ixgbe_common.c revision 1.4 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.3 msaitoh Copyright (c) 2001-2012, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.4 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 238149 2012-07-05 20:51:44Z jfv $*/
34 1.3 msaitoh /*$NetBSD: ixgbe_common.c,v 1.4 2015/04/02 09:26:55 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.1 dyoung #include "ixgbe_api.h"
39 1.1 dyoung
40 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
41 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
42 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
46 1.3 msaitoh u16 count);
47 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
48 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung
52 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
54 1.3 msaitoh u16 *san_mac_offset);
55 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
56 1.3 msaitoh u16 words, u16 *data);
57 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
60 1.3 msaitoh u16 offset);
61 1.1 dyoung
62 1.1 dyoung /**
63 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
64 1.1 dyoung * @hw: pointer to the hardware structure
65 1.1 dyoung *
66 1.1 dyoung * Initialize the function pointers.
67 1.1 dyoung **/
68 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
69 1.1 dyoung {
70 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
71 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
72 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
73 1.1 dyoung
74 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
75 1.1 dyoung
76 1.1 dyoung /* EEPROM */
77 1.1 dyoung eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
78 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
79 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
80 1.1 dyoung eeprom->ops.read = &ixgbe_read_eerd_generic;
81 1.3 msaitoh eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
82 1.3 msaitoh } else {
83 1.1 dyoung eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
84 1.3 msaitoh eeprom->ops.read_buffer =
85 1.3 msaitoh &ixgbe_read_eeprom_buffer_bit_bang_generic;
86 1.3 msaitoh }
87 1.1 dyoung eeprom->ops.write = &ixgbe_write_eeprom_generic;
88 1.3 msaitoh eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
89 1.1 dyoung eeprom->ops.validate_checksum =
90 1.3 msaitoh &ixgbe_validate_eeprom_checksum_generic;
91 1.1 dyoung eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
92 1.1 dyoung eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
93 1.1 dyoung
94 1.1 dyoung /* MAC */
95 1.1 dyoung mac->ops.init_hw = &ixgbe_init_hw_generic;
96 1.1 dyoung mac->ops.reset_hw = NULL;
97 1.1 dyoung mac->ops.start_hw = &ixgbe_start_hw_generic;
98 1.1 dyoung mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
99 1.1 dyoung mac->ops.get_media_type = NULL;
100 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
101 1.1 dyoung mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
102 1.1 dyoung mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
103 1.1 dyoung mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
104 1.1 dyoung mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
105 1.1 dyoung mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
106 1.1 dyoung mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
107 1.1 dyoung mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
108 1.1 dyoung
109 1.1 dyoung /* LEDs */
110 1.1 dyoung mac->ops.led_on = &ixgbe_led_on_generic;
111 1.1 dyoung mac->ops.led_off = &ixgbe_led_off_generic;
112 1.1 dyoung mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
113 1.1 dyoung mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
114 1.1 dyoung
115 1.1 dyoung /* RAR, Multicast, VLAN */
116 1.1 dyoung mac->ops.set_rar = &ixgbe_set_rar_generic;
117 1.1 dyoung mac->ops.clear_rar = &ixgbe_clear_rar_generic;
118 1.1 dyoung mac->ops.insert_mac_addr = NULL;
119 1.1 dyoung mac->ops.set_vmdq = NULL;
120 1.1 dyoung mac->ops.clear_vmdq = NULL;
121 1.1 dyoung mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
122 1.1 dyoung mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
123 1.1 dyoung mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
124 1.1 dyoung mac->ops.enable_mc = &ixgbe_enable_mc_generic;
125 1.1 dyoung mac->ops.disable_mc = &ixgbe_disable_mc_generic;
126 1.1 dyoung mac->ops.clear_vfta = NULL;
127 1.1 dyoung mac->ops.set_vfta = NULL;
128 1.3 msaitoh mac->ops.set_vlvf = NULL;
129 1.1 dyoung mac->ops.init_uta_tables = NULL;
130 1.1 dyoung
131 1.1 dyoung /* Flow Control */
132 1.1 dyoung mac->ops.fc_enable = &ixgbe_fc_enable_generic;
133 1.1 dyoung
134 1.1 dyoung /* Link */
135 1.1 dyoung mac->ops.get_link_capabilities = NULL;
136 1.1 dyoung mac->ops.setup_link = NULL;
137 1.1 dyoung mac->ops.check_link = NULL;
138 1.1 dyoung
139 1.1 dyoung return IXGBE_SUCCESS;
140 1.1 dyoung }
141 1.1 dyoung
142 1.1 dyoung /**
143 1.4 msaitoh * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
144 1.4 msaitoh * control
145 1.4 msaitoh * @hw: pointer to hardware structure
146 1.4 msaitoh *
147 1.4 msaitoh * There are several phys that do not support autoneg flow control. This
148 1.4 msaitoh * function check the device id to see if the associated phy supports
149 1.4 msaitoh * autoneg flow control.
150 1.4 msaitoh **/
151 1.4 msaitoh static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
152 1.4 msaitoh {
153 1.4 msaitoh
154 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
155 1.4 msaitoh
156 1.4 msaitoh switch (hw->device_id) {
157 1.4 msaitoh case IXGBE_DEV_ID_X540T:
158 1.4 msaitoh case IXGBE_DEV_ID_X540T1:
159 1.4 msaitoh return IXGBE_SUCCESS;
160 1.4 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
161 1.4 msaitoh return IXGBE_SUCCESS;
162 1.4 msaitoh default:
163 1.4 msaitoh return IXGBE_ERR_FC_NOT_SUPPORTED;
164 1.4 msaitoh }
165 1.4 msaitoh }
166 1.4 msaitoh
167 1.4 msaitoh /**
168 1.4 msaitoh * ixgbe_setup_fc - Set up flow control
169 1.4 msaitoh * @hw: pointer to hardware structure
170 1.4 msaitoh *
171 1.4 msaitoh * Called at init time to set up flow control.
172 1.4 msaitoh **/
173 1.4 msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
174 1.4 msaitoh {
175 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
176 1.4 msaitoh u32 reg = 0, reg_bp = 0;
177 1.4 msaitoh u16 reg_cu = 0;
178 1.4 msaitoh
179 1.4 msaitoh DEBUGFUNC("ixgbe_setup_fc");
180 1.4 msaitoh
181 1.4 msaitoh /*
182 1.4 msaitoh * Validate the requested mode. Strict IEEE mode does not allow
183 1.4 msaitoh * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
184 1.4 msaitoh */
185 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
186 1.4 msaitoh DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
187 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
188 1.4 msaitoh goto out;
189 1.4 msaitoh }
190 1.4 msaitoh
191 1.4 msaitoh /*
192 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
193 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
194 1.4 msaitoh */
195 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
196 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
197 1.4 msaitoh
198 1.4 msaitoh /*
199 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
200 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
201 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
202 1.4 msaitoh */
203 1.4 msaitoh switch (hw->phy.media_type) {
204 1.4 msaitoh case ixgbe_media_type_fiber:
205 1.4 msaitoh case ixgbe_media_type_backplane:
206 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
207 1.4 msaitoh reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
208 1.4 msaitoh break;
209 1.4 msaitoh case ixgbe_media_type_copper:
210 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
211 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
212 1.4 msaitoh break;
213 1.4 msaitoh default:
214 1.4 msaitoh break;
215 1.4 msaitoh }
216 1.4 msaitoh
217 1.4 msaitoh /*
218 1.4 msaitoh * The possible values of fc.requested_mode are:
219 1.4 msaitoh * 0: Flow control is completely disabled
220 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
221 1.4 msaitoh * but not send pause frames).
222 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
223 1.4 msaitoh * we do not support receiving pause frames).
224 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
225 1.4 msaitoh * other: Invalid.
226 1.4 msaitoh */
227 1.4 msaitoh switch (hw->fc.requested_mode) {
228 1.4 msaitoh case ixgbe_fc_none:
229 1.4 msaitoh /* Flow control completely disabled by software override. */
230 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
231 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
232 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
233 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
234 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
235 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
236 1.4 msaitoh break;
237 1.4 msaitoh case ixgbe_fc_tx_pause:
238 1.4 msaitoh /*
239 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
240 1.4 msaitoh * disabled by software override.
241 1.4 msaitoh */
242 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
243 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
244 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
245 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
246 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
247 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
248 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
249 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
250 1.4 msaitoh }
251 1.4 msaitoh break;
252 1.4 msaitoh case ixgbe_fc_rx_pause:
253 1.4 msaitoh /*
254 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
255 1.4 msaitoh * disabled by software override. Since there really
256 1.4 msaitoh * isn't a way to advertise that we are capable of RX
257 1.4 msaitoh * Pause ONLY, we will advertise that we support both
258 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
259 1.4 msaitoh * through to the fc_full statement. Later, we will
260 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
261 1.4 msaitoh */
262 1.4 msaitoh case ixgbe_fc_full:
263 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
264 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
265 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
266 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
267 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
268 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
269 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
270 1.4 msaitoh break;
271 1.4 msaitoh default:
272 1.4 msaitoh DEBUGOUT("Flow control param set incorrectly\n");
273 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
274 1.4 msaitoh goto out;
275 1.4 msaitoh break;
276 1.4 msaitoh }
277 1.4 msaitoh
278 1.4 msaitoh if (hw->mac.type != ixgbe_mac_X540) {
279 1.4 msaitoh /*
280 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
281 1.4 msaitoh * the MAC will advertise clause 37 flow control.
282 1.4 msaitoh */
283 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
284 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
285 1.4 msaitoh
286 1.4 msaitoh /* Disable AN timeout */
287 1.4 msaitoh if (hw->fc.strict_ieee)
288 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
289 1.4 msaitoh
290 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
291 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
292 1.4 msaitoh }
293 1.4 msaitoh
294 1.4 msaitoh /*
295 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
296 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
297 1.4 msaitoh *
298 1.4 msaitoh */
299 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
300 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
301 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
302 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
303 1.4 msaitoh (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
304 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
305 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
306 1.4 msaitoh }
307 1.4 msaitoh
308 1.4 msaitoh DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
309 1.4 msaitoh out:
310 1.4 msaitoh return ret_val;
311 1.4 msaitoh }
312 1.4 msaitoh
313 1.4 msaitoh /**
314 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
315 1.1 dyoung * @hw: pointer to hardware structure
316 1.1 dyoung *
317 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
318 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
319 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
320 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
321 1.1 dyoung **/
322 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
323 1.1 dyoung {
324 1.4 msaitoh s32 ret_val;
325 1.1 dyoung u32 ctrl_ext;
326 1.1 dyoung
327 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
328 1.1 dyoung
329 1.1 dyoung /* Set the media type */
330 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
331 1.1 dyoung
332 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
333 1.1 dyoung
334 1.1 dyoung /* Clear the VLAN filter table */
335 1.1 dyoung hw->mac.ops.clear_vfta(hw);
336 1.1 dyoung
337 1.1 dyoung /* Clear statistics registers */
338 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
339 1.1 dyoung
340 1.1 dyoung /* Set No Snoop Disable */
341 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
342 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
343 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
344 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
345 1.1 dyoung
346 1.1 dyoung /* Setup flow control */
347 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
348 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
349 1.4 msaitoh goto out;
350 1.1 dyoung
351 1.1 dyoung /* Clear adapter stopped flag */
352 1.1 dyoung hw->adapter_stopped = FALSE;
353 1.1 dyoung
354 1.4 msaitoh out:
355 1.4 msaitoh return ret_val;
356 1.1 dyoung }
357 1.1 dyoung
358 1.1 dyoung /**
359 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
360 1.1 dyoung * @hw: pointer to hw structure
361 1.1 dyoung *
362 1.1 dyoung * Performs the init sequence common to the second generation
363 1.1 dyoung * of 10 GbE devices.
364 1.1 dyoung * Devices in the second generation:
365 1.1 dyoung * 82599
366 1.1 dyoung * X540
367 1.1 dyoung **/
368 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
369 1.1 dyoung {
370 1.1 dyoung u32 i;
371 1.1 dyoung u32 regval;
372 1.1 dyoung
373 1.1 dyoung /* Clear the rate limiters */
374 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
375 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
376 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
377 1.1 dyoung }
378 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
379 1.1 dyoung
380 1.1 dyoung /* Disable relaxed ordering */
381 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
382 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
383 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
384 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
385 1.1 dyoung }
386 1.1 dyoung
387 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
388 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
389 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
390 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
391 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
392 1.1 dyoung }
393 1.1 dyoung
394 1.1 dyoung return IXGBE_SUCCESS;
395 1.1 dyoung }
396 1.1 dyoung
397 1.1 dyoung /**
398 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
399 1.1 dyoung * @hw: pointer to hardware structure
400 1.1 dyoung *
401 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
402 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
403 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
404 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
405 1.1 dyoung * disabled and uninitialized
406 1.1 dyoung **/
407 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
408 1.1 dyoung {
409 1.1 dyoung s32 status;
410 1.1 dyoung
411 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
412 1.1 dyoung
413 1.1 dyoung /* Reset the hardware */
414 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
415 1.1 dyoung
416 1.1 dyoung if (status == IXGBE_SUCCESS) {
417 1.1 dyoung /* Start the HW */
418 1.1 dyoung status = hw->mac.ops.start_hw(hw);
419 1.1 dyoung }
420 1.1 dyoung
421 1.1 dyoung return status;
422 1.1 dyoung }
423 1.1 dyoung
424 1.1 dyoung /**
425 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
426 1.1 dyoung * @hw: pointer to hardware structure
427 1.1 dyoung *
428 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
429 1.1 dyoung * Statistics counters are clear on read.
430 1.1 dyoung **/
431 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
432 1.1 dyoung {
433 1.1 dyoung u16 i = 0;
434 1.1 dyoung
435 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
436 1.1 dyoung
437 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
438 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
439 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
440 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
441 1.1 dyoung for (i = 0; i < 8; i++)
442 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
443 1.1 dyoung
444 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
445 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
446 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
447 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
448 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
449 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
450 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
451 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
452 1.1 dyoung } else {
453 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
454 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
455 1.1 dyoung }
456 1.1 dyoung
457 1.1 dyoung for (i = 0; i < 8; i++) {
458 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
459 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
460 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
461 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
462 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
463 1.1 dyoung } else {
464 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
465 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
466 1.1 dyoung }
467 1.1 dyoung }
468 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
469 1.1 dyoung for (i = 0; i < 8; i++)
470 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
471 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
472 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
473 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
474 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
475 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
476 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
477 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
478 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
479 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
480 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
481 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
482 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
483 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
484 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
485 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
486 1.3 msaitoh for (i = 0; i < 8; i++)
487 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
488 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
489 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
490 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
491 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
493 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
498 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
500 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
506 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
507 1.1 dyoung for (i = 0; i < 16; i++) {
508 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
509 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
510 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
512 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
513 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
514 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
516 1.1 dyoung } else {
517 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
518 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
519 1.1 dyoung }
520 1.1 dyoung }
521 1.1 dyoung
522 1.3 msaitoh if (hw->mac.type == ixgbe_mac_X540) {
523 1.3 msaitoh if (hw->phy.id == 0)
524 1.3 msaitoh ixgbe_identify_phy(hw);
525 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
526 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
527 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
528 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
529 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
530 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
531 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
532 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
533 1.3 msaitoh }
534 1.3 msaitoh
535 1.1 dyoung return IXGBE_SUCCESS;
536 1.1 dyoung }
537 1.1 dyoung
538 1.1 dyoung /**
539 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
540 1.1 dyoung * @hw: pointer to hardware structure
541 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
542 1.1 dyoung * @pba_num_size: part number string buffer length
543 1.1 dyoung *
544 1.1 dyoung * Reads the part number string from the EEPROM.
545 1.1 dyoung **/
546 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
547 1.3 msaitoh u32 pba_num_size)
548 1.1 dyoung {
549 1.1 dyoung s32 ret_val;
550 1.1 dyoung u16 data;
551 1.1 dyoung u16 pba_ptr;
552 1.1 dyoung u16 offset;
553 1.1 dyoung u16 length;
554 1.1 dyoung
555 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
556 1.1 dyoung
557 1.1 dyoung if (pba_num == NULL) {
558 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
559 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
560 1.1 dyoung }
561 1.1 dyoung
562 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
563 1.1 dyoung if (ret_val) {
564 1.1 dyoung DEBUGOUT("NVM Read Error\n");
565 1.1 dyoung return ret_val;
566 1.1 dyoung }
567 1.1 dyoung
568 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
569 1.1 dyoung if (ret_val) {
570 1.1 dyoung DEBUGOUT("NVM Read Error\n");
571 1.1 dyoung return ret_val;
572 1.1 dyoung }
573 1.1 dyoung
574 1.1 dyoung /*
575 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
576 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
577 1.1 dyoung * and we can decode it into an ascii string
578 1.1 dyoung */
579 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
580 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
581 1.1 dyoung
582 1.1 dyoung /* we will need 11 characters to store the PBA */
583 1.1 dyoung if (pba_num_size < 11) {
584 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
585 1.1 dyoung return IXGBE_ERR_NO_SPACE;
586 1.1 dyoung }
587 1.1 dyoung
588 1.1 dyoung /* extract hex string from data and pba_ptr */
589 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
590 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
591 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
592 1.1 dyoung pba_num[3] = data & 0xF;
593 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
594 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
595 1.1 dyoung pba_num[6] = '-';
596 1.1 dyoung pba_num[7] = 0;
597 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
598 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
599 1.1 dyoung
600 1.1 dyoung /* put a null character on the end of our string */
601 1.1 dyoung pba_num[10] = '\0';
602 1.1 dyoung
603 1.1 dyoung /* switch all the data but the '-' to hex char */
604 1.1 dyoung for (offset = 0; offset < 10; offset++) {
605 1.1 dyoung if (pba_num[offset] < 0xA)
606 1.1 dyoung pba_num[offset] += '0';
607 1.1 dyoung else if (pba_num[offset] < 0x10)
608 1.1 dyoung pba_num[offset] += 'A' - 0xA;
609 1.1 dyoung }
610 1.1 dyoung
611 1.1 dyoung return IXGBE_SUCCESS;
612 1.1 dyoung }
613 1.1 dyoung
614 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
615 1.1 dyoung if (ret_val) {
616 1.1 dyoung DEBUGOUT("NVM Read Error\n");
617 1.1 dyoung return ret_val;
618 1.1 dyoung }
619 1.1 dyoung
620 1.1 dyoung if (length == 0xFFFF || length == 0) {
621 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
622 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
623 1.1 dyoung }
624 1.1 dyoung
625 1.1 dyoung /* check if pba_num buffer is big enough */
626 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
627 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
628 1.1 dyoung return IXGBE_ERR_NO_SPACE;
629 1.1 dyoung }
630 1.1 dyoung
631 1.1 dyoung /* trim pba length from start of string */
632 1.1 dyoung pba_ptr++;
633 1.1 dyoung length--;
634 1.1 dyoung
635 1.1 dyoung for (offset = 0; offset < length; offset++) {
636 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
637 1.1 dyoung if (ret_val) {
638 1.1 dyoung DEBUGOUT("NVM Read Error\n");
639 1.1 dyoung return ret_val;
640 1.1 dyoung }
641 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
642 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
643 1.1 dyoung }
644 1.1 dyoung pba_num[offset * 2] = '\0';
645 1.1 dyoung
646 1.1 dyoung return IXGBE_SUCCESS;
647 1.1 dyoung }
648 1.1 dyoung
649 1.1 dyoung /**
650 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
651 1.1 dyoung * @hw: pointer to hardware structure
652 1.1 dyoung * @pba_num: stores the part number from the EEPROM
653 1.1 dyoung *
654 1.1 dyoung * Reads the part number from the EEPROM.
655 1.1 dyoung **/
656 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
657 1.1 dyoung {
658 1.1 dyoung s32 ret_val;
659 1.1 dyoung u16 data;
660 1.1 dyoung
661 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
662 1.1 dyoung
663 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
664 1.1 dyoung if (ret_val) {
665 1.1 dyoung DEBUGOUT("NVM Read Error\n");
666 1.1 dyoung return ret_val;
667 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
668 1.1 dyoung DEBUGOUT("NVM Not supported\n");
669 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
670 1.1 dyoung }
671 1.1 dyoung *pba_num = (u32)(data << 16);
672 1.1 dyoung
673 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
674 1.1 dyoung if (ret_val) {
675 1.1 dyoung DEBUGOUT("NVM Read Error\n");
676 1.1 dyoung return ret_val;
677 1.1 dyoung }
678 1.1 dyoung *pba_num |= data;
679 1.1 dyoung
680 1.1 dyoung return IXGBE_SUCCESS;
681 1.1 dyoung }
682 1.1 dyoung
683 1.1 dyoung /**
684 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
685 1.1 dyoung * @hw: pointer to hardware structure
686 1.1 dyoung * @mac_addr: Adapter MAC address
687 1.1 dyoung *
688 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
689 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
690 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
691 1.1 dyoung **/
692 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
693 1.1 dyoung {
694 1.1 dyoung u32 rar_high;
695 1.1 dyoung u32 rar_low;
696 1.1 dyoung u16 i;
697 1.1 dyoung
698 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
699 1.1 dyoung
700 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
701 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
702 1.1 dyoung
703 1.1 dyoung for (i = 0; i < 4; i++)
704 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
705 1.1 dyoung
706 1.1 dyoung for (i = 0; i < 2; i++)
707 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
708 1.1 dyoung
709 1.1 dyoung return IXGBE_SUCCESS;
710 1.1 dyoung }
711 1.1 dyoung
712 1.1 dyoung /**
713 1.1 dyoung * ixgbe_get_bus_info_generic - Generic set PCI bus info
714 1.1 dyoung * @hw: pointer to hardware structure
715 1.1 dyoung *
716 1.1 dyoung * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
717 1.1 dyoung **/
718 1.1 dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
719 1.1 dyoung {
720 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
721 1.1 dyoung u16 link_status;
722 1.1 dyoung
723 1.1 dyoung DEBUGFUNC("ixgbe_get_bus_info_generic");
724 1.1 dyoung
725 1.1 dyoung hw->bus.type = ixgbe_bus_type_pci_express;
726 1.1 dyoung
727 1.1 dyoung /* Get the negotiated link width and speed from PCI config space */
728 1.1 dyoung link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
729 1.1 dyoung
730 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
731 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
732 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
733 1.1 dyoung break;
734 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
735 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
736 1.1 dyoung break;
737 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
738 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
739 1.1 dyoung break;
740 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
741 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
742 1.1 dyoung break;
743 1.1 dyoung default:
744 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
745 1.1 dyoung break;
746 1.1 dyoung }
747 1.1 dyoung
748 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
749 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
750 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
751 1.1 dyoung break;
752 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
753 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
754 1.1 dyoung break;
755 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
756 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
757 1.4 msaitoh break;
758 1.1 dyoung default:
759 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
760 1.1 dyoung break;
761 1.1 dyoung }
762 1.1 dyoung
763 1.1 dyoung mac->ops.set_lan_id(hw);
764 1.1 dyoung
765 1.1 dyoung return IXGBE_SUCCESS;
766 1.1 dyoung }
767 1.1 dyoung
768 1.1 dyoung /**
769 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
770 1.1 dyoung * @hw: pointer to the HW structure
771 1.1 dyoung *
772 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
773 1.1 dyoung * and swaps the port value if requested.
774 1.1 dyoung **/
775 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
776 1.1 dyoung {
777 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
778 1.1 dyoung u32 reg;
779 1.1 dyoung
780 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
781 1.1 dyoung
782 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
783 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
784 1.1 dyoung bus->lan_id = bus->func;
785 1.1 dyoung
786 1.1 dyoung /* check for a port swap */
787 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
788 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
789 1.1 dyoung bus->func ^= 0x1;
790 1.1 dyoung }
791 1.1 dyoung
792 1.1 dyoung /**
793 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
794 1.1 dyoung * @hw: pointer to hardware structure
795 1.1 dyoung *
796 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
797 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
798 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
799 1.1 dyoung * state and should not touch the hardware.
800 1.1 dyoung **/
801 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
802 1.1 dyoung {
803 1.1 dyoung u32 reg_val;
804 1.1 dyoung u16 i;
805 1.1 dyoung
806 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
807 1.1 dyoung
808 1.1 dyoung /*
809 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
810 1.1 dyoung * the hardware
811 1.1 dyoung */
812 1.1 dyoung hw->adapter_stopped = TRUE;
813 1.1 dyoung
814 1.1 dyoung /* Disable the receive unit */
815 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
816 1.1 dyoung
817 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
818 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
819 1.1 dyoung
820 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
821 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
822 1.1 dyoung
823 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
824 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
825 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
826 1.3 msaitoh
827 1.3 msaitoh /* Disable the receive unit by stopping each queue */
828 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
829 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
830 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
831 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
832 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
833 1.1 dyoung }
834 1.1 dyoung
835 1.3 msaitoh /* flush all queues disables */
836 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
837 1.3 msaitoh msec_delay(2);
838 1.3 msaitoh
839 1.1 dyoung /*
840 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
841 1.1 dyoung * access and verify no pending requests
842 1.1 dyoung */
843 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
844 1.1 dyoung }
845 1.1 dyoung
846 1.1 dyoung /**
847 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
848 1.1 dyoung * @hw: pointer to hardware structure
849 1.1 dyoung * @index: led number to turn on
850 1.1 dyoung **/
851 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
852 1.1 dyoung {
853 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
854 1.1 dyoung
855 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
856 1.1 dyoung
857 1.1 dyoung /* To turn on the LED, set mode to ON. */
858 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
859 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
860 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
861 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
862 1.1 dyoung
863 1.1 dyoung return IXGBE_SUCCESS;
864 1.1 dyoung }
865 1.1 dyoung
866 1.1 dyoung /**
867 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
868 1.1 dyoung * @hw: pointer to hardware structure
869 1.1 dyoung * @index: led number to turn off
870 1.1 dyoung **/
871 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
872 1.1 dyoung {
873 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
874 1.1 dyoung
875 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
876 1.1 dyoung
877 1.1 dyoung /* To turn off the LED, set mode to OFF. */
878 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
879 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
880 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
881 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
882 1.1 dyoung
883 1.1 dyoung return IXGBE_SUCCESS;
884 1.1 dyoung }
885 1.1 dyoung
886 1.1 dyoung /**
887 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
888 1.1 dyoung * @hw: pointer to hardware structure
889 1.1 dyoung *
890 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
891 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
892 1.1 dyoung **/
893 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
894 1.1 dyoung {
895 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
896 1.1 dyoung u32 eec;
897 1.1 dyoung u16 eeprom_size;
898 1.1 dyoung
899 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
900 1.1 dyoung
901 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
902 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
903 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
904 1.1 dyoung * tested value */
905 1.1 dyoung eeprom->semaphore_delay = 10;
906 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
907 1.3 msaitoh eeprom->word_page_size = 0;
908 1.1 dyoung
909 1.1 dyoung /*
910 1.1 dyoung * Check for EEPROM present first.
911 1.1 dyoung * If not present leave as none
912 1.1 dyoung */
913 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
914 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
915 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
916 1.1 dyoung
917 1.1 dyoung /*
918 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
919 1.1 dyoung * change if a future EEPROM is not SPI.
920 1.1 dyoung */
921 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
922 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
923 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
924 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
925 1.1 dyoung }
926 1.1 dyoung
927 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
928 1.1 dyoung eeprom->address_bits = 16;
929 1.1 dyoung else
930 1.1 dyoung eeprom->address_bits = 8;
931 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
932 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
933 1.3 msaitoh eeprom->address_bits);
934 1.1 dyoung }
935 1.1 dyoung
936 1.1 dyoung return IXGBE_SUCCESS;
937 1.1 dyoung }
938 1.1 dyoung
939 1.1 dyoung /**
940 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
941 1.3 msaitoh * @hw: pointer to hardware structure
942 1.3 msaitoh * @offset: offset within the EEPROM to write
943 1.3 msaitoh * @words: number of word(s)
944 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
945 1.3 msaitoh *
946 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
947 1.3 msaitoh **/
948 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
949 1.3 msaitoh u16 words, u16 *data)
950 1.3 msaitoh {
951 1.3 msaitoh s32 status = IXGBE_SUCCESS;
952 1.3 msaitoh u16 i, count;
953 1.3 msaitoh
954 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
955 1.3 msaitoh
956 1.3 msaitoh hw->eeprom.ops.init_params(hw);
957 1.3 msaitoh
958 1.3 msaitoh if (words == 0) {
959 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
960 1.3 msaitoh goto out;
961 1.3 msaitoh }
962 1.3 msaitoh
963 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
964 1.3 msaitoh status = IXGBE_ERR_EEPROM;
965 1.3 msaitoh goto out;
966 1.3 msaitoh }
967 1.3 msaitoh
968 1.3 msaitoh /*
969 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
970 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
971 1.3 msaitoh */
972 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
973 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
974 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
975 1.3 msaitoh
976 1.3 msaitoh /*
977 1.3 msaitoh * We cannot hold synchronization semaphores for too long
978 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
979 1.3 msaitoh * to read in bursts than synchronizing access for each word.
980 1.3 msaitoh */
981 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
982 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
983 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
984 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
985 1.3 msaitoh count, &data[i]);
986 1.3 msaitoh
987 1.3 msaitoh if (status != IXGBE_SUCCESS)
988 1.3 msaitoh break;
989 1.3 msaitoh }
990 1.3 msaitoh
991 1.3 msaitoh out:
992 1.3 msaitoh return status;
993 1.3 msaitoh }
994 1.3 msaitoh
995 1.3 msaitoh /**
996 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
997 1.3 msaitoh * @hw: pointer to hardware structure
998 1.3 msaitoh * @offset: offset within the EEPROM to be written to
999 1.3 msaitoh * @words: number of word(s)
1000 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1001 1.3 msaitoh *
1002 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1003 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1004 1.3 msaitoh **/
1005 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1006 1.3 msaitoh u16 words, u16 *data)
1007 1.3 msaitoh {
1008 1.3 msaitoh s32 status;
1009 1.3 msaitoh u16 word;
1010 1.3 msaitoh u16 page_size;
1011 1.3 msaitoh u16 i;
1012 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1013 1.3 msaitoh
1014 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1015 1.3 msaitoh
1016 1.3 msaitoh /* Prepare the EEPROM for writing */
1017 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1018 1.3 msaitoh
1019 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1020 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1021 1.3 msaitoh ixgbe_release_eeprom(hw);
1022 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1023 1.3 msaitoh }
1024 1.3 msaitoh }
1025 1.3 msaitoh
1026 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1027 1.3 msaitoh for (i = 0; i < words; i++) {
1028 1.3 msaitoh ixgbe_standby_eeprom(hw);
1029 1.3 msaitoh
1030 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1031 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1032 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1033 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1034 1.3 msaitoh
1035 1.3 msaitoh ixgbe_standby_eeprom(hw);
1036 1.3 msaitoh
1037 1.3 msaitoh /*
1038 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1039 1.3 msaitoh * in the opcode
1040 1.3 msaitoh */
1041 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1042 1.3 msaitoh ((offset + i) >= 128))
1043 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1044 1.3 msaitoh
1045 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1046 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1047 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1048 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1049 1.3 msaitoh hw->eeprom.address_bits);
1050 1.3 msaitoh
1051 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1052 1.3 msaitoh
1053 1.3 msaitoh /* Send the data in burst via SPI*/
1054 1.3 msaitoh do {
1055 1.3 msaitoh word = data[i];
1056 1.3 msaitoh word = (word >> 8) | (word << 8);
1057 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1058 1.3 msaitoh
1059 1.3 msaitoh if (page_size == 0)
1060 1.3 msaitoh break;
1061 1.3 msaitoh
1062 1.3 msaitoh /* do not wrap around page */
1063 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1064 1.3 msaitoh (page_size - 1))
1065 1.3 msaitoh break;
1066 1.3 msaitoh } while (++i < words);
1067 1.3 msaitoh
1068 1.3 msaitoh ixgbe_standby_eeprom(hw);
1069 1.3 msaitoh msec_delay(10);
1070 1.3 msaitoh }
1071 1.3 msaitoh /* Done with writing - release the EEPROM */
1072 1.3 msaitoh ixgbe_release_eeprom(hw);
1073 1.3 msaitoh }
1074 1.3 msaitoh
1075 1.3 msaitoh return status;
1076 1.3 msaitoh }
1077 1.3 msaitoh
1078 1.3 msaitoh /**
1079 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1080 1.1 dyoung * @hw: pointer to hardware structure
1081 1.1 dyoung * @offset: offset within the EEPROM to be written to
1082 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1083 1.1 dyoung *
1084 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1085 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1086 1.1 dyoung **/
1087 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1088 1.1 dyoung {
1089 1.1 dyoung s32 status;
1090 1.1 dyoung
1091 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1092 1.1 dyoung
1093 1.1 dyoung hw->eeprom.ops.init_params(hw);
1094 1.1 dyoung
1095 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1096 1.1 dyoung status = IXGBE_ERR_EEPROM;
1097 1.1 dyoung goto out;
1098 1.1 dyoung }
1099 1.1 dyoung
1100 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1101 1.3 msaitoh
1102 1.3 msaitoh out:
1103 1.3 msaitoh return status;
1104 1.3 msaitoh }
1105 1.3 msaitoh
1106 1.3 msaitoh /**
1107 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1108 1.3 msaitoh * @hw: pointer to hardware structure
1109 1.3 msaitoh * @offset: offset within the EEPROM to be read
1110 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1111 1.3 msaitoh * @words: number of word(s)
1112 1.3 msaitoh *
1113 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1114 1.3 msaitoh **/
1115 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116 1.3 msaitoh u16 words, u16 *data)
1117 1.3 msaitoh {
1118 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1119 1.3 msaitoh u16 i, count;
1120 1.3 msaitoh
1121 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1122 1.3 msaitoh
1123 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1124 1.3 msaitoh
1125 1.3 msaitoh if (words == 0) {
1126 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1127 1.3 msaitoh goto out;
1128 1.3 msaitoh }
1129 1.3 msaitoh
1130 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1131 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1132 1.3 msaitoh goto out;
1133 1.3 msaitoh }
1134 1.3 msaitoh
1135 1.3 msaitoh /*
1136 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1137 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1138 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1139 1.3 msaitoh */
1140 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1141 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1142 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1143 1.3 msaitoh
1144 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1145 1.3 msaitoh count, &data[i]);
1146 1.3 msaitoh
1147 1.3 msaitoh if (status != IXGBE_SUCCESS)
1148 1.3 msaitoh break;
1149 1.3 msaitoh }
1150 1.3 msaitoh
1151 1.3 msaitoh out:
1152 1.3 msaitoh return status;
1153 1.3 msaitoh }
1154 1.3 msaitoh
1155 1.3 msaitoh /**
1156 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1157 1.3 msaitoh * @hw: pointer to hardware structure
1158 1.3 msaitoh * @offset: offset within the EEPROM to be read
1159 1.3 msaitoh * @words: number of word(s)
1160 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1161 1.3 msaitoh *
1162 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1163 1.3 msaitoh **/
1164 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1165 1.3 msaitoh u16 words, u16 *data)
1166 1.3 msaitoh {
1167 1.3 msaitoh s32 status;
1168 1.3 msaitoh u16 word_in;
1169 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1170 1.3 msaitoh u16 i;
1171 1.3 msaitoh
1172 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1173 1.3 msaitoh
1174 1.3 msaitoh /* Prepare the EEPROM for reading */
1175 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1176 1.1 dyoung
1177 1.1 dyoung if (status == IXGBE_SUCCESS) {
1178 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1179 1.1 dyoung ixgbe_release_eeprom(hw);
1180 1.1 dyoung status = IXGBE_ERR_EEPROM;
1181 1.1 dyoung }
1182 1.1 dyoung }
1183 1.1 dyoung
1184 1.1 dyoung if (status == IXGBE_SUCCESS) {
1185 1.3 msaitoh for (i = 0; i < words; i++) {
1186 1.3 msaitoh ixgbe_standby_eeprom(hw);
1187 1.3 msaitoh /*
1188 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1189 1.3 msaitoh * in the opcode
1190 1.3 msaitoh */
1191 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1192 1.3 msaitoh ((offset + i) >= 128))
1193 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1194 1.3 msaitoh
1195 1.3 msaitoh /* Send the READ command (opcode + addr) */
1196 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1197 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1198 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1199 1.3 msaitoh hw->eeprom.address_bits);
1200 1.3 msaitoh
1201 1.3 msaitoh /* Read the data. */
1202 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1203 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1204 1.3 msaitoh }
1205 1.1 dyoung
1206 1.3 msaitoh /* End this read operation */
1207 1.1 dyoung ixgbe_release_eeprom(hw);
1208 1.1 dyoung }
1209 1.1 dyoung
1210 1.1 dyoung return status;
1211 1.1 dyoung }
1212 1.1 dyoung
1213 1.1 dyoung /**
1214 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1215 1.1 dyoung * @hw: pointer to hardware structure
1216 1.1 dyoung * @offset: offset within the EEPROM to be read
1217 1.1 dyoung * @data: read 16 bit value from EEPROM
1218 1.1 dyoung *
1219 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1220 1.1 dyoung **/
1221 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1222 1.3 msaitoh u16 *data)
1223 1.1 dyoung {
1224 1.1 dyoung s32 status;
1225 1.1 dyoung
1226 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1227 1.1 dyoung
1228 1.1 dyoung hw->eeprom.ops.init_params(hw);
1229 1.1 dyoung
1230 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1231 1.1 dyoung status = IXGBE_ERR_EEPROM;
1232 1.1 dyoung goto out;
1233 1.1 dyoung }
1234 1.1 dyoung
1235 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1236 1.3 msaitoh
1237 1.3 msaitoh out:
1238 1.3 msaitoh return status;
1239 1.3 msaitoh }
1240 1.3 msaitoh
1241 1.3 msaitoh /**
1242 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1243 1.3 msaitoh * @hw: pointer to hardware structure
1244 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1245 1.3 msaitoh * @words: number of word(s)
1246 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1247 1.3 msaitoh *
1248 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1249 1.3 msaitoh **/
1250 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1251 1.3 msaitoh u16 words, u16 *data)
1252 1.3 msaitoh {
1253 1.3 msaitoh u32 eerd;
1254 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1255 1.3 msaitoh u32 i;
1256 1.3 msaitoh
1257 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1258 1.3 msaitoh
1259 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1260 1.3 msaitoh
1261 1.3 msaitoh if (words == 0) {
1262 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1263 1.3 msaitoh goto out;
1264 1.3 msaitoh }
1265 1.3 msaitoh
1266 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1267 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1268 1.3 msaitoh goto out;
1269 1.3 msaitoh }
1270 1.3 msaitoh
1271 1.3 msaitoh for (i = 0; i < words; i++) {
1272 1.3 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1273 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1274 1.3 msaitoh
1275 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1276 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1277 1.1 dyoung
1278 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1279 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1280 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1281 1.3 msaitoh } else {
1282 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1283 1.3 msaitoh goto out;
1284 1.1 dyoung }
1285 1.1 dyoung }
1286 1.3 msaitoh out:
1287 1.3 msaitoh return status;
1288 1.3 msaitoh }
1289 1.1 dyoung
1290 1.3 msaitoh /**
1291 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1292 1.3 msaitoh * @hw: pointer to hardware structure
1293 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1294 1.3 msaitoh *
1295 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1296 1.3 msaitoh * This function is called only when we are writing a new large buffer
1297 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1298 1.3 msaitoh **/
1299 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1300 1.3 msaitoh u16 offset)
1301 1.3 msaitoh {
1302 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1303 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1304 1.3 msaitoh u16 i;
1305 1.3 msaitoh
1306 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1307 1.3 msaitoh
1308 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1309 1.3 msaitoh data[i] = i;
1310 1.1 dyoung
1311 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1312 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1313 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1314 1.3 msaitoh hw->eeprom.word_page_size = 0;
1315 1.3 msaitoh if (status != IXGBE_SUCCESS)
1316 1.3 msaitoh goto out;
1317 1.1 dyoung
1318 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1319 1.3 msaitoh if (status != IXGBE_SUCCESS)
1320 1.3 msaitoh goto out;
1321 1.1 dyoung
1322 1.3 msaitoh /*
1323 1.3 msaitoh * When writing in burst more than the actual page size
1324 1.3 msaitoh * EEPROM address wraps around current page.
1325 1.3 msaitoh */
1326 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1327 1.1 dyoung
1328 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1329 1.3 msaitoh hw->eeprom.word_page_size);
1330 1.1 dyoung out:
1331 1.1 dyoung return status;
1332 1.1 dyoung }
1333 1.1 dyoung
1334 1.1 dyoung /**
1335 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1336 1.1 dyoung * @hw: pointer to hardware structure
1337 1.1 dyoung * @offset: offset of word in the EEPROM to read
1338 1.1 dyoung * @data: word read from the EEPROM
1339 1.1 dyoung *
1340 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1341 1.1 dyoung **/
1342 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1343 1.1 dyoung {
1344 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1345 1.3 msaitoh }
1346 1.3 msaitoh
1347 1.3 msaitoh /**
1348 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1349 1.3 msaitoh * @hw: pointer to hardware structure
1350 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1351 1.3 msaitoh * @words: number of word(s)
1352 1.3 msaitoh * @data: word(s) write to the EEPROM
1353 1.3 msaitoh *
1354 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1355 1.3 msaitoh **/
1356 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1357 1.3 msaitoh u16 words, u16 *data)
1358 1.3 msaitoh {
1359 1.3 msaitoh u32 eewr;
1360 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1361 1.3 msaitoh u16 i;
1362 1.1 dyoung
1363 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1364 1.1 dyoung
1365 1.1 dyoung hw->eeprom.ops.init_params(hw);
1366 1.1 dyoung
1367 1.3 msaitoh if (words == 0) {
1368 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1369 1.3 msaitoh goto out;
1370 1.3 msaitoh }
1371 1.3 msaitoh
1372 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1373 1.1 dyoung status = IXGBE_ERR_EEPROM;
1374 1.1 dyoung goto out;
1375 1.1 dyoung }
1376 1.1 dyoung
1377 1.3 msaitoh for (i = 0; i < words; i++) {
1378 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1379 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1380 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1381 1.3 msaitoh
1382 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1383 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1384 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1385 1.3 msaitoh goto out;
1386 1.3 msaitoh }
1387 1.1 dyoung
1388 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1389 1.1 dyoung
1390 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1391 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1392 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1393 1.3 msaitoh goto out;
1394 1.3 msaitoh }
1395 1.3 msaitoh }
1396 1.1 dyoung
1397 1.1 dyoung out:
1398 1.1 dyoung return status;
1399 1.1 dyoung }
1400 1.1 dyoung
1401 1.1 dyoung /**
1402 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1403 1.1 dyoung * @hw: pointer to hardware structure
1404 1.1 dyoung * @offset: offset of word in the EEPROM to write
1405 1.1 dyoung * @data: word write to the EEPROM
1406 1.1 dyoung *
1407 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1408 1.1 dyoung **/
1409 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1410 1.1 dyoung {
1411 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1412 1.1 dyoung }
1413 1.1 dyoung
1414 1.1 dyoung /**
1415 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1416 1.1 dyoung * @hw: pointer to hardware structure
1417 1.1 dyoung * @ee_reg: EEPROM flag for polling
1418 1.1 dyoung *
1419 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1420 1.1 dyoung * read or write is done respectively.
1421 1.1 dyoung **/
1422 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1423 1.1 dyoung {
1424 1.1 dyoung u32 i;
1425 1.1 dyoung u32 reg;
1426 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1427 1.1 dyoung
1428 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1429 1.1 dyoung
1430 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1431 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1432 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1433 1.1 dyoung else
1434 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1435 1.1 dyoung
1436 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1437 1.1 dyoung status = IXGBE_SUCCESS;
1438 1.1 dyoung break;
1439 1.1 dyoung }
1440 1.1 dyoung usec_delay(5);
1441 1.1 dyoung }
1442 1.1 dyoung return status;
1443 1.1 dyoung }
1444 1.1 dyoung
1445 1.1 dyoung /**
1446 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1447 1.1 dyoung * @hw: pointer to hardware structure
1448 1.1 dyoung *
1449 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1450 1.1 dyoung * be called before issuing a command to the EEPROM.
1451 1.1 dyoung **/
1452 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1453 1.1 dyoung {
1454 1.1 dyoung s32 status = IXGBE_SUCCESS;
1455 1.1 dyoung u32 eec;
1456 1.1 dyoung u32 i;
1457 1.1 dyoung
1458 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1459 1.1 dyoung
1460 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1461 1.3 msaitoh != IXGBE_SUCCESS)
1462 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1463 1.1 dyoung
1464 1.1 dyoung if (status == IXGBE_SUCCESS) {
1465 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 1.1 dyoung
1467 1.1 dyoung /* Request EEPROM Access */
1468 1.1 dyoung eec |= IXGBE_EEC_REQ;
1469 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470 1.1 dyoung
1471 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1472 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1473 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1474 1.1 dyoung break;
1475 1.1 dyoung usec_delay(5);
1476 1.1 dyoung }
1477 1.1 dyoung
1478 1.1 dyoung /* Release if grant not acquired */
1479 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1480 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1481 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1483 1.1 dyoung
1484 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1485 1.1 dyoung status = IXGBE_ERR_EEPROM;
1486 1.1 dyoung }
1487 1.1 dyoung
1488 1.1 dyoung /* Setup EEPROM for Read/Write */
1489 1.1 dyoung if (status == IXGBE_SUCCESS) {
1490 1.1 dyoung /* Clear CS and SK */
1491 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1492 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1493 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1494 1.1 dyoung usec_delay(1);
1495 1.1 dyoung }
1496 1.1 dyoung }
1497 1.1 dyoung return status;
1498 1.1 dyoung }
1499 1.1 dyoung
1500 1.1 dyoung /**
1501 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1502 1.1 dyoung * @hw: pointer to hardware structure
1503 1.1 dyoung *
1504 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1505 1.1 dyoung **/
1506 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1507 1.1 dyoung {
1508 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1509 1.1 dyoung u32 timeout = 2000;
1510 1.1 dyoung u32 i;
1511 1.1 dyoung u32 swsm;
1512 1.1 dyoung
1513 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1514 1.1 dyoung
1515 1.1 dyoung
1516 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1517 1.1 dyoung for (i = 0; i < timeout; i++) {
1518 1.1 dyoung /*
1519 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1520 1.1 dyoung * set and we have the semaphore
1521 1.1 dyoung */
1522 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1523 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1524 1.1 dyoung status = IXGBE_SUCCESS;
1525 1.1 dyoung break;
1526 1.1 dyoung }
1527 1.1 dyoung usec_delay(50);
1528 1.1 dyoung }
1529 1.1 dyoung
1530 1.3 msaitoh if (i == timeout) {
1531 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1532 1.3 msaitoh "not granted.\n");
1533 1.3 msaitoh /*
1534 1.3 msaitoh * this release is particularly important because our attempts
1535 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1536 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1537 1.3 msaitoh * bits to free the driver to make progress
1538 1.3 msaitoh */
1539 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1540 1.3 msaitoh
1541 1.3 msaitoh usec_delay(50);
1542 1.3 msaitoh /*
1543 1.3 msaitoh * one last try
1544 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1545 1.3 msaitoh * set and we have the semaphore
1546 1.3 msaitoh */
1547 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1548 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1549 1.3 msaitoh status = IXGBE_SUCCESS;
1550 1.3 msaitoh }
1551 1.3 msaitoh
1552 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1553 1.1 dyoung if (status == IXGBE_SUCCESS) {
1554 1.1 dyoung for (i = 0; i < timeout; i++) {
1555 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1556 1.1 dyoung
1557 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1558 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1559 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1560 1.1 dyoung
1561 1.1 dyoung /*
1562 1.1 dyoung * If we set the bit successfully then we got the
1563 1.1 dyoung * semaphore.
1564 1.1 dyoung */
1565 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1566 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1567 1.1 dyoung break;
1568 1.1 dyoung
1569 1.1 dyoung usec_delay(50);
1570 1.1 dyoung }
1571 1.1 dyoung
1572 1.1 dyoung /*
1573 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1574 1.1 dyoung * was not granted because we don't have access to the EEPROM
1575 1.1 dyoung */
1576 1.1 dyoung if (i >= timeout) {
1577 1.1 dyoung DEBUGOUT("SWESMBI Software EEPROM semaphore "
1578 1.3 msaitoh "not granted.\n");
1579 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1580 1.1 dyoung status = IXGBE_ERR_EEPROM;
1581 1.1 dyoung }
1582 1.1 dyoung } else {
1583 1.1 dyoung DEBUGOUT("Software semaphore SMBI between device drivers "
1584 1.3 msaitoh "not granted.\n");
1585 1.1 dyoung }
1586 1.1 dyoung
1587 1.1 dyoung return status;
1588 1.1 dyoung }
1589 1.1 dyoung
1590 1.1 dyoung /**
1591 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1592 1.1 dyoung * @hw: pointer to hardware structure
1593 1.1 dyoung *
1594 1.1 dyoung * This function clears hardware semaphore bits.
1595 1.1 dyoung **/
1596 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1597 1.1 dyoung {
1598 1.1 dyoung u32 swsm;
1599 1.1 dyoung
1600 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1601 1.1 dyoung
1602 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1603 1.1 dyoung
1604 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1605 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1606 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1607 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1608 1.1 dyoung }
1609 1.1 dyoung
1610 1.1 dyoung /**
1611 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1612 1.1 dyoung * @hw: pointer to hardware structure
1613 1.1 dyoung **/
1614 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1615 1.1 dyoung {
1616 1.1 dyoung s32 status = IXGBE_SUCCESS;
1617 1.1 dyoung u16 i;
1618 1.1 dyoung u8 spi_stat_reg;
1619 1.1 dyoung
1620 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1621 1.1 dyoung
1622 1.1 dyoung /*
1623 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1624 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1625 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1626 1.1 dyoung * 5 milliseconds, then error out.
1627 1.1 dyoung */
1628 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1629 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1630 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1631 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1632 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1633 1.1 dyoung break;
1634 1.1 dyoung
1635 1.1 dyoung usec_delay(5);
1636 1.1 dyoung ixgbe_standby_eeprom(hw);
1637 1.1 dyoung };
1638 1.1 dyoung
1639 1.1 dyoung /*
1640 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1641 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1642 1.1 dyoung */
1643 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1644 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1645 1.1 dyoung status = IXGBE_ERR_EEPROM;
1646 1.1 dyoung }
1647 1.1 dyoung
1648 1.1 dyoung return status;
1649 1.1 dyoung }
1650 1.1 dyoung
1651 1.1 dyoung /**
1652 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1653 1.1 dyoung * @hw: pointer to hardware structure
1654 1.1 dyoung **/
1655 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1656 1.1 dyoung {
1657 1.1 dyoung u32 eec;
1658 1.1 dyoung
1659 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1660 1.1 dyoung
1661 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1662 1.1 dyoung
1663 1.1 dyoung /* Toggle CS to flush commands */
1664 1.1 dyoung eec |= IXGBE_EEC_CS;
1665 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1666 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1667 1.1 dyoung usec_delay(1);
1668 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1669 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1670 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1671 1.1 dyoung usec_delay(1);
1672 1.1 dyoung }
1673 1.1 dyoung
1674 1.1 dyoung /**
1675 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1676 1.1 dyoung * @hw: pointer to hardware structure
1677 1.1 dyoung * @data: data to send to the EEPROM
1678 1.1 dyoung * @count: number of bits to shift out
1679 1.1 dyoung **/
1680 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1681 1.3 msaitoh u16 count)
1682 1.1 dyoung {
1683 1.1 dyoung u32 eec;
1684 1.1 dyoung u32 mask;
1685 1.1 dyoung u32 i;
1686 1.1 dyoung
1687 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1688 1.1 dyoung
1689 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1690 1.1 dyoung
1691 1.1 dyoung /*
1692 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1693 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1694 1.1 dyoung */
1695 1.1 dyoung mask = 0x01 << (count - 1);
1696 1.1 dyoung
1697 1.1 dyoung for (i = 0; i < count; i++) {
1698 1.1 dyoung /*
1699 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1700 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1701 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1702 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1703 1.1 dyoung * raising and then lowering the clock.
1704 1.1 dyoung */
1705 1.1 dyoung if (data & mask)
1706 1.1 dyoung eec |= IXGBE_EEC_DI;
1707 1.1 dyoung else
1708 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1709 1.1 dyoung
1710 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1711 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1712 1.1 dyoung
1713 1.1 dyoung usec_delay(1);
1714 1.1 dyoung
1715 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1716 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1717 1.1 dyoung
1718 1.1 dyoung /*
1719 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1720 1.1 dyoung * EEPROM
1721 1.1 dyoung */
1722 1.1 dyoung mask = mask >> 1;
1723 1.1 dyoung };
1724 1.1 dyoung
1725 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1726 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1727 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1728 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1729 1.1 dyoung }
1730 1.1 dyoung
1731 1.1 dyoung /**
1732 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1733 1.1 dyoung * @hw: pointer to hardware structure
1734 1.1 dyoung **/
1735 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1736 1.1 dyoung {
1737 1.1 dyoung u32 eec;
1738 1.1 dyoung u32 i;
1739 1.1 dyoung u16 data = 0;
1740 1.1 dyoung
1741 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1742 1.1 dyoung
1743 1.1 dyoung /*
1744 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
1745 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1746 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
1747 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
1748 1.1 dyoung * "DI" bit should always be clear.
1749 1.1 dyoung */
1750 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1751 1.1 dyoung
1752 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1753 1.1 dyoung
1754 1.1 dyoung for (i = 0; i < count; i++) {
1755 1.1 dyoung data = data << 1;
1756 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1757 1.1 dyoung
1758 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1759 1.1 dyoung
1760 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
1761 1.1 dyoung if (eec & IXGBE_EEC_DO)
1762 1.1 dyoung data |= 1;
1763 1.1 dyoung
1764 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1765 1.1 dyoung }
1766 1.1 dyoung
1767 1.1 dyoung return data;
1768 1.1 dyoung }
1769 1.1 dyoung
1770 1.1 dyoung /**
1771 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1772 1.1 dyoung * @hw: pointer to hardware structure
1773 1.1 dyoung * @eec: EEC register's current value
1774 1.1 dyoung **/
1775 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1776 1.1 dyoung {
1777 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
1778 1.1 dyoung
1779 1.1 dyoung /*
1780 1.1 dyoung * Raise the clock input to the EEPROM
1781 1.1 dyoung * (setting the SK bit), then delay
1782 1.1 dyoung */
1783 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
1784 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1785 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1786 1.1 dyoung usec_delay(1);
1787 1.1 dyoung }
1788 1.1 dyoung
1789 1.1 dyoung /**
1790 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1791 1.1 dyoung * @hw: pointer to hardware structure
1792 1.1 dyoung * @eecd: EECD's current value
1793 1.1 dyoung **/
1794 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1795 1.1 dyoung {
1796 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
1797 1.1 dyoung
1798 1.1 dyoung /*
1799 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
1800 1.1 dyoung * delay
1801 1.1 dyoung */
1802 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
1803 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1804 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1805 1.1 dyoung usec_delay(1);
1806 1.1 dyoung }
1807 1.1 dyoung
1808 1.1 dyoung /**
1809 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
1810 1.1 dyoung * @hw: pointer to hardware structure
1811 1.1 dyoung **/
1812 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1813 1.1 dyoung {
1814 1.1 dyoung u32 eec;
1815 1.1 dyoung
1816 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
1817 1.1 dyoung
1818 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1819 1.1 dyoung
1820 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
1821 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1822 1.1 dyoung
1823 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1824 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1825 1.1 dyoung
1826 1.1 dyoung usec_delay(1);
1827 1.1 dyoung
1828 1.1 dyoung /* Stop requesting EEPROM access */
1829 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1830 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1831 1.1 dyoung
1832 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1833 1.1 dyoung
1834 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
1835 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
1836 1.1 dyoung }
1837 1.1 dyoung
1838 1.1 dyoung /**
1839 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1840 1.1 dyoung * @hw: pointer to hardware structure
1841 1.1 dyoung **/
1842 1.1 dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1843 1.1 dyoung {
1844 1.1 dyoung u16 i;
1845 1.1 dyoung u16 j;
1846 1.1 dyoung u16 checksum = 0;
1847 1.1 dyoung u16 length = 0;
1848 1.1 dyoung u16 pointer = 0;
1849 1.1 dyoung u16 word = 0;
1850 1.1 dyoung
1851 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1852 1.1 dyoung
1853 1.1 dyoung /* Include 0x0-0x3F in the checksum */
1854 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1855 1.1 dyoung if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1856 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1857 1.1 dyoung break;
1858 1.1 dyoung }
1859 1.1 dyoung checksum += word;
1860 1.1 dyoung }
1861 1.1 dyoung
1862 1.1 dyoung /* Include all data from pointers except for the fw pointer */
1863 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1864 1.1 dyoung hw->eeprom.ops.read(hw, i, &pointer);
1865 1.1 dyoung
1866 1.1 dyoung /* Make sure the pointer seems valid */
1867 1.1 dyoung if (pointer != 0xFFFF && pointer != 0) {
1868 1.1 dyoung hw->eeprom.ops.read(hw, pointer, &length);
1869 1.1 dyoung
1870 1.1 dyoung if (length != 0xFFFF && length != 0) {
1871 1.1 dyoung for (j = pointer+1; j <= pointer+length; j++) {
1872 1.1 dyoung hw->eeprom.ops.read(hw, j, &word);
1873 1.1 dyoung checksum += word;
1874 1.1 dyoung }
1875 1.1 dyoung }
1876 1.1 dyoung }
1877 1.1 dyoung }
1878 1.1 dyoung
1879 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1880 1.1 dyoung
1881 1.1 dyoung return checksum;
1882 1.1 dyoung }
1883 1.1 dyoung
1884 1.1 dyoung /**
1885 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1886 1.1 dyoung * @hw: pointer to hardware structure
1887 1.1 dyoung * @checksum_val: calculated checksum
1888 1.1 dyoung *
1889 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
1890 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
1891 1.1 dyoung **/
1892 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1893 1.3 msaitoh u16 *checksum_val)
1894 1.1 dyoung {
1895 1.1 dyoung s32 status;
1896 1.1 dyoung u16 checksum;
1897 1.1 dyoung u16 read_checksum = 0;
1898 1.1 dyoung
1899 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1900 1.1 dyoung
1901 1.1 dyoung /*
1902 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1903 1.1 dyoung * not continue or we could be in for a very long wait while every
1904 1.1 dyoung * EEPROM read fails
1905 1.1 dyoung */
1906 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1907 1.1 dyoung
1908 1.1 dyoung if (status == IXGBE_SUCCESS) {
1909 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1910 1.1 dyoung
1911 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1912 1.1 dyoung
1913 1.1 dyoung /*
1914 1.1 dyoung * Verify read checksum from EEPROM is the same as
1915 1.1 dyoung * calculated checksum
1916 1.1 dyoung */
1917 1.1 dyoung if (read_checksum != checksum)
1918 1.1 dyoung status = IXGBE_ERR_EEPROM_CHECKSUM;
1919 1.1 dyoung
1920 1.1 dyoung /* If the user cares, return the calculated checksum */
1921 1.1 dyoung if (checksum_val)
1922 1.1 dyoung *checksum_val = checksum;
1923 1.1 dyoung } else {
1924 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1925 1.1 dyoung }
1926 1.1 dyoung
1927 1.1 dyoung return status;
1928 1.1 dyoung }
1929 1.1 dyoung
1930 1.1 dyoung /**
1931 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1932 1.1 dyoung * @hw: pointer to hardware structure
1933 1.1 dyoung **/
1934 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1935 1.1 dyoung {
1936 1.1 dyoung s32 status;
1937 1.1 dyoung u16 checksum;
1938 1.1 dyoung
1939 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1940 1.1 dyoung
1941 1.1 dyoung /*
1942 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
1943 1.1 dyoung * not continue or we could be in for a very long wait while every
1944 1.1 dyoung * EEPROM read fails
1945 1.1 dyoung */
1946 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
1947 1.1 dyoung
1948 1.1 dyoung if (status == IXGBE_SUCCESS) {
1949 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
1950 1.1 dyoung status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1951 1.3 msaitoh checksum);
1952 1.1 dyoung } else {
1953 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
1954 1.1 dyoung }
1955 1.1 dyoung
1956 1.1 dyoung return status;
1957 1.1 dyoung }
1958 1.1 dyoung
1959 1.1 dyoung /**
1960 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
1961 1.1 dyoung * @mac_addr: pointer to MAC address.
1962 1.1 dyoung *
1963 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
1964 1.1 dyoung **/
1965 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1966 1.1 dyoung {
1967 1.1 dyoung s32 status = IXGBE_SUCCESS;
1968 1.1 dyoung
1969 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
1970 1.1 dyoung
1971 1.1 dyoung /* Make sure it is not a multicast address */
1972 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
1973 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
1974 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1975 1.1 dyoung /* Not a broadcast address */
1976 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
1977 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
1978 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1979 1.1 dyoung /* Reject the zero address */
1980 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1981 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1982 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
1983 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
1984 1.1 dyoung }
1985 1.1 dyoung return status;
1986 1.1 dyoung }
1987 1.1 dyoung
1988 1.1 dyoung /**
1989 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
1990 1.1 dyoung * @hw: pointer to hardware structure
1991 1.1 dyoung * @index: Receive address register to write
1992 1.1 dyoung * @addr: Address to put into receive address register
1993 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
1994 1.1 dyoung * @enable_addr: set flag that address is active
1995 1.1 dyoung *
1996 1.1 dyoung * Puts an ethernet address into a receive address register.
1997 1.1 dyoung **/
1998 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1999 1.3 msaitoh u32 enable_addr)
2000 1.1 dyoung {
2001 1.1 dyoung u32 rar_low, rar_high;
2002 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2003 1.1 dyoung
2004 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2005 1.1 dyoung
2006 1.1 dyoung /* Make sure we are using a valid rar index range */
2007 1.1 dyoung if (index >= rar_entries) {
2008 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
2009 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2010 1.1 dyoung }
2011 1.1 dyoung
2012 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2013 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2014 1.1 dyoung
2015 1.1 dyoung /*
2016 1.1 dyoung * HW expects these in little endian so we reverse the byte
2017 1.1 dyoung * order from network order (big endian) to little endian
2018 1.1 dyoung */
2019 1.1 dyoung rar_low = ((u32)addr[0] |
2020 1.3 msaitoh ((u32)addr[1] << 8) |
2021 1.3 msaitoh ((u32)addr[2] << 16) |
2022 1.3 msaitoh ((u32)addr[3] << 24));
2023 1.1 dyoung /*
2024 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2025 1.1 dyoung * so save everything except the lower 16 bits that hold part
2026 1.1 dyoung * of the address and the address valid bit.
2027 1.1 dyoung */
2028 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2029 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2030 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2031 1.1 dyoung
2032 1.1 dyoung if (enable_addr != 0)
2033 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2034 1.1 dyoung
2035 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2036 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2037 1.1 dyoung
2038 1.1 dyoung return IXGBE_SUCCESS;
2039 1.1 dyoung }
2040 1.1 dyoung
2041 1.1 dyoung /**
2042 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2043 1.1 dyoung * @hw: pointer to hardware structure
2044 1.1 dyoung * @index: Receive address register to write
2045 1.1 dyoung *
2046 1.1 dyoung * Clears an ethernet address from a receive address register.
2047 1.1 dyoung **/
2048 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2049 1.1 dyoung {
2050 1.1 dyoung u32 rar_high;
2051 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2052 1.1 dyoung
2053 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2054 1.1 dyoung
2055 1.1 dyoung /* Make sure we are using a valid rar index range */
2056 1.1 dyoung if (index >= rar_entries) {
2057 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
2058 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2059 1.1 dyoung }
2060 1.1 dyoung
2061 1.1 dyoung /*
2062 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2063 1.1 dyoung * so save everything except the lower 16 bits that hold part
2064 1.1 dyoung * of the address and the address valid bit.
2065 1.1 dyoung */
2066 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2067 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2068 1.1 dyoung
2069 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2070 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2071 1.1 dyoung
2072 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2073 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2074 1.1 dyoung
2075 1.1 dyoung return IXGBE_SUCCESS;
2076 1.1 dyoung }
2077 1.1 dyoung
2078 1.1 dyoung /**
2079 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2080 1.1 dyoung * @hw: pointer to hardware structure
2081 1.1 dyoung *
2082 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2083 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2084 1.1 dyoung * the receiver is in reset when the routine is called.
2085 1.1 dyoung **/
2086 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2087 1.1 dyoung {
2088 1.1 dyoung u32 i;
2089 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2090 1.1 dyoung
2091 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2092 1.1 dyoung
2093 1.1 dyoung /*
2094 1.1 dyoung * If the current mac address is valid, assume it is a software override
2095 1.1 dyoung * to the permanent address.
2096 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2097 1.1 dyoung */
2098 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2099 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2100 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2101 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2102 1.1 dyoung
2103 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2104 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2105 1.3 msaitoh hw->mac.addr[2]);
2106 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2107 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2108 1.1 dyoung } else {
2109 1.1 dyoung /* Setup the receive address. */
2110 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2111 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2112 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2113 1.3 msaitoh hw->mac.addr[2]);
2114 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2115 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2116 1.1 dyoung
2117 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2118 1.1 dyoung
2119 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2120 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2121 1.1 dyoung }
2122 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2123 1.1 dyoung
2124 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2125 1.1 dyoung
2126 1.1 dyoung /* Zero out the other receive addresses. */
2127 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2128 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2129 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2130 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2131 1.1 dyoung }
2132 1.1 dyoung
2133 1.1 dyoung /* Clear the MTA */
2134 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2135 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2136 1.1 dyoung
2137 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2138 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2139 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2140 1.1 dyoung
2141 1.1 dyoung ixgbe_init_uta_tables(hw);
2142 1.1 dyoung
2143 1.1 dyoung return IXGBE_SUCCESS;
2144 1.1 dyoung }
2145 1.1 dyoung
2146 1.1 dyoung /**
2147 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2148 1.1 dyoung * @hw: pointer to hardware structure
2149 1.1 dyoung * @addr: new address
2150 1.1 dyoung *
2151 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2152 1.1 dyoung **/
2153 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2154 1.1 dyoung {
2155 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2156 1.1 dyoung u32 rar;
2157 1.1 dyoung
2158 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2159 1.1 dyoung
2160 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2161 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2162 1.1 dyoung
2163 1.1 dyoung /*
2164 1.1 dyoung * Place this address in the RAR if there is room,
2165 1.1 dyoung * else put the controller into promiscuous mode
2166 1.1 dyoung */
2167 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2168 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2169 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2170 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2171 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2172 1.1 dyoung } else {
2173 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2174 1.1 dyoung }
2175 1.1 dyoung
2176 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2177 1.1 dyoung }
2178 1.1 dyoung
2179 1.1 dyoung /**
2180 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2181 1.1 dyoung * @hw: pointer to hardware structure
2182 1.1 dyoung * @addr_list: the list of new addresses
2183 1.1 dyoung * @addr_count: number of addresses
2184 1.1 dyoung * @next: iterator function to walk the address list
2185 1.1 dyoung *
2186 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2187 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2188 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2189 1.1 dyoung *
2190 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2191 1.1 dyoung * manually putting the device into promiscuous mode.
2192 1.1 dyoung **/
2193 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2194 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2195 1.1 dyoung {
2196 1.1 dyoung u8 *addr;
2197 1.1 dyoung u32 i;
2198 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2199 1.1 dyoung u32 uc_addr_in_use;
2200 1.1 dyoung u32 fctrl;
2201 1.1 dyoung u32 vmdq;
2202 1.1 dyoung
2203 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2204 1.1 dyoung
2205 1.1 dyoung /*
2206 1.1 dyoung * Clear accounting of old secondary address list,
2207 1.1 dyoung * don't count RAR[0]
2208 1.1 dyoung */
2209 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2210 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2211 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2212 1.1 dyoung
2213 1.1 dyoung /* Zero out the other receive addresses */
2214 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2215 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2216 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2217 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2218 1.1 dyoung }
2219 1.1 dyoung
2220 1.1 dyoung /* Add the new addresses */
2221 1.1 dyoung for (i = 0; i < addr_count; i++) {
2222 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2223 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2224 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2225 1.1 dyoung }
2226 1.1 dyoung
2227 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2228 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2229 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2230 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2231 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2232 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2233 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2234 1.1 dyoung }
2235 1.1 dyoung } else {
2236 1.1 dyoung /* only disable if set by overflow, not by user */
2237 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2238 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2239 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2240 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2241 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2242 1.1 dyoung }
2243 1.1 dyoung }
2244 1.1 dyoung
2245 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2246 1.1 dyoung return IXGBE_SUCCESS;
2247 1.1 dyoung }
2248 1.1 dyoung
2249 1.1 dyoung /**
2250 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2251 1.1 dyoung * @hw: pointer to hardware structure
2252 1.1 dyoung * @mc_addr: the multicast address
2253 1.1 dyoung *
2254 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2255 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2256 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2257 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2258 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2259 1.1 dyoung * to mc_filter_type.
2260 1.1 dyoung **/
2261 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2262 1.1 dyoung {
2263 1.1 dyoung u32 vector = 0;
2264 1.1 dyoung
2265 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2266 1.1 dyoung
2267 1.1 dyoung switch (hw->mac.mc_filter_type) {
2268 1.1 dyoung case 0: /* use bits [47:36] of the address */
2269 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2270 1.1 dyoung break;
2271 1.1 dyoung case 1: /* use bits [46:35] of the address */
2272 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2273 1.1 dyoung break;
2274 1.1 dyoung case 2: /* use bits [45:34] of the address */
2275 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2276 1.1 dyoung break;
2277 1.1 dyoung case 3: /* use bits [43:32] of the address */
2278 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2279 1.1 dyoung break;
2280 1.1 dyoung default: /* Invalid mc_filter_type */
2281 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2282 1.1 dyoung ASSERT(0);
2283 1.1 dyoung break;
2284 1.1 dyoung }
2285 1.1 dyoung
2286 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2287 1.1 dyoung vector &= 0xFFF;
2288 1.1 dyoung return vector;
2289 1.1 dyoung }
2290 1.1 dyoung
2291 1.1 dyoung /**
2292 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2293 1.1 dyoung * @hw: pointer to hardware structure
2294 1.1 dyoung * @hash_value: Multicast address hash value
2295 1.1 dyoung *
2296 1.1 dyoung * Sets the bit-vector in the multicast table.
2297 1.1 dyoung **/
2298 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2299 1.1 dyoung {
2300 1.1 dyoung u32 vector;
2301 1.1 dyoung u32 vector_bit;
2302 1.1 dyoung u32 vector_reg;
2303 1.1 dyoung
2304 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2305 1.1 dyoung
2306 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2307 1.1 dyoung
2308 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2309 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2310 1.1 dyoung
2311 1.1 dyoung /*
2312 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2313 1.1 dyoung * like an array of 4096 bits. We want to set bit
2314 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2315 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2316 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2317 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2318 1.1 dyoung * the value.
2319 1.1 dyoung */
2320 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2321 1.1 dyoung vector_bit = vector & 0x1F;
2322 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2323 1.1 dyoung }
2324 1.1 dyoung
2325 1.1 dyoung /**
2326 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2327 1.1 dyoung * @hw: pointer to hardware structure
2328 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2329 1.1 dyoung * @mc_addr_count: number of addresses
2330 1.1 dyoung * @next: iterator function to walk the multicast address list
2331 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2332 1.1 dyoung *
2333 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2334 1.3 msaitoh * Hashes the given addresses into the multicast table.
2335 1.1 dyoung **/
2336 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2337 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2338 1.3 msaitoh bool clear)
2339 1.1 dyoung {
2340 1.1 dyoung u32 i;
2341 1.1 dyoung u32 vmdq;
2342 1.1 dyoung
2343 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2344 1.1 dyoung
2345 1.1 dyoung /*
2346 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2347 1.1 dyoung * use.
2348 1.1 dyoung */
2349 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2350 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2351 1.1 dyoung
2352 1.1 dyoung /* Clear mta_shadow */
2353 1.3 msaitoh if (clear) {
2354 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2355 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2356 1.3 msaitoh }
2357 1.1 dyoung
2358 1.1 dyoung /* Update mta_shadow */
2359 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2360 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2361 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2362 1.1 dyoung }
2363 1.1 dyoung
2364 1.1 dyoung /* Enable mta */
2365 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2366 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2367 1.1 dyoung hw->mac.mta_shadow[i]);
2368 1.1 dyoung
2369 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2370 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2371 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2372 1.1 dyoung
2373 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2374 1.1 dyoung return IXGBE_SUCCESS;
2375 1.1 dyoung }
2376 1.1 dyoung
2377 1.1 dyoung /**
2378 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2379 1.1 dyoung * @hw: pointer to hardware structure
2380 1.1 dyoung *
2381 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2382 1.1 dyoung **/
2383 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2384 1.1 dyoung {
2385 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2386 1.1 dyoung
2387 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2388 1.1 dyoung
2389 1.1 dyoung if (a->mta_in_use > 0)
2390 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2391 1.3 msaitoh hw->mac.mc_filter_type);
2392 1.1 dyoung
2393 1.1 dyoung return IXGBE_SUCCESS;
2394 1.1 dyoung }
2395 1.1 dyoung
2396 1.1 dyoung /**
2397 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2398 1.1 dyoung * @hw: pointer to hardware structure
2399 1.1 dyoung *
2400 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2401 1.1 dyoung **/
2402 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2403 1.1 dyoung {
2404 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2405 1.1 dyoung
2406 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2407 1.1 dyoung
2408 1.1 dyoung if (a->mta_in_use > 0)
2409 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2410 1.1 dyoung
2411 1.1 dyoung return IXGBE_SUCCESS;
2412 1.1 dyoung }
2413 1.1 dyoung
2414 1.1 dyoung /**
2415 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2416 1.1 dyoung * @hw: pointer to hardware structure
2417 1.1 dyoung *
2418 1.1 dyoung * Enable flow control according to the current settings.
2419 1.1 dyoung **/
2420 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2421 1.1 dyoung {
2422 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2423 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2424 1.1 dyoung u32 reg;
2425 1.1 dyoung u32 fcrtl, fcrth;
2426 1.4 msaitoh int i;
2427 1.1 dyoung
2428 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2429 1.1 dyoung
2430 1.4 msaitoh /* Validate the water mark configuration */
2431 1.4 msaitoh if (!hw->fc.pause_time) {
2432 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2433 1.4 msaitoh goto out;
2434 1.4 msaitoh }
2435 1.4 msaitoh
2436 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2437 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2438 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2439 1.4 msaitoh hw->fc.high_water[i]) {
2440 1.4 msaitoh if (!hw->fc.low_water[i] ||
2441 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2442 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2443 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2444 1.4 msaitoh goto out;
2445 1.4 msaitoh }
2446 1.4 msaitoh }
2447 1.4 msaitoh }
2448 1.4 msaitoh
2449 1.1 dyoung /* Negotiate the fc mode to use */
2450 1.4 msaitoh ixgbe_fc_autoneg(hw);
2451 1.1 dyoung
2452 1.1 dyoung /* Disable any previous flow control settings */
2453 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2454 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2455 1.1 dyoung
2456 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2457 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2458 1.1 dyoung
2459 1.1 dyoung /*
2460 1.1 dyoung * The possible values of fc.current_mode are:
2461 1.1 dyoung * 0: Flow control is completely disabled
2462 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2463 1.1 dyoung * but not send pause frames).
2464 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2465 1.1 dyoung * we do not support receiving pause frames).
2466 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2467 1.1 dyoung * other: Invalid.
2468 1.1 dyoung */
2469 1.1 dyoung switch (hw->fc.current_mode) {
2470 1.1 dyoung case ixgbe_fc_none:
2471 1.1 dyoung /*
2472 1.1 dyoung * Flow control is disabled by software override or autoneg.
2473 1.1 dyoung * The code below will actually disable it in the HW.
2474 1.1 dyoung */
2475 1.1 dyoung break;
2476 1.1 dyoung case ixgbe_fc_rx_pause:
2477 1.1 dyoung /*
2478 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2479 1.1 dyoung * disabled by software override. Since there really
2480 1.1 dyoung * isn't a way to advertise that we are capable of RX
2481 1.1 dyoung * Pause ONLY, we will advertise that we support both
2482 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2483 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2484 1.1 dyoung */
2485 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2486 1.1 dyoung break;
2487 1.1 dyoung case ixgbe_fc_tx_pause:
2488 1.1 dyoung /*
2489 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2490 1.1 dyoung * disabled by software override.
2491 1.1 dyoung */
2492 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2493 1.1 dyoung break;
2494 1.1 dyoung case ixgbe_fc_full:
2495 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2496 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2497 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2498 1.1 dyoung break;
2499 1.1 dyoung default:
2500 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2501 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2502 1.1 dyoung goto out;
2503 1.1 dyoung break;
2504 1.1 dyoung }
2505 1.1 dyoung
2506 1.1 dyoung /* Set 802.3x based flow control settings. */
2507 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2508 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2509 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2510 1.1 dyoung
2511 1.1 dyoung
2512 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2513 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2514 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2515 1.4 msaitoh hw->fc.high_water[i]) {
2516 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2517 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2518 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2519 1.4 msaitoh } else {
2520 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2521 1.4 msaitoh /*
2522 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2523 1.4 msaitoh * switch is enabled we must set the high water mark
2524 1.4 msaitoh * to the maximum FCRTH value. This allows the Tx
2525 1.4 msaitoh * switch to function even under heavy Rx workloads.
2526 1.4 msaitoh */
2527 1.4 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2528 1.4 msaitoh }
2529 1.4 msaitoh
2530 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2531 1.1 dyoung }
2532 1.1 dyoung
2533 1.1 dyoung /* Configure pause time (2 TCs per register) */
2534 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2535 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2536 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2537 1.1 dyoung
2538 1.4 msaitoh /* Configure flow control refresh threshold value */
2539 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2540 1.1 dyoung
2541 1.1 dyoung out:
2542 1.1 dyoung return ret_val;
2543 1.1 dyoung }
2544 1.1 dyoung
2545 1.1 dyoung /**
2546 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2547 1.1 dyoung * @hw: pointer to hardware structure
2548 1.4 msaitoh * @adv_reg: flow control advertised settings
2549 1.4 msaitoh * @lp_reg: link partner's flow control settings
2550 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2551 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2552 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2553 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2554 1.1 dyoung *
2555 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2556 1.4 msaitoh * advertised settings
2557 1.1 dyoung **/
2558 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2559 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2560 1.1 dyoung {
2561 1.4 msaitoh if ((!(adv_reg)) || (!(lp_reg)))
2562 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2563 1.1 dyoung
2564 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2565 1.4 msaitoh /*
2566 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2567 1.4 msaitoh * of pause frames. In this case, we had to advertise
2568 1.4 msaitoh * FULL flow control because we could not advertise RX
2569 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2570 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2571 1.4 msaitoh */
2572 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2573 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2574 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2575 1.4 msaitoh } else {
2576 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2577 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2578 1.4 msaitoh }
2579 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2580 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2581 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2582 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2583 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2584 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2585 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2586 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2587 1.4 msaitoh } else {
2588 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2589 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2590 1.4 msaitoh }
2591 1.4 msaitoh return IXGBE_SUCCESS;
2592 1.4 msaitoh }
2593 1.1 dyoung
2594 1.4 msaitoh /**
2595 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2596 1.4 msaitoh * @hw: pointer to hardware structure
2597 1.4 msaitoh *
2598 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2599 1.4 msaitoh **/
2600 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2601 1.4 msaitoh {
2602 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2603 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2604 1.1 dyoung
2605 1.1 dyoung /*
2606 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2607 1.4 msaitoh * - link is up but AN did not complete, or if
2608 1.4 msaitoh * - link is up and AN completed but timed out
2609 1.1 dyoung */
2610 1.4 msaitoh
2611 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2612 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2613 1.4 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2614 1.1 dyoung goto out;
2615 1.1 dyoung
2616 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2617 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2618 1.1 dyoung
2619 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2620 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2621 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2622 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2623 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2624 1.1 dyoung
2625 1.1 dyoung out:
2626 1.1 dyoung return ret_val;
2627 1.1 dyoung }
2628 1.1 dyoung
2629 1.1 dyoung /**
2630 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2631 1.1 dyoung * @hw: pointer to hardware structure
2632 1.1 dyoung *
2633 1.1 dyoung * Enable flow control according to IEEE clause 37.
2634 1.1 dyoung **/
2635 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2636 1.1 dyoung {
2637 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2638 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2639 1.1 dyoung
2640 1.1 dyoung /*
2641 1.1 dyoung * On backplane, bail out if
2642 1.1 dyoung * - backplane autoneg was not completed, or if
2643 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2644 1.1 dyoung */
2645 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2646 1.4 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2647 1.1 dyoung goto out;
2648 1.1 dyoung
2649 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2650 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2651 1.4 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2652 1.1 dyoung goto out;
2653 1.1 dyoung }
2654 1.1 dyoung /*
2655 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2656 1.1 dyoung * local flow control settings accordingly
2657 1.1 dyoung */
2658 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2659 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2660 1.1 dyoung
2661 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2662 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2663 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2664 1.1 dyoung
2665 1.1 dyoung out:
2666 1.1 dyoung return ret_val;
2667 1.1 dyoung }
2668 1.1 dyoung
2669 1.1 dyoung /**
2670 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2671 1.1 dyoung * @hw: pointer to hardware structure
2672 1.1 dyoung *
2673 1.1 dyoung * Enable flow control according to IEEE clause 37.
2674 1.1 dyoung **/
2675 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2676 1.1 dyoung {
2677 1.1 dyoung u16 technology_ability_reg = 0;
2678 1.1 dyoung u16 lp_technology_ability_reg = 0;
2679 1.1 dyoung
2680 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2681 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2682 1.1 dyoung &technology_ability_reg);
2683 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2684 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2685 1.1 dyoung &lp_technology_ability_reg);
2686 1.1 dyoung
2687 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2688 1.1 dyoung (u32)lp_technology_ability_reg,
2689 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2690 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2691 1.1 dyoung }
2692 1.1 dyoung
2693 1.1 dyoung /**
2694 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2695 1.1 dyoung * @hw: pointer to hardware structure
2696 1.1 dyoung *
2697 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
2698 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
2699 1.1 dyoung **/
2700 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2701 1.1 dyoung {
2702 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2703 1.4 msaitoh ixgbe_link_speed speed;
2704 1.4 msaitoh bool link_up;
2705 1.1 dyoung
2706 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
2707 1.1 dyoung
2708 1.1 dyoung /*
2709 1.4 msaitoh * AN should have completed when the cable was plugged in.
2710 1.4 msaitoh * Look for reasons to bail out. Bail out if:
2711 1.4 msaitoh * - FC autoneg is disabled, or if
2712 1.4 msaitoh * - link is not up.
2713 1.1 dyoung */
2714 1.4 msaitoh if (hw->fc.disable_fc_autoneg)
2715 1.1 dyoung goto out;
2716 1.1 dyoung
2717 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2718 1.4 msaitoh if (!link_up)
2719 1.1 dyoung goto out;
2720 1.1 dyoung
2721 1.1 dyoung switch (hw->phy.media_type) {
2722 1.4 msaitoh /* Autoneg flow control on fiber adapters */
2723 1.1 dyoung case ixgbe_media_type_fiber:
2724 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2725 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
2726 1.4 msaitoh break;
2727 1.4 msaitoh
2728 1.4 msaitoh /* Autoneg flow control on backplane adapters */
2729 1.1 dyoung case ixgbe_media_type_backplane:
2730 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
2731 1.1 dyoung break;
2732 1.1 dyoung
2733 1.4 msaitoh /* Autoneg flow control on copper adapters */
2734 1.1 dyoung case ixgbe_media_type_copper:
2735 1.4 msaitoh if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2736 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
2737 1.1 dyoung break;
2738 1.1 dyoung
2739 1.1 dyoung default:
2740 1.1 dyoung break;
2741 1.1 dyoung }
2742 1.1 dyoung
2743 1.4 msaitoh out:
2744 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
2745 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
2746 1.4 msaitoh } else {
2747 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
2748 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
2749 1.3 msaitoh }
2750 1.1 dyoung }
2751 1.1 dyoung
2752 1.1 dyoung /**
2753 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
2754 1.1 dyoung * @hw: pointer to hardware structure
2755 1.1 dyoung *
2756 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
2757 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2758 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2759 1.1 dyoung * is returned signifying master requests disabled.
2760 1.1 dyoung **/
2761 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2762 1.1 dyoung {
2763 1.3 msaitoh s32 status = IXGBE_SUCCESS;
2764 1.1 dyoung u32 i;
2765 1.1 dyoung
2766 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
2767 1.1 dyoung
2768 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
2769 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2770 1.3 msaitoh
2771 1.3 msaitoh /* Exit if master requets are blocked */
2772 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2773 1.1 dyoung goto out;
2774 1.1 dyoung
2775 1.3 msaitoh /* Poll for master request bit to clear */
2776 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2777 1.3 msaitoh usec_delay(100);
2778 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2779 1.3 msaitoh goto out;
2780 1.1 dyoung }
2781 1.1 dyoung
2782 1.3 msaitoh /*
2783 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
2784 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2785 1.3 msaitoh * of this need. The first reset prevents new master requests from
2786 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
2787 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
2788 1.3 msaitoh * again to clear out any effects they may have had on our device.
2789 1.3 msaitoh */
2790 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2791 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2792 1.1 dyoung
2793 1.1 dyoung /*
2794 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
2795 1.1 dyoung * transactions pending.
2796 1.1 dyoung */
2797 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2798 1.3 msaitoh usec_delay(100);
2799 1.1 dyoung if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2800 1.3 msaitoh IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2801 1.3 msaitoh goto out;
2802 1.1 dyoung }
2803 1.1 dyoung
2804 1.3 msaitoh DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2805 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2806 1.1 dyoung
2807 1.1 dyoung out:
2808 1.1 dyoung return status;
2809 1.1 dyoung }
2810 1.1 dyoung
2811 1.1 dyoung /**
2812 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2813 1.1 dyoung * @hw: pointer to hardware structure
2814 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
2815 1.1 dyoung *
2816 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
2817 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2818 1.1 dyoung **/
2819 1.1 dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2820 1.1 dyoung {
2821 1.1 dyoung u32 gssr;
2822 1.1 dyoung u32 swmask = mask;
2823 1.1 dyoung u32 fwmask = mask << 5;
2824 1.1 dyoung s32 timeout = 200;
2825 1.1 dyoung
2826 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
2827 1.1 dyoung
2828 1.1 dyoung while (timeout) {
2829 1.1 dyoung /*
2830 1.1 dyoung * SW EEPROM semaphore bit is used for access to all
2831 1.1 dyoung * SW_FW_SYNC/GSSR bits (not just EEPROM)
2832 1.1 dyoung */
2833 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
2834 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2835 1.1 dyoung
2836 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2837 1.1 dyoung if (!(gssr & (fwmask | swmask)))
2838 1.1 dyoung break;
2839 1.1 dyoung
2840 1.1 dyoung /*
2841 1.1 dyoung * Firmware currently using resource (fwmask) or other software
2842 1.1 dyoung * thread currently using resource (swmask)
2843 1.1 dyoung */
2844 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2845 1.1 dyoung msec_delay(5);
2846 1.1 dyoung timeout--;
2847 1.1 dyoung }
2848 1.1 dyoung
2849 1.1 dyoung if (!timeout) {
2850 1.1 dyoung DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2851 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
2852 1.1 dyoung }
2853 1.1 dyoung
2854 1.1 dyoung gssr |= swmask;
2855 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2856 1.1 dyoung
2857 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2858 1.1 dyoung return IXGBE_SUCCESS;
2859 1.1 dyoung }
2860 1.1 dyoung
2861 1.1 dyoung /**
2862 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
2863 1.1 dyoung * @hw: pointer to hardware structure
2864 1.1 dyoung * @mask: Mask to specify which semaphore to release
2865 1.1 dyoung *
2866 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
2867 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
2868 1.1 dyoung **/
2869 1.1 dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2870 1.1 dyoung {
2871 1.1 dyoung u32 gssr;
2872 1.1 dyoung u32 swmask = mask;
2873 1.1 dyoung
2874 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
2875 1.1 dyoung
2876 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
2877 1.1 dyoung
2878 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2879 1.1 dyoung gssr &= ~swmask;
2880 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2881 1.1 dyoung
2882 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
2883 1.1 dyoung }
2884 1.1 dyoung
2885 1.1 dyoung /**
2886 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2887 1.3 msaitoh * @hw: pointer to hardware structure
2888 1.3 msaitoh *
2889 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
2890 1.3 msaitoh * the Rx security block
2891 1.3 msaitoh **/
2892 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2893 1.3 msaitoh {
2894 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
2895 1.3 msaitoh
2896 1.3 msaitoh int i;
2897 1.3 msaitoh int secrxreg;
2898 1.3 msaitoh
2899 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2900 1.3 msaitoh
2901 1.3 msaitoh
2902 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2903 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2904 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2905 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2906 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2907 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2908 1.3 msaitoh break;
2909 1.3 msaitoh else
2910 1.3 msaitoh /* Use interrupt-safe sleep just in case */
2911 1.3 msaitoh usec_delay(1000);
2912 1.3 msaitoh }
2913 1.3 msaitoh
2914 1.3 msaitoh /* For informational purposes only */
2915 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
2916 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
2917 1.3 msaitoh "path fully disabled. Continuing with init.\n");
2918 1.3 msaitoh
2919 1.3 msaitoh return IXGBE_SUCCESS;
2920 1.3 msaitoh }
2921 1.3 msaitoh
2922 1.3 msaitoh /**
2923 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2924 1.3 msaitoh * @hw: pointer to hardware structure
2925 1.3 msaitoh *
2926 1.3 msaitoh * Enables the receive data path.
2927 1.3 msaitoh **/
2928 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2929 1.3 msaitoh {
2930 1.3 msaitoh int secrxreg;
2931 1.3 msaitoh
2932 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2933 1.3 msaitoh
2934 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2935 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2936 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2937 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
2938 1.3 msaitoh
2939 1.3 msaitoh return IXGBE_SUCCESS;
2940 1.3 msaitoh }
2941 1.3 msaitoh
2942 1.3 msaitoh /**
2943 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2944 1.1 dyoung * @hw: pointer to hardware structure
2945 1.1 dyoung * @regval: register value to write to RXCTRL
2946 1.1 dyoung *
2947 1.1 dyoung * Enables the Rx DMA unit
2948 1.1 dyoung **/
2949 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2950 1.1 dyoung {
2951 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2952 1.1 dyoung
2953 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2954 1.1 dyoung
2955 1.1 dyoung return IXGBE_SUCCESS;
2956 1.1 dyoung }
2957 1.1 dyoung
2958 1.1 dyoung /**
2959 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
2960 1.1 dyoung * @hw: pointer to hardware structure
2961 1.1 dyoung * @index: led number to blink
2962 1.1 dyoung **/
2963 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2964 1.1 dyoung {
2965 1.1 dyoung ixgbe_link_speed speed = 0;
2966 1.1 dyoung bool link_up = 0;
2967 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2968 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2969 1.1 dyoung
2970 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
2971 1.1 dyoung
2972 1.1 dyoung /*
2973 1.1 dyoung * Link must be up to auto-blink the LEDs;
2974 1.1 dyoung * Force it if link is down.
2975 1.1 dyoung */
2976 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2977 1.1 dyoung
2978 1.1 dyoung if (!link_up) {
2979 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2980 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
2981 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2982 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
2983 1.1 dyoung msec_delay(10);
2984 1.1 dyoung }
2985 1.1 dyoung
2986 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
2987 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
2988 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2989 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2990 1.1 dyoung
2991 1.1 dyoung return IXGBE_SUCCESS;
2992 1.1 dyoung }
2993 1.1 dyoung
2994 1.1 dyoung /**
2995 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2996 1.1 dyoung * @hw: pointer to hardware structure
2997 1.1 dyoung * @index: led number to stop blinking
2998 1.1 dyoung **/
2999 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3000 1.1 dyoung {
3001 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3002 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3003 1.1 dyoung
3004 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3005 1.1 dyoung
3006 1.1 dyoung
3007 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3008 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3009 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3010 1.1 dyoung
3011 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3012 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3013 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3014 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3015 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3016 1.1 dyoung
3017 1.1 dyoung return IXGBE_SUCCESS;
3018 1.1 dyoung }
3019 1.1 dyoung
3020 1.1 dyoung /**
3021 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3022 1.1 dyoung * @hw: pointer to hardware structure
3023 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3024 1.1 dyoung *
3025 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3026 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3027 1.1 dyoung * get and set mac_addr routines.
3028 1.1 dyoung **/
3029 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3030 1.3 msaitoh u16 *san_mac_offset)
3031 1.1 dyoung {
3032 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3033 1.1 dyoung
3034 1.1 dyoung /*
3035 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3036 1.1 dyoung * available.
3037 1.1 dyoung */
3038 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3039 1.1 dyoung
3040 1.1 dyoung return IXGBE_SUCCESS;
3041 1.1 dyoung }
3042 1.1 dyoung
3043 1.1 dyoung /**
3044 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3045 1.1 dyoung * @hw: pointer to hardware structure
3046 1.1 dyoung * @san_mac_addr: SAN MAC address
3047 1.1 dyoung *
3048 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3049 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3050 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3051 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3052 1.1 dyoung **/
3053 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3054 1.1 dyoung {
3055 1.1 dyoung u16 san_mac_data, san_mac_offset;
3056 1.1 dyoung u8 i;
3057 1.1 dyoung
3058 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3059 1.1 dyoung
3060 1.1 dyoung /*
3061 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3062 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3063 1.1 dyoung */
3064 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3065 1.1 dyoung
3066 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3067 1.1 dyoung /*
3068 1.1 dyoung * No addresses available in this EEPROM. It's not an
3069 1.1 dyoung * error though, so just wipe the local address and return.
3070 1.1 dyoung */
3071 1.1 dyoung for (i = 0; i < 6; i++)
3072 1.1 dyoung san_mac_addr[i] = 0xFF;
3073 1.1 dyoung
3074 1.1 dyoung goto san_mac_addr_out;
3075 1.1 dyoung }
3076 1.1 dyoung
3077 1.1 dyoung /* make sure we know which port we need to program */
3078 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3079 1.1 dyoung /* apply the port offset to the address offset */
3080 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3081 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3082 1.1 dyoung for (i = 0; i < 3; i++) {
3083 1.1 dyoung hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3084 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3085 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3086 1.1 dyoung san_mac_offset++;
3087 1.1 dyoung }
3088 1.1 dyoung
3089 1.1 dyoung san_mac_addr_out:
3090 1.1 dyoung return IXGBE_SUCCESS;
3091 1.1 dyoung }
3092 1.1 dyoung
3093 1.1 dyoung /**
3094 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3095 1.1 dyoung * @hw: pointer to hardware structure
3096 1.1 dyoung * @san_mac_addr: SAN MAC address
3097 1.1 dyoung *
3098 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3099 1.1 dyoung **/
3100 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3101 1.1 dyoung {
3102 1.1 dyoung s32 status = IXGBE_SUCCESS;
3103 1.1 dyoung u16 san_mac_data, san_mac_offset;
3104 1.1 dyoung u8 i;
3105 1.1 dyoung
3106 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3107 1.1 dyoung
3108 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3109 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3110 1.1 dyoung
3111 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3112 1.1 dyoung status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3113 1.1 dyoung goto san_mac_addr_out;
3114 1.1 dyoung }
3115 1.1 dyoung
3116 1.1 dyoung /* Make sure we know which port we need to write */
3117 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3118 1.1 dyoung /* Apply the port offset to the address offset */
3119 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3120 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3121 1.1 dyoung
3122 1.1 dyoung for (i = 0; i < 3; i++) {
3123 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3124 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3125 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3126 1.1 dyoung san_mac_offset++;
3127 1.1 dyoung }
3128 1.1 dyoung
3129 1.1 dyoung san_mac_addr_out:
3130 1.1 dyoung return status;
3131 1.1 dyoung }
3132 1.1 dyoung
3133 1.1 dyoung /**
3134 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3135 1.1 dyoung * @hw: pointer to hardware structure
3136 1.1 dyoung *
3137 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3138 1.1 dyoung * the capabilities table.
3139 1.1 dyoung **/
3140 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3141 1.1 dyoung {
3142 1.4 msaitoh u16 msix_count = 1;
3143 1.4 msaitoh u16 max_msix_count;
3144 1.4 msaitoh u16 pcie_offset;
3145 1.4 msaitoh
3146 1.4 msaitoh switch (hw->mac.type) {
3147 1.4 msaitoh case ixgbe_mac_82598EB:
3148 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3149 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3150 1.4 msaitoh break;
3151 1.4 msaitoh case ixgbe_mac_82599EB:
3152 1.4 msaitoh case ixgbe_mac_X540:
3153 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3154 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3155 1.4 msaitoh break;
3156 1.4 msaitoh default:
3157 1.4 msaitoh return msix_count;
3158 1.4 msaitoh }
3159 1.1 dyoung
3160 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3161 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3162 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3163 1.4 msaitoh
3164 1.4 msaitoh /* MSI-X count is zero-based in HW */
3165 1.4 msaitoh msix_count++;
3166 1.4 msaitoh
3167 1.4 msaitoh if (msix_count > max_msix_count)
3168 1.4 msaitoh msix_count = max_msix_count;
3169 1.1 dyoung
3170 1.1 dyoung return msix_count;
3171 1.1 dyoung }
3172 1.1 dyoung
3173 1.1 dyoung /**
3174 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3175 1.1 dyoung * @hw: pointer to hardware structure
3176 1.1 dyoung * @addr: Address to put into receive address register
3177 1.1 dyoung * @vmdq: VMDq pool to assign
3178 1.1 dyoung *
3179 1.1 dyoung * Puts an ethernet address into a receive address register, or
3180 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3181 1.1 dyoung **/
3182 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3183 1.1 dyoung {
3184 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3185 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3186 1.1 dyoung u32 rar;
3187 1.1 dyoung u32 rar_low, rar_high;
3188 1.1 dyoung u32 addr_low, addr_high;
3189 1.1 dyoung
3190 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3191 1.1 dyoung
3192 1.1 dyoung /* swap bytes for HW little endian */
3193 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3194 1.1 dyoung | (addr[2] << 16)
3195 1.1 dyoung | (addr[3] << 24);
3196 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3197 1.1 dyoung
3198 1.1 dyoung /*
3199 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3200 1.1 dyoung * rar_highwater points to just after the highest currently used
3201 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3202 1.1 dyoung * rar to the top.
3203 1.1 dyoung */
3204 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3205 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3206 1.1 dyoung
3207 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3208 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3209 1.1 dyoung first_empty_rar = rar;
3210 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3211 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3212 1.1 dyoung if (rar_low == addr_low)
3213 1.1 dyoung break; /* found it already in the rars */
3214 1.1 dyoung }
3215 1.1 dyoung }
3216 1.1 dyoung
3217 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3218 1.1 dyoung /* already there so just add to the pool bits */
3219 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3220 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3221 1.1 dyoung /* stick it into first empty RAR slot we found */
3222 1.1 dyoung rar = first_empty_rar;
3223 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3224 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3225 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3226 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3227 1.1 dyoung hw->mac.rar_highwater++;
3228 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3229 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3230 1.1 dyoung }
3231 1.1 dyoung
3232 1.1 dyoung /*
3233 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3234 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3235 1.1 dyoung */
3236 1.1 dyoung if (rar == 0)
3237 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3238 1.1 dyoung
3239 1.1 dyoung return rar;
3240 1.1 dyoung }
3241 1.1 dyoung
3242 1.1 dyoung /**
3243 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3244 1.1 dyoung * @hw: pointer to hardware struct
3245 1.1 dyoung * @rar: receive address register index to disassociate
3246 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3247 1.1 dyoung **/
3248 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3249 1.1 dyoung {
3250 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3251 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3252 1.1 dyoung
3253 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3254 1.1 dyoung
3255 1.1 dyoung /* Make sure we are using a valid rar index range */
3256 1.1 dyoung if (rar >= rar_entries) {
3257 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3258 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3259 1.1 dyoung }
3260 1.1 dyoung
3261 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3262 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3263 1.1 dyoung
3264 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3265 1.1 dyoung goto done;
3266 1.1 dyoung
3267 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3268 1.1 dyoung if (mpsar_lo) {
3269 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3270 1.1 dyoung mpsar_lo = 0;
3271 1.1 dyoung }
3272 1.1 dyoung if (mpsar_hi) {
3273 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3274 1.1 dyoung mpsar_hi = 0;
3275 1.1 dyoung }
3276 1.1 dyoung } else if (vmdq < 32) {
3277 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3278 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3279 1.1 dyoung } else {
3280 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3281 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3282 1.1 dyoung }
3283 1.1 dyoung
3284 1.1 dyoung /* was that the last pool using this rar? */
3285 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3286 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3287 1.1 dyoung done:
3288 1.1 dyoung return IXGBE_SUCCESS;
3289 1.1 dyoung }
3290 1.1 dyoung
3291 1.1 dyoung /**
3292 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3293 1.1 dyoung * @hw: pointer to hardware struct
3294 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3295 1.1 dyoung * @vmdq: VMDq pool index
3296 1.1 dyoung **/
3297 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3298 1.1 dyoung {
3299 1.1 dyoung u32 mpsar;
3300 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3301 1.1 dyoung
3302 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3303 1.1 dyoung
3304 1.1 dyoung /* Make sure we are using a valid rar index range */
3305 1.1 dyoung if (rar >= rar_entries) {
3306 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3307 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3308 1.1 dyoung }
3309 1.1 dyoung
3310 1.1 dyoung if (vmdq < 32) {
3311 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3312 1.1 dyoung mpsar |= 1 << vmdq;
3313 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3314 1.1 dyoung } else {
3315 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3316 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3317 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3318 1.1 dyoung }
3319 1.1 dyoung return IXGBE_SUCCESS;
3320 1.1 dyoung }
3321 1.1 dyoung
3322 1.1 dyoung /**
3323 1.4 msaitoh * This function should only be involved in the IOV mode.
3324 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3325 1.4 msaitoh * VFs advertized and not 0.
3326 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3327 1.4 msaitoh *
3328 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3329 1.4 msaitoh * @hw: pointer to hardware struct
3330 1.4 msaitoh * @vmdq: VMDq pool index
3331 1.4 msaitoh **/
3332 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3333 1.4 msaitoh {
3334 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3335 1.4 msaitoh
3336 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3337 1.4 msaitoh
3338 1.4 msaitoh if (vmdq < 32) {
3339 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3340 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3341 1.4 msaitoh } else {
3342 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3343 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3344 1.4 msaitoh }
3345 1.4 msaitoh
3346 1.4 msaitoh return IXGBE_SUCCESS;
3347 1.4 msaitoh }
3348 1.4 msaitoh
3349 1.4 msaitoh /**
3350 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3351 1.1 dyoung * @hw: pointer to hardware structure
3352 1.1 dyoung **/
3353 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3354 1.1 dyoung {
3355 1.1 dyoung int i;
3356 1.1 dyoung
3357 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3358 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3359 1.1 dyoung
3360 1.1 dyoung for (i = 0; i < 128; i++)
3361 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3362 1.1 dyoung
3363 1.1 dyoung return IXGBE_SUCCESS;
3364 1.1 dyoung }
3365 1.1 dyoung
3366 1.1 dyoung /**
3367 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3368 1.1 dyoung * @hw: pointer to hardware structure
3369 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3370 1.1 dyoung *
3371 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3372 1.1 dyoung *
3373 1.1 dyoung **/
3374 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3375 1.1 dyoung {
3376 1.1 dyoung u32 bits = 0;
3377 1.1 dyoung u32 first_empty_slot = 0;
3378 1.1 dyoung s32 regindex;
3379 1.1 dyoung
3380 1.1 dyoung /* short cut the special case */
3381 1.1 dyoung if (vlan == 0)
3382 1.1 dyoung return 0;
3383 1.1 dyoung
3384 1.1 dyoung /*
3385 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3386 1.1 dyoung * slot found along the way
3387 1.1 dyoung */
3388 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3389 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3390 1.1 dyoung if (!bits && !(first_empty_slot))
3391 1.1 dyoung first_empty_slot = regindex;
3392 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3393 1.1 dyoung break;
3394 1.1 dyoung }
3395 1.1 dyoung
3396 1.1 dyoung /*
3397 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3398 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3399 1.1 dyoung * vlan id.
3400 1.1 dyoung */
3401 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3402 1.1 dyoung if (first_empty_slot)
3403 1.1 dyoung regindex = first_empty_slot;
3404 1.1 dyoung else {
3405 1.1 dyoung DEBUGOUT("No space in VLVF.\n");
3406 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3407 1.1 dyoung }
3408 1.1 dyoung }
3409 1.1 dyoung
3410 1.1 dyoung return regindex;
3411 1.1 dyoung }
3412 1.1 dyoung
3413 1.1 dyoung /**
3414 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3415 1.1 dyoung * @hw: pointer to hardware structure
3416 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3417 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3418 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3419 1.1 dyoung *
3420 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3421 1.1 dyoung **/
3422 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3423 1.3 msaitoh bool vlan_on)
3424 1.1 dyoung {
3425 1.1 dyoung s32 regindex;
3426 1.1 dyoung u32 bitindex;
3427 1.1 dyoung u32 vfta;
3428 1.1 dyoung u32 targetbit;
3429 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3430 1.1 dyoung bool vfta_changed = FALSE;
3431 1.1 dyoung
3432 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3433 1.1 dyoung
3434 1.1 dyoung if (vlan > 4095)
3435 1.1 dyoung return IXGBE_ERR_PARAM;
3436 1.1 dyoung
3437 1.1 dyoung /*
3438 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3439 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3440 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3441 1.1 dyoung */
3442 1.1 dyoung
3443 1.1 dyoung /* Part 1
3444 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3445 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3446 1.1 dyoung * bits[11-5]: which register
3447 1.1 dyoung * bits[4-0]: which bit in the register
3448 1.1 dyoung */
3449 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3450 1.1 dyoung bitindex = vlan & 0x1F;
3451 1.1 dyoung targetbit = (1 << bitindex);
3452 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3453 1.1 dyoung
3454 1.1 dyoung if (vlan_on) {
3455 1.1 dyoung if (!(vfta & targetbit)) {
3456 1.1 dyoung vfta |= targetbit;
3457 1.1 dyoung vfta_changed = TRUE;
3458 1.1 dyoung }
3459 1.1 dyoung } else {
3460 1.1 dyoung if ((vfta & targetbit)) {
3461 1.1 dyoung vfta &= ~targetbit;
3462 1.1 dyoung vfta_changed = TRUE;
3463 1.1 dyoung }
3464 1.1 dyoung }
3465 1.1 dyoung
3466 1.1 dyoung /* Part 2
3467 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3468 1.3 msaitoh */
3469 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3470 1.3 msaitoh &vfta_changed);
3471 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3472 1.3 msaitoh return ret_val;
3473 1.3 msaitoh
3474 1.3 msaitoh if (vfta_changed)
3475 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3476 1.3 msaitoh
3477 1.3 msaitoh return IXGBE_SUCCESS;
3478 1.3 msaitoh }
3479 1.3 msaitoh
3480 1.3 msaitoh /**
3481 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3482 1.3 msaitoh * @hw: pointer to hardware structure
3483 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3484 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3485 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3486 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3487 1.3 msaitoh * should be changed
3488 1.3 msaitoh *
3489 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3490 1.3 msaitoh **/
3491 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3492 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3493 1.3 msaitoh {
3494 1.3 msaitoh u32 vt;
3495 1.3 msaitoh
3496 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3497 1.3 msaitoh
3498 1.3 msaitoh if (vlan > 4095)
3499 1.3 msaitoh return IXGBE_ERR_PARAM;
3500 1.3 msaitoh
3501 1.3 msaitoh /* If VT Mode is set
3502 1.1 dyoung * Either vlan_on
3503 1.1 dyoung * make sure the vlan is in VLVF
3504 1.1 dyoung * set the vind bit in the matching VLVFB
3505 1.1 dyoung * Or !vlan_on
3506 1.1 dyoung * clear the pool bit and possibly the vind
3507 1.1 dyoung */
3508 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3509 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3510 1.1 dyoung s32 vlvf_index;
3511 1.3 msaitoh u32 bits;
3512 1.1 dyoung
3513 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3514 1.1 dyoung if (vlvf_index < 0)
3515 1.1 dyoung return vlvf_index;
3516 1.1 dyoung
3517 1.1 dyoung if (vlan_on) {
3518 1.1 dyoung /* set the pool bit */
3519 1.1 dyoung if (vind < 32) {
3520 1.1 dyoung bits = IXGBE_READ_REG(hw,
3521 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3522 1.1 dyoung bits |= (1 << vind);
3523 1.1 dyoung IXGBE_WRITE_REG(hw,
3524 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3525 1.1 dyoung bits);
3526 1.1 dyoung } else {
3527 1.1 dyoung bits = IXGBE_READ_REG(hw,
3528 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3529 1.3 msaitoh bits |= (1 << (vind - 32));
3530 1.1 dyoung IXGBE_WRITE_REG(hw,
3531 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3532 1.3 msaitoh bits);
3533 1.1 dyoung }
3534 1.1 dyoung } else {
3535 1.1 dyoung /* clear the pool bit */
3536 1.1 dyoung if (vind < 32) {
3537 1.1 dyoung bits = IXGBE_READ_REG(hw,
3538 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3539 1.1 dyoung bits &= ~(1 << vind);
3540 1.1 dyoung IXGBE_WRITE_REG(hw,
3541 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3542 1.1 dyoung bits);
3543 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3544 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3545 1.1 dyoung } else {
3546 1.1 dyoung bits = IXGBE_READ_REG(hw,
3547 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3548 1.3 msaitoh bits &= ~(1 << (vind - 32));
3549 1.1 dyoung IXGBE_WRITE_REG(hw,
3550 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3551 1.3 msaitoh bits);
3552 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3553 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3554 1.1 dyoung }
3555 1.1 dyoung }
3556 1.1 dyoung
3557 1.1 dyoung /*
3558 1.1 dyoung * If there are still bits set in the VLVFB registers
3559 1.1 dyoung * for the VLAN ID indicated we need to see if the
3560 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3561 1.1 dyoung * If the caller has requested that we clear the VFTA
3562 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3563 1.1 dyoung * ID entry then ignore the request. We're not worried
3564 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3565 1.1 dyoung * entry bit on, only when requested to turn it off as
3566 1.1 dyoung * there may be multiple pools and/or VFs using the
3567 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
3568 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
3569 1.1 dyoung * been cleared. This will be indicated by "bits" being
3570 1.1 dyoung * zero.
3571 1.1 dyoung */
3572 1.1 dyoung if (bits) {
3573 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3574 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
3575 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
3576 1.1 dyoung /* someone wants to clear the vfta entry
3577 1.1 dyoung * but some pools/VFs are still using it.
3578 1.1 dyoung * Ignore it. */
3579 1.3 msaitoh *vfta_changed = FALSE;
3580 1.1 dyoung }
3581 1.3 msaitoh } else
3582 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3583 1.1 dyoung }
3584 1.1 dyoung
3585 1.1 dyoung return IXGBE_SUCCESS;
3586 1.1 dyoung }
3587 1.1 dyoung
3588 1.1 dyoung /**
3589 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
3590 1.1 dyoung * @hw: pointer to hardware structure
3591 1.1 dyoung *
3592 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
3593 1.1 dyoung **/
3594 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3595 1.1 dyoung {
3596 1.1 dyoung u32 offset;
3597 1.1 dyoung
3598 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
3599 1.1 dyoung
3600 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
3601 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3602 1.1 dyoung
3603 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3604 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3605 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3606 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3607 1.1 dyoung }
3608 1.1 dyoung
3609 1.1 dyoung return IXGBE_SUCCESS;
3610 1.1 dyoung }
3611 1.1 dyoung
3612 1.1 dyoung /**
3613 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
3614 1.1 dyoung * @hw: pointer to hardware structure
3615 1.1 dyoung * @speed: pointer to link speed
3616 1.1 dyoung * @link_up: TRUE when link is up
3617 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
3618 1.1 dyoung *
3619 1.1 dyoung * Reads the links register to determine if link is up and the current speed
3620 1.1 dyoung **/
3621 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3622 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
3623 1.1 dyoung {
3624 1.1 dyoung u32 links_reg, links_orig;
3625 1.1 dyoung u32 i;
3626 1.1 dyoung
3627 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
3628 1.1 dyoung
3629 1.1 dyoung /* clear the old state */
3630 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3631 1.1 dyoung
3632 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3633 1.1 dyoung
3634 1.1 dyoung if (links_orig != links_reg) {
3635 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
3636 1.3 msaitoh links_orig, links_reg);
3637 1.1 dyoung }
3638 1.1 dyoung
3639 1.1 dyoung if (link_up_wait_to_complete) {
3640 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3641 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
3642 1.1 dyoung *link_up = TRUE;
3643 1.1 dyoung break;
3644 1.1 dyoung } else {
3645 1.1 dyoung *link_up = FALSE;
3646 1.1 dyoung }
3647 1.1 dyoung msec_delay(100);
3648 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3649 1.1 dyoung }
3650 1.1 dyoung } else {
3651 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
3652 1.1 dyoung *link_up = TRUE;
3653 1.1 dyoung else
3654 1.1 dyoung *link_up = FALSE;
3655 1.1 dyoung }
3656 1.1 dyoung
3657 1.1 dyoung if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3658 1.1 dyoung IXGBE_LINKS_SPEED_10G_82599)
3659 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
3660 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3661 1.3 msaitoh IXGBE_LINKS_SPEED_1G_82599)
3662 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
3663 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3664 1.3 msaitoh IXGBE_LINKS_SPEED_100_82599)
3665 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
3666 1.1 dyoung else
3667 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
3668 1.1 dyoung
3669 1.1 dyoung return IXGBE_SUCCESS;
3670 1.1 dyoung }
3671 1.1 dyoung
3672 1.1 dyoung /**
3673 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3674 1.1 dyoung * the EEPROM
3675 1.1 dyoung * @hw: pointer to hardware structure
3676 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
3677 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
3678 1.1 dyoung *
3679 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
3680 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
3681 1.1 dyoung **/
3682 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3683 1.3 msaitoh u16 *wwpn_prefix)
3684 1.1 dyoung {
3685 1.1 dyoung u16 offset, caps;
3686 1.1 dyoung u16 alt_san_mac_blk_offset;
3687 1.1 dyoung
3688 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3689 1.1 dyoung
3690 1.1 dyoung /* clear output first */
3691 1.1 dyoung *wwnn_prefix = 0xFFFF;
3692 1.1 dyoung *wwpn_prefix = 0xFFFF;
3693 1.1 dyoung
3694 1.1 dyoung /* check if alternative SAN MAC is supported */
3695 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3696 1.3 msaitoh &alt_san_mac_blk_offset);
3697 1.1 dyoung
3698 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
3699 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
3700 1.1 dyoung goto wwn_prefix_out;
3701 1.1 dyoung
3702 1.1 dyoung /* check capability in alternative san mac address block */
3703 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3704 1.1 dyoung hw->eeprom.ops.read(hw, offset, &caps);
3705 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3706 1.1 dyoung goto wwn_prefix_out;
3707 1.1 dyoung
3708 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
3709 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3710 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3711 1.1 dyoung
3712 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3713 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3714 1.1 dyoung
3715 1.1 dyoung wwn_prefix_out:
3716 1.1 dyoung return IXGBE_SUCCESS;
3717 1.1 dyoung }
3718 1.1 dyoung
3719 1.1 dyoung /**
3720 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3721 1.1 dyoung * @hw: pointer to hardware structure
3722 1.1 dyoung * @bs: the fcoe boot status
3723 1.1 dyoung *
3724 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
3725 1.1 dyoung **/
3726 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3727 1.1 dyoung {
3728 1.1 dyoung u16 offset, caps, flags;
3729 1.1 dyoung s32 status;
3730 1.1 dyoung
3731 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3732 1.1 dyoung
3733 1.1 dyoung /* clear output first */
3734 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
3735 1.1 dyoung
3736 1.1 dyoung /* check if FCOE IBA block is present */
3737 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3738 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
3739 1.1 dyoung if (status != IXGBE_SUCCESS)
3740 1.1 dyoung goto out;
3741 1.1 dyoung
3742 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3743 1.1 dyoung goto out;
3744 1.1 dyoung
3745 1.1 dyoung /* check if iSCSI FCOE block is populated */
3746 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3747 1.1 dyoung if (status != IXGBE_SUCCESS)
3748 1.1 dyoung goto out;
3749 1.1 dyoung
3750 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
3751 1.1 dyoung goto out;
3752 1.1 dyoung
3753 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
3754 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3755 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
3756 1.1 dyoung if (status != IXGBE_SUCCESS)
3757 1.1 dyoung goto out;
3758 1.1 dyoung
3759 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3760 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
3761 1.1 dyoung else
3762 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
3763 1.1 dyoung
3764 1.1 dyoung out:
3765 1.1 dyoung return status;
3766 1.1 dyoung }
3767 1.1 dyoung
3768 1.1 dyoung /**
3769 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3770 1.1 dyoung * @hw: pointer to hardware structure
3771 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
3772 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3773 1.1 dyoung *
3774 1.1 dyoung **/
3775 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3776 1.1 dyoung {
3777 1.1 dyoung int j;
3778 1.1 dyoung int pf_target_reg = pf >> 3;
3779 1.1 dyoung int pf_target_shift = pf % 8;
3780 1.1 dyoung u32 pfvfspoof = 0;
3781 1.1 dyoung
3782 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3783 1.1 dyoung return;
3784 1.1 dyoung
3785 1.1 dyoung if (enable)
3786 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3787 1.1 dyoung
3788 1.1 dyoung /*
3789 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
3790 1.1 dyoung * MAC anti-spoof enables in each register array element.
3791 1.1 dyoung */
3792 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
3793 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3794 1.1 dyoung
3795 1.4 msaitoh /*
3796 1.4 msaitoh * The PF should be allowed to spoof so that it can support
3797 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
3798 1.4 msaitoh */
3799 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
3800 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3801 1.1 dyoung
3802 1.1 dyoung /*
3803 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
3804 1.4 msaitoh * anti-spoofing enabled.
3805 1.1 dyoung */
3806 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3807 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3808 1.1 dyoung }
3809 1.1 dyoung
3810 1.1 dyoung /**
3811 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3812 1.1 dyoung * @hw: pointer to hardware structure
3813 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
3814 1.1 dyoung * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3815 1.1 dyoung *
3816 1.1 dyoung **/
3817 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3818 1.1 dyoung {
3819 1.1 dyoung int vf_target_reg = vf >> 3;
3820 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3821 1.1 dyoung u32 pfvfspoof;
3822 1.1 dyoung
3823 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
3824 1.1 dyoung return;
3825 1.1 dyoung
3826 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3827 1.1 dyoung if (enable)
3828 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
3829 1.1 dyoung else
3830 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
3831 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3832 1.1 dyoung }
3833 1.1 dyoung
3834 1.1 dyoung /**
3835 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
3836 1.1 dyoung * @hw: pointer to hardware structure
3837 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
3838 1.1 dyoung *
3839 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
3840 1.1 dyoung * and return the word through device_caps.
3841 1.1 dyoung **/
3842 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3843 1.1 dyoung {
3844 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
3845 1.1 dyoung
3846 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3847 1.1 dyoung
3848 1.1 dyoung return IXGBE_SUCCESS;
3849 1.1 dyoung }
3850 1.1 dyoung
3851 1.1 dyoung /**
3852 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3853 1.1 dyoung * @hw: pointer to hardware structure
3854 1.1 dyoung *
3855 1.1 dyoung **/
3856 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3857 1.1 dyoung {
3858 1.1 dyoung u32 regval;
3859 1.1 dyoung u32 i;
3860 1.1 dyoung
3861 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3862 1.1 dyoung
3863 1.1 dyoung /* Enable relaxed ordering */
3864 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
3865 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3866 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3867 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3868 1.1 dyoung }
3869 1.1 dyoung
3870 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
3871 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3872 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3873 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3874 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3875 1.1 dyoung }
3876 1.1 dyoung
3877 1.1 dyoung }
3878 1.3 msaitoh
3879 1.3 msaitoh /**
3880 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
3881 1.3 msaitoh * @buffer: pointer to EEPROM
3882 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
3883 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
3884 1.3 msaitoh * checksum calculated is returned.
3885 1.3 msaitoh **/
3886 1.3 msaitoh static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3887 1.3 msaitoh {
3888 1.3 msaitoh u32 i;
3889 1.3 msaitoh u8 sum = 0;
3890 1.3 msaitoh
3891 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
3892 1.3 msaitoh
3893 1.3 msaitoh if (!buffer)
3894 1.3 msaitoh return 0;
3895 1.3 msaitoh
3896 1.3 msaitoh for (i = 0; i < length; i++)
3897 1.3 msaitoh sum += buffer[i];
3898 1.3 msaitoh
3899 1.3 msaitoh return (u8) (0 - sum);
3900 1.3 msaitoh }
3901 1.3 msaitoh
3902 1.3 msaitoh /**
3903 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
3904 1.3 msaitoh * @hw: pointer to the HW structure
3905 1.3 msaitoh * @buffer: contains the command to write and where the return status will
3906 1.3 msaitoh * be placed
3907 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
3908 1.3 msaitoh *
3909 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
3910 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3911 1.3 msaitoh **/
3912 1.3 msaitoh static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3913 1.3 msaitoh u32 length)
3914 1.3 msaitoh {
3915 1.3 msaitoh u32 hicr, i, bi;
3916 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3917 1.3 msaitoh u8 buf_len, dword_len;
3918 1.3 msaitoh
3919 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3920 1.3 msaitoh
3921 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
3922 1.3 msaitoh
3923 1.3 msaitoh if (length == 0 || length & 0x3 ||
3924 1.3 msaitoh length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3925 1.3 msaitoh DEBUGOUT("Buffer length failure.\n");
3926 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3927 1.3 msaitoh goto out;
3928 1.3 msaitoh }
3929 1.3 msaitoh
3930 1.3 msaitoh /* Check that the host interface is enabled. */
3931 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3932 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
3933 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3934 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3935 1.3 msaitoh goto out;
3936 1.3 msaitoh }
3937 1.3 msaitoh
3938 1.3 msaitoh /* Calculate length in DWORDs */
3939 1.3 msaitoh dword_len = length >> 2;
3940 1.3 msaitoh
3941 1.3 msaitoh /*
3942 1.3 msaitoh * The device driver writes the relevant command block
3943 1.3 msaitoh * into the ram area.
3944 1.3 msaitoh */
3945 1.3 msaitoh for (i = 0; i < dword_len; i++)
3946 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3947 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
3948 1.3 msaitoh
3949 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
3950 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3951 1.3 msaitoh
3952 1.3 msaitoh for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3953 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3954 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
3955 1.3 msaitoh break;
3956 1.3 msaitoh msec_delay(1);
3957 1.3 msaitoh }
3958 1.3 msaitoh
3959 1.3 msaitoh /* Check command successful completion. */
3960 1.3 msaitoh if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3961 1.3 msaitoh (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3962 1.3 msaitoh DEBUGOUT("Command has failed with no status valid.\n");
3963 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3964 1.3 msaitoh goto out;
3965 1.3 msaitoh }
3966 1.3 msaitoh
3967 1.3 msaitoh /* Calculate length in DWORDs */
3968 1.3 msaitoh dword_len = hdr_size >> 2;
3969 1.3 msaitoh
3970 1.3 msaitoh /* first pull in the header so we know the buffer length */
3971 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
3972 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3973 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
3974 1.3 msaitoh }
3975 1.3 msaitoh
3976 1.3 msaitoh /* If there is any thing in data position pull it in */
3977 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3978 1.3 msaitoh if (buf_len == 0)
3979 1.3 msaitoh goto out;
3980 1.3 msaitoh
3981 1.3 msaitoh if (length < (buf_len + hdr_size)) {
3982 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
3983 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3984 1.3 msaitoh goto out;
3985 1.3 msaitoh }
3986 1.3 msaitoh
3987 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
3988 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
3989 1.3 msaitoh
3990 1.3 msaitoh /* Pull in the rest of the buffer (bi is where we left off)*/
3991 1.3 msaitoh for (; bi <= dword_len; bi++) {
3992 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3993 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
3994 1.3 msaitoh }
3995 1.3 msaitoh
3996 1.3 msaitoh out:
3997 1.3 msaitoh return ret_val;
3998 1.3 msaitoh }
3999 1.3 msaitoh
4000 1.3 msaitoh /**
4001 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4002 1.3 msaitoh * @hw: pointer to the HW structure
4003 1.3 msaitoh * @maj: driver version major number
4004 1.3 msaitoh * @min: driver version minor number
4005 1.3 msaitoh * @build: driver version build number
4006 1.3 msaitoh * @sub: driver version sub build number
4007 1.3 msaitoh *
4008 1.3 msaitoh * Sends driver version number to firmware through the manageability
4009 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4010 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4011 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4012 1.3 msaitoh **/
4013 1.3 msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4014 1.3 msaitoh u8 build, u8 sub)
4015 1.3 msaitoh {
4016 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4017 1.3 msaitoh int i;
4018 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4019 1.3 msaitoh
4020 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4021 1.3 msaitoh
4022 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4023 1.3 msaitoh != IXGBE_SUCCESS) {
4024 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4025 1.3 msaitoh goto out;
4026 1.3 msaitoh }
4027 1.3 msaitoh
4028 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4029 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4030 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4031 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4032 1.3 msaitoh fw_cmd.ver_maj = maj;
4033 1.3 msaitoh fw_cmd.ver_min = min;
4034 1.3 msaitoh fw_cmd.ver_build = build;
4035 1.3 msaitoh fw_cmd.ver_sub = sub;
4036 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4037 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4038 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4039 1.3 msaitoh fw_cmd.pad = 0;
4040 1.3 msaitoh fw_cmd.pad2 = 0;
4041 1.3 msaitoh
4042 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4043 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4044 1.3 msaitoh sizeof(fw_cmd));
4045 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4046 1.3 msaitoh continue;
4047 1.3 msaitoh
4048 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4049 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4050 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4051 1.3 msaitoh else
4052 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4053 1.3 msaitoh
4054 1.3 msaitoh break;
4055 1.3 msaitoh }
4056 1.3 msaitoh
4057 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4058 1.3 msaitoh out:
4059 1.3 msaitoh return ret_val;
4060 1.3 msaitoh }
4061 1.3 msaitoh
4062 1.3 msaitoh /**
4063 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4064 1.3 msaitoh * @hw: pointer to hardware structure
4065 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4066 1.3 msaitoh * @headroom: reserve n KB of headroom
4067 1.3 msaitoh * @strategy: packet buffer allocation strategy
4068 1.3 msaitoh **/
4069 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4070 1.3 msaitoh int strategy)
4071 1.3 msaitoh {
4072 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4073 1.3 msaitoh int i = 0;
4074 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4075 1.3 msaitoh
4076 1.3 msaitoh /* Reserve headroom */
4077 1.3 msaitoh pbsize -= headroom;
4078 1.3 msaitoh
4079 1.3 msaitoh if (!num_pb)
4080 1.3 msaitoh num_pb = 1;
4081 1.3 msaitoh
4082 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4083 1.3 msaitoh * buffers requested using supplied strategy.
4084 1.3 msaitoh */
4085 1.3 msaitoh switch (strategy) {
4086 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4087 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4088 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4089 1.3 msaitoh */
4090 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4091 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4092 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4093 1.3 msaitoh for (; i < (num_pb / 2); i++)
4094 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4095 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4096 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4097 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4098 1.3 msaitoh for (; i < num_pb; i++)
4099 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4100 1.3 msaitoh break;
4101 1.3 msaitoh default:
4102 1.3 msaitoh break;
4103 1.3 msaitoh }
4104 1.3 msaitoh
4105 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4106 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4107 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4108 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4109 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4110 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4111 1.3 msaitoh }
4112 1.3 msaitoh
4113 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4114 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4115 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4116 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4117 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4118 1.3 msaitoh }
4119 1.3 msaitoh }
4120 1.3 msaitoh
4121 1.3 msaitoh /**
4122 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4123 1.3 msaitoh * @hw: pointer to the hardware structure
4124 1.3 msaitoh *
4125 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4126 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4127 1.3 msaitoh * buffers on the system.
4128 1.3 msaitoh **/
4129 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4130 1.3 msaitoh {
4131 1.3 msaitoh u32 gcr_ext, hlreg0;
4132 1.3 msaitoh
4133 1.3 msaitoh /*
4134 1.3 msaitoh * If double reset is not requested then all transactions should
4135 1.3 msaitoh * already be clear and as such there is no work to do
4136 1.3 msaitoh */
4137 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4138 1.3 msaitoh return;
4139 1.3 msaitoh
4140 1.3 msaitoh /*
4141 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4142 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4143 1.3 msaitoh * has already been cleared.
4144 1.3 msaitoh */
4145 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4146 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4147 1.3 msaitoh
4148 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4149 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4150 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4151 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4152 1.3 msaitoh
4153 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4154 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4155 1.3 msaitoh usec_delay(20);
4156 1.3 msaitoh
4157 1.3 msaitoh /* restore previous register values */
4158 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4159 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4160 1.3 msaitoh }
4161 1.3 msaitoh
4162