Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.8
      1  1.1    dyoung /******************************************************************************
      2  1.1    dyoung 
      3  1.8   msaitoh   Copyright (c) 2001-2014, Intel Corporation
      4  1.1    dyoung   All rights reserved.
      5  1.1    dyoung 
      6  1.1    dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1    dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1    dyoung 
      9  1.1    dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1    dyoung       this list of conditions and the following disclaimer.
     11  1.1    dyoung 
     12  1.1    dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1    dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1    dyoung       documentation and/or other materials provided with the distribution.
     15  1.1    dyoung 
     16  1.1    dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1    dyoung       contributors may be used to endorse or promote products derived from
     18  1.1    dyoung       this software without specific prior written permission.
     19  1.1    dyoung 
     20  1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1    dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1    dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1    dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1    dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1    dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1    dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1    dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1    dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1    dyoung 
     32  1.1    dyoung ******************************************************************************/
     33  1.8   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 280182 2015-03-17 18:32:28Z jfv $*/
     34  1.8   msaitoh /*$NetBSD: ixgbe_common.c,v 1.8 2016/12/01 06:27:18 msaitoh Exp $*/
     35  1.1    dyoung 
     36  1.1    dyoung #include "ixgbe_common.h"
     37  1.1    dyoung #include "ixgbe_phy.h"
     38  1.6   msaitoh #include "ixgbe_dcb.h"
     39  1.6   msaitoh #include "ixgbe_dcb_82599.h"
     40  1.1    dyoung #include "ixgbe_api.h"
     41  1.1    dyoung 
     42  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48  1.3   msaitoh 					u16 count);
     49  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53  1.1    dyoung 
     54  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56  1.3   msaitoh 					 u16 *san_mac_offset);
     57  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58  1.3   msaitoh 					     u16 words, u16 *data);
     59  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60  1.3   msaitoh 					      u16 words, u16 *data);
     61  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62  1.3   msaitoh 						 u16 offset);
     63  1.1    dyoung 
     64  1.1    dyoung /**
     65  1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66  1.1    dyoung  *  @hw: pointer to the hardware structure
     67  1.1    dyoung  *
     68  1.1    dyoung  *  Initialize the function pointers.
     69  1.1    dyoung  **/
     70  1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71  1.1    dyoung {
     72  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.1    dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     75  1.1    dyoung 
     76  1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77  1.1    dyoung 
     78  1.1    dyoung 	/* EEPROM */
     79  1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     80  1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81  1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     82  1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     83  1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     84  1.3   msaitoh 	} else {
     85  1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     86  1.3   msaitoh 		eeprom->ops.read_buffer =
     87  1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     88  1.3   msaitoh 	}
     89  1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     90  1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     91  1.1    dyoung 	eeprom->ops.validate_checksum =
     92  1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     93  1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     94  1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     95  1.1    dyoung 
     96  1.1    dyoung 	/* MAC */
     97  1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
     98  1.1    dyoung 	mac->ops.reset_hw = NULL;
     99  1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    100  1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    101  1.1    dyoung 	mac->ops.get_media_type = NULL;
    102  1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    103  1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    104  1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    105  1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    106  1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    107  1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    108  1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    109  1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    110  1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    111  1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    112  1.1    dyoung 
    113  1.1    dyoung 	/* LEDs */
    114  1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    115  1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    116  1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    117  1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    118  1.1    dyoung 
    119  1.1    dyoung 	/* RAR, Multicast, VLAN */
    120  1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    121  1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    122  1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    123  1.1    dyoung 	mac->ops.set_vmdq = NULL;
    124  1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    125  1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    126  1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    127  1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    128  1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    129  1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    130  1.1    dyoung 	mac->ops.clear_vfta = NULL;
    131  1.1    dyoung 	mac->ops.set_vfta = NULL;
    132  1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    133  1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    134  1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    135  1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    136  1.1    dyoung 
    137  1.1    dyoung 	/* Flow Control */
    138  1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    139  1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    140  1.1    dyoung 
    141  1.1    dyoung 	/* Link */
    142  1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    143  1.1    dyoung 	mac->ops.setup_link = NULL;
    144  1.1    dyoung 	mac->ops.check_link = NULL;
    145  1.6   msaitoh 	mac->ops.dmac_config = NULL;
    146  1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    147  1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    148  1.1    dyoung 
    149  1.1    dyoung 	return IXGBE_SUCCESS;
    150  1.1    dyoung }
    151  1.1    dyoung 
    152  1.1    dyoung /**
    153  1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    154  1.6   msaitoh  * of flow control
    155  1.6   msaitoh  * @hw: pointer to hardware structure
    156  1.6   msaitoh  *
    157  1.6   msaitoh  * This function returns TRUE if the device supports flow control
    158  1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    159  1.4   msaitoh  *
    160  1.4   msaitoh  **/
    161  1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    162  1.4   msaitoh {
    163  1.6   msaitoh 	bool supported = FALSE;
    164  1.6   msaitoh 	ixgbe_link_speed speed;
    165  1.6   msaitoh 	bool link_up;
    166  1.4   msaitoh 
    167  1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    168  1.4   msaitoh 
    169  1.6   msaitoh 	switch (hw->phy.media_type) {
    170  1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    171  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    172  1.6   msaitoh 	case ixgbe_media_type_fiber:
    173  1.6   msaitoh 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    174  1.6   msaitoh 		/* if link is down, assume supported */
    175  1.6   msaitoh 		if (link_up)
    176  1.6   msaitoh 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    177  1.6   msaitoh 				TRUE : FALSE;
    178  1.6   msaitoh 		else
    179  1.6   msaitoh 			supported = TRUE;
    180  1.6   msaitoh 		break;
    181  1.6   msaitoh 	case ixgbe_media_type_backplane:
    182  1.6   msaitoh 		supported = TRUE;
    183  1.6   msaitoh 		break;
    184  1.6   msaitoh 	case ixgbe_media_type_copper:
    185  1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    186  1.6   msaitoh 		switch (hw->device_id) {
    187  1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    188  1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    189  1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    190  1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    191  1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    192  1.6   msaitoh 			supported = TRUE;
    193  1.6   msaitoh 			break;
    194  1.6   msaitoh 		default:
    195  1.6   msaitoh 			supported = FALSE;
    196  1.6   msaitoh 		}
    197  1.4   msaitoh 	default:
    198  1.6   msaitoh 		break;
    199  1.4   msaitoh 	}
    200  1.6   msaitoh 
    201  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    202  1.6   msaitoh 		      "Device %x does not support flow control autoneg",
    203  1.6   msaitoh 		      hw->device_id);
    204  1.6   msaitoh 	return supported;
    205  1.4   msaitoh }
    206  1.4   msaitoh 
    207  1.4   msaitoh /**
    208  1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    209  1.4   msaitoh  *  @hw: pointer to hardware structure
    210  1.4   msaitoh  *
    211  1.4   msaitoh  *  Called at init time to set up flow control.
    212  1.4   msaitoh  **/
    213  1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    214  1.4   msaitoh {
    215  1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    216  1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    217  1.4   msaitoh 	u16 reg_cu = 0;
    218  1.8   msaitoh 	bool locked = FALSE;
    219  1.4   msaitoh 
    220  1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    221  1.4   msaitoh 
    222  1.8   msaitoh 	/* Validate the requested mode */
    223  1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    224  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    225  1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    226  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    227  1.4   msaitoh 		goto out;
    228  1.4   msaitoh 	}
    229  1.4   msaitoh 
    230  1.4   msaitoh 	/*
    231  1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    232  1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    233  1.4   msaitoh 	 */
    234  1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    235  1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    236  1.4   msaitoh 
    237  1.4   msaitoh 	/*
    238  1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    239  1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    240  1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    241  1.4   msaitoh 	 */
    242  1.4   msaitoh 	switch (hw->phy.media_type) {
    243  1.8   msaitoh 	case ixgbe_media_type_backplane:
    244  1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    245  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    246  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    247  1.8   msaitoh 			goto out;
    248  1.8   msaitoh 
    249  1.8   msaitoh 		/* only backplane uses autoc so fall though */
    250  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    251  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    252  1.4   msaitoh 	case ixgbe_media_type_fiber:
    253  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    254  1.8   msaitoh 
    255  1.4   msaitoh 		break;
    256  1.4   msaitoh 	case ixgbe_media_type_copper:
    257  1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    258  1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    259  1.4   msaitoh 		break;
    260  1.4   msaitoh 	default:
    261  1.4   msaitoh 		break;
    262  1.4   msaitoh 	}
    263  1.4   msaitoh 
    264  1.4   msaitoh 	/*
    265  1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    266  1.4   msaitoh 	 * 0: Flow control is completely disabled
    267  1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    268  1.4   msaitoh 	 *    but not send pause frames).
    269  1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    270  1.4   msaitoh 	 *    we do not support receiving pause frames).
    271  1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    272  1.4   msaitoh 	 * other: Invalid.
    273  1.4   msaitoh 	 */
    274  1.4   msaitoh 	switch (hw->fc.requested_mode) {
    275  1.4   msaitoh 	case ixgbe_fc_none:
    276  1.4   msaitoh 		/* Flow control completely disabled by software override. */
    277  1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    278  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    279  1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    280  1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    281  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    282  1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    283  1.4   msaitoh 		break;
    284  1.4   msaitoh 	case ixgbe_fc_tx_pause:
    285  1.4   msaitoh 		/*
    286  1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    287  1.4   msaitoh 		 * disabled by software override.
    288  1.4   msaitoh 		 */
    289  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    290  1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    291  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    292  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    293  1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    294  1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    295  1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    296  1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    297  1.4   msaitoh 		}
    298  1.4   msaitoh 		break;
    299  1.4   msaitoh 	case ixgbe_fc_rx_pause:
    300  1.4   msaitoh 		/*
    301  1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    302  1.4   msaitoh 		 * disabled by software override. Since there really
    303  1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    304  1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    305  1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    306  1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    307  1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    308  1.4   msaitoh 		 */
    309  1.4   msaitoh 	case ixgbe_fc_full:
    310  1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    311  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    312  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    313  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    314  1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    315  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    316  1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    317  1.4   msaitoh 		break;
    318  1.4   msaitoh 	default:
    319  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    320  1.6   msaitoh 			     "Flow control param set incorrectly\n");
    321  1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    322  1.4   msaitoh 		goto out;
    323  1.4   msaitoh 		break;
    324  1.4   msaitoh 	}
    325  1.4   msaitoh 
    326  1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    327  1.4   msaitoh 		/*
    328  1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    329  1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    330  1.4   msaitoh 		 */
    331  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    332  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    333  1.4   msaitoh 
    334  1.4   msaitoh 		/* Disable AN timeout */
    335  1.4   msaitoh 		if (hw->fc.strict_ieee)
    336  1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    337  1.4   msaitoh 
    338  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    339  1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    340  1.4   msaitoh 	}
    341  1.4   msaitoh 
    342  1.4   msaitoh 	/*
    343  1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    344  1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    345  1.4   msaitoh 	 *
    346  1.4   msaitoh 	 */
    347  1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    348  1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    349  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    350  1.8   msaitoh 		if (ret_val)
    351  1.8   msaitoh 			goto out;
    352  1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    353  1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    354  1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    355  1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    356  1.4   msaitoh 	}
    357  1.4   msaitoh 
    358  1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    359  1.4   msaitoh out:
    360  1.4   msaitoh 	return ret_val;
    361  1.4   msaitoh }
    362  1.4   msaitoh 
    363  1.4   msaitoh /**
    364  1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    365  1.1    dyoung  *  @hw: pointer to hardware structure
    366  1.1    dyoung  *
    367  1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    368  1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    369  1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    370  1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    371  1.1    dyoung  **/
    372  1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    373  1.1    dyoung {
    374  1.4   msaitoh 	s32 ret_val;
    375  1.1    dyoung 	u32 ctrl_ext;
    376  1.1    dyoung 
    377  1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    378  1.1    dyoung 
    379  1.1    dyoung 	/* Set the media type */
    380  1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    381  1.1    dyoung 
    382  1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    383  1.1    dyoung 
    384  1.1    dyoung 	/* Clear the VLAN filter table */
    385  1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    386  1.1    dyoung 
    387  1.1    dyoung 	/* Clear statistics registers */
    388  1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    389  1.1    dyoung 
    390  1.1    dyoung 	/* Set No Snoop Disable */
    391  1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    392  1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    393  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    394  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    395  1.1    dyoung 
    396  1.1    dyoung 	/* Setup flow control */
    397  1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    398  1.4   msaitoh 	if (ret_val != IXGBE_SUCCESS)
    399  1.4   msaitoh 		goto out;
    400  1.1    dyoung 
    401  1.1    dyoung 	/* Clear adapter stopped flag */
    402  1.1    dyoung 	hw->adapter_stopped = FALSE;
    403  1.1    dyoung 
    404  1.4   msaitoh out:
    405  1.4   msaitoh 	return ret_val;
    406  1.1    dyoung }
    407  1.1    dyoung 
    408  1.1    dyoung /**
    409  1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    410  1.1    dyoung  *  @hw: pointer to hw structure
    411  1.1    dyoung  *
    412  1.1    dyoung  * Performs the init sequence common to the second generation
    413  1.1    dyoung  * of 10 GbE devices.
    414  1.1    dyoung  * Devices in the second generation:
    415  1.1    dyoung  *     82599
    416  1.1    dyoung  *     X540
    417  1.1    dyoung  **/
    418  1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    419  1.1    dyoung {
    420  1.1    dyoung 	u32 i;
    421  1.1    dyoung 	u32 regval;
    422  1.1    dyoung 
    423  1.1    dyoung 	/* Clear the rate limiters */
    424  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    425  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    426  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    427  1.1    dyoung 	}
    428  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    429  1.1    dyoung 
    430  1.1    dyoung 	/* Disable relaxed ordering */
    431  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    432  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    433  1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    434  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    435  1.1    dyoung 	}
    436  1.1    dyoung 
    437  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    438  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    439  1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    440  1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    441  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    442  1.1    dyoung 	}
    443  1.1    dyoung 
    444  1.1    dyoung 	return IXGBE_SUCCESS;
    445  1.1    dyoung }
    446  1.1    dyoung 
    447  1.1    dyoung /**
    448  1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    449  1.1    dyoung  *  @hw: pointer to hardware structure
    450  1.1    dyoung  *
    451  1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    452  1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    453  1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    454  1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    455  1.1    dyoung  *  disabled and uninitialized
    456  1.1    dyoung  **/
    457  1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    458  1.1    dyoung {
    459  1.1    dyoung 	s32 status;
    460  1.1    dyoung 
    461  1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    462  1.1    dyoung 
    463  1.1    dyoung 	/* Reset the hardware */
    464  1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    465  1.1    dyoung 
    466  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
    467  1.1    dyoung 		/* Start the HW */
    468  1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    469  1.1    dyoung 	}
    470  1.1    dyoung 
    471  1.1    dyoung 	return status;
    472  1.1    dyoung }
    473  1.1    dyoung 
    474  1.1    dyoung /**
    475  1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    476  1.1    dyoung  *  @hw: pointer to hardware structure
    477  1.1    dyoung  *
    478  1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    479  1.1    dyoung  *  Statistics counters are clear on read.
    480  1.1    dyoung  **/
    481  1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    482  1.1    dyoung {
    483  1.1    dyoung 	u16 i = 0;
    484  1.1    dyoung 
    485  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    486  1.1    dyoung 
    487  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    488  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    489  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    490  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    491  1.1    dyoung 	for (i = 0; i < 8; i++)
    492  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    493  1.1    dyoung 
    494  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    495  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    496  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    497  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    498  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    499  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    500  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    501  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    502  1.1    dyoung 	} else {
    503  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    504  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    505  1.1    dyoung 	}
    506  1.1    dyoung 
    507  1.1    dyoung 	for (i = 0; i < 8; i++) {
    508  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    509  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    510  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    511  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    512  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    513  1.1    dyoung 		} else {
    514  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    515  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    516  1.1    dyoung 		}
    517  1.1    dyoung 	}
    518  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    519  1.1    dyoung 		for (i = 0; i < 8; i++)
    520  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    521  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    522  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    523  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    524  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    525  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    526  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    527  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    528  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    529  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    530  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    531  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    532  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    533  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    534  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    535  1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    536  1.3   msaitoh 		for (i = 0; i < 8; i++)
    537  1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    538  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    539  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    540  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    541  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    542  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    543  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    544  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    545  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    546  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    547  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    548  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    549  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    550  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    551  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    552  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    553  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    554  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    555  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    556  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    557  1.1    dyoung 	for (i = 0; i < 16; i++) {
    558  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    559  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    560  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    561  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    562  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    563  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    564  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    565  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    566  1.1    dyoung 		} else {
    567  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    568  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    569  1.1    dyoung 		}
    570  1.1    dyoung 	}
    571  1.1    dyoung 
    572  1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    573  1.3   msaitoh 		if (hw->phy.id == 0)
    574  1.3   msaitoh 			ixgbe_identify_phy(hw);
    575  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    576  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    577  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    578  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    579  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    580  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    581  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    582  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    583  1.3   msaitoh 	}
    584  1.3   msaitoh 
    585  1.1    dyoung 	return IXGBE_SUCCESS;
    586  1.1    dyoung }
    587  1.1    dyoung 
    588  1.1    dyoung /**
    589  1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    590  1.1    dyoung  *  @hw: pointer to hardware structure
    591  1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    592  1.1    dyoung  *  @pba_num_size: part number string buffer length
    593  1.1    dyoung  *
    594  1.1    dyoung  *  Reads the part number string from the EEPROM.
    595  1.1    dyoung  **/
    596  1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    597  1.3   msaitoh 				  u32 pba_num_size)
    598  1.1    dyoung {
    599  1.1    dyoung 	s32 ret_val;
    600  1.1    dyoung 	u16 data;
    601  1.1    dyoung 	u16 pba_ptr;
    602  1.1    dyoung 	u16 offset;
    603  1.1    dyoung 	u16 length;
    604  1.1    dyoung 
    605  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    606  1.1    dyoung 
    607  1.1    dyoung 	if (pba_num == NULL) {
    608  1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    609  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    610  1.1    dyoung 	}
    611  1.1    dyoung 
    612  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    613  1.1    dyoung 	if (ret_val) {
    614  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    615  1.1    dyoung 		return ret_val;
    616  1.1    dyoung 	}
    617  1.1    dyoung 
    618  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    619  1.1    dyoung 	if (ret_val) {
    620  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    621  1.1    dyoung 		return ret_val;
    622  1.1    dyoung 	}
    623  1.1    dyoung 
    624  1.1    dyoung 	/*
    625  1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    626  1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    627  1.1    dyoung 	 * and we can decode it into an ascii string
    628  1.1    dyoung 	 */
    629  1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    630  1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    631  1.1    dyoung 
    632  1.1    dyoung 		/* we will need 11 characters to store the PBA */
    633  1.1    dyoung 		if (pba_num_size < 11) {
    634  1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    635  1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    636  1.1    dyoung 		}
    637  1.1    dyoung 
    638  1.1    dyoung 		/* extract hex string from data and pba_ptr */
    639  1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    640  1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    641  1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    642  1.1    dyoung 		pba_num[3] = data & 0xF;
    643  1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    644  1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    645  1.1    dyoung 		pba_num[6] = '-';
    646  1.1    dyoung 		pba_num[7] = 0;
    647  1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    648  1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    649  1.1    dyoung 
    650  1.1    dyoung 		/* put a null character on the end of our string */
    651  1.1    dyoung 		pba_num[10] = '\0';
    652  1.1    dyoung 
    653  1.1    dyoung 		/* switch all the data but the '-' to hex char */
    654  1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    655  1.1    dyoung 			if (pba_num[offset] < 0xA)
    656  1.1    dyoung 				pba_num[offset] += '0';
    657  1.1    dyoung 			else if (pba_num[offset] < 0x10)
    658  1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    659  1.1    dyoung 		}
    660  1.1    dyoung 
    661  1.1    dyoung 		return IXGBE_SUCCESS;
    662  1.1    dyoung 	}
    663  1.1    dyoung 
    664  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    665  1.1    dyoung 	if (ret_val) {
    666  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    667  1.1    dyoung 		return ret_val;
    668  1.1    dyoung 	}
    669  1.1    dyoung 
    670  1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    671  1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    672  1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    673  1.1    dyoung 	}
    674  1.1    dyoung 
    675  1.1    dyoung 	/* check if pba_num buffer is big enough */
    676  1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    677  1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    678  1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    679  1.1    dyoung 	}
    680  1.1    dyoung 
    681  1.1    dyoung 	/* trim pba length from start of string */
    682  1.1    dyoung 	pba_ptr++;
    683  1.1    dyoung 	length--;
    684  1.1    dyoung 
    685  1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    686  1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    687  1.1    dyoung 		if (ret_val) {
    688  1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    689  1.1    dyoung 			return ret_val;
    690  1.1    dyoung 		}
    691  1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    692  1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    693  1.1    dyoung 	}
    694  1.1    dyoung 	pba_num[offset * 2] = '\0';
    695  1.1    dyoung 
    696  1.1    dyoung 	return IXGBE_SUCCESS;
    697  1.1    dyoung }
    698  1.1    dyoung 
    699  1.1    dyoung /**
    700  1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    701  1.1    dyoung  *  @hw: pointer to hardware structure
    702  1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    703  1.1    dyoung  *
    704  1.1    dyoung  *  Reads the part number from the EEPROM.
    705  1.1    dyoung  **/
    706  1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    707  1.1    dyoung {
    708  1.1    dyoung 	s32 ret_val;
    709  1.1    dyoung 	u16 data;
    710  1.1    dyoung 
    711  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    712  1.1    dyoung 
    713  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    714  1.1    dyoung 	if (ret_val) {
    715  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    716  1.1    dyoung 		return ret_val;
    717  1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    718  1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    719  1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    720  1.1    dyoung 	}
    721  1.1    dyoung 	*pba_num = (u32)(data << 16);
    722  1.1    dyoung 
    723  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    724  1.1    dyoung 	if (ret_val) {
    725  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    726  1.1    dyoung 		return ret_val;
    727  1.1    dyoung 	}
    728  1.1    dyoung 	*pba_num |= data;
    729  1.1    dyoung 
    730  1.1    dyoung 	return IXGBE_SUCCESS;
    731  1.1    dyoung }
    732  1.1    dyoung 
    733  1.1    dyoung /**
    734  1.5   msaitoh  *  ixgbe_read_pba_raw
    735  1.5   msaitoh  *  @hw: pointer to the HW structure
    736  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    737  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    738  1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    739  1.5   msaitoh  *  @pba: pointer to output PBA structure
    740  1.5   msaitoh  *
    741  1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    742  1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    743  1.5   msaitoh  *
    744  1.5   msaitoh  **/
    745  1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    746  1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    747  1.5   msaitoh 		       struct ixgbe_pba *pba)
    748  1.5   msaitoh {
    749  1.5   msaitoh 	s32 ret_val;
    750  1.5   msaitoh 	u16 pba_block_size;
    751  1.5   msaitoh 
    752  1.5   msaitoh 	if (pba == NULL)
    753  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    754  1.5   msaitoh 
    755  1.5   msaitoh 	if (eeprom_buf == NULL) {
    756  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    757  1.5   msaitoh 						     &pba->word[0]);
    758  1.5   msaitoh 		if (ret_val)
    759  1.5   msaitoh 			return ret_val;
    760  1.5   msaitoh 	} else {
    761  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    762  1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    763  1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    764  1.5   msaitoh 		} else {
    765  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    766  1.5   msaitoh 		}
    767  1.5   msaitoh 	}
    768  1.5   msaitoh 
    769  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    770  1.5   msaitoh 		if (pba->pba_block == NULL)
    771  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    772  1.5   msaitoh 
    773  1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    774  1.5   msaitoh 						   eeprom_buf_size,
    775  1.5   msaitoh 						   &pba_block_size);
    776  1.5   msaitoh 		if (ret_val)
    777  1.5   msaitoh 			return ret_val;
    778  1.5   msaitoh 
    779  1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    780  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    781  1.5   msaitoh 
    782  1.5   msaitoh 		if (eeprom_buf == NULL) {
    783  1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    784  1.5   msaitoh 							     pba_block_size,
    785  1.5   msaitoh 							     pba->pba_block);
    786  1.5   msaitoh 			if (ret_val)
    787  1.5   msaitoh 				return ret_val;
    788  1.5   msaitoh 		} else {
    789  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    790  1.8   msaitoh 					      pba_block_size)) {
    791  1.5   msaitoh 				memcpy(pba->pba_block,
    792  1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    793  1.5   msaitoh 				       pba_block_size * sizeof(u16));
    794  1.5   msaitoh 			} else {
    795  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    796  1.5   msaitoh 			}
    797  1.5   msaitoh 		}
    798  1.5   msaitoh 	}
    799  1.5   msaitoh 
    800  1.5   msaitoh 	return IXGBE_SUCCESS;
    801  1.5   msaitoh }
    802  1.5   msaitoh 
    803  1.5   msaitoh /**
    804  1.5   msaitoh  *  ixgbe_write_pba_raw
    805  1.5   msaitoh  *  @hw: pointer to the HW structure
    806  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    807  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    808  1.5   msaitoh  *  @pba: pointer to PBA structure
    809  1.5   msaitoh  *
    810  1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    811  1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    812  1.5   msaitoh  *
    813  1.5   msaitoh  **/
    814  1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    815  1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    816  1.5   msaitoh {
    817  1.5   msaitoh 	s32 ret_val;
    818  1.5   msaitoh 
    819  1.5   msaitoh 	if (pba == NULL)
    820  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    821  1.5   msaitoh 
    822  1.5   msaitoh 	if (eeprom_buf == NULL) {
    823  1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    824  1.5   msaitoh 						      &pba->word[0]);
    825  1.5   msaitoh 		if (ret_val)
    826  1.5   msaitoh 			return ret_val;
    827  1.5   msaitoh 	} else {
    828  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    829  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    830  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    831  1.5   msaitoh 		} else {
    832  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    833  1.5   msaitoh 		}
    834  1.5   msaitoh 	}
    835  1.5   msaitoh 
    836  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    837  1.5   msaitoh 		if (pba->pba_block == NULL)
    838  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    839  1.5   msaitoh 
    840  1.5   msaitoh 		if (eeprom_buf == NULL) {
    841  1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    842  1.5   msaitoh 							      pba->pba_block[0],
    843  1.5   msaitoh 							      pba->pba_block);
    844  1.5   msaitoh 			if (ret_val)
    845  1.5   msaitoh 				return ret_val;
    846  1.5   msaitoh 		} else {
    847  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    848  1.5   msaitoh 					      pba->pba_block[0])) {
    849  1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    850  1.5   msaitoh 				       pba->pba_block,
    851  1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    852  1.5   msaitoh 			} else {
    853  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    854  1.5   msaitoh 			}
    855  1.5   msaitoh 		}
    856  1.5   msaitoh 	}
    857  1.5   msaitoh 
    858  1.5   msaitoh 	return IXGBE_SUCCESS;
    859  1.5   msaitoh }
    860  1.5   msaitoh 
    861  1.5   msaitoh /**
    862  1.5   msaitoh  *  ixgbe_get_pba_block_size
    863  1.5   msaitoh  *  @hw: pointer to the HW structure
    864  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    865  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    866  1.5   msaitoh  *  @pba_data_size: pointer to output variable
    867  1.5   msaitoh  *
    868  1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    869  1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    870  1.5   msaitoh  *  EEPROM device.
    871  1.5   msaitoh  *
    872  1.5   msaitoh  **/
    873  1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    874  1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    875  1.5   msaitoh {
    876  1.5   msaitoh 	s32 ret_val;
    877  1.5   msaitoh 	u16 pba_word[2];
    878  1.5   msaitoh 	u16 length;
    879  1.5   msaitoh 
    880  1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    881  1.5   msaitoh 
    882  1.5   msaitoh 	if (eeprom_buf == NULL) {
    883  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    884  1.5   msaitoh 						     &pba_word[0]);
    885  1.5   msaitoh 		if (ret_val)
    886  1.5   msaitoh 			return ret_val;
    887  1.5   msaitoh 	} else {
    888  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    889  1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    890  1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    891  1.5   msaitoh 		} else {
    892  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    893  1.5   msaitoh 		}
    894  1.5   msaitoh 	}
    895  1.5   msaitoh 
    896  1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    897  1.5   msaitoh 		if (eeprom_buf == NULL) {
    898  1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    899  1.5   msaitoh 						      &length);
    900  1.5   msaitoh 			if (ret_val)
    901  1.5   msaitoh 				return ret_val;
    902  1.5   msaitoh 		} else {
    903  1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    904  1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    905  1.5   msaitoh 			else
    906  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    907  1.5   msaitoh 		}
    908  1.5   msaitoh 
    909  1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    910  1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    911  1.5   msaitoh 	} else {
    912  1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    913  1.5   msaitoh 		length = 0;
    914  1.5   msaitoh 	}
    915  1.5   msaitoh 
    916  1.5   msaitoh 	if (pba_block_size != NULL)
    917  1.5   msaitoh 		*pba_block_size = length;
    918  1.5   msaitoh 
    919  1.5   msaitoh 	return IXGBE_SUCCESS;
    920  1.5   msaitoh }
    921  1.5   msaitoh 
    922  1.5   msaitoh /**
    923  1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    924  1.1    dyoung  *  @hw: pointer to hardware structure
    925  1.1    dyoung  *  @mac_addr: Adapter MAC address
    926  1.1    dyoung  *
    927  1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    928  1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    929  1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    930  1.1    dyoung  **/
    931  1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    932  1.1    dyoung {
    933  1.1    dyoung 	u32 rar_high;
    934  1.1    dyoung 	u32 rar_low;
    935  1.1    dyoung 	u16 i;
    936  1.1    dyoung 
    937  1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    938  1.1    dyoung 
    939  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    940  1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    941  1.1    dyoung 
    942  1.1    dyoung 	for (i = 0; i < 4; i++)
    943  1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    944  1.1    dyoung 
    945  1.1    dyoung 	for (i = 0; i < 2; i++)
    946  1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    947  1.1    dyoung 
    948  1.1    dyoung 	return IXGBE_SUCCESS;
    949  1.1    dyoung }
    950  1.1    dyoung 
    951  1.1    dyoung /**
    952  1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    953  1.1    dyoung  *  @hw: pointer to hardware structure
    954  1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
    955  1.1    dyoung  *
    956  1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    957  1.1    dyoung  **/
    958  1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    959  1.1    dyoung {
    960  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    961  1.1    dyoung 
    962  1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
    963  1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
    964  1.1    dyoung 
    965  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    966  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    967  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    968  1.1    dyoung 		break;
    969  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    970  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    971  1.1    dyoung 		break;
    972  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    973  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    974  1.1    dyoung 		break;
    975  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    976  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    977  1.1    dyoung 		break;
    978  1.1    dyoung 	default:
    979  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    980  1.1    dyoung 		break;
    981  1.1    dyoung 	}
    982  1.1    dyoung 
    983  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    984  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    985  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    986  1.1    dyoung 		break;
    987  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    988  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    989  1.1    dyoung 		break;
    990  1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    991  1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    992  1.4   msaitoh 		break;
    993  1.1    dyoung 	default:
    994  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    995  1.1    dyoung 		break;
    996  1.1    dyoung 	}
    997  1.1    dyoung 
    998  1.1    dyoung 	mac->ops.set_lan_id(hw);
    999  1.6   msaitoh }
   1000  1.6   msaitoh 
   1001  1.6   msaitoh /**
   1002  1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1003  1.6   msaitoh  *  @hw: pointer to hardware structure
   1004  1.6   msaitoh  *
   1005  1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1006  1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1007  1.6   msaitoh  **/
   1008  1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1009  1.6   msaitoh {
   1010  1.6   msaitoh 	u16 link_status;
   1011  1.6   msaitoh 
   1012  1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1013  1.6   msaitoh 
   1014  1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1015  1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1016  1.6   msaitoh 
   1017  1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1018  1.1    dyoung 
   1019  1.1    dyoung 	return IXGBE_SUCCESS;
   1020  1.1    dyoung }
   1021  1.1    dyoung 
   1022  1.1    dyoung /**
   1023  1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1024  1.1    dyoung  *  @hw: pointer to the HW structure
   1025  1.1    dyoung  *
   1026  1.1    dyoung  *  Determines the LAN function id by reading memory-mapped registers
   1027  1.1    dyoung  *  and swaps the port value if requested.
   1028  1.1    dyoung  **/
   1029  1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1030  1.1    dyoung {
   1031  1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1032  1.1    dyoung 	u32 reg;
   1033  1.1    dyoung 
   1034  1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1035  1.1    dyoung 
   1036  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1037  1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1038  1.1    dyoung 	bus->lan_id = bus->func;
   1039  1.1    dyoung 
   1040  1.1    dyoung 	/* check for a port swap */
   1041  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   1042  1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1043  1.1    dyoung 		bus->func ^= 0x1;
   1044  1.1    dyoung }
   1045  1.1    dyoung 
   1046  1.1    dyoung /**
   1047  1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1048  1.1    dyoung  *  @hw: pointer to hardware structure
   1049  1.1    dyoung  *
   1050  1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1051  1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1052  1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1053  1.1    dyoung  *  state and should not touch the hardware.
   1054  1.1    dyoung  **/
   1055  1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1056  1.1    dyoung {
   1057  1.1    dyoung 	u32 reg_val;
   1058  1.1    dyoung 	u16 i;
   1059  1.1    dyoung 
   1060  1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1061  1.1    dyoung 
   1062  1.1    dyoung 	/*
   1063  1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1064  1.1    dyoung 	 * the hardware
   1065  1.1    dyoung 	 */
   1066  1.1    dyoung 	hw->adapter_stopped = TRUE;
   1067  1.1    dyoung 
   1068  1.1    dyoung 	/* Disable the receive unit */
   1069  1.8   msaitoh 	ixgbe_disable_rx(hw);
   1070  1.1    dyoung 
   1071  1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1072  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1073  1.1    dyoung 
   1074  1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1075  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1076  1.1    dyoung 
   1077  1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1078  1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1079  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1080  1.3   msaitoh 
   1081  1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1082  1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1083  1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1084  1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1085  1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1086  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1087  1.1    dyoung 	}
   1088  1.1    dyoung 
   1089  1.3   msaitoh 	/* flush all queues disables */
   1090  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1091  1.3   msaitoh 	msec_delay(2);
   1092  1.3   msaitoh 
   1093  1.1    dyoung 	/*
   1094  1.1    dyoung 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
   1095  1.1    dyoung 	 * access and verify no pending requests
   1096  1.1    dyoung 	 */
   1097  1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1098  1.1    dyoung }
   1099  1.1    dyoung 
   1100  1.1    dyoung /**
   1101  1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1102  1.1    dyoung  *  @hw: pointer to hardware structure
   1103  1.1    dyoung  *  @index: led number to turn on
   1104  1.1    dyoung  **/
   1105  1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1106  1.1    dyoung {
   1107  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1108  1.1    dyoung 
   1109  1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1110  1.1    dyoung 
   1111  1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1112  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1113  1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1114  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1115  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1116  1.1    dyoung 
   1117  1.1    dyoung 	return IXGBE_SUCCESS;
   1118  1.1    dyoung }
   1119  1.1    dyoung 
   1120  1.1    dyoung /**
   1121  1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1122  1.1    dyoung  *  @hw: pointer to hardware structure
   1123  1.1    dyoung  *  @index: led number to turn off
   1124  1.1    dyoung  **/
   1125  1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1126  1.1    dyoung {
   1127  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1128  1.1    dyoung 
   1129  1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1130  1.1    dyoung 
   1131  1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1132  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1133  1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1134  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1135  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1136  1.1    dyoung 
   1137  1.1    dyoung 	return IXGBE_SUCCESS;
   1138  1.1    dyoung }
   1139  1.1    dyoung 
   1140  1.1    dyoung /**
   1141  1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1142  1.1    dyoung  *  @hw: pointer to hardware structure
   1143  1.1    dyoung  *
   1144  1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1145  1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1146  1.1    dyoung  **/
   1147  1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1148  1.1    dyoung {
   1149  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1150  1.1    dyoung 	u32 eec;
   1151  1.1    dyoung 	u16 eeprom_size;
   1152  1.1    dyoung 
   1153  1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1154  1.1    dyoung 
   1155  1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1156  1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1157  1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1158  1.1    dyoung 		 * tested value */
   1159  1.1    dyoung 		eeprom->semaphore_delay = 10;
   1160  1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1161  1.3   msaitoh 		eeprom->word_page_size = 0;
   1162  1.1    dyoung 
   1163  1.1    dyoung 		/*
   1164  1.1    dyoung 		 * Check for EEPROM present first.
   1165  1.1    dyoung 		 * If not present leave as none
   1166  1.1    dyoung 		 */
   1167  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1168  1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1169  1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1170  1.1    dyoung 
   1171  1.1    dyoung 			/*
   1172  1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1173  1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1174  1.1    dyoung 			 */
   1175  1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1176  1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1177  1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1178  1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1179  1.1    dyoung 		}
   1180  1.1    dyoung 
   1181  1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1182  1.1    dyoung 			eeprom->address_bits = 16;
   1183  1.1    dyoung 		else
   1184  1.1    dyoung 			eeprom->address_bits = 8;
   1185  1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1186  1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1187  1.3   msaitoh 			  eeprom->address_bits);
   1188  1.1    dyoung 	}
   1189  1.1    dyoung 
   1190  1.1    dyoung 	return IXGBE_SUCCESS;
   1191  1.1    dyoung }
   1192  1.1    dyoung 
   1193  1.1    dyoung /**
   1194  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1195  1.3   msaitoh  *  @hw: pointer to hardware structure
   1196  1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1197  1.3   msaitoh  *  @words: number of word(s)
   1198  1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1199  1.3   msaitoh  *
   1200  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1201  1.3   msaitoh  **/
   1202  1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1203  1.3   msaitoh 					       u16 words, u16 *data)
   1204  1.3   msaitoh {
   1205  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1206  1.3   msaitoh 	u16 i, count;
   1207  1.3   msaitoh 
   1208  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1209  1.3   msaitoh 
   1210  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1211  1.3   msaitoh 
   1212  1.3   msaitoh 	if (words == 0) {
   1213  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1214  1.3   msaitoh 		goto out;
   1215  1.3   msaitoh 	}
   1216  1.3   msaitoh 
   1217  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1218  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1219  1.3   msaitoh 		goto out;
   1220  1.3   msaitoh 	}
   1221  1.3   msaitoh 
   1222  1.3   msaitoh 	/*
   1223  1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1224  1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1225  1.3   msaitoh 	 */
   1226  1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1227  1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1228  1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1229  1.3   msaitoh 
   1230  1.3   msaitoh 	/*
   1231  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1232  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1233  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1234  1.3   msaitoh 	 */
   1235  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1236  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1237  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1238  1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1239  1.3   msaitoh 							    count, &data[i]);
   1240  1.3   msaitoh 
   1241  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1242  1.3   msaitoh 			break;
   1243  1.3   msaitoh 	}
   1244  1.3   msaitoh 
   1245  1.3   msaitoh out:
   1246  1.3   msaitoh 	return status;
   1247  1.3   msaitoh }
   1248  1.3   msaitoh 
   1249  1.3   msaitoh /**
   1250  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1251  1.3   msaitoh  *  @hw: pointer to hardware structure
   1252  1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1253  1.3   msaitoh  *  @words: number of word(s)
   1254  1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1255  1.3   msaitoh  *
   1256  1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1257  1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1258  1.3   msaitoh  **/
   1259  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1260  1.3   msaitoh 					      u16 words, u16 *data)
   1261  1.3   msaitoh {
   1262  1.3   msaitoh 	s32 status;
   1263  1.3   msaitoh 	u16 word;
   1264  1.3   msaitoh 	u16 page_size;
   1265  1.3   msaitoh 	u16 i;
   1266  1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1267  1.3   msaitoh 
   1268  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1269  1.3   msaitoh 
   1270  1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1271  1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1272  1.3   msaitoh 
   1273  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1274  1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1275  1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1276  1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1277  1.3   msaitoh 		}
   1278  1.3   msaitoh 	}
   1279  1.3   msaitoh 
   1280  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1281  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1282  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1283  1.3   msaitoh 
   1284  1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1285  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1286  1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1287  1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1288  1.3   msaitoh 
   1289  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1290  1.3   msaitoh 
   1291  1.3   msaitoh 			/*
   1292  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1293  1.3   msaitoh 			 * in the opcode
   1294  1.3   msaitoh 			 */
   1295  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1296  1.3   msaitoh 			    ((offset + i) >= 128))
   1297  1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1298  1.3   msaitoh 
   1299  1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1300  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1301  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1302  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1303  1.3   msaitoh 						    hw->eeprom.address_bits);
   1304  1.3   msaitoh 
   1305  1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1306  1.3   msaitoh 
   1307  1.3   msaitoh 			/* Send the data in burst via SPI*/
   1308  1.3   msaitoh 			do {
   1309  1.3   msaitoh 				word = data[i];
   1310  1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1311  1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1312  1.3   msaitoh 
   1313  1.3   msaitoh 				if (page_size == 0)
   1314  1.3   msaitoh 					break;
   1315  1.3   msaitoh 
   1316  1.3   msaitoh 				/* do not wrap around page */
   1317  1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1318  1.3   msaitoh 				    (page_size - 1))
   1319  1.3   msaitoh 					break;
   1320  1.3   msaitoh 			} while (++i < words);
   1321  1.3   msaitoh 
   1322  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1323  1.3   msaitoh 			msec_delay(10);
   1324  1.3   msaitoh 		}
   1325  1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1326  1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1327  1.3   msaitoh 	}
   1328  1.3   msaitoh 
   1329  1.3   msaitoh 	return status;
   1330  1.3   msaitoh }
   1331  1.3   msaitoh 
   1332  1.3   msaitoh /**
   1333  1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1334  1.1    dyoung  *  @hw: pointer to hardware structure
   1335  1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1336  1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1337  1.1    dyoung  *
   1338  1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1339  1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1340  1.1    dyoung  **/
   1341  1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1342  1.1    dyoung {
   1343  1.1    dyoung 	s32 status;
   1344  1.1    dyoung 
   1345  1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1346  1.1    dyoung 
   1347  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1348  1.1    dyoung 
   1349  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1350  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1351  1.1    dyoung 		goto out;
   1352  1.1    dyoung 	}
   1353  1.1    dyoung 
   1354  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1355  1.3   msaitoh 
   1356  1.3   msaitoh out:
   1357  1.3   msaitoh 	return status;
   1358  1.3   msaitoh }
   1359  1.3   msaitoh 
   1360  1.3   msaitoh /**
   1361  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1362  1.3   msaitoh  *  @hw: pointer to hardware structure
   1363  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1364  1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1365  1.3   msaitoh  *  @words: number of word(s)
   1366  1.3   msaitoh  *
   1367  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1368  1.3   msaitoh  **/
   1369  1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1370  1.3   msaitoh 					      u16 words, u16 *data)
   1371  1.3   msaitoh {
   1372  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1373  1.3   msaitoh 	u16 i, count;
   1374  1.3   msaitoh 
   1375  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1376  1.3   msaitoh 
   1377  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1378  1.3   msaitoh 
   1379  1.3   msaitoh 	if (words == 0) {
   1380  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1381  1.3   msaitoh 		goto out;
   1382  1.3   msaitoh 	}
   1383  1.3   msaitoh 
   1384  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1385  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1386  1.3   msaitoh 		goto out;
   1387  1.3   msaitoh 	}
   1388  1.3   msaitoh 
   1389  1.3   msaitoh 	/*
   1390  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1391  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1392  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1393  1.3   msaitoh 	 */
   1394  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1395  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1396  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1397  1.3   msaitoh 
   1398  1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1399  1.3   msaitoh 							   count, &data[i]);
   1400  1.3   msaitoh 
   1401  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1402  1.3   msaitoh 			break;
   1403  1.3   msaitoh 	}
   1404  1.3   msaitoh 
   1405  1.3   msaitoh out:
   1406  1.3   msaitoh 	return status;
   1407  1.3   msaitoh }
   1408  1.3   msaitoh 
   1409  1.3   msaitoh /**
   1410  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1411  1.3   msaitoh  *  @hw: pointer to hardware structure
   1412  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1413  1.3   msaitoh  *  @words: number of word(s)
   1414  1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1415  1.3   msaitoh  *
   1416  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1417  1.3   msaitoh  **/
   1418  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1419  1.3   msaitoh 					     u16 words, u16 *data)
   1420  1.3   msaitoh {
   1421  1.3   msaitoh 	s32 status;
   1422  1.3   msaitoh 	u16 word_in;
   1423  1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1424  1.3   msaitoh 	u16 i;
   1425  1.3   msaitoh 
   1426  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1427  1.3   msaitoh 
   1428  1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1429  1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1430  1.1    dyoung 
   1431  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1432  1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1433  1.1    dyoung 			ixgbe_release_eeprom(hw);
   1434  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1435  1.1    dyoung 		}
   1436  1.1    dyoung 	}
   1437  1.1    dyoung 
   1438  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1439  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1440  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1441  1.3   msaitoh 			/*
   1442  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1443  1.3   msaitoh 			 * in the opcode
   1444  1.3   msaitoh 			 */
   1445  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1446  1.3   msaitoh 			    ((offset + i) >= 128))
   1447  1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1448  1.3   msaitoh 
   1449  1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1450  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1451  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1452  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1453  1.3   msaitoh 						    hw->eeprom.address_bits);
   1454  1.3   msaitoh 
   1455  1.3   msaitoh 			/* Read the data. */
   1456  1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1457  1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1458  1.3   msaitoh 		}
   1459  1.1    dyoung 
   1460  1.3   msaitoh 		/* End this read operation */
   1461  1.1    dyoung 		ixgbe_release_eeprom(hw);
   1462  1.1    dyoung 	}
   1463  1.1    dyoung 
   1464  1.1    dyoung 	return status;
   1465  1.1    dyoung }
   1466  1.1    dyoung 
   1467  1.1    dyoung /**
   1468  1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1469  1.1    dyoung  *  @hw: pointer to hardware structure
   1470  1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1471  1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1472  1.1    dyoung  *
   1473  1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1474  1.1    dyoung  **/
   1475  1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1476  1.3   msaitoh 				       u16 *data)
   1477  1.1    dyoung {
   1478  1.1    dyoung 	s32 status;
   1479  1.1    dyoung 
   1480  1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1481  1.1    dyoung 
   1482  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1483  1.1    dyoung 
   1484  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1485  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1486  1.1    dyoung 		goto out;
   1487  1.1    dyoung 	}
   1488  1.1    dyoung 
   1489  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1490  1.3   msaitoh 
   1491  1.3   msaitoh out:
   1492  1.3   msaitoh 	return status;
   1493  1.3   msaitoh }
   1494  1.3   msaitoh 
   1495  1.3   msaitoh /**
   1496  1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1497  1.3   msaitoh  *  @hw: pointer to hardware structure
   1498  1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1499  1.3   msaitoh  *  @words: number of word(s)
   1500  1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1501  1.3   msaitoh  *
   1502  1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1503  1.3   msaitoh  **/
   1504  1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1505  1.3   msaitoh 				   u16 words, u16 *data)
   1506  1.3   msaitoh {
   1507  1.3   msaitoh 	u32 eerd;
   1508  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1509  1.3   msaitoh 	u32 i;
   1510  1.3   msaitoh 
   1511  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1512  1.3   msaitoh 
   1513  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1514  1.3   msaitoh 
   1515  1.3   msaitoh 	if (words == 0) {
   1516  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1517  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1518  1.3   msaitoh 		goto out;
   1519  1.3   msaitoh 	}
   1520  1.3   msaitoh 
   1521  1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1522  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1523  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1524  1.3   msaitoh 		goto out;
   1525  1.3   msaitoh 	}
   1526  1.3   msaitoh 
   1527  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1528  1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1529  1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1530  1.3   msaitoh 
   1531  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1532  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1533  1.1    dyoung 
   1534  1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1535  1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1536  1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1537  1.3   msaitoh 		} else {
   1538  1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1539  1.3   msaitoh 			goto out;
   1540  1.1    dyoung 		}
   1541  1.1    dyoung 	}
   1542  1.3   msaitoh out:
   1543  1.3   msaitoh 	return status;
   1544  1.3   msaitoh }
   1545  1.1    dyoung 
   1546  1.3   msaitoh /**
   1547  1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1548  1.3   msaitoh  *  @hw: pointer to hardware structure
   1549  1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1550  1.3   msaitoh  *
   1551  1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1552  1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1553  1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1554  1.3   msaitoh  **/
   1555  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1556  1.3   msaitoh 						 u16 offset)
   1557  1.3   msaitoh {
   1558  1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1559  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1560  1.3   msaitoh 	u16 i;
   1561  1.3   msaitoh 
   1562  1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1563  1.3   msaitoh 
   1564  1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1565  1.3   msaitoh 		data[i] = i;
   1566  1.1    dyoung 
   1567  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1568  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1569  1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1570  1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1571  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1572  1.3   msaitoh 		goto out;
   1573  1.1    dyoung 
   1574  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1575  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1576  1.3   msaitoh 		goto out;
   1577  1.1    dyoung 
   1578  1.3   msaitoh 	/*
   1579  1.3   msaitoh 	 * When writing in burst more than the actual page size
   1580  1.3   msaitoh 	 * EEPROM address wraps around current page.
   1581  1.3   msaitoh 	 */
   1582  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1583  1.1    dyoung 
   1584  1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1585  1.3   msaitoh 		  hw->eeprom.word_page_size);
   1586  1.1    dyoung out:
   1587  1.1    dyoung 	return status;
   1588  1.1    dyoung }
   1589  1.1    dyoung 
   1590  1.1    dyoung /**
   1591  1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1592  1.1    dyoung  *  @hw: pointer to hardware structure
   1593  1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1594  1.1    dyoung  *  @data: word read from the EEPROM
   1595  1.1    dyoung  *
   1596  1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1597  1.1    dyoung  **/
   1598  1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1599  1.1    dyoung {
   1600  1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1601  1.3   msaitoh }
   1602  1.3   msaitoh 
   1603  1.3   msaitoh /**
   1604  1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1605  1.3   msaitoh  *  @hw: pointer to hardware structure
   1606  1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1607  1.3   msaitoh  *  @words: number of word(s)
   1608  1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1609  1.3   msaitoh  *
   1610  1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1611  1.3   msaitoh  **/
   1612  1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1613  1.3   msaitoh 				    u16 words, u16 *data)
   1614  1.3   msaitoh {
   1615  1.3   msaitoh 	u32 eewr;
   1616  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1617  1.3   msaitoh 	u16 i;
   1618  1.1    dyoung 
   1619  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1620  1.1    dyoung 
   1621  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1622  1.1    dyoung 
   1623  1.3   msaitoh 	if (words == 0) {
   1624  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1625  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1626  1.3   msaitoh 		goto out;
   1627  1.3   msaitoh 	}
   1628  1.3   msaitoh 
   1629  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1630  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1631  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1632  1.1    dyoung 		goto out;
   1633  1.1    dyoung 	}
   1634  1.1    dyoung 
   1635  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1636  1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1637  1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1638  1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1639  1.3   msaitoh 
   1640  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1641  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1642  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1643  1.3   msaitoh 			goto out;
   1644  1.3   msaitoh 		}
   1645  1.1    dyoung 
   1646  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1647  1.1    dyoung 
   1648  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1649  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1650  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1651  1.3   msaitoh 			goto out;
   1652  1.3   msaitoh 		}
   1653  1.3   msaitoh 	}
   1654  1.1    dyoung 
   1655  1.1    dyoung out:
   1656  1.1    dyoung 	return status;
   1657  1.1    dyoung }
   1658  1.1    dyoung 
   1659  1.1    dyoung /**
   1660  1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1661  1.1    dyoung  *  @hw: pointer to hardware structure
   1662  1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1663  1.1    dyoung  *  @data: word write to the EEPROM
   1664  1.1    dyoung  *
   1665  1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1666  1.1    dyoung  **/
   1667  1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1668  1.1    dyoung {
   1669  1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1670  1.1    dyoung }
   1671  1.1    dyoung 
   1672  1.1    dyoung /**
   1673  1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1674  1.1    dyoung  *  @hw: pointer to hardware structure
   1675  1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1676  1.1    dyoung  *
   1677  1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1678  1.1    dyoung  *  read or write is done respectively.
   1679  1.1    dyoung  **/
   1680  1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1681  1.1    dyoung {
   1682  1.1    dyoung 	u32 i;
   1683  1.1    dyoung 	u32 reg;
   1684  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1685  1.1    dyoung 
   1686  1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1687  1.1    dyoung 
   1688  1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1689  1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1690  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1691  1.1    dyoung 		else
   1692  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1693  1.1    dyoung 
   1694  1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1695  1.1    dyoung 			status = IXGBE_SUCCESS;
   1696  1.1    dyoung 			break;
   1697  1.1    dyoung 		}
   1698  1.1    dyoung 		usec_delay(5);
   1699  1.1    dyoung 	}
   1700  1.6   msaitoh 
   1701  1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1702  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1703  1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1704  1.6   msaitoh 
   1705  1.1    dyoung 	return status;
   1706  1.1    dyoung }
   1707  1.1    dyoung 
   1708  1.1    dyoung /**
   1709  1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1710  1.1    dyoung  *  @hw: pointer to hardware structure
   1711  1.1    dyoung  *
   1712  1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1713  1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1714  1.1    dyoung  **/
   1715  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1716  1.1    dyoung {
   1717  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1718  1.1    dyoung 	u32 eec;
   1719  1.1    dyoung 	u32 i;
   1720  1.1    dyoung 
   1721  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1722  1.1    dyoung 
   1723  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1724  1.3   msaitoh 	    != IXGBE_SUCCESS)
   1725  1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1726  1.1    dyoung 
   1727  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1728  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1729  1.1    dyoung 
   1730  1.1    dyoung 		/* Request EEPROM Access */
   1731  1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1732  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1733  1.1    dyoung 
   1734  1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1735  1.1    dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1736  1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1737  1.1    dyoung 				break;
   1738  1.1    dyoung 			usec_delay(5);
   1739  1.1    dyoung 		}
   1740  1.1    dyoung 
   1741  1.1    dyoung 		/* Release if grant not acquired */
   1742  1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1743  1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1744  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1745  1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1746  1.1    dyoung 
   1747  1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1748  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1749  1.1    dyoung 		}
   1750  1.1    dyoung 
   1751  1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1752  1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1753  1.1    dyoung 			/* Clear CS and SK */
   1754  1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1755  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1756  1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1757  1.1    dyoung 			usec_delay(1);
   1758  1.1    dyoung 		}
   1759  1.1    dyoung 	}
   1760  1.1    dyoung 	return status;
   1761  1.1    dyoung }
   1762  1.1    dyoung 
   1763  1.1    dyoung /**
   1764  1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1765  1.1    dyoung  *  @hw: pointer to hardware structure
   1766  1.1    dyoung  *
   1767  1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1768  1.1    dyoung  **/
   1769  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1770  1.1    dyoung {
   1771  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1772  1.1    dyoung 	u32 timeout = 2000;
   1773  1.1    dyoung 	u32 i;
   1774  1.1    dyoung 	u32 swsm;
   1775  1.1    dyoung 
   1776  1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1777  1.1    dyoung 
   1778  1.1    dyoung 
   1779  1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1780  1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1781  1.1    dyoung 		/*
   1782  1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1783  1.1    dyoung 		 * set and we have the semaphore
   1784  1.1    dyoung 		 */
   1785  1.1    dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1786  1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1787  1.1    dyoung 			status = IXGBE_SUCCESS;
   1788  1.1    dyoung 			break;
   1789  1.1    dyoung 		}
   1790  1.1    dyoung 		usec_delay(50);
   1791  1.1    dyoung 	}
   1792  1.1    dyoung 
   1793  1.3   msaitoh 	if (i == timeout) {
   1794  1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1795  1.3   msaitoh 			 "not granted.\n");
   1796  1.3   msaitoh 		/*
   1797  1.3   msaitoh 		 * this release is particularly important because our attempts
   1798  1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1799  1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1800  1.3   msaitoh 		 * bits to free the driver to make progress
   1801  1.3   msaitoh 		 */
   1802  1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1803  1.3   msaitoh 
   1804  1.3   msaitoh 		usec_delay(50);
   1805  1.3   msaitoh 		/*
   1806  1.3   msaitoh 		 * one last try
   1807  1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1808  1.3   msaitoh 		 * set and we have the semaphore
   1809  1.3   msaitoh 		 */
   1810  1.3   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1811  1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1812  1.3   msaitoh 			status = IXGBE_SUCCESS;
   1813  1.3   msaitoh 	}
   1814  1.3   msaitoh 
   1815  1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1816  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1817  1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1818  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1819  1.1    dyoung 
   1820  1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1821  1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1822  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1823  1.1    dyoung 
   1824  1.1    dyoung 			/*
   1825  1.1    dyoung 			 * If we set the bit successfully then we got the
   1826  1.1    dyoung 			 * semaphore.
   1827  1.1    dyoung 			 */
   1828  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1829  1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1830  1.1    dyoung 				break;
   1831  1.1    dyoung 
   1832  1.1    dyoung 			usec_delay(50);
   1833  1.1    dyoung 		}
   1834  1.1    dyoung 
   1835  1.1    dyoung 		/*
   1836  1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1837  1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1838  1.1    dyoung 		 */
   1839  1.1    dyoung 		if (i >= timeout) {
   1840  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1841  1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1842  1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1843  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1844  1.1    dyoung 		}
   1845  1.1    dyoung 	} else {
   1846  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1847  1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1848  1.6   msaitoh 			     "not granted.\n");
   1849  1.1    dyoung 	}
   1850  1.1    dyoung 
   1851  1.1    dyoung 	return status;
   1852  1.1    dyoung }
   1853  1.1    dyoung 
   1854  1.1    dyoung /**
   1855  1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1856  1.1    dyoung  *  @hw: pointer to hardware structure
   1857  1.1    dyoung  *
   1858  1.1    dyoung  *  This function clears hardware semaphore bits.
   1859  1.1    dyoung  **/
   1860  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1861  1.1    dyoung {
   1862  1.1    dyoung 	u32 swsm;
   1863  1.1    dyoung 
   1864  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1865  1.1    dyoung 
   1866  1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1867  1.1    dyoung 
   1868  1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1869  1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1870  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1871  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1872  1.1    dyoung }
   1873  1.1    dyoung 
   1874  1.1    dyoung /**
   1875  1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1876  1.1    dyoung  *  @hw: pointer to hardware structure
   1877  1.1    dyoung  **/
   1878  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1879  1.1    dyoung {
   1880  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1881  1.1    dyoung 	u16 i;
   1882  1.1    dyoung 	u8 spi_stat_reg;
   1883  1.1    dyoung 
   1884  1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1885  1.1    dyoung 
   1886  1.1    dyoung 	/*
   1887  1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1888  1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1889  1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1890  1.1    dyoung 	 * 5 milliseconds, then error out.
   1891  1.1    dyoung 	 */
   1892  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1893  1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1894  1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1895  1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1896  1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1897  1.1    dyoung 			break;
   1898  1.1    dyoung 
   1899  1.1    dyoung 		usec_delay(5);
   1900  1.1    dyoung 		ixgbe_standby_eeprom(hw);
   1901  1.1    dyoung 	};
   1902  1.1    dyoung 
   1903  1.1    dyoung 	/*
   1904  1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1905  1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1906  1.1    dyoung 	 */
   1907  1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1908  1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1909  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1910  1.1    dyoung 	}
   1911  1.1    dyoung 
   1912  1.1    dyoung 	return status;
   1913  1.1    dyoung }
   1914  1.1    dyoung 
   1915  1.1    dyoung /**
   1916  1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1917  1.1    dyoung  *  @hw: pointer to hardware structure
   1918  1.1    dyoung  **/
   1919  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1920  1.1    dyoung {
   1921  1.1    dyoung 	u32 eec;
   1922  1.1    dyoung 
   1923  1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1924  1.1    dyoung 
   1925  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1926  1.1    dyoung 
   1927  1.1    dyoung 	/* Toggle CS to flush commands */
   1928  1.1    dyoung 	eec |= IXGBE_EEC_CS;
   1929  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1930  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1931  1.1    dyoung 	usec_delay(1);
   1932  1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   1933  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1934  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1935  1.1    dyoung 	usec_delay(1);
   1936  1.1    dyoung }
   1937  1.1    dyoung 
   1938  1.1    dyoung /**
   1939  1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1940  1.1    dyoung  *  @hw: pointer to hardware structure
   1941  1.1    dyoung  *  @data: data to send to the EEPROM
   1942  1.1    dyoung  *  @count: number of bits to shift out
   1943  1.1    dyoung  **/
   1944  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1945  1.3   msaitoh 					u16 count)
   1946  1.1    dyoung {
   1947  1.1    dyoung 	u32 eec;
   1948  1.1    dyoung 	u32 mask;
   1949  1.1    dyoung 	u32 i;
   1950  1.1    dyoung 
   1951  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1952  1.1    dyoung 
   1953  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1954  1.1    dyoung 
   1955  1.1    dyoung 	/*
   1956  1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1957  1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1958  1.1    dyoung 	 */
   1959  1.1    dyoung 	mask = 0x01 << (count - 1);
   1960  1.1    dyoung 
   1961  1.1    dyoung 	for (i = 0; i < count; i++) {
   1962  1.1    dyoung 		/*
   1963  1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1964  1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1965  1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1966  1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1967  1.1    dyoung 		 * raising and then lowering the clock.
   1968  1.1    dyoung 		 */
   1969  1.1    dyoung 		if (data & mask)
   1970  1.1    dyoung 			eec |= IXGBE_EEC_DI;
   1971  1.1    dyoung 		else
   1972  1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   1973  1.1    dyoung 
   1974  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1975  1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   1976  1.1    dyoung 
   1977  1.1    dyoung 		usec_delay(1);
   1978  1.1    dyoung 
   1979  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1980  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1981  1.1    dyoung 
   1982  1.1    dyoung 		/*
   1983  1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1984  1.1    dyoung 		 * EEPROM
   1985  1.1    dyoung 		 */
   1986  1.1    dyoung 		mask = mask >> 1;
   1987  1.1    dyoung 	};
   1988  1.1    dyoung 
   1989  1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1990  1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   1991  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1992  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1993  1.1    dyoung }
   1994  1.1    dyoung 
   1995  1.1    dyoung /**
   1996  1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1997  1.1    dyoung  *  @hw: pointer to hardware structure
   1998  1.1    dyoung  **/
   1999  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2000  1.1    dyoung {
   2001  1.1    dyoung 	u32 eec;
   2002  1.1    dyoung 	u32 i;
   2003  1.1    dyoung 	u16 data = 0;
   2004  1.1    dyoung 
   2005  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2006  1.1    dyoung 
   2007  1.1    dyoung 	/*
   2008  1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2009  1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2010  1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2011  1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2012  1.1    dyoung 	 * "DI" bit should always be clear.
   2013  1.1    dyoung 	 */
   2014  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2015  1.1    dyoung 
   2016  1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2017  1.1    dyoung 
   2018  1.1    dyoung 	for (i = 0; i < count; i++) {
   2019  1.1    dyoung 		data = data << 1;
   2020  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2021  1.1    dyoung 
   2022  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2023  1.1    dyoung 
   2024  1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2025  1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2026  1.1    dyoung 			data |= 1;
   2027  1.1    dyoung 
   2028  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2029  1.1    dyoung 	}
   2030  1.1    dyoung 
   2031  1.1    dyoung 	return data;
   2032  1.1    dyoung }
   2033  1.1    dyoung 
   2034  1.1    dyoung /**
   2035  1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2036  1.1    dyoung  *  @hw: pointer to hardware structure
   2037  1.1    dyoung  *  @eec: EEC register's current value
   2038  1.1    dyoung  **/
   2039  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2040  1.1    dyoung {
   2041  1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2042  1.1    dyoung 
   2043  1.1    dyoung 	/*
   2044  1.1    dyoung 	 * Raise the clock input to the EEPROM
   2045  1.1    dyoung 	 * (setting the SK bit), then delay
   2046  1.1    dyoung 	 */
   2047  1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2048  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2049  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2050  1.1    dyoung 	usec_delay(1);
   2051  1.1    dyoung }
   2052  1.1    dyoung 
   2053  1.1    dyoung /**
   2054  1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2055  1.1    dyoung  *  @hw: pointer to hardware structure
   2056  1.1    dyoung  *  @eecd: EECD's current value
   2057  1.1    dyoung  **/
   2058  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2059  1.1    dyoung {
   2060  1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2061  1.1    dyoung 
   2062  1.1    dyoung 	/*
   2063  1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2064  1.1    dyoung 	 * delay
   2065  1.1    dyoung 	 */
   2066  1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2067  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2068  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2069  1.1    dyoung 	usec_delay(1);
   2070  1.1    dyoung }
   2071  1.1    dyoung 
   2072  1.1    dyoung /**
   2073  1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2074  1.1    dyoung  *  @hw: pointer to hardware structure
   2075  1.1    dyoung  **/
   2076  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2077  1.1    dyoung {
   2078  1.1    dyoung 	u32 eec;
   2079  1.1    dyoung 
   2080  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2081  1.1    dyoung 
   2082  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2083  1.1    dyoung 
   2084  1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2085  1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2086  1.1    dyoung 
   2087  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2088  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2089  1.1    dyoung 
   2090  1.1    dyoung 	usec_delay(1);
   2091  1.1    dyoung 
   2092  1.1    dyoung 	/* Stop requesting EEPROM access */
   2093  1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2094  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2095  1.1    dyoung 
   2096  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2097  1.1    dyoung 
   2098  1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2099  1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2100  1.1    dyoung }
   2101  1.1    dyoung 
   2102  1.1    dyoung /**
   2103  1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2104  1.1    dyoung  *  @hw: pointer to hardware structure
   2105  1.8   msaitoh  *
   2106  1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2107  1.1    dyoung  **/
   2108  1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2109  1.1    dyoung {
   2110  1.1    dyoung 	u16 i;
   2111  1.1    dyoung 	u16 j;
   2112  1.1    dyoung 	u16 checksum = 0;
   2113  1.1    dyoung 	u16 length = 0;
   2114  1.1    dyoung 	u16 pointer = 0;
   2115  1.1    dyoung 	u16 word = 0;
   2116  1.1    dyoung 
   2117  1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2118  1.1    dyoung 
   2119  1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2120  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2121  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2122  1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2123  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2124  1.1    dyoung 		}
   2125  1.1    dyoung 		checksum += word;
   2126  1.1    dyoung 	}
   2127  1.1    dyoung 
   2128  1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2129  1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2130  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2131  1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2132  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2133  1.8   msaitoh 		}
   2134  1.8   msaitoh 
   2135  1.8   msaitoh 		/* If the pointer seems invalid */
   2136  1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2137  1.8   msaitoh 			continue;
   2138  1.8   msaitoh 
   2139  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2140  1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2141  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2142  1.8   msaitoh 		}
   2143  1.8   msaitoh 
   2144  1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2145  1.8   msaitoh 			continue;
   2146  1.1    dyoung 
   2147  1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2148  1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2149  1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2150  1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2151  1.1    dyoung 			}
   2152  1.8   msaitoh 			checksum += word;
   2153  1.1    dyoung 		}
   2154  1.1    dyoung 	}
   2155  1.1    dyoung 
   2156  1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2157  1.1    dyoung 
   2158  1.8   msaitoh 	return (s32)checksum;
   2159  1.1    dyoung }
   2160  1.1    dyoung 
   2161  1.1    dyoung /**
   2162  1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2163  1.1    dyoung  *  @hw: pointer to hardware structure
   2164  1.1    dyoung  *  @checksum_val: calculated checksum
   2165  1.1    dyoung  *
   2166  1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2167  1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2168  1.1    dyoung  **/
   2169  1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2170  1.3   msaitoh 					   u16 *checksum_val)
   2171  1.1    dyoung {
   2172  1.1    dyoung 	s32 status;
   2173  1.1    dyoung 	u16 checksum;
   2174  1.1    dyoung 	u16 read_checksum = 0;
   2175  1.1    dyoung 
   2176  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2177  1.1    dyoung 
   2178  1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2179  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2180  1.1    dyoung 	 * EEPROM read fails
   2181  1.1    dyoung 	 */
   2182  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2183  1.8   msaitoh 	if (status) {
   2184  1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2185  1.8   msaitoh 		return status;
   2186  1.8   msaitoh 	}
   2187  1.1    dyoung 
   2188  1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2189  1.8   msaitoh 	if (status < 0)
   2190  1.8   msaitoh 		return status;
   2191  1.1    dyoung 
   2192  1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2193  1.1    dyoung 
   2194  1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2195  1.8   msaitoh 	if (status) {
   2196  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2197  1.8   msaitoh 		return status;
   2198  1.1    dyoung 	}
   2199  1.1    dyoung 
   2200  1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2201  1.8   msaitoh 	 * calculated checksum
   2202  1.8   msaitoh 	 */
   2203  1.8   msaitoh 	if (read_checksum != checksum)
   2204  1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2205  1.8   msaitoh 
   2206  1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2207  1.8   msaitoh 	if (checksum_val)
   2208  1.8   msaitoh 		*checksum_val = checksum;
   2209  1.8   msaitoh 
   2210  1.1    dyoung 	return status;
   2211  1.1    dyoung }
   2212  1.1    dyoung 
   2213  1.1    dyoung /**
   2214  1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2215  1.1    dyoung  *  @hw: pointer to hardware structure
   2216  1.1    dyoung  **/
   2217  1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2218  1.1    dyoung {
   2219  1.1    dyoung 	s32 status;
   2220  1.1    dyoung 	u16 checksum;
   2221  1.1    dyoung 
   2222  1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2223  1.1    dyoung 
   2224  1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2225  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2226  1.1    dyoung 	 * EEPROM read fails
   2227  1.1    dyoung 	 */
   2228  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2229  1.8   msaitoh 	if (status) {
   2230  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2231  1.8   msaitoh 		return status;
   2232  1.1    dyoung 	}
   2233  1.1    dyoung 
   2234  1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2235  1.8   msaitoh 	if (status < 0)
   2236  1.8   msaitoh 		return status;
   2237  1.8   msaitoh 
   2238  1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2239  1.8   msaitoh 
   2240  1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2241  1.8   msaitoh 
   2242  1.1    dyoung 	return status;
   2243  1.1    dyoung }
   2244  1.1    dyoung 
   2245  1.1    dyoung /**
   2246  1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2247  1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2248  1.1    dyoung  *
   2249  1.1    dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2250  1.1    dyoung  **/
   2251  1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2252  1.1    dyoung {
   2253  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2254  1.1    dyoung 
   2255  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2256  1.1    dyoung 
   2257  1.1    dyoung 	/* Make sure it is not a multicast address */
   2258  1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2259  1.1    dyoung 		DEBUGOUT("MAC address is multicast\n");
   2260  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2261  1.1    dyoung 	/* Not a broadcast address */
   2262  1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2263  1.1    dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2264  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2265  1.1    dyoung 	/* Reject the zero address */
   2266  1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2267  1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2268  1.1    dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2269  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2270  1.1    dyoung 	}
   2271  1.1    dyoung 	return status;
   2272  1.1    dyoung }
   2273  1.1    dyoung 
   2274  1.1    dyoung /**
   2275  1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2276  1.1    dyoung  *  @hw: pointer to hardware structure
   2277  1.1    dyoung  *  @index: Receive address register to write
   2278  1.1    dyoung  *  @addr: Address to put into receive address register
   2279  1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2280  1.1    dyoung  *  @enable_addr: set flag that address is active
   2281  1.1    dyoung  *
   2282  1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2283  1.1    dyoung  **/
   2284  1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2285  1.3   msaitoh 			  u32 enable_addr)
   2286  1.1    dyoung {
   2287  1.1    dyoung 	u32 rar_low, rar_high;
   2288  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2289  1.1    dyoung 
   2290  1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2291  1.1    dyoung 
   2292  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2293  1.1    dyoung 	if (index >= rar_entries) {
   2294  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2295  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2296  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2297  1.1    dyoung 	}
   2298  1.1    dyoung 
   2299  1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2300  1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2301  1.1    dyoung 
   2302  1.1    dyoung 	/*
   2303  1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2304  1.1    dyoung 	 * order from network order (big endian) to little endian
   2305  1.1    dyoung 	 */
   2306  1.1    dyoung 	rar_low = ((u32)addr[0] |
   2307  1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2308  1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2309  1.3   msaitoh 		   ((u32)addr[3] << 24));
   2310  1.1    dyoung 	/*
   2311  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2312  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2313  1.1    dyoung 	 * of the address and the address valid bit.
   2314  1.1    dyoung 	 */
   2315  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2316  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2317  1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2318  1.1    dyoung 
   2319  1.1    dyoung 	if (enable_addr != 0)
   2320  1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2321  1.1    dyoung 
   2322  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2323  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2324  1.1    dyoung 
   2325  1.1    dyoung 	return IXGBE_SUCCESS;
   2326  1.1    dyoung }
   2327  1.1    dyoung 
   2328  1.1    dyoung /**
   2329  1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2330  1.1    dyoung  *  @hw: pointer to hardware structure
   2331  1.1    dyoung  *  @index: Receive address register to write
   2332  1.1    dyoung  *
   2333  1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2334  1.1    dyoung  **/
   2335  1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2336  1.1    dyoung {
   2337  1.1    dyoung 	u32 rar_high;
   2338  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2339  1.1    dyoung 
   2340  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2341  1.1    dyoung 
   2342  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2343  1.1    dyoung 	if (index >= rar_entries) {
   2344  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2345  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2346  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2347  1.1    dyoung 	}
   2348  1.1    dyoung 
   2349  1.1    dyoung 	/*
   2350  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2351  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2352  1.1    dyoung 	 * of the address and the address valid bit.
   2353  1.1    dyoung 	 */
   2354  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2355  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2356  1.1    dyoung 
   2357  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2358  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2359  1.1    dyoung 
   2360  1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2361  1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2362  1.1    dyoung 
   2363  1.1    dyoung 	return IXGBE_SUCCESS;
   2364  1.1    dyoung }
   2365  1.1    dyoung 
   2366  1.1    dyoung /**
   2367  1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2368  1.1    dyoung  *  @hw: pointer to hardware structure
   2369  1.1    dyoung  *
   2370  1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2371  1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2372  1.1    dyoung  *  the receiver is in reset when the routine is called.
   2373  1.1    dyoung  **/
   2374  1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2375  1.1    dyoung {
   2376  1.1    dyoung 	u32 i;
   2377  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2378  1.1    dyoung 
   2379  1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2380  1.1    dyoung 
   2381  1.1    dyoung 	/*
   2382  1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2383  1.1    dyoung 	 * to the permanent address.
   2384  1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2385  1.1    dyoung 	 */
   2386  1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2387  1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2388  1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2389  1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2390  1.1    dyoung 
   2391  1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2392  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2393  1.3   msaitoh 			  hw->mac.addr[2]);
   2394  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2395  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2396  1.1    dyoung 	} else {
   2397  1.1    dyoung 		/* Setup the receive address. */
   2398  1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2399  1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2400  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2401  1.3   msaitoh 			  hw->mac.addr[2]);
   2402  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2403  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2404  1.1    dyoung 
   2405  1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2406  1.1    dyoung 
   2407  1.1    dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2408  1.1    dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2409  1.1    dyoung 	}
   2410  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2411  1.1    dyoung 
   2412  1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2413  1.1    dyoung 
   2414  1.1    dyoung 	/* Zero out the other receive addresses. */
   2415  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2416  1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2417  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2418  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2419  1.1    dyoung 	}
   2420  1.1    dyoung 
   2421  1.1    dyoung 	/* Clear the MTA */
   2422  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2423  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2424  1.1    dyoung 
   2425  1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2426  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2427  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2428  1.1    dyoung 
   2429  1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2430  1.1    dyoung 
   2431  1.1    dyoung 	return IXGBE_SUCCESS;
   2432  1.1    dyoung }
   2433  1.1    dyoung 
   2434  1.1    dyoung /**
   2435  1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2436  1.1    dyoung  *  @hw: pointer to hardware structure
   2437  1.1    dyoung  *  @addr: new address
   2438  1.1    dyoung  *
   2439  1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2440  1.1    dyoung  **/
   2441  1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2442  1.1    dyoung {
   2443  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2444  1.1    dyoung 	u32 rar;
   2445  1.1    dyoung 
   2446  1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2447  1.1    dyoung 
   2448  1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2449  1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2450  1.1    dyoung 
   2451  1.1    dyoung 	/*
   2452  1.1    dyoung 	 * Place this address in the RAR if there is room,
   2453  1.1    dyoung 	 * else put the controller into promiscuous mode
   2454  1.1    dyoung 	 */
   2455  1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2456  1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2457  1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2458  1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2459  1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2460  1.1    dyoung 	} else {
   2461  1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2462  1.1    dyoung 	}
   2463  1.1    dyoung 
   2464  1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2465  1.1    dyoung }
   2466  1.1    dyoung 
   2467  1.1    dyoung /**
   2468  1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2469  1.1    dyoung  *  @hw: pointer to hardware structure
   2470  1.1    dyoung  *  @addr_list: the list of new addresses
   2471  1.1    dyoung  *  @addr_count: number of addresses
   2472  1.1    dyoung  *  @next: iterator function to walk the address list
   2473  1.1    dyoung  *
   2474  1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2475  1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2476  1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2477  1.1    dyoung  *
   2478  1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2479  1.1    dyoung  *  manually putting the device into promiscuous mode.
   2480  1.1    dyoung  **/
   2481  1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2482  1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2483  1.1    dyoung {
   2484  1.1    dyoung 	u8 *addr;
   2485  1.1    dyoung 	u32 i;
   2486  1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2487  1.1    dyoung 	u32 uc_addr_in_use;
   2488  1.1    dyoung 	u32 fctrl;
   2489  1.1    dyoung 	u32 vmdq;
   2490  1.1    dyoung 
   2491  1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2492  1.1    dyoung 
   2493  1.1    dyoung 	/*
   2494  1.1    dyoung 	 * Clear accounting of old secondary address list,
   2495  1.1    dyoung 	 * don't count RAR[0]
   2496  1.1    dyoung 	 */
   2497  1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2498  1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2499  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2500  1.1    dyoung 
   2501  1.1    dyoung 	/* Zero out the other receive addresses */
   2502  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2503  1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2504  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2505  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2506  1.1    dyoung 	}
   2507  1.1    dyoung 
   2508  1.1    dyoung 	/* Add the new addresses */
   2509  1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2510  1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2511  1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2512  1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2513  1.1    dyoung 	}
   2514  1.1    dyoung 
   2515  1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2516  1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2517  1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2518  1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2519  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2520  1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2521  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2522  1.1    dyoung 		}
   2523  1.1    dyoung 	} else {
   2524  1.1    dyoung 		/* only disable if set by overflow, not by user */
   2525  1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2526  1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2527  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2528  1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2529  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2530  1.1    dyoung 		}
   2531  1.1    dyoung 	}
   2532  1.1    dyoung 
   2533  1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2534  1.1    dyoung 	return IXGBE_SUCCESS;
   2535  1.1    dyoung }
   2536  1.1    dyoung 
   2537  1.1    dyoung /**
   2538  1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2539  1.1    dyoung  *  @hw: pointer to hardware structure
   2540  1.1    dyoung  *  @mc_addr: the multicast address
   2541  1.1    dyoung  *
   2542  1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2543  1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2544  1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2545  1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2546  1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2547  1.1    dyoung  *  to mc_filter_type.
   2548  1.1    dyoung  **/
   2549  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2550  1.1    dyoung {
   2551  1.1    dyoung 	u32 vector = 0;
   2552  1.1    dyoung 
   2553  1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2554  1.1    dyoung 
   2555  1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2556  1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2557  1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2558  1.1    dyoung 		break;
   2559  1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2560  1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2561  1.1    dyoung 		break;
   2562  1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2563  1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2564  1.1    dyoung 		break;
   2565  1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2566  1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2567  1.1    dyoung 		break;
   2568  1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2569  1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2570  1.1    dyoung 		ASSERT(0);
   2571  1.1    dyoung 		break;
   2572  1.1    dyoung 	}
   2573  1.1    dyoung 
   2574  1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2575  1.1    dyoung 	vector &= 0xFFF;
   2576  1.1    dyoung 	return vector;
   2577  1.1    dyoung }
   2578  1.1    dyoung 
   2579  1.1    dyoung /**
   2580  1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2581  1.1    dyoung  *  @hw: pointer to hardware structure
   2582  1.1    dyoung  *  @hash_value: Multicast address hash value
   2583  1.1    dyoung  *
   2584  1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2585  1.1    dyoung  **/
   2586  1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2587  1.1    dyoung {
   2588  1.1    dyoung 	u32 vector;
   2589  1.1    dyoung 	u32 vector_bit;
   2590  1.1    dyoung 	u32 vector_reg;
   2591  1.1    dyoung 
   2592  1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2593  1.1    dyoung 
   2594  1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2595  1.1    dyoung 
   2596  1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2597  1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2598  1.1    dyoung 
   2599  1.1    dyoung 	/*
   2600  1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2601  1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2602  1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2603  1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2604  1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2605  1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2606  1.1    dyoung 	 * the value.
   2607  1.1    dyoung 	 */
   2608  1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2609  1.1    dyoung 	vector_bit = vector & 0x1F;
   2610  1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2611  1.1    dyoung }
   2612  1.1    dyoung 
   2613  1.1    dyoung /**
   2614  1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2615  1.1    dyoung  *  @hw: pointer to hardware structure
   2616  1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2617  1.1    dyoung  *  @mc_addr_count: number of addresses
   2618  1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2619  1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2620  1.1    dyoung  *
   2621  1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2622  1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2623  1.1    dyoung  **/
   2624  1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2625  1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2626  1.3   msaitoh 				      bool clear)
   2627  1.1    dyoung {
   2628  1.1    dyoung 	u32 i;
   2629  1.1    dyoung 	u32 vmdq;
   2630  1.1    dyoung 
   2631  1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2632  1.1    dyoung 
   2633  1.1    dyoung 	/*
   2634  1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2635  1.1    dyoung 	 * use.
   2636  1.1    dyoung 	 */
   2637  1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2638  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2639  1.1    dyoung 
   2640  1.1    dyoung 	/* Clear mta_shadow */
   2641  1.3   msaitoh 	if (clear) {
   2642  1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2643  1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2644  1.3   msaitoh 	}
   2645  1.1    dyoung 
   2646  1.1    dyoung 	/* Update mta_shadow */
   2647  1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2648  1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2649  1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2650  1.1    dyoung 	}
   2651  1.1    dyoung 
   2652  1.1    dyoung 	/* Enable mta */
   2653  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2654  1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2655  1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2656  1.1    dyoung 
   2657  1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2658  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2659  1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2660  1.1    dyoung 
   2661  1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2662  1.1    dyoung 	return IXGBE_SUCCESS;
   2663  1.1    dyoung }
   2664  1.1    dyoung 
   2665  1.1    dyoung /**
   2666  1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2667  1.1    dyoung  *  @hw: pointer to hardware structure
   2668  1.1    dyoung  *
   2669  1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2670  1.1    dyoung  **/
   2671  1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2672  1.1    dyoung {
   2673  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2674  1.1    dyoung 
   2675  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2676  1.1    dyoung 
   2677  1.1    dyoung 	if (a->mta_in_use > 0)
   2678  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2679  1.3   msaitoh 				hw->mac.mc_filter_type);
   2680  1.1    dyoung 
   2681  1.1    dyoung 	return IXGBE_SUCCESS;
   2682  1.1    dyoung }
   2683  1.1    dyoung 
   2684  1.1    dyoung /**
   2685  1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2686  1.1    dyoung  *  @hw: pointer to hardware structure
   2687  1.1    dyoung  *
   2688  1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2689  1.1    dyoung  **/
   2690  1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2691  1.1    dyoung {
   2692  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2693  1.1    dyoung 
   2694  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2695  1.1    dyoung 
   2696  1.1    dyoung 	if (a->mta_in_use > 0)
   2697  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2698  1.1    dyoung 
   2699  1.1    dyoung 	return IXGBE_SUCCESS;
   2700  1.1    dyoung }
   2701  1.1    dyoung 
   2702  1.1    dyoung /**
   2703  1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2704  1.1    dyoung  *  @hw: pointer to hardware structure
   2705  1.1    dyoung  *
   2706  1.1    dyoung  *  Enable flow control according to the current settings.
   2707  1.1    dyoung  **/
   2708  1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2709  1.1    dyoung {
   2710  1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2711  1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2712  1.1    dyoung 	u32 reg;
   2713  1.1    dyoung 	u32 fcrtl, fcrth;
   2714  1.4   msaitoh 	int i;
   2715  1.1    dyoung 
   2716  1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2717  1.1    dyoung 
   2718  1.4   msaitoh 	/* Validate the water mark configuration */
   2719  1.4   msaitoh 	if (!hw->fc.pause_time) {
   2720  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2721  1.4   msaitoh 		goto out;
   2722  1.4   msaitoh 	}
   2723  1.4   msaitoh 
   2724  1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2725  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2726  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2727  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2728  1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2729  1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2730  1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2731  1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2732  1.4   msaitoh 				goto out;
   2733  1.4   msaitoh 			}
   2734  1.4   msaitoh 		}
   2735  1.4   msaitoh 	}
   2736  1.4   msaitoh 
   2737  1.1    dyoung 	/* Negotiate the fc mode to use */
   2738  1.4   msaitoh 	ixgbe_fc_autoneg(hw);
   2739  1.1    dyoung 
   2740  1.1    dyoung 	/* Disable any previous flow control settings */
   2741  1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2742  1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2743  1.1    dyoung 
   2744  1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2745  1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2746  1.1    dyoung 
   2747  1.1    dyoung 	/*
   2748  1.1    dyoung 	 * The possible values of fc.current_mode are:
   2749  1.1    dyoung 	 * 0: Flow control is completely disabled
   2750  1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2751  1.1    dyoung 	 *    but not send pause frames).
   2752  1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2753  1.1    dyoung 	 *    we do not support receiving pause frames).
   2754  1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2755  1.1    dyoung 	 * other: Invalid.
   2756  1.1    dyoung 	 */
   2757  1.1    dyoung 	switch (hw->fc.current_mode) {
   2758  1.1    dyoung 	case ixgbe_fc_none:
   2759  1.1    dyoung 		/*
   2760  1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2761  1.1    dyoung 		 * The code below will actually disable it in the HW.
   2762  1.1    dyoung 		 */
   2763  1.1    dyoung 		break;
   2764  1.1    dyoung 	case ixgbe_fc_rx_pause:
   2765  1.1    dyoung 		/*
   2766  1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2767  1.1    dyoung 		 * disabled by software override. Since there really
   2768  1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2769  1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2770  1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2771  1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2772  1.1    dyoung 		 */
   2773  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2774  1.1    dyoung 		break;
   2775  1.1    dyoung 	case ixgbe_fc_tx_pause:
   2776  1.1    dyoung 		/*
   2777  1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2778  1.1    dyoung 		 * disabled by software override.
   2779  1.1    dyoung 		 */
   2780  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2781  1.1    dyoung 		break;
   2782  1.1    dyoung 	case ixgbe_fc_full:
   2783  1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2784  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2785  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2786  1.1    dyoung 		break;
   2787  1.1    dyoung 	default:
   2788  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2789  1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2790  1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2791  1.1    dyoung 		goto out;
   2792  1.1    dyoung 		break;
   2793  1.1    dyoung 	}
   2794  1.1    dyoung 
   2795  1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2796  1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2797  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2798  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2799  1.1    dyoung 
   2800  1.1    dyoung 
   2801  1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2802  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2803  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2804  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2805  1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2806  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2807  1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2808  1.4   msaitoh 		} else {
   2809  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2810  1.4   msaitoh 			/*
   2811  1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2812  1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2813  1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2814  1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2815  1.8   msaitoh 			 * workloads.
   2816  1.4   msaitoh 			 */
   2817  1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2818  1.4   msaitoh 		}
   2819  1.4   msaitoh 
   2820  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2821  1.1    dyoung 	}
   2822  1.1    dyoung 
   2823  1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2824  1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2825  1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2826  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2827  1.1    dyoung 
   2828  1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2829  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2830  1.1    dyoung 
   2831  1.1    dyoung out:
   2832  1.1    dyoung 	return ret_val;
   2833  1.1    dyoung }
   2834  1.1    dyoung 
   2835  1.1    dyoung /**
   2836  1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2837  1.1    dyoung  *  @hw: pointer to hardware structure
   2838  1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2839  1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2840  1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2841  1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2842  1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2843  1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2844  1.1    dyoung  *
   2845  1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2846  1.4   msaitoh  *  advertised settings
   2847  1.1    dyoung  **/
   2848  1.4   msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2849  1.4   msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2850  1.1    dyoung {
   2851  1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2852  1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2853  1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2854  1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2855  1.6   msaitoh 			     adv_reg, lp_reg);
   2856  1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2857  1.6   msaitoh 	}
   2858  1.1    dyoung 
   2859  1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2860  1.4   msaitoh 		/*
   2861  1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2862  1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2863  1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2864  1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2865  1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2866  1.4   msaitoh 		 */
   2867  1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2868  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2869  1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2870  1.4   msaitoh 		} else {
   2871  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2872  1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2873  1.4   msaitoh 		}
   2874  1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2875  1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2876  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2877  1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2878  1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2879  1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2880  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2881  1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2882  1.4   msaitoh 	} else {
   2883  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2884  1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2885  1.4   msaitoh 	}
   2886  1.4   msaitoh 	return IXGBE_SUCCESS;
   2887  1.4   msaitoh }
   2888  1.1    dyoung 
   2889  1.4   msaitoh /**
   2890  1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2891  1.4   msaitoh  *  @hw: pointer to hardware structure
   2892  1.4   msaitoh  *
   2893  1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2894  1.4   msaitoh  **/
   2895  1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2896  1.4   msaitoh {
   2897  1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2898  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2899  1.1    dyoung 
   2900  1.1    dyoung 	/*
   2901  1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   2902  1.4   msaitoh 	 * - link is up but AN did not complete, or if
   2903  1.4   msaitoh 	 * - link is up and AN completed but timed out
   2904  1.1    dyoung 	 */
   2905  1.4   msaitoh 
   2906  1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2907  1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2908  1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2909  1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   2910  1.1    dyoung 		goto out;
   2911  1.6   msaitoh 	}
   2912  1.1    dyoung 
   2913  1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2914  1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2915  1.1    dyoung 
   2916  1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2917  1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2918  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2919  1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2920  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2921  1.1    dyoung 
   2922  1.1    dyoung out:
   2923  1.1    dyoung 	return ret_val;
   2924  1.1    dyoung }
   2925  1.1    dyoung 
   2926  1.1    dyoung /**
   2927  1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2928  1.1    dyoung  *  @hw: pointer to hardware structure
   2929  1.1    dyoung  *
   2930  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2931  1.1    dyoung  **/
   2932  1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2933  1.1    dyoung {
   2934  1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2935  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2936  1.1    dyoung 
   2937  1.1    dyoung 	/*
   2938  1.1    dyoung 	 * On backplane, bail out if
   2939  1.1    dyoung 	 * - backplane autoneg was not completed, or if
   2940  1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   2941  1.1    dyoung 	 */
   2942  1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2943  1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2944  1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   2945  1.1    dyoung 		goto out;
   2946  1.6   msaitoh 	}
   2947  1.1    dyoung 
   2948  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2949  1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2950  1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2951  1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   2952  1.1    dyoung 			goto out;
   2953  1.6   msaitoh 		}
   2954  1.1    dyoung 	}
   2955  1.1    dyoung 	/*
   2956  1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2957  1.1    dyoung 	 * local flow control settings accordingly
   2958  1.1    dyoung 	 */
   2959  1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2960  1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2961  1.1    dyoung 
   2962  1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2963  1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2964  1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2965  1.1    dyoung 
   2966  1.1    dyoung out:
   2967  1.1    dyoung 	return ret_val;
   2968  1.1    dyoung }
   2969  1.1    dyoung 
   2970  1.1    dyoung /**
   2971  1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2972  1.1    dyoung  *  @hw: pointer to hardware structure
   2973  1.1    dyoung  *
   2974  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2975  1.1    dyoung  **/
   2976  1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2977  1.1    dyoung {
   2978  1.1    dyoung 	u16 technology_ability_reg = 0;
   2979  1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   2980  1.1    dyoung 
   2981  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2982  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2983  1.1    dyoung 			     &technology_ability_reg);
   2984  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2985  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2986  1.1    dyoung 			     &lp_technology_ability_reg);
   2987  1.1    dyoung 
   2988  1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2989  1.1    dyoung 				  (u32)lp_technology_ability_reg,
   2990  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2991  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2992  1.1    dyoung }
   2993  1.1    dyoung 
   2994  1.1    dyoung /**
   2995  1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2996  1.1    dyoung  *  @hw: pointer to hardware structure
   2997  1.1    dyoung  *
   2998  1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   2999  1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3000  1.1    dyoung  **/
   3001  1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3002  1.1    dyoung {
   3003  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3004  1.4   msaitoh 	ixgbe_link_speed speed;
   3005  1.4   msaitoh 	bool link_up;
   3006  1.1    dyoung 
   3007  1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3008  1.1    dyoung 
   3009  1.1    dyoung 	/*
   3010  1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3011  1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3012  1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3013  1.4   msaitoh 	 * - link is not up.
   3014  1.1    dyoung 	 */
   3015  1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3016  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3017  1.6   msaitoh 			     "Flow control autoneg is disabled");
   3018  1.1    dyoung 		goto out;
   3019  1.6   msaitoh 	}
   3020  1.1    dyoung 
   3021  1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3022  1.6   msaitoh 	if (!link_up) {
   3023  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3024  1.1    dyoung 		goto out;
   3025  1.6   msaitoh 	}
   3026  1.1    dyoung 
   3027  1.1    dyoung 	switch (hw->phy.media_type) {
   3028  1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3029  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3030  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3031  1.1    dyoung 	case ixgbe_media_type_fiber:
   3032  1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3033  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3034  1.4   msaitoh 		break;
   3035  1.4   msaitoh 
   3036  1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3037  1.1    dyoung 	case ixgbe_media_type_backplane:
   3038  1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3039  1.1    dyoung 		break;
   3040  1.1    dyoung 
   3041  1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3042  1.1    dyoung 	case ixgbe_media_type_copper:
   3043  1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3044  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3045  1.1    dyoung 		break;
   3046  1.1    dyoung 
   3047  1.1    dyoung 	default:
   3048  1.1    dyoung 		break;
   3049  1.1    dyoung 	}
   3050  1.1    dyoung 
   3051  1.4   msaitoh out:
   3052  1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3053  1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3054  1.4   msaitoh 	} else {
   3055  1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3056  1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3057  1.3   msaitoh 	}
   3058  1.1    dyoung }
   3059  1.1    dyoung 
   3060  1.6   msaitoh /*
   3061  1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3062  1.6   msaitoh  * @hw: pointer to hardware structure
   3063  1.6   msaitoh  *
   3064  1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3065  1.6   msaitoh  *
   3066  1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3067  1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3068  1.6   msaitoh  * 800 = 80 millisec.
   3069  1.6   msaitoh  */
   3070  1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3071  1.6   msaitoh {
   3072  1.6   msaitoh 	s16 devctl2;
   3073  1.6   msaitoh 	u32 pollcnt;
   3074  1.6   msaitoh 
   3075  1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3076  1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3077  1.6   msaitoh 
   3078  1.6   msaitoh 	switch (devctl2) {
   3079  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3080  1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3081  1.6   msaitoh 		break;
   3082  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3083  1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3084  1.6   msaitoh 		break;
   3085  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3086  1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3087  1.6   msaitoh 		break;
   3088  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3089  1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3090  1.6   msaitoh 		break;
   3091  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3092  1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3093  1.6   msaitoh 		break;
   3094  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3095  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3096  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3097  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3098  1.6   msaitoh 	default:
   3099  1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3100  1.6   msaitoh 		break;
   3101  1.6   msaitoh 	}
   3102  1.6   msaitoh 
   3103  1.6   msaitoh 	/* add 10% to spec maximum */
   3104  1.6   msaitoh 	return (pollcnt * 11) / 10;
   3105  1.6   msaitoh }
   3106  1.6   msaitoh 
   3107  1.1    dyoung /**
   3108  1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3109  1.1    dyoung  *  @hw: pointer to hardware structure
   3110  1.1    dyoung  *
   3111  1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3112  1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3113  1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3114  1.1    dyoung  *  is returned signifying master requests disabled.
   3115  1.1    dyoung  **/
   3116  1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3117  1.1    dyoung {
   3118  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3119  1.6   msaitoh 	u32 i, poll;
   3120  1.8   msaitoh 	u16 value;
   3121  1.1    dyoung 
   3122  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3123  1.1    dyoung 
   3124  1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3125  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3126  1.3   msaitoh 
   3127  1.6   msaitoh 	/* Exit if master requests are blocked */
   3128  1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3129  1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3130  1.1    dyoung 		goto out;
   3131  1.1    dyoung 
   3132  1.3   msaitoh 	/* Poll for master request bit to clear */
   3133  1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3134  1.3   msaitoh 		usec_delay(100);
   3135  1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3136  1.3   msaitoh 			goto out;
   3137  1.1    dyoung 	}
   3138  1.1    dyoung 
   3139  1.3   msaitoh 	/*
   3140  1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3141  1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3142  1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3143  1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3144  1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3145  1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3146  1.3   msaitoh 	 */
   3147  1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3148  1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3149  1.1    dyoung 
   3150  1.1    dyoung 	/*
   3151  1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3152  1.1    dyoung 	 * transactions pending.
   3153  1.1    dyoung 	 */
   3154  1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3155  1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3156  1.3   msaitoh 		usec_delay(100);
   3157  1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3158  1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3159  1.8   msaitoh 			goto out;
   3160  1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3161  1.3   msaitoh 			goto out;
   3162  1.1    dyoung 	}
   3163  1.1    dyoung 
   3164  1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3165  1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3166  1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3167  1.1    dyoung 
   3168  1.1    dyoung out:
   3169  1.1    dyoung 	return status;
   3170  1.1    dyoung }
   3171  1.1    dyoung 
   3172  1.1    dyoung /**
   3173  1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3174  1.1    dyoung  *  @hw: pointer to hardware structure
   3175  1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3176  1.1    dyoung  *
   3177  1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3178  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3179  1.1    dyoung  **/
   3180  1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3181  1.1    dyoung {
   3182  1.6   msaitoh 	u32 gssr = 0;
   3183  1.1    dyoung 	u32 swmask = mask;
   3184  1.1    dyoung 	u32 fwmask = mask << 5;
   3185  1.6   msaitoh 	u32 timeout = 200;
   3186  1.6   msaitoh 	u32 i;
   3187  1.1    dyoung 
   3188  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3189  1.1    dyoung 
   3190  1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3191  1.1    dyoung 		/*
   3192  1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3193  1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3194  1.1    dyoung 		 */
   3195  1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3196  1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3197  1.1    dyoung 
   3198  1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3199  1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3200  1.6   msaitoh 			gssr |= swmask;
   3201  1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3202  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3203  1.6   msaitoh 			return IXGBE_SUCCESS;
   3204  1.6   msaitoh 		} else {
   3205  1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3206  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3207  1.6   msaitoh 			msec_delay(5);
   3208  1.6   msaitoh 		}
   3209  1.1    dyoung 	}
   3210  1.1    dyoung 
   3211  1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3212  1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3213  1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3214  1.1    dyoung 
   3215  1.6   msaitoh 	msec_delay(5);
   3216  1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3217  1.1    dyoung }
   3218  1.1    dyoung 
   3219  1.1    dyoung /**
   3220  1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3221  1.1    dyoung  *  @hw: pointer to hardware structure
   3222  1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3223  1.1    dyoung  *
   3224  1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3225  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3226  1.1    dyoung  **/
   3227  1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3228  1.1    dyoung {
   3229  1.1    dyoung 	u32 gssr;
   3230  1.1    dyoung 	u32 swmask = mask;
   3231  1.1    dyoung 
   3232  1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3233  1.1    dyoung 
   3234  1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3235  1.1    dyoung 
   3236  1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3237  1.1    dyoung 	gssr &= ~swmask;
   3238  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3239  1.1    dyoung 
   3240  1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3241  1.1    dyoung }
   3242  1.1    dyoung 
   3243  1.1    dyoung /**
   3244  1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3245  1.3   msaitoh  *  @hw: pointer to hardware structure
   3246  1.3   msaitoh  *
   3247  1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3248  1.3   msaitoh  *  the Rx security block
   3249  1.3   msaitoh  **/
   3250  1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3251  1.3   msaitoh {
   3252  1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3253  1.3   msaitoh 
   3254  1.3   msaitoh 	int i;
   3255  1.3   msaitoh 	int secrxreg;
   3256  1.3   msaitoh 
   3257  1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3258  1.3   msaitoh 
   3259  1.3   msaitoh 
   3260  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3261  1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3262  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3263  1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3264  1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3265  1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3266  1.3   msaitoh 			break;
   3267  1.3   msaitoh 		else
   3268  1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3269  1.3   msaitoh 			usec_delay(1000);
   3270  1.3   msaitoh 	}
   3271  1.3   msaitoh 
   3272  1.3   msaitoh 	/* For informational purposes only */
   3273  1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3274  1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3275  1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3276  1.3   msaitoh 
   3277  1.3   msaitoh 	return IXGBE_SUCCESS;
   3278  1.3   msaitoh }
   3279  1.3   msaitoh 
   3280  1.3   msaitoh /**
   3281  1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3282  1.8   msaitoh  *  @hw: pointer to hardware structure
   3283  1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3284  1.8   msaitoh  *
   3285  1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3286  1.8   msaitoh  */
   3287  1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3288  1.8   msaitoh {
   3289  1.8   msaitoh 	*locked = FALSE;
   3290  1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3291  1.8   msaitoh 	return IXGBE_SUCCESS;
   3292  1.8   msaitoh }
   3293  1.8   msaitoh 
   3294  1.8   msaitoh /**
   3295  1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3296  1.8   msaitoh  * @hw: pointer to hardware structure
   3297  1.8   msaitoh  * @reg_val: value to write to AUTOC
   3298  1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3299  1.8   msaitoh  *           previous read.
   3300  1.8   msaitoh  *
   3301  1.8   msaitoh  * The default case requires no protection so just to the register write.
   3302  1.8   msaitoh  */
   3303  1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3304  1.8   msaitoh {
   3305  1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3306  1.8   msaitoh 
   3307  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3308  1.8   msaitoh 	return IXGBE_SUCCESS;
   3309  1.8   msaitoh }
   3310  1.8   msaitoh 
   3311  1.8   msaitoh /**
   3312  1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3313  1.3   msaitoh  *  @hw: pointer to hardware structure
   3314  1.3   msaitoh  *
   3315  1.3   msaitoh  *  Enables the receive data path.
   3316  1.3   msaitoh  **/
   3317  1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3318  1.3   msaitoh {
   3319  1.3   msaitoh 	int secrxreg;
   3320  1.3   msaitoh 
   3321  1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3322  1.3   msaitoh 
   3323  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3324  1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3325  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3326  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3327  1.3   msaitoh 
   3328  1.3   msaitoh 	return IXGBE_SUCCESS;
   3329  1.3   msaitoh }
   3330  1.3   msaitoh 
   3331  1.3   msaitoh /**
   3332  1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3333  1.1    dyoung  *  @hw: pointer to hardware structure
   3334  1.1    dyoung  *  @regval: register value to write to RXCTRL
   3335  1.1    dyoung  *
   3336  1.1    dyoung  *  Enables the Rx DMA unit
   3337  1.1    dyoung  **/
   3338  1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3339  1.1    dyoung {
   3340  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3341  1.1    dyoung 
   3342  1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3343  1.8   msaitoh 		ixgbe_enable_rx(hw);
   3344  1.8   msaitoh 	else
   3345  1.8   msaitoh 		ixgbe_disable_rx(hw);
   3346  1.1    dyoung 
   3347  1.1    dyoung 	return IXGBE_SUCCESS;
   3348  1.1    dyoung }
   3349  1.1    dyoung 
   3350  1.1    dyoung /**
   3351  1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3352  1.1    dyoung  *  @hw: pointer to hardware structure
   3353  1.1    dyoung  *  @index: led number to blink
   3354  1.1    dyoung  **/
   3355  1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3356  1.1    dyoung {
   3357  1.1    dyoung 	ixgbe_link_speed speed = 0;
   3358  1.1    dyoung 	bool link_up = 0;
   3359  1.8   msaitoh 	u32 autoc_reg = 0;
   3360  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3361  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3362  1.8   msaitoh 	bool locked = FALSE;
   3363  1.1    dyoung 
   3364  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3365  1.1    dyoung 
   3366  1.1    dyoung 	/*
   3367  1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3368  1.1    dyoung 	 * Force it if link is down.
   3369  1.1    dyoung 	 */
   3370  1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3371  1.1    dyoung 
   3372  1.1    dyoung 	if (!link_up) {
   3373  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3374  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3375  1.8   msaitoh 			goto out;
   3376  1.5   msaitoh 
   3377  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3378  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3379  1.8   msaitoh 
   3380  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3381  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3382  1.8   msaitoh 			goto out;
   3383  1.8   msaitoh 
   3384  1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3385  1.1    dyoung 		msec_delay(10);
   3386  1.1    dyoung 	}
   3387  1.1    dyoung 
   3388  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3389  1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3390  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3391  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3392  1.1    dyoung 
   3393  1.5   msaitoh out:
   3394  1.5   msaitoh 	return ret_val;
   3395  1.1    dyoung }
   3396  1.1    dyoung 
   3397  1.1    dyoung /**
   3398  1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3399  1.1    dyoung  *  @hw: pointer to hardware structure
   3400  1.1    dyoung  *  @index: led number to stop blinking
   3401  1.1    dyoung  **/
   3402  1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3403  1.1    dyoung {
   3404  1.8   msaitoh 	u32 autoc_reg = 0;
   3405  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3406  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3407  1.8   msaitoh 	bool locked = FALSE;
   3408  1.1    dyoung 
   3409  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3410  1.1    dyoung 
   3411  1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3412  1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3413  1.8   msaitoh 		goto out;
   3414  1.1    dyoung 
   3415  1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3416  1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3417  1.1    dyoung 
   3418  1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3419  1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3420  1.8   msaitoh 		goto out;
   3421  1.5   msaitoh 
   3422  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3423  1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3424  1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3425  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3426  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3427  1.1    dyoung 
   3428  1.5   msaitoh out:
   3429  1.5   msaitoh 	return ret_val;
   3430  1.1    dyoung }
   3431  1.1    dyoung 
   3432  1.1    dyoung /**
   3433  1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3434  1.1    dyoung  *  @hw: pointer to hardware structure
   3435  1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3436  1.1    dyoung  *
   3437  1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3438  1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3439  1.1    dyoung  *  get and set mac_addr routines.
   3440  1.1    dyoung  **/
   3441  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3442  1.3   msaitoh 					 u16 *san_mac_offset)
   3443  1.1    dyoung {
   3444  1.6   msaitoh 	s32 ret_val;
   3445  1.6   msaitoh 
   3446  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3447  1.1    dyoung 
   3448  1.1    dyoung 	/*
   3449  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3450  1.1    dyoung 	 * available.
   3451  1.1    dyoung 	 */
   3452  1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3453  1.6   msaitoh 				      san_mac_offset);
   3454  1.6   msaitoh 	if (ret_val) {
   3455  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3456  1.6   msaitoh 			      "eeprom at offset %d failed",
   3457  1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3458  1.6   msaitoh 	}
   3459  1.1    dyoung 
   3460  1.6   msaitoh 	return ret_val;
   3461  1.1    dyoung }
   3462  1.1    dyoung 
   3463  1.1    dyoung /**
   3464  1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3465  1.1    dyoung  *  @hw: pointer to hardware structure
   3466  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3467  1.1    dyoung  *
   3468  1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3469  1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3470  1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3471  1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3472  1.1    dyoung  **/
   3473  1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3474  1.1    dyoung {
   3475  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3476  1.1    dyoung 	u8 i;
   3477  1.6   msaitoh 	s32 ret_val;
   3478  1.1    dyoung 
   3479  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3480  1.1    dyoung 
   3481  1.1    dyoung 	/*
   3482  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3483  1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3484  1.1    dyoung 	 */
   3485  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3486  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3487  1.1    dyoung 		goto san_mac_addr_out;
   3488  1.1    dyoung 
   3489  1.1    dyoung 	/* make sure we know which port we need to program */
   3490  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3491  1.1    dyoung 	/* apply the port offset to the address offset */
   3492  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3493  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3494  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3495  1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3496  1.6   msaitoh 					      &san_mac_data);
   3497  1.6   msaitoh 		if (ret_val) {
   3498  1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3499  1.6   msaitoh 				      "eeprom read at offset %d failed",
   3500  1.6   msaitoh 				      san_mac_offset);
   3501  1.6   msaitoh 			goto san_mac_addr_out;
   3502  1.6   msaitoh 		}
   3503  1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3504  1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3505  1.1    dyoung 		san_mac_offset++;
   3506  1.1    dyoung 	}
   3507  1.6   msaitoh 	return IXGBE_SUCCESS;
   3508  1.1    dyoung 
   3509  1.1    dyoung san_mac_addr_out:
   3510  1.6   msaitoh 	/*
   3511  1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3512  1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3513  1.6   msaitoh 	 */
   3514  1.6   msaitoh 	for (i = 0; i < 6; i++)
   3515  1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3516  1.1    dyoung 	return IXGBE_SUCCESS;
   3517  1.1    dyoung }
   3518  1.1    dyoung 
   3519  1.1    dyoung /**
   3520  1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3521  1.1    dyoung  *  @hw: pointer to hardware structure
   3522  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3523  1.1    dyoung  *
   3524  1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3525  1.1    dyoung  **/
   3526  1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3527  1.1    dyoung {
   3528  1.6   msaitoh 	s32 ret_val;
   3529  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3530  1.1    dyoung 	u8 i;
   3531  1.1    dyoung 
   3532  1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3533  1.1    dyoung 
   3534  1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3535  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3536  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3537  1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3538  1.1    dyoung 
   3539  1.1    dyoung 	/* Make sure we know which port we need to write */
   3540  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3541  1.1    dyoung 	/* Apply the port offset to the address offset */
   3542  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3543  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3544  1.1    dyoung 
   3545  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3546  1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3547  1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3548  1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3549  1.1    dyoung 		san_mac_offset++;
   3550  1.1    dyoung 	}
   3551  1.1    dyoung 
   3552  1.6   msaitoh 	return IXGBE_SUCCESS;
   3553  1.1    dyoung }
   3554  1.1    dyoung 
   3555  1.1    dyoung /**
   3556  1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3557  1.1    dyoung  *  @hw: pointer to hardware structure
   3558  1.1    dyoung  *
   3559  1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3560  1.1    dyoung  *  the capabilities table.
   3561  1.1    dyoung  **/
   3562  1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3563  1.1    dyoung {
   3564  1.4   msaitoh 	u16 msix_count = 1;
   3565  1.4   msaitoh 	u16 max_msix_count;
   3566  1.4   msaitoh 	u16 pcie_offset;
   3567  1.4   msaitoh 
   3568  1.4   msaitoh 	switch (hw->mac.type) {
   3569  1.4   msaitoh 	case ixgbe_mac_82598EB:
   3570  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3571  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3572  1.4   msaitoh 		break;
   3573  1.4   msaitoh 	case ixgbe_mac_82599EB:
   3574  1.4   msaitoh 	case ixgbe_mac_X540:
   3575  1.8   msaitoh 	case ixgbe_mac_X550:
   3576  1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3577  1.8   msaitoh 	case ixgbe_mac_X550EM_a:
   3578  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3579  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3580  1.4   msaitoh 		break;
   3581  1.4   msaitoh 	default:
   3582  1.4   msaitoh 		return msix_count;
   3583  1.4   msaitoh 	}
   3584  1.1    dyoung 
   3585  1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3586  1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3587  1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3588  1.8   msaitoh 		msix_count = 0;
   3589  1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3590  1.4   msaitoh 
   3591  1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3592  1.4   msaitoh 	msix_count++;
   3593  1.4   msaitoh 
   3594  1.4   msaitoh 	if (msix_count > max_msix_count)
   3595  1.4   msaitoh 		msix_count = max_msix_count;
   3596  1.1    dyoung 
   3597  1.1    dyoung 	return msix_count;
   3598  1.1    dyoung }
   3599  1.1    dyoung 
   3600  1.1    dyoung /**
   3601  1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3602  1.1    dyoung  *  @hw: pointer to hardware structure
   3603  1.1    dyoung  *  @addr: Address to put into receive address register
   3604  1.1    dyoung  *  @vmdq: VMDq pool to assign
   3605  1.1    dyoung  *
   3606  1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3607  1.1    dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3608  1.1    dyoung  **/
   3609  1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3610  1.1    dyoung {
   3611  1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3612  1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3613  1.1    dyoung 	u32 rar;
   3614  1.1    dyoung 	u32 rar_low, rar_high;
   3615  1.1    dyoung 	u32 addr_low, addr_high;
   3616  1.1    dyoung 
   3617  1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3618  1.1    dyoung 
   3619  1.1    dyoung 	/* swap bytes for HW little endian */
   3620  1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3621  1.1    dyoung 			    | (addr[2] << 16)
   3622  1.1    dyoung 			    | (addr[3] << 24);
   3623  1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3624  1.1    dyoung 
   3625  1.1    dyoung 	/*
   3626  1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3627  1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3628  1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3629  1.1    dyoung 	 * rar to the top.
   3630  1.1    dyoung 	 */
   3631  1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3632  1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3633  1.1    dyoung 
   3634  1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3635  1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3636  1.1    dyoung 			first_empty_rar = rar;
   3637  1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3638  1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3639  1.1    dyoung 			if (rar_low == addr_low)
   3640  1.1    dyoung 				break;    /* found it already in the rars */
   3641  1.1    dyoung 		}
   3642  1.1    dyoung 	}
   3643  1.1    dyoung 
   3644  1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3645  1.1    dyoung 		/* already there so just add to the pool bits */
   3646  1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3647  1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3648  1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3649  1.1    dyoung 		rar = first_empty_rar;
   3650  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3651  1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3652  1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3653  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3654  1.1    dyoung 		hw->mac.rar_highwater++;
   3655  1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3656  1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3657  1.1    dyoung 	}
   3658  1.1    dyoung 
   3659  1.1    dyoung 	/*
   3660  1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3661  1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3662  1.1    dyoung 	 */
   3663  1.1    dyoung 	if (rar == 0)
   3664  1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3665  1.1    dyoung 
   3666  1.1    dyoung 	return rar;
   3667  1.1    dyoung }
   3668  1.1    dyoung 
   3669  1.1    dyoung /**
   3670  1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3671  1.1    dyoung  *  @hw: pointer to hardware struct
   3672  1.1    dyoung  *  @rar: receive address register index to disassociate
   3673  1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3674  1.1    dyoung  **/
   3675  1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3676  1.1    dyoung {
   3677  1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3678  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3679  1.1    dyoung 
   3680  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3681  1.1    dyoung 
   3682  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3683  1.1    dyoung 	if (rar >= rar_entries) {
   3684  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3685  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3686  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3687  1.1    dyoung 	}
   3688  1.1    dyoung 
   3689  1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3690  1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3691  1.1    dyoung 
   3692  1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3693  1.8   msaitoh 		goto done;
   3694  1.8   msaitoh 
   3695  1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3696  1.1    dyoung 		goto done;
   3697  1.1    dyoung 
   3698  1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3699  1.1    dyoung 		if (mpsar_lo) {
   3700  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3701  1.1    dyoung 			mpsar_lo = 0;
   3702  1.1    dyoung 		}
   3703  1.1    dyoung 		if (mpsar_hi) {
   3704  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3705  1.1    dyoung 			mpsar_hi = 0;
   3706  1.1    dyoung 		}
   3707  1.1    dyoung 	} else if (vmdq < 32) {
   3708  1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3709  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3710  1.1    dyoung 	} else {
   3711  1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3712  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3713  1.1    dyoung 	}
   3714  1.1    dyoung 
   3715  1.1    dyoung 	/* was that the last pool using this rar? */
   3716  1.1    dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3717  1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3718  1.1    dyoung done:
   3719  1.1    dyoung 	return IXGBE_SUCCESS;
   3720  1.1    dyoung }
   3721  1.1    dyoung 
   3722  1.1    dyoung /**
   3723  1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3724  1.1    dyoung  *  @hw: pointer to hardware struct
   3725  1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3726  1.1    dyoung  *  @vmdq: VMDq pool index
   3727  1.1    dyoung  **/
   3728  1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3729  1.1    dyoung {
   3730  1.1    dyoung 	u32 mpsar;
   3731  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3732  1.1    dyoung 
   3733  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3734  1.1    dyoung 
   3735  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3736  1.1    dyoung 	if (rar >= rar_entries) {
   3737  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3738  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3739  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3740  1.1    dyoung 	}
   3741  1.1    dyoung 
   3742  1.1    dyoung 	if (vmdq < 32) {
   3743  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3744  1.1    dyoung 		mpsar |= 1 << vmdq;
   3745  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3746  1.1    dyoung 	} else {
   3747  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3748  1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3749  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3750  1.1    dyoung 	}
   3751  1.1    dyoung 	return IXGBE_SUCCESS;
   3752  1.1    dyoung }
   3753  1.1    dyoung 
   3754  1.1    dyoung /**
   3755  1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3756  1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3757  1.4   msaitoh  *  VFs advertized and not 0.
   3758  1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3759  1.4   msaitoh  *
   3760  1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3761  1.4   msaitoh  *  @hw: pointer to hardware struct
   3762  1.4   msaitoh  *  @vmdq: VMDq pool index
   3763  1.4   msaitoh  **/
   3764  1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3765  1.4   msaitoh {
   3766  1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3767  1.4   msaitoh 
   3768  1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3769  1.4   msaitoh 
   3770  1.4   msaitoh 	if (vmdq < 32) {
   3771  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3772  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3773  1.4   msaitoh 	} else {
   3774  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3775  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3776  1.4   msaitoh 	}
   3777  1.4   msaitoh 
   3778  1.4   msaitoh 	return IXGBE_SUCCESS;
   3779  1.4   msaitoh }
   3780  1.4   msaitoh 
   3781  1.4   msaitoh /**
   3782  1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3783  1.1    dyoung  *  @hw: pointer to hardware structure
   3784  1.1    dyoung  **/
   3785  1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3786  1.1    dyoung {
   3787  1.1    dyoung 	int i;
   3788  1.1    dyoung 
   3789  1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3790  1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3791  1.1    dyoung 
   3792  1.1    dyoung 	for (i = 0; i < 128; i++)
   3793  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3794  1.1    dyoung 
   3795  1.1    dyoung 	return IXGBE_SUCCESS;
   3796  1.1    dyoung }
   3797  1.1    dyoung 
   3798  1.1    dyoung /**
   3799  1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3800  1.1    dyoung  *  @hw: pointer to hardware structure
   3801  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3802  1.1    dyoung  *
   3803  1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3804  1.1    dyoung  *
   3805  1.1    dyoung  **/
   3806  1.1    dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3807  1.1    dyoung {
   3808  1.1    dyoung 	u32 bits = 0;
   3809  1.1    dyoung 	u32 first_empty_slot = 0;
   3810  1.1    dyoung 	s32 regindex;
   3811  1.1    dyoung 
   3812  1.1    dyoung 	/* short cut the special case */
   3813  1.1    dyoung 	if (vlan == 0)
   3814  1.1    dyoung 		return 0;
   3815  1.1    dyoung 
   3816  1.1    dyoung 	/*
   3817  1.1    dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3818  1.1    dyoung 	  * slot found along the way
   3819  1.1    dyoung 	  */
   3820  1.1    dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3821  1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3822  1.1    dyoung 		if (!bits && !(first_empty_slot))
   3823  1.1    dyoung 			first_empty_slot = regindex;
   3824  1.1    dyoung 		else if ((bits & 0x0FFF) == vlan)
   3825  1.1    dyoung 			break;
   3826  1.1    dyoung 	}
   3827  1.1    dyoung 
   3828  1.1    dyoung 	/*
   3829  1.1    dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3830  1.1    dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3831  1.1    dyoung 	  * vlan id.
   3832  1.1    dyoung 	  */
   3833  1.1    dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3834  1.1    dyoung 		if (first_empty_slot)
   3835  1.1    dyoung 			regindex = first_empty_slot;
   3836  1.1    dyoung 		else {
   3837  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3838  1.6   msaitoh 				     "No space in VLVF.\n");
   3839  1.1    dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3840  1.1    dyoung 		}
   3841  1.1    dyoung 	}
   3842  1.1    dyoung 
   3843  1.1    dyoung 	return regindex;
   3844  1.1    dyoung }
   3845  1.1    dyoung 
   3846  1.1    dyoung /**
   3847  1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3848  1.1    dyoung  *  @hw: pointer to hardware structure
   3849  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3850  1.1    dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3851  1.1    dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3852  1.1    dyoung  *
   3853  1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3854  1.1    dyoung  **/
   3855  1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3856  1.3   msaitoh 			   bool vlan_on)
   3857  1.1    dyoung {
   3858  1.1    dyoung 	s32 regindex;
   3859  1.1    dyoung 	u32 bitindex;
   3860  1.1    dyoung 	u32 vfta;
   3861  1.1    dyoung 	u32 targetbit;
   3862  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3863  1.1    dyoung 	bool vfta_changed = FALSE;
   3864  1.1    dyoung 
   3865  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3866  1.1    dyoung 
   3867  1.1    dyoung 	if (vlan > 4095)
   3868  1.1    dyoung 		return IXGBE_ERR_PARAM;
   3869  1.1    dyoung 
   3870  1.1    dyoung 	/*
   3871  1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3872  1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3873  1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3874  1.1    dyoung 	 */
   3875  1.1    dyoung 
   3876  1.1    dyoung 	/* Part 1
   3877  1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3878  1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3879  1.1    dyoung 	 *    bits[11-5]: which register
   3880  1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3881  1.1    dyoung 	 */
   3882  1.1    dyoung 	regindex = (vlan >> 5) & 0x7F;
   3883  1.1    dyoung 	bitindex = vlan & 0x1F;
   3884  1.1    dyoung 	targetbit = (1 << bitindex);
   3885  1.1    dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3886  1.1    dyoung 
   3887  1.1    dyoung 	if (vlan_on) {
   3888  1.1    dyoung 		if (!(vfta & targetbit)) {
   3889  1.1    dyoung 			vfta |= targetbit;
   3890  1.1    dyoung 			vfta_changed = TRUE;
   3891  1.1    dyoung 		}
   3892  1.1    dyoung 	} else {
   3893  1.1    dyoung 		if ((vfta & targetbit)) {
   3894  1.1    dyoung 			vfta &= ~targetbit;
   3895  1.1    dyoung 			vfta_changed = TRUE;
   3896  1.1    dyoung 		}
   3897  1.1    dyoung 	}
   3898  1.1    dyoung 
   3899  1.1    dyoung 	/* Part 2
   3900  1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3901  1.3   msaitoh 	 */
   3902  1.3   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3903  1.3   msaitoh 					 &vfta_changed);
   3904  1.3   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3905  1.3   msaitoh 		return ret_val;
   3906  1.3   msaitoh 
   3907  1.3   msaitoh 	if (vfta_changed)
   3908  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3909  1.3   msaitoh 
   3910  1.3   msaitoh 	return IXGBE_SUCCESS;
   3911  1.3   msaitoh }
   3912  1.3   msaitoh 
   3913  1.3   msaitoh /**
   3914  1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3915  1.3   msaitoh  *  @hw: pointer to hardware structure
   3916  1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3917  1.3   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3918  1.3   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3919  1.3   msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3920  1.3   msaitoh  *                 should be changed
   3921  1.3   msaitoh  *
   3922  1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   3923  1.3   msaitoh  **/
   3924  1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3925  1.3   msaitoh 			    bool vlan_on, bool *vfta_changed)
   3926  1.3   msaitoh {
   3927  1.3   msaitoh 	u32 vt;
   3928  1.3   msaitoh 
   3929  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3930  1.3   msaitoh 
   3931  1.3   msaitoh 	if (vlan > 4095)
   3932  1.3   msaitoh 		return IXGBE_ERR_PARAM;
   3933  1.3   msaitoh 
   3934  1.3   msaitoh 	/* If VT Mode is set
   3935  1.1    dyoung 	 *   Either vlan_on
   3936  1.1    dyoung 	 *     make sure the vlan is in VLVF
   3937  1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   3938  1.1    dyoung 	 *   Or !vlan_on
   3939  1.1    dyoung 	 *     clear the pool bit and possibly the vind
   3940  1.1    dyoung 	 */
   3941  1.1    dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3942  1.1    dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3943  1.1    dyoung 		s32 vlvf_index;
   3944  1.3   msaitoh 		u32 bits;
   3945  1.1    dyoung 
   3946  1.1    dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3947  1.1    dyoung 		if (vlvf_index < 0)
   3948  1.1    dyoung 			return vlvf_index;
   3949  1.1    dyoung 
   3950  1.1    dyoung 		if (vlan_on) {
   3951  1.1    dyoung 			/* set the pool bit */
   3952  1.1    dyoung 			if (vind < 32) {
   3953  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3954  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3955  1.1    dyoung 				bits |= (1 << vind);
   3956  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3957  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3958  1.1    dyoung 						bits);
   3959  1.1    dyoung 			} else {
   3960  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3961  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3962  1.3   msaitoh 				bits |= (1 << (vind - 32));
   3963  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3964  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3965  1.3   msaitoh 					bits);
   3966  1.1    dyoung 			}
   3967  1.1    dyoung 		} else {
   3968  1.1    dyoung 			/* clear the pool bit */
   3969  1.1    dyoung 			if (vind < 32) {
   3970  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3971  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3972  1.1    dyoung 				bits &= ~(1 << vind);
   3973  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3974  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3975  1.1    dyoung 						bits);
   3976  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3977  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3978  1.1    dyoung 			} else {
   3979  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3980  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3981  1.3   msaitoh 				bits &= ~(1 << (vind - 32));
   3982  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3983  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3984  1.3   msaitoh 					bits);
   3985  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3986  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3987  1.1    dyoung 			}
   3988  1.1    dyoung 		}
   3989  1.1    dyoung 
   3990  1.1    dyoung 		/*
   3991  1.1    dyoung 		 * If there are still bits set in the VLVFB registers
   3992  1.1    dyoung 		 * for the VLAN ID indicated we need to see if the
   3993  1.1    dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3994  1.1    dyoung 		 * If the caller has requested that we clear the VFTA
   3995  1.1    dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3996  1.1    dyoung 		 * ID entry then ignore the request.  We're not worried
   3997  1.1    dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3998  1.1    dyoung 		 * entry bit on, only when requested to turn it off as
   3999  1.1    dyoung 		 * there may be multiple pools and/or VFs using the
   4000  1.1    dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   4001  1.1    dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   4002  1.1    dyoung 		 * been cleared.  This will be indicated by "bits" being
   4003  1.1    dyoung 		 * zero.
   4004  1.1    dyoung 		 */
   4005  1.1    dyoung 		if (bits) {
   4006  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   4007  1.1    dyoung 					(IXGBE_VLVF_VIEN | vlan));
   4008  1.3   msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   4009  1.1    dyoung 				/* someone wants to clear the vfta entry
   4010  1.1    dyoung 				 * but some pools/VFs are still using it.
   4011  1.1    dyoung 				 * Ignore it. */
   4012  1.3   msaitoh 				*vfta_changed = FALSE;
   4013  1.1    dyoung 			}
   4014  1.3   msaitoh 		} else
   4015  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4016  1.1    dyoung 	}
   4017  1.1    dyoung 
   4018  1.1    dyoung 	return IXGBE_SUCCESS;
   4019  1.1    dyoung }
   4020  1.1    dyoung 
   4021  1.1    dyoung /**
   4022  1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4023  1.1    dyoung  *  @hw: pointer to hardware structure
   4024  1.1    dyoung  *
   4025  1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4026  1.1    dyoung  **/
   4027  1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4028  1.1    dyoung {
   4029  1.1    dyoung 	u32 offset;
   4030  1.1    dyoung 
   4031  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4032  1.1    dyoung 
   4033  1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4034  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4035  1.1    dyoung 
   4036  1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4037  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4038  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4039  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4040  1.1    dyoung 	}
   4041  1.1    dyoung 
   4042  1.1    dyoung 	return IXGBE_SUCCESS;
   4043  1.1    dyoung }
   4044  1.1    dyoung 
   4045  1.1    dyoung /**
   4046  1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4047  1.1    dyoung  *  @hw: pointer to hardware structure
   4048  1.1    dyoung  *  @speed: pointer to link speed
   4049  1.1    dyoung  *  @link_up: TRUE when link is up
   4050  1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4051  1.1    dyoung  *
   4052  1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4053  1.1    dyoung  **/
   4054  1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4055  1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4056  1.1    dyoung {
   4057  1.1    dyoung 	u32 links_reg, links_orig;
   4058  1.1    dyoung 	u32 i;
   4059  1.1    dyoung 
   4060  1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4061  1.1    dyoung 
   4062  1.1    dyoung 	/* clear the old state */
   4063  1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4064  1.1    dyoung 
   4065  1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4066  1.1    dyoung 
   4067  1.1    dyoung 	if (links_orig != links_reg) {
   4068  1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4069  1.3   msaitoh 			  links_orig, links_reg);
   4070  1.1    dyoung 	}
   4071  1.1    dyoung 
   4072  1.1    dyoung 	if (link_up_wait_to_complete) {
   4073  1.1    dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   4074  1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4075  1.1    dyoung 				*link_up = TRUE;
   4076  1.1    dyoung 				break;
   4077  1.1    dyoung 			} else {
   4078  1.1    dyoung 				*link_up = FALSE;
   4079  1.1    dyoung 			}
   4080  1.1    dyoung 			msec_delay(100);
   4081  1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4082  1.1    dyoung 		}
   4083  1.1    dyoung 	} else {
   4084  1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4085  1.1    dyoung 			*link_up = TRUE;
   4086  1.1    dyoung 		else
   4087  1.1    dyoung 			*link_up = FALSE;
   4088  1.1    dyoung 	}
   4089  1.1    dyoung 
   4090  1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4091  1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4092  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4093  1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4094  1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4095  1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4096  1.8   msaitoh 		}
   4097  1.8   msaitoh 		break;
   4098  1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4099  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4100  1.8   msaitoh 		break;
   4101  1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4102  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4103  1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4104  1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4105  1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4106  1.8   msaitoh 		}
   4107  1.8   msaitoh 		break;
   4108  1.8   msaitoh 	default:
   4109  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4110  1.8   msaitoh 	}
   4111  1.1    dyoung 
   4112  1.1    dyoung 	return IXGBE_SUCCESS;
   4113  1.1    dyoung }
   4114  1.1    dyoung 
   4115  1.1    dyoung /**
   4116  1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4117  1.1    dyoung  *  the EEPROM
   4118  1.1    dyoung  *  @hw: pointer to hardware structure
   4119  1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4120  1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4121  1.1    dyoung  *
   4122  1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4123  1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4124  1.1    dyoung  **/
   4125  1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4126  1.3   msaitoh 				 u16 *wwpn_prefix)
   4127  1.1    dyoung {
   4128  1.1    dyoung 	u16 offset, caps;
   4129  1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4130  1.1    dyoung 
   4131  1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4132  1.1    dyoung 
   4133  1.1    dyoung 	/* clear output first */
   4134  1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4135  1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4136  1.1    dyoung 
   4137  1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4138  1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4139  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4140  1.6   msaitoh 		goto wwn_prefix_err;
   4141  1.1    dyoung 
   4142  1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4143  1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4144  1.1    dyoung 		goto wwn_prefix_out;
   4145  1.1    dyoung 
   4146  1.1    dyoung 	/* check capability in alternative san mac address block */
   4147  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4148  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4149  1.6   msaitoh 		goto wwn_prefix_err;
   4150  1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4151  1.1    dyoung 		goto wwn_prefix_out;
   4152  1.1    dyoung 
   4153  1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4154  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4155  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4156  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4157  1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4158  1.6   msaitoh 	}
   4159  1.1    dyoung 
   4160  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4161  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4162  1.6   msaitoh 		goto wwn_prefix_err;
   4163  1.1    dyoung 
   4164  1.1    dyoung wwn_prefix_out:
   4165  1.1    dyoung 	return IXGBE_SUCCESS;
   4166  1.6   msaitoh 
   4167  1.6   msaitoh wwn_prefix_err:
   4168  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4169  1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4170  1.6   msaitoh 	return IXGBE_SUCCESS;
   4171  1.1    dyoung }
   4172  1.1    dyoung 
   4173  1.1    dyoung /**
   4174  1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4175  1.1    dyoung  *  @hw: pointer to hardware structure
   4176  1.1    dyoung  *  @bs: the fcoe boot status
   4177  1.1    dyoung  *
   4178  1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4179  1.1    dyoung  **/
   4180  1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4181  1.1    dyoung {
   4182  1.1    dyoung 	u16 offset, caps, flags;
   4183  1.1    dyoung 	s32 status;
   4184  1.1    dyoung 
   4185  1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4186  1.1    dyoung 
   4187  1.1    dyoung 	/* clear output first */
   4188  1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4189  1.1    dyoung 
   4190  1.1    dyoung 	/* check if FCOE IBA block is present */
   4191  1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4192  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4193  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4194  1.1    dyoung 		goto out;
   4195  1.1    dyoung 
   4196  1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4197  1.1    dyoung 		goto out;
   4198  1.1    dyoung 
   4199  1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4200  1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4201  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4202  1.1    dyoung 		goto out;
   4203  1.1    dyoung 
   4204  1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4205  1.1    dyoung 		goto out;
   4206  1.1    dyoung 
   4207  1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4208  1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4209  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4210  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4211  1.1    dyoung 		goto out;
   4212  1.1    dyoung 
   4213  1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4214  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4215  1.1    dyoung 	else
   4216  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4217  1.1    dyoung 
   4218  1.1    dyoung out:
   4219  1.1    dyoung 	return status;
   4220  1.1    dyoung }
   4221  1.1    dyoung 
   4222  1.1    dyoung /**
   4223  1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4224  1.1    dyoung  *  @hw: pointer to hardware structure
   4225  1.1    dyoung  *  @enable: enable or disable switch for anti-spoofing
   4226  1.1    dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4227  1.1    dyoung  *
   4228  1.1    dyoung  **/
   4229  1.1    dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4230  1.1    dyoung {
   4231  1.1    dyoung 	int j;
   4232  1.1    dyoung 	int pf_target_reg = pf >> 3;
   4233  1.1    dyoung 	int pf_target_shift = pf % 8;
   4234  1.1    dyoung 	u32 pfvfspoof = 0;
   4235  1.1    dyoung 
   4236  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4237  1.1    dyoung 		return;
   4238  1.1    dyoung 
   4239  1.1    dyoung 	if (enable)
   4240  1.1    dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4241  1.1    dyoung 
   4242  1.1    dyoung 	/*
   4243  1.1    dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4244  1.1    dyoung 	 * MAC anti-spoof enables in each register array element.
   4245  1.1    dyoung 	 */
   4246  1.4   msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4247  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4248  1.1    dyoung 
   4249  1.4   msaitoh 	/*
   4250  1.4   msaitoh 	 * The PF should be allowed to spoof so that it can support
   4251  1.4   msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4252  1.4   msaitoh 	 */
   4253  1.4   msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4254  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4255  1.1    dyoung 
   4256  1.1    dyoung 	/*
   4257  1.4   msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4258  1.4   msaitoh 	 * anti-spoofing enabled.
   4259  1.1    dyoung 	 */
   4260  1.4   msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4261  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4262  1.1    dyoung }
   4263  1.1    dyoung 
   4264  1.1    dyoung /**
   4265  1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4266  1.1    dyoung  *  @hw: pointer to hardware structure
   4267  1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4268  1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4269  1.1    dyoung  *
   4270  1.1    dyoung  **/
   4271  1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4272  1.1    dyoung {
   4273  1.1    dyoung 	int vf_target_reg = vf >> 3;
   4274  1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4275  1.1    dyoung 	u32 pfvfspoof;
   4276  1.1    dyoung 
   4277  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4278  1.1    dyoung 		return;
   4279  1.1    dyoung 
   4280  1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4281  1.1    dyoung 	if (enable)
   4282  1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4283  1.1    dyoung 	else
   4284  1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4285  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4286  1.1    dyoung }
   4287  1.1    dyoung 
   4288  1.1    dyoung /**
   4289  1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4290  1.1    dyoung  *  @hw: pointer to hardware structure
   4291  1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4292  1.1    dyoung  *
   4293  1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4294  1.1    dyoung  *  and return the word through device_caps.
   4295  1.1    dyoung  **/
   4296  1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4297  1.1    dyoung {
   4298  1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4299  1.1    dyoung 
   4300  1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4301  1.1    dyoung 
   4302  1.1    dyoung 	return IXGBE_SUCCESS;
   4303  1.1    dyoung }
   4304  1.1    dyoung 
   4305  1.1    dyoung /**
   4306  1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4307  1.1    dyoung  *  @hw: pointer to hardware structure
   4308  1.1    dyoung  *
   4309  1.1    dyoung  **/
   4310  1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4311  1.1    dyoung {
   4312  1.1    dyoung 	u32 regval;
   4313  1.1    dyoung 	u32 i;
   4314  1.1    dyoung 
   4315  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4316  1.1    dyoung 
   4317  1.1    dyoung 	/* Enable relaxed ordering */
   4318  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4319  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4320  1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4321  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4322  1.1    dyoung 	}
   4323  1.1    dyoung 
   4324  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4325  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4326  1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4327  1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4328  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4329  1.1    dyoung 	}
   4330  1.1    dyoung 
   4331  1.1    dyoung }
   4332  1.3   msaitoh 
   4333  1.3   msaitoh /**
   4334  1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4335  1.3   msaitoh  *  @buffer: pointer to EEPROM
   4336  1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4337  1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4338  1.3   msaitoh  *  checksum calculated is returned.
   4339  1.3   msaitoh  **/
   4340  1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4341  1.3   msaitoh {
   4342  1.3   msaitoh 	u32 i;
   4343  1.3   msaitoh 	u8 sum = 0;
   4344  1.3   msaitoh 
   4345  1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4346  1.3   msaitoh 
   4347  1.3   msaitoh 	if (!buffer)
   4348  1.3   msaitoh 		return 0;
   4349  1.3   msaitoh 
   4350  1.3   msaitoh 	for (i = 0; i < length; i++)
   4351  1.3   msaitoh 		sum += buffer[i];
   4352  1.3   msaitoh 
   4353  1.3   msaitoh 	return (u8) (0 - sum);
   4354  1.3   msaitoh }
   4355  1.3   msaitoh 
   4356  1.3   msaitoh /**
   4357  1.3   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4358  1.3   msaitoh  *  @hw: pointer to the HW structure
   4359  1.3   msaitoh  *  @buffer: contains the command to write and where the return status will
   4360  1.3   msaitoh  *   be placed
   4361  1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4362  1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4363  1.8   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4364  1.8   msaitoh  *   Needed because FW structures are big endian and decoding of
   4365  1.8   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4366  1.8   msaitoh  *   is not easily understood without making a table of commands.
   4367  1.8   msaitoh  *   So we will leave this up to the caller to read back the data
   4368  1.8   msaitoh  *   in these cases.
   4369  1.3   msaitoh  *
   4370  1.3   msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4371  1.3   msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4372  1.3   msaitoh  **/
   4373  1.5   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4374  1.8   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4375  1.3   msaitoh {
   4376  1.8   msaitoh 	u32 hicr, i, bi, fwsts;
   4377  1.3   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4378  1.8   msaitoh 	u16 buf_len;
   4379  1.8   msaitoh 	u16 dword_len;
   4380  1.3   msaitoh 
   4381  1.3   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4382  1.3   msaitoh 
   4383  1.8   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4384  1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4385  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4386  1.8   msaitoh 	}
   4387  1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4388  1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4389  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4390  1.3   msaitoh 
   4391  1.3   msaitoh 	/* Check that the host interface is enabled. */
   4392  1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4393  1.3   msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4394  1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4395  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4396  1.8   msaitoh 	}
   4397  1.8   msaitoh 
   4398  1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4399  1.8   msaitoh 	if ((length % (sizeof(u32))) != 0) {
   4400  1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4401  1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4402  1.3   msaitoh 	}
   4403  1.3   msaitoh 
   4404  1.3   msaitoh 	dword_len = length >> 2;
   4405  1.3   msaitoh 
   4406  1.8   msaitoh 	/* The device driver writes the relevant command block
   4407  1.3   msaitoh 	 * into the ram area.
   4408  1.3   msaitoh 	 */
   4409  1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4410  1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4411  1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4412  1.3   msaitoh 
   4413  1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4414  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4415  1.3   msaitoh 
   4416  1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4417  1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4418  1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4419  1.3   msaitoh 			break;
   4420  1.3   msaitoh 		msec_delay(1);
   4421  1.3   msaitoh 	}
   4422  1.3   msaitoh 
   4423  1.8   msaitoh 	/* Check command completion */
   4424  1.8   msaitoh 	if ((timeout != 0 && i == timeout) ||
   4425  1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4426  1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4427  1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4428  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4429  1.3   msaitoh 	}
   4430  1.3   msaitoh 
   4431  1.8   msaitoh 	if (!return_data)
   4432  1.8   msaitoh 		return 0;
   4433  1.8   msaitoh 
   4434  1.3   msaitoh 	/* Calculate length in DWORDs */
   4435  1.3   msaitoh 	dword_len = hdr_size >> 2;
   4436  1.3   msaitoh 
   4437  1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4438  1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4439  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4440  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4441  1.3   msaitoh 	}
   4442  1.3   msaitoh 
   4443  1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4444  1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4445  1.3   msaitoh 	if (buf_len == 0)
   4446  1.8   msaitoh 		return 0;
   4447  1.3   msaitoh 
   4448  1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4449  1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4450  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4451  1.3   msaitoh 	}
   4452  1.3   msaitoh 
   4453  1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4454  1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4455  1.3   msaitoh 
   4456  1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4457  1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4458  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4459  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4460  1.3   msaitoh 	}
   4461  1.3   msaitoh 
   4462  1.8   msaitoh 	return 0;
   4463  1.3   msaitoh }
   4464  1.3   msaitoh 
   4465  1.3   msaitoh /**
   4466  1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4467  1.3   msaitoh  *  @hw: pointer to the HW structure
   4468  1.3   msaitoh  *  @maj: driver version major number
   4469  1.7  riastrad  *  @minr: driver version minor number
   4470  1.3   msaitoh  *  @build: driver version build number
   4471  1.3   msaitoh  *  @sub: driver version sub build number
   4472  1.3   msaitoh  *
   4473  1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4474  1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4475  1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4476  1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4477  1.3   msaitoh  **/
   4478  1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4479  1.3   msaitoh 				 u8 build, u8 sub)
   4480  1.3   msaitoh {
   4481  1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4482  1.3   msaitoh 	int i;
   4483  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4484  1.3   msaitoh 
   4485  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4486  1.3   msaitoh 
   4487  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4488  1.3   msaitoh 	    != IXGBE_SUCCESS) {
   4489  1.3   msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4490  1.3   msaitoh 		goto out;
   4491  1.3   msaitoh 	}
   4492  1.3   msaitoh 
   4493  1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4494  1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4495  1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4496  1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4497  1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4498  1.7  riastrad 	fw_cmd.ver_min = minr;
   4499  1.3   msaitoh 	fw_cmd.ver_build = build;
   4500  1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4501  1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4502  1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4503  1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4504  1.3   msaitoh 	fw_cmd.pad = 0;
   4505  1.3   msaitoh 	fw_cmd.pad2 = 0;
   4506  1.3   msaitoh 
   4507  1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4508  1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4509  1.8   msaitoh 						       sizeof(fw_cmd),
   4510  1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4511  1.8   msaitoh 						       TRUE);
   4512  1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4513  1.3   msaitoh 			continue;
   4514  1.3   msaitoh 
   4515  1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4516  1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4517  1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4518  1.3   msaitoh 		else
   4519  1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4520  1.3   msaitoh 
   4521  1.3   msaitoh 		break;
   4522  1.3   msaitoh 	}
   4523  1.3   msaitoh 
   4524  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4525  1.3   msaitoh out:
   4526  1.3   msaitoh 	return ret_val;
   4527  1.3   msaitoh }
   4528  1.3   msaitoh 
   4529  1.3   msaitoh /**
   4530  1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4531  1.3   msaitoh  * @hw: pointer to hardware structure
   4532  1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4533  1.3   msaitoh  * @headroom: reserve n KB of headroom
   4534  1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4535  1.3   msaitoh  **/
   4536  1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4537  1.3   msaitoh 			     int strategy)
   4538  1.3   msaitoh {
   4539  1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4540  1.3   msaitoh 	int i = 0;
   4541  1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4542  1.3   msaitoh 
   4543  1.3   msaitoh 	/* Reserve headroom */
   4544  1.3   msaitoh 	pbsize -= headroom;
   4545  1.3   msaitoh 
   4546  1.3   msaitoh 	if (!num_pb)
   4547  1.3   msaitoh 		num_pb = 1;
   4548  1.3   msaitoh 
   4549  1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4550  1.3   msaitoh 	 * buffers requested using supplied strategy.
   4551  1.3   msaitoh 	 */
   4552  1.3   msaitoh 	switch (strategy) {
   4553  1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4554  1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4555  1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4556  1.3   msaitoh 		 */
   4557  1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4558  1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4559  1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4560  1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4561  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4562  1.3   msaitoh 		/* Fall through to configure remaining packet buffers */
   4563  1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4564  1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4565  1.3   msaitoh 		for (; i < num_pb; i++)
   4566  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4567  1.3   msaitoh 		break;
   4568  1.3   msaitoh 	default:
   4569  1.3   msaitoh 		break;
   4570  1.3   msaitoh 	}
   4571  1.3   msaitoh 
   4572  1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4573  1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4574  1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4575  1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4576  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4577  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4578  1.3   msaitoh 	}
   4579  1.3   msaitoh 
   4580  1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4581  1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4582  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4583  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4584  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4585  1.3   msaitoh 	}
   4586  1.3   msaitoh }
   4587  1.3   msaitoh 
   4588  1.3   msaitoh /**
   4589  1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4590  1.3   msaitoh  * @hw: pointer to the hardware structure
   4591  1.3   msaitoh  *
   4592  1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4593  1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4594  1.3   msaitoh  * buffers on the system.
   4595  1.3   msaitoh  **/
   4596  1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4597  1.3   msaitoh {
   4598  1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4599  1.8   msaitoh 	u16 value;
   4600  1.3   msaitoh 
   4601  1.3   msaitoh 	/*
   4602  1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4603  1.3   msaitoh 	 * already be clear and as such there is no work to do
   4604  1.3   msaitoh 	 */
   4605  1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4606  1.3   msaitoh 		return;
   4607  1.3   msaitoh 
   4608  1.3   msaitoh 	/*
   4609  1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4610  1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4611  1.3   msaitoh 	 * has already been cleared.
   4612  1.3   msaitoh 	 */
   4613  1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4614  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4615  1.3   msaitoh 
   4616  1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4617  1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4618  1.8   msaitoh 	msec_delay(3);
   4619  1.8   msaitoh 
   4620  1.8   msaitoh 	/*
   4621  1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4622  1.8   msaitoh 	 * transactions pending.
   4623  1.8   msaitoh 	 */
   4624  1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4625  1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4626  1.8   msaitoh 		usec_delay(100);
   4627  1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4628  1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4629  1.8   msaitoh 			goto out;
   4630  1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4631  1.8   msaitoh 			goto out;
   4632  1.8   msaitoh 	}
   4633  1.8   msaitoh 
   4634  1.8   msaitoh out:
   4635  1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4636  1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4637  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4638  1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4639  1.3   msaitoh 
   4640  1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4641  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4642  1.3   msaitoh 	usec_delay(20);
   4643  1.3   msaitoh 
   4644  1.3   msaitoh 	/* restore previous register values */
   4645  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4646  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4647  1.3   msaitoh }
   4648  1.3   msaitoh 
   4649  1.6   msaitoh 
   4650  1.6   msaitoh /**
   4651  1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4652  1.6   msaitoh  * @hw: pointer to hardware structure
   4653  1.6   msaitoh  * @map: pointer to u8 arr for returning map
   4654  1.6   msaitoh  *
   4655  1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   4656  1.6   msaitoh  **/
   4657  1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4658  1.6   msaitoh {
   4659  1.6   msaitoh 	u32 reg, i;
   4660  1.6   msaitoh 
   4661  1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4662  1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4663  1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4664  1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4665  1.6   msaitoh 	return;
   4666  1.6   msaitoh }
   4667  1.8   msaitoh 
   4668  1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4669  1.8   msaitoh {
   4670  1.8   msaitoh 	u32 pfdtxgswc;
   4671  1.8   msaitoh 	u32 rxctrl;
   4672  1.8   msaitoh 
   4673  1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4674  1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4675  1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   4676  1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4677  1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4678  1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4679  1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4680  1.8   msaitoh 				hw->mac.set_lben = TRUE;
   4681  1.8   msaitoh 			} else {
   4682  1.8   msaitoh 				hw->mac.set_lben = FALSE;
   4683  1.8   msaitoh 			}
   4684  1.8   msaitoh 		}
   4685  1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4686  1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4687  1.8   msaitoh 	}
   4688  1.8   msaitoh }
   4689  1.8   msaitoh 
   4690  1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4691  1.8   msaitoh {
   4692  1.8   msaitoh 	u32 pfdtxgswc;
   4693  1.8   msaitoh 	u32 rxctrl;
   4694  1.8   msaitoh 
   4695  1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4696  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4697  1.8   msaitoh 
   4698  1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   4699  1.8   msaitoh 		if (hw->mac.set_lben) {
   4700  1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4701  1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4702  1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4703  1.8   msaitoh 			hw->mac.set_lben = FALSE;
   4704  1.8   msaitoh 		}
   4705  1.8   msaitoh 	}
   4706  1.8   msaitoh }
   4707  1.8   msaitoh 
   4708  1.8   msaitoh /**
   4709  1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   4710  1.8   msaitoh  * @hw: pointer to hardware structure
   4711  1.8   msaitoh  */
   4712  1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4713  1.8   msaitoh {
   4714  1.8   msaitoh 	u32 fwsm;
   4715  1.8   msaitoh 
   4716  1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   4717  1.8   msaitoh 		return FALSE;
   4718  1.8   msaitoh 
   4719  1.8   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4720  1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   4721  1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   4722  1.8   msaitoh }
   4723  1.8   msaitoh 
   4724  1.8   msaitoh /**
   4725  1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   4726  1.8   msaitoh  * @hw: pointer to hardware structure
   4727  1.8   msaitoh  *
   4728  1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   4729  1.8   msaitoh  **/
   4730  1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   4731  1.8   msaitoh {
   4732  1.8   msaitoh 	u32 fwsm, manc, factps;
   4733  1.8   msaitoh 
   4734  1.8   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4735  1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   4736  1.8   msaitoh 		return FALSE;
   4737  1.8   msaitoh 
   4738  1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   4739  1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   4740  1.8   msaitoh 		return FALSE;
   4741  1.8   msaitoh 
   4742  1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   4743  1.8   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   4744  1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   4745  1.8   msaitoh 			return FALSE;
   4746  1.8   msaitoh 	}
   4747  1.8   msaitoh 
   4748  1.8   msaitoh 	return TRUE;
   4749  1.8   msaitoh }
   4750  1.8   msaitoh 
   4751  1.8   msaitoh /**
   4752  1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4753  1.8   msaitoh  *  @hw: pointer to hardware structure
   4754  1.8   msaitoh  *  @speed: new link speed
   4755  1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   4756  1.8   msaitoh  *
   4757  1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   4758  1.8   msaitoh  **/
   4759  1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4760  1.8   msaitoh 					  ixgbe_link_speed speed,
   4761  1.8   msaitoh 					  bool autoneg_wait_to_complete)
   4762  1.8   msaitoh {
   4763  1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4764  1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4765  1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   4766  1.8   msaitoh 	u32 speedcnt = 0;
   4767  1.8   msaitoh 	u32 i = 0;
   4768  1.8   msaitoh 	bool autoneg, link_up = FALSE;
   4769  1.8   msaitoh 
   4770  1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   4771  1.8   msaitoh 
   4772  1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   4773  1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   4774  1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   4775  1.8   msaitoh 		return status;
   4776  1.8   msaitoh 
   4777  1.8   msaitoh 	speed &= link_speed;
   4778  1.8   msaitoh 
   4779  1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   4780  1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4781  1.8   msaitoh 	 */
   4782  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4783  1.8   msaitoh 		speedcnt++;
   4784  1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4785  1.8   msaitoh 
   4786  1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4787  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4788  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4789  1.8   msaitoh 			return status;
   4790  1.8   msaitoh 
   4791  1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
   4792  1.8   msaitoh 			goto out;
   4793  1.8   msaitoh 
   4794  1.8   msaitoh 		/* Set the module link speed */
   4795  1.8   msaitoh 		switch (hw->phy.media_type) {
   4796  1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4797  1.8   msaitoh 		case ixgbe_media_type_fiber:
   4798  1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4799  1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   4800  1.8   msaitoh 			break;
   4801  1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4802  1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   4803  1.8   msaitoh 			break;
   4804  1.8   msaitoh 		default:
   4805  1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4806  1.8   msaitoh 			break;
   4807  1.8   msaitoh 		}
   4808  1.8   msaitoh 
   4809  1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   4810  1.8   msaitoh 		msec_delay(40);
   4811  1.8   msaitoh 
   4812  1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4813  1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   4814  1.8   msaitoh 					      autoneg_wait_to_complete);
   4815  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4816  1.8   msaitoh 			return status;
   4817  1.8   msaitoh 
   4818  1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4819  1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4820  1.8   msaitoh 
   4821  1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4822  1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4823  1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   4824  1.8   msaitoh 		 */
   4825  1.8   msaitoh 		for (i = 0; i < 5; i++) {
   4826  1.8   msaitoh 			/* Wait for the link partner to also set speed */
   4827  1.8   msaitoh 			msec_delay(100);
   4828  1.8   msaitoh 
   4829  1.8   msaitoh 			/* If we have link, just jump out */
   4830  1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   4831  1.8   msaitoh 						  &link_up, FALSE);
   4832  1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   4833  1.8   msaitoh 				return status;
   4834  1.8   msaitoh 
   4835  1.8   msaitoh 			if (link_up)
   4836  1.8   msaitoh 				goto out;
   4837  1.8   msaitoh 		}
   4838  1.8   msaitoh 	}
   4839  1.8   msaitoh 
   4840  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4841  1.8   msaitoh 		speedcnt++;
   4842  1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4843  1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4844  1.8   msaitoh 
   4845  1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4846  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4847  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4848  1.8   msaitoh 			return status;
   4849  1.8   msaitoh 
   4850  1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
   4851  1.8   msaitoh 			goto out;
   4852  1.8   msaitoh 
   4853  1.8   msaitoh 		/* Set the module link speed */
   4854  1.8   msaitoh 		switch (hw->phy.media_type) {
   4855  1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4856  1.8   msaitoh 		case ixgbe_media_type_fiber:
   4857  1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4858  1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   4859  1.8   msaitoh 			break;
   4860  1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4861  1.8   msaitoh 			/* QSFP module automatically detects link speed */
   4862  1.8   msaitoh 			break;
   4863  1.8   msaitoh 		default:
   4864  1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4865  1.8   msaitoh 			break;
   4866  1.8   msaitoh 		}
   4867  1.8   msaitoh 
   4868  1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   4869  1.8   msaitoh 		msec_delay(40);
   4870  1.8   msaitoh 
   4871  1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4872  1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   4873  1.8   msaitoh 					      autoneg_wait_to_complete);
   4874  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4875  1.8   msaitoh 			return status;
   4876  1.8   msaitoh 
   4877  1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4878  1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4879  1.8   msaitoh 
   4880  1.8   msaitoh 		/* Wait for the link partner to also set speed */
   4881  1.8   msaitoh 		msec_delay(100);
   4882  1.8   msaitoh 
   4883  1.8   msaitoh 		/* If we have link, just jump out */
   4884  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4885  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4886  1.8   msaitoh 			return status;
   4887  1.8   msaitoh 
   4888  1.8   msaitoh 		if (link_up)
   4889  1.8   msaitoh 			goto out;
   4890  1.8   msaitoh 	}
   4891  1.8   msaitoh 
   4892  1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   4893  1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   4894  1.8   msaitoh 	 * single highest speed that the user requested.
   4895  1.8   msaitoh 	 */
   4896  1.8   msaitoh 	if (speedcnt > 1)
   4897  1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4898  1.8   msaitoh 						      highest_link_speed,
   4899  1.8   msaitoh 						      autoneg_wait_to_complete);
   4900  1.8   msaitoh 
   4901  1.8   msaitoh out:
   4902  1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   4903  1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   4904  1.8   msaitoh 
   4905  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4906  1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4907  1.8   msaitoh 
   4908  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4909  1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4910  1.8   msaitoh 
   4911  1.8   msaitoh 	return status;
   4912  1.8   msaitoh }
   4913  1.8   msaitoh 
   4914  1.8   msaitoh /**
   4915  1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4916  1.8   msaitoh  *  @hw: pointer to hardware structure
   4917  1.8   msaitoh  *  @speed: link speed to set
   4918  1.8   msaitoh  *
   4919  1.8   msaitoh  *  Set module link speed via the soft rate select.
   4920  1.8   msaitoh  */
   4921  1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4922  1.8   msaitoh 					ixgbe_link_speed speed)
   4923  1.8   msaitoh {
   4924  1.8   msaitoh 	s32 status;
   4925  1.8   msaitoh 	u8 rs, eeprom_data;
   4926  1.8   msaitoh 
   4927  1.8   msaitoh 	switch (speed) {
   4928  1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   4929  1.8   msaitoh 		/* one bit mask same as setting on */
   4930  1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4931  1.8   msaitoh 		break;
   4932  1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   4933  1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4934  1.8   msaitoh 		break;
   4935  1.8   msaitoh 	default:
   4936  1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   4937  1.8   msaitoh 		return;
   4938  1.8   msaitoh 	}
   4939  1.8   msaitoh 
   4940  1.8   msaitoh 	/* Set RS0 */
   4941  1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4942  1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4943  1.8   msaitoh 					   &eeprom_data);
   4944  1.8   msaitoh 	if (status) {
   4945  1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   4946  1.8   msaitoh 		goto out;
   4947  1.8   msaitoh 	}
   4948  1.8   msaitoh 
   4949  1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4950  1.8   msaitoh 
   4951  1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4952  1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4953  1.8   msaitoh 					    eeprom_data);
   4954  1.8   msaitoh 	if (status) {
   4955  1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   4956  1.8   msaitoh 		goto out;
   4957  1.8   msaitoh 	}
   4958  1.8   msaitoh 
   4959  1.8   msaitoh 	/* Set RS1 */
   4960  1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4961  1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4962  1.8   msaitoh 					   &eeprom_data);
   4963  1.8   msaitoh 	if (status) {
   4964  1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   4965  1.8   msaitoh 		goto out;
   4966  1.8   msaitoh 	}
   4967  1.8   msaitoh 
   4968  1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4969  1.8   msaitoh 
   4970  1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4971  1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4972  1.8   msaitoh 					    eeprom_data);
   4973  1.8   msaitoh 	if (status) {
   4974  1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   4975  1.8   msaitoh 		goto out;
   4976  1.8   msaitoh 	}
   4977  1.8   msaitoh out:
   4978  1.8   msaitoh 	return;
   4979  1.8   msaitoh }
   4980