoung  **/
   3353  1.1   dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3354  1.1   dyoung {
   3355  1.1   dyoung 	int i;
   3356  1.1   dyoung 
   3357  1.1   dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3358  1.1   dyoung 	DEBUGOUT(" Clearing UTA\n");
   3359  1.1   dyoung 
   3360  1.1   dyoung 	for (i = 0; i < 128; i++)
   3361  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3362  1.1   dyoung 
   3363  1.1   dyoung 	return IXGBE_SUCCESS;
   3364  1.1   dyoung }
   3365  1.1   dyoung 
   3366  1.1   dyoung /**
   3367  1.1   dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3368  1.1   dyoung  *  @hw: pointer to hardware structure
   3369  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3370  1.1   dyoung  *
   3371  1.1   dyoung  *  return the VLVF index where this VLAN id should be placed
   3372  1.1   dyoung  *
   3373  1.1   dyoung  **/
   3374  1.1   dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3375  1.1   dyoung {
   3376  1.1   dyoung 	u32 bits = 0;
   3377  1.1   dyoung 	u32 first_empty_slot = 0;
   3378  1.1   dyoung 	s32 regindex;
   3379  1.1   dyoung 
   3380  1.1   dyoung 	/* short cut the special case */
   3381  1.1   dyoung 	if (vlan == 0)
   3382  1.1   dyoung 		return 0;
   3383  1.1   dyoung 
   3384  1.1   dyoung 	/*
   3385  1.1   dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3386  1.1   dyoung 	  * slot found along the way
   3387  1.1   dyoung 	  */
   3388  1.1   dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3389  1.1   dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3390  1.1   dyoung 		if (!bits && !(first_empty_slot))
   3391  1.1   dyoung 			first_empty_slot = regindex;
   3392  1.1   dyoung 		else if ((bits & 0x0FFF) == vlan)
   3393  1.1   dyoung 			break;
   3394  1.1   dyoung 	}
   3395  1.1   dyoung 
   3396  1.1   dyoung 	/*
   3397  1.1   dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3398  1.1   dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3399  1.1   dyoung 	  * vlan id.
   3400  1.1   dyoung 	  */
   3401  1.1   dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3402  1.1   dyoung 		if (first_empty_slot)
   3403  1.1   dyoung 			regindex = first_empty_slot;
   3404  1.1   dyoung 		else {
   3405  1.1   dyoung 			DEBUGOUT("No space in VLVF.\n");
   3406  1.1   dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3407  1.1   dyoung 		}
   3408  1.1   dyoung 	}
   3409  1.1   dyoung 
   3410  1.1   dyoung 	return regindex;
   3411  1.1   dyoung }
   3412  1.1   dyoung 
   3413  1.1   dyoung /**
   3414  1.1   dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3415  1.1   dyoung  *  @hw: pointer to hardware structure
   3416  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3417  1.1   dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3418  1.1   dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3419  1.1   dyoung  *
   3420  1.1   dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3421  1.1   dyoung  **/
   3422  1.1   dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3423  1.3  msaitoh 			   bool vlan_on)
   3424  1.1   dyoung {
   3425  1.1   dyoung 	s32 regindex;
   3426  1.1   dyoung 	u32 bitindex;
   3427  1.1   dyoung 	u32 vfta;
   3428  1.1   dyoung 	u32 targetbit;
   3429  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3430  1.1   dyoung 	bool vfta_changed = FALSE;
   3431  1.1   dyoung 
   3432  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3433  1.1   dyoung 
   3434  1.1   dyoung 	if (vlan > 4095)
   3435  1.1   dyoung 		return IXGBE_ERR_PARAM;
   3436  1.1   dyoung 
   3437  1.1   dyoung 	/*
   3438  1.1   dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3439  1.1   dyoung 	 * VLVF and VLVFB if VT Mode is set
   3440  1.1   dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3441  1.1   dyoung 	 */
   3442  1.1   dyoung 
   3443  1.1   dyoung 	/* Part 1
   3444  1.1   dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3445  1.1   dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3446  1.1   dyoung 	 *    bits[11-5]: which register
   3447  1.1   dyoung 	 *    bits[4-0]:  which bit in the register
   3448  1.1   dyoung 	 */
   3449  1.1   dyoung 	regindex = (vlan >> 5) & 0x7F;
   3450  1.1   dyoung 	bitindex = vlan & 0x1F;
   3451  1.1   dyoung 	targetbit = (1 << bitindex);
   3452  1.1   dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3453  1.1   dyoung 
   3454  1.1   dyoung 	if (vlan_on) {
   3455  1.1   dyoung 		if (!(vfta & targetbit)) {
   3456  1.1   dyoung 			vfta |= targetbit;
   3457  1.1   dyoung 			vfta_changed = TRUE;
   3458  1.1   dyoung 		}
   3459  1.1   dyoung 	} else {
   3460  1.1   dyoung 		if ((vfta & targetbit)) {
   3461  1.1   dyoung 			vfta &= ~targetbit;
   3462  1.1   dyoung 			vfta_changed = TRUE;
   3463  1.1   dyoung 		}
   3464  1.1   dyoung 	}
   3465  1.1   dyoung 
   3466  1.1   dyoung 	/* Part 2
   3467  1.3  msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3468  1.3  msaitoh 	 */
   3469  1.3  msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3470  1.3  msaitoh 					 &vfta_changed);
   3471  1.3  msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3472  1.3  msaitoh 		return ret_val;
   3473  1.3  msaitoh 
   3474  1.3  msaitoh 	if (vfta_changed)
   3475  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3476  1.3  msaitoh 
   3477  1.3  msaitoh 	return IXGBE_SUCCESS;
   3478  1.3  msaitoh }
   3479  1.3  msaitoh 
   3480  1.3  msaitoh /**
   3481  1.3  msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3482  1.3  msaitoh  *  @hw: pointer to hardware structure
   3483  1.3  msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3484  1.3  msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3485  1.3  msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3486  1.3  msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3487  1.3  msaitoh  *                 should be changed
   3488  1.3  msaitoh  *
   3489  1.3  msaitoh  *  Turn on/off specified bit in VLVF table.
   3490  1.3  msaitoh  **/
   3491  1.3  msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3492  1.3  msaitoh 			    bool vlan_on, bool *vfta_changed)
   3493  1.3  msaitoh {
   3494  1.3  msaitoh 	u32 vt;
   3495  1.3  msaitoh 
   3496  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3497  1.3  msaitoh 
   3498  1.3  msaitoh 	if (vlan > 4095)
   3499  1.3  msaitoh 		return IXGBE_ERR_PARAM;
   3500  1.3  msaitoh 
   3501  1.3  msaitoh 	/* If VT Mode is set
   3502  1.1   dyoung 	 *   Either vlan_on
   3503  1.1   dyoung 	 *     make sure the vlan is in VLVF
   3504  1.1   dyoung 	 *     set the vind bit in the matching VLVFB
   3505  1.1   dyoung 	 *   Or !vlan_on
   3506  1.1   dyoung 	 *     clear the pool bit and possibly the vind
   3507  1.1   dyoung 	 */
   3508  1.1   dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3509  1.1   dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3510  1.1   dyoung 		s32 vlvf_index;
   3511  1.3  msaitoh 		u32 bits;
   3512  1.1   dyoung 
   3513  1.1   dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3514  1.1   dyoung 		if (vlvf_index < 0)
   3515  1.1   dyoung 			return vlvf_index;
   3516  1.1   dyoung 
   3517  1.1   dyoung 		if (vlan_on) {
   3518  1.1   dyoung 			/* set the pool bit */
   3519  1.1   dyoung 			if (vind < 32) {
   3520  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3521  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3522  1.1   dyoung 				bits |= (1 << vind);
   3523  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3524  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3525  1.1   dyoung 						bits);
   3526  1.1   dyoung 			} else {
   3527  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3528  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3529  1.3  msaitoh 				bits |= (1 << (vind - 32));
   3530  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3531  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3532  1.3  msaitoh 					bits);
   3533  1.1   dyoung 			}
   3534  1.1   dyoung 		} else {
   3535  1.1   dyoung 			/* clear the pool bit */
   3536  1.1   dyoung 			if (vind < 32) {
   3537  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3538  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3539  1.1   dyoung 				bits &= ~(1 << vind);
   3540  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3541  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3542  1.1   dyoung 						bits);
   3543  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3544  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3545  1.1   dyoung 			} else {
   3546  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3547  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3548  1.3  msaitoh 				bits &= ~(1 << (vind - 32));
   3549  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3550  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3551  1.3  msaitoh 					bits);
   3552  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3553  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3554  1.1   dyoung 			}
   3555  1.1   dyoung 		}
   3556  1.1   dyoung 
   3557  1.1   dyoung 		/*
   3558  1.1   dyoung 		 * If there are still bits set in the VLVFB registers
   3559  1.1   dyoung 		 * for the VLAN ID indicated we need to see if the
   3560  1.1   dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3561  1.1   dyoung 		 * If the caller has requested that we clear the VFTA
   3562  1.1   dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3563  1.1   dyoung 		 * ID entry then ignore the request.  We're not worried
   3564  1.1   dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3565  1.1   dyoung 		 * entry bit on, only when requested to turn it off as
   3566  1.1   dyoung 		 * there may be multiple pools and/or VFs using the
   3567  1.1   dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   3568  1.1   dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3569  1.1   dyoung 		 * been cleared.  This will be indicated by "bits" being
   3570  1.1   dyoung 		 * zero.
   3571  1.1   dyoung 		 */
   3572  1.1   dyoung 		if (bits) {
   3573  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3574  1.1   dyoung 					(IXGBE_VLVF_VIEN | vlan));
   3575  1.3  msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   3576  1.1   dyoung 				/* someone wants to clear the vfta entry
   3577  1.1   dyoung 				 * but some pools/VFs are still using it.
   3578  1.1   dyoung 				 * Ignore it. */
   3579  1.3  msaitoh 				*vfta_changed = FALSE;
   3580  1.1   dyoung 			}
   3581  1.3  msaitoh 		} else
   3582  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3583  1.1   dyoung 	}
   3584  1.1   dyoung 
   3585  1.1   dyoung 	return IXGBE_SUCCESS;
   3586  1.1   dyoung }
   3587  1.1   dyoung 
   3588  1.1   dyoung /**
   3589  1.1   dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3590  1.1   dyoung  *  @hw: pointer to hardware structure
   3591  1.1   dyoung  *
   3592  1.1   dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3593  1.1   dyoung  **/
   3594  1.1   dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3595  1.1   dyoung {
   3596  1.1   dyoung 	u32 offset;
   3597  1.1   dyoung 
   3598  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3599  1.1   dyoung 
   3600  1.1   dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3601  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3602  1.1   dyoung 
   3603  1.1   dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3604  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3605  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   3606  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   3607  1.1   dyoung 	}
   3608  1.1   dyoung 
   3609  1.1   dyoung 	return IXGBE_SUCCESS;
   3610  1.1   dyoung }
   3611  1.1   dyoung 
   3612  1.1   dyoung /**
   3613  1.1   dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   3614  1.1   dyoung  *  @hw: pointer to hardware structure
   3615  1.1   dyoung  *  @speed: pointer to link speed
   3616  1.1   dyoung  *  @link_up: TRUE when link is up
   3617  1.1   dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   3618  1.1   dyoung  *
   3619  1.1   dyoung  *  Reads the links register to determine if link is up and the current speed
   3620  1.1   dyoung  **/
   3621  1.1   dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3622  1.3  msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   3623  1.1   dyoung {
   3624  1.1   dyoung 	u32 links_reg, links_orig;
   3625  1.1   dyoung 	u32 i;
   3626  1.1   dyoung 
   3627  1.1   dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   3628  1.1   dyoung 
   3629  1.1   dyoung 	/* clear the old state */
   3630  1.1   dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3631  1.1   dyoung 
   3632  1.1   dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3633  1.1   dyoung 
   3634  1.1   dyoung 	if (links_orig != links_reg) {
   3635  1.1   dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   3636  1.3  msaitoh 			  links_orig, links_reg);
   3637  1.1   dyoung 	}
   3638  1.1   dyoung 
   3639  1.1   dyoung 	if (link_up_wait_to_complete) {
   3640  1.1   dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3641  1.1   dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   3642  1.1   dyoung 				*link_up = TRUE;
   3643  1.1   dyoung 				break;
   3644  1.1   dyoung 			} else {
   3645  1.1   dyoung 				*link_up = FALSE;
   3646  1.1   dyoung 			}
   3647  1.1   dyoung 			msec_delay(100);
   3648  1.1   dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3649  1.1   dyoung 		}
   3650  1.1   dyoung 	} else {
   3651  1.1   dyoung 		if (links_reg & IXGBE_LINKS_UP)
   3652  1.1   dyoung 			*link_up = TRUE;
   3653  1.1   dyoung 		else
   3654  1.1   dyoung 			*link_up = FALSE;
   3655  1.1   dyoung 	}
   3656  1.1   dyoung 
   3657  1.1   dyoung 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3658  1.1   dyoung 	    IXGBE_LINKS_SPEED_10G_82599)
   3659  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3660  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3661  1.3  msaitoh 		 IXGBE_LINKS_SPEED_1G_82599)
   3662  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3663  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3664  1.3  msaitoh 		 IXGBE_LINKS_SPEED_100_82599)
   3665  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   3666  1.1   dyoung 	else
   3667  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3668  1.1   dyoung 
   3669  1.1   dyoung 	return IXGBE_SUCCESS;
   3670  1.1   dyoung }
   3671  1.1   dyoung 
   3672  1.1   dyoung /**
   3673  1.1   dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3674  1.1   dyoung  *  the EEPROM
   3675  1.1   dyoung  *  @hw: pointer to hardware structure
   3676  1.1   dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   3677  1.1   dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   3678  1.1   dyoung  *
   3679  1.1   dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   3680  1.1   dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   3681  1.1   dyoung  **/
   3682  1.1   dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3683  1.3  msaitoh 				 u16 *wwpn_prefix)
   3684  1.1   dyoung {
   3685  1.1   dyoung 	u16 offset, caps;
   3686  1.1   dyoung 	u16 alt_san_mac_blk_offset;
   3687  1.1   dyoung 
   3688  1.1   dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   3689  1.1   dyoung 
   3690  1.1   dyoung 	/* clear output first */
   3691  1.1   dyoung 	*wwnn_prefix = 0xFFFF;
   3692  1.1   dyoung 	*wwpn_prefix = 0xFFFF;
   3693  1.1   dyoung 
   3694  1.1   dyoung 	/* check if alternative SAN MAC is supported */
   3695  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
   3696  1.3  msaitoh 			    &alt_san_mac_blk_offset);
   3697  1.1   dyoung 
   3698  1.1   dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   3699  1.1   dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   3700  1.1   dyoung 		goto wwn_prefix_out;
   3701  1.1   dyoung 
   3702  1.1   dyoung 	/* check capability in alternative san mac address block */
   3703  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3704  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, &caps);
   3705  1.1   dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3706  1.1   dyoung 		goto wwn_prefix_out;
   3707  1.1   dyoung 
   3708  1.1   dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   3709  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3710  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
   3711  1.1   dyoung 
   3712  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3713  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
   3714  1.1   dyoung 
   3715  1.1   dyoung wwn_prefix_out:
   3716  1.1   dyoung 	return IXGBE_SUCCESS;
   3717  1.1   dyoung }
   3718  1.1   dyoung 
   3719  1.1   dyoung /**
   3720  1.1   dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   3721  1.1   dyoung  *  @hw: pointer to hardware structure
   3722  1.1   dyoung  *  @bs: the fcoe boot status
   3723  1.1   dyoung  *
   3724  1.1   dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   3725  1.1   dyoung  **/
   3726  1.1   dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   3727  1.1   dyoung {
   3728  1.1   dyoung 	u16 offset, caps, flags;
   3729  1.1   dyoung 	s32 status;
   3730  1.1   dyoung 
   3731  1.1   dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   3732  1.1   dyoung 
   3733  1.1   dyoung 	/* clear output first */
   3734  1.1   dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   3735  1.1   dyoung 
   3736  1.1   dyoung 	/* check if FCOE IBA block is present */
   3737  1.1   dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   3738  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   3739  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3740  1.1   dyoung 		goto out;
   3741  1.1   dyoung 
   3742  1.1   dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   3743  1.1   dyoung 		goto out;
   3744  1.1   dyoung 
   3745  1.1   dyoung 	/* check if iSCSI FCOE block is populated */
   3746  1.1   dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   3747  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3748  1.1   dyoung 		goto out;
   3749  1.1   dyoung 
   3750  1.1   dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   3751  1.1   dyoung 		goto out;
   3752  1.1   dyoung 
   3753  1.1   dyoung 	/* read fcoe flags in iSCSI FCOE block */
   3754  1.1   dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   3755  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   3756  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3757  1.1   dyoung 		goto out;
   3758  1.1   dyoung 
   3759  1.1   dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   3760  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   3761  1.1   dyoung 	else
   3762  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   3763  1.1   dyoung 
   3764  1.1   dyoung out:
   3765  1.1   dyoung 	return status;
   3766  1.1   dyoung }
   3767  1.1   dyoung 
   3768  1.1   dyoung /**
   3769  1.1   dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   3770  1.1   dyoung  *  @hw: pointer to hardware structure
   3771  1.1   dyoung  *  @enable: enable or disable switch for anti-spoofing
   3772  1.1   dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   3773  1.1   dyoung  *
   3774  1.1   dyoung  **/
   3775  1.1   dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   3776  1.1   dyoung {
   3777  1.1   dyoung 	int j;
   3778  1.1   dyoung 	int pf_target_reg = pf >> 3;
   3779  1.1   dyoung 	int pf_target_shift = pf % 8;
   3780  1.1   dyoung 	u32 pfvfspoof = 0;
   3781  1.1   dyoung 
   3782  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3783  1.1   dyoung 		return;
   3784  1.1   dyoung 
   3785  1.1   dyoung 	if (enable)
   3786  1.1   dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   3787  1.1   dyoung 
   3788  1.1   dyoung 	/*
   3789  1.1   dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   3790  1.1   dyoung 	 * MAC anti-spoof enables in each register array element.
   3791  1.1   dyoung 	 */
   3792  1.4  msaitoh 	for (j = 0; j < pf_target_reg; j++)
   3793  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3794  1.1   dyoung 
   3795  1.4  msaitoh 	/*
   3796  1.4  msaitoh 	 * The PF should be allowed to spoof so that it can support
   3797  1.4  msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   3798  1.4  msaitoh 	 */
   3799  1.4  msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   3800  1.4  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3801  1.1   dyoung 
   3802  1.1   dyoung 	/*
   3803  1.4  msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   3804  1.4  msaitoh 	 * anti-spoofing enabled.
   3805  1.1   dyoung 	 */
   3806  1.4  msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   3807  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   3808  1.1   dyoung }
   3809  1.1   dyoung 
   3810  1.1   dyoung /**
   3811  1.1   dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   3812  1.1   dyoung  *  @hw: pointer to hardware structure
   3813  1.1   dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   3814  1.1   dyoung  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   3815  1.1   dyoung  *
   3816  1.1   dyoung  **/
   3817  1.1   dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3818  1.1   dyoung {
   3819  1.1   dyoung 	int vf_target_reg = vf >> 3;
   3820  1.1   dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   3821  1.1   dyoung 	u32 pfvfspoof;
   3822  1.1   dyoung 
   3823  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   3824  1.1   dyoung 		return;
   3825  1.1   dyoung 
   3826  1.1   dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3827  1.1   dyoung 	if (enable)
   3828  1.1   dyoung 		pfvfspoof |= (1 << vf_target_shift);
   3829  1.1   dyoung 	else
   3830  1.1   dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   3831  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3832  1.1   dyoung }
   3833  1.1   dyoung 
   3834  1.1   dyoung /**
   3835  1.1   dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   3836  1.1   dyoung  *  @hw: pointer to hardware structure
   3837  1.1   dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   3838  1.1   dyoung  *
   3839  1.1   dyoung  *  This function will read the EEPROM location for the device capabilities,
   3840  1.1   dyoung  *  and return the word through device_caps.
   3841  1.1   dyoung  **/
   3842  1.1   dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   3843  1.1   dyoung {
   3844  1.1   dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   3845  1.1   dyoung 
   3846  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   3847  1.1   dyoung 
   3848  1.1   dyoung 	return IXGBE_SUCCESS;
   3849  1.1   dyoung }
   3850  1.1   dyoung 
   3851  1.1   dyoung /**
   3852  1.1   dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   3853  1.1   dyoung  *  @hw: pointer to hardware structure
   3854  1.1   dyoung  *
   3855  1.1   dyoung  **/
   3856  1.1   dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   3857  1.1   dyoung {
   3858  1.1   dyoung 	u32 regval;
   3859  1.1   dyoung 	u32 i;
   3860  1.1   dyoung 
   3861  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   3862  1.1   dyoung 
   3863  1.1   dyoung 	/* Enable relaxed ordering */
   3864  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   3865  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   3866  1.4  msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   3867  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   3868  1.1   dyoung 	}
   3869  1.1   dyoung 
   3870  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   3871  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   3872  1.4  msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   3873  1.4  msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   3874  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   3875  1.1   dyoung 	}
   3876  1.1   dyoung 
   3877  1.1   dyoung }
   3878  1.3  msaitoh 
   3879  1.3  msaitoh /**
   3880  1.3  msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   3881  1.3  msaitoh  *  @buffer: pointer to EEPROM
   3882  1.3  msaitoh  *  @length: size of EEPROM to calculate a checksum for
   3883  1.3  msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   3884  1.3  msaitoh  *  checksum calculated is returned.
   3885  1.3  msaitoh  **/
   3886  1.3  msaitoh static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   3887  1.3  msaitoh {
   3888  1.3  msaitoh 	u32 i;
   3889  1.3  msaitoh 	u8 sum = 0;
   3890  1.3  msaitoh 
   3891  1.3  msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   3892  1.3  msaitoh 
   3893  1.3  msaitoh 	if (!buffer)
   3894  1.3  msaitoh 		return 0;
   3895  1.3  msaitoh 
   3896  1.3  msaitoh 	for (i = 0; i < length; i++)
   3897  1.3  msaitoh 		sum += buffer[i];
   3898  1.3  msaitoh 
   3899  1.3  msaitoh 	return (u8) (0 - sum);
   3900  1.3  msaitoh }
   3901  1.3  msaitoh 
   3902  1.3  msaitoh /**
   3903  1.3  msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   3904  1.3  msaitoh  *  @hw: pointer to the HW structure
   3905  1.3  msaitoh  *  @buffer: contains the command to write and where the return status will
   3906  1.3  msaitoh  *   be placed
   3907  1.4  msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   3908  1.3  msaitoh  *
   3909  1.3  msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   3910  1.3  msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   3911  1.3  msaitoh  **/
   3912  1.3  msaitoh static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   3913  1.3  msaitoh 					u32 length)
   3914  1.3  msaitoh {
   3915  1.3  msaitoh 	u32 hicr, i, bi;
   3916  1.3  msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   3917  1.3  msaitoh 	u8 buf_len, dword_len;
   3918  1.3  msaitoh 
   3919  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3920  1.3  msaitoh 
   3921  1.3  msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   3922  1.3  msaitoh 
   3923  1.3  msaitoh 	if (length == 0 || length & 0x3 ||
   3924  1.3  msaitoh 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   3925  1.3  msaitoh 		DEBUGOUT("Buffer length failure.\n");
   3926  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3927  1.3  msaitoh 		goto out;
   3928  1.3  msaitoh 	}
   3929  1.3  msaitoh 
   3930  1.3  msaitoh 	/* Check that the host interface is enabled. */
   3931  1.3  msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3932  1.3  msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   3933  1.3  msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   3934  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3935  1.3  msaitoh 		goto out;
   3936  1.3  msaitoh 	}
   3937  1.3  msaitoh 
   3938  1.3  msaitoh 	/* Calculate length in DWORDs */
   3939  1.3  msaitoh 	dword_len = length >> 2;
   3940  1.3  msaitoh 
   3941  1.3  msaitoh 	/*
   3942  1.3  msaitoh 	 * The device driver writes the relevant command block
   3943  1.3  msaitoh 	 * into the ram area.
   3944  1.3  msaitoh 	 */
   3945  1.3  msaitoh 	for (i = 0; i < dword_len; i++)
   3946  1.3  msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   3947  1.3  msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   3948  1.3  msaitoh 
   3949  1.3  msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   3950  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   3951  1.3  msaitoh 
   3952  1.3  msaitoh 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
   3953  1.3  msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3954  1.3  msaitoh 		if (!(hicr & IXGBE_HICR_C))
   3955  1.3  msaitoh 			break;
   3956  1.3  msaitoh 		msec_delay(1);
   3957  1.3  msaitoh 	}
   3958  1.3  msaitoh 
   3959  1.3  msaitoh 	/* Check command successful completion. */
   3960  1.3  msaitoh 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
   3961  1.3  msaitoh 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
   3962  1.3  msaitoh 		DEBUGOUT("Command has failed with no status valid.\n");
   3963  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3964  1.3  msaitoh 		goto out;
   3965  1.3  msaitoh 	}
   3966  1.3  msaitoh 
   3967  1.3  msaitoh 	/* Calculate length in DWORDs */
   3968  1.3  msaitoh 	dword_len = hdr_size >> 2;
   3969  1.3  msaitoh 
   3970  1.3  msaitoh 	/* first pull in the header so we know the buffer length */
   3971  1.3  msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   3972  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3973  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3974  1.3  msaitoh 	}
   3975  1.3  msaitoh 
   3976  1.3  msaitoh 	/* If there is any thing in data position pull it in */
   3977  1.3  msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   3978  1.3  msaitoh 	if (buf_len == 0)
   3979  1.3  msaitoh 		goto out;
   3980  1.3  msaitoh 
   3981  1.3  msaitoh 	if (length < (buf_len + hdr_size)) {
   3982  1.3  msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   3983  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3984  1.3  msaitoh 		goto out;
   3985  1.3  msaitoh 	}
   3986  1.3  msaitoh 
   3987  1.3  msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   3988  1.3  msaitoh 	dword_len = (buf_len + 3) >> 2;
   3989  1.3  msaitoh 
   3990  1.3  msaitoh 	/* Pull in the rest of the buffer (bi is where we left off)*/
   3991  1.3  msaitoh 	for (; bi <= dword_len; bi++) {
   3992  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3993  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3994  1.3  msaitoh 	}
   3995  1.3  msaitoh 
   3996  1.3  msaitoh out:
   3997  1.3  msaitoh 	return ret_val;
   3998  1.3  msaitoh }
   3999  1.3  msaitoh 
   4000  1.3  msaitoh /**
   4001  1.3  msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4002  1.3  msaitoh  *  @hw: pointer to the HW structure
   4003  1.3  msaitoh  *  @maj: driver version major number
   4004  1.3  msaitoh  *  @min: driver version minor number
   4005  1.3  msaitoh  *  @build: driver version build number
   4006  1.3  msaitoh  *  @sub: driver version sub build number
   4007  1.3  msaitoh  *
   4008  1.3  msaitoh  *  Sends driver version number to firmware through the manageability
   4009  1.3  msaitoh  *  block.  On success return IXGBE_SUCCESS
   4010  1.3  msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4011  1.3  msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4012  1.3  msaitoh  **/
   4013  1.3  msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
   4014  1.3  msaitoh 				 u8 build, u8 sub)
   4015  1.3  msaitoh {
   4016  1.3  msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4017  1.3  msaitoh 	int i;
   4018  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4019  1.3  msaitoh 
   4020  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4021  1.3  msaitoh 
   4022  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4023  1.3  msaitoh 	    != IXGBE_SUCCESS) {
   4024  1.3  msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4025  1.3  msaitoh 		goto out;
   4026  1.3  msaitoh 	}
   4027  1.3  msaitoh 
   4028  1.3  msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4029  1.3  msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4030  1.3  msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4031  1.3  msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4032  1.3  msaitoh 	fw_cmd.ver_maj = maj;
   4033  1.3  msaitoh 	fw_cmd.ver_min = min;
   4034  1.3  msaitoh 	fw_cmd.ver_build = build;
   4035  1.3  msaitoh 	fw_cmd.ver_sub = sub;
   4036  1.3  msaitoh 	fw_cmd.hdr.checksum = 0;
   4037  1.3  msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4038  1.3  msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4039  1.3  msaitoh 	fw_cmd.pad = 0;
   4040  1.3  msaitoh 	fw_cmd.pad2 = 0;
   4041  1.3  msaitoh 
   4042  1.3  msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4043  1.3  msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4044  1.3  msaitoh 						       sizeof(fw_cmd));
   4045  1.3  msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4046  1.3  msaitoh 			continue;
   4047  1.3  msaitoh 
   4048  1.3  msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4049  1.3  msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4050  1.3  msaitoh 			ret_val = IXGBE_SUCCESS;
   4051  1.3  msaitoh 		else
   4052  1.3  msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4053  1.3  msaitoh 
   4054  1.3  msaitoh 		break;
   4055  1.3  msaitoh 	}
   4056  1.3  msaitoh 
   4057  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4058  1.3  msaitoh out:
   4059  1.3  msaitoh 	return ret_val;
   4060  1.3  msaitoh }
   4061  1.3  msaitoh 
   4062  1.3  msaitoh /**
   4063  1.3  msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4064  1.3  msaitoh  * @hw: pointer to hardware structure
   4065  1.3  msaitoh  * @num_pb: number of packet buffers to allocate
   4066  1.3  msaitoh  * @headroom: reserve n KB of headroom
   4067  1.3  msaitoh  * @strategy: packet buffer allocation strategy
   4068  1.3  msaitoh  **/
   4069  1.3  msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4070  1.3  msaitoh 			     int strategy)
   4071  1.3  msaitoh {
   4072  1.3  msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4073  1.3  msaitoh 	int i = 0;
   4074  1.3  msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4075  1.3  msaitoh 
   4076  1.3  msaitoh 	/* Reserve headroom */
   4077  1.3  msaitoh 	pbsize -= headroom;
   4078  1.3  msaitoh 
   4079  1.3  msaitoh 	if (!num_pb)
   4080  1.3  msaitoh 		num_pb = 1;
   4081  1.3  msaitoh 
   4082  1.3  msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4083  1.3  msaitoh 	 * buffers requested using supplied strategy.
   4084  1.3  msaitoh 	 */
   4085  1.3  msaitoh 	switch (strategy) {
   4086  1.4  msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4087  1.3  msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4088  1.3  msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4089  1.3  msaitoh 		 */
   4090  1.4  msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4091  1.3  msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4092  1.3  msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4093  1.3  msaitoh 		for (; i < (num_pb / 2); i++)
   4094  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4095  1.3  msaitoh 		/* Fall through to configure remaining packet buffers */
   4096  1.4  msaitoh 	case PBA_STRATEGY_EQUAL:
   4097  1.3  msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4098  1.3  msaitoh 		for (; i < num_pb; i++)
   4099  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4100  1.3  msaitoh 		break;
   4101  1.3  msaitoh 	default:
   4102  1.3  msaitoh 		break;
   4103  1.3  msaitoh 	}
   4104  1.3  msaitoh 
   4105  1.3  msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4106  1.3  msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4107  1.3  msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4108  1.3  msaitoh 	for (i = 0; i < num_pb; i++) {
   4109  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4110  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4111  1.3  msaitoh 	}
   4112  1.3  msaitoh 
   4113  1.3  msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4114  1.3  msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4115  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4116  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4117  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4118  1.3  msaitoh 	}
   4119  1.3  msaitoh }
   4120  1.3  msaitoh 
   4121  1.3  msaitoh /**
   4122  1.3  msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4123  1.3  msaitoh  * @hw: pointer to the hardware structure
   4124  1.3  msaitoh  *
   4125  1.3  msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4126  1.3  msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4127  1.3  msaitoh  * buffers on the system.
   4128  1.3  msaitoh  **/
   4129  1.3  msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4130  1.3  msaitoh {
   4131  1.3  msaitoh 	u32 gcr_ext, hlreg0;
   4132  1.3  msaitoh 
   4133  1.3  msaitoh 	/*
   4134  1.3  msaitoh 	 * If double reset is not requested then all transactions should
   4135  1.3  msaitoh 	 * already be clear and as such there is no work to do
   4136  1.3  msaitoh 	 */
   4137  1.3  msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4138  1.3  msaitoh 		return;
   4139  1.3  msaitoh 
   4140  1.3  msaitoh 	/*
   4141  1.3  msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4142  1.3  msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4143  1.3  msaitoh 	 * has already been cleared.
   4144  1.3  msaitoh 	 */
   4145  1.3  msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4146  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4147  1.3  msaitoh 
   4148  1.3  msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4149  1.3  msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4150  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4151  1.3  msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4152  1.3  msaitoh 
   4153  1.3  msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4154  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4155  1.3  msaitoh 	usec_delay(20);
   4156  1.3  msaitoh 
   4157  1.3  msaitoh 	/* restore previous register values */
   4158  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4159  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4160  1.3  msaitoh }
   4161  1.3  msaitoh 
   4162