Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.5
      1  1.1   dyoung /******************************************************************************
      2  1.1   dyoung 
      3  1.5  msaitoh   Copyright (c) 2001-2013, Intel Corporation
      4  1.1   dyoung   All rights reserved.
      5  1.1   dyoung 
      6  1.1   dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1   dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1   dyoung 
      9  1.1   dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1   dyoung       this list of conditions and the following disclaimer.
     11  1.1   dyoung 
     12  1.1   dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1   dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1   dyoung       documentation and/or other materials provided with the distribution.
     15  1.1   dyoung 
     16  1.1   dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1   dyoung       contributors may be used to endorse or promote products derived from
     18  1.1   dyoung       this software without specific prior written permission.
     19  1.1   dyoung 
     20  1.1   dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1   dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1   dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1   dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1   dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1   dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1   dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1   dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1   dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1   dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1   dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1   dyoung 
     32  1.1   dyoung ******************************************************************************/
     33  1.4  msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 238149 2012-07-05 20:51:44Z jfv $*/
     34  1.5  msaitoh /*$NetBSD: ixgbe_common.c,v 1.5 2015/04/24 07:00:51 msaitoh Exp $*/
     35  1.1   dyoung 
     36  1.1   dyoung #include "ixgbe_common.h"
     37  1.1   dyoung #include "ixgbe_phy.h"
     38  1.1   dyoung #include "ixgbe_api.h"
     39  1.1   dyoung 
     40  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     41  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     42  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     43  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     44  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     45  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     46  1.3  msaitoh 					u16 count);
     47  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     48  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     49  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     50  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     51  1.1   dyoung 
     52  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     53  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     54  1.3  msaitoh 					 u16 *san_mac_offset);
     55  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     56  1.3  msaitoh 					     u16 words, u16 *data);
     57  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58  1.3  msaitoh 					      u16 words, u16 *data);
     59  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     60  1.3  msaitoh 						 u16 offset);
     61  1.1   dyoung 
     62  1.1   dyoung /**
     63  1.1   dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     64  1.1   dyoung  *  @hw: pointer to the hardware structure
     65  1.1   dyoung  *
     66  1.1   dyoung  *  Initialize the function pointers.
     67  1.1   dyoung  **/
     68  1.1   dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     69  1.1   dyoung {
     70  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     71  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     72  1.1   dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     73  1.1   dyoung 
     74  1.1   dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     75  1.1   dyoung 
     76  1.1   dyoung 	/* EEPROM */
     77  1.1   dyoung 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     78  1.1   dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     79  1.3  msaitoh 	if (eec & IXGBE_EEC_PRES) {
     80  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     81  1.3  msaitoh 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
     82  1.3  msaitoh 	} else {
     83  1.1   dyoung 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     84  1.3  msaitoh 		eeprom->ops.read_buffer =
     85  1.3  msaitoh 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
     86  1.3  msaitoh 	}
     87  1.1   dyoung 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     88  1.3  msaitoh 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
     89  1.1   dyoung 	eeprom->ops.validate_checksum =
     90  1.3  msaitoh 				      &ixgbe_validate_eeprom_checksum_generic;
     91  1.1   dyoung 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     92  1.1   dyoung 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
     93  1.1   dyoung 
     94  1.1   dyoung 	/* MAC */
     95  1.1   dyoung 	mac->ops.init_hw = &ixgbe_init_hw_generic;
     96  1.1   dyoung 	mac->ops.reset_hw = NULL;
     97  1.1   dyoung 	mac->ops.start_hw = &ixgbe_start_hw_generic;
     98  1.1   dyoung 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
     99  1.1   dyoung 	mac->ops.get_media_type = NULL;
    100  1.1   dyoung 	mac->ops.get_supported_physical_layer = NULL;
    101  1.1   dyoung 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
    102  1.1   dyoung 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    103  1.1   dyoung 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    104  1.1   dyoung 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    105  1.1   dyoung 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    106  1.1   dyoung 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    107  1.1   dyoung 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    108  1.1   dyoung 
    109  1.1   dyoung 	/* LEDs */
    110  1.1   dyoung 	mac->ops.led_on = &ixgbe_led_on_generic;
    111  1.1   dyoung 	mac->ops.led_off = &ixgbe_led_off_generic;
    112  1.1   dyoung 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    113  1.1   dyoung 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    114  1.1   dyoung 
    115  1.1   dyoung 	/* RAR, Multicast, VLAN */
    116  1.1   dyoung 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    117  1.1   dyoung 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    118  1.1   dyoung 	mac->ops.insert_mac_addr = NULL;
    119  1.1   dyoung 	mac->ops.set_vmdq = NULL;
    120  1.1   dyoung 	mac->ops.clear_vmdq = NULL;
    121  1.1   dyoung 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    122  1.1   dyoung 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    123  1.1   dyoung 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    124  1.1   dyoung 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    125  1.1   dyoung 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    126  1.1   dyoung 	mac->ops.clear_vfta = NULL;
    127  1.1   dyoung 	mac->ops.set_vfta = NULL;
    128  1.3  msaitoh 	mac->ops.set_vlvf = NULL;
    129  1.1   dyoung 	mac->ops.init_uta_tables = NULL;
    130  1.1   dyoung 
    131  1.1   dyoung 	/* Flow Control */
    132  1.1   dyoung 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    133  1.1   dyoung 
    134  1.1   dyoung 	/* Link */
    135  1.1   dyoung 	mac->ops.get_link_capabilities = NULL;
    136  1.1   dyoung 	mac->ops.setup_link = NULL;
    137  1.1   dyoung 	mac->ops.check_link = NULL;
    138  1.1   dyoung 
    139  1.1   dyoung 	return IXGBE_SUCCESS;
    140  1.1   dyoung }
    141  1.1   dyoung 
    142  1.1   dyoung /**
    143  1.4  msaitoh  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
    144  1.4  msaitoh  *  control
    145  1.4  msaitoh  *  @hw: pointer to hardware structure
    146  1.4  msaitoh  *
    147  1.4  msaitoh  *  There are several phys that do not support autoneg flow control. This
    148  1.4  msaitoh  *  function check the device id to see if the associated phy supports
    149  1.4  msaitoh  *  autoneg flow control.
    150  1.4  msaitoh  **/
    151  1.5  msaitoh s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    152  1.4  msaitoh {
    153  1.4  msaitoh 
    154  1.4  msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    155  1.4  msaitoh 
    156  1.4  msaitoh 	switch (hw->device_id) {
    157  1.5  msaitoh 	case IXGBE_DEV_ID_82599_T3_LOM:
    158  1.4  msaitoh 	case IXGBE_DEV_ID_X540T:
    159  1.4  msaitoh 		return IXGBE_SUCCESS;
    160  1.4  msaitoh 	default:
    161  1.4  msaitoh 		return IXGBE_ERR_FC_NOT_SUPPORTED;
    162  1.4  msaitoh 	}
    163  1.4  msaitoh }
    164  1.4  msaitoh 
    165  1.4  msaitoh /**
    166  1.4  msaitoh  *  ixgbe_setup_fc - Set up flow control
    167  1.4  msaitoh  *  @hw: pointer to hardware structure
    168  1.4  msaitoh  *
    169  1.4  msaitoh  *  Called at init time to set up flow control.
    170  1.4  msaitoh  **/
    171  1.4  msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
    172  1.4  msaitoh {
    173  1.4  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    174  1.4  msaitoh 	u32 reg = 0, reg_bp = 0;
    175  1.4  msaitoh 	u16 reg_cu = 0;
    176  1.5  msaitoh 	bool got_lock = FALSE;
    177  1.4  msaitoh 
    178  1.4  msaitoh 	DEBUGFUNC("ixgbe_setup_fc");
    179  1.4  msaitoh 
    180  1.4  msaitoh 	/*
    181  1.4  msaitoh 	 * Validate the requested mode.  Strict IEEE mode does not allow
    182  1.4  msaitoh 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
    183  1.4  msaitoh 	 */
    184  1.4  msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    185  1.4  msaitoh 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    186  1.4  msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    187  1.4  msaitoh 		goto out;
    188  1.4  msaitoh 	}
    189  1.4  msaitoh 
    190  1.4  msaitoh 	/*
    191  1.4  msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    192  1.4  msaitoh 	 * default flow control setting, so we explicitly set it to full.
    193  1.4  msaitoh 	 */
    194  1.4  msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    195  1.4  msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    196  1.4  msaitoh 
    197  1.4  msaitoh 	/*
    198  1.4  msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    199  1.4  msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    200  1.4  msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    201  1.4  msaitoh 	 */
    202  1.4  msaitoh 	switch (hw->phy.media_type) {
    203  1.5  msaitoh 	case ixgbe_media_type_fiber_fixed:
    204  1.4  msaitoh 	case ixgbe_media_type_fiber:
    205  1.4  msaitoh 	case ixgbe_media_type_backplane:
    206  1.4  msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    207  1.4  msaitoh 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
    208  1.4  msaitoh 		break;
    209  1.4  msaitoh 	case ixgbe_media_type_copper:
    210  1.4  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    211  1.4  msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    212  1.4  msaitoh 		break;
    213  1.4  msaitoh 	default:
    214  1.4  msaitoh 		break;
    215  1.4  msaitoh 	}
    216  1.4  msaitoh 
    217  1.4  msaitoh 	/*
    218  1.4  msaitoh 	 * The possible values of fc.requested_mode are:
    219  1.4  msaitoh 	 * 0: Flow control is completely disabled
    220  1.4  msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    221  1.4  msaitoh 	 *    but not send pause frames).
    222  1.4  msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    223  1.4  msaitoh 	 *    we do not support receiving pause frames).
    224  1.4  msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    225  1.4  msaitoh 	 * other: Invalid.
    226  1.4  msaitoh 	 */
    227  1.4  msaitoh 	switch (hw->fc.requested_mode) {
    228  1.4  msaitoh 	case ixgbe_fc_none:
    229  1.4  msaitoh 		/* Flow control completely disabled by software override. */
    230  1.4  msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    231  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    232  1.4  msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    233  1.4  msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    234  1.4  msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    235  1.4  msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    236  1.4  msaitoh 		break;
    237  1.4  msaitoh 	case ixgbe_fc_tx_pause:
    238  1.4  msaitoh 		/*
    239  1.4  msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    240  1.4  msaitoh 		 * disabled by software override.
    241  1.4  msaitoh 		 */
    242  1.4  msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    243  1.4  msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    244  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    245  1.4  msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    246  1.4  msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    247  1.4  msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    248  1.4  msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    249  1.4  msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    250  1.4  msaitoh 		}
    251  1.4  msaitoh 		break;
    252  1.4  msaitoh 	case ixgbe_fc_rx_pause:
    253  1.4  msaitoh 		/*
    254  1.4  msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    255  1.4  msaitoh 		 * disabled by software override. Since there really
    256  1.4  msaitoh 		 * isn't a way to advertise that we are capable of RX
    257  1.4  msaitoh 		 * Pause ONLY, we will advertise that we support both
    258  1.4  msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    259  1.4  msaitoh 		 * through to the fc_full statement.  Later, we will
    260  1.4  msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    261  1.4  msaitoh 		 */
    262  1.4  msaitoh 	case ixgbe_fc_full:
    263  1.4  msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    264  1.4  msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    265  1.4  msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    266  1.4  msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    267  1.4  msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    268  1.4  msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    269  1.4  msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    270  1.4  msaitoh 		break;
    271  1.4  msaitoh 	default:
    272  1.4  msaitoh 		DEBUGOUT("Flow control param set incorrectly\n");
    273  1.4  msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    274  1.4  msaitoh 		goto out;
    275  1.4  msaitoh 		break;
    276  1.4  msaitoh 	}
    277  1.4  msaitoh 
    278  1.4  msaitoh 	if (hw->mac.type != ixgbe_mac_X540) {
    279  1.4  msaitoh 		/*
    280  1.4  msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    281  1.4  msaitoh 		 * the MAC will advertise clause 37 flow control.
    282  1.4  msaitoh 		 */
    283  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    284  1.4  msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    285  1.4  msaitoh 
    286  1.4  msaitoh 		/* Disable AN timeout */
    287  1.4  msaitoh 		if (hw->fc.strict_ieee)
    288  1.4  msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    289  1.4  msaitoh 
    290  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    291  1.4  msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    292  1.4  msaitoh 	}
    293  1.4  msaitoh 
    294  1.4  msaitoh 	/*
    295  1.4  msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    296  1.4  msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    297  1.4  msaitoh 	 *
    298  1.4  msaitoh 	 */
    299  1.4  msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    300  1.4  msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    301  1.5  msaitoh 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
    302  1.5  msaitoh 		 * LESM is on, likewise reset_pipeline requries the lock as
    303  1.5  msaitoh 		 * it also writes AUTOC.
    304  1.5  msaitoh 		 */
    305  1.5  msaitoh 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
    306  1.5  msaitoh 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
    307  1.5  msaitoh 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
    308  1.5  msaitoh 							IXGBE_GSSR_MAC_CSR_SM);
    309  1.5  msaitoh 			if (ret_val != IXGBE_SUCCESS) {
    310  1.5  msaitoh 				ret_val = IXGBE_ERR_SWFW_SYNC;
    311  1.5  msaitoh 				goto out;
    312  1.5  msaitoh 			}
    313  1.5  msaitoh 			got_lock = TRUE;
    314  1.5  msaitoh 		}
    315  1.5  msaitoh 
    316  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
    317  1.5  msaitoh 		if (hw->mac.type == ixgbe_mac_82599EB)
    318  1.5  msaitoh 			ixgbe_reset_pipeline_82599(hw);
    319  1.5  msaitoh 
    320  1.5  msaitoh 		if (got_lock)
    321  1.5  msaitoh 			hw->mac.ops.release_swfw_sync(hw,
    322  1.5  msaitoh 						      IXGBE_GSSR_MAC_CSR_SM);
    323  1.4  msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    324  1.4  msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
    325  1.4  msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    326  1.4  msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    327  1.4  msaitoh 	}
    328  1.4  msaitoh 
    329  1.4  msaitoh 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
    330  1.4  msaitoh out:
    331  1.4  msaitoh 	return ret_val;
    332  1.4  msaitoh }
    333  1.4  msaitoh 
    334  1.4  msaitoh /**
    335  1.1   dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    336  1.1   dyoung  *  @hw: pointer to hardware structure
    337  1.1   dyoung  *
    338  1.1   dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    339  1.1   dyoung  *  all on chip counters, initializes receive address registers, multicast
    340  1.1   dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    341  1.1   dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    342  1.1   dyoung  **/
    343  1.1   dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    344  1.1   dyoung {
    345  1.4  msaitoh 	s32 ret_val;
    346  1.1   dyoung 	u32 ctrl_ext;
    347  1.1   dyoung 
    348  1.1   dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    349  1.1   dyoung 
    350  1.1   dyoung 	/* Set the media type */
    351  1.1   dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    352  1.1   dyoung 
    353  1.1   dyoung 	/* PHY ops initialization must be done in reset_hw() */
    354  1.1   dyoung 
    355  1.1   dyoung 	/* Clear the VLAN filter table */
    356  1.1   dyoung 	hw->mac.ops.clear_vfta(hw);
    357  1.1   dyoung 
    358  1.1   dyoung 	/* Clear statistics registers */
    359  1.1   dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    360  1.1   dyoung 
    361  1.1   dyoung 	/* Set No Snoop Disable */
    362  1.1   dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    363  1.1   dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    364  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    365  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    366  1.1   dyoung 
    367  1.1   dyoung 	/* Setup flow control */
    368  1.4  msaitoh 	ret_val = ixgbe_setup_fc(hw);
    369  1.4  msaitoh 	if (ret_val != IXGBE_SUCCESS)
    370  1.4  msaitoh 		goto out;
    371  1.1   dyoung 
    372  1.1   dyoung 	/* Clear adapter stopped flag */
    373  1.1   dyoung 	hw->adapter_stopped = FALSE;
    374  1.1   dyoung 
    375  1.4  msaitoh out:
    376  1.4  msaitoh 	return ret_val;
    377  1.1   dyoung }
    378  1.1   dyoung 
    379  1.1   dyoung /**
    380  1.1   dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    381  1.1   dyoung  *  @hw: pointer to hw structure
    382  1.1   dyoung  *
    383  1.1   dyoung  * Performs the init sequence common to the second generation
    384  1.1   dyoung  * of 10 GbE devices.
    385  1.1   dyoung  * Devices in the second generation:
    386  1.1   dyoung  *     82599
    387  1.1   dyoung  *     X540
    388  1.1   dyoung  **/
    389  1.1   dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    390  1.1   dyoung {
    391  1.1   dyoung 	u32 i;
    392  1.1   dyoung 	u32 regval;
    393  1.1   dyoung 
    394  1.1   dyoung 	/* Clear the rate limiters */
    395  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    396  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    397  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    398  1.1   dyoung 	}
    399  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
    400  1.1   dyoung 
    401  1.1   dyoung 	/* Disable relaxed ordering */
    402  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    403  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    404  1.4  msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    405  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    406  1.1   dyoung 	}
    407  1.1   dyoung 
    408  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    409  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    410  1.4  msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    411  1.4  msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    412  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    413  1.1   dyoung 	}
    414  1.1   dyoung 
    415  1.1   dyoung 	return IXGBE_SUCCESS;
    416  1.1   dyoung }
    417  1.1   dyoung 
    418  1.1   dyoung /**
    419  1.1   dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    420  1.1   dyoung  *  @hw: pointer to hardware structure
    421  1.1   dyoung  *
    422  1.1   dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    423  1.1   dyoung  *  structure and media type, clears all on chip counters, initializes receive
    424  1.1   dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    425  1.1   dyoung  *  up link and flow control settings, and leaves transmit and receive units
    426  1.1   dyoung  *  disabled and uninitialized
    427  1.1   dyoung  **/
    428  1.1   dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    429  1.1   dyoung {
    430  1.1   dyoung 	s32 status;
    431  1.1   dyoung 
    432  1.1   dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    433  1.1   dyoung 
    434  1.1   dyoung 	/* Reset the hardware */
    435  1.1   dyoung 	status = hw->mac.ops.reset_hw(hw);
    436  1.1   dyoung 
    437  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
    438  1.1   dyoung 		/* Start the HW */
    439  1.1   dyoung 		status = hw->mac.ops.start_hw(hw);
    440  1.1   dyoung 	}
    441  1.1   dyoung 
    442  1.1   dyoung 	return status;
    443  1.1   dyoung }
    444  1.1   dyoung 
    445  1.1   dyoung /**
    446  1.1   dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    447  1.1   dyoung  *  @hw: pointer to hardware structure
    448  1.1   dyoung  *
    449  1.1   dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    450  1.1   dyoung  *  Statistics counters are clear on read.
    451  1.1   dyoung  **/
    452  1.1   dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    453  1.1   dyoung {
    454  1.1   dyoung 	u16 i = 0;
    455  1.1   dyoung 
    456  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    457  1.1   dyoung 
    458  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    459  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    460  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    461  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    462  1.1   dyoung 	for (i = 0; i < 8; i++)
    463  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    464  1.1   dyoung 
    465  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    466  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    467  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    468  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    469  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    470  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    471  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    472  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    473  1.1   dyoung 	} else {
    474  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    475  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    476  1.1   dyoung 	}
    477  1.1   dyoung 
    478  1.1   dyoung 	for (i = 0; i < 8; i++) {
    479  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    480  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    481  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    482  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    483  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    484  1.1   dyoung 		} else {
    485  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    486  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    487  1.1   dyoung 		}
    488  1.1   dyoung 	}
    489  1.1   dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    490  1.1   dyoung 		for (i = 0; i < 8; i++)
    491  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    492  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    493  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    494  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    495  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    496  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    497  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    498  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    499  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    500  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    501  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    502  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    503  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    504  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    505  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    506  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    507  1.3  msaitoh 		for (i = 0; i < 8; i++)
    508  1.3  msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    509  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    510  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    511  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    512  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    513  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    514  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    515  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    516  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    517  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    518  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    519  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    520  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    521  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    522  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    523  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    524  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    525  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    526  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    527  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    528  1.1   dyoung 	for (i = 0; i < 16; i++) {
    529  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    530  1.1   dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    531  1.1   dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    532  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    533  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    534  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    535  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    536  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    537  1.1   dyoung 		} else {
    538  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    539  1.1   dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    540  1.1   dyoung 		}
    541  1.1   dyoung 	}
    542  1.1   dyoung 
    543  1.3  msaitoh 	if (hw->mac.type == ixgbe_mac_X540) {
    544  1.3  msaitoh 		if (hw->phy.id == 0)
    545  1.3  msaitoh 			ixgbe_identify_phy(hw);
    546  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    547  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    548  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    549  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    550  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    551  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    552  1.3  msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    553  1.3  msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    554  1.3  msaitoh 	}
    555  1.3  msaitoh 
    556  1.1   dyoung 	return IXGBE_SUCCESS;
    557  1.1   dyoung }
    558  1.1   dyoung 
    559  1.1   dyoung /**
    560  1.1   dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    561  1.1   dyoung  *  @hw: pointer to hardware structure
    562  1.1   dyoung  *  @pba_num: stores the part number string from the EEPROM
    563  1.1   dyoung  *  @pba_num_size: part number string buffer length
    564  1.1   dyoung  *
    565  1.1   dyoung  *  Reads the part number string from the EEPROM.
    566  1.1   dyoung  **/
    567  1.1   dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    568  1.3  msaitoh 				  u32 pba_num_size)
    569  1.1   dyoung {
    570  1.1   dyoung 	s32 ret_val;
    571  1.1   dyoung 	u16 data;
    572  1.1   dyoung 	u16 pba_ptr;
    573  1.1   dyoung 	u16 offset;
    574  1.1   dyoung 	u16 length;
    575  1.1   dyoung 
    576  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    577  1.1   dyoung 
    578  1.1   dyoung 	if (pba_num == NULL) {
    579  1.1   dyoung 		DEBUGOUT("PBA string buffer was null\n");
    580  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    581  1.1   dyoung 	}
    582  1.1   dyoung 
    583  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    584  1.1   dyoung 	if (ret_val) {
    585  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    586  1.1   dyoung 		return ret_val;
    587  1.1   dyoung 	}
    588  1.1   dyoung 
    589  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    590  1.1   dyoung 	if (ret_val) {
    591  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    592  1.1   dyoung 		return ret_val;
    593  1.1   dyoung 	}
    594  1.1   dyoung 
    595  1.1   dyoung 	/*
    596  1.1   dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    597  1.1   dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    598  1.1   dyoung 	 * and we can decode it into an ascii string
    599  1.1   dyoung 	 */
    600  1.1   dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    601  1.1   dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    602  1.1   dyoung 
    603  1.1   dyoung 		/* we will need 11 characters to store the PBA */
    604  1.1   dyoung 		if (pba_num_size < 11) {
    605  1.1   dyoung 			DEBUGOUT("PBA string buffer too small\n");
    606  1.1   dyoung 			return IXGBE_ERR_NO_SPACE;
    607  1.1   dyoung 		}
    608  1.1   dyoung 
    609  1.1   dyoung 		/* extract hex string from data and pba_ptr */
    610  1.1   dyoung 		pba_num[0] = (data >> 12) & 0xF;
    611  1.1   dyoung 		pba_num[1] = (data >> 8) & 0xF;
    612  1.1   dyoung 		pba_num[2] = (data >> 4) & 0xF;
    613  1.1   dyoung 		pba_num[3] = data & 0xF;
    614  1.1   dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    615  1.1   dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    616  1.1   dyoung 		pba_num[6] = '-';
    617  1.1   dyoung 		pba_num[7] = 0;
    618  1.1   dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    619  1.1   dyoung 		pba_num[9] = pba_ptr & 0xF;
    620  1.1   dyoung 
    621  1.1   dyoung 		/* put a null character on the end of our string */
    622  1.1   dyoung 		pba_num[10] = '\0';
    623  1.1   dyoung 
    624  1.1   dyoung 		/* switch all the data but the '-' to hex char */
    625  1.1   dyoung 		for (offset = 0; offset < 10; offset++) {
    626  1.1   dyoung 			if (pba_num[offset] < 0xA)
    627  1.1   dyoung 				pba_num[offset] += '0';
    628  1.1   dyoung 			else if (pba_num[offset] < 0x10)
    629  1.1   dyoung 				pba_num[offset] += 'A' - 0xA;
    630  1.1   dyoung 		}
    631  1.1   dyoung 
    632  1.1   dyoung 		return IXGBE_SUCCESS;
    633  1.1   dyoung 	}
    634  1.1   dyoung 
    635  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    636  1.1   dyoung 	if (ret_val) {
    637  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    638  1.1   dyoung 		return ret_val;
    639  1.1   dyoung 	}
    640  1.1   dyoung 
    641  1.1   dyoung 	if (length == 0xFFFF || length == 0) {
    642  1.1   dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    643  1.1   dyoung 		return IXGBE_ERR_PBA_SECTION;
    644  1.1   dyoung 	}
    645  1.1   dyoung 
    646  1.1   dyoung 	/* check if pba_num buffer is big enough */
    647  1.1   dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    648  1.1   dyoung 		DEBUGOUT("PBA string buffer too small\n");
    649  1.1   dyoung 		return IXGBE_ERR_NO_SPACE;
    650  1.1   dyoung 	}
    651  1.1   dyoung 
    652  1.1   dyoung 	/* trim pba length from start of string */
    653  1.1   dyoung 	pba_ptr++;
    654  1.1   dyoung 	length--;
    655  1.1   dyoung 
    656  1.1   dyoung 	for (offset = 0; offset < length; offset++) {
    657  1.1   dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    658  1.1   dyoung 		if (ret_val) {
    659  1.1   dyoung 			DEBUGOUT("NVM Read Error\n");
    660  1.1   dyoung 			return ret_val;
    661  1.1   dyoung 		}
    662  1.1   dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    663  1.1   dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    664  1.1   dyoung 	}
    665  1.1   dyoung 	pba_num[offset * 2] = '\0';
    666  1.1   dyoung 
    667  1.1   dyoung 	return IXGBE_SUCCESS;
    668  1.1   dyoung }
    669  1.1   dyoung 
    670  1.1   dyoung /**
    671  1.1   dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    672  1.1   dyoung  *  @hw: pointer to hardware structure
    673  1.1   dyoung  *  @pba_num: stores the part number from the EEPROM
    674  1.1   dyoung  *
    675  1.1   dyoung  *  Reads the part number from the EEPROM.
    676  1.1   dyoung  **/
    677  1.1   dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    678  1.1   dyoung {
    679  1.1   dyoung 	s32 ret_val;
    680  1.1   dyoung 	u16 data;
    681  1.1   dyoung 
    682  1.1   dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    683  1.1   dyoung 
    684  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    685  1.1   dyoung 	if (ret_val) {
    686  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    687  1.1   dyoung 		return ret_val;
    688  1.1   dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    689  1.1   dyoung 		DEBUGOUT("NVM Not supported\n");
    690  1.1   dyoung 		return IXGBE_NOT_IMPLEMENTED;
    691  1.1   dyoung 	}
    692  1.1   dyoung 	*pba_num = (u32)(data << 16);
    693  1.1   dyoung 
    694  1.1   dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    695  1.1   dyoung 	if (ret_val) {
    696  1.1   dyoung 		DEBUGOUT("NVM Read Error\n");
    697  1.1   dyoung 		return ret_val;
    698  1.1   dyoung 	}
    699  1.1   dyoung 	*pba_num |= data;
    700  1.1   dyoung 
    701  1.1   dyoung 	return IXGBE_SUCCESS;
    702  1.1   dyoung }
    703  1.1   dyoung 
    704  1.1   dyoung /**
    705  1.5  msaitoh  *  ixgbe_read_pba_raw
    706  1.5  msaitoh  *  @hw: pointer to the HW structure
    707  1.5  msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    708  1.5  msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    709  1.5  msaitoh  *  @max_pba_block_size: PBA block size limit
    710  1.5  msaitoh  *  @pba: pointer to output PBA structure
    711  1.5  msaitoh  *
    712  1.5  msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    713  1.5  msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    714  1.5  msaitoh  *
    715  1.5  msaitoh  **/
    716  1.5  msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    717  1.5  msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    718  1.5  msaitoh 		       struct ixgbe_pba *pba)
    719  1.5  msaitoh {
    720  1.5  msaitoh 	s32 ret_val;
    721  1.5  msaitoh 	u16 pba_block_size;
    722  1.5  msaitoh 
    723  1.5  msaitoh 	if (pba == NULL)
    724  1.5  msaitoh 		return IXGBE_ERR_PARAM;
    725  1.5  msaitoh 
    726  1.5  msaitoh 	if (eeprom_buf == NULL) {
    727  1.5  msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    728  1.5  msaitoh 						     &pba->word[0]);
    729  1.5  msaitoh 		if (ret_val)
    730  1.5  msaitoh 			return ret_val;
    731  1.5  msaitoh 	} else {
    732  1.5  msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    733  1.5  msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    734  1.5  msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    735  1.5  msaitoh 		} else {
    736  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    737  1.5  msaitoh 		}
    738  1.5  msaitoh 	}
    739  1.5  msaitoh 
    740  1.5  msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    741  1.5  msaitoh 		if (pba->pba_block == NULL)
    742  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    743  1.5  msaitoh 
    744  1.5  msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    745  1.5  msaitoh 						   eeprom_buf_size,
    746  1.5  msaitoh 						   &pba_block_size);
    747  1.5  msaitoh 		if (ret_val)
    748  1.5  msaitoh 			return ret_val;
    749  1.5  msaitoh 
    750  1.5  msaitoh 		if (pba_block_size > max_pba_block_size)
    751  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    752  1.5  msaitoh 
    753  1.5  msaitoh 		if (eeprom_buf == NULL) {
    754  1.5  msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    755  1.5  msaitoh 							     pba_block_size,
    756  1.5  msaitoh 							     pba->pba_block);
    757  1.5  msaitoh 			if (ret_val)
    758  1.5  msaitoh 				return ret_val;
    759  1.5  msaitoh 		} else {
    760  1.5  msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    761  1.5  msaitoh 					      pba->pba_block[0])) {
    762  1.5  msaitoh 				memcpy(pba->pba_block,
    763  1.5  msaitoh 				       &eeprom_buf[pba->word[1]],
    764  1.5  msaitoh 				       pba_block_size * sizeof(u16));
    765  1.5  msaitoh 			} else {
    766  1.5  msaitoh 				return IXGBE_ERR_PARAM;
    767  1.5  msaitoh 			}
    768  1.5  msaitoh 		}
    769  1.5  msaitoh 	}
    770  1.5  msaitoh 
    771  1.5  msaitoh 	return IXGBE_SUCCESS;
    772  1.5  msaitoh }
    773  1.5  msaitoh 
    774  1.5  msaitoh /**
    775  1.5  msaitoh  *  ixgbe_write_pba_raw
    776  1.5  msaitoh  *  @hw: pointer to the HW structure
    777  1.5  msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    778  1.5  msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    779  1.5  msaitoh  *  @pba: pointer to PBA structure
    780  1.5  msaitoh  *
    781  1.5  msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    782  1.5  msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    783  1.5  msaitoh  *
    784  1.5  msaitoh  **/
    785  1.5  msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    786  1.5  msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    787  1.5  msaitoh {
    788  1.5  msaitoh 	s32 ret_val;
    789  1.5  msaitoh 
    790  1.5  msaitoh 	if (pba == NULL)
    791  1.5  msaitoh 		return IXGBE_ERR_PARAM;
    792  1.5  msaitoh 
    793  1.5  msaitoh 	if (eeprom_buf == NULL) {
    794  1.5  msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    795  1.5  msaitoh 						      &pba->word[0]);
    796  1.5  msaitoh 		if (ret_val)
    797  1.5  msaitoh 			return ret_val;
    798  1.5  msaitoh 	} else {
    799  1.5  msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    800  1.5  msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    801  1.5  msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    802  1.5  msaitoh 		} else {
    803  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    804  1.5  msaitoh 		}
    805  1.5  msaitoh 	}
    806  1.5  msaitoh 
    807  1.5  msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    808  1.5  msaitoh 		if (pba->pba_block == NULL)
    809  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    810  1.5  msaitoh 
    811  1.5  msaitoh 		if (eeprom_buf == NULL) {
    812  1.5  msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    813  1.5  msaitoh 							      pba->pba_block[0],
    814  1.5  msaitoh 							      pba->pba_block);
    815  1.5  msaitoh 			if (ret_val)
    816  1.5  msaitoh 				return ret_val;
    817  1.5  msaitoh 		} else {
    818  1.5  msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    819  1.5  msaitoh 					      pba->pba_block[0])) {
    820  1.5  msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    821  1.5  msaitoh 				       pba->pba_block,
    822  1.5  msaitoh 				       pba->pba_block[0] * sizeof(u16));
    823  1.5  msaitoh 			} else {
    824  1.5  msaitoh 				return IXGBE_ERR_PARAM;
    825  1.5  msaitoh 			}
    826  1.5  msaitoh 		}
    827  1.5  msaitoh 	}
    828  1.5  msaitoh 
    829  1.5  msaitoh 	return IXGBE_SUCCESS;
    830  1.5  msaitoh }
    831  1.5  msaitoh 
    832  1.5  msaitoh /**
    833  1.5  msaitoh  *  ixgbe_get_pba_block_size
    834  1.5  msaitoh  *  @hw: pointer to the HW structure
    835  1.5  msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    836  1.5  msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    837  1.5  msaitoh  *  @pba_data_size: pointer to output variable
    838  1.5  msaitoh  *
    839  1.5  msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    840  1.5  msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    841  1.5  msaitoh  *  EEPROM device.
    842  1.5  msaitoh  *
    843  1.5  msaitoh  **/
    844  1.5  msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    845  1.5  msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    846  1.5  msaitoh {
    847  1.5  msaitoh 	s32 ret_val;
    848  1.5  msaitoh 	u16 pba_word[2];
    849  1.5  msaitoh 	u16 length;
    850  1.5  msaitoh 
    851  1.5  msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    852  1.5  msaitoh 
    853  1.5  msaitoh 	if (eeprom_buf == NULL) {
    854  1.5  msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    855  1.5  msaitoh 						     &pba_word[0]);
    856  1.5  msaitoh 		if (ret_val)
    857  1.5  msaitoh 			return ret_val;
    858  1.5  msaitoh 	} else {
    859  1.5  msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    860  1.5  msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    861  1.5  msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    862  1.5  msaitoh 		} else {
    863  1.5  msaitoh 			return IXGBE_ERR_PARAM;
    864  1.5  msaitoh 		}
    865  1.5  msaitoh 	}
    866  1.5  msaitoh 
    867  1.5  msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    868  1.5  msaitoh 		if (eeprom_buf == NULL) {
    869  1.5  msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    870  1.5  msaitoh 						      &length);
    871  1.5  msaitoh 			if (ret_val)
    872  1.5  msaitoh 				return ret_val;
    873  1.5  msaitoh 		} else {
    874  1.5  msaitoh 			if (eeprom_buf_size > pba_word[1])
    875  1.5  msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    876  1.5  msaitoh 			else
    877  1.5  msaitoh 				return IXGBE_ERR_PARAM;
    878  1.5  msaitoh 		}
    879  1.5  msaitoh 
    880  1.5  msaitoh 		if (length == 0xFFFF || length == 0)
    881  1.5  msaitoh 			return IXGBE_ERR_PBA_SECTION;
    882  1.5  msaitoh 	} else {
    883  1.5  msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    884  1.5  msaitoh 		length = 0;
    885  1.5  msaitoh 	}
    886  1.5  msaitoh 
    887  1.5  msaitoh 	if (pba_block_size != NULL)
    888  1.5  msaitoh 		*pba_block_size = length;
    889  1.5  msaitoh 
    890  1.5  msaitoh 	return IXGBE_SUCCESS;
    891  1.5  msaitoh }
    892  1.5  msaitoh 
    893  1.5  msaitoh /**
    894  1.1   dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    895  1.1   dyoung  *  @hw: pointer to hardware structure
    896  1.1   dyoung  *  @mac_addr: Adapter MAC address
    897  1.1   dyoung  *
    898  1.1   dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    899  1.1   dyoung  *  A reset of the adapter must be performed prior to calling this function
    900  1.1   dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    901  1.1   dyoung  **/
    902  1.1   dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    903  1.1   dyoung {
    904  1.1   dyoung 	u32 rar_high;
    905  1.1   dyoung 	u32 rar_low;
    906  1.1   dyoung 	u16 i;
    907  1.1   dyoung 
    908  1.1   dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    909  1.1   dyoung 
    910  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    911  1.1   dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    912  1.1   dyoung 
    913  1.1   dyoung 	for (i = 0; i < 4; i++)
    914  1.1   dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    915  1.1   dyoung 
    916  1.1   dyoung 	for (i = 0; i < 2; i++)
    917  1.1   dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    918  1.1   dyoung 
    919  1.1   dyoung 	return IXGBE_SUCCESS;
    920  1.1   dyoung }
    921  1.1   dyoung 
    922  1.1   dyoung /**
    923  1.1   dyoung  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    924  1.1   dyoung  *  @hw: pointer to hardware structure
    925  1.1   dyoung  *
    926  1.1   dyoung  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    927  1.1   dyoung  **/
    928  1.1   dyoung s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    929  1.1   dyoung {
    930  1.1   dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    931  1.1   dyoung 	u16 link_status;
    932  1.1   dyoung 
    933  1.1   dyoung 	DEBUGFUNC("ixgbe_get_bus_info_generic");
    934  1.1   dyoung 
    935  1.1   dyoung 	hw->bus.type = ixgbe_bus_type_pci_express;
    936  1.1   dyoung 
    937  1.1   dyoung 	/* Get the negotiated link width and speed from PCI config space */
    938  1.1   dyoung 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
    939  1.1   dyoung 
    940  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    941  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    942  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    943  1.1   dyoung 		break;
    944  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    945  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    946  1.1   dyoung 		break;
    947  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    948  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    949  1.1   dyoung 		break;
    950  1.1   dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    951  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    952  1.1   dyoung 		break;
    953  1.1   dyoung 	default:
    954  1.1   dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    955  1.1   dyoung 		break;
    956  1.1   dyoung 	}
    957  1.1   dyoung 
    958  1.1   dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    959  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    960  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    961  1.1   dyoung 		break;
    962  1.1   dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    963  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    964  1.1   dyoung 		break;
    965  1.4  msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    966  1.4  msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    967  1.4  msaitoh 		break;
    968  1.1   dyoung 	default:
    969  1.1   dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    970  1.1   dyoung 		break;
    971  1.1   dyoung 	}
    972  1.1   dyoung 
    973  1.1   dyoung 	mac->ops.set_lan_id(hw);
    974  1.1   dyoung 
    975  1.1   dyoung 	return IXGBE_SUCCESS;
    976  1.1   dyoung }
    977  1.1   dyoung 
    978  1.1   dyoung /**
    979  1.1   dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    980  1.1   dyoung  *  @hw: pointer to the HW structure
    981  1.1   dyoung  *
    982  1.1   dyoung  *  Determines the LAN function id by reading memory-mapped registers
    983  1.1   dyoung  *  and swaps the port value if requested.
    984  1.1   dyoung  **/
    985  1.1   dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    986  1.1   dyoung {
    987  1.1   dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
    988  1.1   dyoung 	u32 reg;
    989  1.1   dyoung 
    990  1.1   dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
    991  1.1   dyoung 
    992  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    993  1.1   dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    994  1.1   dyoung 	bus->lan_id = bus->func;
    995  1.1   dyoung 
    996  1.1   dyoung 	/* check for a port swap */
    997  1.1   dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
    998  1.1   dyoung 	if (reg & IXGBE_FACTPS_LFS)
    999  1.1   dyoung 		bus->func ^= 0x1;
   1000  1.1   dyoung }
   1001  1.1   dyoung 
   1002  1.1   dyoung /**
   1003  1.1   dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1004  1.1   dyoung  *  @hw: pointer to hardware structure
   1005  1.1   dyoung  *
   1006  1.1   dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1007  1.1   dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1008  1.1   dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1009  1.1   dyoung  *  state and should not touch the hardware.
   1010  1.1   dyoung  **/
   1011  1.1   dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1012  1.1   dyoung {
   1013  1.1   dyoung 	u32 reg_val;
   1014  1.1   dyoung 	u16 i;
   1015  1.1   dyoung 
   1016  1.1   dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1017  1.1   dyoung 
   1018  1.1   dyoung 	/*
   1019  1.1   dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1020  1.1   dyoung 	 * the hardware
   1021  1.1   dyoung 	 */
   1022  1.1   dyoung 	hw->adapter_stopped = TRUE;
   1023  1.1   dyoung 
   1024  1.1   dyoung 	/* Disable the receive unit */
   1025  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
   1026  1.1   dyoung 
   1027  1.3  msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1028  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1029  1.1   dyoung 
   1030  1.3  msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1031  1.1   dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1032  1.1   dyoung 
   1033  1.1   dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1034  1.3  msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1035  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1036  1.3  msaitoh 
   1037  1.3  msaitoh 	/* Disable the receive unit by stopping each queue */
   1038  1.3  msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1039  1.3  msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1040  1.3  msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1041  1.3  msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1042  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1043  1.1   dyoung 	}
   1044  1.1   dyoung 
   1045  1.3  msaitoh 	/* flush all queues disables */
   1046  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1047  1.3  msaitoh 	msec_delay(2);
   1048  1.3  msaitoh 
   1049  1.1   dyoung 	/*
   1050  1.1   dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
   1051  1.1   dyoung 	 * access and verify no pending requests
   1052  1.1   dyoung 	 */
   1053  1.3  msaitoh 	return ixgbe_disable_pcie_master(hw);
   1054  1.1   dyoung }
   1055  1.1   dyoung 
   1056  1.1   dyoung /**
   1057  1.1   dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1058  1.1   dyoung  *  @hw: pointer to hardware structure
   1059  1.1   dyoung  *  @index: led number to turn on
   1060  1.1   dyoung  **/
   1061  1.1   dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1062  1.1   dyoung {
   1063  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1064  1.1   dyoung 
   1065  1.1   dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1066  1.1   dyoung 
   1067  1.1   dyoung 	/* To turn on the LED, set mode to ON. */
   1068  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1069  1.1   dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1070  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1071  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1072  1.1   dyoung 
   1073  1.1   dyoung 	return IXGBE_SUCCESS;
   1074  1.1   dyoung }
   1075  1.1   dyoung 
   1076  1.1   dyoung /**
   1077  1.1   dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1078  1.1   dyoung  *  @hw: pointer to hardware structure
   1079  1.1   dyoung  *  @index: led number to turn off
   1080  1.1   dyoung  **/
   1081  1.1   dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1082  1.1   dyoung {
   1083  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1084  1.1   dyoung 
   1085  1.1   dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1086  1.1   dyoung 
   1087  1.1   dyoung 	/* To turn off the LED, set mode to OFF. */
   1088  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1089  1.1   dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1090  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1091  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1092  1.1   dyoung 
   1093  1.1   dyoung 	return IXGBE_SUCCESS;
   1094  1.1   dyoung }
   1095  1.1   dyoung 
   1096  1.1   dyoung /**
   1097  1.1   dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1098  1.1   dyoung  *  @hw: pointer to hardware structure
   1099  1.1   dyoung  *
   1100  1.1   dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1101  1.1   dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1102  1.1   dyoung  **/
   1103  1.1   dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1104  1.1   dyoung {
   1105  1.1   dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1106  1.1   dyoung 	u32 eec;
   1107  1.1   dyoung 	u16 eeprom_size;
   1108  1.1   dyoung 
   1109  1.1   dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1110  1.1   dyoung 
   1111  1.1   dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1112  1.1   dyoung 		eeprom->type = ixgbe_eeprom_none;
   1113  1.1   dyoung 		/* Set default semaphore delay to 10ms which is a well
   1114  1.1   dyoung 		 * tested value */
   1115  1.1   dyoung 		eeprom->semaphore_delay = 10;
   1116  1.3  msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1117  1.3  msaitoh 		eeprom->word_page_size = 0;
   1118  1.1   dyoung 
   1119  1.1   dyoung 		/*
   1120  1.1   dyoung 		 * Check for EEPROM present first.
   1121  1.1   dyoung 		 * If not present leave as none
   1122  1.1   dyoung 		 */
   1123  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1124  1.1   dyoung 		if (eec & IXGBE_EEC_PRES) {
   1125  1.1   dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1126  1.1   dyoung 
   1127  1.1   dyoung 			/*
   1128  1.1   dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1129  1.1   dyoung 			 * change if a future EEPROM is not SPI.
   1130  1.1   dyoung 			 */
   1131  1.1   dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1132  1.3  msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1133  1.1   dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1134  1.3  msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1135  1.1   dyoung 		}
   1136  1.1   dyoung 
   1137  1.1   dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1138  1.1   dyoung 			eeprom->address_bits = 16;
   1139  1.1   dyoung 		else
   1140  1.1   dyoung 			eeprom->address_bits = 8;
   1141  1.1   dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1142  1.3  msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1143  1.3  msaitoh 			  eeprom->address_bits);
   1144  1.1   dyoung 	}
   1145  1.1   dyoung 
   1146  1.1   dyoung 	return IXGBE_SUCCESS;
   1147  1.1   dyoung }
   1148  1.1   dyoung 
   1149  1.1   dyoung /**
   1150  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1151  1.3  msaitoh  *  @hw: pointer to hardware structure
   1152  1.3  msaitoh  *  @offset: offset within the EEPROM to write
   1153  1.3  msaitoh  *  @words: number of word(s)
   1154  1.3  msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1155  1.3  msaitoh  *
   1156  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1157  1.3  msaitoh  **/
   1158  1.3  msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1159  1.3  msaitoh 					       u16 words, u16 *data)
   1160  1.3  msaitoh {
   1161  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1162  1.3  msaitoh 	u16 i, count;
   1163  1.3  msaitoh 
   1164  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1165  1.3  msaitoh 
   1166  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1167  1.3  msaitoh 
   1168  1.3  msaitoh 	if (words == 0) {
   1169  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1170  1.3  msaitoh 		goto out;
   1171  1.3  msaitoh 	}
   1172  1.3  msaitoh 
   1173  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1174  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1175  1.3  msaitoh 		goto out;
   1176  1.3  msaitoh 	}
   1177  1.3  msaitoh 
   1178  1.3  msaitoh 	/*
   1179  1.3  msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1180  1.3  msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1181  1.3  msaitoh 	 */
   1182  1.3  msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1183  1.3  msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1184  1.3  msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1185  1.3  msaitoh 
   1186  1.3  msaitoh 	/*
   1187  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
   1188  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1189  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
   1190  1.3  msaitoh 	 */
   1191  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1192  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1193  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1194  1.3  msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1195  1.3  msaitoh 							    count, &data[i]);
   1196  1.3  msaitoh 
   1197  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
   1198  1.3  msaitoh 			break;
   1199  1.3  msaitoh 	}
   1200  1.3  msaitoh 
   1201  1.3  msaitoh out:
   1202  1.3  msaitoh 	return status;
   1203  1.3  msaitoh }
   1204  1.3  msaitoh 
   1205  1.3  msaitoh /**
   1206  1.3  msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1207  1.3  msaitoh  *  @hw: pointer to hardware structure
   1208  1.3  msaitoh  *  @offset: offset within the EEPROM to be written to
   1209  1.3  msaitoh  *  @words: number of word(s)
   1210  1.3  msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1211  1.3  msaitoh  *
   1212  1.3  msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1213  1.3  msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1214  1.3  msaitoh  **/
   1215  1.3  msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1216  1.3  msaitoh 					      u16 words, u16 *data)
   1217  1.3  msaitoh {
   1218  1.3  msaitoh 	s32 status;
   1219  1.3  msaitoh 	u16 word;
   1220  1.3  msaitoh 	u16 page_size;
   1221  1.3  msaitoh 	u16 i;
   1222  1.3  msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1223  1.3  msaitoh 
   1224  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1225  1.3  msaitoh 
   1226  1.3  msaitoh 	/* Prepare the EEPROM for writing  */
   1227  1.3  msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1228  1.3  msaitoh 
   1229  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
   1230  1.3  msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1231  1.3  msaitoh 			ixgbe_release_eeprom(hw);
   1232  1.3  msaitoh 			status = IXGBE_ERR_EEPROM;
   1233  1.3  msaitoh 		}
   1234  1.3  msaitoh 	}
   1235  1.3  msaitoh 
   1236  1.3  msaitoh 	if (status == IXGBE_SUCCESS) {
   1237  1.3  msaitoh 		for (i = 0; i < words; i++) {
   1238  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1239  1.3  msaitoh 
   1240  1.3  msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1241  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1242  1.3  msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1243  1.3  msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1244  1.3  msaitoh 
   1245  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1246  1.3  msaitoh 
   1247  1.3  msaitoh 			/*
   1248  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1249  1.3  msaitoh 			 * in the opcode
   1250  1.3  msaitoh 			 */
   1251  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1252  1.3  msaitoh 			    ((offset + i) >= 128))
   1253  1.3  msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1254  1.3  msaitoh 
   1255  1.3  msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1256  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1257  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1258  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1259  1.3  msaitoh 						    hw->eeprom.address_bits);
   1260  1.3  msaitoh 
   1261  1.3  msaitoh 			page_size = hw->eeprom.word_page_size;
   1262  1.3  msaitoh 
   1263  1.3  msaitoh 			/* Send the data in burst via SPI*/
   1264  1.3  msaitoh 			do {
   1265  1.3  msaitoh 				word = data[i];
   1266  1.3  msaitoh 				word = (word >> 8) | (word << 8);
   1267  1.3  msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1268  1.3  msaitoh 
   1269  1.3  msaitoh 				if (page_size == 0)
   1270  1.3  msaitoh 					break;
   1271  1.3  msaitoh 
   1272  1.3  msaitoh 				/* do not wrap around page */
   1273  1.3  msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1274  1.3  msaitoh 				    (page_size - 1))
   1275  1.3  msaitoh 					break;
   1276  1.3  msaitoh 			} while (++i < words);
   1277  1.3  msaitoh 
   1278  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1279  1.3  msaitoh 			msec_delay(10);
   1280  1.3  msaitoh 		}
   1281  1.3  msaitoh 		/* Done with writing - release the EEPROM */
   1282  1.3  msaitoh 		ixgbe_release_eeprom(hw);
   1283  1.3  msaitoh 	}
   1284  1.3  msaitoh 
   1285  1.3  msaitoh 	return status;
   1286  1.3  msaitoh }
   1287  1.3  msaitoh 
   1288  1.3  msaitoh /**
   1289  1.1   dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1290  1.1   dyoung  *  @hw: pointer to hardware structure
   1291  1.1   dyoung  *  @offset: offset within the EEPROM to be written to
   1292  1.1   dyoung  *  @data: 16 bit word to be written to the EEPROM
   1293  1.1   dyoung  *
   1294  1.1   dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1295  1.1   dyoung  *  EEPROM will most likely contain an invalid checksum.
   1296  1.1   dyoung  **/
   1297  1.1   dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1298  1.1   dyoung {
   1299  1.1   dyoung 	s32 status;
   1300  1.1   dyoung 
   1301  1.1   dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1302  1.1   dyoung 
   1303  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1304  1.1   dyoung 
   1305  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1306  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1307  1.1   dyoung 		goto out;
   1308  1.1   dyoung 	}
   1309  1.1   dyoung 
   1310  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1311  1.3  msaitoh 
   1312  1.3  msaitoh out:
   1313  1.3  msaitoh 	return status;
   1314  1.3  msaitoh }
   1315  1.3  msaitoh 
   1316  1.3  msaitoh /**
   1317  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1318  1.3  msaitoh  *  @hw: pointer to hardware structure
   1319  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
   1320  1.3  msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1321  1.3  msaitoh  *  @words: number of word(s)
   1322  1.3  msaitoh  *
   1323  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1324  1.3  msaitoh  **/
   1325  1.3  msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1326  1.3  msaitoh 					      u16 words, u16 *data)
   1327  1.3  msaitoh {
   1328  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1329  1.3  msaitoh 	u16 i, count;
   1330  1.3  msaitoh 
   1331  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1332  1.3  msaitoh 
   1333  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1334  1.3  msaitoh 
   1335  1.3  msaitoh 	if (words == 0) {
   1336  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1337  1.3  msaitoh 		goto out;
   1338  1.3  msaitoh 	}
   1339  1.3  msaitoh 
   1340  1.3  msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1341  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1342  1.3  msaitoh 		goto out;
   1343  1.3  msaitoh 	}
   1344  1.3  msaitoh 
   1345  1.3  msaitoh 	/*
   1346  1.3  msaitoh 	 * We cannot hold synchronization semaphores for too long
   1347  1.3  msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1348  1.3  msaitoh 	 * to read in bursts than synchronizing access for each word.
   1349  1.3  msaitoh 	 */
   1350  1.3  msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1351  1.3  msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1352  1.3  msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1353  1.3  msaitoh 
   1354  1.3  msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1355  1.3  msaitoh 							   count, &data[i]);
   1356  1.3  msaitoh 
   1357  1.3  msaitoh 		if (status != IXGBE_SUCCESS)
   1358  1.3  msaitoh 			break;
   1359  1.3  msaitoh 	}
   1360  1.3  msaitoh 
   1361  1.3  msaitoh out:
   1362  1.3  msaitoh 	return status;
   1363  1.3  msaitoh }
   1364  1.3  msaitoh 
   1365  1.3  msaitoh /**
   1366  1.3  msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1367  1.3  msaitoh  *  @hw: pointer to hardware structure
   1368  1.3  msaitoh  *  @offset: offset within the EEPROM to be read
   1369  1.3  msaitoh  *  @words: number of word(s)
   1370  1.3  msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1371  1.3  msaitoh  *
   1372  1.3  msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1373  1.3  msaitoh  **/
   1374  1.3  msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1375  1.3  msaitoh 					     u16 words, u16 *data)
   1376  1.3  msaitoh {
   1377  1.3  msaitoh 	s32 status;
   1378  1.3  msaitoh 	u16 word_in;
   1379  1.3  msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1380  1.3  msaitoh 	u16 i;
   1381  1.3  msaitoh 
   1382  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1383  1.3  msaitoh 
   1384  1.3  msaitoh 	/* Prepare the EEPROM for reading  */
   1385  1.1   dyoung 	status = ixgbe_acquire_eeprom(hw);
   1386  1.1   dyoung 
   1387  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1388  1.1   dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1389  1.1   dyoung 			ixgbe_release_eeprom(hw);
   1390  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1391  1.1   dyoung 		}
   1392  1.1   dyoung 	}
   1393  1.1   dyoung 
   1394  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1395  1.3  msaitoh 		for (i = 0; i < words; i++) {
   1396  1.3  msaitoh 			ixgbe_standby_eeprom(hw);
   1397  1.3  msaitoh 			/*
   1398  1.3  msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1399  1.3  msaitoh 			 * in the opcode
   1400  1.3  msaitoh 			 */
   1401  1.3  msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1402  1.3  msaitoh 			    ((offset + i) >= 128))
   1403  1.3  msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1404  1.3  msaitoh 
   1405  1.3  msaitoh 			/* Send the READ command (opcode + addr) */
   1406  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1407  1.3  msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1408  1.3  msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1409  1.3  msaitoh 						    hw->eeprom.address_bits);
   1410  1.3  msaitoh 
   1411  1.3  msaitoh 			/* Read the data. */
   1412  1.3  msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1413  1.3  msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1414  1.3  msaitoh 		}
   1415  1.1   dyoung 
   1416  1.3  msaitoh 		/* End this read operation */
   1417  1.1   dyoung 		ixgbe_release_eeprom(hw);
   1418  1.1   dyoung 	}
   1419  1.1   dyoung 
   1420  1.1   dyoung 	return status;
   1421  1.1   dyoung }
   1422  1.1   dyoung 
   1423  1.1   dyoung /**
   1424  1.1   dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1425  1.1   dyoung  *  @hw: pointer to hardware structure
   1426  1.1   dyoung  *  @offset: offset within the EEPROM to be read
   1427  1.1   dyoung  *  @data: read 16 bit value from EEPROM
   1428  1.1   dyoung  *
   1429  1.1   dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1430  1.1   dyoung  **/
   1431  1.1   dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1432  1.3  msaitoh 				       u16 *data)
   1433  1.1   dyoung {
   1434  1.1   dyoung 	s32 status;
   1435  1.1   dyoung 
   1436  1.1   dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1437  1.1   dyoung 
   1438  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1439  1.1   dyoung 
   1440  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1441  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1442  1.1   dyoung 		goto out;
   1443  1.1   dyoung 	}
   1444  1.1   dyoung 
   1445  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1446  1.3  msaitoh 
   1447  1.3  msaitoh out:
   1448  1.3  msaitoh 	return status;
   1449  1.3  msaitoh }
   1450  1.3  msaitoh 
   1451  1.3  msaitoh /**
   1452  1.3  msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1453  1.3  msaitoh  *  @hw: pointer to hardware structure
   1454  1.3  msaitoh  *  @offset: offset of word in the EEPROM to read
   1455  1.3  msaitoh  *  @words: number of word(s)
   1456  1.3  msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1457  1.3  msaitoh  *
   1458  1.3  msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1459  1.3  msaitoh  **/
   1460  1.3  msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1461  1.3  msaitoh 				   u16 words, u16 *data)
   1462  1.3  msaitoh {
   1463  1.3  msaitoh 	u32 eerd;
   1464  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1465  1.3  msaitoh 	u32 i;
   1466  1.3  msaitoh 
   1467  1.3  msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1468  1.3  msaitoh 
   1469  1.3  msaitoh 	hw->eeprom.ops.init_params(hw);
   1470  1.3  msaitoh 
   1471  1.3  msaitoh 	if (words == 0) {
   1472  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1473  1.3  msaitoh 		goto out;
   1474  1.3  msaitoh 	}
   1475  1.3  msaitoh 
   1476  1.3  msaitoh 	if (offset >= hw->eeprom.word_size) {
   1477  1.3  msaitoh 		status = IXGBE_ERR_EEPROM;
   1478  1.3  msaitoh 		goto out;
   1479  1.3  msaitoh 	}
   1480  1.3  msaitoh 
   1481  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1482  1.5  msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1483  1.3  msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1484  1.3  msaitoh 
   1485  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1486  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1487  1.1   dyoung 
   1488  1.3  msaitoh 		if (status == IXGBE_SUCCESS) {
   1489  1.3  msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1490  1.3  msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1491  1.3  msaitoh 		} else {
   1492  1.3  msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1493  1.3  msaitoh 			goto out;
   1494  1.1   dyoung 		}
   1495  1.1   dyoung 	}
   1496  1.3  msaitoh out:
   1497  1.3  msaitoh 	return status;
   1498  1.3  msaitoh }
   1499  1.1   dyoung 
   1500  1.3  msaitoh /**
   1501  1.3  msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1502  1.3  msaitoh  *  @hw: pointer to hardware structure
   1503  1.3  msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1504  1.3  msaitoh  *
   1505  1.3  msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1506  1.3  msaitoh  *  This function is called only when we are writing a new large buffer
   1507  1.3  msaitoh  *  at given offset so the data would be overwritten anyway.
   1508  1.3  msaitoh  **/
   1509  1.3  msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1510  1.3  msaitoh 						 u16 offset)
   1511  1.3  msaitoh {
   1512  1.3  msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1513  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1514  1.3  msaitoh 	u16 i;
   1515  1.3  msaitoh 
   1516  1.3  msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1517  1.3  msaitoh 
   1518  1.3  msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1519  1.3  msaitoh 		data[i] = i;
   1520  1.1   dyoung 
   1521  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1522  1.3  msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1523  1.3  msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1524  1.3  msaitoh 	hw->eeprom.word_page_size = 0;
   1525  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1526  1.3  msaitoh 		goto out;
   1527  1.1   dyoung 
   1528  1.3  msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1529  1.3  msaitoh 	if (status != IXGBE_SUCCESS)
   1530  1.3  msaitoh 		goto out;
   1531  1.1   dyoung 
   1532  1.3  msaitoh 	/*
   1533  1.3  msaitoh 	 * When writing in burst more than the actual page size
   1534  1.3  msaitoh 	 * EEPROM address wraps around current page.
   1535  1.3  msaitoh 	 */
   1536  1.3  msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1537  1.1   dyoung 
   1538  1.3  msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1539  1.3  msaitoh 		  hw->eeprom.word_page_size);
   1540  1.1   dyoung out:
   1541  1.1   dyoung 	return status;
   1542  1.1   dyoung }
   1543  1.1   dyoung 
   1544  1.1   dyoung /**
   1545  1.1   dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1546  1.1   dyoung  *  @hw: pointer to hardware structure
   1547  1.1   dyoung  *  @offset: offset of  word in the EEPROM to read
   1548  1.1   dyoung  *  @data: word read from the EEPROM
   1549  1.1   dyoung  *
   1550  1.1   dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1551  1.1   dyoung  **/
   1552  1.1   dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1553  1.1   dyoung {
   1554  1.3  msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1555  1.3  msaitoh }
   1556  1.3  msaitoh 
   1557  1.3  msaitoh /**
   1558  1.3  msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1559  1.3  msaitoh  *  @hw: pointer to hardware structure
   1560  1.3  msaitoh  *  @offset: offset of  word in the EEPROM to write
   1561  1.3  msaitoh  *  @words: number of word(s)
   1562  1.3  msaitoh  *  @data: word(s) write to the EEPROM
   1563  1.3  msaitoh  *
   1564  1.3  msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1565  1.3  msaitoh  **/
   1566  1.3  msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1567  1.3  msaitoh 				    u16 words, u16 *data)
   1568  1.3  msaitoh {
   1569  1.3  msaitoh 	u32 eewr;
   1570  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   1571  1.3  msaitoh 	u16 i;
   1572  1.1   dyoung 
   1573  1.3  msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1574  1.1   dyoung 
   1575  1.1   dyoung 	hw->eeprom.ops.init_params(hw);
   1576  1.1   dyoung 
   1577  1.3  msaitoh 	if (words == 0) {
   1578  1.3  msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1579  1.3  msaitoh 		goto out;
   1580  1.3  msaitoh 	}
   1581  1.3  msaitoh 
   1582  1.1   dyoung 	if (offset >= hw->eeprom.word_size) {
   1583  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1584  1.1   dyoung 		goto out;
   1585  1.1   dyoung 	}
   1586  1.1   dyoung 
   1587  1.3  msaitoh 	for (i = 0; i < words; i++) {
   1588  1.3  msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1589  1.3  msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1590  1.3  msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1591  1.3  msaitoh 
   1592  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1593  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1594  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1595  1.3  msaitoh 			goto out;
   1596  1.3  msaitoh 		}
   1597  1.1   dyoung 
   1598  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1599  1.1   dyoung 
   1600  1.3  msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1601  1.3  msaitoh 		if (status != IXGBE_SUCCESS) {
   1602  1.3  msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1603  1.3  msaitoh 			goto out;
   1604  1.3  msaitoh 		}
   1605  1.3  msaitoh 	}
   1606  1.1   dyoung 
   1607  1.1   dyoung out:
   1608  1.1   dyoung 	return status;
   1609  1.1   dyoung }
   1610  1.1   dyoung 
   1611  1.1   dyoung /**
   1612  1.1   dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1613  1.1   dyoung  *  @hw: pointer to hardware structure
   1614  1.1   dyoung  *  @offset: offset of  word in the EEPROM to write
   1615  1.1   dyoung  *  @data: word write to the EEPROM
   1616  1.1   dyoung  *
   1617  1.1   dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1618  1.1   dyoung  **/
   1619  1.1   dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1620  1.1   dyoung {
   1621  1.3  msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1622  1.1   dyoung }
   1623  1.1   dyoung 
   1624  1.1   dyoung /**
   1625  1.1   dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1626  1.1   dyoung  *  @hw: pointer to hardware structure
   1627  1.1   dyoung  *  @ee_reg: EEPROM flag for polling
   1628  1.1   dyoung  *
   1629  1.1   dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1630  1.1   dyoung  *  read or write is done respectively.
   1631  1.1   dyoung  **/
   1632  1.1   dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1633  1.1   dyoung {
   1634  1.1   dyoung 	u32 i;
   1635  1.1   dyoung 	u32 reg;
   1636  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1637  1.1   dyoung 
   1638  1.1   dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1639  1.1   dyoung 
   1640  1.1   dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1641  1.1   dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1642  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1643  1.1   dyoung 		else
   1644  1.1   dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1645  1.1   dyoung 
   1646  1.1   dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1647  1.1   dyoung 			status = IXGBE_SUCCESS;
   1648  1.1   dyoung 			break;
   1649  1.1   dyoung 		}
   1650  1.1   dyoung 		usec_delay(5);
   1651  1.1   dyoung 	}
   1652  1.1   dyoung 	return status;
   1653  1.1   dyoung }
   1654  1.1   dyoung 
   1655  1.1   dyoung /**
   1656  1.1   dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1657  1.1   dyoung  *  @hw: pointer to hardware structure
   1658  1.1   dyoung  *
   1659  1.1   dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1660  1.1   dyoung  *  be called before issuing a command to the EEPROM.
   1661  1.1   dyoung  **/
   1662  1.1   dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1663  1.1   dyoung {
   1664  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1665  1.1   dyoung 	u32 eec;
   1666  1.1   dyoung 	u32 i;
   1667  1.1   dyoung 
   1668  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1669  1.1   dyoung 
   1670  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1671  1.3  msaitoh 	    != IXGBE_SUCCESS)
   1672  1.1   dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1673  1.1   dyoung 
   1674  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1675  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1676  1.1   dyoung 
   1677  1.1   dyoung 		/* Request EEPROM Access */
   1678  1.1   dyoung 		eec |= IXGBE_EEC_REQ;
   1679  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1680  1.1   dyoung 
   1681  1.1   dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1682  1.1   dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1683  1.1   dyoung 			if (eec & IXGBE_EEC_GNT)
   1684  1.1   dyoung 				break;
   1685  1.1   dyoung 			usec_delay(5);
   1686  1.1   dyoung 		}
   1687  1.1   dyoung 
   1688  1.1   dyoung 		/* Release if grant not acquired */
   1689  1.1   dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1690  1.1   dyoung 			eec &= ~IXGBE_EEC_REQ;
   1691  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1692  1.1   dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1693  1.1   dyoung 
   1694  1.3  msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1695  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1696  1.1   dyoung 		}
   1697  1.1   dyoung 
   1698  1.1   dyoung 		/* Setup EEPROM for Read/Write */
   1699  1.1   dyoung 		if (status == IXGBE_SUCCESS) {
   1700  1.1   dyoung 			/* Clear CS and SK */
   1701  1.1   dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1702  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1703  1.1   dyoung 			IXGBE_WRITE_FLUSH(hw);
   1704  1.1   dyoung 			usec_delay(1);
   1705  1.1   dyoung 		}
   1706  1.1   dyoung 	}
   1707  1.1   dyoung 	return status;
   1708  1.1   dyoung }
   1709  1.1   dyoung 
   1710  1.1   dyoung /**
   1711  1.1   dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1712  1.1   dyoung  *  @hw: pointer to hardware structure
   1713  1.1   dyoung  *
   1714  1.1   dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1715  1.1   dyoung  **/
   1716  1.1   dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1717  1.1   dyoung {
   1718  1.1   dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1719  1.1   dyoung 	u32 timeout = 2000;
   1720  1.1   dyoung 	u32 i;
   1721  1.1   dyoung 	u32 swsm;
   1722  1.1   dyoung 
   1723  1.1   dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1724  1.1   dyoung 
   1725  1.1   dyoung 
   1726  1.1   dyoung 	/* Get SMBI software semaphore between device drivers first */
   1727  1.1   dyoung 	for (i = 0; i < timeout; i++) {
   1728  1.1   dyoung 		/*
   1729  1.1   dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1730  1.1   dyoung 		 * set and we have the semaphore
   1731  1.1   dyoung 		 */
   1732  1.1   dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1733  1.1   dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1734  1.1   dyoung 			status = IXGBE_SUCCESS;
   1735  1.1   dyoung 			break;
   1736  1.1   dyoung 		}
   1737  1.1   dyoung 		usec_delay(50);
   1738  1.1   dyoung 	}
   1739  1.1   dyoung 
   1740  1.3  msaitoh 	if (i == timeout) {
   1741  1.3  msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1742  1.3  msaitoh 			 "not granted.\n");
   1743  1.3  msaitoh 		/*
   1744  1.3  msaitoh 		 * this release is particularly important because our attempts
   1745  1.3  msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1746  1.3  msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1747  1.3  msaitoh 		 * bits to free the driver to make progress
   1748  1.3  msaitoh 		 */
   1749  1.3  msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1750  1.3  msaitoh 
   1751  1.3  msaitoh 		usec_delay(50);
   1752  1.3  msaitoh 		/*
   1753  1.3  msaitoh 		 * one last try
   1754  1.3  msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1755  1.3  msaitoh 		 * set and we have the semaphore
   1756  1.3  msaitoh 		 */
   1757  1.3  msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1758  1.3  msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1759  1.3  msaitoh 			status = IXGBE_SUCCESS;
   1760  1.3  msaitoh 	}
   1761  1.3  msaitoh 
   1762  1.1   dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1763  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   1764  1.1   dyoung 		for (i = 0; i < timeout; i++) {
   1765  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1766  1.1   dyoung 
   1767  1.1   dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1768  1.1   dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1769  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1770  1.1   dyoung 
   1771  1.1   dyoung 			/*
   1772  1.1   dyoung 			 * If we set the bit successfully then we got the
   1773  1.1   dyoung 			 * semaphore.
   1774  1.1   dyoung 			 */
   1775  1.1   dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1776  1.1   dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1777  1.1   dyoung 				break;
   1778  1.1   dyoung 
   1779  1.1   dyoung 			usec_delay(50);
   1780  1.1   dyoung 		}
   1781  1.1   dyoung 
   1782  1.1   dyoung 		/*
   1783  1.1   dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1784  1.1   dyoung 		 * was not granted because we don't have access to the EEPROM
   1785  1.1   dyoung 		 */
   1786  1.1   dyoung 		if (i >= timeout) {
   1787  1.1   dyoung 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
   1788  1.3  msaitoh 				 "not granted.\n");
   1789  1.1   dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1790  1.1   dyoung 			status = IXGBE_ERR_EEPROM;
   1791  1.1   dyoung 		}
   1792  1.1   dyoung 	} else {
   1793  1.1   dyoung 		DEBUGOUT("Software semaphore SMBI between device drivers "
   1794  1.3  msaitoh 			 "not granted.\n");
   1795  1.1   dyoung 	}
   1796  1.1   dyoung 
   1797  1.1   dyoung 	return status;
   1798  1.1   dyoung }
   1799  1.1   dyoung 
   1800  1.1   dyoung /**
   1801  1.1   dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1802  1.1   dyoung  *  @hw: pointer to hardware structure
   1803  1.1   dyoung  *
   1804  1.1   dyoung  *  This function clears hardware semaphore bits.
   1805  1.1   dyoung  **/
   1806  1.1   dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1807  1.1   dyoung {
   1808  1.1   dyoung 	u32 swsm;
   1809  1.1   dyoung 
   1810  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1811  1.1   dyoung 
   1812  1.1   dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1813  1.1   dyoung 
   1814  1.1   dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1815  1.1   dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1816  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1817  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1818  1.1   dyoung }
   1819  1.1   dyoung 
   1820  1.1   dyoung /**
   1821  1.1   dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1822  1.1   dyoung  *  @hw: pointer to hardware structure
   1823  1.1   dyoung  **/
   1824  1.1   dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1825  1.1   dyoung {
   1826  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   1827  1.1   dyoung 	u16 i;
   1828  1.1   dyoung 	u8 spi_stat_reg;
   1829  1.1   dyoung 
   1830  1.1   dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1831  1.1   dyoung 
   1832  1.1   dyoung 	/*
   1833  1.1   dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1834  1.1   dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1835  1.1   dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1836  1.1   dyoung 	 * 5 milliseconds, then error out.
   1837  1.1   dyoung 	 */
   1838  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1839  1.1   dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1840  1.3  msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1841  1.1   dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1842  1.1   dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1843  1.1   dyoung 			break;
   1844  1.1   dyoung 
   1845  1.1   dyoung 		usec_delay(5);
   1846  1.1   dyoung 		ixgbe_standby_eeprom(hw);
   1847  1.1   dyoung 	};
   1848  1.1   dyoung 
   1849  1.1   dyoung 	/*
   1850  1.1   dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1851  1.1   dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1852  1.1   dyoung 	 */
   1853  1.1   dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1854  1.1   dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1855  1.1   dyoung 		status = IXGBE_ERR_EEPROM;
   1856  1.1   dyoung 	}
   1857  1.1   dyoung 
   1858  1.1   dyoung 	return status;
   1859  1.1   dyoung }
   1860  1.1   dyoung 
   1861  1.1   dyoung /**
   1862  1.1   dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1863  1.1   dyoung  *  @hw: pointer to hardware structure
   1864  1.1   dyoung  **/
   1865  1.1   dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1866  1.1   dyoung {
   1867  1.1   dyoung 	u32 eec;
   1868  1.1   dyoung 
   1869  1.1   dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1870  1.1   dyoung 
   1871  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1872  1.1   dyoung 
   1873  1.1   dyoung 	/* Toggle CS to flush commands */
   1874  1.1   dyoung 	eec |= IXGBE_EEC_CS;
   1875  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1876  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1877  1.1   dyoung 	usec_delay(1);
   1878  1.1   dyoung 	eec &= ~IXGBE_EEC_CS;
   1879  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1880  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1881  1.1   dyoung 	usec_delay(1);
   1882  1.1   dyoung }
   1883  1.1   dyoung 
   1884  1.1   dyoung /**
   1885  1.1   dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1886  1.1   dyoung  *  @hw: pointer to hardware structure
   1887  1.1   dyoung  *  @data: data to send to the EEPROM
   1888  1.1   dyoung  *  @count: number of bits to shift out
   1889  1.1   dyoung  **/
   1890  1.1   dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1891  1.3  msaitoh 					u16 count)
   1892  1.1   dyoung {
   1893  1.1   dyoung 	u32 eec;
   1894  1.1   dyoung 	u32 mask;
   1895  1.1   dyoung 	u32 i;
   1896  1.1   dyoung 
   1897  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1898  1.1   dyoung 
   1899  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1900  1.1   dyoung 
   1901  1.1   dyoung 	/*
   1902  1.1   dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1903  1.1   dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1904  1.1   dyoung 	 */
   1905  1.1   dyoung 	mask = 0x01 << (count - 1);
   1906  1.1   dyoung 
   1907  1.1   dyoung 	for (i = 0; i < count; i++) {
   1908  1.1   dyoung 		/*
   1909  1.1   dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1910  1.1   dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1911  1.1   dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1912  1.1   dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1913  1.1   dyoung 		 * raising and then lowering the clock.
   1914  1.1   dyoung 		 */
   1915  1.1   dyoung 		if (data & mask)
   1916  1.1   dyoung 			eec |= IXGBE_EEC_DI;
   1917  1.1   dyoung 		else
   1918  1.1   dyoung 			eec &= ~IXGBE_EEC_DI;
   1919  1.1   dyoung 
   1920  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1921  1.1   dyoung 		IXGBE_WRITE_FLUSH(hw);
   1922  1.1   dyoung 
   1923  1.1   dyoung 		usec_delay(1);
   1924  1.1   dyoung 
   1925  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1926  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1927  1.1   dyoung 
   1928  1.1   dyoung 		/*
   1929  1.1   dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1930  1.1   dyoung 		 * EEPROM
   1931  1.1   dyoung 		 */
   1932  1.1   dyoung 		mask = mask >> 1;
   1933  1.1   dyoung 	};
   1934  1.1   dyoung 
   1935  1.1   dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1936  1.1   dyoung 	eec &= ~IXGBE_EEC_DI;
   1937  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1938  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1939  1.1   dyoung }
   1940  1.1   dyoung 
   1941  1.1   dyoung /**
   1942  1.1   dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1943  1.1   dyoung  *  @hw: pointer to hardware structure
   1944  1.1   dyoung  **/
   1945  1.1   dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1946  1.1   dyoung {
   1947  1.1   dyoung 	u32 eec;
   1948  1.1   dyoung 	u32 i;
   1949  1.1   dyoung 	u16 data = 0;
   1950  1.1   dyoung 
   1951  1.1   dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   1952  1.1   dyoung 
   1953  1.1   dyoung 	/*
   1954  1.1   dyoung 	 * In order to read a register from the EEPROM, we need to shift
   1955  1.1   dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1956  1.1   dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1957  1.1   dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   1958  1.1   dyoung 	 * "DI" bit should always be clear.
   1959  1.1   dyoung 	 */
   1960  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1961  1.1   dyoung 
   1962  1.1   dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1963  1.1   dyoung 
   1964  1.1   dyoung 	for (i = 0; i < count; i++) {
   1965  1.1   dyoung 		data = data << 1;
   1966  1.1   dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1967  1.1   dyoung 
   1968  1.1   dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1969  1.1   dyoung 
   1970  1.1   dyoung 		eec &= ~(IXGBE_EEC_DI);
   1971  1.1   dyoung 		if (eec & IXGBE_EEC_DO)
   1972  1.1   dyoung 			data |= 1;
   1973  1.1   dyoung 
   1974  1.1   dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1975  1.1   dyoung 	}
   1976  1.1   dyoung 
   1977  1.1   dyoung 	return data;
   1978  1.1   dyoung }
   1979  1.1   dyoung 
   1980  1.1   dyoung /**
   1981  1.1   dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1982  1.1   dyoung  *  @hw: pointer to hardware structure
   1983  1.1   dyoung  *  @eec: EEC register's current value
   1984  1.1   dyoung  **/
   1985  1.1   dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1986  1.1   dyoung {
   1987  1.1   dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   1988  1.1   dyoung 
   1989  1.1   dyoung 	/*
   1990  1.1   dyoung 	 * Raise the clock input to the EEPROM
   1991  1.1   dyoung 	 * (setting the SK bit), then delay
   1992  1.1   dyoung 	 */
   1993  1.1   dyoung 	*eec = *eec | IXGBE_EEC_SK;
   1994  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1995  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   1996  1.1   dyoung 	usec_delay(1);
   1997  1.1   dyoung }
   1998  1.1   dyoung 
   1999  1.1   dyoung /**
   2000  1.1   dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2001  1.1   dyoung  *  @hw: pointer to hardware structure
   2002  1.1   dyoung  *  @eecd: EECD's current value
   2003  1.1   dyoung  **/
   2004  1.1   dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2005  1.1   dyoung {
   2006  1.1   dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2007  1.1   dyoung 
   2008  1.1   dyoung 	/*
   2009  1.1   dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2010  1.1   dyoung 	 * delay
   2011  1.1   dyoung 	 */
   2012  1.1   dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2013  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2014  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   2015  1.1   dyoung 	usec_delay(1);
   2016  1.1   dyoung }
   2017  1.1   dyoung 
   2018  1.1   dyoung /**
   2019  1.1   dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2020  1.1   dyoung  *  @hw: pointer to hardware structure
   2021  1.1   dyoung  **/
   2022  1.1   dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2023  1.1   dyoung {
   2024  1.1   dyoung 	u32 eec;
   2025  1.1   dyoung 
   2026  1.1   dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2027  1.1   dyoung 
   2028  1.1   dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2029  1.1   dyoung 
   2030  1.1   dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2031  1.1   dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2032  1.1   dyoung 
   2033  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2034  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   2035  1.1   dyoung 
   2036  1.1   dyoung 	usec_delay(1);
   2037  1.1   dyoung 
   2038  1.1   dyoung 	/* Stop requesting EEPROM access */
   2039  1.1   dyoung 	eec &= ~IXGBE_EEC_REQ;
   2040  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2041  1.1   dyoung 
   2042  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2043  1.1   dyoung 
   2044  1.1   dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2045  1.1   dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2046  1.1   dyoung }
   2047  1.1   dyoung 
   2048  1.1   dyoung /**
   2049  1.1   dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2050  1.1   dyoung  *  @hw: pointer to hardware structure
   2051  1.1   dyoung  **/
   2052  1.1   dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2053  1.1   dyoung {
   2054  1.1   dyoung 	u16 i;
   2055  1.1   dyoung 	u16 j;
   2056  1.1   dyoung 	u16 checksum = 0;
   2057  1.1   dyoung 	u16 length = 0;
   2058  1.1   dyoung 	u16 pointer = 0;
   2059  1.1   dyoung 	u16 word = 0;
   2060  1.1   dyoung 
   2061  1.1   dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2062  1.1   dyoung 
   2063  1.1   dyoung 	/* Include 0x0-0x3F in the checksum */
   2064  1.1   dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2065  1.1   dyoung 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   2066  1.1   dyoung 			DEBUGOUT("EEPROM read failed\n");
   2067  1.1   dyoung 			break;
   2068  1.1   dyoung 		}
   2069  1.1   dyoung 		checksum += word;
   2070  1.1   dyoung 	}
   2071  1.1   dyoung 
   2072  1.1   dyoung 	/* Include all data from pointers except for the fw pointer */
   2073  1.1   dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2074  1.1   dyoung 		hw->eeprom.ops.read(hw, i, &pointer);
   2075  1.1   dyoung 
   2076  1.1   dyoung 		/* Make sure the pointer seems valid */
   2077  1.1   dyoung 		if (pointer != 0xFFFF && pointer != 0) {
   2078  1.1   dyoung 			hw->eeprom.ops.read(hw, pointer, &length);
   2079  1.1   dyoung 
   2080  1.1   dyoung 			if (length != 0xFFFF && length != 0) {
   2081  1.1   dyoung 				for (j = pointer+1; j <= pointer+length; j++) {
   2082  1.1   dyoung 					hw->eeprom.ops.read(hw, j, &word);
   2083  1.1   dyoung 					checksum += word;
   2084  1.1   dyoung 				}
   2085  1.1   dyoung 			}
   2086  1.1   dyoung 		}
   2087  1.1   dyoung 	}
   2088  1.1   dyoung 
   2089  1.1   dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2090  1.1   dyoung 
   2091  1.1   dyoung 	return checksum;
   2092  1.1   dyoung }
   2093  1.1   dyoung 
   2094  1.1   dyoung /**
   2095  1.1   dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2096  1.1   dyoung  *  @hw: pointer to hardware structure
   2097  1.1   dyoung  *  @checksum_val: calculated checksum
   2098  1.1   dyoung  *
   2099  1.1   dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2100  1.1   dyoung  *  caller does not need checksum_val, the value can be NULL.
   2101  1.1   dyoung  **/
   2102  1.1   dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2103  1.3  msaitoh 					   u16 *checksum_val)
   2104  1.1   dyoung {
   2105  1.1   dyoung 	s32 status;
   2106  1.1   dyoung 	u16 checksum;
   2107  1.1   dyoung 	u16 read_checksum = 0;
   2108  1.1   dyoung 
   2109  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2110  1.1   dyoung 
   2111  1.1   dyoung 	/*
   2112  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   2113  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   2114  1.1   dyoung 	 * EEPROM read fails
   2115  1.1   dyoung 	 */
   2116  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2117  1.1   dyoung 
   2118  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   2119  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   2120  1.1   dyoung 
   2121  1.1   dyoung 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2122  1.1   dyoung 
   2123  1.1   dyoung 		/*
   2124  1.1   dyoung 		 * Verify read checksum from EEPROM is the same as
   2125  1.1   dyoung 		 * calculated checksum
   2126  1.1   dyoung 		 */
   2127  1.1   dyoung 		if (read_checksum != checksum)
   2128  1.1   dyoung 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   2129  1.1   dyoung 
   2130  1.1   dyoung 		/* If the user cares, return the calculated checksum */
   2131  1.1   dyoung 		if (checksum_val)
   2132  1.1   dyoung 			*checksum_val = checksum;
   2133  1.1   dyoung 	} else {
   2134  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   2135  1.1   dyoung 	}
   2136  1.1   dyoung 
   2137  1.1   dyoung 	return status;
   2138  1.1   dyoung }
   2139  1.1   dyoung 
   2140  1.1   dyoung /**
   2141  1.1   dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2142  1.1   dyoung  *  @hw: pointer to hardware structure
   2143  1.1   dyoung  **/
   2144  1.1   dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2145  1.1   dyoung {
   2146  1.1   dyoung 	s32 status;
   2147  1.1   dyoung 	u16 checksum;
   2148  1.1   dyoung 
   2149  1.1   dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2150  1.1   dyoung 
   2151  1.1   dyoung 	/*
   2152  1.1   dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   2153  1.1   dyoung 	 * not continue or we could be in for a very long wait while every
   2154  1.1   dyoung 	 * EEPROM read fails
   2155  1.1   dyoung 	 */
   2156  1.1   dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2157  1.1   dyoung 
   2158  1.1   dyoung 	if (status == IXGBE_SUCCESS) {
   2159  1.1   dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   2160  1.1   dyoung 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   2161  1.3  msaitoh 					      checksum);
   2162  1.1   dyoung 	} else {
   2163  1.1   dyoung 		DEBUGOUT("EEPROM read failed\n");
   2164  1.1   dyoung 	}
   2165  1.1   dyoung 
   2166  1.1   dyoung 	return status;
   2167  1.1   dyoung }
   2168  1.1   dyoung 
   2169  1.1   dyoung /**
   2170  1.1   dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2171  1.1   dyoung  *  @mac_addr: pointer to MAC address.
   2172  1.1   dyoung  *
   2173  1.1   dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2174  1.1   dyoung  **/
   2175  1.1   dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2176  1.1   dyoung {
   2177  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   2178  1.1   dyoung 
   2179  1.1   dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2180  1.1   dyoung 
   2181  1.1   dyoung 	/* Make sure it is not a multicast address */
   2182  1.1   dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2183  1.1   dyoung 		DEBUGOUT("MAC address is multicast\n");
   2184  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2185  1.1   dyoung 	/* Not a broadcast address */
   2186  1.1   dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2187  1.1   dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2188  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2189  1.1   dyoung 	/* Reject the zero address */
   2190  1.1   dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2191  1.3  msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2192  1.1   dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2193  1.1   dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2194  1.1   dyoung 	}
   2195  1.1   dyoung 	return status;
   2196  1.1   dyoung }
   2197  1.1   dyoung 
   2198  1.1   dyoung /**
   2199  1.1   dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2200  1.1   dyoung  *  @hw: pointer to hardware structure
   2201  1.1   dyoung  *  @index: Receive address register to write
   2202  1.1   dyoung  *  @addr: Address to put into receive address register
   2203  1.1   dyoung  *  @vmdq: VMDq "set" or "pool" index
   2204  1.1   dyoung  *  @enable_addr: set flag that address is active
   2205  1.1   dyoung  *
   2206  1.1   dyoung  *  Puts an ethernet address into a receive address register.
   2207  1.1   dyoung  **/
   2208  1.1   dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2209  1.3  msaitoh 			  u32 enable_addr)
   2210  1.1   dyoung {
   2211  1.1   dyoung 	u32 rar_low, rar_high;
   2212  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2213  1.1   dyoung 
   2214  1.1   dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2215  1.1   dyoung 
   2216  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   2217  1.1   dyoung 	if (index >= rar_entries) {
   2218  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2219  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2220  1.1   dyoung 	}
   2221  1.1   dyoung 
   2222  1.1   dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2223  1.1   dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2224  1.1   dyoung 
   2225  1.1   dyoung 	/*
   2226  1.1   dyoung 	 * HW expects these in little endian so we reverse the byte
   2227  1.1   dyoung 	 * order from network order (big endian) to little endian
   2228  1.1   dyoung 	 */
   2229  1.1   dyoung 	rar_low = ((u32)addr[0] |
   2230  1.3  msaitoh 		   ((u32)addr[1] << 8) |
   2231  1.3  msaitoh 		   ((u32)addr[2] << 16) |
   2232  1.3  msaitoh 		   ((u32)addr[3] << 24));
   2233  1.1   dyoung 	/*
   2234  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2235  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   2236  1.1   dyoung 	 * of the address and the address valid bit.
   2237  1.1   dyoung 	 */
   2238  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2239  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2240  1.1   dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2241  1.1   dyoung 
   2242  1.1   dyoung 	if (enable_addr != 0)
   2243  1.1   dyoung 		rar_high |= IXGBE_RAH_AV;
   2244  1.1   dyoung 
   2245  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2246  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2247  1.1   dyoung 
   2248  1.1   dyoung 	return IXGBE_SUCCESS;
   2249  1.1   dyoung }
   2250  1.1   dyoung 
   2251  1.1   dyoung /**
   2252  1.1   dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2253  1.1   dyoung  *  @hw: pointer to hardware structure
   2254  1.1   dyoung  *  @index: Receive address register to write
   2255  1.1   dyoung  *
   2256  1.1   dyoung  *  Clears an ethernet address from a receive address register.
   2257  1.1   dyoung  **/
   2258  1.1   dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2259  1.1   dyoung {
   2260  1.1   dyoung 	u32 rar_high;
   2261  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2262  1.1   dyoung 
   2263  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2264  1.1   dyoung 
   2265  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   2266  1.1   dyoung 	if (index >= rar_entries) {
   2267  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2268  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2269  1.1   dyoung 	}
   2270  1.1   dyoung 
   2271  1.1   dyoung 	/*
   2272  1.1   dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2273  1.1   dyoung 	 * so save everything except the lower 16 bits that hold part
   2274  1.1   dyoung 	 * of the address and the address valid bit.
   2275  1.1   dyoung 	 */
   2276  1.1   dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2277  1.1   dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2278  1.1   dyoung 
   2279  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2280  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2281  1.1   dyoung 
   2282  1.1   dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2283  1.1   dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2284  1.1   dyoung 
   2285  1.1   dyoung 	return IXGBE_SUCCESS;
   2286  1.1   dyoung }
   2287  1.1   dyoung 
   2288  1.1   dyoung /**
   2289  1.1   dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2290  1.1   dyoung  *  @hw: pointer to hardware structure
   2291  1.1   dyoung  *
   2292  1.1   dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2293  1.1   dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2294  1.1   dyoung  *  the receiver is in reset when the routine is called.
   2295  1.1   dyoung  **/
   2296  1.1   dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2297  1.1   dyoung {
   2298  1.1   dyoung 	u32 i;
   2299  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2300  1.1   dyoung 
   2301  1.1   dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2302  1.1   dyoung 
   2303  1.1   dyoung 	/*
   2304  1.1   dyoung 	 * If the current mac address is valid, assume it is a software override
   2305  1.1   dyoung 	 * to the permanent address.
   2306  1.1   dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2307  1.1   dyoung 	 */
   2308  1.1   dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2309  1.1   dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2310  1.1   dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2311  1.1   dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2312  1.1   dyoung 
   2313  1.1   dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2314  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2315  1.3  msaitoh 			  hw->mac.addr[2]);
   2316  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2317  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2318  1.1   dyoung 	} else {
   2319  1.1   dyoung 		/* Setup the receive address. */
   2320  1.1   dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2321  1.1   dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2322  1.3  msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2323  1.3  msaitoh 			  hw->mac.addr[2]);
   2324  1.1   dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2325  1.3  msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2326  1.1   dyoung 
   2327  1.1   dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2328  1.1   dyoung 
   2329  1.1   dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2330  1.1   dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2331  1.1   dyoung 	}
   2332  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2333  1.1   dyoung 
   2334  1.1   dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2335  1.1   dyoung 
   2336  1.1   dyoung 	/* Zero out the other receive addresses. */
   2337  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2338  1.1   dyoung 	for (i = 1; i < rar_entries; i++) {
   2339  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2340  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2341  1.1   dyoung 	}
   2342  1.1   dyoung 
   2343  1.1   dyoung 	/* Clear the MTA */
   2344  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2345  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2346  1.1   dyoung 
   2347  1.1   dyoung 	DEBUGOUT(" Clearing MTA\n");
   2348  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2349  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2350  1.1   dyoung 
   2351  1.1   dyoung 	ixgbe_init_uta_tables(hw);
   2352  1.1   dyoung 
   2353  1.1   dyoung 	return IXGBE_SUCCESS;
   2354  1.1   dyoung }
   2355  1.1   dyoung 
   2356  1.1   dyoung /**
   2357  1.1   dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2358  1.1   dyoung  *  @hw: pointer to hardware structure
   2359  1.1   dyoung  *  @addr: new address
   2360  1.1   dyoung  *
   2361  1.1   dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2362  1.1   dyoung  **/
   2363  1.1   dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2364  1.1   dyoung {
   2365  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2366  1.1   dyoung 	u32 rar;
   2367  1.1   dyoung 
   2368  1.1   dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2369  1.1   dyoung 
   2370  1.1   dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2371  1.3  msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2372  1.1   dyoung 
   2373  1.1   dyoung 	/*
   2374  1.1   dyoung 	 * Place this address in the RAR if there is room,
   2375  1.1   dyoung 	 * else put the controller into promiscuous mode
   2376  1.1   dyoung 	 */
   2377  1.1   dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2378  1.1   dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2379  1.1   dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2380  1.1   dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2381  1.1   dyoung 		hw->addr_ctrl.rar_used_count++;
   2382  1.1   dyoung 	} else {
   2383  1.1   dyoung 		hw->addr_ctrl.overflow_promisc++;
   2384  1.1   dyoung 	}
   2385  1.1   dyoung 
   2386  1.1   dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2387  1.1   dyoung }
   2388  1.1   dyoung 
   2389  1.1   dyoung /**
   2390  1.1   dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2391  1.1   dyoung  *  @hw: pointer to hardware structure
   2392  1.1   dyoung  *  @addr_list: the list of new addresses
   2393  1.1   dyoung  *  @addr_count: number of addresses
   2394  1.1   dyoung  *  @next: iterator function to walk the address list
   2395  1.1   dyoung  *
   2396  1.1   dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2397  1.1   dyoung  *  receive address registers.  Uses unused receive address registers for the
   2398  1.1   dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2399  1.1   dyoung  *
   2400  1.1   dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2401  1.1   dyoung  *  manually putting the device into promiscuous mode.
   2402  1.1   dyoung  **/
   2403  1.1   dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2404  1.3  msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2405  1.1   dyoung {
   2406  1.1   dyoung 	u8 *addr;
   2407  1.1   dyoung 	u32 i;
   2408  1.1   dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2409  1.1   dyoung 	u32 uc_addr_in_use;
   2410  1.1   dyoung 	u32 fctrl;
   2411  1.1   dyoung 	u32 vmdq;
   2412  1.1   dyoung 
   2413  1.1   dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2414  1.1   dyoung 
   2415  1.1   dyoung 	/*
   2416  1.1   dyoung 	 * Clear accounting of old secondary address list,
   2417  1.1   dyoung 	 * don't count RAR[0]
   2418  1.1   dyoung 	 */
   2419  1.1   dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2420  1.1   dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2421  1.1   dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2422  1.1   dyoung 
   2423  1.1   dyoung 	/* Zero out the other receive addresses */
   2424  1.1   dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2425  1.1   dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2426  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2427  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2428  1.1   dyoung 	}
   2429  1.1   dyoung 
   2430  1.1   dyoung 	/* Add the new addresses */
   2431  1.1   dyoung 	for (i = 0; i < addr_count; i++) {
   2432  1.1   dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2433  1.1   dyoung 		addr = next(hw, &addr_list, &vmdq);
   2434  1.1   dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2435  1.1   dyoung 	}
   2436  1.1   dyoung 
   2437  1.1   dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2438  1.1   dyoung 		/* enable promisc if not already in overflow or set by user */
   2439  1.1   dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2440  1.1   dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2441  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2442  1.1   dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2443  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2444  1.1   dyoung 		}
   2445  1.1   dyoung 	} else {
   2446  1.1   dyoung 		/* only disable if set by overflow, not by user */
   2447  1.1   dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2448  1.1   dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2449  1.1   dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2450  1.1   dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2451  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2452  1.1   dyoung 		}
   2453  1.1   dyoung 	}
   2454  1.1   dyoung 
   2455  1.1   dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2456  1.1   dyoung 	return IXGBE_SUCCESS;
   2457  1.1   dyoung }
   2458  1.1   dyoung 
   2459  1.1   dyoung /**
   2460  1.1   dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2461  1.1   dyoung  *  @hw: pointer to hardware structure
   2462  1.1   dyoung  *  @mc_addr: the multicast address
   2463  1.1   dyoung  *
   2464  1.1   dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2465  1.1   dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2466  1.1   dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2467  1.1   dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2468  1.1   dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2469  1.1   dyoung  *  to mc_filter_type.
   2470  1.1   dyoung  **/
   2471  1.1   dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2472  1.1   dyoung {
   2473  1.1   dyoung 	u32 vector = 0;
   2474  1.1   dyoung 
   2475  1.1   dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2476  1.1   dyoung 
   2477  1.1   dyoung 	switch (hw->mac.mc_filter_type) {
   2478  1.1   dyoung 	case 0:   /* use bits [47:36] of the address */
   2479  1.1   dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2480  1.1   dyoung 		break;
   2481  1.1   dyoung 	case 1:   /* use bits [46:35] of the address */
   2482  1.1   dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2483  1.1   dyoung 		break;
   2484  1.1   dyoung 	case 2:   /* use bits [45:34] of the address */
   2485  1.1   dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2486  1.1   dyoung 		break;
   2487  1.1   dyoung 	case 3:   /* use bits [43:32] of the address */
   2488  1.1   dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2489  1.1   dyoung 		break;
   2490  1.1   dyoung 	default:  /* Invalid mc_filter_type */
   2491  1.1   dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2492  1.1   dyoung 		ASSERT(0);
   2493  1.1   dyoung 		break;
   2494  1.1   dyoung 	}
   2495  1.1   dyoung 
   2496  1.1   dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2497  1.1   dyoung 	vector &= 0xFFF;
   2498  1.1   dyoung 	return vector;
   2499  1.1   dyoung }
   2500  1.1   dyoung 
   2501  1.1   dyoung /**
   2502  1.1   dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2503  1.1   dyoung  *  @hw: pointer to hardware structure
   2504  1.1   dyoung  *  @hash_value: Multicast address hash value
   2505  1.1   dyoung  *
   2506  1.1   dyoung  *  Sets the bit-vector in the multicast table.
   2507  1.1   dyoung  **/
   2508  1.1   dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2509  1.1   dyoung {
   2510  1.1   dyoung 	u32 vector;
   2511  1.1   dyoung 	u32 vector_bit;
   2512  1.1   dyoung 	u32 vector_reg;
   2513  1.1   dyoung 
   2514  1.1   dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2515  1.1   dyoung 
   2516  1.1   dyoung 	hw->addr_ctrl.mta_in_use++;
   2517  1.1   dyoung 
   2518  1.1   dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2519  1.1   dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2520  1.1   dyoung 
   2521  1.1   dyoung 	/*
   2522  1.1   dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2523  1.1   dyoung 	 * like an array of 4096 bits.  We want to set bit
   2524  1.1   dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2525  1.1   dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2526  1.1   dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2527  1.1   dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2528  1.1   dyoung 	 * the value.
   2529  1.1   dyoung 	 */
   2530  1.1   dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2531  1.1   dyoung 	vector_bit = vector & 0x1F;
   2532  1.1   dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2533  1.1   dyoung }
   2534  1.1   dyoung 
   2535  1.1   dyoung /**
   2536  1.1   dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2537  1.1   dyoung  *  @hw: pointer to hardware structure
   2538  1.1   dyoung  *  @mc_addr_list: the list of new multicast addresses
   2539  1.1   dyoung  *  @mc_addr_count: number of addresses
   2540  1.1   dyoung  *  @next: iterator function to walk the multicast address list
   2541  1.3  msaitoh  *  @clear: flag, when set clears the table beforehand
   2542  1.1   dyoung  *
   2543  1.3  msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2544  1.3  msaitoh  *  Hashes the given addresses into the multicast table.
   2545  1.1   dyoung  **/
   2546  1.1   dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2547  1.3  msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2548  1.3  msaitoh 				      bool clear)
   2549  1.1   dyoung {
   2550  1.1   dyoung 	u32 i;
   2551  1.1   dyoung 	u32 vmdq;
   2552  1.1   dyoung 
   2553  1.1   dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2554  1.1   dyoung 
   2555  1.1   dyoung 	/*
   2556  1.1   dyoung 	 * Set the new number of MC addresses that we are being requested to
   2557  1.1   dyoung 	 * use.
   2558  1.1   dyoung 	 */
   2559  1.1   dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2560  1.1   dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2561  1.1   dyoung 
   2562  1.1   dyoung 	/* Clear mta_shadow */
   2563  1.3  msaitoh 	if (clear) {
   2564  1.3  msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2565  1.3  msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2566  1.3  msaitoh 	}
   2567  1.1   dyoung 
   2568  1.1   dyoung 	/* Update mta_shadow */
   2569  1.1   dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2570  1.1   dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2571  1.1   dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2572  1.1   dyoung 	}
   2573  1.1   dyoung 
   2574  1.1   dyoung 	/* Enable mta */
   2575  1.1   dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2576  1.1   dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2577  1.1   dyoung 				      hw->mac.mta_shadow[i]);
   2578  1.1   dyoung 
   2579  1.1   dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2580  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2581  1.3  msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2582  1.1   dyoung 
   2583  1.1   dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2584  1.1   dyoung 	return IXGBE_SUCCESS;
   2585  1.1   dyoung }
   2586  1.1   dyoung 
   2587  1.1   dyoung /**
   2588  1.1   dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2589  1.1   dyoung  *  @hw: pointer to hardware structure
   2590  1.1   dyoung  *
   2591  1.1   dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2592  1.1   dyoung  **/
   2593  1.1   dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2594  1.1   dyoung {
   2595  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2596  1.1   dyoung 
   2597  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2598  1.1   dyoung 
   2599  1.1   dyoung 	if (a->mta_in_use > 0)
   2600  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2601  1.3  msaitoh 				hw->mac.mc_filter_type);
   2602  1.1   dyoung 
   2603  1.1   dyoung 	return IXGBE_SUCCESS;
   2604  1.1   dyoung }
   2605  1.1   dyoung 
   2606  1.1   dyoung /**
   2607  1.1   dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2608  1.1   dyoung  *  @hw: pointer to hardware structure
   2609  1.1   dyoung  *
   2610  1.1   dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2611  1.1   dyoung  **/
   2612  1.1   dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2613  1.1   dyoung {
   2614  1.1   dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2615  1.1   dyoung 
   2616  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2617  1.1   dyoung 
   2618  1.1   dyoung 	if (a->mta_in_use > 0)
   2619  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2620  1.1   dyoung 
   2621  1.1   dyoung 	return IXGBE_SUCCESS;
   2622  1.1   dyoung }
   2623  1.1   dyoung 
   2624  1.1   dyoung /**
   2625  1.1   dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2626  1.1   dyoung  *  @hw: pointer to hardware structure
   2627  1.1   dyoung  *
   2628  1.1   dyoung  *  Enable flow control according to the current settings.
   2629  1.1   dyoung  **/
   2630  1.4  msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2631  1.1   dyoung {
   2632  1.1   dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2633  1.1   dyoung 	u32 mflcn_reg, fccfg_reg;
   2634  1.1   dyoung 	u32 reg;
   2635  1.1   dyoung 	u32 fcrtl, fcrth;
   2636  1.4  msaitoh 	int i;
   2637  1.1   dyoung 
   2638  1.1   dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2639  1.1   dyoung 
   2640  1.4  msaitoh 	/* Validate the water mark configuration */
   2641  1.4  msaitoh 	if (!hw->fc.pause_time) {
   2642  1.4  msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2643  1.4  msaitoh 		goto out;
   2644  1.4  msaitoh 	}
   2645  1.4  msaitoh 
   2646  1.4  msaitoh 	/* Low water mark of zero causes XOFF floods */
   2647  1.4  msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2648  1.4  msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2649  1.4  msaitoh 		    hw->fc.high_water[i]) {
   2650  1.4  msaitoh 			if (!hw->fc.low_water[i] ||
   2651  1.4  msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2652  1.4  msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2653  1.4  msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2654  1.4  msaitoh 				goto out;
   2655  1.4  msaitoh 			}
   2656  1.4  msaitoh 		}
   2657  1.4  msaitoh 	}
   2658  1.4  msaitoh 
   2659  1.1   dyoung 	/* Negotiate the fc mode to use */
   2660  1.4  msaitoh 	ixgbe_fc_autoneg(hw);
   2661  1.1   dyoung 
   2662  1.1   dyoung 	/* Disable any previous flow control settings */
   2663  1.1   dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2664  1.4  msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2665  1.1   dyoung 
   2666  1.1   dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2667  1.1   dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2668  1.1   dyoung 
   2669  1.1   dyoung 	/*
   2670  1.1   dyoung 	 * The possible values of fc.current_mode are:
   2671  1.1   dyoung 	 * 0: Flow control is completely disabled
   2672  1.1   dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2673  1.1   dyoung 	 *    but not send pause frames).
   2674  1.1   dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2675  1.1   dyoung 	 *    we do not support receiving pause frames).
   2676  1.1   dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2677  1.1   dyoung 	 * other: Invalid.
   2678  1.1   dyoung 	 */
   2679  1.1   dyoung 	switch (hw->fc.current_mode) {
   2680  1.1   dyoung 	case ixgbe_fc_none:
   2681  1.1   dyoung 		/*
   2682  1.1   dyoung 		 * Flow control is disabled by software override or autoneg.
   2683  1.1   dyoung 		 * The code below will actually disable it in the HW.
   2684  1.1   dyoung 		 */
   2685  1.1   dyoung 		break;
   2686  1.1   dyoung 	case ixgbe_fc_rx_pause:
   2687  1.1   dyoung 		/*
   2688  1.1   dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2689  1.1   dyoung 		 * disabled by software override. Since there really
   2690  1.1   dyoung 		 * isn't a way to advertise that we are capable of RX
   2691  1.1   dyoung 		 * Pause ONLY, we will advertise that we support both
   2692  1.1   dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2693  1.1   dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2694  1.1   dyoung 		 */
   2695  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2696  1.1   dyoung 		break;
   2697  1.1   dyoung 	case ixgbe_fc_tx_pause:
   2698  1.1   dyoung 		/*
   2699  1.1   dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2700  1.1   dyoung 		 * disabled by software override.
   2701  1.1   dyoung 		 */
   2702  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2703  1.1   dyoung 		break;
   2704  1.1   dyoung 	case ixgbe_fc_full:
   2705  1.1   dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2706  1.1   dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2707  1.1   dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2708  1.1   dyoung 		break;
   2709  1.1   dyoung 	default:
   2710  1.1   dyoung 		DEBUGOUT("Flow control param set incorrectly\n");
   2711  1.1   dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2712  1.1   dyoung 		goto out;
   2713  1.1   dyoung 		break;
   2714  1.1   dyoung 	}
   2715  1.1   dyoung 
   2716  1.1   dyoung 	/* Set 802.3x based flow control settings. */
   2717  1.1   dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2718  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2719  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2720  1.1   dyoung 
   2721  1.1   dyoung 
   2722  1.4  msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2723  1.4  msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2724  1.4  msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2725  1.4  msaitoh 		    hw->fc.high_water[i]) {
   2726  1.4  msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2727  1.4  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2728  1.4  msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2729  1.4  msaitoh 		} else {
   2730  1.4  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2731  1.4  msaitoh 			/*
   2732  1.4  msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2733  1.4  msaitoh 			 * switch is enabled we must set the high water mark
   2734  1.4  msaitoh 			 * to the maximum FCRTH value.  This allows the Tx
   2735  1.4  msaitoh 			 * switch to function even under heavy Rx workloads.
   2736  1.4  msaitoh 			 */
   2737  1.4  msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
   2738  1.4  msaitoh 		}
   2739  1.4  msaitoh 
   2740  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2741  1.1   dyoung 	}
   2742  1.1   dyoung 
   2743  1.1   dyoung 	/* Configure pause time (2 TCs per register) */
   2744  1.4  msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2745  1.4  msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2746  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2747  1.1   dyoung 
   2748  1.4  msaitoh 	/* Configure flow control refresh threshold value */
   2749  1.4  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2750  1.1   dyoung 
   2751  1.1   dyoung out:
   2752  1.1   dyoung 	return ret_val;
   2753  1.1   dyoung }
   2754  1.1   dyoung 
   2755  1.1   dyoung /**
   2756  1.4  msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2757  1.1   dyoung  *  @hw: pointer to hardware structure
   2758  1.4  msaitoh  *  @adv_reg: flow control advertised settings
   2759  1.4  msaitoh  *  @lp_reg: link partner's flow control settings
   2760  1.4  msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2761  1.4  msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2762  1.4  msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2763  1.4  msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2764  1.1   dyoung  *
   2765  1.4  msaitoh  *  Find the intersection between advertised settings and link partner's
   2766  1.4  msaitoh  *  advertised settings
   2767  1.1   dyoung  **/
   2768  1.4  msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2769  1.4  msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2770  1.1   dyoung {
   2771  1.4  msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg)))
   2772  1.4  msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2773  1.1   dyoung 
   2774  1.4  msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2775  1.4  msaitoh 		/*
   2776  1.4  msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2777  1.4  msaitoh 		 * of pause frames.  In this case, we had to advertise
   2778  1.4  msaitoh 		 * FULL flow control because we could not advertise RX
   2779  1.4  msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2780  1.4  msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2781  1.4  msaitoh 		 */
   2782  1.4  msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2783  1.4  msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2784  1.4  msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2785  1.4  msaitoh 		} else {
   2786  1.4  msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2787  1.4  msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2788  1.4  msaitoh 		}
   2789  1.4  msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2790  1.4  msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2791  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2792  1.4  msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2793  1.4  msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2794  1.4  msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2795  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2796  1.4  msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2797  1.4  msaitoh 	} else {
   2798  1.4  msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2799  1.4  msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2800  1.4  msaitoh 	}
   2801  1.4  msaitoh 	return IXGBE_SUCCESS;
   2802  1.4  msaitoh }
   2803  1.1   dyoung 
   2804  1.4  msaitoh /**
   2805  1.4  msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2806  1.4  msaitoh  *  @hw: pointer to hardware structure
   2807  1.4  msaitoh  *
   2808  1.4  msaitoh  *  Enable flow control according on 1 gig fiber.
   2809  1.4  msaitoh  **/
   2810  1.4  msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2811  1.4  msaitoh {
   2812  1.4  msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2813  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2814  1.1   dyoung 
   2815  1.1   dyoung 	/*
   2816  1.4  msaitoh 	 * On multispeed fiber at 1g, bail out if
   2817  1.4  msaitoh 	 * - link is up but AN did not complete, or if
   2818  1.4  msaitoh 	 * - link is up and AN completed but timed out
   2819  1.1   dyoung 	 */
   2820  1.4  msaitoh 
   2821  1.4  msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2822  1.4  msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2823  1.4  msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
   2824  1.1   dyoung 		goto out;
   2825  1.1   dyoung 
   2826  1.1   dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2827  1.1   dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2828  1.1   dyoung 
   2829  1.1   dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2830  1.3  msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2831  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2832  1.3  msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2833  1.3  msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2834  1.1   dyoung 
   2835  1.1   dyoung out:
   2836  1.1   dyoung 	return ret_val;
   2837  1.1   dyoung }
   2838  1.1   dyoung 
   2839  1.1   dyoung /**
   2840  1.1   dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2841  1.1   dyoung  *  @hw: pointer to hardware structure
   2842  1.1   dyoung  *
   2843  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2844  1.1   dyoung  **/
   2845  1.1   dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2846  1.1   dyoung {
   2847  1.1   dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2848  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2849  1.1   dyoung 
   2850  1.1   dyoung 	/*
   2851  1.1   dyoung 	 * On backplane, bail out if
   2852  1.1   dyoung 	 * - backplane autoneg was not completed, or if
   2853  1.1   dyoung 	 * - we are 82599 and link partner is not AN enabled
   2854  1.1   dyoung 	 */
   2855  1.1   dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2856  1.4  msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
   2857  1.1   dyoung 		goto out;
   2858  1.1   dyoung 
   2859  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2860  1.1   dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2861  1.4  msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
   2862  1.1   dyoung 			goto out;
   2863  1.1   dyoung 	}
   2864  1.1   dyoung 	/*
   2865  1.1   dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2866  1.1   dyoung 	 * local flow control settings accordingly
   2867  1.1   dyoung 	 */
   2868  1.1   dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2869  1.1   dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2870  1.1   dyoung 
   2871  1.1   dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2872  1.1   dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2873  1.1   dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2874  1.1   dyoung 
   2875  1.1   dyoung out:
   2876  1.1   dyoung 	return ret_val;
   2877  1.1   dyoung }
   2878  1.1   dyoung 
   2879  1.1   dyoung /**
   2880  1.1   dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2881  1.1   dyoung  *  @hw: pointer to hardware structure
   2882  1.1   dyoung  *
   2883  1.1   dyoung  *  Enable flow control according to IEEE clause 37.
   2884  1.1   dyoung  **/
   2885  1.1   dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2886  1.1   dyoung {
   2887  1.1   dyoung 	u16 technology_ability_reg = 0;
   2888  1.1   dyoung 	u16 lp_technology_ability_reg = 0;
   2889  1.1   dyoung 
   2890  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2891  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2892  1.1   dyoung 			     &technology_ability_reg);
   2893  1.1   dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2894  1.1   dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2895  1.1   dyoung 			     &lp_technology_ability_reg);
   2896  1.1   dyoung 
   2897  1.1   dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2898  1.1   dyoung 				  (u32)lp_technology_ability_reg,
   2899  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2900  1.1   dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2901  1.1   dyoung }
   2902  1.1   dyoung 
   2903  1.1   dyoung /**
   2904  1.4  msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2905  1.1   dyoung  *  @hw: pointer to hardware structure
   2906  1.1   dyoung  *
   2907  1.4  msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   2908  1.4  msaitoh  *  our link partner, and determines the proper flow control mode to use.
   2909  1.1   dyoung  **/
   2910  1.4  msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2911  1.1   dyoung {
   2912  1.4  msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2913  1.4  msaitoh 	ixgbe_link_speed speed;
   2914  1.4  msaitoh 	bool link_up;
   2915  1.1   dyoung 
   2916  1.4  msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   2917  1.1   dyoung 
   2918  1.1   dyoung 	/*
   2919  1.4  msaitoh 	 * AN should have completed when the cable was plugged in.
   2920  1.4  msaitoh 	 * Look for reasons to bail out.  Bail out if:
   2921  1.4  msaitoh 	 * - FC autoneg is disabled, or if
   2922  1.4  msaitoh 	 * - link is not up.
   2923  1.1   dyoung 	 */
   2924  1.4  msaitoh 	if (hw->fc.disable_fc_autoneg)
   2925  1.1   dyoung 		goto out;
   2926  1.1   dyoung 
   2927  1.4  msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2928  1.4  msaitoh 	if (!link_up)
   2929  1.1   dyoung 		goto out;
   2930  1.1   dyoung 
   2931  1.1   dyoung 	switch (hw->phy.media_type) {
   2932  1.4  msaitoh 	/* Autoneg flow control on fiber adapters */
   2933  1.5  msaitoh 	case ixgbe_media_type_fiber_fixed:
   2934  1.1   dyoung 	case ixgbe_media_type_fiber:
   2935  1.4  msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2936  1.4  msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2937  1.4  msaitoh 		break;
   2938  1.4  msaitoh 
   2939  1.4  msaitoh 	/* Autoneg flow control on backplane adapters */
   2940  1.1   dyoung 	case ixgbe_media_type_backplane:
   2941  1.4  msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2942  1.1   dyoung 		break;
   2943  1.1   dyoung 
   2944  1.4  msaitoh 	/* Autoneg flow control on copper adapters */
   2945  1.1   dyoung 	case ixgbe_media_type_copper:
   2946  1.4  msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
   2947  1.4  msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   2948  1.1   dyoung 		break;
   2949  1.1   dyoung 
   2950  1.1   dyoung 	default:
   2951  1.1   dyoung 		break;
   2952  1.1   dyoung 	}
   2953  1.1   dyoung 
   2954  1.4  msaitoh out:
   2955  1.4  msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   2956  1.4  msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   2957  1.4  msaitoh 	} else {
   2958  1.4  msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   2959  1.4  msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   2960  1.3  msaitoh 	}
   2961  1.1   dyoung }
   2962  1.1   dyoung 
   2963  1.1   dyoung /**
   2964  1.1   dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   2965  1.1   dyoung  *  @hw: pointer to hardware structure
   2966  1.1   dyoung  *
   2967  1.1   dyoung  *  Disables PCI-Express master access and verifies there are no pending
   2968  1.1   dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   2969  1.1   dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   2970  1.1   dyoung  *  is returned signifying master requests disabled.
   2971  1.1   dyoung  **/
   2972  1.1   dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   2973  1.1   dyoung {
   2974  1.3  msaitoh 	s32 status = IXGBE_SUCCESS;
   2975  1.1   dyoung 	u32 i;
   2976  1.1   dyoung 
   2977  1.1   dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   2978  1.1   dyoung 
   2979  1.3  msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   2980  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   2981  1.3  msaitoh 
   2982  1.3  msaitoh 	/* Exit if master requets are blocked */
   2983  1.1   dyoung 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2984  1.1   dyoung 		goto out;
   2985  1.1   dyoung 
   2986  1.3  msaitoh 	/* Poll for master request bit to clear */
   2987  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2988  1.3  msaitoh 		usec_delay(100);
   2989  1.1   dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2990  1.3  msaitoh 			goto out;
   2991  1.1   dyoung 	}
   2992  1.1   dyoung 
   2993  1.3  msaitoh 	/*
   2994  1.3  msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   2995  1.3  msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   2996  1.3  msaitoh 	 * of this need.  The first reset prevents new master requests from
   2997  1.3  msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   2998  1.3  msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   2999  1.3  msaitoh 	 * again to clear out any effects they may have had on our device.
   3000  1.3  msaitoh 	 */
   3001  1.1   dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3002  1.3  msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3003  1.1   dyoung 
   3004  1.1   dyoung 	/*
   3005  1.1   dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3006  1.1   dyoung 	 * transactions pending.
   3007  1.1   dyoung 	 */
   3008  1.1   dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3009  1.3  msaitoh 		usec_delay(100);
   3010  1.1   dyoung 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   3011  1.3  msaitoh 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3012  1.3  msaitoh 			goto out;
   3013  1.1   dyoung 	}
   3014  1.1   dyoung 
   3015  1.3  msaitoh 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
   3016  1.3  msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3017  1.1   dyoung 
   3018  1.1   dyoung out:
   3019  1.1   dyoung 	return status;
   3020  1.1   dyoung }
   3021  1.1   dyoung 
   3022  1.1   dyoung /**
   3023  1.1   dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3024  1.1   dyoung  *  @hw: pointer to hardware structure
   3025  1.1   dyoung  *  @mask: Mask to specify which semaphore to acquire
   3026  1.1   dyoung  *
   3027  1.3  msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3028  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3029  1.1   dyoung  **/
   3030  1.1   dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   3031  1.1   dyoung {
   3032  1.1   dyoung 	u32 gssr;
   3033  1.1   dyoung 	u32 swmask = mask;
   3034  1.1   dyoung 	u32 fwmask = mask << 5;
   3035  1.1   dyoung 	s32 timeout = 200;
   3036  1.1   dyoung 
   3037  1.1   dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3038  1.1   dyoung 
   3039  1.1   dyoung 	while (timeout) {
   3040  1.1   dyoung 		/*
   3041  1.1   dyoung 		 * SW EEPROM semaphore bit is used for access to all
   3042  1.1   dyoung 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
   3043  1.1   dyoung 		 */
   3044  1.1   dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3045  1.1   dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3046  1.1   dyoung 
   3047  1.1   dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3048  1.1   dyoung 		if (!(gssr & (fwmask | swmask)))
   3049  1.1   dyoung 			break;
   3050  1.1   dyoung 
   3051  1.1   dyoung 		/*
   3052  1.1   dyoung 		 * Firmware currently using resource (fwmask) or other software
   3053  1.1   dyoung 		 * thread currently using resource (swmask)
   3054  1.1   dyoung 		 */
   3055  1.1   dyoung 		ixgbe_release_eeprom_semaphore(hw);
   3056  1.1   dyoung 		msec_delay(5);
   3057  1.1   dyoung 		timeout--;
   3058  1.1   dyoung 	}
   3059  1.1   dyoung 
   3060  1.1   dyoung 	if (!timeout) {
   3061  1.1   dyoung 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
   3062  1.1   dyoung 		return IXGBE_ERR_SWFW_SYNC;
   3063  1.1   dyoung 	}
   3064  1.1   dyoung 
   3065  1.1   dyoung 	gssr |= swmask;
   3066  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3067  1.1   dyoung 
   3068  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3069  1.1   dyoung 	return IXGBE_SUCCESS;
   3070  1.1   dyoung }
   3071  1.1   dyoung 
   3072  1.1   dyoung /**
   3073  1.1   dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3074  1.1   dyoung  *  @hw: pointer to hardware structure
   3075  1.1   dyoung  *  @mask: Mask to specify which semaphore to release
   3076  1.1   dyoung  *
   3077  1.3  msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3078  1.1   dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3079  1.1   dyoung  **/
   3080  1.1   dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   3081  1.1   dyoung {
   3082  1.1   dyoung 	u32 gssr;
   3083  1.1   dyoung 	u32 swmask = mask;
   3084  1.1   dyoung 
   3085  1.1   dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3086  1.1   dyoung 
   3087  1.1   dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3088  1.1   dyoung 
   3089  1.1   dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3090  1.1   dyoung 	gssr &= ~swmask;
   3091  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3092  1.1   dyoung 
   3093  1.1   dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3094  1.1   dyoung }
   3095  1.1   dyoung 
   3096  1.1   dyoung /**
   3097  1.3  msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3098  1.3  msaitoh  *  @hw: pointer to hardware structure
   3099  1.3  msaitoh  *
   3100  1.3  msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3101  1.3  msaitoh  *  the Rx security block
   3102  1.3  msaitoh  **/
   3103  1.3  msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3104  1.3  msaitoh {
   3105  1.3  msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3106  1.3  msaitoh 
   3107  1.3  msaitoh 	int i;
   3108  1.3  msaitoh 	int secrxreg;
   3109  1.3  msaitoh 
   3110  1.3  msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3111  1.3  msaitoh 
   3112  1.3  msaitoh 
   3113  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3114  1.3  msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3115  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3116  1.3  msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3117  1.3  msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3118  1.3  msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3119  1.3  msaitoh 			break;
   3120  1.3  msaitoh 		else
   3121  1.3  msaitoh 			/* Use interrupt-safe sleep just in case */
   3122  1.3  msaitoh 			usec_delay(1000);
   3123  1.3  msaitoh 	}
   3124  1.3  msaitoh 
   3125  1.3  msaitoh 	/* For informational purposes only */
   3126  1.3  msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3127  1.3  msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3128  1.3  msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3129  1.3  msaitoh 
   3130  1.3  msaitoh 	return IXGBE_SUCCESS;
   3131  1.3  msaitoh }
   3132  1.3  msaitoh 
   3133  1.3  msaitoh /**
   3134  1.3  msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3135  1.3  msaitoh  *  @hw: pointer to hardware structure
   3136  1.3  msaitoh  *
   3137  1.3  msaitoh  *  Enables the receive data path.
   3138  1.3  msaitoh  **/
   3139  1.3  msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3140  1.3  msaitoh {
   3141  1.3  msaitoh 	int secrxreg;
   3142  1.3  msaitoh 
   3143  1.3  msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3144  1.3  msaitoh 
   3145  1.3  msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3146  1.3  msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3147  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3148  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3149  1.3  msaitoh 
   3150  1.3  msaitoh 	return IXGBE_SUCCESS;
   3151  1.3  msaitoh }
   3152  1.3  msaitoh 
   3153  1.3  msaitoh /**
   3154  1.1   dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3155  1.1   dyoung  *  @hw: pointer to hardware structure
   3156  1.1   dyoung  *  @regval: register value to write to RXCTRL
   3157  1.1   dyoung  *
   3158  1.1   dyoung  *  Enables the Rx DMA unit
   3159  1.1   dyoung  **/
   3160  1.1   dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3161  1.1   dyoung {
   3162  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3163  1.1   dyoung 
   3164  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   3165  1.1   dyoung 
   3166  1.1   dyoung 	return IXGBE_SUCCESS;
   3167  1.1   dyoung }
   3168  1.1   dyoung 
   3169  1.1   dyoung /**
   3170  1.1   dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3171  1.1   dyoung  *  @hw: pointer to hardware structure
   3172  1.1   dyoung  *  @index: led number to blink
   3173  1.1   dyoung  **/
   3174  1.1   dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3175  1.1   dyoung {
   3176  1.1   dyoung 	ixgbe_link_speed speed = 0;
   3177  1.1   dyoung 	bool link_up = 0;
   3178  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3179  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3180  1.5  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3181  1.1   dyoung 
   3182  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3183  1.1   dyoung 
   3184  1.1   dyoung 	/*
   3185  1.1   dyoung 	 * Link must be up to auto-blink the LEDs;
   3186  1.1   dyoung 	 * Force it if link is down.
   3187  1.1   dyoung 	 */
   3188  1.1   dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3189  1.1   dyoung 
   3190  1.1   dyoung 	if (!link_up) {
   3191  1.5  msaitoh 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
   3192  1.5  msaitoh 		 * LESM is on.
   3193  1.5  msaitoh 		 */
   3194  1.5  msaitoh 		bool got_lock = FALSE;
   3195  1.5  msaitoh 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
   3196  1.5  msaitoh 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
   3197  1.5  msaitoh 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
   3198  1.5  msaitoh 							IXGBE_GSSR_MAC_CSR_SM);
   3199  1.5  msaitoh 			if (ret_val != IXGBE_SUCCESS) {
   3200  1.5  msaitoh 				ret_val = IXGBE_ERR_SWFW_SYNC;
   3201  1.5  msaitoh 				goto out;
   3202  1.5  msaitoh 			}
   3203  1.5  msaitoh 			got_lock = TRUE;
   3204  1.5  msaitoh 		}
   3205  1.5  msaitoh 
   3206  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3207  1.1   dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3208  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3209  1.3  msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3210  1.5  msaitoh 
   3211  1.5  msaitoh 		if (got_lock)
   3212  1.5  msaitoh 			hw->mac.ops.release_swfw_sync(hw,
   3213  1.5  msaitoh 						      IXGBE_GSSR_MAC_CSR_SM);
   3214  1.1   dyoung 		msec_delay(10);
   3215  1.1   dyoung 	}
   3216  1.1   dyoung 
   3217  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3218  1.1   dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3219  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3220  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   3221  1.1   dyoung 
   3222  1.5  msaitoh out:
   3223  1.5  msaitoh 	return ret_val;
   3224  1.1   dyoung }
   3225  1.1   dyoung 
   3226  1.1   dyoung /**
   3227  1.1   dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3228  1.1   dyoung  *  @hw: pointer to hardware structure
   3229  1.1   dyoung  *  @index: led number to stop blinking
   3230  1.1   dyoung  **/
   3231  1.1   dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3232  1.1   dyoung {
   3233  1.1   dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3234  1.1   dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3235  1.5  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3236  1.5  msaitoh 	bool got_lock = FALSE;
   3237  1.1   dyoung 
   3238  1.1   dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3239  1.5  msaitoh 	/* Need the SW/FW semaphore around AUTOC writes if 82599 and
   3240  1.5  msaitoh 	 * LESM is on.
   3241  1.5  msaitoh 	 */
   3242  1.5  msaitoh 	if ((hw->mac.type == ixgbe_mac_82599EB) &&
   3243  1.5  msaitoh 	    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
   3244  1.5  msaitoh 		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
   3245  1.5  msaitoh 						IXGBE_GSSR_MAC_CSR_SM);
   3246  1.5  msaitoh 		if (ret_val != IXGBE_SUCCESS) {
   3247  1.5  msaitoh 			ret_val = IXGBE_ERR_SWFW_SYNC;
   3248  1.5  msaitoh 			goto out;
   3249  1.5  msaitoh 		}
   3250  1.5  msaitoh 		got_lock = TRUE;
   3251  1.5  msaitoh 	}
   3252  1.1   dyoung 
   3253  1.1   dyoung 
   3254  1.1   dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3255  1.1   dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3256  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3257  1.1   dyoung 
   3258  1.5  msaitoh 	if (hw->mac.type == ixgbe_mac_82599EB)
   3259  1.5  msaitoh 		ixgbe_reset_pipeline_82599(hw);
   3260  1.5  msaitoh 
   3261  1.5  msaitoh 	if (got_lock)
   3262  1.5  msaitoh 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
   3263  1.5  msaitoh 
   3264  1.1   dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3265  1.1   dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3266  1.1   dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3267  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3268  1.1   dyoung 	IXGBE_WRITE_FLUSH(hw);
   3269  1.1   dyoung 
   3270  1.5  msaitoh out:
   3271  1.5  msaitoh 	return ret_val;
   3272  1.1   dyoung }
   3273  1.1   dyoung 
   3274  1.1   dyoung /**
   3275  1.1   dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3276  1.1   dyoung  *  @hw: pointer to hardware structure
   3277  1.1   dyoung  *  @san_mac_offset: SAN MAC address offset
   3278  1.1   dyoung  *
   3279  1.1   dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3280  1.1   dyoung  *  pointer, and returns the value at that location.  This is used in both
   3281  1.1   dyoung  *  get and set mac_addr routines.
   3282  1.1   dyoung  **/
   3283  1.1   dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3284  1.3  msaitoh 					 u16 *san_mac_offset)
   3285  1.1   dyoung {
   3286  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3287  1.1   dyoung 
   3288  1.1   dyoung 	/*
   3289  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3290  1.1   dyoung 	 * available.
   3291  1.1   dyoung 	 */
   3292  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
   3293  1.1   dyoung 
   3294  1.1   dyoung 	return IXGBE_SUCCESS;
   3295  1.1   dyoung }
   3296  1.1   dyoung 
   3297  1.1   dyoung /**
   3298  1.1   dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3299  1.1   dyoung  *  @hw: pointer to hardware structure
   3300  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3301  1.1   dyoung  *
   3302  1.1   dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3303  1.1   dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3304  1.1   dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3305  1.1   dyoung  *  upon for non-SFP connections, so we must call it here.
   3306  1.1   dyoung  **/
   3307  1.1   dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3308  1.1   dyoung {
   3309  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3310  1.1   dyoung 	u8 i;
   3311  1.1   dyoung 
   3312  1.1   dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3313  1.1   dyoung 
   3314  1.1   dyoung 	/*
   3315  1.1   dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3316  1.1   dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3317  1.1   dyoung 	 */
   3318  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3319  1.1   dyoung 
   3320  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3321  1.1   dyoung 		/*
   3322  1.1   dyoung 		 * No addresses available in this EEPROM.  It's not an
   3323  1.1   dyoung 		 * error though, so just wipe the local address and return.
   3324  1.1   dyoung 		 */
   3325  1.1   dyoung 		for (i = 0; i < 6; i++)
   3326  1.1   dyoung 			san_mac_addr[i] = 0xFF;
   3327  1.1   dyoung 
   3328  1.1   dyoung 		goto san_mac_addr_out;
   3329  1.1   dyoung 	}
   3330  1.1   dyoung 
   3331  1.1   dyoung 	/* make sure we know which port we need to program */
   3332  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3333  1.1   dyoung 	/* apply the port offset to the address offset */
   3334  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3335  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3336  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3337  1.1   dyoung 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
   3338  1.1   dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3339  1.1   dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3340  1.1   dyoung 		san_mac_offset++;
   3341  1.1   dyoung 	}
   3342  1.1   dyoung 
   3343  1.1   dyoung san_mac_addr_out:
   3344  1.1   dyoung 	return IXGBE_SUCCESS;
   3345  1.1   dyoung }
   3346  1.1   dyoung 
   3347  1.1   dyoung /**
   3348  1.1   dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3349  1.1   dyoung  *  @hw: pointer to hardware structure
   3350  1.1   dyoung  *  @san_mac_addr: SAN MAC address
   3351  1.1   dyoung  *
   3352  1.1   dyoung  *  Write a SAN MAC address to the EEPROM.
   3353  1.1   dyoung  **/
   3354  1.1   dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3355  1.1   dyoung {
   3356  1.1   dyoung 	s32 status = IXGBE_SUCCESS;
   3357  1.1   dyoung 	u16 san_mac_data, san_mac_offset;
   3358  1.1   dyoung 	u8 i;
   3359  1.1   dyoung 
   3360  1.1   dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3361  1.1   dyoung 
   3362  1.1   dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3363  1.1   dyoung 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3364  1.1   dyoung 
   3365  1.1   dyoung 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3366  1.1   dyoung 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
   3367  1.1   dyoung 		goto san_mac_addr_out;
   3368  1.1   dyoung 	}
   3369  1.1   dyoung 
   3370  1.1   dyoung 	/* Make sure we know which port we need to write */
   3371  1.1   dyoung 	hw->mac.ops.set_lan_id(hw);
   3372  1.1   dyoung 	/* Apply the port offset to the address offset */
   3373  1.1   dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3374  1.3  msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3375  1.1   dyoung 
   3376  1.1   dyoung 	for (i = 0; i < 3; i++) {
   3377  1.1   dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3378  1.1   dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3379  1.1   dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3380  1.1   dyoung 		san_mac_offset++;
   3381  1.1   dyoung 	}
   3382  1.1   dyoung 
   3383  1.1   dyoung san_mac_addr_out:
   3384  1.1   dyoung 	return status;
   3385  1.1   dyoung }
   3386  1.1   dyoung 
   3387  1.1   dyoung /**
   3388  1.1   dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3389  1.1   dyoung  *  @hw: pointer to hardware structure
   3390  1.1   dyoung  *
   3391  1.1   dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3392  1.1   dyoung  *  the capabilities table.
   3393  1.1   dyoung  **/
   3394  1.4  msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3395  1.1   dyoung {
   3396  1.4  msaitoh 	u16 msix_count = 1;
   3397  1.4  msaitoh 	u16 max_msix_count;
   3398  1.4  msaitoh 	u16 pcie_offset;
   3399  1.4  msaitoh 
   3400  1.4  msaitoh 	switch (hw->mac.type) {
   3401  1.4  msaitoh 	case ixgbe_mac_82598EB:
   3402  1.4  msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3403  1.4  msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3404  1.4  msaitoh 		break;
   3405  1.4  msaitoh 	case ixgbe_mac_82599EB:
   3406  1.4  msaitoh 	case ixgbe_mac_X540:
   3407  1.4  msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3408  1.4  msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3409  1.4  msaitoh 		break;
   3410  1.4  msaitoh 	default:
   3411  1.4  msaitoh 		return msix_count;
   3412  1.4  msaitoh 	}
   3413  1.1   dyoung 
   3414  1.1   dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3415  1.4  msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3416  1.4  msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3417  1.4  msaitoh 
   3418  1.4  msaitoh 	/* MSI-X count is zero-based in HW */
   3419  1.4  msaitoh 	msix_count++;
   3420  1.4  msaitoh 
   3421  1.4  msaitoh 	if (msix_count > max_msix_count)
   3422  1.4  msaitoh 		msix_count = max_msix_count;
   3423  1.1   dyoung 
   3424  1.1   dyoung 	return msix_count;
   3425  1.1   dyoung }
   3426  1.1   dyoung 
   3427  1.1   dyoung /**
   3428  1.1   dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3429  1.1   dyoung  *  @hw: pointer to hardware structure
   3430  1.1   dyoung  *  @addr: Address to put into receive address register
   3431  1.1   dyoung  *  @vmdq: VMDq pool to assign
   3432  1.1   dyoung  *
   3433  1.1   dyoung  *  Puts an ethernet address into a receive address register, or
   3434  1.1   dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3435  1.1   dyoung  **/
   3436  1.1   dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3437  1.1   dyoung {
   3438  1.1   dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3439  1.1   dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3440  1.1   dyoung 	u32 rar;
   3441  1.1   dyoung 	u32 rar_low, rar_high;
   3442  1.1   dyoung 	u32 addr_low, addr_high;
   3443  1.1   dyoung 
   3444  1.1   dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3445  1.1   dyoung 
   3446  1.1   dyoung 	/* swap bytes for HW little endian */
   3447  1.1   dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3448  1.1   dyoung 			    | (addr[2] << 16)
   3449  1.1   dyoung 			    | (addr[3] << 24);
   3450  1.1   dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3451  1.1   dyoung 
   3452  1.1   dyoung 	/*
   3453  1.1   dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3454  1.1   dyoung 	 * rar_highwater points to just after the highest currently used
   3455  1.1   dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3456  1.1   dyoung 	 * rar to the top.
   3457  1.1   dyoung 	 */
   3458  1.1   dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3459  1.1   dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3460  1.1   dyoung 
   3461  1.1   dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3462  1.1   dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3463  1.1   dyoung 			first_empty_rar = rar;
   3464  1.1   dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3465  1.1   dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3466  1.1   dyoung 			if (rar_low == addr_low)
   3467  1.1   dyoung 				break;    /* found it already in the rars */
   3468  1.1   dyoung 		}
   3469  1.1   dyoung 	}
   3470  1.1   dyoung 
   3471  1.1   dyoung 	if (rar < hw->mac.rar_highwater) {
   3472  1.1   dyoung 		/* already there so just add to the pool bits */
   3473  1.1   dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3474  1.1   dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3475  1.1   dyoung 		/* stick it into first empty RAR slot we found */
   3476  1.1   dyoung 		rar = first_empty_rar;
   3477  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3478  1.1   dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3479  1.1   dyoung 		/* add it to the top of the list and inc the highwater mark */
   3480  1.1   dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3481  1.1   dyoung 		hw->mac.rar_highwater++;
   3482  1.1   dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3483  1.1   dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3484  1.1   dyoung 	}
   3485  1.1   dyoung 
   3486  1.1   dyoung 	/*
   3487  1.1   dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3488  1.1   dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3489  1.1   dyoung 	 */
   3490  1.1   dyoung 	if (rar == 0)
   3491  1.1   dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3492  1.1   dyoung 
   3493  1.1   dyoung 	return rar;
   3494  1.1   dyoung }
   3495  1.1   dyoung 
   3496  1.1   dyoung /**
   3497  1.1   dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3498  1.1   dyoung  *  @hw: pointer to hardware struct
   3499  1.1   dyoung  *  @rar: receive address register index to disassociate
   3500  1.1   dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3501  1.1   dyoung  **/
   3502  1.1   dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3503  1.1   dyoung {
   3504  1.1   dyoung 	u32 mpsar_lo, mpsar_hi;
   3505  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3506  1.1   dyoung 
   3507  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3508  1.1   dyoung 
   3509  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3510  1.1   dyoung 	if (rar >= rar_entries) {
   3511  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3512  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3513  1.1   dyoung 	}
   3514  1.1   dyoung 
   3515  1.1   dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3516  1.1   dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3517  1.1   dyoung 
   3518  1.1   dyoung 	if (!mpsar_lo && !mpsar_hi)
   3519  1.1   dyoung 		goto done;
   3520  1.1   dyoung 
   3521  1.1   dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3522  1.1   dyoung 		if (mpsar_lo) {
   3523  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3524  1.1   dyoung 			mpsar_lo = 0;
   3525  1.1   dyoung 		}
   3526  1.1   dyoung 		if (mpsar_hi) {
   3527  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3528  1.1   dyoung 			mpsar_hi = 0;
   3529  1.1   dyoung 		}
   3530  1.1   dyoung 	} else if (vmdq < 32) {
   3531  1.1   dyoung 		mpsar_lo &= ~(1 << vmdq);
   3532  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3533  1.1   dyoung 	} else {
   3534  1.1   dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3535  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3536  1.1   dyoung 	}
   3537  1.1   dyoung 
   3538  1.1   dyoung 	/* was that the last pool using this rar? */
   3539  1.1   dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3540  1.1   dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3541  1.1   dyoung done:
   3542  1.1   dyoung 	return IXGBE_SUCCESS;
   3543  1.1   dyoung }
   3544  1.1   dyoung 
   3545  1.1   dyoung /**
   3546  1.1   dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3547  1.1   dyoung  *  @hw: pointer to hardware struct
   3548  1.1   dyoung  *  @rar: receive address register index to associate with a VMDq index
   3549  1.1   dyoung  *  @vmdq: VMDq pool index
   3550  1.1   dyoung  **/
   3551  1.1   dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3552  1.1   dyoung {
   3553  1.1   dyoung 	u32 mpsar;
   3554  1.1   dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3555  1.1   dyoung 
   3556  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3557  1.1   dyoung 
   3558  1.1   dyoung 	/* Make sure we are using a valid rar index range */
   3559  1.1   dyoung 	if (rar >= rar_entries) {
   3560  1.1   dyoung 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3561  1.1   dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3562  1.1   dyoung 	}
   3563  1.1   dyoung 
   3564  1.1   dyoung 	if (vmdq < 32) {
   3565  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3566  1.1   dyoung 		mpsar |= 1 << vmdq;
   3567  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3568  1.1   dyoung 	} else {
   3569  1.1   dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3570  1.1   dyoung 		mpsar |= 1 << (vmdq - 32);
   3571  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3572  1.1   dyoung 	}
   3573  1.1   dyoung 	return IXGBE_SUCCESS;
   3574  1.1   dyoung }
   3575  1.1   dyoung 
   3576  1.1   dyoung /**
   3577  1.4  msaitoh  *  This function should only be involved in the IOV mode.
   3578  1.4  msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3579  1.4  msaitoh  *  VFs advertized and not 0.
   3580  1.4  msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3581  1.4  msaitoh  *
   3582  1.4  msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3583  1.4  msaitoh  *  @hw: pointer to hardware struct
   3584  1.4  msaitoh  *  @vmdq: VMDq pool index
   3585  1.4  msaitoh  **/
   3586  1.4  msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3587  1.4  msaitoh {
   3588  1.4  msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3589  1.4  msaitoh 
   3590  1.4  msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3591  1.4  msaitoh 
   3592  1.4  msaitoh 	if (vmdq < 32) {
   3593  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3594  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3595  1.4  msaitoh 	} else {
   3596  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3597  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3598  1.4  msaitoh 	}
   3599  1.4  msaitoh 
   3600  1.4  msaitoh 	return IXGBE_SUCCESS;
   3601  1.4  msaitoh }
   3602  1.4  msaitoh 
   3603  1.4  msaitoh /**
   3604  1.1   dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3605  1.1   dyoung  *  @hw: pointer to hardware structure
   3606  1.1   dyoung  **/
   3607  1.1   dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3608  1.1   dyoung {
   3609  1.1   dyoung 	int i;
   3610  1.1   dyoung 
   3611  1.1   dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3612  1.1   dyoung 	DEBUGOUT(" Clearing UTA\n");
   3613  1.1   dyoung 
   3614  1.1   dyoung 	for (i = 0; i < 128; i++)
   3615  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3616  1.1   dyoung 
   3617  1.1   dyoung 	return IXGBE_SUCCESS;
   3618  1.1   dyoung }
   3619  1.1   dyoung 
   3620  1.1   dyoung /**
   3621  1.1   dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3622  1.1   dyoung  *  @hw: pointer to hardware structure
   3623  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3624  1.1   dyoung  *
   3625  1.1   dyoung  *  return the VLVF index where this VLAN id should be placed
   3626  1.1   dyoung  *
   3627  1.1   dyoung  **/
   3628  1.1   dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3629  1.1   dyoung {
   3630  1.1   dyoung 	u32 bits = 0;
   3631  1.1   dyoung 	u32 first_empty_slot = 0;
   3632  1.1   dyoung 	s32 regindex;
   3633  1.1   dyoung 
   3634  1.1   dyoung 	/* short cut the special case */
   3635  1.1   dyoung 	if (vlan == 0)
   3636  1.1   dyoung 		return 0;
   3637  1.1   dyoung 
   3638  1.1   dyoung 	/*
   3639  1.1   dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3640  1.1   dyoung 	  * slot found along the way
   3641  1.1   dyoung 	  */
   3642  1.1   dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3643  1.1   dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3644  1.1   dyoung 		if (!bits && !(first_empty_slot))
   3645  1.1   dyoung 			first_empty_slot = regindex;
   3646  1.1   dyoung 		else if ((bits & 0x0FFF) == vlan)
   3647  1.1   dyoung 			break;
   3648  1.1   dyoung 	}
   3649  1.1   dyoung 
   3650  1.1   dyoung 	/*
   3651  1.1   dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3652  1.1   dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3653  1.1   dyoung 	  * vlan id.
   3654  1.1   dyoung 	  */
   3655  1.1   dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3656  1.1   dyoung 		if (first_empty_slot)
   3657  1.1   dyoung 			regindex = first_empty_slot;
   3658  1.1   dyoung 		else {
   3659  1.1   dyoung 			DEBUGOUT("No space in VLVF.\n");
   3660  1.1   dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3661  1.1   dyoung 		}
   3662  1.1   dyoung 	}
   3663  1.1   dyoung 
   3664  1.1   dyoung 	return regindex;
   3665  1.1   dyoung }
   3666  1.1   dyoung 
   3667  1.1   dyoung /**
   3668  1.1   dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3669  1.1   dyoung  *  @hw: pointer to hardware structure
   3670  1.1   dyoung  *  @vlan: VLAN id to write to VLAN filter
   3671  1.1   dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3672  1.1   dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3673  1.1   dyoung  *
   3674  1.1   dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3675  1.1   dyoung  **/
   3676  1.1   dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3677  1.3  msaitoh 			   bool vlan_on)
   3678  1.1   dyoung {
   3679  1.1   dyoung 	s32 regindex;
   3680  1.1   dyoung 	u32 bitindex;
   3681  1.1   dyoung 	u32 vfta;
   3682  1.1   dyoung 	u32 targetbit;
   3683  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3684  1.1   dyoung 	bool vfta_changed = FALSE;
   3685  1.1   dyoung 
   3686  1.1   dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3687  1.1   dyoung 
   3688  1.1   dyoung 	if (vlan > 4095)
   3689  1.1   dyoung 		return IXGBE_ERR_PARAM;
   3690  1.1   dyoung 
   3691  1.1   dyoung 	/*
   3692  1.1   dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3693  1.1   dyoung 	 * VLVF and VLVFB if VT Mode is set
   3694  1.1   dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3695  1.1   dyoung 	 */
   3696  1.1   dyoung 
   3697  1.1   dyoung 	/* Part 1
   3698  1.1   dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3699  1.1   dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3700  1.1   dyoung 	 *    bits[11-5]: which register
   3701  1.1   dyoung 	 *    bits[4-0]:  which bit in the register
   3702  1.1   dyoung 	 */
   3703  1.1   dyoung 	regindex = (vlan >> 5) & 0x7F;
   3704  1.1   dyoung 	bitindex = vlan & 0x1F;
   3705  1.1   dyoung 	targetbit = (1 << bitindex);
   3706  1.1   dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3707  1.1   dyoung 
   3708  1.1   dyoung 	if (vlan_on) {
   3709  1.1   dyoung 		if (!(vfta & targetbit)) {
   3710  1.1   dyoung 			vfta |= targetbit;
   3711  1.1   dyoung 			vfta_changed = TRUE;
   3712  1.1   dyoung 		}
   3713  1.1   dyoung 	} else {
   3714  1.1   dyoung 		if ((vfta & targetbit)) {
   3715  1.1   dyoung 			vfta &= ~targetbit;
   3716  1.1   dyoung 			vfta_changed = TRUE;
   3717  1.1   dyoung 		}
   3718  1.1   dyoung 	}
   3719  1.1   dyoung 
   3720  1.1   dyoung 	/* Part 2
   3721  1.3  msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3722  1.3  msaitoh 	 */
   3723  1.3  msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3724  1.3  msaitoh 					 &vfta_changed);
   3725  1.3  msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3726  1.3  msaitoh 		return ret_val;
   3727  1.3  msaitoh 
   3728  1.3  msaitoh 	if (vfta_changed)
   3729  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3730  1.3  msaitoh 
   3731  1.3  msaitoh 	return IXGBE_SUCCESS;
   3732  1.3  msaitoh }
   3733  1.3  msaitoh 
   3734  1.3  msaitoh /**
   3735  1.3  msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3736  1.3  msaitoh  *  @hw: pointer to hardware structure
   3737  1.3  msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3738  1.3  msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3739  1.3  msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3740  1.3  msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3741  1.3  msaitoh  *                 should be changed
   3742  1.3  msaitoh  *
   3743  1.3  msaitoh  *  Turn on/off specified bit in VLVF table.
   3744  1.3  msaitoh  **/
   3745  1.3  msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3746  1.3  msaitoh 			    bool vlan_on, bool *vfta_changed)
   3747  1.3  msaitoh {
   3748  1.3  msaitoh 	u32 vt;
   3749  1.3  msaitoh 
   3750  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3751  1.3  msaitoh 
   3752  1.3  msaitoh 	if (vlan > 4095)
   3753  1.3  msaitoh 		return IXGBE_ERR_PARAM;
   3754  1.3  msaitoh 
   3755  1.3  msaitoh 	/* If VT Mode is set
   3756  1.1   dyoung 	 *   Either vlan_on
   3757  1.1   dyoung 	 *     make sure the vlan is in VLVF
   3758  1.1   dyoung 	 *     set the vind bit in the matching VLVFB
   3759  1.1   dyoung 	 *   Or !vlan_on
   3760  1.1   dyoung 	 *     clear the pool bit and possibly the vind
   3761  1.1   dyoung 	 */
   3762  1.1   dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3763  1.1   dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3764  1.1   dyoung 		s32 vlvf_index;
   3765  1.3  msaitoh 		u32 bits;
   3766  1.1   dyoung 
   3767  1.1   dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3768  1.1   dyoung 		if (vlvf_index < 0)
   3769  1.1   dyoung 			return vlvf_index;
   3770  1.1   dyoung 
   3771  1.1   dyoung 		if (vlan_on) {
   3772  1.1   dyoung 			/* set the pool bit */
   3773  1.1   dyoung 			if (vind < 32) {
   3774  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3775  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3776  1.1   dyoung 				bits |= (1 << vind);
   3777  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3778  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3779  1.1   dyoung 						bits);
   3780  1.1   dyoung 			} else {
   3781  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3782  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3783  1.3  msaitoh 				bits |= (1 << (vind - 32));
   3784  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3785  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3786  1.3  msaitoh 					bits);
   3787  1.1   dyoung 			}
   3788  1.1   dyoung 		} else {
   3789  1.1   dyoung 			/* clear the pool bit */
   3790  1.1   dyoung 			if (vind < 32) {
   3791  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3792  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3793  1.1   dyoung 				bits &= ~(1 << vind);
   3794  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3795  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3796  1.1   dyoung 						bits);
   3797  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3798  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3799  1.1   dyoung 			} else {
   3800  1.1   dyoung 				bits = IXGBE_READ_REG(hw,
   3801  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3802  1.3  msaitoh 				bits &= ~(1 << (vind - 32));
   3803  1.1   dyoung 				IXGBE_WRITE_REG(hw,
   3804  1.3  msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3805  1.3  msaitoh 					bits);
   3806  1.1   dyoung 				bits |= IXGBE_READ_REG(hw,
   3807  1.3  msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3808  1.1   dyoung 			}
   3809  1.1   dyoung 		}
   3810  1.1   dyoung 
   3811  1.1   dyoung 		/*
   3812  1.1   dyoung 		 * If there are still bits set in the VLVFB registers
   3813  1.1   dyoung 		 * for the VLAN ID indicated we need to see if the
   3814  1.1   dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3815  1.1   dyoung 		 * If the caller has requested that we clear the VFTA
   3816  1.1   dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3817  1.1   dyoung 		 * ID entry then ignore the request.  We're not worried
   3818  1.1   dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3819  1.1   dyoung 		 * entry bit on, only when requested to turn it off as
   3820  1.1   dyoung 		 * there may be multiple pools and/or VFs using the
   3821  1.1   dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   3822  1.1   dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3823  1.1   dyoung 		 * been cleared.  This will be indicated by "bits" being
   3824  1.1   dyoung 		 * zero.
   3825  1.1   dyoung 		 */
   3826  1.1   dyoung 		if (bits) {
   3827  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3828  1.1   dyoung 					(IXGBE_VLVF_VIEN | vlan));
   3829  1.3  msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   3830  1.1   dyoung 				/* someone wants to clear the vfta entry
   3831  1.1   dyoung 				 * but some pools/VFs are still using it.
   3832  1.1   dyoung 				 * Ignore it. */
   3833  1.3  msaitoh 				*vfta_changed = FALSE;
   3834  1.1   dyoung 			}
   3835  1.3  msaitoh 		} else
   3836  1.1   dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3837  1.1   dyoung 	}
   3838  1.1   dyoung 
   3839  1.1   dyoung 	return IXGBE_SUCCESS;
   3840  1.1   dyoung }
   3841  1.1   dyoung 
   3842  1.1   dyoung /**
   3843  1.1   dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3844  1.1   dyoung  *  @hw: pointer to hardware structure
   3845  1.1   dyoung  *
   3846  1.1   dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3847  1.1   dyoung  **/
   3848  1.1   dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3849  1.1   dyoung {
   3850  1.1   dyoung 	u32 offset;
   3851  1.1   dyoung 
   3852  1.1   dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3853  1.1   dyoung 
   3854  1.1   dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3855  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3856  1.1   dyoung 
   3857  1.1   dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3858  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3859  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   3860  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   3861  1.1   dyoung 	}
   3862  1.1   dyoung 
   3863  1.1   dyoung 	return IXGBE_SUCCESS;
   3864  1.1   dyoung }
   3865  1.1   dyoung 
   3866  1.1   dyoung /**
   3867  1.1   dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   3868  1.1   dyoung  *  @hw: pointer to hardware structure
   3869  1.1   dyoung  *  @speed: pointer to link speed
   3870  1.1   dyoung  *  @link_up: TRUE when link is up
   3871  1.1   dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   3872  1.1   dyoung  *
   3873  1.1   dyoung  *  Reads the links register to determine if link is up and the current speed
   3874  1.1   dyoung  **/
   3875  1.1   dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3876  1.3  msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   3877  1.1   dyoung {
   3878  1.1   dyoung 	u32 links_reg, links_orig;
   3879  1.1   dyoung 	u32 i;
   3880  1.1   dyoung 
   3881  1.1   dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   3882  1.1   dyoung 
   3883  1.1   dyoung 	/* clear the old state */
   3884  1.1   dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3885  1.1   dyoung 
   3886  1.1   dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3887  1.1   dyoung 
   3888  1.1   dyoung 	if (links_orig != links_reg) {
   3889  1.1   dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   3890  1.3  msaitoh 			  links_orig, links_reg);
   3891  1.1   dyoung 	}
   3892  1.1   dyoung 
   3893  1.1   dyoung 	if (link_up_wait_to_complete) {
   3894  1.1   dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3895  1.1   dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   3896  1.1   dyoung 				*link_up = TRUE;
   3897  1.1   dyoung 				break;
   3898  1.1   dyoung 			} else {
   3899  1.1   dyoung 				*link_up = FALSE;
   3900  1.1   dyoung 			}
   3901  1.1   dyoung 			msec_delay(100);
   3902  1.1   dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3903  1.1   dyoung 		}
   3904  1.1   dyoung 	} else {
   3905  1.1   dyoung 		if (links_reg & IXGBE_LINKS_UP)
   3906  1.1   dyoung 			*link_up = TRUE;
   3907  1.1   dyoung 		else
   3908  1.1   dyoung 			*link_up = FALSE;
   3909  1.1   dyoung 	}
   3910  1.1   dyoung 
   3911  1.1   dyoung 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3912  1.1   dyoung 	    IXGBE_LINKS_SPEED_10G_82599)
   3913  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3914  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3915  1.3  msaitoh 		 IXGBE_LINKS_SPEED_1G_82599)
   3916  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3917  1.1   dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3918  1.3  msaitoh 		 IXGBE_LINKS_SPEED_100_82599)
   3919  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   3920  1.1   dyoung 	else
   3921  1.1   dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3922  1.1   dyoung 
   3923  1.1   dyoung 	return IXGBE_SUCCESS;
   3924  1.1   dyoung }
   3925  1.1   dyoung 
   3926  1.1   dyoung /**
   3927  1.1   dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3928  1.1   dyoung  *  the EEPROM
   3929  1.1   dyoung  *  @hw: pointer to hardware structure
   3930  1.1   dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   3931  1.1   dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   3932  1.1   dyoung  *
   3933  1.1   dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   3934  1.1   dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   3935  1.1   dyoung  **/
   3936  1.1   dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3937  1.3  msaitoh 				 u16 *wwpn_prefix)
   3938  1.1   dyoung {
   3939  1.1   dyoung 	u16 offset, caps;
   3940  1.1   dyoung 	u16 alt_san_mac_blk_offset;
   3941  1.1   dyoung 
   3942  1.1   dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   3943  1.1   dyoung 
   3944  1.1   dyoung 	/* clear output first */
   3945  1.1   dyoung 	*wwnn_prefix = 0xFFFF;
   3946  1.1   dyoung 	*wwpn_prefix = 0xFFFF;
   3947  1.1   dyoung 
   3948  1.1   dyoung 	/* check if alternative SAN MAC is supported */
   3949  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
   3950  1.3  msaitoh 			    &alt_san_mac_blk_offset);
   3951  1.1   dyoung 
   3952  1.1   dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   3953  1.1   dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   3954  1.1   dyoung 		goto wwn_prefix_out;
   3955  1.1   dyoung 
   3956  1.1   dyoung 	/* check capability in alternative san mac address block */
   3957  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3958  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, &caps);
   3959  1.1   dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3960  1.1   dyoung 		goto wwn_prefix_out;
   3961  1.1   dyoung 
   3962  1.1   dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   3963  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3964  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
   3965  1.1   dyoung 
   3966  1.1   dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3967  1.1   dyoung 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
   3968  1.1   dyoung 
   3969  1.1   dyoung wwn_prefix_out:
   3970  1.1   dyoung 	return IXGBE_SUCCESS;
   3971  1.1   dyoung }
   3972  1.1   dyoung 
   3973  1.1   dyoung /**
   3974  1.1   dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   3975  1.1   dyoung  *  @hw: pointer to hardware structure
   3976  1.1   dyoung  *  @bs: the fcoe boot status
   3977  1.1   dyoung  *
   3978  1.1   dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   3979  1.1   dyoung  **/
   3980  1.1   dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   3981  1.1   dyoung {
   3982  1.1   dyoung 	u16 offset, caps, flags;
   3983  1.1   dyoung 	s32 status;
   3984  1.1   dyoung 
   3985  1.1   dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   3986  1.1   dyoung 
   3987  1.1   dyoung 	/* clear output first */
   3988  1.1   dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   3989  1.1   dyoung 
   3990  1.1   dyoung 	/* check if FCOE IBA block is present */
   3991  1.1   dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   3992  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   3993  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   3994  1.1   dyoung 		goto out;
   3995  1.1   dyoung 
   3996  1.1   dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   3997  1.1   dyoung 		goto out;
   3998  1.1   dyoung 
   3999  1.1   dyoung 	/* check if iSCSI FCOE block is populated */
   4000  1.1   dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4001  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   4002  1.1   dyoung 		goto out;
   4003  1.1   dyoung 
   4004  1.1   dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4005  1.1   dyoung 		goto out;
   4006  1.1   dyoung 
   4007  1.1   dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4008  1.1   dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4009  1.1   dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4010  1.1   dyoung 	if (status != IXGBE_SUCCESS)
   4011  1.1   dyoung 		goto out;
   4012  1.1   dyoung 
   4013  1.1   dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4014  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4015  1.1   dyoung 	else
   4016  1.1   dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4017  1.1   dyoung 
   4018  1.1   dyoung out:
   4019  1.1   dyoung 	return status;
   4020  1.1   dyoung }
   4021  1.1   dyoung 
   4022  1.1   dyoung /**
   4023  1.1   dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4024  1.1   dyoung  *  @hw: pointer to hardware structure
   4025  1.1   dyoung  *  @enable: enable or disable switch for anti-spoofing
   4026  1.1   dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4027  1.1   dyoung  *
   4028  1.1   dyoung  **/
   4029  1.1   dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4030  1.1   dyoung {
   4031  1.1   dyoung 	int j;
   4032  1.1   dyoung 	int pf_target_reg = pf >> 3;
   4033  1.1   dyoung 	int pf_target_shift = pf % 8;
   4034  1.1   dyoung 	u32 pfvfspoof = 0;
   4035  1.1   dyoung 
   4036  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4037  1.1   dyoung 		return;
   4038  1.1   dyoung 
   4039  1.1   dyoung 	if (enable)
   4040  1.1   dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4041  1.1   dyoung 
   4042  1.1   dyoung 	/*
   4043  1.1   dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4044  1.1   dyoung 	 * MAC anti-spoof enables in each register array element.
   4045  1.1   dyoung 	 */
   4046  1.4  msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4047  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4048  1.1   dyoung 
   4049  1.4  msaitoh 	/*
   4050  1.4  msaitoh 	 * The PF should be allowed to spoof so that it can support
   4051  1.4  msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4052  1.4  msaitoh 	 */
   4053  1.4  msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4054  1.4  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4055  1.1   dyoung 
   4056  1.1   dyoung 	/*
   4057  1.4  msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4058  1.4  msaitoh 	 * anti-spoofing enabled.
   4059  1.1   dyoung 	 */
   4060  1.4  msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4061  1.4  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4062  1.1   dyoung }
   4063  1.1   dyoung 
   4064  1.1   dyoung /**
   4065  1.1   dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4066  1.1   dyoung  *  @hw: pointer to hardware structure
   4067  1.1   dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4068  1.1   dyoung  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4069  1.1   dyoung  *
   4070  1.1   dyoung  **/
   4071  1.1   dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4072  1.1   dyoung {
   4073  1.1   dyoung 	int vf_target_reg = vf >> 3;
   4074  1.1   dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4075  1.1   dyoung 	u32 pfvfspoof;
   4076  1.1   dyoung 
   4077  1.1   dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4078  1.1   dyoung 		return;
   4079  1.1   dyoung 
   4080  1.1   dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4081  1.1   dyoung 	if (enable)
   4082  1.1   dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4083  1.1   dyoung 	else
   4084  1.1   dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4085  1.1   dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4086  1.1   dyoung }
   4087  1.1   dyoung 
   4088  1.1   dyoung /**
   4089  1.1   dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4090  1.1   dyoung  *  @hw: pointer to hardware structure
   4091  1.1   dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4092  1.1   dyoung  *
   4093  1.1   dyoung  *  This function will read the EEPROM location for the device capabilities,
   4094  1.1   dyoung  *  and return the word through device_caps.
   4095  1.1   dyoung  **/
   4096  1.1   dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4097  1.1   dyoung {
   4098  1.1   dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4099  1.1   dyoung 
   4100  1.1   dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4101  1.1   dyoung 
   4102  1.1   dyoung 	return IXGBE_SUCCESS;
   4103  1.1   dyoung }
   4104  1.1   dyoung 
   4105  1.1   dyoung /**
   4106  1.1   dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4107  1.1   dyoung  *  @hw: pointer to hardware structure
   4108  1.1   dyoung  *
   4109  1.1   dyoung  **/
   4110  1.1   dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4111  1.1   dyoung {
   4112  1.1   dyoung 	u32 regval;
   4113  1.1   dyoung 	u32 i;
   4114  1.1   dyoung 
   4115  1.1   dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4116  1.1   dyoung 
   4117  1.1   dyoung 	/* Enable relaxed ordering */
   4118  1.1   dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4119  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4120  1.4  msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4121  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4122  1.1   dyoung 	}
   4123  1.1   dyoung 
   4124  1.1   dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4125  1.1   dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4126  1.4  msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4127  1.4  msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4128  1.1   dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4129  1.1   dyoung 	}
   4130  1.1   dyoung 
   4131  1.1   dyoung }
   4132  1.3  msaitoh 
   4133  1.3  msaitoh /**
   4134  1.3  msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4135  1.3  msaitoh  *  @buffer: pointer to EEPROM
   4136  1.3  msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4137  1.3  msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4138  1.3  msaitoh  *  checksum calculated is returned.
   4139  1.3  msaitoh  **/
   4140  1.5  msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4141  1.3  msaitoh {
   4142  1.3  msaitoh 	u32 i;
   4143  1.3  msaitoh 	u8 sum = 0;
   4144  1.3  msaitoh 
   4145  1.3  msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4146  1.3  msaitoh 
   4147  1.3  msaitoh 	if (!buffer)
   4148  1.3  msaitoh 		return 0;
   4149  1.3  msaitoh 
   4150  1.3  msaitoh 	for (i = 0; i < length; i++)
   4151  1.3  msaitoh 		sum += buffer[i];
   4152  1.3  msaitoh 
   4153  1.3  msaitoh 	return (u8) (0 - sum);
   4154  1.3  msaitoh }
   4155  1.3  msaitoh 
   4156  1.3  msaitoh /**
   4157  1.3  msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4158  1.3  msaitoh  *  @hw: pointer to the HW structure
   4159  1.3  msaitoh  *  @buffer: contains the command to write and where the return status will
   4160  1.3  msaitoh  *   be placed
   4161  1.4  msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4162  1.3  msaitoh  *
   4163  1.3  msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4164  1.3  msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4165  1.3  msaitoh  **/
   4166  1.5  msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4167  1.5  msaitoh 				 u32 length)
   4168  1.3  msaitoh {
   4169  1.3  msaitoh 	u32 hicr, i, bi;
   4170  1.3  msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4171  1.3  msaitoh 	u8 buf_len, dword_len;
   4172  1.3  msaitoh 
   4173  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4174  1.3  msaitoh 
   4175  1.3  msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4176  1.3  msaitoh 
   4177  1.3  msaitoh 	if (length == 0 || length & 0x3 ||
   4178  1.3  msaitoh 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4179  1.3  msaitoh 		DEBUGOUT("Buffer length failure.\n");
   4180  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4181  1.3  msaitoh 		goto out;
   4182  1.3  msaitoh 	}
   4183  1.3  msaitoh 
   4184  1.3  msaitoh 	/* Check that the host interface is enabled. */
   4185  1.3  msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4186  1.3  msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4187  1.3  msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4188  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4189  1.3  msaitoh 		goto out;
   4190  1.3  msaitoh 	}
   4191  1.3  msaitoh 
   4192  1.3  msaitoh 	/* Calculate length in DWORDs */
   4193  1.3  msaitoh 	dword_len = length >> 2;
   4194  1.3  msaitoh 
   4195  1.3  msaitoh 	/*
   4196  1.3  msaitoh 	 * The device driver writes the relevant command block
   4197  1.3  msaitoh 	 * into the ram area.
   4198  1.3  msaitoh 	 */
   4199  1.3  msaitoh 	for (i = 0; i < dword_len; i++)
   4200  1.3  msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4201  1.3  msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4202  1.3  msaitoh 
   4203  1.3  msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4204  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4205  1.3  msaitoh 
   4206  1.3  msaitoh 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
   4207  1.3  msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4208  1.3  msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4209  1.3  msaitoh 			break;
   4210  1.3  msaitoh 		msec_delay(1);
   4211  1.3  msaitoh 	}
   4212  1.3  msaitoh 
   4213  1.3  msaitoh 	/* Check command successful completion. */
   4214  1.3  msaitoh 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
   4215  1.3  msaitoh 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
   4216  1.3  msaitoh 		DEBUGOUT("Command has failed with no status valid.\n");
   4217  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4218  1.3  msaitoh 		goto out;
   4219  1.3  msaitoh 	}
   4220  1.3  msaitoh 
   4221  1.3  msaitoh 	/* Calculate length in DWORDs */
   4222  1.3  msaitoh 	dword_len = hdr_size >> 2;
   4223  1.3  msaitoh 
   4224  1.3  msaitoh 	/* first pull in the header so we know the buffer length */
   4225  1.3  msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4226  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4227  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4228  1.3  msaitoh 	}
   4229  1.3  msaitoh 
   4230  1.3  msaitoh 	/* If there is any thing in data position pull it in */
   4231  1.3  msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4232  1.3  msaitoh 	if (buf_len == 0)
   4233  1.3  msaitoh 		goto out;
   4234  1.3  msaitoh 
   4235  1.3  msaitoh 	if (length < (buf_len + hdr_size)) {
   4236  1.3  msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4237  1.3  msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4238  1.3  msaitoh 		goto out;
   4239  1.3  msaitoh 	}
   4240  1.3  msaitoh 
   4241  1.3  msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4242  1.3  msaitoh 	dword_len = (buf_len + 3) >> 2;
   4243  1.3  msaitoh 
   4244  1.3  msaitoh 	/* Pull in the rest of the buffer (bi is where we left off)*/
   4245  1.3  msaitoh 	for (; bi <= dword_len; bi++) {
   4246  1.3  msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4247  1.3  msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4248  1.3  msaitoh 	}
   4249  1.3  msaitoh 
   4250  1.3  msaitoh out:
   4251  1.3  msaitoh 	return ret_val;
   4252  1.3  msaitoh }
   4253  1.3  msaitoh 
   4254  1.3  msaitoh /**
   4255  1.3  msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4256  1.3  msaitoh  *  @hw: pointer to the HW structure
   4257  1.3  msaitoh  *  @maj: driver version major number
   4258  1.3  msaitoh  *  @min: driver version minor number
   4259  1.3  msaitoh  *  @build: driver version build number
   4260  1.3  msaitoh  *  @sub: driver version sub build number
   4261  1.3  msaitoh  *
   4262  1.3  msaitoh  *  Sends driver version number to firmware through the manageability
   4263  1.3  msaitoh  *  block.  On success return IXGBE_SUCCESS
   4264  1.3  msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4265  1.3  msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4266  1.3  msaitoh  **/
   4267  1.3  msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
   4268  1.3  msaitoh 				 u8 build, u8 sub)
   4269  1.3  msaitoh {
   4270  1.3  msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4271  1.3  msaitoh 	int i;
   4272  1.3  msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4273  1.3  msaitoh 
   4274  1.3  msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4275  1.3  msaitoh 
   4276  1.3  msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4277  1.3  msaitoh 	    != IXGBE_SUCCESS) {
   4278  1.3  msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4279  1.3  msaitoh 		goto out;
   4280  1.3  msaitoh 	}
   4281  1.3  msaitoh 
   4282  1.3  msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4283  1.3  msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4284  1.3  msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4285  1.3  msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4286  1.3  msaitoh 	fw_cmd.ver_maj = maj;
   4287  1.3  msaitoh 	fw_cmd.ver_min = min;
   4288  1.3  msaitoh 	fw_cmd.ver_build = build;
   4289  1.3  msaitoh 	fw_cmd.ver_sub = sub;
   4290  1.3  msaitoh 	fw_cmd.hdr.checksum = 0;
   4291  1.3  msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4292  1.3  msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4293  1.3  msaitoh 	fw_cmd.pad = 0;
   4294  1.3  msaitoh 	fw_cmd.pad2 = 0;
   4295  1.3  msaitoh 
   4296  1.3  msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4297  1.3  msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4298  1.3  msaitoh 						       sizeof(fw_cmd));
   4299  1.3  msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4300  1.3  msaitoh 			continue;
   4301  1.3  msaitoh 
   4302  1.3  msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4303  1.3  msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4304  1.3  msaitoh 			ret_val = IXGBE_SUCCESS;
   4305  1.3  msaitoh 		else
   4306  1.3  msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4307  1.3  msaitoh 
   4308  1.3  msaitoh 		break;
   4309  1.3  msaitoh 	}
   4310  1.3  msaitoh 
   4311  1.3  msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4312  1.3  msaitoh out:
   4313  1.3  msaitoh 	return ret_val;
   4314  1.3  msaitoh }
   4315  1.3  msaitoh 
   4316  1.3  msaitoh /**
   4317  1.3  msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4318  1.3  msaitoh  * @hw: pointer to hardware structure
   4319  1.3  msaitoh  * @num_pb: number of packet buffers to allocate
   4320  1.3  msaitoh  * @headroom: reserve n KB of headroom
   4321  1.3  msaitoh  * @strategy: packet buffer allocation strategy
   4322  1.3  msaitoh  **/
   4323  1.3  msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4324  1.3  msaitoh 			     int strategy)
   4325  1.3  msaitoh {
   4326  1.3  msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4327  1.3  msaitoh 	int i = 0;
   4328  1.3  msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4329  1.3  msaitoh 
   4330  1.3  msaitoh 	/* Reserve headroom */
   4331  1.3  msaitoh 	pbsize -= headroom;
   4332  1.3  msaitoh 
   4333  1.3  msaitoh 	if (!num_pb)
   4334  1.3  msaitoh 		num_pb = 1;
   4335  1.3  msaitoh 
   4336  1.3  msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4337  1.3  msaitoh 	 * buffers requested using supplied strategy.
   4338  1.3  msaitoh 	 */
   4339  1.3  msaitoh 	switch (strategy) {
   4340  1.4  msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4341  1.3  msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4342  1.3  msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4343  1.3  msaitoh 		 */
   4344  1.4  msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4345  1.3  msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4346  1.3  msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4347  1.3  msaitoh 		for (; i < (num_pb / 2); i++)
   4348  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4349  1.3  msaitoh 		/* Fall through to configure remaining packet buffers */
   4350  1.4  msaitoh 	case PBA_STRATEGY_EQUAL:
   4351  1.3  msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4352  1.3  msaitoh 		for (; i < num_pb; i++)
   4353  1.3  msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4354  1.3  msaitoh 		break;
   4355  1.3  msaitoh 	default:
   4356  1.3  msaitoh 		break;
   4357  1.3  msaitoh 	}
   4358  1.3  msaitoh 
   4359  1.3  msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4360  1.3  msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4361  1.3  msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4362  1.3  msaitoh 	for (i = 0; i < num_pb; i++) {
   4363  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4364  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4365  1.3  msaitoh 	}
   4366  1.3  msaitoh 
   4367  1.3  msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4368  1.3  msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4369  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4370  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4371  1.3  msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4372  1.3  msaitoh 	}
   4373  1.3  msaitoh }
   4374  1.3  msaitoh 
   4375  1.3  msaitoh /**
   4376  1.3  msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4377  1.3  msaitoh  * @hw: pointer to the hardware structure
   4378  1.3  msaitoh  *
   4379  1.3  msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4380  1.3  msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4381  1.3  msaitoh  * buffers on the system.
   4382  1.3  msaitoh  **/
   4383  1.3  msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4384  1.3  msaitoh {
   4385  1.3  msaitoh 	u32 gcr_ext, hlreg0;
   4386  1.3  msaitoh 
   4387  1.3  msaitoh 	/*
   4388  1.3  msaitoh 	 * If double reset is not requested then all transactions should
   4389  1.3  msaitoh 	 * already be clear and as such there is no work to do
   4390  1.3  msaitoh 	 */
   4391  1.3  msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4392  1.3  msaitoh 		return;
   4393  1.3  msaitoh 
   4394  1.3  msaitoh 	/*
   4395  1.3  msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4396  1.3  msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4397  1.3  msaitoh 	 * has already been cleared.
   4398  1.3  msaitoh 	 */
   4399  1.3  msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4400  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4401  1.3  msaitoh 
   4402  1.3  msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4403  1.3  msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4404  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4405  1.3  msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4406  1.3  msaitoh 
   4407  1.3  msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4408  1.3  msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4409  1.3  msaitoh 	usec_delay(20);
   4410  1.3  msaitoh 
   4411  1.3  msaitoh 	/* restore previous register values */
   4412  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4413  1.3  msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4414  1.3  msaitoh }
   4415  1.3  msaitoh 
   4416