ixgbe_common.c revision 1.45 1 1.45 msaitoh /* $NetBSD: ixgbe_common.c,v 1.45 2023/10/06 14:37:04 msaitoh Exp $ */
2 1.14 msaitoh
3 1.1 dyoung /******************************************************************************
4 1.16 msaitoh SPDX-License-Identifier: BSD-3-Clause
5 1.1 dyoung
6 1.42 msaitoh Copyright (c) 2001-2020, Intel Corporation
7 1.1 dyoung All rights reserved.
8 1.14 msaitoh
9 1.14 msaitoh Redistribution and use in source and binary forms, with or without
10 1.1 dyoung modification, are permitted provided that the following conditions are met:
11 1.14 msaitoh
12 1.14 msaitoh 1. Redistributions of source code must retain the above copyright notice,
13 1.1 dyoung this list of conditions and the following disclaimer.
14 1.14 msaitoh
15 1.14 msaitoh 2. Redistributions in binary form must reproduce the above copyright
16 1.14 msaitoh notice, this list of conditions and the following disclaimer in the
17 1.1 dyoung documentation and/or other materials provided with the distribution.
18 1.14 msaitoh
19 1.14 msaitoh 3. Neither the name of the Intel Corporation nor the names of its
20 1.14 msaitoh contributors may be used to endorse or promote products derived from
21 1.1 dyoung this software without specific prior written permission.
22 1.14 msaitoh
23 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 1.14 msaitoh AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.14 msaitoh IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.14 msaitoh ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 1.14 msaitoh LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.14 msaitoh CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.14 msaitoh SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.14 msaitoh INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.14 msaitoh CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
34 1.1 dyoung
35 1.1 dyoung ******************************************************************************/
36 1.22 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37 1.1 dyoung
38 1.31 msaitoh #include <sys/cdefs.h>
39 1.45 msaitoh __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.45 2023/10/06 14:37:04 msaitoh Exp $");
40 1.31 msaitoh
41 1.1 dyoung #include "ixgbe_common.h"
42 1.1 dyoung #include "ixgbe_phy.h"
43 1.6 msaitoh #include "ixgbe_dcb.h"
44 1.6 msaitoh #include "ixgbe_dcb_82599.h"
45 1.1 dyoung #include "ixgbe_api.h"
46 1.1 dyoung
47 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 1.3 msaitoh u16 count);
54 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58 1.1 dyoung
59 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 1.3 msaitoh u16 *san_mac_offset);
62 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 1.3 msaitoh u16 words, u16 *data);
64 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 1.3 msaitoh u16 words, u16 *data);
66 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 1.3 msaitoh u16 offset);
68 1.1 dyoung
69 1.1 dyoung /**
70 1.38 msaitoh * ixgbe_init_ops_generic - Inits function ptrs
71 1.38 msaitoh * @hw: pointer to the hardware structure
72 1.1 dyoung *
73 1.38 msaitoh * Initialize the function pointers.
74 1.1 dyoung **/
75 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 1.1 dyoung {
77 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
79 1.10 msaitoh u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80 1.1 dyoung
81 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
82 1.1 dyoung
83 1.1 dyoung /* EEPROM */
84 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
87 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
88 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 1.3 msaitoh } else {
90 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 1.3 msaitoh eeprom->ops.read_buffer =
92 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
93 1.3 msaitoh }
94 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
95 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 1.1 dyoung eeprom->ops.validate_checksum =
97 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
98 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100 1.1 dyoung
101 1.1 dyoung /* MAC */
102 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
103 1.1 dyoung mac->ops.reset_hw = NULL;
104 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
105 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 1.1 dyoung mac->ops.get_media_type = NULL;
107 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
108 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
117 1.1 dyoung
118 1.1 dyoung /* LEDs */
119 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
120 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
121 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 1.14 msaitoh mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124 1.1 dyoung
125 1.1 dyoung /* RAR, Multicast, VLAN */
126 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
127 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 1.1 dyoung mac->ops.insert_mac_addr = NULL;
129 1.1 dyoung mac->ops.set_vmdq = NULL;
130 1.1 dyoung mac->ops.clear_vmdq = NULL;
131 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 1.1 dyoung mac->ops.clear_vfta = NULL;
137 1.1 dyoung mac->ops.set_vfta = NULL;
138 1.3 msaitoh mac->ops.set_vlvf = NULL;
139 1.1 dyoung mac->ops.init_uta_tables = NULL;
140 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 1.23 msaitoh mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143 1.1 dyoung
144 1.1 dyoung /* Flow Control */
145 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 1.14 msaitoh mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148 1.1 dyoung
149 1.1 dyoung /* Link */
150 1.1 dyoung mac->ops.get_link_capabilities = NULL;
151 1.1 dyoung mac->ops.setup_link = NULL;
152 1.1 dyoung mac->ops.check_link = NULL;
153 1.6 msaitoh mac->ops.dmac_config = NULL;
154 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
155 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
156 1.1 dyoung
157 1.1 dyoung return IXGBE_SUCCESS;
158 1.1 dyoung }
159 1.1 dyoung
160 1.1 dyoung /**
161 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 1.6 msaitoh * of flow control
163 1.6 msaitoh * @hw: pointer to hardware structure
164 1.6 msaitoh *
165 1.6 msaitoh * This function returns TRUE if the device supports flow control
166 1.6 msaitoh * autonegotiation, and FALSE if it does not.
167 1.4 msaitoh *
168 1.4 msaitoh **/
169 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 1.4 msaitoh {
171 1.6 msaitoh bool supported = FALSE;
172 1.6 msaitoh ixgbe_link_speed speed;
173 1.6 msaitoh bool link_up;
174 1.4 msaitoh
175 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176 1.4 msaitoh
177 1.6 msaitoh switch (hw->phy.media_type) {
178 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
179 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
180 1.6 msaitoh case ixgbe_media_type_fiber:
181 1.45 msaitoh /* flow control autoneg block list */
182 1.14 msaitoh switch (hw->device_id) {
183 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP:
184 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP:
186 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 1.14 msaitoh supported = FALSE;
188 1.14 msaitoh break;
189 1.14 msaitoh default:
190 1.14 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 1.14 msaitoh /* if link is down, assume supported */
192 1.14 msaitoh if (link_up)
193 1.14 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 1.14 msaitoh TRUE : FALSE;
195 1.14 msaitoh else
196 1.14 msaitoh supported = TRUE;
197 1.14 msaitoh }
198 1.14 msaitoh
199 1.14 msaitoh break;
200 1.14 msaitoh case ixgbe_media_type_backplane:
201 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 1.14 msaitoh supported = FALSE;
203 1.6 msaitoh else
204 1.6 msaitoh supported = TRUE;
205 1.6 msaitoh break;
206 1.6 msaitoh case ixgbe_media_type_copper:
207 1.6 msaitoh /* only some copper devices support flow control autoneg */
208 1.6 msaitoh switch (hw->device_id) {
209 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
210 1.6 msaitoh case IXGBE_DEV_ID_X540T:
211 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
212 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
213 1.8 msaitoh case IXGBE_DEV_ID_X550T:
214 1.10 msaitoh case IXGBE_DEV_ID_X550T1:
215 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
216 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_10G_T:
217 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T:
218 1.14 msaitoh case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 1.6 msaitoh supported = TRUE;
220 1.6 msaitoh break;
221 1.6 msaitoh default:
222 1.6 msaitoh supported = FALSE;
223 1.6 msaitoh }
224 1.4 msaitoh default:
225 1.6 msaitoh break;
226 1.4 msaitoh }
227 1.6 msaitoh
228 1.6 msaitoh return supported;
229 1.4 msaitoh }
230 1.4 msaitoh
231 1.4 msaitoh /**
232 1.38 msaitoh * ixgbe_setup_fc_generic - Set up flow control
233 1.38 msaitoh * @hw: pointer to hardware structure
234 1.4 msaitoh *
235 1.38 msaitoh * Called at init time to set up flow control.
236 1.4 msaitoh **/
237 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
238 1.4 msaitoh {
239 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
240 1.4 msaitoh u32 reg = 0, reg_bp = 0;
241 1.4 msaitoh u16 reg_cu = 0;
242 1.8 msaitoh bool locked = FALSE;
243 1.4 msaitoh
244 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
245 1.4 msaitoh
246 1.8 msaitoh /* Validate the requested mode */
247 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
248 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
249 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
250 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
251 1.4 msaitoh goto out;
252 1.4 msaitoh }
253 1.4 msaitoh
254 1.4 msaitoh /*
255 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
256 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
257 1.4 msaitoh */
258 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
259 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
260 1.4 msaitoh
261 1.4 msaitoh /*
262 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
263 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
264 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
265 1.4 msaitoh */
266 1.4 msaitoh switch (hw->phy.media_type) {
267 1.8 msaitoh case ixgbe_media_type_backplane:
268 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
269 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
270 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
271 1.8 msaitoh goto out;
272 1.8 msaitoh
273 1.14 msaitoh /* fall through - only backplane uses autoc */
274 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
275 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
276 1.4 msaitoh case ixgbe_media_type_fiber:
277 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
278 1.8 msaitoh
279 1.4 msaitoh break;
280 1.4 msaitoh case ixgbe_media_type_copper:
281 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
282 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
283 1.4 msaitoh break;
284 1.4 msaitoh default:
285 1.4 msaitoh break;
286 1.4 msaitoh }
287 1.4 msaitoh
288 1.4 msaitoh /*
289 1.4 msaitoh * The possible values of fc.requested_mode are:
290 1.4 msaitoh * 0: Flow control is completely disabled
291 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
292 1.4 msaitoh * but not send pause frames).
293 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
294 1.4 msaitoh * we do not support receiving pause frames).
295 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
296 1.4 msaitoh * other: Invalid.
297 1.4 msaitoh */
298 1.4 msaitoh switch (hw->fc.requested_mode) {
299 1.4 msaitoh case ixgbe_fc_none:
300 1.4 msaitoh /* Flow control completely disabled by software override. */
301 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
302 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
303 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
304 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
305 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
306 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
307 1.4 msaitoh break;
308 1.4 msaitoh case ixgbe_fc_tx_pause:
309 1.4 msaitoh /*
310 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
311 1.4 msaitoh * disabled by software override.
312 1.4 msaitoh */
313 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
314 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
315 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
316 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
317 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
318 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
319 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
320 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
321 1.4 msaitoh }
322 1.4 msaitoh break;
323 1.4 msaitoh case ixgbe_fc_rx_pause:
324 1.4 msaitoh /*
325 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
326 1.4 msaitoh * disabled by software override. Since there really
327 1.4 msaitoh * isn't a way to advertise that we are capable of RX
328 1.4 msaitoh * Pause ONLY, we will advertise that we support both
329 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
330 1.4 msaitoh * through to the fc_full statement. Later, we will
331 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
332 1.4 msaitoh */
333 1.4 msaitoh case ixgbe_fc_full:
334 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
335 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
336 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
337 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
338 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
339 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
340 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
341 1.4 msaitoh break;
342 1.4 msaitoh default:
343 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
344 1.6 msaitoh "Flow control param set incorrectly\n");
345 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
346 1.4 msaitoh goto out;
347 1.4 msaitoh break;
348 1.4 msaitoh }
349 1.4 msaitoh
350 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
351 1.4 msaitoh /*
352 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
353 1.4 msaitoh * the MAC will advertise clause 37 flow control.
354 1.4 msaitoh */
355 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
356 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
357 1.4 msaitoh
358 1.4 msaitoh /* Disable AN timeout */
359 1.4 msaitoh if (hw->fc.strict_ieee)
360 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
361 1.4 msaitoh
362 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
363 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
364 1.4 msaitoh }
365 1.4 msaitoh
366 1.4 msaitoh /*
367 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
368 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
369 1.4 msaitoh *
370 1.4 msaitoh */
371 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
372 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
373 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
374 1.8 msaitoh if (ret_val)
375 1.8 msaitoh goto out;
376 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
377 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
378 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
379 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
380 1.4 msaitoh }
381 1.4 msaitoh
382 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
383 1.4 msaitoh out:
384 1.4 msaitoh return ret_val;
385 1.4 msaitoh }
386 1.4 msaitoh
387 1.4 msaitoh /**
388 1.38 msaitoh * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
389 1.38 msaitoh * @hw: pointer to hardware structure
390 1.1 dyoung *
391 1.38 msaitoh * Starts the hardware by filling the bus info structure and media type, clears
392 1.38 msaitoh * all on chip counters, initializes receive address registers, multicast
393 1.38 msaitoh * table, VLAN filter table, calls routine to set up link and flow control
394 1.38 msaitoh * settings, and leaves transmit and receive units disabled and uninitialized
395 1.1 dyoung **/
396 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
397 1.1 dyoung {
398 1.4 msaitoh s32 ret_val;
399 1.1 dyoung u32 ctrl_ext;
400 1.14 msaitoh u16 device_caps;
401 1.1 dyoung
402 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
403 1.1 dyoung
404 1.1 dyoung /* Set the media type */
405 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
406 1.1 dyoung
407 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
408 1.1 dyoung
409 1.1 dyoung /* Clear the VLAN filter table */
410 1.1 dyoung hw->mac.ops.clear_vfta(hw);
411 1.1 dyoung
412 1.1 dyoung /* Clear statistics registers */
413 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
414 1.1 dyoung
415 1.1 dyoung /* Set No Snoop Disable */
416 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
417 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
419 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
420 1.1 dyoung
421 1.1 dyoung /* Setup flow control */
422 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
423 1.14 msaitoh if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
424 1.14 msaitoh DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
425 1.14 msaitoh return ret_val;
426 1.14 msaitoh }
427 1.14 msaitoh
428 1.14 msaitoh /* Cache bit indicating need for crosstalk fix */
429 1.14 msaitoh switch (hw->mac.type) {
430 1.14 msaitoh case ixgbe_mac_82599EB:
431 1.14 msaitoh case ixgbe_mac_X550EM_x:
432 1.14 msaitoh case ixgbe_mac_X550EM_a:
433 1.14 msaitoh hw->mac.ops.get_device_caps(hw, &device_caps);
434 1.14 msaitoh if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
435 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
436 1.14 msaitoh else
437 1.14 msaitoh hw->need_crosstalk_fix = TRUE;
438 1.14 msaitoh break;
439 1.14 msaitoh default:
440 1.14 msaitoh hw->need_crosstalk_fix = FALSE;
441 1.14 msaitoh break;
442 1.14 msaitoh }
443 1.1 dyoung
444 1.1 dyoung /* Clear adapter stopped flag */
445 1.1 dyoung hw->adapter_stopped = FALSE;
446 1.1 dyoung
447 1.14 msaitoh return IXGBE_SUCCESS;
448 1.1 dyoung }
449 1.1 dyoung
450 1.1 dyoung /**
451 1.38 msaitoh * ixgbe_start_hw_gen2 - Init sequence for common device family
452 1.38 msaitoh * @hw: pointer to hw structure
453 1.1 dyoung *
454 1.1 dyoung * Performs the init sequence common to the second generation
455 1.1 dyoung * of 10 GbE devices.
456 1.1 dyoung * Devices in the second generation:
457 1.38 msaitoh * 82599
458 1.38 msaitoh * X540
459 1.1 dyoung **/
460 1.35 msaitoh void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
461 1.1 dyoung {
462 1.1 dyoung u32 i;
463 1.1 dyoung u32 regval;
464 1.1 dyoung
465 1.27 msaitoh DEBUGFUNC("ixgbe_start_hw_gen2");
466 1.27 msaitoh
467 1.1 dyoung /* Clear the rate limiters */
468 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
469 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
470 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
471 1.1 dyoung }
472 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
473 1.1 dyoung
474 1.1 dyoung /* Disable relaxed ordering */
475 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
476 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
477 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
478 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
479 1.1 dyoung }
480 1.1 dyoung
481 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
482 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
483 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
484 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
485 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
486 1.1 dyoung }
487 1.1 dyoung }
488 1.1 dyoung
489 1.1 dyoung /**
490 1.38 msaitoh * ixgbe_init_hw_generic - Generic hardware initialization
491 1.38 msaitoh * @hw: pointer to hardware structure
492 1.1 dyoung *
493 1.38 msaitoh * Initialize the hardware by resetting the hardware, filling the bus info
494 1.38 msaitoh * structure and media type, clears all on chip counters, initializes receive
495 1.38 msaitoh * address registers, multicast table, VLAN filter table, calls routine to set
496 1.38 msaitoh * up link and flow control settings, and leaves transmit and receive units
497 1.38 msaitoh * disabled and uninitialized
498 1.1 dyoung **/
499 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
500 1.1 dyoung {
501 1.1 dyoung s32 status;
502 1.1 dyoung
503 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
504 1.1 dyoung
505 1.1 dyoung /* Reset the hardware */
506 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
507 1.1 dyoung
508 1.14 msaitoh if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
509 1.1 dyoung /* Start the HW */
510 1.1 dyoung status = hw->mac.ops.start_hw(hw);
511 1.1 dyoung }
512 1.1 dyoung
513 1.14 msaitoh /* Initialize the LED link active for LED blink support */
514 1.14 msaitoh if (hw->mac.ops.init_led_link_act)
515 1.14 msaitoh hw->mac.ops.init_led_link_act(hw);
516 1.14 msaitoh
517 1.14 msaitoh if (status != IXGBE_SUCCESS)
518 1.14 msaitoh DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
519 1.14 msaitoh
520 1.1 dyoung return status;
521 1.1 dyoung }
522 1.1 dyoung
523 1.1 dyoung /**
524 1.38 msaitoh * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
525 1.38 msaitoh * @hw: pointer to hardware structure
526 1.1 dyoung *
527 1.38 msaitoh * Clears all hardware statistics counters by reading them from the hardware
528 1.38 msaitoh * Statistics counters are clear on read.
529 1.1 dyoung **/
530 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
531 1.1 dyoung {
532 1.1 dyoung u16 i = 0;
533 1.1 dyoung
534 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
535 1.1 dyoung
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
540 1.13 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
541 1.13 msaitoh IXGBE_READ_REG(hw, IXGBE_MBSDC);
542 1.1 dyoung for (i = 0; i < 8; i++)
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
544 1.1 dyoung
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
547 1.44 msaitoh if (hw->mac.type == ixgbe_mac_X550EM_a)
548 1.44 msaitoh IXGBE_READ_REG(hw, IXGBE_LINK_DN_CNT);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
552 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
555 1.1 dyoung } else {
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
558 1.1 dyoung }
559 1.1 dyoung
560 1.1 dyoung for (i = 0; i < 8; i++) {
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
563 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
566 1.1 dyoung } else {
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
569 1.1 dyoung }
570 1.1 dyoung }
571 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
572 1.1 dyoung for (i = 0; i < 8; i++)
573 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
576 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
577 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
578 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
579 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
580 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
581 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
582 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
583 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
584 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
585 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
586 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
587 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
588 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
589 1.3 msaitoh for (i = 0; i < 8; i++)
590 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
591 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
592 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
593 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
594 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
595 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
596 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
597 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
598 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
599 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
600 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
601 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
602 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
603 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
604 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
605 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
606 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
607 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
608 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
609 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
610 1.1 dyoung for (i = 0; i < 16; i++) {
611 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
612 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
613 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
614 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
615 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
616 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
617 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
618 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
619 1.1 dyoung } else {
620 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
621 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
622 1.1 dyoung }
623 1.1 dyoung }
624 1.1 dyoung
625 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
626 1.3 msaitoh if (hw->phy.id == 0)
627 1.3 msaitoh ixgbe_identify_phy(hw);
628 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
629 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
630 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
631 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
632 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
633 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
634 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
635 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
636 1.3 msaitoh }
637 1.3 msaitoh
638 1.1 dyoung return IXGBE_SUCCESS;
639 1.1 dyoung }
640 1.1 dyoung
641 1.1 dyoung /**
642 1.38 msaitoh * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
643 1.38 msaitoh * @hw: pointer to hardware structure
644 1.38 msaitoh * @pba_num: stores the part number string from the EEPROM
645 1.38 msaitoh * @pba_num_size: part number string buffer length
646 1.1 dyoung *
647 1.38 msaitoh * Reads the part number string from the EEPROM.
648 1.1 dyoung **/
649 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
650 1.3 msaitoh u32 pba_num_size)
651 1.1 dyoung {
652 1.1 dyoung s32 ret_val;
653 1.1 dyoung u16 data;
654 1.1 dyoung u16 pba_ptr;
655 1.1 dyoung u16 offset;
656 1.1 dyoung u16 length;
657 1.1 dyoung
658 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
659 1.1 dyoung
660 1.1 dyoung if (pba_num == NULL) {
661 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
662 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
663 1.1 dyoung }
664 1.1 dyoung
665 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
666 1.1 dyoung if (ret_val) {
667 1.1 dyoung DEBUGOUT("NVM Read Error\n");
668 1.1 dyoung return ret_val;
669 1.1 dyoung }
670 1.1 dyoung
671 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
672 1.1 dyoung if (ret_val) {
673 1.1 dyoung DEBUGOUT("NVM Read Error\n");
674 1.1 dyoung return ret_val;
675 1.1 dyoung }
676 1.1 dyoung
677 1.1 dyoung /*
678 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
679 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
680 1.1 dyoung * and we can decode it into an ascii string
681 1.1 dyoung */
682 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
683 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
684 1.1 dyoung
685 1.1 dyoung /* we will need 11 characters to store the PBA */
686 1.1 dyoung if (pba_num_size < 11) {
687 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
688 1.1 dyoung return IXGBE_ERR_NO_SPACE;
689 1.1 dyoung }
690 1.1 dyoung
691 1.1 dyoung /* extract hex string from data and pba_ptr */
692 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
693 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
694 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
695 1.1 dyoung pba_num[3] = data & 0xF;
696 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
697 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
698 1.1 dyoung pba_num[6] = '-';
699 1.1 dyoung pba_num[7] = 0;
700 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
701 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
702 1.1 dyoung
703 1.1 dyoung /* put a null character on the end of our string */
704 1.1 dyoung pba_num[10] = '\0';
705 1.1 dyoung
706 1.1 dyoung /* switch all the data but the '-' to hex char */
707 1.1 dyoung for (offset = 0; offset < 10; offset++) {
708 1.1 dyoung if (pba_num[offset] < 0xA)
709 1.1 dyoung pba_num[offset] += '0';
710 1.1 dyoung else if (pba_num[offset] < 0x10)
711 1.1 dyoung pba_num[offset] += 'A' - 0xA;
712 1.1 dyoung }
713 1.1 dyoung
714 1.1 dyoung return IXGBE_SUCCESS;
715 1.1 dyoung }
716 1.1 dyoung
717 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
718 1.1 dyoung if (ret_val) {
719 1.1 dyoung DEBUGOUT("NVM Read Error\n");
720 1.1 dyoung return ret_val;
721 1.1 dyoung }
722 1.1 dyoung
723 1.1 dyoung if (length == 0xFFFF || length == 0) {
724 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
725 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
726 1.1 dyoung }
727 1.1 dyoung
728 1.1 dyoung /* check if pba_num buffer is big enough */
729 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
730 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
731 1.1 dyoung return IXGBE_ERR_NO_SPACE;
732 1.1 dyoung }
733 1.1 dyoung
734 1.1 dyoung /* trim pba length from start of string */
735 1.1 dyoung pba_ptr++;
736 1.1 dyoung length--;
737 1.1 dyoung
738 1.1 dyoung for (offset = 0; offset < length; offset++) {
739 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
740 1.1 dyoung if (ret_val) {
741 1.1 dyoung DEBUGOUT("NVM Read Error\n");
742 1.1 dyoung return ret_val;
743 1.1 dyoung }
744 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
745 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
746 1.1 dyoung }
747 1.1 dyoung pba_num[offset * 2] = '\0';
748 1.1 dyoung
749 1.1 dyoung return IXGBE_SUCCESS;
750 1.1 dyoung }
751 1.1 dyoung
752 1.1 dyoung /**
753 1.38 msaitoh * ixgbe_read_pba_num_generic - Reads part number from EEPROM
754 1.38 msaitoh * @hw: pointer to hardware structure
755 1.38 msaitoh * @pba_num: stores the part number from the EEPROM
756 1.1 dyoung *
757 1.38 msaitoh * Reads the part number from the EEPROM.
758 1.1 dyoung **/
759 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
760 1.1 dyoung {
761 1.1 dyoung s32 ret_val;
762 1.1 dyoung u16 data;
763 1.1 dyoung
764 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
765 1.1 dyoung
766 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
767 1.1 dyoung if (ret_val) {
768 1.1 dyoung DEBUGOUT("NVM Read Error\n");
769 1.1 dyoung return ret_val;
770 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
771 1.1 dyoung DEBUGOUT("NVM Not supported\n");
772 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
773 1.1 dyoung }
774 1.1 dyoung *pba_num = (u32)(data << 16);
775 1.1 dyoung
776 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
777 1.1 dyoung if (ret_val) {
778 1.1 dyoung DEBUGOUT("NVM Read Error\n");
779 1.1 dyoung return ret_val;
780 1.1 dyoung }
781 1.34 msaitoh *pba_num |= (u32)data;
782 1.1 dyoung
783 1.1 dyoung return IXGBE_SUCCESS;
784 1.1 dyoung }
785 1.1 dyoung
786 1.1 dyoung /**
787 1.38 msaitoh * ixgbe_read_pba_raw
788 1.38 msaitoh * @hw: pointer to the HW structure
789 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
790 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
791 1.38 msaitoh * @max_pba_block_size: PBA block size limit
792 1.38 msaitoh * @pba: pointer to output PBA structure
793 1.5 msaitoh *
794 1.38 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
795 1.38 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
796 1.5 msaitoh *
797 1.5 msaitoh **/
798 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
799 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
800 1.5 msaitoh struct ixgbe_pba *pba)
801 1.5 msaitoh {
802 1.5 msaitoh s32 ret_val;
803 1.5 msaitoh u16 pba_block_size;
804 1.5 msaitoh
805 1.5 msaitoh if (pba == NULL)
806 1.5 msaitoh return IXGBE_ERR_PARAM;
807 1.5 msaitoh
808 1.5 msaitoh if (eeprom_buf == NULL) {
809 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
810 1.5 msaitoh &pba->word[0]);
811 1.5 msaitoh if (ret_val)
812 1.5 msaitoh return ret_val;
813 1.5 msaitoh } else {
814 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
815 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
816 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
817 1.5 msaitoh } else {
818 1.5 msaitoh return IXGBE_ERR_PARAM;
819 1.5 msaitoh }
820 1.5 msaitoh }
821 1.5 msaitoh
822 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
823 1.5 msaitoh if (pba->pba_block == NULL)
824 1.5 msaitoh return IXGBE_ERR_PARAM;
825 1.5 msaitoh
826 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
827 1.5 msaitoh eeprom_buf_size,
828 1.5 msaitoh &pba_block_size);
829 1.5 msaitoh if (ret_val)
830 1.5 msaitoh return ret_val;
831 1.5 msaitoh
832 1.5 msaitoh if (pba_block_size > max_pba_block_size)
833 1.5 msaitoh return IXGBE_ERR_PARAM;
834 1.5 msaitoh
835 1.5 msaitoh if (eeprom_buf == NULL) {
836 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
837 1.5 msaitoh pba_block_size,
838 1.5 msaitoh pba->pba_block);
839 1.5 msaitoh if (ret_val)
840 1.5 msaitoh return ret_val;
841 1.5 msaitoh } else {
842 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
843 1.8 msaitoh pba_block_size)) {
844 1.5 msaitoh memcpy(pba->pba_block,
845 1.5 msaitoh &eeprom_buf[pba->word[1]],
846 1.5 msaitoh pba_block_size * sizeof(u16));
847 1.5 msaitoh } else {
848 1.5 msaitoh return IXGBE_ERR_PARAM;
849 1.5 msaitoh }
850 1.5 msaitoh }
851 1.5 msaitoh }
852 1.5 msaitoh
853 1.5 msaitoh return IXGBE_SUCCESS;
854 1.5 msaitoh }
855 1.5 msaitoh
856 1.5 msaitoh /**
857 1.38 msaitoh * ixgbe_write_pba_raw
858 1.38 msaitoh * @hw: pointer to the HW structure
859 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
860 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
861 1.38 msaitoh * @pba: pointer to PBA structure
862 1.5 msaitoh *
863 1.38 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
864 1.38 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
865 1.5 msaitoh *
866 1.5 msaitoh **/
867 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
868 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
869 1.5 msaitoh {
870 1.5 msaitoh s32 ret_val;
871 1.5 msaitoh
872 1.5 msaitoh if (pba == NULL)
873 1.5 msaitoh return IXGBE_ERR_PARAM;
874 1.5 msaitoh
875 1.5 msaitoh if (eeprom_buf == NULL) {
876 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
877 1.5 msaitoh &pba->word[0]);
878 1.5 msaitoh if (ret_val)
879 1.5 msaitoh return ret_val;
880 1.5 msaitoh } else {
881 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
882 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
883 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
884 1.5 msaitoh } else {
885 1.5 msaitoh return IXGBE_ERR_PARAM;
886 1.5 msaitoh }
887 1.5 msaitoh }
888 1.5 msaitoh
889 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
890 1.5 msaitoh if (pba->pba_block == NULL)
891 1.5 msaitoh return IXGBE_ERR_PARAM;
892 1.5 msaitoh
893 1.5 msaitoh if (eeprom_buf == NULL) {
894 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
895 1.5 msaitoh pba->pba_block[0],
896 1.5 msaitoh pba->pba_block);
897 1.5 msaitoh if (ret_val)
898 1.5 msaitoh return ret_val;
899 1.5 msaitoh } else {
900 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
901 1.5 msaitoh pba->pba_block[0])) {
902 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
903 1.5 msaitoh pba->pba_block,
904 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
905 1.5 msaitoh } else {
906 1.5 msaitoh return IXGBE_ERR_PARAM;
907 1.5 msaitoh }
908 1.5 msaitoh }
909 1.5 msaitoh }
910 1.5 msaitoh
911 1.5 msaitoh return IXGBE_SUCCESS;
912 1.5 msaitoh }
913 1.5 msaitoh
914 1.5 msaitoh /**
915 1.38 msaitoh * ixgbe_get_pba_block_size
916 1.38 msaitoh * @hw: pointer to the HW structure
917 1.38 msaitoh * @eeprom_buf: optional pointer to EEPROM image
918 1.38 msaitoh * @eeprom_buf_size: size of EEPROM image in words
919 1.38 msaitoh * @pba_data_size: pointer to output variable
920 1.38 msaitoh *
921 1.38 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
922 1.38 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
923 1.38 msaitoh * EEPROM device.
924 1.5 msaitoh *
925 1.5 msaitoh **/
926 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
927 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
928 1.5 msaitoh {
929 1.5 msaitoh s32 ret_val;
930 1.5 msaitoh u16 pba_word[2];
931 1.5 msaitoh u16 length;
932 1.5 msaitoh
933 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
934 1.5 msaitoh
935 1.5 msaitoh if (eeprom_buf == NULL) {
936 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
937 1.5 msaitoh &pba_word[0]);
938 1.5 msaitoh if (ret_val)
939 1.5 msaitoh return ret_val;
940 1.5 msaitoh } else {
941 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
942 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
943 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
944 1.5 msaitoh } else {
945 1.5 msaitoh return IXGBE_ERR_PARAM;
946 1.5 msaitoh }
947 1.5 msaitoh }
948 1.5 msaitoh
949 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
950 1.5 msaitoh if (eeprom_buf == NULL) {
951 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
952 1.5 msaitoh &length);
953 1.5 msaitoh if (ret_val)
954 1.5 msaitoh return ret_val;
955 1.5 msaitoh } else {
956 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
957 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
958 1.5 msaitoh else
959 1.5 msaitoh return IXGBE_ERR_PARAM;
960 1.5 msaitoh }
961 1.5 msaitoh
962 1.5 msaitoh if (length == 0xFFFF || length == 0)
963 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
964 1.5 msaitoh } else {
965 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
966 1.5 msaitoh length = 0;
967 1.5 msaitoh }
968 1.5 msaitoh
969 1.5 msaitoh if (pba_block_size != NULL)
970 1.5 msaitoh *pba_block_size = length;
971 1.5 msaitoh
972 1.5 msaitoh return IXGBE_SUCCESS;
973 1.5 msaitoh }
974 1.5 msaitoh
975 1.5 msaitoh /**
976 1.38 msaitoh * ixgbe_get_mac_addr_generic - Generic get MAC address
977 1.38 msaitoh * @hw: pointer to hardware structure
978 1.38 msaitoh * @mac_addr: Adapter MAC address
979 1.38 msaitoh *
980 1.38 msaitoh * Reads the adapter's MAC address from first Receive Address Register (RAR0)
981 1.38 msaitoh * A reset of the adapter must be performed prior to calling this function
982 1.38 msaitoh * in order for the MAC address to have been loaded from the EEPROM into RAR0
983 1.1 dyoung **/
984 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
985 1.1 dyoung {
986 1.1 dyoung u32 rar_high;
987 1.1 dyoung u32 rar_low;
988 1.1 dyoung u16 i;
989 1.1 dyoung
990 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
991 1.1 dyoung
992 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
993 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
994 1.1 dyoung
995 1.1 dyoung for (i = 0; i < 4; i++)
996 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
997 1.1 dyoung
998 1.1 dyoung for (i = 0; i < 2; i++)
999 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
1000 1.1 dyoung
1001 1.1 dyoung return IXGBE_SUCCESS;
1002 1.1 dyoung }
1003 1.1 dyoung
1004 1.1 dyoung /**
1005 1.38 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1006 1.38 msaitoh * @hw: pointer to hardware structure
1007 1.38 msaitoh * @link_status: the link status returned by the PCI config space
1008 1.1 dyoung *
1009 1.38 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1010 1.1 dyoung **/
1011 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1012 1.1 dyoung {
1013 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
1014 1.1 dyoung
1015 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
1016 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
1017 1.1 dyoung
1018 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1019 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
1020 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
1021 1.1 dyoung break;
1022 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
1023 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
1024 1.1 dyoung break;
1025 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
1026 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
1027 1.1 dyoung break;
1028 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
1029 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
1030 1.1 dyoung break;
1031 1.1 dyoung default:
1032 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
1033 1.1 dyoung break;
1034 1.1 dyoung }
1035 1.1 dyoung
1036 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
1037 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
1038 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
1039 1.1 dyoung break;
1040 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
1041 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
1042 1.1 dyoung break;
1043 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
1044 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
1045 1.4 msaitoh break;
1046 1.1 dyoung default:
1047 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1048 1.1 dyoung break;
1049 1.1 dyoung }
1050 1.1 dyoung
1051 1.1 dyoung mac->ops.set_lan_id(hw);
1052 1.6 msaitoh }
1053 1.6 msaitoh
1054 1.6 msaitoh /**
1055 1.38 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1056 1.38 msaitoh * @hw: pointer to hardware structure
1057 1.6 msaitoh *
1058 1.38 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1059 1.38 msaitoh * store this data within the ixgbe_hw structure.
1060 1.6 msaitoh **/
1061 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1062 1.6 msaitoh {
1063 1.6 msaitoh u16 link_status;
1064 1.6 msaitoh
1065 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1066 1.6 msaitoh
1067 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1068 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1069 1.6 msaitoh
1070 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1071 1.1 dyoung
1072 1.1 dyoung return IXGBE_SUCCESS;
1073 1.1 dyoung }
1074 1.1 dyoung
1075 1.1 dyoung /**
1076 1.38 msaitoh * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1077 1.38 msaitoh * @hw: pointer to the HW structure
1078 1.1 dyoung *
1079 1.38 msaitoh * Determines the LAN function id by reading memory-mapped registers and swaps
1080 1.38 msaitoh * the port value if requested, and set MAC instance for devices that share
1081 1.38 msaitoh * CS4227.
1082 1.1 dyoung **/
1083 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1084 1.1 dyoung {
1085 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1086 1.1 dyoung u32 reg;
1087 1.14 msaitoh u16 ee_ctrl_4;
1088 1.1 dyoung
1089 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1090 1.1 dyoung
1091 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1092 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1093 1.14 msaitoh bus->lan_id = (u8)bus->func;
1094 1.1 dyoung
1095 1.1 dyoung /* check for a port swap */
1096 1.10 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1097 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1098 1.1 dyoung bus->func ^= 0x1;
1099 1.14 msaitoh
1100 1.14 msaitoh /* Get MAC instance from EEPROM for configuring CS4227 */
1101 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1102 1.14 msaitoh hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1103 1.14 msaitoh bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1104 1.14 msaitoh IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1105 1.14 msaitoh }
1106 1.1 dyoung }
1107 1.1 dyoung
1108 1.1 dyoung /**
1109 1.38 msaitoh * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1110 1.38 msaitoh * @hw: pointer to hardware structure
1111 1.1 dyoung *
1112 1.38 msaitoh * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1113 1.38 msaitoh * disables transmit and receive units. The adapter_stopped flag is used by
1114 1.38 msaitoh * the shared code and drivers to determine if the adapter is in a stopped
1115 1.38 msaitoh * state and should not touch the hardware.
1116 1.1 dyoung **/
1117 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1118 1.1 dyoung {
1119 1.1 dyoung u32 reg_val;
1120 1.1 dyoung u16 i;
1121 1.1 dyoung
1122 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1123 1.1 dyoung
1124 1.1 dyoung /*
1125 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1126 1.1 dyoung * the hardware
1127 1.1 dyoung */
1128 1.1 dyoung hw->adapter_stopped = TRUE;
1129 1.1 dyoung
1130 1.1 dyoung /* Disable the receive unit */
1131 1.8 msaitoh ixgbe_disable_rx(hw);
1132 1.1 dyoung
1133 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1134 1.19 knakahar /*
1135 1.19 knakahar * XXX
1136 1.19 knakahar * This function is called in the state of both interrupt disabled
1137 1.19 knakahar * and interrupt enabled, e.g.
1138 1.19 knakahar * + interrupt disabled case:
1139 1.30 msaitoh * - ixgbe_stop_locked()
1140 1.19 knakahar * - ixgbe_disable_intr() // interrupt disabled here
1141 1.19 knakahar * - ixgbe_stop_adapter()
1142 1.19 knakahar * - hw->mac.ops.stop_adapter()
1143 1.19 knakahar * == this function
1144 1.19 knakahar * + interrupt enabled case:
1145 1.19 knakahar * - ixgbe_local_timer1()
1146 1.19 knakahar * - ixgbe_init_locked()
1147 1.19 knakahar * - ixgbe_stop_adapter()
1148 1.19 knakahar * - hw->mac.ops.stop_adapter()
1149 1.19 knakahar * == this function
1150 1.19 knakahar * Therefore, it causes nest status breaking to nest the status
1151 1.19 knakahar * (that is, que->im_nest++) at all times. So, this function must
1152 1.19 knakahar * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1153 1.19 knakahar */
1154 1.19 knakahar ixgbe_ensure_disabled_intr(hw->back);
1155 1.1 dyoung
1156 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1157 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1158 1.1 dyoung
1159 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1160 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1161 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1162 1.3 msaitoh
1163 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1164 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1165 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1166 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1167 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1168 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1169 1.1 dyoung }
1170 1.1 dyoung
1171 1.3 msaitoh /* flush all queues disables */
1172 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1173 1.3 msaitoh msec_delay(2);
1174 1.3 msaitoh
1175 1.1 dyoung /*
1176 1.45 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E primary
1177 1.1 dyoung * access and verify no pending requests
1178 1.1 dyoung */
1179 1.45 msaitoh return ixgbe_disable_pcie_primary(hw);
1180 1.1 dyoung }
1181 1.1 dyoung
1182 1.1 dyoung /**
1183 1.38 msaitoh * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1184 1.38 msaitoh * @hw: pointer to hardware structure
1185 1.14 msaitoh *
1186 1.38 msaitoh * Store the index for the link active LED. This will be used to support
1187 1.38 msaitoh * blinking the LED.
1188 1.14 msaitoh **/
1189 1.14 msaitoh s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1190 1.14 msaitoh {
1191 1.14 msaitoh struct ixgbe_mac_info *mac = &hw->mac;
1192 1.14 msaitoh u32 led_reg, led_mode;
1193 1.14 msaitoh u8 i;
1194 1.14 msaitoh
1195 1.14 msaitoh led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1196 1.14 msaitoh
1197 1.14 msaitoh /* Get LED link active from the LEDCTL register */
1198 1.14 msaitoh for (i = 0; i < 4; i++) {
1199 1.14 msaitoh led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1200 1.14 msaitoh
1201 1.14 msaitoh if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1202 1.14 msaitoh IXGBE_LED_LINK_ACTIVE) {
1203 1.14 msaitoh mac->led_link_act = i;
1204 1.14 msaitoh return IXGBE_SUCCESS;
1205 1.14 msaitoh }
1206 1.14 msaitoh }
1207 1.14 msaitoh
1208 1.14 msaitoh /*
1209 1.14 msaitoh * If LEDCTL register does not have the LED link active set, then use
1210 1.14 msaitoh * known MAC defaults.
1211 1.14 msaitoh */
1212 1.14 msaitoh switch (hw->mac.type) {
1213 1.14 msaitoh case ixgbe_mac_X550EM_a:
1214 1.14 msaitoh case ixgbe_mac_X550EM_x:
1215 1.14 msaitoh mac->led_link_act = 1;
1216 1.14 msaitoh break;
1217 1.14 msaitoh default:
1218 1.14 msaitoh mac->led_link_act = 2;
1219 1.14 msaitoh }
1220 1.14 msaitoh return IXGBE_SUCCESS;
1221 1.14 msaitoh }
1222 1.14 msaitoh
1223 1.14 msaitoh /**
1224 1.38 msaitoh * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1225 1.38 msaitoh * @hw: pointer to hardware structure
1226 1.38 msaitoh * @index: led number to turn on
1227 1.1 dyoung **/
1228 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1229 1.1 dyoung {
1230 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1231 1.1 dyoung
1232 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1233 1.1 dyoung
1234 1.14 msaitoh if (index > 3)
1235 1.14 msaitoh return IXGBE_ERR_PARAM;
1236 1.14 msaitoh
1237 1.1 dyoung /* To turn on the LED, set mode to ON. */
1238 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1239 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1240 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1241 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1242 1.1 dyoung
1243 1.1 dyoung return IXGBE_SUCCESS;
1244 1.1 dyoung }
1245 1.1 dyoung
1246 1.1 dyoung /**
1247 1.38 msaitoh * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1248 1.38 msaitoh * @hw: pointer to hardware structure
1249 1.38 msaitoh * @index: led number to turn off
1250 1.1 dyoung **/
1251 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1252 1.1 dyoung {
1253 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1254 1.1 dyoung
1255 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1256 1.1 dyoung
1257 1.14 msaitoh if (index > 3)
1258 1.14 msaitoh return IXGBE_ERR_PARAM;
1259 1.14 msaitoh
1260 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1261 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1262 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1263 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1264 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1265 1.1 dyoung
1266 1.1 dyoung return IXGBE_SUCCESS;
1267 1.1 dyoung }
1268 1.1 dyoung
1269 1.1 dyoung /**
1270 1.38 msaitoh * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1271 1.38 msaitoh * @hw: pointer to hardware structure
1272 1.1 dyoung *
1273 1.38 msaitoh * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1274 1.38 msaitoh * ixgbe_hw struct in order to set up EEPROM access.
1275 1.1 dyoung **/
1276 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1277 1.1 dyoung {
1278 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1279 1.1 dyoung u32 eec;
1280 1.1 dyoung u16 eeprom_size;
1281 1.1 dyoung
1282 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1283 1.1 dyoung
1284 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1285 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1286 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1287 1.1 dyoung * tested value */
1288 1.1 dyoung eeprom->semaphore_delay = 10;
1289 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1290 1.3 msaitoh eeprom->word_page_size = 0;
1291 1.1 dyoung
1292 1.1 dyoung /*
1293 1.1 dyoung * Check for EEPROM present first.
1294 1.1 dyoung * If not present leave as none
1295 1.1 dyoung */
1296 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1297 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1298 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1299 1.1 dyoung
1300 1.1 dyoung /*
1301 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1302 1.1 dyoung * change if a future EEPROM is not SPI.
1303 1.1 dyoung */
1304 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1305 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1306 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1307 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1308 1.1 dyoung }
1309 1.1 dyoung
1310 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1311 1.1 dyoung eeprom->address_bits = 16;
1312 1.1 dyoung else
1313 1.1 dyoung eeprom->address_bits = 8;
1314 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1315 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1316 1.3 msaitoh eeprom->address_bits);
1317 1.1 dyoung }
1318 1.1 dyoung
1319 1.1 dyoung return IXGBE_SUCCESS;
1320 1.1 dyoung }
1321 1.1 dyoung
1322 1.1 dyoung /**
1323 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1324 1.38 msaitoh * @hw: pointer to hardware structure
1325 1.38 msaitoh * @offset: offset within the EEPROM to write
1326 1.38 msaitoh * @words: number of word(s)
1327 1.38 msaitoh * @data: 16 bit word(s) to write to EEPROM
1328 1.3 msaitoh *
1329 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1330 1.3 msaitoh **/
1331 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1332 1.3 msaitoh u16 words, u16 *data)
1333 1.3 msaitoh {
1334 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1335 1.3 msaitoh u16 i, count;
1336 1.3 msaitoh
1337 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1338 1.3 msaitoh
1339 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1340 1.3 msaitoh
1341 1.3 msaitoh if (words == 0) {
1342 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1343 1.3 msaitoh goto out;
1344 1.3 msaitoh }
1345 1.3 msaitoh
1346 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1347 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1348 1.3 msaitoh goto out;
1349 1.3 msaitoh }
1350 1.3 msaitoh
1351 1.3 msaitoh /*
1352 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1353 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1354 1.3 msaitoh */
1355 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1356 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1357 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1358 1.3 msaitoh
1359 1.3 msaitoh /*
1360 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1361 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1362 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1363 1.3 msaitoh */
1364 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1365 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1366 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1367 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1368 1.3 msaitoh count, &data[i]);
1369 1.3 msaitoh
1370 1.3 msaitoh if (status != IXGBE_SUCCESS)
1371 1.3 msaitoh break;
1372 1.3 msaitoh }
1373 1.3 msaitoh
1374 1.3 msaitoh out:
1375 1.3 msaitoh return status;
1376 1.3 msaitoh }
1377 1.3 msaitoh
1378 1.3 msaitoh /**
1379 1.38 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1380 1.38 msaitoh * @hw: pointer to hardware structure
1381 1.38 msaitoh * @offset: offset within the EEPROM to be written to
1382 1.38 msaitoh * @words: number of word(s)
1383 1.38 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1384 1.3 msaitoh *
1385 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1386 1.38 msaitoh * EEPROM will most likely contain an invalid checksum.
1387 1.3 msaitoh **/
1388 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1389 1.3 msaitoh u16 words, u16 *data)
1390 1.3 msaitoh {
1391 1.3 msaitoh s32 status;
1392 1.3 msaitoh u16 word;
1393 1.3 msaitoh u16 page_size;
1394 1.3 msaitoh u16 i;
1395 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1396 1.3 msaitoh
1397 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1398 1.3 msaitoh
1399 1.3 msaitoh /* Prepare the EEPROM for writing */
1400 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1401 1.3 msaitoh
1402 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1403 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1404 1.3 msaitoh ixgbe_release_eeprom(hw);
1405 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1406 1.3 msaitoh }
1407 1.3 msaitoh }
1408 1.3 msaitoh
1409 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1410 1.3 msaitoh for (i = 0; i < words; i++) {
1411 1.3 msaitoh ixgbe_standby_eeprom(hw);
1412 1.3 msaitoh
1413 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1414 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1415 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1416 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1417 1.3 msaitoh
1418 1.3 msaitoh ixgbe_standby_eeprom(hw);
1419 1.3 msaitoh
1420 1.3 msaitoh /*
1421 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1422 1.3 msaitoh * in the opcode
1423 1.3 msaitoh */
1424 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1425 1.3 msaitoh ((offset + i) >= 128))
1426 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1427 1.3 msaitoh
1428 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1429 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1430 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1431 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1432 1.3 msaitoh hw->eeprom.address_bits);
1433 1.3 msaitoh
1434 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1435 1.3 msaitoh
1436 1.3 msaitoh /* Send the data in burst via SPI*/
1437 1.3 msaitoh do {
1438 1.3 msaitoh word = data[i];
1439 1.3 msaitoh word = (word >> 8) | (word << 8);
1440 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1441 1.3 msaitoh
1442 1.3 msaitoh if (page_size == 0)
1443 1.3 msaitoh break;
1444 1.3 msaitoh
1445 1.3 msaitoh /* do not wrap around page */
1446 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1447 1.3 msaitoh (page_size - 1))
1448 1.3 msaitoh break;
1449 1.3 msaitoh } while (++i < words);
1450 1.3 msaitoh
1451 1.3 msaitoh ixgbe_standby_eeprom(hw);
1452 1.3 msaitoh msec_delay(10);
1453 1.3 msaitoh }
1454 1.3 msaitoh /* Done with writing - release the EEPROM */
1455 1.3 msaitoh ixgbe_release_eeprom(hw);
1456 1.3 msaitoh }
1457 1.3 msaitoh
1458 1.3 msaitoh return status;
1459 1.3 msaitoh }
1460 1.3 msaitoh
1461 1.3 msaitoh /**
1462 1.38 msaitoh * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1463 1.38 msaitoh * @hw: pointer to hardware structure
1464 1.38 msaitoh * @offset: offset within the EEPROM to be written to
1465 1.38 msaitoh * @data: 16 bit word to be written to the EEPROM
1466 1.1 dyoung *
1467 1.38 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1468 1.38 msaitoh * EEPROM will most likely contain an invalid checksum.
1469 1.1 dyoung **/
1470 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1471 1.1 dyoung {
1472 1.1 dyoung s32 status;
1473 1.1 dyoung
1474 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1475 1.1 dyoung
1476 1.1 dyoung hw->eeprom.ops.init_params(hw);
1477 1.1 dyoung
1478 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1479 1.1 dyoung status = IXGBE_ERR_EEPROM;
1480 1.1 dyoung goto out;
1481 1.1 dyoung }
1482 1.1 dyoung
1483 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1484 1.3 msaitoh
1485 1.3 msaitoh out:
1486 1.3 msaitoh return status;
1487 1.3 msaitoh }
1488 1.3 msaitoh
1489 1.3 msaitoh /**
1490 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1491 1.38 msaitoh * @hw: pointer to hardware structure
1492 1.38 msaitoh * @offset: offset within the EEPROM to be read
1493 1.38 msaitoh * @data: read 16 bit words(s) from EEPROM
1494 1.38 msaitoh * @words: number of word(s)
1495 1.3 msaitoh *
1496 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1497 1.3 msaitoh **/
1498 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1499 1.3 msaitoh u16 words, u16 *data)
1500 1.3 msaitoh {
1501 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1502 1.3 msaitoh u16 i, count;
1503 1.3 msaitoh
1504 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1505 1.3 msaitoh
1506 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1507 1.3 msaitoh
1508 1.3 msaitoh if (words == 0) {
1509 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1510 1.3 msaitoh goto out;
1511 1.3 msaitoh }
1512 1.3 msaitoh
1513 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1514 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1515 1.3 msaitoh goto out;
1516 1.3 msaitoh }
1517 1.3 msaitoh
1518 1.3 msaitoh /*
1519 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1520 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1521 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1522 1.3 msaitoh */
1523 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1524 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1525 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1526 1.3 msaitoh
1527 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1528 1.3 msaitoh count, &data[i]);
1529 1.3 msaitoh
1530 1.3 msaitoh if (status != IXGBE_SUCCESS)
1531 1.3 msaitoh break;
1532 1.3 msaitoh }
1533 1.3 msaitoh
1534 1.3 msaitoh out:
1535 1.3 msaitoh return status;
1536 1.3 msaitoh }
1537 1.3 msaitoh
1538 1.3 msaitoh /**
1539 1.38 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1540 1.38 msaitoh * @hw: pointer to hardware structure
1541 1.38 msaitoh * @offset: offset within the EEPROM to be read
1542 1.38 msaitoh * @words: number of word(s)
1543 1.38 msaitoh * @data: read 16 bit word(s) from EEPROM
1544 1.3 msaitoh *
1545 1.38 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1546 1.3 msaitoh **/
1547 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1548 1.3 msaitoh u16 words, u16 *data)
1549 1.3 msaitoh {
1550 1.3 msaitoh s32 status;
1551 1.3 msaitoh u16 word_in;
1552 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1553 1.3 msaitoh u16 i;
1554 1.3 msaitoh
1555 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1556 1.3 msaitoh
1557 1.3 msaitoh /* Prepare the EEPROM for reading */
1558 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1559 1.1 dyoung
1560 1.1 dyoung if (status == IXGBE_SUCCESS) {
1561 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1562 1.1 dyoung ixgbe_release_eeprom(hw);
1563 1.1 dyoung status = IXGBE_ERR_EEPROM;
1564 1.1 dyoung }
1565 1.1 dyoung }
1566 1.1 dyoung
1567 1.1 dyoung if (status == IXGBE_SUCCESS) {
1568 1.3 msaitoh for (i = 0; i < words; i++) {
1569 1.3 msaitoh ixgbe_standby_eeprom(hw);
1570 1.3 msaitoh /*
1571 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1572 1.3 msaitoh * in the opcode
1573 1.3 msaitoh */
1574 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1575 1.3 msaitoh ((offset + i) >= 128))
1576 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1577 1.3 msaitoh
1578 1.3 msaitoh /* Send the READ command (opcode + addr) */
1579 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1580 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1581 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1582 1.3 msaitoh hw->eeprom.address_bits);
1583 1.3 msaitoh
1584 1.3 msaitoh /* Read the data. */
1585 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1586 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1587 1.3 msaitoh }
1588 1.1 dyoung
1589 1.3 msaitoh /* End this read operation */
1590 1.1 dyoung ixgbe_release_eeprom(hw);
1591 1.1 dyoung }
1592 1.1 dyoung
1593 1.1 dyoung return status;
1594 1.1 dyoung }
1595 1.1 dyoung
1596 1.1 dyoung /**
1597 1.38 msaitoh * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1598 1.38 msaitoh * @hw: pointer to hardware structure
1599 1.38 msaitoh * @offset: offset within the EEPROM to be read
1600 1.38 msaitoh * @data: read 16 bit value from EEPROM
1601 1.1 dyoung *
1602 1.38 msaitoh * Reads 16 bit value from EEPROM through bit-bang method
1603 1.1 dyoung **/
1604 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1605 1.3 msaitoh u16 *data)
1606 1.1 dyoung {
1607 1.1 dyoung s32 status;
1608 1.1 dyoung
1609 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1610 1.1 dyoung
1611 1.1 dyoung hw->eeprom.ops.init_params(hw);
1612 1.1 dyoung
1613 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1614 1.1 dyoung status = IXGBE_ERR_EEPROM;
1615 1.1 dyoung goto out;
1616 1.1 dyoung }
1617 1.1 dyoung
1618 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1619 1.3 msaitoh
1620 1.3 msaitoh out:
1621 1.3 msaitoh return status;
1622 1.3 msaitoh }
1623 1.3 msaitoh
1624 1.3 msaitoh /**
1625 1.38 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1626 1.38 msaitoh * @hw: pointer to hardware structure
1627 1.38 msaitoh * @offset: offset of word in the EEPROM to read
1628 1.38 msaitoh * @words: number of word(s)
1629 1.38 msaitoh * @data: 16 bit word(s) from the EEPROM
1630 1.3 msaitoh *
1631 1.38 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1632 1.3 msaitoh **/
1633 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1634 1.3 msaitoh u16 words, u16 *data)
1635 1.3 msaitoh {
1636 1.3 msaitoh u32 eerd;
1637 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1638 1.3 msaitoh u32 i;
1639 1.3 msaitoh
1640 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1641 1.3 msaitoh
1642 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1643 1.3 msaitoh
1644 1.3 msaitoh if (words == 0) {
1645 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1646 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1647 1.3 msaitoh goto out;
1648 1.3 msaitoh }
1649 1.3 msaitoh
1650 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1651 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1652 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1653 1.3 msaitoh goto out;
1654 1.3 msaitoh }
1655 1.3 msaitoh
1656 1.3 msaitoh for (i = 0; i < words; i++) {
1657 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1658 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1659 1.3 msaitoh
1660 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1661 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1662 1.1 dyoung
1663 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1664 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1665 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1666 1.3 msaitoh } else {
1667 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1668 1.3 msaitoh goto out;
1669 1.1 dyoung }
1670 1.1 dyoung }
1671 1.3 msaitoh out:
1672 1.3 msaitoh return status;
1673 1.3 msaitoh }
1674 1.1 dyoung
1675 1.3 msaitoh /**
1676 1.38 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1677 1.38 msaitoh * @hw: pointer to hardware structure
1678 1.38 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1679 1.38 msaitoh *
1680 1.38 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1681 1.38 msaitoh * This function is called only when we are writing a new large buffer
1682 1.38 msaitoh * at given offset so the data would be overwritten anyway.
1683 1.3 msaitoh **/
1684 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1685 1.3 msaitoh u16 offset)
1686 1.3 msaitoh {
1687 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1688 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1689 1.3 msaitoh u16 i;
1690 1.3 msaitoh
1691 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1692 1.3 msaitoh
1693 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1694 1.3 msaitoh data[i] = i;
1695 1.1 dyoung
1696 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1697 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1698 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1699 1.3 msaitoh hw->eeprom.word_page_size = 0;
1700 1.3 msaitoh if (status != IXGBE_SUCCESS)
1701 1.3 msaitoh goto out;
1702 1.1 dyoung
1703 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1704 1.3 msaitoh if (status != IXGBE_SUCCESS)
1705 1.3 msaitoh goto out;
1706 1.1 dyoung
1707 1.3 msaitoh /*
1708 1.3 msaitoh * When writing in burst more than the actual page size
1709 1.3 msaitoh * EEPROM address wraps around current page.
1710 1.3 msaitoh */
1711 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1712 1.1 dyoung
1713 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1714 1.3 msaitoh hw->eeprom.word_page_size);
1715 1.1 dyoung out:
1716 1.1 dyoung return status;
1717 1.1 dyoung }
1718 1.1 dyoung
1719 1.1 dyoung /**
1720 1.38 msaitoh * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1721 1.38 msaitoh * @hw: pointer to hardware structure
1722 1.38 msaitoh * @offset: offset of word in the EEPROM to read
1723 1.38 msaitoh * @data: word read from the EEPROM
1724 1.1 dyoung *
1725 1.38 msaitoh * Reads a 16 bit word from the EEPROM using the EERD register.
1726 1.1 dyoung **/
1727 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1728 1.1 dyoung {
1729 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1730 1.3 msaitoh }
1731 1.3 msaitoh
1732 1.3 msaitoh /**
1733 1.38 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1734 1.38 msaitoh * @hw: pointer to hardware structure
1735 1.38 msaitoh * @offset: offset of word in the EEPROM to write
1736 1.38 msaitoh * @words: number of word(s)
1737 1.38 msaitoh * @data: word(s) write to the EEPROM
1738 1.3 msaitoh *
1739 1.38 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1740 1.3 msaitoh **/
1741 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1742 1.3 msaitoh u16 words, u16 *data)
1743 1.3 msaitoh {
1744 1.3 msaitoh u32 eewr;
1745 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1746 1.3 msaitoh u16 i;
1747 1.1 dyoung
1748 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1749 1.1 dyoung
1750 1.1 dyoung hw->eeprom.ops.init_params(hw);
1751 1.1 dyoung
1752 1.3 msaitoh if (words == 0) {
1753 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1754 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1755 1.3 msaitoh goto out;
1756 1.3 msaitoh }
1757 1.3 msaitoh
1758 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1759 1.1 dyoung status = IXGBE_ERR_EEPROM;
1760 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1761 1.1 dyoung goto out;
1762 1.1 dyoung }
1763 1.1 dyoung
1764 1.3 msaitoh for (i = 0; i < words; i++) {
1765 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1766 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1767 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1768 1.3 msaitoh
1769 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1770 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1771 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1772 1.3 msaitoh goto out;
1773 1.3 msaitoh }
1774 1.1 dyoung
1775 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1776 1.1 dyoung
1777 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1778 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1779 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1780 1.3 msaitoh goto out;
1781 1.3 msaitoh }
1782 1.3 msaitoh }
1783 1.1 dyoung
1784 1.1 dyoung out:
1785 1.1 dyoung return status;
1786 1.1 dyoung }
1787 1.1 dyoung
1788 1.1 dyoung /**
1789 1.38 msaitoh * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1790 1.38 msaitoh * @hw: pointer to hardware structure
1791 1.38 msaitoh * @offset: offset of word in the EEPROM to write
1792 1.38 msaitoh * @data: word write to the EEPROM
1793 1.1 dyoung *
1794 1.38 msaitoh * Write a 16 bit word to the EEPROM using the EEWR register.
1795 1.1 dyoung **/
1796 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1797 1.1 dyoung {
1798 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1799 1.1 dyoung }
1800 1.1 dyoung
1801 1.1 dyoung /**
1802 1.38 msaitoh * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1803 1.38 msaitoh * @hw: pointer to hardware structure
1804 1.38 msaitoh * @ee_reg: EEPROM flag for polling
1805 1.1 dyoung *
1806 1.38 msaitoh * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1807 1.38 msaitoh * read or write is done respectively.
1808 1.1 dyoung **/
1809 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1810 1.1 dyoung {
1811 1.1 dyoung u32 i;
1812 1.1 dyoung u32 reg;
1813 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1814 1.1 dyoung
1815 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1816 1.1 dyoung
1817 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1818 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1819 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1820 1.1 dyoung else
1821 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1822 1.1 dyoung
1823 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1824 1.1 dyoung status = IXGBE_SUCCESS;
1825 1.1 dyoung break;
1826 1.1 dyoung }
1827 1.1 dyoung usec_delay(5);
1828 1.1 dyoung }
1829 1.6 msaitoh
1830 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1831 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1832 1.6 msaitoh "EEPROM read/write done polling timed out");
1833 1.6 msaitoh
1834 1.1 dyoung return status;
1835 1.1 dyoung }
1836 1.1 dyoung
1837 1.1 dyoung /**
1838 1.38 msaitoh * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1839 1.38 msaitoh * @hw: pointer to hardware structure
1840 1.1 dyoung *
1841 1.38 msaitoh * Prepares EEPROM for access using bit-bang method. This function should
1842 1.38 msaitoh * be called before issuing a command to the EEPROM.
1843 1.1 dyoung **/
1844 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1845 1.1 dyoung {
1846 1.1 dyoung s32 status = IXGBE_SUCCESS;
1847 1.1 dyoung u32 eec;
1848 1.1 dyoung u32 i;
1849 1.1 dyoung
1850 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1851 1.1 dyoung
1852 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1853 1.3 msaitoh != IXGBE_SUCCESS)
1854 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1855 1.1 dyoung
1856 1.1 dyoung if (status == IXGBE_SUCCESS) {
1857 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1858 1.1 dyoung
1859 1.1 dyoung /* Request EEPROM Access */
1860 1.1 dyoung eec |= IXGBE_EEC_REQ;
1861 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1862 1.1 dyoung
1863 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1864 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1865 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1866 1.1 dyoung break;
1867 1.1 dyoung usec_delay(5);
1868 1.1 dyoung }
1869 1.1 dyoung
1870 1.1 dyoung /* Release if grant not acquired */
1871 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1872 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1873 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1874 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1875 1.1 dyoung
1876 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1877 1.1 dyoung status = IXGBE_ERR_EEPROM;
1878 1.1 dyoung }
1879 1.1 dyoung
1880 1.1 dyoung /* Setup EEPROM for Read/Write */
1881 1.1 dyoung if (status == IXGBE_SUCCESS) {
1882 1.1 dyoung /* Clear CS and SK */
1883 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1884 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1885 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1886 1.1 dyoung usec_delay(1);
1887 1.1 dyoung }
1888 1.1 dyoung }
1889 1.1 dyoung return status;
1890 1.1 dyoung }
1891 1.1 dyoung
1892 1.1 dyoung /**
1893 1.38 msaitoh * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1894 1.38 msaitoh * @hw: pointer to hardware structure
1895 1.1 dyoung *
1896 1.38 msaitoh * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1897 1.1 dyoung **/
1898 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1899 1.1 dyoung {
1900 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1901 1.1 dyoung u32 timeout = 2000;
1902 1.1 dyoung u32 i;
1903 1.1 dyoung u32 swsm;
1904 1.1 dyoung
1905 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1906 1.1 dyoung
1907 1.1 dyoung
1908 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1909 1.1 dyoung for (i = 0; i < timeout; i++) {
1910 1.1 dyoung /*
1911 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1912 1.1 dyoung * set and we have the semaphore
1913 1.1 dyoung */
1914 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1915 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1916 1.1 dyoung status = IXGBE_SUCCESS;
1917 1.1 dyoung break;
1918 1.1 dyoung }
1919 1.1 dyoung usec_delay(50);
1920 1.1 dyoung }
1921 1.1 dyoung
1922 1.3 msaitoh if (i == timeout) {
1923 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1924 1.3 msaitoh "not granted.\n");
1925 1.3 msaitoh /*
1926 1.3 msaitoh * this release is particularly important because our attempts
1927 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1928 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1929 1.3 msaitoh * bits to free the driver to make progress
1930 1.3 msaitoh */
1931 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1932 1.3 msaitoh
1933 1.3 msaitoh usec_delay(50);
1934 1.3 msaitoh /*
1935 1.3 msaitoh * one last try
1936 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1937 1.3 msaitoh * set and we have the semaphore
1938 1.3 msaitoh */
1939 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1940 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1941 1.3 msaitoh status = IXGBE_SUCCESS;
1942 1.3 msaitoh }
1943 1.3 msaitoh
1944 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1945 1.1 dyoung if (status == IXGBE_SUCCESS) {
1946 1.1 dyoung for (i = 0; i < timeout; i++) {
1947 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1948 1.1 dyoung
1949 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1950 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1951 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1952 1.1 dyoung
1953 1.1 dyoung /*
1954 1.1 dyoung * If we set the bit successfully then we got the
1955 1.1 dyoung * semaphore.
1956 1.1 dyoung */
1957 1.10 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1958 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1959 1.1 dyoung break;
1960 1.1 dyoung
1961 1.1 dyoung usec_delay(50);
1962 1.1 dyoung }
1963 1.1 dyoung
1964 1.1 dyoung /*
1965 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1966 1.1 dyoung * was not granted because we don't have access to the EEPROM
1967 1.1 dyoung */
1968 1.1 dyoung if (i >= timeout) {
1969 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1970 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1971 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1972 1.1 dyoung status = IXGBE_ERR_EEPROM;
1973 1.1 dyoung }
1974 1.1 dyoung } else {
1975 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1976 1.6 msaitoh "Software semaphore SMBI between device drivers "
1977 1.6 msaitoh "not granted.\n");
1978 1.1 dyoung }
1979 1.1 dyoung
1980 1.1 dyoung return status;
1981 1.1 dyoung }
1982 1.1 dyoung
1983 1.1 dyoung /**
1984 1.38 msaitoh * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1985 1.38 msaitoh * @hw: pointer to hardware structure
1986 1.1 dyoung *
1987 1.38 msaitoh * This function clears hardware semaphore bits.
1988 1.1 dyoung **/
1989 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1990 1.1 dyoung {
1991 1.1 dyoung u32 swsm;
1992 1.1 dyoung
1993 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1994 1.1 dyoung
1995 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1996 1.1 dyoung
1997 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1998 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1999 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2000 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2001 1.1 dyoung }
2002 1.1 dyoung
2003 1.1 dyoung /**
2004 1.38 msaitoh * ixgbe_ready_eeprom - Polls for EEPROM ready
2005 1.38 msaitoh * @hw: pointer to hardware structure
2006 1.1 dyoung **/
2007 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2008 1.1 dyoung {
2009 1.1 dyoung s32 status = IXGBE_SUCCESS;
2010 1.1 dyoung u16 i;
2011 1.1 dyoung u8 spi_stat_reg;
2012 1.1 dyoung
2013 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
2014 1.1 dyoung
2015 1.1 dyoung /*
2016 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
2017 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
2018 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
2019 1.1 dyoung * 5 milliseconds, then error out.
2020 1.1 dyoung */
2021 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2022 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2023 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
2024 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2025 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2026 1.1 dyoung break;
2027 1.1 dyoung
2028 1.1 dyoung usec_delay(5);
2029 1.1 dyoung ixgbe_standby_eeprom(hw);
2030 1.11 msaitoh }
2031 1.1 dyoung
2032 1.1 dyoung /*
2033 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2034 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
2035 1.1 dyoung */
2036 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2037 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
2038 1.1 dyoung status = IXGBE_ERR_EEPROM;
2039 1.1 dyoung }
2040 1.1 dyoung
2041 1.1 dyoung return status;
2042 1.1 dyoung }
2043 1.1 dyoung
2044 1.1 dyoung /**
2045 1.38 msaitoh * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2046 1.38 msaitoh * @hw: pointer to hardware structure
2047 1.1 dyoung **/
2048 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2049 1.1 dyoung {
2050 1.1 dyoung u32 eec;
2051 1.1 dyoung
2052 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
2053 1.1 dyoung
2054 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2055 1.1 dyoung
2056 1.1 dyoung /* Toggle CS to flush commands */
2057 1.1 dyoung eec |= IXGBE_EEC_CS;
2058 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2059 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2060 1.1 dyoung usec_delay(1);
2061 1.1 dyoung eec &= ~IXGBE_EEC_CS;
2062 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2063 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2064 1.1 dyoung usec_delay(1);
2065 1.1 dyoung }
2066 1.1 dyoung
2067 1.1 dyoung /**
2068 1.38 msaitoh * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2069 1.38 msaitoh * @hw: pointer to hardware structure
2070 1.38 msaitoh * @data: data to send to the EEPROM
2071 1.38 msaitoh * @count: number of bits to shift out
2072 1.1 dyoung **/
2073 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2074 1.3 msaitoh u16 count)
2075 1.1 dyoung {
2076 1.1 dyoung u32 eec;
2077 1.1 dyoung u32 mask;
2078 1.1 dyoung u32 i;
2079 1.1 dyoung
2080 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2081 1.1 dyoung
2082 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2083 1.1 dyoung
2084 1.1 dyoung /*
2085 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
2086 1.1 dyoung * one bit at a time. Determine the starting bit based on count
2087 1.1 dyoung */
2088 1.1 dyoung mask = 0x01 << (count - 1);
2089 1.1 dyoung
2090 1.1 dyoung for (i = 0; i < count; i++) {
2091 1.1 dyoung /*
2092 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2093 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
2094 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
2095 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
2096 1.1 dyoung * raising and then lowering the clock.
2097 1.1 dyoung */
2098 1.1 dyoung if (data & mask)
2099 1.1 dyoung eec |= IXGBE_EEC_DI;
2100 1.1 dyoung else
2101 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2102 1.1 dyoung
2103 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2104 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2105 1.1 dyoung
2106 1.1 dyoung usec_delay(1);
2107 1.1 dyoung
2108 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2109 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2110 1.1 dyoung
2111 1.1 dyoung /*
2112 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
2113 1.1 dyoung * EEPROM
2114 1.1 dyoung */
2115 1.1 dyoung mask = mask >> 1;
2116 1.11 msaitoh }
2117 1.1 dyoung
2118 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
2119 1.1 dyoung eec &= ~IXGBE_EEC_DI;
2120 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2121 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2122 1.1 dyoung }
2123 1.1 dyoung
2124 1.1 dyoung /**
2125 1.38 msaitoh * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2126 1.38 msaitoh * @hw: pointer to hardware structure
2127 1.38 msaitoh * @count: number of bits to shift
2128 1.1 dyoung **/
2129 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2130 1.1 dyoung {
2131 1.1 dyoung u32 eec;
2132 1.1 dyoung u32 i;
2133 1.1 dyoung u16 data = 0;
2134 1.1 dyoung
2135 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2136 1.1 dyoung
2137 1.1 dyoung /*
2138 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2139 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2140 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2141 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2142 1.1 dyoung * "DI" bit should always be clear.
2143 1.1 dyoung */
2144 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2145 1.1 dyoung
2146 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2147 1.1 dyoung
2148 1.1 dyoung for (i = 0; i < count; i++) {
2149 1.1 dyoung data = data << 1;
2150 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2151 1.1 dyoung
2152 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2153 1.1 dyoung
2154 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2155 1.1 dyoung if (eec & IXGBE_EEC_DO)
2156 1.1 dyoung data |= 1;
2157 1.1 dyoung
2158 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2159 1.1 dyoung }
2160 1.1 dyoung
2161 1.1 dyoung return data;
2162 1.1 dyoung }
2163 1.1 dyoung
2164 1.1 dyoung /**
2165 1.38 msaitoh * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2166 1.38 msaitoh * @hw: pointer to hardware structure
2167 1.38 msaitoh * @eec: EEC register's current value
2168 1.1 dyoung **/
2169 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2170 1.1 dyoung {
2171 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2172 1.1 dyoung
2173 1.1 dyoung /*
2174 1.1 dyoung * Raise the clock input to the EEPROM
2175 1.1 dyoung * (setting the SK bit), then delay
2176 1.1 dyoung */
2177 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2178 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2179 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2180 1.1 dyoung usec_delay(1);
2181 1.1 dyoung }
2182 1.1 dyoung
2183 1.1 dyoung /**
2184 1.38 msaitoh * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2185 1.38 msaitoh * @hw: pointer to hardware structure
2186 1.38 msaitoh * @eec: EEC's current value
2187 1.1 dyoung **/
2188 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2189 1.1 dyoung {
2190 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2191 1.1 dyoung
2192 1.1 dyoung /*
2193 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2194 1.1 dyoung * delay
2195 1.1 dyoung */
2196 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2197 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2198 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2199 1.1 dyoung usec_delay(1);
2200 1.1 dyoung }
2201 1.1 dyoung
2202 1.1 dyoung /**
2203 1.38 msaitoh * ixgbe_release_eeprom - Release EEPROM, release semaphores
2204 1.38 msaitoh * @hw: pointer to hardware structure
2205 1.1 dyoung **/
2206 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2207 1.1 dyoung {
2208 1.1 dyoung u32 eec;
2209 1.1 dyoung
2210 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2211 1.1 dyoung
2212 1.10 msaitoh eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2213 1.1 dyoung
2214 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2215 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2216 1.1 dyoung
2217 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2218 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2219 1.1 dyoung
2220 1.1 dyoung usec_delay(1);
2221 1.1 dyoung
2222 1.1 dyoung /* Stop requesting EEPROM access */
2223 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2224 1.10 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2225 1.1 dyoung
2226 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2227 1.1 dyoung
2228 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2229 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2230 1.1 dyoung }
2231 1.1 dyoung
2232 1.1 dyoung /**
2233 1.38 msaitoh * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2234 1.38 msaitoh * @hw: pointer to hardware structure
2235 1.8 msaitoh *
2236 1.38 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2237 1.1 dyoung **/
2238 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2239 1.1 dyoung {
2240 1.1 dyoung u16 i;
2241 1.1 dyoung u16 j;
2242 1.1 dyoung u16 checksum = 0;
2243 1.1 dyoung u16 length = 0;
2244 1.1 dyoung u16 pointer = 0;
2245 1.1 dyoung u16 word = 0;
2246 1.1 dyoung
2247 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2248 1.1 dyoung
2249 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2250 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2251 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2252 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2253 1.8 msaitoh return IXGBE_ERR_EEPROM;
2254 1.1 dyoung }
2255 1.1 dyoung checksum += word;
2256 1.1 dyoung }
2257 1.1 dyoung
2258 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2259 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2260 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2261 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2262 1.8 msaitoh return IXGBE_ERR_EEPROM;
2263 1.8 msaitoh }
2264 1.8 msaitoh
2265 1.8 msaitoh /* If the pointer seems invalid */
2266 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2267 1.8 msaitoh continue;
2268 1.8 msaitoh
2269 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2270 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2271 1.8 msaitoh return IXGBE_ERR_EEPROM;
2272 1.8 msaitoh }
2273 1.8 msaitoh
2274 1.8 msaitoh if (length == 0xFFFF || length == 0)
2275 1.8 msaitoh continue;
2276 1.1 dyoung
2277 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2278 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2279 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2280 1.8 msaitoh return IXGBE_ERR_EEPROM;
2281 1.1 dyoung }
2282 1.8 msaitoh checksum += word;
2283 1.1 dyoung }
2284 1.1 dyoung }
2285 1.1 dyoung
2286 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2287 1.1 dyoung
2288 1.8 msaitoh return (s32)checksum;
2289 1.1 dyoung }
2290 1.1 dyoung
2291 1.1 dyoung /**
2292 1.38 msaitoh * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2293 1.38 msaitoh * @hw: pointer to hardware structure
2294 1.38 msaitoh * @checksum_val: calculated checksum
2295 1.1 dyoung *
2296 1.38 msaitoh * Performs checksum calculation and validates the EEPROM checksum. If the
2297 1.38 msaitoh * caller does not need checksum_val, the value can be NULL.
2298 1.1 dyoung **/
2299 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2300 1.3 msaitoh u16 *checksum_val)
2301 1.1 dyoung {
2302 1.1 dyoung s32 status;
2303 1.1 dyoung u16 checksum;
2304 1.1 dyoung u16 read_checksum = 0;
2305 1.1 dyoung
2306 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2307 1.1 dyoung
2308 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2309 1.1 dyoung * not continue or we could be in for a very long wait while every
2310 1.1 dyoung * EEPROM read fails
2311 1.1 dyoung */
2312 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2313 1.8 msaitoh if (status) {
2314 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2315 1.8 msaitoh return status;
2316 1.8 msaitoh }
2317 1.1 dyoung
2318 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2319 1.8 msaitoh if (status < 0)
2320 1.8 msaitoh return status;
2321 1.1 dyoung
2322 1.8 msaitoh checksum = (u16)(status & 0xffff);
2323 1.1 dyoung
2324 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2325 1.8 msaitoh if (status) {
2326 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2327 1.8 msaitoh return status;
2328 1.1 dyoung }
2329 1.1 dyoung
2330 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2331 1.8 msaitoh * calculated checksum
2332 1.8 msaitoh */
2333 1.8 msaitoh if (read_checksum != checksum)
2334 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2335 1.8 msaitoh
2336 1.8 msaitoh /* If the user cares, return the calculated checksum */
2337 1.8 msaitoh if (checksum_val)
2338 1.8 msaitoh *checksum_val = checksum;
2339 1.8 msaitoh
2340 1.1 dyoung return status;
2341 1.1 dyoung }
2342 1.1 dyoung
2343 1.1 dyoung /**
2344 1.38 msaitoh * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2345 1.38 msaitoh * @hw: pointer to hardware structure
2346 1.1 dyoung **/
2347 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2348 1.1 dyoung {
2349 1.1 dyoung s32 status;
2350 1.1 dyoung u16 checksum;
2351 1.1 dyoung
2352 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2353 1.1 dyoung
2354 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2355 1.1 dyoung * not continue or we could be in for a very long wait while every
2356 1.1 dyoung * EEPROM read fails
2357 1.1 dyoung */
2358 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2359 1.8 msaitoh if (status) {
2360 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2361 1.8 msaitoh return status;
2362 1.1 dyoung }
2363 1.1 dyoung
2364 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2365 1.8 msaitoh if (status < 0)
2366 1.8 msaitoh return status;
2367 1.8 msaitoh
2368 1.8 msaitoh checksum = (u16)(status & 0xffff);
2369 1.8 msaitoh
2370 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2371 1.8 msaitoh
2372 1.1 dyoung return status;
2373 1.1 dyoung }
2374 1.1 dyoung
2375 1.1 dyoung /**
2376 1.38 msaitoh * ixgbe_validate_mac_addr - Validate MAC address
2377 1.38 msaitoh * @mac_addr: pointer to MAC address.
2378 1.1 dyoung *
2379 1.38 msaitoh * Tests a MAC address to ensure it is a valid Individual Address.
2380 1.1 dyoung **/
2381 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2382 1.1 dyoung {
2383 1.1 dyoung s32 status = IXGBE_SUCCESS;
2384 1.1 dyoung
2385 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2386 1.1 dyoung
2387 1.1 dyoung /* Make sure it is not a multicast address */
2388 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2389 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2390 1.1 dyoung /* Not a broadcast address */
2391 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2392 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2393 1.1 dyoung /* Reject the zero address */
2394 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2395 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2396 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2397 1.1 dyoung }
2398 1.1 dyoung return status;
2399 1.1 dyoung }
2400 1.1 dyoung
2401 1.1 dyoung /**
2402 1.38 msaitoh * ixgbe_set_rar_generic - Set Rx address register
2403 1.38 msaitoh * @hw: pointer to hardware structure
2404 1.38 msaitoh * @index: Receive address register to write
2405 1.38 msaitoh * @addr: Address to put into receive address register
2406 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index
2407 1.38 msaitoh * @enable_addr: set flag that address is active
2408 1.1 dyoung *
2409 1.38 msaitoh * Puts an ethernet address into a receive address register.
2410 1.1 dyoung **/
2411 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2412 1.3 msaitoh u32 enable_addr)
2413 1.1 dyoung {
2414 1.1 dyoung u32 rar_low, rar_high;
2415 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2416 1.1 dyoung
2417 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2418 1.1 dyoung
2419 1.1 dyoung /* Make sure we are using a valid rar index range */
2420 1.1 dyoung if (index >= rar_entries) {
2421 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2422 1.6 msaitoh "RAR index %d is out of range.\n", index);
2423 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2424 1.1 dyoung }
2425 1.1 dyoung
2426 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2427 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2428 1.1 dyoung
2429 1.1 dyoung /*
2430 1.1 dyoung * HW expects these in little endian so we reverse the byte
2431 1.1 dyoung * order from network order (big endian) to little endian
2432 1.1 dyoung */
2433 1.1 dyoung rar_low = ((u32)addr[0] |
2434 1.3 msaitoh ((u32)addr[1] << 8) |
2435 1.3 msaitoh ((u32)addr[2] << 16) |
2436 1.3 msaitoh ((u32)addr[3] << 24));
2437 1.1 dyoung /*
2438 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2439 1.1 dyoung * so save everything except the lower 16 bits that hold part
2440 1.1 dyoung * of the address and the address valid bit.
2441 1.1 dyoung */
2442 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2443 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2444 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2445 1.1 dyoung
2446 1.1 dyoung if (enable_addr != 0)
2447 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2448 1.1 dyoung
2449 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2450 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2451 1.1 dyoung
2452 1.1 dyoung return IXGBE_SUCCESS;
2453 1.1 dyoung }
2454 1.1 dyoung
2455 1.1 dyoung /**
2456 1.38 msaitoh * ixgbe_clear_rar_generic - Remove Rx address register
2457 1.38 msaitoh * @hw: pointer to hardware structure
2458 1.38 msaitoh * @index: Receive address register to write
2459 1.1 dyoung *
2460 1.38 msaitoh * Clears an ethernet address from a receive address register.
2461 1.1 dyoung **/
2462 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2463 1.1 dyoung {
2464 1.1 dyoung u32 rar_high;
2465 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2466 1.1 dyoung
2467 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2468 1.1 dyoung
2469 1.1 dyoung /* Make sure we are using a valid rar index range */
2470 1.1 dyoung if (index >= rar_entries) {
2471 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2472 1.6 msaitoh "RAR index %d is out of range.\n", index);
2473 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2474 1.1 dyoung }
2475 1.1 dyoung
2476 1.1 dyoung /*
2477 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2478 1.1 dyoung * so save everything except the lower 16 bits that hold part
2479 1.1 dyoung * of the address and the address valid bit.
2480 1.1 dyoung */
2481 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2482 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2483 1.1 dyoung
2484 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2485 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2486 1.1 dyoung
2487 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2488 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2489 1.1 dyoung
2490 1.1 dyoung return IXGBE_SUCCESS;
2491 1.1 dyoung }
2492 1.1 dyoung
2493 1.1 dyoung /**
2494 1.38 msaitoh * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2495 1.38 msaitoh * @hw: pointer to hardware structure
2496 1.1 dyoung *
2497 1.38 msaitoh * Places the MAC address in receive address register 0 and clears the rest
2498 1.38 msaitoh * of the receive address registers. Clears the multicast table. Assumes
2499 1.38 msaitoh * the receiver is in reset when the routine is called.
2500 1.1 dyoung **/
2501 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2502 1.1 dyoung {
2503 1.1 dyoung u32 i;
2504 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2505 1.1 dyoung
2506 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2507 1.1 dyoung
2508 1.1 dyoung /*
2509 1.1 dyoung * If the current mac address is valid, assume it is a software override
2510 1.1 dyoung * to the permanent address.
2511 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2512 1.1 dyoung */
2513 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2514 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2515 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2516 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2517 1.1 dyoung
2518 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2519 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2520 1.3 msaitoh hw->mac.addr[2]);
2521 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2522 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2523 1.1 dyoung } else {
2524 1.1 dyoung /* Setup the receive address. */
2525 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2526 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2527 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2528 1.3 msaitoh hw->mac.addr[2]);
2529 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2530 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2531 1.1 dyoung
2532 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2533 1.14 msaitoh }
2534 1.14 msaitoh
2535 1.14 msaitoh /* clear VMDq pool/queue selection for RAR 0 */
2536 1.14 msaitoh hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2537 1.1 dyoung
2538 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2539 1.1 dyoung
2540 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2541 1.1 dyoung
2542 1.1 dyoung /* Zero out the other receive addresses. */
2543 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2544 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2545 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2546 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2547 1.1 dyoung }
2548 1.1 dyoung
2549 1.1 dyoung /* Clear the MTA */
2550 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2551 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2552 1.1 dyoung
2553 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2554 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2555 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2556 1.1 dyoung
2557 1.1 dyoung ixgbe_init_uta_tables(hw);
2558 1.1 dyoung
2559 1.1 dyoung return IXGBE_SUCCESS;
2560 1.1 dyoung }
2561 1.1 dyoung
2562 1.1 dyoung /**
2563 1.38 msaitoh * ixgbe_add_uc_addr - Adds a secondary unicast address.
2564 1.38 msaitoh * @hw: pointer to hardware structure
2565 1.38 msaitoh * @addr: new address
2566 1.38 msaitoh * @vmdq: VMDq "set" or "pool" index
2567 1.1 dyoung *
2568 1.38 msaitoh * Adds it to unused receive address register or goes into promiscuous mode.
2569 1.1 dyoung **/
2570 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2571 1.1 dyoung {
2572 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2573 1.1 dyoung u32 rar;
2574 1.1 dyoung
2575 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2576 1.1 dyoung
2577 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2578 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2579 1.1 dyoung
2580 1.1 dyoung /*
2581 1.1 dyoung * Place this address in the RAR if there is room,
2582 1.1 dyoung * else put the controller into promiscuous mode
2583 1.1 dyoung */
2584 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2585 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2586 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2587 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2588 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2589 1.1 dyoung } else {
2590 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2591 1.1 dyoung }
2592 1.1 dyoung
2593 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2594 1.1 dyoung }
2595 1.1 dyoung
2596 1.1 dyoung /**
2597 1.38 msaitoh * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2598 1.38 msaitoh * @hw: pointer to hardware structure
2599 1.38 msaitoh * @addr_list: the list of new addresses
2600 1.38 msaitoh * @addr_count: number of addresses
2601 1.38 msaitoh * @next: iterator function to walk the address list
2602 1.38 msaitoh *
2603 1.38 msaitoh * The given list replaces any existing list. Clears the secondary addrs from
2604 1.38 msaitoh * receive address registers. Uses unused receive address registers for the
2605 1.38 msaitoh * first secondary addresses, and falls back to promiscuous mode as needed.
2606 1.1 dyoung *
2607 1.38 msaitoh * Drivers using secondary unicast addresses must set user_set_promisc when
2608 1.38 msaitoh * manually putting the device into promiscuous mode.
2609 1.1 dyoung **/
2610 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2611 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2612 1.1 dyoung {
2613 1.1 dyoung u8 *addr;
2614 1.1 dyoung u32 i;
2615 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2616 1.1 dyoung u32 uc_addr_in_use;
2617 1.1 dyoung u32 fctrl;
2618 1.1 dyoung u32 vmdq;
2619 1.1 dyoung
2620 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2621 1.1 dyoung
2622 1.1 dyoung /*
2623 1.1 dyoung * Clear accounting of old secondary address list,
2624 1.1 dyoung * don't count RAR[0]
2625 1.1 dyoung */
2626 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2627 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2628 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2629 1.1 dyoung
2630 1.1 dyoung /* Zero out the other receive addresses */
2631 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2632 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2633 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2634 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2635 1.1 dyoung }
2636 1.1 dyoung
2637 1.1 dyoung /* Add the new addresses */
2638 1.1 dyoung for (i = 0; i < addr_count; i++) {
2639 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2640 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2641 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2642 1.1 dyoung }
2643 1.1 dyoung
2644 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2645 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2646 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2647 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2648 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2649 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2650 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2651 1.1 dyoung }
2652 1.1 dyoung } else {
2653 1.1 dyoung /* only disable if set by overflow, not by user */
2654 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2655 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2656 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2657 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2658 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2659 1.1 dyoung }
2660 1.1 dyoung }
2661 1.1 dyoung
2662 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2663 1.1 dyoung return IXGBE_SUCCESS;
2664 1.1 dyoung }
2665 1.1 dyoung
2666 1.1 dyoung /**
2667 1.38 msaitoh * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2668 1.38 msaitoh * @hw: pointer to hardware structure
2669 1.38 msaitoh * @mc_addr: the multicast address
2670 1.38 msaitoh *
2671 1.38 msaitoh * Extracts the 12 bits, from a multicast address, to determine which
2672 1.38 msaitoh * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2673 1.38 msaitoh * incoming rx multicast addresses, to determine the bit-vector to check in
2674 1.38 msaitoh * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2675 1.38 msaitoh * by the MO field of the MCSTCTRL. The MO field is set during initialization
2676 1.38 msaitoh * to mc_filter_type.
2677 1.1 dyoung **/
2678 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2679 1.1 dyoung {
2680 1.1 dyoung u32 vector = 0;
2681 1.1 dyoung
2682 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2683 1.1 dyoung
2684 1.1 dyoung switch (hw->mac.mc_filter_type) {
2685 1.1 dyoung case 0: /* use bits [47:36] of the address */
2686 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2687 1.1 dyoung break;
2688 1.1 dyoung case 1: /* use bits [46:35] of the address */
2689 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2690 1.1 dyoung break;
2691 1.1 dyoung case 2: /* use bits [45:34] of the address */
2692 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2693 1.1 dyoung break;
2694 1.1 dyoung case 3: /* use bits [43:32] of the address */
2695 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2696 1.1 dyoung break;
2697 1.1 dyoung default: /* Invalid mc_filter_type */
2698 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2699 1.1 dyoung ASSERT(0);
2700 1.1 dyoung break;
2701 1.1 dyoung }
2702 1.1 dyoung
2703 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2704 1.1 dyoung vector &= 0xFFF;
2705 1.1 dyoung return vector;
2706 1.1 dyoung }
2707 1.1 dyoung
2708 1.1 dyoung /**
2709 1.38 msaitoh * ixgbe_set_mta - Set bit-vector in multicast table
2710 1.38 msaitoh * @hw: pointer to hardware structure
2711 1.38 msaitoh * @mc_addr: Multicast address
2712 1.1 dyoung *
2713 1.38 msaitoh * Sets the bit-vector in the multicast table.
2714 1.1 dyoung **/
2715 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2716 1.1 dyoung {
2717 1.1 dyoung u32 vector;
2718 1.1 dyoung u32 vector_bit;
2719 1.1 dyoung u32 vector_reg;
2720 1.1 dyoung
2721 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2722 1.1 dyoung
2723 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2724 1.1 dyoung
2725 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2726 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2727 1.1 dyoung
2728 1.1 dyoung /*
2729 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2730 1.1 dyoung * like an array of 4096 bits. We want to set bit
2731 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2732 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2733 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2734 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2735 1.1 dyoung * the value.
2736 1.1 dyoung */
2737 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2738 1.1 dyoung vector_bit = vector & 0x1F;
2739 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2740 1.1 dyoung }
2741 1.1 dyoung
2742 1.1 dyoung /**
2743 1.38 msaitoh * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2744 1.38 msaitoh * @hw: pointer to hardware structure
2745 1.38 msaitoh * @mc_addr_list: the list of new multicast addresses
2746 1.38 msaitoh * @mc_addr_count: number of addresses
2747 1.38 msaitoh * @next: iterator function to walk the multicast address list
2748 1.38 msaitoh * @clear: flag, when set clears the table beforehand
2749 1.1 dyoung *
2750 1.38 msaitoh * When the clear flag is set, the given list replaces any existing list.
2751 1.38 msaitoh * Hashes the given addresses into the multicast table.
2752 1.1 dyoung **/
2753 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2754 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2755 1.3 msaitoh bool clear)
2756 1.1 dyoung {
2757 1.1 dyoung u32 i;
2758 1.1 dyoung u32 vmdq;
2759 1.1 dyoung
2760 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2761 1.1 dyoung
2762 1.1 dyoung /*
2763 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2764 1.1 dyoung * use.
2765 1.1 dyoung */
2766 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2767 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2768 1.1 dyoung
2769 1.1 dyoung /* Clear mta_shadow */
2770 1.3 msaitoh if (clear) {
2771 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2772 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2773 1.3 msaitoh }
2774 1.1 dyoung
2775 1.1 dyoung /* Update mta_shadow */
2776 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2777 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2778 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2779 1.1 dyoung }
2780 1.1 dyoung
2781 1.1 dyoung /* Enable mta */
2782 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2783 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2784 1.1 dyoung hw->mac.mta_shadow[i]);
2785 1.1 dyoung
2786 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2787 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2788 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2789 1.1 dyoung
2790 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2791 1.1 dyoung return IXGBE_SUCCESS;
2792 1.1 dyoung }
2793 1.1 dyoung
2794 1.1 dyoung /**
2795 1.38 msaitoh * ixgbe_enable_mc_generic - Enable multicast address in RAR
2796 1.38 msaitoh * @hw: pointer to hardware structure
2797 1.1 dyoung *
2798 1.38 msaitoh * Enables multicast address in RAR and the use of the multicast hash table.
2799 1.1 dyoung **/
2800 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2801 1.1 dyoung {
2802 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2803 1.1 dyoung
2804 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2805 1.1 dyoung
2806 1.1 dyoung if (a->mta_in_use > 0)
2807 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2808 1.3 msaitoh hw->mac.mc_filter_type);
2809 1.1 dyoung
2810 1.1 dyoung return IXGBE_SUCCESS;
2811 1.1 dyoung }
2812 1.1 dyoung
2813 1.1 dyoung /**
2814 1.38 msaitoh * ixgbe_disable_mc_generic - Disable multicast address in RAR
2815 1.38 msaitoh * @hw: pointer to hardware structure
2816 1.1 dyoung *
2817 1.38 msaitoh * Disables multicast address in RAR and the use of the multicast hash table.
2818 1.1 dyoung **/
2819 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2820 1.1 dyoung {
2821 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2822 1.1 dyoung
2823 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2824 1.1 dyoung
2825 1.1 dyoung if (a->mta_in_use > 0)
2826 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2827 1.1 dyoung
2828 1.1 dyoung return IXGBE_SUCCESS;
2829 1.1 dyoung }
2830 1.1 dyoung
2831 1.1 dyoung /**
2832 1.38 msaitoh * ixgbe_fc_enable_generic - Enable flow control
2833 1.38 msaitoh * @hw: pointer to hardware structure
2834 1.1 dyoung *
2835 1.38 msaitoh * Enable flow control according to the current settings.
2836 1.1 dyoung **/
2837 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2838 1.1 dyoung {
2839 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2840 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2841 1.1 dyoung u32 reg;
2842 1.1 dyoung u32 fcrtl, fcrth;
2843 1.4 msaitoh int i;
2844 1.1 dyoung
2845 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2846 1.1 dyoung
2847 1.4 msaitoh /* Validate the water mark configuration */
2848 1.4 msaitoh if (!hw->fc.pause_time) {
2849 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2850 1.4 msaitoh goto out;
2851 1.4 msaitoh }
2852 1.4 msaitoh
2853 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2854 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2855 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2856 1.4 msaitoh hw->fc.high_water[i]) {
2857 1.4 msaitoh if (!hw->fc.low_water[i] ||
2858 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2859 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2860 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2861 1.4 msaitoh goto out;
2862 1.4 msaitoh }
2863 1.4 msaitoh }
2864 1.4 msaitoh }
2865 1.4 msaitoh
2866 1.1 dyoung /* Negotiate the fc mode to use */
2867 1.14 msaitoh hw->mac.ops.fc_autoneg(hw);
2868 1.1 dyoung
2869 1.1 dyoung /* Disable any previous flow control settings */
2870 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2871 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2872 1.1 dyoung
2873 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2874 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2875 1.1 dyoung
2876 1.1 dyoung /*
2877 1.1 dyoung * The possible values of fc.current_mode are:
2878 1.1 dyoung * 0: Flow control is completely disabled
2879 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2880 1.1 dyoung * but not send pause frames).
2881 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2882 1.1 dyoung * we do not support receiving pause frames).
2883 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2884 1.1 dyoung * other: Invalid.
2885 1.1 dyoung */
2886 1.1 dyoung switch (hw->fc.current_mode) {
2887 1.1 dyoung case ixgbe_fc_none:
2888 1.1 dyoung /*
2889 1.1 dyoung * Flow control is disabled by software override or autoneg.
2890 1.1 dyoung * The code below will actually disable it in the HW.
2891 1.1 dyoung */
2892 1.1 dyoung break;
2893 1.1 dyoung case ixgbe_fc_rx_pause:
2894 1.1 dyoung /*
2895 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2896 1.1 dyoung * disabled by software override. Since there really
2897 1.1 dyoung * isn't a way to advertise that we are capable of RX
2898 1.1 dyoung * Pause ONLY, we will advertise that we support both
2899 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2900 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2901 1.1 dyoung */
2902 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2903 1.1 dyoung break;
2904 1.1 dyoung case ixgbe_fc_tx_pause:
2905 1.1 dyoung /*
2906 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2907 1.1 dyoung * disabled by software override.
2908 1.1 dyoung */
2909 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2910 1.1 dyoung break;
2911 1.1 dyoung case ixgbe_fc_full:
2912 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2913 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2914 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2915 1.1 dyoung break;
2916 1.1 dyoung default:
2917 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2918 1.6 msaitoh "Flow control param set incorrectly\n");
2919 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2920 1.1 dyoung goto out;
2921 1.1 dyoung break;
2922 1.1 dyoung }
2923 1.1 dyoung
2924 1.1 dyoung /* Set 802.3x based flow control settings. */
2925 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2926 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2927 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2928 1.1 dyoung
2929 1.1 dyoung
2930 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2931 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2932 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2933 1.4 msaitoh hw->fc.high_water[i]) {
2934 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2935 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2936 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2937 1.4 msaitoh } else {
2938 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2939 1.4 msaitoh /*
2940 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2941 1.4 msaitoh * switch is enabled we must set the high water mark
2942 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2943 1.8 msaitoh * the Tx switch to function even under heavy Rx
2944 1.8 msaitoh * workloads.
2945 1.4 msaitoh */
2946 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2947 1.4 msaitoh }
2948 1.4 msaitoh
2949 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2950 1.1 dyoung }
2951 1.1 dyoung
2952 1.1 dyoung /* Configure pause time (2 TCs per register) */
2953 1.24 msaitoh reg = (u32)hw->fc.pause_time * 0x00010001;
2954 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2955 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2956 1.1 dyoung
2957 1.4 msaitoh /* Configure flow control refresh threshold value */
2958 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2959 1.1 dyoung
2960 1.1 dyoung out:
2961 1.1 dyoung return ret_val;
2962 1.1 dyoung }
2963 1.1 dyoung
2964 1.1 dyoung /**
2965 1.38 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2966 1.38 msaitoh * @hw: pointer to hardware structure
2967 1.38 msaitoh * @adv_reg: flow control advertised settings
2968 1.38 msaitoh * @lp_reg: link partner's flow control settings
2969 1.38 msaitoh * @adv_sym: symmetric pause bit in advertisement
2970 1.38 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2971 1.38 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2972 1.38 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2973 1.1 dyoung *
2974 1.38 msaitoh * Find the intersection between advertised settings and link partner's
2975 1.38 msaitoh * advertised settings
2976 1.1 dyoung **/
2977 1.14 msaitoh s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2978 1.14 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2979 1.1 dyoung {
2980 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2981 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2982 1.6 msaitoh "Local or link partner's advertised flow control "
2983 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2984 1.6 msaitoh adv_reg, lp_reg);
2985 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2986 1.6 msaitoh }
2987 1.1 dyoung
2988 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2989 1.4 msaitoh /*
2990 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2991 1.4 msaitoh * of pause frames. In this case, we had to advertise
2992 1.4 msaitoh * FULL flow control because we could not advertise RX
2993 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2994 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2995 1.4 msaitoh */
2996 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2997 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2998 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2999 1.4 msaitoh } else {
3000 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3001 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3002 1.4 msaitoh }
3003 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3004 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3005 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
3006 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3007 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3008 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3009 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
3010 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3011 1.4 msaitoh } else {
3012 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
3013 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
3014 1.4 msaitoh }
3015 1.4 msaitoh return IXGBE_SUCCESS;
3016 1.4 msaitoh }
3017 1.1 dyoung
3018 1.4 msaitoh /**
3019 1.38 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3020 1.38 msaitoh * @hw: pointer to hardware structure
3021 1.4 msaitoh *
3022 1.38 msaitoh * Enable flow control according on 1 gig fiber.
3023 1.4 msaitoh **/
3024 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3025 1.4 msaitoh {
3026 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3027 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3028 1.1 dyoung
3029 1.1 dyoung /*
3030 1.4 msaitoh * On multispeed fiber at 1g, bail out if
3031 1.4 msaitoh * - link is up but AN did not complete, or if
3032 1.4 msaitoh * - link is up and AN completed but timed out
3033 1.1 dyoung */
3034 1.4 msaitoh
3035 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3036 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3037 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3038 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3039 1.1 dyoung goto out;
3040 1.6 msaitoh }
3041 1.1 dyoung
3042 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3043 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3044 1.1 dyoung
3045 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3046 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3047 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
3048 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
3049 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
3050 1.1 dyoung
3051 1.1 dyoung out:
3052 1.1 dyoung return ret_val;
3053 1.1 dyoung }
3054 1.1 dyoung
3055 1.1 dyoung /**
3056 1.38 msaitoh * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3057 1.38 msaitoh * @hw: pointer to hardware structure
3058 1.1 dyoung *
3059 1.38 msaitoh * Enable flow control according to IEEE clause 37.
3060 1.1 dyoung **/
3061 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3062 1.1 dyoung {
3063 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
3064 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3065 1.1 dyoung
3066 1.1 dyoung /*
3067 1.1 dyoung * On backplane, bail out if
3068 1.1 dyoung * - backplane autoneg was not completed, or if
3069 1.1 dyoung * - we are 82599 and link partner is not AN enabled
3070 1.1 dyoung */
3071 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3072 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3073 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
3074 1.1 dyoung goto out;
3075 1.6 msaitoh }
3076 1.1 dyoung
3077 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
3078 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3079 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3080 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
3081 1.1 dyoung goto out;
3082 1.6 msaitoh }
3083 1.1 dyoung }
3084 1.1 dyoung /*
3085 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
3086 1.1 dyoung * local flow control settings accordingly
3087 1.1 dyoung */
3088 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3089 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3090 1.1 dyoung
3091 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3092 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3093 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3094 1.1 dyoung
3095 1.1 dyoung out:
3096 1.1 dyoung return ret_val;
3097 1.1 dyoung }
3098 1.1 dyoung
3099 1.1 dyoung /**
3100 1.38 msaitoh * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3101 1.38 msaitoh * @hw: pointer to hardware structure
3102 1.1 dyoung *
3103 1.38 msaitoh * Enable flow control according to IEEE clause 37.
3104 1.1 dyoung **/
3105 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3106 1.1 dyoung {
3107 1.1 dyoung u16 technology_ability_reg = 0;
3108 1.1 dyoung u16 lp_technology_ability_reg = 0;
3109 1.1 dyoung
3110 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3111 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3112 1.1 dyoung &technology_ability_reg);
3113 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3114 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3115 1.1 dyoung &lp_technology_ability_reg);
3116 1.1 dyoung
3117 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3118 1.1 dyoung (u32)lp_technology_ability_reg,
3119 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3120 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3121 1.1 dyoung }
3122 1.1 dyoung
3123 1.1 dyoung /**
3124 1.38 msaitoh * ixgbe_fc_autoneg - Configure flow control
3125 1.38 msaitoh * @hw: pointer to hardware structure
3126 1.1 dyoung *
3127 1.38 msaitoh * Compares our advertised flow control capabilities to those advertised by
3128 1.38 msaitoh * our link partner, and determines the proper flow control mode to use.
3129 1.1 dyoung **/
3130 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3131 1.1 dyoung {
3132 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3133 1.4 msaitoh ixgbe_link_speed speed;
3134 1.4 msaitoh bool link_up;
3135 1.1 dyoung
3136 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3137 1.1 dyoung
3138 1.1 dyoung /*
3139 1.4 msaitoh * AN should have completed when the cable was plugged in.
3140 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3141 1.4 msaitoh * - FC autoneg is disabled, or if
3142 1.4 msaitoh * - link is not up.
3143 1.1 dyoung */
3144 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3145 1.39 msaitoh /* TODO: This should be just an informative log */
3146 1.39 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3147 1.39 msaitoh "Flow control autoneg is disabled");
3148 1.1 dyoung goto out;
3149 1.6 msaitoh }
3150 1.1 dyoung
3151 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3152 1.6 msaitoh if (!link_up) {
3153 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3154 1.1 dyoung goto out;
3155 1.6 msaitoh }
3156 1.1 dyoung
3157 1.1 dyoung switch (hw->phy.media_type) {
3158 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3159 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3160 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3161 1.1 dyoung case ixgbe_media_type_fiber:
3162 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3163 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3164 1.4 msaitoh break;
3165 1.4 msaitoh
3166 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3167 1.1 dyoung case ixgbe_media_type_backplane:
3168 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3169 1.1 dyoung break;
3170 1.1 dyoung
3171 1.4 msaitoh /* Autoneg flow control on copper adapters */
3172 1.1 dyoung case ixgbe_media_type_copper:
3173 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3174 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3175 1.1 dyoung break;
3176 1.1 dyoung
3177 1.1 dyoung default:
3178 1.1 dyoung break;
3179 1.1 dyoung }
3180 1.1 dyoung
3181 1.4 msaitoh out:
3182 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3183 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3184 1.4 msaitoh } else {
3185 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3186 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3187 1.3 msaitoh }
3188 1.1 dyoung }
3189 1.1 dyoung
3190 1.6 msaitoh /*
3191 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3192 1.6 msaitoh * @hw: pointer to hardware structure
3193 1.6 msaitoh *
3194 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3195 1.6 msaitoh *
3196 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3197 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3198 1.6 msaitoh * 800 = 80 millisec.
3199 1.6 msaitoh */
3200 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3201 1.6 msaitoh {
3202 1.6 msaitoh s16 devctl2;
3203 1.6 msaitoh u32 pollcnt;
3204 1.6 msaitoh
3205 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3206 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3207 1.6 msaitoh
3208 1.6 msaitoh switch (devctl2) {
3209 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3210 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3211 1.6 msaitoh break;
3212 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3213 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3214 1.6 msaitoh break;
3215 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3216 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3217 1.6 msaitoh break;
3218 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3219 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3220 1.6 msaitoh break;
3221 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3222 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3223 1.6 msaitoh break;
3224 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3225 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3226 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3227 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3228 1.6 msaitoh default:
3229 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3230 1.6 msaitoh break;
3231 1.6 msaitoh }
3232 1.6 msaitoh
3233 1.6 msaitoh /* add 10% to spec maximum */
3234 1.6 msaitoh return (pollcnt * 11) / 10;
3235 1.6 msaitoh }
3236 1.6 msaitoh
3237 1.1 dyoung /**
3238 1.45 msaitoh * ixgbe_disable_pcie_primary - Disable PCI-express primary access
3239 1.38 msaitoh * @hw: pointer to hardware structure
3240 1.1 dyoung *
3241 1.45 msaitoh * Disables PCI-Express primary access and verifies there are no pending
3242 1.45 msaitoh * requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
3243 1.45 msaitoh * bit hasn't caused the primary requests to be disabled, else IXGBE_SUCCESS
3244 1.45 msaitoh * is returned signifying primary requests disabled.
3245 1.1 dyoung **/
3246 1.45 msaitoh s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
3247 1.1 dyoung {
3248 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3249 1.6 msaitoh u32 i, poll;
3250 1.8 msaitoh u16 value;
3251 1.1 dyoung
3252 1.45 msaitoh DEBUGFUNC("ixgbe_disable_pcie_primary");
3253 1.1 dyoung
3254 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3255 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3256 1.3 msaitoh
3257 1.45 msaitoh /* Exit if primary requests are blocked */
3258 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3259 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3260 1.1 dyoung goto out;
3261 1.1 dyoung
3262 1.45 msaitoh /* Poll for primary request bit to clear */
3263 1.45 msaitoh for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
3264 1.3 msaitoh usec_delay(100);
3265 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3266 1.3 msaitoh goto out;
3267 1.1 dyoung }
3268 1.1 dyoung
3269 1.3 msaitoh /*
3270 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3271 1.45 msaitoh * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine
3272 1.45 msaitoh * of this need. The first reset prevents new primary requests from
3273 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3274 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3275 1.3 msaitoh * again to clear out any effects they may have had on our device.
3276 1.3 msaitoh */
3277 1.45 msaitoh DEBUGOUT("GIO Primary Disable bit didn't clear - requesting resets\n");
3278 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3279 1.1 dyoung
3280 1.10 msaitoh if (hw->mac.type >= ixgbe_mac_X550)
3281 1.10 msaitoh goto out;
3282 1.10 msaitoh
3283 1.1 dyoung /*
3284 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3285 1.1 dyoung * transactions pending.
3286 1.1 dyoung */
3287 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3288 1.6 msaitoh for (i = 0; i < poll; i++) {
3289 1.3 msaitoh usec_delay(100);
3290 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3291 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3292 1.8 msaitoh goto out;
3293 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3294 1.3 msaitoh goto out;
3295 1.1 dyoung }
3296 1.1 dyoung
3297 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3298 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3299 1.45 msaitoh status = IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
3300 1.1 dyoung
3301 1.1 dyoung out:
3302 1.1 dyoung return status;
3303 1.1 dyoung }
3304 1.1 dyoung
3305 1.1 dyoung /**
3306 1.38 msaitoh * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3307 1.38 msaitoh * @hw: pointer to hardware structure
3308 1.38 msaitoh * @mask: Mask to specify which semaphore to acquire
3309 1.1 dyoung *
3310 1.38 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3311 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash)
3312 1.1 dyoung **/
3313 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3314 1.1 dyoung {
3315 1.6 msaitoh u32 gssr = 0;
3316 1.1 dyoung u32 swmask = mask;
3317 1.1 dyoung u32 fwmask = mask << 5;
3318 1.6 msaitoh u32 timeout = 200;
3319 1.6 msaitoh u32 i;
3320 1.1 dyoung
3321 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3322 1.1 dyoung
3323 1.6 msaitoh for (i = 0; i < timeout; i++) {
3324 1.1 dyoung /*
3325 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3326 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3327 1.1 dyoung */
3328 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3329 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3330 1.1 dyoung
3331 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3332 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3333 1.6 msaitoh gssr |= swmask;
3334 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3335 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3336 1.6 msaitoh return IXGBE_SUCCESS;
3337 1.6 msaitoh } else {
3338 1.6 msaitoh /* Resource is currently in use by FW or SW */
3339 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3340 1.6 msaitoh msec_delay(5);
3341 1.6 msaitoh }
3342 1.1 dyoung }
3343 1.1 dyoung
3344 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3345 1.6 msaitoh if (gssr & (fwmask | swmask))
3346 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3347 1.1 dyoung
3348 1.6 msaitoh msec_delay(5);
3349 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3350 1.1 dyoung }
3351 1.1 dyoung
3352 1.1 dyoung /**
3353 1.38 msaitoh * ixgbe_release_swfw_sync - Release SWFW semaphore
3354 1.38 msaitoh * @hw: pointer to hardware structure
3355 1.38 msaitoh * @mask: Mask to specify which semaphore to release
3356 1.1 dyoung *
3357 1.38 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3358 1.38 msaitoh * function (CSR, PHY0, PHY1, EEPROM, Flash)
3359 1.1 dyoung **/
3360 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3361 1.1 dyoung {
3362 1.1 dyoung u32 gssr;
3363 1.1 dyoung u32 swmask = mask;
3364 1.1 dyoung
3365 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3366 1.1 dyoung
3367 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3368 1.1 dyoung
3369 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3370 1.1 dyoung gssr &= ~swmask;
3371 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3372 1.1 dyoung
3373 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3374 1.1 dyoung }
3375 1.1 dyoung
3376 1.1 dyoung /**
3377 1.38 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3378 1.38 msaitoh * @hw: pointer to hardware structure
3379 1.3 msaitoh *
3380 1.38 msaitoh * Stops the receive data path and waits for the HW to internally empty
3381 1.38 msaitoh * the Rx security block
3382 1.3 msaitoh **/
3383 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3384 1.3 msaitoh {
3385 1.17 msaitoh #define IXGBE_MAX_SECRX_POLL 4000
3386 1.3 msaitoh
3387 1.3 msaitoh int i;
3388 1.3 msaitoh int secrxreg;
3389 1.3 msaitoh
3390 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3391 1.3 msaitoh
3392 1.3 msaitoh
3393 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3394 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3395 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3396 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3397 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3398 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3399 1.3 msaitoh break;
3400 1.3 msaitoh else
3401 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3402 1.17 msaitoh usec_delay(10);
3403 1.3 msaitoh }
3404 1.3 msaitoh
3405 1.3 msaitoh /* For informational purposes only */
3406 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3407 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3408 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3409 1.3 msaitoh
3410 1.3 msaitoh return IXGBE_SUCCESS;
3411 1.3 msaitoh }
3412 1.3 msaitoh
3413 1.3 msaitoh /**
3414 1.38 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3415 1.38 msaitoh * @hw: pointer to hardware structure
3416 1.38 msaitoh * @locked: bool to indicate whether the SW/FW lock was taken
3417 1.38 msaitoh * @reg_val: Value we read from AUTOC
3418 1.8 msaitoh *
3419 1.38 msaitoh * The default case requires no protection so just to the register read.
3420 1.8 msaitoh */
3421 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3422 1.8 msaitoh {
3423 1.8 msaitoh *locked = FALSE;
3424 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3425 1.8 msaitoh return IXGBE_SUCCESS;
3426 1.8 msaitoh }
3427 1.8 msaitoh
3428 1.8 msaitoh /**
3429 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3430 1.8 msaitoh * @hw: pointer to hardware structure
3431 1.8 msaitoh * @reg_val: value to write to AUTOC
3432 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3433 1.38 msaitoh * previous read.
3434 1.8 msaitoh *
3435 1.8 msaitoh * The default case requires no protection so just to the register write.
3436 1.8 msaitoh */
3437 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3438 1.8 msaitoh {
3439 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3440 1.8 msaitoh
3441 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3442 1.8 msaitoh return IXGBE_SUCCESS;
3443 1.8 msaitoh }
3444 1.8 msaitoh
3445 1.8 msaitoh /**
3446 1.38 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3447 1.38 msaitoh * @hw: pointer to hardware structure
3448 1.3 msaitoh *
3449 1.38 msaitoh * Enables the receive data path.
3450 1.3 msaitoh **/
3451 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3452 1.3 msaitoh {
3453 1.14 msaitoh u32 secrxreg;
3454 1.3 msaitoh
3455 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3456 1.3 msaitoh
3457 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3458 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3459 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3460 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3461 1.3 msaitoh
3462 1.3 msaitoh return IXGBE_SUCCESS;
3463 1.3 msaitoh }
3464 1.3 msaitoh
3465 1.3 msaitoh /**
3466 1.38 msaitoh * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3467 1.38 msaitoh * @hw: pointer to hardware structure
3468 1.38 msaitoh * @regval: register value to write to RXCTRL
3469 1.1 dyoung *
3470 1.38 msaitoh * Enables the Rx DMA unit
3471 1.1 dyoung **/
3472 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3473 1.1 dyoung {
3474 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3475 1.1 dyoung
3476 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3477 1.8 msaitoh ixgbe_enable_rx(hw);
3478 1.8 msaitoh else
3479 1.8 msaitoh ixgbe_disable_rx(hw);
3480 1.1 dyoung
3481 1.1 dyoung return IXGBE_SUCCESS;
3482 1.1 dyoung }
3483 1.1 dyoung
3484 1.1 dyoung /**
3485 1.38 msaitoh * ixgbe_blink_led_start_generic - Blink LED based on index.
3486 1.38 msaitoh * @hw: pointer to hardware structure
3487 1.38 msaitoh * @index: led number to blink
3488 1.1 dyoung **/
3489 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3490 1.1 dyoung {
3491 1.1 dyoung ixgbe_link_speed speed = 0;
3492 1.1 dyoung bool link_up = 0;
3493 1.8 msaitoh u32 autoc_reg = 0;
3494 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3495 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3496 1.8 msaitoh bool locked = FALSE;
3497 1.1 dyoung
3498 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3499 1.1 dyoung
3500 1.14 msaitoh if (index > 3)
3501 1.14 msaitoh return IXGBE_ERR_PARAM;
3502 1.14 msaitoh
3503 1.1 dyoung /*
3504 1.1 dyoung * Link must be up to auto-blink the LEDs;
3505 1.1 dyoung * Force it if link is down.
3506 1.1 dyoung */
3507 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3508 1.1 dyoung
3509 1.1 dyoung if (!link_up) {
3510 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3511 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3512 1.8 msaitoh goto out;
3513 1.5 msaitoh
3514 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3515 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3516 1.8 msaitoh
3517 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3518 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3519 1.8 msaitoh goto out;
3520 1.8 msaitoh
3521 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3522 1.1 dyoung msec_delay(10);
3523 1.1 dyoung }
3524 1.1 dyoung
3525 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3526 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3527 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3528 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3529 1.1 dyoung
3530 1.5 msaitoh out:
3531 1.5 msaitoh return ret_val;
3532 1.1 dyoung }
3533 1.1 dyoung
3534 1.1 dyoung /**
3535 1.38 msaitoh * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3536 1.38 msaitoh * @hw: pointer to hardware structure
3537 1.38 msaitoh * @index: led number to stop blinking
3538 1.1 dyoung **/
3539 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3540 1.1 dyoung {
3541 1.8 msaitoh u32 autoc_reg = 0;
3542 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3543 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3544 1.8 msaitoh bool locked = FALSE;
3545 1.1 dyoung
3546 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3547 1.1 dyoung
3548 1.14 msaitoh if (index > 3)
3549 1.14 msaitoh return IXGBE_ERR_PARAM;
3550 1.14 msaitoh
3551 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3552 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3553 1.8 msaitoh goto out;
3554 1.1 dyoung
3555 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3556 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3557 1.1 dyoung
3558 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3559 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3560 1.8 msaitoh goto out;
3561 1.5 msaitoh
3562 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3563 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3564 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3565 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3566 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3567 1.1 dyoung
3568 1.5 msaitoh out:
3569 1.5 msaitoh return ret_val;
3570 1.1 dyoung }
3571 1.1 dyoung
3572 1.1 dyoung /**
3573 1.38 msaitoh * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3574 1.38 msaitoh * @hw: pointer to hardware structure
3575 1.38 msaitoh * @san_mac_offset: SAN MAC address offset
3576 1.38 msaitoh *
3577 1.38 msaitoh * This function will read the EEPROM location for the SAN MAC address
3578 1.38 msaitoh * pointer, and returns the value at that location. This is used in both
3579 1.38 msaitoh * get and set mac_addr routines.
3580 1.1 dyoung **/
3581 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3582 1.3 msaitoh u16 *san_mac_offset)
3583 1.1 dyoung {
3584 1.6 msaitoh s32 ret_val;
3585 1.6 msaitoh
3586 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3587 1.1 dyoung
3588 1.1 dyoung /*
3589 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3590 1.1 dyoung * available.
3591 1.1 dyoung */
3592 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3593 1.6 msaitoh san_mac_offset);
3594 1.6 msaitoh if (ret_val) {
3595 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3596 1.6 msaitoh "eeprom at offset %d failed",
3597 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3598 1.6 msaitoh }
3599 1.1 dyoung
3600 1.6 msaitoh return ret_val;
3601 1.1 dyoung }
3602 1.1 dyoung
3603 1.1 dyoung /**
3604 1.38 msaitoh * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3605 1.38 msaitoh * @hw: pointer to hardware structure
3606 1.38 msaitoh * @san_mac_addr: SAN MAC address
3607 1.38 msaitoh *
3608 1.38 msaitoh * Reads the SAN MAC address from the EEPROM, if it's available. This is
3609 1.38 msaitoh * per-port, so set_lan_id() must be called before reading the addresses.
3610 1.38 msaitoh * set_lan_id() is called by identify_sfp(), but this cannot be relied
3611 1.38 msaitoh * upon for non-SFP connections, so we must call it here.
3612 1.1 dyoung **/
3613 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3614 1.1 dyoung {
3615 1.1 dyoung u16 san_mac_data, san_mac_offset;
3616 1.1 dyoung u8 i;
3617 1.6 msaitoh s32 ret_val;
3618 1.1 dyoung
3619 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3620 1.1 dyoung
3621 1.1 dyoung /*
3622 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3623 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3624 1.1 dyoung */
3625 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3626 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3627 1.1 dyoung goto san_mac_addr_out;
3628 1.1 dyoung
3629 1.1 dyoung /* make sure we know which port we need to program */
3630 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3631 1.1 dyoung /* apply the port offset to the address offset */
3632 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3633 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3634 1.1 dyoung for (i = 0; i < 3; i++) {
3635 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3636 1.6 msaitoh &san_mac_data);
3637 1.6 msaitoh if (ret_val) {
3638 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3639 1.6 msaitoh "eeprom read at offset %d failed",
3640 1.6 msaitoh san_mac_offset);
3641 1.6 msaitoh goto san_mac_addr_out;
3642 1.6 msaitoh }
3643 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3644 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3645 1.1 dyoung san_mac_offset++;
3646 1.1 dyoung }
3647 1.6 msaitoh return IXGBE_SUCCESS;
3648 1.1 dyoung
3649 1.1 dyoung san_mac_addr_out:
3650 1.6 msaitoh /*
3651 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3652 1.6 msaitoh * error though, so just wipe the local address and return.
3653 1.6 msaitoh */
3654 1.6 msaitoh for (i = 0; i < 6; i++)
3655 1.6 msaitoh san_mac_addr[i] = 0xFF;
3656 1.1 dyoung return IXGBE_SUCCESS;
3657 1.1 dyoung }
3658 1.1 dyoung
3659 1.1 dyoung /**
3660 1.38 msaitoh * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3661 1.38 msaitoh * @hw: pointer to hardware structure
3662 1.38 msaitoh * @san_mac_addr: SAN MAC address
3663 1.1 dyoung *
3664 1.38 msaitoh * Write a SAN MAC address to the EEPROM.
3665 1.1 dyoung **/
3666 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3667 1.1 dyoung {
3668 1.6 msaitoh s32 ret_val;
3669 1.1 dyoung u16 san_mac_data, san_mac_offset;
3670 1.1 dyoung u8 i;
3671 1.1 dyoung
3672 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3673 1.1 dyoung
3674 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3675 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3676 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3677 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3678 1.1 dyoung
3679 1.1 dyoung /* Make sure we know which port we need to write */
3680 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3681 1.1 dyoung /* Apply the port offset to the address offset */
3682 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3683 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3684 1.1 dyoung
3685 1.1 dyoung for (i = 0; i < 3; i++) {
3686 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3687 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3688 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3689 1.1 dyoung san_mac_offset++;
3690 1.1 dyoung }
3691 1.1 dyoung
3692 1.6 msaitoh return IXGBE_SUCCESS;
3693 1.1 dyoung }
3694 1.1 dyoung
3695 1.1 dyoung /**
3696 1.38 msaitoh * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3697 1.38 msaitoh * @hw: pointer to hardware structure
3698 1.1 dyoung *
3699 1.38 msaitoh * Read PCIe configuration space, and get the MSI-X vector count from
3700 1.38 msaitoh * the capabilities table.
3701 1.1 dyoung **/
3702 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3703 1.1 dyoung {
3704 1.4 msaitoh u16 msix_count = 1;
3705 1.4 msaitoh u16 max_msix_count;
3706 1.4 msaitoh u16 pcie_offset;
3707 1.4 msaitoh
3708 1.4 msaitoh switch (hw->mac.type) {
3709 1.4 msaitoh case ixgbe_mac_82598EB:
3710 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3711 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3712 1.4 msaitoh break;
3713 1.4 msaitoh case ixgbe_mac_82599EB:
3714 1.4 msaitoh case ixgbe_mac_X540:
3715 1.8 msaitoh case ixgbe_mac_X550:
3716 1.8 msaitoh case ixgbe_mac_X550EM_x:
3717 1.14 msaitoh case ixgbe_mac_X550EM_a:
3718 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3719 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3720 1.4 msaitoh break;
3721 1.4 msaitoh default:
3722 1.4 msaitoh return msix_count;
3723 1.4 msaitoh }
3724 1.1 dyoung
3725 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3726 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3727 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3728 1.8 msaitoh msix_count = 0;
3729 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3730 1.4 msaitoh
3731 1.4 msaitoh /* MSI-X count is zero-based in HW */
3732 1.4 msaitoh msix_count++;
3733 1.4 msaitoh
3734 1.4 msaitoh if (msix_count > max_msix_count)
3735 1.4 msaitoh msix_count = max_msix_count;
3736 1.1 dyoung
3737 1.1 dyoung return msix_count;
3738 1.1 dyoung }
3739 1.1 dyoung
3740 1.1 dyoung /**
3741 1.38 msaitoh * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3742 1.38 msaitoh * @hw: pointer to hardware structure
3743 1.38 msaitoh * @addr: Address to put into receive address register
3744 1.38 msaitoh * @vmdq: VMDq pool to assign
3745 1.1 dyoung *
3746 1.38 msaitoh * Puts an ethernet address into a receive address register, or
3747 1.38 msaitoh * finds the rar that it is already in; adds to the pool list
3748 1.1 dyoung **/
3749 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3750 1.1 dyoung {
3751 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3752 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3753 1.1 dyoung u32 rar;
3754 1.1 dyoung u32 rar_low, rar_high;
3755 1.1 dyoung u32 addr_low, addr_high;
3756 1.1 dyoung
3757 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3758 1.1 dyoung
3759 1.1 dyoung /* swap bytes for HW little endian */
3760 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3761 1.1 dyoung | (addr[2] << 16)
3762 1.1 dyoung | (addr[3] << 24);
3763 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3764 1.1 dyoung
3765 1.1 dyoung /*
3766 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3767 1.1 dyoung * rar_highwater points to just after the highest currently used
3768 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3769 1.1 dyoung * rar to the top.
3770 1.1 dyoung */
3771 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3772 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3773 1.1 dyoung
3774 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3775 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3776 1.1 dyoung first_empty_rar = rar;
3777 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3778 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3779 1.1 dyoung if (rar_low == addr_low)
3780 1.1 dyoung break; /* found it already in the rars */
3781 1.1 dyoung }
3782 1.1 dyoung }
3783 1.1 dyoung
3784 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3785 1.1 dyoung /* already there so just add to the pool bits */
3786 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3787 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3788 1.1 dyoung /* stick it into first empty RAR slot we found */
3789 1.1 dyoung rar = first_empty_rar;
3790 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3791 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3792 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3793 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3794 1.1 dyoung hw->mac.rar_highwater++;
3795 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3796 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3797 1.1 dyoung }
3798 1.1 dyoung
3799 1.1 dyoung /*
3800 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3801 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3802 1.1 dyoung */
3803 1.1 dyoung if (rar == 0)
3804 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3805 1.1 dyoung
3806 1.1 dyoung return rar;
3807 1.1 dyoung }
3808 1.1 dyoung
3809 1.1 dyoung /**
3810 1.38 msaitoh * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3811 1.38 msaitoh * @hw: pointer to hardware struct
3812 1.38 msaitoh * @rar: receive address register index to disassociate
3813 1.38 msaitoh * @vmdq: VMDq pool index to remove from the rar
3814 1.1 dyoung **/
3815 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3816 1.1 dyoung {
3817 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3818 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3819 1.1 dyoung
3820 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3821 1.1 dyoung
3822 1.1 dyoung /* Make sure we are using a valid rar index range */
3823 1.1 dyoung if (rar >= rar_entries) {
3824 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3825 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3826 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3827 1.1 dyoung }
3828 1.1 dyoung
3829 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3830 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3831 1.1 dyoung
3832 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3833 1.8 msaitoh goto done;
3834 1.8 msaitoh
3835 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3836 1.1 dyoung goto done;
3837 1.1 dyoung
3838 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3839 1.1 dyoung if (mpsar_lo) {
3840 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3841 1.37 msaitoh mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3842 1.1 dyoung }
3843 1.1 dyoung if (mpsar_hi) {
3844 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3845 1.37 msaitoh mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3846 1.1 dyoung }
3847 1.1 dyoung } else if (vmdq < 32) {
3848 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3849 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3850 1.1 dyoung } else {
3851 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3852 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3853 1.1 dyoung }
3854 1.1 dyoung
3855 1.1 dyoung /* was that the last pool using this rar? */
3856 1.14 msaitoh if (mpsar_lo == 0 && mpsar_hi == 0 &&
3857 1.14 msaitoh rar != 0 && rar != hw->mac.san_mac_rar_index)
3858 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3859 1.1 dyoung done:
3860 1.1 dyoung return IXGBE_SUCCESS;
3861 1.1 dyoung }
3862 1.1 dyoung
3863 1.1 dyoung /**
3864 1.38 msaitoh * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3865 1.38 msaitoh * @hw: pointer to hardware struct
3866 1.38 msaitoh * @rar: receive address register index to associate with a VMDq index
3867 1.38 msaitoh * @vmdq: VMDq pool index
3868 1.1 dyoung **/
3869 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3870 1.1 dyoung {
3871 1.1 dyoung u32 mpsar;
3872 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3873 1.1 dyoung
3874 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3875 1.1 dyoung
3876 1.1 dyoung /* Make sure we are using a valid rar index range */
3877 1.1 dyoung if (rar >= rar_entries) {
3878 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3879 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3880 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3881 1.1 dyoung }
3882 1.1 dyoung
3883 1.1 dyoung if (vmdq < 32) {
3884 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3885 1.1 dyoung mpsar |= 1 << vmdq;
3886 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3887 1.1 dyoung } else {
3888 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3889 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3890 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3891 1.1 dyoung }
3892 1.1 dyoung return IXGBE_SUCCESS;
3893 1.1 dyoung }
3894 1.1 dyoung
3895 1.1 dyoung /**
3896 1.38 msaitoh * This function should only be involved in the IOV mode.
3897 1.38 msaitoh * In IOV mode, Default pool is next pool after the number of
3898 1.38 msaitoh * VFs advertized and not 0.
3899 1.38 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3900 1.38 msaitoh *
3901 1.38 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3902 1.38 msaitoh * @hw: pointer to hardware struct
3903 1.38 msaitoh * @vmdq: VMDq pool index
3904 1.4 msaitoh **/
3905 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3906 1.4 msaitoh {
3907 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3908 1.4 msaitoh
3909 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3910 1.4 msaitoh
3911 1.4 msaitoh if (vmdq < 32) {
3912 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3913 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3914 1.4 msaitoh } else {
3915 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3916 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3917 1.4 msaitoh }
3918 1.4 msaitoh
3919 1.4 msaitoh return IXGBE_SUCCESS;
3920 1.4 msaitoh }
3921 1.4 msaitoh
3922 1.4 msaitoh /**
3923 1.38 msaitoh * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3924 1.38 msaitoh * @hw: pointer to hardware structure
3925 1.1 dyoung **/
3926 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3927 1.1 dyoung {
3928 1.1 dyoung int i;
3929 1.1 dyoung
3930 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3931 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3932 1.1 dyoung
3933 1.1 dyoung for (i = 0; i < 128; i++)
3934 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3935 1.1 dyoung
3936 1.1 dyoung return IXGBE_SUCCESS;
3937 1.1 dyoung }
3938 1.1 dyoung
3939 1.1 dyoung /**
3940 1.38 msaitoh * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3941 1.38 msaitoh * @hw: pointer to hardware structure
3942 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
3943 1.38 msaitoh * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3944 1.22 msaitoh * vlanid not found
3945 1.22 msaitoh *
3946 1.1 dyoung *
3947 1.38 msaitoh * return the VLVF index where this VLAN id should be placed
3948 1.1 dyoung *
3949 1.1 dyoung **/
3950 1.14 msaitoh s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3951 1.1 dyoung {
3952 1.14 msaitoh s32 regindex, first_empty_slot;
3953 1.14 msaitoh u32 bits;
3954 1.1 dyoung
3955 1.1 dyoung /* short cut the special case */
3956 1.1 dyoung if (vlan == 0)
3957 1.1 dyoung return 0;
3958 1.1 dyoung
3959 1.14 msaitoh /* if vlvf_bypass is set we don't want to use an empty slot, we
3960 1.14 msaitoh * will simply bypass the VLVF if there are no entries present in the
3961 1.14 msaitoh * VLVF that contain our VLAN
3962 1.14 msaitoh */
3963 1.14 msaitoh first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3964 1.14 msaitoh
3965 1.14 msaitoh /* add VLAN enable bit for comparison */
3966 1.14 msaitoh vlan |= IXGBE_VLVF_VIEN;
3967 1.14 msaitoh
3968 1.14 msaitoh /* Search for the vlan id in the VLVF entries. Save off the first empty
3969 1.14 msaitoh * slot found along the way.
3970 1.14 msaitoh *
3971 1.14 msaitoh * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3972 1.14 msaitoh */
3973 1.14 msaitoh for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3974 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3975 1.14 msaitoh if (bits == vlan)
3976 1.14 msaitoh return regindex;
3977 1.14 msaitoh if (!first_empty_slot && !bits)
3978 1.1 dyoung first_empty_slot = regindex;
3979 1.1 dyoung }
3980 1.1 dyoung
3981 1.14 msaitoh /* If we are here then we didn't find the VLAN. Return first empty
3982 1.14 msaitoh * slot we found during our search, else error.
3983 1.14 msaitoh */
3984 1.14 msaitoh if (!first_empty_slot)
3985 1.14 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3986 1.1 dyoung
3987 1.14 msaitoh return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3988 1.1 dyoung }
3989 1.1 dyoung
3990 1.1 dyoung /**
3991 1.38 msaitoh * ixgbe_set_vfta_generic - Set VLAN filter table
3992 1.38 msaitoh * @hw: pointer to hardware structure
3993 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
3994 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3995 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN
3996 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
3997 1.1 dyoung *
3998 1.38 msaitoh * Turn on/off specified VLAN in the VLAN filter table.
3999 1.1 dyoung **/
4000 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4001 1.14 msaitoh bool vlan_on, bool vlvf_bypass)
4002 1.1 dyoung {
4003 1.14 msaitoh u32 regidx, vfta_delta, vfta;
4004 1.14 msaitoh s32 ret_val;
4005 1.1 dyoung
4006 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
4007 1.1 dyoung
4008 1.14 msaitoh if (vlan > 4095 || vind > 63)
4009 1.1 dyoung return IXGBE_ERR_PARAM;
4010 1.1 dyoung
4011 1.1 dyoung /*
4012 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
4013 1.1 dyoung * VLVF and VLVFB if VT Mode is set
4014 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
4015 1.1 dyoung */
4016 1.1 dyoung
4017 1.1 dyoung /* Part 1
4018 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
4019 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
4020 1.1 dyoung * bits[11-5]: which register
4021 1.1 dyoung * bits[4-0]: which bit in the register
4022 1.1 dyoung */
4023 1.14 msaitoh regidx = vlan / 32;
4024 1.25 msaitoh vfta_delta = (u32)1 << (vlan % 32);
4025 1.14 msaitoh vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4026 1.14 msaitoh
4027 1.14 msaitoh /*
4028 1.14 msaitoh * vfta_delta represents the difference between the current value
4029 1.14 msaitoh * of vfta and the value we want in the register. Since the diff
4030 1.14 msaitoh * is an XOR mask we can just update the vfta using an XOR
4031 1.14 msaitoh */
4032 1.14 msaitoh vfta_delta &= vlan_on ? ~vfta : vfta;
4033 1.14 msaitoh vfta ^= vfta_delta;
4034 1.1 dyoung
4035 1.1 dyoung /* Part 2
4036 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4037 1.3 msaitoh */
4038 1.14 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4039 1.14 msaitoh vfta, vlvf_bypass);
4040 1.14 msaitoh if (ret_val != IXGBE_SUCCESS) {
4041 1.14 msaitoh if (vlvf_bypass)
4042 1.14 msaitoh goto vfta_update;
4043 1.3 msaitoh return ret_val;
4044 1.14 msaitoh }
4045 1.3 msaitoh
4046 1.14 msaitoh vfta_update:
4047 1.14 msaitoh /* Update VFTA now that we are ready for traffic */
4048 1.14 msaitoh if (vfta_delta)
4049 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4050 1.3 msaitoh
4051 1.3 msaitoh return IXGBE_SUCCESS;
4052 1.3 msaitoh }
4053 1.3 msaitoh
4054 1.3 msaitoh /**
4055 1.38 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4056 1.38 msaitoh * @hw: pointer to hardware structure
4057 1.38 msaitoh * @vlan: VLAN id to write to VLAN filter
4058 1.38 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4059 1.38 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4060 1.38 msaitoh * @vfta_delta: pointer to the difference between the current value of VFTA
4061 1.14 msaitoh * and the desired value
4062 1.38 msaitoh * @vfta: the desired value of the VFTA
4063 1.38 msaitoh * @vlvf_bypass: boolean flag indicating updating default pool is okay
4064 1.3 msaitoh *
4065 1.38 msaitoh * Turn on/off specified bit in VLVF table.
4066 1.3 msaitoh **/
4067 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4068 1.14 msaitoh bool vlan_on, u32 *vfta_delta, u32 vfta,
4069 1.14 msaitoh bool vlvf_bypass)
4070 1.3 msaitoh {
4071 1.14 msaitoh u32 bits;
4072 1.14 msaitoh s32 vlvf_index;
4073 1.3 msaitoh
4074 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
4075 1.3 msaitoh
4076 1.14 msaitoh if (vlan > 4095 || vind > 63)
4077 1.3 msaitoh return IXGBE_ERR_PARAM;
4078 1.3 msaitoh
4079 1.3 msaitoh /* If VT Mode is set
4080 1.1 dyoung * Either vlan_on
4081 1.1 dyoung * make sure the vlan is in VLVF
4082 1.1 dyoung * set the vind bit in the matching VLVFB
4083 1.1 dyoung * Or !vlan_on
4084 1.1 dyoung * clear the pool bit and possibly the vind
4085 1.1 dyoung */
4086 1.14 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4087 1.14 msaitoh return IXGBE_SUCCESS;
4088 1.1 dyoung
4089 1.14 msaitoh vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4090 1.14 msaitoh if (vlvf_index < 0)
4091 1.14 msaitoh return vlvf_index;
4092 1.14 msaitoh
4093 1.14 msaitoh bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4094 1.14 msaitoh
4095 1.14 msaitoh /* set the pool bit */
4096 1.14 msaitoh bits |= 1 << (vind % 32);
4097 1.14 msaitoh if (vlan_on)
4098 1.14 msaitoh goto vlvf_update;
4099 1.14 msaitoh
4100 1.14 msaitoh /* clear the pool bit */
4101 1.14 msaitoh bits ^= 1 << (vind % 32);
4102 1.14 msaitoh
4103 1.14 msaitoh if (!bits &&
4104 1.14 msaitoh !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4105 1.14 msaitoh /* Clear VFTA first, then disable VLVF. Otherwise
4106 1.14 msaitoh * we run the risk of stray packets leaking into
4107 1.14 msaitoh * the PF via the default pool
4108 1.1 dyoung */
4109 1.14 msaitoh if (*vfta_delta)
4110 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4111 1.14 msaitoh
4112 1.14 msaitoh /* disable VLVF and clear remaining bit from pool */
4113 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4114 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4115 1.14 msaitoh
4116 1.14 msaitoh return IXGBE_SUCCESS;
4117 1.1 dyoung }
4118 1.1 dyoung
4119 1.14 msaitoh /* If there are still bits set in the VLVFB registers
4120 1.14 msaitoh * for the VLAN ID indicated we need to see if the
4121 1.14 msaitoh * caller is requesting that we clear the VFTA entry bit.
4122 1.14 msaitoh * If the caller has requested that we clear the VFTA
4123 1.14 msaitoh * entry bit but there are still pools/VFs using this VLAN
4124 1.14 msaitoh * ID entry then ignore the request. We're not worried
4125 1.14 msaitoh * about the case where we're turning the VFTA VLAN ID
4126 1.14 msaitoh * entry bit on, only when requested to turn it off as
4127 1.14 msaitoh * there may be multiple pools and/or VFs using the
4128 1.14 msaitoh * VLAN ID entry. In that case we cannot clear the
4129 1.14 msaitoh * VFTA bit until all pools/VFs using that VLAN ID have also
4130 1.14 msaitoh * been cleared. This will be indicated by "bits" being
4131 1.14 msaitoh * zero.
4132 1.14 msaitoh */
4133 1.14 msaitoh *vfta_delta = 0;
4134 1.14 msaitoh
4135 1.14 msaitoh vlvf_update:
4136 1.14 msaitoh /* record pool change and enable VLAN ID if not already enabled */
4137 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4138 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4139 1.14 msaitoh
4140 1.1 dyoung return IXGBE_SUCCESS;
4141 1.1 dyoung }
4142 1.1 dyoung
4143 1.1 dyoung /**
4144 1.38 msaitoh * ixgbe_clear_vfta_generic - Clear VLAN filter table
4145 1.38 msaitoh * @hw: pointer to hardware structure
4146 1.1 dyoung *
4147 1.43 msaitoh * Clears the VLAN filter table, and the VMDq index associated with the filter
4148 1.1 dyoung **/
4149 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4150 1.1 dyoung {
4151 1.1 dyoung u32 offset;
4152 1.1 dyoung
4153 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4154 1.1 dyoung
4155 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4156 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4157 1.1 dyoung
4158 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4159 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4160 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4161 1.17 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4162 1.1 dyoung }
4163 1.1 dyoung
4164 1.1 dyoung return IXGBE_SUCCESS;
4165 1.1 dyoung }
4166 1.1 dyoung
4167 1.1 dyoung /**
4168 1.38 msaitoh * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4169 1.38 msaitoh * @hw: pointer to hardware structure
4170 1.38 msaitoh * @vf_number: VF index
4171 1.23 msaitoh *
4172 1.38 msaitoh * Enable and disable each queue in VF.
4173 1.23 msaitoh */
4174 1.23 msaitoh s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4175 1.23 msaitoh {
4176 1.23 msaitoh u8 queue_count, i;
4177 1.23 msaitoh u32 offset, reg;
4178 1.23 msaitoh
4179 1.23 msaitoh if (vf_number > 63)
4180 1.23 msaitoh return IXGBE_ERR_PARAM;
4181 1.23 msaitoh
4182 1.23 msaitoh /*
4183 1.23 msaitoh * Determine number of queues by checking
4184 1.23 msaitoh * number of virtual functions
4185 1.23 msaitoh */
4186 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4187 1.23 msaitoh switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4188 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_64:
4189 1.23 msaitoh queue_count = 2;
4190 1.23 msaitoh break;
4191 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_32:
4192 1.23 msaitoh queue_count = 4;
4193 1.23 msaitoh break;
4194 1.23 msaitoh case IXGBE_GCR_EXT_VT_MODE_16:
4195 1.23 msaitoh queue_count = 8;
4196 1.23 msaitoh break;
4197 1.23 msaitoh default:
4198 1.23 msaitoh return IXGBE_ERR_CONFIG;
4199 1.23 msaitoh }
4200 1.23 msaitoh
4201 1.23 msaitoh /* Toggle queues */
4202 1.23 msaitoh for (i = 0; i < queue_count; ++i) {
4203 1.23 msaitoh /* Calculate offset of current queue */
4204 1.23 msaitoh offset = queue_count * vf_number + i;
4205 1.23 msaitoh
4206 1.23 msaitoh /* Enable queue */
4207 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4208 1.23 msaitoh reg |= IXGBE_TXDCTL_ENABLE;
4209 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4210 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4211 1.23 msaitoh
4212 1.23 msaitoh /* Disable queue */
4213 1.23 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4214 1.23 msaitoh reg &= ~IXGBE_TXDCTL_ENABLE;
4215 1.23 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4216 1.23 msaitoh IXGBE_WRITE_FLUSH(hw);
4217 1.23 msaitoh }
4218 1.23 msaitoh
4219 1.23 msaitoh return IXGBE_SUCCESS;
4220 1.23 msaitoh }
4221 1.23 msaitoh
4222 1.23 msaitoh /**
4223 1.38 msaitoh * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4224 1.38 msaitoh * @hw: pointer to hardware structure
4225 1.14 msaitoh *
4226 1.38 msaitoh * Contains the logic to identify if we need to verify link for the
4227 1.38 msaitoh * crosstalk fix
4228 1.14 msaitoh **/
4229 1.14 msaitoh static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4230 1.14 msaitoh {
4231 1.14 msaitoh
4232 1.14 msaitoh /* Does FW say we need the fix */
4233 1.14 msaitoh if (!hw->need_crosstalk_fix)
4234 1.14 msaitoh return FALSE;
4235 1.14 msaitoh
4236 1.14 msaitoh /* Only consider SFP+ PHYs i.e. media type fiber */
4237 1.14 msaitoh switch (hw->mac.ops.get_media_type(hw)) {
4238 1.14 msaitoh case ixgbe_media_type_fiber:
4239 1.14 msaitoh case ixgbe_media_type_fiber_qsfp:
4240 1.14 msaitoh break;
4241 1.14 msaitoh default:
4242 1.14 msaitoh return FALSE;
4243 1.14 msaitoh }
4244 1.14 msaitoh
4245 1.14 msaitoh return TRUE;
4246 1.14 msaitoh }
4247 1.14 msaitoh
4248 1.14 msaitoh /**
4249 1.38 msaitoh * ixgbe_check_mac_link_generic - Determine link and speed status
4250 1.38 msaitoh * @hw: pointer to hardware structure
4251 1.38 msaitoh * @speed: pointer to link speed
4252 1.38 msaitoh * @link_up: TRUE when link is up
4253 1.38 msaitoh * @link_up_wait_to_complete: bool used to wait for link up or not
4254 1.1 dyoung *
4255 1.38 msaitoh * Reads the links register to determine if link is up and the current speed
4256 1.1 dyoung **/
4257 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4258 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4259 1.1 dyoung {
4260 1.1 dyoung u32 links_reg, links_orig;
4261 1.1 dyoung u32 i;
4262 1.1 dyoung
4263 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4264 1.1 dyoung
4265 1.14 msaitoh /* If Crosstalk fix enabled do the sanity check of making sure
4266 1.14 msaitoh * the SFP+ cage is full.
4267 1.14 msaitoh */
4268 1.14 msaitoh if (ixgbe_need_crosstalk_fix(hw)) {
4269 1.29 msaitoh if ((hw->mac.type != ixgbe_mac_82598EB) &&
4270 1.29 msaitoh !ixgbe_sfp_cage_full(hw)) {
4271 1.14 msaitoh *link_up = FALSE;
4272 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4273 1.14 msaitoh return IXGBE_SUCCESS;
4274 1.14 msaitoh }
4275 1.14 msaitoh }
4276 1.14 msaitoh
4277 1.1 dyoung /* clear the old state */
4278 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4279 1.1 dyoung
4280 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4281 1.1 dyoung
4282 1.1 dyoung if (links_orig != links_reg) {
4283 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4284 1.3 msaitoh links_orig, links_reg);
4285 1.1 dyoung }
4286 1.1 dyoung
4287 1.1 dyoung if (link_up_wait_to_complete) {
4288 1.10 msaitoh for (i = 0; i < hw->mac.max_link_up_time; i++) {
4289 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4290 1.1 dyoung *link_up = TRUE;
4291 1.1 dyoung break;
4292 1.1 dyoung } else {
4293 1.1 dyoung *link_up = FALSE;
4294 1.1 dyoung }
4295 1.1 dyoung msec_delay(100);
4296 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4297 1.1 dyoung }
4298 1.1 dyoung } else {
4299 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4300 1.1 dyoung *link_up = TRUE;
4301 1.1 dyoung else
4302 1.1 dyoung *link_up = FALSE;
4303 1.1 dyoung }
4304 1.1 dyoung
4305 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4306 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4307 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4308 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4309 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4310 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4311 1.8 msaitoh }
4312 1.8 msaitoh break;
4313 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4314 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4315 1.8 msaitoh break;
4316 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4317 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4318 1.15 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4319 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4320 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4321 1.8 msaitoh }
4322 1.8 msaitoh break;
4323 1.14 msaitoh case IXGBE_LINKS_SPEED_10_X550EM_A:
4324 1.14 msaitoh *speed = IXGBE_LINK_SPEED_UNKNOWN;
4325 1.14 msaitoh if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4326 1.17 msaitoh hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4327 1.14 msaitoh *speed = IXGBE_LINK_SPEED_10_FULL;
4328 1.14 msaitoh break;
4329 1.8 msaitoh default:
4330 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4331 1.8 msaitoh }
4332 1.1 dyoung
4333 1.1 dyoung return IXGBE_SUCCESS;
4334 1.1 dyoung }
4335 1.1 dyoung
4336 1.1 dyoung /**
4337 1.38 msaitoh * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4338 1.38 msaitoh * the EEPROM
4339 1.38 msaitoh * @hw: pointer to hardware structure
4340 1.38 msaitoh * @wwnn_prefix: the alternative WWNN prefix
4341 1.38 msaitoh * @wwpn_prefix: the alternative WWPN prefix
4342 1.1 dyoung *
4343 1.38 msaitoh * This function will read the EEPROM from the alternative SAN MAC address
4344 1.38 msaitoh * block to check the support for the alternative WWNN/WWPN prefix support.
4345 1.1 dyoung **/
4346 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4347 1.3 msaitoh u16 *wwpn_prefix)
4348 1.1 dyoung {
4349 1.1 dyoung u16 offset, caps;
4350 1.1 dyoung u16 alt_san_mac_blk_offset;
4351 1.1 dyoung
4352 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4353 1.1 dyoung
4354 1.1 dyoung /* clear output first */
4355 1.1 dyoung *wwnn_prefix = 0xFFFF;
4356 1.1 dyoung *wwpn_prefix = 0xFFFF;
4357 1.1 dyoung
4358 1.1 dyoung /* check if alternative SAN MAC is supported */
4359 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4360 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4361 1.6 msaitoh goto wwn_prefix_err;
4362 1.1 dyoung
4363 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4364 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4365 1.1 dyoung goto wwn_prefix_out;
4366 1.1 dyoung
4367 1.1 dyoung /* check capability in alternative san mac address block */
4368 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4369 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4370 1.6 msaitoh goto wwn_prefix_err;
4371 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4372 1.1 dyoung goto wwn_prefix_out;
4373 1.1 dyoung
4374 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4375 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4376 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4377 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4378 1.6 msaitoh "eeprom read at offset %d failed", offset);
4379 1.6 msaitoh }
4380 1.1 dyoung
4381 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4382 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4383 1.6 msaitoh goto wwn_prefix_err;
4384 1.1 dyoung
4385 1.1 dyoung wwn_prefix_out:
4386 1.1 dyoung return IXGBE_SUCCESS;
4387 1.6 msaitoh
4388 1.6 msaitoh wwn_prefix_err:
4389 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4390 1.6 msaitoh "eeprom read at offset %d failed", offset);
4391 1.6 msaitoh return IXGBE_SUCCESS;
4392 1.1 dyoung }
4393 1.1 dyoung
4394 1.1 dyoung /**
4395 1.38 msaitoh * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4396 1.38 msaitoh * @hw: pointer to hardware structure
4397 1.38 msaitoh * @bs: the fcoe boot status
4398 1.1 dyoung *
4399 1.38 msaitoh * This function will read the FCOE boot status from the iSCSI FCOE block
4400 1.1 dyoung **/
4401 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4402 1.1 dyoung {
4403 1.1 dyoung u16 offset, caps, flags;
4404 1.1 dyoung s32 status;
4405 1.1 dyoung
4406 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4407 1.1 dyoung
4408 1.1 dyoung /* clear output first */
4409 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4410 1.1 dyoung
4411 1.1 dyoung /* check if FCOE IBA block is present */
4412 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4413 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4414 1.1 dyoung if (status != IXGBE_SUCCESS)
4415 1.1 dyoung goto out;
4416 1.1 dyoung
4417 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4418 1.1 dyoung goto out;
4419 1.1 dyoung
4420 1.1 dyoung /* check if iSCSI FCOE block is populated */
4421 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4422 1.1 dyoung if (status != IXGBE_SUCCESS)
4423 1.1 dyoung goto out;
4424 1.1 dyoung
4425 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4426 1.1 dyoung goto out;
4427 1.1 dyoung
4428 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4429 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4430 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4431 1.1 dyoung if (status != IXGBE_SUCCESS)
4432 1.1 dyoung goto out;
4433 1.1 dyoung
4434 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4435 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4436 1.1 dyoung else
4437 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4438 1.1 dyoung
4439 1.1 dyoung out:
4440 1.1 dyoung return status;
4441 1.1 dyoung }
4442 1.1 dyoung
4443 1.1 dyoung /**
4444 1.38 msaitoh * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4445 1.38 msaitoh * @hw: pointer to hardware structure
4446 1.38 msaitoh * @enable: enable or disable switch for MAC anti-spoofing
4447 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4448 1.1 dyoung *
4449 1.1 dyoung **/
4450 1.14 msaitoh void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4451 1.1 dyoung {
4452 1.14 msaitoh int vf_target_reg = vf >> 3;
4453 1.14 msaitoh int vf_target_shift = vf % 8;
4454 1.14 msaitoh u32 pfvfspoof;
4455 1.1 dyoung
4456 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4457 1.1 dyoung return;
4458 1.1 dyoung
4459 1.14 msaitoh pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4460 1.1 dyoung if (enable)
4461 1.14 msaitoh pfvfspoof |= (1 << vf_target_shift);
4462 1.14 msaitoh else
4463 1.14 msaitoh pfvfspoof &= ~(1 << vf_target_shift);
4464 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4465 1.1 dyoung }
4466 1.1 dyoung
4467 1.1 dyoung /**
4468 1.38 msaitoh * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4469 1.38 msaitoh * @hw: pointer to hardware structure
4470 1.38 msaitoh * @enable: enable or disable switch for VLAN anti-spoofing
4471 1.38 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4472 1.1 dyoung *
4473 1.1 dyoung **/
4474 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4475 1.1 dyoung {
4476 1.1 dyoung int vf_target_reg = vf >> 3;
4477 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4478 1.1 dyoung u32 pfvfspoof;
4479 1.1 dyoung
4480 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4481 1.1 dyoung return;
4482 1.1 dyoung
4483 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4484 1.1 dyoung if (enable)
4485 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4486 1.1 dyoung else
4487 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4488 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4489 1.1 dyoung }
4490 1.1 dyoung
4491 1.1 dyoung /**
4492 1.38 msaitoh * ixgbe_get_device_caps_generic - Get additional device capabilities
4493 1.38 msaitoh * @hw: pointer to hardware structure
4494 1.38 msaitoh * @device_caps: the EEPROM word with the extra device capabilities
4495 1.1 dyoung *
4496 1.38 msaitoh * This function will read the EEPROM location for the device capabilities,
4497 1.38 msaitoh * and return the word through device_caps.
4498 1.1 dyoung **/
4499 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4500 1.1 dyoung {
4501 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4502 1.1 dyoung
4503 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4504 1.1 dyoung
4505 1.1 dyoung return IXGBE_SUCCESS;
4506 1.1 dyoung }
4507 1.1 dyoung
4508 1.1 dyoung /**
4509 1.38 msaitoh * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4510 1.38 msaitoh * @hw: pointer to hardware structure
4511 1.1 dyoung *
4512 1.1 dyoung **/
4513 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4514 1.1 dyoung {
4515 1.1 dyoung u32 regval;
4516 1.1 dyoung u32 i;
4517 1.1 dyoung
4518 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4519 1.1 dyoung
4520 1.1 dyoung /* Enable relaxed ordering */
4521 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4522 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4523 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4524 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4525 1.1 dyoung }
4526 1.1 dyoung
4527 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4528 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4529 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4530 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4531 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4532 1.1 dyoung }
4533 1.1 dyoung
4534 1.1 dyoung }
4535 1.3 msaitoh
4536 1.3 msaitoh /**
4537 1.38 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4538 1.38 msaitoh * @buffer: pointer to EEPROM
4539 1.38 msaitoh * @length: size of EEPROM to calculate a checksum for
4540 1.38 msaitoh * Calculates the checksum for some buffer on a specified length. The
4541 1.38 msaitoh * checksum calculated is returned.
4542 1.3 msaitoh **/
4543 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4544 1.3 msaitoh {
4545 1.3 msaitoh u32 i;
4546 1.3 msaitoh u8 sum = 0;
4547 1.3 msaitoh
4548 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4549 1.3 msaitoh
4550 1.3 msaitoh if (!buffer)
4551 1.3 msaitoh return 0;
4552 1.3 msaitoh
4553 1.3 msaitoh for (i = 0; i < length; i++)
4554 1.3 msaitoh sum += buffer[i];
4555 1.3 msaitoh
4556 1.3 msaitoh return (u8) (0 - sum);
4557 1.3 msaitoh }
4558 1.3 msaitoh
4559 1.3 msaitoh /**
4560 1.38 msaitoh * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4561 1.38 msaitoh * @hw: pointer to the HW structure
4562 1.38 msaitoh * @buffer: command to write and where the return status will be placed
4563 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4564 1.38 msaitoh * @timeout: time in ms to wait for command completion
4565 1.38 msaitoh *
4566 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4567 1.38 msaitoh * else returns semaphore error when encountering an error acquiring
4568 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4569 1.14 msaitoh *
4570 1.38 msaitoh * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4571 1.38 msaitoh * by the caller.
4572 1.3 msaitoh **/
4573 1.14 msaitoh s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4574 1.14 msaitoh u32 timeout)
4575 1.3 msaitoh {
4576 1.14 msaitoh u32 hicr, i, fwsts;
4577 1.8 msaitoh u16 dword_len;
4578 1.3 msaitoh
4579 1.14 msaitoh DEBUGFUNC("ixgbe_hic_unlocked");
4580 1.3 msaitoh
4581 1.14 msaitoh if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4582 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4583 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4584 1.8 msaitoh }
4585 1.14 msaitoh
4586 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4587 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4588 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4589 1.3 msaitoh
4590 1.3 msaitoh /* Check that the host interface is enabled. */
4591 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4592 1.14 msaitoh if (!(hicr & IXGBE_HICR_EN)) {
4593 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4594 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4595 1.8 msaitoh }
4596 1.8 msaitoh
4597 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4598 1.14 msaitoh if (length % sizeof(u32)) {
4599 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4600 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4601 1.3 msaitoh }
4602 1.3 msaitoh
4603 1.3 msaitoh dword_len = length >> 2;
4604 1.3 msaitoh
4605 1.8 msaitoh /* The device driver writes the relevant command block
4606 1.3 msaitoh * into the ram area.
4607 1.3 msaitoh */
4608 1.3 msaitoh for (i = 0; i < dword_len; i++)
4609 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4610 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4611 1.3 msaitoh
4612 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4613 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4614 1.3 msaitoh
4615 1.8 msaitoh for (i = 0; i < timeout; i++) {
4616 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4617 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4618 1.3 msaitoh break;
4619 1.3 msaitoh msec_delay(1);
4620 1.3 msaitoh }
4621 1.3 msaitoh
4622 1.23 msaitoh /* For each command except "Apply Update" perform
4623 1.23 msaitoh * status checks in the HICR registry.
4624 1.23 msaitoh */
4625 1.23 msaitoh if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4626 1.23 msaitoh IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4627 1.23 msaitoh return IXGBE_SUCCESS;
4628 1.23 msaitoh
4629 1.8 msaitoh /* Check command completion */
4630 1.14 msaitoh if ((timeout && i == timeout) ||
4631 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4632 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4633 1.23 msaitoh "Command has failed with no status valid.\n");
4634 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4635 1.3 msaitoh }
4636 1.3 msaitoh
4637 1.14 msaitoh return IXGBE_SUCCESS;
4638 1.14 msaitoh }
4639 1.14 msaitoh
4640 1.14 msaitoh /**
4641 1.38 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4642 1.38 msaitoh * @hw: pointer to the HW structure
4643 1.38 msaitoh * @buffer: contains the command to write and where the return status will
4644 1.38 msaitoh * be placed
4645 1.38 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4646 1.38 msaitoh * @timeout: time in ms to wait for command completion
4647 1.38 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4648 1.38 msaitoh * Needed because FW structures are big endian and decoding of
4649 1.38 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4650 1.38 msaitoh * is not easily understood without making a table of commands.
4651 1.38 msaitoh * So we will leave this up to the caller to read back the data
4652 1.38 msaitoh * in these cases.
4653 1.38 msaitoh *
4654 1.38 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4655 1.38 msaitoh * else returns semaphore error when encountering an error acquiring
4656 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4657 1.14 msaitoh **/
4658 1.14 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4659 1.14 msaitoh u32 length, u32 timeout, bool return_data)
4660 1.14 msaitoh {
4661 1.14 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4662 1.22 msaitoh struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4663 1.14 msaitoh u16 buf_len;
4664 1.14 msaitoh s32 status;
4665 1.14 msaitoh u32 bi;
4666 1.22 msaitoh u32 dword_len;
4667 1.14 msaitoh
4668 1.14 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4669 1.14 msaitoh
4670 1.14 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4671 1.14 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4672 1.14 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4673 1.14 msaitoh }
4674 1.14 msaitoh
4675 1.14 msaitoh /* Take management host interface semaphore */
4676 1.14 msaitoh status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4677 1.14 msaitoh if (status)
4678 1.14 msaitoh return status;
4679 1.14 msaitoh
4680 1.14 msaitoh status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4681 1.14 msaitoh if (status)
4682 1.14 msaitoh goto rel_out;
4683 1.14 msaitoh
4684 1.8 msaitoh if (!return_data)
4685 1.14 msaitoh goto rel_out;
4686 1.8 msaitoh
4687 1.3 msaitoh /* Calculate length in DWORDs */
4688 1.3 msaitoh dword_len = hdr_size >> 2;
4689 1.3 msaitoh
4690 1.3 msaitoh /* first pull in the header so we know the buffer length */
4691 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4692 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4693 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4694 1.3 msaitoh }
4695 1.3 msaitoh
4696 1.22 msaitoh /*
4697 1.22 msaitoh * If there is any thing in data position pull it in
4698 1.22 msaitoh * Read Flash command requires reading buffer length from
4699 1.22 msaitoh * two byes instead of one byte
4700 1.22 msaitoh */
4701 1.40 msaitoh if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4702 1.40 msaitoh resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4703 1.22 msaitoh for (; bi < dword_len + 2; bi++) {
4704 1.22 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4705 1.22 msaitoh bi);
4706 1.22 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4707 1.22 msaitoh }
4708 1.22 msaitoh buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4709 1.22 msaitoh & 0xF00) | resp->buf_len;
4710 1.22 msaitoh hdr_size += (2 << 2);
4711 1.22 msaitoh } else {
4712 1.22 msaitoh buf_len = resp->buf_len;
4713 1.22 msaitoh }
4714 1.14 msaitoh if (!buf_len)
4715 1.14 msaitoh goto rel_out;
4716 1.3 msaitoh
4717 1.8 msaitoh if (length < buf_len + hdr_size) {
4718 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4719 1.14 msaitoh status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4720 1.14 msaitoh goto rel_out;
4721 1.3 msaitoh }
4722 1.3 msaitoh
4723 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4724 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4725 1.3 msaitoh
4726 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4727 1.3 msaitoh for (; bi <= dword_len; bi++) {
4728 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4729 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4730 1.3 msaitoh }
4731 1.3 msaitoh
4732 1.14 msaitoh rel_out:
4733 1.14 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4734 1.14 msaitoh
4735 1.14 msaitoh return status;
4736 1.3 msaitoh }
4737 1.3 msaitoh
4738 1.3 msaitoh /**
4739 1.38 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4740 1.38 msaitoh * @hw: pointer to the HW structure
4741 1.38 msaitoh * @maj: driver version major number
4742 1.38 msaitoh * @minr: driver version minor number
4743 1.38 msaitoh * @build: driver version build number
4744 1.38 msaitoh * @sub: driver version sub build number
4745 1.38 msaitoh * @len: unused
4746 1.38 msaitoh * @driver_ver: unused
4747 1.38 msaitoh *
4748 1.38 msaitoh * Sends driver version number to firmware through the manageability
4749 1.38 msaitoh * block. On success return IXGBE_SUCCESS
4750 1.38 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4751 1.38 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4752 1.3 msaitoh **/
4753 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4754 1.14 msaitoh u8 build, u8 sub, u16 len,
4755 1.14 msaitoh const char *driver_ver)
4756 1.3 msaitoh {
4757 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4758 1.3 msaitoh int i;
4759 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4760 1.3 msaitoh
4761 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4762 1.14 msaitoh UNREFERENCED_2PARAMETER(len, driver_ver);
4763 1.3 msaitoh
4764 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4765 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4766 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4767 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4768 1.3 msaitoh fw_cmd.ver_maj = maj;
4769 1.7 riastrad fw_cmd.ver_min = minr;
4770 1.3 msaitoh fw_cmd.ver_build = build;
4771 1.3 msaitoh fw_cmd.ver_sub = sub;
4772 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4773 1.17 msaitoh fw_cmd.pad = 0;
4774 1.17 msaitoh fw_cmd.pad2 = 0;
4775 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4776 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4777 1.3 msaitoh
4778 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4779 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4780 1.8 msaitoh sizeof(fw_cmd),
4781 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4782 1.8 msaitoh TRUE);
4783 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4784 1.3 msaitoh continue;
4785 1.3 msaitoh
4786 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4787 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4788 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4789 1.3 msaitoh else
4790 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4791 1.3 msaitoh
4792 1.3 msaitoh break;
4793 1.3 msaitoh }
4794 1.3 msaitoh
4795 1.3 msaitoh return ret_val;
4796 1.3 msaitoh }
4797 1.3 msaitoh
4798 1.3 msaitoh /**
4799 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4800 1.3 msaitoh * @hw: pointer to hardware structure
4801 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4802 1.3 msaitoh * @headroom: reserve n KB of headroom
4803 1.3 msaitoh * @strategy: packet buffer allocation strategy
4804 1.3 msaitoh **/
4805 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4806 1.3 msaitoh int strategy)
4807 1.3 msaitoh {
4808 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4809 1.3 msaitoh int i = 0;
4810 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4811 1.3 msaitoh
4812 1.3 msaitoh /* Reserve headroom */
4813 1.3 msaitoh pbsize -= headroom;
4814 1.3 msaitoh
4815 1.3 msaitoh if (!num_pb)
4816 1.3 msaitoh num_pb = 1;
4817 1.3 msaitoh
4818 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4819 1.3 msaitoh * buffers requested using supplied strategy.
4820 1.3 msaitoh */
4821 1.3 msaitoh switch (strategy) {
4822 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4823 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4824 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4825 1.3 msaitoh */
4826 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4827 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4828 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4829 1.3 msaitoh for (; i < (num_pb / 2); i++)
4830 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4831 1.14 msaitoh /* fall through - configure remaining packet buffers */
4832 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4833 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4834 1.3 msaitoh for (; i < num_pb; i++)
4835 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4836 1.3 msaitoh break;
4837 1.3 msaitoh default:
4838 1.3 msaitoh break;
4839 1.3 msaitoh }
4840 1.3 msaitoh
4841 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4842 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4843 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4844 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4845 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4846 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4847 1.3 msaitoh }
4848 1.3 msaitoh
4849 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4850 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4851 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4852 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4853 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4854 1.3 msaitoh }
4855 1.3 msaitoh }
4856 1.3 msaitoh
4857 1.3 msaitoh /**
4858 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4859 1.3 msaitoh * @hw: pointer to the hardware structure
4860 1.3 msaitoh *
4861 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4862 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4863 1.3 msaitoh * buffers on the system.
4864 1.3 msaitoh **/
4865 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4866 1.3 msaitoh {
4867 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4868 1.8 msaitoh u16 value;
4869 1.3 msaitoh
4870 1.3 msaitoh /*
4871 1.3 msaitoh * If double reset is not requested then all transactions should
4872 1.3 msaitoh * already be clear and as such there is no work to do
4873 1.3 msaitoh */
4874 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4875 1.3 msaitoh return;
4876 1.3 msaitoh
4877 1.3 msaitoh /*
4878 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4879 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4880 1.3 msaitoh * has already been cleared.
4881 1.3 msaitoh */
4882 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4883 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4884 1.3 msaitoh
4885 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4886 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4887 1.8 msaitoh msec_delay(3);
4888 1.8 msaitoh
4889 1.8 msaitoh /*
4890 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4891 1.8 msaitoh * transactions pending.
4892 1.8 msaitoh */
4893 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4894 1.8 msaitoh for (i = 0; i < poll; i++) {
4895 1.8 msaitoh usec_delay(100);
4896 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4897 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4898 1.8 msaitoh goto out;
4899 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4900 1.8 msaitoh goto out;
4901 1.8 msaitoh }
4902 1.8 msaitoh
4903 1.8 msaitoh out:
4904 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4905 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4906 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4907 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4908 1.3 msaitoh
4909 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4910 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4911 1.3 msaitoh usec_delay(20);
4912 1.3 msaitoh
4913 1.3 msaitoh /* restore previous register values */
4914 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4915 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4916 1.3 msaitoh }
4917 1.3 msaitoh
4918 1.38 msaitoh #define IXGBE_BYPASS_BB_WAIT 1
4919 1.38 msaitoh
4920 1.14 msaitoh /**
4921 1.38 msaitoh * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4922 1.38 msaitoh * @hw: pointer to hardware structure
4923 1.38 msaitoh * @cmd: Command we send to the FW
4924 1.38 msaitoh * @status: The reply from the FW
4925 1.14 msaitoh *
4926 1.38 msaitoh * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4927 1.14 msaitoh **/
4928 1.14 msaitoh s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4929 1.14 msaitoh {
4930 1.14 msaitoh int i;
4931 1.14 msaitoh u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4932 1.14 msaitoh u32 esdp;
4933 1.14 msaitoh
4934 1.14 msaitoh if (!status)
4935 1.14 msaitoh return IXGBE_ERR_PARAM;
4936 1.14 msaitoh
4937 1.14 msaitoh *status = 0;
4938 1.14 msaitoh
4939 1.14 msaitoh /* SDP vary by MAC type */
4940 1.14 msaitoh switch (hw->mac.type) {
4941 1.14 msaitoh case ixgbe_mac_82599EB:
4942 1.14 msaitoh sck = IXGBE_ESDP_SDP7;
4943 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4944 1.14 msaitoh sdo = IXGBE_ESDP_SDP6;
4945 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP7_DIR;
4946 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4947 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP6_DIR;
4948 1.14 msaitoh break;
4949 1.14 msaitoh case ixgbe_mac_X540:
4950 1.14 msaitoh sck = IXGBE_ESDP_SDP2;
4951 1.14 msaitoh sdi = IXGBE_ESDP_SDP0;
4952 1.14 msaitoh sdo = IXGBE_ESDP_SDP1;
4953 1.14 msaitoh dir_sck = IXGBE_ESDP_SDP2_DIR;
4954 1.14 msaitoh dir_sdi = IXGBE_ESDP_SDP0_DIR;
4955 1.14 msaitoh dir_sdo = IXGBE_ESDP_SDP1_DIR;
4956 1.14 msaitoh break;
4957 1.14 msaitoh default:
4958 1.14 msaitoh return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4959 1.14 msaitoh }
4960 1.14 msaitoh
4961 1.14 msaitoh /* Set SDP pins direction */
4962 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4963 1.14 msaitoh esdp |= dir_sck; /* SCK as output */
4964 1.14 msaitoh esdp |= dir_sdi; /* SDI as output */
4965 1.14 msaitoh esdp &= ~dir_sdo; /* SDO as input */
4966 1.14 msaitoh esdp |= sck;
4967 1.14 msaitoh esdp |= sdi;
4968 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4969 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4970 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4971 1.14 msaitoh
4972 1.14 msaitoh /* Generate start condition */
4973 1.14 msaitoh esdp &= ~sdi;
4974 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4975 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4976 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4977 1.14 msaitoh
4978 1.14 msaitoh esdp &= ~sck;
4979 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4980 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4981 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4982 1.14 msaitoh
4983 1.14 msaitoh /* Clock out the new control word and clock in the status */
4984 1.14 msaitoh for (i = 0; i < 32; i++) {
4985 1.14 msaitoh if ((cmd >> (31 - i)) & 0x01) {
4986 1.14 msaitoh esdp |= sdi;
4987 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4988 1.14 msaitoh } else {
4989 1.14 msaitoh esdp &= ~sdi;
4990 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4991 1.14 msaitoh }
4992 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4993 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4994 1.14 msaitoh
4995 1.14 msaitoh esdp |= sck;
4996 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4997 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
4998 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
4999 1.14 msaitoh
5000 1.14 msaitoh esdp &= ~sck;
5001 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5002 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5003 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5004 1.14 msaitoh
5005 1.14 msaitoh esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5006 1.14 msaitoh if (esdp & sdo)
5007 1.14 msaitoh *status = (*status << 1) | 0x01;
5008 1.14 msaitoh else
5009 1.14 msaitoh *status = (*status << 1) | 0x00;
5010 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5011 1.14 msaitoh }
5012 1.14 msaitoh
5013 1.14 msaitoh /* stop condition */
5014 1.14 msaitoh esdp |= sck;
5015 1.14 msaitoh esdp &= ~sdi;
5016 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5017 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5018 1.14 msaitoh msec_delay(IXGBE_BYPASS_BB_WAIT);
5019 1.14 msaitoh
5020 1.14 msaitoh esdp |= sdi;
5021 1.14 msaitoh IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5022 1.14 msaitoh IXGBE_WRITE_FLUSH(hw);
5023 1.14 msaitoh
5024 1.14 msaitoh /* set the page bits to match the cmd that the status it belongs to */
5025 1.14 msaitoh *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5026 1.14 msaitoh
5027 1.14 msaitoh return IXGBE_SUCCESS;
5028 1.14 msaitoh }
5029 1.14 msaitoh
5030 1.14 msaitoh /**
5031 1.14 msaitoh * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5032 1.38 msaitoh * @in_reg: The register cmd for the bit-bang read.
5033 1.38 msaitoh * @out_reg: The register returned from a bit-bang read.
5034 1.14 msaitoh *
5035 1.14 msaitoh * If we send a write we can't be sure it took until we can read back
5036 1.32 andvar * that same register. It can be a problem as some of the fields may
5037 1.32 andvar * for valid reasons change in-between the time wrote the register and
5038 1.14 msaitoh * we read it again to verify. So this function check everything we
5039 1.14 msaitoh * can check and then assumes it worked.
5040 1.14 msaitoh **/
5041 1.14 msaitoh bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5042 1.14 msaitoh {
5043 1.14 msaitoh u32 mask;
5044 1.14 msaitoh
5045 1.14 msaitoh /* Page must match for all control pages */
5046 1.14 msaitoh if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5047 1.14 msaitoh return FALSE;
5048 1.14 msaitoh
5049 1.14 msaitoh switch (in_reg & BYPASS_PAGE_M) {
5050 1.14 msaitoh case BYPASS_PAGE_CTL0:
5051 1.14 msaitoh /* All the following can't change since the last write
5052 1.14 msaitoh * - All the event actions
5053 1.14 msaitoh * - The timeout value
5054 1.14 msaitoh */
5055 1.14 msaitoh mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5056 1.14 msaitoh BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5057 1.14 msaitoh BYPASS_WDTIMEOUT_M |
5058 1.14 msaitoh BYPASS_WDT_VALUE_M;
5059 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5060 1.14 msaitoh return FALSE;
5061 1.14 msaitoh
5062 1.14 msaitoh /* 0x0 is never a valid value for bypass status */
5063 1.14 msaitoh if (!(out_reg & BYPASS_STATUS_OFF_M))
5064 1.14 msaitoh return FALSE;
5065 1.14 msaitoh break;
5066 1.14 msaitoh case BYPASS_PAGE_CTL1:
5067 1.14 msaitoh /* All the following can't change since the last write
5068 1.14 msaitoh * - time valid bit
5069 1.14 msaitoh * - time we last sent
5070 1.14 msaitoh */
5071 1.14 msaitoh mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5072 1.14 msaitoh if ((out_reg & mask) != (in_reg & mask))
5073 1.14 msaitoh return FALSE;
5074 1.14 msaitoh break;
5075 1.14 msaitoh case BYPASS_PAGE_CTL2:
5076 1.14 msaitoh /* All we can check in this page is control number
5077 1.14 msaitoh * which is already done above.
5078 1.14 msaitoh */
5079 1.14 msaitoh break;
5080 1.14 msaitoh }
5081 1.14 msaitoh
5082 1.14 msaitoh /* We are as sure as we can be return TRUE */
5083 1.14 msaitoh return TRUE;
5084 1.14 msaitoh }
5085 1.14 msaitoh
5086 1.14 msaitoh /**
5087 1.38 msaitoh * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5088 1.38 msaitoh * @hw: pointer to hardware structure
5089 1.38 msaitoh * @ctrl: The control word we are setting.
5090 1.38 msaitoh * @event: The event we are setting in the FW. This also happens to
5091 1.14 msaitoh * be the mask for the event we are setting (handy)
5092 1.38 msaitoh * @action: The action we set the event to in the FW. This is in a
5093 1.14 msaitoh * bit field that happens to be what we want to put in
5094 1.14 msaitoh * the event spot (also handy)
5095 1.14 msaitoh **/
5096 1.14 msaitoh s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5097 1.14 msaitoh u32 action)
5098 1.14 msaitoh {
5099 1.14 msaitoh u32 by_ctl = 0;
5100 1.14 msaitoh u32 cmd, verify;
5101 1.14 msaitoh u32 count = 0;
5102 1.14 msaitoh
5103 1.14 msaitoh /* Get current values */
5104 1.14 msaitoh cmd = ctrl; /* just reading only need control number */
5105 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5106 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5107 1.14 msaitoh
5108 1.14 msaitoh /* Set to new action */
5109 1.14 msaitoh cmd = (by_ctl & ~event) | BYPASS_WE | action;
5110 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5111 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5112 1.14 msaitoh
5113 1.14 msaitoh /* Page 0 force a FW eeprom write which is slow so verify */
5114 1.14 msaitoh if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5115 1.14 msaitoh verify = BYPASS_PAGE_CTL0;
5116 1.14 msaitoh do {
5117 1.14 msaitoh if (count++ > 5)
5118 1.14 msaitoh return IXGBE_BYPASS_FW_WRITE_FAILURE;
5119 1.14 msaitoh
5120 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5121 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5122 1.14 msaitoh } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5123 1.14 msaitoh } else {
5124 1.14 msaitoh /* We have give the FW time for the write to stick */
5125 1.14 msaitoh msec_delay(100);
5126 1.14 msaitoh }
5127 1.14 msaitoh
5128 1.14 msaitoh return IXGBE_SUCCESS;
5129 1.14 msaitoh }
5130 1.14 msaitoh
5131 1.14 msaitoh /**
5132 1.38 msaitoh * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5133 1.14 msaitoh *
5134 1.38 msaitoh * @hw: pointer to hardware structure
5135 1.38 msaitoh * @addr: The bypass eeprom address to read.
5136 1.38 msaitoh * @value: The 8b of data at the address above.
5137 1.14 msaitoh **/
5138 1.14 msaitoh s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5139 1.14 msaitoh {
5140 1.14 msaitoh u32 cmd;
5141 1.14 msaitoh u32 status;
5142 1.14 msaitoh
5143 1.14 msaitoh
5144 1.14 msaitoh /* send the request */
5145 1.14 msaitoh cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5146 1.14 msaitoh cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5147 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5148 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5149 1.14 msaitoh
5150 1.14 msaitoh /* We have give the FW time for the write to stick */
5151 1.14 msaitoh msec_delay(100);
5152 1.14 msaitoh
5153 1.14 msaitoh /* now read the results */
5154 1.14 msaitoh cmd &= ~BYPASS_WE;
5155 1.14 msaitoh if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5156 1.14 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
5157 1.14 msaitoh
5158 1.14 msaitoh *value = status & BYPASS_CTL2_DATA_M;
5159 1.14 msaitoh
5160 1.14 msaitoh return IXGBE_SUCCESS;
5161 1.14 msaitoh }
5162 1.14 msaitoh
5163 1.17 msaitoh /**
5164 1.38 msaitoh * ixgbe_get_orom_version - Return option ROM from EEPROM
5165 1.17 msaitoh *
5166 1.38 msaitoh * @hw: pointer to hardware structure
5167 1.38 msaitoh * @nvm_ver: pointer to output structure
5168 1.17 msaitoh *
5169 1.38 msaitoh * if valid option ROM version, nvm_ver->or_valid set to TRUE
5170 1.38 msaitoh * else nvm_ver->or_valid is FALSE.
5171 1.17 msaitoh **/
5172 1.17 msaitoh void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5173 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5174 1.17 msaitoh {
5175 1.17 msaitoh u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5176 1.17 msaitoh
5177 1.17 msaitoh nvm_ver->or_valid = FALSE;
5178 1.17 msaitoh /* Option Rom may or may not be present. Start with pointer */
5179 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5180 1.17 msaitoh
5181 1.17 msaitoh /* make sure offset is valid */
5182 1.17 msaitoh if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5183 1.17 msaitoh return;
5184 1.17 msaitoh
5185 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5186 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5187 1.17 msaitoh
5188 1.17 msaitoh /* option rom exists and is valid */
5189 1.17 msaitoh if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5190 1.17 msaitoh eeprom_cfg_blkl == NVM_VER_INVALID ||
5191 1.17 msaitoh eeprom_cfg_blkh == NVM_VER_INVALID)
5192 1.17 msaitoh return;
5193 1.17 msaitoh
5194 1.17 msaitoh nvm_ver->or_valid = TRUE;
5195 1.17 msaitoh nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5196 1.17 msaitoh nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5197 1.17 msaitoh (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5198 1.17 msaitoh nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5199 1.17 msaitoh }
5200 1.17 msaitoh
5201 1.17 msaitoh /**
5202 1.38 msaitoh * ixgbe_get_oem_prod_version - Return OEM Product version
5203 1.17 msaitoh *
5204 1.38 msaitoh * @hw: pointer to hardware structure
5205 1.38 msaitoh * @nvm_ver: pointer to output structure
5206 1.17 msaitoh *
5207 1.38 msaitoh * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5208 1.38 msaitoh * else nvm_ver->oem_valid is FALSE.
5209 1.17 msaitoh **/
5210 1.17 msaitoh void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5211 1.17 msaitoh struct ixgbe_nvm_version *nvm_ver)
5212 1.17 msaitoh {
5213 1.17 msaitoh u16 rel_num, prod_ver, mod_len, cap, offset;
5214 1.17 msaitoh
5215 1.17 msaitoh nvm_ver->oem_valid = FALSE;
5216 1.17 msaitoh hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5217 1.17 msaitoh
5218 1.28 msaitoh /* Return if offset to OEM Product Version block is invalid */
5219 1.18 msaitoh if (offset == 0x0 || offset == NVM_INVALID_PTR)
5220 1.17 msaitoh return;
5221 1.17 msaitoh
5222 1.17 msaitoh /* Read product version block */
5223 1.17 msaitoh hw->eeprom.ops.read(hw, offset, &mod_len);
5224 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5225 1.17 msaitoh
5226 1.17 msaitoh /* Return if OEM product version block is invalid */
5227 1.17 msaitoh if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5228 1.17 msaitoh (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5229 1.17 msaitoh return;
5230 1.17 msaitoh
5231 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5232 1.17 msaitoh hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5233 1.17 msaitoh
5234 1.17 msaitoh /* Return if version is invalid */
5235 1.17 msaitoh if ((rel_num | prod_ver) == 0x0 ||
5236 1.17 msaitoh rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5237 1.17 msaitoh return;
5238 1.17 msaitoh
5239 1.17 msaitoh nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5240 1.17 msaitoh nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5241 1.17 msaitoh nvm_ver->oem_release = rel_num;
5242 1.17 msaitoh nvm_ver->oem_valid = TRUE;
5243 1.17 msaitoh }
5244 1.17 msaitoh
5245 1.17 msaitoh /**
5246 1.38 msaitoh * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5247 1.17 msaitoh *
5248 1.38 msaitoh * @hw: pointer to hardware structure
5249 1.38 msaitoh * @nvm_ver: pointer to output structure
5250 1.17 msaitoh *
5251 1.38 msaitoh * word read errors will return 0xFFFF
5252 1.17 msaitoh **/
5253 1.17 msaitoh void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5254 1.17 msaitoh {
5255 1.17 msaitoh u16 etk_id_l, etk_id_h;
5256 1.17 msaitoh
5257 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5258 1.17 msaitoh etk_id_l = NVM_VER_INVALID;
5259 1.17 msaitoh if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5260 1.17 msaitoh etk_id_h = NVM_VER_INVALID;
5261 1.17 msaitoh
5262 1.17 msaitoh /* The word order for the version format is determined by high order
5263 1.17 msaitoh * word bit 15.
5264 1.17 msaitoh */
5265 1.17 msaitoh if ((etk_id_h & NVM_ETK_VALID) == 0) {
5266 1.17 msaitoh nvm_ver->etk_id = etk_id_h;
5267 1.17 msaitoh nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5268 1.17 msaitoh } else {
5269 1.17 msaitoh nvm_ver->etk_id = etk_id_l;
5270 1.17 msaitoh nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5271 1.17 msaitoh }
5272 1.17 msaitoh }
5273 1.17 msaitoh
5274 1.6 msaitoh
5275 1.6 msaitoh /**
5276 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5277 1.6 msaitoh * @hw: pointer to hardware structure
5278 1.6 msaitoh * @map: pointer to u8 arr for returning map
5279 1.6 msaitoh *
5280 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
5281 1.6 msaitoh **/
5282 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5283 1.6 msaitoh {
5284 1.6 msaitoh u32 reg, i;
5285 1.6 msaitoh
5286 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5287 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5288 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
5289 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5290 1.6 msaitoh return;
5291 1.6 msaitoh }
5292 1.8 msaitoh
5293 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5294 1.8 msaitoh {
5295 1.8 msaitoh u32 pfdtxgswc;
5296 1.8 msaitoh u32 rxctrl;
5297 1.8 msaitoh
5298 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5299 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
5300 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5301 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5302 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5303 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5304 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5305 1.8 msaitoh hw->mac.set_lben = TRUE;
5306 1.8 msaitoh } else {
5307 1.8 msaitoh hw->mac.set_lben = FALSE;
5308 1.8 msaitoh }
5309 1.8 msaitoh }
5310 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
5311 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5312 1.8 msaitoh }
5313 1.8 msaitoh }
5314 1.8 msaitoh
5315 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5316 1.8 msaitoh {
5317 1.8 msaitoh u32 pfdtxgswc;
5318 1.8 msaitoh u32 rxctrl;
5319 1.8 msaitoh
5320 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5321 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5322 1.8 msaitoh
5323 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
5324 1.8 msaitoh if (hw->mac.set_lben) {
5325 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5326 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5327 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5328 1.8 msaitoh hw->mac.set_lben = FALSE;
5329 1.8 msaitoh }
5330 1.8 msaitoh }
5331 1.8 msaitoh }
5332 1.8 msaitoh
5333 1.8 msaitoh /**
5334 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
5335 1.8 msaitoh * @hw: pointer to hardware structure
5336 1.8 msaitoh */
5337 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
5338 1.8 msaitoh {
5339 1.8 msaitoh u32 fwsm;
5340 1.8 msaitoh
5341 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
5342 1.8 msaitoh return FALSE;
5343 1.8 msaitoh
5344 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5345 1.17 msaitoh return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5346 1.8 msaitoh }
5347 1.8 msaitoh
5348 1.8 msaitoh /**
5349 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
5350 1.8 msaitoh * @hw: pointer to hardware structure
5351 1.8 msaitoh *
5352 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
5353 1.8 msaitoh **/
5354 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5355 1.8 msaitoh {
5356 1.8 msaitoh u32 fwsm, manc, factps;
5357 1.8 msaitoh
5358 1.10 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5359 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5360 1.8 msaitoh return FALSE;
5361 1.8 msaitoh
5362 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5363 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5364 1.8 msaitoh return FALSE;
5365 1.8 msaitoh
5366 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
5367 1.10 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5368 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
5369 1.8 msaitoh return FALSE;
5370 1.8 msaitoh }
5371 1.8 msaitoh
5372 1.8 msaitoh return TRUE;
5373 1.8 msaitoh }
5374 1.8 msaitoh
5375 1.8 msaitoh /**
5376 1.38 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5377 1.38 msaitoh * @hw: pointer to hardware structure
5378 1.38 msaitoh * @speed: new link speed
5379 1.38 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5380 1.8 msaitoh *
5381 1.38 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
5382 1.8 msaitoh **/
5383 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5384 1.8 msaitoh ixgbe_link_speed speed,
5385 1.8 msaitoh bool autoneg_wait_to_complete)
5386 1.8 msaitoh {
5387 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5388 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5389 1.8 msaitoh s32 status = IXGBE_SUCCESS;
5390 1.8 msaitoh u32 speedcnt = 0;
5391 1.8 msaitoh u32 i = 0;
5392 1.8 msaitoh bool autoneg, link_up = FALSE;
5393 1.8 msaitoh
5394 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5395 1.8 msaitoh
5396 1.8 msaitoh /* Mask off requested but non-supported speeds */
5397 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5398 1.8 msaitoh if (status != IXGBE_SUCCESS)
5399 1.8 msaitoh return status;
5400 1.8 msaitoh
5401 1.8 msaitoh speed &= link_speed;
5402 1.8 msaitoh
5403 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
5404 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
5405 1.8 msaitoh */
5406 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5407 1.8 msaitoh speedcnt++;
5408 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5409 1.8 msaitoh
5410 1.8 msaitoh /* Set the module link speed */
5411 1.8 msaitoh switch (hw->phy.media_type) {
5412 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5413 1.8 msaitoh case ixgbe_media_type_fiber:
5414 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5415 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
5416 1.8 msaitoh break;
5417 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5418 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
5419 1.8 msaitoh break;
5420 1.8 msaitoh default:
5421 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5422 1.8 msaitoh break;
5423 1.8 msaitoh }
5424 1.8 msaitoh
5425 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
5426 1.8 msaitoh msec_delay(40);
5427 1.8 msaitoh
5428 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5429 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
5430 1.8 msaitoh autoneg_wait_to_complete);
5431 1.8 msaitoh if (status != IXGBE_SUCCESS)
5432 1.8 msaitoh return status;
5433 1.8 msaitoh
5434 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5435 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5436 1.8 msaitoh
5437 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5438 1.41 msaitoh * Section 73.10.2, we may have to wait up to 1000ms if KR is
5439 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
5440 1.8 msaitoh */
5441 1.41 msaitoh for (i = 0; i < 10; i++) {
5442 1.8 msaitoh /* Wait for the link partner to also set speed */
5443 1.8 msaitoh msec_delay(100);
5444 1.8 msaitoh
5445 1.8 msaitoh /* If we have link, just jump out */
5446 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
5447 1.8 msaitoh &link_up, FALSE);
5448 1.8 msaitoh if (status != IXGBE_SUCCESS)
5449 1.8 msaitoh return status;
5450 1.8 msaitoh
5451 1.8 msaitoh if (link_up)
5452 1.8 msaitoh goto out;
5453 1.8 msaitoh }
5454 1.8 msaitoh }
5455 1.8 msaitoh
5456 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5457 1.8 msaitoh speedcnt++;
5458 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5459 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5460 1.8 msaitoh
5461 1.8 msaitoh /* Set the module link speed */
5462 1.8 msaitoh switch (hw->phy.media_type) {
5463 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
5464 1.8 msaitoh case ixgbe_media_type_fiber:
5465 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
5466 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
5467 1.8 msaitoh break;
5468 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
5469 1.8 msaitoh /* QSFP module automatically detects link speed */
5470 1.8 msaitoh break;
5471 1.8 msaitoh default:
5472 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
5473 1.8 msaitoh break;
5474 1.8 msaitoh }
5475 1.8 msaitoh
5476 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
5477 1.8 msaitoh msec_delay(40);
5478 1.8 msaitoh
5479 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
5480 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
5481 1.8 msaitoh autoneg_wait_to_complete);
5482 1.8 msaitoh if (status != IXGBE_SUCCESS)
5483 1.8 msaitoh return status;
5484 1.8 msaitoh
5485 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
5486 1.8 msaitoh ixgbe_flap_tx_laser(hw);
5487 1.8 msaitoh
5488 1.8 msaitoh /* Wait for the link partner to also set speed */
5489 1.8 msaitoh msec_delay(100);
5490 1.8 msaitoh
5491 1.8 msaitoh /* If we have link, just jump out */
5492 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5493 1.8 msaitoh if (status != IXGBE_SUCCESS)
5494 1.8 msaitoh return status;
5495 1.8 msaitoh
5496 1.8 msaitoh if (link_up)
5497 1.8 msaitoh goto out;
5498 1.8 msaitoh }
5499 1.8 msaitoh
5500 1.20 msaitoh if (speed == 0) {
5501 1.20 msaitoh /* Disable the Tx laser for media none */
5502 1.20 msaitoh ixgbe_disable_tx_laser(hw);
5503 1.20 msaitoh
5504 1.20 msaitoh goto out;
5505 1.20 msaitoh }
5506 1.26 msaitoh
5507 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
5508 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
5509 1.8 msaitoh * single highest speed that the user requested.
5510 1.8 msaitoh */
5511 1.8 msaitoh if (speedcnt > 1)
5512 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5513 1.8 msaitoh highest_link_speed,
5514 1.8 msaitoh autoneg_wait_to_complete);
5515 1.8 msaitoh
5516 1.8 msaitoh out:
5517 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
5518 1.8 msaitoh hw->phy.autoneg_advertised = 0;
5519 1.8 msaitoh
5520 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5521 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5522 1.8 msaitoh
5523 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5524 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5525 1.8 msaitoh
5526 1.8 msaitoh return status;
5527 1.8 msaitoh }
5528 1.8 msaitoh
5529 1.8 msaitoh /**
5530 1.38 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
5531 1.38 msaitoh * @hw: pointer to hardware structure
5532 1.38 msaitoh * @speed: link speed to set
5533 1.8 msaitoh *
5534 1.38 msaitoh * Set module link speed via the soft rate select.
5535 1.8 msaitoh */
5536 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5537 1.8 msaitoh ixgbe_link_speed speed)
5538 1.8 msaitoh {
5539 1.8 msaitoh s32 status;
5540 1.8 msaitoh u8 rs, eeprom_data;
5541 1.8 msaitoh
5542 1.8 msaitoh switch (speed) {
5543 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
5544 1.8 msaitoh /* one bit mask same as setting on */
5545 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5546 1.8 msaitoh break;
5547 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
5548 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5549 1.8 msaitoh break;
5550 1.8 msaitoh default:
5551 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
5552 1.8 msaitoh return;
5553 1.8 msaitoh }
5554 1.8 msaitoh
5555 1.8 msaitoh /* Set RS0 */
5556 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5557 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5558 1.8 msaitoh &eeprom_data);
5559 1.8 msaitoh if (status) {
5560 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5561 1.8 msaitoh goto out;
5562 1.8 msaitoh }
5563 1.8 msaitoh
5564 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5565 1.8 msaitoh
5566 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5567 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5568 1.8 msaitoh eeprom_data);
5569 1.8 msaitoh if (status) {
5570 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5571 1.8 msaitoh goto out;
5572 1.8 msaitoh }
5573 1.8 msaitoh
5574 1.8 msaitoh /* Set RS1 */
5575 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5576 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5577 1.8 msaitoh &eeprom_data);
5578 1.8 msaitoh if (status) {
5579 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5580 1.8 msaitoh goto out;
5581 1.8 msaitoh }
5582 1.8 msaitoh
5583 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5584 1.8 msaitoh
5585 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5586 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
5587 1.8 msaitoh eeprom_data);
5588 1.8 msaitoh if (status) {
5589 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5590 1.8 msaitoh goto out;
5591 1.8 msaitoh }
5592 1.8 msaitoh out:
5593 1.8 msaitoh return;
5594 1.8 msaitoh }
5595