ixgbe_common.c revision 1.5 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.5 msaitoh Copyright (c) 2001-2013, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.4 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 238149 2012-07-05 20:51:44Z jfv $*/
34 1.5 msaitoh /*$NetBSD: ixgbe_common.c,v 1.5 2015/04/24 07:00:51 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.1 dyoung #include "ixgbe_api.h"
39 1.1 dyoung
40 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
41 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
42 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
45 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
46 1.3 msaitoh u16 count);
47 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
48 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
51 1.1 dyoung
52 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
53 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
54 1.3 msaitoh u16 *san_mac_offset);
55 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
56 1.3 msaitoh u16 words, u16 *data);
57 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
60 1.3 msaitoh u16 offset);
61 1.1 dyoung
62 1.1 dyoung /**
63 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
64 1.1 dyoung * @hw: pointer to the hardware structure
65 1.1 dyoung *
66 1.1 dyoung * Initialize the function pointers.
67 1.1 dyoung **/
68 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
69 1.1 dyoung {
70 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
71 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
72 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
73 1.1 dyoung
74 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
75 1.1 dyoung
76 1.1 dyoung /* EEPROM */
77 1.1 dyoung eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
78 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
79 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
80 1.1 dyoung eeprom->ops.read = &ixgbe_read_eerd_generic;
81 1.3 msaitoh eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
82 1.3 msaitoh } else {
83 1.1 dyoung eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
84 1.3 msaitoh eeprom->ops.read_buffer =
85 1.3 msaitoh &ixgbe_read_eeprom_buffer_bit_bang_generic;
86 1.3 msaitoh }
87 1.1 dyoung eeprom->ops.write = &ixgbe_write_eeprom_generic;
88 1.3 msaitoh eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
89 1.1 dyoung eeprom->ops.validate_checksum =
90 1.3 msaitoh &ixgbe_validate_eeprom_checksum_generic;
91 1.1 dyoung eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
92 1.1 dyoung eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
93 1.1 dyoung
94 1.1 dyoung /* MAC */
95 1.1 dyoung mac->ops.init_hw = &ixgbe_init_hw_generic;
96 1.1 dyoung mac->ops.reset_hw = NULL;
97 1.1 dyoung mac->ops.start_hw = &ixgbe_start_hw_generic;
98 1.1 dyoung mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
99 1.1 dyoung mac->ops.get_media_type = NULL;
100 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
101 1.1 dyoung mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
102 1.1 dyoung mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
103 1.1 dyoung mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
104 1.1 dyoung mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
105 1.1 dyoung mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
106 1.1 dyoung mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
107 1.1 dyoung mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
108 1.1 dyoung
109 1.1 dyoung /* LEDs */
110 1.1 dyoung mac->ops.led_on = &ixgbe_led_on_generic;
111 1.1 dyoung mac->ops.led_off = &ixgbe_led_off_generic;
112 1.1 dyoung mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
113 1.1 dyoung mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
114 1.1 dyoung
115 1.1 dyoung /* RAR, Multicast, VLAN */
116 1.1 dyoung mac->ops.set_rar = &ixgbe_set_rar_generic;
117 1.1 dyoung mac->ops.clear_rar = &ixgbe_clear_rar_generic;
118 1.1 dyoung mac->ops.insert_mac_addr = NULL;
119 1.1 dyoung mac->ops.set_vmdq = NULL;
120 1.1 dyoung mac->ops.clear_vmdq = NULL;
121 1.1 dyoung mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
122 1.1 dyoung mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
123 1.1 dyoung mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
124 1.1 dyoung mac->ops.enable_mc = &ixgbe_enable_mc_generic;
125 1.1 dyoung mac->ops.disable_mc = &ixgbe_disable_mc_generic;
126 1.1 dyoung mac->ops.clear_vfta = NULL;
127 1.1 dyoung mac->ops.set_vfta = NULL;
128 1.3 msaitoh mac->ops.set_vlvf = NULL;
129 1.1 dyoung mac->ops.init_uta_tables = NULL;
130 1.1 dyoung
131 1.1 dyoung /* Flow Control */
132 1.1 dyoung mac->ops.fc_enable = &ixgbe_fc_enable_generic;
133 1.1 dyoung
134 1.1 dyoung /* Link */
135 1.1 dyoung mac->ops.get_link_capabilities = NULL;
136 1.1 dyoung mac->ops.setup_link = NULL;
137 1.1 dyoung mac->ops.check_link = NULL;
138 1.1 dyoung
139 1.1 dyoung return IXGBE_SUCCESS;
140 1.1 dyoung }
141 1.1 dyoung
142 1.1 dyoung /**
143 1.4 msaitoh * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
144 1.4 msaitoh * control
145 1.4 msaitoh * @hw: pointer to hardware structure
146 1.4 msaitoh *
147 1.4 msaitoh * There are several phys that do not support autoneg flow control. This
148 1.4 msaitoh * function check the device id to see if the associated phy supports
149 1.4 msaitoh * autoneg flow control.
150 1.4 msaitoh **/
151 1.5 msaitoh s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
152 1.4 msaitoh {
153 1.4 msaitoh
154 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
155 1.4 msaitoh
156 1.4 msaitoh switch (hw->device_id) {
157 1.5 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
158 1.4 msaitoh case IXGBE_DEV_ID_X540T:
159 1.4 msaitoh return IXGBE_SUCCESS;
160 1.4 msaitoh default:
161 1.4 msaitoh return IXGBE_ERR_FC_NOT_SUPPORTED;
162 1.4 msaitoh }
163 1.4 msaitoh }
164 1.4 msaitoh
165 1.4 msaitoh /**
166 1.4 msaitoh * ixgbe_setup_fc - Set up flow control
167 1.4 msaitoh * @hw: pointer to hardware structure
168 1.4 msaitoh *
169 1.4 msaitoh * Called at init time to set up flow control.
170 1.4 msaitoh **/
171 1.4 msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
172 1.4 msaitoh {
173 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
174 1.4 msaitoh u32 reg = 0, reg_bp = 0;
175 1.4 msaitoh u16 reg_cu = 0;
176 1.5 msaitoh bool got_lock = FALSE;
177 1.4 msaitoh
178 1.4 msaitoh DEBUGFUNC("ixgbe_setup_fc");
179 1.4 msaitoh
180 1.4 msaitoh /*
181 1.4 msaitoh * Validate the requested mode. Strict IEEE mode does not allow
182 1.4 msaitoh * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
183 1.4 msaitoh */
184 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
185 1.4 msaitoh DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
186 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
187 1.4 msaitoh goto out;
188 1.4 msaitoh }
189 1.4 msaitoh
190 1.4 msaitoh /*
191 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
192 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
193 1.4 msaitoh */
194 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
195 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
196 1.4 msaitoh
197 1.4 msaitoh /*
198 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
199 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
200 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
201 1.4 msaitoh */
202 1.4 msaitoh switch (hw->phy.media_type) {
203 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
204 1.4 msaitoh case ixgbe_media_type_fiber:
205 1.4 msaitoh case ixgbe_media_type_backplane:
206 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
207 1.4 msaitoh reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
208 1.4 msaitoh break;
209 1.4 msaitoh case ixgbe_media_type_copper:
210 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
211 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
212 1.4 msaitoh break;
213 1.4 msaitoh default:
214 1.4 msaitoh break;
215 1.4 msaitoh }
216 1.4 msaitoh
217 1.4 msaitoh /*
218 1.4 msaitoh * The possible values of fc.requested_mode are:
219 1.4 msaitoh * 0: Flow control is completely disabled
220 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
221 1.4 msaitoh * but not send pause frames).
222 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
223 1.4 msaitoh * we do not support receiving pause frames).
224 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
225 1.4 msaitoh * other: Invalid.
226 1.4 msaitoh */
227 1.4 msaitoh switch (hw->fc.requested_mode) {
228 1.4 msaitoh case ixgbe_fc_none:
229 1.4 msaitoh /* Flow control completely disabled by software override. */
230 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
231 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
232 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
233 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
234 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
235 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
236 1.4 msaitoh break;
237 1.4 msaitoh case ixgbe_fc_tx_pause:
238 1.4 msaitoh /*
239 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
240 1.4 msaitoh * disabled by software override.
241 1.4 msaitoh */
242 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
243 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
244 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
245 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
246 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
247 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
248 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
249 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
250 1.4 msaitoh }
251 1.4 msaitoh break;
252 1.4 msaitoh case ixgbe_fc_rx_pause:
253 1.4 msaitoh /*
254 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
255 1.4 msaitoh * disabled by software override. Since there really
256 1.4 msaitoh * isn't a way to advertise that we are capable of RX
257 1.4 msaitoh * Pause ONLY, we will advertise that we support both
258 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
259 1.4 msaitoh * through to the fc_full statement. Later, we will
260 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
261 1.4 msaitoh */
262 1.4 msaitoh case ixgbe_fc_full:
263 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
264 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
265 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
266 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
267 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
268 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
269 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
270 1.4 msaitoh break;
271 1.4 msaitoh default:
272 1.4 msaitoh DEBUGOUT("Flow control param set incorrectly\n");
273 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
274 1.4 msaitoh goto out;
275 1.4 msaitoh break;
276 1.4 msaitoh }
277 1.4 msaitoh
278 1.4 msaitoh if (hw->mac.type != ixgbe_mac_X540) {
279 1.4 msaitoh /*
280 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
281 1.4 msaitoh * the MAC will advertise clause 37 flow control.
282 1.4 msaitoh */
283 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
284 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
285 1.4 msaitoh
286 1.4 msaitoh /* Disable AN timeout */
287 1.4 msaitoh if (hw->fc.strict_ieee)
288 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
289 1.4 msaitoh
290 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
291 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
292 1.4 msaitoh }
293 1.4 msaitoh
294 1.4 msaitoh /*
295 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
296 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
297 1.4 msaitoh *
298 1.4 msaitoh */
299 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
300 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
301 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
302 1.5 msaitoh * LESM is on, likewise reset_pipeline requries the lock as
303 1.5 msaitoh * it also writes AUTOC.
304 1.5 msaitoh */
305 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
306 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
307 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
308 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
309 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
310 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
311 1.5 msaitoh goto out;
312 1.5 msaitoh }
313 1.5 msaitoh got_lock = TRUE;
314 1.5 msaitoh }
315 1.5 msaitoh
316 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
317 1.5 msaitoh if (hw->mac.type == ixgbe_mac_82599EB)
318 1.5 msaitoh ixgbe_reset_pipeline_82599(hw);
319 1.5 msaitoh
320 1.5 msaitoh if (got_lock)
321 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw,
322 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
323 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
324 1.4 msaitoh (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
325 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
326 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
327 1.4 msaitoh }
328 1.4 msaitoh
329 1.4 msaitoh DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
330 1.4 msaitoh out:
331 1.4 msaitoh return ret_val;
332 1.4 msaitoh }
333 1.4 msaitoh
334 1.4 msaitoh /**
335 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
336 1.1 dyoung * @hw: pointer to hardware structure
337 1.1 dyoung *
338 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
339 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
340 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
341 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
342 1.1 dyoung **/
343 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
344 1.1 dyoung {
345 1.4 msaitoh s32 ret_val;
346 1.1 dyoung u32 ctrl_ext;
347 1.1 dyoung
348 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
349 1.1 dyoung
350 1.1 dyoung /* Set the media type */
351 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
352 1.1 dyoung
353 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
354 1.1 dyoung
355 1.1 dyoung /* Clear the VLAN filter table */
356 1.1 dyoung hw->mac.ops.clear_vfta(hw);
357 1.1 dyoung
358 1.1 dyoung /* Clear statistics registers */
359 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
360 1.1 dyoung
361 1.1 dyoung /* Set No Snoop Disable */
362 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
363 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
364 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
365 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
366 1.1 dyoung
367 1.1 dyoung /* Setup flow control */
368 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
369 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
370 1.4 msaitoh goto out;
371 1.1 dyoung
372 1.1 dyoung /* Clear adapter stopped flag */
373 1.1 dyoung hw->adapter_stopped = FALSE;
374 1.1 dyoung
375 1.4 msaitoh out:
376 1.4 msaitoh return ret_val;
377 1.1 dyoung }
378 1.1 dyoung
379 1.1 dyoung /**
380 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
381 1.1 dyoung * @hw: pointer to hw structure
382 1.1 dyoung *
383 1.1 dyoung * Performs the init sequence common to the second generation
384 1.1 dyoung * of 10 GbE devices.
385 1.1 dyoung * Devices in the second generation:
386 1.1 dyoung * 82599
387 1.1 dyoung * X540
388 1.1 dyoung **/
389 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
390 1.1 dyoung {
391 1.1 dyoung u32 i;
392 1.1 dyoung u32 regval;
393 1.1 dyoung
394 1.1 dyoung /* Clear the rate limiters */
395 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
396 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
397 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
398 1.1 dyoung }
399 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
400 1.1 dyoung
401 1.1 dyoung /* Disable relaxed ordering */
402 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
403 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
404 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
405 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
406 1.1 dyoung }
407 1.1 dyoung
408 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
409 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
410 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
411 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
412 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
413 1.1 dyoung }
414 1.1 dyoung
415 1.1 dyoung return IXGBE_SUCCESS;
416 1.1 dyoung }
417 1.1 dyoung
418 1.1 dyoung /**
419 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
420 1.1 dyoung * @hw: pointer to hardware structure
421 1.1 dyoung *
422 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
423 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
424 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
425 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
426 1.1 dyoung * disabled and uninitialized
427 1.1 dyoung **/
428 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
429 1.1 dyoung {
430 1.1 dyoung s32 status;
431 1.1 dyoung
432 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
433 1.1 dyoung
434 1.1 dyoung /* Reset the hardware */
435 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
436 1.1 dyoung
437 1.1 dyoung if (status == IXGBE_SUCCESS) {
438 1.1 dyoung /* Start the HW */
439 1.1 dyoung status = hw->mac.ops.start_hw(hw);
440 1.1 dyoung }
441 1.1 dyoung
442 1.1 dyoung return status;
443 1.1 dyoung }
444 1.1 dyoung
445 1.1 dyoung /**
446 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
447 1.1 dyoung * @hw: pointer to hardware structure
448 1.1 dyoung *
449 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
450 1.1 dyoung * Statistics counters are clear on read.
451 1.1 dyoung **/
452 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
453 1.1 dyoung {
454 1.1 dyoung u16 i = 0;
455 1.1 dyoung
456 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
457 1.1 dyoung
458 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
459 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
460 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
461 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
462 1.1 dyoung for (i = 0; i < 8; i++)
463 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
464 1.1 dyoung
465 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
466 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
467 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
468 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
469 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
470 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
471 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
472 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
473 1.1 dyoung } else {
474 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
475 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
476 1.1 dyoung }
477 1.1 dyoung
478 1.1 dyoung for (i = 0; i < 8; i++) {
479 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
480 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
481 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
482 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
483 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
484 1.1 dyoung } else {
485 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
486 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
487 1.1 dyoung }
488 1.1 dyoung }
489 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
490 1.1 dyoung for (i = 0; i < 8; i++)
491 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
493 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
498 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
500 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
506 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
507 1.3 msaitoh for (i = 0; i < 8; i++)
508 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
509 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
510 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
512 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
513 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
514 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
517 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
518 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
519 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
520 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
521 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
523 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
524 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
525 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
526 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
528 1.1 dyoung for (i = 0; i < 16; i++) {
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
531 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
537 1.1 dyoung } else {
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
540 1.1 dyoung }
541 1.1 dyoung }
542 1.1 dyoung
543 1.3 msaitoh if (hw->mac.type == ixgbe_mac_X540) {
544 1.3 msaitoh if (hw->phy.id == 0)
545 1.3 msaitoh ixgbe_identify_phy(hw);
546 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
547 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
548 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
549 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
550 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
551 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
552 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
553 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
554 1.3 msaitoh }
555 1.3 msaitoh
556 1.1 dyoung return IXGBE_SUCCESS;
557 1.1 dyoung }
558 1.1 dyoung
559 1.1 dyoung /**
560 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
561 1.1 dyoung * @hw: pointer to hardware structure
562 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
563 1.1 dyoung * @pba_num_size: part number string buffer length
564 1.1 dyoung *
565 1.1 dyoung * Reads the part number string from the EEPROM.
566 1.1 dyoung **/
567 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
568 1.3 msaitoh u32 pba_num_size)
569 1.1 dyoung {
570 1.1 dyoung s32 ret_val;
571 1.1 dyoung u16 data;
572 1.1 dyoung u16 pba_ptr;
573 1.1 dyoung u16 offset;
574 1.1 dyoung u16 length;
575 1.1 dyoung
576 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
577 1.1 dyoung
578 1.1 dyoung if (pba_num == NULL) {
579 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
580 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
581 1.1 dyoung }
582 1.1 dyoung
583 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
584 1.1 dyoung if (ret_val) {
585 1.1 dyoung DEBUGOUT("NVM Read Error\n");
586 1.1 dyoung return ret_val;
587 1.1 dyoung }
588 1.1 dyoung
589 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
590 1.1 dyoung if (ret_val) {
591 1.1 dyoung DEBUGOUT("NVM Read Error\n");
592 1.1 dyoung return ret_val;
593 1.1 dyoung }
594 1.1 dyoung
595 1.1 dyoung /*
596 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
597 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
598 1.1 dyoung * and we can decode it into an ascii string
599 1.1 dyoung */
600 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
601 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
602 1.1 dyoung
603 1.1 dyoung /* we will need 11 characters to store the PBA */
604 1.1 dyoung if (pba_num_size < 11) {
605 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
606 1.1 dyoung return IXGBE_ERR_NO_SPACE;
607 1.1 dyoung }
608 1.1 dyoung
609 1.1 dyoung /* extract hex string from data and pba_ptr */
610 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
611 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
612 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
613 1.1 dyoung pba_num[3] = data & 0xF;
614 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
615 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
616 1.1 dyoung pba_num[6] = '-';
617 1.1 dyoung pba_num[7] = 0;
618 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
619 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
620 1.1 dyoung
621 1.1 dyoung /* put a null character on the end of our string */
622 1.1 dyoung pba_num[10] = '\0';
623 1.1 dyoung
624 1.1 dyoung /* switch all the data but the '-' to hex char */
625 1.1 dyoung for (offset = 0; offset < 10; offset++) {
626 1.1 dyoung if (pba_num[offset] < 0xA)
627 1.1 dyoung pba_num[offset] += '0';
628 1.1 dyoung else if (pba_num[offset] < 0x10)
629 1.1 dyoung pba_num[offset] += 'A' - 0xA;
630 1.1 dyoung }
631 1.1 dyoung
632 1.1 dyoung return IXGBE_SUCCESS;
633 1.1 dyoung }
634 1.1 dyoung
635 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
636 1.1 dyoung if (ret_val) {
637 1.1 dyoung DEBUGOUT("NVM Read Error\n");
638 1.1 dyoung return ret_val;
639 1.1 dyoung }
640 1.1 dyoung
641 1.1 dyoung if (length == 0xFFFF || length == 0) {
642 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
643 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
644 1.1 dyoung }
645 1.1 dyoung
646 1.1 dyoung /* check if pba_num buffer is big enough */
647 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
648 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
649 1.1 dyoung return IXGBE_ERR_NO_SPACE;
650 1.1 dyoung }
651 1.1 dyoung
652 1.1 dyoung /* trim pba length from start of string */
653 1.1 dyoung pba_ptr++;
654 1.1 dyoung length--;
655 1.1 dyoung
656 1.1 dyoung for (offset = 0; offset < length; offset++) {
657 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
658 1.1 dyoung if (ret_val) {
659 1.1 dyoung DEBUGOUT("NVM Read Error\n");
660 1.1 dyoung return ret_val;
661 1.1 dyoung }
662 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
663 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
664 1.1 dyoung }
665 1.1 dyoung pba_num[offset * 2] = '\0';
666 1.1 dyoung
667 1.1 dyoung return IXGBE_SUCCESS;
668 1.1 dyoung }
669 1.1 dyoung
670 1.1 dyoung /**
671 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
672 1.1 dyoung * @hw: pointer to hardware structure
673 1.1 dyoung * @pba_num: stores the part number from the EEPROM
674 1.1 dyoung *
675 1.1 dyoung * Reads the part number from the EEPROM.
676 1.1 dyoung **/
677 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
678 1.1 dyoung {
679 1.1 dyoung s32 ret_val;
680 1.1 dyoung u16 data;
681 1.1 dyoung
682 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
683 1.1 dyoung
684 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
685 1.1 dyoung if (ret_val) {
686 1.1 dyoung DEBUGOUT("NVM Read Error\n");
687 1.1 dyoung return ret_val;
688 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
689 1.1 dyoung DEBUGOUT("NVM Not supported\n");
690 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
691 1.1 dyoung }
692 1.1 dyoung *pba_num = (u32)(data << 16);
693 1.1 dyoung
694 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
695 1.1 dyoung if (ret_val) {
696 1.1 dyoung DEBUGOUT("NVM Read Error\n");
697 1.1 dyoung return ret_val;
698 1.1 dyoung }
699 1.1 dyoung *pba_num |= data;
700 1.1 dyoung
701 1.1 dyoung return IXGBE_SUCCESS;
702 1.1 dyoung }
703 1.1 dyoung
704 1.1 dyoung /**
705 1.5 msaitoh * ixgbe_read_pba_raw
706 1.5 msaitoh * @hw: pointer to the HW structure
707 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
708 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
709 1.5 msaitoh * @max_pba_block_size: PBA block size limit
710 1.5 msaitoh * @pba: pointer to output PBA structure
711 1.5 msaitoh *
712 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
713 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
714 1.5 msaitoh *
715 1.5 msaitoh **/
716 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
717 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
718 1.5 msaitoh struct ixgbe_pba *pba)
719 1.5 msaitoh {
720 1.5 msaitoh s32 ret_val;
721 1.5 msaitoh u16 pba_block_size;
722 1.5 msaitoh
723 1.5 msaitoh if (pba == NULL)
724 1.5 msaitoh return IXGBE_ERR_PARAM;
725 1.5 msaitoh
726 1.5 msaitoh if (eeprom_buf == NULL) {
727 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
728 1.5 msaitoh &pba->word[0]);
729 1.5 msaitoh if (ret_val)
730 1.5 msaitoh return ret_val;
731 1.5 msaitoh } else {
732 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
733 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
734 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
735 1.5 msaitoh } else {
736 1.5 msaitoh return IXGBE_ERR_PARAM;
737 1.5 msaitoh }
738 1.5 msaitoh }
739 1.5 msaitoh
740 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
741 1.5 msaitoh if (pba->pba_block == NULL)
742 1.5 msaitoh return IXGBE_ERR_PARAM;
743 1.5 msaitoh
744 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
745 1.5 msaitoh eeprom_buf_size,
746 1.5 msaitoh &pba_block_size);
747 1.5 msaitoh if (ret_val)
748 1.5 msaitoh return ret_val;
749 1.5 msaitoh
750 1.5 msaitoh if (pba_block_size > max_pba_block_size)
751 1.5 msaitoh return IXGBE_ERR_PARAM;
752 1.5 msaitoh
753 1.5 msaitoh if (eeprom_buf == NULL) {
754 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
755 1.5 msaitoh pba_block_size,
756 1.5 msaitoh pba->pba_block);
757 1.5 msaitoh if (ret_val)
758 1.5 msaitoh return ret_val;
759 1.5 msaitoh } else {
760 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
761 1.5 msaitoh pba->pba_block[0])) {
762 1.5 msaitoh memcpy(pba->pba_block,
763 1.5 msaitoh &eeprom_buf[pba->word[1]],
764 1.5 msaitoh pba_block_size * sizeof(u16));
765 1.5 msaitoh } else {
766 1.5 msaitoh return IXGBE_ERR_PARAM;
767 1.5 msaitoh }
768 1.5 msaitoh }
769 1.5 msaitoh }
770 1.5 msaitoh
771 1.5 msaitoh return IXGBE_SUCCESS;
772 1.5 msaitoh }
773 1.5 msaitoh
774 1.5 msaitoh /**
775 1.5 msaitoh * ixgbe_write_pba_raw
776 1.5 msaitoh * @hw: pointer to the HW structure
777 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
778 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
779 1.5 msaitoh * @pba: pointer to PBA structure
780 1.5 msaitoh *
781 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
782 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
783 1.5 msaitoh *
784 1.5 msaitoh **/
785 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
786 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
787 1.5 msaitoh {
788 1.5 msaitoh s32 ret_val;
789 1.5 msaitoh
790 1.5 msaitoh if (pba == NULL)
791 1.5 msaitoh return IXGBE_ERR_PARAM;
792 1.5 msaitoh
793 1.5 msaitoh if (eeprom_buf == NULL) {
794 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
795 1.5 msaitoh &pba->word[0]);
796 1.5 msaitoh if (ret_val)
797 1.5 msaitoh return ret_val;
798 1.5 msaitoh } else {
799 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
800 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
801 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
802 1.5 msaitoh } else {
803 1.5 msaitoh return IXGBE_ERR_PARAM;
804 1.5 msaitoh }
805 1.5 msaitoh }
806 1.5 msaitoh
807 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
808 1.5 msaitoh if (pba->pba_block == NULL)
809 1.5 msaitoh return IXGBE_ERR_PARAM;
810 1.5 msaitoh
811 1.5 msaitoh if (eeprom_buf == NULL) {
812 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
813 1.5 msaitoh pba->pba_block[0],
814 1.5 msaitoh pba->pba_block);
815 1.5 msaitoh if (ret_val)
816 1.5 msaitoh return ret_val;
817 1.5 msaitoh } else {
818 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
819 1.5 msaitoh pba->pba_block[0])) {
820 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
821 1.5 msaitoh pba->pba_block,
822 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
823 1.5 msaitoh } else {
824 1.5 msaitoh return IXGBE_ERR_PARAM;
825 1.5 msaitoh }
826 1.5 msaitoh }
827 1.5 msaitoh }
828 1.5 msaitoh
829 1.5 msaitoh return IXGBE_SUCCESS;
830 1.5 msaitoh }
831 1.5 msaitoh
832 1.5 msaitoh /**
833 1.5 msaitoh * ixgbe_get_pba_block_size
834 1.5 msaitoh * @hw: pointer to the HW structure
835 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
836 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
837 1.5 msaitoh * @pba_data_size: pointer to output variable
838 1.5 msaitoh *
839 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
840 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
841 1.5 msaitoh * EEPROM device.
842 1.5 msaitoh *
843 1.5 msaitoh **/
844 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
845 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
846 1.5 msaitoh {
847 1.5 msaitoh s32 ret_val;
848 1.5 msaitoh u16 pba_word[2];
849 1.5 msaitoh u16 length;
850 1.5 msaitoh
851 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
852 1.5 msaitoh
853 1.5 msaitoh if (eeprom_buf == NULL) {
854 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
855 1.5 msaitoh &pba_word[0]);
856 1.5 msaitoh if (ret_val)
857 1.5 msaitoh return ret_val;
858 1.5 msaitoh } else {
859 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
860 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
861 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
862 1.5 msaitoh } else {
863 1.5 msaitoh return IXGBE_ERR_PARAM;
864 1.5 msaitoh }
865 1.5 msaitoh }
866 1.5 msaitoh
867 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
868 1.5 msaitoh if (eeprom_buf == NULL) {
869 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
870 1.5 msaitoh &length);
871 1.5 msaitoh if (ret_val)
872 1.5 msaitoh return ret_val;
873 1.5 msaitoh } else {
874 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
875 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
876 1.5 msaitoh else
877 1.5 msaitoh return IXGBE_ERR_PARAM;
878 1.5 msaitoh }
879 1.5 msaitoh
880 1.5 msaitoh if (length == 0xFFFF || length == 0)
881 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
882 1.5 msaitoh } else {
883 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
884 1.5 msaitoh length = 0;
885 1.5 msaitoh }
886 1.5 msaitoh
887 1.5 msaitoh if (pba_block_size != NULL)
888 1.5 msaitoh *pba_block_size = length;
889 1.5 msaitoh
890 1.5 msaitoh return IXGBE_SUCCESS;
891 1.5 msaitoh }
892 1.5 msaitoh
893 1.5 msaitoh /**
894 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
895 1.1 dyoung * @hw: pointer to hardware structure
896 1.1 dyoung * @mac_addr: Adapter MAC address
897 1.1 dyoung *
898 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
899 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
900 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
901 1.1 dyoung **/
902 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
903 1.1 dyoung {
904 1.1 dyoung u32 rar_high;
905 1.1 dyoung u32 rar_low;
906 1.1 dyoung u16 i;
907 1.1 dyoung
908 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
909 1.1 dyoung
910 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
911 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
912 1.1 dyoung
913 1.1 dyoung for (i = 0; i < 4; i++)
914 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
915 1.1 dyoung
916 1.1 dyoung for (i = 0; i < 2; i++)
917 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
918 1.1 dyoung
919 1.1 dyoung return IXGBE_SUCCESS;
920 1.1 dyoung }
921 1.1 dyoung
922 1.1 dyoung /**
923 1.1 dyoung * ixgbe_get_bus_info_generic - Generic set PCI bus info
924 1.1 dyoung * @hw: pointer to hardware structure
925 1.1 dyoung *
926 1.1 dyoung * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
927 1.1 dyoung **/
928 1.1 dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
929 1.1 dyoung {
930 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
931 1.1 dyoung u16 link_status;
932 1.1 dyoung
933 1.1 dyoung DEBUGFUNC("ixgbe_get_bus_info_generic");
934 1.1 dyoung
935 1.1 dyoung hw->bus.type = ixgbe_bus_type_pci_express;
936 1.1 dyoung
937 1.1 dyoung /* Get the negotiated link width and speed from PCI config space */
938 1.1 dyoung link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
939 1.1 dyoung
940 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
941 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
942 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
943 1.1 dyoung break;
944 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
945 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
946 1.1 dyoung break;
947 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
948 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
949 1.1 dyoung break;
950 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
951 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
952 1.1 dyoung break;
953 1.1 dyoung default:
954 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
955 1.1 dyoung break;
956 1.1 dyoung }
957 1.1 dyoung
958 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
959 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
960 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
961 1.1 dyoung break;
962 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
963 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
964 1.1 dyoung break;
965 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
966 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
967 1.4 msaitoh break;
968 1.1 dyoung default:
969 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
970 1.1 dyoung break;
971 1.1 dyoung }
972 1.1 dyoung
973 1.1 dyoung mac->ops.set_lan_id(hw);
974 1.1 dyoung
975 1.1 dyoung return IXGBE_SUCCESS;
976 1.1 dyoung }
977 1.1 dyoung
978 1.1 dyoung /**
979 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
980 1.1 dyoung * @hw: pointer to the HW structure
981 1.1 dyoung *
982 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
983 1.1 dyoung * and swaps the port value if requested.
984 1.1 dyoung **/
985 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
986 1.1 dyoung {
987 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
988 1.1 dyoung u32 reg;
989 1.1 dyoung
990 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
991 1.1 dyoung
992 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
993 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
994 1.1 dyoung bus->lan_id = bus->func;
995 1.1 dyoung
996 1.1 dyoung /* check for a port swap */
997 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
998 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
999 1.1 dyoung bus->func ^= 0x1;
1000 1.1 dyoung }
1001 1.1 dyoung
1002 1.1 dyoung /**
1003 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1004 1.1 dyoung * @hw: pointer to hardware structure
1005 1.1 dyoung *
1006 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1007 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1008 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1009 1.1 dyoung * state and should not touch the hardware.
1010 1.1 dyoung **/
1011 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1012 1.1 dyoung {
1013 1.1 dyoung u32 reg_val;
1014 1.1 dyoung u16 i;
1015 1.1 dyoung
1016 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1017 1.1 dyoung
1018 1.1 dyoung /*
1019 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1020 1.1 dyoung * the hardware
1021 1.1 dyoung */
1022 1.1 dyoung hw->adapter_stopped = TRUE;
1023 1.1 dyoung
1024 1.1 dyoung /* Disable the receive unit */
1025 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
1026 1.1 dyoung
1027 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1028 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1029 1.1 dyoung
1030 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1031 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1032 1.1 dyoung
1033 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1034 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1035 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1036 1.3 msaitoh
1037 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1038 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1039 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1040 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1041 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1042 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1043 1.1 dyoung }
1044 1.1 dyoung
1045 1.3 msaitoh /* flush all queues disables */
1046 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1047 1.3 msaitoh msec_delay(2);
1048 1.3 msaitoh
1049 1.1 dyoung /*
1050 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
1051 1.1 dyoung * access and verify no pending requests
1052 1.1 dyoung */
1053 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1054 1.1 dyoung }
1055 1.1 dyoung
1056 1.1 dyoung /**
1057 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1058 1.1 dyoung * @hw: pointer to hardware structure
1059 1.1 dyoung * @index: led number to turn on
1060 1.1 dyoung **/
1061 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1062 1.1 dyoung {
1063 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1064 1.1 dyoung
1065 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1066 1.1 dyoung
1067 1.1 dyoung /* To turn on the LED, set mode to ON. */
1068 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1069 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1070 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1071 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1072 1.1 dyoung
1073 1.1 dyoung return IXGBE_SUCCESS;
1074 1.1 dyoung }
1075 1.1 dyoung
1076 1.1 dyoung /**
1077 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1078 1.1 dyoung * @hw: pointer to hardware structure
1079 1.1 dyoung * @index: led number to turn off
1080 1.1 dyoung **/
1081 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1082 1.1 dyoung {
1083 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1084 1.1 dyoung
1085 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1086 1.1 dyoung
1087 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1088 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1089 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1090 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1091 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1092 1.1 dyoung
1093 1.1 dyoung return IXGBE_SUCCESS;
1094 1.1 dyoung }
1095 1.1 dyoung
1096 1.1 dyoung /**
1097 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1098 1.1 dyoung * @hw: pointer to hardware structure
1099 1.1 dyoung *
1100 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1101 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1102 1.1 dyoung **/
1103 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1104 1.1 dyoung {
1105 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1106 1.1 dyoung u32 eec;
1107 1.1 dyoung u16 eeprom_size;
1108 1.1 dyoung
1109 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1110 1.1 dyoung
1111 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1112 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1113 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1114 1.1 dyoung * tested value */
1115 1.1 dyoung eeprom->semaphore_delay = 10;
1116 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1117 1.3 msaitoh eeprom->word_page_size = 0;
1118 1.1 dyoung
1119 1.1 dyoung /*
1120 1.1 dyoung * Check for EEPROM present first.
1121 1.1 dyoung * If not present leave as none
1122 1.1 dyoung */
1123 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1124 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1125 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1126 1.1 dyoung
1127 1.1 dyoung /*
1128 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1129 1.1 dyoung * change if a future EEPROM is not SPI.
1130 1.1 dyoung */
1131 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1132 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1133 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1134 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1135 1.1 dyoung }
1136 1.1 dyoung
1137 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1138 1.1 dyoung eeprom->address_bits = 16;
1139 1.1 dyoung else
1140 1.1 dyoung eeprom->address_bits = 8;
1141 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1142 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1143 1.3 msaitoh eeprom->address_bits);
1144 1.1 dyoung }
1145 1.1 dyoung
1146 1.1 dyoung return IXGBE_SUCCESS;
1147 1.1 dyoung }
1148 1.1 dyoung
1149 1.1 dyoung /**
1150 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1151 1.3 msaitoh * @hw: pointer to hardware structure
1152 1.3 msaitoh * @offset: offset within the EEPROM to write
1153 1.3 msaitoh * @words: number of word(s)
1154 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1155 1.3 msaitoh *
1156 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1157 1.3 msaitoh **/
1158 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1159 1.3 msaitoh u16 words, u16 *data)
1160 1.3 msaitoh {
1161 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1162 1.3 msaitoh u16 i, count;
1163 1.3 msaitoh
1164 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1165 1.3 msaitoh
1166 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1167 1.3 msaitoh
1168 1.3 msaitoh if (words == 0) {
1169 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1170 1.3 msaitoh goto out;
1171 1.3 msaitoh }
1172 1.3 msaitoh
1173 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1174 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1175 1.3 msaitoh goto out;
1176 1.3 msaitoh }
1177 1.3 msaitoh
1178 1.3 msaitoh /*
1179 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1180 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1181 1.3 msaitoh */
1182 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1183 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1184 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1185 1.3 msaitoh
1186 1.3 msaitoh /*
1187 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1188 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1189 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1190 1.3 msaitoh */
1191 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1192 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1193 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1194 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1195 1.3 msaitoh count, &data[i]);
1196 1.3 msaitoh
1197 1.3 msaitoh if (status != IXGBE_SUCCESS)
1198 1.3 msaitoh break;
1199 1.3 msaitoh }
1200 1.3 msaitoh
1201 1.3 msaitoh out:
1202 1.3 msaitoh return status;
1203 1.3 msaitoh }
1204 1.3 msaitoh
1205 1.3 msaitoh /**
1206 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1207 1.3 msaitoh * @hw: pointer to hardware structure
1208 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1209 1.3 msaitoh * @words: number of word(s)
1210 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1211 1.3 msaitoh *
1212 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1213 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1214 1.3 msaitoh **/
1215 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1216 1.3 msaitoh u16 words, u16 *data)
1217 1.3 msaitoh {
1218 1.3 msaitoh s32 status;
1219 1.3 msaitoh u16 word;
1220 1.3 msaitoh u16 page_size;
1221 1.3 msaitoh u16 i;
1222 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1223 1.3 msaitoh
1224 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1225 1.3 msaitoh
1226 1.3 msaitoh /* Prepare the EEPROM for writing */
1227 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1228 1.3 msaitoh
1229 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1230 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1231 1.3 msaitoh ixgbe_release_eeprom(hw);
1232 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1233 1.3 msaitoh }
1234 1.3 msaitoh }
1235 1.3 msaitoh
1236 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1237 1.3 msaitoh for (i = 0; i < words; i++) {
1238 1.3 msaitoh ixgbe_standby_eeprom(hw);
1239 1.3 msaitoh
1240 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1241 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1242 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1243 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1244 1.3 msaitoh
1245 1.3 msaitoh ixgbe_standby_eeprom(hw);
1246 1.3 msaitoh
1247 1.3 msaitoh /*
1248 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1249 1.3 msaitoh * in the opcode
1250 1.3 msaitoh */
1251 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1252 1.3 msaitoh ((offset + i) >= 128))
1253 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1254 1.3 msaitoh
1255 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1256 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1257 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1258 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1259 1.3 msaitoh hw->eeprom.address_bits);
1260 1.3 msaitoh
1261 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1262 1.3 msaitoh
1263 1.3 msaitoh /* Send the data in burst via SPI*/
1264 1.3 msaitoh do {
1265 1.3 msaitoh word = data[i];
1266 1.3 msaitoh word = (word >> 8) | (word << 8);
1267 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1268 1.3 msaitoh
1269 1.3 msaitoh if (page_size == 0)
1270 1.3 msaitoh break;
1271 1.3 msaitoh
1272 1.3 msaitoh /* do not wrap around page */
1273 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1274 1.3 msaitoh (page_size - 1))
1275 1.3 msaitoh break;
1276 1.3 msaitoh } while (++i < words);
1277 1.3 msaitoh
1278 1.3 msaitoh ixgbe_standby_eeprom(hw);
1279 1.3 msaitoh msec_delay(10);
1280 1.3 msaitoh }
1281 1.3 msaitoh /* Done with writing - release the EEPROM */
1282 1.3 msaitoh ixgbe_release_eeprom(hw);
1283 1.3 msaitoh }
1284 1.3 msaitoh
1285 1.3 msaitoh return status;
1286 1.3 msaitoh }
1287 1.3 msaitoh
1288 1.3 msaitoh /**
1289 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1290 1.1 dyoung * @hw: pointer to hardware structure
1291 1.1 dyoung * @offset: offset within the EEPROM to be written to
1292 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1293 1.1 dyoung *
1294 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1295 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1296 1.1 dyoung **/
1297 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1298 1.1 dyoung {
1299 1.1 dyoung s32 status;
1300 1.1 dyoung
1301 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1302 1.1 dyoung
1303 1.1 dyoung hw->eeprom.ops.init_params(hw);
1304 1.1 dyoung
1305 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1306 1.1 dyoung status = IXGBE_ERR_EEPROM;
1307 1.1 dyoung goto out;
1308 1.1 dyoung }
1309 1.1 dyoung
1310 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1311 1.3 msaitoh
1312 1.3 msaitoh out:
1313 1.3 msaitoh return status;
1314 1.3 msaitoh }
1315 1.3 msaitoh
1316 1.3 msaitoh /**
1317 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1318 1.3 msaitoh * @hw: pointer to hardware structure
1319 1.3 msaitoh * @offset: offset within the EEPROM to be read
1320 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1321 1.3 msaitoh * @words: number of word(s)
1322 1.3 msaitoh *
1323 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1324 1.3 msaitoh **/
1325 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1326 1.3 msaitoh u16 words, u16 *data)
1327 1.3 msaitoh {
1328 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1329 1.3 msaitoh u16 i, count;
1330 1.3 msaitoh
1331 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1332 1.3 msaitoh
1333 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1334 1.3 msaitoh
1335 1.3 msaitoh if (words == 0) {
1336 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1337 1.3 msaitoh goto out;
1338 1.3 msaitoh }
1339 1.3 msaitoh
1340 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1341 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1342 1.3 msaitoh goto out;
1343 1.3 msaitoh }
1344 1.3 msaitoh
1345 1.3 msaitoh /*
1346 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1347 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1348 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1349 1.3 msaitoh */
1350 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1351 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1352 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1353 1.3 msaitoh
1354 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1355 1.3 msaitoh count, &data[i]);
1356 1.3 msaitoh
1357 1.3 msaitoh if (status != IXGBE_SUCCESS)
1358 1.3 msaitoh break;
1359 1.3 msaitoh }
1360 1.3 msaitoh
1361 1.3 msaitoh out:
1362 1.3 msaitoh return status;
1363 1.3 msaitoh }
1364 1.3 msaitoh
1365 1.3 msaitoh /**
1366 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1367 1.3 msaitoh * @hw: pointer to hardware structure
1368 1.3 msaitoh * @offset: offset within the EEPROM to be read
1369 1.3 msaitoh * @words: number of word(s)
1370 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1371 1.3 msaitoh *
1372 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1373 1.3 msaitoh **/
1374 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1375 1.3 msaitoh u16 words, u16 *data)
1376 1.3 msaitoh {
1377 1.3 msaitoh s32 status;
1378 1.3 msaitoh u16 word_in;
1379 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1380 1.3 msaitoh u16 i;
1381 1.3 msaitoh
1382 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1383 1.3 msaitoh
1384 1.3 msaitoh /* Prepare the EEPROM for reading */
1385 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1386 1.1 dyoung
1387 1.1 dyoung if (status == IXGBE_SUCCESS) {
1388 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1389 1.1 dyoung ixgbe_release_eeprom(hw);
1390 1.1 dyoung status = IXGBE_ERR_EEPROM;
1391 1.1 dyoung }
1392 1.1 dyoung }
1393 1.1 dyoung
1394 1.1 dyoung if (status == IXGBE_SUCCESS) {
1395 1.3 msaitoh for (i = 0; i < words; i++) {
1396 1.3 msaitoh ixgbe_standby_eeprom(hw);
1397 1.3 msaitoh /*
1398 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1399 1.3 msaitoh * in the opcode
1400 1.3 msaitoh */
1401 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1402 1.3 msaitoh ((offset + i) >= 128))
1403 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1404 1.3 msaitoh
1405 1.3 msaitoh /* Send the READ command (opcode + addr) */
1406 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1407 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1408 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1409 1.3 msaitoh hw->eeprom.address_bits);
1410 1.3 msaitoh
1411 1.3 msaitoh /* Read the data. */
1412 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1413 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1414 1.3 msaitoh }
1415 1.1 dyoung
1416 1.3 msaitoh /* End this read operation */
1417 1.1 dyoung ixgbe_release_eeprom(hw);
1418 1.1 dyoung }
1419 1.1 dyoung
1420 1.1 dyoung return status;
1421 1.1 dyoung }
1422 1.1 dyoung
1423 1.1 dyoung /**
1424 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1425 1.1 dyoung * @hw: pointer to hardware structure
1426 1.1 dyoung * @offset: offset within the EEPROM to be read
1427 1.1 dyoung * @data: read 16 bit value from EEPROM
1428 1.1 dyoung *
1429 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1430 1.1 dyoung **/
1431 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1432 1.3 msaitoh u16 *data)
1433 1.1 dyoung {
1434 1.1 dyoung s32 status;
1435 1.1 dyoung
1436 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1437 1.1 dyoung
1438 1.1 dyoung hw->eeprom.ops.init_params(hw);
1439 1.1 dyoung
1440 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1441 1.1 dyoung status = IXGBE_ERR_EEPROM;
1442 1.1 dyoung goto out;
1443 1.1 dyoung }
1444 1.1 dyoung
1445 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1446 1.3 msaitoh
1447 1.3 msaitoh out:
1448 1.3 msaitoh return status;
1449 1.3 msaitoh }
1450 1.3 msaitoh
1451 1.3 msaitoh /**
1452 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1453 1.3 msaitoh * @hw: pointer to hardware structure
1454 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1455 1.3 msaitoh * @words: number of word(s)
1456 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1457 1.3 msaitoh *
1458 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1459 1.3 msaitoh **/
1460 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1461 1.3 msaitoh u16 words, u16 *data)
1462 1.3 msaitoh {
1463 1.3 msaitoh u32 eerd;
1464 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1465 1.3 msaitoh u32 i;
1466 1.3 msaitoh
1467 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1468 1.3 msaitoh
1469 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1470 1.3 msaitoh
1471 1.3 msaitoh if (words == 0) {
1472 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1473 1.3 msaitoh goto out;
1474 1.3 msaitoh }
1475 1.3 msaitoh
1476 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1477 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1478 1.3 msaitoh goto out;
1479 1.3 msaitoh }
1480 1.3 msaitoh
1481 1.3 msaitoh for (i = 0; i < words; i++) {
1482 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1483 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1484 1.3 msaitoh
1485 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1486 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1487 1.1 dyoung
1488 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1489 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1490 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1491 1.3 msaitoh } else {
1492 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1493 1.3 msaitoh goto out;
1494 1.1 dyoung }
1495 1.1 dyoung }
1496 1.3 msaitoh out:
1497 1.3 msaitoh return status;
1498 1.3 msaitoh }
1499 1.1 dyoung
1500 1.3 msaitoh /**
1501 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1502 1.3 msaitoh * @hw: pointer to hardware structure
1503 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1504 1.3 msaitoh *
1505 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1506 1.3 msaitoh * This function is called only when we are writing a new large buffer
1507 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1508 1.3 msaitoh **/
1509 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1510 1.3 msaitoh u16 offset)
1511 1.3 msaitoh {
1512 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1513 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1514 1.3 msaitoh u16 i;
1515 1.3 msaitoh
1516 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1517 1.3 msaitoh
1518 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1519 1.3 msaitoh data[i] = i;
1520 1.1 dyoung
1521 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1522 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1523 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1524 1.3 msaitoh hw->eeprom.word_page_size = 0;
1525 1.3 msaitoh if (status != IXGBE_SUCCESS)
1526 1.3 msaitoh goto out;
1527 1.1 dyoung
1528 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1529 1.3 msaitoh if (status != IXGBE_SUCCESS)
1530 1.3 msaitoh goto out;
1531 1.1 dyoung
1532 1.3 msaitoh /*
1533 1.3 msaitoh * When writing in burst more than the actual page size
1534 1.3 msaitoh * EEPROM address wraps around current page.
1535 1.3 msaitoh */
1536 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1537 1.1 dyoung
1538 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1539 1.3 msaitoh hw->eeprom.word_page_size);
1540 1.1 dyoung out:
1541 1.1 dyoung return status;
1542 1.1 dyoung }
1543 1.1 dyoung
1544 1.1 dyoung /**
1545 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1546 1.1 dyoung * @hw: pointer to hardware structure
1547 1.1 dyoung * @offset: offset of word in the EEPROM to read
1548 1.1 dyoung * @data: word read from the EEPROM
1549 1.1 dyoung *
1550 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1551 1.1 dyoung **/
1552 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1553 1.1 dyoung {
1554 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1555 1.3 msaitoh }
1556 1.3 msaitoh
1557 1.3 msaitoh /**
1558 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1559 1.3 msaitoh * @hw: pointer to hardware structure
1560 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1561 1.3 msaitoh * @words: number of word(s)
1562 1.3 msaitoh * @data: word(s) write to the EEPROM
1563 1.3 msaitoh *
1564 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1565 1.3 msaitoh **/
1566 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1567 1.3 msaitoh u16 words, u16 *data)
1568 1.3 msaitoh {
1569 1.3 msaitoh u32 eewr;
1570 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1571 1.3 msaitoh u16 i;
1572 1.1 dyoung
1573 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1574 1.1 dyoung
1575 1.1 dyoung hw->eeprom.ops.init_params(hw);
1576 1.1 dyoung
1577 1.3 msaitoh if (words == 0) {
1578 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1579 1.3 msaitoh goto out;
1580 1.3 msaitoh }
1581 1.3 msaitoh
1582 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1583 1.1 dyoung status = IXGBE_ERR_EEPROM;
1584 1.1 dyoung goto out;
1585 1.1 dyoung }
1586 1.1 dyoung
1587 1.3 msaitoh for (i = 0; i < words; i++) {
1588 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1589 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1590 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1591 1.3 msaitoh
1592 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1593 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1594 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1595 1.3 msaitoh goto out;
1596 1.3 msaitoh }
1597 1.1 dyoung
1598 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1599 1.1 dyoung
1600 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1601 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1602 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1603 1.3 msaitoh goto out;
1604 1.3 msaitoh }
1605 1.3 msaitoh }
1606 1.1 dyoung
1607 1.1 dyoung out:
1608 1.1 dyoung return status;
1609 1.1 dyoung }
1610 1.1 dyoung
1611 1.1 dyoung /**
1612 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1613 1.1 dyoung * @hw: pointer to hardware structure
1614 1.1 dyoung * @offset: offset of word in the EEPROM to write
1615 1.1 dyoung * @data: word write to the EEPROM
1616 1.1 dyoung *
1617 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1618 1.1 dyoung **/
1619 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1620 1.1 dyoung {
1621 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1622 1.1 dyoung }
1623 1.1 dyoung
1624 1.1 dyoung /**
1625 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1626 1.1 dyoung * @hw: pointer to hardware structure
1627 1.1 dyoung * @ee_reg: EEPROM flag for polling
1628 1.1 dyoung *
1629 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1630 1.1 dyoung * read or write is done respectively.
1631 1.1 dyoung **/
1632 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1633 1.1 dyoung {
1634 1.1 dyoung u32 i;
1635 1.1 dyoung u32 reg;
1636 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1637 1.1 dyoung
1638 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1639 1.1 dyoung
1640 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1641 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1642 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1643 1.1 dyoung else
1644 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1645 1.1 dyoung
1646 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1647 1.1 dyoung status = IXGBE_SUCCESS;
1648 1.1 dyoung break;
1649 1.1 dyoung }
1650 1.1 dyoung usec_delay(5);
1651 1.1 dyoung }
1652 1.1 dyoung return status;
1653 1.1 dyoung }
1654 1.1 dyoung
1655 1.1 dyoung /**
1656 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1657 1.1 dyoung * @hw: pointer to hardware structure
1658 1.1 dyoung *
1659 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1660 1.1 dyoung * be called before issuing a command to the EEPROM.
1661 1.1 dyoung **/
1662 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1663 1.1 dyoung {
1664 1.1 dyoung s32 status = IXGBE_SUCCESS;
1665 1.1 dyoung u32 eec;
1666 1.1 dyoung u32 i;
1667 1.1 dyoung
1668 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1669 1.1 dyoung
1670 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1671 1.3 msaitoh != IXGBE_SUCCESS)
1672 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1673 1.1 dyoung
1674 1.1 dyoung if (status == IXGBE_SUCCESS) {
1675 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1676 1.1 dyoung
1677 1.1 dyoung /* Request EEPROM Access */
1678 1.1 dyoung eec |= IXGBE_EEC_REQ;
1679 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1680 1.1 dyoung
1681 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1682 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1683 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1684 1.1 dyoung break;
1685 1.1 dyoung usec_delay(5);
1686 1.1 dyoung }
1687 1.1 dyoung
1688 1.1 dyoung /* Release if grant not acquired */
1689 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1690 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1691 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1692 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1693 1.1 dyoung
1694 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1695 1.1 dyoung status = IXGBE_ERR_EEPROM;
1696 1.1 dyoung }
1697 1.1 dyoung
1698 1.1 dyoung /* Setup EEPROM for Read/Write */
1699 1.1 dyoung if (status == IXGBE_SUCCESS) {
1700 1.1 dyoung /* Clear CS and SK */
1701 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1702 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1703 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1704 1.1 dyoung usec_delay(1);
1705 1.1 dyoung }
1706 1.1 dyoung }
1707 1.1 dyoung return status;
1708 1.1 dyoung }
1709 1.1 dyoung
1710 1.1 dyoung /**
1711 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1712 1.1 dyoung * @hw: pointer to hardware structure
1713 1.1 dyoung *
1714 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1715 1.1 dyoung **/
1716 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1717 1.1 dyoung {
1718 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1719 1.1 dyoung u32 timeout = 2000;
1720 1.1 dyoung u32 i;
1721 1.1 dyoung u32 swsm;
1722 1.1 dyoung
1723 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1724 1.1 dyoung
1725 1.1 dyoung
1726 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1727 1.1 dyoung for (i = 0; i < timeout; i++) {
1728 1.1 dyoung /*
1729 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1730 1.1 dyoung * set and we have the semaphore
1731 1.1 dyoung */
1732 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1733 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1734 1.1 dyoung status = IXGBE_SUCCESS;
1735 1.1 dyoung break;
1736 1.1 dyoung }
1737 1.1 dyoung usec_delay(50);
1738 1.1 dyoung }
1739 1.1 dyoung
1740 1.3 msaitoh if (i == timeout) {
1741 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1742 1.3 msaitoh "not granted.\n");
1743 1.3 msaitoh /*
1744 1.3 msaitoh * this release is particularly important because our attempts
1745 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1746 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1747 1.3 msaitoh * bits to free the driver to make progress
1748 1.3 msaitoh */
1749 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1750 1.3 msaitoh
1751 1.3 msaitoh usec_delay(50);
1752 1.3 msaitoh /*
1753 1.3 msaitoh * one last try
1754 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1755 1.3 msaitoh * set and we have the semaphore
1756 1.3 msaitoh */
1757 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1758 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1759 1.3 msaitoh status = IXGBE_SUCCESS;
1760 1.3 msaitoh }
1761 1.3 msaitoh
1762 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1763 1.1 dyoung if (status == IXGBE_SUCCESS) {
1764 1.1 dyoung for (i = 0; i < timeout; i++) {
1765 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1766 1.1 dyoung
1767 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1768 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1769 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1770 1.1 dyoung
1771 1.1 dyoung /*
1772 1.1 dyoung * If we set the bit successfully then we got the
1773 1.1 dyoung * semaphore.
1774 1.1 dyoung */
1775 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1776 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1777 1.1 dyoung break;
1778 1.1 dyoung
1779 1.1 dyoung usec_delay(50);
1780 1.1 dyoung }
1781 1.1 dyoung
1782 1.1 dyoung /*
1783 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1784 1.1 dyoung * was not granted because we don't have access to the EEPROM
1785 1.1 dyoung */
1786 1.1 dyoung if (i >= timeout) {
1787 1.1 dyoung DEBUGOUT("SWESMBI Software EEPROM semaphore "
1788 1.3 msaitoh "not granted.\n");
1789 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1790 1.1 dyoung status = IXGBE_ERR_EEPROM;
1791 1.1 dyoung }
1792 1.1 dyoung } else {
1793 1.1 dyoung DEBUGOUT("Software semaphore SMBI between device drivers "
1794 1.3 msaitoh "not granted.\n");
1795 1.1 dyoung }
1796 1.1 dyoung
1797 1.1 dyoung return status;
1798 1.1 dyoung }
1799 1.1 dyoung
1800 1.1 dyoung /**
1801 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1802 1.1 dyoung * @hw: pointer to hardware structure
1803 1.1 dyoung *
1804 1.1 dyoung * This function clears hardware semaphore bits.
1805 1.1 dyoung **/
1806 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1807 1.1 dyoung {
1808 1.1 dyoung u32 swsm;
1809 1.1 dyoung
1810 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1811 1.1 dyoung
1812 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1813 1.1 dyoung
1814 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1815 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1816 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1817 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1818 1.1 dyoung }
1819 1.1 dyoung
1820 1.1 dyoung /**
1821 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1822 1.1 dyoung * @hw: pointer to hardware structure
1823 1.1 dyoung **/
1824 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1825 1.1 dyoung {
1826 1.1 dyoung s32 status = IXGBE_SUCCESS;
1827 1.1 dyoung u16 i;
1828 1.1 dyoung u8 spi_stat_reg;
1829 1.1 dyoung
1830 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1831 1.1 dyoung
1832 1.1 dyoung /*
1833 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1834 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1835 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1836 1.1 dyoung * 5 milliseconds, then error out.
1837 1.1 dyoung */
1838 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1839 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1840 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1841 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1842 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1843 1.1 dyoung break;
1844 1.1 dyoung
1845 1.1 dyoung usec_delay(5);
1846 1.1 dyoung ixgbe_standby_eeprom(hw);
1847 1.1 dyoung };
1848 1.1 dyoung
1849 1.1 dyoung /*
1850 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1851 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1852 1.1 dyoung */
1853 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1854 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1855 1.1 dyoung status = IXGBE_ERR_EEPROM;
1856 1.1 dyoung }
1857 1.1 dyoung
1858 1.1 dyoung return status;
1859 1.1 dyoung }
1860 1.1 dyoung
1861 1.1 dyoung /**
1862 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1863 1.1 dyoung * @hw: pointer to hardware structure
1864 1.1 dyoung **/
1865 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1866 1.1 dyoung {
1867 1.1 dyoung u32 eec;
1868 1.1 dyoung
1869 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1870 1.1 dyoung
1871 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1872 1.1 dyoung
1873 1.1 dyoung /* Toggle CS to flush commands */
1874 1.1 dyoung eec |= IXGBE_EEC_CS;
1875 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1876 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1877 1.1 dyoung usec_delay(1);
1878 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1879 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1880 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1881 1.1 dyoung usec_delay(1);
1882 1.1 dyoung }
1883 1.1 dyoung
1884 1.1 dyoung /**
1885 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1886 1.1 dyoung * @hw: pointer to hardware structure
1887 1.1 dyoung * @data: data to send to the EEPROM
1888 1.1 dyoung * @count: number of bits to shift out
1889 1.1 dyoung **/
1890 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1891 1.3 msaitoh u16 count)
1892 1.1 dyoung {
1893 1.1 dyoung u32 eec;
1894 1.1 dyoung u32 mask;
1895 1.1 dyoung u32 i;
1896 1.1 dyoung
1897 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1898 1.1 dyoung
1899 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1900 1.1 dyoung
1901 1.1 dyoung /*
1902 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1903 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1904 1.1 dyoung */
1905 1.1 dyoung mask = 0x01 << (count - 1);
1906 1.1 dyoung
1907 1.1 dyoung for (i = 0; i < count; i++) {
1908 1.1 dyoung /*
1909 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1910 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1911 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1912 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1913 1.1 dyoung * raising and then lowering the clock.
1914 1.1 dyoung */
1915 1.1 dyoung if (data & mask)
1916 1.1 dyoung eec |= IXGBE_EEC_DI;
1917 1.1 dyoung else
1918 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1919 1.1 dyoung
1920 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1921 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1922 1.1 dyoung
1923 1.1 dyoung usec_delay(1);
1924 1.1 dyoung
1925 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1926 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1927 1.1 dyoung
1928 1.1 dyoung /*
1929 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1930 1.1 dyoung * EEPROM
1931 1.1 dyoung */
1932 1.1 dyoung mask = mask >> 1;
1933 1.1 dyoung };
1934 1.1 dyoung
1935 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1936 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1937 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1938 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1939 1.1 dyoung }
1940 1.1 dyoung
1941 1.1 dyoung /**
1942 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1943 1.1 dyoung * @hw: pointer to hardware structure
1944 1.1 dyoung **/
1945 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1946 1.1 dyoung {
1947 1.1 dyoung u32 eec;
1948 1.1 dyoung u32 i;
1949 1.1 dyoung u16 data = 0;
1950 1.1 dyoung
1951 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1952 1.1 dyoung
1953 1.1 dyoung /*
1954 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
1955 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1956 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
1957 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
1958 1.1 dyoung * "DI" bit should always be clear.
1959 1.1 dyoung */
1960 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1961 1.1 dyoung
1962 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1963 1.1 dyoung
1964 1.1 dyoung for (i = 0; i < count; i++) {
1965 1.1 dyoung data = data << 1;
1966 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1967 1.1 dyoung
1968 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1969 1.1 dyoung
1970 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
1971 1.1 dyoung if (eec & IXGBE_EEC_DO)
1972 1.1 dyoung data |= 1;
1973 1.1 dyoung
1974 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1975 1.1 dyoung }
1976 1.1 dyoung
1977 1.1 dyoung return data;
1978 1.1 dyoung }
1979 1.1 dyoung
1980 1.1 dyoung /**
1981 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1982 1.1 dyoung * @hw: pointer to hardware structure
1983 1.1 dyoung * @eec: EEC register's current value
1984 1.1 dyoung **/
1985 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1986 1.1 dyoung {
1987 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
1988 1.1 dyoung
1989 1.1 dyoung /*
1990 1.1 dyoung * Raise the clock input to the EEPROM
1991 1.1 dyoung * (setting the SK bit), then delay
1992 1.1 dyoung */
1993 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
1994 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1995 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1996 1.1 dyoung usec_delay(1);
1997 1.1 dyoung }
1998 1.1 dyoung
1999 1.1 dyoung /**
2000 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2001 1.1 dyoung * @hw: pointer to hardware structure
2002 1.1 dyoung * @eecd: EECD's current value
2003 1.1 dyoung **/
2004 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2005 1.1 dyoung {
2006 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2007 1.1 dyoung
2008 1.1 dyoung /*
2009 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2010 1.1 dyoung * delay
2011 1.1 dyoung */
2012 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2013 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2014 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2015 1.1 dyoung usec_delay(1);
2016 1.1 dyoung }
2017 1.1 dyoung
2018 1.1 dyoung /**
2019 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2020 1.1 dyoung * @hw: pointer to hardware structure
2021 1.1 dyoung **/
2022 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2023 1.1 dyoung {
2024 1.1 dyoung u32 eec;
2025 1.1 dyoung
2026 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2027 1.1 dyoung
2028 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2029 1.1 dyoung
2030 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2031 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2032 1.1 dyoung
2033 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2034 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2035 1.1 dyoung
2036 1.1 dyoung usec_delay(1);
2037 1.1 dyoung
2038 1.1 dyoung /* Stop requesting EEPROM access */
2039 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2040 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2041 1.1 dyoung
2042 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2043 1.1 dyoung
2044 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2045 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2046 1.1 dyoung }
2047 1.1 dyoung
2048 1.1 dyoung /**
2049 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2050 1.1 dyoung * @hw: pointer to hardware structure
2051 1.1 dyoung **/
2052 1.1 dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2053 1.1 dyoung {
2054 1.1 dyoung u16 i;
2055 1.1 dyoung u16 j;
2056 1.1 dyoung u16 checksum = 0;
2057 1.1 dyoung u16 length = 0;
2058 1.1 dyoung u16 pointer = 0;
2059 1.1 dyoung u16 word = 0;
2060 1.1 dyoung
2061 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2062 1.1 dyoung
2063 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2064 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2065 1.1 dyoung if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
2066 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2067 1.1 dyoung break;
2068 1.1 dyoung }
2069 1.1 dyoung checksum += word;
2070 1.1 dyoung }
2071 1.1 dyoung
2072 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2073 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2074 1.1 dyoung hw->eeprom.ops.read(hw, i, &pointer);
2075 1.1 dyoung
2076 1.1 dyoung /* Make sure the pointer seems valid */
2077 1.1 dyoung if (pointer != 0xFFFF && pointer != 0) {
2078 1.1 dyoung hw->eeprom.ops.read(hw, pointer, &length);
2079 1.1 dyoung
2080 1.1 dyoung if (length != 0xFFFF && length != 0) {
2081 1.1 dyoung for (j = pointer+1; j <= pointer+length; j++) {
2082 1.1 dyoung hw->eeprom.ops.read(hw, j, &word);
2083 1.1 dyoung checksum += word;
2084 1.1 dyoung }
2085 1.1 dyoung }
2086 1.1 dyoung }
2087 1.1 dyoung }
2088 1.1 dyoung
2089 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2090 1.1 dyoung
2091 1.1 dyoung return checksum;
2092 1.1 dyoung }
2093 1.1 dyoung
2094 1.1 dyoung /**
2095 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2096 1.1 dyoung * @hw: pointer to hardware structure
2097 1.1 dyoung * @checksum_val: calculated checksum
2098 1.1 dyoung *
2099 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2100 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2101 1.1 dyoung **/
2102 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2103 1.3 msaitoh u16 *checksum_val)
2104 1.1 dyoung {
2105 1.1 dyoung s32 status;
2106 1.1 dyoung u16 checksum;
2107 1.1 dyoung u16 read_checksum = 0;
2108 1.1 dyoung
2109 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2110 1.1 dyoung
2111 1.1 dyoung /*
2112 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
2113 1.1 dyoung * not continue or we could be in for a very long wait while every
2114 1.1 dyoung * EEPROM read fails
2115 1.1 dyoung */
2116 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2117 1.1 dyoung
2118 1.1 dyoung if (status == IXGBE_SUCCESS) {
2119 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
2120 1.1 dyoung
2121 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2122 1.1 dyoung
2123 1.1 dyoung /*
2124 1.1 dyoung * Verify read checksum from EEPROM is the same as
2125 1.1 dyoung * calculated checksum
2126 1.1 dyoung */
2127 1.1 dyoung if (read_checksum != checksum)
2128 1.1 dyoung status = IXGBE_ERR_EEPROM_CHECKSUM;
2129 1.1 dyoung
2130 1.1 dyoung /* If the user cares, return the calculated checksum */
2131 1.1 dyoung if (checksum_val)
2132 1.1 dyoung *checksum_val = checksum;
2133 1.1 dyoung } else {
2134 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2135 1.1 dyoung }
2136 1.1 dyoung
2137 1.1 dyoung return status;
2138 1.1 dyoung }
2139 1.1 dyoung
2140 1.1 dyoung /**
2141 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2142 1.1 dyoung * @hw: pointer to hardware structure
2143 1.1 dyoung **/
2144 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2145 1.1 dyoung {
2146 1.1 dyoung s32 status;
2147 1.1 dyoung u16 checksum;
2148 1.1 dyoung
2149 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2150 1.1 dyoung
2151 1.1 dyoung /*
2152 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
2153 1.1 dyoung * not continue or we could be in for a very long wait while every
2154 1.1 dyoung * EEPROM read fails
2155 1.1 dyoung */
2156 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2157 1.1 dyoung
2158 1.1 dyoung if (status == IXGBE_SUCCESS) {
2159 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
2160 1.1 dyoung status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
2161 1.3 msaitoh checksum);
2162 1.1 dyoung } else {
2163 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2164 1.1 dyoung }
2165 1.1 dyoung
2166 1.1 dyoung return status;
2167 1.1 dyoung }
2168 1.1 dyoung
2169 1.1 dyoung /**
2170 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2171 1.1 dyoung * @mac_addr: pointer to MAC address.
2172 1.1 dyoung *
2173 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2174 1.1 dyoung **/
2175 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2176 1.1 dyoung {
2177 1.1 dyoung s32 status = IXGBE_SUCCESS;
2178 1.1 dyoung
2179 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2180 1.1 dyoung
2181 1.1 dyoung /* Make sure it is not a multicast address */
2182 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2183 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2184 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2185 1.1 dyoung /* Not a broadcast address */
2186 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2187 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2188 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2189 1.1 dyoung /* Reject the zero address */
2190 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2191 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2192 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2193 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2194 1.1 dyoung }
2195 1.1 dyoung return status;
2196 1.1 dyoung }
2197 1.1 dyoung
2198 1.1 dyoung /**
2199 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2200 1.1 dyoung * @hw: pointer to hardware structure
2201 1.1 dyoung * @index: Receive address register to write
2202 1.1 dyoung * @addr: Address to put into receive address register
2203 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2204 1.1 dyoung * @enable_addr: set flag that address is active
2205 1.1 dyoung *
2206 1.1 dyoung * Puts an ethernet address into a receive address register.
2207 1.1 dyoung **/
2208 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2209 1.3 msaitoh u32 enable_addr)
2210 1.1 dyoung {
2211 1.1 dyoung u32 rar_low, rar_high;
2212 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2213 1.1 dyoung
2214 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2215 1.1 dyoung
2216 1.1 dyoung /* Make sure we are using a valid rar index range */
2217 1.1 dyoung if (index >= rar_entries) {
2218 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
2219 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2220 1.1 dyoung }
2221 1.1 dyoung
2222 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2223 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2224 1.1 dyoung
2225 1.1 dyoung /*
2226 1.1 dyoung * HW expects these in little endian so we reverse the byte
2227 1.1 dyoung * order from network order (big endian) to little endian
2228 1.1 dyoung */
2229 1.1 dyoung rar_low = ((u32)addr[0] |
2230 1.3 msaitoh ((u32)addr[1] << 8) |
2231 1.3 msaitoh ((u32)addr[2] << 16) |
2232 1.3 msaitoh ((u32)addr[3] << 24));
2233 1.1 dyoung /*
2234 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2235 1.1 dyoung * so save everything except the lower 16 bits that hold part
2236 1.1 dyoung * of the address and the address valid bit.
2237 1.1 dyoung */
2238 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2239 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2240 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2241 1.1 dyoung
2242 1.1 dyoung if (enable_addr != 0)
2243 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2244 1.1 dyoung
2245 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2246 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2247 1.1 dyoung
2248 1.1 dyoung return IXGBE_SUCCESS;
2249 1.1 dyoung }
2250 1.1 dyoung
2251 1.1 dyoung /**
2252 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2253 1.1 dyoung * @hw: pointer to hardware structure
2254 1.1 dyoung * @index: Receive address register to write
2255 1.1 dyoung *
2256 1.1 dyoung * Clears an ethernet address from a receive address register.
2257 1.1 dyoung **/
2258 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2259 1.1 dyoung {
2260 1.1 dyoung u32 rar_high;
2261 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2262 1.1 dyoung
2263 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2264 1.1 dyoung
2265 1.1 dyoung /* Make sure we are using a valid rar index range */
2266 1.1 dyoung if (index >= rar_entries) {
2267 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", index);
2268 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2269 1.1 dyoung }
2270 1.1 dyoung
2271 1.1 dyoung /*
2272 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2273 1.1 dyoung * so save everything except the lower 16 bits that hold part
2274 1.1 dyoung * of the address and the address valid bit.
2275 1.1 dyoung */
2276 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2277 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2278 1.1 dyoung
2279 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2280 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2281 1.1 dyoung
2282 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2283 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2284 1.1 dyoung
2285 1.1 dyoung return IXGBE_SUCCESS;
2286 1.1 dyoung }
2287 1.1 dyoung
2288 1.1 dyoung /**
2289 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2290 1.1 dyoung * @hw: pointer to hardware structure
2291 1.1 dyoung *
2292 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2293 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2294 1.1 dyoung * the receiver is in reset when the routine is called.
2295 1.1 dyoung **/
2296 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2297 1.1 dyoung {
2298 1.1 dyoung u32 i;
2299 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2300 1.1 dyoung
2301 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2302 1.1 dyoung
2303 1.1 dyoung /*
2304 1.1 dyoung * If the current mac address is valid, assume it is a software override
2305 1.1 dyoung * to the permanent address.
2306 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2307 1.1 dyoung */
2308 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2309 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2310 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2311 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2312 1.1 dyoung
2313 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2314 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2315 1.3 msaitoh hw->mac.addr[2]);
2316 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2317 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2318 1.1 dyoung } else {
2319 1.1 dyoung /* Setup the receive address. */
2320 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2321 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2322 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2323 1.3 msaitoh hw->mac.addr[2]);
2324 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2325 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2326 1.1 dyoung
2327 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2328 1.1 dyoung
2329 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2330 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2331 1.1 dyoung }
2332 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2333 1.1 dyoung
2334 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2335 1.1 dyoung
2336 1.1 dyoung /* Zero out the other receive addresses. */
2337 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2338 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2339 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2340 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2341 1.1 dyoung }
2342 1.1 dyoung
2343 1.1 dyoung /* Clear the MTA */
2344 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2345 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2346 1.1 dyoung
2347 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2348 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2349 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2350 1.1 dyoung
2351 1.1 dyoung ixgbe_init_uta_tables(hw);
2352 1.1 dyoung
2353 1.1 dyoung return IXGBE_SUCCESS;
2354 1.1 dyoung }
2355 1.1 dyoung
2356 1.1 dyoung /**
2357 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2358 1.1 dyoung * @hw: pointer to hardware structure
2359 1.1 dyoung * @addr: new address
2360 1.1 dyoung *
2361 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2362 1.1 dyoung **/
2363 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2364 1.1 dyoung {
2365 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2366 1.1 dyoung u32 rar;
2367 1.1 dyoung
2368 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2369 1.1 dyoung
2370 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2371 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2372 1.1 dyoung
2373 1.1 dyoung /*
2374 1.1 dyoung * Place this address in the RAR if there is room,
2375 1.1 dyoung * else put the controller into promiscuous mode
2376 1.1 dyoung */
2377 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2378 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2379 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2380 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2381 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2382 1.1 dyoung } else {
2383 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2384 1.1 dyoung }
2385 1.1 dyoung
2386 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2387 1.1 dyoung }
2388 1.1 dyoung
2389 1.1 dyoung /**
2390 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2391 1.1 dyoung * @hw: pointer to hardware structure
2392 1.1 dyoung * @addr_list: the list of new addresses
2393 1.1 dyoung * @addr_count: number of addresses
2394 1.1 dyoung * @next: iterator function to walk the address list
2395 1.1 dyoung *
2396 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2397 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2398 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2399 1.1 dyoung *
2400 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2401 1.1 dyoung * manually putting the device into promiscuous mode.
2402 1.1 dyoung **/
2403 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2404 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2405 1.1 dyoung {
2406 1.1 dyoung u8 *addr;
2407 1.1 dyoung u32 i;
2408 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2409 1.1 dyoung u32 uc_addr_in_use;
2410 1.1 dyoung u32 fctrl;
2411 1.1 dyoung u32 vmdq;
2412 1.1 dyoung
2413 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2414 1.1 dyoung
2415 1.1 dyoung /*
2416 1.1 dyoung * Clear accounting of old secondary address list,
2417 1.1 dyoung * don't count RAR[0]
2418 1.1 dyoung */
2419 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2420 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2421 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2422 1.1 dyoung
2423 1.1 dyoung /* Zero out the other receive addresses */
2424 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2425 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2427 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2428 1.1 dyoung }
2429 1.1 dyoung
2430 1.1 dyoung /* Add the new addresses */
2431 1.1 dyoung for (i = 0; i < addr_count; i++) {
2432 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2433 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2434 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2435 1.1 dyoung }
2436 1.1 dyoung
2437 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2438 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2439 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2440 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2441 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2442 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2443 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2444 1.1 dyoung }
2445 1.1 dyoung } else {
2446 1.1 dyoung /* only disable if set by overflow, not by user */
2447 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2448 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2449 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2450 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2451 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2452 1.1 dyoung }
2453 1.1 dyoung }
2454 1.1 dyoung
2455 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2456 1.1 dyoung return IXGBE_SUCCESS;
2457 1.1 dyoung }
2458 1.1 dyoung
2459 1.1 dyoung /**
2460 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2461 1.1 dyoung * @hw: pointer to hardware structure
2462 1.1 dyoung * @mc_addr: the multicast address
2463 1.1 dyoung *
2464 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2465 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2466 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2467 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2468 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2469 1.1 dyoung * to mc_filter_type.
2470 1.1 dyoung **/
2471 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2472 1.1 dyoung {
2473 1.1 dyoung u32 vector = 0;
2474 1.1 dyoung
2475 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2476 1.1 dyoung
2477 1.1 dyoung switch (hw->mac.mc_filter_type) {
2478 1.1 dyoung case 0: /* use bits [47:36] of the address */
2479 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2480 1.1 dyoung break;
2481 1.1 dyoung case 1: /* use bits [46:35] of the address */
2482 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2483 1.1 dyoung break;
2484 1.1 dyoung case 2: /* use bits [45:34] of the address */
2485 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2486 1.1 dyoung break;
2487 1.1 dyoung case 3: /* use bits [43:32] of the address */
2488 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2489 1.1 dyoung break;
2490 1.1 dyoung default: /* Invalid mc_filter_type */
2491 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2492 1.1 dyoung ASSERT(0);
2493 1.1 dyoung break;
2494 1.1 dyoung }
2495 1.1 dyoung
2496 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2497 1.1 dyoung vector &= 0xFFF;
2498 1.1 dyoung return vector;
2499 1.1 dyoung }
2500 1.1 dyoung
2501 1.1 dyoung /**
2502 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2503 1.1 dyoung * @hw: pointer to hardware structure
2504 1.1 dyoung * @hash_value: Multicast address hash value
2505 1.1 dyoung *
2506 1.1 dyoung * Sets the bit-vector in the multicast table.
2507 1.1 dyoung **/
2508 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2509 1.1 dyoung {
2510 1.1 dyoung u32 vector;
2511 1.1 dyoung u32 vector_bit;
2512 1.1 dyoung u32 vector_reg;
2513 1.1 dyoung
2514 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2515 1.1 dyoung
2516 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2517 1.1 dyoung
2518 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2519 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2520 1.1 dyoung
2521 1.1 dyoung /*
2522 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2523 1.1 dyoung * like an array of 4096 bits. We want to set bit
2524 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2525 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2526 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2527 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2528 1.1 dyoung * the value.
2529 1.1 dyoung */
2530 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2531 1.1 dyoung vector_bit = vector & 0x1F;
2532 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2533 1.1 dyoung }
2534 1.1 dyoung
2535 1.1 dyoung /**
2536 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2537 1.1 dyoung * @hw: pointer to hardware structure
2538 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2539 1.1 dyoung * @mc_addr_count: number of addresses
2540 1.1 dyoung * @next: iterator function to walk the multicast address list
2541 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2542 1.1 dyoung *
2543 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2544 1.3 msaitoh * Hashes the given addresses into the multicast table.
2545 1.1 dyoung **/
2546 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2547 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2548 1.3 msaitoh bool clear)
2549 1.1 dyoung {
2550 1.1 dyoung u32 i;
2551 1.1 dyoung u32 vmdq;
2552 1.1 dyoung
2553 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2554 1.1 dyoung
2555 1.1 dyoung /*
2556 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2557 1.1 dyoung * use.
2558 1.1 dyoung */
2559 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2560 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2561 1.1 dyoung
2562 1.1 dyoung /* Clear mta_shadow */
2563 1.3 msaitoh if (clear) {
2564 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2565 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2566 1.3 msaitoh }
2567 1.1 dyoung
2568 1.1 dyoung /* Update mta_shadow */
2569 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2570 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2571 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2572 1.1 dyoung }
2573 1.1 dyoung
2574 1.1 dyoung /* Enable mta */
2575 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2576 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2577 1.1 dyoung hw->mac.mta_shadow[i]);
2578 1.1 dyoung
2579 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2580 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2581 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2582 1.1 dyoung
2583 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2584 1.1 dyoung return IXGBE_SUCCESS;
2585 1.1 dyoung }
2586 1.1 dyoung
2587 1.1 dyoung /**
2588 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2589 1.1 dyoung * @hw: pointer to hardware structure
2590 1.1 dyoung *
2591 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2592 1.1 dyoung **/
2593 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2594 1.1 dyoung {
2595 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2596 1.1 dyoung
2597 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2598 1.1 dyoung
2599 1.1 dyoung if (a->mta_in_use > 0)
2600 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2601 1.3 msaitoh hw->mac.mc_filter_type);
2602 1.1 dyoung
2603 1.1 dyoung return IXGBE_SUCCESS;
2604 1.1 dyoung }
2605 1.1 dyoung
2606 1.1 dyoung /**
2607 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2608 1.1 dyoung * @hw: pointer to hardware structure
2609 1.1 dyoung *
2610 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2611 1.1 dyoung **/
2612 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2613 1.1 dyoung {
2614 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2615 1.1 dyoung
2616 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2617 1.1 dyoung
2618 1.1 dyoung if (a->mta_in_use > 0)
2619 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2620 1.1 dyoung
2621 1.1 dyoung return IXGBE_SUCCESS;
2622 1.1 dyoung }
2623 1.1 dyoung
2624 1.1 dyoung /**
2625 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2626 1.1 dyoung * @hw: pointer to hardware structure
2627 1.1 dyoung *
2628 1.1 dyoung * Enable flow control according to the current settings.
2629 1.1 dyoung **/
2630 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2631 1.1 dyoung {
2632 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2633 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2634 1.1 dyoung u32 reg;
2635 1.1 dyoung u32 fcrtl, fcrth;
2636 1.4 msaitoh int i;
2637 1.1 dyoung
2638 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2639 1.1 dyoung
2640 1.4 msaitoh /* Validate the water mark configuration */
2641 1.4 msaitoh if (!hw->fc.pause_time) {
2642 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2643 1.4 msaitoh goto out;
2644 1.4 msaitoh }
2645 1.4 msaitoh
2646 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2647 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2648 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2649 1.4 msaitoh hw->fc.high_water[i]) {
2650 1.4 msaitoh if (!hw->fc.low_water[i] ||
2651 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2652 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2653 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2654 1.4 msaitoh goto out;
2655 1.4 msaitoh }
2656 1.4 msaitoh }
2657 1.4 msaitoh }
2658 1.4 msaitoh
2659 1.1 dyoung /* Negotiate the fc mode to use */
2660 1.4 msaitoh ixgbe_fc_autoneg(hw);
2661 1.1 dyoung
2662 1.1 dyoung /* Disable any previous flow control settings */
2663 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2664 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2665 1.1 dyoung
2666 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2667 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2668 1.1 dyoung
2669 1.1 dyoung /*
2670 1.1 dyoung * The possible values of fc.current_mode are:
2671 1.1 dyoung * 0: Flow control is completely disabled
2672 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2673 1.1 dyoung * but not send pause frames).
2674 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2675 1.1 dyoung * we do not support receiving pause frames).
2676 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2677 1.1 dyoung * other: Invalid.
2678 1.1 dyoung */
2679 1.1 dyoung switch (hw->fc.current_mode) {
2680 1.1 dyoung case ixgbe_fc_none:
2681 1.1 dyoung /*
2682 1.1 dyoung * Flow control is disabled by software override or autoneg.
2683 1.1 dyoung * The code below will actually disable it in the HW.
2684 1.1 dyoung */
2685 1.1 dyoung break;
2686 1.1 dyoung case ixgbe_fc_rx_pause:
2687 1.1 dyoung /*
2688 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2689 1.1 dyoung * disabled by software override. Since there really
2690 1.1 dyoung * isn't a way to advertise that we are capable of RX
2691 1.1 dyoung * Pause ONLY, we will advertise that we support both
2692 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2693 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2694 1.1 dyoung */
2695 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2696 1.1 dyoung break;
2697 1.1 dyoung case ixgbe_fc_tx_pause:
2698 1.1 dyoung /*
2699 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2700 1.1 dyoung * disabled by software override.
2701 1.1 dyoung */
2702 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2703 1.1 dyoung break;
2704 1.1 dyoung case ixgbe_fc_full:
2705 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2706 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2707 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2708 1.1 dyoung break;
2709 1.1 dyoung default:
2710 1.1 dyoung DEBUGOUT("Flow control param set incorrectly\n");
2711 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2712 1.1 dyoung goto out;
2713 1.1 dyoung break;
2714 1.1 dyoung }
2715 1.1 dyoung
2716 1.1 dyoung /* Set 802.3x based flow control settings. */
2717 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2718 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2719 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2720 1.1 dyoung
2721 1.1 dyoung
2722 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2723 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2724 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2725 1.4 msaitoh hw->fc.high_water[i]) {
2726 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2727 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2728 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2729 1.4 msaitoh } else {
2730 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2731 1.4 msaitoh /*
2732 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2733 1.4 msaitoh * switch is enabled we must set the high water mark
2734 1.4 msaitoh * to the maximum FCRTH value. This allows the Tx
2735 1.4 msaitoh * switch to function even under heavy Rx workloads.
2736 1.4 msaitoh */
2737 1.4 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2738 1.4 msaitoh }
2739 1.4 msaitoh
2740 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2741 1.1 dyoung }
2742 1.1 dyoung
2743 1.1 dyoung /* Configure pause time (2 TCs per register) */
2744 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2745 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2746 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2747 1.1 dyoung
2748 1.4 msaitoh /* Configure flow control refresh threshold value */
2749 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2750 1.1 dyoung
2751 1.1 dyoung out:
2752 1.1 dyoung return ret_val;
2753 1.1 dyoung }
2754 1.1 dyoung
2755 1.1 dyoung /**
2756 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2757 1.1 dyoung * @hw: pointer to hardware structure
2758 1.4 msaitoh * @adv_reg: flow control advertised settings
2759 1.4 msaitoh * @lp_reg: link partner's flow control settings
2760 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2761 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2762 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2763 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2764 1.1 dyoung *
2765 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2766 1.4 msaitoh * advertised settings
2767 1.1 dyoung **/
2768 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2769 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2770 1.1 dyoung {
2771 1.4 msaitoh if ((!(adv_reg)) || (!(lp_reg)))
2772 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2773 1.1 dyoung
2774 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2775 1.4 msaitoh /*
2776 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2777 1.4 msaitoh * of pause frames. In this case, we had to advertise
2778 1.4 msaitoh * FULL flow control because we could not advertise RX
2779 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2780 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2781 1.4 msaitoh */
2782 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2783 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2784 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2785 1.4 msaitoh } else {
2786 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2787 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2788 1.4 msaitoh }
2789 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2790 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2791 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2792 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2793 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2794 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2795 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2796 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2797 1.4 msaitoh } else {
2798 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2799 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2800 1.4 msaitoh }
2801 1.4 msaitoh return IXGBE_SUCCESS;
2802 1.4 msaitoh }
2803 1.1 dyoung
2804 1.4 msaitoh /**
2805 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2806 1.4 msaitoh * @hw: pointer to hardware structure
2807 1.4 msaitoh *
2808 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2809 1.4 msaitoh **/
2810 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2811 1.4 msaitoh {
2812 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2813 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2814 1.1 dyoung
2815 1.1 dyoung /*
2816 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2817 1.4 msaitoh * - link is up but AN did not complete, or if
2818 1.4 msaitoh * - link is up and AN completed but timed out
2819 1.1 dyoung */
2820 1.4 msaitoh
2821 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2822 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2823 1.4 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2824 1.1 dyoung goto out;
2825 1.1 dyoung
2826 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2827 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2828 1.1 dyoung
2829 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2830 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2831 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2832 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2833 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2834 1.1 dyoung
2835 1.1 dyoung out:
2836 1.1 dyoung return ret_val;
2837 1.1 dyoung }
2838 1.1 dyoung
2839 1.1 dyoung /**
2840 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2841 1.1 dyoung * @hw: pointer to hardware structure
2842 1.1 dyoung *
2843 1.1 dyoung * Enable flow control according to IEEE clause 37.
2844 1.1 dyoung **/
2845 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2846 1.1 dyoung {
2847 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2848 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2849 1.1 dyoung
2850 1.1 dyoung /*
2851 1.1 dyoung * On backplane, bail out if
2852 1.1 dyoung * - backplane autoneg was not completed, or if
2853 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2854 1.1 dyoung */
2855 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2856 1.4 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2857 1.1 dyoung goto out;
2858 1.1 dyoung
2859 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2860 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2861 1.4 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2862 1.1 dyoung goto out;
2863 1.1 dyoung }
2864 1.1 dyoung /*
2865 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2866 1.1 dyoung * local flow control settings accordingly
2867 1.1 dyoung */
2868 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2869 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2870 1.1 dyoung
2871 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2872 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2873 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2874 1.1 dyoung
2875 1.1 dyoung out:
2876 1.1 dyoung return ret_val;
2877 1.1 dyoung }
2878 1.1 dyoung
2879 1.1 dyoung /**
2880 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2881 1.1 dyoung * @hw: pointer to hardware structure
2882 1.1 dyoung *
2883 1.1 dyoung * Enable flow control according to IEEE clause 37.
2884 1.1 dyoung **/
2885 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2886 1.1 dyoung {
2887 1.1 dyoung u16 technology_ability_reg = 0;
2888 1.1 dyoung u16 lp_technology_ability_reg = 0;
2889 1.1 dyoung
2890 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2891 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2892 1.1 dyoung &technology_ability_reg);
2893 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2894 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2895 1.1 dyoung &lp_technology_ability_reg);
2896 1.1 dyoung
2897 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2898 1.1 dyoung (u32)lp_technology_ability_reg,
2899 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2900 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2901 1.1 dyoung }
2902 1.1 dyoung
2903 1.1 dyoung /**
2904 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2905 1.1 dyoung * @hw: pointer to hardware structure
2906 1.1 dyoung *
2907 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
2908 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
2909 1.1 dyoung **/
2910 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2911 1.1 dyoung {
2912 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2913 1.4 msaitoh ixgbe_link_speed speed;
2914 1.4 msaitoh bool link_up;
2915 1.1 dyoung
2916 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
2917 1.1 dyoung
2918 1.1 dyoung /*
2919 1.4 msaitoh * AN should have completed when the cable was plugged in.
2920 1.4 msaitoh * Look for reasons to bail out. Bail out if:
2921 1.4 msaitoh * - FC autoneg is disabled, or if
2922 1.4 msaitoh * - link is not up.
2923 1.1 dyoung */
2924 1.4 msaitoh if (hw->fc.disable_fc_autoneg)
2925 1.1 dyoung goto out;
2926 1.1 dyoung
2927 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2928 1.4 msaitoh if (!link_up)
2929 1.1 dyoung goto out;
2930 1.1 dyoung
2931 1.1 dyoung switch (hw->phy.media_type) {
2932 1.4 msaitoh /* Autoneg flow control on fiber adapters */
2933 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
2934 1.1 dyoung case ixgbe_media_type_fiber:
2935 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2936 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
2937 1.4 msaitoh break;
2938 1.4 msaitoh
2939 1.4 msaitoh /* Autoneg flow control on backplane adapters */
2940 1.1 dyoung case ixgbe_media_type_backplane:
2941 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
2942 1.1 dyoung break;
2943 1.1 dyoung
2944 1.4 msaitoh /* Autoneg flow control on copper adapters */
2945 1.1 dyoung case ixgbe_media_type_copper:
2946 1.4 msaitoh if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2947 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
2948 1.1 dyoung break;
2949 1.1 dyoung
2950 1.1 dyoung default:
2951 1.1 dyoung break;
2952 1.1 dyoung }
2953 1.1 dyoung
2954 1.4 msaitoh out:
2955 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
2956 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
2957 1.4 msaitoh } else {
2958 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
2959 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
2960 1.3 msaitoh }
2961 1.1 dyoung }
2962 1.1 dyoung
2963 1.1 dyoung /**
2964 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
2965 1.1 dyoung * @hw: pointer to hardware structure
2966 1.1 dyoung *
2967 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
2968 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2969 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2970 1.1 dyoung * is returned signifying master requests disabled.
2971 1.1 dyoung **/
2972 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2973 1.1 dyoung {
2974 1.3 msaitoh s32 status = IXGBE_SUCCESS;
2975 1.1 dyoung u32 i;
2976 1.1 dyoung
2977 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
2978 1.1 dyoung
2979 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
2980 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2981 1.3 msaitoh
2982 1.3 msaitoh /* Exit if master requets are blocked */
2983 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2984 1.1 dyoung goto out;
2985 1.1 dyoung
2986 1.3 msaitoh /* Poll for master request bit to clear */
2987 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2988 1.3 msaitoh usec_delay(100);
2989 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2990 1.3 msaitoh goto out;
2991 1.1 dyoung }
2992 1.1 dyoung
2993 1.3 msaitoh /*
2994 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
2995 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2996 1.3 msaitoh * of this need. The first reset prevents new master requests from
2997 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
2998 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
2999 1.3 msaitoh * again to clear out any effects they may have had on our device.
3000 1.3 msaitoh */
3001 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3002 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3003 1.1 dyoung
3004 1.1 dyoung /*
3005 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3006 1.1 dyoung * transactions pending.
3007 1.1 dyoung */
3008 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3009 1.3 msaitoh usec_delay(100);
3010 1.1 dyoung if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
3011 1.3 msaitoh IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3012 1.3 msaitoh goto out;
3013 1.1 dyoung }
3014 1.1 dyoung
3015 1.3 msaitoh DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
3016 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3017 1.1 dyoung
3018 1.1 dyoung out:
3019 1.1 dyoung return status;
3020 1.1 dyoung }
3021 1.1 dyoung
3022 1.1 dyoung /**
3023 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3024 1.1 dyoung * @hw: pointer to hardware structure
3025 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3026 1.1 dyoung *
3027 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3028 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3029 1.1 dyoung **/
3030 1.1 dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
3031 1.1 dyoung {
3032 1.1 dyoung u32 gssr;
3033 1.1 dyoung u32 swmask = mask;
3034 1.1 dyoung u32 fwmask = mask << 5;
3035 1.1 dyoung s32 timeout = 200;
3036 1.1 dyoung
3037 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3038 1.1 dyoung
3039 1.1 dyoung while (timeout) {
3040 1.1 dyoung /*
3041 1.1 dyoung * SW EEPROM semaphore bit is used for access to all
3042 1.1 dyoung * SW_FW_SYNC/GSSR bits (not just EEPROM)
3043 1.1 dyoung */
3044 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3045 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3046 1.1 dyoung
3047 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3048 1.1 dyoung if (!(gssr & (fwmask | swmask)))
3049 1.1 dyoung break;
3050 1.1 dyoung
3051 1.1 dyoung /*
3052 1.1 dyoung * Firmware currently using resource (fwmask) or other software
3053 1.1 dyoung * thread currently using resource (swmask)
3054 1.1 dyoung */
3055 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3056 1.1 dyoung msec_delay(5);
3057 1.1 dyoung timeout--;
3058 1.1 dyoung }
3059 1.1 dyoung
3060 1.1 dyoung if (!timeout) {
3061 1.1 dyoung DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3062 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3063 1.1 dyoung }
3064 1.1 dyoung
3065 1.1 dyoung gssr |= swmask;
3066 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3067 1.1 dyoung
3068 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3069 1.1 dyoung return IXGBE_SUCCESS;
3070 1.1 dyoung }
3071 1.1 dyoung
3072 1.1 dyoung /**
3073 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3074 1.1 dyoung * @hw: pointer to hardware structure
3075 1.1 dyoung * @mask: Mask to specify which semaphore to release
3076 1.1 dyoung *
3077 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3078 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3079 1.1 dyoung **/
3080 1.1 dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
3081 1.1 dyoung {
3082 1.1 dyoung u32 gssr;
3083 1.1 dyoung u32 swmask = mask;
3084 1.1 dyoung
3085 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3086 1.1 dyoung
3087 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3088 1.1 dyoung
3089 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3090 1.1 dyoung gssr &= ~swmask;
3091 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3092 1.1 dyoung
3093 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3094 1.1 dyoung }
3095 1.1 dyoung
3096 1.1 dyoung /**
3097 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3098 1.3 msaitoh * @hw: pointer to hardware structure
3099 1.3 msaitoh *
3100 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3101 1.3 msaitoh * the Rx security block
3102 1.3 msaitoh **/
3103 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3104 1.3 msaitoh {
3105 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3106 1.3 msaitoh
3107 1.3 msaitoh int i;
3108 1.3 msaitoh int secrxreg;
3109 1.3 msaitoh
3110 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3111 1.3 msaitoh
3112 1.3 msaitoh
3113 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3114 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3115 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3116 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3117 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3118 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3119 1.3 msaitoh break;
3120 1.3 msaitoh else
3121 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3122 1.3 msaitoh usec_delay(1000);
3123 1.3 msaitoh }
3124 1.3 msaitoh
3125 1.3 msaitoh /* For informational purposes only */
3126 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3127 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3128 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3129 1.3 msaitoh
3130 1.3 msaitoh return IXGBE_SUCCESS;
3131 1.3 msaitoh }
3132 1.3 msaitoh
3133 1.3 msaitoh /**
3134 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3135 1.3 msaitoh * @hw: pointer to hardware structure
3136 1.3 msaitoh *
3137 1.3 msaitoh * Enables the receive data path.
3138 1.3 msaitoh **/
3139 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3140 1.3 msaitoh {
3141 1.3 msaitoh int secrxreg;
3142 1.3 msaitoh
3143 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3144 1.3 msaitoh
3145 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3146 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3147 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3148 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3149 1.3 msaitoh
3150 1.3 msaitoh return IXGBE_SUCCESS;
3151 1.3 msaitoh }
3152 1.3 msaitoh
3153 1.3 msaitoh /**
3154 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3155 1.1 dyoung * @hw: pointer to hardware structure
3156 1.1 dyoung * @regval: register value to write to RXCTRL
3157 1.1 dyoung *
3158 1.1 dyoung * Enables the Rx DMA unit
3159 1.1 dyoung **/
3160 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3161 1.1 dyoung {
3162 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3163 1.1 dyoung
3164 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
3165 1.1 dyoung
3166 1.1 dyoung return IXGBE_SUCCESS;
3167 1.1 dyoung }
3168 1.1 dyoung
3169 1.1 dyoung /**
3170 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3171 1.1 dyoung * @hw: pointer to hardware structure
3172 1.1 dyoung * @index: led number to blink
3173 1.1 dyoung **/
3174 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3175 1.1 dyoung {
3176 1.1 dyoung ixgbe_link_speed speed = 0;
3177 1.1 dyoung bool link_up = 0;
3178 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3179 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3180 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3181 1.1 dyoung
3182 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3183 1.1 dyoung
3184 1.1 dyoung /*
3185 1.1 dyoung * Link must be up to auto-blink the LEDs;
3186 1.1 dyoung * Force it if link is down.
3187 1.1 dyoung */
3188 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3189 1.1 dyoung
3190 1.1 dyoung if (!link_up) {
3191 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
3192 1.5 msaitoh * LESM is on.
3193 1.5 msaitoh */
3194 1.5 msaitoh bool got_lock = FALSE;
3195 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
3196 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
3197 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
3198 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3199 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
3200 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
3201 1.5 msaitoh goto out;
3202 1.5 msaitoh }
3203 1.5 msaitoh got_lock = TRUE;
3204 1.5 msaitoh }
3205 1.5 msaitoh
3206 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3207 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3208 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3209 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3210 1.5 msaitoh
3211 1.5 msaitoh if (got_lock)
3212 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw,
3213 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3214 1.1 dyoung msec_delay(10);
3215 1.1 dyoung }
3216 1.1 dyoung
3217 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3218 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3219 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3220 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3221 1.1 dyoung
3222 1.5 msaitoh out:
3223 1.5 msaitoh return ret_val;
3224 1.1 dyoung }
3225 1.1 dyoung
3226 1.1 dyoung /**
3227 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3228 1.1 dyoung * @hw: pointer to hardware structure
3229 1.1 dyoung * @index: led number to stop blinking
3230 1.1 dyoung **/
3231 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3232 1.1 dyoung {
3233 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3234 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3235 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3236 1.5 msaitoh bool got_lock = FALSE;
3237 1.1 dyoung
3238 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3239 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
3240 1.5 msaitoh * LESM is on.
3241 1.5 msaitoh */
3242 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
3243 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
3244 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
3245 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3246 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
3247 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
3248 1.5 msaitoh goto out;
3249 1.5 msaitoh }
3250 1.5 msaitoh got_lock = TRUE;
3251 1.5 msaitoh }
3252 1.1 dyoung
3253 1.1 dyoung
3254 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3255 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3256 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3257 1.1 dyoung
3258 1.5 msaitoh if (hw->mac.type == ixgbe_mac_82599EB)
3259 1.5 msaitoh ixgbe_reset_pipeline_82599(hw);
3260 1.5 msaitoh
3261 1.5 msaitoh if (got_lock)
3262 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
3263 1.5 msaitoh
3264 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3265 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3266 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3267 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3268 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3269 1.1 dyoung
3270 1.5 msaitoh out:
3271 1.5 msaitoh return ret_val;
3272 1.1 dyoung }
3273 1.1 dyoung
3274 1.1 dyoung /**
3275 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3276 1.1 dyoung * @hw: pointer to hardware structure
3277 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3278 1.1 dyoung *
3279 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3280 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3281 1.1 dyoung * get and set mac_addr routines.
3282 1.1 dyoung **/
3283 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3284 1.3 msaitoh u16 *san_mac_offset)
3285 1.1 dyoung {
3286 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3287 1.1 dyoung
3288 1.1 dyoung /*
3289 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3290 1.1 dyoung * available.
3291 1.1 dyoung */
3292 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3293 1.1 dyoung
3294 1.1 dyoung return IXGBE_SUCCESS;
3295 1.1 dyoung }
3296 1.1 dyoung
3297 1.1 dyoung /**
3298 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3299 1.1 dyoung * @hw: pointer to hardware structure
3300 1.1 dyoung * @san_mac_addr: SAN MAC address
3301 1.1 dyoung *
3302 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3303 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3304 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3305 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3306 1.1 dyoung **/
3307 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3308 1.1 dyoung {
3309 1.1 dyoung u16 san_mac_data, san_mac_offset;
3310 1.1 dyoung u8 i;
3311 1.1 dyoung
3312 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3313 1.1 dyoung
3314 1.1 dyoung /*
3315 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3316 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3317 1.1 dyoung */
3318 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3319 1.1 dyoung
3320 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3321 1.1 dyoung /*
3322 1.1 dyoung * No addresses available in this EEPROM. It's not an
3323 1.1 dyoung * error though, so just wipe the local address and return.
3324 1.1 dyoung */
3325 1.1 dyoung for (i = 0; i < 6; i++)
3326 1.1 dyoung san_mac_addr[i] = 0xFF;
3327 1.1 dyoung
3328 1.1 dyoung goto san_mac_addr_out;
3329 1.1 dyoung }
3330 1.1 dyoung
3331 1.1 dyoung /* make sure we know which port we need to program */
3332 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3333 1.1 dyoung /* apply the port offset to the address offset */
3334 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3335 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3336 1.1 dyoung for (i = 0; i < 3; i++) {
3337 1.1 dyoung hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3338 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3339 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3340 1.1 dyoung san_mac_offset++;
3341 1.1 dyoung }
3342 1.1 dyoung
3343 1.1 dyoung san_mac_addr_out:
3344 1.1 dyoung return IXGBE_SUCCESS;
3345 1.1 dyoung }
3346 1.1 dyoung
3347 1.1 dyoung /**
3348 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3349 1.1 dyoung * @hw: pointer to hardware structure
3350 1.1 dyoung * @san_mac_addr: SAN MAC address
3351 1.1 dyoung *
3352 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3353 1.1 dyoung **/
3354 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3355 1.1 dyoung {
3356 1.1 dyoung s32 status = IXGBE_SUCCESS;
3357 1.1 dyoung u16 san_mac_data, san_mac_offset;
3358 1.1 dyoung u8 i;
3359 1.1 dyoung
3360 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3361 1.1 dyoung
3362 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3363 1.1 dyoung ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3364 1.1 dyoung
3365 1.1 dyoung if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3366 1.1 dyoung status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3367 1.1 dyoung goto san_mac_addr_out;
3368 1.1 dyoung }
3369 1.1 dyoung
3370 1.1 dyoung /* Make sure we know which port we need to write */
3371 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3372 1.1 dyoung /* Apply the port offset to the address offset */
3373 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3374 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3375 1.1 dyoung
3376 1.1 dyoung for (i = 0; i < 3; i++) {
3377 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3378 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3379 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3380 1.1 dyoung san_mac_offset++;
3381 1.1 dyoung }
3382 1.1 dyoung
3383 1.1 dyoung san_mac_addr_out:
3384 1.1 dyoung return status;
3385 1.1 dyoung }
3386 1.1 dyoung
3387 1.1 dyoung /**
3388 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3389 1.1 dyoung * @hw: pointer to hardware structure
3390 1.1 dyoung *
3391 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3392 1.1 dyoung * the capabilities table.
3393 1.1 dyoung **/
3394 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3395 1.1 dyoung {
3396 1.4 msaitoh u16 msix_count = 1;
3397 1.4 msaitoh u16 max_msix_count;
3398 1.4 msaitoh u16 pcie_offset;
3399 1.4 msaitoh
3400 1.4 msaitoh switch (hw->mac.type) {
3401 1.4 msaitoh case ixgbe_mac_82598EB:
3402 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3403 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3404 1.4 msaitoh break;
3405 1.4 msaitoh case ixgbe_mac_82599EB:
3406 1.4 msaitoh case ixgbe_mac_X540:
3407 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3408 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3409 1.4 msaitoh break;
3410 1.4 msaitoh default:
3411 1.4 msaitoh return msix_count;
3412 1.4 msaitoh }
3413 1.1 dyoung
3414 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3415 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3416 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3417 1.4 msaitoh
3418 1.4 msaitoh /* MSI-X count is zero-based in HW */
3419 1.4 msaitoh msix_count++;
3420 1.4 msaitoh
3421 1.4 msaitoh if (msix_count > max_msix_count)
3422 1.4 msaitoh msix_count = max_msix_count;
3423 1.1 dyoung
3424 1.1 dyoung return msix_count;
3425 1.1 dyoung }
3426 1.1 dyoung
3427 1.1 dyoung /**
3428 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3429 1.1 dyoung * @hw: pointer to hardware structure
3430 1.1 dyoung * @addr: Address to put into receive address register
3431 1.1 dyoung * @vmdq: VMDq pool to assign
3432 1.1 dyoung *
3433 1.1 dyoung * Puts an ethernet address into a receive address register, or
3434 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3435 1.1 dyoung **/
3436 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3437 1.1 dyoung {
3438 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3439 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3440 1.1 dyoung u32 rar;
3441 1.1 dyoung u32 rar_low, rar_high;
3442 1.1 dyoung u32 addr_low, addr_high;
3443 1.1 dyoung
3444 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3445 1.1 dyoung
3446 1.1 dyoung /* swap bytes for HW little endian */
3447 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3448 1.1 dyoung | (addr[2] << 16)
3449 1.1 dyoung | (addr[3] << 24);
3450 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3451 1.1 dyoung
3452 1.1 dyoung /*
3453 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3454 1.1 dyoung * rar_highwater points to just after the highest currently used
3455 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3456 1.1 dyoung * rar to the top.
3457 1.1 dyoung */
3458 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3459 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3460 1.1 dyoung
3461 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3462 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3463 1.1 dyoung first_empty_rar = rar;
3464 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3465 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3466 1.1 dyoung if (rar_low == addr_low)
3467 1.1 dyoung break; /* found it already in the rars */
3468 1.1 dyoung }
3469 1.1 dyoung }
3470 1.1 dyoung
3471 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3472 1.1 dyoung /* already there so just add to the pool bits */
3473 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3474 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3475 1.1 dyoung /* stick it into first empty RAR slot we found */
3476 1.1 dyoung rar = first_empty_rar;
3477 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3478 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3479 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3480 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3481 1.1 dyoung hw->mac.rar_highwater++;
3482 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3483 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3484 1.1 dyoung }
3485 1.1 dyoung
3486 1.1 dyoung /*
3487 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3488 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3489 1.1 dyoung */
3490 1.1 dyoung if (rar == 0)
3491 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3492 1.1 dyoung
3493 1.1 dyoung return rar;
3494 1.1 dyoung }
3495 1.1 dyoung
3496 1.1 dyoung /**
3497 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3498 1.1 dyoung * @hw: pointer to hardware struct
3499 1.1 dyoung * @rar: receive address register index to disassociate
3500 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3501 1.1 dyoung **/
3502 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3503 1.1 dyoung {
3504 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3505 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3506 1.1 dyoung
3507 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3508 1.1 dyoung
3509 1.1 dyoung /* Make sure we are using a valid rar index range */
3510 1.1 dyoung if (rar >= rar_entries) {
3511 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3512 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3513 1.1 dyoung }
3514 1.1 dyoung
3515 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3516 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3517 1.1 dyoung
3518 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3519 1.1 dyoung goto done;
3520 1.1 dyoung
3521 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3522 1.1 dyoung if (mpsar_lo) {
3523 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3524 1.1 dyoung mpsar_lo = 0;
3525 1.1 dyoung }
3526 1.1 dyoung if (mpsar_hi) {
3527 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3528 1.1 dyoung mpsar_hi = 0;
3529 1.1 dyoung }
3530 1.1 dyoung } else if (vmdq < 32) {
3531 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3532 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3533 1.1 dyoung } else {
3534 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3535 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3536 1.1 dyoung }
3537 1.1 dyoung
3538 1.1 dyoung /* was that the last pool using this rar? */
3539 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3540 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3541 1.1 dyoung done:
3542 1.1 dyoung return IXGBE_SUCCESS;
3543 1.1 dyoung }
3544 1.1 dyoung
3545 1.1 dyoung /**
3546 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3547 1.1 dyoung * @hw: pointer to hardware struct
3548 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3549 1.1 dyoung * @vmdq: VMDq pool index
3550 1.1 dyoung **/
3551 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3552 1.1 dyoung {
3553 1.1 dyoung u32 mpsar;
3554 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3555 1.1 dyoung
3556 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3557 1.1 dyoung
3558 1.1 dyoung /* Make sure we are using a valid rar index range */
3559 1.1 dyoung if (rar >= rar_entries) {
3560 1.1 dyoung DEBUGOUT1("RAR index %d is out of range.\n", rar);
3561 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3562 1.1 dyoung }
3563 1.1 dyoung
3564 1.1 dyoung if (vmdq < 32) {
3565 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3566 1.1 dyoung mpsar |= 1 << vmdq;
3567 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3568 1.1 dyoung } else {
3569 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3570 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3571 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3572 1.1 dyoung }
3573 1.1 dyoung return IXGBE_SUCCESS;
3574 1.1 dyoung }
3575 1.1 dyoung
3576 1.1 dyoung /**
3577 1.4 msaitoh * This function should only be involved in the IOV mode.
3578 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3579 1.4 msaitoh * VFs advertized and not 0.
3580 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3581 1.4 msaitoh *
3582 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3583 1.4 msaitoh * @hw: pointer to hardware struct
3584 1.4 msaitoh * @vmdq: VMDq pool index
3585 1.4 msaitoh **/
3586 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3587 1.4 msaitoh {
3588 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3589 1.4 msaitoh
3590 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3591 1.4 msaitoh
3592 1.4 msaitoh if (vmdq < 32) {
3593 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3594 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3595 1.4 msaitoh } else {
3596 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3597 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3598 1.4 msaitoh }
3599 1.4 msaitoh
3600 1.4 msaitoh return IXGBE_SUCCESS;
3601 1.4 msaitoh }
3602 1.4 msaitoh
3603 1.4 msaitoh /**
3604 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3605 1.1 dyoung * @hw: pointer to hardware structure
3606 1.1 dyoung **/
3607 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3608 1.1 dyoung {
3609 1.1 dyoung int i;
3610 1.1 dyoung
3611 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3612 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3613 1.1 dyoung
3614 1.1 dyoung for (i = 0; i < 128; i++)
3615 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3616 1.1 dyoung
3617 1.1 dyoung return IXGBE_SUCCESS;
3618 1.1 dyoung }
3619 1.1 dyoung
3620 1.1 dyoung /**
3621 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3622 1.1 dyoung * @hw: pointer to hardware structure
3623 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3624 1.1 dyoung *
3625 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3626 1.1 dyoung *
3627 1.1 dyoung **/
3628 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3629 1.1 dyoung {
3630 1.1 dyoung u32 bits = 0;
3631 1.1 dyoung u32 first_empty_slot = 0;
3632 1.1 dyoung s32 regindex;
3633 1.1 dyoung
3634 1.1 dyoung /* short cut the special case */
3635 1.1 dyoung if (vlan == 0)
3636 1.1 dyoung return 0;
3637 1.1 dyoung
3638 1.1 dyoung /*
3639 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3640 1.1 dyoung * slot found along the way
3641 1.1 dyoung */
3642 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3643 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3644 1.1 dyoung if (!bits && !(first_empty_slot))
3645 1.1 dyoung first_empty_slot = regindex;
3646 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3647 1.1 dyoung break;
3648 1.1 dyoung }
3649 1.1 dyoung
3650 1.1 dyoung /*
3651 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3652 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3653 1.1 dyoung * vlan id.
3654 1.1 dyoung */
3655 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3656 1.1 dyoung if (first_empty_slot)
3657 1.1 dyoung regindex = first_empty_slot;
3658 1.1 dyoung else {
3659 1.1 dyoung DEBUGOUT("No space in VLVF.\n");
3660 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3661 1.1 dyoung }
3662 1.1 dyoung }
3663 1.1 dyoung
3664 1.1 dyoung return regindex;
3665 1.1 dyoung }
3666 1.1 dyoung
3667 1.1 dyoung /**
3668 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3669 1.1 dyoung * @hw: pointer to hardware structure
3670 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3671 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3672 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3673 1.1 dyoung *
3674 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3675 1.1 dyoung **/
3676 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3677 1.3 msaitoh bool vlan_on)
3678 1.1 dyoung {
3679 1.1 dyoung s32 regindex;
3680 1.1 dyoung u32 bitindex;
3681 1.1 dyoung u32 vfta;
3682 1.1 dyoung u32 targetbit;
3683 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3684 1.1 dyoung bool vfta_changed = FALSE;
3685 1.1 dyoung
3686 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3687 1.1 dyoung
3688 1.1 dyoung if (vlan > 4095)
3689 1.1 dyoung return IXGBE_ERR_PARAM;
3690 1.1 dyoung
3691 1.1 dyoung /*
3692 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3693 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3694 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3695 1.1 dyoung */
3696 1.1 dyoung
3697 1.1 dyoung /* Part 1
3698 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3699 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3700 1.1 dyoung * bits[11-5]: which register
3701 1.1 dyoung * bits[4-0]: which bit in the register
3702 1.1 dyoung */
3703 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3704 1.1 dyoung bitindex = vlan & 0x1F;
3705 1.1 dyoung targetbit = (1 << bitindex);
3706 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3707 1.1 dyoung
3708 1.1 dyoung if (vlan_on) {
3709 1.1 dyoung if (!(vfta & targetbit)) {
3710 1.1 dyoung vfta |= targetbit;
3711 1.1 dyoung vfta_changed = TRUE;
3712 1.1 dyoung }
3713 1.1 dyoung } else {
3714 1.1 dyoung if ((vfta & targetbit)) {
3715 1.1 dyoung vfta &= ~targetbit;
3716 1.1 dyoung vfta_changed = TRUE;
3717 1.1 dyoung }
3718 1.1 dyoung }
3719 1.1 dyoung
3720 1.1 dyoung /* Part 2
3721 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3722 1.3 msaitoh */
3723 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3724 1.3 msaitoh &vfta_changed);
3725 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3726 1.3 msaitoh return ret_val;
3727 1.3 msaitoh
3728 1.3 msaitoh if (vfta_changed)
3729 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3730 1.3 msaitoh
3731 1.3 msaitoh return IXGBE_SUCCESS;
3732 1.3 msaitoh }
3733 1.3 msaitoh
3734 1.3 msaitoh /**
3735 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3736 1.3 msaitoh * @hw: pointer to hardware structure
3737 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3738 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3739 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3740 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3741 1.3 msaitoh * should be changed
3742 1.3 msaitoh *
3743 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3744 1.3 msaitoh **/
3745 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3746 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3747 1.3 msaitoh {
3748 1.3 msaitoh u32 vt;
3749 1.3 msaitoh
3750 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3751 1.3 msaitoh
3752 1.3 msaitoh if (vlan > 4095)
3753 1.3 msaitoh return IXGBE_ERR_PARAM;
3754 1.3 msaitoh
3755 1.3 msaitoh /* If VT Mode is set
3756 1.1 dyoung * Either vlan_on
3757 1.1 dyoung * make sure the vlan is in VLVF
3758 1.1 dyoung * set the vind bit in the matching VLVFB
3759 1.1 dyoung * Or !vlan_on
3760 1.1 dyoung * clear the pool bit and possibly the vind
3761 1.1 dyoung */
3762 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3763 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3764 1.1 dyoung s32 vlvf_index;
3765 1.3 msaitoh u32 bits;
3766 1.1 dyoung
3767 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3768 1.1 dyoung if (vlvf_index < 0)
3769 1.1 dyoung return vlvf_index;
3770 1.1 dyoung
3771 1.1 dyoung if (vlan_on) {
3772 1.1 dyoung /* set the pool bit */
3773 1.1 dyoung if (vind < 32) {
3774 1.1 dyoung bits = IXGBE_READ_REG(hw,
3775 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3776 1.1 dyoung bits |= (1 << vind);
3777 1.1 dyoung IXGBE_WRITE_REG(hw,
3778 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3779 1.1 dyoung bits);
3780 1.1 dyoung } else {
3781 1.1 dyoung bits = IXGBE_READ_REG(hw,
3782 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3783 1.3 msaitoh bits |= (1 << (vind - 32));
3784 1.1 dyoung IXGBE_WRITE_REG(hw,
3785 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3786 1.3 msaitoh bits);
3787 1.1 dyoung }
3788 1.1 dyoung } else {
3789 1.1 dyoung /* clear the pool bit */
3790 1.1 dyoung if (vind < 32) {
3791 1.1 dyoung bits = IXGBE_READ_REG(hw,
3792 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3793 1.1 dyoung bits &= ~(1 << vind);
3794 1.1 dyoung IXGBE_WRITE_REG(hw,
3795 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3796 1.1 dyoung bits);
3797 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3798 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3799 1.1 dyoung } else {
3800 1.1 dyoung bits = IXGBE_READ_REG(hw,
3801 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3802 1.3 msaitoh bits &= ~(1 << (vind - 32));
3803 1.1 dyoung IXGBE_WRITE_REG(hw,
3804 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3805 1.3 msaitoh bits);
3806 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3807 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3808 1.1 dyoung }
3809 1.1 dyoung }
3810 1.1 dyoung
3811 1.1 dyoung /*
3812 1.1 dyoung * If there are still bits set in the VLVFB registers
3813 1.1 dyoung * for the VLAN ID indicated we need to see if the
3814 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3815 1.1 dyoung * If the caller has requested that we clear the VFTA
3816 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3817 1.1 dyoung * ID entry then ignore the request. We're not worried
3818 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3819 1.1 dyoung * entry bit on, only when requested to turn it off as
3820 1.1 dyoung * there may be multiple pools and/or VFs using the
3821 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
3822 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
3823 1.1 dyoung * been cleared. This will be indicated by "bits" being
3824 1.1 dyoung * zero.
3825 1.1 dyoung */
3826 1.1 dyoung if (bits) {
3827 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3828 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
3829 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
3830 1.1 dyoung /* someone wants to clear the vfta entry
3831 1.1 dyoung * but some pools/VFs are still using it.
3832 1.1 dyoung * Ignore it. */
3833 1.3 msaitoh *vfta_changed = FALSE;
3834 1.1 dyoung }
3835 1.3 msaitoh } else
3836 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3837 1.1 dyoung }
3838 1.1 dyoung
3839 1.1 dyoung return IXGBE_SUCCESS;
3840 1.1 dyoung }
3841 1.1 dyoung
3842 1.1 dyoung /**
3843 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
3844 1.1 dyoung * @hw: pointer to hardware structure
3845 1.1 dyoung *
3846 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
3847 1.1 dyoung **/
3848 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3849 1.1 dyoung {
3850 1.1 dyoung u32 offset;
3851 1.1 dyoung
3852 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
3853 1.1 dyoung
3854 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
3855 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3856 1.1 dyoung
3857 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3858 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3859 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3860 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3861 1.1 dyoung }
3862 1.1 dyoung
3863 1.1 dyoung return IXGBE_SUCCESS;
3864 1.1 dyoung }
3865 1.1 dyoung
3866 1.1 dyoung /**
3867 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
3868 1.1 dyoung * @hw: pointer to hardware structure
3869 1.1 dyoung * @speed: pointer to link speed
3870 1.1 dyoung * @link_up: TRUE when link is up
3871 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
3872 1.1 dyoung *
3873 1.1 dyoung * Reads the links register to determine if link is up and the current speed
3874 1.1 dyoung **/
3875 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3876 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
3877 1.1 dyoung {
3878 1.1 dyoung u32 links_reg, links_orig;
3879 1.1 dyoung u32 i;
3880 1.1 dyoung
3881 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
3882 1.1 dyoung
3883 1.1 dyoung /* clear the old state */
3884 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3885 1.1 dyoung
3886 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3887 1.1 dyoung
3888 1.1 dyoung if (links_orig != links_reg) {
3889 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
3890 1.3 msaitoh links_orig, links_reg);
3891 1.1 dyoung }
3892 1.1 dyoung
3893 1.1 dyoung if (link_up_wait_to_complete) {
3894 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3895 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
3896 1.1 dyoung *link_up = TRUE;
3897 1.1 dyoung break;
3898 1.1 dyoung } else {
3899 1.1 dyoung *link_up = FALSE;
3900 1.1 dyoung }
3901 1.1 dyoung msec_delay(100);
3902 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3903 1.1 dyoung }
3904 1.1 dyoung } else {
3905 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
3906 1.1 dyoung *link_up = TRUE;
3907 1.1 dyoung else
3908 1.1 dyoung *link_up = FALSE;
3909 1.1 dyoung }
3910 1.1 dyoung
3911 1.1 dyoung if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3912 1.1 dyoung IXGBE_LINKS_SPEED_10G_82599)
3913 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
3914 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3915 1.3 msaitoh IXGBE_LINKS_SPEED_1G_82599)
3916 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
3917 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3918 1.3 msaitoh IXGBE_LINKS_SPEED_100_82599)
3919 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
3920 1.1 dyoung else
3921 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
3922 1.1 dyoung
3923 1.1 dyoung return IXGBE_SUCCESS;
3924 1.1 dyoung }
3925 1.1 dyoung
3926 1.1 dyoung /**
3927 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3928 1.1 dyoung * the EEPROM
3929 1.1 dyoung * @hw: pointer to hardware structure
3930 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
3931 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
3932 1.1 dyoung *
3933 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
3934 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
3935 1.1 dyoung **/
3936 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3937 1.3 msaitoh u16 *wwpn_prefix)
3938 1.1 dyoung {
3939 1.1 dyoung u16 offset, caps;
3940 1.1 dyoung u16 alt_san_mac_blk_offset;
3941 1.1 dyoung
3942 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3943 1.1 dyoung
3944 1.1 dyoung /* clear output first */
3945 1.1 dyoung *wwnn_prefix = 0xFFFF;
3946 1.1 dyoung *wwpn_prefix = 0xFFFF;
3947 1.1 dyoung
3948 1.1 dyoung /* check if alternative SAN MAC is supported */
3949 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3950 1.3 msaitoh &alt_san_mac_blk_offset);
3951 1.1 dyoung
3952 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
3953 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
3954 1.1 dyoung goto wwn_prefix_out;
3955 1.1 dyoung
3956 1.1 dyoung /* check capability in alternative san mac address block */
3957 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3958 1.1 dyoung hw->eeprom.ops.read(hw, offset, &caps);
3959 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3960 1.1 dyoung goto wwn_prefix_out;
3961 1.1 dyoung
3962 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
3963 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3964 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3965 1.1 dyoung
3966 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3967 1.1 dyoung hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3968 1.1 dyoung
3969 1.1 dyoung wwn_prefix_out:
3970 1.1 dyoung return IXGBE_SUCCESS;
3971 1.1 dyoung }
3972 1.1 dyoung
3973 1.1 dyoung /**
3974 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3975 1.1 dyoung * @hw: pointer to hardware structure
3976 1.1 dyoung * @bs: the fcoe boot status
3977 1.1 dyoung *
3978 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
3979 1.1 dyoung **/
3980 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3981 1.1 dyoung {
3982 1.1 dyoung u16 offset, caps, flags;
3983 1.1 dyoung s32 status;
3984 1.1 dyoung
3985 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3986 1.1 dyoung
3987 1.1 dyoung /* clear output first */
3988 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
3989 1.1 dyoung
3990 1.1 dyoung /* check if FCOE IBA block is present */
3991 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3992 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
3993 1.1 dyoung if (status != IXGBE_SUCCESS)
3994 1.1 dyoung goto out;
3995 1.1 dyoung
3996 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3997 1.1 dyoung goto out;
3998 1.1 dyoung
3999 1.1 dyoung /* check if iSCSI FCOE block is populated */
4000 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4001 1.1 dyoung if (status != IXGBE_SUCCESS)
4002 1.1 dyoung goto out;
4003 1.1 dyoung
4004 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4005 1.1 dyoung goto out;
4006 1.1 dyoung
4007 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4008 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4009 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4010 1.1 dyoung if (status != IXGBE_SUCCESS)
4011 1.1 dyoung goto out;
4012 1.1 dyoung
4013 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4014 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4015 1.1 dyoung else
4016 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4017 1.1 dyoung
4018 1.1 dyoung out:
4019 1.1 dyoung return status;
4020 1.1 dyoung }
4021 1.1 dyoung
4022 1.1 dyoung /**
4023 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4024 1.1 dyoung * @hw: pointer to hardware structure
4025 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4026 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4027 1.1 dyoung *
4028 1.1 dyoung **/
4029 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4030 1.1 dyoung {
4031 1.1 dyoung int j;
4032 1.1 dyoung int pf_target_reg = pf >> 3;
4033 1.1 dyoung int pf_target_shift = pf % 8;
4034 1.1 dyoung u32 pfvfspoof = 0;
4035 1.1 dyoung
4036 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4037 1.1 dyoung return;
4038 1.1 dyoung
4039 1.1 dyoung if (enable)
4040 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4041 1.1 dyoung
4042 1.1 dyoung /*
4043 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4044 1.1 dyoung * MAC anti-spoof enables in each register array element.
4045 1.1 dyoung */
4046 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4047 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4048 1.1 dyoung
4049 1.4 msaitoh /*
4050 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4051 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4052 1.4 msaitoh */
4053 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4054 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4055 1.1 dyoung
4056 1.1 dyoung /*
4057 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4058 1.4 msaitoh * anti-spoofing enabled.
4059 1.1 dyoung */
4060 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4061 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4062 1.1 dyoung }
4063 1.1 dyoung
4064 1.1 dyoung /**
4065 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4066 1.1 dyoung * @hw: pointer to hardware structure
4067 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4068 1.1 dyoung * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4069 1.1 dyoung *
4070 1.1 dyoung **/
4071 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4072 1.1 dyoung {
4073 1.1 dyoung int vf_target_reg = vf >> 3;
4074 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4075 1.1 dyoung u32 pfvfspoof;
4076 1.1 dyoung
4077 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4078 1.1 dyoung return;
4079 1.1 dyoung
4080 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4081 1.1 dyoung if (enable)
4082 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4083 1.1 dyoung else
4084 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4085 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4086 1.1 dyoung }
4087 1.1 dyoung
4088 1.1 dyoung /**
4089 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4090 1.1 dyoung * @hw: pointer to hardware structure
4091 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4092 1.1 dyoung *
4093 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4094 1.1 dyoung * and return the word through device_caps.
4095 1.1 dyoung **/
4096 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4097 1.1 dyoung {
4098 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4099 1.1 dyoung
4100 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4101 1.1 dyoung
4102 1.1 dyoung return IXGBE_SUCCESS;
4103 1.1 dyoung }
4104 1.1 dyoung
4105 1.1 dyoung /**
4106 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4107 1.1 dyoung * @hw: pointer to hardware structure
4108 1.1 dyoung *
4109 1.1 dyoung **/
4110 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4111 1.1 dyoung {
4112 1.1 dyoung u32 regval;
4113 1.1 dyoung u32 i;
4114 1.1 dyoung
4115 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4116 1.1 dyoung
4117 1.1 dyoung /* Enable relaxed ordering */
4118 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4119 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4120 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4121 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4122 1.1 dyoung }
4123 1.1 dyoung
4124 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4125 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4126 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4127 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4128 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4129 1.1 dyoung }
4130 1.1 dyoung
4131 1.1 dyoung }
4132 1.3 msaitoh
4133 1.3 msaitoh /**
4134 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4135 1.3 msaitoh * @buffer: pointer to EEPROM
4136 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4137 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4138 1.3 msaitoh * checksum calculated is returned.
4139 1.3 msaitoh **/
4140 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4141 1.3 msaitoh {
4142 1.3 msaitoh u32 i;
4143 1.3 msaitoh u8 sum = 0;
4144 1.3 msaitoh
4145 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4146 1.3 msaitoh
4147 1.3 msaitoh if (!buffer)
4148 1.3 msaitoh return 0;
4149 1.3 msaitoh
4150 1.3 msaitoh for (i = 0; i < length; i++)
4151 1.3 msaitoh sum += buffer[i];
4152 1.3 msaitoh
4153 1.3 msaitoh return (u8) (0 - sum);
4154 1.3 msaitoh }
4155 1.3 msaitoh
4156 1.3 msaitoh /**
4157 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4158 1.3 msaitoh * @hw: pointer to the HW structure
4159 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4160 1.3 msaitoh * be placed
4161 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4162 1.3 msaitoh *
4163 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4164 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4165 1.3 msaitoh **/
4166 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4167 1.5 msaitoh u32 length)
4168 1.3 msaitoh {
4169 1.3 msaitoh u32 hicr, i, bi;
4170 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4171 1.3 msaitoh u8 buf_len, dword_len;
4172 1.3 msaitoh
4173 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4174 1.3 msaitoh
4175 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4176 1.3 msaitoh
4177 1.3 msaitoh if (length == 0 || length & 0x3 ||
4178 1.3 msaitoh length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4179 1.3 msaitoh DEBUGOUT("Buffer length failure.\n");
4180 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4181 1.3 msaitoh goto out;
4182 1.3 msaitoh }
4183 1.3 msaitoh
4184 1.3 msaitoh /* Check that the host interface is enabled. */
4185 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4186 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4187 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4188 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4189 1.3 msaitoh goto out;
4190 1.3 msaitoh }
4191 1.3 msaitoh
4192 1.3 msaitoh /* Calculate length in DWORDs */
4193 1.3 msaitoh dword_len = length >> 2;
4194 1.3 msaitoh
4195 1.3 msaitoh /*
4196 1.3 msaitoh * The device driver writes the relevant command block
4197 1.3 msaitoh * into the ram area.
4198 1.3 msaitoh */
4199 1.3 msaitoh for (i = 0; i < dword_len; i++)
4200 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4201 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4202 1.3 msaitoh
4203 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4204 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4205 1.3 msaitoh
4206 1.3 msaitoh for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
4207 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4208 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4209 1.3 msaitoh break;
4210 1.3 msaitoh msec_delay(1);
4211 1.3 msaitoh }
4212 1.3 msaitoh
4213 1.3 msaitoh /* Check command successful completion. */
4214 1.3 msaitoh if (i == IXGBE_HI_COMMAND_TIMEOUT ||
4215 1.3 msaitoh (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
4216 1.3 msaitoh DEBUGOUT("Command has failed with no status valid.\n");
4217 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4218 1.3 msaitoh goto out;
4219 1.3 msaitoh }
4220 1.3 msaitoh
4221 1.3 msaitoh /* Calculate length in DWORDs */
4222 1.3 msaitoh dword_len = hdr_size >> 2;
4223 1.3 msaitoh
4224 1.3 msaitoh /* first pull in the header so we know the buffer length */
4225 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4226 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4227 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4228 1.3 msaitoh }
4229 1.3 msaitoh
4230 1.3 msaitoh /* If there is any thing in data position pull it in */
4231 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4232 1.3 msaitoh if (buf_len == 0)
4233 1.3 msaitoh goto out;
4234 1.3 msaitoh
4235 1.3 msaitoh if (length < (buf_len + hdr_size)) {
4236 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4237 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4238 1.3 msaitoh goto out;
4239 1.3 msaitoh }
4240 1.3 msaitoh
4241 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4242 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4243 1.3 msaitoh
4244 1.3 msaitoh /* Pull in the rest of the buffer (bi is where we left off)*/
4245 1.3 msaitoh for (; bi <= dword_len; bi++) {
4246 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4247 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4248 1.3 msaitoh }
4249 1.3 msaitoh
4250 1.3 msaitoh out:
4251 1.3 msaitoh return ret_val;
4252 1.3 msaitoh }
4253 1.3 msaitoh
4254 1.3 msaitoh /**
4255 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4256 1.3 msaitoh * @hw: pointer to the HW structure
4257 1.3 msaitoh * @maj: driver version major number
4258 1.3 msaitoh * @min: driver version minor number
4259 1.3 msaitoh * @build: driver version build number
4260 1.3 msaitoh * @sub: driver version sub build number
4261 1.3 msaitoh *
4262 1.3 msaitoh * Sends driver version number to firmware through the manageability
4263 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4264 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4265 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4266 1.3 msaitoh **/
4267 1.3 msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4268 1.3 msaitoh u8 build, u8 sub)
4269 1.3 msaitoh {
4270 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4271 1.3 msaitoh int i;
4272 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4273 1.3 msaitoh
4274 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4275 1.3 msaitoh
4276 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4277 1.3 msaitoh != IXGBE_SUCCESS) {
4278 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4279 1.3 msaitoh goto out;
4280 1.3 msaitoh }
4281 1.3 msaitoh
4282 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4283 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4284 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4285 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4286 1.3 msaitoh fw_cmd.ver_maj = maj;
4287 1.3 msaitoh fw_cmd.ver_min = min;
4288 1.3 msaitoh fw_cmd.ver_build = build;
4289 1.3 msaitoh fw_cmd.ver_sub = sub;
4290 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4291 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4292 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4293 1.3 msaitoh fw_cmd.pad = 0;
4294 1.3 msaitoh fw_cmd.pad2 = 0;
4295 1.3 msaitoh
4296 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4297 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4298 1.3 msaitoh sizeof(fw_cmd));
4299 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4300 1.3 msaitoh continue;
4301 1.3 msaitoh
4302 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4303 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4304 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4305 1.3 msaitoh else
4306 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4307 1.3 msaitoh
4308 1.3 msaitoh break;
4309 1.3 msaitoh }
4310 1.3 msaitoh
4311 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4312 1.3 msaitoh out:
4313 1.3 msaitoh return ret_val;
4314 1.3 msaitoh }
4315 1.3 msaitoh
4316 1.3 msaitoh /**
4317 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4318 1.3 msaitoh * @hw: pointer to hardware structure
4319 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4320 1.3 msaitoh * @headroom: reserve n KB of headroom
4321 1.3 msaitoh * @strategy: packet buffer allocation strategy
4322 1.3 msaitoh **/
4323 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4324 1.3 msaitoh int strategy)
4325 1.3 msaitoh {
4326 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4327 1.3 msaitoh int i = 0;
4328 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4329 1.3 msaitoh
4330 1.3 msaitoh /* Reserve headroom */
4331 1.3 msaitoh pbsize -= headroom;
4332 1.3 msaitoh
4333 1.3 msaitoh if (!num_pb)
4334 1.3 msaitoh num_pb = 1;
4335 1.3 msaitoh
4336 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4337 1.3 msaitoh * buffers requested using supplied strategy.
4338 1.3 msaitoh */
4339 1.3 msaitoh switch (strategy) {
4340 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4341 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4342 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4343 1.3 msaitoh */
4344 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4345 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4346 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4347 1.3 msaitoh for (; i < (num_pb / 2); i++)
4348 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4349 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4350 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4351 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4352 1.3 msaitoh for (; i < num_pb; i++)
4353 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4354 1.3 msaitoh break;
4355 1.3 msaitoh default:
4356 1.3 msaitoh break;
4357 1.3 msaitoh }
4358 1.3 msaitoh
4359 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4360 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4361 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4362 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4363 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4364 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4365 1.3 msaitoh }
4366 1.3 msaitoh
4367 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4368 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4369 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4370 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4371 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4372 1.3 msaitoh }
4373 1.3 msaitoh }
4374 1.3 msaitoh
4375 1.3 msaitoh /**
4376 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4377 1.3 msaitoh * @hw: pointer to the hardware structure
4378 1.3 msaitoh *
4379 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4380 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4381 1.3 msaitoh * buffers on the system.
4382 1.3 msaitoh **/
4383 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4384 1.3 msaitoh {
4385 1.3 msaitoh u32 gcr_ext, hlreg0;
4386 1.3 msaitoh
4387 1.3 msaitoh /*
4388 1.3 msaitoh * If double reset is not requested then all transactions should
4389 1.3 msaitoh * already be clear and as such there is no work to do
4390 1.3 msaitoh */
4391 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4392 1.3 msaitoh return;
4393 1.3 msaitoh
4394 1.3 msaitoh /*
4395 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4396 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4397 1.3 msaitoh * has already been cleared.
4398 1.3 msaitoh */
4399 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4400 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4401 1.3 msaitoh
4402 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4403 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4404 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4405 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4406 1.3 msaitoh
4407 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4408 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4409 1.3 msaitoh usec_delay(20);
4410 1.3 msaitoh
4411 1.3 msaitoh /* restore previous register values */
4412 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4413 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4414 1.3 msaitoh }
4415 1.3 msaitoh
4416