Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.7
      1  1.1    dyoung /******************************************************************************
      2  1.1    dyoung 
      3  1.5   msaitoh   Copyright (c) 2001-2013, Intel Corporation
      4  1.1    dyoung   All rights reserved.
      5  1.1    dyoung 
      6  1.1    dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1    dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1    dyoung 
      9  1.1    dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1    dyoung       this list of conditions and the following disclaimer.
     11  1.1    dyoung 
     12  1.1    dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1    dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1    dyoung       documentation and/or other materials provided with the distribution.
     15  1.1    dyoung 
     16  1.1    dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1    dyoung       contributors may be used to endorse or promote products derived from
     18  1.1    dyoung       this software without specific prior written permission.
     19  1.1    dyoung 
     20  1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1    dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1    dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1    dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1    dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1    dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1    dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1    dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1    dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1    dyoung 
     32  1.1    dyoung ******************************************************************************/
     33  1.6   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 251964 2013-06-18 21:28:19Z jfv $*/
     34  1.7  riastrad /*$NetBSD: ixgbe_common.c,v 1.7 2016/02/06 02:40:49 riastradh Exp $*/
     35  1.1    dyoung 
     36  1.1    dyoung #include "ixgbe_common.h"
     37  1.1    dyoung #include "ixgbe_phy.h"
     38  1.6   msaitoh #include "ixgbe_dcb.h"
     39  1.6   msaitoh #include "ixgbe_dcb_82599.h"
     40  1.1    dyoung #include "ixgbe_api.h"
     41  1.1    dyoung 
     42  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48  1.3   msaitoh 					u16 count);
     49  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53  1.1    dyoung 
     54  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56  1.3   msaitoh 					 u16 *san_mac_offset);
     57  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58  1.3   msaitoh 					     u16 words, u16 *data);
     59  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60  1.3   msaitoh 					      u16 words, u16 *data);
     61  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62  1.3   msaitoh 						 u16 offset);
     63  1.1    dyoung 
     64  1.1    dyoung /**
     65  1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66  1.1    dyoung  *  @hw: pointer to the hardware structure
     67  1.1    dyoung  *
     68  1.1    dyoung  *  Initialize the function pointers.
     69  1.1    dyoung  **/
     70  1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71  1.1    dyoung {
     72  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.1    dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     75  1.1    dyoung 
     76  1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77  1.1    dyoung 
     78  1.1    dyoung 	/* EEPROM */
     79  1.1    dyoung 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     80  1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81  1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     82  1.1    dyoung 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     83  1.3   msaitoh 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
     84  1.3   msaitoh 	} else {
     85  1.1    dyoung 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     86  1.3   msaitoh 		eeprom->ops.read_buffer =
     87  1.3   msaitoh 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
     88  1.3   msaitoh 	}
     89  1.1    dyoung 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     90  1.3   msaitoh 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
     91  1.1    dyoung 	eeprom->ops.validate_checksum =
     92  1.3   msaitoh 				      &ixgbe_validate_eeprom_checksum_generic;
     93  1.1    dyoung 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     94  1.1    dyoung 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
     95  1.1    dyoung 
     96  1.1    dyoung 	/* MAC */
     97  1.1    dyoung 	mac->ops.init_hw = &ixgbe_init_hw_generic;
     98  1.1    dyoung 	mac->ops.reset_hw = NULL;
     99  1.1    dyoung 	mac->ops.start_hw = &ixgbe_start_hw_generic;
    100  1.1    dyoung 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
    101  1.1    dyoung 	mac->ops.get_media_type = NULL;
    102  1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    103  1.1    dyoung 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
    104  1.1    dyoung 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    105  1.1    dyoung 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    106  1.1    dyoung 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    107  1.1    dyoung 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    108  1.1    dyoung 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    109  1.1    dyoung 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    110  1.1    dyoung 
    111  1.1    dyoung 	/* LEDs */
    112  1.1    dyoung 	mac->ops.led_on = &ixgbe_led_on_generic;
    113  1.1    dyoung 	mac->ops.led_off = &ixgbe_led_off_generic;
    114  1.1    dyoung 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    115  1.1    dyoung 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    116  1.1    dyoung 
    117  1.1    dyoung 	/* RAR, Multicast, VLAN */
    118  1.1    dyoung 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    119  1.1    dyoung 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    120  1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    121  1.1    dyoung 	mac->ops.set_vmdq = NULL;
    122  1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    123  1.1    dyoung 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    124  1.1    dyoung 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    125  1.1    dyoung 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    126  1.1    dyoung 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    127  1.1    dyoung 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    128  1.1    dyoung 	mac->ops.clear_vfta = NULL;
    129  1.1    dyoung 	mac->ops.set_vfta = NULL;
    130  1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    131  1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    132  1.1    dyoung 
    133  1.1    dyoung 	/* Flow Control */
    134  1.1    dyoung 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    135  1.1    dyoung 
    136  1.1    dyoung 	/* Link */
    137  1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    138  1.1    dyoung 	mac->ops.setup_link = NULL;
    139  1.1    dyoung 	mac->ops.check_link = NULL;
    140  1.6   msaitoh 	mac->ops.dmac_config = NULL;
    141  1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    142  1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    143  1.1    dyoung 
    144  1.1    dyoung 	return IXGBE_SUCCESS;
    145  1.1    dyoung }
    146  1.1    dyoung 
    147  1.1    dyoung /**
    148  1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    149  1.6   msaitoh  * of flow control
    150  1.6   msaitoh  * @hw: pointer to hardware structure
    151  1.6   msaitoh  *
    152  1.6   msaitoh  * This function returns TRUE if the device supports flow control
    153  1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    154  1.4   msaitoh  *
    155  1.4   msaitoh  **/
    156  1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    157  1.4   msaitoh {
    158  1.6   msaitoh 	bool supported = FALSE;
    159  1.6   msaitoh 	ixgbe_link_speed speed;
    160  1.6   msaitoh 	bool link_up;
    161  1.4   msaitoh 
    162  1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    163  1.4   msaitoh 
    164  1.6   msaitoh 	switch (hw->phy.media_type) {
    165  1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    166  1.6   msaitoh 	case ixgbe_media_type_fiber:
    167  1.6   msaitoh 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    168  1.6   msaitoh 		/* if link is down, assume supported */
    169  1.6   msaitoh 		if (link_up)
    170  1.6   msaitoh 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    171  1.6   msaitoh 				TRUE : FALSE;
    172  1.6   msaitoh 		else
    173  1.6   msaitoh 			supported = TRUE;
    174  1.6   msaitoh 		break;
    175  1.6   msaitoh 	case ixgbe_media_type_backplane:
    176  1.6   msaitoh 		supported = TRUE;
    177  1.6   msaitoh 		break;
    178  1.6   msaitoh 	case ixgbe_media_type_copper:
    179  1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    180  1.6   msaitoh 		switch (hw->device_id) {
    181  1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    182  1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    183  1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    184  1.6   msaitoh 			supported = TRUE;
    185  1.6   msaitoh 			break;
    186  1.6   msaitoh 		default:
    187  1.6   msaitoh 			supported = FALSE;
    188  1.6   msaitoh 		}
    189  1.4   msaitoh 	default:
    190  1.6   msaitoh 		break;
    191  1.4   msaitoh 	}
    192  1.6   msaitoh 
    193  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    194  1.6   msaitoh 		      "Device %x does not support flow control autoneg",
    195  1.6   msaitoh 		      hw->device_id);
    196  1.6   msaitoh 	return supported;
    197  1.4   msaitoh }
    198  1.4   msaitoh 
    199  1.4   msaitoh /**
    200  1.4   msaitoh  *  ixgbe_setup_fc - Set up flow control
    201  1.4   msaitoh  *  @hw: pointer to hardware structure
    202  1.4   msaitoh  *
    203  1.4   msaitoh  *  Called at init time to set up flow control.
    204  1.4   msaitoh  **/
    205  1.4   msaitoh static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
    206  1.4   msaitoh {
    207  1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    208  1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    209  1.4   msaitoh 	u16 reg_cu = 0;
    210  1.5   msaitoh 	bool got_lock = FALSE;
    211  1.4   msaitoh 
    212  1.4   msaitoh 	DEBUGFUNC("ixgbe_setup_fc");
    213  1.4   msaitoh 
    214  1.4   msaitoh 	/*
    215  1.4   msaitoh 	 * Validate the requested mode.  Strict IEEE mode does not allow
    216  1.4   msaitoh 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
    217  1.4   msaitoh 	 */
    218  1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    219  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    220  1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    221  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    222  1.4   msaitoh 		goto out;
    223  1.4   msaitoh 	}
    224  1.4   msaitoh 
    225  1.4   msaitoh 	/*
    226  1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    227  1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    228  1.4   msaitoh 	 */
    229  1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    230  1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    231  1.4   msaitoh 
    232  1.4   msaitoh 	/*
    233  1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    234  1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    235  1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    236  1.4   msaitoh 	 */
    237  1.4   msaitoh 	switch (hw->phy.media_type) {
    238  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    239  1.4   msaitoh 	case ixgbe_media_type_fiber:
    240  1.4   msaitoh 	case ixgbe_media_type_backplane:
    241  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    242  1.4   msaitoh 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
    243  1.4   msaitoh 		break;
    244  1.4   msaitoh 	case ixgbe_media_type_copper:
    245  1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    246  1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    247  1.4   msaitoh 		break;
    248  1.4   msaitoh 	default:
    249  1.4   msaitoh 		break;
    250  1.4   msaitoh 	}
    251  1.4   msaitoh 
    252  1.4   msaitoh 	/*
    253  1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    254  1.4   msaitoh 	 * 0: Flow control is completely disabled
    255  1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    256  1.4   msaitoh 	 *    but not send pause frames).
    257  1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    258  1.4   msaitoh 	 *    we do not support receiving pause frames).
    259  1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    260  1.4   msaitoh 	 * other: Invalid.
    261  1.4   msaitoh 	 */
    262  1.4   msaitoh 	switch (hw->fc.requested_mode) {
    263  1.4   msaitoh 	case ixgbe_fc_none:
    264  1.4   msaitoh 		/* Flow control completely disabled by software override. */
    265  1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    266  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    267  1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    268  1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    269  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    270  1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    271  1.4   msaitoh 		break;
    272  1.4   msaitoh 	case ixgbe_fc_tx_pause:
    273  1.4   msaitoh 		/*
    274  1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    275  1.4   msaitoh 		 * disabled by software override.
    276  1.4   msaitoh 		 */
    277  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    278  1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    279  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    280  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    281  1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    282  1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    283  1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    284  1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    285  1.4   msaitoh 		}
    286  1.4   msaitoh 		break;
    287  1.4   msaitoh 	case ixgbe_fc_rx_pause:
    288  1.4   msaitoh 		/*
    289  1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    290  1.4   msaitoh 		 * disabled by software override. Since there really
    291  1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    292  1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    293  1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    294  1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    295  1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    296  1.4   msaitoh 		 */
    297  1.4   msaitoh 	case ixgbe_fc_full:
    298  1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    299  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    300  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    301  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    302  1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    303  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    304  1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    305  1.4   msaitoh 		break;
    306  1.4   msaitoh 	default:
    307  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    308  1.6   msaitoh 			     "Flow control param set incorrectly\n");
    309  1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    310  1.4   msaitoh 		goto out;
    311  1.4   msaitoh 		break;
    312  1.4   msaitoh 	}
    313  1.4   msaitoh 
    314  1.4   msaitoh 	if (hw->mac.type != ixgbe_mac_X540) {
    315  1.4   msaitoh 		/*
    316  1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    317  1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    318  1.4   msaitoh 		 */
    319  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    320  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    321  1.4   msaitoh 
    322  1.4   msaitoh 		/* Disable AN timeout */
    323  1.4   msaitoh 		if (hw->fc.strict_ieee)
    324  1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    325  1.4   msaitoh 
    326  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    327  1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    328  1.4   msaitoh 	}
    329  1.4   msaitoh 
    330  1.4   msaitoh 	/*
    331  1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    332  1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    333  1.4   msaitoh 	 *
    334  1.4   msaitoh 	 */
    335  1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    336  1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    337  1.5   msaitoh 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
    338  1.5   msaitoh 		 * LESM is on, likewise reset_pipeline requries the lock as
    339  1.5   msaitoh 		 * it also writes AUTOC.
    340  1.5   msaitoh 		 */
    341  1.5   msaitoh 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
    342  1.5   msaitoh 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
    343  1.5   msaitoh 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
    344  1.5   msaitoh 							IXGBE_GSSR_MAC_CSR_SM);
    345  1.5   msaitoh 			if (ret_val != IXGBE_SUCCESS) {
    346  1.5   msaitoh 				ret_val = IXGBE_ERR_SWFW_SYNC;
    347  1.5   msaitoh 				goto out;
    348  1.5   msaitoh 			}
    349  1.5   msaitoh 			got_lock = TRUE;
    350  1.5   msaitoh 		}
    351  1.5   msaitoh 
    352  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
    353  1.5   msaitoh 		if (hw->mac.type == ixgbe_mac_82599EB)
    354  1.5   msaitoh 			ixgbe_reset_pipeline_82599(hw);
    355  1.5   msaitoh 
    356  1.5   msaitoh 		if (got_lock)
    357  1.5   msaitoh 			hw->mac.ops.release_swfw_sync(hw,
    358  1.5   msaitoh 						      IXGBE_GSSR_MAC_CSR_SM);
    359  1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    360  1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    361  1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    362  1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    363  1.4   msaitoh 	}
    364  1.4   msaitoh 
    365  1.4   msaitoh 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
    366  1.4   msaitoh out:
    367  1.4   msaitoh 	return ret_val;
    368  1.4   msaitoh }
    369  1.4   msaitoh 
    370  1.4   msaitoh /**
    371  1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    372  1.1    dyoung  *  @hw: pointer to hardware structure
    373  1.1    dyoung  *
    374  1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    375  1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    376  1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    377  1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    378  1.1    dyoung  **/
    379  1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    380  1.1    dyoung {
    381  1.4   msaitoh 	s32 ret_val;
    382  1.1    dyoung 	u32 ctrl_ext;
    383  1.1    dyoung 
    384  1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    385  1.1    dyoung 
    386  1.1    dyoung 	/* Set the media type */
    387  1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    388  1.1    dyoung 
    389  1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    390  1.1    dyoung 
    391  1.1    dyoung 	/* Clear the VLAN filter table */
    392  1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    393  1.1    dyoung 
    394  1.1    dyoung 	/* Clear statistics registers */
    395  1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    396  1.1    dyoung 
    397  1.1    dyoung 	/* Set No Snoop Disable */
    398  1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    399  1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    400  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    401  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    402  1.1    dyoung 
    403  1.1    dyoung 	/* Setup flow control */
    404  1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    405  1.4   msaitoh 	if (ret_val != IXGBE_SUCCESS)
    406  1.4   msaitoh 		goto out;
    407  1.1    dyoung 
    408  1.1    dyoung 	/* Clear adapter stopped flag */
    409  1.1    dyoung 	hw->adapter_stopped = FALSE;
    410  1.1    dyoung 
    411  1.4   msaitoh out:
    412  1.4   msaitoh 	return ret_val;
    413  1.1    dyoung }
    414  1.1    dyoung 
    415  1.1    dyoung /**
    416  1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    417  1.1    dyoung  *  @hw: pointer to hw structure
    418  1.1    dyoung  *
    419  1.1    dyoung  * Performs the init sequence common to the second generation
    420  1.1    dyoung  * of 10 GbE devices.
    421  1.1    dyoung  * Devices in the second generation:
    422  1.1    dyoung  *     82599
    423  1.1    dyoung  *     X540
    424  1.1    dyoung  **/
    425  1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    426  1.1    dyoung {
    427  1.1    dyoung 	u32 i;
    428  1.1    dyoung 	u32 regval;
    429  1.1    dyoung 
    430  1.1    dyoung 	/* Clear the rate limiters */
    431  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    432  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    433  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    434  1.1    dyoung 	}
    435  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    436  1.1    dyoung 
    437  1.1    dyoung 	/* Disable relaxed ordering */
    438  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    439  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    440  1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    441  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    442  1.1    dyoung 	}
    443  1.1    dyoung 
    444  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    445  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    446  1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    447  1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    448  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    449  1.1    dyoung 	}
    450  1.1    dyoung 
    451  1.1    dyoung 	return IXGBE_SUCCESS;
    452  1.1    dyoung }
    453  1.1    dyoung 
    454  1.1    dyoung /**
    455  1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    456  1.1    dyoung  *  @hw: pointer to hardware structure
    457  1.1    dyoung  *
    458  1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    459  1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    460  1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    461  1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    462  1.1    dyoung  *  disabled and uninitialized
    463  1.1    dyoung  **/
    464  1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    465  1.1    dyoung {
    466  1.1    dyoung 	s32 status;
    467  1.1    dyoung 
    468  1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    469  1.1    dyoung 
    470  1.1    dyoung 	/* Reset the hardware */
    471  1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    472  1.1    dyoung 
    473  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
    474  1.1    dyoung 		/* Start the HW */
    475  1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    476  1.1    dyoung 	}
    477  1.1    dyoung 
    478  1.1    dyoung 	return status;
    479  1.1    dyoung }
    480  1.1    dyoung 
    481  1.1    dyoung /**
    482  1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    483  1.1    dyoung  *  @hw: pointer to hardware structure
    484  1.1    dyoung  *
    485  1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    486  1.1    dyoung  *  Statistics counters are clear on read.
    487  1.1    dyoung  **/
    488  1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    489  1.1    dyoung {
    490  1.1    dyoung 	u16 i = 0;
    491  1.1    dyoung 
    492  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    493  1.1    dyoung 
    494  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    495  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    496  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    497  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    498  1.1    dyoung 	for (i = 0; i < 8; i++)
    499  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    500  1.1    dyoung 
    501  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    502  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    503  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    504  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    505  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    506  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    507  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    508  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    509  1.1    dyoung 	} else {
    510  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    511  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    512  1.1    dyoung 	}
    513  1.1    dyoung 
    514  1.1    dyoung 	for (i = 0; i < 8; i++) {
    515  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    516  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    517  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    518  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    519  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    520  1.1    dyoung 		} else {
    521  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    522  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    523  1.1    dyoung 		}
    524  1.1    dyoung 	}
    525  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    526  1.1    dyoung 		for (i = 0; i < 8; i++)
    527  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    528  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    529  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    530  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    531  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    532  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    533  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    534  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    535  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    536  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    537  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    538  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    539  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    540  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    541  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    542  1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    543  1.3   msaitoh 		for (i = 0; i < 8; i++)
    544  1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    545  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    546  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    547  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    548  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    549  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    550  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    551  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    552  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    553  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    554  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    555  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    556  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    557  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    558  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    559  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    560  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    561  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    562  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    563  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    564  1.1    dyoung 	for (i = 0; i < 16; i++) {
    565  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    566  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    567  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    568  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    569  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    570  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    571  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    572  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    573  1.1    dyoung 		} else {
    574  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    575  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    576  1.1    dyoung 		}
    577  1.1    dyoung 	}
    578  1.1    dyoung 
    579  1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_X540) {
    580  1.3   msaitoh 		if (hw->phy.id == 0)
    581  1.3   msaitoh 			ixgbe_identify_phy(hw);
    582  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    583  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    584  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    585  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    586  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    587  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    588  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    589  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    590  1.3   msaitoh 	}
    591  1.3   msaitoh 
    592  1.1    dyoung 	return IXGBE_SUCCESS;
    593  1.1    dyoung }
    594  1.1    dyoung 
    595  1.1    dyoung /**
    596  1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    597  1.1    dyoung  *  @hw: pointer to hardware structure
    598  1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    599  1.1    dyoung  *  @pba_num_size: part number string buffer length
    600  1.1    dyoung  *
    601  1.1    dyoung  *  Reads the part number string from the EEPROM.
    602  1.1    dyoung  **/
    603  1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    604  1.3   msaitoh 				  u32 pba_num_size)
    605  1.1    dyoung {
    606  1.1    dyoung 	s32 ret_val;
    607  1.1    dyoung 	u16 data;
    608  1.1    dyoung 	u16 pba_ptr;
    609  1.1    dyoung 	u16 offset;
    610  1.1    dyoung 	u16 length;
    611  1.1    dyoung 
    612  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    613  1.1    dyoung 
    614  1.1    dyoung 	if (pba_num == NULL) {
    615  1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    616  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    617  1.1    dyoung 	}
    618  1.1    dyoung 
    619  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    620  1.1    dyoung 	if (ret_val) {
    621  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    622  1.1    dyoung 		return ret_val;
    623  1.1    dyoung 	}
    624  1.1    dyoung 
    625  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    626  1.1    dyoung 	if (ret_val) {
    627  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    628  1.1    dyoung 		return ret_val;
    629  1.1    dyoung 	}
    630  1.1    dyoung 
    631  1.1    dyoung 	/*
    632  1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    633  1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    634  1.1    dyoung 	 * and we can decode it into an ascii string
    635  1.1    dyoung 	 */
    636  1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    637  1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    638  1.1    dyoung 
    639  1.1    dyoung 		/* we will need 11 characters to store the PBA */
    640  1.1    dyoung 		if (pba_num_size < 11) {
    641  1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    642  1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    643  1.1    dyoung 		}
    644  1.1    dyoung 
    645  1.1    dyoung 		/* extract hex string from data and pba_ptr */
    646  1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    647  1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    648  1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    649  1.1    dyoung 		pba_num[3] = data & 0xF;
    650  1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    651  1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    652  1.1    dyoung 		pba_num[6] = '-';
    653  1.1    dyoung 		pba_num[7] = 0;
    654  1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    655  1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    656  1.1    dyoung 
    657  1.1    dyoung 		/* put a null character on the end of our string */
    658  1.1    dyoung 		pba_num[10] = '\0';
    659  1.1    dyoung 
    660  1.1    dyoung 		/* switch all the data but the '-' to hex char */
    661  1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    662  1.1    dyoung 			if (pba_num[offset] < 0xA)
    663  1.1    dyoung 				pba_num[offset] += '0';
    664  1.1    dyoung 			else if (pba_num[offset] < 0x10)
    665  1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    666  1.1    dyoung 		}
    667  1.1    dyoung 
    668  1.1    dyoung 		return IXGBE_SUCCESS;
    669  1.1    dyoung 	}
    670  1.1    dyoung 
    671  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    672  1.1    dyoung 	if (ret_val) {
    673  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    674  1.1    dyoung 		return ret_val;
    675  1.1    dyoung 	}
    676  1.1    dyoung 
    677  1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    678  1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    679  1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    680  1.1    dyoung 	}
    681  1.1    dyoung 
    682  1.1    dyoung 	/* check if pba_num buffer is big enough */
    683  1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    684  1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    685  1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    686  1.1    dyoung 	}
    687  1.1    dyoung 
    688  1.1    dyoung 	/* trim pba length from start of string */
    689  1.1    dyoung 	pba_ptr++;
    690  1.1    dyoung 	length--;
    691  1.1    dyoung 
    692  1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    693  1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    694  1.1    dyoung 		if (ret_val) {
    695  1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    696  1.1    dyoung 			return ret_val;
    697  1.1    dyoung 		}
    698  1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    699  1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    700  1.1    dyoung 	}
    701  1.1    dyoung 	pba_num[offset * 2] = '\0';
    702  1.1    dyoung 
    703  1.1    dyoung 	return IXGBE_SUCCESS;
    704  1.1    dyoung }
    705  1.1    dyoung 
    706  1.1    dyoung /**
    707  1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    708  1.1    dyoung  *  @hw: pointer to hardware structure
    709  1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    710  1.1    dyoung  *
    711  1.1    dyoung  *  Reads the part number from the EEPROM.
    712  1.1    dyoung  **/
    713  1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    714  1.1    dyoung {
    715  1.1    dyoung 	s32 ret_val;
    716  1.1    dyoung 	u16 data;
    717  1.1    dyoung 
    718  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    719  1.1    dyoung 
    720  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    721  1.1    dyoung 	if (ret_val) {
    722  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    723  1.1    dyoung 		return ret_val;
    724  1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    725  1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    726  1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    727  1.1    dyoung 	}
    728  1.1    dyoung 	*pba_num = (u32)(data << 16);
    729  1.1    dyoung 
    730  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    731  1.1    dyoung 	if (ret_val) {
    732  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    733  1.1    dyoung 		return ret_val;
    734  1.1    dyoung 	}
    735  1.1    dyoung 	*pba_num |= data;
    736  1.1    dyoung 
    737  1.1    dyoung 	return IXGBE_SUCCESS;
    738  1.1    dyoung }
    739  1.1    dyoung 
    740  1.1    dyoung /**
    741  1.5   msaitoh  *  ixgbe_read_pba_raw
    742  1.5   msaitoh  *  @hw: pointer to the HW structure
    743  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    744  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    745  1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    746  1.5   msaitoh  *  @pba: pointer to output PBA structure
    747  1.5   msaitoh  *
    748  1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    749  1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    750  1.5   msaitoh  *
    751  1.5   msaitoh  **/
    752  1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    753  1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    754  1.5   msaitoh 		       struct ixgbe_pba *pba)
    755  1.5   msaitoh {
    756  1.5   msaitoh 	s32 ret_val;
    757  1.5   msaitoh 	u16 pba_block_size;
    758  1.5   msaitoh 
    759  1.5   msaitoh 	if (pba == NULL)
    760  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    761  1.5   msaitoh 
    762  1.5   msaitoh 	if (eeprom_buf == NULL) {
    763  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    764  1.5   msaitoh 						     &pba->word[0]);
    765  1.5   msaitoh 		if (ret_val)
    766  1.5   msaitoh 			return ret_val;
    767  1.5   msaitoh 	} else {
    768  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    769  1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    770  1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    771  1.5   msaitoh 		} else {
    772  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    773  1.5   msaitoh 		}
    774  1.5   msaitoh 	}
    775  1.5   msaitoh 
    776  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    777  1.5   msaitoh 		if (pba->pba_block == NULL)
    778  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    779  1.5   msaitoh 
    780  1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    781  1.5   msaitoh 						   eeprom_buf_size,
    782  1.5   msaitoh 						   &pba_block_size);
    783  1.5   msaitoh 		if (ret_val)
    784  1.5   msaitoh 			return ret_val;
    785  1.5   msaitoh 
    786  1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    787  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    788  1.5   msaitoh 
    789  1.5   msaitoh 		if (eeprom_buf == NULL) {
    790  1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    791  1.5   msaitoh 							     pba_block_size,
    792  1.5   msaitoh 							     pba->pba_block);
    793  1.5   msaitoh 			if (ret_val)
    794  1.5   msaitoh 				return ret_val;
    795  1.5   msaitoh 		} else {
    796  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    797  1.5   msaitoh 					      pba->pba_block[0])) {
    798  1.5   msaitoh 				memcpy(pba->pba_block,
    799  1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    800  1.5   msaitoh 				       pba_block_size * sizeof(u16));
    801  1.5   msaitoh 			} else {
    802  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    803  1.5   msaitoh 			}
    804  1.5   msaitoh 		}
    805  1.5   msaitoh 	}
    806  1.5   msaitoh 
    807  1.5   msaitoh 	return IXGBE_SUCCESS;
    808  1.5   msaitoh }
    809  1.5   msaitoh 
    810  1.5   msaitoh /**
    811  1.5   msaitoh  *  ixgbe_write_pba_raw
    812  1.5   msaitoh  *  @hw: pointer to the HW structure
    813  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    814  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    815  1.5   msaitoh  *  @pba: pointer to PBA structure
    816  1.5   msaitoh  *
    817  1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    818  1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    819  1.5   msaitoh  *
    820  1.5   msaitoh  **/
    821  1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    822  1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    823  1.5   msaitoh {
    824  1.5   msaitoh 	s32 ret_val;
    825  1.5   msaitoh 
    826  1.5   msaitoh 	if (pba == NULL)
    827  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    828  1.5   msaitoh 
    829  1.5   msaitoh 	if (eeprom_buf == NULL) {
    830  1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    831  1.5   msaitoh 						      &pba->word[0]);
    832  1.5   msaitoh 		if (ret_val)
    833  1.5   msaitoh 			return ret_val;
    834  1.5   msaitoh 	} else {
    835  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    836  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    837  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    838  1.5   msaitoh 		} else {
    839  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    840  1.5   msaitoh 		}
    841  1.5   msaitoh 	}
    842  1.5   msaitoh 
    843  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    844  1.5   msaitoh 		if (pba->pba_block == NULL)
    845  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    846  1.5   msaitoh 
    847  1.5   msaitoh 		if (eeprom_buf == NULL) {
    848  1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    849  1.5   msaitoh 							      pba->pba_block[0],
    850  1.5   msaitoh 							      pba->pba_block);
    851  1.5   msaitoh 			if (ret_val)
    852  1.5   msaitoh 				return ret_val;
    853  1.5   msaitoh 		} else {
    854  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    855  1.5   msaitoh 					      pba->pba_block[0])) {
    856  1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    857  1.5   msaitoh 				       pba->pba_block,
    858  1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    859  1.5   msaitoh 			} else {
    860  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    861  1.5   msaitoh 			}
    862  1.5   msaitoh 		}
    863  1.5   msaitoh 	}
    864  1.5   msaitoh 
    865  1.5   msaitoh 	return IXGBE_SUCCESS;
    866  1.5   msaitoh }
    867  1.5   msaitoh 
    868  1.5   msaitoh /**
    869  1.5   msaitoh  *  ixgbe_get_pba_block_size
    870  1.5   msaitoh  *  @hw: pointer to the HW structure
    871  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    872  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    873  1.5   msaitoh  *  @pba_data_size: pointer to output variable
    874  1.5   msaitoh  *
    875  1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    876  1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    877  1.5   msaitoh  *  EEPROM device.
    878  1.5   msaitoh  *
    879  1.5   msaitoh  **/
    880  1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    881  1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    882  1.5   msaitoh {
    883  1.5   msaitoh 	s32 ret_val;
    884  1.5   msaitoh 	u16 pba_word[2];
    885  1.5   msaitoh 	u16 length;
    886  1.5   msaitoh 
    887  1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    888  1.5   msaitoh 
    889  1.5   msaitoh 	if (eeprom_buf == NULL) {
    890  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    891  1.5   msaitoh 						     &pba_word[0]);
    892  1.5   msaitoh 		if (ret_val)
    893  1.5   msaitoh 			return ret_val;
    894  1.5   msaitoh 	} else {
    895  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    896  1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    897  1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    898  1.5   msaitoh 		} else {
    899  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    900  1.5   msaitoh 		}
    901  1.5   msaitoh 	}
    902  1.5   msaitoh 
    903  1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    904  1.5   msaitoh 		if (eeprom_buf == NULL) {
    905  1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    906  1.5   msaitoh 						      &length);
    907  1.5   msaitoh 			if (ret_val)
    908  1.5   msaitoh 				return ret_val;
    909  1.5   msaitoh 		} else {
    910  1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    911  1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    912  1.5   msaitoh 			else
    913  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    914  1.5   msaitoh 		}
    915  1.5   msaitoh 
    916  1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    917  1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    918  1.5   msaitoh 	} else {
    919  1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    920  1.5   msaitoh 		length = 0;
    921  1.5   msaitoh 	}
    922  1.5   msaitoh 
    923  1.5   msaitoh 	if (pba_block_size != NULL)
    924  1.5   msaitoh 		*pba_block_size = length;
    925  1.5   msaitoh 
    926  1.5   msaitoh 	return IXGBE_SUCCESS;
    927  1.5   msaitoh }
    928  1.5   msaitoh 
    929  1.5   msaitoh /**
    930  1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    931  1.1    dyoung  *  @hw: pointer to hardware structure
    932  1.1    dyoung  *  @mac_addr: Adapter MAC address
    933  1.1    dyoung  *
    934  1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    935  1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    936  1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    937  1.1    dyoung  **/
    938  1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    939  1.1    dyoung {
    940  1.1    dyoung 	u32 rar_high;
    941  1.1    dyoung 	u32 rar_low;
    942  1.1    dyoung 	u16 i;
    943  1.1    dyoung 
    944  1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    945  1.1    dyoung 
    946  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    947  1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    948  1.1    dyoung 
    949  1.1    dyoung 	for (i = 0; i < 4; i++)
    950  1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    951  1.1    dyoung 
    952  1.1    dyoung 	for (i = 0; i < 2; i++)
    953  1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    954  1.1    dyoung 
    955  1.1    dyoung 	return IXGBE_SUCCESS;
    956  1.1    dyoung }
    957  1.1    dyoung 
    958  1.1    dyoung /**
    959  1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    960  1.1    dyoung  *  @hw: pointer to hardware structure
    961  1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
    962  1.1    dyoung  *
    963  1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    964  1.1    dyoung  **/
    965  1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    966  1.1    dyoung {
    967  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    968  1.1    dyoung 
    969  1.1    dyoung 	hw->bus.type = ixgbe_bus_type_pci_express;
    970  1.1    dyoung 
    971  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    972  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    973  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    974  1.1    dyoung 		break;
    975  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    976  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    977  1.1    dyoung 		break;
    978  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    979  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    980  1.1    dyoung 		break;
    981  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    982  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    983  1.1    dyoung 		break;
    984  1.1    dyoung 	default:
    985  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    986  1.1    dyoung 		break;
    987  1.1    dyoung 	}
    988  1.1    dyoung 
    989  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    990  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    991  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    992  1.1    dyoung 		break;
    993  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    994  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    995  1.1    dyoung 		break;
    996  1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    997  1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    998  1.4   msaitoh 		break;
    999  1.1    dyoung 	default:
   1000  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1001  1.1    dyoung 		break;
   1002  1.1    dyoung 	}
   1003  1.1    dyoung 
   1004  1.1    dyoung 	mac->ops.set_lan_id(hw);
   1005  1.6   msaitoh }
   1006  1.6   msaitoh 
   1007  1.6   msaitoh /**
   1008  1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1009  1.6   msaitoh  *  @hw: pointer to hardware structure
   1010  1.6   msaitoh  *
   1011  1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1012  1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1013  1.6   msaitoh  **/
   1014  1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1015  1.6   msaitoh {
   1016  1.6   msaitoh 	u16 link_status;
   1017  1.6   msaitoh 
   1018  1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1019  1.6   msaitoh 
   1020  1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1021  1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1022  1.6   msaitoh 
   1023  1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1024  1.1    dyoung 
   1025  1.1    dyoung 	return IXGBE_SUCCESS;
   1026  1.1    dyoung }
   1027  1.1    dyoung 
   1028  1.1    dyoung /**
   1029  1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1030  1.1    dyoung  *  @hw: pointer to the HW structure
   1031  1.1    dyoung  *
   1032  1.1    dyoung  *  Determines the LAN function id by reading memory-mapped registers
   1033  1.1    dyoung  *  and swaps the port value if requested.
   1034  1.1    dyoung  **/
   1035  1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1036  1.1    dyoung {
   1037  1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1038  1.1    dyoung 	u32 reg;
   1039  1.1    dyoung 
   1040  1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1041  1.1    dyoung 
   1042  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1043  1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1044  1.1    dyoung 	bus->lan_id = bus->func;
   1045  1.1    dyoung 
   1046  1.1    dyoung 	/* check for a port swap */
   1047  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   1048  1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1049  1.1    dyoung 		bus->func ^= 0x1;
   1050  1.1    dyoung }
   1051  1.1    dyoung 
   1052  1.1    dyoung /**
   1053  1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1054  1.1    dyoung  *  @hw: pointer to hardware structure
   1055  1.1    dyoung  *
   1056  1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1057  1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1058  1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1059  1.1    dyoung  *  state and should not touch the hardware.
   1060  1.1    dyoung  **/
   1061  1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1062  1.1    dyoung {
   1063  1.1    dyoung 	u32 reg_val;
   1064  1.1    dyoung 	u16 i;
   1065  1.1    dyoung 
   1066  1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1067  1.1    dyoung 
   1068  1.1    dyoung 	/*
   1069  1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1070  1.1    dyoung 	 * the hardware
   1071  1.1    dyoung 	 */
   1072  1.1    dyoung 	hw->adapter_stopped = TRUE;
   1073  1.1    dyoung 
   1074  1.1    dyoung 	/* Disable the receive unit */
   1075  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
   1076  1.1    dyoung 
   1077  1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1078  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1079  1.1    dyoung 
   1080  1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1081  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1082  1.1    dyoung 
   1083  1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1084  1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1085  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1086  1.3   msaitoh 
   1087  1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1088  1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1089  1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1090  1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1091  1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1092  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1093  1.1    dyoung 	}
   1094  1.1    dyoung 
   1095  1.3   msaitoh 	/* flush all queues disables */
   1096  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1097  1.3   msaitoh 	msec_delay(2);
   1098  1.3   msaitoh 
   1099  1.1    dyoung 	/*
   1100  1.1    dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
   1101  1.1    dyoung 	 * access and verify no pending requests
   1102  1.1    dyoung 	 */
   1103  1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1104  1.1    dyoung }
   1105  1.1    dyoung 
   1106  1.1    dyoung /**
   1107  1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1108  1.1    dyoung  *  @hw: pointer to hardware structure
   1109  1.1    dyoung  *  @index: led number to turn on
   1110  1.1    dyoung  **/
   1111  1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1112  1.1    dyoung {
   1113  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1114  1.1    dyoung 
   1115  1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1116  1.1    dyoung 
   1117  1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1118  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1119  1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1120  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1121  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1122  1.1    dyoung 
   1123  1.1    dyoung 	return IXGBE_SUCCESS;
   1124  1.1    dyoung }
   1125  1.1    dyoung 
   1126  1.1    dyoung /**
   1127  1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1128  1.1    dyoung  *  @hw: pointer to hardware structure
   1129  1.1    dyoung  *  @index: led number to turn off
   1130  1.1    dyoung  **/
   1131  1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1132  1.1    dyoung {
   1133  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1134  1.1    dyoung 
   1135  1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1136  1.1    dyoung 
   1137  1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1138  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1139  1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1140  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1141  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1142  1.1    dyoung 
   1143  1.1    dyoung 	return IXGBE_SUCCESS;
   1144  1.1    dyoung }
   1145  1.1    dyoung 
   1146  1.1    dyoung /**
   1147  1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1148  1.1    dyoung  *  @hw: pointer to hardware structure
   1149  1.1    dyoung  *
   1150  1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1151  1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1152  1.1    dyoung  **/
   1153  1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1154  1.1    dyoung {
   1155  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1156  1.1    dyoung 	u32 eec;
   1157  1.1    dyoung 	u16 eeprom_size;
   1158  1.1    dyoung 
   1159  1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1160  1.1    dyoung 
   1161  1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1162  1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1163  1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1164  1.1    dyoung 		 * tested value */
   1165  1.1    dyoung 		eeprom->semaphore_delay = 10;
   1166  1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1167  1.3   msaitoh 		eeprom->word_page_size = 0;
   1168  1.1    dyoung 
   1169  1.1    dyoung 		/*
   1170  1.1    dyoung 		 * Check for EEPROM present first.
   1171  1.1    dyoung 		 * If not present leave as none
   1172  1.1    dyoung 		 */
   1173  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1174  1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1175  1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1176  1.1    dyoung 
   1177  1.1    dyoung 			/*
   1178  1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1179  1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1180  1.1    dyoung 			 */
   1181  1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1182  1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1183  1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1184  1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1185  1.1    dyoung 		}
   1186  1.1    dyoung 
   1187  1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1188  1.1    dyoung 			eeprom->address_bits = 16;
   1189  1.1    dyoung 		else
   1190  1.1    dyoung 			eeprom->address_bits = 8;
   1191  1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1192  1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1193  1.3   msaitoh 			  eeprom->address_bits);
   1194  1.1    dyoung 	}
   1195  1.1    dyoung 
   1196  1.1    dyoung 	return IXGBE_SUCCESS;
   1197  1.1    dyoung }
   1198  1.1    dyoung 
   1199  1.1    dyoung /**
   1200  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1201  1.3   msaitoh  *  @hw: pointer to hardware structure
   1202  1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1203  1.3   msaitoh  *  @words: number of word(s)
   1204  1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1205  1.3   msaitoh  *
   1206  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1207  1.3   msaitoh  **/
   1208  1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1209  1.3   msaitoh 					       u16 words, u16 *data)
   1210  1.3   msaitoh {
   1211  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1212  1.3   msaitoh 	u16 i, count;
   1213  1.3   msaitoh 
   1214  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1215  1.3   msaitoh 
   1216  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1217  1.3   msaitoh 
   1218  1.3   msaitoh 	if (words == 0) {
   1219  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1220  1.3   msaitoh 		goto out;
   1221  1.3   msaitoh 	}
   1222  1.3   msaitoh 
   1223  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1224  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1225  1.3   msaitoh 		goto out;
   1226  1.3   msaitoh 	}
   1227  1.3   msaitoh 
   1228  1.3   msaitoh 	/*
   1229  1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1230  1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1231  1.3   msaitoh 	 */
   1232  1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1233  1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1234  1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1235  1.3   msaitoh 
   1236  1.3   msaitoh 	/*
   1237  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1238  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1239  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1240  1.3   msaitoh 	 */
   1241  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1242  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1243  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1244  1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1245  1.3   msaitoh 							    count, &data[i]);
   1246  1.3   msaitoh 
   1247  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1248  1.3   msaitoh 			break;
   1249  1.3   msaitoh 	}
   1250  1.3   msaitoh 
   1251  1.3   msaitoh out:
   1252  1.3   msaitoh 	return status;
   1253  1.3   msaitoh }
   1254  1.3   msaitoh 
   1255  1.3   msaitoh /**
   1256  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1257  1.3   msaitoh  *  @hw: pointer to hardware structure
   1258  1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1259  1.3   msaitoh  *  @words: number of word(s)
   1260  1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1261  1.3   msaitoh  *
   1262  1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1263  1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1264  1.3   msaitoh  **/
   1265  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1266  1.3   msaitoh 					      u16 words, u16 *data)
   1267  1.3   msaitoh {
   1268  1.3   msaitoh 	s32 status;
   1269  1.3   msaitoh 	u16 word;
   1270  1.3   msaitoh 	u16 page_size;
   1271  1.3   msaitoh 	u16 i;
   1272  1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1273  1.3   msaitoh 
   1274  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1275  1.3   msaitoh 
   1276  1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1277  1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1278  1.3   msaitoh 
   1279  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1280  1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1281  1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1282  1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1283  1.3   msaitoh 		}
   1284  1.3   msaitoh 	}
   1285  1.3   msaitoh 
   1286  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1287  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1288  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1289  1.3   msaitoh 
   1290  1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1291  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1292  1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1293  1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1294  1.3   msaitoh 
   1295  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1296  1.3   msaitoh 
   1297  1.3   msaitoh 			/*
   1298  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1299  1.3   msaitoh 			 * in the opcode
   1300  1.3   msaitoh 			 */
   1301  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1302  1.3   msaitoh 			    ((offset + i) >= 128))
   1303  1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1304  1.3   msaitoh 
   1305  1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1306  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1307  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1308  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1309  1.3   msaitoh 						    hw->eeprom.address_bits);
   1310  1.3   msaitoh 
   1311  1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1312  1.3   msaitoh 
   1313  1.3   msaitoh 			/* Send the data in burst via SPI*/
   1314  1.3   msaitoh 			do {
   1315  1.3   msaitoh 				word = data[i];
   1316  1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1317  1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1318  1.3   msaitoh 
   1319  1.3   msaitoh 				if (page_size == 0)
   1320  1.3   msaitoh 					break;
   1321  1.3   msaitoh 
   1322  1.3   msaitoh 				/* do not wrap around page */
   1323  1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1324  1.3   msaitoh 				    (page_size - 1))
   1325  1.3   msaitoh 					break;
   1326  1.3   msaitoh 			} while (++i < words);
   1327  1.3   msaitoh 
   1328  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1329  1.3   msaitoh 			msec_delay(10);
   1330  1.3   msaitoh 		}
   1331  1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1332  1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1333  1.3   msaitoh 	}
   1334  1.3   msaitoh 
   1335  1.3   msaitoh 	return status;
   1336  1.3   msaitoh }
   1337  1.3   msaitoh 
   1338  1.3   msaitoh /**
   1339  1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1340  1.1    dyoung  *  @hw: pointer to hardware structure
   1341  1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1342  1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1343  1.1    dyoung  *
   1344  1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1345  1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1346  1.1    dyoung  **/
   1347  1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1348  1.1    dyoung {
   1349  1.1    dyoung 	s32 status;
   1350  1.1    dyoung 
   1351  1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1352  1.1    dyoung 
   1353  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1354  1.1    dyoung 
   1355  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1356  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1357  1.1    dyoung 		goto out;
   1358  1.1    dyoung 	}
   1359  1.1    dyoung 
   1360  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1361  1.3   msaitoh 
   1362  1.3   msaitoh out:
   1363  1.3   msaitoh 	return status;
   1364  1.3   msaitoh }
   1365  1.3   msaitoh 
   1366  1.3   msaitoh /**
   1367  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1368  1.3   msaitoh  *  @hw: pointer to hardware structure
   1369  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1370  1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1371  1.3   msaitoh  *  @words: number of word(s)
   1372  1.3   msaitoh  *
   1373  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1374  1.3   msaitoh  **/
   1375  1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1376  1.3   msaitoh 					      u16 words, u16 *data)
   1377  1.3   msaitoh {
   1378  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1379  1.3   msaitoh 	u16 i, count;
   1380  1.3   msaitoh 
   1381  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1382  1.3   msaitoh 
   1383  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1384  1.3   msaitoh 
   1385  1.3   msaitoh 	if (words == 0) {
   1386  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1387  1.3   msaitoh 		goto out;
   1388  1.3   msaitoh 	}
   1389  1.3   msaitoh 
   1390  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1391  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1392  1.3   msaitoh 		goto out;
   1393  1.3   msaitoh 	}
   1394  1.3   msaitoh 
   1395  1.3   msaitoh 	/*
   1396  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1397  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1398  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1399  1.3   msaitoh 	 */
   1400  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1401  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1402  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1403  1.3   msaitoh 
   1404  1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1405  1.3   msaitoh 							   count, &data[i]);
   1406  1.3   msaitoh 
   1407  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1408  1.3   msaitoh 			break;
   1409  1.3   msaitoh 	}
   1410  1.3   msaitoh 
   1411  1.3   msaitoh out:
   1412  1.3   msaitoh 	return status;
   1413  1.3   msaitoh }
   1414  1.3   msaitoh 
   1415  1.3   msaitoh /**
   1416  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1417  1.3   msaitoh  *  @hw: pointer to hardware structure
   1418  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1419  1.3   msaitoh  *  @words: number of word(s)
   1420  1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1421  1.3   msaitoh  *
   1422  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1423  1.3   msaitoh  **/
   1424  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1425  1.3   msaitoh 					     u16 words, u16 *data)
   1426  1.3   msaitoh {
   1427  1.3   msaitoh 	s32 status;
   1428  1.3   msaitoh 	u16 word_in;
   1429  1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1430  1.3   msaitoh 	u16 i;
   1431  1.3   msaitoh 
   1432  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1433  1.3   msaitoh 
   1434  1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1435  1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1436  1.1    dyoung 
   1437  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1438  1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1439  1.1    dyoung 			ixgbe_release_eeprom(hw);
   1440  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1441  1.1    dyoung 		}
   1442  1.1    dyoung 	}
   1443  1.1    dyoung 
   1444  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1445  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1446  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1447  1.3   msaitoh 			/*
   1448  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1449  1.3   msaitoh 			 * in the opcode
   1450  1.3   msaitoh 			 */
   1451  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1452  1.3   msaitoh 			    ((offset + i) >= 128))
   1453  1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1454  1.3   msaitoh 
   1455  1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1456  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1457  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1458  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1459  1.3   msaitoh 						    hw->eeprom.address_bits);
   1460  1.3   msaitoh 
   1461  1.3   msaitoh 			/* Read the data. */
   1462  1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1463  1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1464  1.3   msaitoh 		}
   1465  1.1    dyoung 
   1466  1.3   msaitoh 		/* End this read operation */
   1467  1.1    dyoung 		ixgbe_release_eeprom(hw);
   1468  1.1    dyoung 	}
   1469  1.1    dyoung 
   1470  1.1    dyoung 	return status;
   1471  1.1    dyoung }
   1472  1.1    dyoung 
   1473  1.1    dyoung /**
   1474  1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1475  1.1    dyoung  *  @hw: pointer to hardware structure
   1476  1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1477  1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1478  1.1    dyoung  *
   1479  1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1480  1.1    dyoung  **/
   1481  1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1482  1.3   msaitoh 				       u16 *data)
   1483  1.1    dyoung {
   1484  1.1    dyoung 	s32 status;
   1485  1.1    dyoung 
   1486  1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1487  1.1    dyoung 
   1488  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1489  1.1    dyoung 
   1490  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1491  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1492  1.1    dyoung 		goto out;
   1493  1.1    dyoung 	}
   1494  1.1    dyoung 
   1495  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1496  1.3   msaitoh 
   1497  1.3   msaitoh out:
   1498  1.3   msaitoh 	return status;
   1499  1.3   msaitoh }
   1500  1.3   msaitoh 
   1501  1.3   msaitoh /**
   1502  1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1503  1.3   msaitoh  *  @hw: pointer to hardware structure
   1504  1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1505  1.3   msaitoh  *  @words: number of word(s)
   1506  1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1507  1.3   msaitoh  *
   1508  1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1509  1.3   msaitoh  **/
   1510  1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1511  1.3   msaitoh 				   u16 words, u16 *data)
   1512  1.3   msaitoh {
   1513  1.3   msaitoh 	u32 eerd;
   1514  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1515  1.3   msaitoh 	u32 i;
   1516  1.3   msaitoh 
   1517  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1518  1.3   msaitoh 
   1519  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1520  1.3   msaitoh 
   1521  1.3   msaitoh 	if (words == 0) {
   1522  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1523  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1524  1.3   msaitoh 		goto out;
   1525  1.3   msaitoh 	}
   1526  1.3   msaitoh 
   1527  1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1528  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1529  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1530  1.3   msaitoh 		goto out;
   1531  1.3   msaitoh 	}
   1532  1.3   msaitoh 
   1533  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1534  1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1535  1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1536  1.3   msaitoh 
   1537  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1538  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1539  1.1    dyoung 
   1540  1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1541  1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1542  1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1543  1.3   msaitoh 		} else {
   1544  1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1545  1.3   msaitoh 			goto out;
   1546  1.1    dyoung 		}
   1547  1.1    dyoung 	}
   1548  1.3   msaitoh out:
   1549  1.3   msaitoh 	return status;
   1550  1.3   msaitoh }
   1551  1.1    dyoung 
   1552  1.3   msaitoh /**
   1553  1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1554  1.3   msaitoh  *  @hw: pointer to hardware structure
   1555  1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1556  1.3   msaitoh  *
   1557  1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1558  1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1559  1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1560  1.3   msaitoh  **/
   1561  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1562  1.3   msaitoh 						 u16 offset)
   1563  1.3   msaitoh {
   1564  1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1565  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1566  1.3   msaitoh 	u16 i;
   1567  1.3   msaitoh 
   1568  1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1569  1.3   msaitoh 
   1570  1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1571  1.3   msaitoh 		data[i] = i;
   1572  1.1    dyoung 
   1573  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1574  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1575  1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1576  1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1577  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1578  1.3   msaitoh 		goto out;
   1579  1.1    dyoung 
   1580  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1581  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1582  1.3   msaitoh 		goto out;
   1583  1.1    dyoung 
   1584  1.3   msaitoh 	/*
   1585  1.3   msaitoh 	 * When writing in burst more than the actual page size
   1586  1.3   msaitoh 	 * EEPROM address wraps around current page.
   1587  1.3   msaitoh 	 */
   1588  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1589  1.1    dyoung 
   1590  1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1591  1.3   msaitoh 		  hw->eeprom.word_page_size);
   1592  1.1    dyoung out:
   1593  1.1    dyoung 	return status;
   1594  1.1    dyoung }
   1595  1.1    dyoung 
   1596  1.1    dyoung /**
   1597  1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1598  1.1    dyoung  *  @hw: pointer to hardware structure
   1599  1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1600  1.1    dyoung  *  @data: word read from the EEPROM
   1601  1.1    dyoung  *
   1602  1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1603  1.1    dyoung  **/
   1604  1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1605  1.1    dyoung {
   1606  1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1607  1.3   msaitoh }
   1608  1.3   msaitoh 
   1609  1.3   msaitoh /**
   1610  1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1611  1.3   msaitoh  *  @hw: pointer to hardware structure
   1612  1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1613  1.3   msaitoh  *  @words: number of word(s)
   1614  1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1615  1.3   msaitoh  *
   1616  1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1617  1.3   msaitoh  **/
   1618  1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1619  1.3   msaitoh 				    u16 words, u16 *data)
   1620  1.3   msaitoh {
   1621  1.3   msaitoh 	u32 eewr;
   1622  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1623  1.3   msaitoh 	u16 i;
   1624  1.1    dyoung 
   1625  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1626  1.1    dyoung 
   1627  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1628  1.1    dyoung 
   1629  1.3   msaitoh 	if (words == 0) {
   1630  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1631  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1632  1.3   msaitoh 		goto out;
   1633  1.3   msaitoh 	}
   1634  1.3   msaitoh 
   1635  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1636  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1637  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1638  1.1    dyoung 		goto out;
   1639  1.1    dyoung 	}
   1640  1.1    dyoung 
   1641  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1642  1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1643  1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1644  1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1645  1.3   msaitoh 
   1646  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1647  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1648  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1649  1.3   msaitoh 			goto out;
   1650  1.3   msaitoh 		}
   1651  1.1    dyoung 
   1652  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1653  1.1    dyoung 
   1654  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1655  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1656  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1657  1.3   msaitoh 			goto out;
   1658  1.3   msaitoh 		}
   1659  1.3   msaitoh 	}
   1660  1.1    dyoung 
   1661  1.1    dyoung out:
   1662  1.1    dyoung 	return status;
   1663  1.1    dyoung }
   1664  1.1    dyoung 
   1665  1.1    dyoung /**
   1666  1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1667  1.1    dyoung  *  @hw: pointer to hardware structure
   1668  1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1669  1.1    dyoung  *  @data: word write to the EEPROM
   1670  1.1    dyoung  *
   1671  1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1672  1.1    dyoung  **/
   1673  1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1674  1.1    dyoung {
   1675  1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1676  1.1    dyoung }
   1677  1.1    dyoung 
   1678  1.1    dyoung /**
   1679  1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1680  1.1    dyoung  *  @hw: pointer to hardware structure
   1681  1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1682  1.1    dyoung  *
   1683  1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1684  1.1    dyoung  *  read or write is done respectively.
   1685  1.1    dyoung  **/
   1686  1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1687  1.1    dyoung {
   1688  1.1    dyoung 	u32 i;
   1689  1.1    dyoung 	u32 reg;
   1690  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1691  1.1    dyoung 
   1692  1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1693  1.1    dyoung 
   1694  1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1695  1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1696  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1697  1.1    dyoung 		else
   1698  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1699  1.1    dyoung 
   1700  1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1701  1.1    dyoung 			status = IXGBE_SUCCESS;
   1702  1.1    dyoung 			break;
   1703  1.1    dyoung 		}
   1704  1.1    dyoung 		usec_delay(5);
   1705  1.1    dyoung 	}
   1706  1.6   msaitoh 
   1707  1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1708  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1709  1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1710  1.6   msaitoh 
   1711  1.1    dyoung 	return status;
   1712  1.1    dyoung }
   1713  1.1    dyoung 
   1714  1.1    dyoung /**
   1715  1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1716  1.1    dyoung  *  @hw: pointer to hardware structure
   1717  1.1    dyoung  *
   1718  1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1719  1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1720  1.1    dyoung  **/
   1721  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1722  1.1    dyoung {
   1723  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1724  1.1    dyoung 	u32 eec;
   1725  1.1    dyoung 	u32 i;
   1726  1.1    dyoung 
   1727  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1728  1.1    dyoung 
   1729  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1730  1.3   msaitoh 	    != IXGBE_SUCCESS)
   1731  1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1732  1.1    dyoung 
   1733  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1734  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1735  1.1    dyoung 
   1736  1.1    dyoung 		/* Request EEPROM Access */
   1737  1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1738  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1739  1.1    dyoung 
   1740  1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1741  1.1    dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1742  1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1743  1.1    dyoung 				break;
   1744  1.1    dyoung 			usec_delay(5);
   1745  1.1    dyoung 		}
   1746  1.1    dyoung 
   1747  1.1    dyoung 		/* Release if grant not acquired */
   1748  1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1749  1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1750  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1751  1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1752  1.1    dyoung 
   1753  1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1754  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1755  1.1    dyoung 		}
   1756  1.1    dyoung 
   1757  1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1758  1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1759  1.1    dyoung 			/* Clear CS and SK */
   1760  1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1761  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1762  1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1763  1.1    dyoung 			usec_delay(1);
   1764  1.1    dyoung 		}
   1765  1.1    dyoung 	}
   1766  1.1    dyoung 	return status;
   1767  1.1    dyoung }
   1768  1.1    dyoung 
   1769  1.1    dyoung /**
   1770  1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1771  1.1    dyoung  *  @hw: pointer to hardware structure
   1772  1.1    dyoung  *
   1773  1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1774  1.1    dyoung  **/
   1775  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1776  1.1    dyoung {
   1777  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1778  1.1    dyoung 	u32 timeout = 2000;
   1779  1.1    dyoung 	u32 i;
   1780  1.1    dyoung 	u32 swsm;
   1781  1.1    dyoung 
   1782  1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1783  1.1    dyoung 
   1784  1.1    dyoung 
   1785  1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1786  1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1787  1.1    dyoung 		/*
   1788  1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1789  1.1    dyoung 		 * set and we have the semaphore
   1790  1.1    dyoung 		 */
   1791  1.1    dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1792  1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1793  1.1    dyoung 			status = IXGBE_SUCCESS;
   1794  1.1    dyoung 			break;
   1795  1.1    dyoung 		}
   1796  1.1    dyoung 		usec_delay(50);
   1797  1.1    dyoung 	}
   1798  1.1    dyoung 
   1799  1.3   msaitoh 	if (i == timeout) {
   1800  1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1801  1.3   msaitoh 			 "not granted.\n");
   1802  1.3   msaitoh 		/*
   1803  1.3   msaitoh 		 * this release is particularly important because our attempts
   1804  1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1805  1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1806  1.3   msaitoh 		 * bits to free the driver to make progress
   1807  1.3   msaitoh 		 */
   1808  1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1809  1.3   msaitoh 
   1810  1.3   msaitoh 		usec_delay(50);
   1811  1.3   msaitoh 		/*
   1812  1.3   msaitoh 		 * one last try
   1813  1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1814  1.3   msaitoh 		 * set and we have the semaphore
   1815  1.3   msaitoh 		 */
   1816  1.3   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1817  1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1818  1.3   msaitoh 			status = IXGBE_SUCCESS;
   1819  1.3   msaitoh 	}
   1820  1.3   msaitoh 
   1821  1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1822  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1823  1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1824  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1825  1.1    dyoung 
   1826  1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1827  1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1828  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1829  1.1    dyoung 
   1830  1.1    dyoung 			/*
   1831  1.1    dyoung 			 * If we set the bit successfully then we got the
   1832  1.1    dyoung 			 * semaphore.
   1833  1.1    dyoung 			 */
   1834  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1835  1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1836  1.1    dyoung 				break;
   1837  1.1    dyoung 
   1838  1.1    dyoung 			usec_delay(50);
   1839  1.1    dyoung 		}
   1840  1.1    dyoung 
   1841  1.1    dyoung 		/*
   1842  1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1843  1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1844  1.1    dyoung 		 */
   1845  1.1    dyoung 		if (i >= timeout) {
   1846  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1847  1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1848  1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1849  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1850  1.1    dyoung 		}
   1851  1.1    dyoung 	} else {
   1852  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1853  1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1854  1.6   msaitoh 			     "not granted.\n");
   1855  1.1    dyoung 	}
   1856  1.1    dyoung 
   1857  1.1    dyoung 	return status;
   1858  1.1    dyoung }
   1859  1.1    dyoung 
   1860  1.1    dyoung /**
   1861  1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1862  1.1    dyoung  *  @hw: pointer to hardware structure
   1863  1.1    dyoung  *
   1864  1.1    dyoung  *  This function clears hardware semaphore bits.
   1865  1.1    dyoung  **/
   1866  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1867  1.1    dyoung {
   1868  1.1    dyoung 	u32 swsm;
   1869  1.1    dyoung 
   1870  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1871  1.1    dyoung 
   1872  1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1873  1.1    dyoung 
   1874  1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1875  1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1876  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1877  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1878  1.1    dyoung }
   1879  1.1    dyoung 
   1880  1.1    dyoung /**
   1881  1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1882  1.1    dyoung  *  @hw: pointer to hardware structure
   1883  1.1    dyoung  **/
   1884  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1885  1.1    dyoung {
   1886  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1887  1.1    dyoung 	u16 i;
   1888  1.1    dyoung 	u8 spi_stat_reg;
   1889  1.1    dyoung 
   1890  1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1891  1.1    dyoung 
   1892  1.1    dyoung 	/*
   1893  1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1894  1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1895  1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1896  1.1    dyoung 	 * 5 milliseconds, then error out.
   1897  1.1    dyoung 	 */
   1898  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1899  1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1900  1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1901  1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1902  1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1903  1.1    dyoung 			break;
   1904  1.1    dyoung 
   1905  1.1    dyoung 		usec_delay(5);
   1906  1.1    dyoung 		ixgbe_standby_eeprom(hw);
   1907  1.1    dyoung 	};
   1908  1.1    dyoung 
   1909  1.1    dyoung 	/*
   1910  1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1911  1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1912  1.1    dyoung 	 */
   1913  1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1914  1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1915  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1916  1.1    dyoung 	}
   1917  1.1    dyoung 
   1918  1.1    dyoung 	return status;
   1919  1.1    dyoung }
   1920  1.1    dyoung 
   1921  1.1    dyoung /**
   1922  1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1923  1.1    dyoung  *  @hw: pointer to hardware structure
   1924  1.1    dyoung  **/
   1925  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1926  1.1    dyoung {
   1927  1.1    dyoung 	u32 eec;
   1928  1.1    dyoung 
   1929  1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1930  1.1    dyoung 
   1931  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1932  1.1    dyoung 
   1933  1.1    dyoung 	/* Toggle CS to flush commands */
   1934  1.1    dyoung 	eec |= IXGBE_EEC_CS;
   1935  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1936  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1937  1.1    dyoung 	usec_delay(1);
   1938  1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   1939  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1940  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1941  1.1    dyoung 	usec_delay(1);
   1942  1.1    dyoung }
   1943  1.1    dyoung 
   1944  1.1    dyoung /**
   1945  1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1946  1.1    dyoung  *  @hw: pointer to hardware structure
   1947  1.1    dyoung  *  @data: data to send to the EEPROM
   1948  1.1    dyoung  *  @count: number of bits to shift out
   1949  1.1    dyoung  **/
   1950  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1951  1.3   msaitoh 					u16 count)
   1952  1.1    dyoung {
   1953  1.1    dyoung 	u32 eec;
   1954  1.1    dyoung 	u32 mask;
   1955  1.1    dyoung 	u32 i;
   1956  1.1    dyoung 
   1957  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1958  1.1    dyoung 
   1959  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1960  1.1    dyoung 
   1961  1.1    dyoung 	/*
   1962  1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1963  1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1964  1.1    dyoung 	 */
   1965  1.1    dyoung 	mask = 0x01 << (count - 1);
   1966  1.1    dyoung 
   1967  1.1    dyoung 	for (i = 0; i < count; i++) {
   1968  1.1    dyoung 		/*
   1969  1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1970  1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1971  1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1972  1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1973  1.1    dyoung 		 * raising and then lowering the clock.
   1974  1.1    dyoung 		 */
   1975  1.1    dyoung 		if (data & mask)
   1976  1.1    dyoung 			eec |= IXGBE_EEC_DI;
   1977  1.1    dyoung 		else
   1978  1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   1979  1.1    dyoung 
   1980  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1981  1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   1982  1.1    dyoung 
   1983  1.1    dyoung 		usec_delay(1);
   1984  1.1    dyoung 
   1985  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1986  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1987  1.1    dyoung 
   1988  1.1    dyoung 		/*
   1989  1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1990  1.1    dyoung 		 * EEPROM
   1991  1.1    dyoung 		 */
   1992  1.1    dyoung 		mask = mask >> 1;
   1993  1.1    dyoung 	};
   1994  1.1    dyoung 
   1995  1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1996  1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   1997  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1998  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1999  1.1    dyoung }
   2000  1.1    dyoung 
   2001  1.1    dyoung /**
   2002  1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2003  1.1    dyoung  *  @hw: pointer to hardware structure
   2004  1.1    dyoung  **/
   2005  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2006  1.1    dyoung {
   2007  1.1    dyoung 	u32 eec;
   2008  1.1    dyoung 	u32 i;
   2009  1.1    dyoung 	u16 data = 0;
   2010  1.1    dyoung 
   2011  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2012  1.1    dyoung 
   2013  1.1    dyoung 	/*
   2014  1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2015  1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2016  1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2017  1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2018  1.1    dyoung 	 * "DI" bit should always be clear.
   2019  1.1    dyoung 	 */
   2020  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2021  1.1    dyoung 
   2022  1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2023  1.1    dyoung 
   2024  1.1    dyoung 	for (i = 0; i < count; i++) {
   2025  1.1    dyoung 		data = data << 1;
   2026  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2027  1.1    dyoung 
   2028  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2029  1.1    dyoung 
   2030  1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2031  1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2032  1.1    dyoung 			data |= 1;
   2033  1.1    dyoung 
   2034  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2035  1.1    dyoung 	}
   2036  1.1    dyoung 
   2037  1.1    dyoung 	return data;
   2038  1.1    dyoung }
   2039  1.1    dyoung 
   2040  1.1    dyoung /**
   2041  1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2042  1.1    dyoung  *  @hw: pointer to hardware structure
   2043  1.1    dyoung  *  @eec: EEC register's current value
   2044  1.1    dyoung  **/
   2045  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2046  1.1    dyoung {
   2047  1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2048  1.1    dyoung 
   2049  1.1    dyoung 	/*
   2050  1.1    dyoung 	 * Raise the clock input to the EEPROM
   2051  1.1    dyoung 	 * (setting the SK bit), then delay
   2052  1.1    dyoung 	 */
   2053  1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2054  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2055  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2056  1.1    dyoung 	usec_delay(1);
   2057  1.1    dyoung }
   2058  1.1    dyoung 
   2059  1.1    dyoung /**
   2060  1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2061  1.1    dyoung  *  @hw: pointer to hardware structure
   2062  1.1    dyoung  *  @eecd: EECD's current value
   2063  1.1    dyoung  **/
   2064  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2065  1.1    dyoung {
   2066  1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2067  1.1    dyoung 
   2068  1.1    dyoung 	/*
   2069  1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2070  1.1    dyoung 	 * delay
   2071  1.1    dyoung 	 */
   2072  1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2073  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2074  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2075  1.1    dyoung 	usec_delay(1);
   2076  1.1    dyoung }
   2077  1.1    dyoung 
   2078  1.1    dyoung /**
   2079  1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2080  1.1    dyoung  *  @hw: pointer to hardware structure
   2081  1.1    dyoung  **/
   2082  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2083  1.1    dyoung {
   2084  1.1    dyoung 	u32 eec;
   2085  1.1    dyoung 
   2086  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2087  1.1    dyoung 
   2088  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2089  1.1    dyoung 
   2090  1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2091  1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2092  1.1    dyoung 
   2093  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2094  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2095  1.1    dyoung 
   2096  1.1    dyoung 	usec_delay(1);
   2097  1.1    dyoung 
   2098  1.1    dyoung 	/* Stop requesting EEPROM access */
   2099  1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2100  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2101  1.1    dyoung 
   2102  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2103  1.1    dyoung 
   2104  1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2105  1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2106  1.1    dyoung }
   2107  1.1    dyoung 
   2108  1.1    dyoung /**
   2109  1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2110  1.1    dyoung  *  @hw: pointer to hardware structure
   2111  1.1    dyoung  **/
   2112  1.1    dyoung u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2113  1.1    dyoung {
   2114  1.1    dyoung 	u16 i;
   2115  1.1    dyoung 	u16 j;
   2116  1.1    dyoung 	u16 checksum = 0;
   2117  1.1    dyoung 	u16 length = 0;
   2118  1.1    dyoung 	u16 pointer = 0;
   2119  1.1    dyoung 	u16 word = 0;
   2120  1.1    dyoung 
   2121  1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2122  1.1    dyoung 
   2123  1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2124  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2125  1.1    dyoung 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   2126  1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2127  1.1    dyoung 			break;
   2128  1.1    dyoung 		}
   2129  1.1    dyoung 		checksum += word;
   2130  1.1    dyoung 	}
   2131  1.1    dyoung 
   2132  1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2133  1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2134  1.1    dyoung 		hw->eeprom.ops.read(hw, i, &pointer);
   2135  1.1    dyoung 
   2136  1.1    dyoung 		/* Make sure the pointer seems valid */
   2137  1.1    dyoung 		if (pointer != 0xFFFF && pointer != 0) {
   2138  1.1    dyoung 			hw->eeprom.ops.read(hw, pointer, &length);
   2139  1.1    dyoung 
   2140  1.1    dyoung 			if (length != 0xFFFF && length != 0) {
   2141  1.1    dyoung 				for (j = pointer+1; j <= pointer+length; j++) {
   2142  1.1    dyoung 					hw->eeprom.ops.read(hw, j, &word);
   2143  1.1    dyoung 					checksum += word;
   2144  1.1    dyoung 				}
   2145  1.1    dyoung 			}
   2146  1.1    dyoung 		}
   2147  1.1    dyoung 	}
   2148  1.1    dyoung 
   2149  1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2150  1.1    dyoung 
   2151  1.1    dyoung 	return checksum;
   2152  1.1    dyoung }
   2153  1.1    dyoung 
   2154  1.1    dyoung /**
   2155  1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2156  1.1    dyoung  *  @hw: pointer to hardware structure
   2157  1.1    dyoung  *  @checksum_val: calculated checksum
   2158  1.1    dyoung  *
   2159  1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2160  1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2161  1.1    dyoung  **/
   2162  1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2163  1.3   msaitoh 					   u16 *checksum_val)
   2164  1.1    dyoung {
   2165  1.1    dyoung 	s32 status;
   2166  1.1    dyoung 	u16 checksum;
   2167  1.1    dyoung 	u16 read_checksum = 0;
   2168  1.1    dyoung 
   2169  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2170  1.1    dyoung 
   2171  1.1    dyoung 	/*
   2172  1.1    dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   2173  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2174  1.1    dyoung 	 * EEPROM read fails
   2175  1.1    dyoung 	 */
   2176  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2177  1.1    dyoung 
   2178  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   2179  1.1    dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   2180  1.1    dyoung 
   2181  1.1    dyoung 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2182  1.1    dyoung 
   2183  1.1    dyoung 		/*
   2184  1.1    dyoung 		 * Verify read checksum from EEPROM is the same as
   2185  1.1    dyoung 		 * calculated checksum
   2186  1.1    dyoung 		 */
   2187  1.1    dyoung 		if (read_checksum != checksum)
   2188  1.1    dyoung 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   2189  1.1    dyoung 
   2190  1.1    dyoung 		/* If the user cares, return the calculated checksum */
   2191  1.1    dyoung 		if (checksum_val)
   2192  1.1    dyoung 			*checksum_val = checksum;
   2193  1.1    dyoung 	} else {
   2194  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2195  1.1    dyoung 	}
   2196  1.1    dyoung 
   2197  1.1    dyoung 	return status;
   2198  1.1    dyoung }
   2199  1.1    dyoung 
   2200  1.1    dyoung /**
   2201  1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2202  1.1    dyoung  *  @hw: pointer to hardware structure
   2203  1.1    dyoung  **/
   2204  1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2205  1.1    dyoung {
   2206  1.1    dyoung 	s32 status;
   2207  1.1    dyoung 	u16 checksum;
   2208  1.1    dyoung 
   2209  1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2210  1.1    dyoung 
   2211  1.1    dyoung 	/*
   2212  1.1    dyoung 	 * Read the first word from the EEPROM. If this times out or fails, do
   2213  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2214  1.1    dyoung 	 * EEPROM read fails
   2215  1.1    dyoung 	 */
   2216  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2217  1.1    dyoung 
   2218  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   2219  1.1    dyoung 		checksum = hw->eeprom.ops.calc_checksum(hw);
   2220  1.1    dyoung 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   2221  1.3   msaitoh 					      checksum);
   2222  1.1    dyoung 	} else {
   2223  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2224  1.1    dyoung 	}
   2225  1.1    dyoung 
   2226  1.1    dyoung 	return status;
   2227  1.1    dyoung }
   2228  1.1    dyoung 
   2229  1.1    dyoung /**
   2230  1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2231  1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2232  1.1    dyoung  *
   2233  1.1    dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2234  1.1    dyoung  **/
   2235  1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2236  1.1    dyoung {
   2237  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2238  1.1    dyoung 
   2239  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2240  1.1    dyoung 
   2241  1.1    dyoung 	/* Make sure it is not a multicast address */
   2242  1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2243  1.1    dyoung 		DEBUGOUT("MAC address is multicast\n");
   2244  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2245  1.1    dyoung 	/* Not a broadcast address */
   2246  1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2247  1.1    dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2248  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2249  1.1    dyoung 	/* Reject the zero address */
   2250  1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2251  1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2252  1.1    dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2253  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2254  1.1    dyoung 	}
   2255  1.1    dyoung 	return status;
   2256  1.1    dyoung }
   2257  1.1    dyoung 
   2258  1.1    dyoung /**
   2259  1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2260  1.1    dyoung  *  @hw: pointer to hardware structure
   2261  1.1    dyoung  *  @index: Receive address register to write
   2262  1.1    dyoung  *  @addr: Address to put into receive address register
   2263  1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2264  1.1    dyoung  *  @enable_addr: set flag that address is active
   2265  1.1    dyoung  *
   2266  1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2267  1.1    dyoung  **/
   2268  1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2269  1.3   msaitoh 			  u32 enable_addr)
   2270  1.1    dyoung {
   2271  1.1    dyoung 	u32 rar_low, rar_high;
   2272  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2273  1.1    dyoung 
   2274  1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2275  1.1    dyoung 
   2276  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2277  1.1    dyoung 	if (index >= rar_entries) {
   2278  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2279  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2280  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2281  1.1    dyoung 	}
   2282  1.1    dyoung 
   2283  1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2284  1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2285  1.1    dyoung 
   2286  1.1    dyoung 	/*
   2287  1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2288  1.1    dyoung 	 * order from network order (big endian) to little endian
   2289  1.1    dyoung 	 */
   2290  1.1    dyoung 	rar_low = ((u32)addr[0] |
   2291  1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2292  1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2293  1.3   msaitoh 		   ((u32)addr[3] << 24));
   2294  1.1    dyoung 	/*
   2295  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2296  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2297  1.1    dyoung 	 * of the address and the address valid bit.
   2298  1.1    dyoung 	 */
   2299  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2300  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2301  1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2302  1.1    dyoung 
   2303  1.1    dyoung 	if (enable_addr != 0)
   2304  1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2305  1.1    dyoung 
   2306  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2307  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2308  1.1    dyoung 
   2309  1.1    dyoung 	return IXGBE_SUCCESS;
   2310  1.1    dyoung }
   2311  1.1    dyoung 
   2312  1.1    dyoung /**
   2313  1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2314  1.1    dyoung  *  @hw: pointer to hardware structure
   2315  1.1    dyoung  *  @index: Receive address register to write
   2316  1.1    dyoung  *
   2317  1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2318  1.1    dyoung  **/
   2319  1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2320  1.1    dyoung {
   2321  1.1    dyoung 	u32 rar_high;
   2322  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2323  1.1    dyoung 
   2324  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2325  1.1    dyoung 
   2326  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2327  1.1    dyoung 	if (index >= rar_entries) {
   2328  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2329  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2330  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2331  1.1    dyoung 	}
   2332  1.1    dyoung 
   2333  1.1    dyoung 	/*
   2334  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2335  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2336  1.1    dyoung 	 * of the address and the address valid bit.
   2337  1.1    dyoung 	 */
   2338  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2339  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2340  1.1    dyoung 
   2341  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2342  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2343  1.1    dyoung 
   2344  1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2345  1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2346  1.1    dyoung 
   2347  1.1    dyoung 	return IXGBE_SUCCESS;
   2348  1.1    dyoung }
   2349  1.1    dyoung 
   2350  1.1    dyoung /**
   2351  1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2352  1.1    dyoung  *  @hw: pointer to hardware structure
   2353  1.1    dyoung  *
   2354  1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2355  1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2356  1.1    dyoung  *  the receiver is in reset when the routine is called.
   2357  1.1    dyoung  **/
   2358  1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2359  1.1    dyoung {
   2360  1.1    dyoung 	u32 i;
   2361  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2362  1.1    dyoung 
   2363  1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2364  1.1    dyoung 
   2365  1.1    dyoung 	/*
   2366  1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2367  1.1    dyoung 	 * to the permanent address.
   2368  1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2369  1.1    dyoung 	 */
   2370  1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2371  1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2372  1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2373  1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2374  1.1    dyoung 
   2375  1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2376  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2377  1.3   msaitoh 			  hw->mac.addr[2]);
   2378  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2379  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2380  1.1    dyoung 	} else {
   2381  1.1    dyoung 		/* Setup the receive address. */
   2382  1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2383  1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2384  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2385  1.3   msaitoh 			  hw->mac.addr[2]);
   2386  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2387  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2388  1.1    dyoung 
   2389  1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2390  1.1    dyoung 
   2391  1.1    dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2392  1.1    dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2393  1.1    dyoung 	}
   2394  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2395  1.1    dyoung 
   2396  1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2397  1.1    dyoung 
   2398  1.1    dyoung 	/* Zero out the other receive addresses. */
   2399  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2400  1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2401  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2402  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2403  1.1    dyoung 	}
   2404  1.1    dyoung 
   2405  1.1    dyoung 	/* Clear the MTA */
   2406  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2407  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2408  1.1    dyoung 
   2409  1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2410  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2411  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2412  1.1    dyoung 
   2413  1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2414  1.1    dyoung 
   2415  1.1    dyoung 	return IXGBE_SUCCESS;
   2416  1.1    dyoung }
   2417  1.1    dyoung 
   2418  1.1    dyoung /**
   2419  1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2420  1.1    dyoung  *  @hw: pointer to hardware structure
   2421  1.1    dyoung  *  @addr: new address
   2422  1.1    dyoung  *
   2423  1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2424  1.1    dyoung  **/
   2425  1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2426  1.1    dyoung {
   2427  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2428  1.1    dyoung 	u32 rar;
   2429  1.1    dyoung 
   2430  1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2431  1.1    dyoung 
   2432  1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2433  1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2434  1.1    dyoung 
   2435  1.1    dyoung 	/*
   2436  1.1    dyoung 	 * Place this address in the RAR if there is room,
   2437  1.1    dyoung 	 * else put the controller into promiscuous mode
   2438  1.1    dyoung 	 */
   2439  1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2440  1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2441  1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2442  1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2443  1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2444  1.1    dyoung 	} else {
   2445  1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2446  1.1    dyoung 	}
   2447  1.1    dyoung 
   2448  1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2449  1.1    dyoung }
   2450  1.1    dyoung 
   2451  1.1    dyoung /**
   2452  1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2453  1.1    dyoung  *  @hw: pointer to hardware structure
   2454  1.1    dyoung  *  @addr_list: the list of new addresses
   2455  1.1    dyoung  *  @addr_count: number of addresses
   2456  1.1    dyoung  *  @next: iterator function to walk the address list
   2457  1.1    dyoung  *
   2458  1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2459  1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2460  1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2461  1.1    dyoung  *
   2462  1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2463  1.1    dyoung  *  manually putting the device into promiscuous mode.
   2464  1.1    dyoung  **/
   2465  1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2466  1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2467  1.1    dyoung {
   2468  1.1    dyoung 	u8 *addr;
   2469  1.1    dyoung 	u32 i;
   2470  1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2471  1.1    dyoung 	u32 uc_addr_in_use;
   2472  1.1    dyoung 	u32 fctrl;
   2473  1.1    dyoung 	u32 vmdq;
   2474  1.1    dyoung 
   2475  1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2476  1.1    dyoung 
   2477  1.1    dyoung 	/*
   2478  1.1    dyoung 	 * Clear accounting of old secondary address list,
   2479  1.1    dyoung 	 * don't count RAR[0]
   2480  1.1    dyoung 	 */
   2481  1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2482  1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2483  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2484  1.1    dyoung 
   2485  1.1    dyoung 	/* Zero out the other receive addresses */
   2486  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2487  1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2488  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2489  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2490  1.1    dyoung 	}
   2491  1.1    dyoung 
   2492  1.1    dyoung 	/* Add the new addresses */
   2493  1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2494  1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2495  1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2496  1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2497  1.1    dyoung 	}
   2498  1.1    dyoung 
   2499  1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2500  1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2501  1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2502  1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2503  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2504  1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2505  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2506  1.1    dyoung 		}
   2507  1.1    dyoung 	} else {
   2508  1.1    dyoung 		/* only disable if set by overflow, not by user */
   2509  1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2510  1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2511  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2512  1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2513  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2514  1.1    dyoung 		}
   2515  1.1    dyoung 	}
   2516  1.1    dyoung 
   2517  1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2518  1.1    dyoung 	return IXGBE_SUCCESS;
   2519  1.1    dyoung }
   2520  1.1    dyoung 
   2521  1.1    dyoung /**
   2522  1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2523  1.1    dyoung  *  @hw: pointer to hardware structure
   2524  1.1    dyoung  *  @mc_addr: the multicast address
   2525  1.1    dyoung  *
   2526  1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2527  1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2528  1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2529  1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2530  1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2531  1.1    dyoung  *  to mc_filter_type.
   2532  1.1    dyoung  **/
   2533  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2534  1.1    dyoung {
   2535  1.1    dyoung 	u32 vector = 0;
   2536  1.1    dyoung 
   2537  1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2538  1.1    dyoung 
   2539  1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2540  1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2541  1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2542  1.1    dyoung 		break;
   2543  1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2544  1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2545  1.1    dyoung 		break;
   2546  1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2547  1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2548  1.1    dyoung 		break;
   2549  1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2550  1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2551  1.1    dyoung 		break;
   2552  1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2553  1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2554  1.1    dyoung 		ASSERT(0);
   2555  1.1    dyoung 		break;
   2556  1.1    dyoung 	}
   2557  1.1    dyoung 
   2558  1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2559  1.1    dyoung 	vector &= 0xFFF;
   2560  1.1    dyoung 	return vector;
   2561  1.1    dyoung }
   2562  1.1    dyoung 
   2563  1.1    dyoung /**
   2564  1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2565  1.1    dyoung  *  @hw: pointer to hardware structure
   2566  1.1    dyoung  *  @hash_value: Multicast address hash value
   2567  1.1    dyoung  *
   2568  1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2569  1.1    dyoung  **/
   2570  1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2571  1.1    dyoung {
   2572  1.1    dyoung 	u32 vector;
   2573  1.1    dyoung 	u32 vector_bit;
   2574  1.1    dyoung 	u32 vector_reg;
   2575  1.1    dyoung 
   2576  1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2577  1.1    dyoung 
   2578  1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2579  1.1    dyoung 
   2580  1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2581  1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2582  1.1    dyoung 
   2583  1.1    dyoung 	/*
   2584  1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2585  1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2586  1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2587  1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2588  1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2589  1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2590  1.1    dyoung 	 * the value.
   2591  1.1    dyoung 	 */
   2592  1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2593  1.1    dyoung 	vector_bit = vector & 0x1F;
   2594  1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2595  1.1    dyoung }
   2596  1.1    dyoung 
   2597  1.1    dyoung /**
   2598  1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2599  1.1    dyoung  *  @hw: pointer to hardware structure
   2600  1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2601  1.1    dyoung  *  @mc_addr_count: number of addresses
   2602  1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2603  1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2604  1.1    dyoung  *
   2605  1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2606  1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2607  1.1    dyoung  **/
   2608  1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2609  1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2610  1.3   msaitoh 				      bool clear)
   2611  1.1    dyoung {
   2612  1.1    dyoung 	u32 i;
   2613  1.1    dyoung 	u32 vmdq;
   2614  1.1    dyoung 
   2615  1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2616  1.1    dyoung 
   2617  1.1    dyoung 	/*
   2618  1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2619  1.1    dyoung 	 * use.
   2620  1.1    dyoung 	 */
   2621  1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2622  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2623  1.1    dyoung 
   2624  1.1    dyoung 	/* Clear mta_shadow */
   2625  1.3   msaitoh 	if (clear) {
   2626  1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2627  1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2628  1.3   msaitoh 	}
   2629  1.1    dyoung 
   2630  1.1    dyoung 	/* Update mta_shadow */
   2631  1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2632  1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2633  1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2634  1.1    dyoung 	}
   2635  1.1    dyoung 
   2636  1.1    dyoung 	/* Enable mta */
   2637  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2638  1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2639  1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2640  1.1    dyoung 
   2641  1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2642  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2643  1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2644  1.1    dyoung 
   2645  1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2646  1.1    dyoung 	return IXGBE_SUCCESS;
   2647  1.1    dyoung }
   2648  1.1    dyoung 
   2649  1.1    dyoung /**
   2650  1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2651  1.1    dyoung  *  @hw: pointer to hardware structure
   2652  1.1    dyoung  *
   2653  1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2654  1.1    dyoung  **/
   2655  1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2656  1.1    dyoung {
   2657  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2658  1.1    dyoung 
   2659  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2660  1.1    dyoung 
   2661  1.1    dyoung 	if (a->mta_in_use > 0)
   2662  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2663  1.3   msaitoh 				hw->mac.mc_filter_type);
   2664  1.1    dyoung 
   2665  1.1    dyoung 	return IXGBE_SUCCESS;
   2666  1.1    dyoung }
   2667  1.1    dyoung 
   2668  1.1    dyoung /**
   2669  1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2670  1.1    dyoung  *  @hw: pointer to hardware structure
   2671  1.1    dyoung  *
   2672  1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2673  1.1    dyoung  **/
   2674  1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2675  1.1    dyoung {
   2676  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2677  1.1    dyoung 
   2678  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2679  1.1    dyoung 
   2680  1.1    dyoung 	if (a->mta_in_use > 0)
   2681  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2682  1.1    dyoung 
   2683  1.1    dyoung 	return IXGBE_SUCCESS;
   2684  1.1    dyoung }
   2685  1.1    dyoung 
   2686  1.1    dyoung /**
   2687  1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2688  1.1    dyoung  *  @hw: pointer to hardware structure
   2689  1.1    dyoung  *
   2690  1.1    dyoung  *  Enable flow control according to the current settings.
   2691  1.1    dyoung  **/
   2692  1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2693  1.1    dyoung {
   2694  1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2695  1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2696  1.1    dyoung 	u32 reg;
   2697  1.1    dyoung 	u32 fcrtl, fcrth;
   2698  1.4   msaitoh 	int i;
   2699  1.1    dyoung 
   2700  1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2701  1.1    dyoung 
   2702  1.4   msaitoh 	/* Validate the water mark configuration */
   2703  1.4   msaitoh 	if (!hw->fc.pause_time) {
   2704  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2705  1.4   msaitoh 		goto out;
   2706  1.4   msaitoh 	}
   2707  1.4   msaitoh 
   2708  1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2709  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2710  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2711  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2712  1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2713  1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2714  1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2715  1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2716  1.4   msaitoh 				goto out;
   2717  1.4   msaitoh 			}
   2718  1.4   msaitoh 		}
   2719  1.4   msaitoh 	}
   2720  1.4   msaitoh 
   2721  1.1    dyoung 	/* Negotiate the fc mode to use */
   2722  1.4   msaitoh 	ixgbe_fc_autoneg(hw);
   2723  1.1    dyoung 
   2724  1.1    dyoung 	/* Disable any previous flow control settings */
   2725  1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2726  1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2727  1.1    dyoung 
   2728  1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2729  1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2730  1.1    dyoung 
   2731  1.1    dyoung 	/*
   2732  1.1    dyoung 	 * The possible values of fc.current_mode are:
   2733  1.1    dyoung 	 * 0: Flow control is completely disabled
   2734  1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2735  1.1    dyoung 	 *    but not send pause frames).
   2736  1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2737  1.1    dyoung 	 *    we do not support receiving pause frames).
   2738  1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2739  1.1    dyoung 	 * other: Invalid.
   2740  1.1    dyoung 	 */
   2741  1.1    dyoung 	switch (hw->fc.current_mode) {
   2742  1.1    dyoung 	case ixgbe_fc_none:
   2743  1.1    dyoung 		/*
   2744  1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2745  1.1    dyoung 		 * The code below will actually disable it in the HW.
   2746  1.1    dyoung 		 */
   2747  1.1    dyoung 		break;
   2748  1.1    dyoung 	case ixgbe_fc_rx_pause:
   2749  1.1    dyoung 		/*
   2750  1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2751  1.1    dyoung 		 * disabled by software override. Since there really
   2752  1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2753  1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2754  1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2755  1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2756  1.1    dyoung 		 */
   2757  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2758  1.1    dyoung 		break;
   2759  1.1    dyoung 	case ixgbe_fc_tx_pause:
   2760  1.1    dyoung 		/*
   2761  1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2762  1.1    dyoung 		 * disabled by software override.
   2763  1.1    dyoung 		 */
   2764  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2765  1.1    dyoung 		break;
   2766  1.1    dyoung 	case ixgbe_fc_full:
   2767  1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2768  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2769  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2770  1.1    dyoung 		break;
   2771  1.1    dyoung 	default:
   2772  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2773  1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2774  1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2775  1.1    dyoung 		goto out;
   2776  1.1    dyoung 		break;
   2777  1.1    dyoung 	}
   2778  1.1    dyoung 
   2779  1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2780  1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2781  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2782  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2783  1.1    dyoung 
   2784  1.1    dyoung 
   2785  1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2786  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2787  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2788  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2789  1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2790  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2791  1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2792  1.4   msaitoh 		} else {
   2793  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2794  1.4   msaitoh 			/*
   2795  1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2796  1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2797  1.4   msaitoh 			 * to the maximum FCRTH value.  This allows the Tx
   2798  1.4   msaitoh 			 * switch to function even under heavy Rx workloads.
   2799  1.4   msaitoh 			 */
   2800  1.4   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
   2801  1.4   msaitoh 		}
   2802  1.4   msaitoh 
   2803  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2804  1.1    dyoung 	}
   2805  1.1    dyoung 
   2806  1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2807  1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2808  1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2809  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2810  1.1    dyoung 
   2811  1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2812  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2813  1.1    dyoung 
   2814  1.1    dyoung out:
   2815  1.1    dyoung 	return ret_val;
   2816  1.1    dyoung }
   2817  1.1    dyoung 
   2818  1.1    dyoung /**
   2819  1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2820  1.1    dyoung  *  @hw: pointer to hardware structure
   2821  1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2822  1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2823  1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2824  1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2825  1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2826  1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2827  1.1    dyoung  *
   2828  1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2829  1.4   msaitoh  *  advertised settings
   2830  1.1    dyoung  **/
   2831  1.4   msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2832  1.4   msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2833  1.1    dyoung {
   2834  1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2835  1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2836  1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2837  1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2838  1.6   msaitoh 			     adv_reg, lp_reg);
   2839  1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2840  1.6   msaitoh 	}
   2841  1.1    dyoung 
   2842  1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2843  1.4   msaitoh 		/*
   2844  1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2845  1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2846  1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2847  1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2848  1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2849  1.4   msaitoh 		 */
   2850  1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2851  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2852  1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2853  1.4   msaitoh 		} else {
   2854  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2855  1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2856  1.4   msaitoh 		}
   2857  1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2858  1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2859  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2860  1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2861  1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2862  1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2863  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2864  1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2865  1.4   msaitoh 	} else {
   2866  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2867  1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2868  1.4   msaitoh 	}
   2869  1.4   msaitoh 	return IXGBE_SUCCESS;
   2870  1.4   msaitoh }
   2871  1.1    dyoung 
   2872  1.4   msaitoh /**
   2873  1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2874  1.4   msaitoh  *  @hw: pointer to hardware structure
   2875  1.4   msaitoh  *
   2876  1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2877  1.4   msaitoh  **/
   2878  1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2879  1.4   msaitoh {
   2880  1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2881  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2882  1.1    dyoung 
   2883  1.1    dyoung 	/*
   2884  1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   2885  1.4   msaitoh 	 * - link is up but AN did not complete, or if
   2886  1.4   msaitoh 	 * - link is up and AN completed but timed out
   2887  1.1    dyoung 	 */
   2888  1.4   msaitoh 
   2889  1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2890  1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2891  1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2892  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   2893  1.6   msaitoh 			     "Auto-Negotiation did not complete or timed out");
   2894  1.1    dyoung 		goto out;
   2895  1.6   msaitoh 	}
   2896  1.1    dyoung 
   2897  1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2898  1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2899  1.1    dyoung 
   2900  1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2901  1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2902  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2903  1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2904  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2905  1.1    dyoung 
   2906  1.1    dyoung out:
   2907  1.1    dyoung 	return ret_val;
   2908  1.1    dyoung }
   2909  1.1    dyoung 
   2910  1.1    dyoung /**
   2911  1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2912  1.1    dyoung  *  @hw: pointer to hardware structure
   2913  1.1    dyoung  *
   2914  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2915  1.1    dyoung  **/
   2916  1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2917  1.1    dyoung {
   2918  1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2919  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2920  1.1    dyoung 
   2921  1.1    dyoung 	/*
   2922  1.1    dyoung 	 * On backplane, bail out if
   2923  1.1    dyoung 	 * - backplane autoneg was not completed, or if
   2924  1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   2925  1.1    dyoung 	 */
   2926  1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2927  1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2928  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   2929  1.6   msaitoh 			     "Auto-Negotiation did not complete");
   2930  1.1    dyoung 		goto out;
   2931  1.6   msaitoh 	}
   2932  1.1    dyoung 
   2933  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2934  1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2935  1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2936  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   2937  1.6   msaitoh 				     "Link partner is not AN enabled");
   2938  1.1    dyoung 			goto out;
   2939  1.6   msaitoh 		}
   2940  1.1    dyoung 	}
   2941  1.1    dyoung 	/*
   2942  1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2943  1.1    dyoung 	 * local flow control settings accordingly
   2944  1.1    dyoung 	 */
   2945  1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2946  1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2947  1.1    dyoung 
   2948  1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2949  1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2950  1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2951  1.1    dyoung 
   2952  1.1    dyoung out:
   2953  1.1    dyoung 	return ret_val;
   2954  1.1    dyoung }
   2955  1.1    dyoung 
   2956  1.1    dyoung /**
   2957  1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2958  1.1    dyoung  *  @hw: pointer to hardware structure
   2959  1.1    dyoung  *
   2960  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2961  1.1    dyoung  **/
   2962  1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2963  1.1    dyoung {
   2964  1.1    dyoung 	u16 technology_ability_reg = 0;
   2965  1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   2966  1.1    dyoung 
   2967  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2968  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2969  1.1    dyoung 			     &technology_ability_reg);
   2970  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2971  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2972  1.1    dyoung 			     &lp_technology_ability_reg);
   2973  1.1    dyoung 
   2974  1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2975  1.1    dyoung 				  (u32)lp_technology_ability_reg,
   2976  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2977  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2978  1.1    dyoung }
   2979  1.1    dyoung 
   2980  1.1    dyoung /**
   2981  1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2982  1.1    dyoung  *  @hw: pointer to hardware structure
   2983  1.1    dyoung  *
   2984  1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   2985  1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   2986  1.1    dyoung  **/
   2987  1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2988  1.1    dyoung {
   2989  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2990  1.4   msaitoh 	ixgbe_link_speed speed;
   2991  1.4   msaitoh 	bool link_up;
   2992  1.1    dyoung 
   2993  1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   2994  1.1    dyoung 
   2995  1.1    dyoung 	/*
   2996  1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   2997  1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   2998  1.4   msaitoh 	 * - FC autoneg is disabled, or if
   2999  1.4   msaitoh 	 * - link is not up.
   3000  1.1    dyoung 	 */
   3001  1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3002  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3003  1.6   msaitoh 			     "Flow control autoneg is disabled");
   3004  1.1    dyoung 		goto out;
   3005  1.6   msaitoh 	}
   3006  1.1    dyoung 
   3007  1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3008  1.6   msaitoh 	if (!link_up) {
   3009  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3010  1.1    dyoung 		goto out;
   3011  1.6   msaitoh 	}
   3012  1.1    dyoung 
   3013  1.1    dyoung 	switch (hw->phy.media_type) {
   3014  1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3015  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3016  1.1    dyoung 	case ixgbe_media_type_fiber:
   3017  1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3018  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3019  1.4   msaitoh 		break;
   3020  1.4   msaitoh 
   3021  1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3022  1.1    dyoung 	case ixgbe_media_type_backplane:
   3023  1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3024  1.1    dyoung 		break;
   3025  1.1    dyoung 
   3026  1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3027  1.1    dyoung 	case ixgbe_media_type_copper:
   3028  1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3029  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3030  1.1    dyoung 		break;
   3031  1.1    dyoung 
   3032  1.1    dyoung 	default:
   3033  1.1    dyoung 		break;
   3034  1.1    dyoung 	}
   3035  1.1    dyoung 
   3036  1.4   msaitoh out:
   3037  1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3038  1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3039  1.4   msaitoh 	} else {
   3040  1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3041  1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3042  1.3   msaitoh 	}
   3043  1.1    dyoung }
   3044  1.1    dyoung 
   3045  1.6   msaitoh /*
   3046  1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3047  1.6   msaitoh  * @hw: pointer to hardware structure
   3048  1.6   msaitoh  *
   3049  1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3050  1.6   msaitoh  *
   3051  1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3052  1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3053  1.6   msaitoh  * 800 = 80 millisec.
   3054  1.6   msaitoh  */
   3055  1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3056  1.6   msaitoh {
   3057  1.6   msaitoh 	s16 devctl2;
   3058  1.6   msaitoh 	u32 pollcnt;
   3059  1.6   msaitoh 
   3060  1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3061  1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3062  1.6   msaitoh 
   3063  1.6   msaitoh 	switch (devctl2) {
   3064  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3065  1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3066  1.6   msaitoh 		break;
   3067  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3068  1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3069  1.6   msaitoh 		break;
   3070  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3071  1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3072  1.6   msaitoh 		break;
   3073  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3074  1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3075  1.6   msaitoh 		break;
   3076  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3077  1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3078  1.6   msaitoh 		break;
   3079  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3080  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3081  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3082  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3083  1.6   msaitoh 	default:
   3084  1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3085  1.6   msaitoh 		break;
   3086  1.6   msaitoh 	}
   3087  1.6   msaitoh 
   3088  1.6   msaitoh 	/* add 10% to spec maximum */
   3089  1.6   msaitoh 	return (pollcnt * 11) / 10;
   3090  1.6   msaitoh }
   3091  1.6   msaitoh 
   3092  1.1    dyoung /**
   3093  1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3094  1.1    dyoung  *  @hw: pointer to hardware structure
   3095  1.1    dyoung  *
   3096  1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3097  1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3098  1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3099  1.1    dyoung  *  is returned signifying master requests disabled.
   3100  1.1    dyoung  **/
   3101  1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3102  1.1    dyoung {
   3103  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3104  1.6   msaitoh 	u32 i, poll;
   3105  1.1    dyoung 
   3106  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3107  1.1    dyoung 
   3108  1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3109  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3110  1.3   msaitoh 
   3111  1.6   msaitoh 	/* Exit if master requests are blocked */
   3112  1.1    dyoung 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3113  1.1    dyoung 		goto out;
   3114  1.1    dyoung 
   3115  1.3   msaitoh 	/* Poll for master request bit to clear */
   3116  1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3117  1.3   msaitoh 		usec_delay(100);
   3118  1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3119  1.3   msaitoh 			goto out;
   3120  1.1    dyoung 	}
   3121  1.1    dyoung 
   3122  1.3   msaitoh 	/*
   3123  1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3124  1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3125  1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3126  1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3127  1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3128  1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3129  1.3   msaitoh 	 */
   3130  1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3131  1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3132  1.1    dyoung 
   3133  1.1    dyoung 	/*
   3134  1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3135  1.1    dyoung 	 * transactions pending.
   3136  1.1    dyoung 	 */
   3137  1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3138  1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3139  1.3   msaitoh 		usec_delay(100);
   3140  1.1    dyoung 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   3141  1.3   msaitoh 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3142  1.3   msaitoh 			goto out;
   3143  1.1    dyoung 	}
   3144  1.1    dyoung 
   3145  1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3146  1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3147  1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3148  1.1    dyoung 
   3149  1.1    dyoung out:
   3150  1.1    dyoung 	return status;
   3151  1.1    dyoung }
   3152  1.1    dyoung 
   3153  1.1    dyoung /**
   3154  1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3155  1.1    dyoung  *  @hw: pointer to hardware structure
   3156  1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3157  1.1    dyoung  *
   3158  1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3159  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3160  1.1    dyoung  **/
   3161  1.1    dyoung s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   3162  1.1    dyoung {
   3163  1.6   msaitoh 	u32 gssr = 0;
   3164  1.1    dyoung 	u32 swmask = mask;
   3165  1.1    dyoung 	u32 fwmask = mask << 5;
   3166  1.6   msaitoh 	u32 timeout = 200;
   3167  1.6   msaitoh 	u32 i;
   3168  1.1    dyoung 
   3169  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3170  1.1    dyoung 
   3171  1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3172  1.1    dyoung 		/*
   3173  1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3174  1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3175  1.1    dyoung 		 */
   3176  1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3177  1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3178  1.1    dyoung 
   3179  1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3180  1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3181  1.6   msaitoh 			gssr |= swmask;
   3182  1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3183  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3184  1.6   msaitoh 			return IXGBE_SUCCESS;
   3185  1.6   msaitoh 		} else {
   3186  1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3187  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3188  1.6   msaitoh 			msec_delay(5);
   3189  1.6   msaitoh 		}
   3190  1.1    dyoung 	}
   3191  1.1    dyoung 
   3192  1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3193  1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3194  1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3195  1.1    dyoung 
   3196  1.6   msaitoh 	msec_delay(5);
   3197  1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3198  1.1    dyoung }
   3199  1.1    dyoung 
   3200  1.1    dyoung /**
   3201  1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3202  1.1    dyoung  *  @hw: pointer to hardware structure
   3203  1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3204  1.1    dyoung  *
   3205  1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3206  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3207  1.1    dyoung  **/
   3208  1.1    dyoung void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   3209  1.1    dyoung {
   3210  1.1    dyoung 	u32 gssr;
   3211  1.1    dyoung 	u32 swmask = mask;
   3212  1.1    dyoung 
   3213  1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3214  1.1    dyoung 
   3215  1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3216  1.1    dyoung 
   3217  1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3218  1.1    dyoung 	gssr &= ~swmask;
   3219  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3220  1.1    dyoung 
   3221  1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3222  1.1    dyoung }
   3223  1.1    dyoung 
   3224  1.1    dyoung /**
   3225  1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3226  1.3   msaitoh  *  @hw: pointer to hardware structure
   3227  1.3   msaitoh  *
   3228  1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3229  1.3   msaitoh  *  the Rx security block
   3230  1.3   msaitoh  **/
   3231  1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3232  1.3   msaitoh {
   3233  1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3234  1.3   msaitoh 
   3235  1.3   msaitoh 	int i;
   3236  1.3   msaitoh 	int secrxreg;
   3237  1.3   msaitoh 
   3238  1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3239  1.3   msaitoh 
   3240  1.3   msaitoh 
   3241  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3242  1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3243  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3244  1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3245  1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3246  1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3247  1.3   msaitoh 			break;
   3248  1.3   msaitoh 		else
   3249  1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3250  1.3   msaitoh 			usec_delay(1000);
   3251  1.3   msaitoh 	}
   3252  1.3   msaitoh 
   3253  1.3   msaitoh 	/* For informational purposes only */
   3254  1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3255  1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3256  1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3257  1.3   msaitoh 
   3258  1.3   msaitoh 	return IXGBE_SUCCESS;
   3259  1.3   msaitoh }
   3260  1.3   msaitoh 
   3261  1.3   msaitoh /**
   3262  1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3263  1.3   msaitoh  *  @hw: pointer to hardware structure
   3264  1.3   msaitoh  *
   3265  1.3   msaitoh  *  Enables the receive data path.
   3266  1.3   msaitoh  **/
   3267  1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3268  1.3   msaitoh {
   3269  1.3   msaitoh 	int secrxreg;
   3270  1.3   msaitoh 
   3271  1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3272  1.3   msaitoh 
   3273  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3274  1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3275  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3276  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3277  1.3   msaitoh 
   3278  1.3   msaitoh 	return IXGBE_SUCCESS;
   3279  1.3   msaitoh }
   3280  1.3   msaitoh 
   3281  1.3   msaitoh /**
   3282  1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3283  1.1    dyoung  *  @hw: pointer to hardware structure
   3284  1.1    dyoung  *  @regval: register value to write to RXCTRL
   3285  1.1    dyoung  *
   3286  1.1    dyoung  *  Enables the Rx DMA unit
   3287  1.1    dyoung  **/
   3288  1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3289  1.1    dyoung {
   3290  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3291  1.1    dyoung 
   3292  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   3293  1.1    dyoung 
   3294  1.1    dyoung 	return IXGBE_SUCCESS;
   3295  1.1    dyoung }
   3296  1.1    dyoung 
   3297  1.1    dyoung /**
   3298  1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3299  1.1    dyoung  *  @hw: pointer to hardware structure
   3300  1.1    dyoung  *  @index: led number to blink
   3301  1.1    dyoung  **/
   3302  1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3303  1.1    dyoung {
   3304  1.1    dyoung 	ixgbe_link_speed speed = 0;
   3305  1.1    dyoung 	bool link_up = 0;
   3306  1.1    dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3307  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3308  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3309  1.1    dyoung 
   3310  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3311  1.1    dyoung 
   3312  1.1    dyoung 	/*
   3313  1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3314  1.1    dyoung 	 * Force it if link is down.
   3315  1.1    dyoung 	 */
   3316  1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3317  1.1    dyoung 
   3318  1.1    dyoung 	if (!link_up) {
   3319  1.5   msaitoh 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
   3320  1.5   msaitoh 		 * LESM is on.
   3321  1.5   msaitoh 		 */
   3322  1.5   msaitoh 		bool got_lock = FALSE;
   3323  1.5   msaitoh 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
   3324  1.5   msaitoh 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
   3325  1.5   msaitoh 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
   3326  1.5   msaitoh 							IXGBE_GSSR_MAC_CSR_SM);
   3327  1.5   msaitoh 			if (ret_val != IXGBE_SUCCESS) {
   3328  1.5   msaitoh 				ret_val = IXGBE_ERR_SWFW_SYNC;
   3329  1.5   msaitoh 				goto out;
   3330  1.5   msaitoh 			}
   3331  1.5   msaitoh 			got_lock = TRUE;
   3332  1.5   msaitoh 		}
   3333  1.5   msaitoh 
   3334  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3335  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3336  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3337  1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3338  1.5   msaitoh 
   3339  1.5   msaitoh 		if (got_lock)
   3340  1.5   msaitoh 			hw->mac.ops.release_swfw_sync(hw,
   3341  1.5   msaitoh 						      IXGBE_GSSR_MAC_CSR_SM);
   3342  1.1    dyoung 		msec_delay(10);
   3343  1.1    dyoung 	}
   3344  1.1    dyoung 
   3345  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3346  1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3347  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3348  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3349  1.1    dyoung 
   3350  1.5   msaitoh out:
   3351  1.5   msaitoh 	return ret_val;
   3352  1.1    dyoung }
   3353  1.1    dyoung 
   3354  1.1    dyoung /**
   3355  1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3356  1.1    dyoung  *  @hw: pointer to hardware structure
   3357  1.1    dyoung  *  @index: led number to stop blinking
   3358  1.1    dyoung  **/
   3359  1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3360  1.1    dyoung {
   3361  1.1    dyoung 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3362  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3363  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3364  1.5   msaitoh 	bool got_lock = FALSE;
   3365  1.1    dyoung 
   3366  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3367  1.5   msaitoh 	/* Need the SW/FW semaphore around AUTOC writes if 82599 and
   3368  1.5   msaitoh 	 * LESM is on.
   3369  1.5   msaitoh 	 */
   3370  1.5   msaitoh 	if ((hw->mac.type == ixgbe_mac_82599EB) &&
   3371  1.5   msaitoh 	    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
   3372  1.5   msaitoh 		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
   3373  1.5   msaitoh 						IXGBE_GSSR_MAC_CSR_SM);
   3374  1.5   msaitoh 		if (ret_val != IXGBE_SUCCESS) {
   3375  1.5   msaitoh 			ret_val = IXGBE_ERR_SWFW_SYNC;
   3376  1.5   msaitoh 			goto out;
   3377  1.5   msaitoh 		}
   3378  1.5   msaitoh 		got_lock = TRUE;
   3379  1.5   msaitoh 	}
   3380  1.1    dyoung 
   3381  1.1    dyoung 
   3382  1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3383  1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3384  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3385  1.1    dyoung 
   3386  1.5   msaitoh 	if (hw->mac.type == ixgbe_mac_82599EB)
   3387  1.5   msaitoh 		ixgbe_reset_pipeline_82599(hw);
   3388  1.5   msaitoh 
   3389  1.5   msaitoh 	if (got_lock)
   3390  1.5   msaitoh 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
   3391  1.5   msaitoh 
   3392  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3393  1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3394  1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3395  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3396  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3397  1.1    dyoung 
   3398  1.5   msaitoh out:
   3399  1.5   msaitoh 	return ret_val;
   3400  1.1    dyoung }
   3401  1.1    dyoung 
   3402  1.1    dyoung /**
   3403  1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3404  1.1    dyoung  *  @hw: pointer to hardware structure
   3405  1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3406  1.1    dyoung  *
   3407  1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3408  1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3409  1.1    dyoung  *  get and set mac_addr routines.
   3410  1.1    dyoung  **/
   3411  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3412  1.3   msaitoh 					 u16 *san_mac_offset)
   3413  1.1    dyoung {
   3414  1.6   msaitoh 	s32 ret_val;
   3415  1.6   msaitoh 
   3416  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3417  1.1    dyoung 
   3418  1.1    dyoung 	/*
   3419  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3420  1.1    dyoung 	 * available.
   3421  1.1    dyoung 	 */
   3422  1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3423  1.6   msaitoh 				      san_mac_offset);
   3424  1.6   msaitoh 	if (ret_val) {
   3425  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3426  1.6   msaitoh 			      "eeprom at offset %d failed",
   3427  1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3428  1.6   msaitoh 	}
   3429  1.1    dyoung 
   3430  1.6   msaitoh 	return ret_val;
   3431  1.1    dyoung }
   3432  1.1    dyoung 
   3433  1.1    dyoung /**
   3434  1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3435  1.1    dyoung  *  @hw: pointer to hardware structure
   3436  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3437  1.1    dyoung  *
   3438  1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3439  1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3440  1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3441  1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3442  1.1    dyoung  **/
   3443  1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3444  1.1    dyoung {
   3445  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3446  1.1    dyoung 	u8 i;
   3447  1.6   msaitoh 	s32 ret_val;
   3448  1.1    dyoung 
   3449  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3450  1.1    dyoung 
   3451  1.1    dyoung 	/*
   3452  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3453  1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3454  1.1    dyoung 	 */
   3455  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3456  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3457  1.1    dyoung 		goto san_mac_addr_out;
   3458  1.1    dyoung 
   3459  1.1    dyoung 	/* make sure we know which port we need to program */
   3460  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3461  1.1    dyoung 	/* apply the port offset to the address offset */
   3462  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3463  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3464  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3465  1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3466  1.6   msaitoh 					      &san_mac_data);
   3467  1.6   msaitoh 		if (ret_val) {
   3468  1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3469  1.6   msaitoh 				      "eeprom read at offset %d failed",
   3470  1.6   msaitoh 				      san_mac_offset);
   3471  1.6   msaitoh 			goto san_mac_addr_out;
   3472  1.6   msaitoh 		}
   3473  1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3474  1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3475  1.1    dyoung 		san_mac_offset++;
   3476  1.1    dyoung 	}
   3477  1.6   msaitoh 	return IXGBE_SUCCESS;
   3478  1.1    dyoung 
   3479  1.1    dyoung san_mac_addr_out:
   3480  1.6   msaitoh 	/*
   3481  1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3482  1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3483  1.6   msaitoh 	 */
   3484  1.6   msaitoh 	for (i = 0; i < 6; i++)
   3485  1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3486  1.1    dyoung 	return IXGBE_SUCCESS;
   3487  1.1    dyoung }
   3488  1.1    dyoung 
   3489  1.1    dyoung /**
   3490  1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3491  1.1    dyoung  *  @hw: pointer to hardware structure
   3492  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3493  1.1    dyoung  *
   3494  1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3495  1.1    dyoung  **/
   3496  1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3497  1.1    dyoung {
   3498  1.6   msaitoh 	s32 ret_val;
   3499  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3500  1.1    dyoung 	u8 i;
   3501  1.1    dyoung 
   3502  1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3503  1.1    dyoung 
   3504  1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3505  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3506  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3507  1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3508  1.1    dyoung 
   3509  1.1    dyoung 	/* Make sure we know which port we need to write */
   3510  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3511  1.1    dyoung 	/* Apply the port offset to the address offset */
   3512  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3513  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3514  1.1    dyoung 
   3515  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3516  1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3517  1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3518  1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3519  1.1    dyoung 		san_mac_offset++;
   3520  1.1    dyoung 	}
   3521  1.1    dyoung 
   3522  1.6   msaitoh 	return IXGBE_SUCCESS;
   3523  1.1    dyoung }
   3524  1.1    dyoung 
   3525  1.1    dyoung /**
   3526  1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3527  1.1    dyoung  *  @hw: pointer to hardware structure
   3528  1.1    dyoung  *
   3529  1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3530  1.1    dyoung  *  the capabilities table.
   3531  1.1    dyoung  **/
   3532  1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3533  1.1    dyoung {
   3534  1.4   msaitoh 	u16 msix_count = 1;
   3535  1.4   msaitoh 	u16 max_msix_count;
   3536  1.4   msaitoh 	u16 pcie_offset;
   3537  1.4   msaitoh 
   3538  1.4   msaitoh 	switch (hw->mac.type) {
   3539  1.4   msaitoh 	case ixgbe_mac_82598EB:
   3540  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3541  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3542  1.4   msaitoh 		break;
   3543  1.4   msaitoh 	case ixgbe_mac_82599EB:
   3544  1.4   msaitoh 	case ixgbe_mac_X540:
   3545  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3546  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3547  1.4   msaitoh 		break;
   3548  1.4   msaitoh 	default:
   3549  1.4   msaitoh 		return msix_count;
   3550  1.4   msaitoh 	}
   3551  1.1    dyoung 
   3552  1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3553  1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3554  1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3555  1.4   msaitoh 
   3556  1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3557  1.4   msaitoh 	msix_count++;
   3558  1.4   msaitoh 
   3559  1.4   msaitoh 	if (msix_count > max_msix_count)
   3560  1.4   msaitoh 		msix_count = max_msix_count;
   3561  1.1    dyoung 
   3562  1.1    dyoung 	return msix_count;
   3563  1.1    dyoung }
   3564  1.1    dyoung 
   3565  1.1    dyoung /**
   3566  1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3567  1.1    dyoung  *  @hw: pointer to hardware structure
   3568  1.1    dyoung  *  @addr: Address to put into receive address register
   3569  1.1    dyoung  *  @vmdq: VMDq pool to assign
   3570  1.1    dyoung  *
   3571  1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3572  1.1    dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3573  1.1    dyoung  **/
   3574  1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3575  1.1    dyoung {
   3576  1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3577  1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3578  1.1    dyoung 	u32 rar;
   3579  1.1    dyoung 	u32 rar_low, rar_high;
   3580  1.1    dyoung 	u32 addr_low, addr_high;
   3581  1.1    dyoung 
   3582  1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3583  1.1    dyoung 
   3584  1.1    dyoung 	/* swap bytes for HW little endian */
   3585  1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3586  1.1    dyoung 			    | (addr[2] << 16)
   3587  1.1    dyoung 			    | (addr[3] << 24);
   3588  1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3589  1.1    dyoung 
   3590  1.1    dyoung 	/*
   3591  1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3592  1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3593  1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3594  1.1    dyoung 	 * rar to the top.
   3595  1.1    dyoung 	 */
   3596  1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3597  1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3598  1.1    dyoung 
   3599  1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3600  1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3601  1.1    dyoung 			first_empty_rar = rar;
   3602  1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3603  1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3604  1.1    dyoung 			if (rar_low == addr_low)
   3605  1.1    dyoung 				break;    /* found it already in the rars */
   3606  1.1    dyoung 		}
   3607  1.1    dyoung 	}
   3608  1.1    dyoung 
   3609  1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3610  1.1    dyoung 		/* already there so just add to the pool bits */
   3611  1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3612  1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3613  1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3614  1.1    dyoung 		rar = first_empty_rar;
   3615  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3616  1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3617  1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3618  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3619  1.1    dyoung 		hw->mac.rar_highwater++;
   3620  1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3621  1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3622  1.1    dyoung 	}
   3623  1.1    dyoung 
   3624  1.1    dyoung 	/*
   3625  1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3626  1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3627  1.1    dyoung 	 */
   3628  1.1    dyoung 	if (rar == 0)
   3629  1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3630  1.1    dyoung 
   3631  1.1    dyoung 	return rar;
   3632  1.1    dyoung }
   3633  1.1    dyoung 
   3634  1.1    dyoung /**
   3635  1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3636  1.1    dyoung  *  @hw: pointer to hardware struct
   3637  1.1    dyoung  *  @rar: receive address register index to disassociate
   3638  1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3639  1.1    dyoung  **/
   3640  1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3641  1.1    dyoung {
   3642  1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3643  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3644  1.1    dyoung 
   3645  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3646  1.1    dyoung 
   3647  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3648  1.1    dyoung 	if (rar >= rar_entries) {
   3649  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3650  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3651  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3652  1.1    dyoung 	}
   3653  1.1    dyoung 
   3654  1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3655  1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3656  1.1    dyoung 
   3657  1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3658  1.1    dyoung 		goto done;
   3659  1.1    dyoung 
   3660  1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3661  1.1    dyoung 		if (mpsar_lo) {
   3662  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3663  1.1    dyoung 			mpsar_lo = 0;
   3664  1.1    dyoung 		}
   3665  1.1    dyoung 		if (mpsar_hi) {
   3666  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3667  1.1    dyoung 			mpsar_hi = 0;
   3668  1.1    dyoung 		}
   3669  1.1    dyoung 	} else if (vmdq < 32) {
   3670  1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3671  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3672  1.1    dyoung 	} else {
   3673  1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3674  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3675  1.1    dyoung 	}
   3676  1.1    dyoung 
   3677  1.1    dyoung 	/* was that the last pool using this rar? */
   3678  1.1    dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3679  1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3680  1.1    dyoung done:
   3681  1.1    dyoung 	return IXGBE_SUCCESS;
   3682  1.1    dyoung }
   3683  1.1    dyoung 
   3684  1.1    dyoung /**
   3685  1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3686  1.1    dyoung  *  @hw: pointer to hardware struct
   3687  1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3688  1.1    dyoung  *  @vmdq: VMDq pool index
   3689  1.1    dyoung  **/
   3690  1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3691  1.1    dyoung {
   3692  1.1    dyoung 	u32 mpsar;
   3693  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3694  1.1    dyoung 
   3695  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3696  1.1    dyoung 
   3697  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3698  1.1    dyoung 	if (rar >= rar_entries) {
   3699  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3700  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3701  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3702  1.1    dyoung 	}
   3703  1.1    dyoung 
   3704  1.1    dyoung 	if (vmdq < 32) {
   3705  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3706  1.1    dyoung 		mpsar |= 1 << vmdq;
   3707  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3708  1.1    dyoung 	} else {
   3709  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3710  1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3711  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3712  1.1    dyoung 	}
   3713  1.1    dyoung 	return IXGBE_SUCCESS;
   3714  1.1    dyoung }
   3715  1.1    dyoung 
   3716  1.1    dyoung /**
   3717  1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3718  1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3719  1.4   msaitoh  *  VFs advertized and not 0.
   3720  1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3721  1.4   msaitoh  *
   3722  1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3723  1.4   msaitoh  *  @hw: pointer to hardware struct
   3724  1.4   msaitoh  *  @vmdq: VMDq pool index
   3725  1.4   msaitoh  **/
   3726  1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3727  1.4   msaitoh {
   3728  1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3729  1.4   msaitoh 
   3730  1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3731  1.4   msaitoh 
   3732  1.4   msaitoh 	if (vmdq < 32) {
   3733  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3734  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3735  1.4   msaitoh 	} else {
   3736  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3737  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3738  1.4   msaitoh 	}
   3739  1.4   msaitoh 
   3740  1.4   msaitoh 	return IXGBE_SUCCESS;
   3741  1.4   msaitoh }
   3742  1.4   msaitoh 
   3743  1.4   msaitoh /**
   3744  1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3745  1.1    dyoung  *  @hw: pointer to hardware structure
   3746  1.1    dyoung  **/
   3747  1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3748  1.1    dyoung {
   3749  1.1    dyoung 	int i;
   3750  1.1    dyoung 
   3751  1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3752  1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3753  1.1    dyoung 
   3754  1.1    dyoung 	for (i = 0; i < 128; i++)
   3755  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3756  1.1    dyoung 
   3757  1.1    dyoung 	return IXGBE_SUCCESS;
   3758  1.1    dyoung }
   3759  1.1    dyoung 
   3760  1.1    dyoung /**
   3761  1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3762  1.1    dyoung  *  @hw: pointer to hardware structure
   3763  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3764  1.1    dyoung  *
   3765  1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3766  1.1    dyoung  *
   3767  1.1    dyoung  **/
   3768  1.1    dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3769  1.1    dyoung {
   3770  1.1    dyoung 	u32 bits = 0;
   3771  1.1    dyoung 	u32 first_empty_slot = 0;
   3772  1.1    dyoung 	s32 regindex;
   3773  1.1    dyoung 
   3774  1.1    dyoung 	/* short cut the special case */
   3775  1.1    dyoung 	if (vlan == 0)
   3776  1.1    dyoung 		return 0;
   3777  1.1    dyoung 
   3778  1.1    dyoung 	/*
   3779  1.1    dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3780  1.1    dyoung 	  * slot found along the way
   3781  1.1    dyoung 	  */
   3782  1.1    dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3783  1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3784  1.1    dyoung 		if (!bits && !(first_empty_slot))
   3785  1.1    dyoung 			first_empty_slot = regindex;
   3786  1.1    dyoung 		else if ((bits & 0x0FFF) == vlan)
   3787  1.1    dyoung 			break;
   3788  1.1    dyoung 	}
   3789  1.1    dyoung 
   3790  1.1    dyoung 	/*
   3791  1.1    dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3792  1.1    dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3793  1.1    dyoung 	  * vlan id.
   3794  1.1    dyoung 	  */
   3795  1.1    dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3796  1.1    dyoung 		if (first_empty_slot)
   3797  1.1    dyoung 			regindex = first_empty_slot;
   3798  1.1    dyoung 		else {
   3799  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3800  1.6   msaitoh 				     "No space in VLVF.\n");
   3801  1.1    dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3802  1.1    dyoung 		}
   3803  1.1    dyoung 	}
   3804  1.1    dyoung 
   3805  1.1    dyoung 	return regindex;
   3806  1.1    dyoung }
   3807  1.1    dyoung 
   3808  1.1    dyoung /**
   3809  1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3810  1.1    dyoung  *  @hw: pointer to hardware structure
   3811  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3812  1.1    dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3813  1.1    dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3814  1.1    dyoung  *
   3815  1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3816  1.1    dyoung  **/
   3817  1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3818  1.3   msaitoh 			   bool vlan_on)
   3819  1.1    dyoung {
   3820  1.1    dyoung 	s32 regindex;
   3821  1.1    dyoung 	u32 bitindex;
   3822  1.1    dyoung 	u32 vfta;
   3823  1.1    dyoung 	u32 targetbit;
   3824  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3825  1.1    dyoung 	bool vfta_changed = FALSE;
   3826  1.1    dyoung 
   3827  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3828  1.1    dyoung 
   3829  1.1    dyoung 	if (vlan > 4095)
   3830  1.1    dyoung 		return IXGBE_ERR_PARAM;
   3831  1.1    dyoung 
   3832  1.1    dyoung 	/*
   3833  1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3834  1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3835  1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3836  1.1    dyoung 	 */
   3837  1.1    dyoung 
   3838  1.1    dyoung 	/* Part 1
   3839  1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3840  1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3841  1.1    dyoung 	 *    bits[11-5]: which register
   3842  1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3843  1.1    dyoung 	 */
   3844  1.1    dyoung 	regindex = (vlan >> 5) & 0x7F;
   3845  1.1    dyoung 	bitindex = vlan & 0x1F;
   3846  1.1    dyoung 	targetbit = (1 << bitindex);
   3847  1.1    dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3848  1.1    dyoung 
   3849  1.1    dyoung 	if (vlan_on) {
   3850  1.1    dyoung 		if (!(vfta & targetbit)) {
   3851  1.1    dyoung 			vfta |= targetbit;
   3852  1.1    dyoung 			vfta_changed = TRUE;
   3853  1.1    dyoung 		}
   3854  1.1    dyoung 	} else {
   3855  1.1    dyoung 		if ((vfta & targetbit)) {
   3856  1.1    dyoung 			vfta &= ~targetbit;
   3857  1.1    dyoung 			vfta_changed = TRUE;
   3858  1.1    dyoung 		}
   3859  1.1    dyoung 	}
   3860  1.1    dyoung 
   3861  1.1    dyoung 	/* Part 2
   3862  1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3863  1.3   msaitoh 	 */
   3864  1.3   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3865  1.3   msaitoh 					 &vfta_changed);
   3866  1.3   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3867  1.3   msaitoh 		return ret_val;
   3868  1.3   msaitoh 
   3869  1.3   msaitoh 	if (vfta_changed)
   3870  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3871  1.3   msaitoh 
   3872  1.3   msaitoh 	return IXGBE_SUCCESS;
   3873  1.3   msaitoh }
   3874  1.3   msaitoh 
   3875  1.3   msaitoh /**
   3876  1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3877  1.3   msaitoh  *  @hw: pointer to hardware structure
   3878  1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3879  1.3   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3880  1.3   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3881  1.3   msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3882  1.3   msaitoh  *                 should be changed
   3883  1.3   msaitoh  *
   3884  1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   3885  1.3   msaitoh  **/
   3886  1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3887  1.3   msaitoh 			    bool vlan_on, bool *vfta_changed)
   3888  1.3   msaitoh {
   3889  1.3   msaitoh 	u32 vt;
   3890  1.3   msaitoh 
   3891  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3892  1.3   msaitoh 
   3893  1.3   msaitoh 	if (vlan > 4095)
   3894  1.3   msaitoh 		return IXGBE_ERR_PARAM;
   3895  1.3   msaitoh 
   3896  1.3   msaitoh 	/* If VT Mode is set
   3897  1.1    dyoung 	 *   Either vlan_on
   3898  1.1    dyoung 	 *     make sure the vlan is in VLVF
   3899  1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   3900  1.1    dyoung 	 *   Or !vlan_on
   3901  1.1    dyoung 	 *     clear the pool bit and possibly the vind
   3902  1.1    dyoung 	 */
   3903  1.1    dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3904  1.1    dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3905  1.1    dyoung 		s32 vlvf_index;
   3906  1.3   msaitoh 		u32 bits;
   3907  1.1    dyoung 
   3908  1.1    dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3909  1.1    dyoung 		if (vlvf_index < 0)
   3910  1.1    dyoung 			return vlvf_index;
   3911  1.1    dyoung 
   3912  1.1    dyoung 		if (vlan_on) {
   3913  1.1    dyoung 			/* set the pool bit */
   3914  1.1    dyoung 			if (vind < 32) {
   3915  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3916  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3917  1.1    dyoung 				bits |= (1 << vind);
   3918  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3919  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3920  1.1    dyoung 						bits);
   3921  1.1    dyoung 			} else {
   3922  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3923  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3924  1.3   msaitoh 				bits |= (1 << (vind - 32));
   3925  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3926  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3927  1.3   msaitoh 					bits);
   3928  1.1    dyoung 			}
   3929  1.1    dyoung 		} else {
   3930  1.1    dyoung 			/* clear the pool bit */
   3931  1.1    dyoung 			if (vind < 32) {
   3932  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3933  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3934  1.1    dyoung 				bits &= ~(1 << vind);
   3935  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3936  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3937  1.1    dyoung 						bits);
   3938  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3939  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3940  1.1    dyoung 			} else {
   3941  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3942  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3943  1.3   msaitoh 				bits &= ~(1 << (vind - 32));
   3944  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3945  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3946  1.3   msaitoh 					bits);
   3947  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3948  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3949  1.1    dyoung 			}
   3950  1.1    dyoung 		}
   3951  1.1    dyoung 
   3952  1.1    dyoung 		/*
   3953  1.1    dyoung 		 * If there are still bits set in the VLVFB registers
   3954  1.1    dyoung 		 * for the VLAN ID indicated we need to see if the
   3955  1.1    dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3956  1.1    dyoung 		 * If the caller has requested that we clear the VFTA
   3957  1.1    dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3958  1.1    dyoung 		 * ID entry then ignore the request.  We're not worried
   3959  1.1    dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3960  1.1    dyoung 		 * entry bit on, only when requested to turn it off as
   3961  1.1    dyoung 		 * there may be multiple pools and/or VFs using the
   3962  1.1    dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   3963  1.1    dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3964  1.1    dyoung 		 * been cleared.  This will be indicated by "bits" being
   3965  1.1    dyoung 		 * zero.
   3966  1.1    dyoung 		 */
   3967  1.1    dyoung 		if (bits) {
   3968  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3969  1.1    dyoung 					(IXGBE_VLVF_VIEN | vlan));
   3970  1.3   msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   3971  1.1    dyoung 				/* someone wants to clear the vfta entry
   3972  1.1    dyoung 				 * but some pools/VFs are still using it.
   3973  1.1    dyoung 				 * Ignore it. */
   3974  1.3   msaitoh 				*vfta_changed = FALSE;
   3975  1.1    dyoung 			}
   3976  1.3   msaitoh 		} else
   3977  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3978  1.1    dyoung 	}
   3979  1.1    dyoung 
   3980  1.1    dyoung 	return IXGBE_SUCCESS;
   3981  1.1    dyoung }
   3982  1.1    dyoung 
   3983  1.1    dyoung /**
   3984  1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3985  1.1    dyoung  *  @hw: pointer to hardware structure
   3986  1.1    dyoung  *
   3987  1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3988  1.1    dyoung  **/
   3989  1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3990  1.1    dyoung {
   3991  1.1    dyoung 	u32 offset;
   3992  1.1    dyoung 
   3993  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3994  1.1    dyoung 
   3995  1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3996  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3997  1.1    dyoung 
   3998  1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3999  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4000  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4001  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4002  1.1    dyoung 	}
   4003  1.1    dyoung 
   4004  1.1    dyoung 	return IXGBE_SUCCESS;
   4005  1.1    dyoung }
   4006  1.1    dyoung 
   4007  1.1    dyoung /**
   4008  1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4009  1.1    dyoung  *  @hw: pointer to hardware structure
   4010  1.1    dyoung  *  @speed: pointer to link speed
   4011  1.1    dyoung  *  @link_up: TRUE when link is up
   4012  1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4013  1.1    dyoung  *
   4014  1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4015  1.1    dyoung  **/
   4016  1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4017  1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4018  1.1    dyoung {
   4019  1.1    dyoung 	u32 links_reg, links_orig;
   4020  1.1    dyoung 	u32 i;
   4021  1.1    dyoung 
   4022  1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4023  1.1    dyoung 
   4024  1.1    dyoung 	/* clear the old state */
   4025  1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4026  1.1    dyoung 
   4027  1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4028  1.1    dyoung 
   4029  1.1    dyoung 	if (links_orig != links_reg) {
   4030  1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4031  1.3   msaitoh 			  links_orig, links_reg);
   4032  1.1    dyoung 	}
   4033  1.1    dyoung 
   4034  1.1    dyoung 	if (link_up_wait_to_complete) {
   4035  1.1    dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   4036  1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4037  1.1    dyoung 				*link_up = TRUE;
   4038  1.1    dyoung 				break;
   4039  1.1    dyoung 			} else {
   4040  1.1    dyoung 				*link_up = FALSE;
   4041  1.1    dyoung 			}
   4042  1.1    dyoung 			msec_delay(100);
   4043  1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4044  1.1    dyoung 		}
   4045  1.1    dyoung 	} else {
   4046  1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4047  1.1    dyoung 			*link_up = TRUE;
   4048  1.1    dyoung 		else
   4049  1.1    dyoung 			*link_up = FALSE;
   4050  1.1    dyoung 	}
   4051  1.1    dyoung 
   4052  1.1    dyoung 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   4053  1.1    dyoung 	    IXGBE_LINKS_SPEED_10G_82599)
   4054  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4055  1.1    dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   4056  1.3   msaitoh 		 IXGBE_LINKS_SPEED_1G_82599)
   4057  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4058  1.1    dyoung 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   4059  1.3   msaitoh 		 IXGBE_LINKS_SPEED_100_82599)
   4060  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4061  1.1    dyoung 	else
   4062  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4063  1.1    dyoung 
   4064  1.1    dyoung 	return IXGBE_SUCCESS;
   4065  1.1    dyoung }
   4066  1.1    dyoung 
   4067  1.1    dyoung /**
   4068  1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4069  1.1    dyoung  *  the EEPROM
   4070  1.1    dyoung  *  @hw: pointer to hardware structure
   4071  1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4072  1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4073  1.1    dyoung  *
   4074  1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4075  1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4076  1.1    dyoung  **/
   4077  1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4078  1.3   msaitoh 				 u16 *wwpn_prefix)
   4079  1.1    dyoung {
   4080  1.1    dyoung 	u16 offset, caps;
   4081  1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4082  1.1    dyoung 
   4083  1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4084  1.1    dyoung 
   4085  1.1    dyoung 	/* clear output first */
   4086  1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4087  1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4088  1.1    dyoung 
   4089  1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4090  1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4091  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4092  1.6   msaitoh 		goto wwn_prefix_err;
   4093  1.1    dyoung 
   4094  1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4095  1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4096  1.1    dyoung 		goto wwn_prefix_out;
   4097  1.1    dyoung 
   4098  1.1    dyoung 	/* check capability in alternative san mac address block */
   4099  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4100  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4101  1.6   msaitoh 		goto wwn_prefix_err;
   4102  1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4103  1.1    dyoung 		goto wwn_prefix_out;
   4104  1.1    dyoung 
   4105  1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4106  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4107  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4108  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4109  1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4110  1.6   msaitoh 	}
   4111  1.1    dyoung 
   4112  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4113  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4114  1.6   msaitoh 		goto wwn_prefix_err;
   4115  1.1    dyoung 
   4116  1.1    dyoung wwn_prefix_out:
   4117  1.1    dyoung 	return IXGBE_SUCCESS;
   4118  1.6   msaitoh 
   4119  1.6   msaitoh wwn_prefix_err:
   4120  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4121  1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4122  1.6   msaitoh 	return IXGBE_SUCCESS;
   4123  1.1    dyoung }
   4124  1.1    dyoung 
   4125  1.1    dyoung /**
   4126  1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4127  1.1    dyoung  *  @hw: pointer to hardware structure
   4128  1.1    dyoung  *  @bs: the fcoe boot status
   4129  1.1    dyoung  *
   4130  1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4131  1.1    dyoung  **/
   4132  1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4133  1.1    dyoung {
   4134  1.1    dyoung 	u16 offset, caps, flags;
   4135  1.1    dyoung 	s32 status;
   4136  1.1    dyoung 
   4137  1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4138  1.1    dyoung 
   4139  1.1    dyoung 	/* clear output first */
   4140  1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4141  1.1    dyoung 
   4142  1.1    dyoung 	/* check if FCOE IBA block is present */
   4143  1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4144  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4145  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4146  1.1    dyoung 		goto out;
   4147  1.1    dyoung 
   4148  1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4149  1.1    dyoung 		goto out;
   4150  1.1    dyoung 
   4151  1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4152  1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4153  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4154  1.1    dyoung 		goto out;
   4155  1.1    dyoung 
   4156  1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4157  1.1    dyoung 		goto out;
   4158  1.1    dyoung 
   4159  1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4160  1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4161  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4162  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4163  1.1    dyoung 		goto out;
   4164  1.1    dyoung 
   4165  1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4166  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4167  1.1    dyoung 	else
   4168  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4169  1.1    dyoung 
   4170  1.1    dyoung out:
   4171  1.1    dyoung 	return status;
   4172  1.1    dyoung }
   4173  1.1    dyoung 
   4174  1.1    dyoung /**
   4175  1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4176  1.1    dyoung  *  @hw: pointer to hardware structure
   4177  1.1    dyoung  *  @enable: enable or disable switch for anti-spoofing
   4178  1.1    dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4179  1.1    dyoung  *
   4180  1.1    dyoung  **/
   4181  1.1    dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4182  1.1    dyoung {
   4183  1.1    dyoung 	int j;
   4184  1.1    dyoung 	int pf_target_reg = pf >> 3;
   4185  1.1    dyoung 	int pf_target_shift = pf % 8;
   4186  1.1    dyoung 	u32 pfvfspoof = 0;
   4187  1.1    dyoung 
   4188  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4189  1.1    dyoung 		return;
   4190  1.1    dyoung 
   4191  1.1    dyoung 	if (enable)
   4192  1.1    dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4193  1.1    dyoung 
   4194  1.1    dyoung 	/*
   4195  1.1    dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4196  1.1    dyoung 	 * MAC anti-spoof enables in each register array element.
   4197  1.1    dyoung 	 */
   4198  1.4   msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4199  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4200  1.1    dyoung 
   4201  1.4   msaitoh 	/*
   4202  1.4   msaitoh 	 * The PF should be allowed to spoof so that it can support
   4203  1.4   msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4204  1.4   msaitoh 	 */
   4205  1.4   msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4206  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4207  1.1    dyoung 
   4208  1.1    dyoung 	/*
   4209  1.4   msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4210  1.4   msaitoh 	 * anti-spoofing enabled.
   4211  1.1    dyoung 	 */
   4212  1.4   msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4213  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4214  1.1    dyoung }
   4215  1.1    dyoung 
   4216  1.1    dyoung /**
   4217  1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4218  1.1    dyoung  *  @hw: pointer to hardware structure
   4219  1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4220  1.1    dyoung  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4221  1.1    dyoung  *
   4222  1.1    dyoung  **/
   4223  1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4224  1.1    dyoung {
   4225  1.1    dyoung 	int vf_target_reg = vf >> 3;
   4226  1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4227  1.1    dyoung 	u32 pfvfspoof;
   4228  1.1    dyoung 
   4229  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4230  1.1    dyoung 		return;
   4231  1.1    dyoung 
   4232  1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4233  1.1    dyoung 	if (enable)
   4234  1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4235  1.1    dyoung 	else
   4236  1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4237  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4238  1.1    dyoung }
   4239  1.1    dyoung 
   4240  1.1    dyoung /**
   4241  1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4242  1.1    dyoung  *  @hw: pointer to hardware structure
   4243  1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4244  1.1    dyoung  *
   4245  1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4246  1.1    dyoung  *  and return the word through device_caps.
   4247  1.1    dyoung  **/
   4248  1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4249  1.1    dyoung {
   4250  1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4251  1.1    dyoung 
   4252  1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4253  1.1    dyoung 
   4254  1.1    dyoung 	return IXGBE_SUCCESS;
   4255  1.1    dyoung }
   4256  1.1    dyoung 
   4257  1.1    dyoung /**
   4258  1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4259  1.1    dyoung  *  @hw: pointer to hardware structure
   4260  1.1    dyoung  *
   4261  1.1    dyoung  **/
   4262  1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4263  1.1    dyoung {
   4264  1.1    dyoung 	u32 regval;
   4265  1.1    dyoung 	u32 i;
   4266  1.1    dyoung 
   4267  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4268  1.1    dyoung 
   4269  1.1    dyoung 	/* Enable relaxed ordering */
   4270  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4271  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4272  1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4273  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4274  1.1    dyoung 	}
   4275  1.1    dyoung 
   4276  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4277  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4278  1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4279  1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4280  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4281  1.1    dyoung 	}
   4282  1.1    dyoung 
   4283  1.1    dyoung }
   4284  1.3   msaitoh 
   4285  1.3   msaitoh /**
   4286  1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4287  1.3   msaitoh  *  @buffer: pointer to EEPROM
   4288  1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4289  1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4290  1.3   msaitoh  *  checksum calculated is returned.
   4291  1.3   msaitoh  **/
   4292  1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4293  1.3   msaitoh {
   4294  1.3   msaitoh 	u32 i;
   4295  1.3   msaitoh 	u8 sum = 0;
   4296  1.3   msaitoh 
   4297  1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4298  1.3   msaitoh 
   4299  1.3   msaitoh 	if (!buffer)
   4300  1.3   msaitoh 		return 0;
   4301  1.3   msaitoh 
   4302  1.3   msaitoh 	for (i = 0; i < length; i++)
   4303  1.3   msaitoh 		sum += buffer[i];
   4304  1.3   msaitoh 
   4305  1.3   msaitoh 	return (u8) (0 - sum);
   4306  1.3   msaitoh }
   4307  1.3   msaitoh 
   4308  1.3   msaitoh /**
   4309  1.3   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4310  1.3   msaitoh  *  @hw: pointer to the HW structure
   4311  1.3   msaitoh  *  @buffer: contains the command to write and where the return status will
   4312  1.3   msaitoh  *   be placed
   4313  1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4314  1.3   msaitoh  *
   4315  1.3   msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4316  1.3   msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4317  1.3   msaitoh  **/
   4318  1.5   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4319  1.5   msaitoh 				 u32 length)
   4320  1.3   msaitoh {
   4321  1.3   msaitoh 	u32 hicr, i, bi;
   4322  1.3   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4323  1.3   msaitoh 	u8 buf_len, dword_len;
   4324  1.3   msaitoh 
   4325  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4326  1.3   msaitoh 
   4327  1.3   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4328  1.3   msaitoh 
   4329  1.3   msaitoh 	if (length == 0 || length & 0x3 ||
   4330  1.3   msaitoh 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4331  1.3   msaitoh 		DEBUGOUT("Buffer length failure.\n");
   4332  1.3   msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4333  1.3   msaitoh 		goto out;
   4334  1.3   msaitoh 	}
   4335  1.3   msaitoh 
   4336  1.3   msaitoh 	/* Check that the host interface is enabled. */
   4337  1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4338  1.3   msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4339  1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4340  1.3   msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4341  1.3   msaitoh 		goto out;
   4342  1.3   msaitoh 	}
   4343  1.3   msaitoh 
   4344  1.3   msaitoh 	/* Calculate length in DWORDs */
   4345  1.3   msaitoh 	dword_len = length >> 2;
   4346  1.3   msaitoh 
   4347  1.3   msaitoh 	/*
   4348  1.3   msaitoh 	 * The device driver writes the relevant command block
   4349  1.3   msaitoh 	 * into the ram area.
   4350  1.3   msaitoh 	 */
   4351  1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4352  1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4353  1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4354  1.3   msaitoh 
   4355  1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4356  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4357  1.3   msaitoh 
   4358  1.3   msaitoh 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
   4359  1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4360  1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4361  1.3   msaitoh 			break;
   4362  1.3   msaitoh 		msec_delay(1);
   4363  1.3   msaitoh 	}
   4364  1.3   msaitoh 
   4365  1.3   msaitoh 	/* Check command successful completion. */
   4366  1.3   msaitoh 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
   4367  1.3   msaitoh 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
   4368  1.3   msaitoh 		DEBUGOUT("Command has failed with no status valid.\n");
   4369  1.3   msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4370  1.3   msaitoh 		goto out;
   4371  1.3   msaitoh 	}
   4372  1.3   msaitoh 
   4373  1.3   msaitoh 	/* Calculate length in DWORDs */
   4374  1.3   msaitoh 	dword_len = hdr_size >> 2;
   4375  1.3   msaitoh 
   4376  1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4377  1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4378  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4379  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4380  1.3   msaitoh 	}
   4381  1.3   msaitoh 
   4382  1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4383  1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4384  1.3   msaitoh 	if (buf_len == 0)
   4385  1.3   msaitoh 		goto out;
   4386  1.3   msaitoh 
   4387  1.3   msaitoh 	if (length < (buf_len + hdr_size)) {
   4388  1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4389  1.3   msaitoh 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4390  1.3   msaitoh 		goto out;
   4391  1.3   msaitoh 	}
   4392  1.3   msaitoh 
   4393  1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4394  1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4395  1.3   msaitoh 
   4396  1.3   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off)*/
   4397  1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4398  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4399  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4400  1.3   msaitoh 	}
   4401  1.3   msaitoh 
   4402  1.3   msaitoh out:
   4403  1.3   msaitoh 	return ret_val;
   4404  1.3   msaitoh }
   4405  1.3   msaitoh 
   4406  1.3   msaitoh /**
   4407  1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4408  1.3   msaitoh  *  @hw: pointer to the HW structure
   4409  1.3   msaitoh  *  @maj: driver version major number
   4410  1.7  riastrad  *  @minr: driver version minor number
   4411  1.3   msaitoh  *  @build: driver version build number
   4412  1.3   msaitoh  *  @sub: driver version sub build number
   4413  1.3   msaitoh  *
   4414  1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4415  1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4416  1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4417  1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4418  1.3   msaitoh  **/
   4419  1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4420  1.3   msaitoh 				 u8 build, u8 sub)
   4421  1.3   msaitoh {
   4422  1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4423  1.3   msaitoh 	int i;
   4424  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4425  1.3   msaitoh 
   4426  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4427  1.3   msaitoh 
   4428  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4429  1.3   msaitoh 	    != IXGBE_SUCCESS) {
   4430  1.3   msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4431  1.3   msaitoh 		goto out;
   4432  1.3   msaitoh 	}
   4433  1.3   msaitoh 
   4434  1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4435  1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4436  1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4437  1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4438  1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4439  1.7  riastrad 	fw_cmd.ver_min = minr;
   4440  1.3   msaitoh 	fw_cmd.ver_build = build;
   4441  1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4442  1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4443  1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4444  1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4445  1.3   msaitoh 	fw_cmd.pad = 0;
   4446  1.3   msaitoh 	fw_cmd.pad2 = 0;
   4447  1.3   msaitoh 
   4448  1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4449  1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4450  1.3   msaitoh 						       sizeof(fw_cmd));
   4451  1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4452  1.3   msaitoh 			continue;
   4453  1.3   msaitoh 
   4454  1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4455  1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4456  1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4457  1.3   msaitoh 		else
   4458  1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4459  1.3   msaitoh 
   4460  1.3   msaitoh 		break;
   4461  1.3   msaitoh 	}
   4462  1.3   msaitoh 
   4463  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4464  1.3   msaitoh out:
   4465  1.3   msaitoh 	return ret_val;
   4466  1.3   msaitoh }
   4467  1.3   msaitoh 
   4468  1.3   msaitoh /**
   4469  1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4470  1.3   msaitoh  * @hw: pointer to hardware structure
   4471  1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4472  1.3   msaitoh  * @headroom: reserve n KB of headroom
   4473  1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4474  1.3   msaitoh  **/
   4475  1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4476  1.3   msaitoh 			     int strategy)
   4477  1.3   msaitoh {
   4478  1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4479  1.3   msaitoh 	int i = 0;
   4480  1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4481  1.3   msaitoh 
   4482  1.3   msaitoh 	/* Reserve headroom */
   4483  1.3   msaitoh 	pbsize -= headroom;
   4484  1.3   msaitoh 
   4485  1.3   msaitoh 	if (!num_pb)
   4486  1.3   msaitoh 		num_pb = 1;
   4487  1.3   msaitoh 
   4488  1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4489  1.3   msaitoh 	 * buffers requested using supplied strategy.
   4490  1.3   msaitoh 	 */
   4491  1.3   msaitoh 	switch (strategy) {
   4492  1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4493  1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4494  1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4495  1.3   msaitoh 		 */
   4496  1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4497  1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4498  1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4499  1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4500  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4501  1.3   msaitoh 		/* Fall through to configure remaining packet buffers */
   4502  1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4503  1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4504  1.3   msaitoh 		for (; i < num_pb; i++)
   4505  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4506  1.3   msaitoh 		break;
   4507  1.3   msaitoh 	default:
   4508  1.3   msaitoh 		break;
   4509  1.3   msaitoh 	}
   4510  1.3   msaitoh 
   4511  1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4512  1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4513  1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4514  1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4515  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4516  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4517  1.3   msaitoh 	}
   4518  1.3   msaitoh 
   4519  1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4520  1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4521  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4522  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4523  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4524  1.3   msaitoh 	}
   4525  1.3   msaitoh }
   4526  1.3   msaitoh 
   4527  1.3   msaitoh /**
   4528  1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4529  1.3   msaitoh  * @hw: pointer to the hardware structure
   4530  1.3   msaitoh  *
   4531  1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4532  1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4533  1.3   msaitoh  * buffers on the system.
   4534  1.3   msaitoh  **/
   4535  1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4536  1.3   msaitoh {
   4537  1.3   msaitoh 	u32 gcr_ext, hlreg0;
   4538  1.3   msaitoh 
   4539  1.3   msaitoh 	/*
   4540  1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4541  1.3   msaitoh 	 * already be clear and as such there is no work to do
   4542  1.3   msaitoh 	 */
   4543  1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4544  1.3   msaitoh 		return;
   4545  1.3   msaitoh 
   4546  1.3   msaitoh 	/*
   4547  1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4548  1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4549  1.3   msaitoh 	 * has already been cleared.
   4550  1.3   msaitoh 	 */
   4551  1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4552  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4553  1.3   msaitoh 
   4554  1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4555  1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4556  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4557  1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4558  1.3   msaitoh 
   4559  1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4560  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4561  1.3   msaitoh 	usec_delay(20);
   4562  1.3   msaitoh 
   4563  1.3   msaitoh 	/* restore previous register values */
   4564  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4565  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4566  1.3   msaitoh }
   4567  1.3   msaitoh 
   4568  1.6   msaitoh 
   4569  1.6   msaitoh /**
   4570  1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4571  1.6   msaitoh  * @hw: pointer to hardware structure
   4572  1.6   msaitoh  * @map: pointer to u8 arr for returning map
   4573  1.6   msaitoh  *
   4574  1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   4575  1.6   msaitoh  **/
   4576  1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4577  1.6   msaitoh {
   4578  1.6   msaitoh 	u32 reg, i;
   4579  1.6   msaitoh 
   4580  1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4581  1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4582  1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4583  1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4584  1.6   msaitoh 	return;
   4585  1.6   msaitoh }
   4586