ixgbe_common.c revision 1.8 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.8 msaitoh Copyright (c) 2001-2014, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.8 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 280182 2015-03-17 18:32:28Z jfv $*/
34 1.8 msaitoh /*$NetBSD: ixgbe_common.c,v 1.8 2016/12/01 06:27:18 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
83 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
90 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
93 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
100 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 1.1 dyoung
113 1.1 dyoung /* LEDs */
114 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
115 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
116 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 1.1 dyoung
119 1.1 dyoung /* RAR, Multicast, VLAN */
120 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
121 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 1.1 dyoung mac->ops.insert_mac_addr = NULL;
123 1.1 dyoung mac->ops.set_vmdq = NULL;
124 1.1 dyoung mac->ops.clear_vmdq = NULL;
125 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 1.1 dyoung mac->ops.clear_vfta = NULL;
131 1.1 dyoung mac->ops.set_vfta = NULL;
132 1.3 msaitoh mac->ops.set_vlvf = NULL;
133 1.1 dyoung mac->ops.init_uta_tables = NULL;
134 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 1.1 dyoung
137 1.1 dyoung /* Flow Control */
138 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.6 msaitoh mac->ops.dmac_config = NULL;
146 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
147 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
148 1.1 dyoung
149 1.1 dyoung return IXGBE_SUCCESS;
150 1.1 dyoung }
151 1.1 dyoung
152 1.1 dyoung /**
153 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
154 1.6 msaitoh * of flow control
155 1.6 msaitoh * @hw: pointer to hardware structure
156 1.6 msaitoh *
157 1.6 msaitoh * This function returns TRUE if the device supports flow control
158 1.6 msaitoh * autonegotiation, and FALSE if it does not.
159 1.4 msaitoh *
160 1.4 msaitoh **/
161 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
162 1.4 msaitoh {
163 1.6 msaitoh bool supported = FALSE;
164 1.6 msaitoh ixgbe_link_speed speed;
165 1.6 msaitoh bool link_up;
166 1.4 msaitoh
167 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
168 1.4 msaitoh
169 1.6 msaitoh switch (hw->phy.media_type) {
170 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
171 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
172 1.6 msaitoh case ixgbe_media_type_fiber:
173 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
174 1.6 msaitoh /* if link is down, assume supported */
175 1.6 msaitoh if (link_up)
176 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
177 1.6 msaitoh TRUE : FALSE;
178 1.6 msaitoh else
179 1.6 msaitoh supported = TRUE;
180 1.6 msaitoh break;
181 1.6 msaitoh case ixgbe_media_type_backplane:
182 1.6 msaitoh supported = TRUE;
183 1.6 msaitoh break;
184 1.6 msaitoh case ixgbe_media_type_copper:
185 1.6 msaitoh /* only some copper devices support flow control autoneg */
186 1.6 msaitoh switch (hw->device_id) {
187 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
188 1.6 msaitoh case IXGBE_DEV_ID_X540T:
189 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
190 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
191 1.8 msaitoh case IXGBE_DEV_ID_X550T:
192 1.6 msaitoh supported = TRUE;
193 1.6 msaitoh break;
194 1.6 msaitoh default:
195 1.6 msaitoh supported = FALSE;
196 1.6 msaitoh }
197 1.4 msaitoh default:
198 1.6 msaitoh break;
199 1.4 msaitoh }
200 1.6 msaitoh
201 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
202 1.6 msaitoh "Device %x does not support flow control autoneg",
203 1.6 msaitoh hw->device_id);
204 1.6 msaitoh return supported;
205 1.4 msaitoh }
206 1.4 msaitoh
207 1.4 msaitoh /**
208 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
209 1.4 msaitoh * @hw: pointer to hardware structure
210 1.4 msaitoh *
211 1.4 msaitoh * Called at init time to set up flow control.
212 1.4 msaitoh **/
213 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
214 1.4 msaitoh {
215 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
216 1.4 msaitoh u32 reg = 0, reg_bp = 0;
217 1.4 msaitoh u16 reg_cu = 0;
218 1.8 msaitoh bool locked = FALSE;
219 1.4 msaitoh
220 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
221 1.4 msaitoh
222 1.8 msaitoh /* Validate the requested mode */
223 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
224 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
225 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
226 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
227 1.4 msaitoh goto out;
228 1.4 msaitoh }
229 1.4 msaitoh
230 1.4 msaitoh /*
231 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
232 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
233 1.4 msaitoh */
234 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
235 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
236 1.4 msaitoh
237 1.4 msaitoh /*
238 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
239 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
240 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
241 1.4 msaitoh */
242 1.4 msaitoh switch (hw->phy.media_type) {
243 1.8 msaitoh case ixgbe_media_type_backplane:
244 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
245 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
246 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
247 1.8 msaitoh goto out;
248 1.8 msaitoh
249 1.8 msaitoh /* only backplane uses autoc so fall though */
250 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
251 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
252 1.4 msaitoh case ixgbe_media_type_fiber:
253 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
254 1.8 msaitoh
255 1.4 msaitoh break;
256 1.4 msaitoh case ixgbe_media_type_copper:
257 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
258 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
259 1.4 msaitoh break;
260 1.4 msaitoh default:
261 1.4 msaitoh break;
262 1.4 msaitoh }
263 1.4 msaitoh
264 1.4 msaitoh /*
265 1.4 msaitoh * The possible values of fc.requested_mode are:
266 1.4 msaitoh * 0: Flow control is completely disabled
267 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
268 1.4 msaitoh * but not send pause frames).
269 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
270 1.4 msaitoh * we do not support receiving pause frames).
271 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
272 1.4 msaitoh * other: Invalid.
273 1.4 msaitoh */
274 1.4 msaitoh switch (hw->fc.requested_mode) {
275 1.4 msaitoh case ixgbe_fc_none:
276 1.4 msaitoh /* Flow control completely disabled by software override. */
277 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
278 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
279 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
280 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
281 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
282 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
283 1.4 msaitoh break;
284 1.4 msaitoh case ixgbe_fc_tx_pause:
285 1.4 msaitoh /*
286 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
287 1.4 msaitoh * disabled by software override.
288 1.4 msaitoh */
289 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
290 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
291 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
292 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
293 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
294 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
295 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
296 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
297 1.4 msaitoh }
298 1.4 msaitoh break;
299 1.4 msaitoh case ixgbe_fc_rx_pause:
300 1.4 msaitoh /*
301 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
302 1.4 msaitoh * disabled by software override. Since there really
303 1.4 msaitoh * isn't a way to advertise that we are capable of RX
304 1.4 msaitoh * Pause ONLY, we will advertise that we support both
305 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
306 1.4 msaitoh * through to the fc_full statement. Later, we will
307 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
308 1.4 msaitoh */
309 1.4 msaitoh case ixgbe_fc_full:
310 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
311 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
312 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
313 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
314 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
315 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
316 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
317 1.4 msaitoh break;
318 1.4 msaitoh default:
319 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
320 1.6 msaitoh "Flow control param set incorrectly\n");
321 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
322 1.4 msaitoh goto out;
323 1.4 msaitoh break;
324 1.4 msaitoh }
325 1.4 msaitoh
326 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
327 1.4 msaitoh /*
328 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
329 1.4 msaitoh * the MAC will advertise clause 37 flow control.
330 1.4 msaitoh */
331 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
332 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
333 1.4 msaitoh
334 1.4 msaitoh /* Disable AN timeout */
335 1.4 msaitoh if (hw->fc.strict_ieee)
336 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
337 1.4 msaitoh
338 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
339 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
340 1.4 msaitoh }
341 1.4 msaitoh
342 1.4 msaitoh /*
343 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
344 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
345 1.4 msaitoh *
346 1.4 msaitoh */
347 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
348 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
349 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
350 1.8 msaitoh if (ret_val)
351 1.8 msaitoh goto out;
352 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
353 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
354 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
355 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
356 1.4 msaitoh }
357 1.4 msaitoh
358 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
359 1.4 msaitoh out:
360 1.4 msaitoh return ret_val;
361 1.4 msaitoh }
362 1.4 msaitoh
363 1.4 msaitoh /**
364 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
365 1.1 dyoung * @hw: pointer to hardware structure
366 1.1 dyoung *
367 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
368 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
369 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
370 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
371 1.1 dyoung **/
372 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
373 1.1 dyoung {
374 1.4 msaitoh s32 ret_val;
375 1.1 dyoung u32 ctrl_ext;
376 1.1 dyoung
377 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
378 1.1 dyoung
379 1.1 dyoung /* Set the media type */
380 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
381 1.1 dyoung
382 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
383 1.1 dyoung
384 1.1 dyoung /* Clear the VLAN filter table */
385 1.1 dyoung hw->mac.ops.clear_vfta(hw);
386 1.1 dyoung
387 1.1 dyoung /* Clear statistics registers */
388 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
389 1.1 dyoung
390 1.1 dyoung /* Set No Snoop Disable */
391 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
392 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
393 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
394 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
395 1.1 dyoung
396 1.1 dyoung /* Setup flow control */
397 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
398 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
399 1.4 msaitoh goto out;
400 1.1 dyoung
401 1.1 dyoung /* Clear adapter stopped flag */
402 1.1 dyoung hw->adapter_stopped = FALSE;
403 1.1 dyoung
404 1.4 msaitoh out:
405 1.4 msaitoh return ret_val;
406 1.1 dyoung }
407 1.1 dyoung
408 1.1 dyoung /**
409 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
410 1.1 dyoung * @hw: pointer to hw structure
411 1.1 dyoung *
412 1.1 dyoung * Performs the init sequence common to the second generation
413 1.1 dyoung * of 10 GbE devices.
414 1.1 dyoung * Devices in the second generation:
415 1.1 dyoung * 82599
416 1.1 dyoung * X540
417 1.1 dyoung **/
418 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
419 1.1 dyoung {
420 1.1 dyoung u32 i;
421 1.1 dyoung u32 regval;
422 1.1 dyoung
423 1.1 dyoung /* Clear the rate limiters */
424 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
425 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
427 1.1 dyoung }
428 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
429 1.1 dyoung
430 1.1 dyoung /* Disable relaxed ordering */
431 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
432 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
433 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
434 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
435 1.1 dyoung }
436 1.1 dyoung
437 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
438 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
439 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
440 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
441 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
442 1.1 dyoung }
443 1.1 dyoung
444 1.1 dyoung return IXGBE_SUCCESS;
445 1.1 dyoung }
446 1.1 dyoung
447 1.1 dyoung /**
448 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
449 1.1 dyoung * @hw: pointer to hardware structure
450 1.1 dyoung *
451 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
452 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
453 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
454 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
455 1.1 dyoung * disabled and uninitialized
456 1.1 dyoung **/
457 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
458 1.1 dyoung {
459 1.1 dyoung s32 status;
460 1.1 dyoung
461 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
462 1.1 dyoung
463 1.1 dyoung /* Reset the hardware */
464 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
465 1.1 dyoung
466 1.1 dyoung if (status == IXGBE_SUCCESS) {
467 1.1 dyoung /* Start the HW */
468 1.1 dyoung status = hw->mac.ops.start_hw(hw);
469 1.1 dyoung }
470 1.1 dyoung
471 1.1 dyoung return status;
472 1.1 dyoung }
473 1.1 dyoung
474 1.1 dyoung /**
475 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
476 1.1 dyoung * @hw: pointer to hardware structure
477 1.1 dyoung *
478 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
479 1.1 dyoung * Statistics counters are clear on read.
480 1.1 dyoung **/
481 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
482 1.1 dyoung {
483 1.1 dyoung u16 i = 0;
484 1.1 dyoung
485 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
486 1.1 dyoung
487 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
488 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
489 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
490 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
491 1.1 dyoung for (i = 0; i < 8; i++)
492 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
493 1.1 dyoung
494 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
498 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
499 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
500 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
502 1.1 dyoung } else {
503 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
505 1.1 dyoung }
506 1.1 dyoung
507 1.1 dyoung for (i = 0; i < 8; i++) {
508 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
509 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
510 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
511 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
512 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
513 1.1 dyoung } else {
514 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
516 1.1 dyoung }
517 1.1 dyoung }
518 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
519 1.1 dyoung for (i = 0; i < 8; i++)
520 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
521 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
523 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
524 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
525 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
526 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
535 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
536 1.3 msaitoh for (i = 0; i < 8; i++)
537 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
538 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
557 1.1 dyoung for (i = 0; i < 16; i++) {
558 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
560 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
561 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
566 1.1 dyoung } else {
567 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
569 1.1 dyoung }
570 1.1 dyoung }
571 1.1 dyoung
572 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
573 1.3 msaitoh if (hw->phy.id == 0)
574 1.3 msaitoh ixgbe_identify_phy(hw);
575 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
576 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
577 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
578 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
579 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
580 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
581 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
582 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
583 1.3 msaitoh }
584 1.3 msaitoh
585 1.1 dyoung return IXGBE_SUCCESS;
586 1.1 dyoung }
587 1.1 dyoung
588 1.1 dyoung /**
589 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
590 1.1 dyoung * @hw: pointer to hardware structure
591 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
592 1.1 dyoung * @pba_num_size: part number string buffer length
593 1.1 dyoung *
594 1.1 dyoung * Reads the part number string from the EEPROM.
595 1.1 dyoung **/
596 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
597 1.3 msaitoh u32 pba_num_size)
598 1.1 dyoung {
599 1.1 dyoung s32 ret_val;
600 1.1 dyoung u16 data;
601 1.1 dyoung u16 pba_ptr;
602 1.1 dyoung u16 offset;
603 1.1 dyoung u16 length;
604 1.1 dyoung
605 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
606 1.1 dyoung
607 1.1 dyoung if (pba_num == NULL) {
608 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
609 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
610 1.1 dyoung }
611 1.1 dyoung
612 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
613 1.1 dyoung if (ret_val) {
614 1.1 dyoung DEBUGOUT("NVM Read Error\n");
615 1.1 dyoung return ret_val;
616 1.1 dyoung }
617 1.1 dyoung
618 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
619 1.1 dyoung if (ret_val) {
620 1.1 dyoung DEBUGOUT("NVM Read Error\n");
621 1.1 dyoung return ret_val;
622 1.1 dyoung }
623 1.1 dyoung
624 1.1 dyoung /*
625 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
626 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
627 1.1 dyoung * and we can decode it into an ascii string
628 1.1 dyoung */
629 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
630 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
631 1.1 dyoung
632 1.1 dyoung /* we will need 11 characters to store the PBA */
633 1.1 dyoung if (pba_num_size < 11) {
634 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
635 1.1 dyoung return IXGBE_ERR_NO_SPACE;
636 1.1 dyoung }
637 1.1 dyoung
638 1.1 dyoung /* extract hex string from data and pba_ptr */
639 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
640 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
641 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
642 1.1 dyoung pba_num[3] = data & 0xF;
643 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
644 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
645 1.1 dyoung pba_num[6] = '-';
646 1.1 dyoung pba_num[7] = 0;
647 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
648 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
649 1.1 dyoung
650 1.1 dyoung /* put a null character on the end of our string */
651 1.1 dyoung pba_num[10] = '\0';
652 1.1 dyoung
653 1.1 dyoung /* switch all the data but the '-' to hex char */
654 1.1 dyoung for (offset = 0; offset < 10; offset++) {
655 1.1 dyoung if (pba_num[offset] < 0xA)
656 1.1 dyoung pba_num[offset] += '0';
657 1.1 dyoung else if (pba_num[offset] < 0x10)
658 1.1 dyoung pba_num[offset] += 'A' - 0xA;
659 1.1 dyoung }
660 1.1 dyoung
661 1.1 dyoung return IXGBE_SUCCESS;
662 1.1 dyoung }
663 1.1 dyoung
664 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
665 1.1 dyoung if (ret_val) {
666 1.1 dyoung DEBUGOUT("NVM Read Error\n");
667 1.1 dyoung return ret_val;
668 1.1 dyoung }
669 1.1 dyoung
670 1.1 dyoung if (length == 0xFFFF || length == 0) {
671 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
672 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
673 1.1 dyoung }
674 1.1 dyoung
675 1.1 dyoung /* check if pba_num buffer is big enough */
676 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
677 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
678 1.1 dyoung return IXGBE_ERR_NO_SPACE;
679 1.1 dyoung }
680 1.1 dyoung
681 1.1 dyoung /* trim pba length from start of string */
682 1.1 dyoung pba_ptr++;
683 1.1 dyoung length--;
684 1.1 dyoung
685 1.1 dyoung for (offset = 0; offset < length; offset++) {
686 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
687 1.1 dyoung if (ret_val) {
688 1.1 dyoung DEBUGOUT("NVM Read Error\n");
689 1.1 dyoung return ret_val;
690 1.1 dyoung }
691 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
692 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
693 1.1 dyoung }
694 1.1 dyoung pba_num[offset * 2] = '\0';
695 1.1 dyoung
696 1.1 dyoung return IXGBE_SUCCESS;
697 1.1 dyoung }
698 1.1 dyoung
699 1.1 dyoung /**
700 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
701 1.1 dyoung * @hw: pointer to hardware structure
702 1.1 dyoung * @pba_num: stores the part number from the EEPROM
703 1.1 dyoung *
704 1.1 dyoung * Reads the part number from the EEPROM.
705 1.1 dyoung **/
706 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
707 1.1 dyoung {
708 1.1 dyoung s32 ret_val;
709 1.1 dyoung u16 data;
710 1.1 dyoung
711 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
712 1.1 dyoung
713 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
714 1.1 dyoung if (ret_val) {
715 1.1 dyoung DEBUGOUT("NVM Read Error\n");
716 1.1 dyoung return ret_val;
717 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
718 1.1 dyoung DEBUGOUT("NVM Not supported\n");
719 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
720 1.1 dyoung }
721 1.1 dyoung *pba_num = (u32)(data << 16);
722 1.1 dyoung
723 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
724 1.1 dyoung if (ret_val) {
725 1.1 dyoung DEBUGOUT("NVM Read Error\n");
726 1.1 dyoung return ret_val;
727 1.1 dyoung }
728 1.1 dyoung *pba_num |= data;
729 1.1 dyoung
730 1.1 dyoung return IXGBE_SUCCESS;
731 1.1 dyoung }
732 1.1 dyoung
733 1.1 dyoung /**
734 1.5 msaitoh * ixgbe_read_pba_raw
735 1.5 msaitoh * @hw: pointer to the HW structure
736 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
737 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
738 1.5 msaitoh * @max_pba_block_size: PBA block size limit
739 1.5 msaitoh * @pba: pointer to output PBA structure
740 1.5 msaitoh *
741 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
742 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
743 1.5 msaitoh *
744 1.5 msaitoh **/
745 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
746 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
747 1.5 msaitoh struct ixgbe_pba *pba)
748 1.5 msaitoh {
749 1.5 msaitoh s32 ret_val;
750 1.5 msaitoh u16 pba_block_size;
751 1.5 msaitoh
752 1.5 msaitoh if (pba == NULL)
753 1.5 msaitoh return IXGBE_ERR_PARAM;
754 1.5 msaitoh
755 1.5 msaitoh if (eeprom_buf == NULL) {
756 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
757 1.5 msaitoh &pba->word[0]);
758 1.5 msaitoh if (ret_val)
759 1.5 msaitoh return ret_val;
760 1.5 msaitoh } else {
761 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
762 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
763 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
764 1.5 msaitoh } else {
765 1.5 msaitoh return IXGBE_ERR_PARAM;
766 1.5 msaitoh }
767 1.5 msaitoh }
768 1.5 msaitoh
769 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
770 1.5 msaitoh if (pba->pba_block == NULL)
771 1.5 msaitoh return IXGBE_ERR_PARAM;
772 1.5 msaitoh
773 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
774 1.5 msaitoh eeprom_buf_size,
775 1.5 msaitoh &pba_block_size);
776 1.5 msaitoh if (ret_val)
777 1.5 msaitoh return ret_val;
778 1.5 msaitoh
779 1.5 msaitoh if (pba_block_size > max_pba_block_size)
780 1.5 msaitoh return IXGBE_ERR_PARAM;
781 1.5 msaitoh
782 1.5 msaitoh if (eeprom_buf == NULL) {
783 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
784 1.5 msaitoh pba_block_size,
785 1.5 msaitoh pba->pba_block);
786 1.5 msaitoh if (ret_val)
787 1.5 msaitoh return ret_val;
788 1.5 msaitoh } else {
789 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
790 1.8 msaitoh pba_block_size)) {
791 1.5 msaitoh memcpy(pba->pba_block,
792 1.5 msaitoh &eeprom_buf[pba->word[1]],
793 1.5 msaitoh pba_block_size * sizeof(u16));
794 1.5 msaitoh } else {
795 1.5 msaitoh return IXGBE_ERR_PARAM;
796 1.5 msaitoh }
797 1.5 msaitoh }
798 1.5 msaitoh }
799 1.5 msaitoh
800 1.5 msaitoh return IXGBE_SUCCESS;
801 1.5 msaitoh }
802 1.5 msaitoh
803 1.5 msaitoh /**
804 1.5 msaitoh * ixgbe_write_pba_raw
805 1.5 msaitoh * @hw: pointer to the HW structure
806 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
807 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
808 1.5 msaitoh * @pba: pointer to PBA structure
809 1.5 msaitoh *
810 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
811 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
812 1.5 msaitoh *
813 1.5 msaitoh **/
814 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
815 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
816 1.5 msaitoh {
817 1.5 msaitoh s32 ret_val;
818 1.5 msaitoh
819 1.5 msaitoh if (pba == NULL)
820 1.5 msaitoh return IXGBE_ERR_PARAM;
821 1.5 msaitoh
822 1.5 msaitoh if (eeprom_buf == NULL) {
823 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
824 1.5 msaitoh &pba->word[0]);
825 1.5 msaitoh if (ret_val)
826 1.5 msaitoh return ret_val;
827 1.5 msaitoh } else {
828 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
829 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
830 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
831 1.5 msaitoh } else {
832 1.5 msaitoh return IXGBE_ERR_PARAM;
833 1.5 msaitoh }
834 1.5 msaitoh }
835 1.5 msaitoh
836 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
837 1.5 msaitoh if (pba->pba_block == NULL)
838 1.5 msaitoh return IXGBE_ERR_PARAM;
839 1.5 msaitoh
840 1.5 msaitoh if (eeprom_buf == NULL) {
841 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
842 1.5 msaitoh pba->pba_block[0],
843 1.5 msaitoh pba->pba_block);
844 1.5 msaitoh if (ret_val)
845 1.5 msaitoh return ret_val;
846 1.5 msaitoh } else {
847 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
848 1.5 msaitoh pba->pba_block[0])) {
849 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
850 1.5 msaitoh pba->pba_block,
851 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
852 1.5 msaitoh } else {
853 1.5 msaitoh return IXGBE_ERR_PARAM;
854 1.5 msaitoh }
855 1.5 msaitoh }
856 1.5 msaitoh }
857 1.5 msaitoh
858 1.5 msaitoh return IXGBE_SUCCESS;
859 1.5 msaitoh }
860 1.5 msaitoh
861 1.5 msaitoh /**
862 1.5 msaitoh * ixgbe_get_pba_block_size
863 1.5 msaitoh * @hw: pointer to the HW structure
864 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
865 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
866 1.5 msaitoh * @pba_data_size: pointer to output variable
867 1.5 msaitoh *
868 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
869 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
870 1.5 msaitoh * EEPROM device.
871 1.5 msaitoh *
872 1.5 msaitoh **/
873 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
874 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
875 1.5 msaitoh {
876 1.5 msaitoh s32 ret_val;
877 1.5 msaitoh u16 pba_word[2];
878 1.5 msaitoh u16 length;
879 1.5 msaitoh
880 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
881 1.5 msaitoh
882 1.5 msaitoh if (eeprom_buf == NULL) {
883 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
884 1.5 msaitoh &pba_word[0]);
885 1.5 msaitoh if (ret_val)
886 1.5 msaitoh return ret_val;
887 1.5 msaitoh } else {
888 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
889 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
890 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
891 1.5 msaitoh } else {
892 1.5 msaitoh return IXGBE_ERR_PARAM;
893 1.5 msaitoh }
894 1.5 msaitoh }
895 1.5 msaitoh
896 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
897 1.5 msaitoh if (eeprom_buf == NULL) {
898 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
899 1.5 msaitoh &length);
900 1.5 msaitoh if (ret_val)
901 1.5 msaitoh return ret_val;
902 1.5 msaitoh } else {
903 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
904 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
905 1.5 msaitoh else
906 1.5 msaitoh return IXGBE_ERR_PARAM;
907 1.5 msaitoh }
908 1.5 msaitoh
909 1.5 msaitoh if (length == 0xFFFF || length == 0)
910 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
911 1.5 msaitoh } else {
912 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
913 1.5 msaitoh length = 0;
914 1.5 msaitoh }
915 1.5 msaitoh
916 1.5 msaitoh if (pba_block_size != NULL)
917 1.5 msaitoh *pba_block_size = length;
918 1.5 msaitoh
919 1.5 msaitoh return IXGBE_SUCCESS;
920 1.5 msaitoh }
921 1.5 msaitoh
922 1.5 msaitoh /**
923 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
924 1.1 dyoung * @hw: pointer to hardware structure
925 1.1 dyoung * @mac_addr: Adapter MAC address
926 1.1 dyoung *
927 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
928 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
929 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
930 1.1 dyoung **/
931 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
932 1.1 dyoung {
933 1.1 dyoung u32 rar_high;
934 1.1 dyoung u32 rar_low;
935 1.1 dyoung u16 i;
936 1.1 dyoung
937 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
938 1.1 dyoung
939 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
940 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
941 1.1 dyoung
942 1.1 dyoung for (i = 0; i < 4; i++)
943 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
944 1.1 dyoung
945 1.1 dyoung for (i = 0; i < 2; i++)
946 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
947 1.1 dyoung
948 1.1 dyoung return IXGBE_SUCCESS;
949 1.1 dyoung }
950 1.1 dyoung
951 1.1 dyoung /**
952 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
953 1.1 dyoung * @hw: pointer to hardware structure
954 1.6 msaitoh * @link_status: the link status returned by the PCI config space
955 1.1 dyoung *
956 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
957 1.1 dyoung **/
958 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
959 1.1 dyoung {
960 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
961 1.1 dyoung
962 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
963 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
964 1.1 dyoung
965 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
966 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
967 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
968 1.1 dyoung break;
969 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
970 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
971 1.1 dyoung break;
972 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
973 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
974 1.1 dyoung break;
975 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
976 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
977 1.1 dyoung break;
978 1.1 dyoung default:
979 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
980 1.1 dyoung break;
981 1.1 dyoung }
982 1.1 dyoung
983 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
984 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
985 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
986 1.1 dyoung break;
987 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
988 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
989 1.1 dyoung break;
990 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
991 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
992 1.4 msaitoh break;
993 1.1 dyoung default:
994 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
995 1.1 dyoung break;
996 1.1 dyoung }
997 1.1 dyoung
998 1.1 dyoung mac->ops.set_lan_id(hw);
999 1.6 msaitoh }
1000 1.6 msaitoh
1001 1.6 msaitoh /**
1002 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1003 1.6 msaitoh * @hw: pointer to hardware structure
1004 1.6 msaitoh *
1005 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1006 1.6 msaitoh * store this data within the ixgbe_hw structure.
1007 1.6 msaitoh **/
1008 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1009 1.6 msaitoh {
1010 1.6 msaitoh u16 link_status;
1011 1.6 msaitoh
1012 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1013 1.6 msaitoh
1014 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1015 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1016 1.6 msaitoh
1017 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1018 1.1 dyoung
1019 1.1 dyoung return IXGBE_SUCCESS;
1020 1.1 dyoung }
1021 1.1 dyoung
1022 1.1 dyoung /**
1023 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1024 1.1 dyoung * @hw: pointer to the HW structure
1025 1.1 dyoung *
1026 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1027 1.1 dyoung * and swaps the port value if requested.
1028 1.1 dyoung **/
1029 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1030 1.1 dyoung {
1031 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1032 1.1 dyoung u32 reg;
1033 1.1 dyoung
1034 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1035 1.1 dyoung
1036 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1037 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1038 1.1 dyoung bus->lan_id = bus->func;
1039 1.1 dyoung
1040 1.1 dyoung /* check for a port swap */
1041 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
1042 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1043 1.1 dyoung bus->func ^= 0x1;
1044 1.1 dyoung }
1045 1.1 dyoung
1046 1.1 dyoung /**
1047 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1048 1.1 dyoung * @hw: pointer to hardware structure
1049 1.1 dyoung *
1050 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1051 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1052 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1053 1.1 dyoung * state and should not touch the hardware.
1054 1.1 dyoung **/
1055 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1056 1.1 dyoung {
1057 1.1 dyoung u32 reg_val;
1058 1.1 dyoung u16 i;
1059 1.1 dyoung
1060 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1061 1.1 dyoung
1062 1.1 dyoung /*
1063 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1064 1.1 dyoung * the hardware
1065 1.1 dyoung */
1066 1.1 dyoung hw->adapter_stopped = TRUE;
1067 1.1 dyoung
1068 1.1 dyoung /* Disable the receive unit */
1069 1.8 msaitoh ixgbe_disable_rx(hw);
1070 1.1 dyoung
1071 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1072 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1073 1.1 dyoung
1074 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1075 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1076 1.1 dyoung
1077 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1078 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1079 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1080 1.3 msaitoh
1081 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1082 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1083 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1084 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1085 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1086 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1087 1.1 dyoung }
1088 1.1 dyoung
1089 1.3 msaitoh /* flush all queues disables */
1090 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1091 1.3 msaitoh msec_delay(2);
1092 1.3 msaitoh
1093 1.1 dyoung /*
1094 1.1 dyoung * Prevent the PCI-E bus from from hanging by disabling PCI-E master
1095 1.1 dyoung * access and verify no pending requests
1096 1.1 dyoung */
1097 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1098 1.1 dyoung }
1099 1.1 dyoung
1100 1.1 dyoung /**
1101 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1102 1.1 dyoung * @hw: pointer to hardware structure
1103 1.1 dyoung * @index: led number to turn on
1104 1.1 dyoung **/
1105 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1106 1.1 dyoung {
1107 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1108 1.1 dyoung
1109 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1110 1.1 dyoung
1111 1.1 dyoung /* To turn on the LED, set mode to ON. */
1112 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1113 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1114 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1115 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1116 1.1 dyoung
1117 1.1 dyoung return IXGBE_SUCCESS;
1118 1.1 dyoung }
1119 1.1 dyoung
1120 1.1 dyoung /**
1121 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1122 1.1 dyoung * @hw: pointer to hardware structure
1123 1.1 dyoung * @index: led number to turn off
1124 1.1 dyoung **/
1125 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1126 1.1 dyoung {
1127 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1128 1.1 dyoung
1129 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1130 1.1 dyoung
1131 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1132 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1133 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1134 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1135 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1136 1.1 dyoung
1137 1.1 dyoung return IXGBE_SUCCESS;
1138 1.1 dyoung }
1139 1.1 dyoung
1140 1.1 dyoung /**
1141 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1142 1.1 dyoung * @hw: pointer to hardware structure
1143 1.1 dyoung *
1144 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1145 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1146 1.1 dyoung **/
1147 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1148 1.1 dyoung {
1149 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1150 1.1 dyoung u32 eec;
1151 1.1 dyoung u16 eeprom_size;
1152 1.1 dyoung
1153 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1154 1.1 dyoung
1155 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1156 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1157 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1158 1.1 dyoung * tested value */
1159 1.1 dyoung eeprom->semaphore_delay = 10;
1160 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1161 1.3 msaitoh eeprom->word_page_size = 0;
1162 1.1 dyoung
1163 1.1 dyoung /*
1164 1.1 dyoung * Check for EEPROM present first.
1165 1.1 dyoung * If not present leave as none
1166 1.1 dyoung */
1167 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1168 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1169 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1170 1.1 dyoung
1171 1.1 dyoung /*
1172 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1173 1.1 dyoung * change if a future EEPROM is not SPI.
1174 1.1 dyoung */
1175 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1176 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1177 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1178 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1179 1.1 dyoung }
1180 1.1 dyoung
1181 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1182 1.1 dyoung eeprom->address_bits = 16;
1183 1.1 dyoung else
1184 1.1 dyoung eeprom->address_bits = 8;
1185 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1186 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1187 1.3 msaitoh eeprom->address_bits);
1188 1.1 dyoung }
1189 1.1 dyoung
1190 1.1 dyoung return IXGBE_SUCCESS;
1191 1.1 dyoung }
1192 1.1 dyoung
1193 1.1 dyoung /**
1194 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1195 1.3 msaitoh * @hw: pointer to hardware structure
1196 1.3 msaitoh * @offset: offset within the EEPROM to write
1197 1.3 msaitoh * @words: number of word(s)
1198 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1199 1.3 msaitoh *
1200 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1201 1.3 msaitoh **/
1202 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1203 1.3 msaitoh u16 words, u16 *data)
1204 1.3 msaitoh {
1205 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1206 1.3 msaitoh u16 i, count;
1207 1.3 msaitoh
1208 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1209 1.3 msaitoh
1210 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1211 1.3 msaitoh
1212 1.3 msaitoh if (words == 0) {
1213 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1214 1.3 msaitoh goto out;
1215 1.3 msaitoh }
1216 1.3 msaitoh
1217 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1218 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1219 1.3 msaitoh goto out;
1220 1.3 msaitoh }
1221 1.3 msaitoh
1222 1.3 msaitoh /*
1223 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1224 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1225 1.3 msaitoh */
1226 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1227 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1228 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1229 1.3 msaitoh
1230 1.3 msaitoh /*
1231 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1232 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1233 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1234 1.3 msaitoh */
1235 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1236 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1237 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1238 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1239 1.3 msaitoh count, &data[i]);
1240 1.3 msaitoh
1241 1.3 msaitoh if (status != IXGBE_SUCCESS)
1242 1.3 msaitoh break;
1243 1.3 msaitoh }
1244 1.3 msaitoh
1245 1.3 msaitoh out:
1246 1.3 msaitoh return status;
1247 1.3 msaitoh }
1248 1.3 msaitoh
1249 1.3 msaitoh /**
1250 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1251 1.3 msaitoh * @hw: pointer to hardware structure
1252 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1253 1.3 msaitoh * @words: number of word(s)
1254 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1255 1.3 msaitoh *
1256 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1257 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1258 1.3 msaitoh **/
1259 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1260 1.3 msaitoh u16 words, u16 *data)
1261 1.3 msaitoh {
1262 1.3 msaitoh s32 status;
1263 1.3 msaitoh u16 word;
1264 1.3 msaitoh u16 page_size;
1265 1.3 msaitoh u16 i;
1266 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1267 1.3 msaitoh
1268 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1269 1.3 msaitoh
1270 1.3 msaitoh /* Prepare the EEPROM for writing */
1271 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1272 1.3 msaitoh
1273 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1274 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1275 1.3 msaitoh ixgbe_release_eeprom(hw);
1276 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1277 1.3 msaitoh }
1278 1.3 msaitoh }
1279 1.3 msaitoh
1280 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1281 1.3 msaitoh for (i = 0; i < words; i++) {
1282 1.3 msaitoh ixgbe_standby_eeprom(hw);
1283 1.3 msaitoh
1284 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1285 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1286 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1287 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1288 1.3 msaitoh
1289 1.3 msaitoh ixgbe_standby_eeprom(hw);
1290 1.3 msaitoh
1291 1.3 msaitoh /*
1292 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1293 1.3 msaitoh * in the opcode
1294 1.3 msaitoh */
1295 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1296 1.3 msaitoh ((offset + i) >= 128))
1297 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1298 1.3 msaitoh
1299 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1300 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1301 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1302 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1303 1.3 msaitoh hw->eeprom.address_bits);
1304 1.3 msaitoh
1305 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1306 1.3 msaitoh
1307 1.3 msaitoh /* Send the data in burst via SPI*/
1308 1.3 msaitoh do {
1309 1.3 msaitoh word = data[i];
1310 1.3 msaitoh word = (word >> 8) | (word << 8);
1311 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1312 1.3 msaitoh
1313 1.3 msaitoh if (page_size == 0)
1314 1.3 msaitoh break;
1315 1.3 msaitoh
1316 1.3 msaitoh /* do not wrap around page */
1317 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1318 1.3 msaitoh (page_size - 1))
1319 1.3 msaitoh break;
1320 1.3 msaitoh } while (++i < words);
1321 1.3 msaitoh
1322 1.3 msaitoh ixgbe_standby_eeprom(hw);
1323 1.3 msaitoh msec_delay(10);
1324 1.3 msaitoh }
1325 1.3 msaitoh /* Done with writing - release the EEPROM */
1326 1.3 msaitoh ixgbe_release_eeprom(hw);
1327 1.3 msaitoh }
1328 1.3 msaitoh
1329 1.3 msaitoh return status;
1330 1.3 msaitoh }
1331 1.3 msaitoh
1332 1.3 msaitoh /**
1333 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1334 1.1 dyoung * @hw: pointer to hardware structure
1335 1.1 dyoung * @offset: offset within the EEPROM to be written to
1336 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1337 1.1 dyoung *
1338 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1339 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1340 1.1 dyoung **/
1341 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1342 1.1 dyoung {
1343 1.1 dyoung s32 status;
1344 1.1 dyoung
1345 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1346 1.1 dyoung
1347 1.1 dyoung hw->eeprom.ops.init_params(hw);
1348 1.1 dyoung
1349 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1350 1.1 dyoung status = IXGBE_ERR_EEPROM;
1351 1.1 dyoung goto out;
1352 1.1 dyoung }
1353 1.1 dyoung
1354 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1355 1.3 msaitoh
1356 1.3 msaitoh out:
1357 1.3 msaitoh return status;
1358 1.3 msaitoh }
1359 1.3 msaitoh
1360 1.3 msaitoh /**
1361 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1362 1.3 msaitoh * @hw: pointer to hardware structure
1363 1.3 msaitoh * @offset: offset within the EEPROM to be read
1364 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1365 1.3 msaitoh * @words: number of word(s)
1366 1.3 msaitoh *
1367 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1368 1.3 msaitoh **/
1369 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1370 1.3 msaitoh u16 words, u16 *data)
1371 1.3 msaitoh {
1372 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1373 1.3 msaitoh u16 i, count;
1374 1.3 msaitoh
1375 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1376 1.3 msaitoh
1377 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1378 1.3 msaitoh
1379 1.3 msaitoh if (words == 0) {
1380 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1381 1.3 msaitoh goto out;
1382 1.3 msaitoh }
1383 1.3 msaitoh
1384 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1385 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1386 1.3 msaitoh goto out;
1387 1.3 msaitoh }
1388 1.3 msaitoh
1389 1.3 msaitoh /*
1390 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1391 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1392 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1393 1.3 msaitoh */
1394 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1395 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1396 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1397 1.3 msaitoh
1398 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1399 1.3 msaitoh count, &data[i]);
1400 1.3 msaitoh
1401 1.3 msaitoh if (status != IXGBE_SUCCESS)
1402 1.3 msaitoh break;
1403 1.3 msaitoh }
1404 1.3 msaitoh
1405 1.3 msaitoh out:
1406 1.3 msaitoh return status;
1407 1.3 msaitoh }
1408 1.3 msaitoh
1409 1.3 msaitoh /**
1410 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1411 1.3 msaitoh * @hw: pointer to hardware structure
1412 1.3 msaitoh * @offset: offset within the EEPROM to be read
1413 1.3 msaitoh * @words: number of word(s)
1414 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1415 1.3 msaitoh *
1416 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1417 1.3 msaitoh **/
1418 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1419 1.3 msaitoh u16 words, u16 *data)
1420 1.3 msaitoh {
1421 1.3 msaitoh s32 status;
1422 1.3 msaitoh u16 word_in;
1423 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1424 1.3 msaitoh u16 i;
1425 1.3 msaitoh
1426 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1427 1.3 msaitoh
1428 1.3 msaitoh /* Prepare the EEPROM for reading */
1429 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1430 1.1 dyoung
1431 1.1 dyoung if (status == IXGBE_SUCCESS) {
1432 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1433 1.1 dyoung ixgbe_release_eeprom(hw);
1434 1.1 dyoung status = IXGBE_ERR_EEPROM;
1435 1.1 dyoung }
1436 1.1 dyoung }
1437 1.1 dyoung
1438 1.1 dyoung if (status == IXGBE_SUCCESS) {
1439 1.3 msaitoh for (i = 0; i < words; i++) {
1440 1.3 msaitoh ixgbe_standby_eeprom(hw);
1441 1.3 msaitoh /*
1442 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1443 1.3 msaitoh * in the opcode
1444 1.3 msaitoh */
1445 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1446 1.3 msaitoh ((offset + i) >= 128))
1447 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1448 1.3 msaitoh
1449 1.3 msaitoh /* Send the READ command (opcode + addr) */
1450 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1451 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1452 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1453 1.3 msaitoh hw->eeprom.address_bits);
1454 1.3 msaitoh
1455 1.3 msaitoh /* Read the data. */
1456 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1457 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1458 1.3 msaitoh }
1459 1.1 dyoung
1460 1.3 msaitoh /* End this read operation */
1461 1.1 dyoung ixgbe_release_eeprom(hw);
1462 1.1 dyoung }
1463 1.1 dyoung
1464 1.1 dyoung return status;
1465 1.1 dyoung }
1466 1.1 dyoung
1467 1.1 dyoung /**
1468 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1469 1.1 dyoung * @hw: pointer to hardware structure
1470 1.1 dyoung * @offset: offset within the EEPROM to be read
1471 1.1 dyoung * @data: read 16 bit value from EEPROM
1472 1.1 dyoung *
1473 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1474 1.1 dyoung **/
1475 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1476 1.3 msaitoh u16 *data)
1477 1.1 dyoung {
1478 1.1 dyoung s32 status;
1479 1.1 dyoung
1480 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1481 1.1 dyoung
1482 1.1 dyoung hw->eeprom.ops.init_params(hw);
1483 1.1 dyoung
1484 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1485 1.1 dyoung status = IXGBE_ERR_EEPROM;
1486 1.1 dyoung goto out;
1487 1.1 dyoung }
1488 1.1 dyoung
1489 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1490 1.3 msaitoh
1491 1.3 msaitoh out:
1492 1.3 msaitoh return status;
1493 1.3 msaitoh }
1494 1.3 msaitoh
1495 1.3 msaitoh /**
1496 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1497 1.3 msaitoh * @hw: pointer to hardware structure
1498 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1499 1.3 msaitoh * @words: number of word(s)
1500 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1501 1.3 msaitoh *
1502 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1503 1.3 msaitoh **/
1504 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1505 1.3 msaitoh u16 words, u16 *data)
1506 1.3 msaitoh {
1507 1.3 msaitoh u32 eerd;
1508 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1509 1.3 msaitoh u32 i;
1510 1.3 msaitoh
1511 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1512 1.3 msaitoh
1513 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1514 1.3 msaitoh
1515 1.3 msaitoh if (words == 0) {
1516 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1517 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1518 1.3 msaitoh goto out;
1519 1.3 msaitoh }
1520 1.3 msaitoh
1521 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1522 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1523 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1524 1.3 msaitoh goto out;
1525 1.3 msaitoh }
1526 1.3 msaitoh
1527 1.3 msaitoh for (i = 0; i < words; i++) {
1528 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1529 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1530 1.3 msaitoh
1531 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1532 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1533 1.1 dyoung
1534 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1535 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1536 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1537 1.3 msaitoh } else {
1538 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1539 1.3 msaitoh goto out;
1540 1.1 dyoung }
1541 1.1 dyoung }
1542 1.3 msaitoh out:
1543 1.3 msaitoh return status;
1544 1.3 msaitoh }
1545 1.1 dyoung
1546 1.3 msaitoh /**
1547 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1548 1.3 msaitoh * @hw: pointer to hardware structure
1549 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1550 1.3 msaitoh *
1551 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1552 1.3 msaitoh * This function is called only when we are writing a new large buffer
1553 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1554 1.3 msaitoh **/
1555 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1556 1.3 msaitoh u16 offset)
1557 1.3 msaitoh {
1558 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1559 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1560 1.3 msaitoh u16 i;
1561 1.3 msaitoh
1562 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1563 1.3 msaitoh
1564 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1565 1.3 msaitoh data[i] = i;
1566 1.1 dyoung
1567 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1568 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1569 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1570 1.3 msaitoh hw->eeprom.word_page_size = 0;
1571 1.3 msaitoh if (status != IXGBE_SUCCESS)
1572 1.3 msaitoh goto out;
1573 1.1 dyoung
1574 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1575 1.3 msaitoh if (status != IXGBE_SUCCESS)
1576 1.3 msaitoh goto out;
1577 1.1 dyoung
1578 1.3 msaitoh /*
1579 1.3 msaitoh * When writing in burst more than the actual page size
1580 1.3 msaitoh * EEPROM address wraps around current page.
1581 1.3 msaitoh */
1582 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1583 1.1 dyoung
1584 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1585 1.3 msaitoh hw->eeprom.word_page_size);
1586 1.1 dyoung out:
1587 1.1 dyoung return status;
1588 1.1 dyoung }
1589 1.1 dyoung
1590 1.1 dyoung /**
1591 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1592 1.1 dyoung * @hw: pointer to hardware structure
1593 1.1 dyoung * @offset: offset of word in the EEPROM to read
1594 1.1 dyoung * @data: word read from the EEPROM
1595 1.1 dyoung *
1596 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1597 1.1 dyoung **/
1598 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1599 1.1 dyoung {
1600 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1601 1.3 msaitoh }
1602 1.3 msaitoh
1603 1.3 msaitoh /**
1604 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1605 1.3 msaitoh * @hw: pointer to hardware structure
1606 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1607 1.3 msaitoh * @words: number of word(s)
1608 1.3 msaitoh * @data: word(s) write to the EEPROM
1609 1.3 msaitoh *
1610 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1611 1.3 msaitoh **/
1612 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1613 1.3 msaitoh u16 words, u16 *data)
1614 1.3 msaitoh {
1615 1.3 msaitoh u32 eewr;
1616 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1617 1.3 msaitoh u16 i;
1618 1.1 dyoung
1619 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1620 1.1 dyoung
1621 1.1 dyoung hw->eeprom.ops.init_params(hw);
1622 1.1 dyoung
1623 1.3 msaitoh if (words == 0) {
1624 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1625 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1626 1.3 msaitoh goto out;
1627 1.3 msaitoh }
1628 1.3 msaitoh
1629 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1630 1.1 dyoung status = IXGBE_ERR_EEPROM;
1631 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1632 1.1 dyoung goto out;
1633 1.1 dyoung }
1634 1.1 dyoung
1635 1.3 msaitoh for (i = 0; i < words; i++) {
1636 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1637 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1638 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1639 1.3 msaitoh
1640 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1641 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1642 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1643 1.3 msaitoh goto out;
1644 1.3 msaitoh }
1645 1.1 dyoung
1646 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1647 1.1 dyoung
1648 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1649 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1650 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1651 1.3 msaitoh goto out;
1652 1.3 msaitoh }
1653 1.3 msaitoh }
1654 1.1 dyoung
1655 1.1 dyoung out:
1656 1.1 dyoung return status;
1657 1.1 dyoung }
1658 1.1 dyoung
1659 1.1 dyoung /**
1660 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1661 1.1 dyoung * @hw: pointer to hardware structure
1662 1.1 dyoung * @offset: offset of word in the EEPROM to write
1663 1.1 dyoung * @data: word write to the EEPROM
1664 1.1 dyoung *
1665 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1666 1.1 dyoung **/
1667 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1668 1.1 dyoung {
1669 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1670 1.1 dyoung }
1671 1.1 dyoung
1672 1.1 dyoung /**
1673 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1674 1.1 dyoung * @hw: pointer to hardware structure
1675 1.1 dyoung * @ee_reg: EEPROM flag for polling
1676 1.1 dyoung *
1677 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1678 1.1 dyoung * read or write is done respectively.
1679 1.1 dyoung **/
1680 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1681 1.1 dyoung {
1682 1.1 dyoung u32 i;
1683 1.1 dyoung u32 reg;
1684 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1685 1.1 dyoung
1686 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1687 1.1 dyoung
1688 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1689 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1690 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1691 1.1 dyoung else
1692 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1693 1.1 dyoung
1694 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1695 1.1 dyoung status = IXGBE_SUCCESS;
1696 1.1 dyoung break;
1697 1.1 dyoung }
1698 1.1 dyoung usec_delay(5);
1699 1.1 dyoung }
1700 1.6 msaitoh
1701 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1702 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1703 1.6 msaitoh "EEPROM read/write done polling timed out");
1704 1.6 msaitoh
1705 1.1 dyoung return status;
1706 1.1 dyoung }
1707 1.1 dyoung
1708 1.1 dyoung /**
1709 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1710 1.1 dyoung * @hw: pointer to hardware structure
1711 1.1 dyoung *
1712 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1713 1.1 dyoung * be called before issuing a command to the EEPROM.
1714 1.1 dyoung **/
1715 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1716 1.1 dyoung {
1717 1.1 dyoung s32 status = IXGBE_SUCCESS;
1718 1.1 dyoung u32 eec;
1719 1.1 dyoung u32 i;
1720 1.1 dyoung
1721 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1722 1.1 dyoung
1723 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1724 1.3 msaitoh != IXGBE_SUCCESS)
1725 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1726 1.1 dyoung
1727 1.1 dyoung if (status == IXGBE_SUCCESS) {
1728 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1729 1.1 dyoung
1730 1.1 dyoung /* Request EEPROM Access */
1731 1.1 dyoung eec |= IXGBE_EEC_REQ;
1732 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1733 1.1 dyoung
1734 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1735 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1736 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1737 1.1 dyoung break;
1738 1.1 dyoung usec_delay(5);
1739 1.1 dyoung }
1740 1.1 dyoung
1741 1.1 dyoung /* Release if grant not acquired */
1742 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1743 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1744 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1745 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1746 1.1 dyoung
1747 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1748 1.1 dyoung status = IXGBE_ERR_EEPROM;
1749 1.1 dyoung }
1750 1.1 dyoung
1751 1.1 dyoung /* Setup EEPROM for Read/Write */
1752 1.1 dyoung if (status == IXGBE_SUCCESS) {
1753 1.1 dyoung /* Clear CS and SK */
1754 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1755 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1756 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1757 1.1 dyoung usec_delay(1);
1758 1.1 dyoung }
1759 1.1 dyoung }
1760 1.1 dyoung return status;
1761 1.1 dyoung }
1762 1.1 dyoung
1763 1.1 dyoung /**
1764 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1765 1.1 dyoung * @hw: pointer to hardware structure
1766 1.1 dyoung *
1767 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1768 1.1 dyoung **/
1769 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1770 1.1 dyoung {
1771 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1772 1.1 dyoung u32 timeout = 2000;
1773 1.1 dyoung u32 i;
1774 1.1 dyoung u32 swsm;
1775 1.1 dyoung
1776 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1777 1.1 dyoung
1778 1.1 dyoung
1779 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1780 1.1 dyoung for (i = 0; i < timeout; i++) {
1781 1.1 dyoung /*
1782 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1783 1.1 dyoung * set and we have the semaphore
1784 1.1 dyoung */
1785 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1786 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1787 1.1 dyoung status = IXGBE_SUCCESS;
1788 1.1 dyoung break;
1789 1.1 dyoung }
1790 1.1 dyoung usec_delay(50);
1791 1.1 dyoung }
1792 1.1 dyoung
1793 1.3 msaitoh if (i == timeout) {
1794 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1795 1.3 msaitoh "not granted.\n");
1796 1.3 msaitoh /*
1797 1.3 msaitoh * this release is particularly important because our attempts
1798 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1799 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1800 1.3 msaitoh * bits to free the driver to make progress
1801 1.3 msaitoh */
1802 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1803 1.3 msaitoh
1804 1.3 msaitoh usec_delay(50);
1805 1.3 msaitoh /*
1806 1.3 msaitoh * one last try
1807 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1808 1.3 msaitoh * set and we have the semaphore
1809 1.3 msaitoh */
1810 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1811 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1812 1.3 msaitoh status = IXGBE_SUCCESS;
1813 1.3 msaitoh }
1814 1.3 msaitoh
1815 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1816 1.1 dyoung if (status == IXGBE_SUCCESS) {
1817 1.1 dyoung for (i = 0; i < timeout; i++) {
1818 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1819 1.1 dyoung
1820 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1821 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1822 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1823 1.1 dyoung
1824 1.1 dyoung /*
1825 1.1 dyoung * If we set the bit successfully then we got the
1826 1.1 dyoung * semaphore.
1827 1.1 dyoung */
1828 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1829 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1830 1.1 dyoung break;
1831 1.1 dyoung
1832 1.1 dyoung usec_delay(50);
1833 1.1 dyoung }
1834 1.1 dyoung
1835 1.1 dyoung /*
1836 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1837 1.1 dyoung * was not granted because we don't have access to the EEPROM
1838 1.1 dyoung */
1839 1.1 dyoung if (i >= timeout) {
1840 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1841 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1842 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1843 1.1 dyoung status = IXGBE_ERR_EEPROM;
1844 1.1 dyoung }
1845 1.1 dyoung } else {
1846 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1847 1.6 msaitoh "Software semaphore SMBI between device drivers "
1848 1.6 msaitoh "not granted.\n");
1849 1.1 dyoung }
1850 1.1 dyoung
1851 1.1 dyoung return status;
1852 1.1 dyoung }
1853 1.1 dyoung
1854 1.1 dyoung /**
1855 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1856 1.1 dyoung * @hw: pointer to hardware structure
1857 1.1 dyoung *
1858 1.1 dyoung * This function clears hardware semaphore bits.
1859 1.1 dyoung **/
1860 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1861 1.1 dyoung {
1862 1.1 dyoung u32 swsm;
1863 1.1 dyoung
1864 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1865 1.1 dyoung
1866 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1867 1.1 dyoung
1868 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1869 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1870 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1871 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1872 1.1 dyoung }
1873 1.1 dyoung
1874 1.1 dyoung /**
1875 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1876 1.1 dyoung * @hw: pointer to hardware structure
1877 1.1 dyoung **/
1878 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1879 1.1 dyoung {
1880 1.1 dyoung s32 status = IXGBE_SUCCESS;
1881 1.1 dyoung u16 i;
1882 1.1 dyoung u8 spi_stat_reg;
1883 1.1 dyoung
1884 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1885 1.1 dyoung
1886 1.1 dyoung /*
1887 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1888 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1889 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1890 1.1 dyoung * 5 milliseconds, then error out.
1891 1.1 dyoung */
1892 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1893 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1894 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1895 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1896 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1897 1.1 dyoung break;
1898 1.1 dyoung
1899 1.1 dyoung usec_delay(5);
1900 1.1 dyoung ixgbe_standby_eeprom(hw);
1901 1.1 dyoung };
1902 1.1 dyoung
1903 1.1 dyoung /*
1904 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1905 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1906 1.1 dyoung */
1907 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1908 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1909 1.1 dyoung status = IXGBE_ERR_EEPROM;
1910 1.1 dyoung }
1911 1.1 dyoung
1912 1.1 dyoung return status;
1913 1.1 dyoung }
1914 1.1 dyoung
1915 1.1 dyoung /**
1916 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1917 1.1 dyoung * @hw: pointer to hardware structure
1918 1.1 dyoung **/
1919 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1920 1.1 dyoung {
1921 1.1 dyoung u32 eec;
1922 1.1 dyoung
1923 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1924 1.1 dyoung
1925 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1926 1.1 dyoung
1927 1.1 dyoung /* Toggle CS to flush commands */
1928 1.1 dyoung eec |= IXGBE_EEC_CS;
1929 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1930 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1931 1.1 dyoung usec_delay(1);
1932 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1933 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1934 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1935 1.1 dyoung usec_delay(1);
1936 1.1 dyoung }
1937 1.1 dyoung
1938 1.1 dyoung /**
1939 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1940 1.1 dyoung * @hw: pointer to hardware structure
1941 1.1 dyoung * @data: data to send to the EEPROM
1942 1.1 dyoung * @count: number of bits to shift out
1943 1.1 dyoung **/
1944 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1945 1.3 msaitoh u16 count)
1946 1.1 dyoung {
1947 1.1 dyoung u32 eec;
1948 1.1 dyoung u32 mask;
1949 1.1 dyoung u32 i;
1950 1.1 dyoung
1951 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1952 1.1 dyoung
1953 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1954 1.1 dyoung
1955 1.1 dyoung /*
1956 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1957 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1958 1.1 dyoung */
1959 1.1 dyoung mask = 0x01 << (count - 1);
1960 1.1 dyoung
1961 1.1 dyoung for (i = 0; i < count; i++) {
1962 1.1 dyoung /*
1963 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1964 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1965 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1966 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1967 1.1 dyoung * raising and then lowering the clock.
1968 1.1 dyoung */
1969 1.1 dyoung if (data & mask)
1970 1.1 dyoung eec |= IXGBE_EEC_DI;
1971 1.1 dyoung else
1972 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1973 1.1 dyoung
1974 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1975 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1976 1.1 dyoung
1977 1.1 dyoung usec_delay(1);
1978 1.1 dyoung
1979 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1980 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1981 1.1 dyoung
1982 1.1 dyoung /*
1983 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1984 1.1 dyoung * EEPROM
1985 1.1 dyoung */
1986 1.1 dyoung mask = mask >> 1;
1987 1.1 dyoung };
1988 1.1 dyoung
1989 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1990 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1991 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1992 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1993 1.1 dyoung }
1994 1.1 dyoung
1995 1.1 dyoung /**
1996 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1997 1.1 dyoung * @hw: pointer to hardware structure
1998 1.1 dyoung **/
1999 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2000 1.1 dyoung {
2001 1.1 dyoung u32 eec;
2002 1.1 dyoung u32 i;
2003 1.1 dyoung u16 data = 0;
2004 1.1 dyoung
2005 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2006 1.1 dyoung
2007 1.1 dyoung /*
2008 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2009 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2010 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2011 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2012 1.1 dyoung * "DI" bit should always be clear.
2013 1.1 dyoung */
2014 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2015 1.1 dyoung
2016 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2017 1.1 dyoung
2018 1.1 dyoung for (i = 0; i < count; i++) {
2019 1.1 dyoung data = data << 1;
2020 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2021 1.1 dyoung
2022 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2023 1.1 dyoung
2024 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2025 1.1 dyoung if (eec & IXGBE_EEC_DO)
2026 1.1 dyoung data |= 1;
2027 1.1 dyoung
2028 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2029 1.1 dyoung }
2030 1.1 dyoung
2031 1.1 dyoung return data;
2032 1.1 dyoung }
2033 1.1 dyoung
2034 1.1 dyoung /**
2035 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2036 1.1 dyoung * @hw: pointer to hardware structure
2037 1.1 dyoung * @eec: EEC register's current value
2038 1.1 dyoung **/
2039 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2040 1.1 dyoung {
2041 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2042 1.1 dyoung
2043 1.1 dyoung /*
2044 1.1 dyoung * Raise the clock input to the EEPROM
2045 1.1 dyoung * (setting the SK bit), then delay
2046 1.1 dyoung */
2047 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2048 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2049 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2050 1.1 dyoung usec_delay(1);
2051 1.1 dyoung }
2052 1.1 dyoung
2053 1.1 dyoung /**
2054 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2055 1.1 dyoung * @hw: pointer to hardware structure
2056 1.1 dyoung * @eecd: EECD's current value
2057 1.1 dyoung **/
2058 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2059 1.1 dyoung {
2060 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2061 1.1 dyoung
2062 1.1 dyoung /*
2063 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2064 1.1 dyoung * delay
2065 1.1 dyoung */
2066 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2067 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2068 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2069 1.1 dyoung usec_delay(1);
2070 1.1 dyoung }
2071 1.1 dyoung
2072 1.1 dyoung /**
2073 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2074 1.1 dyoung * @hw: pointer to hardware structure
2075 1.1 dyoung **/
2076 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2077 1.1 dyoung {
2078 1.1 dyoung u32 eec;
2079 1.1 dyoung
2080 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2081 1.1 dyoung
2082 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2083 1.1 dyoung
2084 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2085 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2086 1.1 dyoung
2087 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2088 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2089 1.1 dyoung
2090 1.1 dyoung usec_delay(1);
2091 1.1 dyoung
2092 1.1 dyoung /* Stop requesting EEPROM access */
2093 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2094 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2095 1.1 dyoung
2096 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2097 1.1 dyoung
2098 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2099 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2100 1.1 dyoung }
2101 1.1 dyoung
2102 1.1 dyoung /**
2103 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2104 1.1 dyoung * @hw: pointer to hardware structure
2105 1.8 msaitoh *
2106 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2107 1.1 dyoung **/
2108 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2109 1.1 dyoung {
2110 1.1 dyoung u16 i;
2111 1.1 dyoung u16 j;
2112 1.1 dyoung u16 checksum = 0;
2113 1.1 dyoung u16 length = 0;
2114 1.1 dyoung u16 pointer = 0;
2115 1.1 dyoung u16 word = 0;
2116 1.1 dyoung
2117 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2118 1.1 dyoung
2119 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2120 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2121 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2122 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2123 1.8 msaitoh return IXGBE_ERR_EEPROM;
2124 1.1 dyoung }
2125 1.1 dyoung checksum += word;
2126 1.1 dyoung }
2127 1.1 dyoung
2128 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2129 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2130 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2131 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2132 1.8 msaitoh return IXGBE_ERR_EEPROM;
2133 1.8 msaitoh }
2134 1.8 msaitoh
2135 1.8 msaitoh /* If the pointer seems invalid */
2136 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2137 1.8 msaitoh continue;
2138 1.8 msaitoh
2139 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2140 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2141 1.8 msaitoh return IXGBE_ERR_EEPROM;
2142 1.8 msaitoh }
2143 1.8 msaitoh
2144 1.8 msaitoh if (length == 0xFFFF || length == 0)
2145 1.8 msaitoh continue;
2146 1.1 dyoung
2147 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2148 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2149 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2150 1.8 msaitoh return IXGBE_ERR_EEPROM;
2151 1.1 dyoung }
2152 1.8 msaitoh checksum += word;
2153 1.1 dyoung }
2154 1.1 dyoung }
2155 1.1 dyoung
2156 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2157 1.1 dyoung
2158 1.8 msaitoh return (s32)checksum;
2159 1.1 dyoung }
2160 1.1 dyoung
2161 1.1 dyoung /**
2162 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2163 1.1 dyoung * @hw: pointer to hardware structure
2164 1.1 dyoung * @checksum_val: calculated checksum
2165 1.1 dyoung *
2166 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2167 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2168 1.1 dyoung **/
2169 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2170 1.3 msaitoh u16 *checksum_val)
2171 1.1 dyoung {
2172 1.1 dyoung s32 status;
2173 1.1 dyoung u16 checksum;
2174 1.1 dyoung u16 read_checksum = 0;
2175 1.1 dyoung
2176 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2177 1.1 dyoung
2178 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2179 1.1 dyoung * not continue or we could be in for a very long wait while every
2180 1.1 dyoung * EEPROM read fails
2181 1.1 dyoung */
2182 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2183 1.8 msaitoh if (status) {
2184 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2185 1.8 msaitoh return status;
2186 1.8 msaitoh }
2187 1.1 dyoung
2188 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2189 1.8 msaitoh if (status < 0)
2190 1.8 msaitoh return status;
2191 1.1 dyoung
2192 1.8 msaitoh checksum = (u16)(status & 0xffff);
2193 1.1 dyoung
2194 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2195 1.8 msaitoh if (status) {
2196 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2197 1.8 msaitoh return status;
2198 1.1 dyoung }
2199 1.1 dyoung
2200 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2201 1.8 msaitoh * calculated checksum
2202 1.8 msaitoh */
2203 1.8 msaitoh if (read_checksum != checksum)
2204 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2205 1.8 msaitoh
2206 1.8 msaitoh /* If the user cares, return the calculated checksum */
2207 1.8 msaitoh if (checksum_val)
2208 1.8 msaitoh *checksum_val = checksum;
2209 1.8 msaitoh
2210 1.1 dyoung return status;
2211 1.1 dyoung }
2212 1.1 dyoung
2213 1.1 dyoung /**
2214 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2215 1.1 dyoung * @hw: pointer to hardware structure
2216 1.1 dyoung **/
2217 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2218 1.1 dyoung {
2219 1.1 dyoung s32 status;
2220 1.1 dyoung u16 checksum;
2221 1.1 dyoung
2222 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2223 1.1 dyoung
2224 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2225 1.1 dyoung * not continue or we could be in for a very long wait while every
2226 1.1 dyoung * EEPROM read fails
2227 1.1 dyoung */
2228 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2229 1.8 msaitoh if (status) {
2230 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2231 1.8 msaitoh return status;
2232 1.1 dyoung }
2233 1.1 dyoung
2234 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2235 1.8 msaitoh if (status < 0)
2236 1.8 msaitoh return status;
2237 1.8 msaitoh
2238 1.8 msaitoh checksum = (u16)(status & 0xffff);
2239 1.8 msaitoh
2240 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2241 1.8 msaitoh
2242 1.1 dyoung return status;
2243 1.1 dyoung }
2244 1.1 dyoung
2245 1.1 dyoung /**
2246 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2247 1.1 dyoung * @mac_addr: pointer to MAC address.
2248 1.1 dyoung *
2249 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2250 1.1 dyoung **/
2251 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2252 1.1 dyoung {
2253 1.1 dyoung s32 status = IXGBE_SUCCESS;
2254 1.1 dyoung
2255 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2256 1.1 dyoung
2257 1.1 dyoung /* Make sure it is not a multicast address */
2258 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2259 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2260 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2261 1.1 dyoung /* Not a broadcast address */
2262 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2263 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2264 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2265 1.1 dyoung /* Reject the zero address */
2266 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2267 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2268 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2269 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2270 1.1 dyoung }
2271 1.1 dyoung return status;
2272 1.1 dyoung }
2273 1.1 dyoung
2274 1.1 dyoung /**
2275 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2276 1.1 dyoung * @hw: pointer to hardware structure
2277 1.1 dyoung * @index: Receive address register to write
2278 1.1 dyoung * @addr: Address to put into receive address register
2279 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2280 1.1 dyoung * @enable_addr: set flag that address is active
2281 1.1 dyoung *
2282 1.1 dyoung * Puts an ethernet address into a receive address register.
2283 1.1 dyoung **/
2284 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2285 1.3 msaitoh u32 enable_addr)
2286 1.1 dyoung {
2287 1.1 dyoung u32 rar_low, rar_high;
2288 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2289 1.1 dyoung
2290 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2291 1.1 dyoung
2292 1.1 dyoung /* Make sure we are using a valid rar index range */
2293 1.1 dyoung if (index >= rar_entries) {
2294 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2295 1.6 msaitoh "RAR index %d is out of range.\n", index);
2296 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2297 1.1 dyoung }
2298 1.1 dyoung
2299 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2300 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2301 1.1 dyoung
2302 1.1 dyoung /*
2303 1.1 dyoung * HW expects these in little endian so we reverse the byte
2304 1.1 dyoung * order from network order (big endian) to little endian
2305 1.1 dyoung */
2306 1.1 dyoung rar_low = ((u32)addr[0] |
2307 1.3 msaitoh ((u32)addr[1] << 8) |
2308 1.3 msaitoh ((u32)addr[2] << 16) |
2309 1.3 msaitoh ((u32)addr[3] << 24));
2310 1.1 dyoung /*
2311 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2312 1.1 dyoung * so save everything except the lower 16 bits that hold part
2313 1.1 dyoung * of the address and the address valid bit.
2314 1.1 dyoung */
2315 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2316 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2317 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2318 1.1 dyoung
2319 1.1 dyoung if (enable_addr != 0)
2320 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2321 1.1 dyoung
2322 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2323 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2324 1.1 dyoung
2325 1.1 dyoung return IXGBE_SUCCESS;
2326 1.1 dyoung }
2327 1.1 dyoung
2328 1.1 dyoung /**
2329 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2330 1.1 dyoung * @hw: pointer to hardware structure
2331 1.1 dyoung * @index: Receive address register to write
2332 1.1 dyoung *
2333 1.1 dyoung * Clears an ethernet address from a receive address register.
2334 1.1 dyoung **/
2335 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2336 1.1 dyoung {
2337 1.1 dyoung u32 rar_high;
2338 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2339 1.1 dyoung
2340 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2341 1.1 dyoung
2342 1.1 dyoung /* Make sure we are using a valid rar index range */
2343 1.1 dyoung if (index >= rar_entries) {
2344 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2345 1.6 msaitoh "RAR index %d is out of range.\n", index);
2346 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2347 1.1 dyoung }
2348 1.1 dyoung
2349 1.1 dyoung /*
2350 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2351 1.1 dyoung * so save everything except the lower 16 bits that hold part
2352 1.1 dyoung * of the address and the address valid bit.
2353 1.1 dyoung */
2354 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2355 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2356 1.1 dyoung
2357 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2358 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2359 1.1 dyoung
2360 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2361 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2362 1.1 dyoung
2363 1.1 dyoung return IXGBE_SUCCESS;
2364 1.1 dyoung }
2365 1.1 dyoung
2366 1.1 dyoung /**
2367 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2368 1.1 dyoung * @hw: pointer to hardware structure
2369 1.1 dyoung *
2370 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2371 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2372 1.1 dyoung * the receiver is in reset when the routine is called.
2373 1.1 dyoung **/
2374 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2375 1.1 dyoung {
2376 1.1 dyoung u32 i;
2377 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2378 1.1 dyoung
2379 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2380 1.1 dyoung
2381 1.1 dyoung /*
2382 1.1 dyoung * If the current mac address is valid, assume it is a software override
2383 1.1 dyoung * to the permanent address.
2384 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2385 1.1 dyoung */
2386 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2387 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2388 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2389 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2390 1.1 dyoung
2391 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2392 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2393 1.3 msaitoh hw->mac.addr[2]);
2394 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2395 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2396 1.1 dyoung } else {
2397 1.1 dyoung /* Setup the receive address. */
2398 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2399 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2400 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2401 1.3 msaitoh hw->mac.addr[2]);
2402 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2403 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2404 1.1 dyoung
2405 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2406 1.1 dyoung
2407 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2408 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2409 1.1 dyoung }
2410 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2411 1.1 dyoung
2412 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2413 1.1 dyoung
2414 1.1 dyoung /* Zero out the other receive addresses. */
2415 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2416 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2417 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2419 1.1 dyoung }
2420 1.1 dyoung
2421 1.1 dyoung /* Clear the MTA */
2422 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2423 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2424 1.1 dyoung
2425 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2426 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2427 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2428 1.1 dyoung
2429 1.1 dyoung ixgbe_init_uta_tables(hw);
2430 1.1 dyoung
2431 1.1 dyoung return IXGBE_SUCCESS;
2432 1.1 dyoung }
2433 1.1 dyoung
2434 1.1 dyoung /**
2435 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2436 1.1 dyoung * @hw: pointer to hardware structure
2437 1.1 dyoung * @addr: new address
2438 1.1 dyoung *
2439 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2440 1.1 dyoung **/
2441 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2442 1.1 dyoung {
2443 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2444 1.1 dyoung u32 rar;
2445 1.1 dyoung
2446 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2447 1.1 dyoung
2448 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2449 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2450 1.1 dyoung
2451 1.1 dyoung /*
2452 1.1 dyoung * Place this address in the RAR if there is room,
2453 1.1 dyoung * else put the controller into promiscuous mode
2454 1.1 dyoung */
2455 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2456 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2457 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2458 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2459 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2460 1.1 dyoung } else {
2461 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2462 1.1 dyoung }
2463 1.1 dyoung
2464 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2465 1.1 dyoung }
2466 1.1 dyoung
2467 1.1 dyoung /**
2468 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2469 1.1 dyoung * @hw: pointer to hardware structure
2470 1.1 dyoung * @addr_list: the list of new addresses
2471 1.1 dyoung * @addr_count: number of addresses
2472 1.1 dyoung * @next: iterator function to walk the address list
2473 1.1 dyoung *
2474 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2475 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2476 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2477 1.1 dyoung *
2478 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2479 1.1 dyoung * manually putting the device into promiscuous mode.
2480 1.1 dyoung **/
2481 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2482 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2483 1.1 dyoung {
2484 1.1 dyoung u8 *addr;
2485 1.1 dyoung u32 i;
2486 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2487 1.1 dyoung u32 uc_addr_in_use;
2488 1.1 dyoung u32 fctrl;
2489 1.1 dyoung u32 vmdq;
2490 1.1 dyoung
2491 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2492 1.1 dyoung
2493 1.1 dyoung /*
2494 1.1 dyoung * Clear accounting of old secondary address list,
2495 1.1 dyoung * don't count RAR[0]
2496 1.1 dyoung */
2497 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2498 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2499 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2500 1.1 dyoung
2501 1.1 dyoung /* Zero out the other receive addresses */
2502 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2503 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2504 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2505 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2506 1.1 dyoung }
2507 1.1 dyoung
2508 1.1 dyoung /* Add the new addresses */
2509 1.1 dyoung for (i = 0; i < addr_count; i++) {
2510 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2511 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2512 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2513 1.1 dyoung }
2514 1.1 dyoung
2515 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2516 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2517 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2518 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2519 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2520 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2521 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2522 1.1 dyoung }
2523 1.1 dyoung } else {
2524 1.1 dyoung /* only disable if set by overflow, not by user */
2525 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2526 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2527 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2528 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2529 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2530 1.1 dyoung }
2531 1.1 dyoung }
2532 1.1 dyoung
2533 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2534 1.1 dyoung return IXGBE_SUCCESS;
2535 1.1 dyoung }
2536 1.1 dyoung
2537 1.1 dyoung /**
2538 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2539 1.1 dyoung * @hw: pointer to hardware structure
2540 1.1 dyoung * @mc_addr: the multicast address
2541 1.1 dyoung *
2542 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2543 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2544 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2545 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2546 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2547 1.1 dyoung * to mc_filter_type.
2548 1.1 dyoung **/
2549 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2550 1.1 dyoung {
2551 1.1 dyoung u32 vector = 0;
2552 1.1 dyoung
2553 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2554 1.1 dyoung
2555 1.1 dyoung switch (hw->mac.mc_filter_type) {
2556 1.1 dyoung case 0: /* use bits [47:36] of the address */
2557 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2558 1.1 dyoung break;
2559 1.1 dyoung case 1: /* use bits [46:35] of the address */
2560 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2561 1.1 dyoung break;
2562 1.1 dyoung case 2: /* use bits [45:34] of the address */
2563 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2564 1.1 dyoung break;
2565 1.1 dyoung case 3: /* use bits [43:32] of the address */
2566 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2567 1.1 dyoung break;
2568 1.1 dyoung default: /* Invalid mc_filter_type */
2569 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2570 1.1 dyoung ASSERT(0);
2571 1.1 dyoung break;
2572 1.1 dyoung }
2573 1.1 dyoung
2574 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2575 1.1 dyoung vector &= 0xFFF;
2576 1.1 dyoung return vector;
2577 1.1 dyoung }
2578 1.1 dyoung
2579 1.1 dyoung /**
2580 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2581 1.1 dyoung * @hw: pointer to hardware structure
2582 1.1 dyoung * @hash_value: Multicast address hash value
2583 1.1 dyoung *
2584 1.1 dyoung * Sets the bit-vector in the multicast table.
2585 1.1 dyoung **/
2586 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2587 1.1 dyoung {
2588 1.1 dyoung u32 vector;
2589 1.1 dyoung u32 vector_bit;
2590 1.1 dyoung u32 vector_reg;
2591 1.1 dyoung
2592 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2593 1.1 dyoung
2594 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2595 1.1 dyoung
2596 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2597 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2598 1.1 dyoung
2599 1.1 dyoung /*
2600 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2601 1.1 dyoung * like an array of 4096 bits. We want to set bit
2602 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2603 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2604 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2605 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2606 1.1 dyoung * the value.
2607 1.1 dyoung */
2608 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2609 1.1 dyoung vector_bit = vector & 0x1F;
2610 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2611 1.1 dyoung }
2612 1.1 dyoung
2613 1.1 dyoung /**
2614 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2615 1.1 dyoung * @hw: pointer to hardware structure
2616 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2617 1.1 dyoung * @mc_addr_count: number of addresses
2618 1.1 dyoung * @next: iterator function to walk the multicast address list
2619 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2620 1.1 dyoung *
2621 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2622 1.3 msaitoh * Hashes the given addresses into the multicast table.
2623 1.1 dyoung **/
2624 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2625 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2626 1.3 msaitoh bool clear)
2627 1.1 dyoung {
2628 1.1 dyoung u32 i;
2629 1.1 dyoung u32 vmdq;
2630 1.1 dyoung
2631 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2632 1.1 dyoung
2633 1.1 dyoung /*
2634 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2635 1.1 dyoung * use.
2636 1.1 dyoung */
2637 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2638 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2639 1.1 dyoung
2640 1.1 dyoung /* Clear mta_shadow */
2641 1.3 msaitoh if (clear) {
2642 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2643 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2644 1.3 msaitoh }
2645 1.1 dyoung
2646 1.1 dyoung /* Update mta_shadow */
2647 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2648 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2649 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2650 1.1 dyoung }
2651 1.1 dyoung
2652 1.1 dyoung /* Enable mta */
2653 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2654 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2655 1.1 dyoung hw->mac.mta_shadow[i]);
2656 1.1 dyoung
2657 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2658 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2659 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2660 1.1 dyoung
2661 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2662 1.1 dyoung return IXGBE_SUCCESS;
2663 1.1 dyoung }
2664 1.1 dyoung
2665 1.1 dyoung /**
2666 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2667 1.1 dyoung * @hw: pointer to hardware structure
2668 1.1 dyoung *
2669 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2670 1.1 dyoung **/
2671 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2672 1.1 dyoung {
2673 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2674 1.1 dyoung
2675 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2676 1.1 dyoung
2677 1.1 dyoung if (a->mta_in_use > 0)
2678 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2679 1.3 msaitoh hw->mac.mc_filter_type);
2680 1.1 dyoung
2681 1.1 dyoung return IXGBE_SUCCESS;
2682 1.1 dyoung }
2683 1.1 dyoung
2684 1.1 dyoung /**
2685 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2686 1.1 dyoung * @hw: pointer to hardware structure
2687 1.1 dyoung *
2688 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2689 1.1 dyoung **/
2690 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2691 1.1 dyoung {
2692 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2693 1.1 dyoung
2694 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2695 1.1 dyoung
2696 1.1 dyoung if (a->mta_in_use > 0)
2697 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2698 1.1 dyoung
2699 1.1 dyoung return IXGBE_SUCCESS;
2700 1.1 dyoung }
2701 1.1 dyoung
2702 1.1 dyoung /**
2703 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2704 1.1 dyoung * @hw: pointer to hardware structure
2705 1.1 dyoung *
2706 1.1 dyoung * Enable flow control according to the current settings.
2707 1.1 dyoung **/
2708 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2709 1.1 dyoung {
2710 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2711 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2712 1.1 dyoung u32 reg;
2713 1.1 dyoung u32 fcrtl, fcrth;
2714 1.4 msaitoh int i;
2715 1.1 dyoung
2716 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2717 1.1 dyoung
2718 1.4 msaitoh /* Validate the water mark configuration */
2719 1.4 msaitoh if (!hw->fc.pause_time) {
2720 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2721 1.4 msaitoh goto out;
2722 1.4 msaitoh }
2723 1.4 msaitoh
2724 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2725 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2726 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2727 1.4 msaitoh hw->fc.high_water[i]) {
2728 1.4 msaitoh if (!hw->fc.low_water[i] ||
2729 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2730 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2731 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2732 1.4 msaitoh goto out;
2733 1.4 msaitoh }
2734 1.4 msaitoh }
2735 1.4 msaitoh }
2736 1.4 msaitoh
2737 1.1 dyoung /* Negotiate the fc mode to use */
2738 1.4 msaitoh ixgbe_fc_autoneg(hw);
2739 1.1 dyoung
2740 1.1 dyoung /* Disable any previous flow control settings */
2741 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2742 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2743 1.1 dyoung
2744 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2745 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2746 1.1 dyoung
2747 1.1 dyoung /*
2748 1.1 dyoung * The possible values of fc.current_mode are:
2749 1.1 dyoung * 0: Flow control is completely disabled
2750 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2751 1.1 dyoung * but not send pause frames).
2752 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2753 1.1 dyoung * we do not support receiving pause frames).
2754 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2755 1.1 dyoung * other: Invalid.
2756 1.1 dyoung */
2757 1.1 dyoung switch (hw->fc.current_mode) {
2758 1.1 dyoung case ixgbe_fc_none:
2759 1.1 dyoung /*
2760 1.1 dyoung * Flow control is disabled by software override or autoneg.
2761 1.1 dyoung * The code below will actually disable it in the HW.
2762 1.1 dyoung */
2763 1.1 dyoung break;
2764 1.1 dyoung case ixgbe_fc_rx_pause:
2765 1.1 dyoung /*
2766 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2767 1.1 dyoung * disabled by software override. Since there really
2768 1.1 dyoung * isn't a way to advertise that we are capable of RX
2769 1.1 dyoung * Pause ONLY, we will advertise that we support both
2770 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2771 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2772 1.1 dyoung */
2773 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2774 1.1 dyoung break;
2775 1.1 dyoung case ixgbe_fc_tx_pause:
2776 1.1 dyoung /*
2777 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2778 1.1 dyoung * disabled by software override.
2779 1.1 dyoung */
2780 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2781 1.1 dyoung break;
2782 1.1 dyoung case ixgbe_fc_full:
2783 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2784 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2785 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2786 1.1 dyoung break;
2787 1.1 dyoung default:
2788 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2789 1.6 msaitoh "Flow control param set incorrectly\n");
2790 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2791 1.1 dyoung goto out;
2792 1.1 dyoung break;
2793 1.1 dyoung }
2794 1.1 dyoung
2795 1.1 dyoung /* Set 802.3x based flow control settings. */
2796 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2797 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2798 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2799 1.1 dyoung
2800 1.1 dyoung
2801 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2802 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2803 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2804 1.4 msaitoh hw->fc.high_water[i]) {
2805 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2806 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2807 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2808 1.4 msaitoh } else {
2809 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2810 1.4 msaitoh /*
2811 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2812 1.4 msaitoh * switch is enabled we must set the high water mark
2813 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2814 1.8 msaitoh * the Tx switch to function even under heavy Rx
2815 1.8 msaitoh * workloads.
2816 1.4 msaitoh */
2817 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2818 1.4 msaitoh }
2819 1.4 msaitoh
2820 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2821 1.1 dyoung }
2822 1.1 dyoung
2823 1.1 dyoung /* Configure pause time (2 TCs per register) */
2824 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2825 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2826 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2827 1.1 dyoung
2828 1.4 msaitoh /* Configure flow control refresh threshold value */
2829 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2830 1.1 dyoung
2831 1.1 dyoung out:
2832 1.1 dyoung return ret_val;
2833 1.1 dyoung }
2834 1.1 dyoung
2835 1.1 dyoung /**
2836 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2837 1.1 dyoung * @hw: pointer to hardware structure
2838 1.4 msaitoh * @adv_reg: flow control advertised settings
2839 1.4 msaitoh * @lp_reg: link partner's flow control settings
2840 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2841 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2842 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2843 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2844 1.1 dyoung *
2845 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2846 1.4 msaitoh * advertised settings
2847 1.1 dyoung **/
2848 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2849 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2850 1.1 dyoung {
2851 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2852 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2853 1.6 msaitoh "Local or link partner's advertised flow control "
2854 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2855 1.6 msaitoh adv_reg, lp_reg);
2856 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2857 1.6 msaitoh }
2858 1.1 dyoung
2859 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2860 1.4 msaitoh /*
2861 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2862 1.4 msaitoh * of pause frames. In this case, we had to advertise
2863 1.4 msaitoh * FULL flow control because we could not advertise RX
2864 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2865 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2866 1.4 msaitoh */
2867 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2868 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2869 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2870 1.4 msaitoh } else {
2871 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2872 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2873 1.4 msaitoh }
2874 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2875 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2876 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2877 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2878 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2881 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2882 1.4 msaitoh } else {
2883 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2884 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2885 1.4 msaitoh }
2886 1.4 msaitoh return IXGBE_SUCCESS;
2887 1.4 msaitoh }
2888 1.1 dyoung
2889 1.4 msaitoh /**
2890 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2891 1.4 msaitoh * @hw: pointer to hardware structure
2892 1.4 msaitoh *
2893 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2894 1.4 msaitoh **/
2895 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2896 1.4 msaitoh {
2897 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2898 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2899 1.1 dyoung
2900 1.1 dyoung /*
2901 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2902 1.4 msaitoh * - link is up but AN did not complete, or if
2903 1.4 msaitoh * - link is up and AN completed but timed out
2904 1.1 dyoung */
2905 1.4 msaitoh
2906 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2907 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2908 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2909 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2910 1.1 dyoung goto out;
2911 1.6 msaitoh }
2912 1.1 dyoung
2913 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2914 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2915 1.1 dyoung
2916 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2917 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2918 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2919 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2920 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2921 1.1 dyoung
2922 1.1 dyoung out:
2923 1.1 dyoung return ret_val;
2924 1.1 dyoung }
2925 1.1 dyoung
2926 1.1 dyoung /**
2927 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2928 1.1 dyoung * @hw: pointer to hardware structure
2929 1.1 dyoung *
2930 1.1 dyoung * Enable flow control according to IEEE clause 37.
2931 1.1 dyoung **/
2932 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2933 1.1 dyoung {
2934 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2935 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2936 1.1 dyoung
2937 1.1 dyoung /*
2938 1.1 dyoung * On backplane, bail out if
2939 1.1 dyoung * - backplane autoneg was not completed, or if
2940 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2941 1.1 dyoung */
2942 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2943 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2944 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
2945 1.1 dyoung goto out;
2946 1.6 msaitoh }
2947 1.1 dyoung
2948 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2949 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2950 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2951 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
2952 1.1 dyoung goto out;
2953 1.6 msaitoh }
2954 1.1 dyoung }
2955 1.1 dyoung /*
2956 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2957 1.1 dyoung * local flow control settings accordingly
2958 1.1 dyoung */
2959 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2960 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2961 1.1 dyoung
2962 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2963 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2964 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2965 1.1 dyoung
2966 1.1 dyoung out:
2967 1.1 dyoung return ret_val;
2968 1.1 dyoung }
2969 1.1 dyoung
2970 1.1 dyoung /**
2971 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2972 1.1 dyoung * @hw: pointer to hardware structure
2973 1.1 dyoung *
2974 1.1 dyoung * Enable flow control according to IEEE clause 37.
2975 1.1 dyoung **/
2976 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2977 1.1 dyoung {
2978 1.1 dyoung u16 technology_ability_reg = 0;
2979 1.1 dyoung u16 lp_technology_ability_reg = 0;
2980 1.1 dyoung
2981 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2982 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2983 1.1 dyoung &technology_ability_reg);
2984 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2985 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2986 1.1 dyoung &lp_technology_ability_reg);
2987 1.1 dyoung
2988 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2989 1.1 dyoung (u32)lp_technology_ability_reg,
2990 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2991 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2992 1.1 dyoung }
2993 1.1 dyoung
2994 1.1 dyoung /**
2995 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2996 1.1 dyoung * @hw: pointer to hardware structure
2997 1.1 dyoung *
2998 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
2999 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3000 1.1 dyoung **/
3001 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3002 1.1 dyoung {
3003 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3004 1.4 msaitoh ixgbe_link_speed speed;
3005 1.4 msaitoh bool link_up;
3006 1.1 dyoung
3007 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3008 1.1 dyoung
3009 1.1 dyoung /*
3010 1.4 msaitoh * AN should have completed when the cable was plugged in.
3011 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3012 1.4 msaitoh * - FC autoneg is disabled, or if
3013 1.4 msaitoh * - link is not up.
3014 1.1 dyoung */
3015 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3016 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3017 1.6 msaitoh "Flow control autoneg is disabled");
3018 1.1 dyoung goto out;
3019 1.6 msaitoh }
3020 1.1 dyoung
3021 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3022 1.6 msaitoh if (!link_up) {
3023 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3024 1.1 dyoung goto out;
3025 1.6 msaitoh }
3026 1.1 dyoung
3027 1.1 dyoung switch (hw->phy.media_type) {
3028 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3029 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3030 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3031 1.1 dyoung case ixgbe_media_type_fiber:
3032 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3033 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3034 1.4 msaitoh break;
3035 1.4 msaitoh
3036 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3037 1.1 dyoung case ixgbe_media_type_backplane:
3038 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3039 1.1 dyoung break;
3040 1.1 dyoung
3041 1.4 msaitoh /* Autoneg flow control on copper adapters */
3042 1.1 dyoung case ixgbe_media_type_copper:
3043 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3044 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3045 1.1 dyoung break;
3046 1.1 dyoung
3047 1.1 dyoung default:
3048 1.1 dyoung break;
3049 1.1 dyoung }
3050 1.1 dyoung
3051 1.4 msaitoh out:
3052 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3053 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3054 1.4 msaitoh } else {
3055 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3056 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3057 1.3 msaitoh }
3058 1.1 dyoung }
3059 1.1 dyoung
3060 1.6 msaitoh /*
3061 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3062 1.6 msaitoh * @hw: pointer to hardware structure
3063 1.6 msaitoh *
3064 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3065 1.6 msaitoh *
3066 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3067 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3068 1.6 msaitoh * 800 = 80 millisec.
3069 1.6 msaitoh */
3070 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3071 1.6 msaitoh {
3072 1.6 msaitoh s16 devctl2;
3073 1.6 msaitoh u32 pollcnt;
3074 1.6 msaitoh
3075 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3076 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3077 1.6 msaitoh
3078 1.6 msaitoh switch (devctl2) {
3079 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3080 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3081 1.6 msaitoh break;
3082 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3083 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3084 1.6 msaitoh break;
3085 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3086 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3087 1.6 msaitoh break;
3088 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3089 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3090 1.6 msaitoh break;
3091 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3092 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3093 1.6 msaitoh break;
3094 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3095 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3096 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3097 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3098 1.6 msaitoh default:
3099 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3100 1.6 msaitoh break;
3101 1.6 msaitoh }
3102 1.6 msaitoh
3103 1.6 msaitoh /* add 10% to spec maximum */
3104 1.6 msaitoh return (pollcnt * 11) / 10;
3105 1.6 msaitoh }
3106 1.6 msaitoh
3107 1.1 dyoung /**
3108 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3109 1.1 dyoung * @hw: pointer to hardware structure
3110 1.1 dyoung *
3111 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3112 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3113 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3114 1.1 dyoung * is returned signifying master requests disabled.
3115 1.1 dyoung **/
3116 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3117 1.1 dyoung {
3118 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3119 1.6 msaitoh u32 i, poll;
3120 1.8 msaitoh u16 value;
3121 1.1 dyoung
3122 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3123 1.1 dyoung
3124 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3125 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3126 1.3 msaitoh
3127 1.6 msaitoh /* Exit if master requests are blocked */
3128 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3129 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3130 1.1 dyoung goto out;
3131 1.1 dyoung
3132 1.3 msaitoh /* Poll for master request bit to clear */
3133 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3134 1.3 msaitoh usec_delay(100);
3135 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3136 1.3 msaitoh goto out;
3137 1.1 dyoung }
3138 1.1 dyoung
3139 1.3 msaitoh /*
3140 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3141 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3142 1.3 msaitoh * of this need. The first reset prevents new master requests from
3143 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3144 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3145 1.3 msaitoh * again to clear out any effects they may have had on our device.
3146 1.3 msaitoh */
3147 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3148 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3149 1.1 dyoung
3150 1.1 dyoung /*
3151 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3152 1.1 dyoung * transactions pending.
3153 1.1 dyoung */
3154 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3155 1.6 msaitoh for (i = 0; i < poll; i++) {
3156 1.3 msaitoh usec_delay(100);
3157 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3158 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3159 1.8 msaitoh goto out;
3160 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3161 1.3 msaitoh goto out;
3162 1.1 dyoung }
3163 1.1 dyoung
3164 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3165 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3166 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3167 1.1 dyoung
3168 1.1 dyoung out:
3169 1.1 dyoung return status;
3170 1.1 dyoung }
3171 1.1 dyoung
3172 1.1 dyoung /**
3173 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3174 1.1 dyoung * @hw: pointer to hardware structure
3175 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3176 1.1 dyoung *
3177 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3178 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3179 1.1 dyoung **/
3180 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3181 1.1 dyoung {
3182 1.6 msaitoh u32 gssr = 0;
3183 1.1 dyoung u32 swmask = mask;
3184 1.1 dyoung u32 fwmask = mask << 5;
3185 1.6 msaitoh u32 timeout = 200;
3186 1.6 msaitoh u32 i;
3187 1.1 dyoung
3188 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3189 1.1 dyoung
3190 1.6 msaitoh for (i = 0; i < timeout; i++) {
3191 1.1 dyoung /*
3192 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3193 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3194 1.1 dyoung */
3195 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3196 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3197 1.1 dyoung
3198 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3199 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3200 1.6 msaitoh gssr |= swmask;
3201 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3202 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3203 1.6 msaitoh return IXGBE_SUCCESS;
3204 1.6 msaitoh } else {
3205 1.6 msaitoh /* Resource is currently in use by FW or SW */
3206 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3207 1.6 msaitoh msec_delay(5);
3208 1.6 msaitoh }
3209 1.1 dyoung }
3210 1.1 dyoung
3211 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3212 1.6 msaitoh if (gssr & (fwmask | swmask))
3213 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3214 1.1 dyoung
3215 1.6 msaitoh msec_delay(5);
3216 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3217 1.1 dyoung }
3218 1.1 dyoung
3219 1.1 dyoung /**
3220 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3221 1.1 dyoung * @hw: pointer to hardware structure
3222 1.1 dyoung * @mask: Mask to specify which semaphore to release
3223 1.1 dyoung *
3224 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3225 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3226 1.1 dyoung **/
3227 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3228 1.1 dyoung {
3229 1.1 dyoung u32 gssr;
3230 1.1 dyoung u32 swmask = mask;
3231 1.1 dyoung
3232 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3233 1.1 dyoung
3234 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3235 1.1 dyoung
3236 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3237 1.1 dyoung gssr &= ~swmask;
3238 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3239 1.1 dyoung
3240 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3241 1.1 dyoung }
3242 1.1 dyoung
3243 1.1 dyoung /**
3244 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3245 1.3 msaitoh * @hw: pointer to hardware structure
3246 1.3 msaitoh *
3247 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3248 1.3 msaitoh * the Rx security block
3249 1.3 msaitoh **/
3250 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3251 1.3 msaitoh {
3252 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3253 1.3 msaitoh
3254 1.3 msaitoh int i;
3255 1.3 msaitoh int secrxreg;
3256 1.3 msaitoh
3257 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3258 1.3 msaitoh
3259 1.3 msaitoh
3260 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3261 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3262 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3263 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3264 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3265 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3266 1.3 msaitoh break;
3267 1.3 msaitoh else
3268 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3269 1.3 msaitoh usec_delay(1000);
3270 1.3 msaitoh }
3271 1.3 msaitoh
3272 1.3 msaitoh /* For informational purposes only */
3273 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3274 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3275 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3276 1.3 msaitoh
3277 1.3 msaitoh return IXGBE_SUCCESS;
3278 1.3 msaitoh }
3279 1.3 msaitoh
3280 1.3 msaitoh /**
3281 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3282 1.8 msaitoh * @hw: pointer to hardware structure
3283 1.8 msaitoh * @reg_val: Value we read from AUTOC
3284 1.8 msaitoh *
3285 1.8 msaitoh * The default case requires no protection so just to the register read.
3286 1.8 msaitoh */
3287 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3288 1.8 msaitoh {
3289 1.8 msaitoh *locked = FALSE;
3290 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3291 1.8 msaitoh return IXGBE_SUCCESS;
3292 1.8 msaitoh }
3293 1.8 msaitoh
3294 1.8 msaitoh /**
3295 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3296 1.8 msaitoh * @hw: pointer to hardware structure
3297 1.8 msaitoh * @reg_val: value to write to AUTOC
3298 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3299 1.8 msaitoh * previous read.
3300 1.8 msaitoh *
3301 1.8 msaitoh * The default case requires no protection so just to the register write.
3302 1.8 msaitoh */
3303 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3304 1.8 msaitoh {
3305 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3306 1.8 msaitoh
3307 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3308 1.8 msaitoh return IXGBE_SUCCESS;
3309 1.8 msaitoh }
3310 1.8 msaitoh
3311 1.8 msaitoh /**
3312 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3313 1.3 msaitoh * @hw: pointer to hardware structure
3314 1.3 msaitoh *
3315 1.3 msaitoh * Enables the receive data path.
3316 1.3 msaitoh **/
3317 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3318 1.3 msaitoh {
3319 1.3 msaitoh int secrxreg;
3320 1.3 msaitoh
3321 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3322 1.3 msaitoh
3323 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3324 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3325 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3326 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3327 1.3 msaitoh
3328 1.3 msaitoh return IXGBE_SUCCESS;
3329 1.3 msaitoh }
3330 1.3 msaitoh
3331 1.3 msaitoh /**
3332 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3333 1.1 dyoung * @hw: pointer to hardware structure
3334 1.1 dyoung * @regval: register value to write to RXCTRL
3335 1.1 dyoung *
3336 1.1 dyoung * Enables the Rx DMA unit
3337 1.1 dyoung **/
3338 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3339 1.1 dyoung {
3340 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3341 1.1 dyoung
3342 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3343 1.8 msaitoh ixgbe_enable_rx(hw);
3344 1.8 msaitoh else
3345 1.8 msaitoh ixgbe_disable_rx(hw);
3346 1.1 dyoung
3347 1.1 dyoung return IXGBE_SUCCESS;
3348 1.1 dyoung }
3349 1.1 dyoung
3350 1.1 dyoung /**
3351 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3352 1.1 dyoung * @hw: pointer to hardware structure
3353 1.1 dyoung * @index: led number to blink
3354 1.1 dyoung **/
3355 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3356 1.1 dyoung {
3357 1.1 dyoung ixgbe_link_speed speed = 0;
3358 1.1 dyoung bool link_up = 0;
3359 1.8 msaitoh u32 autoc_reg = 0;
3360 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3361 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3362 1.8 msaitoh bool locked = FALSE;
3363 1.1 dyoung
3364 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3365 1.1 dyoung
3366 1.1 dyoung /*
3367 1.1 dyoung * Link must be up to auto-blink the LEDs;
3368 1.1 dyoung * Force it if link is down.
3369 1.1 dyoung */
3370 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3371 1.1 dyoung
3372 1.1 dyoung if (!link_up) {
3373 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3374 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3375 1.8 msaitoh goto out;
3376 1.5 msaitoh
3377 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3378 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3379 1.8 msaitoh
3380 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3381 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3382 1.8 msaitoh goto out;
3383 1.8 msaitoh
3384 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3385 1.1 dyoung msec_delay(10);
3386 1.1 dyoung }
3387 1.1 dyoung
3388 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3389 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3390 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3391 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3392 1.1 dyoung
3393 1.5 msaitoh out:
3394 1.5 msaitoh return ret_val;
3395 1.1 dyoung }
3396 1.1 dyoung
3397 1.1 dyoung /**
3398 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3399 1.1 dyoung * @hw: pointer to hardware structure
3400 1.1 dyoung * @index: led number to stop blinking
3401 1.1 dyoung **/
3402 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3403 1.1 dyoung {
3404 1.8 msaitoh u32 autoc_reg = 0;
3405 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3406 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3407 1.8 msaitoh bool locked = FALSE;
3408 1.1 dyoung
3409 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3410 1.1 dyoung
3411 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3412 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3413 1.8 msaitoh goto out;
3414 1.1 dyoung
3415 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3416 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3417 1.1 dyoung
3418 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3419 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3420 1.8 msaitoh goto out;
3421 1.5 msaitoh
3422 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3423 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3424 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3425 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3426 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3427 1.1 dyoung
3428 1.5 msaitoh out:
3429 1.5 msaitoh return ret_val;
3430 1.1 dyoung }
3431 1.1 dyoung
3432 1.1 dyoung /**
3433 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3434 1.1 dyoung * @hw: pointer to hardware structure
3435 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3436 1.1 dyoung *
3437 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3438 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3439 1.1 dyoung * get and set mac_addr routines.
3440 1.1 dyoung **/
3441 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3442 1.3 msaitoh u16 *san_mac_offset)
3443 1.1 dyoung {
3444 1.6 msaitoh s32 ret_val;
3445 1.6 msaitoh
3446 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3447 1.1 dyoung
3448 1.1 dyoung /*
3449 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3450 1.1 dyoung * available.
3451 1.1 dyoung */
3452 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3453 1.6 msaitoh san_mac_offset);
3454 1.6 msaitoh if (ret_val) {
3455 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3456 1.6 msaitoh "eeprom at offset %d failed",
3457 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3458 1.6 msaitoh }
3459 1.1 dyoung
3460 1.6 msaitoh return ret_val;
3461 1.1 dyoung }
3462 1.1 dyoung
3463 1.1 dyoung /**
3464 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3465 1.1 dyoung * @hw: pointer to hardware structure
3466 1.1 dyoung * @san_mac_addr: SAN MAC address
3467 1.1 dyoung *
3468 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3469 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3470 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3471 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3472 1.1 dyoung **/
3473 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3474 1.1 dyoung {
3475 1.1 dyoung u16 san_mac_data, san_mac_offset;
3476 1.1 dyoung u8 i;
3477 1.6 msaitoh s32 ret_val;
3478 1.1 dyoung
3479 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3480 1.1 dyoung
3481 1.1 dyoung /*
3482 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3483 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3484 1.1 dyoung */
3485 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3486 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3487 1.1 dyoung goto san_mac_addr_out;
3488 1.1 dyoung
3489 1.1 dyoung /* make sure we know which port we need to program */
3490 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3491 1.1 dyoung /* apply the port offset to the address offset */
3492 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3493 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3494 1.1 dyoung for (i = 0; i < 3; i++) {
3495 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3496 1.6 msaitoh &san_mac_data);
3497 1.6 msaitoh if (ret_val) {
3498 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3499 1.6 msaitoh "eeprom read at offset %d failed",
3500 1.6 msaitoh san_mac_offset);
3501 1.6 msaitoh goto san_mac_addr_out;
3502 1.6 msaitoh }
3503 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3504 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3505 1.1 dyoung san_mac_offset++;
3506 1.1 dyoung }
3507 1.6 msaitoh return IXGBE_SUCCESS;
3508 1.1 dyoung
3509 1.1 dyoung san_mac_addr_out:
3510 1.6 msaitoh /*
3511 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3512 1.6 msaitoh * error though, so just wipe the local address and return.
3513 1.6 msaitoh */
3514 1.6 msaitoh for (i = 0; i < 6; i++)
3515 1.6 msaitoh san_mac_addr[i] = 0xFF;
3516 1.1 dyoung return IXGBE_SUCCESS;
3517 1.1 dyoung }
3518 1.1 dyoung
3519 1.1 dyoung /**
3520 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3521 1.1 dyoung * @hw: pointer to hardware structure
3522 1.1 dyoung * @san_mac_addr: SAN MAC address
3523 1.1 dyoung *
3524 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3525 1.1 dyoung **/
3526 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3527 1.1 dyoung {
3528 1.6 msaitoh s32 ret_val;
3529 1.1 dyoung u16 san_mac_data, san_mac_offset;
3530 1.1 dyoung u8 i;
3531 1.1 dyoung
3532 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3533 1.1 dyoung
3534 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3535 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3536 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3537 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3538 1.1 dyoung
3539 1.1 dyoung /* Make sure we know which port we need to write */
3540 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3541 1.1 dyoung /* Apply the port offset to the address offset */
3542 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3543 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3544 1.1 dyoung
3545 1.1 dyoung for (i = 0; i < 3; i++) {
3546 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3547 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3548 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3549 1.1 dyoung san_mac_offset++;
3550 1.1 dyoung }
3551 1.1 dyoung
3552 1.6 msaitoh return IXGBE_SUCCESS;
3553 1.1 dyoung }
3554 1.1 dyoung
3555 1.1 dyoung /**
3556 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3557 1.1 dyoung * @hw: pointer to hardware structure
3558 1.1 dyoung *
3559 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3560 1.1 dyoung * the capabilities table.
3561 1.1 dyoung **/
3562 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3563 1.1 dyoung {
3564 1.4 msaitoh u16 msix_count = 1;
3565 1.4 msaitoh u16 max_msix_count;
3566 1.4 msaitoh u16 pcie_offset;
3567 1.4 msaitoh
3568 1.4 msaitoh switch (hw->mac.type) {
3569 1.4 msaitoh case ixgbe_mac_82598EB:
3570 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3571 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3572 1.4 msaitoh break;
3573 1.4 msaitoh case ixgbe_mac_82599EB:
3574 1.4 msaitoh case ixgbe_mac_X540:
3575 1.8 msaitoh case ixgbe_mac_X550:
3576 1.8 msaitoh case ixgbe_mac_X550EM_x:
3577 1.8 msaitoh case ixgbe_mac_X550EM_a:
3578 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3579 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3580 1.4 msaitoh break;
3581 1.4 msaitoh default:
3582 1.4 msaitoh return msix_count;
3583 1.4 msaitoh }
3584 1.1 dyoung
3585 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3586 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3587 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3588 1.8 msaitoh msix_count = 0;
3589 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3590 1.4 msaitoh
3591 1.4 msaitoh /* MSI-X count is zero-based in HW */
3592 1.4 msaitoh msix_count++;
3593 1.4 msaitoh
3594 1.4 msaitoh if (msix_count > max_msix_count)
3595 1.4 msaitoh msix_count = max_msix_count;
3596 1.1 dyoung
3597 1.1 dyoung return msix_count;
3598 1.1 dyoung }
3599 1.1 dyoung
3600 1.1 dyoung /**
3601 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3602 1.1 dyoung * @hw: pointer to hardware structure
3603 1.1 dyoung * @addr: Address to put into receive address register
3604 1.1 dyoung * @vmdq: VMDq pool to assign
3605 1.1 dyoung *
3606 1.1 dyoung * Puts an ethernet address into a receive address register, or
3607 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3608 1.1 dyoung **/
3609 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3610 1.1 dyoung {
3611 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3612 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3613 1.1 dyoung u32 rar;
3614 1.1 dyoung u32 rar_low, rar_high;
3615 1.1 dyoung u32 addr_low, addr_high;
3616 1.1 dyoung
3617 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3618 1.1 dyoung
3619 1.1 dyoung /* swap bytes for HW little endian */
3620 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3621 1.1 dyoung | (addr[2] << 16)
3622 1.1 dyoung | (addr[3] << 24);
3623 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3624 1.1 dyoung
3625 1.1 dyoung /*
3626 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3627 1.1 dyoung * rar_highwater points to just after the highest currently used
3628 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3629 1.1 dyoung * rar to the top.
3630 1.1 dyoung */
3631 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3632 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3633 1.1 dyoung
3634 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3635 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3636 1.1 dyoung first_empty_rar = rar;
3637 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3638 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3639 1.1 dyoung if (rar_low == addr_low)
3640 1.1 dyoung break; /* found it already in the rars */
3641 1.1 dyoung }
3642 1.1 dyoung }
3643 1.1 dyoung
3644 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3645 1.1 dyoung /* already there so just add to the pool bits */
3646 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3647 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3648 1.1 dyoung /* stick it into first empty RAR slot we found */
3649 1.1 dyoung rar = first_empty_rar;
3650 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3651 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3652 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3653 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654 1.1 dyoung hw->mac.rar_highwater++;
3655 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3656 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3657 1.1 dyoung }
3658 1.1 dyoung
3659 1.1 dyoung /*
3660 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3661 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3662 1.1 dyoung */
3663 1.1 dyoung if (rar == 0)
3664 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3665 1.1 dyoung
3666 1.1 dyoung return rar;
3667 1.1 dyoung }
3668 1.1 dyoung
3669 1.1 dyoung /**
3670 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3671 1.1 dyoung * @hw: pointer to hardware struct
3672 1.1 dyoung * @rar: receive address register index to disassociate
3673 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3674 1.1 dyoung **/
3675 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3676 1.1 dyoung {
3677 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3678 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3679 1.1 dyoung
3680 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3681 1.1 dyoung
3682 1.1 dyoung /* Make sure we are using a valid rar index range */
3683 1.1 dyoung if (rar >= rar_entries) {
3684 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3685 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3686 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3687 1.1 dyoung }
3688 1.1 dyoung
3689 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3690 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3691 1.1 dyoung
3692 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3693 1.8 msaitoh goto done;
3694 1.8 msaitoh
3695 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3696 1.1 dyoung goto done;
3697 1.1 dyoung
3698 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3699 1.1 dyoung if (mpsar_lo) {
3700 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3701 1.1 dyoung mpsar_lo = 0;
3702 1.1 dyoung }
3703 1.1 dyoung if (mpsar_hi) {
3704 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3705 1.1 dyoung mpsar_hi = 0;
3706 1.1 dyoung }
3707 1.1 dyoung } else if (vmdq < 32) {
3708 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3709 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3710 1.1 dyoung } else {
3711 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3712 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3713 1.1 dyoung }
3714 1.1 dyoung
3715 1.1 dyoung /* was that the last pool using this rar? */
3716 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3717 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3718 1.1 dyoung done:
3719 1.1 dyoung return IXGBE_SUCCESS;
3720 1.1 dyoung }
3721 1.1 dyoung
3722 1.1 dyoung /**
3723 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3724 1.1 dyoung * @hw: pointer to hardware struct
3725 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3726 1.1 dyoung * @vmdq: VMDq pool index
3727 1.1 dyoung **/
3728 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3729 1.1 dyoung {
3730 1.1 dyoung u32 mpsar;
3731 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3732 1.1 dyoung
3733 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3734 1.1 dyoung
3735 1.1 dyoung /* Make sure we are using a valid rar index range */
3736 1.1 dyoung if (rar >= rar_entries) {
3737 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3738 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3739 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3740 1.1 dyoung }
3741 1.1 dyoung
3742 1.1 dyoung if (vmdq < 32) {
3743 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3744 1.1 dyoung mpsar |= 1 << vmdq;
3745 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3746 1.1 dyoung } else {
3747 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3748 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3749 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3750 1.1 dyoung }
3751 1.1 dyoung return IXGBE_SUCCESS;
3752 1.1 dyoung }
3753 1.1 dyoung
3754 1.1 dyoung /**
3755 1.4 msaitoh * This function should only be involved in the IOV mode.
3756 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3757 1.4 msaitoh * VFs advertized and not 0.
3758 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3759 1.4 msaitoh *
3760 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3761 1.4 msaitoh * @hw: pointer to hardware struct
3762 1.4 msaitoh * @vmdq: VMDq pool index
3763 1.4 msaitoh **/
3764 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3765 1.4 msaitoh {
3766 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3767 1.4 msaitoh
3768 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3769 1.4 msaitoh
3770 1.4 msaitoh if (vmdq < 32) {
3771 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3772 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3773 1.4 msaitoh } else {
3774 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3775 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3776 1.4 msaitoh }
3777 1.4 msaitoh
3778 1.4 msaitoh return IXGBE_SUCCESS;
3779 1.4 msaitoh }
3780 1.4 msaitoh
3781 1.4 msaitoh /**
3782 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3783 1.1 dyoung * @hw: pointer to hardware structure
3784 1.1 dyoung **/
3785 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3786 1.1 dyoung {
3787 1.1 dyoung int i;
3788 1.1 dyoung
3789 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3790 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3791 1.1 dyoung
3792 1.1 dyoung for (i = 0; i < 128; i++)
3793 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3794 1.1 dyoung
3795 1.1 dyoung return IXGBE_SUCCESS;
3796 1.1 dyoung }
3797 1.1 dyoung
3798 1.1 dyoung /**
3799 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3800 1.1 dyoung * @hw: pointer to hardware structure
3801 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3802 1.1 dyoung *
3803 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3804 1.1 dyoung *
3805 1.1 dyoung **/
3806 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3807 1.1 dyoung {
3808 1.1 dyoung u32 bits = 0;
3809 1.1 dyoung u32 first_empty_slot = 0;
3810 1.1 dyoung s32 regindex;
3811 1.1 dyoung
3812 1.1 dyoung /* short cut the special case */
3813 1.1 dyoung if (vlan == 0)
3814 1.1 dyoung return 0;
3815 1.1 dyoung
3816 1.1 dyoung /*
3817 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3818 1.1 dyoung * slot found along the way
3819 1.1 dyoung */
3820 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3821 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3822 1.1 dyoung if (!bits && !(first_empty_slot))
3823 1.1 dyoung first_empty_slot = regindex;
3824 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3825 1.1 dyoung break;
3826 1.1 dyoung }
3827 1.1 dyoung
3828 1.1 dyoung /*
3829 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3830 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3831 1.1 dyoung * vlan id.
3832 1.1 dyoung */
3833 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3834 1.1 dyoung if (first_empty_slot)
3835 1.1 dyoung regindex = first_empty_slot;
3836 1.1 dyoung else {
3837 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3838 1.6 msaitoh "No space in VLVF.\n");
3839 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3840 1.1 dyoung }
3841 1.1 dyoung }
3842 1.1 dyoung
3843 1.1 dyoung return regindex;
3844 1.1 dyoung }
3845 1.1 dyoung
3846 1.1 dyoung /**
3847 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3848 1.1 dyoung * @hw: pointer to hardware structure
3849 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3850 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3851 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3852 1.1 dyoung *
3853 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3854 1.1 dyoung **/
3855 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3856 1.3 msaitoh bool vlan_on)
3857 1.1 dyoung {
3858 1.1 dyoung s32 regindex;
3859 1.1 dyoung u32 bitindex;
3860 1.1 dyoung u32 vfta;
3861 1.1 dyoung u32 targetbit;
3862 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3863 1.1 dyoung bool vfta_changed = FALSE;
3864 1.1 dyoung
3865 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3866 1.1 dyoung
3867 1.1 dyoung if (vlan > 4095)
3868 1.1 dyoung return IXGBE_ERR_PARAM;
3869 1.1 dyoung
3870 1.1 dyoung /*
3871 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3872 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3873 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3874 1.1 dyoung */
3875 1.1 dyoung
3876 1.1 dyoung /* Part 1
3877 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3878 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3879 1.1 dyoung * bits[11-5]: which register
3880 1.1 dyoung * bits[4-0]: which bit in the register
3881 1.1 dyoung */
3882 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3883 1.1 dyoung bitindex = vlan & 0x1F;
3884 1.1 dyoung targetbit = (1 << bitindex);
3885 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3886 1.1 dyoung
3887 1.1 dyoung if (vlan_on) {
3888 1.1 dyoung if (!(vfta & targetbit)) {
3889 1.1 dyoung vfta |= targetbit;
3890 1.1 dyoung vfta_changed = TRUE;
3891 1.1 dyoung }
3892 1.1 dyoung } else {
3893 1.1 dyoung if ((vfta & targetbit)) {
3894 1.1 dyoung vfta &= ~targetbit;
3895 1.1 dyoung vfta_changed = TRUE;
3896 1.1 dyoung }
3897 1.1 dyoung }
3898 1.1 dyoung
3899 1.1 dyoung /* Part 2
3900 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3901 1.3 msaitoh */
3902 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3903 1.3 msaitoh &vfta_changed);
3904 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3905 1.3 msaitoh return ret_val;
3906 1.3 msaitoh
3907 1.3 msaitoh if (vfta_changed)
3908 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3909 1.3 msaitoh
3910 1.3 msaitoh return IXGBE_SUCCESS;
3911 1.3 msaitoh }
3912 1.3 msaitoh
3913 1.3 msaitoh /**
3914 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3915 1.3 msaitoh * @hw: pointer to hardware structure
3916 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3917 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3918 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3919 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3920 1.3 msaitoh * should be changed
3921 1.3 msaitoh *
3922 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3923 1.3 msaitoh **/
3924 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3925 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3926 1.3 msaitoh {
3927 1.3 msaitoh u32 vt;
3928 1.3 msaitoh
3929 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3930 1.3 msaitoh
3931 1.3 msaitoh if (vlan > 4095)
3932 1.3 msaitoh return IXGBE_ERR_PARAM;
3933 1.3 msaitoh
3934 1.3 msaitoh /* If VT Mode is set
3935 1.1 dyoung * Either vlan_on
3936 1.1 dyoung * make sure the vlan is in VLVF
3937 1.1 dyoung * set the vind bit in the matching VLVFB
3938 1.1 dyoung * Or !vlan_on
3939 1.1 dyoung * clear the pool bit and possibly the vind
3940 1.1 dyoung */
3941 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3942 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3943 1.1 dyoung s32 vlvf_index;
3944 1.3 msaitoh u32 bits;
3945 1.1 dyoung
3946 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3947 1.1 dyoung if (vlvf_index < 0)
3948 1.1 dyoung return vlvf_index;
3949 1.1 dyoung
3950 1.1 dyoung if (vlan_on) {
3951 1.1 dyoung /* set the pool bit */
3952 1.1 dyoung if (vind < 32) {
3953 1.1 dyoung bits = IXGBE_READ_REG(hw,
3954 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3955 1.1 dyoung bits |= (1 << vind);
3956 1.1 dyoung IXGBE_WRITE_REG(hw,
3957 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3958 1.1 dyoung bits);
3959 1.1 dyoung } else {
3960 1.1 dyoung bits = IXGBE_READ_REG(hw,
3961 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3962 1.3 msaitoh bits |= (1 << (vind - 32));
3963 1.1 dyoung IXGBE_WRITE_REG(hw,
3964 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3965 1.3 msaitoh bits);
3966 1.1 dyoung }
3967 1.1 dyoung } else {
3968 1.1 dyoung /* clear the pool bit */
3969 1.1 dyoung if (vind < 32) {
3970 1.1 dyoung bits = IXGBE_READ_REG(hw,
3971 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3972 1.1 dyoung bits &= ~(1 << vind);
3973 1.1 dyoung IXGBE_WRITE_REG(hw,
3974 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3975 1.1 dyoung bits);
3976 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3977 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3978 1.1 dyoung } else {
3979 1.1 dyoung bits = IXGBE_READ_REG(hw,
3980 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3981 1.3 msaitoh bits &= ~(1 << (vind - 32));
3982 1.1 dyoung IXGBE_WRITE_REG(hw,
3983 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3984 1.3 msaitoh bits);
3985 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3986 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3987 1.1 dyoung }
3988 1.1 dyoung }
3989 1.1 dyoung
3990 1.1 dyoung /*
3991 1.1 dyoung * If there are still bits set in the VLVFB registers
3992 1.1 dyoung * for the VLAN ID indicated we need to see if the
3993 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3994 1.1 dyoung * If the caller has requested that we clear the VFTA
3995 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3996 1.1 dyoung * ID entry then ignore the request. We're not worried
3997 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3998 1.1 dyoung * entry bit on, only when requested to turn it off as
3999 1.1 dyoung * there may be multiple pools and/or VFs using the
4000 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
4001 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
4002 1.1 dyoung * been cleared. This will be indicated by "bits" being
4003 1.1 dyoung * zero.
4004 1.1 dyoung */
4005 1.1 dyoung if (bits) {
4006 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4007 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
4008 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
4009 1.1 dyoung /* someone wants to clear the vfta entry
4010 1.1 dyoung * but some pools/VFs are still using it.
4011 1.1 dyoung * Ignore it. */
4012 1.3 msaitoh *vfta_changed = FALSE;
4013 1.1 dyoung }
4014 1.3 msaitoh } else
4015 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4016 1.1 dyoung }
4017 1.1 dyoung
4018 1.1 dyoung return IXGBE_SUCCESS;
4019 1.1 dyoung }
4020 1.1 dyoung
4021 1.1 dyoung /**
4022 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4023 1.1 dyoung * @hw: pointer to hardware structure
4024 1.1 dyoung *
4025 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4026 1.1 dyoung **/
4027 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4028 1.1 dyoung {
4029 1.1 dyoung u32 offset;
4030 1.1 dyoung
4031 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4032 1.1 dyoung
4033 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4034 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4035 1.1 dyoung
4036 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4037 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4038 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4039 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4040 1.1 dyoung }
4041 1.1 dyoung
4042 1.1 dyoung return IXGBE_SUCCESS;
4043 1.1 dyoung }
4044 1.1 dyoung
4045 1.1 dyoung /**
4046 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4047 1.1 dyoung * @hw: pointer to hardware structure
4048 1.1 dyoung * @speed: pointer to link speed
4049 1.1 dyoung * @link_up: TRUE when link is up
4050 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4051 1.1 dyoung *
4052 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4053 1.1 dyoung **/
4054 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4055 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4056 1.1 dyoung {
4057 1.1 dyoung u32 links_reg, links_orig;
4058 1.1 dyoung u32 i;
4059 1.1 dyoung
4060 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4061 1.1 dyoung
4062 1.1 dyoung /* clear the old state */
4063 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4064 1.1 dyoung
4065 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4066 1.1 dyoung
4067 1.1 dyoung if (links_orig != links_reg) {
4068 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4069 1.3 msaitoh links_orig, links_reg);
4070 1.1 dyoung }
4071 1.1 dyoung
4072 1.1 dyoung if (link_up_wait_to_complete) {
4073 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
4074 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4075 1.1 dyoung *link_up = TRUE;
4076 1.1 dyoung break;
4077 1.1 dyoung } else {
4078 1.1 dyoung *link_up = FALSE;
4079 1.1 dyoung }
4080 1.1 dyoung msec_delay(100);
4081 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4082 1.1 dyoung }
4083 1.1 dyoung } else {
4084 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4085 1.1 dyoung *link_up = TRUE;
4086 1.1 dyoung else
4087 1.1 dyoung *link_up = FALSE;
4088 1.1 dyoung }
4089 1.1 dyoung
4090 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4091 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4092 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4093 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4094 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4095 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4096 1.8 msaitoh }
4097 1.8 msaitoh break;
4098 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4099 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4100 1.8 msaitoh break;
4101 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4102 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4103 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4104 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4105 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4106 1.8 msaitoh }
4107 1.8 msaitoh break;
4108 1.8 msaitoh default:
4109 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4110 1.8 msaitoh }
4111 1.1 dyoung
4112 1.1 dyoung return IXGBE_SUCCESS;
4113 1.1 dyoung }
4114 1.1 dyoung
4115 1.1 dyoung /**
4116 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4117 1.1 dyoung * the EEPROM
4118 1.1 dyoung * @hw: pointer to hardware structure
4119 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4120 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4121 1.1 dyoung *
4122 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4123 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4124 1.1 dyoung **/
4125 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4126 1.3 msaitoh u16 *wwpn_prefix)
4127 1.1 dyoung {
4128 1.1 dyoung u16 offset, caps;
4129 1.1 dyoung u16 alt_san_mac_blk_offset;
4130 1.1 dyoung
4131 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4132 1.1 dyoung
4133 1.1 dyoung /* clear output first */
4134 1.1 dyoung *wwnn_prefix = 0xFFFF;
4135 1.1 dyoung *wwpn_prefix = 0xFFFF;
4136 1.1 dyoung
4137 1.1 dyoung /* check if alternative SAN MAC is supported */
4138 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4139 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4140 1.6 msaitoh goto wwn_prefix_err;
4141 1.1 dyoung
4142 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4143 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4144 1.1 dyoung goto wwn_prefix_out;
4145 1.1 dyoung
4146 1.1 dyoung /* check capability in alternative san mac address block */
4147 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4148 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4149 1.6 msaitoh goto wwn_prefix_err;
4150 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4151 1.1 dyoung goto wwn_prefix_out;
4152 1.1 dyoung
4153 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4154 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4155 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4156 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4157 1.6 msaitoh "eeprom read at offset %d failed", offset);
4158 1.6 msaitoh }
4159 1.1 dyoung
4160 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4161 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4162 1.6 msaitoh goto wwn_prefix_err;
4163 1.1 dyoung
4164 1.1 dyoung wwn_prefix_out:
4165 1.1 dyoung return IXGBE_SUCCESS;
4166 1.6 msaitoh
4167 1.6 msaitoh wwn_prefix_err:
4168 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4169 1.6 msaitoh "eeprom read at offset %d failed", offset);
4170 1.6 msaitoh return IXGBE_SUCCESS;
4171 1.1 dyoung }
4172 1.1 dyoung
4173 1.1 dyoung /**
4174 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4175 1.1 dyoung * @hw: pointer to hardware structure
4176 1.1 dyoung * @bs: the fcoe boot status
4177 1.1 dyoung *
4178 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4179 1.1 dyoung **/
4180 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4181 1.1 dyoung {
4182 1.1 dyoung u16 offset, caps, flags;
4183 1.1 dyoung s32 status;
4184 1.1 dyoung
4185 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4186 1.1 dyoung
4187 1.1 dyoung /* clear output first */
4188 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4189 1.1 dyoung
4190 1.1 dyoung /* check if FCOE IBA block is present */
4191 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4192 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4193 1.1 dyoung if (status != IXGBE_SUCCESS)
4194 1.1 dyoung goto out;
4195 1.1 dyoung
4196 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4197 1.1 dyoung goto out;
4198 1.1 dyoung
4199 1.1 dyoung /* check if iSCSI FCOE block is populated */
4200 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4201 1.1 dyoung if (status != IXGBE_SUCCESS)
4202 1.1 dyoung goto out;
4203 1.1 dyoung
4204 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4205 1.1 dyoung goto out;
4206 1.1 dyoung
4207 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4208 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4209 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4210 1.1 dyoung if (status != IXGBE_SUCCESS)
4211 1.1 dyoung goto out;
4212 1.1 dyoung
4213 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4214 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4215 1.1 dyoung else
4216 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4217 1.1 dyoung
4218 1.1 dyoung out:
4219 1.1 dyoung return status;
4220 1.1 dyoung }
4221 1.1 dyoung
4222 1.1 dyoung /**
4223 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4224 1.1 dyoung * @hw: pointer to hardware structure
4225 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4226 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4227 1.1 dyoung *
4228 1.1 dyoung **/
4229 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4230 1.1 dyoung {
4231 1.1 dyoung int j;
4232 1.1 dyoung int pf_target_reg = pf >> 3;
4233 1.1 dyoung int pf_target_shift = pf % 8;
4234 1.1 dyoung u32 pfvfspoof = 0;
4235 1.1 dyoung
4236 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4237 1.1 dyoung return;
4238 1.1 dyoung
4239 1.1 dyoung if (enable)
4240 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4241 1.1 dyoung
4242 1.1 dyoung /*
4243 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4244 1.1 dyoung * MAC anti-spoof enables in each register array element.
4245 1.1 dyoung */
4246 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4247 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4248 1.1 dyoung
4249 1.4 msaitoh /*
4250 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4251 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4252 1.4 msaitoh */
4253 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4254 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4255 1.1 dyoung
4256 1.1 dyoung /*
4257 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4258 1.4 msaitoh * anti-spoofing enabled.
4259 1.1 dyoung */
4260 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4261 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4262 1.1 dyoung }
4263 1.1 dyoung
4264 1.1 dyoung /**
4265 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4266 1.1 dyoung * @hw: pointer to hardware structure
4267 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4268 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4269 1.1 dyoung *
4270 1.1 dyoung **/
4271 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4272 1.1 dyoung {
4273 1.1 dyoung int vf_target_reg = vf >> 3;
4274 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4275 1.1 dyoung u32 pfvfspoof;
4276 1.1 dyoung
4277 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4278 1.1 dyoung return;
4279 1.1 dyoung
4280 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4281 1.1 dyoung if (enable)
4282 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4283 1.1 dyoung else
4284 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4285 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4286 1.1 dyoung }
4287 1.1 dyoung
4288 1.1 dyoung /**
4289 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4290 1.1 dyoung * @hw: pointer to hardware structure
4291 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4292 1.1 dyoung *
4293 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4294 1.1 dyoung * and return the word through device_caps.
4295 1.1 dyoung **/
4296 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4297 1.1 dyoung {
4298 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4299 1.1 dyoung
4300 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4301 1.1 dyoung
4302 1.1 dyoung return IXGBE_SUCCESS;
4303 1.1 dyoung }
4304 1.1 dyoung
4305 1.1 dyoung /**
4306 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4307 1.1 dyoung * @hw: pointer to hardware structure
4308 1.1 dyoung *
4309 1.1 dyoung **/
4310 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4311 1.1 dyoung {
4312 1.1 dyoung u32 regval;
4313 1.1 dyoung u32 i;
4314 1.1 dyoung
4315 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4316 1.1 dyoung
4317 1.1 dyoung /* Enable relaxed ordering */
4318 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4319 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4320 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4321 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4322 1.1 dyoung }
4323 1.1 dyoung
4324 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4325 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4326 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4327 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4328 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4329 1.1 dyoung }
4330 1.1 dyoung
4331 1.1 dyoung }
4332 1.3 msaitoh
4333 1.3 msaitoh /**
4334 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4335 1.3 msaitoh * @buffer: pointer to EEPROM
4336 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4337 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4338 1.3 msaitoh * checksum calculated is returned.
4339 1.3 msaitoh **/
4340 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4341 1.3 msaitoh {
4342 1.3 msaitoh u32 i;
4343 1.3 msaitoh u8 sum = 0;
4344 1.3 msaitoh
4345 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4346 1.3 msaitoh
4347 1.3 msaitoh if (!buffer)
4348 1.3 msaitoh return 0;
4349 1.3 msaitoh
4350 1.3 msaitoh for (i = 0; i < length; i++)
4351 1.3 msaitoh sum += buffer[i];
4352 1.3 msaitoh
4353 1.3 msaitoh return (u8) (0 - sum);
4354 1.3 msaitoh }
4355 1.3 msaitoh
4356 1.3 msaitoh /**
4357 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4358 1.3 msaitoh * @hw: pointer to the HW structure
4359 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4360 1.3 msaitoh * be placed
4361 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4362 1.8 msaitoh * @timeout: time in ms to wait for command completion
4363 1.8 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4364 1.8 msaitoh * Needed because FW structures are big endian and decoding of
4365 1.8 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4366 1.8 msaitoh * is not easily understood without making a table of commands.
4367 1.8 msaitoh * So we will leave this up to the caller to read back the data
4368 1.8 msaitoh * in these cases.
4369 1.3 msaitoh *
4370 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4371 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4372 1.3 msaitoh **/
4373 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4374 1.8 msaitoh u32 length, u32 timeout, bool return_data)
4375 1.3 msaitoh {
4376 1.8 msaitoh u32 hicr, i, bi, fwsts;
4377 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4378 1.8 msaitoh u16 buf_len;
4379 1.8 msaitoh u16 dword_len;
4380 1.3 msaitoh
4381 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4382 1.3 msaitoh
4383 1.8 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4384 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4385 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4386 1.8 msaitoh }
4387 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4388 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4389 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4390 1.3 msaitoh
4391 1.3 msaitoh /* Check that the host interface is enabled. */
4392 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4393 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4394 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4395 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4396 1.8 msaitoh }
4397 1.8 msaitoh
4398 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4399 1.8 msaitoh if ((length % (sizeof(u32))) != 0) {
4400 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4401 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4402 1.3 msaitoh }
4403 1.3 msaitoh
4404 1.3 msaitoh dword_len = length >> 2;
4405 1.3 msaitoh
4406 1.8 msaitoh /* The device driver writes the relevant command block
4407 1.3 msaitoh * into the ram area.
4408 1.3 msaitoh */
4409 1.3 msaitoh for (i = 0; i < dword_len; i++)
4410 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4411 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4412 1.3 msaitoh
4413 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4414 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4415 1.3 msaitoh
4416 1.8 msaitoh for (i = 0; i < timeout; i++) {
4417 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4418 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4419 1.3 msaitoh break;
4420 1.3 msaitoh msec_delay(1);
4421 1.3 msaitoh }
4422 1.3 msaitoh
4423 1.8 msaitoh /* Check command completion */
4424 1.8 msaitoh if ((timeout != 0 && i == timeout) ||
4425 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4426 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4427 1.8 msaitoh "Command has failed with no status valid.\n");
4428 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4429 1.3 msaitoh }
4430 1.3 msaitoh
4431 1.8 msaitoh if (!return_data)
4432 1.8 msaitoh return 0;
4433 1.8 msaitoh
4434 1.3 msaitoh /* Calculate length in DWORDs */
4435 1.3 msaitoh dword_len = hdr_size >> 2;
4436 1.3 msaitoh
4437 1.3 msaitoh /* first pull in the header so we know the buffer length */
4438 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4439 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4440 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4441 1.3 msaitoh }
4442 1.3 msaitoh
4443 1.3 msaitoh /* If there is any thing in data position pull it in */
4444 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4445 1.3 msaitoh if (buf_len == 0)
4446 1.8 msaitoh return 0;
4447 1.3 msaitoh
4448 1.8 msaitoh if (length < buf_len + hdr_size) {
4449 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4450 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4451 1.3 msaitoh }
4452 1.3 msaitoh
4453 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4454 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4455 1.3 msaitoh
4456 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4457 1.3 msaitoh for (; bi <= dword_len; bi++) {
4458 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4459 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4460 1.3 msaitoh }
4461 1.3 msaitoh
4462 1.8 msaitoh return 0;
4463 1.3 msaitoh }
4464 1.3 msaitoh
4465 1.3 msaitoh /**
4466 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4467 1.3 msaitoh * @hw: pointer to the HW structure
4468 1.3 msaitoh * @maj: driver version major number
4469 1.7 riastrad * @minr: driver version minor number
4470 1.3 msaitoh * @build: driver version build number
4471 1.3 msaitoh * @sub: driver version sub build number
4472 1.3 msaitoh *
4473 1.3 msaitoh * Sends driver version number to firmware through the manageability
4474 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4475 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4476 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4477 1.3 msaitoh **/
4478 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4479 1.3 msaitoh u8 build, u8 sub)
4480 1.3 msaitoh {
4481 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4482 1.3 msaitoh int i;
4483 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4484 1.3 msaitoh
4485 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4486 1.3 msaitoh
4487 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4488 1.3 msaitoh != IXGBE_SUCCESS) {
4489 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4490 1.3 msaitoh goto out;
4491 1.3 msaitoh }
4492 1.3 msaitoh
4493 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4494 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4495 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4496 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4497 1.3 msaitoh fw_cmd.ver_maj = maj;
4498 1.7 riastrad fw_cmd.ver_min = minr;
4499 1.3 msaitoh fw_cmd.ver_build = build;
4500 1.3 msaitoh fw_cmd.ver_sub = sub;
4501 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4502 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4503 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4504 1.3 msaitoh fw_cmd.pad = 0;
4505 1.3 msaitoh fw_cmd.pad2 = 0;
4506 1.3 msaitoh
4507 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4508 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4509 1.8 msaitoh sizeof(fw_cmd),
4510 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4511 1.8 msaitoh TRUE);
4512 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4513 1.3 msaitoh continue;
4514 1.3 msaitoh
4515 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4516 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4517 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4518 1.3 msaitoh else
4519 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4520 1.3 msaitoh
4521 1.3 msaitoh break;
4522 1.3 msaitoh }
4523 1.3 msaitoh
4524 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4525 1.3 msaitoh out:
4526 1.3 msaitoh return ret_val;
4527 1.3 msaitoh }
4528 1.3 msaitoh
4529 1.3 msaitoh /**
4530 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4531 1.3 msaitoh * @hw: pointer to hardware structure
4532 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4533 1.3 msaitoh * @headroom: reserve n KB of headroom
4534 1.3 msaitoh * @strategy: packet buffer allocation strategy
4535 1.3 msaitoh **/
4536 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4537 1.3 msaitoh int strategy)
4538 1.3 msaitoh {
4539 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4540 1.3 msaitoh int i = 0;
4541 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4542 1.3 msaitoh
4543 1.3 msaitoh /* Reserve headroom */
4544 1.3 msaitoh pbsize -= headroom;
4545 1.3 msaitoh
4546 1.3 msaitoh if (!num_pb)
4547 1.3 msaitoh num_pb = 1;
4548 1.3 msaitoh
4549 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4550 1.3 msaitoh * buffers requested using supplied strategy.
4551 1.3 msaitoh */
4552 1.3 msaitoh switch (strategy) {
4553 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4554 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4555 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4556 1.3 msaitoh */
4557 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4558 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4559 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4560 1.3 msaitoh for (; i < (num_pb / 2); i++)
4561 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4562 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4563 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4564 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4565 1.3 msaitoh for (; i < num_pb; i++)
4566 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4567 1.3 msaitoh break;
4568 1.3 msaitoh default:
4569 1.3 msaitoh break;
4570 1.3 msaitoh }
4571 1.3 msaitoh
4572 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4573 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4574 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4575 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4576 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4577 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4578 1.3 msaitoh }
4579 1.3 msaitoh
4580 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4581 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4582 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4583 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4584 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4585 1.3 msaitoh }
4586 1.3 msaitoh }
4587 1.3 msaitoh
4588 1.3 msaitoh /**
4589 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4590 1.3 msaitoh * @hw: pointer to the hardware structure
4591 1.3 msaitoh *
4592 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4593 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4594 1.3 msaitoh * buffers on the system.
4595 1.3 msaitoh **/
4596 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4597 1.3 msaitoh {
4598 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4599 1.8 msaitoh u16 value;
4600 1.3 msaitoh
4601 1.3 msaitoh /*
4602 1.3 msaitoh * If double reset is not requested then all transactions should
4603 1.3 msaitoh * already be clear and as such there is no work to do
4604 1.3 msaitoh */
4605 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4606 1.3 msaitoh return;
4607 1.3 msaitoh
4608 1.3 msaitoh /*
4609 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4610 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4611 1.3 msaitoh * has already been cleared.
4612 1.3 msaitoh */
4613 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4614 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4615 1.3 msaitoh
4616 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4617 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4618 1.8 msaitoh msec_delay(3);
4619 1.8 msaitoh
4620 1.8 msaitoh /*
4621 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4622 1.8 msaitoh * transactions pending.
4623 1.8 msaitoh */
4624 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4625 1.8 msaitoh for (i = 0; i < poll; i++) {
4626 1.8 msaitoh usec_delay(100);
4627 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4628 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4629 1.8 msaitoh goto out;
4630 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4631 1.8 msaitoh goto out;
4632 1.8 msaitoh }
4633 1.8 msaitoh
4634 1.8 msaitoh out:
4635 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4636 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4637 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4638 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4639 1.3 msaitoh
4640 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4641 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4642 1.3 msaitoh usec_delay(20);
4643 1.3 msaitoh
4644 1.3 msaitoh /* restore previous register values */
4645 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4646 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4647 1.3 msaitoh }
4648 1.3 msaitoh
4649 1.6 msaitoh
4650 1.6 msaitoh /**
4651 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4652 1.6 msaitoh * @hw: pointer to hardware structure
4653 1.6 msaitoh * @map: pointer to u8 arr for returning map
4654 1.6 msaitoh *
4655 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4656 1.6 msaitoh **/
4657 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4658 1.6 msaitoh {
4659 1.6 msaitoh u32 reg, i;
4660 1.6 msaitoh
4661 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4662 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4663 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4664 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4665 1.6 msaitoh return;
4666 1.6 msaitoh }
4667 1.8 msaitoh
4668 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4669 1.8 msaitoh {
4670 1.8 msaitoh u32 pfdtxgswc;
4671 1.8 msaitoh u32 rxctrl;
4672 1.8 msaitoh
4673 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4674 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
4675 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4676 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4677 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4678 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4679 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4680 1.8 msaitoh hw->mac.set_lben = TRUE;
4681 1.8 msaitoh } else {
4682 1.8 msaitoh hw->mac.set_lben = FALSE;
4683 1.8 msaitoh }
4684 1.8 msaitoh }
4685 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
4686 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4687 1.8 msaitoh }
4688 1.8 msaitoh }
4689 1.8 msaitoh
4690 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4691 1.8 msaitoh {
4692 1.8 msaitoh u32 pfdtxgswc;
4693 1.8 msaitoh u32 rxctrl;
4694 1.8 msaitoh
4695 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4696 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4697 1.8 msaitoh
4698 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4699 1.8 msaitoh if (hw->mac.set_lben) {
4700 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4701 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4702 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4703 1.8 msaitoh hw->mac.set_lben = FALSE;
4704 1.8 msaitoh }
4705 1.8 msaitoh }
4706 1.8 msaitoh }
4707 1.8 msaitoh
4708 1.8 msaitoh /**
4709 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
4710 1.8 msaitoh * @hw: pointer to hardware structure
4711 1.8 msaitoh */
4712 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
4713 1.8 msaitoh {
4714 1.8 msaitoh u32 fwsm;
4715 1.8 msaitoh
4716 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
4717 1.8 msaitoh return FALSE;
4718 1.8 msaitoh
4719 1.8 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4720 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
4721 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
4722 1.8 msaitoh }
4723 1.8 msaitoh
4724 1.8 msaitoh /**
4725 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
4726 1.8 msaitoh * @hw: pointer to hardware structure
4727 1.8 msaitoh *
4728 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
4729 1.8 msaitoh **/
4730 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4731 1.8 msaitoh {
4732 1.8 msaitoh u32 fwsm, manc, factps;
4733 1.8 msaitoh
4734 1.8 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4735 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4736 1.8 msaitoh return FALSE;
4737 1.8 msaitoh
4738 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4739 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4740 1.8 msaitoh return FALSE;
4741 1.8 msaitoh
4742 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
4743 1.8 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
4744 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
4745 1.8 msaitoh return FALSE;
4746 1.8 msaitoh }
4747 1.8 msaitoh
4748 1.8 msaitoh return TRUE;
4749 1.8 msaitoh }
4750 1.8 msaitoh
4751 1.8 msaitoh /**
4752 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4753 1.8 msaitoh * @hw: pointer to hardware structure
4754 1.8 msaitoh * @speed: new link speed
4755 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4756 1.8 msaitoh *
4757 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
4758 1.8 msaitoh **/
4759 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4760 1.8 msaitoh ixgbe_link_speed speed,
4761 1.8 msaitoh bool autoneg_wait_to_complete)
4762 1.8 msaitoh {
4763 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4764 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4765 1.8 msaitoh s32 status = IXGBE_SUCCESS;
4766 1.8 msaitoh u32 speedcnt = 0;
4767 1.8 msaitoh u32 i = 0;
4768 1.8 msaitoh bool autoneg, link_up = FALSE;
4769 1.8 msaitoh
4770 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4771 1.8 msaitoh
4772 1.8 msaitoh /* Mask off requested but non-supported speeds */
4773 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4774 1.8 msaitoh if (status != IXGBE_SUCCESS)
4775 1.8 msaitoh return status;
4776 1.8 msaitoh
4777 1.8 msaitoh speed &= link_speed;
4778 1.8 msaitoh
4779 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
4780 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
4781 1.8 msaitoh */
4782 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4783 1.8 msaitoh speedcnt++;
4784 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4785 1.8 msaitoh
4786 1.8 msaitoh /* If we already have link at this speed, just jump out */
4787 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4788 1.8 msaitoh if (status != IXGBE_SUCCESS)
4789 1.8 msaitoh return status;
4790 1.8 msaitoh
4791 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4792 1.8 msaitoh goto out;
4793 1.8 msaitoh
4794 1.8 msaitoh /* Set the module link speed */
4795 1.8 msaitoh switch (hw->phy.media_type) {
4796 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4797 1.8 msaitoh case ixgbe_media_type_fiber:
4798 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4799 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
4800 1.8 msaitoh break;
4801 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4802 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
4803 1.8 msaitoh break;
4804 1.8 msaitoh default:
4805 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4806 1.8 msaitoh break;
4807 1.8 msaitoh }
4808 1.8 msaitoh
4809 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
4810 1.8 msaitoh msec_delay(40);
4811 1.8 msaitoh
4812 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4813 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
4814 1.8 msaitoh autoneg_wait_to_complete);
4815 1.8 msaitoh if (status != IXGBE_SUCCESS)
4816 1.8 msaitoh return status;
4817 1.8 msaitoh
4818 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4819 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4820 1.8 msaitoh
4821 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4822 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
4823 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
4824 1.8 msaitoh */
4825 1.8 msaitoh for (i = 0; i < 5; i++) {
4826 1.8 msaitoh /* Wait for the link partner to also set speed */
4827 1.8 msaitoh msec_delay(100);
4828 1.8 msaitoh
4829 1.8 msaitoh /* If we have link, just jump out */
4830 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
4831 1.8 msaitoh &link_up, FALSE);
4832 1.8 msaitoh if (status != IXGBE_SUCCESS)
4833 1.8 msaitoh return status;
4834 1.8 msaitoh
4835 1.8 msaitoh if (link_up)
4836 1.8 msaitoh goto out;
4837 1.8 msaitoh }
4838 1.8 msaitoh }
4839 1.8 msaitoh
4840 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4841 1.8 msaitoh speedcnt++;
4842 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4843 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4844 1.8 msaitoh
4845 1.8 msaitoh /* If we already have link at this speed, just jump out */
4846 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4847 1.8 msaitoh if (status != IXGBE_SUCCESS)
4848 1.8 msaitoh return status;
4849 1.8 msaitoh
4850 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4851 1.8 msaitoh goto out;
4852 1.8 msaitoh
4853 1.8 msaitoh /* Set the module link speed */
4854 1.8 msaitoh switch (hw->phy.media_type) {
4855 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4856 1.8 msaitoh case ixgbe_media_type_fiber:
4857 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4858 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
4859 1.8 msaitoh break;
4860 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4861 1.8 msaitoh /* QSFP module automatically detects link speed */
4862 1.8 msaitoh break;
4863 1.8 msaitoh default:
4864 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4865 1.8 msaitoh break;
4866 1.8 msaitoh }
4867 1.8 msaitoh
4868 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
4869 1.8 msaitoh msec_delay(40);
4870 1.8 msaitoh
4871 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4872 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
4873 1.8 msaitoh autoneg_wait_to_complete);
4874 1.8 msaitoh if (status != IXGBE_SUCCESS)
4875 1.8 msaitoh return status;
4876 1.8 msaitoh
4877 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4878 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4879 1.8 msaitoh
4880 1.8 msaitoh /* Wait for the link partner to also set speed */
4881 1.8 msaitoh msec_delay(100);
4882 1.8 msaitoh
4883 1.8 msaitoh /* If we have link, just jump out */
4884 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4885 1.8 msaitoh if (status != IXGBE_SUCCESS)
4886 1.8 msaitoh return status;
4887 1.8 msaitoh
4888 1.8 msaitoh if (link_up)
4889 1.8 msaitoh goto out;
4890 1.8 msaitoh }
4891 1.8 msaitoh
4892 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
4893 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
4894 1.8 msaitoh * single highest speed that the user requested.
4895 1.8 msaitoh */
4896 1.8 msaitoh if (speedcnt > 1)
4897 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4898 1.8 msaitoh highest_link_speed,
4899 1.8 msaitoh autoneg_wait_to_complete);
4900 1.8 msaitoh
4901 1.8 msaitoh out:
4902 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
4903 1.8 msaitoh hw->phy.autoneg_advertised = 0;
4904 1.8 msaitoh
4905 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4906 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4907 1.8 msaitoh
4908 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4909 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4910 1.8 msaitoh
4911 1.8 msaitoh return status;
4912 1.8 msaitoh }
4913 1.8 msaitoh
4914 1.8 msaitoh /**
4915 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
4916 1.8 msaitoh * @hw: pointer to hardware structure
4917 1.8 msaitoh * @speed: link speed to set
4918 1.8 msaitoh *
4919 1.8 msaitoh * Set module link speed via the soft rate select.
4920 1.8 msaitoh */
4921 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4922 1.8 msaitoh ixgbe_link_speed speed)
4923 1.8 msaitoh {
4924 1.8 msaitoh s32 status;
4925 1.8 msaitoh u8 rs, eeprom_data;
4926 1.8 msaitoh
4927 1.8 msaitoh switch (speed) {
4928 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
4929 1.8 msaitoh /* one bit mask same as setting on */
4930 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4931 1.8 msaitoh break;
4932 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
4933 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4934 1.8 msaitoh break;
4935 1.8 msaitoh default:
4936 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
4937 1.8 msaitoh return;
4938 1.8 msaitoh }
4939 1.8 msaitoh
4940 1.8 msaitoh /* Set RS0 */
4941 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4942 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4943 1.8 msaitoh &eeprom_data);
4944 1.8 msaitoh if (status) {
4945 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4946 1.8 msaitoh goto out;
4947 1.8 msaitoh }
4948 1.8 msaitoh
4949 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4950 1.8 msaitoh
4951 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4952 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4953 1.8 msaitoh eeprom_data);
4954 1.8 msaitoh if (status) {
4955 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4956 1.8 msaitoh goto out;
4957 1.8 msaitoh }
4958 1.8 msaitoh
4959 1.8 msaitoh /* Set RS1 */
4960 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4961 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4962 1.8 msaitoh &eeprom_data);
4963 1.8 msaitoh if (status) {
4964 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4965 1.8 msaitoh goto out;
4966 1.8 msaitoh }
4967 1.8 msaitoh
4968 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4969 1.8 msaitoh
4970 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4971 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4972 1.8 msaitoh eeprom_data);
4973 1.8 msaitoh if (status) {
4974 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4975 1.8 msaitoh goto out;
4976 1.8 msaitoh }
4977 1.8 msaitoh out:
4978 1.8 msaitoh return;
4979 1.8 msaitoh }
4980