ixgbe_common.c revision 1.9 1 1.1 dyoung /******************************************************************************
2 1.1 dyoung
3 1.9 msaitoh Copyright (c) 2001-2015, Intel Corporation
4 1.1 dyoung All rights reserved.
5 1.1 dyoung
6 1.1 dyoung Redistribution and use in source and binary forms, with or without
7 1.1 dyoung modification, are permitted provided that the following conditions are met:
8 1.1 dyoung
9 1.1 dyoung 1. Redistributions of source code must retain the above copyright notice,
10 1.1 dyoung this list of conditions and the following disclaimer.
11 1.1 dyoung
12 1.1 dyoung 2. Redistributions in binary form must reproduce the above copyright
13 1.1 dyoung notice, this list of conditions and the following disclaimer in the
14 1.1 dyoung documentation and/or other materials provided with the distribution.
15 1.1 dyoung
16 1.1 dyoung 3. Neither the name of the Intel Corporation nor the names of its
17 1.1 dyoung contributors may be used to endorse or promote products derived from
18 1.1 dyoung this software without specific prior written permission.
19 1.1 dyoung
20 1.1 dyoung THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 1.1 dyoung AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 dyoung IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 dyoung ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 1.1 dyoung LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 dyoung CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 dyoung SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 dyoung INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 dyoung CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 dyoung ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 dyoung POSSIBILITY OF SUCH DAMAGE.
31 1.1 dyoung
32 1.1 dyoung ******************************************************************************/
33 1.9 msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 282289 2015-04-30 22:53:27Z erj $*/
34 1.8 msaitoh /*$NetBSD: ixgbe_common.c,v 1.9 2016/12/01 06:56:28 msaitoh Exp $*/
35 1.1 dyoung
36 1.1 dyoung #include "ixgbe_common.h"
37 1.1 dyoung #include "ixgbe_phy.h"
38 1.6 msaitoh #include "ixgbe_dcb.h"
39 1.6 msaitoh #include "ixgbe_dcb_82599.h"
40 1.1 dyoung #include "ixgbe_api.h"
41 1.1 dyoung
42 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 1.3 msaitoh u16 count);
49 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 1.1 dyoung
54 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 1.3 msaitoh u16 *san_mac_offset);
57 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 1.3 msaitoh u16 words, u16 *data);
59 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 1.3 msaitoh u16 words, u16 *data);
61 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 1.3 msaitoh u16 offset);
63 1.1 dyoung
64 1.1 dyoung /**
65 1.1 dyoung * ixgbe_init_ops_generic - Inits function ptrs
66 1.1 dyoung * @hw: pointer to the hardware structure
67 1.1 dyoung *
68 1.1 dyoung * Initialize the function pointers.
69 1.1 dyoung **/
70 1.1 dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 1.1 dyoung {
72 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
74 1.1 dyoung u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
75 1.1 dyoung
76 1.1 dyoung DEBUGFUNC("ixgbe_init_ops_generic");
77 1.1 dyoung
78 1.1 dyoung /* EEPROM */
79 1.8 msaitoh eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 1.1 dyoung /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 1.3 msaitoh if (eec & IXGBE_EEC_PRES) {
82 1.8 msaitoh eeprom->ops.read = ixgbe_read_eerd_generic;
83 1.8 msaitoh eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 1.3 msaitoh } else {
85 1.8 msaitoh eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 1.3 msaitoh eeprom->ops.read_buffer =
87 1.8 msaitoh ixgbe_read_eeprom_buffer_bit_bang_generic;
88 1.3 msaitoh }
89 1.8 msaitoh eeprom->ops.write = ixgbe_write_eeprom_generic;
90 1.8 msaitoh eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 1.1 dyoung eeprom->ops.validate_checksum =
92 1.8 msaitoh ixgbe_validate_eeprom_checksum_generic;
93 1.8 msaitoh eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 1.8 msaitoh eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 1.1 dyoung
96 1.1 dyoung /* MAC */
97 1.8 msaitoh mac->ops.init_hw = ixgbe_init_hw_generic;
98 1.1 dyoung mac->ops.reset_hw = NULL;
99 1.8 msaitoh mac->ops.start_hw = ixgbe_start_hw_generic;
100 1.8 msaitoh mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 1.1 dyoung mac->ops.get_media_type = NULL;
102 1.1 dyoung mac->ops.get_supported_physical_layer = NULL;
103 1.8 msaitoh mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 1.8 msaitoh mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 1.8 msaitoh mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 1.8 msaitoh mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 1.8 msaitoh mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 1.8 msaitoh mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 1.8 msaitoh mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 1.8 msaitoh mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 1.8 msaitoh mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 1.1 dyoung
113 1.1 dyoung /* LEDs */
114 1.8 msaitoh mac->ops.led_on = ixgbe_led_on_generic;
115 1.8 msaitoh mac->ops.led_off = ixgbe_led_off_generic;
116 1.8 msaitoh mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 1.8 msaitoh mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 1.1 dyoung
119 1.1 dyoung /* RAR, Multicast, VLAN */
120 1.8 msaitoh mac->ops.set_rar = ixgbe_set_rar_generic;
121 1.8 msaitoh mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 1.1 dyoung mac->ops.insert_mac_addr = NULL;
123 1.1 dyoung mac->ops.set_vmdq = NULL;
124 1.1 dyoung mac->ops.clear_vmdq = NULL;
125 1.8 msaitoh mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 1.8 msaitoh mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 1.8 msaitoh mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 1.8 msaitoh mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 1.8 msaitoh mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 1.1 dyoung mac->ops.clear_vfta = NULL;
131 1.1 dyoung mac->ops.set_vfta = NULL;
132 1.3 msaitoh mac->ops.set_vlvf = NULL;
133 1.1 dyoung mac->ops.init_uta_tables = NULL;
134 1.8 msaitoh mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 1.8 msaitoh mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 1.1 dyoung
137 1.1 dyoung /* Flow Control */
138 1.8 msaitoh mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 1.8 msaitoh mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 1.1 dyoung
141 1.1 dyoung /* Link */
142 1.1 dyoung mac->ops.get_link_capabilities = NULL;
143 1.1 dyoung mac->ops.setup_link = NULL;
144 1.1 dyoung mac->ops.check_link = NULL;
145 1.6 msaitoh mac->ops.dmac_config = NULL;
146 1.6 msaitoh mac->ops.dmac_update_tcs = NULL;
147 1.6 msaitoh mac->ops.dmac_config_tcs = NULL;
148 1.1 dyoung
149 1.1 dyoung return IXGBE_SUCCESS;
150 1.1 dyoung }
151 1.1 dyoung
152 1.1 dyoung /**
153 1.6 msaitoh * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
154 1.6 msaitoh * of flow control
155 1.6 msaitoh * @hw: pointer to hardware structure
156 1.6 msaitoh *
157 1.6 msaitoh * This function returns TRUE if the device supports flow control
158 1.6 msaitoh * autonegotiation, and FALSE if it does not.
159 1.4 msaitoh *
160 1.4 msaitoh **/
161 1.6 msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
162 1.4 msaitoh {
163 1.6 msaitoh bool supported = FALSE;
164 1.6 msaitoh ixgbe_link_speed speed;
165 1.6 msaitoh bool link_up;
166 1.4 msaitoh
167 1.4 msaitoh DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
168 1.4 msaitoh
169 1.6 msaitoh switch (hw->phy.media_type) {
170 1.6 msaitoh case ixgbe_media_type_fiber_fixed:
171 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
172 1.6 msaitoh case ixgbe_media_type_fiber:
173 1.6 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
174 1.6 msaitoh /* if link is down, assume supported */
175 1.6 msaitoh if (link_up)
176 1.6 msaitoh supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
177 1.6 msaitoh TRUE : FALSE;
178 1.6 msaitoh else
179 1.6 msaitoh supported = TRUE;
180 1.6 msaitoh break;
181 1.6 msaitoh case ixgbe_media_type_backplane:
182 1.6 msaitoh supported = TRUE;
183 1.6 msaitoh break;
184 1.6 msaitoh case ixgbe_media_type_copper:
185 1.6 msaitoh /* only some copper devices support flow control autoneg */
186 1.6 msaitoh switch (hw->device_id) {
187 1.6 msaitoh case IXGBE_DEV_ID_82599_T3_LOM:
188 1.6 msaitoh case IXGBE_DEV_ID_X540T:
189 1.8 msaitoh case IXGBE_DEV_ID_X540T1:
190 1.6 msaitoh case IXGBE_DEV_ID_X540_BYPASS:
191 1.8 msaitoh case IXGBE_DEV_ID_X550T:
192 1.9 msaitoh case IXGBE_DEV_ID_X550EM_X_10G_T:
193 1.6 msaitoh supported = TRUE;
194 1.6 msaitoh break;
195 1.6 msaitoh default:
196 1.6 msaitoh supported = FALSE;
197 1.6 msaitoh }
198 1.4 msaitoh default:
199 1.6 msaitoh break;
200 1.4 msaitoh }
201 1.6 msaitoh
202 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
203 1.6 msaitoh "Device %x does not support flow control autoneg",
204 1.6 msaitoh hw->device_id);
205 1.6 msaitoh return supported;
206 1.4 msaitoh }
207 1.4 msaitoh
208 1.4 msaitoh /**
209 1.8 msaitoh * ixgbe_setup_fc_generic - Set up flow control
210 1.4 msaitoh * @hw: pointer to hardware structure
211 1.4 msaitoh *
212 1.4 msaitoh * Called at init time to set up flow control.
213 1.4 msaitoh **/
214 1.8 msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
215 1.4 msaitoh {
216 1.4 msaitoh s32 ret_val = IXGBE_SUCCESS;
217 1.4 msaitoh u32 reg = 0, reg_bp = 0;
218 1.4 msaitoh u16 reg_cu = 0;
219 1.8 msaitoh bool locked = FALSE;
220 1.4 msaitoh
221 1.8 msaitoh DEBUGFUNC("ixgbe_setup_fc_generic");
222 1.4 msaitoh
223 1.8 msaitoh /* Validate the requested mode */
224 1.4 msaitoh if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
225 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
226 1.6 msaitoh "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
227 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
228 1.4 msaitoh goto out;
229 1.4 msaitoh }
230 1.4 msaitoh
231 1.4 msaitoh /*
232 1.4 msaitoh * 10gig parts do not have a word in the EEPROM to determine the
233 1.4 msaitoh * default flow control setting, so we explicitly set it to full.
234 1.4 msaitoh */
235 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_default)
236 1.4 msaitoh hw->fc.requested_mode = ixgbe_fc_full;
237 1.4 msaitoh
238 1.4 msaitoh /*
239 1.4 msaitoh * Set up the 1G and 10G flow control advertisement registers so the
240 1.4 msaitoh * HW will be able to do fc autoneg once the cable is plugged in. If
241 1.4 msaitoh * we link at 10G, the 1G advertisement is harmless and vice versa.
242 1.4 msaitoh */
243 1.4 msaitoh switch (hw->phy.media_type) {
244 1.8 msaitoh case ixgbe_media_type_backplane:
245 1.8 msaitoh /* some MAC's need RMW protection on AUTOC */
246 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
247 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
248 1.8 msaitoh goto out;
249 1.8 msaitoh
250 1.8 msaitoh /* only backplane uses autoc so fall though */
251 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
252 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
253 1.4 msaitoh case ixgbe_media_type_fiber:
254 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
255 1.8 msaitoh
256 1.4 msaitoh break;
257 1.4 msaitoh case ixgbe_media_type_copper:
258 1.4 msaitoh hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
259 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
260 1.4 msaitoh break;
261 1.4 msaitoh default:
262 1.4 msaitoh break;
263 1.4 msaitoh }
264 1.4 msaitoh
265 1.4 msaitoh /*
266 1.4 msaitoh * The possible values of fc.requested_mode are:
267 1.4 msaitoh * 0: Flow control is completely disabled
268 1.4 msaitoh * 1: Rx flow control is enabled (we can receive pause frames,
269 1.4 msaitoh * but not send pause frames).
270 1.4 msaitoh * 2: Tx flow control is enabled (we can send pause frames but
271 1.4 msaitoh * we do not support receiving pause frames).
272 1.4 msaitoh * 3: Both Rx and Tx flow control (symmetric) are enabled.
273 1.4 msaitoh * other: Invalid.
274 1.4 msaitoh */
275 1.4 msaitoh switch (hw->fc.requested_mode) {
276 1.4 msaitoh case ixgbe_fc_none:
277 1.4 msaitoh /* Flow control completely disabled by software override. */
278 1.4 msaitoh reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
279 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
280 1.4 msaitoh reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
281 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE);
282 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
283 1.4 msaitoh reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
284 1.4 msaitoh break;
285 1.4 msaitoh case ixgbe_fc_tx_pause:
286 1.4 msaitoh /*
287 1.4 msaitoh * Tx Flow control is enabled, and Rx Flow control is
288 1.4 msaitoh * disabled by software override.
289 1.4 msaitoh */
290 1.4 msaitoh reg |= IXGBE_PCS1GANA_ASM_PAUSE;
291 1.4 msaitoh reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
292 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
293 1.4 msaitoh reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
294 1.4 msaitoh reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
295 1.4 msaitoh } else if (hw->phy.media_type == ixgbe_media_type_copper) {
296 1.4 msaitoh reg_cu |= IXGBE_TAF_ASM_PAUSE;
297 1.4 msaitoh reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
298 1.4 msaitoh }
299 1.4 msaitoh break;
300 1.4 msaitoh case ixgbe_fc_rx_pause:
301 1.4 msaitoh /*
302 1.4 msaitoh * Rx Flow control is enabled and Tx Flow control is
303 1.4 msaitoh * disabled by software override. Since there really
304 1.4 msaitoh * isn't a way to advertise that we are capable of RX
305 1.4 msaitoh * Pause ONLY, we will advertise that we support both
306 1.4 msaitoh * symmetric and asymmetric Rx PAUSE, as such we fall
307 1.4 msaitoh * through to the fc_full statement. Later, we will
308 1.4 msaitoh * disable the adapter's ability to send PAUSE frames.
309 1.4 msaitoh */
310 1.4 msaitoh case ixgbe_fc_full:
311 1.4 msaitoh /* Flow control (both Rx and Tx) is enabled by SW override. */
312 1.4 msaitoh reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
313 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane)
314 1.4 msaitoh reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
315 1.4 msaitoh IXGBE_AUTOC_ASM_PAUSE;
316 1.4 msaitoh else if (hw->phy.media_type == ixgbe_media_type_copper)
317 1.4 msaitoh reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
318 1.4 msaitoh break;
319 1.4 msaitoh default:
320 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
321 1.6 msaitoh "Flow control param set incorrectly\n");
322 1.4 msaitoh ret_val = IXGBE_ERR_CONFIG;
323 1.4 msaitoh goto out;
324 1.4 msaitoh break;
325 1.4 msaitoh }
326 1.4 msaitoh
327 1.8 msaitoh if (hw->mac.type < ixgbe_mac_X540) {
328 1.4 msaitoh /*
329 1.4 msaitoh * Enable auto-negotiation between the MAC & PHY;
330 1.4 msaitoh * the MAC will advertise clause 37 flow control.
331 1.4 msaitoh */
332 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
333 1.4 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
334 1.4 msaitoh
335 1.4 msaitoh /* Disable AN timeout */
336 1.4 msaitoh if (hw->fc.strict_ieee)
337 1.4 msaitoh reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
338 1.4 msaitoh
339 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
340 1.4 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
341 1.4 msaitoh }
342 1.4 msaitoh
343 1.4 msaitoh /*
344 1.4 msaitoh * AUTOC restart handles negotiation of 1G and 10G on backplane
345 1.4 msaitoh * and copper. There is no need to set the PCS1GCTL register.
346 1.4 msaitoh *
347 1.4 msaitoh */
348 1.4 msaitoh if (hw->phy.media_type == ixgbe_media_type_backplane) {
349 1.4 msaitoh reg_bp |= IXGBE_AUTOC_AN_RESTART;
350 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
351 1.8 msaitoh if (ret_val)
352 1.8 msaitoh goto out;
353 1.4 msaitoh } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
354 1.6 msaitoh (ixgbe_device_supports_autoneg_fc(hw))) {
355 1.4 msaitoh hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
356 1.4 msaitoh IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
357 1.4 msaitoh }
358 1.4 msaitoh
359 1.8 msaitoh DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
360 1.4 msaitoh out:
361 1.4 msaitoh return ret_val;
362 1.4 msaitoh }
363 1.4 msaitoh
364 1.4 msaitoh /**
365 1.1 dyoung * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
366 1.1 dyoung * @hw: pointer to hardware structure
367 1.1 dyoung *
368 1.1 dyoung * Starts the hardware by filling the bus info structure and media type, clears
369 1.1 dyoung * all on chip counters, initializes receive address registers, multicast
370 1.1 dyoung * table, VLAN filter table, calls routine to set up link and flow control
371 1.1 dyoung * settings, and leaves transmit and receive units disabled and uninitialized
372 1.1 dyoung **/
373 1.1 dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
374 1.1 dyoung {
375 1.4 msaitoh s32 ret_val;
376 1.1 dyoung u32 ctrl_ext;
377 1.1 dyoung
378 1.1 dyoung DEBUGFUNC("ixgbe_start_hw_generic");
379 1.1 dyoung
380 1.1 dyoung /* Set the media type */
381 1.1 dyoung hw->phy.media_type = hw->mac.ops.get_media_type(hw);
382 1.1 dyoung
383 1.1 dyoung /* PHY ops initialization must be done in reset_hw() */
384 1.1 dyoung
385 1.1 dyoung /* Clear the VLAN filter table */
386 1.1 dyoung hw->mac.ops.clear_vfta(hw);
387 1.1 dyoung
388 1.1 dyoung /* Clear statistics registers */
389 1.1 dyoung hw->mac.ops.clear_hw_cntrs(hw);
390 1.1 dyoung
391 1.1 dyoung /* Set No Snoop Disable */
392 1.1 dyoung ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
393 1.1 dyoung ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
394 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
395 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
396 1.1 dyoung
397 1.1 dyoung /* Setup flow control */
398 1.4 msaitoh ret_val = ixgbe_setup_fc(hw);
399 1.4 msaitoh if (ret_val != IXGBE_SUCCESS)
400 1.4 msaitoh goto out;
401 1.1 dyoung
402 1.1 dyoung /* Clear adapter stopped flag */
403 1.1 dyoung hw->adapter_stopped = FALSE;
404 1.1 dyoung
405 1.4 msaitoh out:
406 1.4 msaitoh return ret_val;
407 1.1 dyoung }
408 1.1 dyoung
409 1.1 dyoung /**
410 1.1 dyoung * ixgbe_start_hw_gen2 - Init sequence for common device family
411 1.1 dyoung * @hw: pointer to hw structure
412 1.1 dyoung *
413 1.1 dyoung * Performs the init sequence common to the second generation
414 1.1 dyoung * of 10 GbE devices.
415 1.1 dyoung * Devices in the second generation:
416 1.1 dyoung * 82599
417 1.1 dyoung * X540
418 1.1 dyoung **/
419 1.1 dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
420 1.1 dyoung {
421 1.1 dyoung u32 i;
422 1.1 dyoung u32 regval;
423 1.1 dyoung
424 1.1 dyoung /* Clear the rate limiters */
425 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
427 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
428 1.1 dyoung }
429 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
430 1.1 dyoung
431 1.1 dyoung /* Disable relaxed ordering */
432 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
433 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
434 1.4 msaitoh regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
435 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
436 1.1 dyoung }
437 1.1 dyoung
438 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
439 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
440 1.4 msaitoh regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
441 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
442 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
443 1.1 dyoung }
444 1.1 dyoung
445 1.1 dyoung return IXGBE_SUCCESS;
446 1.1 dyoung }
447 1.1 dyoung
448 1.1 dyoung /**
449 1.1 dyoung * ixgbe_init_hw_generic - Generic hardware initialization
450 1.1 dyoung * @hw: pointer to hardware structure
451 1.1 dyoung *
452 1.1 dyoung * Initialize the hardware by resetting the hardware, filling the bus info
453 1.1 dyoung * structure and media type, clears all on chip counters, initializes receive
454 1.1 dyoung * address registers, multicast table, VLAN filter table, calls routine to set
455 1.1 dyoung * up link and flow control settings, and leaves transmit and receive units
456 1.1 dyoung * disabled and uninitialized
457 1.1 dyoung **/
458 1.1 dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
459 1.1 dyoung {
460 1.1 dyoung s32 status;
461 1.1 dyoung
462 1.1 dyoung DEBUGFUNC("ixgbe_init_hw_generic");
463 1.1 dyoung
464 1.1 dyoung /* Reset the hardware */
465 1.1 dyoung status = hw->mac.ops.reset_hw(hw);
466 1.1 dyoung
467 1.1 dyoung if (status == IXGBE_SUCCESS) {
468 1.1 dyoung /* Start the HW */
469 1.1 dyoung status = hw->mac.ops.start_hw(hw);
470 1.1 dyoung }
471 1.1 dyoung
472 1.1 dyoung return status;
473 1.1 dyoung }
474 1.1 dyoung
475 1.1 dyoung /**
476 1.1 dyoung * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
477 1.1 dyoung * @hw: pointer to hardware structure
478 1.1 dyoung *
479 1.1 dyoung * Clears all hardware statistics counters by reading them from the hardware
480 1.1 dyoung * Statistics counters are clear on read.
481 1.1 dyoung **/
482 1.1 dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
483 1.1 dyoung {
484 1.1 dyoung u16 i = 0;
485 1.1 dyoung
486 1.1 dyoung DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
487 1.1 dyoung
488 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_CRCERRS);
489 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ILLERRC);
490 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ERRBC);
491 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MSPDC);
492 1.1 dyoung for (i = 0; i < 8; i++)
493 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPC(i));
494 1.1 dyoung
495 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MLFC);
496 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MRFC);
497 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RLEC);
498 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONTXC);
499 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
500 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
501 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
502 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
503 1.1 dyoung } else {
504 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXONRXC);
505 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
506 1.1 dyoung }
507 1.1 dyoung
508 1.1 dyoung for (i = 0; i < 8; i++) {
509 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
510 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
511 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
512 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
513 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
514 1.1 dyoung } else {
515 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
516 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
517 1.1 dyoung }
518 1.1 dyoung }
519 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB)
520 1.1 dyoung for (i = 0; i < 8; i++)
521 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
522 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC64);
523 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC127);
524 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC255);
525 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC511);
526 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1023);
527 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PRC1522);
528 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPRC);
529 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPRC);
530 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPRC);
531 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GPTC);
532 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCL);
533 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GORCH);
534 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCL);
535 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_GOTCH);
536 1.3 msaitoh if (hw->mac.type == ixgbe_mac_82598EB)
537 1.3 msaitoh for (i = 0; i < 8; i++)
538 1.3 msaitoh IXGBE_READ_REG(hw, IXGBE_RNBC(i));
539 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RUC);
540 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RFC);
541 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_ROC);
542 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_RJC);
543 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPRC);
544 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPDC);
545 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MNGPTC);
546 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORL);
547 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TORH);
548 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPR);
549 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_TPT);
550 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC64);
551 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC127);
552 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC255);
553 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC511);
554 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1023);
555 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_PTC1522);
556 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_MPTC);
557 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_BPTC);
558 1.1 dyoung for (i = 0; i < 16; i++) {
559 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRC(i));
560 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPTC(i));
561 1.1 dyoung if (hw->mac.type >= ixgbe_mac_82599EB) {
562 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
563 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
564 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
565 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
566 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
567 1.1 dyoung } else {
568 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBRC(i));
569 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_QBTC(i));
570 1.1 dyoung }
571 1.1 dyoung }
572 1.1 dyoung
573 1.8 msaitoh if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
574 1.3 msaitoh if (hw->phy.id == 0)
575 1.3 msaitoh ixgbe_identify_phy(hw);
576 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
577 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
578 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
579 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
580 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
581 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
582 1.3 msaitoh hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
583 1.3 msaitoh IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 1.3 msaitoh }
585 1.3 msaitoh
586 1.1 dyoung return IXGBE_SUCCESS;
587 1.1 dyoung }
588 1.1 dyoung
589 1.1 dyoung /**
590 1.1 dyoung * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
591 1.1 dyoung * @hw: pointer to hardware structure
592 1.1 dyoung * @pba_num: stores the part number string from the EEPROM
593 1.1 dyoung * @pba_num_size: part number string buffer length
594 1.1 dyoung *
595 1.1 dyoung * Reads the part number string from the EEPROM.
596 1.1 dyoung **/
597 1.1 dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
598 1.3 msaitoh u32 pba_num_size)
599 1.1 dyoung {
600 1.1 dyoung s32 ret_val;
601 1.1 dyoung u16 data;
602 1.1 dyoung u16 pba_ptr;
603 1.1 dyoung u16 offset;
604 1.1 dyoung u16 length;
605 1.1 dyoung
606 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_string_generic");
607 1.1 dyoung
608 1.1 dyoung if (pba_num == NULL) {
609 1.1 dyoung DEBUGOUT("PBA string buffer was null\n");
610 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
611 1.1 dyoung }
612 1.1 dyoung
613 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
614 1.1 dyoung if (ret_val) {
615 1.1 dyoung DEBUGOUT("NVM Read Error\n");
616 1.1 dyoung return ret_val;
617 1.1 dyoung }
618 1.1 dyoung
619 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
620 1.1 dyoung if (ret_val) {
621 1.1 dyoung DEBUGOUT("NVM Read Error\n");
622 1.1 dyoung return ret_val;
623 1.1 dyoung }
624 1.1 dyoung
625 1.1 dyoung /*
626 1.1 dyoung * if data is not ptr guard the PBA must be in legacy format which
627 1.1 dyoung * means pba_ptr is actually our second data word for the PBA number
628 1.1 dyoung * and we can decode it into an ascii string
629 1.1 dyoung */
630 1.1 dyoung if (data != IXGBE_PBANUM_PTR_GUARD) {
631 1.1 dyoung DEBUGOUT("NVM PBA number is not stored as string\n");
632 1.1 dyoung
633 1.1 dyoung /* we will need 11 characters to store the PBA */
634 1.1 dyoung if (pba_num_size < 11) {
635 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
636 1.1 dyoung return IXGBE_ERR_NO_SPACE;
637 1.1 dyoung }
638 1.1 dyoung
639 1.1 dyoung /* extract hex string from data and pba_ptr */
640 1.1 dyoung pba_num[0] = (data >> 12) & 0xF;
641 1.1 dyoung pba_num[1] = (data >> 8) & 0xF;
642 1.1 dyoung pba_num[2] = (data >> 4) & 0xF;
643 1.1 dyoung pba_num[3] = data & 0xF;
644 1.1 dyoung pba_num[4] = (pba_ptr >> 12) & 0xF;
645 1.1 dyoung pba_num[5] = (pba_ptr >> 8) & 0xF;
646 1.1 dyoung pba_num[6] = '-';
647 1.1 dyoung pba_num[7] = 0;
648 1.1 dyoung pba_num[8] = (pba_ptr >> 4) & 0xF;
649 1.1 dyoung pba_num[9] = pba_ptr & 0xF;
650 1.1 dyoung
651 1.1 dyoung /* put a null character on the end of our string */
652 1.1 dyoung pba_num[10] = '\0';
653 1.1 dyoung
654 1.1 dyoung /* switch all the data but the '-' to hex char */
655 1.1 dyoung for (offset = 0; offset < 10; offset++) {
656 1.1 dyoung if (pba_num[offset] < 0xA)
657 1.1 dyoung pba_num[offset] += '0';
658 1.1 dyoung else if (pba_num[offset] < 0x10)
659 1.1 dyoung pba_num[offset] += 'A' - 0xA;
660 1.1 dyoung }
661 1.1 dyoung
662 1.1 dyoung return IXGBE_SUCCESS;
663 1.1 dyoung }
664 1.1 dyoung
665 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
666 1.1 dyoung if (ret_val) {
667 1.1 dyoung DEBUGOUT("NVM Read Error\n");
668 1.1 dyoung return ret_val;
669 1.1 dyoung }
670 1.1 dyoung
671 1.1 dyoung if (length == 0xFFFF || length == 0) {
672 1.1 dyoung DEBUGOUT("NVM PBA number section invalid length\n");
673 1.1 dyoung return IXGBE_ERR_PBA_SECTION;
674 1.1 dyoung }
675 1.1 dyoung
676 1.1 dyoung /* check if pba_num buffer is big enough */
677 1.1 dyoung if (pba_num_size < (((u32)length * 2) - 1)) {
678 1.1 dyoung DEBUGOUT("PBA string buffer too small\n");
679 1.1 dyoung return IXGBE_ERR_NO_SPACE;
680 1.1 dyoung }
681 1.1 dyoung
682 1.1 dyoung /* trim pba length from start of string */
683 1.1 dyoung pba_ptr++;
684 1.1 dyoung length--;
685 1.1 dyoung
686 1.1 dyoung for (offset = 0; offset < length; offset++) {
687 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
688 1.1 dyoung if (ret_val) {
689 1.1 dyoung DEBUGOUT("NVM Read Error\n");
690 1.1 dyoung return ret_val;
691 1.1 dyoung }
692 1.1 dyoung pba_num[offset * 2] = (u8)(data >> 8);
693 1.1 dyoung pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
694 1.1 dyoung }
695 1.1 dyoung pba_num[offset * 2] = '\0';
696 1.1 dyoung
697 1.1 dyoung return IXGBE_SUCCESS;
698 1.1 dyoung }
699 1.1 dyoung
700 1.1 dyoung /**
701 1.1 dyoung * ixgbe_read_pba_num_generic - Reads part number from EEPROM
702 1.1 dyoung * @hw: pointer to hardware structure
703 1.1 dyoung * @pba_num: stores the part number from the EEPROM
704 1.1 dyoung *
705 1.1 dyoung * Reads the part number from the EEPROM.
706 1.1 dyoung **/
707 1.1 dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
708 1.1 dyoung {
709 1.1 dyoung s32 ret_val;
710 1.1 dyoung u16 data;
711 1.1 dyoung
712 1.1 dyoung DEBUGFUNC("ixgbe_read_pba_num_generic");
713 1.1 dyoung
714 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
715 1.1 dyoung if (ret_val) {
716 1.1 dyoung DEBUGOUT("NVM Read Error\n");
717 1.1 dyoung return ret_val;
718 1.1 dyoung } else if (data == IXGBE_PBANUM_PTR_GUARD) {
719 1.1 dyoung DEBUGOUT("NVM Not supported\n");
720 1.1 dyoung return IXGBE_NOT_IMPLEMENTED;
721 1.1 dyoung }
722 1.1 dyoung *pba_num = (u32)(data << 16);
723 1.1 dyoung
724 1.1 dyoung ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
725 1.1 dyoung if (ret_val) {
726 1.1 dyoung DEBUGOUT("NVM Read Error\n");
727 1.1 dyoung return ret_val;
728 1.1 dyoung }
729 1.1 dyoung *pba_num |= data;
730 1.1 dyoung
731 1.1 dyoung return IXGBE_SUCCESS;
732 1.1 dyoung }
733 1.1 dyoung
734 1.1 dyoung /**
735 1.5 msaitoh * ixgbe_read_pba_raw
736 1.5 msaitoh * @hw: pointer to the HW structure
737 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
738 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
739 1.5 msaitoh * @max_pba_block_size: PBA block size limit
740 1.5 msaitoh * @pba: pointer to output PBA structure
741 1.5 msaitoh *
742 1.5 msaitoh * Reads PBA from EEPROM image when eeprom_buf is not NULL.
743 1.5 msaitoh * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
744 1.5 msaitoh *
745 1.5 msaitoh **/
746 1.5 msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
747 1.5 msaitoh u32 eeprom_buf_size, u16 max_pba_block_size,
748 1.5 msaitoh struct ixgbe_pba *pba)
749 1.5 msaitoh {
750 1.5 msaitoh s32 ret_val;
751 1.5 msaitoh u16 pba_block_size;
752 1.5 msaitoh
753 1.5 msaitoh if (pba == NULL)
754 1.5 msaitoh return IXGBE_ERR_PARAM;
755 1.5 msaitoh
756 1.5 msaitoh if (eeprom_buf == NULL) {
757 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
758 1.5 msaitoh &pba->word[0]);
759 1.5 msaitoh if (ret_val)
760 1.5 msaitoh return ret_val;
761 1.5 msaitoh } else {
762 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
763 1.5 msaitoh pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
764 1.5 msaitoh pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
765 1.5 msaitoh } else {
766 1.5 msaitoh return IXGBE_ERR_PARAM;
767 1.5 msaitoh }
768 1.5 msaitoh }
769 1.5 msaitoh
770 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
771 1.5 msaitoh if (pba->pba_block == NULL)
772 1.5 msaitoh return IXGBE_ERR_PARAM;
773 1.5 msaitoh
774 1.5 msaitoh ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
775 1.5 msaitoh eeprom_buf_size,
776 1.5 msaitoh &pba_block_size);
777 1.5 msaitoh if (ret_val)
778 1.5 msaitoh return ret_val;
779 1.5 msaitoh
780 1.5 msaitoh if (pba_block_size > max_pba_block_size)
781 1.5 msaitoh return IXGBE_ERR_PARAM;
782 1.5 msaitoh
783 1.5 msaitoh if (eeprom_buf == NULL) {
784 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
785 1.5 msaitoh pba_block_size,
786 1.5 msaitoh pba->pba_block);
787 1.5 msaitoh if (ret_val)
788 1.5 msaitoh return ret_val;
789 1.5 msaitoh } else {
790 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
791 1.8 msaitoh pba_block_size)) {
792 1.5 msaitoh memcpy(pba->pba_block,
793 1.5 msaitoh &eeprom_buf[pba->word[1]],
794 1.5 msaitoh pba_block_size * sizeof(u16));
795 1.5 msaitoh } else {
796 1.5 msaitoh return IXGBE_ERR_PARAM;
797 1.5 msaitoh }
798 1.5 msaitoh }
799 1.5 msaitoh }
800 1.5 msaitoh
801 1.5 msaitoh return IXGBE_SUCCESS;
802 1.5 msaitoh }
803 1.5 msaitoh
804 1.5 msaitoh /**
805 1.5 msaitoh * ixgbe_write_pba_raw
806 1.5 msaitoh * @hw: pointer to the HW structure
807 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
808 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
809 1.5 msaitoh * @pba: pointer to PBA structure
810 1.5 msaitoh *
811 1.5 msaitoh * Writes PBA to EEPROM image when eeprom_buf is not NULL.
812 1.5 msaitoh * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
813 1.5 msaitoh *
814 1.5 msaitoh **/
815 1.5 msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
816 1.5 msaitoh u32 eeprom_buf_size, struct ixgbe_pba *pba)
817 1.5 msaitoh {
818 1.5 msaitoh s32 ret_val;
819 1.5 msaitoh
820 1.5 msaitoh if (pba == NULL)
821 1.5 msaitoh return IXGBE_ERR_PARAM;
822 1.5 msaitoh
823 1.5 msaitoh if (eeprom_buf == NULL) {
824 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
825 1.5 msaitoh &pba->word[0]);
826 1.5 msaitoh if (ret_val)
827 1.5 msaitoh return ret_val;
828 1.5 msaitoh } else {
829 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
830 1.5 msaitoh eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
831 1.5 msaitoh eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
832 1.5 msaitoh } else {
833 1.5 msaitoh return IXGBE_ERR_PARAM;
834 1.5 msaitoh }
835 1.5 msaitoh }
836 1.5 msaitoh
837 1.5 msaitoh if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
838 1.5 msaitoh if (pba->pba_block == NULL)
839 1.5 msaitoh return IXGBE_ERR_PARAM;
840 1.5 msaitoh
841 1.5 msaitoh if (eeprom_buf == NULL) {
842 1.5 msaitoh ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
843 1.5 msaitoh pba->pba_block[0],
844 1.5 msaitoh pba->pba_block);
845 1.5 msaitoh if (ret_val)
846 1.5 msaitoh return ret_val;
847 1.5 msaitoh } else {
848 1.5 msaitoh if (eeprom_buf_size > (u32)(pba->word[1] +
849 1.5 msaitoh pba->pba_block[0])) {
850 1.5 msaitoh memcpy(&eeprom_buf[pba->word[1]],
851 1.5 msaitoh pba->pba_block,
852 1.5 msaitoh pba->pba_block[0] * sizeof(u16));
853 1.5 msaitoh } else {
854 1.5 msaitoh return IXGBE_ERR_PARAM;
855 1.5 msaitoh }
856 1.5 msaitoh }
857 1.5 msaitoh }
858 1.5 msaitoh
859 1.5 msaitoh return IXGBE_SUCCESS;
860 1.5 msaitoh }
861 1.5 msaitoh
862 1.5 msaitoh /**
863 1.5 msaitoh * ixgbe_get_pba_block_size
864 1.5 msaitoh * @hw: pointer to the HW structure
865 1.5 msaitoh * @eeprom_buf: optional pointer to EEPROM image
866 1.5 msaitoh * @eeprom_buf_size: size of EEPROM image in words
867 1.5 msaitoh * @pba_data_size: pointer to output variable
868 1.5 msaitoh *
869 1.5 msaitoh * Returns the size of the PBA block in words. Function operates on EEPROM
870 1.5 msaitoh * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
871 1.5 msaitoh * EEPROM device.
872 1.5 msaitoh *
873 1.5 msaitoh **/
874 1.5 msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
875 1.5 msaitoh u32 eeprom_buf_size, u16 *pba_block_size)
876 1.5 msaitoh {
877 1.5 msaitoh s32 ret_val;
878 1.5 msaitoh u16 pba_word[2];
879 1.5 msaitoh u16 length;
880 1.5 msaitoh
881 1.5 msaitoh DEBUGFUNC("ixgbe_get_pba_block_size");
882 1.5 msaitoh
883 1.5 msaitoh if (eeprom_buf == NULL) {
884 1.5 msaitoh ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
885 1.5 msaitoh &pba_word[0]);
886 1.5 msaitoh if (ret_val)
887 1.5 msaitoh return ret_val;
888 1.5 msaitoh } else {
889 1.5 msaitoh if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
890 1.5 msaitoh pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
891 1.5 msaitoh pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
892 1.5 msaitoh } else {
893 1.5 msaitoh return IXGBE_ERR_PARAM;
894 1.5 msaitoh }
895 1.5 msaitoh }
896 1.5 msaitoh
897 1.5 msaitoh if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
898 1.5 msaitoh if (eeprom_buf == NULL) {
899 1.5 msaitoh ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
900 1.5 msaitoh &length);
901 1.5 msaitoh if (ret_val)
902 1.5 msaitoh return ret_val;
903 1.5 msaitoh } else {
904 1.5 msaitoh if (eeprom_buf_size > pba_word[1])
905 1.5 msaitoh length = eeprom_buf[pba_word[1] + 0];
906 1.5 msaitoh else
907 1.5 msaitoh return IXGBE_ERR_PARAM;
908 1.5 msaitoh }
909 1.5 msaitoh
910 1.5 msaitoh if (length == 0xFFFF || length == 0)
911 1.5 msaitoh return IXGBE_ERR_PBA_SECTION;
912 1.5 msaitoh } else {
913 1.5 msaitoh /* PBA number in legacy format, there is no PBA Block. */
914 1.5 msaitoh length = 0;
915 1.5 msaitoh }
916 1.5 msaitoh
917 1.5 msaitoh if (pba_block_size != NULL)
918 1.5 msaitoh *pba_block_size = length;
919 1.5 msaitoh
920 1.5 msaitoh return IXGBE_SUCCESS;
921 1.5 msaitoh }
922 1.5 msaitoh
923 1.5 msaitoh /**
924 1.1 dyoung * ixgbe_get_mac_addr_generic - Generic get MAC address
925 1.1 dyoung * @hw: pointer to hardware structure
926 1.1 dyoung * @mac_addr: Adapter MAC address
927 1.1 dyoung *
928 1.1 dyoung * Reads the adapter's MAC address from first Receive Address Register (RAR0)
929 1.1 dyoung * A reset of the adapter must be performed prior to calling this function
930 1.1 dyoung * in order for the MAC address to have been loaded from the EEPROM into RAR0
931 1.1 dyoung **/
932 1.1 dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
933 1.1 dyoung {
934 1.1 dyoung u32 rar_high;
935 1.1 dyoung u32 rar_low;
936 1.1 dyoung u16 i;
937 1.1 dyoung
938 1.1 dyoung DEBUGFUNC("ixgbe_get_mac_addr_generic");
939 1.1 dyoung
940 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
941 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
942 1.1 dyoung
943 1.1 dyoung for (i = 0; i < 4; i++)
944 1.1 dyoung mac_addr[i] = (u8)(rar_low >> (i*8));
945 1.1 dyoung
946 1.1 dyoung for (i = 0; i < 2; i++)
947 1.1 dyoung mac_addr[i+4] = (u8)(rar_high >> (i*8));
948 1.1 dyoung
949 1.1 dyoung return IXGBE_SUCCESS;
950 1.1 dyoung }
951 1.1 dyoung
952 1.1 dyoung /**
953 1.6 msaitoh * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
954 1.1 dyoung * @hw: pointer to hardware structure
955 1.6 msaitoh * @link_status: the link status returned by the PCI config space
956 1.1 dyoung *
957 1.6 msaitoh * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
958 1.1 dyoung **/
959 1.6 msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
960 1.1 dyoung {
961 1.1 dyoung struct ixgbe_mac_info *mac = &hw->mac;
962 1.1 dyoung
963 1.8 msaitoh if (hw->bus.type == ixgbe_bus_type_unknown)
964 1.8 msaitoh hw->bus.type = ixgbe_bus_type_pci_express;
965 1.1 dyoung
966 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_WIDTH) {
967 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_1:
968 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x1;
969 1.1 dyoung break;
970 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_2:
971 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x2;
972 1.1 dyoung break;
973 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_4:
974 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x4;
975 1.1 dyoung break;
976 1.1 dyoung case IXGBE_PCI_LINK_WIDTH_8:
977 1.1 dyoung hw->bus.width = ixgbe_bus_width_pcie_x8;
978 1.1 dyoung break;
979 1.1 dyoung default:
980 1.1 dyoung hw->bus.width = ixgbe_bus_width_unknown;
981 1.1 dyoung break;
982 1.1 dyoung }
983 1.1 dyoung
984 1.1 dyoung switch (link_status & IXGBE_PCI_LINK_SPEED) {
985 1.1 dyoung case IXGBE_PCI_LINK_SPEED_2500:
986 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_2500;
987 1.1 dyoung break;
988 1.1 dyoung case IXGBE_PCI_LINK_SPEED_5000:
989 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_5000;
990 1.1 dyoung break;
991 1.4 msaitoh case IXGBE_PCI_LINK_SPEED_8000:
992 1.4 msaitoh hw->bus.speed = ixgbe_bus_speed_8000;
993 1.4 msaitoh break;
994 1.1 dyoung default:
995 1.1 dyoung hw->bus.speed = ixgbe_bus_speed_unknown;
996 1.1 dyoung break;
997 1.1 dyoung }
998 1.1 dyoung
999 1.1 dyoung mac->ops.set_lan_id(hw);
1000 1.6 msaitoh }
1001 1.6 msaitoh
1002 1.6 msaitoh /**
1003 1.6 msaitoh * ixgbe_get_bus_info_generic - Generic set PCI bus info
1004 1.6 msaitoh * @hw: pointer to hardware structure
1005 1.6 msaitoh *
1006 1.6 msaitoh * Gets the PCI bus info (speed, width, type) then calls helper function to
1007 1.6 msaitoh * store this data within the ixgbe_hw structure.
1008 1.6 msaitoh **/
1009 1.6 msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1010 1.6 msaitoh {
1011 1.6 msaitoh u16 link_status;
1012 1.6 msaitoh
1013 1.6 msaitoh DEBUGFUNC("ixgbe_get_bus_info_generic");
1014 1.6 msaitoh
1015 1.6 msaitoh /* Get the negotiated link width and speed from PCI config space */
1016 1.6 msaitoh link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1017 1.6 msaitoh
1018 1.6 msaitoh ixgbe_set_pci_config_data_generic(hw, link_status);
1019 1.1 dyoung
1020 1.1 dyoung return IXGBE_SUCCESS;
1021 1.1 dyoung }
1022 1.1 dyoung
1023 1.1 dyoung /**
1024 1.1 dyoung * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1025 1.1 dyoung * @hw: pointer to the HW structure
1026 1.1 dyoung *
1027 1.1 dyoung * Determines the LAN function id by reading memory-mapped registers
1028 1.1 dyoung * and swaps the port value if requested.
1029 1.1 dyoung **/
1030 1.1 dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1031 1.1 dyoung {
1032 1.1 dyoung struct ixgbe_bus_info *bus = &hw->bus;
1033 1.1 dyoung u32 reg;
1034 1.1 dyoung
1035 1.1 dyoung DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1036 1.1 dyoung
1037 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1038 1.1 dyoung bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1039 1.1 dyoung bus->lan_id = bus->func;
1040 1.1 dyoung
1041 1.1 dyoung /* check for a port swap */
1042 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
1043 1.1 dyoung if (reg & IXGBE_FACTPS_LFS)
1044 1.1 dyoung bus->func ^= 0x1;
1045 1.1 dyoung }
1046 1.1 dyoung
1047 1.1 dyoung /**
1048 1.1 dyoung * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1049 1.1 dyoung * @hw: pointer to hardware structure
1050 1.1 dyoung *
1051 1.1 dyoung * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1052 1.1 dyoung * disables transmit and receive units. The adapter_stopped flag is used by
1053 1.1 dyoung * the shared code and drivers to determine if the adapter is in a stopped
1054 1.1 dyoung * state and should not touch the hardware.
1055 1.1 dyoung **/
1056 1.1 dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1057 1.1 dyoung {
1058 1.1 dyoung u32 reg_val;
1059 1.1 dyoung u16 i;
1060 1.1 dyoung
1061 1.1 dyoung DEBUGFUNC("ixgbe_stop_adapter_generic");
1062 1.1 dyoung
1063 1.1 dyoung /*
1064 1.1 dyoung * Set the adapter_stopped flag so other driver functions stop touching
1065 1.1 dyoung * the hardware
1066 1.1 dyoung */
1067 1.1 dyoung hw->adapter_stopped = TRUE;
1068 1.1 dyoung
1069 1.1 dyoung /* Disable the receive unit */
1070 1.8 msaitoh ixgbe_disable_rx(hw);
1071 1.1 dyoung
1072 1.3 msaitoh /* Clear interrupt mask to stop interrupts from being generated */
1073 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1074 1.1 dyoung
1075 1.3 msaitoh /* Clear any pending interrupts, flush previous writes */
1076 1.1 dyoung IXGBE_READ_REG(hw, IXGBE_EICR);
1077 1.1 dyoung
1078 1.1 dyoung /* Disable the transmit unit. Each queue must be disabled. */
1079 1.3 msaitoh for (i = 0; i < hw->mac.max_tx_queues; i++)
1080 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1081 1.3 msaitoh
1082 1.3 msaitoh /* Disable the receive unit by stopping each queue */
1083 1.3 msaitoh for (i = 0; i < hw->mac.max_rx_queues; i++) {
1084 1.3 msaitoh reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1085 1.3 msaitoh reg_val &= ~IXGBE_RXDCTL_ENABLE;
1086 1.3 msaitoh reg_val |= IXGBE_RXDCTL_SWFLSH;
1087 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1088 1.1 dyoung }
1089 1.1 dyoung
1090 1.3 msaitoh /* flush all queues disables */
1091 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
1092 1.3 msaitoh msec_delay(2);
1093 1.3 msaitoh
1094 1.1 dyoung /*
1095 1.9 msaitoh * Prevent the PCI-E bus from hanging by disabling PCI-E master
1096 1.1 dyoung * access and verify no pending requests
1097 1.1 dyoung */
1098 1.3 msaitoh return ixgbe_disable_pcie_master(hw);
1099 1.1 dyoung }
1100 1.1 dyoung
1101 1.1 dyoung /**
1102 1.1 dyoung * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1103 1.1 dyoung * @hw: pointer to hardware structure
1104 1.1 dyoung * @index: led number to turn on
1105 1.1 dyoung **/
1106 1.1 dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1107 1.1 dyoung {
1108 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1109 1.1 dyoung
1110 1.1 dyoung DEBUGFUNC("ixgbe_led_on_generic");
1111 1.1 dyoung
1112 1.1 dyoung /* To turn on the LED, set mode to ON. */
1113 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1114 1.1 dyoung led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1115 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1116 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1117 1.1 dyoung
1118 1.1 dyoung return IXGBE_SUCCESS;
1119 1.1 dyoung }
1120 1.1 dyoung
1121 1.1 dyoung /**
1122 1.1 dyoung * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1123 1.1 dyoung * @hw: pointer to hardware structure
1124 1.1 dyoung * @index: led number to turn off
1125 1.1 dyoung **/
1126 1.1 dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1127 1.1 dyoung {
1128 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1129 1.1 dyoung
1130 1.1 dyoung DEBUGFUNC("ixgbe_led_off_generic");
1131 1.1 dyoung
1132 1.1 dyoung /* To turn off the LED, set mode to OFF. */
1133 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
1134 1.1 dyoung led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1135 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1136 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1137 1.1 dyoung
1138 1.1 dyoung return IXGBE_SUCCESS;
1139 1.1 dyoung }
1140 1.1 dyoung
1141 1.1 dyoung /**
1142 1.1 dyoung * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1143 1.1 dyoung * @hw: pointer to hardware structure
1144 1.1 dyoung *
1145 1.1 dyoung * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1146 1.1 dyoung * ixgbe_hw struct in order to set up EEPROM access.
1147 1.1 dyoung **/
1148 1.1 dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1149 1.1 dyoung {
1150 1.1 dyoung struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1151 1.1 dyoung u32 eec;
1152 1.1 dyoung u16 eeprom_size;
1153 1.1 dyoung
1154 1.1 dyoung DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1155 1.1 dyoung
1156 1.1 dyoung if (eeprom->type == ixgbe_eeprom_uninitialized) {
1157 1.1 dyoung eeprom->type = ixgbe_eeprom_none;
1158 1.1 dyoung /* Set default semaphore delay to 10ms which is a well
1159 1.1 dyoung * tested value */
1160 1.1 dyoung eeprom->semaphore_delay = 10;
1161 1.3 msaitoh /* Clear EEPROM page size, it will be initialized as needed */
1162 1.3 msaitoh eeprom->word_page_size = 0;
1163 1.1 dyoung
1164 1.1 dyoung /*
1165 1.1 dyoung * Check for EEPROM present first.
1166 1.1 dyoung * If not present leave as none
1167 1.1 dyoung */
1168 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1169 1.1 dyoung if (eec & IXGBE_EEC_PRES) {
1170 1.1 dyoung eeprom->type = ixgbe_eeprom_spi;
1171 1.1 dyoung
1172 1.1 dyoung /*
1173 1.1 dyoung * SPI EEPROM is assumed here. This code would need to
1174 1.1 dyoung * change if a future EEPROM is not SPI.
1175 1.1 dyoung */
1176 1.1 dyoung eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1177 1.3 msaitoh IXGBE_EEC_SIZE_SHIFT);
1178 1.1 dyoung eeprom->word_size = 1 << (eeprom_size +
1179 1.3 msaitoh IXGBE_EEPROM_WORD_SIZE_SHIFT);
1180 1.1 dyoung }
1181 1.1 dyoung
1182 1.1 dyoung if (eec & IXGBE_EEC_ADDR_SIZE)
1183 1.1 dyoung eeprom->address_bits = 16;
1184 1.1 dyoung else
1185 1.1 dyoung eeprom->address_bits = 8;
1186 1.1 dyoung DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1187 1.3 msaitoh "%d\n", eeprom->type, eeprom->word_size,
1188 1.3 msaitoh eeprom->address_bits);
1189 1.1 dyoung }
1190 1.1 dyoung
1191 1.1 dyoung return IXGBE_SUCCESS;
1192 1.1 dyoung }
1193 1.1 dyoung
1194 1.1 dyoung /**
1195 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1196 1.3 msaitoh * @hw: pointer to hardware structure
1197 1.3 msaitoh * @offset: offset within the EEPROM to write
1198 1.3 msaitoh * @words: number of word(s)
1199 1.3 msaitoh * @data: 16 bit word(s) to write to EEPROM
1200 1.3 msaitoh *
1201 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1202 1.3 msaitoh **/
1203 1.3 msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1204 1.3 msaitoh u16 words, u16 *data)
1205 1.3 msaitoh {
1206 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1207 1.3 msaitoh u16 i, count;
1208 1.3 msaitoh
1209 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1210 1.3 msaitoh
1211 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1212 1.3 msaitoh
1213 1.3 msaitoh if (words == 0) {
1214 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1215 1.3 msaitoh goto out;
1216 1.3 msaitoh }
1217 1.3 msaitoh
1218 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1219 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1220 1.3 msaitoh goto out;
1221 1.3 msaitoh }
1222 1.3 msaitoh
1223 1.3 msaitoh /*
1224 1.3 msaitoh * The EEPROM page size cannot be queried from the chip. We do lazy
1225 1.3 msaitoh * initialization. It is worth to do that when we write large buffer.
1226 1.3 msaitoh */
1227 1.3 msaitoh if ((hw->eeprom.word_page_size == 0) &&
1228 1.3 msaitoh (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1229 1.3 msaitoh ixgbe_detect_eeprom_page_size_generic(hw, offset);
1230 1.3 msaitoh
1231 1.3 msaitoh /*
1232 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1233 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1234 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1235 1.3 msaitoh */
1236 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1237 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1238 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1239 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1240 1.3 msaitoh count, &data[i]);
1241 1.3 msaitoh
1242 1.3 msaitoh if (status != IXGBE_SUCCESS)
1243 1.3 msaitoh break;
1244 1.3 msaitoh }
1245 1.3 msaitoh
1246 1.3 msaitoh out:
1247 1.3 msaitoh return status;
1248 1.3 msaitoh }
1249 1.3 msaitoh
1250 1.3 msaitoh /**
1251 1.3 msaitoh * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1252 1.3 msaitoh * @hw: pointer to hardware structure
1253 1.3 msaitoh * @offset: offset within the EEPROM to be written to
1254 1.3 msaitoh * @words: number of word(s)
1255 1.3 msaitoh * @data: 16 bit word(s) to be written to the EEPROM
1256 1.3 msaitoh *
1257 1.3 msaitoh * If ixgbe_eeprom_update_checksum is not called after this function, the
1258 1.3 msaitoh * EEPROM will most likely contain an invalid checksum.
1259 1.3 msaitoh **/
1260 1.3 msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1261 1.3 msaitoh u16 words, u16 *data)
1262 1.3 msaitoh {
1263 1.3 msaitoh s32 status;
1264 1.3 msaitoh u16 word;
1265 1.3 msaitoh u16 page_size;
1266 1.3 msaitoh u16 i;
1267 1.3 msaitoh u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1268 1.3 msaitoh
1269 1.3 msaitoh DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1270 1.3 msaitoh
1271 1.3 msaitoh /* Prepare the EEPROM for writing */
1272 1.3 msaitoh status = ixgbe_acquire_eeprom(hw);
1273 1.3 msaitoh
1274 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1275 1.3 msaitoh if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1276 1.3 msaitoh ixgbe_release_eeprom(hw);
1277 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1278 1.3 msaitoh }
1279 1.3 msaitoh }
1280 1.3 msaitoh
1281 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1282 1.3 msaitoh for (i = 0; i < words; i++) {
1283 1.3 msaitoh ixgbe_standby_eeprom(hw);
1284 1.3 msaitoh
1285 1.3 msaitoh /* Send the WRITE ENABLE command (8 bit opcode ) */
1286 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw,
1287 1.3 msaitoh IXGBE_EEPROM_WREN_OPCODE_SPI,
1288 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1289 1.3 msaitoh
1290 1.3 msaitoh ixgbe_standby_eeprom(hw);
1291 1.3 msaitoh
1292 1.3 msaitoh /*
1293 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1294 1.3 msaitoh * in the opcode
1295 1.3 msaitoh */
1296 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1297 1.3 msaitoh ((offset + i) >= 128))
1298 1.3 msaitoh write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1299 1.3 msaitoh
1300 1.3 msaitoh /* Send the Write command (8-bit opcode + addr) */
1301 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1302 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1303 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1304 1.3 msaitoh hw->eeprom.address_bits);
1305 1.3 msaitoh
1306 1.3 msaitoh page_size = hw->eeprom.word_page_size;
1307 1.3 msaitoh
1308 1.3 msaitoh /* Send the data in burst via SPI*/
1309 1.3 msaitoh do {
1310 1.3 msaitoh word = data[i];
1311 1.3 msaitoh word = (word >> 8) | (word << 8);
1312 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, word, 16);
1313 1.3 msaitoh
1314 1.3 msaitoh if (page_size == 0)
1315 1.3 msaitoh break;
1316 1.3 msaitoh
1317 1.3 msaitoh /* do not wrap around page */
1318 1.3 msaitoh if (((offset + i) & (page_size - 1)) ==
1319 1.3 msaitoh (page_size - 1))
1320 1.3 msaitoh break;
1321 1.3 msaitoh } while (++i < words);
1322 1.3 msaitoh
1323 1.3 msaitoh ixgbe_standby_eeprom(hw);
1324 1.3 msaitoh msec_delay(10);
1325 1.3 msaitoh }
1326 1.3 msaitoh /* Done with writing - release the EEPROM */
1327 1.3 msaitoh ixgbe_release_eeprom(hw);
1328 1.3 msaitoh }
1329 1.3 msaitoh
1330 1.3 msaitoh return status;
1331 1.3 msaitoh }
1332 1.3 msaitoh
1333 1.3 msaitoh /**
1334 1.1 dyoung * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1335 1.1 dyoung * @hw: pointer to hardware structure
1336 1.1 dyoung * @offset: offset within the EEPROM to be written to
1337 1.1 dyoung * @data: 16 bit word to be written to the EEPROM
1338 1.1 dyoung *
1339 1.1 dyoung * If ixgbe_eeprom_update_checksum is not called after this function, the
1340 1.1 dyoung * EEPROM will most likely contain an invalid checksum.
1341 1.1 dyoung **/
1342 1.1 dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1343 1.1 dyoung {
1344 1.1 dyoung s32 status;
1345 1.1 dyoung
1346 1.1 dyoung DEBUGFUNC("ixgbe_write_eeprom_generic");
1347 1.1 dyoung
1348 1.1 dyoung hw->eeprom.ops.init_params(hw);
1349 1.1 dyoung
1350 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1351 1.1 dyoung status = IXGBE_ERR_EEPROM;
1352 1.1 dyoung goto out;
1353 1.1 dyoung }
1354 1.1 dyoung
1355 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1356 1.3 msaitoh
1357 1.3 msaitoh out:
1358 1.3 msaitoh return status;
1359 1.3 msaitoh }
1360 1.3 msaitoh
1361 1.3 msaitoh /**
1362 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1363 1.3 msaitoh * @hw: pointer to hardware structure
1364 1.3 msaitoh * @offset: offset within the EEPROM to be read
1365 1.3 msaitoh * @data: read 16 bit words(s) from EEPROM
1366 1.3 msaitoh * @words: number of word(s)
1367 1.3 msaitoh *
1368 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1369 1.3 msaitoh **/
1370 1.3 msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1371 1.3 msaitoh u16 words, u16 *data)
1372 1.3 msaitoh {
1373 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1374 1.3 msaitoh u16 i, count;
1375 1.3 msaitoh
1376 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1377 1.3 msaitoh
1378 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1379 1.3 msaitoh
1380 1.3 msaitoh if (words == 0) {
1381 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1382 1.3 msaitoh goto out;
1383 1.3 msaitoh }
1384 1.3 msaitoh
1385 1.3 msaitoh if (offset + words > hw->eeprom.word_size) {
1386 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1387 1.3 msaitoh goto out;
1388 1.3 msaitoh }
1389 1.3 msaitoh
1390 1.3 msaitoh /*
1391 1.3 msaitoh * We cannot hold synchronization semaphores for too long
1392 1.3 msaitoh * to avoid other entity starvation. However it is more efficient
1393 1.3 msaitoh * to read in bursts than synchronizing access for each word.
1394 1.3 msaitoh */
1395 1.3 msaitoh for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1396 1.3 msaitoh count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1397 1.3 msaitoh IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1398 1.3 msaitoh
1399 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1400 1.3 msaitoh count, &data[i]);
1401 1.3 msaitoh
1402 1.3 msaitoh if (status != IXGBE_SUCCESS)
1403 1.3 msaitoh break;
1404 1.3 msaitoh }
1405 1.3 msaitoh
1406 1.3 msaitoh out:
1407 1.3 msaitoh return status;
1408 1.3 msaitoh }
1409 1.3 msaitoh
1410 1.3 msaitoh /**
1411 1.3 msaitoh * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1412 1.3 msaitoh * @hw: pointer to hardware structure
1413 1.3 msaitoh * @offset: offset within the EEPROM to be read
1414 1.3 msaitoh * @words: number of word(s)
1415 1.3 msaitoh * @data: read 16 bit word(s) from EEPROM
1416 1.3 msaitoh *
1417 1.3 msaitoh * Reads 16 bit word(s) from EEPROM through bit-bang method
1418 1.3 msaitoh **/
1419 1.3 msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1420 1.3 msaitoh u16 words, u16 *data)
1421 1.3 msaitoh {
1422 1.3 msaitoh s32 status;
1423 1.3 msaitoh u16 word_in;
1424 1.3 msaitoh u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1425 1.3 msaitoh u16 i;
1426 1.3 msaitoh
1427 1.3 msaitoh DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1428 1.3 msaitoh
1429 1.3 msaitoh /* Prepare the EEPROM for reading */
1430 1.1 dyoung status = ixgbe_acquire_eeprom(hw);
1431 1.1 dyoung
1432 1.1 dyoung if (status == IXGBE_SUCCESS) {
1433 1.1 dyoung if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1434 1.1 dyoung ixgbe_release_eeprom(hw);
1435 1.1 dyoung status = IXGBE_ERR_EEPROM;
1436 1.1 dyoung }
1437 1.1 dyoung }
1438 1.1 dyoung
1439 1.1 dyoung if (status == IXGBE_SUCCESS) {
1440 1.3 msaitoh for (i = 0; i < words; i++) {
1441 1.3 msaitoh ixgbe_standby_eeprom(hw);
1442 1.3 msaitoh /*
1443 1.3 msaitoh * Some SPI eeproms use the 8th address bit embedded
1444 1.3 msaitoh * in the opcode
1445 1.3 msaitoh */
1446 1.3 msaitoh if ((hw->eeprom.address_bits == 8) &&
1447 1.3 msaitoh ((offset + i) >= 128))
1448 1.3 msaitoh read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1449 1.3 msaitoh
1450 1.3 msaitoh /* Send the READ command (opcode + addr) */
1451 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1452 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1453 1.3 msaitoh ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1454 1.3 msaitoh hw->eeprom.address_bits);
1455 1.3 msaitoh
1456 1.3 msaitoh /* Read the data. */
1457 1.3 msaitoh word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1458 1.3 msaitoh data[i] = (word_in >> 8) | (word_in << 8);
1459 1.3 msaitoh }
1460 1.1 dyoung
1461 1.3 msaitoh /* End this read operation */
1462 1.1 dyoung ixgbe_release_eeprom(hw);
1463 1.1 dyoung }
1464 1.1 dyoung
1465 1.1 dyoung return status;
1466 1.1 dyoung }
1467 1.1 dyoung
1468 1.1 dyoung /**
1469 1.1 dyoung * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1470 1.1 dyoung * @hw: pointer to hardware structure
1471 1.1 dyoung * @offset: offset within the EEPROM to be read
1472 1.1 dyoung * @data: read 16 bit value from EEPROM
1473 1.1 dyoung *
1474 1.1 dyoung * Reads 16 bit value from EEPROM through bit-bang method
1475 1.1 dyoung **/
1476 1.1 dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1477 1.3 msaitoh u16 *data)
1478 1.1 dyoung {
1479 1.1 dyoung s32 status;
1480 1.1 dyoung
1481 1.1 dyoung DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1482 1.1 dyoung
1483 1.1 dyoung hw->eeprom.ops.init_params(hw);
1484 1.1 dyoung
1485 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1486 1.1 dyoung status = IXGBE_ERR_EEPROM;
1487 1.1 dyoung goto out;
1488 1.1 dyoung }
1489 1.1 dyoung
1490 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1491 1.3 msaitoh
1492 1.3 msaitoh out:
1493 1.3 msaitoh return status;
1494 1.3 msaitoh }
1495 1.3 msaitoh
1496 1.3 msaitoh /**
1497 1.3 msaitoh * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1498 1.3 msaitoh * @hw: pointer to hardware structure
1499 1.3 msaitoh * @offset: offset of word in the EEPROM to read
1500 1.3 msaitoh * @words: number of word(s)
1501 1.3 msaitoh * @data: 16 bit word(s) from the EEPROM
1502 1.3 msaitoh *
1503 1.3 msaitoh * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1504 1.3 msaitoh **/
1505 1.3 msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1506 1.3 msaitoh u16 words, u16 *data)
1507 1.3 msaitoh {
1508 1.3 msaitoh u32 eerd;
1509 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1510 1.3 msaitoh u32 i;
1511 1.3 msaitoh
1512 1.3 msaitoh DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1513 1.3 msaitoh
1514 1.3 msaitoh hw->eeprom.ops.init_params(hw);
1515 1.3 msaitoh
1516 1.3 msaitoh if (words == 0) {
1517 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1518 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1519 1.3 msaitoh goto out;
1520 1.3 msaitoh }
1521 1.3 msaitoh
1522 1.3 msaitoh if (offset >= hw->eeprom.word_size) {
1523 1.3 msaitoh status = IXGBE_ERR_EEPROM;
1524 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1525 1.3 msaitoh goto out;
1526 1.3 msaitoh }
1527 1.3 msaitoh
1528 1.3 msaitoh for (i = 0; i < words; i++) {
1529 1.5 msaitoh eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1530 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1531 1.3 msaitoh
1532 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1533 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1534 1.1 dyoung
1535 1.3 msaitoh if (status == IXGBE_SUCCESS) {
1536 1.3 msaitoh data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1537 1.3 msaitoh IXGBE_EEPROM_RW_REG_DATA);
1538 1.3 msaitoh } else {
1539 1.3 msaitoh DEBUGOUT("Eeprom read timed out\n");
1540 1.3 msaitoh goto out;
1541 1.1 dyoung }
1542 1.1 dyoung }
1543 1.3 msaitoh out:
1544 1.3 msaitoh return status;
1545 1.3 msaitoh }
1546 1.1 dyoung
1547 1.3 msaitoh /**
1548 1.3 msaitoh * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1549 1.3 msaitoh * @hw: pointer to hardware structure
1550 1.3 msaitoh * @offset: offset within the EEPROM to be used as a scratch pad
1551 1.3 msaitoh *
1552 1.3 msaitoh * Discover EEPROM page size by writing marching data at given offset.
1553 1.3 msaitoh * This function is called only when we are writing a new large buffer
1554 1.3 msaitoh * at given offset so the data would be overwritten anyway.
1555 1.3 msaitoh **/
1556 1.3 msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1557 1.3 msaitoh u16 offset)
1558 1.3 msaitoh {
1559 1.3 msaitoh u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1560 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1561 1.3 msaitoh u16 i;
1562 1.3 msaitoh
1563 1.3 msaitoh DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1564 1.3 msaitoh
1565 1.3 msaitoh for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1566 1.3 msaitoh data[i] = i;
1567 1.1 dyoung
1568 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1569 1.3 msaitoh status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1570 1.3 msaitoh IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1571 1.3 msaitoh hw->eeprom.word_page_size = 0;
1572 1.3 msaitoh if (status != IXGBE_SUCCESS)
1573 1.3 msaitoh goto out;
1574 1.1 dyoung
1575 1.3 msaitoh status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1576 1.3 msaitoh if (status != IXGBE_SUCCESS)
1577 1.3 msaitoh goto out;
1578 1.1 dyoung
1579 1.3 msaitoh /*
1580 1.3 msaitoh * When writing in burst more than the actual page size
1581 1.3 msaitoh * EEPROM address wraps around current page.
1582 1.3 msaitoh */
1583 1.3 msaitoh hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1584 1.1 dyoung
1585 1.3 msaitoh DEBUGOUT1("Detected EEPROM page size = %d words.",
1586 1.3 msaitoh hw->eeprom.word_page_size);
1587 1.1 dyoung out:
1588 1.1 dyoung return status;
1589 1.1 dyoung }
1590 1.1 dyoung
1591 1.1 dyoung /**
1592 1.1 dyoung * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1593 1.1 dyoung * @hw: pointer to hardware structure
1594 1.1 dyoung * @offset: offset of word in the EEPROM to read
1595 1.1 dyoung * @data: word read from the EEPROM
1596 1.1 dyoung *
1597 1.1 dyoung * Reads a 16 bit word from the EEPROM using the EERD register.
1598 1.1 dyoung **/
1599 1.1 dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1600 1.1 dyoung {
1601 1.3 msaitoh return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1602 1.3 msaitoh }
1603 1.3 msaitoh
1604 1.3 msaitoh /**
1605 1.3 msaitoh * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1606 1.3 msaitoh * @hw: pointer to hardware structure
1607 1.3 msaitoh * @offset: offset of word in the EEPROM to write
1608 1.3 msaitoh * @words: number of word(s)
1609 1.3 msaitoh * @data: word(s) write to the EEPROM
1610 1.3 msaitoh *
1611 1.3 msaitoh * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1612 1.3 msaitoh **/
1613 1.3 msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1614 1.3 msaitoh u16 words, u16 *data)
1615 1.3 msaitoh {
1616 1.3 msaitoh u32 eewr;
1617 1.3 msaitoh s32 status = IXGBE_SUCCESS;
1618 1.3 msaitoh u16 i;
1619 1.1 dyoung
1620 1.3 msaitoh DEBUGFUNC("ixgbe_write_eewr_generic");
1621 1.1 dyoung
1622 1.1 dyoung hw->eeprom.ops.init_params(hw);
1623 1.1 dyoung
1624 1.3 msaitoh if (words == 0) {
1625 1.3 msaitoh status = IXGBE_ERR_INVALID_ARGUMENT;
1626 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1627 1.3 msaitoh goto out;
1628 1.3 msaitoh }
1629 1.3 msaitoh
1630 1.1 dyoung if (offset >= hw->eeprom.word_size) {
1631 1.1 dyoung status = IXGBE_ERR_EEPROM;
1632 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1633 1.1 dyoung goto out;
1634 1.1 dyoung }
1635 1.1 dyoung
1636 1.3 msaitoh for (i = 0; i < words; i++) {
1637 1.3 msaitoh eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1638 1.3 msaitoh (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1639 1.3 msaitoh IXGBE_EEPROM_RW_REG_START;
1640 1.3 msaitoh
1641 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1642 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1643 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1644 1.3 msaitoh goto out;
1645 1.3 msaitoh }
1646 1.1 dyoung
1647 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1648 1.1 dyoung
1649 1.3 msaitoh status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1650 1.3 msaitoh if (status != IXGBE_SUCCESS) {
1651 1.3 msaitoh DEBUGOUT("Eeprom write EEWR timed out\n");
1652 1.3 msaitoh goto out;
1653 1.3 msaitoh }
1654 1.3 msaitoh }
1655 1.1 dyoung
1656 1.1 dyoung out:
1657 1.1 dyoung return status;
1658 1.1 dyoung }
1659 1.1 dyoung
1660 1.1 dyoung /**
1661 1.1 dyoung * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1662 1.1 dyoung * @hw: pointer to hardware structure
1663 1.1 dyoung * @offset: offset of word in the EEPROM to write
1664 1.1 dyoung * @data: word write to the EEPROM
1665 1.1 dyoung *
1666 1.1 dyoung * Write a 16 bit word to the EEPROM using the EEWR register.
1667 1.1 dyoung **/
1668 1.1 dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1669 1.1 dyoung {
1670 1.3 msaitoh return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1671 1.1 dyoung }
1672 1.1 dyoung
1673 1.1 dyoung /**
1674 1.1 dyoung * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1675 1.1 dyoung * @hw: pointer to hardware structure
1676 1.1 dyoung * @ee_reg: EEPROM flag for polling
1677 1.1 dyoung *
1678 1.1 dyoung * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1679 1.1 dyoung * read or write is done respectively.
1680 1.1 dyoung **/
1681 1.1 dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1682 1.1 dyoung {
1683 1.1 dyoung u32 i;
1684 1.1 dyoung u32 reg;
1685 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1686 1.1 dyoung
1687 1.1 dyoung DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1688 1.1 dyoung
1689 1.1 dyoung for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1690 1.1 dyoung if (ee_reg == IXGBE_NVM_POLL_READ)
1691 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1692 1.1 dyoung else
1693 1.1 dyoung reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1694 1.1 dyoung
1695 1.1 dyoung if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1696 1.1 dyoung status = IXGBE_SUCCESS;
1697 1.1 dyoung break;
1698 1.1 dyoung }
1699 1.1 dyoung usec_delay(5);
1700 1.1 dyoung }
1701 1.6 msaitoh
1702 1.6 msaitoh if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1703 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1704 1.6 msaitoh "EEPROM read/write done polling timed out");
1705 1.6 msaitoh
1706 1.1 dyoung return status;
1707 1.1 dyoung }
1708 1.1 dyoung
1709 1.1 dyoung /**
1710 1.1 dyoung * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1711 1.1 dyoung * @hw: pointer to hardware structure
1712 1.1 dyoung *
1713 1.1 dyoung * Prepares EEPROM for access using bit-bang method. This function should
1714 1.1 dyoung * be called before issuing a command to the EEPROM.
1715 1.1 dyoung **/
1716 1.1 dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1717 1.1 dyoung {
1718 1.1 dyoung s32 status = IXGBE_SUCCESS;
1719 1.1 dyoung u32 eec;
1720 1.1 dyoung u32 i;
1721 1.1 dyoung
1722 1.1 dyoung DEBUGFUNC("ixgbe_acquire_eeprom");
1723 1.1 dyoung
1724 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1725 1.3 msaitoh != IXGBE_SUCCESS)
1726 1.1 dyoung status = IXGBE_ERR_SWFW_SYNC;
1727 1.1 dyoung
1728 1.1 dyoung if (status == IXGBE_SUCCESS) {
1729 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1730 1.1 dyoung
1731 1.1 dyoung /* Request EEPROM Access */
1732 1.1 dyoung eec |= IXGBE_EEC_REQ;
1733 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1734 1.1 dyoung
1735 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1736 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1737 1.1 dyoung if (eec & IXGBE_EEC_GNT)
1738 1.1 dyoung break;
1739 1.1 dyoung usec_delay(5);
1740 1.1 dyoung }
1741 1.1 dyoung
1742 1.1 dyoung /* Release if grant not acquired */
1743 1.1 dyoung if (!(eec & IXGBE_EEC_GNT)) {
1744 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
1745 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1746 1.1 dyoung DEBUGOUT("Could not acquire EEPROM grant\n");
1747 1.1 dyoung
1748 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1749 1.1 dyoung status = IXGBE_ERR_EEPROM;
1750 1.1 dyoung }
1751 1.1 dyoung
1752 1.1 dyoung /* Setup EEPROM for Read/Write */
1753 1.1 dyoung if (status == IXGBE_SUCCESS) {
1754 1.1 dyoung /* Clear CS and SK */
1755 1.1 dyoung eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1756 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1757 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1758 1.1 dyoung usec_delay(1);
1759 1.1 dyoung }
1760 1.1 dyoung }
1761 1.1 dyoung return status;
1762 1.1 dyoung }
1763 1.1 dyoung
1764 1.1 dyoung /**
1765 1.1 dyoung * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1766 1.1 dyoung * @hw: pointer to hardware structure
1767 1.1 dyoung *
1768 1.1 dyoung * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1769 1.1 dyoung **/
1770 1.1 dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1771 1.1 dyoung {
1772 1.1 dyoung s32 status = IXGBE_ERR_EEPROM;
1773 1.1 dyoung u32 timeout = 2000;
1774 1.1 dyoung u32 i;
1775 1.1 dyoung u32 swsm;
1776 1.1 dyoung
1777 1.1 dyoung DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1778 1.1 dyoung
1779 1.1 dyoung
1780 1.1 dyoung /* Get SMBI software semaphore between device drivers first */
1781 1.1 dyoung for (i = 0; i < timeout; i++) {
1782 1.1 dyoung /*
1783 1.1 dyoung * If the SMBI bit is 0 when we read it, then the bit will be
1784 1.1 dyoung * set and we have the semaphore
1785 1.1 dyoung */
1786 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1787 1.1 dyoung if (!(swsm & IXGBE_SWSM_SMBI)) {
1788 1.1 dyoung status = IXGBE_SUCCESS;
1789 1.1 dyoung break;
1790 1.1 dyoung }
1791 1.1 dyoung usec_delay(50);
1792 1.1 dyoung }
1793 1.1 dyoung
1794 1.3 msaitoh if (i == timeout) {
1795 1.3 msaitoh DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1796 1.3 msaitoh "not granted.\n");
1797 1.3 msaitoh /*
1798 1.3 msaitoh * this release is particularly important because our attempts
1799 1.3 msaitoh * above to get the semaphore may have succeeded, and if there
1800 1.3 msaitoh * was a timeout, we should unconditionally clear the semaphore
1801 1.3 msaitoh * bits to free the driver to make progress
1802 1.3 msaitoh */
1803 1.3 msaitoh ixgbe_release_eeprom_semaphore(hw);
1804 1.3 msaitoh
1805 1.3 msaitoh usec_delay(50);
1806 1.3 msaitoh /*
1807 1.3 msaitoh * one last try
1808 1.3 msaitoh * If the SMBI bit is 0 when we read it, then the bit will be
1809 1.3 msaitoh * set and we have the semaphore
1810 1.3 msaitoh */
1811 1.3 msaitoh swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1812 1.3 msaitoh if (!(swsm & IXGBE_SWSM_SMBI))
1813 1.3 msaitoh status = IXGBE_SUCCESS;
1814 1.3 msaitoh }
1815 1.3 msaitoh
1816 1.1 dyoung /* Now get the semaphore between SW/FW through the SWESMBI bit */
1817 1.1 dyoung if (status == IXGBE_SUCCESS) {
1818 1.1 dyoung for (i = 0; i < timeout; i++) {
1819 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1820 1.1 dyoung
1821 1.1 dyoung /* Set the SW EEPROM semaphore bit to request access */
1822 1.1 dyoung swsm |= IXGBE_SWSM_SWESMBI;
1823 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1824 1.1 dyoung
1825 1.1 dyoung /*
1826 1.1 dyoung * If we set the bit successfully then we got the
1827 1.1 dyoung * semaphore.
1828 1.1 dyoung */
1829 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1830 1.1 dyoung if (swsm & IXGBE_SWSM_SWESMBI)
1831 1.1 dyoung break;
1832 1.1 dyoung
1833 1.1 dyoung usec_delay(50);
1834 1.1 dyoung }
1835 1.1 dyoung
1836 1.1 dyoung /*
1837 1.1 dyoung * Release semaphores and return error if SW EEPROM semaphore
1838 1.1 dyoung * was not granted because we don't have access to the EEPROM
1839 1.1 dyoung */
1840 1.1 dyoung if (i >= timeout) {
1841 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1842 1.6 msaitoh "SWESMBI Software EEPROM semaphore not granted.\n");
1843 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
1844 1.1 dyoung status = IXGBE_ERR_EEPROM;
1845 1.1 dyoung }
1846 1.1 dyoung } else {
1847 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
1848 1.6 msaitoh "Software semaphore SMBI between device drivers "
1849 1.6 msaitoh "not granted.\n");
1850 1.1 dyoung }
1851 1.1 dyoung
1852 1.1 dyoung return status;
1853 1.1 dyoung }
1854 1.1 dyoung
1855 1.1 dyoung /**
1856 1.1 dyoung * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1857 1.1 dyoung * @hw: pointer to hardware structure
1858 1.1 dyoung *
1859 1.1 dyoung * This function clears hardware semaphore bits.
1860 1.1 dyoung **/
1861 1.1 dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1862 1.1 dyoung {
1863 1.1 dyoung u32 swsm;
1864 1.1 dyoung
1865 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1866 1.1 dyoung
1867 1.1 dyoung swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1868 1.1 dyoung
1869 1.1 dyoung /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1870 1.1 dyoung swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1871 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1872 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1873 1.1 dyoung }
1874 1.1 dyoung
1875 1.1 dyoung /**
1876 1.1 dyoung * ixgbe_ready_eeprom - Polls for EEPROM ready
1877 1.1 dyoung * @hw: pointer to hardware structure
1878 1.1 dyoung **/
1879 1.1 dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1880 1.1 dyoung {
1881 1.1 dyoung s32 status = IXGBE_SUCCESS;
1882 1.1 dyoung u16 i;
1883 1.1 dyoung u8 spi_stat_reg;
1884 1.1 dyoung
1885 1.1 dyoung DEBUGFUNC("ixgbe_ready_eeprom");
1886 1.1 dyoung
1887 1.1 dyoung /*
1888 1.1 dyoung * Read "Status Register" repeatedly until the LSB is cleared. The
1889 1.1 dyoung * EEPROM will signal that the command has been completed by clearing
1890 1.1 dyoung * bit 0 of the internal status register. If it's not cleared within
1891 1.1 dyoung * 5 milliseconds, then error out.
1892 1.1 dyoung */
1893 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1894 1.1 dyoung ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1895 1.3 msaitoh IXGBE_EEPROM_OPCODE_BITS);
1896 1.1 dyoung spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1897 1.1 dyoung if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1898 1.1 dyoung break;
1899 1.1 dyoung
1900 1.1 dyoung usec_delay(5);
1901 1.1 dyoung ixgbe_standby_eeprom(hw);
1902 1.1 dyoung };
1903 1.1 dyoung
1904 1.1 dyoung /*
1905 1.1 dyoung * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1906 1.1 dyoung * devices (and only 0-5mSec on 5V devices)
1907 1.1 dyoung */
1908 1.1 dyoung if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1909 1.1 dyoung DEBUGOUT("SPI EEPROM Status error\n");
1910 1.1 dyoung status = IXGBE_ERR_EEPROM;
1911 1.1 dyoung }
1912 1.1 dyoung
1913 1.1 dyoung return status;
1914 1.1 dyoung }
1915 1.1 dyoung
1916 1.1 dyoung /**
1917 1.1 dyoung * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1918 1.1 dyoung * @hw: pointer to hardware structure
1919 1.1 dyoung **/
1920 1.1 dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1921 1.1 dyoung {
1922 1.1 dyoung u32 eec;
1923 1.1 dyoung
1924 1.1 dyoung DEBUGFUNC("ixgbe_standby_eeprom");
1925 1.1 dyoung
1926 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1927 1.1 dyoung
1928 1.1 dyoung /* Toggle CS to flush commands */
1929 1.1 dyoung eec |= IXGBE_EEC_CS;
1930 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1931 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1932 1.1 dyoung usec_delay(1);
1933 1.1 dyoung eec &= ~IXGBE_EEC_CS;
1934 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1935 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1936 1.1 dyoung usec_delay(1);
1937 1.1 dyoung }
1938 1.1 dyoung
1939 1.1 dyoung /**
1940 1.1 dyoung * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1941 1.1 dyoung * @hw: pointer to hardware structure
1942 1.1 dyoung * @data: data to send to the EEPROM
1943 1.1 dyoung * @count: number of bits to shift out
1944 1.1 dyoung **/
1945 1.1 dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1946 1.3 msaitoh u16 count)
1947 1.1 dyoung {
1948 1.1 dyoung u32 eec;
1949 1.1 dyoung u32 mask;
1950 1.1 dyoung u32 i;
1951 1.1 dyoung
1952 1.1 dyoung DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1953 1.1 dyoung
1954 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1955 1.1 dyoung
1956 1.1 dyoung /*
1957 1.1 dyoung * Mask is used to shift "count" bits of "data" out to the EEPROM
1958 1.1 dyoung * one bit at a time. Determine the starting bit based on count
1959 1.1 dyoung */
1960 1.1 dyoung mask = 0x01 << (count - 1);
1961 1.1 dyoung
1962 1.1 dyoung for (i = 0; i < count; i++) {
1963 1.1 dyoung /*
1964 1.1 dyoung * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1965 1.1 dyoung * "1", and then raising and then lowering the clock (the SK
1966 1.1 dyoung * bit controls the clock input to the EEPROM). A "0" is
1967 1.1 dyoung * shifted out to the EEPROM by setting "DI" to "0" and then
1968 1.1 dyoung * raising and then lowering the clock.
1969 1.1 dyoung */
1970 1.1 dyoung if (data & mask)
1971 1.1 dyoung eec |= IXGBE_EEC_DI;
1972 1.1 dyoung else
1973 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1974 1.1 dyoung
1975 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1976 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1977 1.1 dyoung
1978 1.1 dyoung usec_delay(1);
1979 1.1 dyoung
1980 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
1981 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
1982 1.1 dyoung
1983 1.1 dyoung /*
1984 1.1 dyoung * Shift mask to signify next bit of data to shift in to the
1985 1.1 dyoung * EEPROM
1986 1.1 dyoung */
1987 1.1 dyoung mask = mask >> 1;
1988 1.1 dyoung };
1989 1.1 dyoung
1990 1.1 dyoung /* We leave the "DI" bit set to "0" when we leave this routine. */
1991 1.1 dyoung eec &= ~IXGBE_EEC_DI;
1992 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1993 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
1994 1.1 dyoung }
1995 1.1 dyoung
1996 1.1 dyoung /**
1997 1.1 dyoung * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1998 1.1 dyoung * @hw: pointer to hardware structure
1999 1.1 dyoung **/
2000 1.1 dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2001 1.1 dyoung {
2002 1.1 dyoung u32 eec;
2003 1.1 dyoung u32 i;
2004 1.1 dyoung u16 data = 0;
2005 1.1 dyoung
2006 1.1 dyoung DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2007 1.1 dyoung
2008 1.1 dyoung /*
2009 1.1 dyoung * In order to read a register from the EEPROM, we need to shift
2010 1.1 dyoung * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2011 1.1 dyoung * the clock input to the EEPROM (setting the SK bit), and then reading
2012 1.1 dyoung * the value of the "DO" bit. During this "shifting in" process the
2013 1.1 dyoung * "DI" bit should always be clear.
2014 1.1 dyoung */
2015 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2016 1.1 dyoung
2017 1.1 dyoung eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2018 1.1 dyoung
2019 1.1 dyoung for (i = 0; i < count; i++) {
2020 1.1 dyoung data = data << 1;
2021 1.1 dyoung ixgbe_raise_eeprom_clk(hw, &eec);
2022 1.1 dyoung
2023 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2024 1.1 dyoung
2025 1.1 dyoung eec &= ~(IXGBE_EEC_DI);
2026 1.1 dyoung if (eec & IXGBE_EEC_DO)
2027 1.1 dyoung data |= 1;
2028 1.1 dyoung
2029 1.1 dyoung ixgbe_lower_eeprom_clk(hw, &eec);
2030 1.1 dyoung }
2031 1.1 dyoung
2032 1.1 dyoung return data;
2033 1.1 dyoung }
2034 1.1 dyoung
2035 1.1 dyoung /**
2036 1.1 dyoung * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2037 1.1 dyoung * @hw: pointer to hardware structure
2038 1.1 dyoung * @eec: EEC register's current value
2039 1.1 dyoung **/
2040 1.1 dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2041 1.1 dyoung {
2042 1.1 dyoung DEBUGFUNC("ixgbe_raise_eeprom_clk");
2043 1.1 dyoung
2044 1.1 dyoung /*
2045 1.1 dyoung * Raise the clock input to the EEPROM
2046 1.1 dyoung * (setting the SK bit), then delay
2047 1.1 dyoung */
2048 1.1 dyoung *eec = *eec | IXGBE_EEC_SK;
2049 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2050 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2051 1.1 dyoung usec_delay(1);
2052 1.1 dyoung }
2053 1.1 dyoung
2054 1.1 dyoung /**
2055 1.1 dyoung * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2056 1.1 dyoung * @hw: pointer to hardware structure
2057 1.1 dyoung * @eecd: EECD's current value
2058 1.1 dyoung **/
2059 1.1 dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2060 1.1 dyoung {
2061 1.1 dyoung DEBUGFUNC("ixgbe_lower_eeprom_clk");
2062 1.1 dyoung
2063 1.1 dyoung /*
2064 1.1 dyoung * Lower the clock input to the EEPROM (clearing the SK bit), then
2065 1.1 dyoung * delay
2066 1.1 dyoung */
2067 1.1 dyoung *eec = *eec & ~IXGBE_EEC_SK;
2068 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2069 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2070 1.1 dyoung usec_delay(1);
2071 1.1 dyoung }
2072 1.1 dyoung
2073 1.1 dyoung /**
2074 1.1 dyoung * ixgbe_release_eeprom - Release EEPROM, release semaphores
2075 1.1 dyoung * @hw: pointer to hardware structure
2076 1.1 dyoung **/
2077 1.1 dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2078 1.1 dyoung {
2079 1.1 dyoung u32 eec;
2080 1.1 dyoung
2081 1.1 dyoung DEBUGFUNC("ixgbe_release_eeprom");
2082 1.1 dyoung
2083 1.1 dyoung eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2084 1.1 dyoung
2085 1.1 dyoung eec |= IXGBE_EEC_CS; /* Pull CS high */
2086 1.1 dyoung eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2087 1.1 dyoung
2088 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2089 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
2090 1.1 dyoung
2091 1.1 dyoung usec_delay(1);
2092 1.1 dyoung
2093 1.1 dyoung /* Stop requesting EEPROM access */
2094 1.1 dyoung eec &= ~IXGBE_EEC_REQ;
2095 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2096 1.1 dyoung
2097 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2098 1.1 dyoung
2099 1.1 dyoung /* Delay before attempt to obtain semaphore again to allow FW access */
2100 1.1 dyoung msec_delay(hw->eeprom.semaphore_delay);
2101 1.1 dyoung }
2102 1.1 dyoung
2103 1.1 dyoung /**
2104 1.1 dyoung * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2105 1.1 dyoung * @hw: pointer to hardware structure
2106 1.8 msaitoh *
2107 1.8 msaitoh * Returns a negative error code on error, or the 16-bit checksum
2108 1.1 dyoung **/
2109 1.8 msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2110 1.1 dyoung {
2111 1.1 dyoung u16 i;
2112 1.1 dyoung u16 j;
2113 1.1 dyoung u16 checksum = 0;
2114 1.1 dyoung u16 length = 0;
2115 1.1 dyoung u16 pointer = 0;
2116 1.1 dyoung u16 word = 0;
2117 1.1 dyoung
2118 1.1 dyoung DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2119 1.1 dyoung
2120 1.1 dyoung /* Include 0x0-0x3F in the checksum */
2121 1.1 dyoung for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2122 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &word)) {
2123 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2124 1.8 msaitoh return IXGBE_ERR_EEPROM;
2125 1.1 dyoung }
2126 1.1 dyoung checksum += word;
2127 1.1 dyoung }
2128 1.1 dyoung
2129 1.1 dyoung /* Include all data from pointers except for the fw pointer */
2130 1.1 dyoung for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2131 1.8 msaitoh if (hw->eeprom.ops.read(hw, i, &pointer)) {
2132 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2133 1.8 msaitoh return IXGBE_ERR_EEPROM;
2134 1.8 msaitoh }
2135 1.8 msaitoh
2136 1.8 msaitoh /* If the pointer seems invalid */
2137 1.8 msaitoh if (pointer == 0xFFFF || pointer == 0)
2138 1.8 msaitoh continue;
2139 1.8 msaitoh
2140 1.8 msaitoh if (hw->eeprom.ops.read(hw, pointer, &length)) {
2141 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2142 1.8 msaitoh return IXGBE_ERR_EEPROM;
2143 1.8 msaitoh }
2144 1.8 msaitoh
2145 1.8 msaitoh if (length == 0xFFFF || length == 0)
2146 1.8 msaitoh continue;
2147 1.1 dyoung
2148 1.8 msaitoh for (j = pointer + 1; j <= pointer + length; j++) {
2149 1.8 msaitoh if (hw->eeprom.ops.read(hw, j, &word)) {
2150 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2151 1.8 msaitoh return IXGBE_ERR_EEPROM;
2152 1.1 dyoung }
2153 1.8 msaitoh checksum += word;
2154 1.1 dyoung }
2155 1.1 dyoung }
2156 1.1 dyoung
2157 1.1 dyoung checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2158 1.1 dyoung
2159 1.8 msaitoh return (s32)checksum;
2160 1.1 dyoung }
2161 1.1 dyoung
2162 1.1 dyoung /**
2163 1.1 dyoung * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2164 1.1 dyoung * @hw: pointer to hardware structure
2165 1.1 dyoung * @checksum_val: calculated checksum
2166 1.1 dyoung *
2167 1.1 dyoung * Performs checksum calculation and validates the EEPROM checksum. If the
2168 1.1 dyoung * caller does not need checksum_val, the value can be NULL.
2169 1.1 dyoung **/
2170 1.1 dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2171 1.3 msaitoh u16 *checksum_val)
2172 1.1 dyoung {
2173 1.1 dyoung s32 status;
2174 1.1 dyoung u16 checksum;
2175 1.1 dyoung u16 read_checksum = 0;
2176 1.1 dyoung
2177 1.1 dyoung DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2178 1.1 dyoung
2179 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2180 1.1 dyoung * not continue or we could be in for a very long wait while every
2181 1.1 dyoung * EEPROM read fails
2182 1.1 dyoung */
2183 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2184 1.8 msaitoh if (status) {
2185 1.8 msaitoh DEBUGOUT("EEPROM read failed\n");
2186 1.8 msaitoh return status;
2187 1.8 msaitoh }
2188 1.1 dyoung
2189 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2190 1.8 msaitoh if (status < 0)
2191 1.8 msaitoh return status;
2192 1.1 dyoung
2193 1.8 msaitoh checksum = (u16)(status & 0xffff);
2194 1.1 dyoung
2195 1.8 msaitoh status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2196 1.8 msaitoh if (status) {
2197 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2198 1.8 msaitoh return status;
2199 1.1 dyoung }
2200 1.1 dyoung
2201 1.8 msaitoh /* Verify read checksum from EEPROM is the same as
2202 1.8 msaitoh * calculated checksum
2203 1.8 msaitoh */
2204 1.8 msaitoh if (read_checksum != checksum)
2205 1.8 msaitoh status = IXGBE_ERR_EEPROM_CHECKSUM;
2206 1.8 msaitoh
2207 1.8 msaitoh /* If the user cares, return the calculated checksum */
2208 1.8 msaitoh if (checksum_val)
2209 1.8 msaitoh *checksum_val = checksum;
2210 1.8 msaitoh
2211 1.1 dyoung return status;
2212 1.1 dyoung }
2213 1.1 dyoung
2214 1.1 dyoung /**
2215 1.1 dyoung * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2216 1.1 dyoung * @hw: pointer to hardware structure
2217 1.1 dyoung **/
2218 1.1 dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2219 1.1 dyoung {
2220 1.1 dyoung s32 status;
2221 1.1 dyoung u16 checksum;
2222 1.1 dyoung
2223 1.1 dyoung DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2224 1.1 dyoung
2225 1.8 msaitoh /* Read the first word from the EEPROM. If this times out or fails, do
2226 1.1 dyoung * not continue or we could be in for a very long wait while every
2227 1.1 dyoung * EEPROM read fails
2228 1.1 dyoung */
2229 1.1 dyoung status = hw->eeprom.ops.read(hw, 0, &checksum);
2230 1.8 msaitoh if (status) {
2231 1.1 dyoung DEBUGOUT("EEPROM read failed\n");
2232 1.8 msaitoh return status;
2233 1.1 dyoung }
2234 1.1 dyoung
2235 1.8 msaitoh status = hw->eeprom.ops.calc_checksum(hw);
2236 1.8 msaitoh if (status < 0)
2237 1.8 msaitoh return status;
2238 1.8 msaitoh
2239 1.8 msaitoh checksum = (u16)(status & 0xffff);
2240 1.8 msaitoh
2241 1.8 msaitoh status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2242 1.8 msaitoh
2243 1.1 dyoung return status;
2244 1.1 dyoung }
2245 1.1 dyoung
2246 1.1 dyoung /**
2247 1.1 dyoung * ixgbe_validate_mac_addr - Validate MAC address
2248 1.1 dyoung * @mac_addr: pointer to MAC address.
2249 1.1 dyoung *
2250 1.1 dyoung * Tests a MAC address to ensure it is a valid Individual Address
2251 1.1 dyoung **/
2252 1.1 dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2253 1.1 dyoung {
2254 1.1 dyoung s32 status = IXGBE_SUCCESS;
2255 1.1 dyoung
2256 1.1 dyoung DEBUGFUNC("ixgbe_validate_mac_addr");
2257 1.1 dyoung
2258 1.1 dyoung /* Make sure it is not a multicast address */
2259 1.1 dyoung if (IXGBE_IS_MULTICAST(mac_addr)) {
2260 1.1 dyoung DEBUGOUT("MAC address is multicast\n");
2261 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2262 1.1 dyoung /* Not a broadcast address */
2263 1.1 dyoung } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2264 1.1 dyoung DEBUGOUT("MAC address is broadcast\n");
2265 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2266 1.1 dyoung /* Reject the zero address */
2267 1.1 dyoung } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2268 1.3 msaitoh mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2269 1.1 dyoung DEBUGOUT("MAC address is all zeros\n");
2270 1.1 dyoung status = IXGBE_ERR_INVALID_MAC_ADDR;
2271 1.1 dyoung }
2272 1.1 dyoung return status;
2273 1.1 dyoung }
2274 1.1 dyoung
2275 1.1 dyoung /**
2276 1.1 dyoung * ixgbe_set_rar_generic - Set Rx address register
2277 1.1 dyoung * @hw: pointer to hardware structure
2278 1.1 dyoung * @index: Receive address register to write
2279 1.1 dyoung * @addr: Address to put into receive address register
2280 1.1 dyoung * @vmdq: VMDq "set" or "pool" index
2281 1.1 dyoung * @enable_addr: set flag that address is active
2282 1.1 dyoung *
2283 1.1 dyoung * Puts an ethernet address into a receive address register.
2284 1.1 dyoung **/
2285 1.1 dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2286 1.3 msaitoh u32 enable_addr)
2287 1.1 dyoung {
2288 1.1 dyoung u32 rar_low, rar_high;
2289 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2290 1.1 dyoung
2291 1.1 dyoung DEBUGFUNC("ixgbe_set_rar_generic");
2292 1.1 dyoung
2293 1.1 dyoung /* Make sure we are using a valid rar index range */
2294 1.1 dyoung if (index >= rar_entries) {
2295 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2296 1.6 msaitoh "RAR index %d is out of range.\n", index);
2297 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2298 1.1 dyoung }
2299 1.1 dyoung
2300 1.1 dyoung /* setup VMDq pool selection before this RAR gets enabled */
2301 1.1 dyoung hw->mac.ops.set_vmdq(hw, index, vmdq);
2302 1.1 dyoung
2303 1.1 dyoung /*
2304 1.1 dyoung * HW expects these in little endian so we reverse the byte
2305 1.1 dyoung * order from network order (big endian) to little endian
2306 1.1 dyoung */
2307 1.1 dyoung rar_low = ((u32)addr[0] |
2308 1.3 msaitoh ((u32)addr[1] << 8) |
2309 1.3 msaitoh ((u32)addr[2] << 16) |
2310 1.3 msaitoh ((u32)addr[3] << 24));
2311 1.1 dyoung /*
2312 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2313 1.1 dyoung * so save everything except the lower 16 bits that hold part
2314 1.1 dyoung * of the address and the address valid bit.
2315 1.1 dyoung */
2316 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2317 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2318 1.1 dyoung rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2319 1.1 dyoung
2320 1.1 dyoung if (enable_addr != 0)
2321 1.1 dyoung rar_high |= IXGBE_RAH_AV;
2322 1.1 dyoung
2323 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2324 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2325 1.1 dyoung
2326 1.1 dyoung return IXGBE_SUCCESS;
2327 1.1 dyoung }
2328 1.1 dyoung
2329 1.1 dyoung /**
2330 1.1 dyoung * ixgbe_clear_rar_generic - Remove Rx address register
2331 1.1 dyoung * @hw: pointer to hardware structure
2332 1.1 dyoung * @index: Receive address register to write
2333 1.1 dyoung *
2334 1.1 dyoung * Clears an ethernet address from a receive address register.
2335 1.1 dyoung **/
2336 1.1 dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2337 1.1 dyoung {
2338 1.1 dyoung u32 rar_high;
2339 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2340 1.1 dyoung
2341 1.1 dyoung DEBUGFUNC("ixgbe_clear_rar_generic");
2342 1.1 dyoung
2343 1.1 dyoung /* Make sure we are using a valid rar index range */
2344 1.1 dyoung if (index >= rar_entries) {
2345 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2346 1.6 msaitoh "RAR index %d is out of range.\n", index);
2347 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
2348 1.1 dyoung }
2349 1.1 dyoung
2350 1.1 dyoung /*
2351 1.1 dyoung * Some parts put the VMDq setting in the extra RAH bits,
2352 1.1 dyoung * so save everything except the lower 16 bits that hold part
2353 1.1 dyoung * of the address and the address valid bit.
2354 1.1 dyoung */
2355 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2356 1.1 dyoung rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2357 1.1 dyoung
2358 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2359 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2360 1.1 dyoung
2361 1.1 dyoung /* clear VMDq pool/queue selection for this RAR */
2362 1.1 dyoung hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2363 1.1 dyoung
2364 1.1 dyoung return IXGBE_SUCCESS;
2365 1.1 dyoung }
2366 1.1 dyoung
2367 1.1 dyoung /**
2368 1.1 dyoung * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2369 1.1 dyoung * @hw: pointer to hardware structure
2370 1.1 dyoung *
2371 1.1 dyoung * Places the MAC address in receive address register 0 and clears the rest
2372 1.1 dyoung * of the receive address registers. Clears the multicast table. Assumes
2373 1.1 dyoung * the receiver is in reset when the routine is called.
2374 1.1 dyoung **/
2375 1.1 dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2376 1.1 dyoung {
2377 1.1 dyoung u32 i;
2378 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2379 1.1 dyoung
2380 1.1 dyoung DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2381 1.1 dyoung
2382 1.1 dyoung /*
2383 1.1 dyoung * If the current mac address is valid, assume it is a software override
2384 1.1 dyoung * to the permanent address.
2385 1.1 dyoung * Otherwise, use the permanent address from the eeprom.
2386 1.1 dyoung */
2387 1.1 dyoung if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2388 1.1 dyoung IXGBE_ERR_INVALID_MAC_ADDR) {
2389 1.1 dyoung /* Get the MAC address from the RAR0 for later reference */
2390 1.1 dyoung hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2391 1.1 dyoung
2392 1.1 dyoung DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2393 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2394 1.3 msaitoh hw->mac.addr[2]);
2395 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2396 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2397 1.1 dyoung } else {
2398 1.1 dyoung /* Setup the receive address. */
2399 1.1 dyoung DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2400 1.1 dyoung DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2401 1.3 msaitoh hw->mac.addr[0], hw->mac.addr[1],
2402 1.3 msaitoh hw->mac.addr[2]);
2403 1.1 dyoung DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2404 1.3 msaitoh hw->mac.addr[4], hw->mac.addr[5]);
2405 1.1 dyoung
2406 1.1 dyoung hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2407 1.1 dyoung
2408 1.1 dyoung /* clear VMDq pool/queue selection for RAR 0 */
2409 1.1 dyoung hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2410 1.1 dyoung }
2411 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2412 1.1 dyoung
2413 1.1 dyoung hw->addr_ctrl.rar_used_count = 1;
2414 1.1 dyoung
2415 1.1 dyoung /* Zero out the other receive addresses. */
2416 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2417 1.1 dyoung for (i = 1; i < rar_entries; i++) {
2418 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2419 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2420 1.1 dyoung }
2421 1.1 dyoung
2422 1.1 dyoung /* Clear the MTA */
2423 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2424 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2425 1.1 dyoung
2426 1.1 dyoung DEBUGOUT(" Clearing MTA\n");
2427 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2428 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2429 1.1 dyoung
2430 1.1 dyoung ixgbe_init_uta_tables(hw);
2431 1.1 dyoung
2432 1.1 dyoung return IXGBE_SUCCESS;
2433 1.1 dyoung }
2434 1.1 dyoung
2435 1.1 dyoung /**
2436 1.1 dyoung * ixgbe_add_uc_addr - Adds a secondary unicast address.
2437 1.1 dyoung * @hw: pointer to hardware structure
2438 1.1 dyoung * @addr: new address
2439 1.1 dyoung *
2440 1.1 dyoung * Adds it to unused receive address register or goes into promiscuous mode.
2441 1.1 dyoung **/
2442 1.1 dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2443 1.1 dyoung {
2444 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
2445 1.1 dyoung u32 rar;
2446 1.1 dyoung
2447 1.1 dyoung DEBUGFUNC("ixgbe_add_uc_addr");
2448 1.1 dyoung
2449 1.1 dyoung DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2450 1.3 msaitoh addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2451 1.1 dyoung
2452 1.1 dyoung /*
2453 1.1 dyoung * Place this address in the RAR if there is room,
2454 1.1 dyoung * else put the controller into promiscuous mode
2455 1.1 dyoung */
2456 1.1 dyoung if (hw->addr_ctrl.rar_used_count < rar_entries) {
2457 1.1 dyoung rar = hw->addr_ctrl.rar_used_count;
2458 1.1 dyoung hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2459 1.1 dyoung DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2460 1.1 dyoung hw->addr_ctrl.rar_used_count++;
2461 1.1 dyoung } else {
2462 1.1 dyoung hw->addr_ctrl.overflow_promisc++;
2463 1.1 dyoung }
2464 1.1 dyoung
2465 1.1 dyoung DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2466 1.1 dyoung }
2467 1.1 dyoung
2468 1.1 dyoung /**
2469 1.1 dyoung * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2470 1.1 dyoung * @hw: pointer to hardware structure
2471 1.1 dyoung * @addr_list: the list of new addresses
2472 1.1 dyoung * @addr_count: number of addresses
2473 1.1 dyoung * @next: iterator function to walk the address list
2474 1.1 dyoung *
2475 1.1 dyoung * The given list replaces any existing list. Clears the secondary addrs from
2476 1.1 dyoung * receive address registers. Uses unused receive address registers for the
2477 1.1 dyoung * first secondary addresses, and falls back to promiscuous mode as needed.
2478 1.1 dyoung *
2479 1.1 dyoung * Drivers using secondary unicast addresses must set user_set_promisc when
2480 1.1 dyoung * manually putting the device into promiscuous mode.
2481 1.1 dyoung **/
2482 1.1 dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2483 1.3 msaitoh u32 addr_count, ixgbe_mc_addr_itr next)
2484 1.1 dyoung {
2485 1.1 dyoung u8 *addr;
2486 1.1 dyoung u32 i;
2487 1.1 dyoung u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2488 1.1 dyoung u32 uc_addr_in_use;
2489 1.1 dyoung u32 fctrl;
2490 1.1 dyoung u32 vmdq;
2491 1.1 dyoung
2492 1.1 dyoung DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2493 1.1 dyoung
2494 1.1 dyoung /*
2495 1.1 dyoung * Clear accounting of old secondary address list,
2496 1.1 dyoung * don't count RAR[0]
2497 1.1 dyoung */
2498 1.1 dyoung uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2499 1.1 dyoung hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2500 1.1 dyoung hw->addr_ctrl.overflow_promisc = 0;
2501 1.1 dyoung
2502 1.1 dyoung /* Zero out the other receive addresses */
2503 1.1 dyoung DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2504 1.1 dyoung for (i = 0; i < uc_addr_in_use; i++) {
2505 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2506 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2507 1.1 dyoung }
2508 1.1 dyoung
2509 1.1 dyoung /* Add the new addresses */
2510 1.1 dyoung for (i = 0; i < addr_count; i++) {
2511 1.1 dyoung DEBUGOUT(" Adding the secondary addresses:\n");
2512 1.1 dyoung addr = next(hw, &addr_list, &vmdq);
2513 1.1 dyoung ixgbe_add_uc_addr(hw, addr, vmdq);
2514 1.1 dyoung }
2515 1.1 dyoung
2516 1.1 dyoung if (hw->addr_ctrl.overflow_promisc) {
2517 1.1 dyoung /* enable promisc if not already in overflow or set by user */
2518 1.1 dyoung if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2519 1.1 dyoung DEBUGOUT(" Entering address overflow promisc mode\n");
2520 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2521 1.1 dyoung fctrl |= IXGBE_FCTRL_UPE;
2522 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2523 1.1 dyoung }
2524 1.1 dyoung } else {
2525 1.1 dyoung /* only disable if set by overflow, not by user */
2526 1.1 dyoung if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2527 1.1 dyoung DEBUGOUT(" Leaving address overflow promisc mode\n");
2528 1.1 dyoung fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2529 1.1 dyoung fctrl &= ~IXGBE_FCTRL_UPE;
2530 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2531 1.1 dyoung }
2532 1.1 dyoung }
2533 1.1 dyoung
2534 1.1 dyoung DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2535 1.1 dyoung return IXGBE_SUCCESS;
2536 1.1 dyoung }
2537 1.1 dyoung
2538 1.1 dyoung /**
2539 1.1 dyoung * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2540 1.1 dyoung * @hw: pointer to hardware structure
2541 1.1 dyoung * @mc_addr: the multicast address
2542 1.1 dyoung *
2543 1.1 dyoung * Extracts the 12 bits, from a multicast address, to determine which
2544 1.1 dyoung * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2545 1.1 dyoung * incoming rx multicast addresses, to determine the bit-vector to check in
2546 1.1 dyoung * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2547 1.1 dyoung * by the MO field of the MCSTCTRL. The MO field is set during initialization
2548 1.1 dyoung * to mc_filter_type.
2549 1.1 dyoung **/
2550 1.1 dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2551 1.1 dyoung {
2552 1.1 dyoung u32 vector = 0;
2553 1.1 dyoung
2554 1.1 dyoung DEBUGFUNC("ixgbe_mta_vector");
2555 1.1 dyoung
2556 1.1 dyoung switch (hw->mac.mc_filter_type) {
2557 1.1 dyoung case 0: /* use bits [47:36] of the address */
2558 1.1 dyoung vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2559 1.1 dyoung break;
2560 1.1 dyoung case 1: /* use bits [46:35] of the address */
2561 1.1 dyoung vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2562 1.1 dyoung break;
2563 1.1 dyoung case 2: /* use bits [45:34] of the address */
2564 1.1 dyoung vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2565 1.1 dyoung break;
2566 1.1 dyoung case 3: /* use bits [43:32] of the address */
2567 1.1 dyoung vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2568 1.1 dyoung break;
2569 1.1 dyoung default: /* Invalid mc_filter_type */
2570 1.1 dyoung DEBUGOUT("MC filter type param set incorrectly\n");
2571 1.1 dyoung ASSERT(0);
2572 1.1 dyoung break;
2573 1.1 dyoung }
2574 1.1 dyoung
2575 1.1 dyoung /* vector can only be 12-bits or boundary will be exceeded */
2576 1.1 dyoung vector &= 0xFFF;
2577 1.1 dyoung return vector;
2578 1.1 dyoung }
2579 1.1 dyoung
2580 1.1 dyoung /**
2581 1.1 dyoung * ixgbe_set_mta - Set bit-vector in multicast table
2582 1.1 dyoung * @hw: pointer to hardware structure
2583 1.1 dyoung * @hash_value: Multicast address hash value
2584 1.1 dyoung *
2585 1.1 dyoung * Sets the bit-vector in the multicast table.
2586 1.1 dyoung **/
2587 1.1 dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2588 1.1 dyoung {
2589 1.1 dyoung u32 vector;
2590 1.1 dyoung u32 vector_bit;
2591 1.1 dyoung u32 vector_reg;
2592 1.1 dyoung
2593 1.1 dyoung DEBUGFUNC("ixgbe_set_mta");
2594 1.1 dyoung
2595 1.1 dyoung hw->addr_ctrl.mta_in_use++;
2596 1.1 dyoung
2597 1.1 dyoung vector = ixgbe_mta_vector(hw, mc_addr);
2598 1.1 dyoung DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2599 1.1 dyoung
2600 1.1 dyoung /*
2601 1.1 dyoung * The MTA is a register array of 128 32-bit registers. It is treated
2602 1.1 dyoung * like an array of 4096 bits. We want to set bit
2603 1.1 dyoung * BitArray[vector_value]. So we figure out what register the bit is
2604 1.1 dyoung * in, read it, OR in the new bit, then write back the new value. The
2605 1.1 dyoung * register is determined by the upper 7 bits of the vector value and
2606 1.1 dyoung * the bit within that register are determined by the lower 5 bits of
2607 1.1 dyoung * the value.
2608 1.1 dyoung */
2609 1.1 dyoung vector_reg = (vector >> 5) & 0x7F;
2610 1.1 dyoung vector_bit = vector & 0x1F;
2611 1.1 dyoung hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2612 1.1 dyoung }
2613 1.1 dyoung
2614 1.1 dyoung /**
2615 1.1 dyoung * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2616 1.1 dyoung * @hw: pointer to hardware structure
2617 1.1 dyoung * @mc_addr_list: the list of new multicast addresses
2618 1.1 dyoung * @mc_addr_count: number of addresses
2619 1.1 dyoung * @next: iterator function to walk the multicast address list
2620 1.3 msaitoh * @clear: flag, when set clears the table beforehand
2621 1.1 dyoung *
2622 1.3 msaitoh * When the clear flag is set, the given list replaces any existing list.
2623 1.3 msaitoh * Hashes the given addresses into the multicast table.
2624 1.1 dyoung **/
2625 1.1 dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2626 1.3 msaitoh u32 mc_addr_count, ixgbe_mc_addr_itr next,
2627 1.3 msaitoh bool clear)
2628 1.1 dyoung {
2629 1.1 dyoung u32 i;
2630 1.1 dyoung u32 vmdq;
2631 1.1 dyoung
2632 1.1 dyoung DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2633 1.1 dyoung
2634 1.1 dyoung /*
2635 1.1 dyoung * Set the new number of MC addresses that we are being requested to
2636 1.1 dyoung * use.
2637 1.1 dyoung */
2638 1.1 dyoung hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2639 1.1 dyoung hw->addr_ctrl.mta_in_use = 0;
2640 1.1 dyoung
2641 1.1 dyoung /* Clear mta_shadow */
2642 1.3 msaitoh if (clear) {
2643 1.3 msaitoh DEBUGOUT(" Clearing MTA\n");
2644 1.3 msaitoh memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2645 1.3 msaitoh }
2646 1.1 dyoung
2647 1.1 dyoung /* Update mta_shadow */
2648 1.1 dyoung for (i = 0; i < mc_addr_count; i++) {
2649 1.1 dyoung DEBUGOUT(" Adding the multicast addresses:\n");
2650 1.1 dyoung ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2651 1.1 dyoung }
2652 1.1 dyoung
2653 1.1 dyoung /* Enable mta */
2654 1.1 dyoung for (i = 0; i < hw->mac.mcft_size; i++)
2655 1.1 dyoung IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2656 1.1 dyoung hw->mac.mta_shadow[i]);
2657 1.1 dyoung
2658 1.1 dyoung if (hw->addr_ctrl.mta_in_use > 0)
2659 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2660 1.3 msaitoh IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2661 1.1 dyoung
2662 1.1 dyoung DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2663 1.1 dyoung return IXGBE_SUCCESS;
2664 1.1 dyoung }
2665 1.1 dyoung
2666 1.1 dyoung /**
2667 1.1 dyoung * ixgbe_enable_mc_generic - Enable multicast address in RAR
2668 1.1 dyoung * @hw: pointer to hardware structure
2669 1.1 dyoung *
2670 1.1 dyoung * Enables multicast address in RAR and the use of the multicast hash table.
2671 1.1 dyoung **/
2672 1.1 dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2673 1.1 dyoung {
2674 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2675 1.1 dyoung
2676 1.1 dyoung DEBUGFUNC("ixgbe_enable_mc_generic");
2677 1.1 dyoung
2678 1.1 dyoung if (a->mta_in_use > 0)
2679 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2680 1.3 msaitoh hw->mac.mc_filter_type);
2681 1.1 dyoung
2682 1.1 dyoung return IXGBE_SUCCESS;
2683 1.1 dyoung }
2684 1.1 dyoung
2685 1.1 dyoung /**
2686 1.1 dyoung * ixgbe_disable_mc_generic - Disable multicast address in RAR
2687 1.1 dyoung * @hw: pointer to hardware structure
2688 1.1 dyoung *
2689 1.1 dyoung * Disables multicast address in RAR and the use of the multicast hash table.
2690 1.1 dyoung **/
2691 1.1 dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2692 1.1 dyoung {
2693 1.1 dyoung struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2694 1.1 dyoung
2695 1.1 dyoung DEBUGFUNC("ixgbe_disable_mc_generic");
2696 1.1 dyoung
2697 1.1 dyoung if (a->mta_in_use > 0)
2698 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2699 1.1 dyoung
2700 1.1 dyoung return IXGBE_SUCCESS;
2701 1.1 dyoung }
2702 1.1 dyoung
2703 1.1 dyoung /**
2704 1.1 dyoung * ixgbe_fc_enable_generic - Enable flow control
2705 1.1 dyoung * @hw: pointer to hardware structure
2706 1.1 dyoung *
2707 1.1 dyoung * Enable flow control according to the current settings.
2708 1.1 dyoung **/
2709 1.4 msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2710 1.1 dyoung {
2711 1.1 dyoung s32 ret_val = IXGBE_SUCCESS;
2712 1.1 dyoung u32 mflcn_reg, fccfg_reg;
2713 1.1 dyoung u32 reg;
2714 1.1 dyoung u32 fcrtl, fcrth;
2715 1.4 msaitoh int i;
2716 1.1 dyoung
2717 1.1 dyoung DEBUGFUNC("ixgbe_fc_enable_generic");
2718 1.1 dyoung
2719 1.4 msaitoh /* Validate the water mark configuration */
2720 1.4 msaitoh if (!hw->fc.pause_time) {
2721 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2722 1.4 msaitoh goto out;
2723 1.4 msaitoh }
2724 1.4 msaitoh
2725 1.4 msaitoh /* Low water mark of zero causes XOFF floods */
2726 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2727 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2728 1.4 msaitoh hw->fc.high_water[i]) {
2729 1.4 msaitoh if (!hw->fc.low_water[i] ||
2730 1.4 msaitoh hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2731 1.4 msaitoh DEBUGOUT("Invalid water mark configuration\n");
2732 1.4 msaitoh ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2733 1.4 msaitoh goto out;
2734 1.4 msaitoh }
2735 1.4 msaitoh }
2736 1.4 msaitoh }
2737 1.4 msaitoh
2738 1.1 dyoung /* Negotiate the fc mode to use */
2739 1.4 msaitoh ixgbe_fc_autoneg(hw);
2740 1.1 dyoung
2741 1.1 dyoung /* Disable any previous flow control settings */
2742 1.1 dyoung mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2743 1.4 msaitoh mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2744 1.1 dyoung
2745 1.1 dyoung fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2746 1.1 dyoung fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2747 1.1 dyoung
2748 1.1 dyoung /*
2749 1.1 dyoung * The possible values of fc.current_mode are:
2750 1.1 dyoung * 0: Flow control is completely disabled
2751 1.1 dyoung * 1: Rx flow control is enabled (we can receive pause frames,
2752 1.1 dyoung * but not send pause frames).
2753 1.1 dyoung * 2: Tx flow control is enabled (we can send pause frames but
2754 1.1 dyoung * we do not support receiving pause frames).
2755 1.1 dyoung * 3: Both Rx and Tx flow control (symmetric) are enabled.
2756 1.1 dyoung * other: Invalid.
2757 1.1 dyoung */
2758 1.1 dyoung switch (hw->fc.current_mode) {
2759 1.1 dyoung case ixgbe_fc_none:
2760 1.1 dyoung /*
2761 1.1 dyoung * Flow control is disabled by software override or autoneg.
2762 1.1 dyoung * The code below will actually disable it in the HW.
2763 1.1 dyoung */
2764 1.1 dyoung break;
2765 1.1 dyoung case ixgbe_fc_rx_pause:
2766 1.1 dyoung /*
2767 1.1 dyoung * Rx Flow control is enabled and Tx Flow control is
2768 1.1 dyoung * disabled by software override. Since there really
2769 1.1 dyoung * isn't a way to advertise that we are capable of RX
2770 1.1 dyoung * Pause ONLY, we will advertise that we support both
2771 1.1 dyoung * symmetric and asymmetric Rx PAUSE. Later, we will
2772 1.1 dyoung * disable the adapter's ability to send PAUSE frames.
2773 1.1 dyoung */
2774 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2775 1.1 dyoung break;
2776 1.1 dyoung case ixgbe_fc_tx_pause:
2777 1.1 dyoung /*
2778 1.1 dyoung * Tx Flow control is enabled, and Rx Flow control is
2779 1.1 dyoung * disabled by software override.
2780 1.1 dyoung */
2781 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2782 1.1 dyoung break;
2783 1.1 dyoung case ixgbe_fc_full:
2784 1.1 dyoung /* Flow control (both Rx and Tx) is enabled by SW override. */
2785 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_RFCE;
2786 1.1 dyoung fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2787 1.1 dyoung break;
2788 1.1 dyoung default:
2789 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2790 1.6 msaitoh "Flow control param set incorrectly\n");
2791 1.1 dyoung ret_val = IXGBE_ERR_CONFIG;
2792 1.1 dyoung goto out;
2793 1.1 dyoung break;
2794 1.1 dyoung }
2795 1.1 dyoung
2796 1.1 dyoung /* Set 802.3x based flow control settings. */
2797 1.1 dyoung mflcn_reg |= IXGBE_MFLCN_DPF;
2798 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2799 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2800 1.1 dyoung
2801 1.1 dyoung
2802 1.4 msaitoh /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2803 1.4 msaitoh for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2804 1.4 msaitoh if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2805 1.4 msaitoh hw->fc.high_water[i]) {
2806 1.4 msaitoh fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2807 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2808 1.4 msaitoh fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2809 1.4 msaitoh } else {
2810 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2811 1.4 msaitoh /*
2812 1.4 msaitoh * In order to prevent Tx hangs when the internal Tx
2813 1.4 msaitoh * switch is enabled we must set the high water mark
2814 1.8 msaitoh * to the Rx packet buffer size - 24KB. This allows
2815 1.8 msaitoh * the Tx switch to function even under heavy Rx
2816 1.8 msaitoh * workloads.
2817 1.4 msaitoh */
2818 1.8 msaitoh fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2819 1.4 msaitoh }
2820 1.4 msaitoh
2821 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2822 1.1 dyoung }
2823 1.1 dyoung
2824 1.1 dyoung /* Configure pause time (2 TCs per register) */
2825 1.4 msaitoh reg = hw->fc.pause_time * 0x00010001;
2826 1.4 msaitoh for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2827 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2828 1.1 dyoung
2829 1.4 msaitoh /* Configure flow control refresh threshold value */
2830 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2831 1.1 dyoung
2832 1.1 dyoung out:
2833 1.1 dyoung return ret_val;
2834 1.1 dyoung }
2835 1.1 dyoung
2836 1.1 dyoung /**
2837 1.4 msaitoh * ixgbe_negotiate_fc - Negotiate flow control
2838 1.1 dyoung * @hw: pointer to hardware structure
2839 1.4 msaitoh * @adv_reg: flow control advertised settings
2840 1.4 msaitoh * @lp_reg: link partner's flow control settings
2841 1.4 msaitoh * @adv_sym: symmetric pause bit in advertisement
2842 1.4 msaitoh * @adv_asm: asymmetric pause bit in advertisement
2843 1.4 msaitoh * @lp_sym: symmetric pause bit in link partner advertisement
2844 1.4 msaitoh * @lp_asm: asymmetric pause bit in link partner advertisement
2845 1.1 dyoung *
2846 1.4 msaitoh * Find the intersection between advertised settings and link partner's
2847 1.4 msaitoh * advertised settings
2848 1.1 dyoung **/
2849 1.4 msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2850 1.4 msaitoh u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2851 1.1 dyoung {
2852 1.6 msaitoh if ((!(adv_reg)) || (!(lp_reg))) {
2853 1.6 msaitoh ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2854 1.6 msaitoh "Local or link partner's advertised flow control "
2855 1.6 msaitoh "settings are NULL. Local: %x, link partner: %x\n",
2856 1.6 msaitoh adv_reg, lp_reg);
2857 1.4 msaitoh return IXGBE_ERR_FC_NOT_NEGOTIATED;
2858 1.6 msaitoh }
2859 1.1 dyoung
2860 1.4 msaitoh if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2861 1.4 msaitoh /*
2862 1.4 msaitoh * Now we need to check if the user selected Rx ONLY
2863 1.4 msaitoh * of pause frames. In this case, we had to advertise
2864 1.4 msaitoh * FULL flow control because we could not advertise RX
2865 1.4 msaitoh * ONLY. Hence, we must now check to see if we need to
2866 1.4 msaitoh * turn OFF the TRANSMISSION of PAUSE frames.
2867 1.4 msaitoh */
2868 1.4 msaitoh if (hw->fc.requested_mode == ixgbe_fc_full) {
2869 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_full;
2870 1.4 msaitoh DEBUGOUT("Flow Control = FULL.\n");
2871 1.4 msaitoh } else {
2872 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2873 1.4 msaitoh DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2874 1.4 msaitoh }
2875 1.4 msaitoh } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2876 1.4 msaitoh (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2877 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_tx_pause;
2878 1.4 msaitoh DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2879 1.4 msaitoh } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2880 1.4 msaitoh !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2881 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_rx_pause;
2882 1.4 msaitoh DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2883 1.4 msaitoh } else {
2884 1.4 msaitoh hw->fc.current_mode = ixgbe_fc_none;
2885 1.4 msaitoh DEBUGOUT("Flow Control = NONE.\n");
2886 1.4 msaitoh }
2887 1.4 msaitoh return IXGBE_SUCCESS;
2888 1.4 msaitoh }
2889 1.1 dyoung
2890 1.4 msaitoh /**
2891 1.4 msaitoh * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2892 1.4 msaitoh * @hw: pointer to hardware structure
2893 1.4 msaitoh *
2894 1.4 msaitoh * Enable flow control according on 1 gig fiber.
2895 1.4 msaitoh **/
2896 1.4 msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2897 1.4 msaitoh {
2898 1.4 msaitoh u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2899 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2900 1.1 dyoung
2901 1.1 dyoung /*
2902 1.4 msaitoh * On multispeed fiber at 1g, bail out if
2903 1.4 msaitoh * - link is up but AN did not complete, or if
2904 1.4 msaitoh * - link is up and AN completed but timed out
2905 1.1 dyoung */
2906 1.4 msaitoh
2907 1.4 msaitoh linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2908 1.4 msaitoh if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2909 1.6 msaitoh (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2910 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2911 1.1 dyoung goto out;
2912 1.6 msaitoh }
2913 1.1 dyoung
2914 1.1 dyoung pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2915 1.1 dyoung pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2916 1.1 dyoung
2917 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2918 1.3 msaitoh pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2919 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE,
2920 1.3 msaitoh IXGBE_PCS1GANA_SYM_PAUSE,
2921 1.3 msaitoh IXGBE_PCS1GANA_ASM_PAUSE);
2922 1.1 dyoung
2923 1.1 dyoung out:
2924 1.1 dyoung return ret_val;
2925 1.1 dyoung }
2926 1.1 dyoung
2927 1.1 dyoung /**
2928 1.1 dyoung * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2929 1.1 dyoung * @hw: pointer to hardware structure
2930 1.1 dyoung *
2931 1.1 dyoung * Enable flow control according to IEEE clause 37.
2932 1.1 dyoung **/
2933 1.1 dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2934 1.1 dyoung {
2935 1.1 dyoung u32 links2, anlp1_reg, autoc_reg, links;
2936 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2937 1.1 dyoung
2938 1.1 dyoung /*
2939 1.1 dyoung * On backplane, bail out if
2940 1.1 dyoung * - backplane autoneg was not completed, or if
2941 1.1 dyoung * - we are 82599 and link partner is not AN enabled
2942 1.1 dyoung */
2943 1.1 dyoung links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2944 1.6 msaitoh if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2945 1.8 msaitoh DEBUGOUT("Auto-Negotiation did not complete\n");
2946 1.1 dyoung goto out;
2947 1.6 msaitoh }
2948 1.1 dyoung
2949 1.1 dyoung if (hw->mac.type == ixgbe_mac_82599EB) {
2950 1.1 dyoung links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2951 1.6 msaitoh if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2952 1.8 msaitoh DEBUGOUT("Link partner is not AN enabled\n");
2953 1.1 dyoung goto out;
2954 1.6 msaitoh }
2955 1.1 dyoung }
2956 1.1 dyoung /*
2957 1.1 dyoung * Read the 10g AN autoc and LP ability registers and resolve
2958 1.1 dyoung * local flow control settings accordingly
2959 1.1 dyoung */
2960 1.1 dyoung autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2961 1.1 dyoung anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2962 1.1 dyoung
2963 1.1 dyoung ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2964 1.1 dyoung anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2965 1.1 dyoung IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2966 1.1 dyoung
2967 1.1 dyoung out:
2968 1.1 dyoung return ret_val;
2969 1.1 dyoung }
2970 1.1 dyoung
2971 1.1 dyoung /**
2972 1.1 dyoung * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2973 1.1 dyoung * @hw: pointer to hardware structure
2974 1.1 dyoung *
2975 1.1 dyoung * Enable flow control according to IEEE clause 37.
2976 1.1 dyoung **/
2977 1.1 dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2978 1.1 dyoung {
2979 1.1 dyoung u16 technology_ability_reg = 0;
2980 1.1 dyoung u16 lp_technology_ability_reg = 0;
2981 1.1 dyoung
2982 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2983 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2984 1.1 dyoung &technology_ability_reg);
2985 1.1 dyoung hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2986 1.1 dyoung IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987 1.1 dyoung &lp_technology_ability_reg);
2988 1.1 dyoung
2989 1.1 dyoung return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2990 1.1 dyoung (u32)lp_technology_ability_reg,
2991 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2992 1.1 dyoung IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2993 1.1 dyoung }
2994 1.1 dyoung
2995 1.1 dyoung /**
2996 1.4 msaitoh * ixgbe_fc_autoneg - Configure flow control
2997 1.1 dyoung * @hw: pointer to hardware structure
2998 1.1 dyoung *
2999 1.4 msaitoh * Compares our advertised flow control capabilities to those advertised by
3000 1.4 msaitoh * our link partner, and determines the proper flow control mode to use.
3001 1.1 dyoung **/
3002 1.4 msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3003 1.1 dyoung {
3004 1.4 msaitoh s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3005 1.4 msaitoh ixgbe_link_speed speed;
3006 1.4 msaitoh bool link_up;
3007 1.1 dyoung
3008 1.4 msaitoh DEBUGFUNC("ixgbe_fc_autoneg");
3009 1.1 dyoung
3010 1.1 dyoung /*
3011 1.4 msaitoh * AN should have completed when the cable was plugged in.
3012 1.4 msaitoh * Look for reasons to bail out. Bail out if:
3013 1.4 msaitoh * - FC autoneg is disabled, or if
3014 1.4 msaitoh * - link is not up.
3015 1.1 dyoung */
3016 1.6 msaitoh if (hw->fc.disable_fc_autoneg) {
3017 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3018 1.6 msaitoh "Flow control autoneg is disabled");
3019 1.1 dyoung goto out;
3020 1.6 msaitoh }
3021 1.1 dyoung
3022 1.4 msaitoh hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3023 1.6 msaitoh if (!link_up) {
3024 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3025 1.1 dyoung goto out;
3026 1.6 msaitoh }
3027 1.1 dyoung
3028 1.1 dyoung switch (hw->phy.media_type) {
3029 1.4 msaitoh /* Autoneg flow control on fiber adapters */
3030 1.5 msaitoh case ixgbe_media_type_fiber_fixed:
3031 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
3032 1.1 dyoung case ixgbe_media_type_fiber:
3033 1.4 msaitoh if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3034 1.4 msaitoh ret_val = ixgbe_fc_autoneg_fiber(hw);
3035 1.4 msaitoh break;
3036 1.4 msaitoh
3037 1.4 msaitoh /* Autoneg flow control on backplane adapters */
3038 1.1 dyoung case ixgbe_media_type_backplane:
3039 1.4 msaitoh ret_val = ixgbe_fc_autoneg_backplane(hw);
3040 1.1 dyoung break;
3041 1.1 dyoung
3042 1.4 msaitoh /* Autoneg flow control on copper adapters */
3043 1.1 dyoung case ixgbe_media_type_copper:
3044 1.6 msaitoh if (ixgbe_device_supports_autoneg_fc(hw))
3045 1.4 msaitoh ret_val = ixgbe_fc_autoneg_copper(hw);
3046 1.1 dyoung break;
3047 1.1 dyoung
3048 1.1 dyoung default:
3049 1.1 dyoung break;
3050 1.1 dyoung }
3051 1.1 dyoung
3052 1.4 msaitoh out:
3053 1.4 msaitoh if (ret_val == IXGBE_SUCCESS) {
3054 1.4 msaitoh hw->fc.fc_was_autonegged = TRUE;
3055 1.4 msaitoh } else {
3056 1.4 msaitoh hw->fc.fc_was_autonegged = FALSE;
3057 1.4 msaitoh hw->fc.current_mode = hw->fc.requested_mode;
3058 1.3 msaitoh }
3059 1.1 dyoung }
3060 1.1 dyoung
3061 1.6 msaitoh /*
3062 1.6 msaitoh * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3063 1.6 msaitoh * @hw: pointer to hardware structure
3064 1.6 msaitoh *
3065 1.6 msaitoh * System-wide timeout range is encoded in PCIe Device Control2 register.
3066 1.6 msaitoh *
3067 1.6 msaitoh * Add 10% to specified maximum and return the number of times to poll for
3068 1.6 msaitoh * completion timeout, in units of 100 microsec. Never return less than
3069 1.6 msaitoh * 800 = 80 millisec.
3070 1.6 msaitoh */
3071 1.6 msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3072 1.6 msaitoh {
3073 1.6 msaitoh s16 devctl2;
3074 1.6 msaitoh u32 pollcnt;
3075 1.6 msaitoh
3076 1.6 msaitoh devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3077 1.6 msaitoh devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3078 1.6 msaitoh
3079 1.6 msaitoh switch (devctl2) {
3080 1.6 msaitoh case IXGBE_PCIDEVCTRL2_65_130ms:
3081 1.6 msaitoh pollcnt = 1300; /* 130 millisec */
3082 1.6 msaitoh break;
3083 1.6 msaitoh case IXGBE_PCIDEVCTRL2_260_520ms:
3084 1.6 msaitoh pollcnt = 5200; /* 520 millisec */
3085 1.6 msaitoh break;
3086 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2s:
3087 1.6 msaitoh pollcnt = 20000; /* 2 sec */
3088 1.6 msaitoh break;
3089 1.6 msaitoh case IXGBE_PCIDEVCTRL2_4_8s:
3090 1.6 msaitoh pollcnt = 80000; /* 8 sec */
3091 1.6 msaitoh break;
3092 1.6 msaitoh case IXGBE_PCIDEVCTRL2_17_34s:
3093 1.6 msaitoh pollcnt = 34000; /* 34 sec */
3094 1.6 msaitoh break;
3095 1.6 msaitoh case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3096 1.6 msaitoh case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3097 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3098 1.6 msaitoh case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3099 1.6 msaitoh default:
3100 1.6 msaitoh pollcnt = 800; /* 80 millisec minimum */
3101 1.6 msaitoh break;
3102 1.6 msaitoh }
3103 1.6 msaitoh
3104 1.6 msaitoh /* add 10% to spec maximum */
3105 1.6 msaitoh return (pollcnt * 11) / 10;
3106 1.6 msaitoh }
3107 1.6 msaitoh
3108 1.1 dyoung /**
3109 1.1 dyoung * ixgbe_disable_pcie_master - Disable PCI-express master access
3110 1.1 dyoung * @hw: pointer to hardware structure
3111 1.1 dyoung *
3112 1.1 dyoung * Disables PCI-Express master access and verifies there are no pending
3113 1.1 dyoung * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3114 1.1 dyoung * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3115 1.1 dyoung * is returned signifying master requests disabled.
3116 1.1 dyoung **/
3117 1.1 dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3118 1.1 dyoung {
3119 1.3 msaitoh s32 status = IXGBE_SUCCESS;
3120 1.6 msaitoh u32 i, poll;
3121 1.8 msaitoh u16 value;
3122 1.1 dyoung
3123 1.1 dyoung DEBUGFUNC("ixgbe_disable_pcie_master");
3124 1.1 dyoung
3125 1.3 msaitoh /* Always set this bit to ensure any future transactions are blocked */
3126 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3127 1.3 msaitoh
3128 1.6 msaitoh /* Exit if master requests are blocked */
3129 1.8 msaitoh if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3130 1.8 msaitoh IXGBE_REMOVED(hw->hw_addr))
3131 1.1 dyoung goto out;
3132 1.1 dyoung
3133 1.3 msaitoh /* Poll for master request bit to clear */
3134 1.1 dyoung for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3135 1.3 msaitoh usec_delay(100);
3136 1.1 dyoung if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3137 1.3 msaitoh goto out;
3138 1.1 dyoung }
3139 1.1 dyoung
3140 1.3 msaitoh /*
3141 1.3 msaitoh * Two consecutive resets are required via CTRL.RST per datasheet
3142 1.3 msaitoh * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3143 1.3 msaitoh * of this need. The first reset prevents new master requests from
3144 1.3 msaitoh * being issued by our device. We then must wait 1usec or more for any
3145 1.3 msaitoh * remaining completions from the PCIe bus to trickle in, and then reset
3146 1.3 msaitoh * again to clear out any effects they may have had on our device.
3147 1.3 msaitoh */
3148 1.1 dyoung DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3149 1.3 msaitoh hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3150 1.1 dyoung
3151 1.1 dyoung /*
3152 1.1 dyoung * Before proceeding, make sure that the PCIe block does not have
3153 1.1 dyoung * transactions pending.
3154 1.1 dyoung */
3155 1.6 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
3156 1.6 msaitoh for (i = 0; i < poll; i++) {
3157 1.3 msaitoh usec_delay(100);
3158 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3159 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3160 1.8 msaitoh goto out;
3161 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3162 1.3 msaitoh goto out;
3163 1.1 dyoung }
3164 1.1 dyoung
3165 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_POLLING,
3166 1.6 msaitoh "PCIe transaction pending bit also did not clear.\n");
3167 1.3 msaitoh status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3168 1.1 dyoung
3169 1.1 dyoung out:
3170 1.1 dyoung return status;
3171 1.1 dyoung }
3172 1.1 dyoung
3173 1.1 dyoung /**
3174 1.1 dyoung * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3175 1.1 dyoung * @hw: pointer to hardware structure
3176 1.1 dyoung * @mask: Mask to specify which semaphore to acquire
3177 1.1 dyoung *
3178 1.3 msaitoh * Acquires the SWFW semaphore through the GSSR register for the specified
3179 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3180 1.1 dyoung **/
3181 1.8 msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3182 1.1 dyoung {
3183 1.6 msaitoh u32 gssr = 0;
3184 1.1 dyoung u32 swmask = mask;
3185 1.1 dyoung u32 fwmask = mask << 5;
3186 1.6 msaitoh u32 timeout = 200;
3187 1.6 msaitoh u32 i;
3188 1.1 dyoung
3189 1.1 dyoung DEBUGFUNC("ixgbe_acquire_swfw_sync");
3190 1.1 dyoung
3191 1.6 msaitoh for (i = 0; i < timeout; i++) {
3192 1.1 dyoung /*
3193 1.6 msaitoh * SW NVM semaphore bit is used for access to all
3194 1.6 msaitoh * SW_FW_SYNC bits (not just NVM)
3195 1.1 dyoung */
3196 1.1 dyoung if (ixgbe_get_eeprom_semaphore(hw))
3197 1.1 dyoung return IXGBE_ERR_SWFW_SYNC;
3198 1.1 dyoung
3199 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3200 1.6 msaitoh if (!(gssr & (fwmask | swmask))) {
3201 1.6 msaitoh gssr |= swmask;
3202 1.6 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3203 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3204 1.6 msaitoh return IXGBE_SUCCESS;
3205 1.6 msaitoh } else {
3206 1.6 msaitoh /* Resource is currently in use by FW or SW */
3207 1.6 msaitoh ixgbe_release_eeprom_semaphore(hw);
3208 1.6 msaitoh msec_delay(5);
3209 1.6 msaitoh }
3210 1.1 dyoung }
3211 1.1 dyoung
3212 1.6 msaitoh /* If time expired clear the bits holding the lock and retry */
3213 1.6 msaitoh if (gssr & (fwmask | swmask))
3214 1.6 msaitoh ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3215 1.1 dyoung
3216 1.6 msaitoh msec_delay(5);
3217 1.6 msaitoh return IXGBE_ERR_SWFW_SYNC;
3218 1.1 dyoung }
3219 1.1 dyoung
3220 1.1 dyoung /**
3221 1.1 dyoung * ixgbe_release_swfw_sync - Release SWFW semaphore
3222 1.1 dyoung * @hw: pointer to hardware structure
3223 1.1 dyoung * @mask: Mask to specify which semaphore to release
3224 1.1 dyoung *
3225 1.3 msaitoh * Releases the SWFW semaphore through the GSSR register for the specified
3226 1.1 dyoung * function (CSR, PHY0, PHY1, EEPROM, Flash)
3227 1.1 dyoung **/
3228 1.8 msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3229 1.1 dyoung {
3230 1.1 dyoung u32 gssr;
3231 1.1 dyoung u32 swmask = mask;
3232 1.1 dyoung
3233 1.1 dyoung DEBUGFUNC("ixgbe_release_swfw_sync");
3234 1.1 dyoung
3235 1.1 dyoung ixgbe_get_eeprom_semaphore(hw);
3236 1.1 dyoung
3237 1.1 dyoung gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3238 1.1 dyoung gssr &= ~swmask;
3239 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3240 1.1 dyoung
3241 1.1 dyoung ixgbe_release_eeprom_semaphore(hw);
3242 1.1 dyoung }
3243 1.1 dyoung
3244 1.1 dyoung /**
3245 1.3 msaitoh * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3246 1.3 msaitoh * @hw: pointer to hardware structure
3247 1.3 msaitoh *
3248 1.3 msaitoh * Stops the receive data path and waits for the HW to internally empty
3249 1.3 msaitoh * the Rx security block
3250 1.3 msaitoh **/
3251 1.3 msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3252 1.3 msaitoh {
3253 1.3 msaitoh #define IXGBE_MAX_SECRX_POLL 40
3254 1.3 msaitoh
3255 1.3 msaitoh int i;
3256 1.3 msaitoh int secrxreg;
3257 1.3 msaitoh
3258 1.3 msaitoh DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3259 1.3 msaitoh
3260 1.3 msaitoh
3261 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3262 1.3 msaitoh secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3263 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3264 1.3 msaitoh for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3265 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3266 1.3 msaitoh if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3267 1.3 msaitoh break;
3268 1.3 msaitoh else
3269 1.3 msaitoh /* Use interrupt-safe sleep just in case */
3270 1.3 msaitoh usec_delay(1000);
3271 1.3 msaitoh }
3272 1.3 msaitoh
3273 1.3 msaitoh /* For informational purposes only */
3274 1.3 msaitoh if (i >= IXGBE_MAX_SECRX_POLL)
3275 1.3 msaitoh DEBUGOUT("Rx unit being enabled before security "
3276 1.3 msaitoh "path fully disabled. Continuing with init.\n");
3277 1.3 msaitoh
3278 1.3 msaitoh return IXGBE_SUCCESS;
3279 1.3 msaitoh }
3280 1.3 msaitoh
3281 1.3 msaitoh /**
3282 1.8 msaitoh * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3283 1.8 msaitoh * @hw: pointer to hardware structure
3284 1.8 msaitoh * @reg_val: Value we read from AUTOC
3285 1.8 msaitoh *
3286 1.8 msaitoh * The default case requires no protection so just to the register read.
3287 1.8 msaitoh */
3288 1.8 msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3289 1.8 msaitoh {
3290 1.8 msaitoh *locked = FALSE;
3291 1.8 msaitoh *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3292 1.8 msaitoh return IXGBE_SUCCESS;
3293 1.8 msaitoh }
3294 1.8 msaitoh
3295 1.8 msaitoh /**
3296 1.8 msaitoh * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3297 1.8 msaitoh * @hw: pointer to hardware structure
3298 1.8 msaitoh * @reg_val: value to write to AUTOC
3299 1.8 msaitoh * @locked: bool to indicate whether the SW/FW lock was already taken by
3300 1.8 msaitoh * previous read.
3301 1.8 msaitoh *
3302 1.8 msaitoh * The default case requires no protection so just to the register write.
3303 1.8 msaitoh */
3304 1.8 msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3305 1.8 msaitoh {
3306 1.8 msaitoh UNREFERENCED_1PARAMETER(locked);
3307 1.8 msaitoh
3308 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3309 1.8 msaitoh return IXGBE_SUCCESS;
3310 1.8 msaitoh }
3311 1.8 msaitoh
3312 1.8 msaitoh /**
3313 1.3 msaitoh * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3314 1.3 msaitoh * @hw: pointer to hardware structure
3315 1.3 msaitoh *
3316 1.3 msaitoh * Enables the receive data path.
3317 1.3 msaitoh **/
3318 1.3 msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3319 1.3 msaitoh {
3320 1.3 msaitoh int secrxreg;
3321 1.3 msaitoh
3322 1.3 msaitoh DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3323 1.3 msaitoh
3324 1.3 msaitoh secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3325 1.3 msaitoh secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3326 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3327 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3328 1.3 msaitoh
3329 1.3 msaitoh return IXGBE_SUCCESS;
3330 1.3 msaitoh }
3331 1.3 msaitoh
3332 1.3 msaitoh /**
3333 1.1 dyoung * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3334 1.1 dyoung * @hw: pointer to hardware structure
3335 1.1 dyoung * @regval: register value to write to RXCTRL
3336 1.1 dyoung *
3337 1.1 dyoung * Enables the Rx DMA unit
3338 1.1 dyoung **/
3339 1.1 dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3340 1.1 dyoung {
3341 1.1 dyoung DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3342 1.1 dyoung
3343 1.8 msaitoh if (regval & IXGBE_RXCTRL_RXEN)
3344 1.8 msaitoh ixgbe_enable_rx(hw);
3345 1.8 msaitoh else
3346 1.8 msaitoh ixgbe_disable_rx(hw);
3347 1.1 dyoung
3348 1.1 dyoung return IXGBE_SUCCESS;
3349 1.1 dyoung }
3350 1.1 dyoung
3351 1.1 dyoung /**
3352 1.1 dyoung * ixgbe_blink_led_start_generic - Blink LED based on index.
3353 1.1 dyoung * @hw: pointer to hardware structure
3354 1.1 dyoung * @index: led number to blink
3355 1.1 dyoung **/
3356 1.1 dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3357 1.1 dyoung {
3358 1.1 dyoung ixgbe_link_speed speed = 0;
3359 1.1 dyoung bool link_up = 0;
3360 1.8 msaitoh u32 autoc_reg = 0;
3361 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3362 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3363 1.8 msaitoh bool locked = FALSE;
3364 1.1 dyoung
3365 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_start_generic");
3366 1.1 dyoung
3367 1.1 dyoung /*
3368 1.1 dyoung * Link must be up to auto-blink the LEDs;
3369 1.1 dyoung * Force it if link is down.
3370 1.1 dyoung */
3371 1.1 dyoung hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3372 1.1 dyoung
3373 1.1 dyoung if (!link_up) {
3374 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3375 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3376 1.8 msaitoh goto out;
3377 1.5 msaitoh
3378 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3379 1.1 dyoung autoc_reg |= IXGBE_AUTOC_FLU;
3380 1.8 msaitoh
3381 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3382 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3383 1.8 msaitoh goto out;
3384 1.8 msaitoh
3385 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
3386 1.1 dyoung msec_delay(10);
3387 1.1 dyoung }
3388 1.1 dyoung
3389 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3390 1.1 dyoung led_reg |= IXGBE_LED_BLINK(index);
3391 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3392 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3393 1.1 dyoung
3394 1.5 msaitoh out:
3395 1.5 msaitoh return ret_val;
3396 1.1 dyoung }
3397 1.1 dyoung
3398 1.1 dyoung /**
3399 1.1 dyoung * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3400 1.1 dyoung * @hw: pointer to hardware structure
3401 1.1 dyoung * @index: led number to stop blinking
3402 1.1 dyoung **/
3403 1.1 dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3404 1.1 dyoung {
3405 1.8 msaitoh u32 autoc_reg = 0;
3406 1.1 dyoung u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3407 1.5 msaitoh s32 ret_val = IXGBE_SUCCESS;
3408 1.8 msaitoh bool locked = FALSE;
3409 1.1 dyoung
3410 1.1 dyoung DEBUGFUNC("ixgbe_blink_led_stop_generic");
3411 1.1 dyoung
3412 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3413 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3414 1.8 msaitoh goto out;
3415 1.1 dyoung
3416 1.1 dyoung autoc_reg &= ~IXGBE_AUTOC_FLU;
3417 1.1 dyoung autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3418 1.1 dyoung
3419 1.8 msaitoh ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3420 1.8 msaitoh if (ret_val != IXGBE_SUCCESS)
3421 1.8 msaitoh goto out;
3422 1.5 msaitoh
3423 1.1 dyoung led_reg &= ~IXGBE_LED_MODE_MASK(index);
3424 1.1 dyoung led_reg &= ~IXGBE_LED_BLINK(index);
3425 1.1 dyoung led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3426 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3427 1.1 dyoung IXGBE_WRITE_FLUSH(hw);
3428 1.1 dyoung
3429 1.5 msaitoh out:
3430 1.5 msaitoh return ret_val;
3431 1.1 dyoung }
3432 1.1 dyoung
3433 1.1 dyoung /**
3434 1.1 dyoung * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3435 1.1 dyoung * @hw: pointer to hardware structure
3436 1.1 dyoung * @san_mac_offset: SAN MAC address offset
3437 1.1 dyoung *
3438 1.1 dyoung * This function will read the EEPROM location for the SAN MAC address
3439 1.1 dyoung * pointer, and returns the value at that location. This is used in both
3440 1.1 dyoung * get and set mac_addr routines.
3441 1.1 dyoung **/
3442 1.1 dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3443 1.3 msaitoh u16 *san_mac_offset)
3444 1.1 dyoung {
3445 1.6 msaitoh s32 ret_val;
3446 1.6 msaitoh
3447 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3448 1.1 dyoung
3449 1.1 dyoung /*
3450 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3451 1.1 dyoung * available.
3452 1.1 dyoung */
3453 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3454 1.6 msaitoh san_mac_offset);
3455 1.6 msaitoh if (ret_val) {
3456 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3457 1.6 msaitoh "eeprom at offset %d failed",
3458 1.6 msaitoh IXGBE_SAN_MAC_ADDR_PTR);
3459 1.6 msaitoh }
3460 1.1 dyoung
3461 1.6 msaitoh return ret_val;
3462 1.1 dyoung }
3463 1.1 dyoung
3464 1.1 dyoung /**
3465 1.1 dyoung * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3466 1.1 dyoung * @hw: pointer to hardware structure
3467 1.1 dyoung * @san_mac_addr: SAN MAC address
3468 1.1 dyoung *
3469 1.1 dyoung * Reads the SAN MAC address from the EEPROM, if it's available. This is
3470 1.1 dyoung * per-port, so set_lan_id() must be called before reading the addresses.
3471 1.1 dyoung * set_lan_id() is called by identify_sfp(), but this cannot be relied
3472 1.1 dyoung * upon for non-SFP connections, so we must call it here.
3473 1.1 dyoung **/
3474 1.1 dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3475 1.1 dyoung {
3476 1.1 dyoung u16 san_mac_data, san_mac_offset;
3477 1.1 dyoung u8 i;
3478 1.6 msaitoh s32 ret_val;
3479 1.1 dyoung
3480 1.1 dyoung DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3481 1.1 dyoung
3482 1.1 dyoung /*
3483 1.1 dyoung * First read the EEPROM pointer to see if the MAC addresses are
3484 1.1 dyoung * available. If they're not, no point in calling set_lan_id() here.
3485 1.1 dyoung */
3486 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3487 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3488 1.1 dyoung goto san_mac_addr_out;
3489 1.1 dyoung
3490 1.1 dyoung /* make sure we know which port we need to program */
3491 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3492 1.1 dyoung /* apply the port offset to the address offset */
3493 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3494 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3495 1.1 dyoung for (i = 0; i < 3; i++) {
3496 1.6 msaitoh ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3497 1.6 msaitoh &san_mac_data);
3498 1.6 msaitoh if (ret_val) {
3499 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3500 1.6 msaitoh "eeprom read at offset %d failed",
3501 1.6 msaitoh san_mac_offset);
3502 1.6 msaitoh goto san_mac_addr_out;
3503 1.6 msaitoh }
3504 1.1 dyoung san_mac_addr[i * 2] = (u8)(san_mac_data);
3505 1.1 dyoung san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3506 1.1 dyoung san_mac_offset++;
3507 1.1 dyoung }
3508 1.6 msaitoh return IXGBE_SUCCESS;
3509 1.1 dyoung
3510 1.1 dyoung san_mac_addr_out:
3511 1.6 msaitoh /*
3512 1.6 msaitoh * No addresses available in this EEPROM. It's not an
3513 1.6 msaitoh * error though, so just wipe the local address and return.
3514 1.6 msaitoh */
3515 1.6 msaitoh for (i = 0; i < 6; i++)
3516 1.6 msaitoh san_mac_addr[i] = 0xFF;
3517 1.1 dyoung return IXGBE_SUCCESS;
3518 1.1 dyoung }
3519 1.1 dyoung
3520 1.1 dyoung /**
3521 1.1 dyoung * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3522 1.1 dyoung * @hw: pointer to hardware structure
3523 1.1 dyoung * @san_mac_addr: SAN MAC address
3524 1.1 dyoung *
3525 1.1 dyoung * Write a SAN MAC address to the EEPROM.
3526 1.1 dyoung **/
3527 1.1 dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3528 1.1 dyoung {
3529 1.6 msaitoh s32 ret_val;
3530 1.1 dyoung u16 san_mac_data, san_mac_offset;
3531 1.1 dyoung u8 i;
3532 1.1 dyoung
3533 1.1 dyoung DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3534 1.1 dyoung
3535 1.1 dyoung /* Look for SAN mac address pointer. If not defined, return */
3536 1.6 msaitoh ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3537 1.6 msaitoh if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3538 1.6 msaitoh return IXGBE_ERR_NO_SAN_ADDR_PTR;
3539 1.1 dyoung
3540 1.1 dyoung /* Make sure we know which port we need to write */
3541 1.1 dyoung hw->mac.ops.set_lan_id(hw);
3542 1.1 dyoung /* Apply the port offset to the address offset */
3543 1.1 dyoung (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3544 1.3 msaitoh (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3545 1.1 dyoung
3546 1.1 dyoung for (i = 0; i < 3; i++) {
3547 1.1 dyoung san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3548 1.1 dyoung san_mac_data |= (u16)(san_mac_addr[i * 2]);
3549 1.1 dyoung hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3550 1.1 dyoung san_mac_offset++;
3551 1.1 dyoung }
3552 1.1 dyoung
3553 1.6 msaitoh return IXGBE_SUCCESS;
3554 1.1 dyoung }
3555 1.1 dyoung
3556 1.1 dyoung /**
3557 1.1 dyoung * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3558 1.1 dyoung * @hw: pointer to hardware structure
3559 1.1 dyoung *
3560 1.1 dyoung * Read PCIe configuration space, and get the MSI-X vector count from
3561 1.1 dyoung * the capabilities table.
3562 1.1 dyoung **/
3563 1.4 msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3564 1.1 dyoung {
3565 1.4 msaitoh u16 msix_count = 1;
3566 1.4 msaitoh u16 max_msix_count;
3567 1.4 msaitoh u16 pcie_offset;
3568 1.4 msaitoh
3569 1.4 msaitoh switch (hw->mac.type) {
3570 1.4 msaitoh case ixgbe_mac_82598EB:
3571 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3572 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3573 1.4 msaitoh break;
3574 1.4 msaitoh case ixgbe_mac_82599EB:
3575 1.4 msaitoh case ixgbe_mac_X540:
3576 1.8 msaitoh case ixgbe_mac_X550:
3577 1.8 msaitoh case ixgbe_mac_X550EM_x:
3578 1.4 msaitoh pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3579 1.4 msaitoh max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3580 1.4 msaitoh break;
3581 1.4 msaitoh default:
3582 1.4 msaitoh return msix_count;
3583 1.4 msaitoh }
3584 1.1 dyoung
3585 1.1 dyoung DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3586 1.4 msaitoh msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3587 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3588 1.8 msaitoh msix_count = 0;
3589 1.4 msaitoh msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3590 1.4 msaitoh
3591 1.4 msaitoh /* MSI-X count is zero-based in HW */
3592 1.4 msaitoh msix_count++;
3593 1.4 msaitoh
3594 1.4 msaitoh if (msix_count > max_msix_count)
3595 1.4 msaitoh msix_count = max_msix_count;
3596 1.1 dyoung
3597 1.1 dyoung return msix_count;
3598 1.1 dyoung }
3599 1.1 dyoung
3600 1.1 dyoung /**
3601 1.1 dyoung * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3602 1.1 dyoung * @hw: pointer to hardware structure
3603 1.1 dyoung * @addr: Address to put into receive address register
3604 1.1 dyoung * @vmdq: VMDq pool to assign
3605 1.1 dyoung *
3606 1.1 dyoung * Puts an ethernet address into a receive address register, or
3607 1.1 dyoung * finds the rar that it is aleady in; adds to the pool list
3608 1.1 dyoung **/
3609 1.1 dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3610 1.1 dyoung {
3611 1.1 dyoung static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3612 1.1 dyoung u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3613 1.1 dyoung u32 rar;
3614 1.1 dyoung u32 rar_low, rar_high;
3615 1.1 dyoung u32 addr_low, addr_high;
3616 1.1 dyoung
3617 1.1 dyoung DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3618 1.1 dyoung
3619 1.1 dyoung /* swap bytes for HW little endian */
3620 1.1 dyoung addr_low = addr[0] | (addr[1] << 8)
3621 1.1 dyoung | (addr[2] << 16)
3622 1.1 dyoung | (addr[3] << 24);
3623 1.1 dyoung addr_high = addr[4] | (addr[5] << 8);
3624 1.1 dyoung
3625 1.1 dyoung /*
3626 1.1 dyoung * Either find the mac_id in rar or find the first empty space.
3627 1.1 dyoung * rar_highwater points to just after the highest currently used
3628 1.1 dyoung * rar in order to shorten the search. It grows when we add a new
3629 1.1 dyoung * rar to the top.
3630 1.1 dyoung */
3631 1.1 dyoung for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3632 1.1 dyoung rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3633 1.1 dyoung
3634 1.1 dyoung if (((IXGBE_RAH_AV & rar_high) == 0)
3635 1.1 dyoung && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3636 1.1 dyoung first_empty_rar = rar;
3637 1.1 dyoung } else if ((rar_high & 0xFFFF) == addr_high) {
3638 1.1 dyoung rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3639 1.1 dyoung if (rar_low == addr_low)
3640 1.1 dyoung break; /* found it already in the rars */
3641 1.1 dyoung }
3642 1.1 dyoung }
3643 1.1 dyoung
3644 1.1 dyoung if (rar < hw->mac.rar_highwater) {
3645 1.1 dyoung /* already there so just add to the pool bits */
3646 1.1 dyoung ixgbe_set_vmdq(hw, rar, vmdq);
3647 1.1 dyoung } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3648 1.1 dyoung /* stick it into first empty RAR slot we found */
3649 1.1 dyoung rar = first_empty_rar;
3650 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3651 1.1 dyoung } else if (rar == hw->mac.rar_highwater) {
3652 1.1 dyoung /* add it to the top of the list and inc the highwater mark */
3653 1.1 dyoung ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654 1.1 dyoung hw->mac.rar_highwater++;
3655 1.1 dyoung } else if (rar >= hw->mac.num_rar_entries) {
3656 1.1 dyoung return IXGBE_ERR_INVALID_MAC_ADDR;
3657 1.1 dyoung }
3658 1.1 dyoung
3659 1.1 dyoung /*
3660 1.1 dyoung * If we found rar[0], make sure the default pool bit (we use pool 0)
3661 1.1 dyoung * remains cleared to be sure default pool packets will get delivered
3662 1.1 dyoung */
3663 1.1 dyoung if (rar == 0)
3664 1.1 dyoung ixgbe_clear_vmdq(hw, rar, 0);
3665 1.1 dyoung
3666 1.1 dyoung return rar;
3667 1.1 dyoung }
3668 1.1 dyoung
3669 1.1 dyoung /**
3670 1.1 dyoung * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3671 1.1 dyoung * @hw: pointer to hardware struct
3672 1.1 dyoung * @rar: receive address register index to disassociate
3673 1.1 dyoung * @vmdq: VMDq pool index to remove from the rar
3674 1.1 dyoung **/
3675 1.1 dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3676 1.1 dyoung {
3677 1.1 dyoung u32 mpsar_lo, mpsar_hi;
3678 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3679 1.1 dyoung
3680 1.1 dyoung DEBUGFUNC("ixgbe_clear_vmdq_generic");
3681 1.1 dyoung
3682 1.1 dyoung /* Make sure we are using a valid rar index range */
3683 1.1 dyoung if (rar >= rar_entries) {
3684 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3685 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3686 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3687 1.1 dyoung }
3688 1.1 dyoung
3689 1.1 dyoung mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3690 1.1 dyoung mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3691 1.1 dyoung
3692 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
3693 1.8 msaitoh goto done;
3694 1.8 msaitoh
3695 1.1 dyoung if (!mpsar_lo && !mpsar_hi)
3696 1.1 dyoung goto done;
3697 1.1 dyoung
3698 1.1 dyoung if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3699 1.1 dyoung if (mpsar_lo) {
3700 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3701 1.1 dyoung mpsar_lo = 0;
3702 1.1 dyoung }
3703 1.1 dyoung if (mpsar_hi) {
3704 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3705 1.1 dyoung mpsar_hi = 0;
3706 1.1 dyoung }
3707 1.1 dyoung } else if (vmdq < 32) {
3708 1.1 dyoung mpsar_lo &= ~(1 << vmdq);
3709 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3710 1.1 dyoung } else {
3711 1.1 dyoung mpsar_hi &= ~(1 << (vmdq - 32));
3712 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3713 1.1 dyoung }
3714 1.1 dyoung
3715 1.1 dyoung /* was that the last pool using this rar? */
3716 1.1 dyoung if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3717 1.1 dyoung hw->mac.ops.clear_rar(hw, rar);
3718 1.1 dyoung done:
3719 1.1 dyoung return IXGBE_SUCCESS;
3720 1.1 dyoung }
3721 1.1 dyoung
3722 1.1 dyoung /**
3723 1.1 dyoung * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3724 1.1 dyoung * @hw: pointer to hardware struct
3725 1.1 dyoung * @rar: receive address register index to associate with a VMDq index
3726 1.1 dyoung * @vmdq: VMDq pool index
3727 1.1 dyoung **/
3728 1.1 dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3729 1.1 dyoung {
3730 1.1 dyoung u32 mpsar;
3731 1.1 dyoung u32 rar_entries = hw->mac.num_rar_entries;
3732 1.1 dyoung
3733 1.1 dyoung DEBUGFUNC("ixgbe_set_vmdq_generic");
3734 1.1 dyoung
3735 1.1 dyoung /* Make sure we are using a valid rar index range */
3736 1.1 dyoung if (rar >= rar_entries) {
3737 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3738 1.6 msaitoh "RAR index %d is out of range.\n", rar);
3739 1.1 dyoung return IXGBE_ERR_INVALID_ARGUMENT;
3740 1.1 dyoung }
3741 1.1 dyoung
3742 1.1 dyoung if (vmdq < 32) {
3743 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3744 1.1 dyoung mpsar |= 1 << vmdq;
3745 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3746 1.1 dyoung } else {
3747 1.1 dyoung mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3748 1.1 dyoung mpsar |= 1 << (vmdq - 32);
3749 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3750 1.1 dyoung }
3751 1.1 dyoung return IXGBE_SUCCESS;
3752 1.1 dyoung }
3753 1.1 dyoung
3754 1.1 dyoung /**
3755 1.4 msaitoh * This function should only be involved in the IOV mode.
3756 1.4 msaitoh * In IOV mode, Default pool is next pool after the number of
3757 1.4 msaitoh * VFs advertized and not 0.
3758 1.4 msaitoh * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3759 1.4 msaitoh *
3760 1.4 msaitoh * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3761 1.4 msaitoh * @hw: pointer to hardware struct
3762 1.4 msaitoh * @vmdq: VMDq pool index
3763 1.4 msaitoh **/
3764 1.4 msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3765 1.4 msaitoh {
3766 1.4 msaitoh u32 rar = hw->mac.san_mac_rar_index;
3767 1.4 msaitoh
3768 1.4 msaitoh DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3769 1.4 msaitoh
3770 1.4 msaitoh if (vmdq < 32) {
3771 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3772 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3773 1.4 msaitoh } else {
3774 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3775 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3776 1.4 msaitoh }
3777 1.4 msaitoh
3778 1.4 msaitoh return IXGBE_SUCCESS;
3779 1.4 msaitoh }
3780 1.4 msaitoh
3781 1.4 msaitoh /**
3782 1.1 dyoung * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3783 1.1 dyoung * @hw: pointer to hardware structure
3784 1.1 dyoung **/
3785 1.1 dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3786 1.1 dyoung {
3787 1.1 dyoung int i;
3788 1.1 dyoung
3789 1.1 dyoung DEBUGFUNC("ixgbe_init_uta_tables_generic");
3790 1.1 dyoung DEBUGOUT(" Clearing UTA\n");
3791 1.1 dyoung
3792 1.1 dyoung for (i = 0; i < 128; i++)
3793 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3794 1.1 dyoung
3795 1.1 dyoung return IXGBE_SUCCESS;
3796 1.1 dyoung }
3797 1.1 dyoung
3798 1.1 dyoung /**
3799 1.1 dyoung * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3800 1.1 dyoung * @hw: pointer to hardware structure
3801 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3802 1.1 dyoung *
3803 1.1 dyoung * return the VLVF index where this VLAN id should be placed
3804 1.1 dyoung *
3805 1.1 dyoung **/
3806 1.1 dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3807 1.1 dyoung {
3808 1.1 dyoung u32 bits = 0;
3809 1.1 dyoung u32 first_empty_slot = 0;
3810 1.1 dyoung s32 regindex;
3811 1.1 dyoung
3812 1.1 dyoung /* short cut the special case */
3813 1.1 dyoung if (vlan == 0)
3814 1.1 dyoung return 0;
3815 1.1 dyoung
3816 1.1 dyoung /*
3817 1.1 dyoung * Search for the vlan id in the VLVF entries. Save off the first empty
3818 1.1 dyoung * slot found along the way
3819 1.1 dyoung */
3820 1.1 dyoung for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3821 1.1 dyoung bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3822 1.1 dyoung if (!bits && !(first_empty_slot))
3823 1.1 dyoung first_empty_slot = regindex;
3824 1.1 dyoung else if ((bits & 0x0FFF) == vlan)
3825 1.1 dyoung break;
3826 1.1 dyoung }
3827 1.1 dyoung
3828 1.1 dyoung /*
3829 1.1 dyoung * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3830 1.1 dyoung * in the VLVF. Else use the first empty VLVF register for this
3831 1.1 dyoung * vlan id.
3832 1.1 dyoung */
3833 1.1 dyoung if (regindex >= IXGBE_VLVF_ENTRIES) {
3834 1.1 dyoung if (first_empty_slot)
3835 1.1 dyoung regindex = first_empty_slot;
3836 1.1 dyoung else {
3837 1.6 msaitoh ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3838 1.6 msaitoh "No space in VLVF.\n");
3839 1.1 dyoung regindex = IXGBE_ERR_NO_SPACE;
3840 1.1 dyoung }
3841 1.1 dyoung }
3842 1.1 dyoung
3843 1.1 dyoung return regindex;
3844 1.1 dyoung }
3845 1.1 dyoung
3846 1.1 dyoung /**
3847 1.1 dyoung * ixgbe_set_vfta_generic - Set VLAN filter table
3848 1.1 dyoung * @hw: pointer to hardware structure
3849 1.1 dyoung * @vlan: VLAN id to write to VLAN filter
3850 1.1 dyoung * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3851 1.1 dyoung * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3852 1.1 dyoung *
3853 1.1 dyoung * Turn on/off specified VLAN in the VLAN filter table.
3854 1.1 dyoung **/
3855 1.1 dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3856 1.3 msaitoh bool vlan_on)
3857 1.1 dyoung {
3858 1.1 dyoung s32 regindex;
3859 1.1 dyoung u32 bitindex;
3860 1.1 dyoung u32 vfta;
3861 1.1 dyoung u32 targetbit;
3862 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
3863 1.1 dyoung bool vfta_changed = FALSE;
3864 1.1 dyoung
3865 1.1 dyoung DEBUGFUNC("ixgbe_set_vfta_generic");
3866 1.1 dyoung
3867 1.1 dyoung if (vlan > 4095)
3868 1.1 dyoung return IXGBE_ERR_PARAM;
3869 1.1 dyoung
3870 1.1 dyoung /*
3871 1.1 dyoung * this is a 2 part operation - first the VFTA, then the
3872 1.1 dyoung * VLVF and VLVFB if VT Mode is set
3873 1.1 dyoung * We don't write the VFTA until we know the VLVF part succeeded.
3874 1.1 dyoung */
3875 1.1 dyoung
3876 1.1 dyoung /* Part 1
3877 1.1 dyoung * The VFTA is a bitstring made up of 128 32-bit registers
3878 1.1 dyoung * that enable the particular VLAN id, much like the MTA:
3879 1.1 dyoung * bits[11-5]: which register
3880 1.1 dyoung * bits[4-0]: which bit in the register
3881 1.1 dyoung */
3882 1.1 dyoung regindex = (vlan >> 5) & 0x7F;
3883 1.1 dyoung bitindex = vlan & 0x1F;
3884 1.1 dyoung targetbit = (1 << bitindex);
3885 1.1 dyoung vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3886 1.1 dyoung
3887 1.1 dyoung if (vlan_on) {
3888 1.1 dyoung if (!(vfta & targetbit)) {
3889 1.1 dyoung vfta |= targetbit;
3890 1.1 dyoung vfta_changed = TRUE;
3891 1.1 dyoung }
3892 1.1 dyoung } else {
3893 1.1 dyoung if ((vfta & targetbit)) {
3894 1.1 dyoung vfta &= ~targetbit;
3895 1.1 dyoung vfta_changed = TRUE;
3896 1.1 dyoung }
3897 1.1 dyoung }
3898 1.1 dyoung
3899 1.1 dyoung /* Part 2
3900 1.3 msaitoh * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3901 1.3 msaitoh */
3902 1.3 msaitoh ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3903 1.3 msaitoh &vfta_changed);
3904 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
3905 1.3 msaitoh return ret_val;
3906 1.3 msaitoh
3907 1.3 msaitoh if (vfta_changed)
3908 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3909 1.3 msaitoh
3910 1.3 msaitoh return IXGBE_SUCCESS;
3911 1.3 msaitoh }
3912 1.3 msaitoh
3913 1.3 msaitoh /**
3914 1.3 msaitoh * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3915 1.3 msaitoh * @hw: pointer to hardware structure
3916 1.3 msaitoh * @vlan: VLAN id to write to VLAN filter
3917 1.3 msaitoh * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3918 1.3 msaitoh * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3919 1.3 msaitoh * @vfta_changed: pointer to boolean flag which indicates whether VFTA
3920 1.3 msaitoh * should be changed
3921 1.3 msaitoh *
3922 1.3 msaitoh * Turn on/off specified bit in VLVF table.
3923 1.3 msaitoh **/
3924 1.3 msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3925 1.3 msaitoh bool vlan_on, bool *vfta_changed)
3926 1.3 msaitoh {
3927 1.3 msaitoh u32 vt;
3928 1.3 msaitoh
3929 1.3 msaitoh DEBUGFUNC("ixgbe_set_vlvf_generic");
3930 1.3 msaitoh
3931 1.3 msaitoh if (vlan > 4095)
3932 1.3 msaitoh return IXGBE_ERR_PARAM;
3933 1.3 msaitoh
3934 1.3 msaitoh /* If VT Mode is set
3935 1.1 dyoung * Either vlan_on
3936 1.1 dyoung * make sure the vlan is in VLVF
3937 1.1 dyoung * set the vind bit in the matching VLVFB
3938 1.1 dyoung * Or !vlan_on
3939 1.1 dyoung * clear the pool bit and possibly the vind
3940 1.1 dyoung */
3941 1.1 dyoung vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3942 1.1 dyoung if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3943 1.1 dyoung s32 vlvf_index;
3944 1.3 msaitoh u32 bits;
3945 1.1 dyoung
3946 1.1 dyoung vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3947 1.1 dyoung if (vlvf_index < 0)
3948 1.1 dyoung return vlvf_index;
3949 1.1 dyoung
3950 1.1 dyoung if (vlan_on) {
3951 1.1 dyoung /* set the pool bit */
3952 1.1 dyoung if (vind < 32) {
3953 1.1 dyoung bits = IXGBE_READ_REG(hw,
3954 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3955 1.1 dyoung bits |= (1 << vind);
3956 1.1 dyoung IXGBE_WRITE_REG(hw,
3957 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3958 1.1 dyoung bits);
3959 1.1 dyoung } else {
3960 1.1 dyoung bits = IXGBE_READ_REG(hw,
3961 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3962 1.3 msaitoh bits |= (1 << (vind - 32));
3963 1.1 dyoung IXGBE_WRITE_REG(hw,
3964 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3965 1.3 msaitoh bits);
3966 1.1 dyoung }
3967 1.1 dyoung } else {
3968 1.1 dyoung /* clear the pool bit */
3969 1.1 dyoung if (vind < 32) {
3970 1.1 dyoung bits = IXGBE_READ_REG(hw,
3971 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3972 1.1 dyoung bits &= ~(1 << vind);
3973 1.1 dyoung IXGBE_WRITE_REG(hw,
3974 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2),
3975 1.1 dyoung bits);
3976 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3977 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3978 1.1 dyoung } else {
3979 1.1 dyoung bits = IXGBE_READ_REG(hw,
3980 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1));
3981 1.3 msaitoh bits &= ~(1 << (vind - 32));
3982 1.1 dyoung IXGBE_WRITE_REG(hw,
3983 1.3 msaitoh IXGBE_VLVFB((vlvf_index * 2) + 1),
3984 1.3 msaitoh bits);
3985 1.1 dyoung bits |= IXGBE_READ_REG(hw,
3986 1.3 msaitoh IXGBE_VLVFB(vlvf_index * 2));
3987 1.1 dyoung }
3988 1.1 dyoung }
3989 1.1 dyoung
3990 1.1 dyoung /*
3991 1.1 dyoung * If there are still bits set in the VLVFB registers
3992 1.1 dyoung * for the VLAN ID indicated we need to see if the
3993 1.1 dyoung * caller is requesting that we clear the VFTA entry bit.
3994 1.1 dyoung * If the caller has requested that we clear the VFTA
3995 1.1 dyoung * entry bit but there are still pools/VFs using this VLAN
3996 1.1 dyoung * ID entry then ignore the request. We're not worried
3997 1.1 dyoung * about the case where we're turning the VFTA VLAN ID
3998 1.1 dyoung * entry bit on, only when requested to turn it off as
3999 1.1 dyoung * there may be multiple pools and/or VFs using the
4000 1.1 dyoung * VLAN ID entry. In that case we cannot clear the
4001 1.1 dyoung * VFTA bit until all pools/VFs using that VLAN ID have also
4002 1.1 dyoung * been cleared. This will be indicated by "bits" being
4003 1.1 dyoung * zero.
4004 1.1 dyoung */
4005 1.1 dyoung if (bits) {
4006 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4007 1.1 dyoung (IXGBE_VLVF_VIEN | vlan));
4008 1.3 msaitoh if ((!vlan_on) && (vfta_changed != NULL)) {
4009 1.1 dyoung /* someone wants to clear the vfta entry
4010 1.1 dyoung * but some pools/VFs are still using it.
4011 1.1 dyoung * Ignore it. */
4012 1.3 msaitoh *vfta_changed = FALSE;
4013 1.1 dyoung }
4014 1.3 msaitoh } else
4015 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4016 1.1 dyoung }
4017 1.1 dyoung
4018 1.1 dyoung return IXGBE_SUCCESS;
4019 1.1 dyoung }
4020 1.1 dyoung
4021 1.1 dyoung /**
4022 1.1 dyoung * ixgbe_clear_vfta_generic - Clear VLAN filter table
4023 1.1 dyoung * @hw: pointer to hardware structure
4024 1.1 dyoung *
4025 1.1 dyoung * Clears the VLAN filer table, and the VMDq index associated with the filter
4026 1.1 dyoung **/
4027 1.1 dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4028 1.1 dyoung {
4029 1.1 dyoung u32 offset;
4030 1.1 dyoung
4031 1.1 dyoung DEBUGFUNC("ixgbe_clear_vfta_generic");
4032 1.1 dyoung
4033 1.1 dyoung for (offset = 0; offset < hw->mac.vft_size; offset++)
4034 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4035 1.1 dyoung
4036 1.1 dyoung for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4037 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4038 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4039 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4040 1.1 dyoung }
4041 1.1 dyoung
4042 1.1 dyoung return IXGBE_SUCCESS;
4043 1.1 dyoung }
4044 1.1 dyoung
4045 1.1 dyoung /**
4046 1.1 dyoung * ixgbe_check_mac_link_generic - Determine link and speed status
4047 1.1 dyoung * @hw: pointer to hardware structure
4048 1.1 dyoung * @speed: pointer to link speed
4049 1.1 dyoung * @link_up: TRUE when link is up
4050 1.1 dyoung * @link_up_wait_to_complete: bool used to wait for link up or not
4051 1.1 dyoung *
4052 1.1 dyoung * Reads the links register to determine if link is up and the current speed
4053 1.1 dyoung **/
4054 1.1 dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4055 1.3 msaitoh bool *link_up, bool link_up_wait_to_complete)
4056 1.1 dyoung {
4057 1.1 dyoung u32 links_reg, links_orig;
4058 1.1 dyoung u32 i;
4059 1.1 dyoung
4060 1.1 dyoung DEBUGFUNC("ixgbe_check_mac_link_generic");
4061 1.1 dyoung
4062 1.1 dyoung /* clear the old state */
4063 1.1 dyoung links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4064 1.1 dyoung
4065 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4066 1.1 dyoung
4067 1.1 dyoung if (links_orig != links_reg) {
4068 1.1 dyoung DEBUGOUT2("LINKS changed from %08X to %08X\n",
4069 1.3 msaitoh links_orig, links_reg);
4070 1.1 dyoung }
4071 1.1 dyoung
4072 1.1 dyoung if (link_up_wait_to_complete) {
4073 1.1 dyoung for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
4074 1.1 dyoung if (links_reg & IXGBE_LINKS_UP) {
4075 1.1 dyoung *link_up = TRUE;
4076 1.1 dyoung break;
4077 1.1 dyoung } else {
4078 1.1 dyoung *link_up = FALSE;
4079 1.1 dyoung }
4080 1.1 dyoung msec_delay(100);
4081 1.1 dyoung links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4082 1.1 dyoung }
4083 1.1 dyoung } else {
4084 1.1 dyoung if (links_reg & IXGBE_LINKS_UP)
4085 1.1 dyoung *link_up = TRUE;
4086 1.1 dyoung else
4087 1.1 dyoung *link_up = FALSE;
4088 1.1 dyoung }
4089 1.1 dyoung
4090 1.8 msaitoh switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4091 1.8 msaitoh case IXGBE_LINKS_SPEED_10G_82599:
4092 1.1 dyoung *speed = IXGBE_LINK_SPEED_10GB_FULL;
4093 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4094 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4095 1.8 msaitoh *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4096 1.8 msaitoh }
4097 1.8 msaitoh break;
4098 1.8 msaitoh case IXGBE_LINKS_SPEED_1G_82599:
4099 1.1 dyoung *speed = IXGBE_LINK_SPEED_1GB_FULL;
4100 1.8 msaitoh break;
4101 1.8 msaitoh case IXGBE_LINKS_SPEED_100_82599:
4102 1.1 dyoung *speed = IXGBE_LINK_SPEED_100_FULL;
4103 1.8 msaitoh if (hw->mac.type >= ixgbe_mac_X550) {
4104 1.8 msaitoh if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4105 1.8 msaitoh *speed = IXGBE_LINK_SPEED_5GB_FULL;
4106 1.8 msaitoh }
4107 1.8 msaitoh break;
4108 1.8 msaitoh default:
4109 1.1 dyoung *speed = IXGBE_LINK_SPEED_UNKNOWN;
4110 1.8 msaitoh }
4111 1.1 dyoung
4112 1.1 dyoung return IXGBE_SUCCESS;
4113 1.1 dyoung }
4114 1.1 dyoung
4115 1.1 dyoung /**
4116 1.1 dyoung * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4117 1.1 dyoung * the EEPROM
4118 1.1 dyoung * @hw: pointer to hardware structure
4119 1.1 dyoung * @wwnn_prefix: the alternative WWNN prefix
4120 1.1 dyoung * @wwpn_prefix: the alternative WWPN prefix
4121 1.1 dyoung *
4122 1.1 dyoung * This function will read the EEPROM from the alternative SAN MAC address
4123 1.1 dyoung * block to check the support for the alternative WWNN/WWPN prefix support.
4124 1.1 dyoung **/
4125 1.1 dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4126 1.3 msaitoh u16 *wwpn_prefix)
4127 1.1 dyoung {
4128 1.1 dyoung u16 offset, caps;
4129 1.1 dyoung u16 alt_san_mac_blk_offset;
4130 1.1 dyoung
4131 1.1 dyoung DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4132 1.1 dyoung
4133 1.1 dyoung /* clear output first */
4134 1.1 dyoung *wwnn_prefix = 0xFFFF;
4135 1.1 dyoung *wwpn_prefix = 0xFFFF;
4136 1.1 dyoung
4137 1.1 dyoung /* check if alternative SAN MAC is supported */
4138 1.6 msaitoh offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4139 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4140 1.6 msaitoh goto wwn_prefix_err;
4141 1.1 dyoung
4142 1.1 dyoung if ((alt_san_mac_blk_offset == 0) ||
4143 1.1 dyoung (alt_san_mac_blk_offset == 0xFFFF))
4144 1.1 dyoung goto wwn_prefix_out;
4145 1.1 dyoung
4146 1.1 dyoung /* check capability in alternative san mac address block */
4147 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4148 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, &caps))
4149 1.6 msaitoh goto wwn_prefix_err;
4150 1.1 dyoung if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4151 1.1 dyoung goto wwn_prefix_out;
4152 1.1 dyoung
4153 1.1 dyoung /* get the corresponding prefix for WWNN/WWPN */
4154 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4155 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4156 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4157 1.6 msaitoh "eeprom read at offset %d failed", offset);
4158 1.6 msaitoh }
4159 1.1 dyoung
4160 1.1 dyoung offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4161 1.6 msaitoh if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4162 1.6 msaitoh goto wwn_prefix_err;
4163 1.1 dyoung
4164 1.1 dyoung wwn_prefix_out:
4165 1.1 dyoung return IXGBE_SUCCESS;
4166 1.6 msaitoh
4167 1.6 msaitoh wwn_prefix_err:
4168 1.6 msaitoh ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4169 1.6 msaitoh "eeprom read at offset %d failed", offset);
4170 1.6 msaitoh return IXGBE_SUCCESS;
4171 1.1 dyoung }
4172 1.1 dyoung
4173 1.1 dyoung /**
4174 1.1 dyoung * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4175 1.1 dyoung * @hw: pointer to hardware structure
4176 1.1 dyoung * @bs: the fcoe boot status
4177 1.1 dyoung *
4178 1.1 dyoung * This function will read the FCOE boot status from the iSCSI FCOE block
4179 1.1 dyoung **/
4180 1.1 dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4181 1.1 dyoung {
4182 1.1 dyoung u16 offset, caps, flags;
4183 1.1 dyoung s32 status;
4184 1.1 dyoung
4185 1.1 dyoung DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4186 1.1 dyoung
4187 1.1 dyoung /* clear output first */
4188 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_unavailable;
4189 1.1 dyoung
4190 1.1 dyoung /* check if FCOE IBA block is present */
4191 1.1 dyoung offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4192 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &caps);
4193 1.1 dyoung if (status != IXGBE_SUCCESS)
4194 1.1 dyoung goto out;
4195 1.1 dyoung
4196 1.1 dyoung if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4197 1.1 dyoung goto out;
4198 1.1 dyoung
4199 1.1 dyoung /* check if iSCSI FCOE block is populated */
4200 1.1 dyoung status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4201 1.1 dyoung if (status != IXGBE_SUCCESS)
4202 1.1 dyoung goto out;
4203 1.1 dyoung
4204 1.1 dyoung if ((offset == 0) || (offset == 0xFFFF))
4205 1.1 dyoung goto out;
4206 1.1 dyoung
4207 1.1 dyoung /* read fcoe flags in iSCSI FCOE block */
4208 1.1 dyoung offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4209 1.1 dyoung status = hw->eeprom.ops.read(hw, offset, &flags);
4210 1.1 dyoung if (status != IXGBE_SUCCESS)
4211 1.1 dyoung goto out;
4212 1.1 dyoung
4213 1.1 dyoung if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4214 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_enabled;
4215 1.1 dyoung else
4216 1.1 dyoung *bs = ixgbe_fcoe_bootstatus_disabled;
4217 1.1 dyoung
4218 1.1 dyoung out:
4219 1.1 dyoung return status;
4220 1.1 dyoung }
4221 1.1 dyoung
4222 1.1 dyoung /**
4223 1.1 dyoung * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4224 1.1 dyoung * @hw: pointer to hardware structure
4225 1.1 dyoung * @enable: enable or disable switch for anti-spoofing
4226 1.1 dyoung * @pf: Physical Function pool - do not enable anti-spoofing for the PF
4227 1.1 dyoung *
4228 1.1 dyoung **/
4229 1.1 dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4230 1.1 dyoung {
4231 1.1 dyoung int j;
4232 1.1 dyoung int pf_target_reg = pf >> 3;
4233 1.1 dyoung int pf_target_shift = pf % 8;
4234 1.1 dyoung u32 pfvfspoof = 0;
4235 1.1 dyoung
4236 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4237 1.1 dyoung return;
4238 1.1 dyoung
4239 1.1 dyoung if (enable)
4240 1.1 dyoung pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4241 1.1 dyoung
4242 1.1 dyoung /*
4243 1.1 dyoung * PFVFSPOOF register array is size 8 with 8 bits assigned to
4244 1.1 dyoung * MAC anti-spoof enables in each register array element.
4245 1.1 dyoung */
4246 1.4 msaitoh for (j = 0; j < pf_target_reg; j++)
4247 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4248 1.1 dyoung
4249 1.4 msaitoh /*
4250 1.4 msaitoh * The PF should be allowed to spoof so that it can support
4251 1.4 msaitoh * emulation mode NICs. Do not set the bits assigned to the PF
4252 1.4 msaitoh */
4253 1.4 msaitoh pfvfspoof &= (1 << pf_target_shift) - 1;
4254 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4255 1.1 dyoung
4256 1.1 dyoung /*
4257 1.4 msaitoh * Remaining pools belong to the PF so they do not need to have
4258 1.4 msaitoh * anti-spoofing enabled.
4259 1.1 dyoung */
4260 1.4 msaitoh for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4261 1.4 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4262 1.1 dyoung }
4263 1.1 dyoung
4264 1.1 dyoung /**
4265 1.1 dyoung * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4266 1.1 dyoung * @hw: pointer to hardware structure
4267 1.1 dyoung * @enable: enable or disable switch for VLAN anti-spoofing
4268 1.8 msaitoh * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4269 1.1 dyoung *
4270 1.1 dyoung **/
4271 1.1 dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4272 1.1 dyoung {
4273 1.1 dyoung int vf_target_reg = vf >> 3;
4274 1.1 dyoung int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4275 1.1 dyoung u32 pfvfspoof;
4276 1.1 dyoung
4277 1.1 dyoung if (hw->mac.type == ixgbe_mac_82598EB)
4278 1.1 dyoung return;
4279 1.1 dyoung
4280 1.1 dyoung pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4281 1.1 dyoung if (enable)
4282 1.1 dyoung pfvfspoof |= (1 << vf_target_shift);
4283 1.1 dyoung else
4284 1.1 dyoung pfvfspoof &= ~(1 << vf_target_shift);
4285 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4286 1.1 dyoung }
4287 1.1 dyoung
4288 1.1 dyoung /**
4289 1.1 dyoung * ixgbe_get_device_caps_generic - Get additional device capabilities
4290 1.1 dyoung * @hw: pointer to hardware structure
4291 1.1 dyoung * @device_caps: the EEPROM word with the extra device capabilities
4292 1.1 dyoung *
4293 1.1 dyoung * This function will read the EEPROM location for the device capabilities,
4294 1.1 dyoung * and return the word through device_caps.
4295 1.1 dyoung **/
4296 1.1 dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4297 1.1 dyoung {
4298 1.1 dyoung DEBUGFUNC("ixgbe_get_device_caps_generic");
4299 1.1 dyoung
4300 1.1 dyoung hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4301 1.1 dyoung
4302 1.1 dyoung return IXGBE_SUCCESS;
4303 1.1 dyoung }
4304 1.1 dyoung
4305 1.1 dyoung /**
4306 1.1 dyoung * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4307 1.1 dyoung * @hw: pointer to hardware structure
4308 1.1 dyoung *
4309 1.1 dyoung **/
4310 1.1 dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4311 1.1 dyoung {
4312 1.1 dyoung u32 regval;
4313 1.1 dyoung u32 i;
4314 1.1 dyoung
4315 1.1 dyoung DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4316 1.1 dyoung
4317 1.1 dyoung /* Enable relaxed ordering */
4318 1.1 dyoung for (i = 0; i < hw->mac.max_tx_queues; i++) {
4319 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4320 1.4 msaitoh regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4321 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4322 1.1 dyoung }
4323 1.1 dyoung
4324 1.1 dyoung for (i = 0; i < hw->mac.max_rx_queues; i++) {
4325 1.1 dyoung regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4326 1.4 msaitoh regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4327 1.4 msaitoh IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4328 1.1 dyoung IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4329 1.1 dyoung }
4330 1.1 dyoung
4331 1.1 dyoung }
4332 1.3 msaitoh
4333 1.3 msaitoh /**
4334 1.3 msaitoh * ixgbe_calculate_checksum - Calculate checksum for buffer
4335 1.3 msaitoh * @buffer: pointer to EEPROM
4336 1.3 msaitoh * @length: size of EEPROM to calculate a checksum for
4337 1.3 msaitoh * Calculates the checksum for some buffer on a specified length. The
4338 1.3 msaitoh * checksum calculated is returned.
4339 1.3 msaitoh **/
4340 1.5 msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4341 1.3 msaitoh {
4342 1.3 msaitoh u32 i;
4343 1.3 msaitoh u8 sum = 0;
4344 1.3 msaitoh
4345 1.3 msaitoh DEBUGFUNC("ixgbe_calculate_checksum");
4346 1.3 msaitoh
4347 1.3 msaitoh if (!buffer)
4348 1.3 msaitoh return 0;
4349 1.3 msaitoh
4350 1.3 msaitoh for (i = 0; i < length; i++)
4351 1.3 msaitoh sum += buffer[i];
4352 1.3 msaitoh
4353 1.3 msaitoh return (u8) (0 - sum);
4354 1.3 msaitoh }
4355 1.3 msaitoh
4356 1.3 msaitoh /**
4357 1.3 msaitoh * ixgbe_host_interface_command - Issue command to manageability block
4358 1.3 msaitoh * @hw: pointer to the HW structure
4359 1.3 msaitoh * @buffer: contains the command to write and where the return status will
4360 1.3 msaitoh * be placed
4361 1.4 msaitoh * @length: length of buffer, must be multiple of 4 bytes
4362 1.8 msaitoh * @timeout: time in ms to wait for command completion
4363 1.8 msaitoh * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4364 1.8 msaitoh * Needed because FW structures are big endian and decoding of
4365 1.8 msaitoh * these fields can be 8 bit or 16 bit based on command. Decoding
4366 1.8 msaitoh * is not easily understood without making a table of commands.
4367 1.8 msaitoh * So we will leave this up to the caller to read back the data
4368 1.8 msaitoh * in these cases.
4369 1.3 msaitoh *
4370 1.3 msaitoh * Communicates with the manageability block. On success return IXGBE_SUCCESS
4371 1.3 msaitoh * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4372 1.3 msaitoh **/
4373 1.5 msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4374 1.8 msaitoh u32 length, u32 timeout, bool return_data)
4375 1.3 msaitoh {
4376 1.8 msaitoh u32 hicr, i, bi, fwsts;
4377 1.3 msaitoh u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4378 1.8 msaitoh u16 buf_len;
4379 1.8 msaitoh u16 dword_len;
4380 1.3 msaitoh
4381 1.3 msaitoh DEBUGFUNC("ixgbe_host_interface_command");
4382 1.3 msaitoh
4383 1.8 msaitoh if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4384 1.8 msaitoh DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4385 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4386 1.8 msaitoh }
4387 1.8 msaitoh /* Set bit 9 of FWSTS clearing FW reset indication */
4388 1.8 msaitoh fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4389 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4390 1.3 msaitoh
4391 1.3 msaitoh /* Check that the host interface is enabled. */
4392 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4393 1.3 msaitoh if ((hicr & IXGBE_HICR_EN) == 0) {
4394 1.3 msaitoh DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4395 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4396 1.8 msaitoh }
4397 1.8 msaitoh
4398 1.8 msaitoh /* Calculate length in DWORDs. We must be DWORD aligned */
4399 1.8 msaitoh if ((length % (sizeof(u32))) != 0) {
4400 1.8 msaitoh DEBUGOUT("Buffer length failure, not aligned to dword");
4401 1.8 msaitoh return IXGBE_ERR_INVALID_ARGUMENT;
4402 1.3 msaitoh }
4403 1.3 msaitoh
4404 1.3 msaitoh dword_len = length >> 2;
4405 1.3 msaitoh
4406 1.8 msaitoh /* The device driver writes the relevant command block
4407 1.3 msaitoh * into the ram area.
4408 1.3 msaitoh */
4409 1.3 msaitoh for (i = 0; i < dword_len; i++)
4410 1.3 msaitoh IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4411 1.3 msaitoh i, IXGBE_CPU_TO_LE32(buffer[i]));
4412 1.3 msaitoh
4413 1.3 msaitoh /* Setting this bit tells the ARC that a new command is pending. */
4414 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4415 1.3 msaitoh
4416 1.8 msaitoh for (i = 0; i < timeout; i++) {
4417 1.3 msaitoh hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4418 1.3 msaitoh if (!(hicr & IXGBE_HICR_C))
4419 1.3 msaitoh break;
4420 1.3 msaitoh msec_delay(1);
4421 1.3 msaitoh }
4422 1.3 msaitoh
4423 1.8 msaitoh /* Check command completion */
4424 1.8 msaitoh if ((timeout != 0 && i == timeout) ||
4425 1.8 msaitoh !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4426 1.8 msaitoh ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4427 1.8 msaitoh "Command has failed with no status valid.\n");
4428 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4429 1.3 msaitoh }
4430 1.3 msaitoh
4431 1.8 msaitoh if (!return_data)
4432 1.8 msaitoh return 0;
4433 1.8 msaitoh
4434 1.3 msaitoh /* Calculate length in DWORDs */
4435 1.3 msaitoh dword_len = hdr_size >> 2;
4436 1.3 msaitoh
4437 1.3 msaitoh /* first pull in the header so we know the buffer length */
4438 1.3 msaitoh for (bi = 0; bi < dword_len; bi++) {
4439 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4440 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4441 1.3 msaitoh }
4442 1.3 msaitoh
4443 1.3 msaitoh /* If there is any thing in data position pull it in */
4444 1.3 msaitoh buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4445 1.3 msaitoh if (buf_len == 0)
4446 1.8 msaitoh return 0;
4447 1.3 msaitoh
4448 1.8 msaitoh if (length < buf_len + hdr_size) {
4449 1.3 msaitoh DEBUGOUT("Buffer not large enough for reply message.\n");
4450 1.8 msaitoh return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4451 1.3 msaitoh }
4452 1.3 msaitoh
4453 1.3 msaitoh /* Calculate length in DWORDs, add 3 for odd lengths */
4454 1.3 msaitoh dword_len = (buf_len + 3) >> 2;
4455 1.3 msaitoh
4456 1.8 msaitoh /* Pull in the rest of the buffer (bi is where we left off) */
4457 1.3 msaitoh for (; bi <= dword_len; bi++) {
4458 1.3 msaitoh buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4459 1.3 msaitoh IXGBE_LE32_TO_CPUS(&buffer[bi]);
4460 1.3 msaitoh }
4461 1.3 msaitoh
4462 1.8 msaitoh return 0;
4463 1.3 msaitoh }
4464 1.3 msaitoh
4465 1.3 msaitoh /**
4466 1.3 msaitoh * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4467 1.3 msaitoh * @hw: pointer to the HW structure
4468 1.3 msaitoh * @maj: driver version major number
4469 1.7 riastrad * @minr: driver version minor number
4470 1.3 msaitoh * @build: driver version build number
4471 1.3 msaitoh * @sub: driver version sub build number
4472 1.3 msaitoh *
4473 1.3 msaitoh * Sends driver version number to firmware through the manageability
4474 1.3 msaitoh * block. On success return IXGBE_SUCCESS
4475 1.3 msaitoh * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4476 1.3 msaitoh * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4477 1.3 msaitoh **/
4478 1.7 riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4479 1.3 msaitoh u8 build, u8 sub)
4480 1.3 msaitoh {
4481 1.3 msaitoh struct ixgbe_hic_drv_info fw_cmd;
4482 1.3 msaitoh int i;
4483 1.3 msaitoh s32 ret_val = IXGBE_SUCCESS;
4484 1.3 msaitoh
4485 1.3 msaitoh DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4486 1.3 msaitoh
4487 1.3 msaitoh if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4488 1.3 msaitoh != IXGBE_SUCCESS) {
4489 1.3 msaitoh ret_val = IXGBE_ERR_SWFW_SYNC;
4490 1.3 msaitoh goto out;
4491 1.3 msaitoh }
4492 1.3 msaitoh
4493 1.3 msaitoh fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4494 1.3 msaitoh fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4495 1.3 msaitoh fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4496 1.3 msaitoh fw_cmd.port_num = (u8)hw->bus.func;
4497 1.3 msaitoh fw_cmd.ver_maj = maj;
4498 1.7 riastrad fw_cmd.ver_min = minr;
4499 1.3 msaitoh fw_cmd.ver_build = build;
4500 1.3 msaitoh fw_cmd.ver_sub = sub;
4501 1.3 msaitoh fw_cmd.hdr.checksum = 0;
4502 1.3 msaitoh fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4503 1.3 msaitoh (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4504 1.3 msaitoh fw_cmd.pad = 0;
4505 1.3 msaitoh fw_cmd.pad2 = 0;
4506 1.3 msaitoh
4507 1.3 msaitoh for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4508 1.3 msaitoh ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4509 1.8 msaitoh sizeof(fw_cmd),
4510 1.8 msaitoh IXGBE_HI_COMMAND_TIMEOUT,
4511 1.8 msaitoh TRUE);
4512 1.3 msaitoh if (ret_val != IXGBE_SUCCESS)
4513 1.3 msaitoh continue;
4514 1.3 msaitoh
4515 1.3 msaitoh if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4516 1.3 msaitoh FW_CEM_RESP_STATUS_SUCCESS)
4517 1.3 msaitoh ret_val = IXGBE_SUCCESS;
4518 1.3 msaitoh else
4519 1.3 msaitoh ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4520 1.3 msaitoh
4521 1.3 msaitoh break;
4522 1.3 msaitoh }
4523 1.3 msaitoh
4524 1.3 msaitoh hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4525 1.3 msaitoh out:
4526 1.3 msaitoh return ret_val;
4527 1.3 msaitoh }
4528 1.3 msaitoh
4529 1.3 msaitoh /**
4530 1.3 msaitoh * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4531 1.3 msaitoh * @hw: pointer to hardware structure
4532 1.3 msaitoh * @num_pb: number of packet buffers to allocate
4533 1.3 msaitoh * @headroom: reserve n KB of headroom
4534 1.3 msaitoh * @strategy: packet buffer allocation strategy
4535 1.3 msaitoh **/
4536 1.3 msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4537 1.3 msaitoh int strategy)
4538 1.3 msaitoh {
4539 1.3 msaitoh u32 pbsize = hw->mac.rx_pb_size;
4540 1.3 msaitoh int i = 0;
4541 1.3 msaitoh u32 rxpktsize, txpktsize, txpbthresh;
4542 1.3 msaitoh
4543 1.3 msaitoh /* Reserve headroom */
4544 1.3 msaitoh pbsize -= headroom;
4545 1.3 msaitoh
4546 1.3 msaitoh if (!num_pb)
4547 1.3 msaitoh num_pb = 1;
4548 1.3 msaitoh
4549 1.3 msaitoh /* Divide remaining packet buffer space amongst the number of packet
4550 1.3 msaitoh * buffers requested using supplied strategy.
4551 1.3 msaitoh */
4552 1.3 msaitoh switch (strategy) {
4553 1.4 msaitoh case PBA_STRATEGY_WEIGHTED:
4554 1.3 msaitoh /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4555 1.3 msaitoh * buffer with 5/8 of the packet buffer space.
4556 1.3 msaitoh */
4557 1.4 msaitoh rxpktsize = (pbsize * 5) / (num_pb * 4);
4558 1.3 msaitoh pbsize -= rxpktsize * (num_pb / 2);
4559 1.3 msaitoh rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4560 1.3 msaitoh for (; i < (num_pb / 2); i++)
4561 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4562 1.3 msaitoh /* Fall through to configure remaining packet buffers */
4563 1.4 msaitoh case PBA_STRATEGY_EQUAL:
4564 1.3 msaitoh rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4565 1.3 msaitoh for (; i < num_pb; i++)
4566 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4567 1.3 msaitoh break;
4568 1.3 msaitoh default:
4569 1.3 msaitoh break;
4570 1.3 msaitoh }
4571 1.3 msaitoh
4572 1.3 msaitoh /* Only support an equally distributed Tx packet buffer strategy. */
4573 1.3 msaitoh txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4574 1.3 msaitoh txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4575 1.3 msaitoh for (i = 0; i < num_pb; i++) {
4576 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4577 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4578 1.3 msaitoh }
4579 1.3 msaitoh
4580 1.3 msaitoh /* Clear unused TCs, if any, to zero buffer size*/
4581 1.3 msaitoh for (; i < IXGBE_MAX_PB; i++) {
4582 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4583 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4584 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4585 1.3 msaitoh }
4586 1.3 msaitoh }
4587 1.3 msaitoh
4588 1.3 msaitoh /**
4589 1.3 msaitoh * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4590 1.3 msaitoh * @hw: pointer to the hardware structure
4591 1.3 msaitoh *
4592 1.3 msaitoh * The 82599 and x540 MACs can experience issues if TX work is still pending
4593 1.3 msaitoh * when a reset occurs. This function prevents this by flushing the PCIe
4594 1.3 msaitoh * buffers on the system.
4595 1.3 msaitoh **/
4596 1.3 msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4597 1.3 msaitoh {
4598 1.8 msaitoh u32 gcr_ext, hlreg0, i, poll;
4599 1.8 msaitoh u16 value;
4600 1.3 msaitoh
4601 1.3 msaitoh /*
4602 1.3 msaitoh * If double reset is not requested then all transactions should
4603 1.3 msaitoh * already be clear and as such there is no work to do
4604 1.3 msaitoh */
4605 1.3 msaitoh if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4606 1.3 msaitoh return;
4607 1.3 msaitoh
4608 1.3 msaitoh /*
4609 1.3 msaitoh * Set loopback enable to prevent any transmits from being sent
4610 1.3 msaitoh * should the link come up. This assumes that the RXCTRL.RXEN bit
4611 1.3 msaitoh * has already been cleared.
4612 1.3 msaitoh */
4613 1.3 msaitoh hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4614 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4615 1.3 msaitoh
4616 1.8 msaitoh /* Wait for a last completion before clearing buffers */
4617 1.8 msaitoh IXGBE_WRITE_FLUSH(hw);
4618 1.8 msaitoh msec_delay(3);
4619 1.8 msaitoh
4620 1.8 msaitoh /*
4621 1.8 msaitoh * Before proceeding, make sure that the PCIe block does not have
4622 1.8 msaitoh * transactions pending.
4623 1.8 msaitoh */
4624 1.8 msaitoh poll = ixgbe_pcie_timeout_poll(hw);
4625 1.8 msaitoh for (i = 0; i < poll; i++) {
4626 1.8 msaitoh usec_delay(100);
4627 1.8 msaitoh value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4628 1.8 msaitoh if (IXGBE_REMOVED(hw->hw_addr))
4629 1.8 msaitoh goto out;
4630 1.8 msaitoh if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4631 1.8 msaitoh goto out;
4632 1.8 msaitoh }
4633 1.8 msaitoh
4634 1.8 msaitoh out:
4635 1.3 msaitoh /* initiate cleaning flow for buffers in the PCIe transaction layer */
4636 1.3 msaitoh gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4637 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4638 1.3 msaitoh gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4639 1.3 msaitoh
4640 1.3 msaitoh /* Flush all writes and allow 20usec for all transactions to clear */
4641 1.3 msaitoh IXGBE_WRITE_FLUSH(hw);
4642 1.3 msaitoh usec_delay(20);
4643 1.3 msaitoh
4644 1.3 msaitoh /* restore previous register values */
4645 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4646 1.3 msaitoh IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4647 1.3 msaitoh }
4648 1.3 msaitoh
4649 1.6 msaitoh
4650 1.6 msaitoh /**
4651 1.6 msaitoh * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4652 1.6 msaitoh * @hw: pointer to hardware structure
4653 1.6 msaitoh * @map: pointer to u8 arr for returning map
4654 1.6 msaitoh *
4655 1.6 msaitoh * Read the rtrup2tc HW register and resolve its content into map
4656 1.6 msaitoh **/
4657 1.6 msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4658 1.6 msaitoh {
4659 1.6 msaitoh u32 reg, i;
4660 1.6 msaitoh
4661 1.6 msaitoh reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4662 1.6 msaitoh for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4663 1.6 msaitoh map[i] = IXGBE_RTRUP2TC_UP_MASK &
4664 1.6 msaitoh (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4665 1.6 msaitoh return;
4666 1.6 msaitoh }
4667 1.8 msaitoh
4668 1.8 msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4669 1.8 msaitoh {
4670 1.8 msaitoh u32 pfdtxgswc;
4671 1.8 msaitoh u32 rxctrl;
4672 1.8 msaitoh
4673 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4674 1.8 msaitoh if (rxctrl & IXGBE_RXCTRL_RXEN) {
4675 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4676 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4677 1.8 msaitoh if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4678 1.8 msaitoh pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4679 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4680 1.8 msaitoh hw->mac.set_lben = TRUE;
4681 1.8 msaitoh } else {
4682 1.8 msaitoh hw->mac.set_lben = FALSE;
4683 1.8 msaitoh }
4684 1.8 msaitoh }
4685 1.8 msaitoh rxctrl &= ~IXGBE_RXCTRL_RXEN;
4686 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4687 1.8 msaitoh }
4688 1.8 msaitoh }
4689 1.8 msaitoh
4690 1.8 msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4691 1.8 msaitoh {
4692 1.8 msaitoh u32 pfdtxgswc;
4693 1.8 msaitoh u32 rxctrl;
4694 1.8 msaitoh
4695 1.8 msaitoh rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4696 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4697 1.8 msaitoh
4698 1.8 msaitoh if (hw->mac.type != ixgbe_mac_82598EB) {
4699 1.8 msaitoh if (hw->mac.set_lben) {
4700 1.8 msaitoh pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4701 1.8 msaitoh pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4702 1.8 msaitoh IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4703 1.8 msaitoh hw->mac.set_lben = FALSE;
4704 1.8 msaitoh }
4705 1.8 msaitoh }
4706 1.8 msaitoh }
4707 1.8 msaitoh
4708 1.8 msaitoh /**
4709 1.8 msaitoh * ixgbe_mng_present - returns TRUE when management capability is present
4710 1.8 msaitoh * @hw: pointer to hardware structure
4711 1.8 msaitoh */
4712 1.8 msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
4713 1.8 msaitoh {
4714 1.8 msaitoh u32 fwsm;
4715 1.8 msaitoh
4716 1.8 msaitoh if (hw->mac.type < ixgbe_mac_82599EB)
4717 1.8 msaitoh return FALSE;
4718 1.8 msaitoh
4719 1.8 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4720 1.8 msaitoh fwsm &= IXGBE_FWSM_MODE_MASK;
4721 1.8 msaitoh return fwsm == IXGBE_FWSM_FW_MODE_PT;
4722 1.8 msaitoh }
4723 1.8 msaitoh
4724 1.8 msaitoh /**
4725 1.8 msaitoh * ixgbe_mng_enabled - Is the manageability engine enabled?
4726 1.8 msaitoh * @hw: pointer to hardware structure
4727 1.8 msaitoh *
4728 1.8 msaitoh * Returns TRUE if the manageability engine is enabled.
4729 1.8 msaitoh **/
4730 1.8 msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4731 1.8 msaitoh {
4732 1.8 msaitoh u32 fwsm, manc, factps;
4733 1.8 msaitoh
4734 1.8 msaitoh fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4735 1.8 msaitoh if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4736 1.8 msaitoh return FALSE;
4737 1.8 msaitoh
4738 1.8 msaitoh manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4739 1.8 msaitoh if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4740 1.8 msaitoh return FALSE;
4741 1.8 msaitoh
4742 1.8 msaitoh if (hw->mac.type <= ixgbe_mac_X540) {
4743 1.8 msaitoh factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
4744 1.8 msaitoh if (factps & IXGBE_FACTPS_MNGCG)
4745 1.8 msaitoh return FALSE;
4746 1.8 msaitoh }
4747 1.8 msaitoh
4748 1.8 msaitoh return TRUE;
4749 1.8 msaitoh }
4750 1.8 msaitoh
4751 1.8 msaitoh /**
4752 1.8 msaitoh * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4753 1.8 msaitoh * @hw: pointer to hardware structure
4754 1.8 msaitoh * @speed: new link speed
4755 1.8 msaitoh * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4756 1.8 msaitoh *
4757 1.8 msaitoh * Set the link speed in the MAC and/or PHY register and restarts link.
4758 1.8 msaitoh **/
4759 1.8 msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4760 1.8 msaitoh ixgbe_link_speed speed,
4761 1.8 msaitoh bool autoneg_wait_to_complete)
4762 1.8 msaitoh {
4763 1.8 msaitoh ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4764 1.8 msaitoh ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4765 1.8 msaitoh s32 status = IXGBE_SUCCESS;
4766 1.8 msaitoh u32 speedcnt = 0;
4767 1.8 msaitoh u32 i = 0;
4768 1.8 msaitoh bool autoneg, link_up = FALSE;
4769 1.8 msaitoh
4770 1.8 msaitoh DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4771 1.8 msaitoh
4772 1.8 msaitoh /* Mask off requested but non-supported speeds */
4773 1.8 msaitoh status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4774 1.8 msaitoh if (status != IXGBE_SUCCESS)
4775 1.8 msaitoh return status;
4776 1.8 msaitoh
4777 1.8 msaitoh speed &= link_speed;
4778 1.8 msaitoh
4779 1.8 msaitoh /* Try each speed one by one, highest priority first. We do this in
4780 1.8 msaitoh * software because 10Gb fiber doesn't support speed autonegotiation.
4781 1.8 msaitoh */
4782 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4783 1.8 msaitoh speedcnt++;
4784 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4785 1.8 msaitoh
4786 1.8 msaitoh /* If we already have link at this speed, just jump out */
4787 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4788 1.8 msaitoh if (status != IXGBE_SUCCESS)
4789 1.8 msaitoh return status;
4790 1.8 msaitoh
4791 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4792 1.8 msaitoh goto out;
4793 1.8 msaitoh
4794 1.8 msaitoh /* Set the module link speed */
4795 1.8 msaitoh switch (hw->phy.media_type) {
4796 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4797 1.8 msaitoh case ixgbe_media_type_fiber:
4798 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4799 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL);
4800 1.8 msaitoh break;
4801 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4802 1.8 msaitoh /* QSFP module automatically detects MAC link speed */
4803 1.8 msaitoh break;
4804 1.8 msaitoh default:
4805 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4806 1.8 msaitoh break;
4807 1.8 msaitoh }
4808 1.8 msaitoh
4809 1.8 msaitoh /* Allow module to change analog characteristics (1G->10G) */
4810 1.8 msaitoh msec_delay(40);
4811 1.8 msaitoh
4812 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4813 1.8 msaitoh IXGBE_LINK_SPEED_10GB_FULL,
4814 1.8 msaitoh autoneg_wait_to_complete);
4815 1.8 msaitoh if (status != IXGBE_SUCCESS)
4816 1.8 msaitoh return status;
4817 1.8 msaitoh
4818 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4819 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4820 1.8 msaitoh
4821 1.8 msaitoh /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4822 1.8 msaitoh * Section 73.10.2, we may have to wait up to 500ms if KR is
4823 1.8 msaitoh * attempted. 82599 uses the same timing for 10g SFI.
4824 1.8 msaitoh */
4825 1.8 msaitoh for (i = 0; i < 5; i++) {
4826 1.8 msaitoh /* Wait for the link partner to also set speed */
4827 1.8 msaitoh msec_delay(100);
4828 1.8 msaitoh
4829 1.8 msaitoh /* If we have link, just jump out */
4830 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed,
4831 1.8 msaitoh &link_up, FALSE);
4832 1.8 msaitoh if (status != IXGBE_SUCCESS)
4833 1.8 msaitoh return status;
4834 1.8 msaitoh
4835 1.8 msaitoh if (link_up)
4836 1.8 msaitoh goto out;
4837 1.8 msaitoh }
4838 1.8 msaitoh }
4839 1.8 msaitoh
4840 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4841 1.8 msaitoh speedcnt++;
4842 1.8 msaitoh if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4843 1.8 msaitoh highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4844 1.8 msaitoh
4845 1.8 msaitoh /* If we already have link at this speed, just jump out */
4846 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4847 1.8 msaitoh if (status != IXGBE_SUCCESS)
4848 1.8 msaitoh return status;
4849 1.8 msaitoh
4850 1.8 msaitoh if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4851 1.8 msaitoh goto out;
4852 1.8 msaitoh
4853 1.8 msaitoh /* Set the module link speed */
4854 1.8 msaitoh switch (hw->phy.media_type) {
4855 1.8 msaitoh case ixgbe_media_type_fiber_fixed:
4856 1.8 msaitoh case ixgbe_media_type_fiber:
4857 1.8 msaitoh ixgbe_set_rate_select_speed(hw,
4858 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL);
4859 1.8 msaitoh break;
4860 1.8 msaitoh case ixgbe_media_type_fiber_qsfp:
4861 1.8 msaitoh /* QSFP module automatically detects link speed */
4862 1.8 msaitoh break;
4863 1.8 msaitoh default:
4864 1.8 msaitoh DEBUGOUT("Unexpected media type.\n");
4865 1.8 msaitoh break;
4866 1.8 msaitoh }
4867 1.8 msaitoh
4868 1.8 msaitoh /* Allow module to change analog characteristics (10G->1G) */
4869 1.8 msaitoh msec_delay(40);
4870 1.8 msaitoh
4871 1.8 msaitoh status = ixgbe_setup_mac_link(hw,
4872 1.8 msaitoh IXGBE_LINK_SPEED_1GB_FULL,
4873 1.8 msaitoh autoneg_wait_to_complete);
4874 1.8 msaitoh if (status != IXGBE_SUCCESS)
4875 1.8 msaitoh return status;
4876 1.8 msaitoh
4877 1.8 msaitoh /* Flap the Tx laser if it has not already been done */
4878 1.8 msaitoh ixgbe_flap_tx_laser(hw);
4879 1.8 msaitoh
4880 1.8 msaitoh /* Wait for the link partner to also set speed */
4881 1.8 msaitoh msec_delay(100);
4882 1.8 msaitoh
4883 1.8 msaitoh /* If we have link, just jump out */
4884 1.8 msaitoh status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4885 1.8 msaitoh if (status != IXGBE_SUCCESS)
4886 1.8 msaitoh return status;
4887 1.8 msaitoh
4888 1.8 msaitoh if (link_up)
4889 1.8 msaitoh goto out;
4890 1.8 msaitoh }
4891 1.8 msaitoh
4892 1.8 msaitoh /* We didn't get link. Configure back to the highest speed we tried,
4893 1.8 msaitoh * (if there was more than one). We call ourselves back with just the
4894 1.8 msaitoh * single highest speed that the user requested.
4895 1.8 msaitoh */
4896 1.8 msaitoh if (speedcnt > 1)
4897 1.8 msaitoh status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4898 1.8 msaitoh highest_link_speed,
4899 1.8 msaitoh autoneg_wait_to_complete);
4900 1.8 msaitoh
4901 1.8 msaitoh out:
4902 1.8 msaitoh /* Set autoneg_advertised value based on input link speed */
4903 1.8 msaitoh hw->phy.autoneg_advertised = 0;
4904 1.8 msaitoh
4905 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4906 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4907 1.8 msaitoh
4908 1.8 msaitoh if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4909 1.8 msaitoh hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4910 1.8 msaitoh
4911 1.8 msaitoh return status;
4912 1.8 msaitoh }
4913 1.8 msaitoh
4914 1.8 msaitoh /**
4915 1.8 msaitoh * ixgbe_set_soft_rate_select_speed - Set module link speed
4916 1.8 msaitoh * @hw: pointer to hardware structure
4917 1.8 msaitoh * @speed: link speed to set
4918 1.8 msaitoh *
4919 1.8 msaitoh * Set module link speed via the soft rate select.
4920 1.8 msaitoh */
4921 1.8 msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4922 1.8 msaitoh ixgbe_link_speed speed)
4923 1.8 msaitoh {
4924 1.8 msaitoh s32 status;
4925 1.8 msaitoh u8 rs, eeprom_data;
4926 1.8 msaitoh
4927 1.8 msaitoh switch (speed) {
4928 1.8 msaitoh case IXGBE_LINK_SPEED_10GB_FULL:
4929 1.8 msaitoh /* one bit mask same as setting on */
4930 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4931 1.8 msaitoh break;
4932 1.8 msaitoh case IXGBE_LINK_SPEED_1GB_FULL:
4933 1.8 msaitoh rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4934 1.8 msaitoh break;
4935 1.8 msaitoh default:
4936 1.8 msaitoh DEBUGOUT("Invalid fixed module speed\n");
4937 1.8 msaitoh return;
4938 1.8 msaitoh }
4939 1.8 msaitoh
4940 1.8 msaitoh /* Set RS0 */
4941 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4942 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4943 1.8 msaitoh &eeprom_data);
4944 1.8 msaitoh if (status) {
4945 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4946 1.8 msaitoh goto out;
4947 1.8 msaitoh }
4948 1.8 msaitoh
4949 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4950 1.8 msaitoh
4951 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4952 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4953 1.8 msaitoh eeprom_data);
4954 1.8 msaitoh if (status) {
4955 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4956 1.8 msaitoh goto out;
4957 1.8 msaitoh }
4958 1.8 msaitoh
4959 1.8 msaitoh /* Set RS1 */
4960 1.8 msaitoh status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4961 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4962 1.8 msaitoh &eeprom_data);
4963 1.8 msaitoh if (status) {
4964 1.8 msaitoh DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4965 1.8 msaitoh goto out;
4966 1.8 msaitoh }
4967 1.8 msaitoh
4968 1.8 msaitoh eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4969 1.8 msaitoh
4970 1.8 msaitoh status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4971 1.8 msaitoh IXGBE_I2C_EEPROM_DEV_ADDR2,
4972 1.8 msaitoh eeprom_data);
4973 1.8 msaitoh if (status) {
4974 1.8 msaitoh DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4975 1.8 msaitoh goto out;
4976 1.8 msaitoh }
4977 1.8 msaitoh out:
4978 1.8 msaitoh return;
4979 1.8 msaitoh }
4980