ixgbe_common.c revision 1.6 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.5 msaitoh Copyright (c) 2001-2013, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.6 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 251964 2013-06-18 21:28:19Z jfv $*/
34 1.6 msaitoh /*$NetBSD: ixgbe_common.c,v 1.6 2015/08/05 04:08:44 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.1 dyoung eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.1 dyoung eeprom->ops.read = &ixgbe_read_eerd_generic;
83 1.3 msaitoh eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.1 dyoung eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.3 msaitoh &ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.1 dyoung eeprom->ops.write = &ixgbe_write_eeprom_generic;
90 1.3 msaitoh eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.3 msaitoh &ixgbe_validate_eeprom_checksum_generic;
93 1.1 dyoung eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
94 1.1 dyoung eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.1 dyoung mac->ops.init_hw = &ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.1 dyoung mac->ops.start_hw = &ixgbe_start_hw_generic;
100 1.1 dyoung mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.1 dyoung mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
104 1.1 dyoung mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
105 1.1 dyoung mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
106 1.1 dyoung mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
107 1.1 dyoung mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
108 1.1 dyoung mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
109 1.1 dyoung mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
110 1.1 dyoung
111 1.1 dyoung /* LEDs */
112 1.1 dyoung mac->ops.led_on = &ixgbe_led_on_generic;
113 1.1 dyoung mac->ops.led_off = &ixgbe_led_off_generic;
114 1.1 dyoung mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
115 1.1 dyoung mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
116 1.1 dyoung
117 1.1 dyoung /* RAR, Multicast, VLAN */
118 1.1 dyoung mac->ops.set_rar = &ixgbe_set_rar_generic;
119 1.1 dyoung mac->ops.clear_rar = &ixgbe_clear_rar_generic;
120 1.1 dyoung mac->ops.insert_mac_addr = NULL;
121 1.1 dyoung mac->ops.set_vmdq = NULL;
122 1.1 dyoung mac->ops.clear_vmdq = NULL;
123 1.1 dyoung mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
124 1.1 dyoung mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
125 1.1 dyoung mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
126 1.1 dyoung mac->ops.enable_mc = &ixgbe_enable_mc_generic;
127 1.1 dyoung mac->ops.disable_mc = &ixgbe_disable_mc_generic;
128 1.1 dyoung mac->ops.clear_vfta = NULL;
129 1.1 dyoung mac->ops.set_vfta = NULL;
130 1.3 msaitoh mac->ops.set_vlvf = NULL;
131 1.1 dyoung mac->ops.init_uta_tables = NULL;
132 1.1 dyoung
133 1.1 dyoung /* Flow Control */
134 1.1 dyoung mac->ops.fc_enable = &ixgbe_fc_enable_generic;
135 1.1 dyoung
136 1.1 dyoung /* Link */
137 1.1 dyoung mac->ops.get_link_capabilities = NULL;
138 1.1 dyoung mac->ops.setup_link = NULL;
139 1.1 dyoung mac->ops.check_link = NULL;
140 1.6 msaitoh mac->ops.dmac_config = NULL;
141 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
142 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
143 1.1 dyoung
144 1.1 dyoung return IXGBE_SUCCESS;
145 1.1 dyoung }
146 1.1 dyoung
147 1.1 dyoung /**
148 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
149 1.6 msaitoh * of flow control
150 1.6 msaitoh * @hw: pointer to hardware structure
151 1.6 msaitoh *
152 1.6 msaitoh * This function returns TRUE if the device supports flow control
153 1.6 msaitoh * autonegotiation, and FALSE if it does not.
154 1.4 msaitoh *
155 1.4 msaitoh **/
156 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
157 1.4 msaitoh {
158 1.6 msaitoh bool supported = FALSE;
159 1.6 msaitoh ixgbe_link_speed speed;
160 1.6 msaitoh bool link_up;
161 1.4 msaitoh
162 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
163 1.4 msaitoh
164 1.6 msaitoh switch (hw->phy.media_type) {
165 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
166 1.6 msaitoh case ixgbe_media_type_fiber:
167 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
168 1.6 msaitoh /* if link is down, assume supported */
169 1.6 msaitoh if (link_up)
170 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
171 1.6 msaitoh TRUE : FALSE;
172 1.6 msaitoh else
173 1.6 msaitoh supported = TRUE;
174 1.6 msaitoh break;
175 1.6 msaitoh case ixgbe_media_type_backplane:
176 1.6 msaitoh supported = TRUE;
177 1.6 msaitoh break;
178 1.6 msaitoh case ixgbe_media_type_copper:
179 1.6 msaitoh /* only some copper devices support flow control autoneg */
180 1.6 msaitoh switch (hw->device_id) {
181 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
182 1.6 msaitoh case IXGBE_DEV_ID_X540T:
183 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
184 1.6 msaitoh supported = TRUE;
185 1.6 msaitoh break;
186 1.6 msaitoh default:
187 1.6 msaitoh supported = FALSE;
188 1.6 msaitoh }
189 1.4 msaitoh default:
190 1.6 msaitoh break;
191 1.4 msaitoh }
192 1.6 msaitoh
193 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
194 1.6 msaitoh "Device %x does not support flow control autoneg",
195 1.6 msaitoh hw->device_id);
196 1.6 msaitoh return supported;
197 1.4 msaitoh }
198 1.4 msaitoh
199 1.4 msaitoh /**
200 1.4 msaitoh * ixgbe_setup_fc - Set up flow control
201 1.4 msaitoh * @hw: pointer to hardware structure
202 1.4 msaitoh *
203 1.4 msaitoh * Called at init time to set up flow control.
204 1.4 msaitoh **/
205 1.4 msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
206 1.4 msaitoh {
207 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
208 1.4 msaitoh u32 reg = 0, reg_bp = 0;
209 1.4 msaitoh u16 reg_cu = 0;
210 1.5 msaitoh bool got_lock = FALSE;
211 1.4 msaitoh
212 1.4 msaitoh DEBUGFUNC("ixgbe_setup_fc");
213 1.4 msaitoh
214 1.4 msaitoh /*
215 1.4 msaitoh * Validate the requested mode. Strict IEEE mode does not allow
216 1.4 msaitoh * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
217 1.4 msaitoh */
218 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
219 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
220 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
221 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
222 1.4 msaitoh goto out;
223 1.4 msaitoh }
224 1.4 msaitoh
225 1.4 msaitoh /*
226 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
227 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
228 1.4 msaitoh */
229 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
230 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
231 1.4 msaitoh
232 1.4 msaitoh /*
233 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
234 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
235 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
236 1.4 msaitoh */
237 1.4 msaitoh switch (hw->phy.media_type) {
238 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
239 1.4 msaitoh case ixgbe_media_type_fiber:
240 1.4 msaitoh case ixgbe_media_type_backplane:
241 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
242 1.4 msaitoh reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
243 1.4 msaitoh break;
244 1.4 msaitoh case ixgbe_media_type_copper:
245 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
246 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
247 1.4 msaitoh break;
248 1.4 msaitoh default:
249 1.4 msaitoh break;
250 1.4 msaitoh }
251 1.4 msaitoh
252 1.4 msaitoh /*
253 1.4 msaitoh * The possible values of fc.requested_mode are:
254 1.4 msaitoh * 0: Flow control is completely disabled
255 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
256 1.4 msaitoh * but not send pause frames).
257 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
258 1.4 msaitoh * we do not support receiving pause frames).
259 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
260 1.4 msaitoh * other: Invalid.
261 1.4 msaitoh */
262 1.4 msaitoh switch (hw->fc.requested_mode) {
263 1.4 msaitoh case ixgbe_fc_none:
264 1.4 msaitoh /* Flow control completely disabled by software override. */
265 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
266 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
267 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
268 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
269 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
270 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
271 1.4 msaitoh break;
272 1.4 msaitoh case ixgbe_fc_tx_pause:
273 1.4 msaitoh /*
274 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
275 1.4 msaitoh * disabled by software override.
276 1.4 msaitoh */
277 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
278 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
279 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
280 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
281 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
282 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
283 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
284 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
285 1.4 msaitoh }
286 1.4 msaitoh break;
287 1.4 msaitoh case ixgbe_fc_rx_pause:
288 1.4 msaitoh /*
289 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
290 1.4 msaitoh * disabled by software override. Since there really
291 1.4 msaitoh * isn't a way to advertise that we are capable of RX
292 1.4 msaitoh * Pause ONLY, we will advertise that we support both
293 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
294 1.4 msaitoh * through to the fc_full statement. Later, we will
295 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
296 1.4 msaitoh */
297 1.4 msaitoh case ixgbe_fc_full:
298 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
299 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
300 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
301 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
302 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
303 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
304 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
305 1.4 msaitoh break;
306 1.4 msaitoh default:
307 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
308 1.6 msaitoh "Flow control param set incorrectly\n");
309 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
310 1.4 msaitoh goto out;
311 1.4 msaitoh break;
312 1.4 msaitoh }
313 1.4 msaitoh
314 1.4 msaitoh if (hw->mac.type != ixgbe_mac_X540) {
315 1.4 msaitoh /*
316 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
317 1.4 msaitoh * the MAC will advertise clause 37 flow control.
318 1.4 msaitoh */
319 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
320 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
321 1.4 msaitoh
322 1.4 msaitoh /* Disable AN timeout */
323 1.4 msaitoh if (hw->fc.strict_ieee)
324 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
325 1.4 msaitoh
326 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
327 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
328 1.4 msaitoh }
329 1.4 msaitoh
330 1.4 msaitoh /*
331 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
332 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
333 1.4 msaitoh *
334 1.4 msaitoh */
335 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
336 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
337 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
338 1.5 msaitoh * LESM is on, likewise reset_pipeline requries the lock as
339 1.5 msaitoh * it also writes AUTOC.
340 1.5 msaitoh */
341 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
342 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
343 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
344 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
345 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
346 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
347 1.5 msaitoh goto out;
348 1.5 msaitoh }
349 1.5 msaitoh got_lock = TRUE;
350 1.5 msaitoh }
351 1.5 msaitoh
352 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
353 1.5 msaitoh if (hw->mac.type == ixgbe_mac_82599EB)
354 1.5 msaitoh ixgbe_reset_pipeline_82599(hw);
355 1.5 msaitoh
356 1.5 msaitoh if (got_lock)
357 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw,
358 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
359 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
360 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
361 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
362 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
363 1.4 msaitoh }
364 1.4 msaitoh
365 1.4 msaitoh DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
366 1.4 msaitoh out:
367 1.4 msaitoh return ret_val;
368 1.4 msaitoh }
369 1.4 msaitoh
370 1.4 msaitoh /**
371 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
372 1.1 dyoung * @hw: pointer to hardware structure
373 1.1 dyoung *
374 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
375 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
376 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
377 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
378 1.1 dyoung **/
379 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
380 1.1 dyoung {
381 1.4 msaitoh s32 ret_val;
382 1.1 dyoung u32 ctrl_ext;
383 1.1 dyoung
384 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
385 1.1 dyoung
386 1.1 dyoung /* Set the media type */
387 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
388 1.1 dyoung
389 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
390 1.1 dyoung
391 1.1 dyoung /* Clear the VLAN filter table */
392 1.1 dyoung hw->mac.ops.clear_vfta(hw);
393 1.1 dyoung
394 1.1 dyoung /* Clear statistics registers */
395 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
396 1.1 dyoung
397 1.1 dyoung /* Set No Snoop Disable */
398 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
399 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
400 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
401 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
402 1.1 dyoung
403 1.1 dyoung /* Setup flow control */
404 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
405 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
406 1.4 msaitoh goto out;
407 1.1 dyoung
408 1.1 dyoung /* Clear adapter stopped flag */
409 1.1 dyoung hw->adapter_stopped = FALSE;
410 1.1 dyoung
411 1.4 msaitoh out:
412 1.4 msaitoh return ret_val;
413 1.1 dyoung }
414 1.1 dyoung
415 1.1 dyoung /**
416 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
417 1.1 dyoung * @hw: pointer to hw structure
418 1.1 dyoung *
419 1.1 dyoung * Performs the init sequence common to the second generation
420 1.1 dyoung * of 10 GbE devices.
421 1.1 dyoung * Devices in the second generation:
422 1.1 dyoung * 82599
423 1.1 dyoung * X540
424 1.1 dyoung **/
425 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
426 1.1 dyoung {
427 1.1 dyoung u32 i;
428 1.1 dyoung u32 regval;
429 1.1 dyoung
430 1.1 dyoung /* Clear the rate limiters */
431 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
432 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
433 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
434 1.1 dyoung }
435 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
436 1.1 dyoung
437 1.1 dyoung /* Disable relaxed ordering */
438 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
439 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
440 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
441 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
442 1.1 dyoung }
443 1.1 dyoung
444 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
445 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
446 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
447 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
448 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
449 1.1 dyoung }
450 1.1 dyoung
451 1.1 dyoung return IXGBE_SUCCESS;
452 1.1 dyoung }
453 1.1 dyoung
454 1.1 dyoung /**
455 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
456 1.1 dyoung * @hw: pointer to hardware structure
457 1.1 dyoung *
458 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
459 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
460 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
461 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
462 1.1 dyoung * disabled and uninitialized
463 1.1 dyoung **/
464 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
465 1.1 dyoung {
466 1.1 dyoung s32 status;
467 1.1 dyoung
468 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
469 1.1 dyoung
470 1.1 dyoung /* Reset the hardware */
471 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
472 1.1 dyoung
473 1.1 dyoung if (status == IXGBE_SUCCESS) {
474 1.1 dyoung /* Start the HW */
475 1.1 dyoung status = hw->mac.ops.start_hw(hw);
476 1.1 dyoung }
477 1.1 dyoung
478 1.1 dyoung return status;
479 1.1 dyoung }
480 1.1 dyoung
481 1.1 dyoung /**
482 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
483 1.1 dyoung * @hw: pointer to hardware structure
484 1.1 dyoung *
485 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
486 1.1 dyoung * Statistics counters are clear on read.
487 1.1 dyoung **/
488 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
489 1.1 dyoung {
490 1.1 dyoung u16 i = 0;
491 1.1 dyoung
492 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
493 1.1 dyoung
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
498 1.1 dyoung for (i = 0; i < 8; i++)
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
500 1.1 dyoung
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
506 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
507 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
508 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
509 1.1 dyoung } else {
510 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
512 1.1 dyoung }
513 1.1 dyoung
514 1.1 dyoung for (i = 0; i < 8; i++) {
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
517 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
518 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
519 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
520 1.1 dyoung } else {
521 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
523 1.1 dyoung }
524 1.1 dyoung }
525 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
526 1.1 dyoung for (i = 0; i < 8; i++)
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
536 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
537 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
542 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
543 1.3 msaitoh for (i = 0; i < 8; i++)
544 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
564 1.1 dyoung for (i = 0; i < 16; i++) {
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
567 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
570 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
571 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
572 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
573 1.1 dyoung } else {
574 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
575 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
576 1.1 dyoung }
577 1.1 dyoung }
578 1.1 dyoung
579 1.3 msaitoh if (hw->mac.type == ixgbe_mac_X540) {
580 1.3 msaitoh if (hw->phy.id == 0)
581 1.3 msaitoh ixgbe_identify_phy(hw);
582 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
583 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
585 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
586 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
587 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
588 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
589 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
590 1.3 msaitoh }
591 1.3 msaitoh
592 1.1 dyoung return IXGBE_SUCCESS;
593 1.1 dyoung }
594 1.1 dyoung
595 1.1 dyoung /**
596 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
597 1.1 dyoung * @hw: pointer to hardware structure
598 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
599 1.1 dyoung * @pba_num_size: part number string buffer length
600 1.1 dyoung *
601 1.1 dyoung * Reads the part number string from the EEPROM.
602 1.1 dyoung **/
603 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
604 1.3 msaitoh u32 pba_num_size)
605 1.1 dyoung {
606 1.1 dyoung s32 ret_val;
607 1.1 dyoung u16 data;
608 1.1 dyoung u16 pba_ptr;
609 1.1 dyoung u16 offset;
610 1.1 dyoung u16 length;
611 1.1 dyoung
612 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
613 1.1 dyoung
614 1.1 dyoung if (pba_num == NULL) {
615 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
616 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
617 1.1 dyoung }
618 1.1 dyoung
619 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
620 1.1 dyoung if (ret_val) {
621 1.1 dyoung DEBUGOUT("NVM Read Error\n");
622 1.1 dyoung return ret_val;
623 1.1 dyoung }
624 1.1 dyoung
625 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
626 1.1 dyoung if (ret_val) {
627 1.1 dyoung DEBUGOUT("NVM Read Error\n");
628 1.1 dyoung return ret_val;
629 1.1 dyoung }
630 1.1 dyoung
631 1.1 dyoung /*
632 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
633 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
634 1.1 dyoung * and we can decode it into an ascii string
635 1.1 dyoung */
636 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
637 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
638 1.1 dyoung
639 1.1 dyoung /* we will need 11 characters to store the PBA */
640 1.1 dyoung if (pba_num_size < 11) {
641 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
642 1.1 dyoung return IXGBE_ERR_NO_SPACE;
643 1.1 dyoung }
644 1.1 dyoung
645 1.1 dyoung /* extract hex string from data and pba_ptr */
646 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
647 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
648 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
649 1.1 dyoung pba_num[3] = data & 0xF;
650 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
651 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
652 1.1 dyoung pba_num[6] = '-';
653 1.1 dyoung pba_num[7] = 0;
654 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
655 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
656 1.1 dyoung
657 1.1 dyoung /* put a null character on the end of our string */
658 1.1 dyoung pba_num[10] = '\0';
659 1.1 dyoung
660 1.1 dyoung /* switch all the data but the '-' to hex char */
661 1.1 dyoung for (offset = 0; offset < 10; offset++) {
662 1.1 dyoung if (pba_num[offset] < 0xA)
663 1.1 dyoung pba_num[offset] += '0';
664 1.1 dyoung else if (pba_num[offset] < 0x10)
665 1.1 dyoung pba_num[offset] += 'A' - 0xA;
666 1.1 dyoung }
667 1.1 dyoung
668 1.1 dyoung return IXGBE_SUCCESS;
669 1.1 dyoung }
670 1.1 dyoung
671 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
672 1.1 dyoung if (ret_val) {
673 1.1 dyoung DEBUGOUT("NVM Read Error\n");
674 1.1 dyoung return ret_val;
675 1.1 dyoung }
676 1.1 dyoung
677 1.1 dyoung if (length == 0xFFFF || length == 0) {
678 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
679 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
680 1.1 dyoung }
681 1.1 dyoung
682 1.1 dyoung /* check if pba_num buffer is big enough */
683 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
684 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
685 1.1 dyoung return IXGBE_ERR_NO_SPACE;
686 1.1 dyoung }
687 1.1 dyoung
688 1.1 dyoung /* trim pba length from start of string */
689 1.1 dyoung pba_ptr++;
690 1.1 dyoung length--;
691 1.1 dyoung
692 1.1 dyoung for (offset = 0; offset < length; offset++) {
693 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
694 1.1 dyoung if (ret_val) {
695 1.1 dyoung DEBUGOUT("NVM Read Error\n");
696 1.1 dyoung return ret_val;
697 1.1 dyoung }
698 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
699 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
700 1.1 dyoung }
701 1.1 dyoung pba_num[offset * 2] = '\0';
702 1.1 dyoung
703 1.1 dyoung return IXGBE_SUCCESS;
704 1.1 dyoung }
705 1.1 dyoung
706 1.1 dyoung /**
707 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
708 1.1 dyoung * @hw: pointer to hardware structure
709 1.1 dyoung * @pba_num: stores the part number from the EEPROM
710 1.1 dyoung *
711 1.1 dyoung * Reads the part number from the EEPROM.
712 1.1 dyoung **/
713 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
714 1.1 dyoung {
715 1.1 dyoung s32 ret_val;
716 1.1 dyoung u16 data;
717 1.1 dyoung
718 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
719 1.1 dyoung
720 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
721 1.1 dyoung if (ret_val) {
722 1.1 dyoung DEBUGOUT("NVM Read Error\n");
723 1.1 dyoung return ret_val;
724 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
725 1.1 dyoung DEBUGOUT("NVM Not supported\n");
726 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
727 1.1 dyoung }
728 1.1 dyoung *pba_num = (u32)(data << 16);
729 1.1 dyoung
730 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
731 1.1 dyoung if (ret_val) {
732 1.1 dyoung DEBUGOUT("NVM Read Error\n");
733 1.1 dyoung return ret_val;
734 1.1 dyoung }
735 1.1 dyoung *pba_num |= data;
736 1.1 dyoung
737 1.1 dyoung return IXGBE_SUCCESS;
738 1.1 dyoung }
739 1.1 dyoung
740 1.1 dyoung /**
741 1.5 msaitoh * ixgbe_read_pba_raw
742 1.5 msaitoh * @hw: pointer to the HW structure
743 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
744 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
745 1.5 msaitoh * @max_pba_block_size: PBA block size limit
746 1.5 msaitoh * @pba: pointer to output PBA structure
747 1.5 msaitoh *
748 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
749 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
750 1.5 msaitoh *
751 1.5 msaitoh **/
752 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
753 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
754 1.5 msaitoh struct ixgbe_pba *pba)
755 1.5 msaitoh {
756 1.5 msaitoh s32 ret_val;
757 1.5 msaitoh u16 pba_block_size;
758 1.5 msaitoh
759 1.5 msaitoh if (pba == NULL)
760 1.5 msaitoh return IXGBE_ERR_PARAM;
761 1.5 msaitoh
762 1.5 msaitoh if (eeprom_buf == NULL) {
763 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
764 1.5 msaitoh &pba->word[0]);
765 1.5 msaitoh if (ret_val)
766 1.5 msaitoh return ret_val;
767 1.5 msaitoh } else {
768 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
769 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
770 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
771 1.5 msaitoh } else {
772 1.5 msaitoh return IXGBE_ERR_PARAM;
773 1.5 msaitoh }
774 1.5 msaitoh }
775 1.5 msaitoh
776 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
777 1.5 msaitoh if (pba->pba_block == NULL)
778 1.5 msaitoh return IXGBE_ERR_PARAM;
779 1.5 msaitoh
780 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
781 1.5 msaitoh eeprom_buf_size,
782 1.5 msaitoh &pba_block_size);
783 1.5 msaitoh if (ret_val)
784 1.5 msaitoh return ret_val;
785 1.5 msaitoh
786 1.5 msaitoh if (pba_block_size > max_pba_block_size)
787 1.5 msaitoh return IXGBE_ERR_PARAM;
788 1.5 msaitoh
789 1.5 msaitoh if (eeprom_buf == NULL) {
790 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
791 1.5 msaitoh pba_block_size,
792 1.5 msaitoh pba->pba_block);
793 1.5 msaitoh if (ret_val)
794 1.5 msaitoh return ret_val;
795 1.5 msaitoh } else {
796 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
797 1.5 msaitoh pba->pba_block[0])) {
798 1.5 msaitoh memcpy(pba->pba_block,
799 1.5 msaitoh &eeprom_buf[pba->word[1]],
800 1.5 msaitoh pba_block_size * sizeof(u16));
801 1.5 msaitoh } else {
802 1.5 msaitoh return IXGBE_ERR_PARAM;
803 1.5 msaitoh }
804 1.5 msaitoh }
805 1.5 msaitoh }
806 1.5 msaitoh
807 1.5 msaitoh return IXGBE_SUCCESS;
808 1.5 msaitoh }
809 1.5 msaitoh
810 1.5 msaitoh /**
811 1.5 msaitoh * ixgbe_write_pba_raw
812 1.5 msaitoh * @hw: pointer to the HW structure
813 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
814 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
815 1.5 msaitoh * @pba: pointer to PBA structure
816 1.5 msaitoh *
817 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
818 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
819 1.5 msaitoh *
820 1.5 msaitoh **/
821 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
822 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
823 1.5 msaitoh {
824 1.5 msaitoh s32 ret_val;
825 1.5 msaitoh
826 1.5 msaitoh if (pba == NULL)
827 1.5 msaitoh return IXGBE_ERR_PARAM;
828 1.5 msaitoh
829 1.5 msaitoh if (eeprom_buf == NULL) {
830 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
831 1.5 msaitoh &pba->word[0]);
832 1.5 msaitoh if (ret_val)
833 1.5 msaitoh return ret_val;
834 1.5 msaitoh } else {
835 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
836 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
837 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
838 1.5 msaitoh } else {
839 1.5 msaitoh return IXGBE_ERR_PARAM;
840 1.5 msaitoh }
841 1.5 msaitoh }
842 1.5 msaitoh
843 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
844 1.5 msaitoh if (pba->pba_block == NULL)
845 1.5 msaitoh return IXGBE_ERR_PARAM;
846 1.5 msaitoh
847 1.5 msaitoh if (eeprom_buf == NULL) {
848 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
849 1.5 msaitoh pba->pba_block[0],
850 1.5 msaitoh pba->pba_block);
851 1.5 msaitoh if (ret_val)
852 1.5 msaitoh return ret_val;
853 1.5 msaitoh } else {
854 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
855 1.5 msaitoh pba->pba_block[0])) {
856 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
857 1.5 msaitoh pba->pba_block,
858 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
859 1.5 msaitoh } else {
860 1.5 msaitoh return IXGBE_ERR_PARAM;
861 1.5 msaitoh }
862 1.5 msaitoh }
863 1.5 msaitoh }
864 1.5 msaitoh
865 1.5 msaitoh return IXGBE_SUCCESS;
866 1.5 msaitoh }
867 1.5 msaitoh
868 1.5 msaitoh /**
869 1.5 msaitoh * ixgbe_get_pba_block_size
870 1.5 msaitoh * @hw: pointer to the HW structure
871 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
872 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
873 1.5 msaitoh * @pba_data_size: pointer to output variable
874 1.5 msaitoh *
875 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
876 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
877 1.5 msaitoh * EEPROM device.
878 1.5 msaitoh *
879 1.5 msaitoh **/
880 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
881 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
882 1.5 msaitoh {
883 1.5 msaitoh s32 ret_val;
884 1.5 msaitoh u16 pba_word[2];
885 1.5 msaitoh u16 length;
886 1.5 msaitoh
887 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
888 1.5 msaitoh
889 1.5 msaitoh if (eeprom_buf == NULL) {
890 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
891 1.5 msaitoh &pba_word[0]);
892 1.5 msaitoh if (ret_val)
893 1.5 msaitoh return ret_val;
894 1.5 msaitoh } else {
895 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
896 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
897 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
898 1.5 msaitoh } else {
899 1.5 msaitoh return IXGBE_ERR_PARAM;
900 1.5 msaitoh }
901 1.5 msaitoh }
902 1.5 msaitoh
903 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
904 1.5 msaitoh if (eeprom_buf == NULL) {
905 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
906 1.5 msaitoh &length);
907 1.5 msaitoh if (ret_val)
908 1.5 msaitoh return ret_val;
909 1.5 msaitoh } else {
910 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
911 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
912 1.5 msaitoh else
913 1.5 msaitoh return IXGBE_ERR_PARAM;
914 1.5 msaitoh }
915 1.5 msaitoh
916 1.5 msaitoh if (length == 0xFFFF || length == 0)
917 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
918 1.5 msaitoh } else {
919 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
920 1.5 msaitoh length = 0;
921 1.5 msaitoh }
922 1.5 msaitoh
923 1.5 msaitoh if (pba_block_size != NULL)
924 1.5 msaitoh *pba_block_size = length;
925 1.5 msaitoh
926 1.5 msaitoh return IXGBE_SUCCESS;
927 1.5 msaitoh }
928 1.5 msaitoh
929 1.5 msaitoh /**
930 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
931 1.1 dyoung * @hw: pointer to hardware structure
932 1.1 dyoung * @mac_addr: Adapter MAC address
933 1.1 dyoung *
934 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
935 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
936 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
937 1.1 dyoung **/
938 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
939 1.1 dyoung {
940 1.1 dyoung u32 rar_high;
941 1.1 dyoung u32 rar_low;
942 1.1 dyoung u16 i;
943 1.1 dyoung
944 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
945 1.1 dyoung
946 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
947 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
948 1.1 dyoung
949 1.1 dyoung for (i = 0; i < 4; i++)
950 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
951 1.1 dyoung
952 1.1 dyoung for (i = 0; i < 2; i++)
953 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
954 1.1 dyoung
955 1.1 dyoung return IXGBE_SUCCESS;
956 1.1 dyoung }
957 1.1 dyoung
958 1.1 dyoung /**
959 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
960 1.1 dyoung * @hw: pointer to hardware structure
961 1.6 msaitoh * @link_status: the link status returned by the PCI config space
962 1.1 dyoung *
963 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
964 1.1 dyoung **/
965 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
966 1.1 dyoung {
967 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
968 1.1 dyoung
969 1.1 dyoung hw->bus.type = ixgbe_bus_type_pci_express;
970 1.1 dyoung
971 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
972 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
973 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
974 1.1 dyoung break;
975 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
976 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
977 1.1 dyoung break;
978 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
979 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
980 1.1 dyoung break;
981 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
982 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
983 1.1 dyoung break;
984 1.1 dyoung default:
985 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
986 1.1 dyoung break;
987 1.1 dyoung }
988 1.1 dyoung
989 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
990 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
991 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
992 1.1 dyoung break;
993 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
994 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
995 1.1 dyoung break;
996 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
997 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
998 1.4 msaitoh break;
999 1.1 dyoung default:
1000 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
1001 1.1 dyoung break;
1002 1.1 dyoung }
1003 1.1 dyoung
1004 1.1 dyoung mac->ops.set_lan_id(hw);
1005 1.6 msaitoh }
1006 1.6 msaitoh
1007 1.6 msaitoh /**
1008 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1009 1.6 msaitoh * @hw: pointer to hardware structure
1010 1.6 msaitoh *
1011 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1012 1.6 msaitoh * store this data within the ixgbe_hw structure.
1013 1.6 msaitoh **/
1014 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1015 1.6 msaitoh {
1016 1.6 msaitoh u16 link_status;
1017 1.6 msaitoh
1018 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1019 1.6 msaitoh
1020 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1021 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1022 1.6 msaitoh
1023 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1024 1.1 dyoung
1025 1.1 dyoung return IXGBE_SUCCESS;
1026 1.1 dyoung }
1027 1.1 dyoung
1028 1.1 dyoung /**
1029 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1030 1.1 dyoung * @hw: pointer to the HW structure
1031 1.1 dyoung *
1032 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1033 1.1 dyoung * and swaps the port value if requested.
1034 1.1 dyoung **/
1035 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1036 1.1 dyoung {
1037 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1038 1.1 dyoung u32 reg;
1039 1.1 dyoung
1040 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1041 1.1 dyoung
1042 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1043 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1044 1.1 dyoung bus->lan_id = bus->func;
1045 1.1 dyoung
1046 1.1 dyoung /* check for a port swap */
1047 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
1048 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1049 1.1 dyoung bus->func ^= 0x1;
1050 1.1 dyoung }
1051 1.1 dyoung
1052 1.1 dyoung /**
1053 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1054 1.1 dyoung * @hw: pointer to hardware structure
1055 1.1 dyoung *
1056 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1057 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1058 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1059 1.1 dyoung * state and should not touch the hardware.
1060 1.1 dyoung **/
1061 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1062 1.1 dyoung {
1063 1.1 dyoung u32 reg_val;
1064 1.1 dyoung u16 i;
1065 1.1 dyoung
1066 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1067 1.1 dyoung
1068 1.1 dyoung /*
1069 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1070 1.1 dyoung * the hardware
1071 1.1 dyoung */
1072 1.1 dyoung hw->adapter_stopped = TRUE;
1073 1.1 dyoung
1074 1.1 dyoung /* Disable the receive unit */
1075 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
1076 1.1 dyoung
1077 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1078 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1079 1.1 dyoung
1080 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1081 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1082 1.1 dyoung
1083 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1084 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1085 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1086 1.3 msaitoh
1087 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1088 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1089 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1090 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1091 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1092 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1093 1.1 dyoung }
1094 1.1 dyoung
1095 1.3 msaitoh /* flush all queues disables */
1096 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1097 1.3 msaitoh msec_delay(2);
1098 1.3 msaitoh
1099 1.1 dyoung /*
1100 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
1101 1.1 dyoung * access and verify no pending requests
1102 1.1 dyoung */
1103 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1104 1.1 dyoung }
1105 1.1 dyoung
1106 1.1 dyoung /**
1107 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1108 1.1 dyoung * @hw: pointer to hardware structure
1109 1.1 dyoung * @index: led number to turn on
1110 1.1 dyoung **/
1111 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1112 1.1 dyoung {
1113 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1114 1.1 dyoung
1115 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1116 1.1 dyoung
1117 1.1 dyoung /* To turn on the LED, set mode to ON. */
1118 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1119 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1120 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1121 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1122 1.1 dyoung
1123 1.1 dyoung return IXGBE_SUCCESS;
1124 1.1 dyoung }
1125 1.1 dyoung
1126 1.1 dyoung /**
1127 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1128 1.1 dyoung * @hw: pointer to hardware structure
1129 1.1 dyoung * @index: led number to turn off
1130 1.1 dyoung **/
1131 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1132 1.1 dyoung {
1133 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1134 1.1 dyoung
1135 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1136 1.1 dyoung
1137 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1138 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1139 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1140 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1141 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1142 1.1 dyoung
1143 1.1 dyoung return IXGBE_SUCCESS;
1144 1.1 dyoung }
1145 1.1 dyoung
1146 1.1 dyoung /**
1147 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1148 1.1 dyoung * @hw: pointer to hardware structure
1149 1.1 dyoung *
1150 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1151 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1152 1.1 dyoung **/
1153 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1154 1.1 dyoung {
1155 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1156 1.1 dyoung u32 eec;
1157 1.1 dyoung u16 eeprom_size;
1158 1.1 dyoung
1159 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1160 1.1 dyoung
1161 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1162 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1163 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1164 1.1 dyoung * tested value */
1165 1.1 dyoung eeprom->semaphore_delay = 10;
1166 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1167 1.3 msaitoh eeprom->word_page_size = 0;
1168 1.1 dyoung
1169 1.1 dyoung /*
1170 1.1 dyoung * Check for EEPROM present first.
1171 1.1 dyoung * If not present leave as none
1172 1.1 dyoung */
1173 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1174 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1175 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1176 1.1 dyoung
1177 1.1 dyoung /*
1178 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1179 1.1 dyoung * change if a future EEPROM is not SPI.
1180 1.1 dyoung */
1181 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1182 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1183 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1184 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1185 1.1 dyoung }
1186 1.1 dyoung
1187 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1188 1.1 dyoung eeprom->address_bits = 16;
1189 1.1 dyoung else
1190 1.1 dyoung eeprom->address_bits = 8;
1191 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1192 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1193 1.3 msaitoh eeprom->address_bits);
1194 1.1 dyoung }
1195 1.1 dyoung
1196 1.1 dyoung return IXGBE_SUCCESS;
1197 1.1 dyoung }
1198 1.1 dyoung
1199 1.1 dyoung /**
1200 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1201 1.3 msaitoh * @hw: pointer to hardware structure
1202 1.3 msaitoh * @offset: offset within the EEPROM to write
1203 1.3 msaitoh * @words: number of word(s)
1204 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1205 1.3 msaitoh *
1206 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1207 1.3 msaitoh **/
1208 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1209 1.3 msaitoh u16 words, u16 *data)
1210 1.3 msaitoh {
1211 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1212 1.3 msaitoh u16 i, count;
1213 1.3 msaitoh
1214 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1215 1.3 msaitoh
1216 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1217 1.3 msaitoh
1218 1.3 msaitoh if (words == 0) {
1219 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1220 1.3 msaitoh goto out;
1221 1.3 msaitoh }
1222 1.3 msaitoh
1223 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1224 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1225 1.3 msaitoh goto out;
1226 1.3 msaitoh }
1227 1.3 msaitoh
1228 1.3 msaitoh /*
1229 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1230 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1231 1.3 msaitoh */
1232 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1233 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1234 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1235 1.3 msaitoh
1236 1.3 msaitoh /*
1237 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1238 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1239 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1240 1.3 msaitoh */
1241 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1242 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1243 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1244 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1245 1.3 msaitoh count, &data[i]);
1246 1.3 msaitoh
1247 1.3 msaitoh if (status != IXGBE_SUCCESS)
1248 1.3 msaitoh break;
1249 1.3 msaitoh }
1250 1.3 msaitoh
1251 1.3 msaitoh out:
1252 1.3 msaitoh return status;
1253 1.3 msaitoh }
1254 1.3 msaitoh
1255 1.3 msaitoh /**
1256 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1257 1.3 msaitoh * @hw: pointer to hardware structure
1258 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1259 1.3 msaitoh * @words: number of word(s)
1260 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1261 1.3 msaitoh *
1262 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1263 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1264 1.3 msaitoh **/
1265 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1266 1.3 msaitoh u16 words, u16 *data)
1267 1.3 msaitoh {
1268 1.3 msaitoh s32 status;
1269 1.3 msaitoh u16 word;
1270 1.3 msaitoh u16 page_size;
1271 1.3 msaitoh u16 i;
1272 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1273 1.3 msaitoh
1274 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1275 1.3 msaitoh
1276 1.3 msaitoh /* Prepare the EEPROM for writing */
1277 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1278 1.3 msaitoh
1279 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1280 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1281 1.3 msaitoh ixgbe_release_eeprom(hw);
1282 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1283 1.3 msaitoh }
1284 1.3 msaitoh }
1285 1.3 msaitoh
1286 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1287 1.3 msaitoh for (i = 0; i < words; i++) {
1288 1.3 msaitoh ixgbe_standby_eeprom(hw);
1289 1.3 msaitoh
1290 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1291 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1292 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1293 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1294 1.3 msaitoh
1295 1.3 msaitoh ixgbe_standby_eeprom(hw);
1296 1.3 msaitoh
1297 1.3 msaitoh /*
1298 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1299 1.3 msaitoh * in the opcode
1300 1.3 msaitoh */
1301 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1302 1.3 msaitoh ((offset + i) >= 128))
1303 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1304 1.3 msaitoh
1305 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1306 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1307 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1308 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1309 1.3 msaitoh hw->eeprom.address_bits);
1310 1.3 msaitoh
1311 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1312 1.3 msaitoh
1313 1.3 msaitoh /* Send the data in burst via SPI*/
1314 1.3 msaitoh do {
1315 1.3 msaitoh word = data[i];
1316 1.3 msaitoh word = (word >> 8) | (word << 8);
1317 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1318 1.3 msaitoh
1319 1.3 msaitoh if (page_size == 0)
1320 1.3 msaitoh break;
1321 1.3 msaitoh
1322 1.3 msaitoh /* do not wrap around page */
1323 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1324 1.3 msaitoh (page_size - 1))
1325 1.3 msaitoh break;
1326 1.3 msaitoh } while (++i < words);
1327 1.3 msaitoh
1328 1.3 msaitoh ixgbe_standby_eeprom(hw);
1329 1.3 msaitoh msec_delay(10);
1330 1.3 msaitoh }
1331 1.3 msaitoh /* Done with writing - release the EEPROM */
1332 1.3 msaitoh ixgbe_release_eeprom(hw);
1333 1.3 msaitoh }
1334 1.3 msaitoh
1335 1.3 msaitoh return status;
1336 1.3 msaitoh }
1337 1.3 msaitoh
1338 1.3 msaitoh /**
1339 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1340 1.1 dyoung * @hw: pointer to hardware structure
1341 1.1 dyoung * @offset: offset within the EEPROM to be written to
1342 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1343 1.1 dyoung *
1344 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1345 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1346 1.1 dyoung **/
1347 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1348 1.1 dyoung {
1349 1.1 dyoung s32 status;
1350 1.1 dyoung
1351 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1352 1.1 dyoung
1353 1.1 dyoung hw->eeprom.ops.init_params(hw);
1354 1.1 dyoung
1355 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1356 1.1 dyoung status = IXGBE_ERR_EEPROM;
1357 1.1 dyoung goto out;
1358 1.1 dyoung }
1359 1.1 dyoung
1360 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1361 1.3 msaitoh
1362 1.3 msaitoh out:
1363 1.3 msaitoh return status;
1364 1.3 msaitoh }
1365 1.3 msaitoh
1366 1.3 msaitoh /**
1367 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1368 1.3 msaitoh * @hw: pointer to hardware structure
1369 1.3 msaitoh * @offset: offset within the EEPROM to be read
1370 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1371 1.3 msaitoh * @words: number of word(s)
1372 1.3 msaitoh *
1373 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1374 1.3 msaitoh **/
1375 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1376 1.3 msaitoh u16 words, u16 *data)
1377 1.3 msaitoh {
1378 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1379 1.3 msaitoh u16 i, count;
1380 1.3 msaitoh
1381 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1382 1.3 msaitoh
1383 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1384 1.3 msaitoh
1385 1.3 msaitoh if (words == 0) {
1386 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1387 1.3 msaitoh goto out;
1388 1.3 msaitoh }
1389 1.3 msaitoh
1390 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1391 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1392 1.3 msaitoh goto out;
1393 1.3 msaitoh }
1394 1.3 msaitoh
1395 1.3 msaitoh /*
1396 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1397 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1398 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1399 1.3 msaitoh */
1400 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1401 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1402 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1403 1.3 msaitoh
1404 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1405 1.3 msaitoh count, &data[i]);
1406 1.3 msaitoh
1407 1.3 msaitoh if (status != IXGBE_SUCCESS)
1408 1.3 msaitoh break;
1409 1.3 msaitoh }
1410 1.3 msaitoh
1411 1.3 msaitoh out:
1412 1.3 msaitoh return status;
1413 1.3 msaitoh }
1414 1.3 msaitoh
1415 1.3 msaitoh /**
1416 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1417 1.3 msaitoh * @hw: pointer to hardware structure
1418 1.3 msaitoh * @offset: offset within the EEPROM to be read
1419 1.3 msaitoh * @words: number of word(s)
1420 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1421 1.3 msaitoh *
1422 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1423 1.3 msaitoh **/
1424 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1425 1.3 msaitoh u16 words, u16 *data)
1426 1.3 msaitoh {
1427 1.3 msaitoh s32 status;
1428 1.3 msaitoh u16 word_in;
1429 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1430 1.3 msaitoh u16 i;
1431 1.3 msaitoh
1432 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1433 1.3 msaitoh
1434 1.3 msaitoh /* Prepare the EEPROM for reading */
1435 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1436 1.1 dyoung
1437 1.1 dyoung if (status == IXGBE_SUCCESS) {
1438 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1439 1.1 dyoung ixgbe_release_eeprom(hw);
1440 1.1 dyoung status = IXGBE_ERR_EEPROM;
1441 1.1 dyoung }
1442 1.1 dyoung }
1443 1.1 dyoung
1444 1.1 dyoung if (status == IXGBE_SUCCESS) {
1445 1.3 msaitoh for (i = 0; i < words; i++) {
1446 1.3 msaitoh ixgbe_standby_eeprom(hw);
1447 1.3 msaitoh /*
1448 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1449 1.3 msaitoh * in the opcode
1450 1.3 msaitoh */
1451 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1452 1.3 msaitoh ((offset + i) >= 128))
1453 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1454 1.3 msaitoh
1455 1.3 msaitoh /* Send the READ command (opcode + addr) */
1456 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1457 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1458 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1459 1.3 msaitoh hw->eeprom.address_bits);
1460 1.3 msaitoh
1461 1.3 msaitoh /* Read the data. */
1462 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1463 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1464 1.3 msaitoh }
1465 1.1 dyoung
1466 1.3 msaitoh /* End this read operation */
1467 1.1 dyoung ixgbe_release_eeprom(hw);
1468 1.1 dyoung }
1469 1.1 dyoung
1470 1.1 dyoung return status;
1471 1.1 dyoung }
1472 1.1 dyoung
1473 1.1 dyoung /**
1474 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1475 1.1 dyoung * @hw: pointer to hardware structure
1476 1.1 dyoung * @offset: offset within the EEPROM to be read
1477 1.1 dyoung * @data: read 16 bit value from EEPROM
1478 1.1 dyoung *
1479 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1480 1.1 dyoung **/
1481 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1482 1.3 msaitoh u16 *data)
1483 1.1 dyoung {
1484 1.1 dyoung s32 status;
1485 1.1 dyoung
1486 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1487 1.1 dyoung
1488 1.1 dyoung hw->eeprom.ops.init_params(hw);
1489 1.1 dyoung
1490 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1491 1.1 dyoung status = IXGBE_ERR_EEPROM;
1492 1.1 dyoung goto out;
1493 1.1 dyoung }
1494 1.1 dyoung
1495 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1496 1.3 msaitoh
1497 1.3 msaitoh out:
1498 1.3 msaitoh return status;
1499 1.3 msaitoh }
1500 1.3 msaitoh
1501 1.3 msaitoh /**
1502 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1503 1.3 msaitoh * @hw: pointer to hardware structure
1504 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1505 1.3 msaitoh * @words: number of word(s)
1506 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1507 1.3 msaitoh *
1508 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1509 1.3 msaitoh **/
1510 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1511 1.3 msaitoh u16 words, u16 *data)
1512 1.3 msaitoh {
1513 1.3 msaitoh u32 eerd;
1514 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1515 1.3 msaitoh u32 i;
1516 1.3 msaitoh
1517 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1518 1.3 msaitoh
1519 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1520 1.3 msaitoh
1521 1.3 msaitoh if (words == 0) {
1522 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1523 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1524 1.3 msaitoh goto out;
1525 1.3 msaitoh }
1526 1.3 msaitoh
1527 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1528 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1529 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1530 1.3 msaitoh goto out;
1531 1.3 msaitoh }
1532 1.3 msaitoh
1533 1.3 msaitoh for (i = 0; i < words; i++) {
1534 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1535 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1536 1.3 msaitoh
1537 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1538 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1539 1.1 dyoung
1540 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1541 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1542 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1543 1.3 msaitoh } else {
1544 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1545 1.3 msaitoh goto out;
1546 1.1 dyoung }
1547 1.1 dyoung }
1548 1.3 msaitoh out:
1549 1.3 msaitoh return status;
1550 1.3 msaitoh }
1551 1.1 dyoung
1552 1.3 msaitoh /**
1553 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1554 1.3 msaitoh * @hw: pointer to hardware structure
1555 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1556 1.3 msaitoh *
1557 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1558 1.3 msaitoh * This function is called only when we are writing a new large buffer
1559 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1560 1.3 msaitoh **/
1561 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1562 1.3 msaitoh u16 offset)
1563 1.3 msaitoh {
1564 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1565 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1566 1.3 msaitoh u16 i;
1567 1.3 msaitoh
1568 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1569 1.3 msaitoh
1570 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1571 1.3 msaitoh data[i] = i;
1572 1.1 dyoung
1573 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1574 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1575 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1576 1.3 msaitoh hw->eeprom.word_page_size = 0;
1577 1.3 msaitoh if (status != IXGBE_SUCCESS)
1578 1.3 msaitoh goto out;
1579 1.1 dyoung
1580 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1581 1.3 msaitoh if (status != IXGBE_SUCCESS)
1582 1.3 msaitoh goto out;
1583 1.1 dyoung
1584 1.3 msaitoh /*
1585 1.3 msaitoh * When writing in burst more than the actual page size
1586 1.3 msaitoh * EEPROM address wraps around current page.
1587 1.3 msaitoh */
1588 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1589 1.1 dyoung
1590 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1591 1.3 msaitoh hw->eeprom.word_page_size);
1592 1.1 dyoung out:
1593 1.1 dyoung return status;
1594 1.1 dyoung }
1595 1.1 dyoung
1596 1.1 dyoung /**
1597 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1598 1.1 dyoung * @hw: pointer to hardware structure
1599 1.1 dyoung * @offset: offset of word in the EEPROM to read
1600 1.1 dyoung * @data: word read from the EEPROM
1601 1.1 dyoung *
1602 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1603 1.1 dyoung **/
1604 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1605 1.1 dyoung {
1606 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1607 1.3 msaitoh }
1608 1.3 msaitoh
1609 1.3 msaitoh /**
1610 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1611 1.3 msaitoh * @hw: pointer to hardware structure
1612 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1613 1.3 msaitoh * @words: number of word(s)
1614 1.3 msaitoh * @data: word(s) write to the EEPROM
1615 1.3 msaitoh *
1616 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1617 1.3 msaitoh **/
1618 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1619 1.3 msaitoh u16 words, u16 *data)
1620 1.3 msaitoh {
1621 1.3 msaitoh u32 eewr;
1622 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1623 1.3 msaitoh u16 i;
1624 1.1 dyoung
1625 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1626 1.1 dyoung
1627 1.1 dyoung hw->eeprom.ops.init_params(hw);
1628 1.1 dyoung
1629 1.3 msaitoh if (words == 0) {
1630 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1631 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1632 1.3 msaitoh goto out;
1633 1.3 msaitoh }
1634 1.3 msaitoh
1635 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1636 1.1 dyoung status = IXGBE_ERR_EEPROM;
1637 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1638 1.1 dyoung goto out;
1639 1.1 dyoung }
1640 1.1 dyoung
1641 1.3 msaitoh for (i = 0; i < words; i++) {
1642 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1643 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1644 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1645 1.3 msaitoh
1646 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1647 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1648 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1649 1.3 msaitoh goto out;
1650 1.3 msaitoh }
1651 1.1 dyoung
1652 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1653 1.1 dyoung
1654 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1655 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1656 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1657 1.3 msaitoh goto out;
1658 1.3 msaitoh }
1659 1.3 msaitoh }
1660 1.1 dyoung
1661 1.1 dyoung out:
1662 1.1 dyoung return status;
1663 1.1 dyoung }
1664 1.1 dyoung
1665 1.1 dyoung /**
1666 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1667 1.1 dyoung * @hw: pointer to hardware structure
1668 1.1 dyoung * @offset: offset of word in the EEPROM to write
1669 1.1 dyoung * @data: word write to the EEPROM
1670 1.1 dyoung *
1671 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1672 1.1 dyoung **/
1673 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1674 1.1 dyoung {
1675 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1676 1.1 dyoung }
1677 1.1 dyoung
1678 1.1 dyoung /**
1679 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1680 1.1 dyoung * @hw: pointer to hardware structure
1681 1.1 dyoung * @ee_reg: EEPROM flag for polling
1682 1.1 dyoung *
1683 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1684 1.1 dyoung * read or write is done respectively.
1685 1.1 dyoung **/
1686 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1687 1.1 dyoung {
1688 1.1 dyoung u32 i;
1689 1.1 dyoung u32 reg;
1690 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1691 1.1 dyoung
1692 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1693 1.1 dyoung
1694 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1695 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1696 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1697 1.1 dyoung else
1698 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1699 1.1 dyoung
1700 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1701 1.1 dyoung status = IXGBE_SUCCESS;
1702 1.1 dyoung break;
1703 1.1 dyoung }
1704 1.1 dyoung usec_delay(5);
1705 1.1 dyoung }
1706 1.6 msaitoh
1707 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1708 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1709 1.6 msaitoh "EEPROM read/write done polling timed out");
1710 1.6 msaitoh
1711 1.1 dyoung return status;
1712 1.1 dyoung }
1713 1.1 dyoung
1714 1.1 dyoung /**
1715 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1716 1.1 dyoung * @hw: pointer to hardware structure
1717 1.1 dyoung *
1718 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1719 1.1 dyoung * be called before issuing a command to the EEPROM.
1720 1.1 dyoung **/
1721 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1722 1.1 dyoung {
1723 1.1 dyoung s32 status = IXGBE_SUCCESS;
1724 1.1 dyoung u32 eec;
1725 1.1 dyoung u32 i;
1726 1.1 dyoung
1727 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1728 1.1 dyoung
1729 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1730 1.3 msaitoh != IXGBE_SUCCESS)
1731 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1732 1.1 dyoung
1733 1.1 dyoung if (status == IXGBE_SUCCESS) {
1734 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1735 1.1 dyoung
1736 1.1 dyoung /* Request EEPROM Access */
1737 1.1 dyoung eec |= IXGBE_EEC_REQ;
1738 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1739 1.1 dyoung
1740 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1741 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1742 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1743 1.1 dyoung break;
1744 1.1 dyoung usec_delay(5);
1745 1.1 dyoung }
1746 1.1 dyoung
1747 1.1 dyoung /* Release if grant not acquired */
1748 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1749 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1750 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1751 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1752 1.1 dyoung
1753 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1754 1.1 dyoung status = IXGBE_ERR_EEPROM;
1755 1.1 dyoung }
1756 1.1 dyoung
1757 1.1 dyoung /* Setup EEPROM for Read/Write */
1758 1.1 dyoung if (status == IXGBE_SUCCESS) {
1759 1.1 dyoung /* Clear CS and SK */
1760 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1761 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1762 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1763 1.1 dyoung usec_delay(1);
1764 1.1 dyoung }
1765 1.1 dyoung }
1766 1.1 dyoung return status;
1767 1.1 dyoung }
1768 1.1 dyoung
1769 1.1 dyoung /**
1770 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1771 1.1 dyoung * @hw: pointer to hardware structure
1772 1.1 dyoung *
1773 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1774 1.1 dyoung **/
1775 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1776 1.1 dyoung {
1777 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1778 1.1 dyoung u32 timeout = 2000;
1779 1.1 dyoung u32 i;
1780 1.1 dyoung u32 swsm;
1781 1.1 dyoung
1782 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1783 1.1 dyoung
1784 1.1 dyoung
1785 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1786 1.1 dyoung for (i = 0; i < timeout; i++) {
1787 1.1 dyoung /*
1788 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1789 1.1 dyoung * set and we have the semaphore
1790 1.1 dyoung */
1791 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1792 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1793 1.1 dyoung status = IXGBE_SUCCESS;
1794 1.1 dyoung break;
1795 1.1 dyoung }
1796 1.1 dyoung usec_delay(50);
1797 1.1 dyoung }
1798 1.1 dyoung
1799 1.3 msaitoh if (i == timeout) {
1800 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1801 1.3 msaitoh "not granted.\n");
1802 1.3 msaitoh /*
1803 1.3 msaitoh * this release is particularly important because our attempts
1804 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1805 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1806 1.3 msaitoh * bits to free the driver to make progress
1807 1.3 msaitoh */
1808 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1809 1.3 msaitoh
1810 1.3 msaitoh usec_delay(50);
1811 1.3 msaitoh /*
1812 1.3 msaitoh * one last try
1813 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1814 1.3 msaitoh * set and we have the semaphore
1815 1.3 msaitoh */
1816 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1817 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1818 1.3 msaitoh status = IXGBE_SUCCESS;
1819 1.3 msaitoh }
1820 1.3 msaitoh
1821 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1822 1.1 dyoung if (status == IXGBE_SUCCESS) {
1823 1.1 dyoung for (i = 0; i < timeout; i++) {
1824 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1825 1.1 dyoung
1826 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1827 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1828 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1829 1.1 dyoung
1830 1.1 dyoung /*
1831 1.1 dyoung * If we set the bit successfully then we got the
1832 1.1 dyoung * semaphore.
1833 1.1 dyoung */
1834 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1835 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1836 1.1 dyoung break;
1837 1.1 dyoung
1838 1.1 dyoung usec_delay(50);
1839 1.1 dyoung }
1840 1.1 dyoung
1841 1.1 dyoung /*
1842 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1843 1.1 dyoung * was not granted because we don't have access to the EEPROM
1844 1.1 dyoung */
1845 1.1 dyoung if (i >= timeout) {
1846 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1847 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1848 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1849 1.1 dyoung status = IXGBE_ERR_EEPROM;
1850 1.1 dyoung }
1851 1.1 dyoung } else {
1852 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1853 1.6 msaitoh "Software semaphore SMBI between device drivers "
1854 1.6 msaitoh "not granted.\n");
1855 1.1 dyoung }
1856 1.1 dyoung
1857 1.1 dyoung return status;
1858 1.1 dyoung }
1859 1.1 dyoung
1860 1.1 dyoung /**
1861 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1862 1.1 dyoung * @hw: pointer to hardware structure
1863 1.1 dyoung *
1864 1.1 dyoung * This function clears hardware semaphore bits.
1865 1.1 dyoung **/
1866 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1867 1.1 dyoung {
1868 1.1 dyoung u32 swsm;
1869 1.1 dyoung
1870 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1871 1.1 dyoung
1872 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1873 1.1 dyoung
1874 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1875 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1876 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1877 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1878 1.1 dyoung }
1879 1.1 dyoung
1880 1.1 dyoung /**
1881 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1882 1.1 dyoung * @hw: pointer to hardware structure
1883 1.1 dyoung **/
1884 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1885 1.1 dyoung {
1886 1.1 dyoung s32 status = IXGBE_SUCCESS;
1887 1.1 dyoung u16 i;
1888 1.1 dyoung u8 spi_stat_reg;
1889 1.1 dyoung
1890 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1891 1.1 dyoung
1892 1.1 dyoung /*
1893 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1894 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1895 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1896 1.1 dyoung * 5 milliseconds, then error out.
1897 1.1 dyoung */
1898 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1899 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1900 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1901 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1902 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1903 1.1 dyoung break;
1904 1.1 dyoung
1905 1.1 dyoung usec_delay(5);
1906 1.1 dyoung ixgbe_standby_eeprom(hw);
1907 1.1 dyoung };
1908 1.1 dyoung
1909 1.1 dyoung /*
1910 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1911 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1912 1.1 dyoung */
1913 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1914 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1915 1.1 dyoung status = IXGBE_ERR_EEPROM;
1916 1.1 dyoung }
1917 1.1 dyoung
1918 1.1 dyoung return status;
1919 1.1 dyoung }
1920 1.1 dyoung
1921 1.1 dyoung /**
1922 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1923 1.1 dyoung * @hw: pointer to hardware structure
1924 1.1 dyoung **/
1925 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1926 1.1 dyoung {
1927 1.1 dyoung u32 eec;
1928 1.1 dyoung
1929 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1930 1.1 dyoung
1931 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1932 1.1 dyoung
1933 1.1 dyoung /* Toggle CS to flush commands */
1934 1.1 dyoung eec |= IXGBE_EEC_CS;
1935 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1936 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1937 1.1 dyoung usec_delay(1);
1938 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1939 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1940 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1941 1.1 dyoung usec_delay(1);
1942 1.1 dyoung }
1943 1.1 dyoung
1944 1.1 dyoung /**
1945 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1946 1.1 dyoung * @hw: pointer to hardware structure
1947 1.1 dyoung * @data: data to send to the EEPROM
1948 1.1 dyoung * @count: number of bits to shift out
1949 1.1 dyoung **/
1950 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1951 1.3 msaitoh u16 count)
1952 1.1 dyoung {
1953 1.1 dyoung u32 eec;
1954 1.1 dyoung u32 mask;
1955 1.1 dyoung u32 i;
1956 1.1 dyoung
1957 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1958 1.1 dyoung
1959 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1960 1.1 dyoung
1961 1.1 dyoung /*
1962 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1963 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1964 1.1 dyoung */
1965 1.1 dyoung mask = 0x01 << (count - 1);
1966 1.1 dyoung
1967 1.1 dyoung for (i = 0; i < count; i++) {
1968 1.1 dyoung /*
1969 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1970 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1971 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1972 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1973 1.1 dyoung * raising and then lowering the clock.
1974 1.1 dyoung */
1975 1.1 dyoung if (data & mask)
1976 1.1 dyoung eec |= IXGBE_EEC_DI;
1977 1.1 dyoung else
1978 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1979 1.1 dyoung
1980 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1981 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1982 1.1 dyoung
1983 1.1 dyoung usec_delay(1);
1984 1.1 dyoung
1985 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1986 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1987 1.1 dyoung
1988 1.1 dyoung /*
1989 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1990 1.1 dyoung * EEPROM
1991 1.1 dyoung */
1992 1.1 dyoung mask = mask >> 1;
1993 1.1 dyoung };
1994 1.1 dyoung
1995 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1996 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1997 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1998 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1999 1.1 dyoung }
2000 1.1 dyoung
2001 1.1 dyoung /**
2002 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2003 1.1 dyoung * @hw: pointer to hardware structure
2004 1.1 dyoung **/
2005 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2006 1.1 dyoung {
2007 1.1 dyoung u32 eec;
2008 1.1 dyoung u32 i;
2009 1.1 dyoung u16 data = 0;
2010 1.1 dyoung
2011 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2012 1.1 dyoung
2013 1.1 dyoung /*
2014 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2015 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2016 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2017 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2018 1.1 dyoung * "DI" bit should always be clear.
2019 1.1 dyoung */
2020 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2021 1.1 dyoung
2022 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2023 1.1 dyoung
2024 1.1 dyoung for (i = 0; i < count; i++) {
2025 1.1 dyoung data = data << 1;
2026 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2027 1.1 dyoung
2028 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2029 1.1 dyoung
2030 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2031 1.1 dyoung if (eec & IXGBE_EEC_DO)
2032 1.1 dyoung data |= 1;
2033 1.1 dyoung
2034 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2035 1.1 dyoung }
2036 1.1 dyoung
2037 1.1 dyoung return data;
2038 1.1 dyoung }
2039 1.1 dyoung
2040 1.1 dyoung /**
2041 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2042 1.1 dyoung * @hw: pointer to hardware structure
2043 1.1 dyoung * @eec: EEC register's current value
2044 1.1 dyoung **/
2045 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2046 1.1 dyoung {
2047 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2048 1.1 dyoung
2049 1.1 dyoung /*
2050 1.1 dyoung * Raise the clock input to the EEPROM
2051 1.1 dyoung * (setting the SK bit), then delay
2052 1.1 dyoung */
2053 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2054 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2055 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2056 1.1 dyoung usec_delay(1);
2057 1.1 dyoung }
2058 1.1 dyoung
2059 1.1 dyoung /**
2060 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2061 1.1 dyoung * @hw: pointer to hardware structure
2062 1.1 dyoung * @eecd: EECD's current value
2063 1.1 dyoung **/
2064 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2065 1.1 dyoung {
2066 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2067 1.1 dyoung
2068 1.1 dyoung /*
2069 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2070 1.1 dyoung * delay
2071 1.1 dyoung */
2072 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2073 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2074 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2075 1.1 dyoung usec_delay(1);
2076 1.1 dyoung }
2077 1.1 dyoung
2078 1.1 dyoung /**
2079 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2080 1.1 dyoung * @hw: pointer to hardware structure
2081 1.1 dyoung **/
2082 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2083 1.1 dyoung {
2084 1.1 dyoung u32 eec;
2085 1.1 dyoung
2086 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2087 1.1 dyoung
2088 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2089 1.1 dyoung
2090 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2091 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2092 1.1 dyoung
2093 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2094 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2095 1.1 dyoung
2096 1.1 dyoung usec_delay(1);
2097 1.1 dyoung
2098 1.1 dyoung /* Stop requesting EEPROM access */
2099 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2100 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2101 1.1 dyoung
2102 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2103 1.1 dyoung
2104 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2105 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2106 1.1 dyoung }
2107 1.1 dyoung
2108 1.1 dyoung /**
2109 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2110 1.1 dyoung * @hw: pointer to hardware structure
2111 1.1 dyoung **/
2112 1.1 dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2113 1.1 dyoung {
2114 1.1 dyoung u16 i;
2115 1.1 dyoung u16 j;
2116 1.1 dyoung u16 checksum = 0;
2117 1.1 dyoung u16 length = 0;
2118 1.1 dyoung u16 pointer = 0;
2119 1.1 dyoung u16 word = 0;
2120 1.1 dyoung
2121 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2122 1.1 dyoung
2123 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2124 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2125 1.1 dyoung if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
2126 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2127 1.1 dyoung break;
2128 1.1 dyoung }
2129 1.1 dyoung checksum += word;
2130 1.1 dyoung }
2131 1.1 dyoung
2132 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2133 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2134 1.1 dyoung hw->eeprom.ops.read(hw, i, &pointer);
2135 1.1 dyoung
2136 1.1 dyoung /* Make sure the pointer seems valid */
2137 1.1 dyoung if (pointer != 0xFFFF && pointer != 0) {
2138 1.1 dyoung hw->eeprom.ops.read(hw, pointer, &length);
2139 1.1 dyoung
2140 1.1 dyoung if (length != 0xFFFF && length != 0) {
2141 1.1 dyoung for (j = pointer+1; j <= pointer+length; j++) {
2142 1.1 dyoung hw->eeprom.ops.read(hw, j, &word);
2143 1.1 dyoung checksum += word;
2144 1.1 dyoung }
2145 1.1 dyoung }
2146 1.1 dyoung }
2147 1.1 dyoung }
2148 1.1 dyoung
2149 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2150 1.1 dyoung
2151 1.1 dyoung return checksum;
2152 1.1 dyoung }
2153 1.1 dyoung
2154 1.1 dyoung /**
2155 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2156 1.1 dyoung * @hw: pointer to hardware structure
2157 1.1 dyoung * @checksum_val: calculated checksum
2158 1.1 dyoung *
2159 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2160 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2161 1.1 dyoung **/
2162 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2163 1.3 msaitoh u16 *checksum_val)
2164 1.1 dyoung {
2165 1.1 dyoung s32 status;
2166 1.1 dyoung u16 checksum;
2167 1.1 dyoung u16 read_checksum = 0;
2168 1.1 dyoung
2169 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2170 1.1 dyoung
2171 1.1 dyoung /*
2172 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
2173 1.1 dyoung * not continue or we could be in for a very long wait while every
2174 1.1 dyoung * EEPROM read fails
2175 1.1 dyoung */
2176 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2177 1.1 dyoung
2178 1.1 dyoung if (status == IXGBE_SUCCESS) {
2179 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
2180 1.1 dyoung
2181 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2182 1.1 dyoung
2183 1.1 dyoung /*
2184 1.1 dyoung * Verify read checksum from EEPROM is the same as
2185 1.1 dyoung * calculated checksum
2186 1.1 dyoung */
2187 1.1 dyoung if (read_checksum != checksum)
2188 1.1 dyoung status = IXGBE_ERR_EEPROM_CHECKSUM;
2189 1.1 dyoung
2190 1.1 dyoung /* If the user cares, return the calculated checksum */
2191 1.1 dyoung if (checksum_val)
2192 1.1 dyoung *checksum_val = checksum;
2193 1.1 dyoung } else {
2194 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2195 1.1 dyoung }
2196 1.1 dyoung
2197 1.1 dyoung return status;
2198 1.1 dyoung }
2199 1.1 dyoung
2200 1.1 dyoung /**
2201 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2202 1.1 dyoung * @hw: pointer to hardware structure
2203 1.1 dyoung **/
2204 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2205 1.1 dyoung {
2206 1.1 dyoung s32 status;
2207 1.1 dyoung u16 checksum;
2208 1.1 dyoung
2209 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2210 1.1 dyoung
2211 1.1 dyoung /*
2212 1.1 dyoung * Read the first word from the EEPROM. If this times out or fails, do
2213 1.1 dyoung * not continue or we could be in for a very long wait while every
2214 1.1 dyoung * EEPROM read fails
2215 1.1 dyoung */
2216 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2217 1.1 dyoung
2218 1.1 dyoung if (status == IXGBE_SUCCESS) {
2219 1.1 dyoung checksum = hw->eeprom.ops.calc_checksum(hw);
2220 1.1 dyoung status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
2221 1.3 msaitoh checksum);
2222 1.1 dyoung } else {
2223 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2224 1.1 dyoung }
2225 1.1 dyoung
2226 1.1 dyoung return status;
2227 1.1 dyoung }
2228 1.1 dyoung
2229 1.1 dyoung /**
2230 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2231 1.1 dyoung * @mac_addr: pointer to MAC address.
2232 1.1 dyoung *
2233 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2234 1.1 dyoung **/
2235 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2236 1.1 dyoung {
2237 1.1 dyoung s32 status = IXGBE_SUCCESS;
2238 1.1 dyoung
2239 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2240 1.1 dyoung
2241 1.1 dyoung /* Make sure it is not a multicast address */
2242 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2243 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2244 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2245 1.1 dyoung /* Not a broadcast address */
2246 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2247 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2248 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2249 1.1 dyoung /* Reject the zero address */
2250 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2251 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2252 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2253 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2254 1.1 dyoung }
2255 1.1 dyoung return status;
2256 1.1 dyoung }
2257 1.1 dyoung
2258 1.1 dyoung /**
2259 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2260 1.1 dyoung * @hw: pointer to hardware structure
2261 1.1 dyoung * @index: Receive address register to write
2262 1.1 dyoung * @addr: Address to put into receive address register
2263 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2264 1.1 dyoung * @enable_addr: set flag that address is active
2265 1.1 dyoung *
2266 1.1 dyoung * Puts an ethernet address into a receive address register.
2267 1.1 dyoung **/
2268 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2269 1.3 msaitoh u32 enable_addr)
2270 1.1 dyoung {
2271 1.1 dyoung u32 rar_low, rar_high;
2272 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2273 1.1 dyoung
2274 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2275 1.1 dyoung
2276 1.1 dyoung /* Make sure we are using a valid rar index range */
2277 1.1 dyoung if (index >= rar_entries) {
2278 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2279 1.6 msaitoh "RAR index %d is out of range.\n", index);
2280 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2281 1.1 dyoung }
2282 1.1 dyoung
2283 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2284 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2285 1.1 dyoung
2286 1.1 dyoung /*
2287 1.1 dyoung * HW expects these in little endian so we reverse the byte
2288 1.1 dyoung * order from network order (big endian) to little endian
2289 1.1 dyoung */
2290 1.1 dyoung rar_low = ((u32)addr[0] |
2291 1.3 msaitoh ((u32)addr[1] << 8) |
2292 1.3 msaitoh ((u32)addr[2] << 16) |
2293 1.3 msaitoh ((u32)addr[3] << 24));
2294 1.1 dyoung /*
2295 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2296 1.1 dyoung * so save everything except the lower 16 bits that hold part
2297 1.1 dyoung * of the address and the address valid bit.
2298 1.1 dyoung */
2299 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2300 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2301 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2302 1.1 dyoung
2303 1.1 dyoung if (enable_addr != 0)
2304 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2305 1.1 dyoung
2306 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2307 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2308 1.1 dyoung
2309 1.1 dyoung return IXGBE_SUCCESS;
2310 1.1 dyoung }
2311 1.1 dyoung
2312 1.1 dyoung /**
2313 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2314 1.1 dyoung * @hw: pointer to hardware structure
2315 1.1 dyoung * @index: Receive address register to write
2316 1.1 dyoung *
2317 1.1 dyoung * Clears an ethernet address from a receive address register.
2318 1.1 dyoung **/
2319 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2320 1.1 dyoung {
2321 1.1 dyoung u32 rar_high;
2322 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2323 1.1 dyoung
2324 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2325 1.1 dyoung
2326 1.1 dyoung /* Make sure we are using a valid rar index range */
2327 1.1 dyoung if (index >= rar_entries) {
2328 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2329 1.6 msaitoh "RAR index %d is out of range.\n", index);
2330 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2331 1.1 dyoung }
2332 1.1 dyoung
2333 1.1 dyoung /*
2334 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2335 1.1 dyoung * so save everything except the lower 16 bits that hold part
2336 1.1 dyoung * of the address and the address valid bit.
2337 1.1 dyoung */
2338 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2339 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2340 1.1 dyoung
2341 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2342 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2343 1.1 dyoung
2344 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2345 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2346 1.1 dyoung
2347 1.1 dyoung return IXGBE_SUCCESS;
2348 1.1 dyoung }
2349 1.1 dyoung
2350 1.1 dyoung /**
2351 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2352 1.1 dyoung * @hw: pointer to hardware structure
2353 1.1 dyoung *
2354 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2355 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2356 1.1 dyoung * the receiver is in reset when the routine is called.
2357 1.1 dyoung **/
2358 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2359 1.1 dyoung {
2360 1.1 dyoung u32 i;
2361 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2362 1.1 dyoung
2363 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2364 1.1 dyoung
2365 1.1 dyoung /*
2366 1.1 dyoung * If the current mac address is valid, assume it is a software override
2367 1.1 dyoung * to the permanent address.
2368 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2369 1.1 dyoung */
2370 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2371 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2372 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2373 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2374 1.1 dyoung
2375 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2376 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2377 1.3 msaitoh hw->mac.addr[2]);
2378 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2379 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2380 1.1 dyoung } else {
2381 1.1 dyoung /* Setup the receive address. */
2382 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2383 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2384 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2385 1.3 msaitoh hw->mac.addr[2]);
2386 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2387 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2388 1.1 dyoung
2389 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2390 1.1 dyoung
2391 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2392 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2393 1.1 dyoung }
2394 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2395 1.1 dyoung
2396 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2397 1.1 dyoung
2398 1.1 dyoung /* Zero out the other receive addresses. */
2399 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2400 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2401 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2402 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2403 1.1 dyoung }
2404 1.1 dyoung
2405 1.1 dyoung /* Clear the MTA */
2406 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2407 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2408 1.1 dyoung
2409 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2410 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2411 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2412 1.1 dyoung
2413 1.1 dyoung ixgbe_init_uta_tables(hw);
2414 1.1 dyoung
2415 1.1 dyoung return IXGBE_SUCCESS;
2416 1.1 dyoung }
2417 1.1 dyoung
2418 1.1 dyoung /**
2419 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2420 1.1 dyoung * @hw: pointer to hardware structure
2421 1.1 dyoung * @addr: new address
2422 1.1 dyoung *
2423 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2424 1.1 dyoung **/
2425 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2426 1.1 dyoung {
2427 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2428 1.1 dyoung u32 rar;
2429 1.1 dyoung
2430 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2431 1.1 dyoung
2432 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2433 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2434 1.1 dyoung
2435 1.1 dyoung /*
2436 1.1 dyoung * Place this address in the RAR if there is room,
2437 1.1 dyoung * else put the controller into promiscuous mode
2438 1.1 dyoung */
2439 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2440 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2441 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2442 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2443 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2444 1.1 dyoung } else {
2445 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2446 1.1 dyoung }
2447 1.1 dyoung
2448 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2449 1.1 dyoung }
2450 1.1 dyoung
2451 1.1 dyoung /**
2452 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2453 1.1 dyoung * @hw: pointer to hardware structure
2454 1.1 dyoung * @addr_list: the list of new addresses
2455 1.1 dyoung * @addr_count: number of addresses
2456 1.1 dyoung * @next: iterator function to walk the address list
2457 1.1 dyoung *
2458 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2459 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2460 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2461 1.1 dyoung *
2462 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2463 1.1 dyoung * manually putting the device into promiscuous mode.
2464 1.1 dyoung **/
2465 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2466 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2467 1.1 dyoung {
2468 1.1 dyoung u8 *addr;
2469 1.1 dyoung u32 i;
2470 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2471 1.1 dyoung u32 uc_addr_in_use;
2472 1.1 dyoung u32 fctrl;
2473 1.1 dyoung u32 vmdq;
2474 1.1 dyoung
2475 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2476 1.1 dyoung
2477 1.1 dyoung /*
2478 1.1 dyoung * Clear accounting of old secondary address list,
2479 1.1 dyoung * don't count RAR[0]
2480 1.1 dyoung */
2481 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2482 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2483 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2484 1.1 dyoung
2485 1.1 dyoung /* Zero out the other receive addresses */
2486 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2487 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2488 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2489 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2490 1.1 dyoung }
2491 1.1 dyoung
2492 1.1 dyoung /* Add the new addresses */
2493 1.1 dyoung for (i = 0; i < addr_count; i++) {
2494 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2495 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2496 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2497 1.1 dyoung }
2498 1.1 dyoung
2499 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2500 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2501 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2502 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2503 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2504 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2505 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2506 1.1 dyoung }
2507 1.1 dyoung } else {
2508 1.1 dyoung /* only disable if set by overflow, not by user */
2509 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2510 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2511 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2512 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2513 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2514 1.1 dyoung }
2515 1.1 dyoung }
2516 1.1 dyoung
2517 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2518 1.1 dyoung return IXGBE_SUCCESS;
2519 1.1 dyoung }
2520 1.1 dyoung
2521 1.1 dyoung /**
2522 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2523 1.1 dyoung * @hw: pointer to hardware structure
2524 1.1 dyoung * @mc_addr: the multicast address
2525 1.1 dyoung *
2526 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2527 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2528 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2529 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2530 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2531 1.1 dyoung * to mc_filter_type.
2532 1.1 dyoung **/
2533 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2534 1.1 dyoung {
2535 1.1 dyoung u32 vector = 0;
2536 1.1 dyoung
2537 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2538 1.1 dyoung
2539 1.1 dyoung switch (hw->mac.mc_filter_type) {
2540 1.1 dyoung case 0: /* use bits [47:36] of the address */
2541 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2542 1.1 dyoung break;
2543 1.1 dyoung case 1: /* use bits [46:35] of the address */
2544 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2545 1.1 dyoung break;
2546 1.1 dyoung case 2: /* use bits [45:34] of the address */
2547 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2548 1.1 dyoung break;
2549 1.1 dyoung case 3: /* use bits [43:32] of the address */
2550 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2551 1.1 dyoung break;
2552 1.1 dyoung default: /* Invalid mc_filter_type */
2553 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2554 1.1 dyoung ASSERT(0);
2555 1.1 dyoung break;
2556 1.1 dyoung }
2557 1.1 dyoung
2558 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2559 1.1 dyoung vector &= 0xFFF;
2560 1.1 dyoung return vector;
2561 1.1 dyoung }
2562 1.1 dyoung
2563 1.1 dyoung /**
2564 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2565 1.1 dyoung * @hw: pointer to hardware structure
2566 1.1 dyoung * @hash_value: Multicast address hash value
2567 1.1 dyoung *
2568 1.1 dyoung * Sets the bit-vector in the multicast table.
2569 1.1 dyoung **/
2570 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2571 1.1 dyoung {
2572 1.1 dyoung u32 vector;
2573 1.1 dyoung u32 vector_bit;
2574 1.1 dyoung u32 vector_reg;
2575 1.1 dyoung
2576 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2577 1.1 dyoung
2578 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2579 1.1 dyoung
2580 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2581 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2582 1.1 dyoung
2583 1.1 dyoung /*
2584 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2585 1.1 dyoung * like an array of 4096 bits. We want to set bit
2586 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2587 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2588 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2589 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2590 1.1 dyoung * the value.
2591 1.1 dyoung */
2592 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2593 1.1 dyoung vector_bit = vector & 0x1F;
2594 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2595 1.1 dyoung }
2596 1.1 dyoung
2597 1.1 dyoung /**
2598 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2599 1.1 dyoung * @hw: pointer to hardware structure
2600 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2601 1.1 dyoung * @mc_addr_count: number of addresses
2602 1.1 dyoung * @next: iterator function to walk the multicast address list
2603 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2604 1.1 dyoung *
2605 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2606 1.3 msaitoh * Hashes the given addresses into the multicast table.
2607 1.1 dyoung **/
2608 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2609 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2610 1.3 msaitoh bool clear)
2611 1.1 dyoung {
2612 1.1 dyoung u32 i;
2613 1.1 dyoung u32 vmdq;
2614 1.1 dyoung
2615 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2616 1.1 dyoung
2617 1.1 dyoung /*
2618 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2619 1.1 dyoung * use.
2620 1.1 dyoung */
2621 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2622 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2623 1.1 dyoung
2624 1.1 dyoung /* Clear mta_shadow */
2625 1.3 msaitoh if (clear) {
2626 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2627 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2628 1.3 msaitoh }
2629 1.1 dyoung
2630 1.1 dyoung /* Update mta_shadow */
2631 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2632 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2633 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2634 1.1 dyoung }
2635 1.1 dyoung
2636 1.1 dyoung /* Enable mta */
2637 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2638 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2639 1.1 dyoung hw->mac.mta_shadow[i]);
2640 1.1 dyoung
2641 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2642 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2643 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2644 1.1 dyoung
2645 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2646 1.1 dyoung return IXGBE_SUCCESS;
2647 1.1 dyoung }
2648 1.1 dyoung
2649 1.1 dyoung /**
2650 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2651 1.1 dyoung * @hw: pointer to hardware structure
2652 1.1 dyoung *
2653 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2654 1.1 dyoung **/
2655 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2656 1.1 dyoung {
2657 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2658 1.1 dyoung
2659 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2660 1.1 dyoung
2661 1.1 dyoung if (a->mta_in_use > 0)
2662 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2663 1.3 msaitoh hw->mac.mc_filter_type);
2664 1.1 dyoung
2665 1.1 dyoung return IXGBE_SUCCESS;
2666 1.1 dyoung }
2667 1.1 dyoung
2668 1.1 dyoung /**
2669 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2670 1.1 dyoung * @hw: pointer to hardware structure
2671 1.1 dyoung *
2672 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2673 1.1 dyoung **/
2674 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2675 1.1 dyoung {
2676 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2677 1.1 dyoung
2678 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2679 1.1 dyoung
2680 1.1 dyoung if (a->mta_in_use > 0)
2681 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2682 1.1 dyoung
2683 1.1 dyoung return IXGBE_SUCCESS;
2684 1.1 dyoung }
2685 1.1 dyoung
2686 1.1 dyoung /**
2687 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2688 1.1 dyoung * @hw: pointer to hardware structure
2689 1.1 dyoung *
2690 1.1 dyoung * Enable flow control according to the current settings.
2691 1.1 dyoung **/
2692 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2693 1.1 dyoung {
2694 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2695 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2696 1.1 dyoung u32 reg;
2697 1.1 dyoung u32 fcrtl, fcrth;
2698 1.4 msaitoh int i;
2699 1.1 dyoung
2700 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2701 1.1 dyoung
2702 1.4 msaitoh /* Validate the water mark configuration */
2703 1.4 msaitoh if (!hw->fc.pause_time) {
2704 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2705 1.4 msaitoh goto out;
2706 1.4 msaitoh }
2707 1.4 msaitoh
2708 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2709 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2710 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2711 1.4 msaitoh hw->fc.high_water[i]) {
2712 1.4 msaitoh if (!hw->fc.low_water[i] ||
2713 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2714 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2715 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2716 1.4 msaitoh goto out;
2717 1.4 msaitoh }
2718 1.4 msaitoh }
2719 1.4 msaitoh }
2720 1.4 msaitoh
2721 1.1 dyoung /* Negotiate the fc mode to use */
2722 1.4 msaitoh ixgbe_fc_autoneg(hw);
2723 1.1 dyoung
2724 1.1 dyoung /* Disable any previous flow control settings */
2725 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2726 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2727 1.1 dyoung
2728 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2729 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2730 1.1 dyoung
2731 1.1 dyoung /*
2732 1.1 dyoung * The possible values of fc.current_mode are:
2733 1.1 dyoung * 0: Flow control is completely disabled
2734 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2735 1.1 dyoung * but not send pause frames).
2736 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2737 1.1 dyoung * we do not support receiving pause frames).
2738 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2739 1.1 dyoung * other: Invalid.
2740 1.1 dyoung */
2741 1.1 dyoung switch (hw->fc.current_mode) {
2742 1.1 dyoung case ixgbe_fc_none:
2743 1.1 dyoung /*
2744 1.1 dyoung * Flow control is disabled by software override or autoneg.
2745 1.1 dyoung * The code below will actually disable it in the HW.
2746 1.1 dyoung */
2747 1.1 dyoung break;
2748 1.1 dyoung case ixgbe_fc_rx_pause:
2749 1.1 dyoung /*
2750 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2751 1.1 dyoung * disabled by software override. Since there really
2752 1.1 dyoung * isn't a way to advertise that we are capable of RX
2753 1.1 dyoung * Pause ONLY, we will advertise that we support both
2754 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2755 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2756 1.1 dyoung */
2757 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2758 1.1 dyoung break;
2759 1.1 dyoung case ixgbe_fc_tx_pause:
2760 1.1 dyoung /*
2761 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2762 1.1 dyoung * disabled by software override.
2763 1.1 dyoung */
2764 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2765 1.1 dyoung break;
2766 1.1 dyoung case ixgbe_fc_full:
2767 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2768 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2769 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2770 1.1 dyoung break;
2771 1.1 dyoung default:
2772 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2773 1.6 msaitoh "Flow control param set incorrectly\n");
2774 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2775 1.1 dyoung goto out;
2776 1.1 dyoung break;
2777 1.1 dyoung }
2778 1.1 dyoung
2779 1.1 dyoung /* Set 802.3x based flow control settings. */
2780 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2781 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2782 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2783 1.1 dyoung
2784 1.1 dyoung
2785 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2786 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2787 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2788 1.4 msaitoh hw->fc.high_water[i]) {
2789 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2790 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2791 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2792 1.4 msaitoh } else {
2793 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2794 1.4 msaitoh /*
2795 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2796 1.4 msaitoh * switch is enabled we must set the high water mark
2797 1.4 msaitoh * to the maximum FCRTH value. This allows the Tx
2798 1.4 msaitoh * switch to function even under heavy Rx workloads.
2799 1.4 msaitoh */
2800 1.4 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2801 1.4 msaitoh }
2802 1.4 msaitoh
2803 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2804 1.1 dyoung }
2805 1.1 dyoung
2806 1.1 dyoung /* Configure pause time (2 TCs per register) */
2807 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2808 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2809 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2810 1.1 dyoung
2811 1.4 msaitoh /* Configure flow control refresh threshold value */
2812 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2813 1.1 dyoung
2814 1.1 dyoung out:
2815 1.1 dyoung return ret_val;
2816 1.1 dyoung }
2817 1.1 dyoung
2818 1.1 dyoung /**
2819 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2820 1.1 dyoung * @hw: pointer to hardware structure
2821 1.4 msaitoh * @adv_reg: flow control advertised settings
2822 1.4 msaitoh * @lp_reg: link partner's flow control settings
2823 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2824 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2825 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2826 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2827 1.1 dyoung *
2828 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2829 1.4 msaitoh * advertised settings
2830 1.1 dyoung **/
2831 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2832 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2833 1.1 dyoung {
2834 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2835 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2836 1.6 msaitoh "Local or link partner's advertised flow control "
2837 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2838 1.6 msaitoh adv_reg, lp_reg);
2839 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2840 1.6 msaitoh }
2841 1.1 dyoung
2842 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2843 1.4 msaitoh /*
2844 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2845 1.4 msaitoh * of pause frames. In this case, we had to advertise
2846 1.4 msaitoh * FULL flow control because we could not advertise RX
2847 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2848 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2849 1.4 msaitoh */
2850 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2851 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2852 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2853 1.4 msaitoh } else {
2854 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2855 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2856 1.4 msaitoh }
2857 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2858 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2859 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2860 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2861 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2862 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2863 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2864 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2865 1.4 msaitoh } else {
2866 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2867 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2868 1.4 msaitoh }
2869 1.4 msaitoh return IXGBE_SUCCESS;
2870 1.4 msaitoh }
2871 1.1 dyoung
2872 1.4 msaitoh /**
2873 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2874 1.4 msaitoh * @hw: pointer to hardware structure
2875 1.4 msaitoh *
2876 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2877 1.4 msaitoh **/
2878 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2879 1.4 msaitoh {
2880 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2881 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2882 1.1 dyoung
2883 1.1 dyoung /*
2884 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2885 1.4 msaitoh * - link is up but AN did not complete, or if
2886 1.4 msaitoh * - link is up and AN completed but timed out
2887 1.1 dyoung */
2888 1.4 msaitoh
2889 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2890 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2891 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2892 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
2893 1.6 msaitoh "Auto-Negotiation did not complete or timed out");
2894 1.1 dyoung goto out;
2895 1.6 msaitoh }
2896 1.1 dyoung
2897 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2898 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2899 1.1 dyoung
2900 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2901 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2902 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2903 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2904 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2905 1.1 dyoung
2906 1.1 dyoung out:
2907 1.1 dyoung return ret_val;
2908 1.1 dyoung }
2909 1.1 dyoung
2910 1.1 dyoung /**
2911 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2912 1.1 dyoung * @hw: pointer to hardware structure
2913 1.1 dyoung *
2914 1.1 dyoung * Enable flow control according to IEEE clause 37.
2915 1.1 dyoung **/
2916 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2917 1.1 dyoung {
2918 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2919 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2920 1.1 dyoung
2921 1.1 dyoung /*
2922 1.1 dyoung * On backplane, bail out if
2923 1.1 dyoung * - backplane autoneg was not completed, or if
2924 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2925 1.1 dyoung */
2926 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2927 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2928 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
2929 1.6 msaitoh "Auto-Negotiation did not complete");
2930 1.1 dyoung goto out;
2931 1.6 msaitoh }
2932 1.1 dyoung
2933 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2934 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2935 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2936 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
2937 1.6 msaitoh "Link partner is not AN enabled");
2938 1.1 dyoung goto out;
2939 1.6 msaitoh }
2940 1.1 dyoung }
2941 1.1 dyoung /*
2942 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2943 1.1 dyoung * local flow control settings accordingly
2944 1.1 dyoung */
2945 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2946 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2947 1.1 dyoung
2948 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2949 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2950 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2951 1.1 dyoung
2952 1.1 dyoung out:
2953 1.1 dyoung return ret_val;
2954 1.1 dyoung }
2955 1.1 dyoung
2956 1.1 dyoung /**
2957 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2958 1.1 dyoung * @hw: pointer to hardware structure
2959 1.1 dyoung *
2960 1.1 dyoung * Enable flow control according to IEEE clause 37.
2961 1.1 dyoung **/
2962 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2963 1.1 dyoung {
2964 1.1 dyoung u16 technology_ability_reg = 0;
2965 1.1 dyoung u16 lp_technology_ability_reg = 0;
2966 1.1 dyoung
2967 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2968 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2969 1.1 dyoung &technology_ability_reg);
2970 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2971 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2972 1.1 dyoung &lp_technology_ability_reg);
2973 1.1 dyoung
2974 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2975 1.1 dyoung (u32)lp_technology_ability_reg,
2976 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2977 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2978 1.1 dyoung }
2979 1.1 dyoung
2980 1.1 dyoung /**
2981 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2982 1.1 dyoung * @hw: pointer to hardware structure
2983 1.1 dyoung *
2984 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
2985 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
2986 1.1 dyoung **/
2987 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2988 1.1 dyoung {
2989 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2990 1.4 msaitoh ixgbe_link_speed speed;
2991 1.4 msaitoh bool link_up;
2992 1.1 dyoung
2993 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
2994 1.1 dyoung
2995 1.1 dyoung /*
2996 1.4 msaitoh * AN should have completed when the cable was plugged in.
2997 1.4 msaitoh * Look for reasons to bail out. Bail out if:
2998 1.4 msaitoh * - FC autoneg is disabled, or if
2999 1.4 msaitoh * - link is not up.
3000 1.1 dyoung */
3001 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3002 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3003 1.6 msaitoh "Flow control autoneg is disabled");
3004 1.1 dyoung goto out;
3005 1.6 msaitoh }
3006 1.1 dyoung
3007 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3008 1.6 msaitoh if (!link_up) {
3009 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3010 1.1 dyoung goto out;
3011 1.6 msaitoh }
3012 1.1 dyoung
3013 1.1 dyoung switch (hw->phy.media_type) {
3014 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3015 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3016 1.1 dyoung case ixgbe_media_type_fiber:
3017 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3018 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3019 1.4 msaitoh break;
3020 1.4 msaitoh
3021 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3022 1.1 dyoung case ixgbe_media_type_backplane:
3023 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3024 1.1 dyoung break;
3025 1.1 dyoung
3026 1.4 msaitoh /* Autoneg flow control on copper adapters */
3027 1.1 dyoung case ixgbe_media_type_copper:
3028 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3029 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3030 1.1 dyoung break;
3031 1.1 dyoung
3032 1.1 dyoung default:
3033 1.1 dyoung break;
3034 1.1 dyoung }
3035 1.1 dyoung
3036 1.4 msaitoh out:
3037 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3038 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3039 1.4 msaitoh } else {
3040 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3041 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3042 1.3 msaitoh }
3043 1.1 dyoung }
3044 1.1 dyoung
3045 1.6 msaitoh /*
3046 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3047 1.6 msaitoh * @hw: pointer to hardware structure
3048 1.6 msaitoh *
3049 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3050 1.6 msaitoh *
3051 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3052 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3053 1.6 msaitoh * 800 = 80 millisec.
3054 1.6 msaitoh */
3055 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3056 1.6 msaitoh {
3057 1.6 msaitoh s16 devctl2;
3058 1.6 msaitoh u32 pollcnt;
3059 1.6 msaitoh
3060 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3061 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3062 1.6 msaitoh
3063 1.6 msaitoh switch (devctl2) {
3064 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3065 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3066 1.6 msaitoh break;
3067 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3068 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3069 1.6 msaitoh break;
3070 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3071 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3072 1.6 msaitoh break;
3073 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3074 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3075 1.6 msaitoh break;
3076 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3077 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3078 1.6 msaitoh break;
3079 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3080 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3081 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3082 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3083 1.6 msaitoh default:
3084 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3085 1.6 msaitoh break;
3086 1.6 msaitoh }
3087 1.6 msaitoh
3088 1.6 msaitoh /* add 10% to spec maximum */
3089 1.6 msaitoh return (pollcnt * 11) / 10;
3090 1.6 msaitoh }
3091 1.6 msaitoh
3092 1.1 dyoung /**
3093 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3094 1.1 dyoung * @hw: pointer to hardware structure
3095 1.1 dyoung *
3096 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3097 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3098 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3099 1.1 dyoung * is returned signifying master requests disabled.
3100 1.1 dyoung **/
3101 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3102 1.1 dyoung {
3103 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3104 1.6 msaitoh u32 i, poll;
3105 1.1 dyoung
3106 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3107 1.1 dyoung
3108 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3109 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3110 1.3 msaitoh
3111 1.6 msaitoh /* Exit if master requests are blocked */
3112 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3113 1.1 dyoung goto out;
3114 1.1 dyoung
3115 1.3 msaitoh /* Poll for master request bit to clear */
3116 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3117 1.3 msaitoh usec_delay(100);
3118 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3119 1.3 msaitoh goto out;
3120 1.1 dyoung }
3121 1.1 dyoung
3122 1.3 msaitoh /*
3123 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3124 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3125 1.3 msaitoh * of this need. The first reset prevents new master requests from
3126 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3127 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3128 1.3 msaitoh * again to clear out any effects they may have had on our device.
3129 1.3 msaitoh */
3130 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3131 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3132 1.1 dyoung
3133 1.1 dyoung /*
3134 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3135 1.1 dyoung * transactions pending.
3136 1.1 dyoung */
3137 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3138 1.6 msaitoh for (i = 0; i < poll; i++) {
3139 1.3 msaitoh usec_delay(100);
3140 1.1 dyoung if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
3141 1.3 msaitoh IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3142 1.3 msaitoh goto out;
3143 1.1 dyoung }
3144 1.1 dyoung
3145 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3146 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3147 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3148 1.1 dyoung
3149 1.1 dyoung out:
3150 1.1 dyoung return status;
3151 1.1 dyoung }
3152 1.1 dyoung
3153 1.1 dyoung /**
3154 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3155 1.1 dyoung * @hw: pointer to hardware structure
3156 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3157 1.1 dyoung *
3158 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3159 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3160 1.1 dyoung **/
3161 1.1 dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
3162 1.1 dyoung {
3163 1.6 msaitoh u32 gssr = 0;
3164 1.1 dyoung u32 swmask = mask;
3165 1.1 dyoung u32 fwmask = mask << 5;
3166 1.6 msaitoh u32 timeout = 200;
3167 1.6 msaitoh u32 i;
3168 1.1 dyoung
3169 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3170 1.1 dyoung
3171 1.6 msaitoh for (i = 0; i < timeout; i++) {
3172 1.1 dyoung /*
3173 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3174 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3175 1.1 dyoung */
3176 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3177 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3178 1.1 dyoung
3179 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3180 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3181 1.6 msaitoh gssr |= swmask;
3182 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3183 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3184 1.6 msaitoh return IXGBE_SUCCESS;
3185 1.6 msaitoh } else {
3186 1.6 msaitoh /* Resource is currently in use by FW or SW */
3187 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3188 1.6 msaitoh msec_delay(5);
3189 1.6 msaitoh }
3190 1.1 dyoung }
3191 1.1 dyoung
3192 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3193 1.6 msaitoh if (gssr & (fwmask | swmask))
3194 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3195 1.1 dyoung
3196 1.6 msaitoh msec_delay(5);
3197 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3198 1.1 dyoung }
3199 1.1 dyoung
3200 1.1 dyoung /**
3201 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3202 1.1 dyoung * @hw: pointer to hardware structure
3203 1.1 dyoung * @mask: Mask to specify which semaphore to release
3204 1.1 dyoung *
3205 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3206 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3207 1.1 dyoung **/
3208 1.1 dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
3209 1.1 dyoung {
3210 1.1 dyoung u32 gssr;
3211 1.1 dyoung u32 swmask = mask;
3212 1.1 dyoung
3213 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3214 1.1 dyoung
3215 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3216 1.1 dyoung
3217 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3218 1.1 dyoung gssr &= ~swmask;
3219 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3220 1.1 dyoung
3221 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3222 1.1 dyoung }
3223 1.1 dyoung
3224 1.1 dyoung /**
3225 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3226 1.3 msaitoh * @hw: pointer to hardware structure
3227 1.3 msaitoh *
3228 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3229 1.3 msaitoh * the Rx security block
3230 1.3 msaitoh **/
3231 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3232 1.3 msaitoh {
3233 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3234 1.3 msaitoh
3235 1.3 msaitoh int i;
3236 1.3 msaitoh int secrxreg;
3237 1.3 msaitoh
3238 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3239 1.3 msaitoh
3240 1.3 msaitoh
3241 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3242 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3243 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3244 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3245 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3246 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3247 1.3 msaitoh break;
3248 1.3 msaitoh else
3249 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3250 1.3 msaitoh usec_delay(1000);
3251 1.3 msaitoh }
3252 1.3 msaitoh
3253 1.3 msaitoh /* For informational purposes only */
3254 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3255 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3256 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3257 1.3 msaitoh
3258 1.3 msaitoh return IXGBE_SUCCESS;
3259 1.3 msaitoh }
3260 1.3 msaitoh
3261 1.3 msaitoh /**
3262 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3263 1.3 msaitoh * @hw: pointer to hardware structure
3264 1.3 msaitoh *
3265 1.3 msaitoh * Enables the receive data path.
3266 1.3 msaitoh **/
3267 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3268 1.3 msaitoh {
3269 1.3 msaitoh int secrxreg;
3270 1.3 msaitoh
3271 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3272 1.3 msaitoh
3273 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3274 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3275 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3276 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3277 1.3 msaitoh
3278 1.3 msaitoh return IXGBE_SUCCESS;
3279 1.3 msaitoh }
3280 1.3 msaitoh
3281 1.3 msaitoh /**
3282 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3283 1.1 dyoung * @hw: pointer to hardware structure
3284 1.1 dyoung * @regval: register value to write to RXCTRL
3285 1.1 dyoung *
3286 1.1 dyoung * Enables the Rx DMA unit
3287 1.1 dyoung **/
3288 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3289 1.1 dyoung {
3290 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3291 1.1 dyoung
3292 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
3293 1.1 dyoung
3294 1.1 dyoung return IXGBE_SUCCESS;
3295 1.1 dyoung }
3296 1.1 dyoung
3297 1.1 dyoung /**
3298 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3299 1.1 dyoung * @hw: pointer to hardware structure
3300 1.1 dyoung * @index: led number to blink
3301 1.1 dyoung **/
3302 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3303 1.1 dyoung {
3304 1.1 dyoung ixgbe_link_speed speed = 0;
3305 1.1 dyoung bool link_up = 0;
3306 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3307 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3308 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3309 1.1 dyoung
3310 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3311 1.1 dyoung
3312 1.1 dyoung /*
3313 1.1 dyoung * Link must be up to auto-blink the LEDs;
3314 1.1 dyoung * Force it if link is down.
3315 1.1 dyoung */
3316 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3317 1.1 dyoung
3318 1.1 dyoung if (!link_up) {
3319 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
3320 1.5 msaitoh * LESM is on.
3321 1.5 msaitoh */
3322 1.5 msaitoh bool got_lock = FALSE;
3323 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
3324 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
3325 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
3326 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3327 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
3328 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
3329 1.5 msaitoh goto out;
3330 1.5 msaitoh }
3331 1.5 msaitoh got_lock = TRUE;
3332 1.5 msaitoh }
3333 1.5 msaitoh
3334 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3335 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3336 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3337 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3338 1.5 msaitoh
3339 1.5 msaitoh if (got_lock)
3340 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw,
3341 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3342 1.1 dyoung msec_delay(10);
3343 1.1 dyoung }
3344 1.1 dyoung
3345 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3346 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3347 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3348 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3349 1.1 dyoung
3350 1.5 msaitoh out:
3351 1.5 msaitoh return ret_val;
3352 1.1 dyoung }
3353 1.1 dyoung
3354 1.1 dyoung /**
3355 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3356 1.1 dyoung * @hw: pointer to hardware structure
3357 1.1 dyoung * @index: led number to stop blinking
3358 1.1 dyoung **/
3359 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3360 1.1 dyoung {
3361 1.1 dyoung u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3362 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3363 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3364 1.5 msaitoh bool got_lock = FALSE;
3365 1.1 dyoung
3366 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3367 1.5 msaitoh /* Need the SW/FW semaphore around AUTOC writes if 82599 and
3368 1.5 msaitoh * LESM is on.
3369 1.5 msaitoh */
3370 1.5 msaitoh if ((hw->mac.type == ixgbe_mac_82599EB) &&
3371 1.5 msaitoh ixgbe_verify_lesm_fw_enabled_82599(hw)) {
3372 1.5 msaitoh ret_val = hw->mac.ops.acquire_swfw_sync(hw,
3373 1.5 msaitoh IXGBE_GSSR_MAC_CSR_SM);
3374 1.5 msaitoh if (ret_val != IXGBE_SUCCESS) {
3375 1.5 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
3376 1.5 msaitoh goto out;
3377 1.5 msaitoh }
3378 1.5 msaitoh got_lock = TRUE;
3379 1.5 msaitoh }
3380 1.1 dyoung
3381 1.1 dyoung
3382 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3383 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3384 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3385 1.1 dyoung
3386 1.5 msaitoh if (hw->mac.type == ixgbe_mac_82599EB)
3387 1.5 msaitoh ixgbe_reset_pipeline_82599(hw);
3388 1.5 msaitoh
3389 1.5 msaitoh if (got_lock)
3390 1.5 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
3391 1.5 msaitoh
3392 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3393 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3394 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3395 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3396 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3397 1.1 dyoung
3398 1.5 msaitoh out:
3399 1.5 msaitoh return ret_val;
3400 1.1 dyoung }
3401 1.1 dyoung
3402 1.1 dyoung /**
3403 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3404 1.1 dyoung * @hw: pointer to hardware structure
3405 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3406 1.1 dyoung *
3407 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3408 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3409 1.1 dyoung * get and set mac_addr routines.
3410 1.1 dyoung **/
3411 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3412 1.3 msaitoh u16 *san_mac_offset)
3413 1.1 dyoung {
3414 1.6 msaitoh s32 ret_val;
3415 1.6 msaitoh
3416 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3417 1.1 dyoung
3418 1.1 dyoung /*
3419 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3420 1.1 dyoung * available.
3421 1.1 dyoung */
3422 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3423 1.6 msaitoh san_mac_offset);
3424 1.6 msaitoh if (ret_val) {
3425 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3426 1.6 msaitoh "eeprom at offset %d failed",
3427 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3428 1.6 msaitoh }
3429 1.1 dyoung
3430 1.6 msaitoh return ret_val;
3431 1.1 dyoung }
3432 1.1 dyoung
3433 1.1 dyoung /**
3434 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3435 1.1 dyoung * @hw: pointer to hardware structure
3436 1.1 dyoung * @san_mac_addr: SAN MAC address
3437 1.1 dyoung *
3438 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3439 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3440 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3441 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3442 1.1 dyoung **/
3443 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3444 1.1 dyoung {
3445 1.1 dyoung u16 san_mac_data, san_mac_offset;
3446 1.1 dyoung u8 i;
3447 1.6 msaitoh s32 ret_val;
3448 1.1 dyoung
3449 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3450 1.1 dyoung
3451 1.1 dyoung /*
3452 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3453 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3454 1.1 dyoung */
3455 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3456 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3457 1.1 dyoung goto san_mac_addr_out;
3458 1.1 dyoung
3459 1.1 dyoung /* make sure we know which port we need to program */
3460 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3461 1.1 dyoung /* apply the port offset to the address offset */
3462 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3463 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3464 1.1 dyoung for (i = 0; i < 3; i++) {
3465 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3466 1.6 msaitoh &san_mac_data);
3467 1.6 msaitoh if (ret_val) {
3468 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3469 1.6 msaitoh "eeprom read at offset %d failed",
3470 1.6 msaitoh san_mac_offset);
3471 1.6 msaitoh goto san_mac_addr_out;
3472 1.6 msaitoh }
3473 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3474 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3475 1.1 dyoung san_mac_offset++;
3476 1.1 dyoung }
3477 1.6 msaitoh return IXGBE_SUCCESS;
3478 1.1 dyoung
3479 1.1 dyoung san_mac_addr_out:
3480 1.6 msaitoh /*
3481 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3482 1.6 msaitoh * error though, so just wipe the local address and return.
3483 1.6 msaitoh */
3484 1.6 msaitoh for (i = 0; i < 6; i++)
3485 1.6 msaitoh san_mac_addr[i] = 0xFF;
3486 1.1 dyoung return IXGBE_SUCCESS;
3487 1.1 dyoung }
3488 1.1 dyoung
3489 1.1 dyoung /**
3490 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3491 1.1 dyoung * @hw: pointer to hardware structure
3492 1.1 dyoung * @san_mac_addr: SAN MAC address
3493 1.1 dyoung *
3494 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3495 1.1 dyoung **/
3496 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3497 1.1 dyoung {
3498 1.6 msaitoh s32 ret_val;
3499 1.1 dyoung u16 san_mac_data, san_mac_offset;
3500 1.1 dyoung u8 i;
3501 1.1 dyoung
3502 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3503 1.1 dyoung
3504 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3505 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3506 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3507 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3508 1.1 dyoung
3509 1.1 dyoung /* Make sure we know which port we need to write */
3510 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3511 1.1 dyoung /* Apply the port offset to the address offset */
3512 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3513 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3514 1.1 dyoung
3515 1.1 dyoung for (i = 0; i < 3; i++) {
3516 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3517 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3518 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3519 1.1 dyoung san_mac_offset++;
3520 1.1 dyoung }
3521 1.1 dyoung
3522 1.6 msaitoh return IXGBE_SUCCESS;
3523 1.1 dyoung }
3524 1.1 dyoung
3525 1.1 dyoung /**
3526 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3527 1.1 dyoung * @hw: pointer to hardware structure
3528 1.1 dyoung *
3529 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3530 1.1 dyoung * the capabilities table.
3531 1.1 dyoung **/
3532 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3533 1.1 dyoung {
3534 1.4 msaitoh u16 msix_count = 1;
3535 1.4 msaitoh u16 max_msix_count;
3536 1.4 msaitoh u16 pcie_offset;
3537 1.4 msaitoh
3538 1.4 msaitoh switch (hw->mac.type) {
3539 1.4 msaitoh case ixgbe_mac_82598EB:
3540 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3541 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3542 1.4 msaitoh break;
3543 1.4 msaitoh case ixgbe_mac_82599EB:
3544 1.4 msaitoh case ixgbe_mac_X540:
3545 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3546 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3547 1.4 msaitoh break;
3548 1.4 msaitoh default:
3549 1.4 msaitoh return msix_count;
3550 1.4 msaitoh }
3551 1.1 dyoung
3552 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3553 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3554 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3555 1.4 msaitoh
3556 1.4 msaitoh /* MSI-X count is zero-based in HW */
3557 1.4 msaitoh msix_count++;
3558 1.4 msaitoh
3559 1.4 msaitoh if (msix_count > max_msix_count)
3560 1.4 msaitoh msix_count = max_msix_count;
3561 1.1 dyoung
3562 1.1 dyoung return msix_count;
3563 1.1 dyoung }
3564 1.1 dyoung
3565 1.1 dyoung /**
3566 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3567 1.1 dyoung * @hw: pointer to hardware structure
3568 1.1 dyoung * @addr: Address to put into receive address register
3569 1.1 dyoung * @vmdq: VMDq pool to assign
3570 1.1 dyoung *
3571 1.1 dyoung * Puts an ethernet address into a receive address register, or
3572 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3573 1.1 dyoung **/
3574 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3575 1.1 dyoung {
3576 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3577 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3578 1.1 dyoung u32 rar;
3579 1.1 dyoung u32 rar_low, rar_high;
3580 1.1 dyoung u32 addr_low, addr_high;
3581 1.1 dyoung
3582 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3583 1.1 dyoung
3584 1.1 dyoung /* swap bytes for HW little endian */
3585 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3586 1.1 dyoung | (addr[2] << 16)
3587 1.1 dyoung | (addr[3] << 24);
3588 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3589 1.1 dyoung
3590 1.1 dyoung /*
3591 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3592 1.1 dyoung * rar_highwater points to just after the highest currently used
3593 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3594 1.1 dyoung * rar to the top.
3595 1.1 dyoung */
3596 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3597 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3598 1.1 dyoung
3599 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3600 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3601 1.1 dyoung first_empty_rar = rar;
3602 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3603 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3604 1.1 dyoung if (rar_low == addr_low)
3605 1.1 dyoung break; /* found it already in the rars */
3606 1.1 dyoung }
3607 1.1 dyoung }
3608 1.1 dyoung
3609 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3610 1.1 dyoung /* already there so just add to the pool bits */
3611 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3612 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3613 1.1 dyoung /* stick it into first empty RAR slot we found */
3614 1.1 dyoung rar = first_empty_rar;
3615 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3616 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3617 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3618 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3619 1.1 dyoung hw->mac.rar_highwater++;
3620 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3621 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3622 1.1 dyoung }
3623 1.1 dyoung
3624 1.1 dyoung /*
3625 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3626 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3627 1.1 dyoung */
3628 1.1 dyoung if (rar == 0)
3629 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3630 1.1 dyoung
3631 1.1 dyoung return rar;
3632 1.1 dyoung }
3633 1.1 dyoung
3634 1.1 dyoung /**
3635 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3636 1.1 dyoung * @hw: pointer to hardware struct
3637 1.1 dyoung * @rar: receive address register index to disassociate
3638 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3639 1.1 dyoung **/
3640 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3641 1.1 dyoung {
3642 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3643 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3644 1.1 dyoung
3645 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3646 1.1 dyoung
3647 1.1 dyoung /* Make sure we are using a valid rar index range */
3648 1.1 dyoung if (rar >= rar_entries) {
3649 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3650 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3651 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3652 1.1 dyoung }
3653 1.1 dyoung
3654 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3655 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3656 1.1 dyoung
3657 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3658 1.1 dyoung goto done;
3659 1.1 dyoung
3660 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3661 1.1 dyoung if (mpsar_lo) {
3662 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3663 1.1 dyoung mpsar_lo = 0;
3664 1.1 dyoung }
3665 1.1 dyoung if (mpsar_hi) {
3666 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3667 1.1 dyoung mpsar_hi = 0;
3668 1.1 dyoung }
3669 1.1 dyoung } else if (vmdq < 32) {
3670 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3671 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3672 1.1 dyoung } else {
3673 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3674 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3675 1.1 dyoung }
3676 1.1 dyoung
3677 1.1 dyoung /* was that the last pool using this rar? */
3678 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3679 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3680 1.1 dyoung done:
3681 1.1 dyoung return IXGBE_SUCCESS;
3682 1.1 dyoung }
3683 1.1 dyoung
3684 1.1 dyoung /**
3685 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3686 1.1 dyoung * @hw: pointer to hardware struct
3687 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3688 1.1 dyoung * @vmdq: VMDq pool index
3689 1.1 dyoung **/
3690 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3691 1.1 dyoung {
3692 1.1 dyoung u32 mpsar;
3693 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3694 1.1 dyoung
3695 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3696 1.1 dyoung
3697 1.1 dyoung /* Make sure we are using a valid rar index range */
3698 1.1 dyoung if (rar >= rar_entries) {
3699 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3700 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3701 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3702 1.1 dyoung }
3703 1.1 dyoung
3704 1.1 dyoung if (vmdq < 32) {
3705 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3706 1.1 dyoung mpsar |= 1 << vmdq;
3707 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3708 1.1 dyoung } else {
3709 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3710 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3711 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3712 1.1 dyoung }
3713 1.1 dyoung return IXGBE_SUCCESS;
3714 1.1 dyoung }
3715 1.1 dyoung
3716 1.1 dyoung /**
3717 1.4 msaitoh * This function should only be involved in the IOV mode.
3718 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3719 1.4 msaitoh * VFs advertized and not 0.
3720 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3721 1.4 msaitoh *
3722 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3723 1.4 msaitoh * @hw: pointer to hardware struct
3724 1.4 msaitoh * @vmdq: VMDq pool index
3725 1.4 msaitoh **/
3726 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3727 1.4 msaitoh {
3728 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3729 1.4 msaitoh
3730 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3731 1.4 msaitoh
3732 1.4 msaitoh if (vmdq < 32) {
3733 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3734 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3735 1.4 msaitoh } else {
3736 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3737 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3738 1.4 msaitoh }
3739 1.4 msaitoh
3740 1.4 msaitoh return IXGBE_SUCCESS;
3741 1.4 msaitoh }
3742 1.4 msaitoh
3743 1.4 msaitoh /**
3744 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3745 1.1 dyoung * @hw: pointer to hardware structure
3746 1.1 dyoung **/
3747 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3748 1.1 dyoung {
3749 1.1 dyoung int i;
3750 1.1 dyoung
3751 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3752 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3753 1.1 dyoung
3754 1.1 dyoung for (i = 0; i < 128; i++)
3755 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3756 1.1 dyoung
3757 1.1 dyoung return IXGBE_SUCCESS;
3758 1.1 dyoung }
3759 1.1 dyoung
3760 1.1 dyoung /**
3761 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3762 1.1 dyoung * @hw: pointer to hardware structure
3763 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3764 1.1 dyoung *
3765 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3766 1.1 dyoung *
3767 1.1 dyoung **/
3768 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3769 1.1 dyoung {
3770 1.1 dyoung u32 bits = 0;
3771 1.1 dyoung u32 first_empty_slot = 0;
3772 1.1 dyoung s32 regindex;
3773 1.1 dyoung
3774 1.1 dyoung /* short cut the special case */
3775 1.1 dyoung if (vlan == 0)
3776 1.1 dyoung return 0;
3777 1.1 dyoung
3778 1.1 dyoung /*
3779 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3780 1.1 dyoung * slot found along the way
3781 1.1 dyoung */
3782 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3783 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3784 1.1 dyoung if (!bits && !(first_empty_slot))
3785 1.1 dyoung first_empty_slot = regindex;
3786 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3787 1.1 dyoung break;
3788 1.1 dyoung }
3789 1.1 dyoung
3790 1.1 dyoung /*
3791 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3792 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3793 1.1 dyoung * vlan id.
3794 1.1 dyoung */
3795 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3796 1.1 dyoung if (first_empty_slot)
3797 1.1 dyoung regindex = first_empty_slot;
3798 1.1 dyoung else {
3799 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3800 1.6 msaitoh "No space in VLVF.\n");
3801 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3802 1.1 dyoung }
3803 1.1 dyoung }
3804 1.1 dyoung
3805 1.1 dyoung return regindex;
3806 1.1 dyoung }
3807 1.1 dyoung
3808 1.1 dyoung /**
3809 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3810 1.1 dyoung * @hw: pointer to hardware structure
3811 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3812 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3813 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3814 1.1 dyoung *
3815 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3816 1.1 dyoung **/
3817 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3818 1.3 msaitoh bool vlan_on)
3819 1.1 dyoung {
3820 1.1 dyoung s32 regindex;
3821 1.1 dyoung u32 bitindex;
3822 1.1 dyoung u32 vfta;
3823 1.1 dyoung u32 targetbit;
3824 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3825 1.1 dyoung bool vfta_changed = FALSE;
3826 1.1 dyoung
3827 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3828 1.1 dyoung
3829 1.1 dyoung if (vlan > 4095)
3830 1.1 dyoung return IXGBE_ERR_PARAM;
3831 1.1 dyoung
3832 1.1 dyoung /*
3833 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3834 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3835 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3836 1.1 dyoung */
3837 1.1 dyoung
3838 1.1 dyoung /* Part 1
3839 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3840 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3841 1.1 dyoung * bits[11-5]: which register
3842 1.1 dyoung * bits[4-0]: which bit in the register
3843 1.1 dyoung */
3844 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3845 1.1 dyoung bitindex = vlan & 0x1F;
3846 1.1 dyoung targetbit = (1 << bitindex);
3847 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3848 1.1 dyoung
3849 1.1 dyoung if (vlan_on) {
3850 1.1 dyoung if (!(vfta & targetbit)) {
3851 1.1 dyoung vfta |= targetbit;
3852 1.1 dyoung vfta_changed = TRUE;
3853 1.1 dyoung }
3854 1.1 dyoung } else {
3855 1.1 dyoung if ((vfta & targetbit)) {
3856 1.1 dyoung vfta &= ~targetbit;
3857 1.1 dyoung vfta_changed = TRUE;
3858 1.1 dyoung }
3859 1.1 dyoung }
3860 1.1 dyoung
3861 1.1 dyoung /* Part 2
3862 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3863 1.3 msaitoh */
3864 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3865 1.3 msaitoh &vfta_changed);
3866 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3867 1.3 msaitoh return ret_val;
3868 1.3 msaitoh
3869 1.3 msaitoh if (vfta_changed)
3870 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3871 1.3 msaitoh
3872 1.3 msaitoh return IXGBE_SUCCESS;
3873 1.3 msaitoh }
3874 1.3 msaitoh
3875 1.3 msaitoh /**
3876 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3877 1.3 msaitoh * @hw: pointer to hardware structure
3878 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3879 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3880 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3881 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3882 1.3 msaitoh * should be changed
3883 1.3 msaitoh *
3884 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3885 1.3 msaitoh **/
3886 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3887 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3888 1.3 msaitoh {
3889 1.3 msaitoh u32 vt;
3890 1.3 msaitoh
3891 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3892 1.3 msaitoh
3893 1.3 msaitoh if (vlan > 4095)
3894 1.3 msaitoh return IXGBE_ERR_PARAM;
3895 1.3 msaitoh
3896 1.3 msaitoh /* If VT Mode is set
3897 1.1 dyoung * Either vlan_on
3898 1.1 dyoung * make sure the vlan is in VLVF
3899 1.1 dyoung * set the vind bit in the matching VLVFB
3900 1.1 dyoung * Or !vlan_on
3901 1.1 dyoung * clear the pool bit and possibly the vind
3902 1.1 dyoung */
3903 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3904 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3905 1.1 dyoung s32 vlvf_index;
3906 1.3 msaitoh u32 bits;
3907 1.1 dyoung
3908 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3909 1.1 dyoung if (vlvf_index < 0)
3910 1.1 dyoung return vlvf_index;
3911 1.1 dyoung
3912 1.1 dyoung if (vlan_on) {
3913 1.1 dyoung /* set the pool bit */
3914 1.1 dyoung if (vind < 32) {
3915 1.1 dyoung bits = IXGBE_READ_REG(hw,
3916 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3917 1.1 dyoung bits |= (1 << vind);
3918 1.1 dyoung IXGBE_WRITE_REG(hw,
3919 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3920 1.1 dyoung bits);
3921 1.1 dyoung } else {
3922 1.1 dyoung bits = IXGBE_READ_REG(hw,
3923 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3924 1.3 msaitoh bits |= (1 << (vind - 32));
3925 1.1 dyoung IXGBE_WRITE_REG(hw,
3926 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3927 1.3 msaitoh bits);
3928 1.1 dyoung }
3929 1.1 dyoung } else {
3930 1.1 dyoung /* clear the pool bit */
3931 1.1 dyoung if (vind < 32) {
3932 1.1 dyoung bits = IXGBE_READ_REG(hw,
3933 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3934 1.1 dyoung bits &= ~(1 << vind);
3935 1.1 dyoung IXGBE_WRITE_REG(hw,
3936 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3937 1.1 dyoung bits);
3938 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3939 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3940 1.1 dyoung } else {
3941 1.1 dyoung bits = IXGBE_READ_REG(hw,
3942 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3943 1.3 msaitoh bits &= ~(1 << (vind - 32));
3944 1.1 dyoung IXGBE_WRITE_REG(hw,
3945 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3946 1.3 msaitoh bits);
3947 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3948 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3949 1.1 dyoung }
3950 1.1 dyoung }
3951 1.1 dyoung
3952 1.1 dyoung /*
3953 1.1 dyoung * If there are still bits set in the VLVFB registers
3954 1.1 dyoung * for the VLAN ID indicated we need to see if the
3955 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3956 1.1 dyoung * If the caller has requested that we clear the VFTA
3957 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3958 1.1 dyoung * ID entry then ignore the request. We're not worried
3959 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3960 1.1 dyoung * entry bit on, only when requested to turn it off as
3961 1.1 dyoung * there may be multiple pools and/or VFs using the
3962 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
3963 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
3964 1.1 dyoung * been cleared. This will be indicated by "bits" being
3965 1.1 dyoung * zero.
3966 1.1 dyoung */
3967 1.1 dyoung if (bits) {
3968 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3969 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
3970 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
3971 1.1 dyoung /* someone wants to clear the vfta entry
3972 1.1 dyoung * but some pools/VFs are still using it.
3973 1.1 dyoung * Ignore it. */
3974 1.3 msaitoh *vfta_changed = FALSE;
3975 1.1 dyoung }
3976 1.3 msaitoh } else
3977 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3978 1.1 dyoung }
3979 1.1 dyoung
3980 1.1 dyoung return IXGBE_SUCCESS;
3981 1.1 dyoung }
3982 1.1 dyoung
3983 1.1 dyoung /**
3984 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
3985 1.1 dyoung * @hw: pointer to hardware structure
3986 1.1 dyoung *
3987 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
3988 1.1 dyoung **/
3989 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3990 1.1 dyoung {
3991 1.1 dyoung u32 offset;
3992 1.1 dyoung
3993 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
3994 1.1 dyoung
3995 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
3996 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3997 1.1 dyoung
3998 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3999 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4000 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4001 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4002 1.1 dyoung }
4003 1.1 dyoung
4004 1.1 dyoung return IXGBE_SUCCESS;
4005 1.1 dyoung }
4006 1.1 dyoung
4007 1.1 dyoung /**
4008 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4009 1.1 dyoung * @hw: pointer to hardware structure
4010 1.1 dyoung * @speed: pointer to link speed
4011 1.1 dyoung * @link_up: TRUE when link is up
4012 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4013 1.1 dyoung *
4014 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4015 1.1 dyoung **/
4016 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4017 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4018 1.1 dyoung {
4019 1.1 dyoung u32 links_reg, links_orig;
4020 1.1 dyoung u32 i;
4021 1.1 dyoung
4022 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4023 1.1 dyoung
4024 1.1 dyoung /* clear the old state */
4025 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4026 1.1 dyoung
4027 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4028 1.1 dyoung
4029 1.1 dyoung if (links_orig != links_reg) {
4030 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4031 1.3 msaitoh links_orig, links_reg);
4032 1.1 dyoung }
4033 1.1 dyoung
4034 1.1 dyoung if (link_up_wait_to_complete) {
4035 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
4036 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4037 1.1 dyoung *link_up = TRUE;
4038 1.1 dyoung break;
4039 1.1 dyoung } else {
4040 1.1 dyoung *link_up = FALSE;
4041 1.1 dyoung }
4042 1.1 dyoung msec_delay(100);
4043 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4044 1.1 dyoung }
4045 1.1 dyoung } else {
4046 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4047 1.1 dyoung *link_up = TRUE;
4048 1.1 dyoung else
4049 1.1 dyoung *link_up = FALSE;
4050 1.1 dyoung }
4051 1.1 dyoung
4052 1.1 dyoung if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
4053 1.1 dyoung IXGBE_LINKS_SPEED_10G_82599)
4054 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4055 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
4056 1.3 msaitoh IXGBE_LINKS_SPEED_1G_82599)
4057 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4058 1.1 dyoung else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
4059 1.3 msaitoh IXGBE_LINKS_SPEED_100_82599)
4060 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4061 1.1 dyoung else
4062 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4063 1.1 dyoung
4064 1.1 dyoung return IXGBE_SUCCESS;
4065 1.1 dyoung }
4066 1.1 dyoung
4067 1.1 dyoung /**
4068 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4069 1.1 dyoung * the EEPROM
4070 1.1 dyoung * @hw: pointer to hardware structure
4071 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4072 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4073 1.1 dyoung *
4074 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4075 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4076 1.1 dyoung **/
4077 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4078 1.3 msaitoh u16 *wwpn_prefix)
4079 1.1 dyoung {
4080 1.1 dyoung u16 offset, caps;
4081 1.1 dyoung u16 alt_san_mac_blk_offset;
4082 1.1 dyoung
4083 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4084 1.1 dyoung
4085 1.1 dyoung /* clear output first */
4086 1.1 dyoung *wwnn_prefix = 0xFFFF;
4087 1.1 dyoung *wwpn_prefix = 0xFFFF;
4088 1.1 dyoung
4089 1.1 dyoung /* check if alternative SAN MAC is supported */
4090 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4091 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4092 1.6 msaitoh goto wwn_prefix_err;
4093 1.1 dyoung
4094 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4095 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4096 1.1 dyoung goto wwn_prefix_out;
4097 1.1 dyoung
4098 1.1 dyoung /* check capability in alternative san mac address block */
4099 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4100 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4101 1.6 msaitoh goto wwn_prefix_err;
4102 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4103 1.1 dyoung goto wwn_prefix_out;
4104 1.1 dyoung
4105 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4106 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4107 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4108 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4109 1.6 msaitoh "eeprom read at offset %d failed", offset);
4110 1.6 msaitoh }
4111 1.1 dyoung
4112 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4113 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4114 1.6 msaitoh goto wwn_prefix_err;
4115 1.1 dyoung
4116 1.1 dyoung wwn_prefix_out:
4117 1.1 dyoung return IXGBE_SUCCESS;
4118 1.6 msaitoh
4119 1.6 msaitoh wwn_prefix_err:
4120 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4121 1.6 msaitoh "eeprom read at offset %d failed", offset);
4122 1.6 msaitoh return IXGBE_SUCCESS;
4123 1.1 dyoung }
4124 1.1 dyoung
4125 1.1 dyoung /**
4126 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4127 1.1 dyoung * @hw: pointer to hardware structure
4128 1.1 dyoung * @bs: the fcoe boot status
4129 1.1 dyoung *
4130 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4131 1.1 dyoung **/
4132 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4133 1.1 dyoung {
4134 1.1 dyoung u16 offset, caps, flags;
4135 1.1 dyoung s32 status;
4136 1.1 dyoung
4137 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4138 1.1 dyoung
4139 1.1 dyoung /* clear output first */
4140 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4141 1.1 dyoung
4142 1.1 dyoung /* check if FCOE IBA block is present */
4143 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4144 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4145 1.1 dyoung if (status != IXGBE_SUCCESS)
4146 1.1 dyoung goto out;
4147 1.1 dyoung
4148 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4149 1.1 dyoung goto out;
4150 1.1 dyoung
4151 1.1 dyoung /* check if iSCSI FCOE block is populated */
4152 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4153 1.1 dyoung if (status != IXGBE_SUCCESS)
4154 1.1 dyoung goto out;
4155 1.1 dyoung
4156 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4157 1.1 dyoung goto out;
4158 1.1 dyoung
4159 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4160 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4161 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4162 1.1 dyoung if (status != IXGBE_SUCCESS)
4163 1.1 dyoung goto out;
4164 1.1 dyoung
4165 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4166 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4167 1.1 dyoung else
4168 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4169 1.1 dyoung
4170 1.1 dyoung out:
4171 1.1 dyoung return status;
4172 1.1 dyoung }
4173 1.1 dyoung
4174 1.1 dyoung /**
4175 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4176 1.1 dyoung * @hw: pointer to hardware structure
4177 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4178 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4179 1.1 dyoung *
4180 1.1 dyoung **/
4181 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4182 1.1 dyoung {
4183 1.1 dyoung int j;
4184 1.1 dyoung int pf_target_reg = pf >> 3;
4185 1.1 dyoung int pf_target_shift = pf % 8;
4186 1.1 dyoung u32 pfvfspoof = 0;
4187 1.1 dyoung
4188 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4189 1.1 dyoung return;
4190 1.1 dyoung
4191 1.1 dyoung if (enable)
4192 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4193 1.1 dyoung
4194 1.1 dyoung /*
4195 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4196 1.1 dyoung * MAC anti-spoof enables in each register array element.
4197 1.1 dyoung */
4198 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4199 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4200 1.1 dyoung
4201 1.4 msaitoh /*
4202 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4203 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4204 1.4 msaitoh */
4205 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4206 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4207 1.1 dyoung
4208 1.1 dyoung /*
4209 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4210 1.4 msaitoh * anti-spoofing enabled.
4211 1.1 dyoung */
4212 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4213 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4214 1.1 dyoung }
4215 1.1 dyoung
4216 1.1 dyoung /**
4217 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4218 1.1 dyoung * @hw: pointer to hardware structure
4219 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4220 1.1 dyoung * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4221 1.1 dyoung *
4222 1.1 dyoung **/
4223 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4224 1.1 dyoung {
4225 1.1 dyoung int vf_target_reg = vf >> 3;
4226 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4227 1.1 dyoung u32 pfvfspoof;
4228 1.1 dyoung
4229 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4230 1.1 dyoung return;
4231 1.1 dyoung
4232 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4233 1.1 dyoung if (enable)
4234 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4235 1.1 dyoung else
4236 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4237 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4238 1.1 dyoung }
4239 1.1 dyoung
4240 1.1 dyoung /**
4241 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4242 1.1 dyoung * @hw: pointer to hardware structure
4243 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4244 1.1 dyoung *
4245 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4246 1.1 dyoung * and return the word through device_caps.
4247 1.1 dyoung **/
4248 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4249 1.1 dyoung {
4250 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4251 1.1 dyoung
4252 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4253 1.1 dyoung
4254 1.1 dyoung return IXGBE_SUCCESS;
4255 1.1 dyoung }
4256 1.1 dyoung
4257 1.1 dyoung /**
4258 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4259 1.1 dyoung * @hw: pointer to hardware structure
4260 1.1 dyoung *
4261 1.1 dyoung **/
4262 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4263 1.1 dyoung {
4264 1.1 dyoung u32 regval;
4265 1.1 dyoung u32 i;
4266 1.1 dyoung
4267 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4268 1.1 dyoung
4269 1.1 dyoung /* Enable relaxed ordering */
4270 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4271 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4272 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4273 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4274 1.1 dyoung }
4275 1.1 dyoung
4276 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4277 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4278 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4279 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4280 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4281 1.1 dyoung }
4282 1.1 dyoung
4283 1.1 dyoung }
4284 1.3 msaitoh
4285 1.3 msaitoh /**
4286 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4287 1.3 msaitoh * @buffer: pointer to EEPROM
4288 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4289 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4290 1.3 msaitoh * checksum calculated is returned.
4291 1.3 msaitoh **/
4292 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4293 1.3 msaitoh {
4294 1.3 msaitoh u32 i;
4295 1.3 msaitoh u8 sum = 0;
4296 1.3 msaitoh
4297 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4298 1.3 msaitoh
4299 1.3 msaitoh if (!buffer)
4300 1.3 msaitoh return 0;
4301 1.3 msaitoh
4302 1.3 msaitoh for (i = 0; i < length; i++)
4303 1.3 msaitoh sum += buffer[i];
4304 1.3 msaitoh
4305 1.3 msaitoh return (u8) (0 - sum);
4306 1.3 msaitoh }
4307 1.3 msaitoh
4308 1.3 msaitoh /**
4309 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4310 1.3 msaitoh * @hw: pointer to the HW structure
4311 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4312 1.3 msaitoh * be placed
4313 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4314 1.3 msaitoh *
4315 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4316 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4317 1.3 msaitoh **/
4318 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4319 1.5 msaitoh u32 length)
4320 1.3 msaitoh {
4321 1.3 msaitoh u32 hicr, i, bi;
4322 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4323 1.3 msaitoh u8 buf_len, dword_len;
4324 1.3 msaitoh
4325 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4326 1.3 msaitoh
4327 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4328 1.3 msaitoh
4329 1.3 msaitoh if (length == 0 || length & 0x3 ||
4330 1.3 msaitoh length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4331 1.3 msaitoh DEBUGOUT("Buffer length failure.\n");
4332 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4333 1.3 msaitoh goto out;
4334 1.3 msaitoh }
4335 1.3 msaitoh
4336 1.3 msaitoh /* Check that the host interface is enabled. */
4337 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4338 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4339 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4340 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4341 1.3 msaitoh goto out;
4342 1.3 msaitoh }
4343 1.3 msaitoh
4344 1.3 msaitoh /* Calculate length in DWORDs */
4345 1.3 msaitoh dword_len = length >> 2;
4346 1.3 msaitoh
4347 1.3 msaitoh /*
4348 1.3 msaitoh * The device driver writes the relevant command block
4349 1.3 msaitoh * into the ram area.
4350 1.3 msaitoh */
4351 1.3 msaitoh for (i = 0; i < dword_len; i++)
4352 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4353 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4354 1.3 msaitoh
4355 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4356 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4357 1.3 msaitoh
4358 1.3 msaitoh for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
4359 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4360 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4361 1.3 msaitoh break;
4362 1.3 msaitoh msec_delay(1);
4363 1.3 msaitoh }
4364 1.3 msaitoh
4365 1.3 msaitoh /* Check command successful completion. */
4366 1.3 msaitoh if (i == IXGBE_HI_COMMAND_TIMEOUT ||
4367 1.3 msaitoh (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
4368 1.3 msaitoh DEBUGOUT("Command has failed with no status valid.\n");
4369 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4370 1.3 msaitoh goto out;
4371 1.3 msaitoh }
4372 1.3 msaitoh
4373 1.3 msaitoh /* Calculate length in DWORDs */
4374 1.3 msaitoh dword_len = hdr_size >> 2;
4375 1.3 msaitoh
4376 1.3 msaitoh /* first pull in the header so we know the buffer length */
4377 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4378 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4379 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4380 1.3 msaitoh }
4381 1.3 msaitoh
4382 1.3 msaitoh /* If there is any thing in data position pull it in */
4383 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4384 1.3 msaitoh if (buf_len == 0)
4385 1.3 msaitoh goto out;
4386 1.3 msaitoh
4387 1.3 msaitoh if (length < (buf_len + hdr_size)) {
4388 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4389 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4390 1.3 msaitoh goto out;
4391 1.3 msaitoh }
4392 1.3 msaitoh
4393 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4394 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4395 1.3 msaitoh
4396 1.3 msaitoh /* Pull in the rest of the buffer (bi is where we left off)*/
4397 1.3 msaitoh for (; bi <= dword_len; bi++) {
4398 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4399 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4400 1.3 msaitoh }
4401 1.3 msaitoh
4402 1.3 msaitoh out:
4403 1.3 msaitoh return ret_val;
4404 1.3 msaitoh }
4405 1.3 msaitoh
4406 1.3 msaitoh /**
4407 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4408 1.3 msaitoh * @hw: pointer to the HW structure
4409 1.3 msaitoh * @maj: driver version major number
4410 1.3 msaitoh * @min: driver version minor number
4411 1.3 msaitoh * @build: driver version build number
4412 1.3 msaitoh * @sub: driver version sub build number
4413 1.3 msaitoh *
4414 1.3 msaitoh * Sends driver version number to firmware through the manageability
4415 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4416 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4417 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4418 1.3 msaitoh **/
4419 1.3 msaitoh s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4420 1.3 msaitoh u8 build, u8 sub)
4421 1.3 msaitoh {
4422 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4423 1.3 msaitoh int i;
4424 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4425 1.3 msaitoh
4426 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4427 1.3 msaitoh
4428 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4429 1.3 msaitoh != IXGBE_SUCCESS) {
4430 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4431 1.3 msaitoh goto out;
4432 1.3 msaitoh }
4433 1.3 msaitoh
4434 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4435 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4436 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4437 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4438 1.3 msaitoh fw_cmd.ver_maj = maj;
4439 1.3 msaitoh fw_cmd.ver_min = min;
4440 1.3 msaitoh fw_cmd.ver_build = build;
4441 1.3 msaitoh fw_cmd.ver_sub = sub;
4442 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4443 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4444 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4445 1.3 msaitoh fw_cmd.pad = 0;
4446 1.3 msaitoh fw_cmd.pad2 = 0;
4447 1.3 msaitoh
4448 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4449 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4450 1.3 msaitoh sizeof(fw_cmd));
4451 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4452 1.3 msaitoh continue;
4453 1.3 msaitoh
4454 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4455 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4456 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4457 1.3 msaitoh else
4458 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4459 1.3 msaitoh
4460 1.3 msaitoh break;
4461 1.3 msaitoh }
4462 1.3 msaitoh
4463 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4464 1.3 msaitoh out:
4465 1.3 msaitoh return ret_val;
4466 1.3 msaitoh }
4467 1.3 msaitoh
4468 1.3 msaitoh /**
4469 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4470 1.3 msaitoh * @hw: pointer to hardware structure
4471 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4472 1.3 msaitoh * @headroom: reserve n KB of headroom
4473 1.3 msaitoh * @strategy: packet buffer allocation strategy
4474 1.3 msaitoh **/
4475 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4476 1.3 msaitoh int strategy)
4477 1.3 msaitoh {
4478 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4479 1.3 msaitoh int i = 0;
4480 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4481 1.3 msaitoh
4482 1.3 msaitoh /* Reserve headroom */
4483 1.3 msaitoh pbsize -= headroom;
4484 1.3 msaitoh
4485 1.3 msaitoh if (!num_pb)
4486 1.3 msaitoh num_pb = 1;
4487 1.3 msaitoh
4488 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4489 1.3 msaitoh * buffers requested using supplied strategy.
4490 1.3 msaitoh */
4491 1.3 msaitoh switch (strategy) {
4492 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4493 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4494 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4495 1.3 msaitoh */
4496 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4497 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4498 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4499 1.3 msaitoh for (; i < (num_pb / 2); i++)
4500 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4501 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4502 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4503 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4504 1.3 msaitoh for (; i < num_pb; i++)
4505 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4506 1.3 msaitoh break;
4507 1.3 msaitoh default:
4508 1.3 msaitoh break;
4509 1.3 msaitoh }
4510 1.3 msaitoh
4511 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4512 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4513 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4514 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4515 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4516 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4517 1.3 msaitoh }
4518 1.3 msaitoh
4519 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4520 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4521 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4522 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4523 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4524 1.3 msaitoh }
4525 1.3 msaitoh }
4526 1.3 msaitoh
4527 1.3 msaitoh /**
4528 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4529 1.3 msaitoh * @hw: pointer to the hardware structure
4530 1.3 msaitoh *
4531 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4532 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4533 1.3 msaitoh * buffers on the system.
4534 1.3 msaitoh **/
4535 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4536 1.3 msaitoh {
4537 1.3 msaitoh u32 gcr_ext, hlreg0;
4538 1.3 msaitoh
4539 1.3 msaitoh /*
4540 1.3 msaitoh * If double reset is not requested then all transactions should
4541 1.3 msaitoh * already be clear and as such there is no work to do
4542 1.3 msaitoh */
4543 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4544 1.3 msaitoh return;
4545 1.3 msaitoh
4546 1.3 msaitoh /*
4547 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4548 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4549 1.3 msaitoh * has already been cleared.
4550 1.3 msaitoh */
4551 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4552 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4553 1.3 msaitoh
4554 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4555 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4556 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4557 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4558 1.3 msaitoh
4559 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4560 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4561 1.3 msaitoh usec_delay(20);
4562 1.3 msaitoh
4563 1.3 msaitoh /* restore previous register values */
4564 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4565 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4566 1.3 msaitoh }
4567 1.3 msaitoh
4568 1.6 msaitoh
4569 1.6 msaitoh /**
4570 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4571 1.6 msaitoh * @hw: pointer to hardware structure
4572 1.6 msaitoh * @map: pointer to u8 arr for returning map
4573 1.6 msaitoh *
4574 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4575 1.6 msaitoh **/
4576 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4577 1.6 msaitoh {
4578 1.6 msaitoh u32 reg, i;
4579 1.6 msaitoh
4580 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4581 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4582 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4583 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4584 1.6 msaitoh return;
4585 1.6 msaitoh }
4586