ixgbe_common.c revision 1.41 1 1.41 msaitoh /* $NetBSD: ixgbe_common.c,v 1.41 2021/12/14 05:35:46 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.14 msaitoh Copyright (c) 2001-2017, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 1.1 dyoung
38 1.31 msaitoh #include <sys/cdefs.h>
39 1.41 msaitoh __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.41 2021/12/14 05:35:46 msaitoh Exp $");
40 1.31 msaitoh
41 1.1 dyoung #include "ixgbe_common.h"
42 1.1 dyoung #include "ixgbe_phy.h"
43 1.6 msaitoh #include "ixgbe_dcb.h"
44 1.6 msaitoh #include "ixgbe_dcb_82599.h"
45 1.1 dyoung #include "ixgbe_api.h"
46 1.1 dyoung
47 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 1.3 msaitoh u16 count);
54 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 1.1 dyoung
59 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 1.3 msaitoh u16 *san_mac_offset);
62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 1.3 msaitoh u16 words, u16 *data);
64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 1.3 msaitoh u16 words, u16 *data);
66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 1.3 msaitoh u16 offset);
68 1.1 dyoung
69 1.1 dyoung /**
70 1.38 msaitoh * ixgbe_init_ops_generic - Inits function ptrs
71 1.38 msaitoh * @hw: pointer to the hardware structure
72 1.1 dyoung *
73 1.38 msaitoh * Initialize the function pointers.
74 1.1 dyoung **/
75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 1.1 dyoung {
77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
79 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 1.1 dyoung
81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
82 1.1 dyoung
83 1.1 dyoung /* EEPROM */
84 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
88 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 1.3 msaitoh } else {
90 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 1.3 msaitoh eeprom->ops.read_buffer =
92 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
93 1.3 msaitoh }
94 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
95 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 1.1 dyoung eeprom->ops.validate_checksum =
97 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
98 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 1.1 dyoung
101 1.1 dyoung /* MAC */
102 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
103 1.1 dyoung mac->ops.reset_hw = NULL;
104 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
105 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 1.1 dyoung mac->ops.get_media_type = NULL;
107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
108 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 1.1 dyoung
118 1.1 dyoung /* LEDs */
119 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
120 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
121 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 1.1 dyoung
125 1.1 dyoung /* RAR, Multicast, VLAN */
126 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
127 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 1.1 dyoung mac->ops.insert_mac_addr = NULL;
129 1.1 dyoung mac->ops.set_vmdq = NULL;
130 1.1 dyoung mac->ops.clear_vmdq = NULL;
131 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 1.1 dyoung mac->ops.clear_vfta = NULL;
137 1.1 dyoung mac->ops.set_vfta = NULL;
138 1.3 msaitoh mac->ops.set_vlvf = NULL;
139 1.1 dyoung mac->ops.init_uta_tables = NULL;
140 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 1.1 dyoung
144 1.1 dyoung /* Flow Control */
145 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 1.1 dyoung
149 1.1 dyoung /* Link */
150 1.1 dyoung mac->ops.get_link_capabilities = NULL;
151 1.1 dyoung mac->ops.setup_link = NULL;
152 1.1 dyoung mac->ops.check_link = NULL;
153 1.6 msaitoh mac->ops.dmac_config = NULL;
154 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
155 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
156 1.1 dyoung
157 1.1 dyoung return IXGBE_SUCCESS;
158 1.1 dyoung }
159 1.1 dyoung
160 1.1 dyoung /**
161 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 1.6 msaitoh * of flow control
163 1.6 msaitoh * @hw: pointer to hardware structure
164 1.6 msaitoh *
165 1.6 msaitoh * This function returns TRUE if the device supports flow control
166 1.6 msaitoh * autonegotiation, and FALSE if it does not.
167 1.4 msaitoh *
168 1.4 msaitoh **/
169 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 1.4 msaitoh {
171 1.6 msaitoh bool supported = FALSE;
172 1.6 msaitoh ixgbe_link_speed speed;
173 1.6 msaitoh bool link_up;
174 1.4 msaitoh
175 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 1.4 msaitoh
177 1.6 msaitoh switch (hw->phy.media_type) {
178 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
179 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
180 1.6 msaitoh case ixgbe_media_type_fiber:
181 1.14 msaitoh /* flow control autoneg black list */
182 1.14 msaitoh switch (hw->device_id) {
183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
184 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
186 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 1.14 msaitoh supported = FALSE;
188 1.14 msaitoh break;
189 1.14 msaitoh default:
190 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 1.14 msaitoh /* if link is down, assume supported */
192 1.14 msaitoh if (link_up)
193 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 1.14 msaitoh TRUE : FALSE;
195 1.14 msaitoh else
196 1.14 msaitoh supported = TRUE;
197 1.14 msaitoh }
198 1.14 msaitoh
199 1.14 msaitoh break;
200 1.14 msaitoh case ixgbe_media_type_backplane:
201 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 1.14 msaitoh supported = FALSE;
203 1.6 msaitoh else
204 1.6 msaitoh supported = TRUE;
205 1.6 msaitoh break;
206 1.6 msaitoh case ixgbe_media_type_copper:
207 1.6 msaitoh /* only some copper devices support flow control autoneg */
208 1.6 msaitoh switch (hw->device_id) {
209 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
210 1.6 msaitoh case IXGBE_DEV_ID_X540T:
211 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
212 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
213 1.8 msaitoh case IXGBE_DEV_ID_X550T:
214 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
215 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
216 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
217 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
218 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 1.6 msaitoh supported = TRUE;
220 1.6 msaitoh break;
221 1.6 msaitoh default:
222 1.6 msaitoh supported = FALSE;
223 1.6 msaitoh }
224 1.4 msaitoh default:
225 1.6 msaitoh break;
226 1.4 msaitoh }
227 1.6 msaitoh
228 1.6 msaitoh return supported;
229 1.4 msaitoh }
230 1.4 msaitoh
231 1.4 msaitoh /**
232 1.38 msaitoh * ixgbe_setup_fc_generic - Set up flow control
233 1.38 msaitoh * @hw: pointer to hardware structure
234 1.4 msaitoh *
235 1.38 msaitoh * Called at init time to set up flow control.
236 1.4 msaitoh **/
237 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
238 1.4 msaitoh {
239 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
240 1.4 msaitoh u32 reg = 0, reg_bp = 0;
241 1.4 msaitoh u16 reg_cu = 0;
242 1.8 msaitoh bool locked = FALSE;
243 1.4 msaitoh
244 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
245 1.4 msaitoh
246 1.8 msaitoh /* Validate the requested mode */
247 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
248 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
249 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
250 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
251 1.4 msaitoh goto out;
252 1.4 msaitoh }
253 1.4 msaitoh
254 1.4 msaitoh /*
255 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
256 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
257 1.4 msaitoh */
258 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
259 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
260 1.4 msaitoh
261 1.4 msaitoh /*
262 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
263 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
264 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
265 1.4 msaitoh */
266 1.4 msaitoh switch (hw->phy.media_type) {
267 1.8 msaitoh case ixgbe_media_type_backplane:
268 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
269 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
270 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
271 1.8 msaitoh goto out;
272 1.8 msaitoh
273 1.14 msaitoh /* fall through - only backplane uses autoc */
274 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
275 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
276 1.4 msaitoh case ixgbe_media_type_fiber:
277 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
278 1.8 msaitoh
279 1.4 msaitoh break;
280 1.4 msaitoh case ixgbe_media_type_copper:
281 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
282 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
283 1.4 msaitoh break;
284 1.4 msaitoh default:
285 1.4 msaitoh break;
286 1.4 msaitoh }
287 1.4 msaitoh
288 1.4 msaitoh /*
289 1.4 msaitoh * The possible values of fc.requested_mode are:
290 1.4 msaitoh * 0: Flow control is completely disabled
291 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
292 1.4 msaitoh * but not send pause frames).
293 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
294 1.4 msaitoh * we do not support receiving pause frames).
295 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
296 1.4 msaitoh * other: Invalid.
297 1.4 msaitoh */
298 1.4 msaitoh switch (hw->fc.requested_mode) {
299 1.4 msaitoh case ixgbe_fc_none:
300 1.4 msaitoh /* Flow control completely disabled by software override. */
301 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
302 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
303 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
304 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
305 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
306 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
307 1.4 msaitoh break;
308 1.4 msaitoh case ixgbe_fc_tx_pause:
309 1.4 msaitoh /*
310 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
311 1.4 msaitoh * disabled by software override.
312 1.4 msaitoh */
313 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
314 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
315 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
316 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
317 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
318 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
319 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
320 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
321 1.4 msaitoh }
322 1.4 msaitoh break;
323 1.4 msaitoh case ixgbe_fc_rx_pause:
324 1.4 msaitoh /*
325 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
326 1.4 msaitoh * disabled by software override. Since there really
327 1.4 msaitoh * isn't a way to advertise that we are capable of RX
328 1.4 msaitoh * Pause ONLY, we will advertise that we support both
329 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
330 1.4 msaitoh * through to the fc_full statement. Later, we will
331 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
332 1.4 msaitoh */
333 1.4 msaitoh case ixgbe_fc_full:
334 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
335 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
336 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
337 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
338 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
339 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
340 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
341 1.4 msaitoh break;
342 1.4 msaitoh default:
343 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
344 1.6 msaitoh "Flow control param set incorrectly\n");
345 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
346 1.4 msaitoh goto out;
347 1.4 msaitoh break;
348 1.4 msaitoh }
349 1.4 msaitoh
350 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
351 1.4 msaitoh /*
352 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
353 1.4 msaitoh * the MAC will advertise clause 37 flow control.
354 1.4 msaitoh */
355 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
356 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
357 1.4 msaitoh
358 1.4 msaitoh /* Disable AN timeout */
359 1.4 msaitoh if (hw->fc.strict_ieee)
360 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
361 1.4 msaitoh
362 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
363 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 1.4 msaitoh }
365 1.4 msaitoh
366 1.4 msaitoh /*
367 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
368 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
369 1.4 msaitoh *
370 1.4 msaitoh */
371 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
372 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
373 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
374 1.8 msaitoh if (ret_val)
375 1.8 msaitoh goto out;
376 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
377 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
378 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
379 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
380 1.4 msaitoh }
381 1.4 msaitoh
382 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
383 1.4 msaitoh out:
384 1.4 msaitoh return ret_val;
385 1.4 msaitoh }
386 1.4 msaitoh
387 1.4 msaitoh /**
388 1.38 msaitoh * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
389 1.38 msaitoh * @hw: pointer to hardware structure
390 1.1 dyoung *
391 1.38 msaitoh * Starts the hardware by filling the bus info structure and media type, clears
392 1.38 msaitoh * all on chip counters, initializes receive address registers, multicast
393 1.38 msaitoh * table, VLAN filter table, calls routine to set up link and flow control
394 1.38 msaitoh * settings, and leaves transmit and receive units disabled and uninitialized
395 1.1 dyoung **/
396 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
397 1.1 dyoung {
398 1.4 msaitoh s32 ret_val;
399 1.1 dyoung u32 ctrl_ext;
400 1.14 msaitoh u16 device_caps;
401 1.1 dyoung
402 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
403 1.1 dyoung
404 1.1 dyoung /* Set the media type */
405 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
406 1.1 dyoung
407 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
408 1.1 dyoung
409 1.1 dyoung /* Clear the VLAN filter table */
410 1.1 dyoung hw->mac.ops.clear_vfta(hw);
411 1.1 dyoung
412 1.1 dyoung /* Clear statistics registers */
413 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
414 1.1 dyoung
415 1.1 dyoung /* Set No Snoop Disable */
416 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
417 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
419 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
420 1.1 dyoung
421 1.1 dyoung /* Setup flow control */
422 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
423 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
424 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
425 1.14 msaitoh return ret_val;
426 1.14 msaitoh }
427 1.14 msaitoh
428 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
429 1.14 msaitoh switch (hw->mac.type) {
430 1.14 msaitoh case ixgbe_mac_82599EB:
431 1.14 msaitoh case ixgbe_mac_X550EM_x:
432 1.14 msaitoh case ixgbe_mac_X550EM_a:
433 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
434 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
435 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
436 1.14 msaitoh else
437 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
438 1.14 msaitoh break;
439 1.14 msaitoh default:
440 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
441 1.14 msaitoh break;
442 1.14 msaitoh }
443 1.1 dyoung
444 1.1 dyoung /* Clear adapter stopped flag */
445 1.1 dyoung hw->adapter_stopped = FALSE;
446 1.1 dyoung
447 1.14 msaitoh return IXGBE_SUCCESS;
448 1.1 dyoung }
449 1.1 dyoung
450 1.1 dyoung /**
451 1.38 msaitoh * ixgbe_start_hw_gen2 - Init sequence for common device family
452 1.38 msaitoh * @hw: pointer to hw structure
453 1.1 dyoung *
454 1.1 dyoung * Performs the init sequence common to the second generation
455 1.1 dyoung * of 10 GbE devices.
456 1.1 dyoung * Devices in the second generation:
457 1.38 msaitoh * 82599
458 1.38 msaitoh * X540
459 1.1 dyoung **/
460 1.35 msaitoh void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
461 1.1 dyoung {
462 1.1 dyoung u32 i;
463 1.1 dyoung u32 regval;
464 1.1 dyoung
465 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2");
466 1.27 msaitoh
467 1.1 dyoung /* Clear the rate limiters */
468 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
469 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
470 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
471 1.1 dyoung }
472 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
473 1.1 dyoung
474 1.1 dyoung /* Disable relaxed ordering */
475 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
476 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
477 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
478 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
479 1.1 dyoung }
480 1.1 dyoung
481 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
482 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
483 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
484 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
485 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
486 1.1 dyoung }
487 1.1 dyoung }
488 1.1 dyoung
489 1.1 dyoung /**
490 1.38 msaitoh * ixgbe_init_hw_generic - Generic hardware initialization
491 1.38 msaitoh * @hw: pointer to hardware structure
492 1.1 dyoung *
493 1.38 msaitoh * Initialize the hardware by resetting the hardware, filling the bus info
494 1.38 msaitoh * structure and media type, clears all on chip counters, initializes receive
495 1.38 msaitoh * address registers, multicast table, VLAN filter table, calls routine to set
496 1.38 msaitoh * up link and flow control settings, and leaves transmit and receive units
497 1.38 msaitoh * disabled and uninitialized
498 1.1 dyoung **/
499 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
500 1.1 dyoung {
501 1.1 dyoung s32 status;
502 1.1 dyoung
503 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
504 1.1 dyoung
505 1.1 dyoung /* Reset the hardware */
506 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
507 1.1 dyoung
508 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
509 1.1 dyoung /* Start the HW */
510 1.1 dyoung status = hw->mac.ops.start_hw(hw);
511 1.1 dyoung }
512 1.1 dyoung
513 1.14 msaitoh /* Initialize the LED link active for LED blink support */
514 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
515 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
516 1.14 msaitoh
517 1.14 msaitoh if (status != IXGBE_SUCCESS)
518 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
519 1.14 msaitoh
520 1.1 dyoung return status;
521 1.1 dyoung }
522 1.1 dyoung
523 1.1 dyoung /**
524 1.38 msaitoh * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
525 1.38 msaitoh * @hw: pointer to hardware structure
526 1.1 dyoung *
527 1.38 msaitoh * Clears all hardware statistics counters by reading them from the hardware
528 1.38 msaitoh * Statistics counters are clear on read.
529 1.1 dyoung **/
530 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
531 1.1 dyoung {
532 1.1 dyoung u16 i = 0;
533 1.1 dyoung
534 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
535 1.1 dyoung
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
540 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
541 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
542 1.1 dyoung for (i = 0; i < 8; i++)
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
544 1.1 dyoung
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
550 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
553 1.1 dyoung } else {
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
556 1.1 dyoung }
557 1.1 dyoung
558 1.1 dyoung for (i = 0; i < 8; i++) {
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
561 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
564 1.1 dyoung } else {
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
567 1.1 dyoung }
568 1.1 dyoung }
569 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
570 1.1 dyoung for (i = 0; i < 8; i++)
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
586 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
587 1.3 msaitoh for (i = 0; i < 8; i++)
588 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
589 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
590 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
608 1.1 dyoung for (i = 0; i < 16; i++) {
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
610 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
611 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
613 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
617 1.1 dyoung } else {
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
619 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
620 1.1 dyoung }
621 1.1 dyoung }
622 1.1 dyoung
623 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
624 1.3 msaitoh if (hw->phy.id == 0)
625 1.3 msaitoh ixgbe_identify_phy(hw);
626 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
627 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
628 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
629 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
631 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
633 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 1.3 msaitoh }
635 1.3 msaitoh
636 1.1 dyoung return IXGBE_SUCCESS;
637 1.1 dyoung }
638 1.1 dyoung
639 1.1 dyoung /**
640 1.38 msaitoh * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
641 1.38 msaitoh * @hw: pointer to hardware structure
642 1.38 msaitoh * @pba_num: stores the part number string from the EEPROM
643 1.38 msaitoh * @pba_num_size: part number string buffer length
644 1.1 dyoung *
645 1.38 msaitoh * Reads the part number string from the EEPROM.
646 1.1 dyoung **/
647 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
648 1.3 msaitoh u32 pba_num_size)
649 1.1 dyoung {
650 1.1 dyoung s32 ret_val;
651 1.1 dyoung u16 data;
652 1.1 dyoung u16 pba_ptr;
653 1.1 dyoung u16 offset;
654 1.1 dyoung u16 length;
655 1.1 dyoung
656 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
657 1.1 dyoung
658 1.1 dyoung if (pba_num == NULL) {
659 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
660 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
661 1.1 dyoung }
662 1.1 dyoung
663 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
664 1.1 dyoung if (ret_val) {
665 1.1 dyoung DEBUGOUT("NVM Read Error\n");
666 1.1 dyoung return ret_val;
667 1.1 dyoung }
668 1.1 dyoung
669 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
670 1.1 dyoung if (ret_val) {
671 1.1 dyoung DEBUGOUT("NVM Read Error\n");
672 1.1 dyoung return ret_val;
673 1.1 dyoung }
674 1.1 dyoung
675 1.1 dyoung /*
676 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
677 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
678 1.1 dyoung * and we can decode it into an ascii string
679 1.1 dyoung */
680 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
681 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
682 1.1 dyoung
683 1.1 dyoung /* we will need 11 characters to store the PBA */
684 1.1 dyoung if (pba_num_size < 11) {
685 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
686 1.1 dyoung return IXGBE_ERR_NO_SPACE;
687 1.1 dyoung }
688 1.1 dyoung
689 1.1 dyoung /* extract hex string from data and pba_ptr */
690 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
691 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
692 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
693 1.1 dyoung pba_num[3] = data & 0xF;
694 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
695 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
696 1.1 dyoung pba_num[6] = '-';
697 1.1 dyoung pba_num[7] = 0;
698 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
699 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
700 1.1 dyoung
701 1.1 dyoung /* put a null character on the end of our string */
702 1.1 dyoung pba_num[10] = '\0';
703 1.1 dyoung
704 1.1 dyoung /* switch all the data but the '-' to hex char */
705 1.1 dyoung for (offset = 0; offset < 10; offset++) {
706 1.1 dyoung if (pba_num[offset] < 0xA)
707 1.1 dyoung pba_num[offset] += '0';
708 1.1 dyoung else if (pba_num[offset] < 0x10)
709 1.1 dyoung pba_num[offset] += 'A' - 0xA;
710 1.1 dyoung }
711 1.1 dyoung
712 1.1 dyoung return IXGBE_SUCCESS;
713 1.1 dyoung }
714 1.1 dyoung
715 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
716 1.1 dyoung if (ret_val) {
717 1.1 dyoung DEBUGOUT("NVM Read Error\n");
718 1.1 dyoung return ret_val;
719 1.1 dyoung }
720 1.1 dyoung
721 1.1 dyoung if (length == 0xFFFF || length == 0) {
722 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
723 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
724 1.1 dyoung }
725 1.1 dyoung
726 1.1 dyoung /* check if pba_num buffer is big enough */
727 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
728 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
729 1.1 dyoung return IXGBE_ERR_NO_SPACE;
730 1.1 dyoung }
731 1.1 dyoung
732 1.1 dyoung /* trim pba length from start of string */
733 1.1 dyoung pba_ptr++;
734 1.1 dyoung length--;
735 1.1 dyoung
736 1.1 dyoung for (offset = 0; offset < length; offset++) {
737 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
738 1.1 dyoung if (ret_val) {
739 1.1 dyoung DEBUGOUT("NVM Read Error\n");
740 1.1 dyoung return ret_val;
741 1.1 dyoung }
742 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
743 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
744 1.1 dyoung }
745 1.1 dyoung pba_num[offset * 2] = '\0';
746 1.1 dyoung
747 1.1 dyoung return IXGBE_SUCCESS;
748 1.1 dyoung }
749 1.1 dyoung
750 1.1 dyoung /**
751 1.38 msaitoh * ixgbe_read_pba_num_generic - Reads part number from EEPROM
752 1.38 msaitoh * @hw: pointer to hardware structure
753 1.38 msaitoh * @pba_num: stores the part number from the EEPROM
754 1.1 dyoung *
755 1.38 msaitoh * Reads the part number from the EEPROM.
756 1.1 dyoung **/
757 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
758 1.1 dyoung {
759 1.1 dyoung s32 ret_val;
760 1.1 dyoung u16 data;
761 1.1 dyoung
762 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
763 1.1 dyoung
764 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
765 1.1 dyoung if (ret_val) {
766 1.1 dyoung DEBUGOUT("NVM Read Error\n");
767 1.1 dyoung return ret_val;
768 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
769 1.1 dyoung DEBUGOUT("NVM Not supported\n");
770 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
771 1.1 dyoung }
772 1.1 dyoung *pba_num = (u32)(data << 16);
773 1.1 dyoung
774 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
775 1.1 dyoung if (ret_val) {
776 1.1 dyoung DEBUGOUT("NVM Read Error\n");
777 1.1 dyoung return ret_val;
778 1.1 dyoung }
779 1.34 msaitoh *pba_num |= (u32)data;
780 1.1 dyoung
781 1.1 dyoung return IXGBE_SUCCESS;
782 1.1 dyoung }
783 1.1 dyoung
784 1.1 dyoung /**
785 1.38 msaitoh * ixgbe_read_pba_raw
786 1.38 msaitoh * @hw: pointer to the HW structure
787 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
788 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
789 1.38 msaitoh * @max_pba_block_size: PBA block size limit
790 1.38 msaitoh * @pba: pointer to output PBA structure
791 1.5 msaitoh *
792 1.38 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
793 1.38 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
794 1.5 msaitoh *
795 1.5 msaitoh **/
796 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
797 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
798 1.5 msaitoh struct ixgbe_pba *pba)
799 1.5 msaitoh {
800 1.5 msaitoh s32 ret_val;
801 1.5 msaitoh u16 pba_block_size;
802 1.5 msaitoh
803 1.5 msaitoh if (pba == NULL)
804 1.5 msaitoh return IXGBE_ERR_PARAM;
805 1.5 msaitoh
806 1.5 msaitoh if (eeprom_buf == NULL) {
807 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
808 1.5 msaitoh &pba->word[0]);
809 1.5 msaitoh if (ret_val)
810 1.5 msaitoh return ret_val;
811 1.5 msaitoh } else {
812 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
813 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
814 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
815 1.5 msaitoh } else {
816 1.5 msaitoh return IXGBE_ERR_PARAM;
817 1.5 msaitoh }
818 1.5 msaitoh }
819 1.5 msaitoh
820 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
821 1.5 msaitoh if (pba->pba_block == NULL)
822 1.5 msaitoh return IXGBE_ERR_PARAM;
823 1.5 msaitoh
824 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
825 1.5 msaitoh eeprom_buf_size,
826 1.5 msaitoh &pba_block_size);
827 1.5 msaitoh if (ret_val)
828 1.5 msaitoh return ret_val;
829 1.5 msaitoh
830 1.5 msaitoh if (pba_block_size > max_pba_block_size)
831 1.5 msaitoh return IXGBE_ERR_PARAM;
832 1.5 msaitoh
833 1.5 msaitoh if (eeprom_buf == NULL) {
834 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
835 1.5 msaitoh pba_block_size,
836 1.5 msaitoh pba->pba_block);
837 1.5 msaitoh if (ret_val)
838 1.5 msaitoh return ret_val;
839 1.5 msaitoh } else {
840 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
841 1.8 msaitoh pba_block_size)) {
842 1.5 msaitoh memcpy(pba->pba_block,
843 1.5 msaitoh &eeprom_buf[pba->word[1]],
844 1.5 msaitoh pba_block_size * sizeof(u16));
845 1.5 msaitoh } else {
846 1.5 msaitoh return IXGBE_ERR_PARAM;
847 1.5 msaitoh }
848 1.5 msaitoh }
849 1.5 msaitoh }
850 1.5 msaitoh
851 1.5 msaitoh return IXGBE_SUCCESS;
852 1.5 msaitoh }
853 1.5 msaitoh
854 1.5 msaitoh /**
855 1.38 msaitoh * ixgbe_write_pba_raw
856 1.38 msaitoh * @hw: pointer to the HW structure
857 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
858 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
859 1.38 msaitoh * @pba: pointer to PBA structure
860 1.5 msaitoh *
861 1.38 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
862 1.38 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
863 1.5 msaitoh *
864 1.5 msaitoh **/
865 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
866 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
867 1.5 msaitoh {
868 1.5 msaitoh s32 ret_val;
869 1.5 msaitoh
870 1.5 msaitoh if (pba == NULL)
871 1.5 msaitoh return IXGBE_ERR_PARAM;
872 1.5 msaitoh
873 1.5 msaitoh if (eeprom_buf == NULL) {
874 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
875 1.5 msaitoh &pba->word[0]);
876 1.5 msaitoh if (ret_val)
877 1.5 msaitoh return ret_val;
878 1.5 msaitoh } else {
879 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
880 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
881 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
882 1.5 msaitoh } else {
883 1.5 msaitoh return IXGBE_ERR_PARAM;
884 1.5 msaitoh }
885 1.5 msaitoh }
886 1.5 msaitoh
887 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
888 1.5 msaitoh if (pba->pba_block == NULL)
889 1.5 msaitoh return IXGBE_ERR_PARAM;
890 1.5 msaitoh
891 1.5 msaitoh if (eeprom_buf == NULL) {
892 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
893 1.5 msaitoh pba->pba_block[0],
894 1.5 msaitoh pba->pba_block);
895 1.5 msaitoh if (ret_val)
896 1.5 msaitoh return ret_val;
897 1.5 msaitoh } else {
898 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
899 1.5 msaitoh pba->pba_block[0])) {
900 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
901 1.5 msaitoh pba->pba_block,
902 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
903 1.5 msaitoh } else {
904 1.5 msaitoh return IXGBE_ERR_PARAM;
905 1.5 msaitoh }
906 1.5 msaitoh }
907 1.5 msaitoh }
908 1.5 msaitoh
909 1.5 msaitoh return IXGBE_SUCCESS;
910 1.5 msaitoh }
911 1.5 msaitoh
912 1.5 msaitoh /**
913 1.38 msaitoh * ixgbe_get_pba_block_size
914 1.38 msaitoh * @hw: pointer to the HW structure
915 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
916 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
917 1.38 msaitoh * @pba_data_size: pointer to output variable
918 1.38 msaitoh *
919 1.38 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
920 1.38 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
921 1.38 msaitoh * EEPROM device.
922 1.5 msaitoh *
923 1.5 msaitoh **/
924 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
925 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
926 1.5 msaitoh {
927 1.5 msaitoh s32 ret_val;
928 1.5 msaitoh u16 pba_word[2];
929 1.5 msaitoh u16 length;
930 1.5 msaitoh
931 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
932 1.5 msaitoh
933 1.5 msaitoh if (eeprom_buf == NULL) {
934 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
935 1.5 msaitoh &pba_word[0]);
936 1.5 msaitoh if (ret_val)
937 1.5 msaitoh return ret_val;
938 1.5 msaitoh } else {
939 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
940 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
941 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
942 1.5 msaitoh } else {
943 1.5 msaitoh return IXGBE_ERR_PARAM;
944 1.5 msaitoh }
945 1.5 msaitoh }
946 1.5 msaitoh
947 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
948 1.5 msaitoh if (eeprom_buf == NULL) {
949 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
950 1.5 msaitoh &length);
951 1.5 msaitoh if (ret_val)
952 1.5 msaitoh return ret_val;
953 1.5 msaitoh } else {
954 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
955 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
956 1.5 msaitoh else
957 1.5 msaitoh return IXGBE_ERR_PARAM;
958 1.5 msaitoh }
959 1.5 msaitoh
960 1.5 msaitoh if (length == 0xFFFF || length == 0)
961 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
962 1.5 msaitoh } else {
963 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
964 1.5 msaitoh length = 0;
965 1.5 msaitoh }
966 1.5 msaitoh
967 1.5 msaitoh if (pba_block_size != NULL)
968 1.5 msaitoh *pba_block_size = length;
969 1.5 msaitoh
970 1.5 msaitoh return IXGBE_SUCCESS;
971 1.5 msaitoh }
972 1.5 msaitoh
973 1.5 msaitoh /**
974 1.38 msaitoh * ixgbe_get_mac_addr_generic - Generic get MAC address
975 1.38 msaitoh * @hw: pointer to hardware structure
976 1.38 msaitoh * @mac_addr: Adapter MAC address
977 1.38 msaitoh *
978 1.38 msaitoh * Reads the adapter's MAC address from first Receive Address Register (RAR0)
979 1.38 msaitoh * A reset of the adapter must be performed prior to calling this function
980 1.38 msaitoh * in order for the MAC address to have been loaded from the EEPROM into RAR0
981 1.1 dyoung **/
982 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
983 1.1 dyoung {
984 1.1 dyoung u32 rar_high;
985 1.1 dyoung u32 rar_low;
986 1.1 dyoung u16 i;
987 1.1 dyoung
988 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
989 1.1 dyoung
990 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
991 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
992 1.1 dyoung
993 1.1 dyoung for (i = 0; i < 4; i++)
994 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
995 1.1 dyoung
996 1.1 dyoung for (i = 0; i < 2; i++)
997 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
998 1.1 dyoung
999 1.1 dyoung return IXGBE_SUCCESS;
1000 1.1 dyoung }
1001 1.1 dyoung
1002 1.1 dyoung /**
1003 1.38 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1004 1.38 msaitoh * @hw: pointer to hardware structure
1005 1.38 msaitoh * @link_status: the link status returned by the PCI config space
1006 1.1 dyoung *
1007 1.38 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1008 1.1 dyoung **/
1009 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1010 1.1 dyoung {
1011 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1012 1.1 dyoung
1013 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1014 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1015 1.1 dyoung
1016 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1017 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1018 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1019 1.1 dyoung break;
1020 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1021 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1022 1.1 dyoung break;
1023 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1024 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1025 1.1 dyoung break;
1026 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1027 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1028 1.1 dyoung break;
1029 1.1 dyoung default:
1030 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1031 1.1 dyoung break;
1032 1.1 dyoung }
1033 1.1 dyoung
1034 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1035 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1036 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1037 1.1 dyoung break;
1038 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1039 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1040 1.1 dyoung break;
1041 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1042 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1043 1.4 msaitoh break;
1044 1.1 dyoung default:
1045 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1046 1.1 dyoung break;
1047 1.1 dyoung }
1048 1.1 dyoung
1049 1.1 dyoung mac->ops.set_lan_id(hw);
1050 1.6 msaitoh }
1051 1.6 msaitoh
1052 1.6 msaitoh /**
1053 1.38 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1054 1.38 msaitoh * @hw: pointer to hardware structure
1055 1.6 msaitoh *
1056 1.38 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1057 1.38 msaitoh * store this data within the ixgbe_hw structure.
1058 1.6 msaitoh **/
1059 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1060 1.6 msaitoh {
1061 1.6 msaitoh u16 link_status;
1062 1.6 msaitoh
1063 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1064 1.6 msaitoh
1065 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1066 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1067 1.6 msaitoh
1068 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1069 1.1 dyoung
1070 1.1 dyoung return IXGBE_SUCCESS;
1071 1.1 dyoung }
1072 1.1 dyoung
1073 1.1 dyoung /**
1074 1.38 msaitoh * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1075 1.38 msaitoh * @hw: pointer to the HW structure
1076 1.1 dyoung *
1077 1.38 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1078 1.38 msaitoh * the port value if requested, and set MAC instance for devices that share
1079 1.38 msaitoh * CS4227.
1080 1.1 dyoung **/
1081 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1082 1.1 dyoung {
1083 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1084 1.1 dyoung u32 reg;
1085 1.14 msaitoh u16 ee_ctrl_4;
1086 1.1 dyoung
1087 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1088 1.1 dyoung
1089 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1090 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1091 1.14 msaitoh bus->lan_id = (u8)bus->func;
1092 1.1 dyoung
1093 1.1 dyoung /* check for a port swap */
1094 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1095 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1096 1.1 dyoung bus->func ^= 0x1;
1097 1.14 msaitoh
1098 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1099 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1100 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1101 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1102 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1103 1.14 msaitoh }
1104 1.1 dyoung }
1105 1.1 dyoung
1106 1.1 dyoung /**
1107 1.38 msaitoh * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1108 1.38 msaitoh * @hw: pointer to hardware structure
1109 1.1 dyoung *
1110 1.38 msaitoh * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1111 1.38 msaitoh * disables transmit and receive units. The adapter_stopped flag is used by
1112 1.38 msaitoh * the shared code and drivers to determine if the adapter is in a stopped
1113 1.38 msaitoh * state and should not touch the hardware.
1114 1.1 dyoung **/
1115 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1116 1.1 dyoung {
1117 1.1 dyoung u32 reg_val;
1118 1.1 dyoung u16 i;
1119 1.1 dyoung
1120 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1121 1.1 dyoung
1122 1.1 dyoung /*
1123 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1124 1.1 dyoung * the hardware
1125 1.1 dyoung */
1126 1.1 dyoung hw->adapter_stopped = TRUE;
1127 1.1 dyoung
1128 1.1 dyoung /* Disable the receive unit */
1129 1.8 msaitoh ixgbe_disable_rx(hw);
1130 1.1 dyoung
1131 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1132 1.19 knakahar /*
1133 1.19 knakahar * XXX
1134 1.19 knakahar * This function is called in the state of both interrupt disabled
1135 1.19 knakahar * and interrupt enabled, e.g.
1136 1.19 knakahar * + interrupt disabled case:
1137 1.30 msaitoh * - ixgbe_stop_locked()
1138 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here
1139 1.19 knakahar * - ixgbe_stop_adapter()
1140 1.19 knakahar * - hw->mac.ops.stop_adapter()
1141 1.19 knakahar * == this function
1142 1.19 knakahar * + interrupt enabled case:
1143 1.19 knakahar * - ixgbe_local_timer1()
1144 1.19 knakahar * - ixgbe_init_locked()
1145 1.19 knakahar * - ixgbe_stop_adapter()
1146 1.19 knakahar * - hw->mac.ops.stop_adapter()
1147 1.19 knakahar * == this function
1148 1.19 knakahar * Therefore, it causes nest status breaking to nest the status
1149 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must
1150 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1151 1.19 knakahar */
1152 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back);
1153 1.1 dyoung
1154 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1155 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1156 1.1 dyoung
1157 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1158 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1159 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1160 1.3 msaitoh
1161 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1162 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1163 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1164 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1165 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1166 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1167 1.1 dyoung }
1168 1.1 dyoung
1169 1.3 msaitoh /* flush all queues disables */
1170 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1171 1.3 msaitoh msec_delay(2);
1172 1.3 msaitoh
1173 1.1 dyoung /*
1174 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1175 1.1 dyoung * access and verify no pending requests
1176 1.1 dyoung */
1177 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1178 1.1 dyoung }
1179 1.1 dyoung
1180 1.1 dyoung /**
1181 1.38 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1182 1.38 msaitoh * @hw: pointer to hardware structure
1183 1.14 msaitoh *
1184 1.38 msaitoh * Store the index for the link active LED. This will be used to support
1185 1.38 msaitoh * blinking the LED.
1186 1.14 msaitoh **/
1187 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1188 1.14 msaitoh {
1189 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1190 1.14 msaitoh u32 led_reg, led_mode;
1191 1.14 msaitoh u8 i;
1192 1.14 msaitoh
1193 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1194 1.14 msaitoh
1195 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1196 1.14 msaitoh for (i = 0; i < 4; i++) {
1197 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1198 1.14 msaitoh
1199 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1200 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1201 1.14 msaitoh mac->led_link_act = i;
1202 1.14 msaitoh return IXGBE_SUCCESS;
1203 1.14 msaitoh }
1204 1.14 msaitoh }
1205 1.14 msaitoh
1206 1.14 msaitoh /*
1207 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1208 1.14 msaitoh * known MAC defaults.
1209 1.14 msaitoh */
1210 1.14 msaitoh switch (hw->mac.type) {
1211 1.14 msaitoh case ixgbe_mac_X550EM_a:
1212 1.14 msaitoh case ixgbe_mac_X550EM_x:
1213 1.14 msaitoh mac->led_link_act = 1;
1214 1.14 msaitoh break;
1215 1.14 msaitoh default:
1216 1.14 msaitoh mac->led_link_act = 2;
1217 1.14 msaitoh }
1218 1.14 msaitoh return IXGBE_SUCCESS;
1219 1.14 msaitoh }
1220 1.14 msaitoh
1221 1.14 msaitoh /**
1222 1.38 msaitoh * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1223 1.38 msaitoh * @hw: pointer to hardware structure
1224 1.38 msaitoh * @index: led number to turn on
1225 1.1 dyoung **/
1226 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1227 1.1 dyoung {
1228 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1229 1.1 dyoung
1230 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1231 1.1 dyoung
1232 1.14 msaitoh if (index > 3)
1233 1.14 msaitoh return IXGBE_ERR_PARAM;
1234 1.14 msaitoh
1235 1.1 dyoung /* To turn on the LED, set mode to ON. */
1236 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1237 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1238 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1239 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1240 1.1 dyoung
1241 1.1 dyoung return IXGBE_SUCCESS;
1242 1.1 dyoung }
1243 1.1 dyoung
1244 1.1 dyoung /**
1245 1.38 msaitoh * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1246 1.38 msaitoh * @hw: pointer to hardware structure
1247 1.38 msaitoh * @index: led number to turn off
1248 1.1 dyoung **/
1249 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1250 1.1 dyoung {
1251 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1252 1.1 dyoung
1253 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1254 1.1 dyoung
1255 1.14 msaitoh if (index > 3)
1256 1.14 msaitoh return IXGBE_ERR_PARAM;
1257 1.14 msaitoh
1258 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1259 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1260 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1261 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1262 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1263 1.1 dyoung
1264 1.1 dyoung return IXGBE_SUCCESS;
1265 1.1 dyoung }
1266 1.1 dyoung
1267 1.1 dyoung /**
1268 1.38 msaitoh * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1269 1.38 msaitoh * @hw: pointer to hardware structure
1270 1.1 dyoung *
1271 1.38 msaitoh * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1272 1.38 msaitoh * ixgbe_hw struct in order to set up EEPROM access.
1273 1.1 dyoung **/
1274 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1275 1.1 dyoung {
1276 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1277 1.1 dyoung u32 eec;
1278 1.1 dyoung u16 eeprom_size;
1279 1.1 dyoung
1280 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1281 1.1 dyoung
1282 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1283 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1284 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1285 1.1 dyoung * tested value */
1286 1.1 dyoung eeprom->semaphore_delay = 10;
1287 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1288 1.3 msaitoh eeprom->word_page_size = 0;
1289 1.1 dyoung
1290 1.1 dyoung /*
1291 1.1 dyoung * Check for EEPROM present first.
1292 1.1 dyoung * If not present leave as none
1293 1.1 dyoung */
1294 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1295 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1296 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1297 1.1 dyoung
1298 1.1 dyoung /*
1299 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1300 1.1 dyoung * change if a future EEPROM is not SPI.
1301 1.1 dyoung */
1302 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1303 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1304 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1305 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1306 1.1 dyoung }
1307 1.1 dyoung
1308 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1309 1.1 dyoung eeprom->address_bits = 16;
1310 1.1 dyoung else
1311 1.1 dyoung eeprom->address_bits = 8;
1312 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1313 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1314 1.3 msaitoh eeprom->address_bits);
1315 1.1 dyoung }
1316 1.1 dyoung
1317 1.1 dyoung return IXGBE_SUCCESS;
1318 1.1 dyoung }
1319 1.1 dyoung
1320 1.1 dyoung /**
1321 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1322 1.38 msaitoh * @hw: pointer to hardware structure
1323 1.38 msaitoh * @offset: offset within the EEPROM to write
1324 1.38 msaitoh * @words: number of word(s)
1325 1.38 msaitoh * @data: 16 bit word(s) to write to EEPROM
1326 1.3 msaitoh *
1327 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1328 1.3 msaitoh **/
1329 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1330 1.3 msaitoh u16 words, u16 *data)
1331 1.3 msaitoh {
1332 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1333 1.3 msaitoh u16 i, count;
1334 1.3 msaitoh
1335 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1336 1.3 msaitoh
1337 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1338 1.3 msaitoh
1339 1.3 msaitoh if (words == 0) {
1340 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1341 1.3 msaitoh goto out;
1342 1.3 msaitoh }
1343 1.3 msaitoh
1344 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1345 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1346 1.3 msaitoh goto out;
1347 1.3 msaitoh }
1348 1.3 msaitoh
1349 1.3 msaitoh /*
1350 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1351 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1352 1.3 msaitoh */
1353 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1354 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1355 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1356 1.3 msaitoh
1357 1.3 msaitoh /*
1358 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1359 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1360 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1361 1.3 msaitoh */
1362 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1363 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1364 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1365 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1366 1.3 msaitoh count, &data[i]);
1367 1.3 msaitoh
1368 1.3 msaitoh if (status != IXGBE_SUCCESS)
1369 1.3 msaitoh break;
1370 1.3 msaitoh }
1371 1.3 msaitoh
1372 1.3 msaitoh out:
1373 1.3 msaitoh return status;
1374 1.3 msaitoh }
1375 1.3 msaitoh
1376 1.3 msaitoh /**
1377 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1378 1.38 msaitoh * @hw: pointer to hardware structure
1379 1.38 msaitoh * @offset: offset within the EEPROM to be written to
1380 1.38 msaitoh * @words: number of word(s)
1381 1.38 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1382 1.3 msaitoh *
1383 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1384 1.38 msaitoh * EEPROM will most likely contain an invalid checksum.
1385 1.3 msaitoh **/
1386 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1387 1.3 msaitoh u16 words, u16 *data)
1388 1.3 msaitoh {
1389 1.3 msaitoh s32 status;
1390 1.3 msaitoh u16 word;
1391 1.3 msaitoh u16 page_size;
1392 1.3 msaitoh u16 i;
1393 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1394 1.3 msaitoh
1395 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1396 1.3 msaitoh
1397 1.3 msaitoh /* Prepare the EEPROM for writing */
1398 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1399 1.3 msaitoh
1400 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1401 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1402 1.3 msaitoh ixgbe_release_eeprom(hw);
1403 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1404 1.3 msaitoh }
1405 1.3 msaitoh }
1406 1.3 msaitoh
1407 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1408 1.3 msaitoh for (i = 0; i < words; i++) {
1409 1.3 msaitoh ixgbe_standby_eeprom(hw);
1410 1.3 msaitoh
1411 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1412 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1413 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1414 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1415 1.3 msaitoh
1416 1.3 msaitoh ixgbe_standby_eeprom(hw);
1417 1.3 msaitoh
1418 1.3 msaitoh /*
1419 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1420 1.3 msaitoh * in the opcode
1421 1.3 msaitoh */
1422 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1423 1.3 msaitoh ((offset + i) >= 128))
1424 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1425 1.3 msaitoh
1426 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1427 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1428 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1429 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1430 1.3 msaitoh hw->eeprom.address_bits);
1431 1.3 msaitoh
1432 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1433 1.3 msaitoh
1434 1.3 msaitoh /* Send the data in burst via SPI*/
1435 1.3 msaitoh do {
1436 1.3 msaitoh word = data[i];
1437 1.3 msaitoh word = (word >> 8) | (word << 8);
1438 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1439 1.3 msaitoh
1440 1.3 msaitoh if (page_size == 0)
1441 1.3 msaitoh break;
1442 1.3 msaitoh
1443 1.3 msaitoh /* do not wrap around page */
1444 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1445 1.3 msaitoh (page_size - 1))
1446 1.3 msaitoh break;
1447 1.3 msaitoh } while (++i < words);
1448 1.3 msaitoh
1449 1.3 msaitoh ixgbe_standby_eeprom(hw);
1450 1.3 msaitoh msec_delay(10);
1451 1.3 msaitoh }
1452 1.3 msaitoh /* Done with writing - release the EEPROM */
1453 1.3 msaitoh ixgbe_release_eeprom(hw);
1454 1.3 msaitoh }
1455 1.3 msaitoh
1456 1.3 msaitoh return status;
1457 1.3 msaitoh }
1458 1.3 msaitoh
1459 1.3 msaitoh /**
1460 1.38 msaitoh * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1461 1.38 msaitoh * @hw: pointer to hardware structure
1462 1.38 msaitoh * @offset: offset within the EEPROM to be written to
1463 1.38 msaitoh * @data: 16 bit word to be written to the EEPROM
1464 1.1 dyoung *
1465 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1466 1.38 msaitoh * EEPROM will most likely contain an invalid checksum.
1467 1.1 dyoung **/
1468 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1469 1.1 dyoung {
1470 1.1 dyoung s32 status;
1471 1.1 dyoung
1472 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1473 1.1 dyoung
1474 1.1 dyoung hw->eeprom.ops.init_params(hw);
1475 1.1 dyoung
1476 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1477 1.1 dyoung status = IXGBE_ERR_EEPROM;
1478 1.1 dyoung goto out;
1479 1.1 dyoung }
1480 1.1 dyoung
1481 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1482 1.3 msaitoh
1483 1.3 msaitoh out:
1484 1.3 msaitoh return status;
1485 1.3 msaitoh }
1486 1.3 msaitoh
1487 1.3 msaitoh /**
1488 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1489 1.38 msaitoh * @hw: pointer to hardware structure
1490 1.38 msaitoh * @offset: offset within the EEPROM to be read
1491 1.38 msaitoh * @data: read 16 bit words(s) from EEPROM
1492 1.38 msaitoh * @words: number of word(s)
1493 1.3 msaitoh *
1494 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1495 1.3 msaitoh **/
1496 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1497 1.3 msaitoh u16 words, u16 *data)
1498 1.3 msaitoh {
1499 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1500 1.3 msaitoh u16 i, count;
1501 1.3 msaitoh
1502 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1503 1.3 msaitoh
1504 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1505 1.3 msaitoh
1506 1.3 msaitoh if (words == 0) {
1507 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1508 1.3 msaitoh goto out;
1509 1.3 msaitoh }
1510 1.3 msaitoh
1511 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1512 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1513 1.3 msaitoh goto out;
1514 1.3 msaitoh }
1515 1.3 msaitoh
1516 1.3 msaitoh /*
1517 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1518 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1519 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1520 1.3 msaitoh */
1521 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1522 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1523 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1524 1.3 msaitoh
1525 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1526 1.3 msaitoh count, &data[i]);
1527 1.3 msaitoh
1528 1.3 msaitoh if (status != IXGBE_SUCCESS)
1529 1.3 msaitoh break;
1530 1.3 msaitoh }
1531 1.3 msaitoh
1532 1.3 msaitoh out:
1533 1.3 msaitoh return status;
1534 1.3 msaitoh }
1535 1.3 msaitoh
1536 1.3 msaitoh /**
1537 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1538 1.38 msaitoh * @hw: pointer to hardware structure
1539 1.38 msaitoh * @offset: offset within the EEPROM to be read
1540 1.38 msaitoh * @words: number of word(s)
1541 1.38 msaitoh * @data: read 16 bit word(s) from EEPROM
1542 1.3 msaitoh *
1543 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1544 1.3 msaitoh **/
1545 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1546 1.3 msaitoh u16 words, u16 *data)
1547 1.3 msaitoh {
1548 1.3 msaitoh s32 status;
1549 1.3 msaitoh u16 word_in;
1550 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1551 1.3 msaitoh u16 i;
1552 1.3 msaitoh
1553 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1554 1.3 msaitoh
1555 1.3 msaitoh /* Prepare the EEPROM for reading */
1556 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1557 1.1 dyoung
1558 1.1 dyoung if (status == IXGBE_SUCCESS) {
1559 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1560 1.1 dyoung ixgbe_release_eeprom(hw);
1561 1.1 dyoung status = IXGBE_ERR_EEPROM;
1562 1.1 dyoung }
1563 1.1 dyoung }
1564 1.1 dyoung
1565 1.1 dyoung if (status == IXGBE_SUCCESS) {
1566 1.3 msaitoh for (i = 0; i < words; i++) {
1567 1.3 msaitoh ixgbe_standby_eeprom(hw);
1568 1.3 msaitoh /*
1569 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1570 1.3 msaitoh * in the opcode
1571 1.3 msaitoh */
1572 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1573 1.3 msaitoh ((offset + i) >= 128))
1574 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1575 1.3 msaitoh
1576 1.3 msaitoh /* Send the READ command (opcode + addr) */
1577 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1578 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1579 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1580 1.3 msaitoh hw->eeprom.address_bits);
1581 1.3 msaitoh
1582 1.3 msaitoh /* Read the data. */
1583 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1584 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1585 1.3 msaitoh }
1586 1.1 dyoung
1587 1.3 msaitoh /* End this read operation */
1588 1.1 dyoung ixgbe_release_eeprom(hw);
1589 1.1 dyoung }
1590 1.1 dyoung
1591 1.1 dyoung return status;
1592 1.1 dyoung }
1593 1.1 dyoung
1594 1.1 dyoung /**
1595 1.38 msaitoh * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1596 1.38 msaitoh * @hw: pointer to hardware structure
1597 1.38 msaitoh * @offset: offset within the EEPROM to be read
1598 1.38 msaitoh * @data: read 16 bit value from EEPROM
1599 1.1 dyoung *
1600 1.38 msaitoh * Reads 16 bit value from EEPROM through bit-bang method
1601 1.1 dyoung **/
1602 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1603 1.3 msaitoh u16 *data)
1604 1.1 dyoung {
1605 1.1 dyoung s32 status;
1606 1.1 dyoung
1607 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1608 1.1 dyoung
1609 1.1 dyoung hw->eeprom.ops.init_params(hw);
1610 1.1 dyoung
1611 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1612 1.1 dyoung status = IXGBE_ERR_EEPROM;
1613 1.1 dyoung goto out;
1614 1.1 dyoung }
1615 1.1 dyoung
1616 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1617 1.3 msaitoh
1618 1.3 msaitoh out:
1619 1.3 msaitoh return status;
1620 1.3 msaitoh }
1621 1.3 msaitoh
1622 1.3 msaitoh /**
1623 1.38 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1624 1.38 msaitoh * @hw: pointer to hardware structure
1625 1.38 msaitoh * @offset: offset of word in the EEPROM to read
1626 1.38 msaitoh * @words: number of word(s)
1627 1.38 msaitoh * @data: 16 bit word(s) from the EEPROM
1628 1.3 msaitoh *
1629 1.38 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1630 1.3 msaitoh **/
1631 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1632 1.3 msaitoh u16 words, u16 *data)
1633 1.3 msaitoh {
1634 1.3 msaitoh u32 eerd;
1635 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1636 1.3 msaitoh u32 i;
1637 1.3 msaitoh
1638 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1639 1.3 msaitoh
1640 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1641 1.3 msaitoh
1642 1.3 msaitoh if (words == 0) {
1643 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1644 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1645 1.3 msaitoh goto out;
1646 1.3 msaitoh }
1647 1.3 msaitoh
1648 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1649 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1650 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1651 1.3 msaitoh goto out;
1652 1.3 msaitoh }
1653 1.3 msaitoh
1654 1.3 msaitoh for (i = 0; i < words; i++) {
1655 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1656 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1657 1.3 msaitoh
1658 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1659 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1660 1.1 dyoung
1661 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1662 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1663 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1664 1.3 msaitoh } else {
1665 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1666 1.3 msaitoh goto out;
1667 1.1 dyoung }
1668 1.1 dyoung }
1669 1.3 msaitoh out:
1670 1.3 msaitoh return status;
1671 1.3 msaitoh }
1672 1.1 dyoung
1673 1.3 msaitoh /**
1674 1.38 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1675 1.38 msaitoh * @hw: pointer to hardware structure
1676 1.38 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1677 1.38 msaitoh *
1678 1.38 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1679 1.38 msaitoh * This function is called only when we are writing a new large buffer
1680 1.38 msaitoh * at given offset so the data would be overwritten anyway.
1681 1.3 msaitoh **/
1682 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1683 1.3 msaitoh u16 offset)
1684 1.3 msaitoh {
1685 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1686 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1687 1.3 msaitoh u16 i;
1688 1.3 msaitoh
1689 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1690 1.3 msaitoh
1691 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1692 1.3 msaitoh data[i] = i;
1693 1.1 dyoung
1694 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1695 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1696 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1697 1.3 msaitoh hw->eeprom.word_page_size = 0;
1698 1.3 msaitoh if (status != IXGBE_SUCCESS)
1699 1.3 msaitoh goto out;
1700 1.1 dyoung
1701 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1702 1.3 msaitoh if (status != IXGBE_SUCCESS)
1703 1.3 msaitoh goto out;
1704 1.1 dyoung
1705 1.3 msaitoh /*
1706 1.3 msaitoh * When writing in burst more than the actual page size
1707 1.3 msaitoh * EEPROM address wraps around current page.
1708 1.3 msaitoh */
1709 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1710 1.1 dyoung
1711 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1712 1.3 msaitoh hw->eeprom.word_page_size);
1713 1.1 dyoung out:
1714 1.1 dyoung return status;
1715 1.1 dyoung }
1716 1.1 dyoung
1717 1.1 dyoung /**
1718 1.38 msaitoh * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1719 1.38 msaitoh * @hw: pointer to hardware structure
1720 1.38 msaitoh * @offset: offset of word in the EEPROM to read
1721 1.38 msaitoh * @data: word read from the EEPROM
1722 1.1 dyoung *
1723 1.38 msaitoh * Reads a 16 bit word from the EEPROM using the EERD register.
1724 1.1 dyoung **/
1725 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1726 1.1 dyoung {
1727 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1728 1.3 msaitoh }
1729 1.3 msaitoh
1730 1.3 msaitoh /**
1731 1.38 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1732 1.38 msaitoh * @hw: pointer to hardware structure
1733 1.38 msaitoh * @offset: offset of word in the EEPROM to write
1734 1.38 msaitoh * @words: number of word(s)
1735 1.38 msaitoh * @data: word(s) write to the EEPROM
1736 1.3 msaitoh *
1737 1.38 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1738 1.3 msaitoh **/
1739 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1740 1.3 msaitoh u16 words, u16 *data)
1741 1.3 msaitoh {
1742 1.3 msaitoh u32 eewr;
1743 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1744 1.3 msaitoh u16 i;
1745 1.1 dyoung
1746 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1747 1.1 dyoung
1748 1.1 dyoung hw->eeprom.ops.init_params(hw);
1749 1.1 dyoung
1750 1.3 msaitoh if (words == 0) {
1751 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1752 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1753 1.3 msaitoh goto out;
1754 1.3 msaitoh }
1755 1.3 msaitoh
1756 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1757 1.1 dyoung status = IXGBE_ERR_EEPROM;
1758 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1759 1.1 dyoung goto out;
1760 1.1 dyoung }
1761 1.1 dyoung
1762 1.3 msaitoh for (i = 0; i < words; i++) {
1763 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1764 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1765 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1766 1.3 msaitoh
1767 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1768 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1769 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1770 1.3 msaitoh goto out;
1771 1.3 msaitoh }
1772 1.1 dyoung
1773 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1774 1.1 dyoung
1775 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1776 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1777 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1778 1.3 msaitoh goto out;
1779 1.3 msaitoh }
1780 1.3 msaitoh }
1781 1.1 dyoung
1782 1.1 dyoung out:
1783 1.1 dyoung return status;
1784 1.1 dyoung }
1785 1.1 dyoung
1786 1.1 dyoung /**
1787 1.38 msaitoh * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1788 1.38 msaitoh * @hw: pointer to hardware structure
1789 1.38 msaitoh * @offset: offset of word in the EEPROM to write
1790 1.38 msaitoh * @data: word write to the EEPROM
1791 1.1 dyoung *
1792 1.38 msaitoh * Write a 16 bit word to the EEPROM using the EEWR register.
1793 1.1 dyoung **/
1794 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1795 1.1 dyoung {
1796 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1797 1.1 dyoung }
1798 1.1 dyoung
1799 1.1 dyoung /**
1800 1.38 msaitoh * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1801 1.38 msaitoh * @hw: pointer to hardware structure
1802 1.38 msaitoh * @ee_reg: EEPROM flag for polling
1803 1.1 dyoung *
1804 1.38 msaitoh * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1805 1.38 msaitoh * read or write is done respectively.
1806 1.1 dyoung **/
1807 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1808 1.1 dyoung {
1809 1.1 dyoung u32 i;
1810 1.1 dyoung u32 reg;
1811 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1812 1.1 dyoung
1813 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1814 1.1 dyoung
1815 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1816 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1817 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1818 1.1 dyoung else
1819 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1820 1.1 dyoung
1821 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1822 1.1 dyoung status = IXGBE_SUCCESS;
1823 1.1 dyoung break;
1824 1.1 dyoung }
1825 1.1 dyoung usec_delay(5);
1826 1.1 dyoung }
1827 1.6 msaitoh
1828 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1829 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1830 1.6 msaitoh "EEPROM read/write done polling timed out");
1831 1.6 msaitoh
1832 1.1 dyoung return status;
1833 1.1 dyoung }
1834 1.1 dyoung
1835 1.1 dyoung /**
1836 1.38 msaitoh * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1837 1.38 msaitoh * @hw: pointer to hardware structure
1838 1.1 dyoung *
1839 1.38 msaitoh * Prepares EEPROM for access using bit-bang method. This function should
1840 1.38 msaitoh * be called before issuing a command to the EEPROM.
1841 1.1 dyoung **/
1842 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1843 1.1 dyoung {
1844 1.1 dyoung s32 status = IXGBE_SUCCESS;
1845 1.1 dyoung u32 eec;
1846 1.1 dyoung u32 i;
1847 1.1 dyoung
1848 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1849 1.1 dyoung
1850 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1851 1.3 msaitoh != IXGBE_SUCCESS)
1852 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1853 1.1 dyoung
1854 1.1 dyoung if (status == IXGBE_SUCCESS) {
1855 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1856 1.1 dyoung
1857 1.1 dyoung /* Request EEPROM Access */
1858 1.1 dyoung eec |= IXGBE_EEC_REQ;
1859 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1860 1.1 dyoung
1861 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1862 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1863 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1864 1.1 dyoung break;
1865 1.1 dyoung usec_delay(5);
1866 1.1 dyoung }
1867 1.1 dyoung
1868 1.1 dyoung /* Release if grant not acquired */
1869 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1870 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1871 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1872 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1873 1.1 dyoung
1874 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1875 1.1 dyoung status = IXGBE_ERR_EEPROM;
1876 1.1 dyoung }
1877 1.1 dyoung
1878 1.1 dyoung /* Setup EEPROM for Read/Write */
1879 1.1 dyoung if (status == IXGBE_SUCCESS) {
1880 1.1 dyoung /* Clear CS and SK */
1881 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1882 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1883 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1884 1.1 dyoung usec_delay(1);
1885 1.1 dyoung }
1886 1.1 dyoung }
1887 1.1 dyoung return status;
1888 1.1 dyoung }
1889 1.1 dyoung
1890 1.1 dyoung /**
1891 1.38 msaitoh * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1892 1.38 msaitoh * @hw: pointer to hardware structure
1893 1.1 dyoung *
1894 1.38 msaitoh * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1895 1.1 dyoung **/
1896 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1897 1.1 dyoung {
1898 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1899 1.1 dyoung u32 timeout = 2000;
1900 1.1 dyoung u32 i;
1901 1.1 dyoung u32 swsm;
1902 1.1 dyoung
1903 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1904 1.1 dyoung
1905 1.1 dyoung
1906 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1907 1.1 dyoung for (i = 0; i < timeout; i++) {
1908 1.1 dyoung /*
1909 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1910 1.1 dyoung * set and we have the semaphore
1911 1.1 dyoung */
1912 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1914 1.1 dyoung status = IXGBE_SUCCESS;
1915 1.1 dyoung break;
1916 1.1 dyoung }
1917 1.1 dyoung usec_delay(50);
1918 1.1 dyoung }
1919 1.1 dyoung
1920 1.3 msaitoh if (i == timeout) {
1921 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1922 1.3 msaitoh "not granted.\n");
1923 1.3 msaitoh /*
1924 1.3 msaitoh * this release is particularly important because our attempts
1925 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1926 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1927 1.3 msaitoh * bits to free the driver to make progress
1928 1.3 msaitoh */
1929 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1930 1.3 msaitoh
1931 1.3 msaitoh usec_delay(50);
1932 1.3 msaitoh /*
1933 1.3 msaitoh * one last try
1934 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1935 1.3 msaitoh * set and we have the semaphore
1936 1.3 msaitoh */
1937 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1938 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1939 1.3 msaitoh status = IXGBE_SUCCESS;
1940 1.3 msaitoh }
1941 1.3 msaitoh
1942 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1943 1.1 dyoung if (status == IXGBE_SUCCESS) {
1944 1.1 dyoung for (i = 0; i < timeout; i++) {
1945 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1946 1.1 dyoung
1947 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1948 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1949 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1950 1.1 dyoung
1951 1.1 dyoung /*
1952 1.1 dyoung * If we set the bit successfully then we got the
1953 1.1 dyoung * semaphore.
1954 1.1 dyoung */
1955 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1956 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1957 1.1 dyoung break;
1958 1.1 dyoung
1959 1.1 dyoung usec_delay(50);
1960 1.1 dyoung }
1961 1.1 dyoung
1962 1.1 dyoung /*
1963 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1964 1.1 dyoung * was not granted because we don't have access to the EEPROM
1965 1.1 dyoung */
1966 1.1 dyoung if (i >= timeout) {
1967 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1968 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1969 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1970 1.1 dyoung status = IXGBE_ERR_EEPROM;
1971 1.1 dyoung }
1972 1.1 dyoung } else {
1973 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1974 1.6 msaitoh "Software semaphore SMBI between device drivers "
1975 1.6 msaitoh "not granted.\n");
1976 1.1 dyoung }
1977 1.1 dyoung
1978 1.1 dyoung return status;
1979 1.1 dyoung }
1980 1.1 dyoung
1981 1.1 dyoung /**
1982 1.38 msaitoh * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1983 1.38 msaitoh * @hw: pointer to hardware structure
1984 1.1 dyoung *
1985 1.38 msaitoh * This function clears hardware semaphore bits.
1986 1.1 dyoung **/
1987 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1988 1.1 dyoung {
1989 1.1 dyoung u32 swsm;
1990 1.1 dyoung
1991 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1992 1.1 dyoung
1993 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1994 1.1 dyoung
1995 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1996 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1997 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1998 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1999 1.1 dyoung }
2000 1.1 dyoung
2001 1.1 dyoung /**
2002 1.38 msaitoh * ixgbe_ready_eeprom - Polls for EEPROM ready
2003 1.38 msaitoh * @hw: pointer to hardware structure
2004 1.1 dyoung **/
2005 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2006 1.1 dyoung {
2007 1.1 dyoung s32 status = IXGBE_SUCCESS;
2008 1.1 dyoung u16 i;
2009 1.1 dyoung u8 spi_stat_reg;
2010 1.1 dyoung
2011 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
2012 1.1 dyoung
2013 1.1 dyoung /*
2014 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
2015 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
2016 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
2017 1.1 dyoung * 5 milliseconds, then error out.
2018 1.1 dyoung */
2019 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2020 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2021 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2022 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2023 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2024 1.1 dyoung break;
2025 1.1 dyoung
2026 1.1 dyoung usec_delay(5);
2027 1.1 dyoung ixgbe_standby_eeprom(hw);
2028 1.11 msaitoh }
2029 1.1 dyoung
2030 1.1 dyoung /*
2031 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2032 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2033 1.1 dyoung */
2034 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2035 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2036 1.1 dyoung status = IXGBE_ERR_EEPROM;
2037 1.1 dyoung }
2038 1.1 dyoung
2039 1.1 dyoung return status;
2040 1.1 dyoung }
2041 1.1 dyoung
2042 1.1 dyoung /**
2043 1.38 msaitoh * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2044 1.38 msaitoh * @hw: pointer to hardware structure
2045 1.1 dyoung **/
2046 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2047 1.1 dyoung {
2048 1.1 dyoung u32 eec;
2049 1.1 dyoung
2050 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2051 1.1 dyoung
2052 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2053 1.1 dyoung
2054 1.1 dyoung /* Toggle CS to flush commands */
2055 1.1 dyoung eec |= IXGBE_EEC_CS;
2056 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2057 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2058 1.1 dyoung usec_delay(1);
2059 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2060 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2061 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2062 1.1 dyoung usec_delay(1);
2063 1.1 dyoung }
2064 1.1 dyoung
2065 1.1 dyoung /**
2066 1.38 msaitoh * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2067 1.38 msaitoh * @hw: pointer to hardware structure
2068 1.38 msaitoh * @data: data to send to the EEPROM
2069 1.38 msaitoh * @count: number of bits to shift out
2070 1.1 dyoung **/
2071 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2072 1.3 msaitoh u16 count)
2073 1.1 dyoung {
2074 1.1 dyoung u32 eec;
2075 1.1 dyoung u32 mask;
2076 1.1 dyoung u32 i;
2077 1.1 dyoung
2078 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2079 1.1 dyoung
2080 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2081 1.1 dyoung
2082 1.1 dyoung /*
2083 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2084 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2085 1.1 dyoung */
2086 1.1 dyoung mask = 0x01 << (count - 1);
2087 1.1 dyoung
2088 1.1 dyoung for (i = 0; i < count; i++) {
2089 1.1 dyoung /*
2090 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2091 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2092 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2093 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2094 1.1 dyoung * raising and then lowering the clock.
2095 1.1 dyoung */
2096 1.1 dyoung if (data & mask)
2097 1.1 dyoung eec |= IXGBE_EEC_DI;
2098 1.1 dyoung else
2099 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2100 1.1 dyoung
2101 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2102 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2103 1.1 dyoung
2104 1.1 dyoung usec_delay(1);
2105 1.1 dyoung
2106 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2107 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2108 1.1 dyoung
2109 1.1 dyoung /*
2110 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2111 1.1 dyoung * EEPROM
2112 1.1 dyoung */
2113 1.1 dyoung mask = mask >> 1;
2114 1.11 msaitoh }
2115 1.1 dyoung
2116 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2117 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2118 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2119 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2120 1.1 dyoung }
2121 1.1 dyoung
2122 1.1 dyoung /**
2123 1.38 msaitoh * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2124 1.38 msaitoh * @hw: pointer to hardware structure
2125 1.38 msaitoh * @count: number of bits to shift
2126 1.1 dyoung **/
2127 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2128 1.1 dyoung {
2129 1.1 dyoung u32 eec;
2130 1.1 dyoung u32 i;
2131 1.1 dyoung u16 data = 0;
2132 1.1 dyoung
2133 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2134 1.1 dyoung
2135 1.1 dyoung /*
2136 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2137 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2138 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2139 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2140 1.1 dyoung * "DI" bit should always be clear.
2141 1.1 dyoung */
2142 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2143 1.1 dyoung
2144 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2145 1.1 dyoung
2146 1.1 dyoung for (i = 0; i < count; i++) {
2147 1.1 dyoung data = data << 1;
2148 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2149 1.1 dyoung
2150 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2151 1.1 dyoung
2152 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2153 1.1 dyoung if (eec & IXGBE_EEC_DO)
2154 1.1 dyoung data |= 1;
2155 1.1 dyoung
2156 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2157 1.1 dyoung }
2158 1.1 dyoung
2159 1.1 dyoung return data;
2160 1.1 dyoung }
2161 1.1 dyoung
2162 1.1 dyoung /**
2163 1.38 msaitoh * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2164 1.38 msaitoh * @hw: pointer to hardware structure
2165 1.38 msaitoh * @eec: EEC register's current value
2166 1.1 dyoung **/
2167 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2168 1.1 dyoung {
2169 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2170 1.1 dyoung
2171 1.1 dyoung /*
2172 1.1 dyoung * Raise the clock input to the EEPROM
2173 1.1 dyoung * (setting the SK bit), then delay
2174 1.1 dyoung */
2175 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2176 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2177 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2178 1.1 dyoung usec_delay(1);
2179 1.1 dyoung }
2180 1.1 dyoung
2181 1.1 dyoung /**
2182 1.38 msaitoh * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2183 1.38 msaitoh * @hw: pointer to hardware structure
2184 1.38 msaitoh * @eec: EEC's current value
2185 1.1 dyoung **/
2186 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2187 1.1 dyoung {
2188 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2189 1.1 dyoung
2190 1.1 dyoung /*
2191 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2192 1.1 dyoung * delay
2193 1.1 dyoung */
2194 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2195 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2196 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2197 1.1 dyoung usec_delay(1);
2198 1.1 dyoung }
2199 1.1 dyoung
2200 1.1 dyoung /**
2201 1.38 msaitoh * ixgbe_release_eeprom - Release EEPROM, release semaphores
2202 1.38 msaitoh * @hw: pointer to hardware structure
2203 1.1 dyoung **/
2204 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2205 1.1 dyoung {
2206 1.1 dyoung u32 eec;
2207 1.1 dyoung
2208 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2209 1.1 dyoung
2210 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2211 1.1 dyoung
2212 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2213 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2214 1.1 dyoung
2215 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2216 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2217 1.1 dyoung
2218 1.1 dyoung usec_delay(1);
2219 1.1 dyoung
2220 1.1 dyoung /* Stop requesting EEPROM access */
2221 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2222 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2223 1.1 dyoung
2224 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2225 1.1 dyoung
2226 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2227 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2228 1.1 dyoung }
2229 1.1 dyoung
2230 1.1 dyoung /**
2231 1.38 msaitoh * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2232 1.38 msaitoh * @hw: pointer to hardware structure
2233 1.8 msaitoh *
2234 1.38 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2235 1.1 dyoung **/
2236 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2237 1.1 dyoung {
2238 1.1 dyoung u16 i;
2239 1.1 dyoung u16 j;
2240 1.1 dyoung u16 checksum = 0;
2241 1.1 dyoung u16 length = 0;
2242 1.1 dyoung u16 pointer = 0;
2243 1.1 dyoung u16 word = 0;
2244 1.1 dyoung
2245 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2246 1.1 dyoung
2247 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2248 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2249 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2250 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2251 1.8 msaitoh return IXGBE_ERR_EEPROM;
2252 1.1 dyoung }
2253 1.1 dyoung checksum += word;
2254 1.1 dyoung }
2255 1.1 dyoung
2256 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2257 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2258 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2259 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2260 1.8 msaitoh return IXGBE_ERR_EEPROM;
2261 1.8 msaitoh }
2262 1.8 msaitoh
2263 1.8 msaitoh /* If the pointer seems invalid */
2264 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2265 1.8 msaitoh continue;
2266 1.8 msaitoh
2267 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2268 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2269 1.8 msaitoh return IXGBE_ERR_EEPROM;
2270 1.8 msaitoh }
2271 1.8 msaitoh
2272 1.8 msaitoh if (length == 0xFFFF || length == 0)
2273 1.8 msaitoh continue;
2274 1.1 dyoung
2275 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2276 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2277 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2278 1.8 msaitoh return IXGBE_ERR_EEPROM;
2279 1.1 dyoung }
2280 1.8 msaitoh checksum += word;
2281 1.1 dyoung }
2282 1.1 dyoung }
2283 1.1 dyoung
2284 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2285 1.1 dyoung
2286 1.8 msaitoh return (s32)checksum;
2287 1.1 dyoung }
2288 1.1 dyoung
2289 1.1 dyoung /**
2290 1.38 msaitoh * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2291 1.38 msaitoh * @hw: pointer to hardware structure
2292 1.38 msaitoh * @checksum_val: calculated checksum
2293 1.1 dyoung *
2294 1.38 msaitoh * Performs checksum calculation and validates the EEPROM checksum. If the
2295 1.38 msaitoh * caller does not need checksum_val, the value can be NULL.
2296 1.1 dyoung **/
2297 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2298 1.3 msaitoh u16 *checksum_val)
2299 1.1 dyoung {
2300 1.1 dyoung s32 status;
2301 1.1 dyoung u16 checksum;
2302 1.1 dyoung u16 read_checksum = 0;
2303 1.1 dyoung
2304 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2305 1.1 dyoung
2306 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2307 1.1 dyoung * not continue or we could be in for a very long wait while every
2308 1.1 dyoung * EEPROM read fails
2309 1.1 dyoung */
2310 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2311 1.8 msaitoh if (status) {
2312 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2313 1.8 msaitoh return status;
2314 1.8 msaitoh }
2315 1.1 dyoung
2316 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2317 1.8 msaitoh if (status < 0)
2318 1.8 msaitoh return status;
2319 1.1 dyoung
2320 1.8 msaitoh checksum = (u16)(status & 0xffff);
2321 1.1 dyoung
2322 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2323 1.8 msaitoh if (status) {
2324 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2325 1.8 msaitoh return status;
2326 1.1 dyoung }
2327 1.1 dyoung
2328 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2329 1.8 msaitoh * calculated checksum
2330 1.8 msaitoh */
2331 1.8 msaitoh if (read_checksum != checksum)
2332 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2333 1.8 msaitoh
2334 1.8 msaitoh /* If the user cares, return the calculated checksum */
2335 1.8 msaitoh if (checksum_val)
2336 1.8 msaitoh *checksum_val = checksum;
2337 1.8 msaitoh
2338 1.1 dyoung return status;
2339 1.1 dyoung }
2340 1.1 dyoung
2341 1.1 dyoung /**
2342 1.38 msaitoh * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2343 1.38 msaitoh * @hw: pointer to hardware structure
2344 1.1 dyoung **/
2345 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2346 1.1 dyoung {
2347 1.1 dyoung s32 status;
2348 1.1 dyoung u16 checksum;
2349 1.1 dyoung
2350 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2351 1.1 dyoung
2352 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2353 1.1 dyoung * not continue or we could be in for a very long wait while every
2354 1.1 dyoung * EEPROM read fails
2355 1.1 dyoung */
2356 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2357 1.8 msaitoh if (status) {
2358 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2359 1.8 msaitoh return status;
2360 1.1 dyoung }
2361 1.1 dyoung
2362 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2363 1.8 msaitoh if (status < 0)
2364 1.8 msaitoh return status;
2365 1.8 msaitoh
2366 1.8 msaitoh checksum = (u16)(status & 0xffff);
2367 1.8 msaitoh
2368 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2369 1.8 msaitoh
2370 1.1 dyoung return status;
2371 1.1 dyoung }
2372 1.1 dyoung
2373 1.1 dyoung /**
2374 1.38 msaitoh * ixgbe_validate_mac_addr - Validate MAC address
2375 1.38 msaitoh * @mac_addr: pointer to MAC address.
2376 1.1 dyoung *
2377 1.38 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2378 1.1 dyoung **/
2379 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2380 1.1 dyoung {
2381 1.1 dyoung s32 status = IXGBE_SUCCESS;
2382 1.1 dyoung
2383 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2384 1.1 dyoung
2385 1.1 dyoung /* Make sure it is not a multicast address */
2386 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2387 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2388 1.1 dyoung /* Not a broadcast address */
2389 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2390 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2391 1.1 dyoung /* Reject the zero address */
2392 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2393 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2394 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2395 1.1 dyoung }
2396 1.1 dyoung return status;
2397 1.1 dyoung }
2398 1.1 dyoung
2399 1.1 dyoung /**
2400 1.38 msaitoh * ixgbe_set_rar_generic - Set Rx address register
2401 1.38 msaitoh * @hw: pointer to hardware structure
2402 1.38 msaitoh * @index: Receive address register to write
2403 1.38 msaitoh * @addr: Address to put into receive address register
2404 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index
2405 1.38 msaitoh * @enable_addr: set flag that address is active
2406 1.1 dyoung *
2407 1.38 msaitoh * Puts an ethernet address into a receive address register.
2408 1.1 dyoung **/
2409 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2410 1.3 msaitoh u32 enable_addr)
2411 1.1 dyoung {
2412 1.1 dyoung u32 rar_low, rar_high;
2413 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2414 1.1 dyoung
2415 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2416 1.1 dyoung
2417 1.1 dyoung /* Make sure we are using a valid rar index range */
2418 1.1 dyoung if (index >= rar_entries) {
2419 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2420 1.6 msaitoh "RAR index %d is out of range.\n", index);
2421 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2422 1.1 dyoung }
2423 1.1 dyoung
2424 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2425 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2426 1.1 dyoung
2427 1.1 dyoung /*
2428 1.1 dyoung * HW expects these in little endian so we reverse the byte
2429 1.1 dyoung * order from network order (big endian) to little endian
2430 1.1 dyoung */
2431 1.1 dyoung rar_low = ((u32)addr[0] |
2432 1.3 msaitoh ((u32)addr[1] << 8) |
2433 1.3 msaitoh ((u32)addr[2] << 16) |
2434 1.3 msaitoh ((u32)addr[3] << 24));
2435 1.1 dyoung /*
2436 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2437 1.1 dyoung * so save everything except the lower 16 bits that hold part
2438 1.1 dyoung * of the address and the address valid bit.
2439 1.1 dyoung */
2440 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2441 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2442 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2443 1.1 dyoung
2444 1.1 dyoung if (enable_addr != 0)
2445 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2446 1.1 dyoung
2447 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2448 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2449 1.1 dyoung
2450 1.1 dyoung return IXGBE_SUCCESS;
2451 1.1 dyoung }
2452 1.1 dyoung
2453 1.1 dyoung /**
2454 1.38 msaitoh * ixgbe_clear_rar_generic - Remove Rx address register
2455 1.38 msaitoh * @hw: pointer to hardware structure
2456 1.38 msaitoh * @index: Receive address register to write
2457 1.1 dyoung *
2458 1.38 msaitoh * Clears an ethernet address from a receive address register.
2459 1.1 dyoung **/
2460 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2461 1.1 dyoung {
2462 1.1 dyoung u32 rar_high;
2463 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2464 1.1 dyoung
2465 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2466 1.1 dyoung
2467 1.1 dyoung /* Make sure we are using a valid rar index range */
2468 1.1 dyoung if (index >= rar_entries) {
2469 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2470 1.6 msaitoh "RAR index %d is out of range.\n", index);
2471 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2472 1.1 dyoung }
2473 1.1 dyoung
2474 1.1 dyoung /*
2475 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2476 1.1 dyoung * so save everything except the lower 16 bits that hold part
2477 1.1 dyoung * of the address and the address valid bit.
2478 1.1 dyoung */
2479 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2480 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2481 1.1 dyoung
2482 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2483 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2484 1.1 dyoung
2485 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2486 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2487 1.1 dyoung
2488 1.1 dyoung return IXGBE_SUCCESS;
2489 1.1 dyoung }
2490 1.1 dyoung
2491 1.1 dyoung /**
2492 1.38 msaitoh * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2493 1.38 msaitoh * @hw: pointer to hardware structure
2494 1.1 dyoung *
2495 1.38 msaitoh * Places the MAC address in receive address register 0 and clears the rest
2496 1.38 msaitoh * of the receive address registers. Clears the multicast table. Assumes
2497 1.38 msaitoh * the receiver is in reset when the routine is called.
2498 1.1 dyoung **/
2499 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2500 1.1 dyoung {
2501 1.1 dyoung u32 i;
2502 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2503 1.1 dyoung
2504 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2505 1.1 dyoung
2506 1.1 dyoung /*
2507 1.1 dyoung * If the current mac address is valid, assume it is a software override
2508 1.1 dyoung * to the permanent address.
2509 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2510 1.1 dyoung */
2511 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2512 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2513 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2514 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2515 1.1 dyoung
2516 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2517 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2518 1.3 msaitoh hw->mac.addr[2]);
2519 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2520 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2521 1.1 dyoung } else {
2522 1.1 dyoung /* Setup the receive address. */
2523 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2524 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2525 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2526 1.3 msaitoh hw->mac.addr[2]);
2527 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2528 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2529 1.1 dyoung
2530 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2531 1.14 msaitoh }
2532 1.14 msaitoh
2533 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2534 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2535 1.1 dyoung
2536 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2537 1.1 dyoung
2538 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2539 1.1 dyoung
2540 1.1 dyoung /* Zero out the other receive addresses. */
2541 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2542 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2543 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2544 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2545 1.1 dyoung }
2546 1.1 dyoung
2547 1.1 dyoung /* Clear the MTA */
2548 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2549 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2550 1.1 dyoung
2551 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2552 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2553 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2554 1.1 dyoung
2555 1.1 dyoung ixgbe_init_uta_tables(hw);
2556 1.1 dyoung
2557 1.1 dyoung return IXGBE_SUCCESS;
2558 1.1 dyoung }
2559 1.1 dyoung
2560 1.1 dyoung /**
2561 1.38 msaitoh * ixgbe_add_uc_addr - Adds a secondary unicast address.
2562 1.38 msaitoh * @hw: pointer to hardware structure
2563 1.38 msaitoh * @addr: new address
2564 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index
2565 1.1 dyoung *
2566 1.38 msaitoh * Adds it to unused receive address register or goes into promiscuous mode.
2567 1.1 dyoung **/
2568 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2569 1.1 dyoung {
2570 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2571 1.1 dyoung u32 rar;
2572 1.1 dyoung
2573 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2574 1.1 dyoung
2575 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2576 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2577 1.1 dyoung
2578 1.1 dyoung /*
2579 1.1 dyoung * Place this address in the RAR if there is room,
2580 1.1 dyoung * else put the controller into promiscuous mode
2581 1.1 dyoung */
2582 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2583 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2584 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2585 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2586 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2587 1.1 dyoung } else {
2588 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2589 1.1 dyoung }
2590 1.1 dyoung
2591 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2592 1.1 dyoung }
2593 1.1 dyoung
2594 1.1 dyoung /**
2595 1.38 msaitoh * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2596 1.38 msaitoh * @hw: pointer to hardware structure
2597 1.38 msaitoh * @addr_list: the list of new addresses
2598 1.38 msaitoh * @addr_count: number of addresses
2599 1.38 msaitoh * @next: iterator function to walk the address list
2600 1.38 msaitoh *
2601 1.38 msaitoh * The given list replaces any existing list. Clears the secondary addrs from
2602 1.38 msaitoh * receive address registers. Uses unused receive address registers for the
2603 1.38 msaitoh * first secondary addresses, and falls back to promiscuous mode as needed.
2604 1.1 dyoung *
2605 1.38 msaitoh * Drivers using secondary unicast addresses must set user_set_promisc when
2606 1.38 msaitoh * manually putting the device into promiscuous mode.
2607 1.1 dyoung **/
2608 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2609 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2610 1.1 dyoung {
2611 1.1 dyoung u8 *addr;
2612 1.1 dyoung u32 i;
2613 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2614 1.1 dyoung u32 uc_addr_in_use;
2615 1.1 dyoung u32 fctrl;
2616 1.1 dyoung u32 vmdq;
2617 1.1 dyoung
2618 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2619 1.1 dyoung
2620 1.1 dyoung /*
2621 1.1 dyoung * Clear accounting of old secondary address list,
2622 1.1 dyoung * don't count RAR[0]
2623 1.1 dyoung */
2624 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2625 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2626 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2627 1.1 dyoung
2628 1.1 dyoung /* Zero out the other receive addresses */
2629 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2630 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2631 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2632 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2633 1.1 dyoung }
2634 1.1 dyoung
2635 1.1 dyoung /* Add the new addresses */
2636 1.1 dyoung for (i = 0; i < addr_count; i++) {
2637 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2638 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2639 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2640 1.1 dyoung }
2641 1.1 dyoung
2642 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2643 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2644 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2645 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2646 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2647 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2648 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2649 1.1 dyoung }
2650 1.1 dyoung } else {
2651 1.1 dyoung /* only disable if set by overflow, not by user */
2652 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2653 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2654 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2655 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2656 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2657 1.1 dyoung }
2658 1.1 dyoung }
2659 1.1 dyoung
2660 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2661 1.1 dyoung return IXGBE_SUCCESS;
2662 1.1 dyoung }
2663 1.1 dyoung
2664 1.1 dyoung /**
2665 1.38 msaitoh * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2666 1.38 msaitoh * @hw: pointer to hardware structure
2667 1.38 msaitoh * @mc_addr: the multicast address
2668 1.38 msaitoh *
2669 1.38 msaitoh * Extracts the 12 bits, from a multicast address, to determine which
2670 1.38 msaitoh * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2671 1.38 msaitoh * incoming rx multicast addresses, to determine the bit-vector to check in
2672 1.38 msaitoh * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2673 1.38 msaitoh * by the MO field of the MCSTCTRL. The MO field is set during initialization
2674 1.38 msaitoh * to mc_filter_type.
2675 1.1 dyoung **/
2676 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2677 1.1 dyoung {
2678 1.1 dyoung u32 vector = 0;
2679 1.1 dyoung
2680 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2681 1.1 dyoung
2682 1.1 dyoung switch (hw->mac.mc_filter_type) {
2683 1.1 dyoung case 0: /* use bits [47:36] of the address */
2684 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2685 1.1 dyoung break;
2686 1.1 dyoung case 1: /* use bits [46:35] of the address */
2687 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2688 1.1 dyoung break;
2689 1.1 dyoung case 2: /* use bits [45:34] of the address */
2690 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2691 1.1 dyoung break;
2692 1.1 dyoung case 3: /* use bits [43:32] of the address */
2693 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2694 1.1 dyoung break;
2695 1.1 dyoung default: /* Invalid mc_filter_type */
2696 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2697 1.1 dyoung ASSERT(0);
2698 1.1 dyoung break;
2699 1.1 dyoung }
2700 1.1 dyoung
2701 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2702 1.1 dyoung vector &= 0xFFF;
2703 1.1 dyoung return vector;
2704 1.1 dyoung }
2705 1.1 dyoung
2706 1.1 dyoung /**
2707 1.38 msaitoh * ixgbe_set_mta - Set bit-vector in multicast table
2708 1.38 msaitoh * @hw: pointer to hardware structure
2709 1.38 msaitoh * @mc_addr: Multicast address
2710 1.1 dyoung *
2711 1.38 msaitoh * Sets the bit-vector in the multicast table.
2712 1.1 dyoung **/
2713 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2714 1.1 dyoung {
2715 1.1 dyoung u32 vector;
2716 1.1 dyoung u32 vector_bit;
2717 1.1 dyoung u32 vector_reg;
2718 1.1 dyoung
2719 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2720 1.1 dyoung
2721 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2722 1.1 dyoung
2723 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2724 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2725 1.1 dyoung
2726 1.1 dyoung /*
2727 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2728 1.1 dyoung * like an array of 4096 bits. We want to set bit
2729 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2730 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2731 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2732 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2733 1.1 dyoung * the value.
2734 1.1 dyoung */
2735 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2736 1.1 dyoung vector_bit = vector & 0x1F;
2737 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2738 1.1 dyoung }
2739 1.1 dyoung
2740 1.1 dyoung /**
2741 1.38 msaitoh * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2742 1.38 msaitoh * @hw: pointer to hardware structure
2743 1.38 msaitoh * @mc_addr_list: the list of new multicast addresses
2744 1.38 msaitoh * @mc_addr_count: number of addresses
2745 1.38 msaitoh * @next: iterator function to walk the multicast address list
2746 1.38 msaitoh * @clear: flag, when set clears the table beforehand
2747 1.1 dyoung *
2748 1.38 msaitoh * When the clear flag is set, the given list replaces any existing list.
2749 1.38 msaitoh * Hashes the given addresses into the multicast table.
2750 1.1 dyoung **/
2751 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2752 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2753 1.3 msaitoh bool clear)
2754 1.1 dyoung {
2755 1.1 dyoung u32 i;
2756 1.1 dyoung u32 vmdq;
2757 1.1 dyoung
2758 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2759 1.1 dyoung
2760 1.1 dyoung /*
2761 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2762 1.1 dyoung * use.
2763 1.1 dyoung */
2764 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2765 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2766 1.1 dyoung
2767 1.1 dyoung /* Clear mta_shadow */
2768 1.3 msaitoh if (clear) {
2769 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2770 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2771 1.3 msaitoh }
2772 1.1 dyoung
2773 1.1 dyoung /* Update mta_shadow */
2774 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2775 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2776 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2777 1.1 dyoung }
2778 1.1 dyoung
2779 1.1 dyoung /* Enable mta */
2780 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2781 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2782 1.1 dyoung hw->mac.mta_shadow[i]);
2783 1.1 dyoung
2784 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2785 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2786 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2787 1.1 dyoung
2788 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2789 1.1 dyoung return IXGBE_SUCCESS;
2790 1.1 dyoung }
2791 1.1 dyoung
2792 1.1 dyoung /**
2793 1.38 msaitoh * ixgbe_enable_mc_generic - Enable multicast address in RAR
2794 1.38 msaitoh * @hw: pointer to hardware structure
2795 1.1 dyoung *
2796 1.38 msaitoh * Enables multicast address in RAR and the use of the multicast hash table.
2797 1.1 dyoung **/
2798 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2799 1.1 dyoung {
2800 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2801 1.1 dyoung
2802 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2803 1.1 dyoung
2804 1.1 dyoung if (a->mta_in_use > 0)
2805 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2806 1.3 msaitoh hw->mac.mc_filter_type);
2807 1.1 dyoung
2808 1.1 dyoung return IXGBE_SUCCESS;
2809 1.1 dyoung }
2810 1.1 dyoung
2811 1.1 dyoung /**
2812 1.38 msaitoh * ixgbe_disable_mc_generic - Disable multicast address in RAR
2813 1.38 msaitoh * @hw: pointer to hardware structure
2814 1.1 dyoung *
2815 1.38 msaitoh * Disables multicast address in RAR and the use of the multicast hash table.
2816 1.1 dyoung **/
2817 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2818 1.1 dyoung {
2819 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2820 1.1 dyoung
2821 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2822 1.1 dyoung
2823 1.1 dyoung if (a->mta_in_use > 0)
2824 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2825 1.1 dyoung
2826 1.1 dyoung return IXGBE_SUCCESS;
2827 1.1 dyoung }
2828 1.1 dyoung
2829 1.1 dyoung /**
2830 1.38 msaitoh * ixgbe_fc_enable_generic - Enable flow control
2831 1.38 msaitoh * @hw: pointer to hardware structure
2832 1.1 dyoung *
2833 1.38 msaitoh * Enable flow control according to the current settings.
2834 1.1 dyoung **/
2835 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2836 1.1 dyoung {
2837 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2838 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2839 1.1 dyoung u32 reg;
2840 1.1 dyoung u32 fcrtl, fcrth;
2841 1.4 msaitoh int i;
2842 1.1 dyoung
2843 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2844 1.1 dyoung
2845 1.4 msaitoh /* Validate the water mark configuration */
2846 1.4 msaitoh if (!hw->fc.pause_time) {
2847 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2848 1.4 msaitoh goto out;
2849 1.4 msaitoh }
2850 1.4 msaitoh
2851 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2852 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2853 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2854 1.4 msaitoh hw->fc.high_water[i]) {
2855 1.4 msaitoh if (!hw->fc.low_water[i] ||
2856 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2857 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2858 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2859 1.4 msaitoh goto out;
2860 1.4 msaitoh }
2861 1.4 msaitoh }
2862 1.4 msaitoh }
2863 1.4 msaitoh
2864 1.1 dyoung /* Negotiate the fc mode to use */
2865 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2866 1.1 dyoung
2867 1.1 dyoung /* Disable any previous flow control settings */
2868 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2869 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2870 1.1 dyoung
2871 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2872 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2873 1.1 dyoung
2874 1.1 dyoung /*
2875 1.1 dyoung * The possible values of fc.current_mode are:
2876 1.1 dyoung * 0: Flow control is completely disabled
2877 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2878 1.1 dyoung * but not send pause frames).
2879 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2880 1.1 dyoung * we do not support receiving pause frames).
2881 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2882 1.1 dyoung * other: Invalid.
2883 1.1 dyoung */
2884 1.1 dyoung switch (hw->fc.current_mode) {
2885 1.1 dyoung case ixgbe_fc_none:
2886 1.1 dyoung /*
2887 1.1 dyoung * Flow control is disabled by software override or autoneg.
2888 1.1 dyoung * The code below will actually disable it in the HW.
2889 1.1 dyoung */
2890 1.1 dyoung break;
2891 1.1 dyoung case ixgbe_fc_rx_pause:
2892 1.1 dyoung /*
2893 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2894 1.1 dyoung * disabled by software override. Since there really
2895 1.1 dyoung * isn't a way to advertise that we are capable of RX
2896 1.1 dyoung * Pause ONLY, we will advertise that we support both
2897 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2898 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2899 1.1 dyoung */
2900 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2901 1.1 dyoung break;
2902 1.1 dyoung case ixgbe_fc_tx_pause:
2903 1.1 dyoung /*
2904 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2905 1.1 dyoung * disabled by software override.
2906 1.1 dyoung */
2907 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2908 1.1 dyoung break;
2909 1.1 dyoung case ixgbe_fc_full:
2910 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2911 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2912 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2913 1.1 dyoung break;
2914 1.1 dyoung default:
2915 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2916 1.6 msaitoh "Flow control param set incorrectly\n");
2917 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2918 1.1 dyoung goto out;
2919 1.1 dyoung break;
2920 1.1 dyoung }
2921 1.1 dyoung
2922 1.1 dyoung /* Set 802.3x based flow control settings. */
2923 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2924 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2925 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2926 1.1 dyoung
2927 1.1 dyoung
2928 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2929 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2930 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2931 1.4 msaitoh hw->fc.high_water[i]) {
2932 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2933 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2934 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2935 1.4 msaitoh } else {
2936 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2937 1.4 msaitoh /*
2938 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2939 1.4 msaitoh * switch is enabled we must set the high water mark
2940 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2941 1.8 msaitoh * the Tx switch to function even under heavy Rx
2942 1.8 msaitoh * workloads.
2943 1.4 msaitoh */
2944 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2945 1.4 msaitoh }
2946 1.4 msaitoh
2947 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2948 1.1 dyoung }
2949 1.1 dyoung
2950 1.1 dyoung /* Configure pause time (2 TCs per register) */
2951 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001;
2952 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2953 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2954 1.1 dyoung
2955 1.4 msaitoh /* Configure flow control refresh threshold value */
2956 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2957 1.1 dyoung
2958 1.1 dyoung out:
2959 1.1 dyoung return ret_val;
2960 1.1 dyoung }
2961 1.1 dyoung
2962 1.1 dyoung /**
2963 1.38 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2964 1.38 msaitoh * @hw: pointer to hardware structure
2965 1.38 msaitoh * @adv_reg: flow control advertised settings
2966 1.38 msaitoh * @lp_reg: link partner's flow control settings
2967 1.38 msaitoh * @adv_sym: symmetric pause bit in advertisement
2968 1.38 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2969 1.38 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2970 1.38 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2971 1.1 dyoung *
2972 1.38 msaitoh * Find the intersection between advertised settings and link partner's
2973 1.38 msaitoh * advertised settings
2974 1.1 dyoung **/
2975 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2976 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2977 1.1 dyoung {
2978 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2979 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2980 1.6 msaitoh "Local or link partner's advertised flow control "
2981 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2982 1.6 msaitoh adv_reg, lp_reg);
2983 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2984 1.6 msaitoh }
2985 1.1 dyoung
2986 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2987 1.4 msaitoh /*
2988 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2989 1.4 msaitoh * of pause frames. In this case, we had to advertise
2990 1.4 msaitoh * FULL flow control because we could not advertise RX
2991 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2992 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2993 1.4 msaitoh */
2994 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2995 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2996 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2997 1.4 msaitoh } else {
2998 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2999 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3000 1.4 msaitoh }
3001 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3002 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3003 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
3004 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3005 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3006 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3007 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3008 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3009 1.4 msaitoh } else {
3010 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
3011 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
3012 1.4 msaitoh }
3013 1.4 msaitoh return IXGBE_SUCCESS;
3014 1.4 msaitoh }
3015 1.1 dyoung
3016 1.4 msaitoh /**
3017 1.38 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3018 1.38 msaitoh * @hw: pointer to hardware structure
3019 1.4 msaitoh *
3020 1.38 msaitoh * Enable flow control according on 1 gig fiber.
3021 1.4 msaitoh **/
3022 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3023 1.4 msaitoh {
3024 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3025 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3026 1.1 dyoung
3027 1.1 dyoung /*
3028 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3029 1.4 msaitoh * - link is up but AN did not complete, or if
3030 1.4 msaitoh * - link is up and AN completed but timed out
3031 1.1 dyoung */
3032 1.4 msaitoh
3033 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3034 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3035 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3036 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3037 1.1 dyoung goto out;
3038 1.6 msaitoh }
3039 1.1 dyoung
3040 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3041 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3042 1.1 dyoung
3043 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3044 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3045 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3046 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3047 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3048 1.1 dyoung
3049 1.1 dyoung out:
3050 1.1 dyoung return ret_val;
3051 1.1 dyoung }
3052 1.1 dyoung
3053 1.1 dyoung /**
3054 1.38 msaitoh * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3055 1.38 msaitoh * @hw: pointer to hardware structure
3056 1.1 dyoung *
3057 1.38 msaitoh * Enable flow control according to IEEE clause 37.
3058 1.1 dyoung **/
3059 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3060 1.1 dyoung {
3061 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3062 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3063 1.1 dyoung
3064 1.1 dyoung /*
3065 1.1 dyoung * On backplane, bail out if
3066 1.1 dyoung * - backplane autoneg was not completed, or if
3067 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3068 1.1 dyoung */
3069 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3070 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3071 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3072 1.1 dyoung goto out;
3073 1.6 msaitoh }
3074 1.1 dyoung
3075 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3076 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3077 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3078 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3079 1.1 dyoung goto out;
3080 1.6 msaitoh }
3081 1.1 dyoung }
3082 1.1 dyoung /*
3083 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3084 1.1 dyoung * local flow control settings accordingly
3085 1.1 dyoung */
3086 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3087 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3088 1.1 dyoung
3089 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3090 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3091 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3092 1.1 dyoung
3093 1.1 dyoung out:
3094 1.1 dyoung return ret_val;
3095 1.1 dyoung }
3096 1.1 dyoung
3097 1.1 dyoung /**
3098 1.38 msaitoh * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3099 1.38 msaitoh * @hw: pointer to hardware structure
3100 1.1 dyoung *
3101 1.38 msaitoh * Enable flow control according to IEEE clause 37.
3102 1.1 dyoung **/
3103 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3104 1.1 dyoung {
3105 1.1 dyoung u16 technology_ability_reg = 0;
3106 1.1 dyoung u16 lp_technology_ability_reg = 0;
3107 1.1 dyoung
3108 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3109 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3110 1.1 dyoung &technology_ability_reg);
3111 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3112 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3113 1.1 dyoung &lp_technology_ability_reg);
3114 1.1 dyoung
3115 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3116 1.1 dyoung (u32)lp_technology_ability_reg,
3117 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3118 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3119 1.1 dyoung }
3120 1.1 dyoung
3121 1.1 dyoung /**
3122 1.38 msaitoh * ixgbe_fc_autoneg - Configure flow control
3123 1.38 msaitoh * @hw: pointer to hardware structure
3124 1.1 dyoung *
3125 1.38 msaitoh * Compares our advertised flow control capabilities to those advertised by
3126 1.38 msaitoh * our link partner, and determines the proper flow control mode to use.
3127 1.1 dyoung **/
3128 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3129 1.1 dyoung {
3130 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3131 1.4 msaitoh ixgbe_link_speed speed;
3132 1.4 msaitoh bool link_up;
3133 1.1 dyoung
3134 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3135 1.1 dyoung
3136 1.1 dyoung /*
3137 1.4 msaitoh * AN should have completed when the cable was plugged in.
3138 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3139 1.4 msaitoh * - FC autoneg is disabled, or if
3140 1.4 msaitoh * - link is not up.
3141 1.1 dyoung */
3142 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3143 1.39 msaitoh /* TODO: This should be just an informative log */
3144 1.39 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3145 1.39 msaitoh "Flow control autoneg is disabled");
3146 1.1 dyoung goto out;
3147 1.6 msaitoh }
3148 1.1 dyoung
3149 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3150 1.6 msaitoh if (!link_up) {
3151 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3152 1.1 dyoung goto out;
3153 1.6 msaitoh }
3154 1.1 dyoung
3155 1.1 dyoung switch (hw->phy.media_type) {
3156 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3157 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3158 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3159 1.1 dyoung case ixgbe_media_type_fiber:
3160 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3161 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3162 1.4 msaitoh break;
3163 1.4 msaitoh
3164 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3165 1.1 dyoung case ixgbe_media_type_backplane:
3166 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3167 1.1 dyoung break;
3168 1.1 dyoung
3169 1.4 msaitoh /* Autoneg flow control on copper adapters */
3170 1.1 dyoung case ixgbe_media_type_copper:
3171 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3172 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3173 1.1 dyoung break;
3174 1.1 dyoung
3175 1.1 dyoung default:
3176 1.1 dyoung break;
3177 1.1 dyoung }
3178 1.1 dyoung
3179 1.4 msaitoh out:
3180 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3181 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3182 1.4 msaitoh } else {
3183 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3184 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3185 1.3 msaitoh }
3186 1.1 dyoung }
3187 1.1 dyoung
3188 1.6 msaitoh /*
3189 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3190 1.6 msaitoh * @hw: pointer to hardware structure
3191 1.6 msaitoh *
3192 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3193 1.6 msaitoh *
3194 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3195 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3196 1.6 msaitoh * 800 = 80 millisec.
3197 1.6 msaitoh */
3198 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3199 1.6 msaitoh {
3200 1.6 msaitoh s16 devctl2;
3201 1.6 msaitoh u32 pollcnt;
3202 1.6 msaitoh
3203 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3204 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3205 1.6 msaitoh
3206 1.6 msaitoh switch (devctl2) {
3207 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3208 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3209 1.6 msaitoh break;
3210 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3211 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3212 1.6 msaitoh break;
3213 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3214 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3215 1.6 msaitoh break;
3216 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3217 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3218 1.6 msaitoh break;
3219 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3220 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3221 1.6 msaitoh break;
3222 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3223 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3224 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3225 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3226 1.6 msaitoh default:
3227 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3228 1.6 msaitoh break;
3229 1.6 msaitoh }
3230 1.6 msaitoh
3231 1.6 msaitoh /* add 10% to spec maximum */
3232 1.6 msaitoh return (pollcnt * 11) / 10;
3233 1.6 msaitoh }
3234 1.6 msaitoh
3235 1.1 dyoung /**
3236 1.38 msaitoh * ixgbe_disable_pcie_master - Disable PCI-express master access
3237 1.38 msaitoh * @hw: pointer to hardware structure
3238 1.1 dyoung *
3239 1.38 msaitoh * Disables PCI-Express master access and verifies there are no pending
3240 1.38 msaitoh * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3241 1.38 msaitoh * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3242 1.38 msaitoh * is returned signifying master requests disabled.
3243 1.1 dyoung **/
3244 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3245 1.1 dyoung {
3246 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3247 1.6 msaitoh u32 i, poll;
3248 1.8 msaitoh u16 value;
3249 1.1 dyoung
3250 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3251 1.1 dyoung
3252 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3253 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3254 1.3 msaitoh
3255 1.6 msaitoh /* Exit if master requests are blocked */
3256 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3257 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3258 1.1 dyoung goto out;
3259 1.1 dyoung
3260 1.3 msaitoh /* Poll for master request bit to clear */
3261 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3262 1.3 msaitoh usec_delay(100);
3263 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3264 1.3 msaitoh goto out;
3265 1.1 dyoung }
3266 1.1 dyoung
3267 1.3 msaitoh /*
3268 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3269 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3270 1.3 msaitoh * of this need. The first reset prevents new master requests from
3271 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3272 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3273 1.3 msaitoh * again to clear out any effects they may have had on our device.
3274 1.3 msaitoh */
3275 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3276 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3277 1.1 dyoung
3278 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3279 1.10 msaitoh goto out;
3280 1.10 msaitoh
3281 1.1 dyoung /*
3282 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3283 1.1 dyoung * transactions pending.
3284 1.1 dyoung */
3285 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3286 1.6 msaitoh for (i = 0; i < poll; i++) {
3287 1.3 msaitoh usec_delay(100);
3288 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3289 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3290 1.8 msaitoh goto out;
3291 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3292 1.3 msaitoh goto out;
3293 1.1 dyoung }
3294 1.1 dyoung
3295 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3296 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3297 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3298 1.1 dyoung
3299 1.1 dyoung out:
3300 1.1 dyoung return status;
3301 1.1 dyoung }
3302 1.1 dyoung
3303 1.1 dyoung /**
3304 1.38 msaitoh * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3305 1.38 msaitoh * @hw: pointer to hardware structure
3306 1.38 msaitoh * @mask: Mask to specify which semaphore to acquire
3307 1.1 dyoung *
3308 1.38 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3309 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash)
3310 1.1 dyoung **/
3311 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3312 1.1 dyoung {
3313 1.6 msaitoh u32 gssr = 0;
3314 1.1 dyoung u32 swmask = mask;
3315 1.1 dyoung u32 fwmask = mask << 5;
3316 1.6 msaitoh u32 timeout = 200;
3317 1.6 msaitoh u32 i;
3318 1.1 dyoung
3319 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3320 1.1 dyoung
3321 1.6 msaitoh for (i = 0; i < timeout; i++) {
3322 1.1 dyoung /*
3323 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3324 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3325 1.1 dyoung */
3326 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3327 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3328 1.1 dyoung
3329 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3330 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3331 1.6 msaitoh gssr |= swmask;
3332 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3333 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3334 1.6 msaitoh return IXGBE_SUCCESS;
3335 1.6 msaitoh } else {
3336 1.6 msaitoh /* Resource is currently in use by FW or SW */
3337 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3338 1.6 msaitoh msec_delay(5);
3339 1.6 msaitoh }
3340 1.1 dyoung }
3341 1.1 dyoung
3342 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3343 1.6 msaitoh if (gssr & (fwmask | swmask))
3344 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3345 1.1 dyoung
3346 1.6 msaitoh msec_delay(5);
3347 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3348 1.1 dyoung }
3349 1.1 dyoung
3350 1.1 dyoung /**
3351 1.38 msaitoh * ixgbe_release_swfw_sync - Release SWFW semaphore
3352 1.38 msaitoh * @hw: pointer to hardware structure
3353 1.38 msaitoh * @mask: Mask to specify which semaphore to release
3354 1.1 dyoung *
3355 1.38 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3356 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash)
3357 1.1 dyoung **/
3358 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3359 1.1 dyoung {
3360 1.1 dyoung u32 gssr;
3361 1.1 dyoung u32 swmask = mask;
3362 1.1 dyoung
3363 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3364 1.1 dyoung
3365 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3366 1.1 dyoung
3367 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3368 1.1 dyoung gssr &= ~swmask;
3369 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3370 1.1 dyoung
3371 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3372 1.1 dyoung }
3373 1.1 dyoung
3374 1.1 dyoung /**
3375 1.38 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3376 1.38 msaitoh * @hw: pointer to hardware structure
3377 1.3 msaitoh *
3378 1.38 msaitoh * Stops the receive data path and waits for the HW to internally empty
3379 1.38 msaitoh * the Rx security block
3380 1.3 msaitoh **/
3381 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3382 1.3 msaitoh {
3383 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000
3384 1.3 msaitoh
3385 1.3 msaitoh int i;
3386 1.3 msaitoh int secrxreg;
3387 1.3 msaitoh
3388 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3389 1.3 msaitoh
3390 1.3 msaitoh
3391 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3392 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3393 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3394 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3395 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3396 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3397 1.3 msaitoh break;
3398 1.3 msaitoh else
3399 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3400 1.17 msaitoh usec_delay(10);
3401 1.3 msaitoh }
3402 1.3 msaitoh
3403 1.3 msaitoh /* For informational purposes only */
3404 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3405 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3406 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3407 1.3 msaitoh
3408 1.3 msaitoh return IXGBE_SUCCESS;
3409 1.3 msaitoh }
3410 1.3 msaitoh
3411 1.3 msaitoh /**
3412 1.38 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3413 1.38 msaitoh * @hw: pointer to hardware structure
3414 1.38 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken
3415 1.38 msaitoh * @reg_val: Value we read from AUTOC
3416 1.8 msaitoh *
3417 1.38 msaitoh * The default case requires no protection so just to the register read.
3418 1.8 msaitoh */
3419 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3420 1.8 msaitoh {
3421 1.8 msaitoh *locked = FALSE;
3422 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3423 1.8 msaitoh return IXGBE_SUCCESS;
3424 1.8 msaitoh }
3425 1.8 msaitoh
3426 1.8 msaitoh /**
3427 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3428 1.8 msaitoh * @hw: pointer to hardware structure
3429 1.8 msaitoh * @reg_val: value to write to AUTOC
3430 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3431 1.38 msaitoh * previous read.
3432 1.8 msaitoh *
3433 1.8 msaitoh * The default case requires no protection so just to the register write.
3434 1.8 msaitoh */
3435 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3436 1.8 msaitoh {
3437 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3438 1.8 msaitoh
3439 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3440 1.8 msaitoh return IXGBE_SUCCESS;
3441 1.8 msaitoh }
3442 1.8 msaitoh
3443 1.8 msaitoh /**
3444 1.38 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3445 1.38 msaitoh * @hw: pointer to hardware structure
3446 1.3 msaitoh *
3447 1.38 msaitoh * Enables the receive data path.
3448 1.3 msaitoh **/
3449 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3450 1.3 msaitoh {
3451 1.14 msaitoh u32 secrxreg;
3452 1.3 msaitoh
3453 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3454 1.3 msaitoh
3455 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3456 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3457 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3458 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3459 1.3 msaitoh
3460 1.3 msaitoh return IXGBE_SUCCESS;
3461 1.3 msaitoh }
3462 1.3 msaitoh
3463 1.3 msaitoh /**
3464 1.38 msaitoh * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3465 1.38 msaitoh * @hw: pointer to hardware structure
3466 1.38 msaitoh * @regval: register value to write to RXCTRL
3467 1.1 dyoung *
3468 1.38 msaitoh * Enables the Rx DMA unit
3469 1.1 dyoung **/
3470 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3471 1.1 dyoung {
3472 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3473 1.1 dyoung
3474 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3475 1.8 msaitoh ixgbe_enable_rx(hw);
3476 1.8 msaitoh else
3477 1.8 msaitoh ixgbe_disable_rx(hw);
3478 1.1 dyoung
3479 1.1 dyoung return IXGBE_SUCCESS;
3480 1.1 dyoung }
3481 1.1 dyoung
3482 1.1 dyoung /**
3483 1.38 msaitoh * ixgbe_blink_led_start_generic - Blink LED based on index.
3484 1.38 msaitoh * @hw: pointer to hardware structure
3485 1.38 msaitoh * @index: led number to blink
3486 1.1 dyoung **/
3487 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3488 1.1 dyoung {
3489 1.1 dyoung ixgbe_link_speed speed = 0;
3490 1.1 dyoung bool link_up = 0;
3491 1.8 msaitoh u32 autoc_reg = 0;
3492 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3493 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3494 1.8 msaitoh bool locked = FALSE;
3495 1.1 dyoung
3496 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3497 1.1 dyoung
3498 1.14 msaitoh if (index > 3)
3499 1.14 msaitoh return IXGBE_ERR_PARAM;
3500 1.14 msaitoh
3501 1.1 dyoung /*
3502 1.1 dyoung * Link must be up to auto-blink the LEDs;
3503 1.1 dyoung * Force it if link is down.
3504 1.1 dyoung */
3505 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3506 1.1 dyoung
3507 1.1 dyoung if (!link_up) {
3508 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3509 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3510 1.8 msaitoh goto out;
3511 1.5 msaitoh
3512 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3513 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3514 1.8 msaitoh
3515 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3516 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3517 1.8 msaitoh goto out;
3518 1.8 msaitoh
3519 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3520 1.1 dyoung msec_delay(10);
3521 1.1 dyoung }
3522 1.1 dyoung
3523 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3524 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3525 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3526 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3527 1.1 dyoung
3528 1.5 msaitoh out:
3529 1.5 msaitoh return ret_val;
3530 1.1 dyoung }
3531 1.1 dyoung
3532 1.1 dyoung /**
3533 1.38 msaitoh * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3534 1.38 msaitoh * @hw: pointer to hardware structure
3535 1.38 msaitoh * @index: led number to stop blinking
3536 1.1 dyoung **/
3537 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3538 1.1 dyoung {
3539 1.8 msaitoh u32 autoc_reg = 0;
3540 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3541 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3542 1.8 msaitoh bool locked = FALSE;
3543 1.1 dyoung
3544 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3545 1.1 dyoung
3546 1.14 msaitoh if (index > 3)
3547 1.14 msaitoh return IXGBE_ERR_PARAM;
3548 1.14 msaitoh
3549 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3550 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3551 1.8 msaitoh goto out;
3552 1.1 dyoung
3553 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3554 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3555 1.1 dyoung
3556 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3557 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3558 1.8 msaitoh goto out;
3559 1.5 msaitoh
3560 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3561 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3562 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3563 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3564 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3565 1.1 dyoung
3566 1.5 msaitoh out:
3567 1.5 msaitoh return ret_val;
3568 1.1 dyoung }
3569 1.1 dyoung
3570 1.1 dyoung /**
3571 1.38 msaitoh * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3572 1.38 msaitoh * @hw: pointer to hardware structure
3573 1.38 msaitoh * @san_mac_offset: SAN MAC address offset
3574 1.38 msaitoh *
3575 1.38 msaitoh * This function will read the EEPROM location for the SAN MAC address
3576 1.38 msaitoh * pointer, and returns the value at that location. This is used in both
3577 1.38 msaitoh * get and set mac_addr routines.
3578 1.1 dyoung **/
3579 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3580 1.3 msaitoh u16 *san_mac_offset)
3581 1.1 dyoung {
3582 1.6 msaitoh s32 ret_val;
3583 1.6 msaitoh
3584 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3585 1.1 dyoung
3586 1.1 dyoung /*
3587 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3588 1.1 dyoung * available.
3589 1.1 dyoung */
3590 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3591 1.6 msaitoh san_mac_offset);
3592 1.6 msaitoh if (ret_val) {
3593 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3594 1.6 msaitoh "eeprom at offset %d failed",
3595 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3596 1.6 msaitoh }
3597 1.1 dyoung
3598 1.6 msaitoh return ret_val;
3599 1.1 dyoung }
3600 1.1 dyoung
3601 1.1 dyoung /**
3602 1.38 msaitoh * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3603 1.38 msaitoh * @hw: pointer to hardware structure
3604 1.38 msaitoh * @san_mac_addr: SAN MAC address
3605 1.38 msaitoh *
3606 1.38 msaitoh * Reads the SAN MAC address from the EEPROM, if it's available. This is
3607 1.38 msaitoh * per-port, so set_lan_id() must be called before reading the addresses.
3608 1.38 msaitoh * set_lan_id() is called by identify_sfp(), but this cannot be relied
3609 1.38 msaitoh * upon for non-SFP connections, so we must call it here.
3610 1.1 dyoung **/
3611 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3612 1.1 dyoung {
3613 1.1 dyoung u16 san_mac_data, san_mac_offset;
3614 1.1 dyoung u8 i;
3615 1.6 msaitoh s32 ret_val;
3616 1.1 dyoung
3617 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3618 1.1 dyoung
3619 1.1 dyoung /*
3620 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3621 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3622 1.1 dyoung */
3623 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3624 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3625 1.1 dyoung goto san_mac_addr_out;
3626 1.1 dyoung
3627 1.1 dyoung /* make sure we know which port we need to program */
3628 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3629 1.1 dyoung /* apply the port offset to the address offset */
3630 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3631 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3632 1.1 dyoung for (i = 0; i < 3; i++) {
3633 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3634 1.6 msaitoh &san_mac_data);
3635 1.6 msaitoh if (ret_val) {
3636 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3637 1.6 msaitoh "eeprom read at offset %d failed",
3638 1.6 msaitoh san_mac_offset);
3639 1.6 msaitoh goto san_mac_addr_out;
3640 1.6 msaitoh }
3641 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3642 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3643 1.1 dyoung san_mac_offset++;
3644 1.1 dyoung }
3645 1.6 msaitoh return IXGBE_SUCCESS;
3646 1.1 dyoung
3647 1.1 dyoung san_mac_addr_out:
3648 1.6 msaitoh /*
3649 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3650 1.6 msaitoh * error though, so just wipe the local address and return.
3651 1.6 msaitoh */
3652 1.6 msaitoh for (i = 0; i < 6; i++)
3653 1.6 msaitoh san_mac_addr[i] = 0xFF;
3654 1.1 dyoung return IXGBE_SUCCESS;
3655 1.1 dyoung }
3656 1.1 dyoung
3657 1.1 dyoung /**
3658 1.38 msaitoh * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3659 1.38 msaitoh * @hw: pointer to hardware structure
3660 1.38 msaitoh * @san_mac_addr: SAN MAC address
3661 1.1 dyoung *
3662 1.38 msaitoh * Write a SAN MAC address to the EEPROM.
3663 1.1 dyoung **/
3664 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3665 1.1 dyoung {
3666 1.6 msaitoh s32 ret_val;
3667 1.1 dyoung u16 san_mac_data, san_mac_offset;
3668 1.1 dyoung u8 i;
3669 1.1 dyoung
3670 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3671 1.1 dyoung
3672 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3673 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3674 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3675 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3676 1.1 dyoung
3677 1.1 dyoung /* Make sure we know which port we need to write */
3678 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3679 1.1 dyoung /* Apply the port offset to the address offset */
3680 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3681 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3682 1.1 dyoung
3683 1.1 dyoung for (i = 0; i < 3; i++) {
3684 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3685 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3686 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3687 1.1 dyoung san_mac_offset++;
3688 1.1 dyoung }
3689 1.1 dyoung
3690 1.6 msaitoh return IXGBE_SUCCESS;
3691 1.1 dyoung }
3692 1.1 dyoung
3693 1.1 dyoung /**
3694 1.38 msaitoh * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3695 1.38 msaitoh * @hw: pointer to hardware structure
3696 1.1 dyoung *
3697 1.38 msaitoh * Read PCIe configuration space, and get the MSI-X vector count from
3698 1.38 msaitoh * the capabilities table.
3699 1.1 dyoung **/
3700 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3701 1.1 dyoung {
3702 1.4 msaitoh u16 msix_count = 1;
3703 1.4 msaitoh u16 max_msix_count;
3704 1.4 msaitoh u16 pcie_offset;
3705 1.4 msaitoh
3706 1.4 msaitoh switch (hw->mac.type) {
3707 1.4 msaitoh case ixgbe_mac_82598EB:
3708 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3709 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3710 1.4 msaitoh break;
3711 1.4 msaitoh case ixgbe_mac_82599EB:
3712 1.4 msaitoh case ixgbe_mac_X540:
3713 1.8 msaitoh case ixgbe_mac_X550:
3714 1.8 msaitoh case ixgbe_mac_X550EM_x:
3715 1.14 msaitoh case ixgbe_mac_X550EM_a:
3716 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3717 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3718 1.4 msaitoh break;
3719 1.4 msaitoh default:
3720 1.4 msaitoh return msix_count;
3721 1.4 msaitoh }
3722 1.1 dyoung
3723 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3724 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3725 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3726 1.8 msaitoh msix_count = 0;
3727 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3728 1.4 msaitoh
3729 1.4 msaitoh /* MSI-X count is zero-based in HW */
3730 1.4 msaitoh msix_count++;
3731 1.4 msaitoh
3732 1.4 msaitoh if (msix_count > max_msix_count)
3733 1.4 msaitoh msix_count = max_msix_count;
3734 1.1 dyoung
3735 1.1 dyoung return msix_count;
3736 1.1 dyoung }
3737 1.1 dyoung
3738 1.1 dyoung /**
3739 1.38 msaitoh * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3740 1.38 msaitoh * @hw: pointer to hardware structure
3741 1.38 msaitoh * @addr: Address to put into receive address register
3742 1.38 msaitoh * @vmdq: VMDq pool to assign
3743 1.1 dyoung *
3744 1.38 msaitoh * Puts an ethernet address into a receive address register, or
3745 1.38 msaitoh * finds the rar that it is already in; adds to the pool list
3746 1.1 dyoung **/
3747 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3748 1.1 dyoung {
3749 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3750 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3751 1.1 dyoung u32 rar;
3752 1.1 dyoung u32 rar_low, rar_high;
3753 1.1 dyoung u32 addr_low, addr_high;
3754 1.1 dyoung
3755 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3756 1.1 dyoung
3757 1.1 dyoung /* swap bytes for HW little endian */
3758 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3759 1.1 dyoung | (addr[2] << 16)
3760 1.1 dyoung | (addr[3] << 24);
3761 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3762 1.1 dyoung
3763 1.1 dyoung /*
3764 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3765 1.1 dyoung * rar_highwater points to just after the highest currently used
3766 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3767 1.1 dyoung * rar to the top.
3768 1.1 dyoung */
3769 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3770 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3771 1.1 dyoung
3772 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3773 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3774 1.1 dyoung first_empty_rar = rar;
3775 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3776 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3777 1.1 dyoung if (rar_low == addr_low)
3778 1.1 dyoung break; /* found it already in the rars */
3779 1.1 dyoung }
3780 1.1 dyoung }
3781 1.1 dyoung
3782 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3783 1.1 dyoung /* already there so just add to the pool bits */
3784 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3785 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3786 1.1 dyoung /* stick it into first empty RAR slot we found */
3787 1.1 dyoung rar = first_empty_rar;
3788 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3789 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3790 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3791 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3792 1.1 dyoung hw->mac.rar_highwater++;
3793 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3794 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3795 1.1 dyoung }
3796 1.1 dyoung
3797 1.1 dyoung /*
3798 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3799 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3800 1.1 dyoung */
3801 1.1 dyoung if (rar == 0)
3802 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3803 1.1 dyoung
3804 1.1 dyoung return rar;
3805 1.1 dyoung }
3806 1.1 dyoung
3807 1.1 dyoung /**
3808 1.38 msaitoh * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3809 1.38 msaitoh * @hw: pointer to hardware struct
3810 1.38 msaitoh * @rar: receive address register index to disassociate
3811 1.38 msaitoh * @vmdq: VMDq pool index to remove from the rar
3812 1.1 dyoung **/
3813 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3814 1.1 dyoung {
3815 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3816 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3817 1.1 dyoung
3818 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3819 1.1 dyoung
3820 1.1 dyoung /* Make sure we are using a valid rar index range */
3821 1.1 dyoung if (rar >= rar_entries) {
3822 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3823 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3824 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3825 1.1 dyoung }
3826 1.1 dyoung
3827 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3828 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3829 1.1 dyoung
3830 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3831 1.8 msaitoh goto done;
3832 1.8 msaitoh
3833 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3834 1.1 dyoung goto done;
3835 1.1 dyoung
3836 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3837 1.1 dyoung if (mpsar_lo) {
3838 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3839 1.37 msaitoh mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3840 1.1 dyoung }
3841 1.1 dyoung if (mpsar_hi) {
3842 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3843 1.37 msaitoh mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3844 1.1 dyoung }
3845 1.1 dyoung } else if (vmdq < 32) {
3846 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3847 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3848 1.1 dyoung } else {
3849 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3850 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3851 1.1 dyoung }
3852 1.1 dyoung
3853 1.1 dyoung /* was that the last pool using this rar? */
3854 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3855 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3856 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3857 1.1 dyoung done:
3858 1.1 dyoung return IXGBE_SUCCESS;
3859 1.1 dyoung }
3860 1.1 dyoung
3861 1.1 dyoung /**
3862 1.38 msaitoh * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3863 1.38 msaitoh * @hw: pointer to hardware struct
3864 1.38 msaitoh * @rar: receive address register index to associate with a VMDq index
3865 1.38 msaitoh * @vmdq: VMDq pool index
3866 1.1 dyoung **/
3867 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3868 1.1 dyoung {
3869 1.1 dyoung u32 mpsar;
3870 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3871 1.1 dyoung
3872 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3873 1.1 dyoung
3874 1.1 dyoung /* Make sure we are using a valid rar index range */
3875 1.1 dyoung if (rar >= rar_entries) {
3876 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3877 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3878 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3879 1.1 dyoung }
3880 1.1 dyoung
3881 1.1 dyoung if (vmdq < 32) {
3882 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3883 1.1 dyoung mpsar |= 1 << vmdq;
3884 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3885 1.1 dyoung } else {
3886 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3887 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3888 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3889 1.1 dyoung }
3890 1.1 dyoung return IXGBE_SUCCESS;
3891 1.1 dyoung }
3892 1.1 dyoung
3893 1.1 dyoung /**
3894 1.38 msaitoh * This function should only be involved in the IOV mode.
3895 1.38 msaitoh * In IOV mode, Default pool is next pool after the number of
3896 1.38 msaitoh * VFs advertized and not 0.
3897 1.38 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3898 1.38 msaitoh *
3899 1.38 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3900 1.38 msaitoh * @hw: pointer to hardware struct
3901 1.38 msaitoh * @vmdq: VMDq pool index
3902 1.4 msaitoh **/
3903 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3904 1.4 msaitoh {
3905 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3906 1.4 msaitoh
3907 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3908 1.4 msaitoh
3909 1.4 msaitoh if (vmdq < 32) {
3910 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3911 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3912 1.4 msaitoh } else {
3913 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3914 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3915 1.4 msaitoh }
3916 1.4 msaitoh
3917 1.4 msaitoh return IXGBE_SUCCESS;
3918 1.4 msaitoh }
3919 1.4 msaitoh
3920 1.4 msaitoh /**
3921 1.38 msaitoh * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3922 1.38 msaitoh * @hw: pointer to hardware structure
3923 1.1 dyoung **/
3924 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3925 1.1 dyoung {
3926 1.1 dyoung int i;
3927 1.1 dyoung
3928 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3929 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3930 1.1 dyoung
3931 1.1 dyoung for (i = 0; i < 128; i++)
3932 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3933 1.1 dyoung
3934 1.1 dyoung return IXGBE_SUCCESS;
3935 1.1 dyoung }
3936 1.1 dyoung
3937 1.1 dyoung /**
3938 1.38 msaitoh * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3939 1.38 msaitoh * @hw: pointer to hardware structure
3940 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
3941 1.38 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3942 1.22 msaitoh * vlanid not found
3943 1.22 msaitoh *
3944 1.1 dyoung *
3945 1.38 msaitoh * return the VLVF index where this VLAN id should be placed
3946 1.1 dyoung *
3947 1.1 dyoung **/
3948 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3949 1.1 dyoung {
3950 1.14 msaitoh s32 regindex, first_empty_slot;
3951 1.14 msaitoh u32 bits;
3952 1.1 dyoung
3953 1.1 dyoung /* short cut the special case */
3954 1.1 dyoung if (vlan == 0)
3955 1.1 dyoung return 0;
3956 1.1 dyoung
3957 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3958 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3959 1.14 msaitoh * VLVF that contain our VLAN
3960 1.14 msaitoh */
3961 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3962 1.14 msaitoh
3963 1.14 msaitoh /* add VLAN enable bit for comparison */
3964 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3965 1.14 msaitoh
3966 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3967 1.14 msaitoh * slot found along the way.
3968 1.14 msaitoh *
3969 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3970 1.14 msaitoh */
3971 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3972 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3973 1.14 msaitoh if (bits == vlan)
3974 1.14 msaitoh return regindex;
3975 1.14 msaitoh if (!first_empty_slot && !bits)
3976 1.1 dyoung first_empty_slot = regindex;
3977 1.1 dyoung }
3978 1.1 dyoung
3979 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3980 1.14 msaitoh * slot we found during our search, else error.
3981 1.14 msaitoh */
3982 1.14 msaitoh if (!first_empty_slot)
3983 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3984 1.1 dyoung
3985 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3986 1.1 dyoung }
3987 1.1 dyoung
3988 1.1 dyoung /**
3989 1.38 msaitoh * ixgbe_set_vfta_generic - Set VLAN filter table
3990 1.38 msaitoh * @hw: pointer to hardware structure
3991 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
3992 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3993 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3994 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3995 1.1 dyoung *
3996 1.38 msaitoh * Turn on/off specified VLAN in the VLAN filter table.
3997 1.1 dyoung **/
3998 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3999 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
4000 1.1 dyoung {
4001 1.14 msaitoh u32 regidx, vfta_delta, vfta;
4002 1.14 msaitoh s32 ret_val;
4003 1.1 dyoung
4004 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
4005 1.1 dyoung
4006 1.14 msaitoh if (vlan > 4095 || vind > 63)
4007 1.1 dyoung return IXGBE_ERR_PARAM;
4008 1.1 dyoung
4009 1.1 dyoung /*
4010 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
4011 1.1 dyoung * VLVF and VLVFB if VT Mode is set
4012 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
4013 1.1 dyoung */
4014 1.1 dyoung
4015 1.1 dyoung /* Part 1
4016 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
4017 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
4018 1.1 dyoung * bits[11-5]: which register
4019 1.1 dyoung * bits[4-0]: which bit in the register
4020 1.1 dyoung */
4021 1.14 msaitoh regidx = vlan / 32;
4022 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32);
4023 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4024 1.14 msaitoh
4025 1.14 msaitoh /*
4026 1.14 msaitoh * vfta_delta represents the difference between the current value
4027 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4028 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4029 1.14 msaitoh */
4030 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4031 1.14 msaitoh vfta ^= vfta_delta;
4032 1.1 dyoung
4033 1.1 dyoung /* Part 2
4034 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4035 1.3 msaitoh */
4036 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4037 1.14 msaitoh vfta, vlvf_bypass);
4038 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4039 1.14 msaitoh if (vlvf_bypass)
4040 1.14 msaitoh goto vfta_update;
4041 1.3 msaitoh return ret_val;
4042 1.14 msaitoh }
4043 1.3 msaitoh
4044 1.14 msaitoh vfta_update:
4045 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4046 1.14 msaitoh if (vfta_delta)
4047 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4048 1.3 msaitoh
4049 1.3 msaitoh return IXGBE_SUCCESS;
4050 1.3 msaitoh }
4051 1.3 msaitoh
4052 1.3 msaitoh /**
4053 1.38 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4054 1.38 msaitoh * @hw: pointer to hardware structure
4055 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
4056 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4057 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4058 1.38 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4059 1.14 msaitoh * and the desired value
4060 1.38 msaitoh * @vfta: the desired value of the VFTA
4061 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4062 1.3 msaitoh *
4063 1.38 msaitoh * Turn on/off specified bit in VLVF table.
4064 1.3 msaitoh **/
4065 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4066 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4067 1.14 msaitoh bool vlvf_bypass)
4068 1.3 msaitoh {
4069 1.14 msaitoh u32 bits;
4070 1.14 msaitoh s32 vlvf_index;
4071 1.3 msaitoh
4072 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4073 1.3 msaitoh
4074 1.14 msaitoh if (vlan > 4095 || vind > 63)
4075 1.3 msaitoh return IXGBE_ERR_PARAM;
4076 1.3 msaitoh
4077 1.3 msaitoh /* If VT Mode is set
4078 1.1 dyoung * Either vlan_on
4079 1.1 dyoung * make sure the vlan is in VLVF
4080 1.1 dyoung * set the vind bit in the matching VLVFB
4081 1.1 dyoung * Or !vlan_on
4082 1.1 dyoung * clear the pool bit and possibly the vind
4083 1.1 dyoung */
4084 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4085 1.14 msaitoh return IXGBE_SUCCESS;
4086 1.1 dyoung
4087 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4088 1.14 msaitoh if (vlvf_index < 0)
4089 1.14 msaitoh return vlvf_index;
4090 1.14 msaitoh
4091 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4092 1.14 msaitoh
4093 1.14 msaitoh /* set the pool bit */
4094 1.14 msaitoh bits |= 1 << (vind % 32);
4095 1.14 msaitoh if (vlan_on)
4096 1.14 msaitoh goto vlvf_update;
4097 1.14 msaitoh
4098 1.14 msaitoh /* clear the pool bit */
4099 1.14 msaitoh bits ^= 1 << (vind % 32);
4100 1.14 msaitoh
4101 1.14 msaitoh if (!bits &&
4102 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4103 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4104 1.14 msaitoh * we run the risk of stray packets leaking into
4105 1.14 msaitoh * the PF via the default pool
4106 1.1 dyoung */
4107 1.14 msaitoh if (*vfta_delta)
4108 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4109 1.14 msaitoh
4110 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4111 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4112 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4113 1.14 msaitoh
4114 1.14 msaitoh return IXGBE_SUCCESS;
4115 1.1 dyoung }
4116 1.1 dyoung
4117 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4118 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4119 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4120 1.14 msaitoh * If the caller has requested that we clear the VFTA
4121 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4122 1.14 msaitoh * ID entry then ignore the request. We're not worried
4123 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4124 1.14 msaitoh * entry bit on, only when requested to turn it off as
4125 1.14 msaitoh * there may be multiple pools and/or VFs using the
4126 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4127 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4128 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4129 1.14 msaitoh * zero.
4130 1.14 msaitoh */
4131 1.14 msaitoh *vfta_delta = 0;
4132 1.14 msaitoh
4133 1.14 msaitoh vlvf_update:
4134 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4135 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4136 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4137 1.14 msaitoh
4138 1.1 dyoung return IXGBE_SUCCESS;
4139 1.1 dyoung }
4140 1.1 dyoung
4141 1.1 dyoung /**
4142 1.38 msaitoh * ixgbe_clear_vfta_generic - Clear VLAN filter table
4143 1.38 msaitoh * @hw: pointer to hardware structure
4144 1.1 dyoung *
4145 1.38 msaitoh * Clears the VLAN filer table, and the VMDq index associated with the filter
4146 1.1 dyoung **/
4147 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4148 1.1 dyoung {
4149 1.1 dyoung u32 offset;
4150 1.1 dyoung
4151 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4152 1.1 dyoung
4153 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4154 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4155 1.1 dyoung
4156 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4157 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4158 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4159 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4160 1.1 dyoung }
4161 1.1 dyoung
4162 1.1 dyoung return IXGBE_SUCCESS;
4163 1.1 dyoung }
4164 1.1 dyoung
4165 1.1 dyoung /**
4166 1.38 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4167 1.38 msaitoh * @hw: pointer to hardware structure
4168 1.38 msaitoh * @vf_number: VF index
4169 1.23 msaitoh *
4170 1.38 msaitoh * Enable and disable each queue in VF.
4171 1.23 msaitoh */
4172 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4173 1.23 msaitoh {
4174 1.23 msaitoh u8 queue_count, i;
4175 1.23 msaitoh u32 offset, reg;
4176 1.23 msaitoh
4177 1.23 msaitoh if (vf_number > 63)
4178 1.23 msaitoh return IXGBE_ERR_PARAM;
4179 1.23 msaitoh
4180 1.23 msaitoh /*
4181 1.23 msaitoh * Determine number of queues by checking
4182 1.23 msaitoh * number of virtual functions
4183 1.23 msaitoh */
4184 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4185 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4186 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64:
4187 1.23 msaitoh queue_count = 2;
4188 1.23 msaitoh break;
4189 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32:
4190 1.23 msaitoh queue_count = 4;
4191 1.23 msaitoh break;
4192 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16:
4193 1.23 msaitoh queue_count = 8;
4194 1.23 msaitoh break;
4195 1.23 msaitoh default:
4196 1.23 msaitoh return IXGBE_ERR_CONFIG;
4197 1.23 msaitoh }
4198 1.23 msaitoh
4199 1.23 msaitoh /* Toggle queues */
4200 1.23 msaitoh for (i = 0; i < queue_count; ++i) {
4201 1.23 msaitoh /* Calculate offset of current queue */
4202 1.23 msaitoh offset = queue_count * vf_number + i;
4203 1.23 msaitoh
4204 1.23 msaitoh /* Enable queue */
4205 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4206 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE;
4207 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4208 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4209 1.23 msaitoh
4210 1.23 msaitoh /* Disable queue */
4211 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4212 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE;
4213 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4214 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4215 1.23 msaitoh }
4216 1.23 msaitoh
4217 1.23 msaitoh return IXGBE_SUCCESS;
4218 1.23 msaitoh }
4219 1.23 msaitoh
4220 1.23 msaitoh /**
4221 1.38 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4222 1.38 msaitoh * @hw: pointer to hardware structure
4223 1.14 msaitoh *
4224 1.38 msaitoh * Contains the logic to identify if we need to verify link for the
4225 1.38 msaitoh * crosstalk fix
4226 1.14 msaitoh **/
4227 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4228 1.14 msaitoh {
4229 1.14 msaitoh
4230 1.14 msaitoh /* Does FW say we need the fix */
4231 1.14 msaitoh if (!hw->need_crosstalk_fix)
4232 1.14 msaitoh return FALSE;
4233 1.14 msaitoh
4234 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4235 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4236 1.14 msaitoh case ixgbe_media_type_fiber:
4237 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4238 1.14 msaitoh break;
4239 1.14 msaitoh default:
4240 1.14 msaitoh return FALSE;
4241 1.14 msaitoh }
4242 1.14 msaitoh
4243 1.14 msaitoh return TRUE;
4244 1.14 msaitoh }
4245 1.14 msaitoh
4246 1.14 msaitoh /**
4247 1.38 msaitoh * ixgbe_check_mac_link_generic - Determine link and speed status
4248 1.38 msaitoh * @hw: pointer to hardware structure
4249 1.38 msaitoh * @speed: pointer to link speed
4250 1.38 msaitoh * @link_up: TRUE when link is up
4251 1.38 msaitoh * @link_up_wait_to_complete: bool used to wait for link up or not
4252 1.1 dyoung *
4253 1.38 msaitoh * Reads the links register to determine if link is up and the current speed
4254 1.1 dyoung **/
4255 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4256 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4257 1.1 dyoung {
4258 1.1 dyoung u32 links_reg, links_orig;
4259 1.1 dyoung u32 i;
4260 1.1 dyoung
4261 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4262 1.1 dyoung
4263 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4264 1.14 msaitoh * the SFP+ cage is full.
4265 1.14 msaitoh */
4266 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4267 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) &&
4268 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) {
4269 1.14 msaitoh *link_up = FALSE;
4270 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4271 1.14 msaitoh return IXGBE_SUCCESS;
4272 1.14 msaitoh }
4273 1.14 msaitoh }
4274 1.14 msaitoh
4275 1.1 dyoung /* clear the old state */
4276 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4277 1.1 dyoung
4278 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4279 1.1 dyoung
4280 1.1 dyoung if (links_orig != links_reg) {
4281 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4282 1.3 msaitoh links_orig, links_reg);
4283 1.1 dyoung }
4284 1.1 dyoung
4285 1.1 dyoung if (link_up_wait_to_complete) {
4286 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4287 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4288 1.1 dyoung *link_up = TRUE;
4289 1.1 dyoung break;
4290 1.1 dyoung } else {
4291 1.1 dyoung *link_up = FALSE;
4292 1.1 dyoung }
4293 1.1 dyoung msec_delay(100);
4294 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4295 1.1 dyoung }
4296 1.1 dyoung } else {
4297 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4298 1.1 dyoung *link_up = TRUE;
4299 1.1 dyoung else
4300 1.1 dyoung *link_up = FALSE;
4301 1.1 dyoung }
4302 1.1 dyoung
4303 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4304 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4305 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4306 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4307 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4308 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4309 1.8 msaitoh }
4310 1.8 msaitoh break;
4311 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4312 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4313 1.8 msaitoh break;
4314 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4315 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4316 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4317 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4318 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4319 1.8 msaitoh }
4320 1.8 msaitoh break;
4321 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4322 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4323 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4324 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4325 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4326 1.14 msaitoh break;
4327 1.8 msaitoh default:
4328 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4329 1.8 msaitoh }
4330 1.1 dyoung
4331 1.1 dyoung return IXGBE_SUCCESS;
4332 1.1 dyoung }
4333 1.1 dyoung
4334 1.1 dyoung /**
4335 1.38 msaitoh * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4336 1.38 msaitoh * the EEPROM
4337 1.38 msaitoh * @hw: pointer to hardware structure
4338 1.38 msaitoh * @wwnn_prefix: the alternative WWNN prefix
4339 1.38 msaitoh * @wwpn_prefix: the alternative WWPN prefix
4340 1.1 dyoung *
4341 1.38 msaitoh * This function will read the EEPROM from the alternative SAN MAC address
4342 1.38 msaitoh * block to check the support for the alternative WWNN/WWPN prefix support.
4343 1.1 dyoung **/
4344 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4345 1.3 msaitoh u16 *wwpn_prefix)
4346 1.1 dyoung {
4347 1.1 dyoung u16 offset, caps;
4348 1.1 dyoung u16 alt_san_mac_blk_offset;
4349 1.1 dyoung
4350 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4351 1.1 dyoung
4352 1.1 dyoung /* clear output first */
4353 1.1 dyoung *wwnn_prefix = 0xFFFF;
4354 1.1 dyoung *wwpn_prefix = 0xFFFF;
4355 1.1 dyoung
4356 1.1 dyoung /* check if alternative SAN MAC is supported */
4357 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4358 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4359 1.6 msaitoh goto wwn_prefix_err;
4360 1.1 dyoung
4361 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4362 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4363 1.1 dyoung goto wwn_prefix_out;
4364 1.1 dyoung
4365 1.1 dyoung /* check capability in alternative san mac address block */
4366 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4367 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4368 1.6 msaitoh goto wwn_prefix_err;
4369 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4370 1.1 dyoung goto wwn_prefix_out;
4371 1.1 dyoung
4372 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4373 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4374 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4375 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4376 1.6 msaitoh "eeprom read at offset %d failed", offset);
4377 1.6 msaitoh }
4378 1.1 dyoung
4379 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4380 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4381 1.6 msaitoh goto wwn_prefix_err;
4382 1.1 dyoung
4383 1.1 dyoung wwn_prefix_out:
4384 1.1 dyoung return IXGBE_SUCCESS;
4385 1.6 msaitoh
4386 1.6 msaitoh wwn_prefix_err:
4387 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4388 1.6 msaitoh "eeprom read at offset %d failed", offset);
4389 1.6 msaitoh return IXGBE_SUCCESS;
4390 1.1 dyoung }
4391 1.1 dyoung
4392 1.1 dyoung /**
4393 1.38 msaitoh * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4394 1.38 msaitoh * @hw: pointer to hardware structure
4395 1.38 msaitoh * @bs: the fcoe boot status
4396 1.1 dyoung *
4397 1.38 msaitoh * This function will read the FCOE boot status from the iSCSI FCOE block
4398 1.1 dyoung **/
4399 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4400 1.1 dyoung {
4401 1.1 dyoung u16 offset, caps, flags;
4402 1.1 dyoung s32 status;
4403 1.1 dyoung
4404 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4405 1.1 dyoung
4406 1.1 dyoung /* clear output first */
4407 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4408 1.1 dyoung
4409 1.1 dyoung /* check if FCOE IBA block is present */
4410 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4411 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4412 1.1 dyoung if (status != IXGBE_SUCCESS)
4413 1.1 dyoung goto out;
4414 1.1 dyoung
4415 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4416 1.1 dyoung goto out;
4417 1.1 dyoung
4418 1.1 dyoung /* check if iSCSI FCOE block is populated */
4419 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4420 1.1 dyoung if (status != IXGBE_SUCCESS)
4421 1.1 dyoung goto out;
4422 1.1 dyoung
4423 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4424 1.1 dyoung goto out;
4425 1.1 dyoung
4426 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4427 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4428 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4429 1.1 dyoung if (status != IXGBE_SUCCESS)
4430 1.1 dyoung goto out;
4431 1.1 dyoung
4432 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4433 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4434 1.1 dyoung else
4435 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4436 1.1 dyoung
4437 1.1 dyoung out:
4438 1.1 dyoung return status;
4439 1.1 dyoung }
4440 1.1 dyoung
4441 1.1 dyoung /**
4442 1.38 msaitoh * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4443 1.38 msaitoh * @hw: pointer to hardware structure
4444 1.38 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4445 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4446 1.1 dyoung *
4447 1.1 dyoung **/
4448 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4449 1.1 dyoung {
4450 1.14 msaitoh int vf_target_reg = vf >> 3;
4451 1.14 msaitoh int vf_target_shift = vf % 8;
4452 1.14 msaitoh u32 pfvfspoof;
4453 1.1 dyoung
4454 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4455 1.1 dyoung return;
4456 1.1 dyoung
4457 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4458 1.1 dyoung if (enable)
4459 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4460 1.14 msaitoh else
4461 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4462 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4463 1.1 dyoung }
4464 1.1 dyoung
4465 1.1 dyoung /**
4466 1.38 msaitoh * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4467 1.38 msaitoh * @hw: pointer to hardware structure
4468 1.38 msaitoh * @enable: enable or disable switch for VLAN anti-spoofing
4469 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4470 1.1 dyoung *
4471 1.1 dyoung **/
4472 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4473 1.1 dyoung {
4474 1.1 dyoung int vf_target_reg = vf >> 3;
4475 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4476 1.1 dyoung u32 pfvfspoof;
4477 1.1 dyoung
4478 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4479 1.1 dyoung return;
4480 1.1 dyoung
4481 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4482 1.1 dyoung if (enable)
4483 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4484 1.1 dyoung else
4485 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4486 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4487 1.1 dyoung }
4488 1.1 dyoung
4489 1.1 dyoung /**
4490 1.38 msaitoh * ixgbe_get_device_caps_generic - Get additional device capabilities
4491 1.38 msaitoh * @hw: pointer to hardware structure
4492 1.38 msaitoh * @device_caps: the EEPROM word with the extra device capabilities
4493 1.1 dyoung *
4494 1.38 msaitoh * This function will read the EEPROM location for the device capabilities,
4495 1.38 msaitoh * and return the word through device_caps.
4496 1.1 dyoung **/
4497 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4498 1.1 dyoung {
4499 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4500 1.1 dyoung
4501 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4502 1.1 dyoung
4503 1.1 dyoung return IXGBE_SUCCESS;
4504 1.1 dyoung }
4505 1.1 dyoung
4506 1.1 dyoung /**
4507 1.38 msaitoh * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4508 1.38 msaitoh * @hw: pointer to hardware structure
4509 1.1 dyoung *
4510 1.1 dyoung **/
4511 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4512 1.1 dyoung {
4513 1.1 dyoung u32 regval;
4514 1.1 dyoung u32 i;
4515 1.1 dyoung
4516 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4517 1.1 dyoung
4518 1.1 dyoung /* Enable relaxed ordering */
4519 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4520 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4521 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4522 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4523 1.1 dyoung }
4524 1.1 dyoung
4525 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4526 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4527 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4528 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4529 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4530 1.1 dyoung }
4531 1.1 dyoung
4532 1.1 dyoung }
4533 1.3 msaitoh
4534 1.3 msaitoh /**
4535 1.38 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4536 1.38 msaitoh * @buffer: pointer to EEPROM
4537 1.38 msaitoh * @length: size of EEPROM to calculate a checksum for
4538 1.38 msaitoh * Calculates the checksum for some buffer on a specified length. The
4539 1.38 msaitoh * checksum calculated is returned.
4540 1.3 msaitoh **/
4541 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4542 1.3 msaitoh {
4543 1.3 msaitoh u32 i;
4544 1.3 msaitoh u8 sum = 0;
4545 1.3 msaitoh
4546 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4547 1.3 msaitoh
4548 1.3 msaitoh if (!buffer)
4549 1.3 msaitoh return 0;
4550 1.3 msaitoh
4551 1.3 msaitoh for (i = 0; i < length; i++)
4552 1.3 msaitoh sum += buffer[i];
4553 1.3 msaitoh
4554 1.3 msaitoh return (u8) (0 - sum);
4555 1.3 msaitoh }
4556 1.3 msaitoh
4557 1.3 msaitoh /**
4558 1.38 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4559 1.38 msaitoh * @hw: pointer to the HW structure
4560 1.38 msaitoh * @buffer: command to write and where the return status will be placed
4561 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4562 1.38 msaitoh * @timeout: time in ms to wait for command completion
4563 1.38 msaitoh *
4564 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4565 1.38 msaitoh * else returns semaphore error when encountering an error acquiring
4566 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4567 1.14 msaitoh *
4568 1.38 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4569 1.38 msaitoh * by the caller.
4570 1.3 msaitoh **/
4571 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4572 1.14 msaitoh u32 timeout)
4573 1.3 msaitoh {
4574 1.14 msaitoh u32 hicr, i, fwsts;
4575 1.8 msaitoh u16 dword_len;
4576 1.3 msaitoh
4577 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4578 1.3 msaitoh
4579 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4580 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4581 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4582 1.8 msaitoh }
4583 1.14 msaitoh
4584 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4585 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4586 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4587 1.3 msaitoh
4588 1.3 msaitoh /* Check that the host interface is enabled. */
4589 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4590 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4591 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4592 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4593 1.8 msaitoh }
4594 1.8 msaitoh
4595 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4596 1.14 msaitoh if (length % sizeof(u32)) {
4597 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4598 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4599 1.3 msaitoh }
4600 1.3 msaitoh
4601 1.3 msaitoh dword_len = length >> 2;
4602 1.3 msaitoh
4603 1.8 msaitoh /* The device driver writes the relevant command block
4604 1.3 msaitoh * into the ram area.
4605 1.3 msaitoh */
4606 1.3 msaitoh for (i = 0; i < dword_len; i++)
4607 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4608 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4609 1.3 msaitoh
4610 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4611 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4612 1.3 msaitoh
4613 1.8 msaitoh for (i = 0; i < timeout; i++) {
4614 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4615 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4616 1.3 msaitoh break;
4617 1.3 msaitoh msec_delay(1);
4618 1.3 msaitoh }
4619 1.3 msaitoh
4620 1.23 msaitoh /* For each command except "Apply Update" perform
4621 1.23 msaitoh * status checks in the HICR registry.
4622 1.23 msaitoh */
4623 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4624 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4625 1.23 msaitoh return IXGBE_SUCCESS;
4626 1.23 msaitoh
4627 1.8 msaitoh /* Check command completion */
4628 1.14 msaitoh if ((timeout && i == timeout) ||
4629 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4630 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4631 1.23 msaitoh "Command has failed with no status valid.\n");
4632 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4633 1.3 msaitoh }
4634 1.3 msaitoh
4635 1.14 msaitoh return IXGBE_SUCCESS;
4636 1.14 msaitoh }
4637 1.14 msaitoh
4638 1.14 msaitoh /**
4639 1.38 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4640 1.38 msaitoh * @hw: pointer to the HW structure
4641 1.38 msaitoh * @buffer: contains the command to write and where the return status will
4642 1.38 msaitoh * be placed
4643 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4644 1.38 msaitoh * @timeout: time in ms to wait for command completion
4645 1.38 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4646 1.38 msaitoh * Needed because FW structures are big endian and decoding of
4647 1.38 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4648 1.38 msaitoh * is not easily understood without making a table of commands.
4649 1.38 msaitoh * So we will leave this up to the caller to read back the data
4650 1.38 msaitoh * in these cases.
4651 1.38 msaitoh *
4652 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4653 1.38 msaitoh * else returns semaphore error when encountering an error acquiring
4654 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4655 1.14 msaitoh **/
4656 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4657 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4658 1.14 msaitoh {
4659 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4660 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4661 1.14 msaitoh u16 buf_len;
4662 1.14 msaitoh s32 status;
4663 1.14 msaitoh u32 bi;
4664 1.22 msaitoh u32 dword_len;
4665 1.14 msaitoh
4666 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4667 1.14 msaitoh
4668 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4669 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4670 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4671 1.14 msaitoh }
4672 1.14 msaitoh
4673 1.14 msaitoh /* Take management host interface semaphore */
4674 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4675 1.14 msaitoh if (status)
4676 1.14 msaitoh return status;
4677 1.14 msaitoh
4678 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4679 1.14 msaitoh if (status)
4680 1.14 msaitoh goto rel_out;
4681 1.14 msaitoh
4682 1.8 msaitoh if (!return_data)
4683 1.14 msaitoh goto rel_out;
4684 1.8 msaitoh
4685 1.3 msaitoh /* Calculate length in DWORDs */
4686 1.3 msaitoh dword_len = hdr_size >> 2;
4687 1.3 msaitoh
4688 1.3 msaitoh /* first pull in the header so we know the buffer length */
4689 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4690 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4691 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4692 1.3 msaitoh }
4693 1.3 msaitoh
4694 1.22 msaitoh /*
4695 1.22 msaitoh * If there is any thing in data position pull it in
4696 1.22 msaitoh * Read Flash command requires reading buffer length from
4697 1.22 msaitoh * two byes instead of one byte
4698 1.22 msaitoh */
4699 1.40 msaitoh if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4700 1.40 msaitoh resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4701 1.22 msaitoh for (; bi < dword_len + 2; bi++) {
4702 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4703 1.22 msaitoh bi);
4704 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4705 1.22 msaitoh }
4706 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4707 1.22 msaitoh & 0xF00) | resp->buf_len;
4708 1.22 msaitoh hdr_size += (2 << 2);
4709 1.22 msaitoh } else {
4710 1.22 msaitoh buf_len = resp->buf_len;
4711 1.22 msaitoh }
4712 1.14 msaitoh if (!buf_len)
4713 1.14 msaitoh goto rel_out;
4714 1.3 msaitoh
4715 1.8 msaitoh if (length < buf_len + hdr_size) {
4716 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4717 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4718 1.14 msaitoh goto rel_out;
4719 1.3 msaitoh }
4720 1.3 msaitoh
4721 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4722 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4723 1.3 msaitoh
4724 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4725 1.3 msaitoh for (; bi <= dword_len; bi++) {
4726 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4727 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4728 1.3 msaitoh }
4729 1.3 msaitoh
4730 1.14 msaitoh rel_out:
4731 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4732 1.14 msaitoh
4733 1.14 msaitoh return status;
4734 1.3 msaitoh }
4735 1.3 msaitoh
4736 1.3 msaitoh /**
4737 1.38 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4738 1.38 msaitoh * @hw: pointer to the HW structure
4739 1.38 msaitoh * @maj: driver version major number
4740 1.38 msaitoh * @minr: driver version minor number
4741 1.38 msaitoh * @build: driver version build number
4742 1.38 msaitoh * @sub: driver version sub build number
4743 1.38 msaitoh * @len: unused
4744 1.38 msaitoh * @driver_ver: unused
4745 1.38 msaitoh *
4746 1.38 msaitoh * Sends driver version number to firmware through the manageability
4747 1.38 msaitoh * block. On success return IXGBE_SUCCESS
4748 1.38 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4749 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4750 1.3 msaitoh **/
4751 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4752 1.14 msaitoh u8 build, u8 sub, u16 len,
4753 1.14 msaitoh const char *driver_ver)
4754 1.3 msaitoh {
4755 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4756 1.3 msaitoh int i;
4757 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4758 1.3 msaitoh
4759 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4760 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4761 1.3 msaitoh
4762 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4763 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4764 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4765 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4766 1.3 msaitoh fw_cmd.ver_maj = maj;
4767 1.7 riastrad fw_cmd.ver_min = minr;
4768 1.3 msaitoh fw_cmd.ver_build = build;
4769 1.3 msaitoh fw_cmd.ver_sub = sub;
4770 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4771 1.17 msaitoh fw_cmd.pad = 0;
4772 1.17 msaitoh fw_cmd.pad2 = 0;
4773 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4774 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4775 1.3 msaitoh
4776 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4777 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4778 1.8 msaitoh sizeof(fw_cmd),
4779 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4780 1.8 msaitoh TRUE);
4781 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4782 1.3 msaitoh continue;
4783 1.3 msaitoh
4784 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4785 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4786 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4787 1.3 msaitoh else
4788 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4789 1.3 msaitoh
4790 1.3 msaitoh break;
4791 1.3 msaitoh }
4792 1.3 msaitoh
4793 1.3 msaitoh return ret_val;
4794 1.3 msaitoh }
4795 1.3 msaitoh
4796 1.3 msaitoh /**
4797 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4798 1.3 msaitoh * @hw: pointer to hardware structure
4799 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4800 1.3 msaitoh * @headroom: reserve n KB of headroom
4801 1.3 msaitoh * @strategy: packet buffer allocation strategy
4802 1.3 msaitoh **/
4803 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4804 1.3 msaitoh int strategy)
4805 1.3 msaitoh {
4806 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4807 1.3 msaitoh int i = 0;
4808 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4809 1.3 msaitoh
4810 1.3 msaitoh /* Reserve headroom */
4811 1.3 msaitoh pbsize -= headroom;
4812 1.3 msaitoh
4813 1.3 msaitoh if (!num_pb)
4814 1.3 msaitoh num_pb = 1;
4815 1.3 msaitoh
4816 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4817 1.3 msaitoh * buffers requested using supplied strategy.
4818 1.3 msaitoh */
4819 1.3 msaitoh switch (strategy) {
4820 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4821 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4822 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4823 1.3 msaitoh */
4824 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4825 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4826 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4827 1.3 msaitoh for (; i < (num_pb / 2); i++)
4828 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4829 1.14 msaitoh /* fall through - configure remaining packet buffers */
4830 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4831 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4832 1.3 msaitoh for (; i < num_pb; i++)
4833 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4834 1.3 msaitoh break;
4835 1.3 msaitoh default:
4836 1.3 msaitoh break;
4837 1.3 msaitoh }
4838 1.3 msaitoh
4839 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4840 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4841 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4842 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4843 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4844 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4845 1.3 msaitoh }
4846 1.3 msaitoh
4847 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4848 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4849 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4850 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4851 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4852 1.3 msaitoh }
4853 1.3 msaitoh }
4854 1.3 msaitoh
4855 1.3 msaitoh /**
4856 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4857 1.3 msaitoh * @hw: pointer to the hardware structure
4858 1.3 msaitoh *
4859 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4860 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4861 1.3 msaitoh * buffers on the system.
4862 1.3 msaitoh **/
4863 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4864 1.3 msaitoh {
4865 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4866 1.8 msaitoh u16 value;
4867 1.3 msaitoh
4868 1.3 msaitoh /*
4869 1.3 msaitoh * If double reset is not requested then all transactions should
4870 1.3 msaitoh * already be clear and as such there is no work to do
4871 1.3 msaitoh */
4872 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4873 1.3 msaitoh return;
4874 1.3 msaitoh
4875 1.3 msaitoh /*
4876 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4877 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4878 1.3 msaitoh * has already been cleared.
4879 1.3 msaitoh */
4880 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4881 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4882 1.3 msaitoh
4883 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4884 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4885 1.8 msaitoh msec_delay(3);
4886 1.8 msaitoh
4887 1.8 msaitoh /*
4888 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4889 1.8 msaitoh * transactions pending.
4890 1.8 msaitoh */
4891 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4892 1.8 msaitoh for (i = 0; i < poll; i++) {
4893 1.8 msaitoh usec_delay(100);
4894 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4895 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4896 1.8 msaitoh goto out;
4897 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4898 1.8 msaitoh goto out;
4899 1.8 msaitoh }
4900 1.8 msaitoh
4901 1.8 msaitoh out:
4902 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4903 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4904 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4905 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4906 1.3 msaitoh
4907 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4908 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4909 1.3 msaitoh usec_delay(20);
4910 1.3 msaitoh
4911 1.3 msaitoh /* restore previous register values */
4912 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4913 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4914 1.3 msaitoh }
4915 1.3 msaitoh
4916 1.38 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4917 1.38 msaitoh
4918 1.14 msaitoh /**
4919 1.38 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4920 1.38 msaitoh * @hw: pointer to hardware structure
4921 1.38 msaitoh * @cmd: Command we send to the FW
4922 1.38 msaitoh * @status: The reply from the FW
4923 1.14 msaitoh *
4924 1.38 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4925 1.14 msaitoh **/
4926 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4927 1.14 msaitoh {
4928 1.14 msaitoh int i;
4929 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4930 1.14 msaitoh u32 esdp;
4931 1.14 msaitoh
4932 1.14 msaitoh if (!status)
4933 1.14 msaitoh return IXGBE_ERR_PARAM;
4934 1.14 msaitoh
4935 1.14 msaitoh *status = 0;
4936 1.14 msaitoh
4937 1.14 msaitoh /* SDP vary by MAC type */
4938 1.14 msaitoh switch (hw->mac.type) {
4939 1.14 msaitoh case ixgbe_mac_82599EB:
4940 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4941 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4942 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4943 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4944 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4945 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4946 1.14 msaitoh break;
4947 1.14 msaitoh case ixgbe_mac_X540:
4948 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4949 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4950 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4951 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4952 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4953 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4954 1.14 msaitoh break;
4955 1.14 msaitoh default:
4956 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4957 1.14 msaitoh }
4958 1.14 msaitoh
4959 1.14 msaitoh /* Set SDP pins direction */
4960 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4961 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4962 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4963 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4964 1.14 msaitoh esdp |= sck;
4965 1.14 msaitoh esdp |= sdi;
4966 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4967 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4968 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4969 1.14 msaitoh
4970 1.14 msaitoh /* Generate start condition */
4971 1.14 msaitoh esdp &= ~sdi;
4972 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4973 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4974 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4975 1.14 msaitoh
4976 1.14 msaitoh esdp &= ~sck;
4977 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4978 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4979 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4980 1.14 msaitoh
4981 1.14 msaitoh /* Clock out the new control word and clock in the status */
4982 1.14 msaitoh for (i = 0; i < 32; i++) {
4983 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4984 1.14 msaitoh esdp |= sdi;
4985 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4986 1.14 msaitoh } else {
4987 1.14 msaitoh esdp &= ~sdi;
4988 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4989 1.14 msaitoh }
4990 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4991 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4992 1.14 msaitoh
4993 1.14 msaitoh esdp |= sck;
4994 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4995 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4996 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4997 1.14 msaitoh
4998 1.14 msaitoh esdp &= ~sck;
4999 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5000 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5001 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5002 1.14 msaitoh
5003 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5004 1.14 msaitoh if (esdp & sdo)
5005 1.14 msaitoh *status = (*status << 1) | 0x01;
5006 1.14 msaitoh else
5007 1.14 msaitoh *status = (*status << 1) | 0x00;
5008 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5009 1.14 msaitoh }
5010 1.14 msaitoh
5011 1.14 msaitoh /* stop condition */
5012 1.14 msaitoh esdp |= sck;
5013 1.14 msaitoh esdp &= ~sdi;
5014 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5015 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5016 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5017 1.14 msaitoh
5018 1.14 msaitoh esdp |= sdi;
5019 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5020 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5021 1.14 msaitoh
5022 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
5023 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5024 1.14 msaitoh
5025 1.14 msaitoh return IXGBE_SUCCESS;
5026 1.14 msaitoh }
5027 1.14 msaitoh
5028 1.14 msaitoh /**
5029 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5030 1.38 msaitoh * @in_reg: The register cmd for the bit-bang read.
5031 1.38 msaitoh * @out_reg: The register returned from a bit-bang read.
5032 1.14 msaitoh *
5033 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
5034 1.32 andvar * that same register. It can be a problem as some of the fields may
5035 1.32 andvar * for valid reasons change in-between the time wrote the register and
5036 1.14 msaitoh * we read it again to verify. So this function check everything we
5037 1.14 msaitoh * can check and then assumes it worked.
5038 1.14 msaitoh **/
5039 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5040 1.14 msaitoh {
5041 1.14 msaitoh u32 mask;
5042 1.14 msaitoh
5043 1.14 msaitoh /* Page must match for all control pages */
5044 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5045 1.14 msaitoh return FALSE;
5046 1.14 msaitoh
5047 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
5048 1.14 msaitoh case BYPASS_PAGE_CTL0:
5049 1.14 msaitoh /* All the following can't change since the last write
5050 1.14 msaitoh * - All the event actions
5051 1.14 msaitoh * - The timeout value
5052 1.14 msaitoh */
5053 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5054 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5055 1.14 msaitoh BYPASS_WDTIMEOUT_M |
5056 1.14 msaitoh BYPASS_WDT_VALUE_M;
5057 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5058 1.14 msaitoh return FALSE;
5059 1.14 msaitoh
5060 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
5061 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
5062 1.14 msaitoh return FALSE;
5063 1.14 msaitoh break;
5064 1.14 msaitoh case BYPASS_PAGE_CTL1:
5065 1.14 msaitoh /* All the following can't change since the last write
5066 1.14 msaitoh * - time valid bit
5067 1.14 msaitoh * - time we last sent
5068 1.14 msaitoh */
5069 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5070 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5071 1.14 msaitoh return FALSE;
5072 1.14 msaitoh break;
5073 1.14 msaitoh case BYPASS_PAGE_CTL2:
5074 1.14 msaitoh /* All we can check in this page is control number
5075 1.14 msaitoh * which is already done above.
5076 1.14 msaitoh */
5077 1.14 msaitoh break;
5078 1.14 msaitoh }
5079 1.14 msaitoh
5080 1.14 msaitoh /* We are as sure as we can be return TRUE */
5081 1.14 msaitoh return TRUE;
5082 1.14 msaitoh }
5083 1.14 msaitoh
5084 1.14 msaitoh /**
5085 1.38 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5086 1.38 msaitoh * @hw: pointer to hardware structure
5087 1.38 msaitoh * @ctrl: The control word we are setting.
5088 1.38 msaitoh * @event: The event we are setting in the FW. This also happens to
5089 1.14 msaitoh * be the mask for the event we are setting (handy)
5090 1.38 msaitoh * @action: The action we set the event to in the FW. This is in a
5091 1.14 msaitoh * bit field that happens to be what we want to put in
5092 1.14 msaitoh * the event spot (also handy)
5093 1.14 msaitoh **/
5094 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5095 1.14 msaitoh u32 action)
5096 1.14 msaitoh {
5097 1.14 msaitoh u32 by_ctl = 0;
5098 1.14 msaitoh u32 cmd, verify;
5099 1.14 msaitoh u32 count = 0;
5100 1.14 msaitoh
5101 1.14 msaitoh /* Get current values */
5102 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5103 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5104 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5105 1.14 msaitoh
5106 1.14 msaitoh /* Set to new action */
5107 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5108 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5109 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5110 1.14 msaitoh
5111 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5112 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5113 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5114 1.14 msaitoh do {
5115 1.14 msaitoh if (count++ > 5)
5116 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5117 1.14 msaitoh
5118 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5119 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5120 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5121 1.14 msaitoh } else {
5122 1.14 msaitoh /* We have give the FW time for the write to stick */
5123 1.14 msaitoh msec_delay(100);
5124 1.14 msaitoh }
5125 1.14 msaitoh
5126 1.14 msaitoh return IXGBE_SUCCESS;
5127 1.14 msaitoh }
5128 1.14 msaitoh
5129 1.14 msaitoh /**
5130 1.38 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5131 1.14 msaitoh *
5132 1.38 msaitoh * @hw: pointer to hardware structure
5133 1.38 msaitoh * @addr: The bypass eeprom address to read.
5134 1.38 msaitoh * @value: The 8b of data at the address above.
5135 1.14 msaitoh **/
5136 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5137 1.14 msaitoh {
5138 1.14 msaitoh u32 cmd;
5139 1.14 msaitoh u32 status;
5140 1.14 msaitoh
5141 1.14 msaitoh
5142 1.14 msaitoh /* send the request */
5143 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5144 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5145 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5146 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5147 1.14 msaitoh
5148 1.14 msaitoh /* We have give the FW time for the write to stick */
5149 1.14 msaitoh msec_delay(100);
5150 1.14 msaitoh
5151 1.14 msaitoh /* now read the results */
5152 1.14 msaitoh cmd &= ~BYPASS_WE;
5153 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5154 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5155 1.14 msaitoh
5156 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5157 1.14 msaitoh
5158 1.14 msaitoh return IXGBE_SUCCESS;
5159 1.14 msaitoh }
5160 1.14 msaitoh
5161 1.17 msaitoh /**
5162 1.38 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM
5163 1.17 msaitoh *
5164 1.38 msaitoh * @hw: pointer to hardware structure
5165 1.38 msaitoh * @nvm_ver: pointer to output structure
5166 1.17 msaitoh *
5167 1.38 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE
5168 1.38 msaitoh * else nvm_ver->or_valid is FALSE.
5169 1.17 msaitoh **/
5170 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5171 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5172 1.17 msaitoh {
5173 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5174 1.17 msaitoh
5175 1.17 msaitoh nvm_ver->or_valid = FALSE;
5176 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */
5177 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5178 1.17 msaitoh
5179 1.17 msaitoh /* make sure offset is valid */
5180 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5181 1.17 msaitoh return;
5182 1.17 msaitoh
5183 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5184 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5185 1.17 msaitoh
5186 1.17 msaitoh /* option rom exists and is valid */
5187 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5188 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID ||
5189 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID)
5190 1.17 msaitoh return;
5191 1.17 msaitoh
5192 1.17 msaitoh nvm_ver->or_valid = TRUE;
5193 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5194 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5195 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5196 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5197 1.17 msaitoh }
5198 1.17 msaitoh
5199 1.17 msaitoh /**
5200 1.38 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version
5201 1.17 msaitoh *
5202 1.38 msaitoh * @hw: pointer to hardware structure
5203 1.38 msaitoh * @nvm_ver: pointer to output structure
5204 1.17 msaitoh *
5205 1.38 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5206 1.38 msaitoh * else nvm_ver->oem_valid is FALSE.
5207 1.17 msaitoh **/
5208 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5209 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5210 1.17 msaitoh {
5211 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset;
5212 1.17 msaitoh
5213 1.17 msaitoh nvm_ver->oem_valid = FALSE;
5214 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5215 1.17 msaitoh
5216 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */
5217 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR)
5218 1.17 msaitoh return;
5219 1.17 msaitoh
5220 1.17 msaitoh /* Read product version block */
5221 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len);
5222 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5223 1.17 msaitoh
5224 1.17 msaitoh /* Return if OEM product version block is invalid */
5225 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5226 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5227 1.17 msaitoh return;
5228 1.17 msaitoh
5229 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5230 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5231 1.17 msaitoh
5232 1.17 msaitoh /* Return if version is invalid */
5233 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 ||
5234 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5235 1.17 msaitoh return;
5236 1.17 msaitoh
5237 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5238 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5239 1.17 msaitoh nvm_ver->oem_release = rel_num;
5240 1.17 msaitoh nvm_ver->oem_valid = TRUE;
5241 1.17 msaitoh }
5242 1.17 msaitoh
5243 1.17 msaitoh /**
5244 1.38 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5245 1.17 msaitoh *
5246 1.38 msaitoh * @hw: pointer to hardware structure
5247 1.38 msaitoh * @nvm_ver: pointer to output structure
5248 1.17 msaitoh *
5249 1.38 msaitoh * word read errors will return 0xFFFF
5250 1.17 msaitoh **/
5251 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5252 1.17 msaitoh {
5253 1.17 msaitoh u16 etk_id_l, etk_id_h;
5254 1.17 msaitoh
5255 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5256 1.17 msaitoh etk_id_l = NVM_VER_INVALID;
5257 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5258 1.17 msaitoh etk_id_h = NVM_VER_INVALID;
5259 1.17 msaitoh
5260 1.17 msaitoh /* The word order for the version format is determined by high order
5261 1.17 msaitoh * word bit 15.
5262 1.17 msaitoh */
5263 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) {
5264 1.17 msaitoh nvm_ver->etk_id = etk_id_h;
5265 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5266 1.17 msaitoh } else {
5267 1.17 msaitoh nvm_ver->etk_id = etk_id_l;
5268 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5269 1.17 msaitoh }
5270 1.17 msaitoh }
5271 1.17 msaitoh
5272 1.6 msaitoh
5273 1.6 msaitoh /**
5274 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5275 1.6 msaitoh * @hw: pointer to hardware structure
5276 1.6 msaitoh * @map: pointer to u8 arr for returning map
5277 1.6 msaitoh *
5278 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5279 1.6 msaitoh **/
5280 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5281 1.6 msaitoh {
5282 1.6 msaitoh u32 reg, i;
5283 1.6 msaitoh
5284 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5285 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5286 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5287 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5288 1.6 msaitoh return;
5289 1.6 msaitoh }
5290 1.8 msaitoh
5291 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5292 1.8 msaitoh {
5293 1.8 msaitoh u32 pfdtxgswc;
5294 1.8 msaitoh u32 rxctrl;
5295 1.8 msaitoh
5296 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5297 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5298 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5299 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5300 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5301 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5302 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5303 1.8 msaitoh hw->mac.set_lben = TRUE;
5304 1.8 msaitoh } else {
5305 1.8 msaitoh hw->mac.set_lben = FALSE;
5306 1.8 msaitoh }
5307 1.8 msaitoh }
5308 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5309 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5310 1.8 msaitoh }
5311 1.8 msaitoh }
5312 1.8 msaitoh
5313 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5314 1.8 msaitoh {
5315 1.8 msaitoh u32 pfdtxgswc;
5316 1.8 msaitoh u32 rxctrl;
5317 1.8 msaitoh
5318 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5319 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5320 1.8 msaitoh
5321 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5322 1.8 msaitoh if (hw->mac.set_lben) {
5323 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5324 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5325 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5326 1.8 msaitoh hw->mac.set_lben = FALSE;
5327 1.8 msaitoh }
5328 1.8 msaitoh }
5329 1.8 msaitoh }
5330 1.8 msaitoh
5331 1.8 msaitoh /**
5332 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5333 1.8 msaitoh * @hw: pointer to hardware structure
5334 1.8 msaitoh */
5335 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5336 1.8 msaitoh {
5337 1.8 msaitoh u32 fwsm;
5338 1.8 msaitoh
5339 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5340 1.8 msaitoh return FALSE;
5341 1.8 msaitoh
5342 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5343 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5344 1.8 msaitoh }
5345 1.8 msaitoh
5346 1.8 msaitoh /**
5347 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5348 1.8 msaitoh * @hw: pointer to hardware structure
5349 1.8 msaitoh *
5350 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5351 1.8 msaitoh **/
5352 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5353 1.8 msaitoh {
5354 1.8 msaitoh u32 fwsm, manc, factps;
5355 1.8 msaitoh
5356 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5357 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5358 1.8 msaitoh return FALSE;
5359 1.8 msaitoh
5360 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5361 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5362 1.8 msaitoh return FALSE;
5363 1.8 msaitoh
5364 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5365 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5366 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5367 1.8 msaitoh return FALSE;
5368 1.8 msaitoh }
5369 1.8 msaitoh
5370 1.8 msaitoh return TRUE;
5371 1.8 msaitoh }
5372 1.8 msaitoh
5373 1.8 msaitoh /**
5374 1.38 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5375 1.38 msaitoh * @hw: pointer to hardware structure
5376 1.38 msaitoh * @speed: new link speed
5377 1.38 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5378 1.8 msaitoh *
5379 1.38 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5380 1.8 msaitoh **/
5381 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5382 1.8 msaitoh ixgbe_link_speed speed,
5383 1.8 msaitoh bool autoneg_wait_to_complete)
5384 1.8 msaitoh {
5385 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5386 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5387 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5388 1.8 msaitoh u32 speedcnt = 0;
5389 1.8 msaitoh u32 i = 0;
5390 1.8 msaitoh bool autoneg, link_up = FALSE;
5391 1.8 msaitoh
5392 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5393 1.8 msaitoh
5394 1.8 msaitoh /* Mask off requested but non-supported speeds */
5395 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5396 1.8 msaitoh if (status != IXGBE_SUCCESS)
5397 1.8 msaitoh return status;
5398 1.8 msaitoh
5399 1.8 msaitoh speed &= link_speed;
5400 1.8 msaitoh
5401 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5402 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5403 1.8 msaitoh */
5404 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5405 1.8 msaitoh speedcnt++;
5406 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5407 1.8 msaitoh
5408 1.8 msaitoh /* Set the module link speed */
5409 1.8 msaitoh switch (hw->phy.media_type) {
5410 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5411 1.8 msaitoh case ixgbe_media_type_fiber:
5412 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5413 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5414 1.8 msaitoh break;
5415 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5416 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5417 1.8 msaitoh break;
5418 1.8 msaitoh default:
5419 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5420 1.8 msaitoh break;
5421 1.8 msaitoh }
5422 1.8 msaitoh
5423 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5424 1.8 msaitoh msec_delay(40);
5425 1.8 msaitoh
5426 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5427 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5428 1.8 msaitoh autoneg_wait_to_complete);
5429 1.8 msaitoh if (status != IXGBE_SUCCESS)
5430 1.8 msaitoh return status;
5431 1.8 msaitoh
5432 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5433 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5434 1.8 msaitoh
5435 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5436 1.41 msaitoh * Section 73.10.2, we may have to wait up to 1000ms if KR is
5437 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5438 1.8 msaitoh */
5439 1.41 msaitoh for (i = 0; i < 10; i++) {
5440 1.8 msaitoh /* Wait for the link partner to also set speed */
5441 1.8 msaitoh msec_delay(100);
5442 1.8 msaitoh
5443 1.8 msaitoh /* If we have link, just jump out */
5444 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5445 1.8 msaitoh &link_up, FALSE);
5446 1.8 msaitoh if (status != IXGBE_SUCCESS)
5447 1.8 msaitoh return status;
5448 1.8 msaitoh
5449 1.8 msaitoh if (link_up)
5450 1.8 msaitoh goto out;
5451 1.8 msaitoh }
5452 1.8 msaitoh }
5453 1.8 msaitoh
5454 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5455 1.8 msaitoh speedcnt++;
5456 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5457 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5458 1.8 msaitoh
5459 1.8 msaitoh /* Set the module link speed */
5460 1.8 msaitoh switch (hw->phy.media_type) {
5461 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5462 1.8 msaitoh case ixgbe_media_type_fiber:
5463 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5464 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5465 1.8 msaitoh break;
5466 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5467 1.8 msaitoh /* QSFP module automatically detects link speed */
5468 1.8 msaitoh break;
5469 1.8 msaitoh default:
5470 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5471 1.8 msaitoh break;
5472 1.8 msaitoh }
5473 1.8 msaitoh
5474 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5475 1.8 msaitoh msec_delay(40);
5476 1.8 msaitoh
5477 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5478 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5479 1.8 msaitoh autoneg_wait_to_complete);
5480 1.8 msaitoh if (status != IXGBE_SUCCESS)
5481 1.8 msaitoh return status;
5482 1.8 msaitoh
5483 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5484 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5485 1.8 msaitoh
5486 1.8 msaitoh /* Wait for the link partner to also set speed */
5487 1.8 msaitoh msec_delay(100);
5488 1.8 msaitoh
5489 1.8 msaitoh /* If we have link, just jump out */
5490 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5491 1.8 msaitoh if (status != IXGBE_SUCCESS)
5492 1.8 msaitoh return status;
5493 1.8 msaitoh
5494 1.8 msaitoh if (link_up)
5495 1.8 msaitoh goto out;
5496 1.8 msaitoh }
5497 1.8 msaitoh
5498 1.20 msaitoh if (speed == 0) {
5499 1.20 msaitoh /* Disable the Tx laser for media none */
5500 1.20 msaitoh ixgbe_disable_tx_laser(hw);
5501 1.20 msaitoh
5502 1.20 msaitoh goto out;
5503 1.20 msaitoh }
5504 1.26 msaitoh
5505 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5506 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5507 1.8 msaitoh * single highest speed that the user requested.
5508 1.8 msaitoh */
5509 1.8 msaitoh if (speedcnt > 1)
5510 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5511 1.8 msaitoh highest_link_speed,
5512 1.8 msaitoh autoneg_wait_to_complete);
5513 1.8 msaitoh
5514 1.8 msaitoh out:
5515 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5516 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5517 1.8 msaitoh
5518 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5519 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5520 1.8 msaitoh
5521 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5522 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5523 1.8 msaitoh
5524 1.8 msaitoh return status;
5525 1.8 msaitoh }
5526 1.8 msaitoh
5527 1.8 msaitoh /**
5528 1.38 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5529 1.38 msaitoh * @hw: pointer to hardware structure
5530 1.38 msaitoh * @speed: link speed to set
5531 1.8 msaitoh *
5532 1.38 msaitoh * Set module link speed via the soft rate select.
5533 1.8 msaitoh */
5534 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5535 1.8 msaitoh ixgbe_link_speed speed)
5536 1.8 msaitoh {
5537 1.8 msaitoh s32 status;
5538 1.8 msaitoh u8 rs, eeprom_data;
5539 1.8 msaitoh
5540 1.8 msaitoh switch (speed) {
5541 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5542 1.8 msaitoh /* one bit mask same as setting on */
5543 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5544 1.8 msaitoh break;
5545 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5546 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5547 1.8 msaitoh break;
5548 1.8 msaitoh default:
5549 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5550 1.8 msaitoh return;
5551 1.8 msaitoh }
5552 1.8 msaitoh
5553 1.8 msaitoh /* Set RS0 */
5554 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5555 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5556 1.8 msaitoh &eeprom_data);
5557 1.8 msaitoh if (status) {
5558 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5559 1.8 msaitoh goto out;
5560 1.8 msaitoh }
5561 1.8 msaitoh
5562 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5563 1.8 msaitoh
5564 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5565 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5566 1.8 msaitoh eeprom_data);
5567 1.8 msaitoh if (status) {
5568 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5569 1.8 msaitoh goto out;
5570 1.8 msaitoh }
5571 1.8 msaitoh
5572 1.8 msaitoh /* Set RS1 */
5573 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5574 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5575 1.8 msaitoh &eeprom_data);
5576 1.8 msaitoh if (status) {
5577 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5578 1.8 msaitoh goto out;
5579 1.8 msaitoh }
5580 1.8 msaitoh
5581 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5582 1.8 msaitoh
5583 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5584 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5585 1.8 msaitoh eeprom_data);
5586 1.8 msaitoh if (status) {
5587 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5588 1.8 msaitoh goto out;
5589 1.8 msaitoh }
5590 1.8 msaitoh out:
5591 1.8 msaitoh return;
5592 1.8 msaitoh }
5593