Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.9
      1  1.1    dyoung /******************************************************************************
      2  1.1    dyoung 
      3  1.9   msaitoh   Copyright (c) 2001-2015, Intel Corporation
      4  1.1    dyoung   All rights reserved.
      5  1.1    dyoung 
      6  1.1    dyoung   Redistribution and use in source and binary forms, with or without
      7  1.1    dyoung   modification, are permitted provided that the following conditions are met:
      8  1.1    dyoung 
      9  1.1    dyoung    1. Redistributions of source code must retain the above copyright notice,
     10  1.1    dyoung       this list of conditions and the following disclaimer.
     11  1.1    dyoung 
     12  1.1    dyoung    2. Redistributions in binary form must reproduce the above copyright
     13  1.1    dyoung       notice, this list of conditions and the following disclaimer in the
     14  1.1    dyoung       documentation and/or other materials provided with the distribution.
     15  1.1    dyoung 
     16  1.1    dyoung    3. Neither the name of the Intel Corporation nor the names of its
     17  1.1    dyoung       contributors may be used to endorse or promote products derived from
     18  1.1    dyoung       this software without specific prior written permission.
     19  1.1    dyoung 
     20  1.1    dyoung   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21  1.1    dyoung   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  1.1    dyoung   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  1.1    dyoung   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24  1.1    dyoung   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1    dyoung   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1    dyoung   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1    dyoung   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1    dyoung   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1    dyoung   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1    dyoung   POSSIBILITY OF SUCH DAMAGE.
     31  1.1    dyoung 
     32  1.1    dyoung ******************************************************************************/
     33  1.9   msaitoh /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 282289 2015-04-30 22:53:27Z erj $*/
     34  1.8   msaitoh /*$NetBSD: ixgbe_common.c,v 1.9 2016/12/01 06:56:28 msaitoh Exp $*/
     35  1.1    dyoung 
     36  1.1    dyoung #include "ixgbe_common.h"
     37  1.1    dyoung #include "ixgbe_phy.h"
     38  1.6   msaitoh #include "ixgbe_dcb.h"
     39  1.6   msaitoh #include "ixgbe_dcb_82599.h"
     40  1.1    dyoung #include "ixgbe_api.h"
     41  1.1    dyoung 
     42  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48  1.3   msaitoh 					u16 count);
     49  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53  1.1    dyoung 
     54  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56  1.3   msaitoh 					 u16 *san_mac_offset);
     57  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58  1.3   msaitoh 					     u16 words, u16 *data);
     59  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60  1.3   msaitoh 					      u16 words, u16 *data);
     61  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62  1.3   msaitoh 						 u16 offset);
     63  1.1    dyoung 
     64  1.1    dyoung /**
     65  1.1    dyoung  *  ixgbe_init_ops_generic - Inits function ptrs
     66  1.1    dyoung  *  @hw: pointer to the hardware structure
     67  1.1    dyoung  *
     68  1.1    dyoung  *  Initialize the function pointers.
     69  1.1    dyoung  **/
     70  1.1    dyoung s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71  1.1    dyoung {
     72  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
     74  1.1    dyoung 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     75  1.1    dyoung 
     76  1.1    dyoung 	DEBUGFUNC("ixgbe_init_ops_generic");
     77  1.1    dyoung 
     78  1.1    dyoung 	/* EEPROM */
     79  1.8   msaitoh 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     80  1.1    dyoung 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81  1.3   msaitoh 	if (eec & IXGBE_EEC_PRES) {
     82  1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eerd_generic;
     83  1.8   msaitoh 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     84  1.3   msaitoh 	} else {
     85  1.8   msaitoh 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     86  1.3   msaitoh 		eeprom->ops.read_buffer =
     87  1.8   msaitoh 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     88  1.3   msaitoh 	}
     89  1.8   msaitoh 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     90  1.8   msaitoh 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     91  1.1    dyoung 	eeprom->ops.validate_checksum =
     92  1.8   msaitoh 				      ixgbe_validate_eeprom_checksum_generic;
     93  1.8   msaitoh 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     94  1.8   msaitoh 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     95  1.1    dyoung 
     96  1.1    dyoung 	/* MAC */
     97  1.8   msaitoh 	mac->ops.init_hw = ixgbe_init_hw_generic;
     98  1.1    dyoung 	mac->ops.reset_hw = NULL;
     99  1.8   msaitoh 	mac->ops.start_hw = ixgbe_start_hw_generic;
    100  1.8   msaitoh 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    101  1.1    dyoung 	mac->ops.get_media_type = NULL;
    102  1.1    dyoung 	mac->ops.get_supported_physical_layer = NULL;
    103  1.8   msaitoh 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    104  1.8   msaitoh 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    105  1.8   msaitoh 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    106  1.8   msaitoh 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    107  1.8   msaitoh 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    108  1.8   msaitoh 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    109  1.8   msaitoh 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    110  1.8   msaitoh 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    111  1.8   msaitoh 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    112  1.1    dyoung 
    113  1.1    dyoung 	/* LEDs */
    114  1.8   msaitoh 	mac->ops.led_on = ixgbe_led_on_generic;
    115  1.8   msaitoh 	mac->ops.led_off = ixgbe_led_off_generic;
    116  1.8   msaitoh 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    117  1.8   msaitoh 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    118  1.1    dyoung 
    119  1.1    dyoung 	/* RAR, Multicast, VLAN */
    120  1.8   msaitoh 	mac->ops.set_rar = ixgbe_set_rar_generic;
    121  1.8   msaitoh 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    122  1.1    dyoung 	mac->ops.insert_mac_addr = NULL;
    123  1.1    dyoung 	mac->ops.set_vmdq = NULL;
    124  1.1    dyoung 	mac->ops.clear_vmdq = NULL;
    125  1.8   msaitoh 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    126  1.8   msaitoh 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    127  1.8   msaitoh 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    128  1.8   msaitoh 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    129  1.8   msaitoh 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    130  1.1    dyoung 	mac->ops.clear_vfta = NULL;
    131  1.1    dyoung 	mac->ops.set_vfta = NULL;
    132  1.3   msaitoh 	mac->ops.set_vlvf = NULL;
    133  1.1    dyoung 	mac->ops.init_uta_tables = NULL;
    134  1.8   msaitoh 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    135  1.8   msaitoh 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    136  1.1    dyoung 
    137  1.1    dyoung 	/* Flow Control */
    138  1.8   msaitoh 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    139  1.8   msaitoh 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    140  1.1    dyoung 
    141  1.1    dyoung 	/* Link */
    142  1.1    dyoung 	mac->ops.get_link_capabilities = NULL;
    143  1.1    dyoung 	mac->ops.setup_link = NULL;
    144  1.1    dyoung 	mac->ops.check_link = NULL;
    145  1.6   msaitoh 	mac->ops.dmac_config = NULL;
    146  1.6   msaitoh 	mac->ops.dmac_update_tcs = NULL;
    147  1.6   msaitoh 	mac->ops.dmac_config_tcs = NULL;
    148  1.1    dyoung 
    149  1.1    dyoung 	return IXGBE_SUCCESS;
    150  1.1    dyoung }
    151  1.1    dyoung 
    152  1.1    dyoung /**
    153  1.6   msaitoh  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    154  1.6   msaitoh  * of flow control
    155  1.6   msaitoh  * @hw: pointer to hardware structure
    156  1.6   msaitoh  *
    157  1.6   msaitoh  * This function returns TRUE if the device supports flow control
    158  1.6   msaitoh  * autonegotiation, and FALSE if it does not.
    159  1.4   msaitoh  *
    160  1.4   msaitoh  **/
    161  1.6   msaitoh bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    162  1.4   msaitoh {
    163  1.6   msaitoh 	bool supported = FALSE;
    164  1.6   msaitoh 	ixgbe_link_speed speed;
    165  1.6   msaitoh 	bool link_up;
    166  1.4   msaitoh 
    167  1.4   msaitoh 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    168  1.4   msaitoh 
    169  1.6   msaitoh 	switch (hw->phy.media_type) {
    170  1.6   msaitoh 	case ixgbe_media_type_fiber_fixed:
    171  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    172  1.6   msaitoh 	case ixgbe_media_type_fiber:
    173  1.6   msaitoh 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    174  1.6   msaitoh 		/* if link is down, assume supported */
    175  1.6   msaitoh 		if (link_up)
    176  1.6   msaitoh 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    177  1.6   msaitoh 				TRUE : FALSE;
    178  1.6   msaitoh 		else
    179  1.6   msaitoh 			supported = TRUE;
    180  1.6   msaitoh 		break;
    181  1.6   msaitoh 	case ixgbe_media_type_backplane:
    182  1.6   msaitoh 		supported = TRUE;
    183  1.6   msaitoh 		break;
    184  1.6   msaitoh 	case ixgbe_media_type_copper:
    185  1.6   msaitoh 		/* only some copper devices support flow control autoneg */
    186  1.6   msaitoh 		switch (hw->device_id) {
    187  1.6   msaitoh 		case IXGBE_DEV_ID_82599_T3_LOM:
    188  1.6   msaitoh 		case IXGBE_DEV_ID_X540T:
    189  1.8   msaitoh 		case IXGBE_DEV_ID_X540T1:
    190  1.6   msaitoh 		case IXGBE_DEV_ID_X540_BYPASS:
    191  1.8   msaitoh 		case IXGBE_DEV_ID_X550T:
    192  1.9   msaitoh 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    193  1.6   msaitoh 			supported = TRUE;
    194  1.6   msaitoh 			break;
    195  1.6   msaitoh 		default:
    196  1.6   msaitoh 			supported = FALSE;
    197  1.6   msaitoh 		}
    198  1.4   msaitoh 	default:
    199  1.6   msaitoh 		break;
    200  1.4   msaitoh 	}
    201  1.6   msaitoh 
    202  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    203  1.6   msaitoh 		      "Device %x does not support flow control autoneg",
    204  1.6   msaitoh 		      hw->device_id);
    205  1.6   msaitoh 	return supported;
    206  1.4   msaitoh }
    207  1.4   msaitoh 
    208  1.4   msaitoh /**
    209  1.8   msaitoh  *  ixgbe_setup_fc_generic - Set up flow control
    210  1.4   msaitoh  *  @hw: pointer to hardware structure
    211  1.4   msaitoh  *
    212  1.4   msaitoh  *  Called at init time to set up flow control.
    213  1.4   msaitoh  **/
    214  1.8   msaitoh s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    215  1.4   msaitoh {
    216  1.4   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
    217  1.4   msaitoh 	u32 reg = 0, reg_bp = 0;
    218  1.4   msaitoh 	u16 reg_cu = 0;
    219  1.8   msaitoh 	bool locked = FALSE;
    220  1.4   msaitoh 
    221  1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_fc_generic");
    222  1.4   msaitoh 
    223  1.8   msaitoh 	/* Validate the requested mode */
    224  1.4   msaitoh 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    225  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    226  1.6   msaitoh 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    227  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    228  1.4   msaitoh 		goto out;
    229  1.4   msaitoh 	}
    230  1.4   msaitoh 
    231  1.4   msaitoh 	/*
    232  1.4   msaitoh 	 * 10gig parts do not have a word in the EEPROM to determine the
    233  1.4   msaitoh 	 * default flow control setting, so we explicitly set it to full.
    234  1.4   msaitoh 	 */
    235  1.4   msaitoh 	if (hw->fc.requested_mode == ixgbe_fc_default)
    236  1.4   msaitoh 		hw->fc.requested_mode = ixgbe_fc_full;
    237  1.4   msaitoh 
    238  1.4   msaitoh 	/*
    239  1.4   msaitoh 	 * Set up the 1G and 10G flow control advertisement registers so the
    240  1.4   msaitoh 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    241  1.4   msaitoh 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    242  1.4   msaitoh 	 */
    243  1.4   msaitoh 	switch (hw->phy.media_type) {
    244  1.8   msaitoh 	case ixgbe_media_type_backplane:
    245  1.8   msaitoh 		/* some MAC's need RMW protection on AUTOC */
    246  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    247  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
    248  1.8   msaitoh 			goto out;
    249  1.8   msaitoh 
    250  1.8   msaitoh 		/* only backplane uses autoc so fall though */
    251  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
    252  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
    253  1.4   msaitoh 	case ixgbe_media_type_fiber:
    254  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    255  1.8   msaitoh 
    256  1.4   msaitoh 		break;
    257  1.4   msaitoh 	case ixgbe_media_type_copper:
    258  1.4   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    259  1.4   msaitoh 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    260  1.4   msaitoh 		break;
    261  1.4   msaitoh 	default:
    262  1.4   msaitoh 		break;
    263  1.4   msaitoh 	}
    264  1.4   msaitoh 
    265  1.4   msaitoh 	/*
    266  1.4   msaitoh 	 * The possible values of fc.requested_mode are:
    267  1.4   msaitoh 	 * 0: Flow control is completely disabled
    268  1.4   msaitoh 	 * 1: Rx flow control is enabled (we can receive pause frames,
    269  1.4   msaitoh 	 *    but not send pause frames).
    270  1.4   msaitoh 	 * 2: Tx flow control is enabled (we can send pause frames but
    271  1.4   msaitoh 	 *    we do not support receiving pause frames).
    272  1.4   msaitoh 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    273  1.4   msaitoh 	 * other: Invalid.
    274  1.4   msaitoh 	 */
    275  1.4   msaitoh 	switch (hw->fc.requested_mode) {
    276  1.4   msaitoh 	case ixgbe_fc_none:
    277  1.4   msaitoh 		/* Flow control completely disabled by software override. */
    278  1.4   msaitoh 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    279  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    280  1.4   msaitoh 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    281  1.4   msaitoh 				    IXGBE_AUTOC_ASM_PAUSE);
    282  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    283  1.4   msaitoh 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    284  1.4   msaitoh 		break;
    285  1.4   msaitoh 	case ixgbe_fc_tx_pause:
    286  1.4   msaitoh 		/*
    287  1.4   msaitoh 		 * Tx Flow control is enabled, and Rx Flow control is
    288  1.4   msaitoh 		 * disabled by software override.
    289  1.4   msaitoh 		 */
    290  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    291  1.4   msaitoh 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    292  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    293  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    294  1.4   msaitoh 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    295  1.4   msaitoh 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    296  1.4   msaitoh 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    297  1.4   msaitoh 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    298  1.4   msaitoh 		}
    299  1.4   msaitoh 		break;
    300  1.4   msaitoh 	case ixgbe_fc_rx_pause:
    301  1.4   msaitoh 		/*
    302  1.4   msaitoh 		 * Rx Flow control is enabled and Tx Flow control is
    303  1.4   msaitoh 		 * disabled by software override. Since there really
    304  1.4   msaitoh 		 * isn't a way to advertise that we are capable of RX
    305  1.4   msaitoh 		 * Pause ONLY, we will advertise that we support both
    306  1.4   msaitoh 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    307  1.4   msaitoh 		 * through to the fc_full statement.  Later, we will
    308  1.4   msaitoh 		 * disable the adapter's ability to send PAUSE frames.
    309  1.4   msaitoh 		 */
    310  1.4   msaitoh 	case ixgbe_fc_full:
    311  1.4   msaitoh 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    312  1.4   msaitoh 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    313  1.4   msaitoh 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    314  1.4   msaitoh 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    315  1.4   msaitoh 				  IXGBE_AUTOC_ASM_PAUSE;
    316  1.4   msaitoh 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    317  1.4   msaitoh 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    318  1.4   msaitoh 		break;
    319  1.4   msaitoh 	default:
    320  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    321  1.6   msaitoh 			     "Flow control param set incorrectly\n");
    322  1.4   msaitoh 		ret_val = IXGBE_ERR_CONFIG;
    323  1.4   msaitoh 		goto out;
    324  1.4   msaitoh 		break;
    325  1.4   msaitoh 	}
    326  1.4   msaitoh 
    327  1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_X540) {
    328  1.4   msaitoh 		/*
    329  1.4   msaitoh 		 * Enable auto-negotiation between the MAC & PHY;
    330  1.4   msaitoh 		 * the MAC will advertise clause 37 flow control.
    331  1.4   msaitoh 		 */
    332  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    333  1.4   msaitoh 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    334  1.4   msaitoh 
    335  1.4   msaitoh 		/* Disable AN timeout */
    336  1.4   msaitoh 		if (hw->fc.strict_ieee)
    337  1.4   msaitoh 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    338  1.4   msaitoh 
    339  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    340  1.4   msaitoh 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    341  1.4   msaitoh 	}
    342  1.4   msaitoh 
    343  1.4   msaitoh 	/*
    344  1.4   msaitoh 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    345  1.4   msaitoh 	 * and copper. There is no need to set the PCS1GCTL register.
    346  1.4   msaitoh 	 *
    347  1.4   msaitoh 	 */
    348  1.4   msaitoh 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    349  1.4   msaitoh 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    350  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    351  1.8   msaitoh 		if (ret_val)
    352  1.8   msaitoh 			goto out;
    353  1.4   msaitoh 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    354  1.6   msaitoh 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    355  1.4   msaitoh 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    356  1.4   msaitoh 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    357  1.4   msaitoh 	}
    358  1.4   msaitoh 
    359  1.8   msaitoh 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    360  1.4   msaitoh out:
    361  1.4   msaitoh 	return ret_val;
    362  1.4   msaitoh }
    363  1.4   msaitoh 
    364  1.4   msaitoh /**
    365  1.1    dyoung  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    366  1.1    dyoung  *  @hw: pointer to hardware structure
    367  1.1    dyoung  *
    368  1.1    dyoung  *  Starts the hardware by filling the bus info structure and media type, clears
    369  1.1    dyoung  *  all on chip counters, initializes receive address registers, multicast
    370  1.1    dyoung  *  table, VLAN filter table, calls routine to set up link and flow control
    371  1.1    dyoung  *  settings, and leaves transmit and receive units disabled and uninitialized
    372  1.1    dyoung  **/
    373  1.1    dyoung s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    374  1.1    dyoung {
    375  1.4   msaitoh 	s32 ret_val;
    376  1.1    dyoung 	u32 ctrl_ext;
    377  1.1    dyoung 
    378  1.1    dyoung 	DEBUGFUNC("ixgbe_start_hw_generic");
    379  1.1    dyoung 
    380  1.1    dyoung 	/* Set the media type */
    381  1.1    dyoung 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    382  1.1    dyoung 
    383  1.1    dyoung 	/* PHY ops initialization must be done in reset_hw() */
    384  1.1    dyoung 
    385  1.1    dyoung 	/* Clear the VLAN filter table */
    386  1.1    dyoung 	hw->mac.ops.clear_vfta(hw);
    387  1.1    dyoung 
    388  1.1    dyoung 	/* Clear statistics registers */
    389  1.1    dyoung 	hw->mac.ops.clear_hw_cntrs(hw);
    390  1.1    dyoung 
    391  1.1    dyoung 	/* Set No Snoop Disable */
    392  1.1    dyoung 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    393  1.1    dyoung 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    394  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    395  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    396  1.1    dyoung 
    397  1.1    dyoung 	/* Setup flow control */
    398  1.4   msaitoh 	ret_val = ixgbe_setup_fc(hw);
    399  1.4   msaitoh 	if (ret_val != IXGBE_SUCCESS)
    400  1.4   msaitoh 		goto out;
    401  1.1    dyoung 
    402  1.1    dyoung 	/* Clear adapter stopped flag */
    403  1.1    dyoung 	hw->adapter_stopped = FALSE;
    404  1.1    dyoung 
    405  1.4   msaitoh out:
    406  1.4   msaitoh 	return ret_val;
    407  1.1    dyoung }
    408  1.1    dyoung 
    409  1.1    dyoung /**
    410  1.1    dyoung  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    411  1.1    dyoung  *  @hw: pointer to hw structure
    412  1.1    dyoung  *
    413  1.1    dyoung  * Performs the init sequence common to the second generation
    414  1.1    dyoung  * of 10 GbE devices.
    415  1.1    dyoung  * Devices in the second generation:
    416  1.1    dyoung  *     82599
    417  1.1    dyoung  *     X540
    418  1.1    dyoung  **/
    419  1.1    dyoung s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    420  1.1    dyoung {
    421  1.1    dyoung 	u32 i;
    422  1.1    dyoung 	u32 regval;
    423  1.1    dyoung 
    424  1.1    dyoung 	/* Clear the rate limiters */
    425  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    426  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    427  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    428  1.1    dyoung 	}
    429  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
    430  1.1    dyoung 
    431  1.1    dyoung 	/* Disable relaxed ordering */
    432  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    433  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    434  1.4   msaitoh 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    435  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    436  1.1    dyoung 	}
    437  1.1    dyoung 
    438  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    439  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    440  1.4   msaitoh 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    441  1.4   msaitoh 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    442  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    443  1.1    dyoung 	}
    444  1.1    dyoung 
    445  1.1    dyoung 	return IXGBE_SUCCESS;
    446  1.1    dyoung }
    447  1.1    dyoung 
    448  1.1    dyoung /**
    449  1.1    dyoung  *  ixgbe_init_hw_generic - Generic hardware initialization
    450  1.1    dyoung  *  @hw: pointer to hardware structure
    451  1.1    dyoung  *
    452  1.1    dyoung  *  Initialize the hardware by resetting the hardware, filling the bus info
    453  1.1    dyoung  *  structure and media type, clears all on chip counters, initializes receive
    454  1.1    dyoung  *  address registers, multicast table, VLAN filter table, calls routine to set
    455  1.1    dyoung  *  up link and flow control settings, and leaves transmit and receive units
    456  1.1    dyoung  *  disabled and uninitialized
    457  1.1    dyoung  **/
    458  1.1    dyoung s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    459  1.1    dyoung {
    460  1.1    dyoung 	s32 status;
    461  1.1    dyoung 
    462  1.1    dyoung 	DEBUGFUNC("ixgbe_init_hw_generic");
    463  1.1    dyoung 
    464  1.1    dyoung 	/* Reset the hardware */
    465  1.1    dyoung 	status = hw->mac.ops.reset_hw(hw);
    466  1.1    dyoung 
    467  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
    468  1.1    dyoung 		/* Start the HW */
    469  1.1    dyoung 		status = hw->mac.ops.start_hw(hw);
    470  1.1    dyoung 	}
    471  1.1    dyoung 
    472  1.1    dyoung 	return status;
    473  1.1    dyoung }
    474  1.1    dyoung 
    475  1.1    dyoung /**
    476  1.1    dyoung  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    477  1.1    dyoung  *  @hw: pointer to hardware structure
    478  1.1    dyoung  *
    479  1.1    dyoung  *  Clears all hardware statistics counters by reading them from the hardware
    480  1.1    dyoung  *  Statistics counters are clear on read.
    481  1.1    dyoung  **/
    482  1.1    dyoung s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    483  1.1    dyoung {
    484  1.1    dyoung 	u16 i = 0;
    485  1.1    dyoung 
    486  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    487  1.1    dyoung 
    488  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    489  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    490  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    491  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    492  1.1    dyoung 	for (i = 0; i < 8; i++)
    493  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    494  1.1    dyoung 
    495  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    496  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    497  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    498  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    499  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    500  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    501  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    502  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    503  1.1    dyoung 	} else {
    504  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    505  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    506  1.1    dyoung 	}
    507  1.1    dyoung 
    508  1.1    dyoung 	for (i = 0; i < 8; i++) {
    509  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    510  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    511  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    512  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    513  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    514  1.1    dyoung 		} else {
    515  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    516  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    517  1.1    dyoung 		}
    518  1.1    dyoung 	}
    519  1.1    dyoung 	if (hw->mac.type >= ixgbe_mac_82599EB)
    520  1.1    dyoung 		for (i = 0; i < 8; i++)
    521  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    522  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    523  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    524  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    525  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    526  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    527  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    528  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    529  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    530  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    531  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    532  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    533  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    534  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    535  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    536  1.3   msaitoh 	if (hw->mac.type == ixgbe_mac_82598EB)
    537  1.3   msaitoh 		for (i = 0; i < 8; i++)
    538  1.3   msaitoh 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    539  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RUC);
    540  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RFC);
    541  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_ROC);
    542  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_RJC);
    543  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    544  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    545  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    546  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORL);
    547  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TORH);
    548  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPR);
    549  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_TPT);
    550  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    551  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    552  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    553  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    554  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    555  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    556  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    557  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    558  1.1    dyoung 	for (i = 0; i < 16; i++) {
    559  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    560  1.1    dyoung 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    561  1.1    dyoung 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    562  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    563  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    564  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    565  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    566  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    567  1.1    dyoung 		} else {
    568  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    569  1.1    dyoung 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    570  1.1    dyoung 		}
    571  1.1    dyoung 	}
    572  1.1    dyoung 
    573  1.8   msaitoh 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    574  1.3   msaitoh 		if (hw->phy.id == 0)
    575  1.3   msaitoh 			ixgbe_identify_phy(hw);
    576  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    577  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    578  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    579  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    580  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    581  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    582  1.3   msaitoh 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    583  1.3   msaitoh 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    584  1.3   msaitoh 	}
    585  1.3   msaitoh 
    586  1.1    dyoung 	return IXGBE_SUCCESS;
    587  1.1    dyoung }
    588  1.1    dyoung 
    589  1.1    dyoung /**
    590  1.1    dyoung  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    591  1.1    dyoung  *  @hw: pointer to hardware structure
    592  1.1    dyoung  *  @pba_num: stores the part number string from the EEPROM
    593  1.1    dyoung  *  @pba_num_size: part number string buffer length
    594  1.1    dyoung  *
    595  1.1    dyoung  *  Reads the part number string from the EEPROM.
    596  1.1    dyoung  **/
    597  1.1    dyoung s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    598  1.3   msaitoh 				  u32 pba_num_size)
    599  1.1    dyoung {
    600  1.1    dyoung 	s32 ret_val;
    601  1.1    dyoung 	u16 data;
    602  1.1    dyoung 	u16 pba_ptr;
    603  1.1    dyoung 	u16 offset;
    604  1.1    dyoung 	u16 length;
    605  1.1    dyoung 
    606  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    607  1.1    dyoung 
    608  1.1    dyoung 	if (pba_num == NULL) {
    609  1.1    dyoung 		DEBUGOUT("PBA string buffer was null\n");
    610  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
    611  1.1    dyoung 	}
    612  1.1    dyoung 
    613  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    614  1.1    dyoung 	if (ret_val) {
    615  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    616  1.1    dyoung 		return ret_val;
    617  1.1    dyoung 	}
    618  1.1    dyoung 
    619  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    620  1.1    dyoung 	if (ret_val) {
    621  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    622  1.1    dyoung 		return ret_val;
    623  1.1    dyoung 	}
    624  1.1    dyoung 
    625  1.1    dyoung 	/*
    626  1.1    dyoung 	 * if data is not ptr guard the PBA must be in legacy format which
    627  1.1    dyoung 	 * means pba_ptr is actually our second data word for the PBA number
    628  1.1    dyoung 	 * and we can decode it into an ascii string
    629  1.1    dyoung 	 */
    630  1.1    dyoung 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    631  1.1    dyoung 		DEBUGOUT("NVM PBA number is not stored as string\n");
    632  1.1    dyoung 
    633  1.1    dyoung 		/* we will need 11 characters to store the PBA */
    634  1.1    dyoung 		if (pba_num_size < 11) {
    635  1.1    dyoung 			DEBUGOUT("PBA string buffer too small\n");
    636  1.1    dyoung 			return IXGBE_ERR_NO_SPACE;
    637  1.1    dyoung 		}
    638  1.1    dyoung 
    639  1.1    dyoung 		/* extract hex string from data and pba_ptr */
    640  1.1    dyoung 		pba_num[0] = (data >> 12) & 0xF;
    641  1.1    dyoung 		pba_num[1] = (data >> 8) & 0xF;
    642  1.1    dyoung 		pba_num[2] = (data >> 4) & 0xF;
    643  1.1    dyoung 		pba_num[3] = data & 0xF;
    644  1.1    dyoung 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    645  1.1    dyoung 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    646  1.1    dyoung 		pba_num[6] = '-';
    647  1.1    dyoung 		pba_num[7] = 0;
    648  1.1    dyoung 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    649  1.1    dyoung 		pba_num[9] = pba_ptr & 0xF;
    650  1.1    dyoung 
    651  1.1    dyoung 		/* put a null character on the end of our string */
    652  1.1    dyoung 		pba_num[10] = '\0';
    653  1.1    dyoung 
    654  1.1    dyoung 		/* switch all the data but the '-' to hex char */
    655  1.1    dyoung 		for (offset = 0; offset < 10; offset++) {
    656  1.1    dyoung 			if (pba_num[offset] < 0xA)
    657  1.1    dyoung 				pba_num[offset] += '0';
    658  1.1    dyoung 			else if (pba_num[offset] < 0x10)
    659  1.1    dyoung 				pba_num[offset] += 'A' - 0xA;
    660  1.1    dyoung 		}
    661  1.1    dyoung 
    662  1.1    dyoung 		return IXGBE_SUCCESS;
    663  1.1    dyoung 	}
    664  1.1    dyoung 
    665  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    666  1.1    dyoung 	if (ret_val) {
    667  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    668  1.1    dyoung 		return ret_val;
    669  1.1    dyoung 	}
    670  1.1    dyoung 
    671  1.1    dyoung 	if (length == 0xFFFF || length == 0) {
    672  1.1    dyoung 		DEBUGOUT("NVM PBA number section invalid length\n");
    673  1.1    dyoung 		return IXGBE_ERR_PBA_SECTION;
    674  1.1    dyoung 	}
    675  1.1    dyoung 
    676  1.1    dyoung 	/* check if pba_num buffer is big enough */
    677  1.1    dyoung 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    678  1.1    dyoung 		DEBUGOUT("PBA string buffer too small\n");
    679  1.1    dyoung 		return IXGBE_ERR_NO_SPACE;
    680  1.1    dyoung 	}
    681  1.1    dyoung 
    682  1.1    dyoung 	/* trim pba length from start of string */
    683  1.1    dyoung 	pba_ptr++;
    684  1.1    dyoung 	length--;
    685  1.1    dyoung 
    686  1.1    dyoung 	for (offset = 0; offset < length; offset++) {
    687  1.1    dyoung 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    688  1.1    dyoung 		if (ret_val) {
    689  1.1    dyoung 			DEBUGOUT("NVM Read Error\n");
    690  1.1    dyoung 			return ret_val;
    691  1.1    dyoung 		}
    692  1.1    dyoung 		pba_num[offset * 2] = (u8)(data >> 8);
    693  1.1    dyoung 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    694  1.1    dyoung 	}
    695  1.1    dyoung 	pba_num[offset * 2] = '\0';
    696  1.1    dyoung 
    697  1.1    dyoung 	return IXGBE_SUCCESS;
    698  1.1    dyoung }
    699  1.1    dyoung 
    700  1.1    dyoung /**
    701  1.1    dyoung  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    702  1.1    dyoung  *  @hw: pointer to hardware structure
    703  1.1    dyoung  *  @pba_num: stores the part number from the EEPROM
    704  1.1    dyoung  *
    705  1.1    dyoung  *  Reads the part number from the EEPROM.
    706  1.1    dyoung  **/
    707  1.1    dyoung s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    708  1.1    dyoung {
    709  1.1    dyoung 	s32 ret_val;
    710  1.1    dyoung 	u16 data;
    711  1.1    dyoung 
    712  1.1    dyoung 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    713  1.1    dyoung 
    714  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    715  1.1    dyoung 	if (ret_val) {
    716  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    717  1.1    dyoung 		return ret_val;
    718  1.1    dyoung 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    719  1.1    dyoung 		DEBUGOUT("NVM Not supported\n");
    720  1.1    dyoung 		return IXGBE_NOT_IMPLEMENTED;
    721  1.1    dyoung 	}
    722  1.1    dyoung 	*pba_num = (u32)(data << 16);
    723  1.1    dyoung 
    724  1.1    dyoung 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    725  1.1    dyoung 	if (ret_val) {
    726  1.1    dyoung 		DEBUGOUT("NVM Read Error\n");
    727  1.1    dyoung 		return ret_val;
    728  1.1    dyoung 	}
    729  1.1    dyoung 	*pba_num |= data;
    730  1.1    dyoung 
    731  1.1    dyoung 	return IXGBE_SUCCESS;
    732  1.1    dyoung }
    733  1.1    dyoung 
    734  1.1    dyoung /**
    735  1.5   msaitoh  *  ixgbe_read_pba_raw
    736  1.5   msaitoh  *  @hw: pointer to the HW structure
    737  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    738  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    739  1.5   msaitoh  *  @max_pba_block_size: PBA block size limit
    740  1.5   msaitoh  *  @pba: pointer to output PBA structure
    741  1.5   msaitoh  *
    742  1.5   msaitoh  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    743  1.5   msaitoh  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    744  1.5   msaitoh  *
    745  1.5   msaitoh  **/
    746  1.5   msaitoh s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    747  1.5   msaitoh 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    748  1.5   msaitoh 		       struct ixgbe_pba *pba)
    749  1.5   msaitoh {
    750  1.5   msaitoh 	s32 ret_val;
    751  1.5   msaitoh 	u16 pba_block_size;
    752  1.5   msaitoh 
    753  1.5   msaitoh 	if (pba == NULL)
    754  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    755  1.5   msaitoh 
    756  1.5   msaitoh 	if (eeprom_buf == NULL) {
    757  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    758  1.5   msaitoh 						     &pba->word[0]);
    759  1.5   msaitoh 		if (ret_val)
    760  1.5   msaitoh 			return ret_val;
    761  1.5   msaitoh 	} else {
    762  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    763  1.5   msaitoh 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    764  1.5   msaitoh 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    765  1.5   msaitoh 		} else {
    766  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    767  1.5   msaitoh 		}
    768  1.5   msaitoh 	}
    769  1.5   msaitoh 
    770  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    771  1.5   msaitoh 		if (pba->pba_block == NULL)
    772  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    773  1.5   msaitoh 
    774  1.5   msaitoh 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    775  1.5   msaitoh 						   eeprom_buf_size,
    776  1.5   msaitoh 						   &pba_block_size);
    777  1.5   msaitoh 		if (ret_val)
    778  1.5   msaitoh 			return ret_val;
    779  1.5   msaitoh 
    780  1.5   msaitoh 		if (pba_block_size > max_pba_block_size)
    781  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    782  1.5   msaitoh 
    783  1.5   msaitoh 		if (eeprom_buf == NULL) {
    784  1.5   msaitoh 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    785  1.5   msaitoh 							     pba_block_size,
    786  1.5   msaitoh 							     pba->pba_block);
    787  1.5   msaitoh 			if (ret_val)
    788  1.5   msaitoh 				return ret_val;
    789  1.5   msaitoh 		} else {
    790  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    791  1.8   msaitoh 					      pba_block_size)) {
    792  1.5   msaitoh 				memcpy(pba->pba_block,
    793  1.5   msaitoh 				       &eeprom_buf[pba->word[1]],
    794  1.5   msaitoh 				       pba_block_size * sizeof(u16));
    795  1.5   msaitoh 			} else {
    796  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    797  1.5   msaitoh 			}
    798  1.5   msaitoh 		}
    799  1.5   msaitoh 	}
    800  1.5   msaitoh 
    801  1.5   msaitoh 	return IXGBE_SUCCESS;
    802  1.5   msaitoh }
    803  1.5   msaitoh 
    804  1.5   msaitoh /**
    805  1.5   msaitoh  *  ixgbe_write_pba_raw
    806  1.5   msaitoh  *  @hw: pointer to the HW structure
    807  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    808  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    809  1.5   msaitoh  *  @pba: pointer to PBA structure
    810  1.5   msaitoh  *
    811  1.5   msaitoh  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    812  1.5   msaitoh  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    813  1.5   msaitoh  *
    814  1.5   msaitoh  **/
    815  1.5   msaitoh s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    816  1.5   msaitoh 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    817  1.5   msaitoh {
    818  1.5   msaitoh 	s32 ret_val;
    819  1.5   msaitoh 
    820  1.5   msaitoh 	if (pba == NULL)
    821  1.5   msaitoh 		return IXGBE_ERR_PARAM;
    822  1.5   msaitoh 
    823  1.5   msaitoh 	if (eeprom_buf == NULL) {
    824  1.5   msaitoh 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    825  1.5   msaitoh 						      &pba->word[0]);
    826  1.5   msaitoh 		if (ret_val)
    827  1.5   msaitoh 			return ret_val;
    828  1.5   msaitoh 	} else {
    829  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    830  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    831  1.5   msaitoh 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    832  1.5   msaitoh 		} else {
    833  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    834  1.5   msaitoh 		}
    835  1.5   msaitoh 	}
    836  1.5   msaitoh 
    837  1.5   msaitoh 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    838  1.5   msaitoh 		if (pba->pba_block == NULL)
    839  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    840  1.5   msaitoh 
    841  1.5   msaitoh 		if (eeprom_buf == NULL) {
    842  1.5   msaitoh 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    843  1.5   msaitoh 							      pba->pba_block[0],
    844  1.5   msaitoh 							      pba->pba_block);
    845  1.5   msaitoh 			if (ret_val)
    846  1.5   msaitoh 				return ret_val;
    847  1.5   msaitoh 		} else {
    848  1.5   msaitoh 			if (eeprom_buf_size > (u32)(pba->word[1] +
    849  1.5   msaitoh 					      pba->pba_block[0])) {
    850  1.5   msaitoh 				memcpy(&eeprom_buf[pba->word[1]],
    851  1.5   msaitoh 				       pba->pba_block,
    852  1.5   msaitoh 				       pba->pba_block[0] * sizeof(u16));
    853  1.5   msaitoh 			} else {
    854  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    855  1.5   msaitoh 			}
    856  1.5   msaitoh 		}
    857  1.5   msaitoh 	}
    858  1.5   msaitoh 
    859  1.5   msaitoh 	return IXGBE_SUCCESS;
    860  1.5   msaitoh }
    861  1.5   msaitoh 
    862  1.5   msaitoh /**
    863  1.5   msaitoh  *  ixgbe_get_pba_block_size
    864  1.5   msaitoh  *  @hw: pointer to the HW structure
    865  1.5   msaitoh  *  @eeprom_buf: optional pointer to EEPROM image
    866  1.5   msaitoh  *  @eeprom_buf_size: size of EEPROM image in words
    867  1.5   msaitoh  *  @pba_data_size: pointer to output variable
    868  1.5   msaitoh  *
    869  1.5   msaitoh  *  Returns the size of the PBA block in words. Function operates on EEPROM
    870  1.5   msaitoh  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    871  1.5   msaitoh  *  EEPROM device.
    872  1.5   msaitoh  *
    873  1.5   msaitoh  **/
    874  1.5   msaitoh s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    875  1.5   msaitoh 			     u32 eeprom_buf_size, u16 *pba_block_size)
    876  1.5   msaitoh {
    877  1.5   msaitoh 	s32 ret_val;
    878  1.5   msaitoh 	u16 pba_word[2];
    879  1.5   msaitoh 	u16 length;
    880  1.5   msaitoh 
    881  1.5   msaitoh 	DEBUGFUNC("ixgbe_get_pba_block_size");
    882  1.5   msaitoh 
    883  1.5   msaitoh 	if (eeprom_buf == NULL) {
    884  1.5   msaitoh 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    885  1.5   msaitoh 						     &pba_word[0]);
    886  1.5   msaitoh 		if (ret_val)
    887  1.5   msaitoh 			return ret_val;
    888  1.5   msaitoh 	} else {
    889  1.5   msaitoh 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    890  1.5   msaitoh 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    891  1.5   msaitoh 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    892  1.5   msaitoh 		} else {
    893  1.5   msaitoh 			return IXGBE_ERR_PARAM;
    894  1.5   msaitoh 		}
    895  1.5   msaitoh 	}
    896  1.5   msaitoh 
    897  1.5   msaitoh 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    898  1.5   msaitoh 		if (eeprom_buf == NULL) {
    899  1.5   msaitoh 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    900  1.5   msaitoh 						      &length);
    901  1.5   msaitoh 			if (ret_val)
    902  1.5   msaitoh 				return ret_val;
    903  1.5   msaitoh 		} else {
    904  1.5   msaitoh 			if (eeprom_buf_size > pba_word[1])
    905  1.5   msaitoh 				length = eeprom_buf[pba_word[1] + 0];
    906  1.5   msaitoh 			else
    907  1.5   msaitoh 				return IXGBE_ERR_PARAM;
    908  1.5   msaitoh 		}
    909  1.5   msaitoh 
    910  1.5   msaitoh 		if (length == 0xFFFF || length == 0)
    911  1.5   msaitoh 			return IXGBE_ERR_PBA_SECTION;
    912  1.5   msaitoh 	} else {
    913  1.5   msaitoh 		/* PBA number in legacy format, there is no PBA Block. */
    914  1.5   msaitoh 		length = 0;
    915  1.5   msaitoh 	}
    916  1.5   msaitoh 
    917  1.5   msaitoh 	if (pba_block_size != NULL)
    918  1.5   msaitoh 		*pba_block_size = length;
    919  1.5   msaitoh 
    920  1.5   msaitoh 	return IXGBE_SUCCESS;
    921  1.5   msaitoh }
    922  1.5   msaitoh 
    923  1.5   msaitoh /**
    924  1.1    dyoung  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    925  1.1    dyoung  *  @hw: pointer to hardware structure
    926  1.1    dyoung  *  @mac_addr: Adapter MAC address
    927  1.1    dyoung  *
    928  1.1    dyoung  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    929  1.1    dyoung  *  A reset of the adapter must be performed prior to calling this function
    930  1.1    dyoung  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    931  1.1    dyoung  **/
    932  1.1    dyoung s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    933  1.1    dyoung {
    934  1.1    dyoung 	u32 rar_high;
    935  1.1    dyoung 	u32 rar_low;
    936  1.1    dyoung 	u16 i;
    937  1.1    dyoung 
    938  1.1    dyoung 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    939  1.1    dyoung 
    940  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    941  1.1    dyoung 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    942  1.1    dyoung 
    943  1.1    dyoung 	for (i = 0; i < 4; i++)
    944  1.1    dyoung 		mac_addr[i] = (u8)(rar_low >> (i*8));
    945  1.1    dyoung 
    946  1.1    dyoung 	for (i = 0; i < 2; i++)
    947  1.1    dyoung 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    948  1.1    dyoung 
    949  1.1    dyoung 	return IXGBE_SUCCESS;
    950  1.1    dyoung }
    951  1.1    dyoung 
    952  1.1    dyoung /**
    953  1.6   msaitoh  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    954  1.1    dyoung  *  @hw: pointer to hardware structure
    955  1.6   msaitoh  *  @link_status: the link status returned by the PCI config space
    956  1.1    dyoung  *
    957  1.6   msaitoh  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    958  1.1    dyoung  **/
    959  1.6   msaitoh void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    960  1.1    dyoung {
    961  1.1    dyoung 	struct ixgbe_mac_info *mac = &hw->mac;
    962  1.1    dyoung 
    963  1.8   msaitoh 	if (hw->bus.type == ixgbe_bus_type_unknown)
    964  1.8   msaitoh 		hw->bus.type = ixgbe_bus_type_pci_express;
    965  1.1    dyoung 
    966  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    967  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_1:
    968  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    969  1.1    dyoung 		break;
    970  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_2:
    971  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    972  1.1    dyoung 		break;
    973  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_4:
    974  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    975  1.1    dyoung 		break;
    976  1.1    dyoung 	case IXGBE_PCI_LINK_WIDTH_8:
    977  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    978  1.1    dyoung 		break;
    979  1.1    dyoung 	default:
    980  1.1    dyoung 		hw->bus.width = ixgbe_bus_width_unknown;
    981  1.1    dyoung 		break;
    982  1.1    dyoung 	}
    983  1.1    dyoung 
    984  1.1    dyoung 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    985  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_2500:
    986  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_2500;
    987  1.1    dyoung 		break;
    988  1.1    dyoung 	case IXGBE_PCI_LINK_SPEED_5000:
    989  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_5000;
    990  1.1    dyoung 		break;
    991  1.4   msaitoh 	case IXGBE_PCI_LINK_SPEED_8000:
    992  1.4   msaitoh 		hw->bus.speed = ixgbe_bus_speed_8000;
    993  1.4   msaitoh 		break;
    994  1.1    dyoung 	default:
    995  1.1    dyoung 		hw->bus.speed = ixgbe_bus_speed_unknown;
    996  1.1    dyoung 		break;
    997  1.1    dyoung 	}
    998  1.1    dyoung 
    999  1.1    dyoung 	mac->ops.set_lan_id(hw);
   1000  1.6   msaitoh }
   1001  1.6   msaitoh 
   1002  1.6   msaitoh /**
   1003  1.6   msaitoh  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1004  1.6   msaitoh  *  @hw: pointer to hardware structure
   1005  1.6   msaitoh  *
   1006  1.6   msaitoh  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1007  1.6   msaitoh  *  store this data within the ixgbe_hw structure.
   1008  1.6   msaitoh  **/
   1009  1.6   msaitoh s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1010  1.6   msaitoh {
   1011  1.6   msaitoh 	u16 link_status;
   1012  1.6   msaitoh 
   1013  1.6   msaitoh 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1014  1.6   msaitoh 
   1015  1.6   msaitoh 	/* Get the negotiated link width and speed from PCI config space */
   1016  1.6   msaitoh 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1017  1.6   msaitoh 
   1018  1.6   msaitoh 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1019  1.1    dyoung 
   1020  1.1    dyoung 	return IXGBE_SUCCESS;
   1021  1.1    dyoung }
   1022  1.1    dyoung 
   1023  1.1    dyoung /**
   1024  1.1    dyoung  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1025  1.1    dyoung  *  @hw: pointer to the HW structure
   1026  1.1    dyoung  *
   1027  1.1    dyoung  *  Determines the LAN function id by reading memory-mapped registers
   1028  1.1    dyoung  *  and swaps the port value if requested.
   1029  1.1    dyoung  **/
   1030  1.1    dyoung void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1031  1.1    dyoung {
   1032  1.1    dyoung 	struct ixgbe_bus_info *bus = &hw->bus;
   1033  1.1    dyoung 	u32 reg;
   1034  1.1    dyoung 
   1035  1.1    dyoung 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1036  1.1    dyoung 
   1037  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1038  1.1    dyoung 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1039  1.1    dyoung 	bus->lan_id = bus->func;
   1040  1.1    dyoung 
   1041  1.1    dyoung 	/* check for a port swap */
   1042  1.1    dyoung 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   1043  1.1    dyoung 	if (reg & IXGBE_FACTPS_LFS)
   1044  1.1    dyoung 		bus->func ^= 0x1;
   1045  1.1    dyoung }
   1046  1.1    dyoung 
   1047  1.1    dyoung /**
   1048  1.1    dyoung  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1049  1.1    dyoung  *  @hw: pointer to hardware structure
   1050  1.1    dyoung  *
   1051  1.1    dyoung  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1052  1.1    dyoung  *  disables transmit and receive units. The adapter_stopped flag is used by
   1053  1.1    dyoung  *  the shared code and drivers to determine if the adapter is in a stopped
   1054  1.1    dyoung  *  state and should not touch the hardware.
   1055  1.1    dyoung  **/
   1056  1.1    dyoung s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1057  1.1    dyoung {
   1058  1.1    dyoung 	u32 reg_val;
   1059  1.1    dyoung 	u16 i;
   1060  1.1    dyoung 
   1061  1.1    dyoung 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1062  1.1    dyoung 
   1063  1.1    dyoung 	/*
   1064  1.1    dyoung 	 * Set the adapter_stopped flag so other driver functions stop touching
   1065  1.1    dyoung 	 * the hardware
   1066  1.1    dyoung 	 */
   1067  1.1    dyoung 	hw->adapter_stopped = TRUE;
   1068  1.1    dyoung 
   1069  1.1    dyoung 	/* Disable the receive unit */
   1070  1.8   msaitoh 	ixgbe_disable_rx(hw);
   1071  1.1    dyoung 
   1072  1.3   msaitoh 	/* Clear interrupt mask to stop interrupts from being generated */
   1073  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1074  1.1    dyoung 
   1075  1.3   msaitoh 	/* Clear any pending interrupts, flush previous writes */
   1076  1.1    dyoung 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1077  1.1    dyoung 
   1078  1.1    dyoung 	/* Disable the transmit unit.  Each queue must be disabled. */
   1079  1.3   msaitoh 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1080  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1081  1.3   msaitoh 
   1082  1.3   msaitoh 	/* Disable the receive unit by stopping each queue */
   1083  1.3   msaitoh 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1084  1.3   msaitoh 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1085  1.3   msaitoh 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1086  1.3   msaitoh 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1087  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1088  1.1    dyoung 	}
   1089  1.1    dyoung 
   1090  1.3   msaitoh 	/* flush all queues disables */
   1091  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   1092  1.3   msaitoh 	msec_delay(2);
   1093  1.3   msaitoh 
   1094  1.1    dyoung 	/*
   1095  1.9   msaitoh 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1096  1.1    dyoung 	 * access and verify no pending requests
   1097  1.1    dyoung 	 */
   1098  1.3   msaitoh 	return ixgbe_disable_pcie_master(hw);
   1099  1.1    dyoung }
   1100  1.1    dyoung 
   1101  1.1    dyoung /**
   1102  1.1    dyoung  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1103  1.1    dyoung  *  @hw: pointer to hardware structure
   1104  1.1    dyoung  *  @index: led number to turn on
   1105  1.1    dyoung  **/
   1106  1.1    dyoung s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1107  1.1    dyoung {
   1108  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1109  1.1    dyoung 
   1110  1.1    dyoung 	DEBUGFUNC("ixgbe_led_on_generic");
   1111  1.1    dyoung 
   1112  1.1    dyoung 	/* To turn on the LED, set mode to ON. */
   1113  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1114  1.1    dyoung 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1115  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1116  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1117  1.1    dyoung 
   1118  1.1    dyoung 	return IXGBE_SUCCESS;
   1119  1.1    dyoung }
   1120  1.1    dyoung 
   1121  1.1    dyoung /**
   1122  1.1    dyoung  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1123  1.1    dyoung  *  @hw: pointer to hardware structure
   1124  1.1    dyoung  *  @index: led number to turn off
   1125  1.1    dyoung  **/
   1126  1.1    dyoung s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1127  1.1    dyoung {
   1128  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1129  1.1    dyoung 
   1130  1.1    dyoung 	DEBUGFUNC("ixgbe_led_off_generic");
   1131  1.1    dyoung 
   1132  1.1    dyoung 	/* To turn off the LED, set mode to OFF. */
   1133  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1134  1.1    dyoung 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1135  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1136  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1137  1.1    dyoung 
   1138  1.1    dyoung 	return IXGBE_SUCCESS;
   1139  1.1    dyoung }
   1140  1.1    dyoung 
   1141  1.1    dyoung /**
   1142  1.1    dyoung  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1143  1.1    dyoung  *  @hw: pointer to hardware structure
   1144  1.1    dyoung  *
   1145  1.1    dyoung  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1146  1.1    dyoung  *  ixgbe_hw struct in order to set up EEPROM access.
   1147  1.1    dyoung  **/
   1148  1.1    dyoung s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1149  1.1    dyoung {
   1150  1.1    dyoung 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1151  1.1    dyoung 	u32 eec;
   1152  1.1    dyoung 	u16 eeprom_size;
   1153  1.1    dyoung 
   1154  1.1    dyoung 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1155  1.1    dyoung 
   1156  1.1    dyoung 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1157  1.1    dyoung 		eeprom->type = ixgbe_eeprom_none;
   1158  1.1    dyoung 		/* Set default semaphore delay to 10ms which is a well
   1159  1.1    dyoung 		 * tested value */
   1160  1.1    dyoung 		eeprom->semaphore_delay = 10;
   1161  1.3   msaitoh 		/* Clear EEPROM page size, it will be initialized as needed */
   1162  1.3   msaitoh 		eeprom->word_page_size = 0;
   1163  1.1    dyoung 
   1164  1.1    dyoung 		/*
   1165  1.1    dyoung 		 * Check for EEPROM present first.
   1166  1.1    dyoung 		 * If not present leave as none
   1167  1.1    dyoung 		 */
   1168  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1169  1.1    dyoung 		if (eec & IXGBE_EEC_PRES) {
   1170  1.1    dyoung 			eeprom->type = ixgbe_eeprom_spi;
   1171  1.1    dyoung 
   1172  1.1    dyoung 			/*
   1173  1.1    dyoung 			 * SPI EEPROM is assumed here.  This code would need to
   1174  1.1    dyoung 			 * change if a future EEPROM is not SPI.
   1175  1.1    dyoung 			 */
   1176  1.1    dyoung 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1177  1.3   msaitoh 					    IXGBE_EEC_SIZE_SHIFT);
   1178  1.1    dyoung 			eeprom->word_size = 1 << (eeprom_size +
   1179  1.3   msaitoh 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1180  1.1    dyoung 		}
   1181  1.1    dyoung 
   1182  1.1    dyoung 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1183  1.1    dyoung 			eeprom->address_bits = 16;
   1184  1.1    dyoung 		else
   1185  1.1    dyoung 			eeprom->address_bits = 8;
   1186  1.1    dyoung 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1187  1.3   msaitoh 			  "%d\n", eeprom->type, eeprom->word_size,
   1188  1.3   msaitoh 			  eeprom->address_bits);
   1189  1.1    dyoung 	}
   1190  1.1    dyoung 
   1191  1.1    dyoung 	return IXGBE_SUCCESS;
   1192  1.1    dyoung }
   1193  1.1    dyoung 
   1194  1.1    dyoung /**
   1195  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1196  1.3   msaitoh  *  @hw: pointer to hardware structure
   1197  1.3   msaitoh  *  @offset: offset within the EEPROM to write
   1198  1.3   msaitoh  *  @words: number of word(s)
   1199  1.3   msaitoh  *  @data: 16 bit word(s) to write to EEPROM
   1200  1.3   msaitoh  *
   1201  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1202  1.3   msaitoh  **/
   1203  1.3   msaitoh s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1204  1.3   msaitoh 					       u16 words, u16 *data)
   1205  1.3   msaitoh {
   1206  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1207  1.3   msaitoh 	u16 i, count;
   1208  1.3   msaitoh 
   1209  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1210  1.3   msaitoh 
   1211  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1212  1.3   msaitoh 
   1213  1.3   msaitoh 	if (words == 0) {
   1214  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1215  1.3   msaitoh 		goto out;
   1216  1.3   msaitoh 	}
   1217  1.3   msaitoh 
   1218  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1219  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1220  1.3   msaitoh 		goto out;
   1221  1.3   msaitoh 	}
   1222  1.3   msaitoh 
   1223  1.3   msaitoh 	/*
   1224  1.3   msaitoh 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1225  1.3   msaitoh 	 * initialization. It is worth to do that when we write large buffer.
   1226  1.3   msaitoh 	 */
   1227  1.3   msaitoh 	if ((hw->eeprom.word_page_size == 0) &&
   1228  1.3   msaitoh 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1229  1.3   msaitoh 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1230  1.3   msaitoh 
   1231  1.3   msaitoh 	/*
   1232  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1233  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1234  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1235  1.3   msaitoh 	 */
   1236  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1237  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1238  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1239  1.3   msaitoh 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1240  1.3   msaitoh 							    count, &data[i]);
   1241  1.3   msaitoh 
   1242  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1243  1.3   msaitoh 			break;
   1244  1.3   msaitoh 	}
   1245  1.3   msaitoh 
   1246  1.3   msaitoh out:
   1247  1.3   msaitoh 	return status;
   1248  1.3   msaitoh }
   1249  1.3   msaitoh 
   1250  1.3   msaitoh /**
   1251  1.3   msaitoh  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1252  1.3   msaitoh  *  @hw: pointer to hardware structure
   1253  1.3   msaitoh  *  @offset: offset within the EEPROM to be written to
   1254  1.3   msaitoh  *  @words: number of word(s)
   1255  1.3   msaitoh  *  @data: 16 bit word(s) to be written to the EEPROM
   1256  1.3   msaitoh  *
   1257  1.3   msaitoh  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1258  1.3   msaitoh  *  EEPROM will most likely contain an invalid checksum.
   1259  1.3   msaitoh  **/
   1260  1.3   msaitoh static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1261  1.3   msaitoh 					      u16 words, u16 *data)
   1262  1.3   msaitoh {
   1263  1.3   msaitoh 	s32 status;
   1264  1.3   msaitoh 	u16 word;
   1265  1.3   msaitoh 	u16 page_size;
   1266  1.3   msaitoh 	u16 i;
   1267  1.3   msaitoh 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1268  1.3   msaitoh 
   1269  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1270  1.3   msaitoh 
   1271  1.3   msaitoh 	/* Prepare the EEPROM for writing  */
   1272  1.3   msaitoh 	status = ixgbe_acquire_eeprom(hw);
   1273  1.3   msaitoh 
   1274  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1275  1.3   msaitoh 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1276  1.3   msaitoh 			ixgbe_release_eeprom(hw);
   1277  1.3   msaitoh 			status = IXGBE_ERR_EEPROM;
   1278  1.3   msaitoh 		}
   1279  1.3   msaitoh 	}
   1280  1.3   msaitoh 
   1281  1.3   msaitoh 	if (status == IXGBE_SUCCESS) {
   1282  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1283  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1284  1.3   msaitoh 
   1285  1.3   msaitoh 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1286  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw,
   1287  1.3   msaitoh 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1288  1.3   msaitoh 						   IXGBE_EEPROM_OPCODE_BITS);
   1289  1.3   msaitoh 
   1290  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1291  1.3   msaitoh 
   1292  1.3   msaitoh 			/*
   1293  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1294  1.3   msaitoh 			 * in the opcode
   1295  1.3   msaitoh 			 */
   1296  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1297  1.3   msaitoh 			    ((offset + i) >= 128))
   1298  1.3   msaitoh 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1299  1.3   msaitoh 
   1300  1.3   msaitoh 			/* Send the Write command (8-bit opcode + addr) */
   1301  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1302  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1303  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1304  1.3   msaitoh 						    hw->eeprom.address_bits);
   1305  1.3   msaitoh 
   1306  1.3   msaitoh 			page_size = hw->eeprom.word_page_size;
   1307  1.3   msaitoh 
   1308  1.3   msaitoh 			/* Send the data in burst via SPI*/
   1309  1.3   msaitoh 			do {
   1310  1.3   msaitoh 				word = data[i];
   1311  1.3   msaitoh 				word = (word >> 8) | (word << 8);
   1312  1.3   msaitoh 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1313  1.3   msaitoh 
   1314  1.3   msaitoh 				if (page_size == 0)
   1315  1.3   msaitoh 					break;
   1316  1.3   msaitoh 
   1317  1.3   msaitoh 				/* do not wrap around page */
   1318  1.3   msaitoh 				if (((offset + i) & (page_size - 1)) ==
   1319  1.3   msaitoh 				    (page_size - 1))
   1320  1.3   msaitoh 					break;
   1321  1.3   msaitoh 			} while (++i < words);
   1322  1.3   msaitoh 
   1323  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1324  1.3   msaitoh 			msec_delay(10);
   1325  1.3   msaitoh 		}
   1326  1.3   msaitoh 		/* Done with writing - release the EEPROM */
   1327  1.3   msaitoh 		ixgbe_release_eeprom(hw);
   1328  1.3   msaitoh 	}
   1329  1.3   msaitoh 
   1330  1.3   msaitoh 	return status;
   1331  1.3   msaitoh }
   1332  1.3   msaitoh 
   1333  1.3   msaitoh /**
   1334  1.1    dyoung  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1335  1.1    dyoung  *  @hw: pointer to hardware structure
   1336  1.1    dyoung  *  @offset: offset within the EEPROM to be written to
   1337  1.1    dyoung  *  @data: 16 bit word to be written to the EEPROM
   1338  1.1    dyoung  *
   1339  1.1    dyoung  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1340  1.1    dyoung  *  EEPROM will most likely contain an invalid checksum.
   1341  1.1    dyoung  **/
   1342  1.1    dyoung s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1343  1.1    dyoung {
   1344  1.1    dyoung 	s32 status;
   1345  1.1    dyoung 
   1346  1.1    dyoung 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1347  1.1    dyoung 
   1348  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1349  1.1    dyoung 
   1350  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1351  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1352  1.1    dyoung 		goto out;
   1353  1.1    dyoung 	}
   1354  1.1    dyoung 
   1355  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1356  1.3   msaitoh 
   1357  1.3   msaitoh out:
   1358  1.3   msaitoh 	return status;
   1359  1.3   msaitoh }
   1360  1.3   msaitoh 
   1361  1.3   msaitoh /**
   1362  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1363  1.3   msaitoh  *  @hw: pointer to hardware structure
   1364  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1365  1.3   msaitoh  *  @data: read 16 bit words(s) from EEPROM
   1366  1.3   msaitoh  *  @words: number of word(s)
   1367  1.3   msaitoh  *
   1368  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1369  1.3   msaitoh  **/
   1370  1.3   msaitoh s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1371  1.3   msaitoh 					      u16 words, u16 *data)
   1372  1.3   msaitoh {
   1373  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1374  1.3   msaitoh 	u16 i, count;
   1375  1.3   msaitoh 
   1376  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1377  1.3   msaitoh 
   1378  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1379  1.3   msaitoh 
   1380  1.3   msaitoh 	if (words == 0) {
   1381  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1382  1.3   msaitoh 		goto out;
   1383  1.3   msaitoh 	}
   1384  1.3   msaitoh 
   1385  1.3   msaitoh 	if (offset + words > hw->eeprom.word_size) {
   1386  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1387  1.3   msaitoh 		goto out;
   1388  1.3   msaitoh 	}
   1389  1.3   msaitoh 
   1390  1.3   msaitoh 	/*
   1391  1.3   msaitoh 	 * We cannot hold synchronization semaphores for too long
   1392  1.3   msaitoh 	 * to avoid other entity starvation. However it is more efficient
   1393  1.3   msaitoh 	 * to read in bursts than synchronizing access for each word.
   1394  1.3   msaitoh 	 */
   1395  1.3   msaitoh 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1396  1.3   msaitoh 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1397  1.3   msaitoh 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1398  1.3   msaitoh 
   1399  1.3   msaitoh 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1400  1.3   msaitoh 							   count, &data[i]);
   1401  1.3   msaitoh 
   1402  1.3   msaitoh 		if (status != IXGBE_SUCCESS)
   1403  1.3   msaitoh 			break;
   1404  1.3   msaitoh 	}
   1405  1.3   msaitoh 
   1406  1.3   msaitoh out:
   1407  1.3   msaitoh 	return status;
   1408  1.3   msaitoh }
   1409  1.3   msaitoh 
   1410  1.3   msaitoh /**
   1411  1.3   msaitoh  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1412  1.3   msaitoh  *  @hw: pointer to hardware structure
   1413  1.3   msaitoh  *  @offset: offset within the EEPROM to be read
   1414  1.3   msaitoh  *  @words: number of word(s)
   1415  1.3   msaitoh  *  @data: read 16 bit word(s) from EEPROM
   1416  1.3   msaitoh  *
   1417  1.3   msaitoh  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1418  1.3   msaitoh  **/
   1419  1.3   msaitoh static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1420  1.3   msaitoh 					     u16 words, u16 *data)
   1421  1.3   msaitoh {
   1422  1.3   msaitoh 	s32 status;
   1423  1.3   msaitoh 	u16 word_in;
   1424  1.3   msaitoh 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1425  1.3   msaitoh 	u16 i;
   1426  1.3   msaitoh 
   1427  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1428  1.3   msaitoh 
   1429  1.3   msaitoh 	/* Prepare the EEPROM for reading  */
   1430  1.1    dyoung 	status = ixgbe_acquire_eeprom(hw);
   1431  1.1    dyoung 
   1432  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1433  1.1    dyoung 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1434  1.1    dyoung 			ixgbe_release_eeprom(hw);
   1435  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1436  1.1    dyoung 		}
   1437  1.1    dyoung 	}
   1438  1.1    dyoung 
   1439  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1440  1.3   msaitoh 		for (i = 0; i < words; i++) {
   1441  1.3   msaitoh 			ixgbe_standby_eeprom(hw);
   1442  1.3   msaitoh 			/*
   1443  1.3   msaitoh 			 * Some SPI eeproms use the 8th address bit embedded
   1444  1.3   msaitoh 			 * in the opcode
   1445  1.3   msaitoh 			 */
   1446  1.3   msaitoh 			if ((hw->eeprom.address_bits == 8) &&
   1447  1.3   msaitoh 			    ((offset + i) >= 128))
   1448  1.3   msaitoh 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1449  1.3   msaitoh 
   1450  1.3   msaitoh 			/* Send the READ command (opcode + addr) */
   1451  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1452  1.3   msaitoh 						    IXGBE_EEPROM_OPCODE_BITS);
   1453  1.3   msaitoh 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1454  1.3   msaitoh 						    hw->eeprom.address_bits);
   1455  1.3   msaitoh 
   1456  1.3   msaitoh 			/* Read the data. */
   1457  1.3   msaitoh 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1458  1.3   msaitoh 			data[i] = (word_in >> 8) | (word_in << 8);
   1459  1.3   msaitoh 		}
   1460  1.1    dyoung 
   1461  1.3   msaitoh 		/* End this read operation */
   1462  1.1    dyoung 		ixgbe_release_eeprom(hw);
   1463  1.1    dyoung 	}
   1464  1.1    dyoung 
   1465  1.1    dyoung 	return status;
   1466  1.1    dyoung }
   1467  1.1    dyoung 
   1468  1.1    dyoung /**
   1469  1.1    dyoung  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1470  1.1    dyoung  *  @hw: pointer to hardware structure
   1471  1.1    dyoung  *  @offset: offset within the EEPROM to be read
   1472  1.1    dyoung  *  @data: read 16 bit value from EEPROM
   1473  1.1    dyoung  *
   1474  1.1    dyoung  *  Reads 16 bit value from EEPROM through bit-bang method
   1475  1.1    dyoung  **/
   1476  1.1    dyoung s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1477  1.3   msaitoh 				       u16 *data)
   1478  1.1    dyoung {
   1479  1.1    dyoung 	s32 status;
   1480  1.1    dyoung 
   1481  1.1    dyoung 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1482  1.1    dyoung 
   1483  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1484  1.1    dyoung 
   1485  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1486  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1487  1.1    dyoung 		goto out;
   1488  1.1    dyoung 	}
   1489  1.1    dyoung 
   1490  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1491  1.3   msaitoh 
   1492  1.3   msaitoh out:
   1493  1.3   msaitoh 	return status;
   1494  1.3   msaitoh }
   1495  1.3   msaitoh 
   1496  1.3   msaitoh /**
   1497  1.3   msaitoh  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1498  1.3   msaitoh  *  @hw: pointer to hardware structure
   1499  1.3   msaitoh  *  @offset: offset of word in the EEPROM to read
   1500  1.3   msaitoh  *  @words: number of word(s)
   1501  1.3   msaitoh  *  @data: 16 bit word(s) from the EEPROM
   1502  1.3   msaitoh  *
   1503  1.3   msaitoh  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1504  1.3   msaitoh  **/
   1505  1.3   msaitoh s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1506  1.3   msaitoh 				   u16 words, u16 *data)
   1507  1.3   msaitoh {
   1508  1.3   msaitoh 	u32 eerd;
   1509  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1510  1.3   msaitoh 	u32 i;
   1511  1.3   msaitoh 
   1512  1.3   msaitoh 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1513  1.3   msaitoh 
   1514  1.3   msaitoh 	hw->eeprom.ops.init_params(hw);
   1515  1.3   msaitoh 
   1516  1.3   msaitoh 	if (words == 0) {
   1517  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1518  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1519  1.3   msaitoh 		goto out;
   1520  1.3   msaitoh 	}
   1521  1.3   msaitoh 
   1522  1.3   msaitoh 	if (offset >= hw->eeprom.word_size) {
   1523  1.3   msaitoh 		status = IXGBE_ERR_EEPROM;
   1524  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1525  1.3   msaitoh 		goto out;
   1526  1.3   msaitoh 	}
   1527  1.3   msaitoh 
   1528  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1529  1.5   msaitoh 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1530  1.3   msaitoh 		       IXGBE_EEPROM_RW_REG_START;
   1531  1.3   msaitoh 
   1532  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1533  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1534  1.1    dyoung 
   1535  1.3   msaitoh 		if (status == IXGBE_SUCCESS) {
   1536  1.3   msaitoh 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1537  1.3   msaitoh 				   IXGBE_EEPROM_RW_REG_DATA);
   1538  1.3   msaitoh 		} else {
   1539  1.3   msaitoh 			DEBUGOUT("Eeprom read timed out\n");
   1540  1.3   msaitoh 			goto out;
   1541  1.1    dyoung 		}
   1542  1.1    dyoung 	}
   1543  1.3   msaitoh out:
   1544  1.3   msaitoh 	return status;
   1545  1.3   msaitoh }
   1546  1.1    dyoung 
   1547  1.3   msaitoh /**
   1548  1.3   msaitoh  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1549  1.3   msaitoh  *  @hw: pointer to hardware structure
   1550  1.3   msaitoh  *  @offset: offset within the EEPROM to be used as a scratch pad
   1551  1.3   msaitoh  *
   1552  1.3   msaitoh  *  Discover EEPROM page size by writing marching data at given offset.
   1553  1.3   msaitoh  *  This function is called only when we are writing a new large buffer
   1554  1.3   msaitoh  *  at given offset so the data would be overwritten anyway.
   1555  1.3   msaitoh  **/
   1556  1.3   msaitoh static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1557  1.3   msaitoh 						 u16 offset)
   1558  1.3   msaitoh {
   1559  1.3   msaitoh 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1560  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1561  1.3   msaitoh 	u16 i;
   1562  1.3   msaitoh 
   1563  1.3   msaitoh 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1564  1.3   msaitoh 
   1565  1.3   msaitoh 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1566  1.3   msaitoh 		data[i] = i;
   1567  1.1    dyoung 
   1568  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1569  1.3   msaitoh 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1570  1.3   msaitoh 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1571  1.3   msaitoh 	hw->eeprom.word_page_size = 0;
   1572  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1573  1.3   msaitoh 		goto out;
   1574  1.1    dyoung 
   1575  1.3   msaitoh 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1576  1.3   msaitoh 	if (status != IXGBE_SUCCESS)
   1577  1.3   msaitoh 		goto out;
   1578  1.1    dyoung 
   1579  1.3   msaitoh 	/*
   1580  1.3   msaitoh 	 * When writing in burst more than the actual page size
   1581  1.3   msaitoh 	 * EEPROM address wraps around current page.
   1582  1.3   msaitoh 	 */
   1583  1.3   msaitoh 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1584  1.1    dyoung 
   1585  1.3   msaitoh 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1586  1.3   msaitoh 		  hw->eeprom.word_page_size);
   1587  1.1    dyoung out:
   1588  1.1    dyoung 	return status;
   1589  1.1    dyoung }
   1590  1.1    dyoung 
   1591  1.1    dyoung /**
   1592  1.1    dyoung  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1593  1.1    dyoung  *  @hw: pointer to hardware structure
   1594  1.1    dyoung  *  @offset: offset of  word in the EEPROM to read
   1595  1.1    dyoung  *  @data: word read from the EEPROM
   1596  1.1    dyoung  *
   1597  1.1    dyoung  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1598  1.1    dyoung  **/
   1599  1.1    dyoung s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1600  1.1    dyoung {
   1601  1.3   msaitoh 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1602  1.3   msaitoh }
   1603  1.3   msaitoh 
   1604  1.3   msaitoh /**
   1605  1.3   msaitoh  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1606  1.3   msaitoh  *  @hw: pointer to hardware structure
   1607  1.3   msaitoh  *  @offset: offset of  word in the EEPROM to write
   1608  1.3   msaitoh  *  @words: number of word(s)
   1609  1.3   msaitoh  *  @data: word(s) write to the EEPROM
   1610  1.3   msaitoh  *
   1611  1.3   msaitoh  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1612  1.3   msaitoh  **/
   1613  1.3   msaitoh s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1614  1.3   msaitoh 				    u16 words, u16 *data)
   1615  1.3   msaitoh {
   1616  1.3   msaitoh 	u32 eewr;
   1617  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   1618  1.3   msaitoh 	u16 i;
   1619  1.1    dyoung 
   1620  1.3   msaitoh 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1621  1.1    dyoung 
   1622  1.1    dyoung 	hw->eeprom.ops.init_params(hw);
   1623  1.1    dyoung 
   1624  1.3   msaitoh 	if (words == 0) {
   1625  1.3   msaitoh 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1626  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1627  1.3   msaitoh 		goto out;
   1628  1.3   msaitoh 	}
   1629  1.3   msaitoh 
   1630  1.1    dyoung 	if (offset >= hw->eeprom.word_size) {
   1631  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1632  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1633  1.1    dyoung 		goto out;
   1634  1.1    dyoung 	}
   1635  1.1    dyoung 
   1636  1.3   msaitoh 	for (i = 0; i < words; i++) {
   1637  1.3   msaitoh 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1638  1.3   msaitoh 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1639  1.3   msaitoh 			IXGBE_EEPROM_RW_REG_START;
   1640  1.3   msaitoh 
   1641  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1642  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1643  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1644  1.3   msaitoh 			goto out;
   1645  1.3   msaitoh 		}
   1646  1.1    dyoung 
   1647  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1648  1.1    dyoung 
   1649  1.3   msaitoh 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1650  1.3   msaitoh 		if (status != IXGBE_SUCCESS) {
   1651  1.3   msaitoh 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1652  1.3   msaitoh 			goto out;
   1653  1.3   msaitoh 		}
   1654  1.3   msaitoh 	}
   1655  1.1    dyoung 
   1656  1.1    dyoung out:
   1657  1.1    dyoung 	return status;
   1658  1.1    dyoung }
   1659  1.1    dyoung 
   1660  1.1    dyoung /**
   1661  1.1    dyoung  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1662  1.1    dyoung  *  @hw: pointer to hardware structure
   1663  1.1    dyoung  *  @offset: offset of  word in the EEPROM to write
   1664  1.1    dyoung  *  @data: word write to the EEPROM
   1665  1.1    dyoung  *
   1666  1.1    dyoung  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1667  1.1    dyoung  **/
   1668  1.1    dyoung s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1669  1.1    dyoung {
   1670  1.3   msaitoh 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1671  1.1    dyoung }
   1672  1.1    dyoung 
   1673  1.1    dyoung /**
   1674  1.1    dyoung  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1675  1.1    dyoung  *  @hw: pointer to hardware structure
   1676  1.1    dyoung  *  @ee_reg: EEPROM flag for polling
   1677  1.1    dyoung  *
   1678  1.1    dyoung  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1679  1.1    dyoung  *  read or write is done respectively.
   1680  1.1    dyoung  **/
   1681  1.1    dyoung s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1682  1.1    dyoung {
   1683  1.1    dyoung 	u32 i;
   1684  1.1    dyoung 	u32 reg;
   1685  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1686  1.1    dyoung 
   1687  1.1    dyoung 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1688  1.1    dyoung 
   1689  1.1    dyoung 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1690  1.1    dyoung 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1691  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1692  1.1    dyoung 		else
   1693  1.1    dyoung 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1694  1.1    dyoung 
   1695  1.1    dyoung 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1696  1.1    dyoung 			status = IXGBE_SUCCESS;
   1697  1.1    dyoung 			break;
   1698  1.1    dyoung 		}
   1699  1.1    dyoung 		usec_delay(5);
   1700  1.1    dyoung 	}
   1701  1.6   msaitoh 
   1702  1.6   msaitoh 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1703  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1704  1.6   msaitoh 			     "EEPROM read/write done polling timed out");
   1705  1.6   msaitoh 
   1706  1.1    dyoung 	return status;
   1707  1.1    dyoung }
   1708  1.1    dyoung 
   1709  1.1    dyoung /**
   1710  1.1    dyoung  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1711  1.1    dyoung  *  @hw: pointer to hardware structure
   1712  1.1    dyoung  *
   1713  1.1    dyoung  *  Prepares EEPROM for access using bit-bang method. This function should
   1714  1.1    dyoung  *  be called before issuing a command to the EEPROM.
   1715  1.1    dyoung  **/
   1716  1.1    dyoung static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1717  1.1    dyoung {
   1718  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1719  1.1    dyoung 	u32 eec;
   1720  1.1    dyoung 	u32 i;
   1721  1.1    dyoung 
   1722  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1723  1.1    dyoung 
   1724  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1725  1.3   msaitoh 	    != IXGBE_SUCCESS)
   1726  1.1    dyoung 		status = IXGBE_ERR_SWFW_SYNC;
   1727  1.1    dyoung 
   1728  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1729  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1730  1.1    dyoung 
   1731  1.1    dyoung 		/* Request EEPROM Access */
   1732  1.1    dyoung 		eec |= IXGBE_EEC_REQ;
   1733  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1734  1.1    dyoung 
   1735  1.1    dyoung 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1736  1.1    dyoung 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1737  1.1    dyoung 			if (eec & IXGBE_EEC_GNT)
   1738  1.1    dyoung 				break;
   1739  1.1    dyoung 			usec_delay(5);
   1740  1.1    dyoung 		}
   1741  1.1    dyoung 
   1742  1.1    dyoung 		/* Release if grant not acquired */
   1743  1.1    dyoung 		if (!(eec & IXGBE_EEC_GNT)) {
   1744  1.1    dyoung 			eec &= ~IXGBE_EEC_REQ;
   1745  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1746  1.1    dyoung 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1747  1.1    dyoung 
   1748  1.3   msaitoh 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1749  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1750  1.1    dyoung 		}
   1751  1.1    dyoung 
   1752  1.1    dyoung 		/* Setup EEPROM for Read/Write */
   1753  1.1    dyoung 		if (status == IXGBE_SUCCESS) {
   1754  1.1    dyoung 			/* Clear CS and SK */
   1755  1.1    dyoung 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1756  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1757  1.1    dyoung 			IXGBE_WRITE_FLUSH(hw);
   1758  1.1    dyoung 			usec_delay(1);
   1759  1.1    dyoung 		}
   1760  1.1    dyoung 	}
   1761  1.1    dyoung 	return status;
   1762  1.1    dyoung }
   1763  1.1    dyoung 
   1764  1.1    dyoung /**
   1765  1.1    dyoung  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1766  1.1    dyoung  *  @hw: pointer to hardware structure
   1767  1.1    dyoung  *
   1768  1.1    dyoung  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1769  1.1    dyoung  **/
   1770  1.1    dyoung static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1771  1.1    dyoung {
   1772  1.1    dyoung 	s32 status = IXGBE_ERR_EEPROM;
   1773  1.1    dyoung 	u32 timeout = 2000;
   1774  1.1    dyoung 	u32 i;
   1775  1.1    dyoung 	u32 swsm;
   1776  1.1    dyoung 
   1777  1.1    dyoung 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1778  1.1    dyoung 
   1779  1.1    dyoung 
   1780  1.1    dyoung 	/* Get SMBI software semaphore between device drivers first */
   1781  1.1    dyoung 	for (i = 0; i < timeout; i++) {
   1782  1.1    dyoung 		/*
   1783  1.1    dyoung 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1784  1.1    dyoung 		 * set and we have the semaphore
   1785  1.1    dyoung 		 */
   1786  1.1    dyoung 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1787  1.1    dyoung 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1788  1.1    dyoung 			status = IXGBE_SUCCESS;
   1789  1.1    dyoung 			break;
   1790  1.1    dyoung 		}
   1791  1.1    dyoung 		usec_delay(50);
   1792  1.1    dyoung 	}
   1793  1.1    dyoung 
   1794  1.3   msaitoh 	if (i == timeout) {
   1795  1.3   msaitoh 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1796  1.3   msaitoh 			 "not granted.\n");
   1797  1.3   msaitoh 		/*
   1798  1.3   msaitoh 		 * this release is particularly important because our attempts
   1799  1.3   msaitoh 		 * above to get the semaphore may have succeeded, and if there
   1800  1.3   msaitoh 		 * was a timeout, we should unconditionally clear the semaphore
   1801  1.3   msaitoh 		 * bits to free the driver to make progress
   1802  1.3   msaitoh 		 */
   1803  1.3   msaitoh 		ixgbe_release_eeprom_semaphore(hw);
   1804  1.3   msaitoh 
   1805  1.3   msaitoh 		usec_delay(50);
   1806  1.3   msaitoh 		/*
   1807  1.3   msaitoh 		 * one last try
   1808  1.3   msaitoh 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1809  1.3   msaitoh 		 * set and we have the semaphore
   1810  1.3   msaitoh 		 */
   1811  1.3   msaitoh 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1812  1.3   msaitoh 		if (!(swsm & IXGBE_SWSM_SMBI))
   1813  1.3   msaitoh 			status = IXGBE_SUCCESS;
   1814  1.3   msaitoh 	}
   1815  1.3   msaitoh 
   1816  1.1    dyoung 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1817  1.1    dyoung 	if (status == IXGBE_SUCCESS) {
   1818  1.1    dyoung 		for (i = 0; i < timeout; i++) {
   1819  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1820  1.1    dyoung 
   1821  1.1    dyoung 			/* Set the SW EEPROM semaphore bit to request access */
   1822  1.1    dyoung 			swsm |= IXGBE_SWSM_SWESMBI;
   1823  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1824  1.1    dyoung 
   1825  1.1    dyoung 			/*
   1826  1.1    dyoung 			 * If we set the bit successfully then we got the
   1827  1.1    dyoung 			 * semaphore.
   1828  1.1    dyoung 			 */
   1829  1.1    dyoung 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1830  1.1    dyoung 			if (swsm & IXGBE_SWSM_SWESMBI)
   1831  1.1    dyoung 				break;
   1832  1.1    dyoung 
   1833  1.1    dyoung 			usec_delay(50);
   1834  1.1    dyoung 		}
   1835  1.1    dyoung 
   1836  1.1    dyoung 		/*
   1837  1.1    dyoung 		 * Release semaphores and return error if SW EEPROM semaphore
   1838  1.1    dyoung 		 * was not granted because we don't have access to the EEPROM
   1839  1.1    dyoung 		 */
   1840  1.1    dyoung 		if (i >= timeout) {
   1841  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1842  1.6   msaitoh 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1843  1.1    dyoung 			ixgbe_release_eeprom_semaphore(hw);
   1844  1.1    dyoung 			status = IXGBE_ERR_EEPROM;
   1845  1.1    dyoung 		}
   1846  1.1    dyoung 	} else {
   1847  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1848  1.6   msaitoh 			     "Software semaphore SMBI between device drivers "
   1849  1.6   msaitoh 			     "not granted.\n");
   1850  1.1    dyoung 	}
   1851  1.1    dyoung 
   1852  1.1    dyoung 	return status;
   1853  1.1    dyoung }
   1854  1.1    dyoung 
   1855  1.1    dyoung /**
   1856  1.1    dyoung  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1857  1.1    dyoung  *  @hw: pointer to hardware structure
   1858  1.1    dyoung  *
   1859  1.1    dyoung  *  This function clears hardware semaphore bits.
   1860  1.1    dyoung  **/
   1861  1.1    dyoung static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1862  1.1    dyoung {
   1863  1.1    dyoung 	u32 swsm;
   1864  1.1    dyoung 
   1865  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1866  1.1    dyoung 
   1867  1.1    dyoung 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1868  1.1    dyoung 
   1869  1.1    dyoung 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1870  1.1    dyoung 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1871  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1872  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1873  1.1    dyoung }
   1874  1.1    dyoung 
   1875  1.1    dyoung /**
   1876  1.1    dyoung  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1877  1.1    dyoung  *  @hw: pointer to hardware structure
   1878  1.1    dyoung  **/
   1879  1.1    dyoung static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1880  1.1    dyoung {
   1881  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   1882  1.1    dyoung 	u16 i;
   1883  1.1    dyoung 	u8 spi_stat_reg;
   1884  1.1    dyoung 
   1885  1.1    dyoung 	DEBUGFUNC("ixgbe_ready_eeprom");
   1886  1.1    dyoung 
   1887  1.1    dyoung 	/*
   1888  1.1    dyoung 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1889  1.1    dyoung 	 * EEPROM will signal that the command has been completed by clearing
   1890  1.1    dyoung 	 * bit 0 of the internal status register.  If it's not cleared within
   1891  1.1    dyoung 	 * 5 milliseconds, then error out.
   1892  1.1    dyoung 	 */
   1893  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1894  1.1    dyoung 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1895  1.3   msaitoh 					    IXGBE_EEPROM_OPCODE_BITS);
   1896  1.1    dyoung 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1897  1.1    dyoung 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1898  1.1    dyoung 			break;
   1899  1.1    dyoung 
   1900  1.1    dyoung 		usec_delay(5);
   1901  1.1    dyoung 		ixgbe_standby_eeprom(hw);
   1902  1.1    dyoung 	};
   1903  1.1    dyoung 
   1904  1.1    dyoung 	/*
   1905  1.1    dyoung 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1906  1.1    dyoung 	 * devices (and only 0-5mSec on 5V devices)
   1907  1.1    dyoung 	 */
   1908  1.1    dyoung 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1909  1.1    dyoung 		DEBUGOUT("SPI EEPROM Status error\n");
   1910  1.1    dyoung 		status = IXGBE_ERR_EEPROM;
   1911  1.1    dyoung 	}
   1912  1.1    dyoung 
   1913  1.1    dyoung 	return status;
   1914  1.1    dyoung }
   1915  1.1    dyoung 
   1916  1.1    dyoung /**
   1917  1.1    dyoung  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1918  1.1    dyoung  *  @hw: pointer to hardware structure
   1919  1.1    dyoung  **/
   1920  1.1    dyoung static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1921  1.1    dyoung {
   1922  1.1    dyoung 	u32 eec;
   1923  1.1    dyoung 
   1924  1.1    dyoung 	DEBUGFUNC("ixgbe_standby_eeprom");
   1925  1.1    dyoung 
   1926  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1927  1.1    dyoung 
   1928  1.1    dyoung 	/* Toggle CS to flush commands */
   1929  1.1    dyoung 	eec |= IXGBE_EEC_CS;
   1930  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1931  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1932  1.1    dyoung 	usec_delay(1);
   1933  1.1    dyoung 	eec &= ~IXGBE_EEC_CS;
   1934  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1935  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1936  1.1    dyoung 	usec_delay(1);
   1937  1.1    dyoung }
   1938  1.1    dyoung 
   1939  1.1    dyoung /**
   1940  1.1    dyoung  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1941  1.1    dyoung  *  @hw: pointer to hardware structure
   1942  1.1    dyoung  *  @data: data to send to the EEPROM
   1943  1.1    dyoung  *  @count: number of bits to shift out
   1944  1.1    dyoung  **/
   1945  1.1    dyoung static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1946  1.3   msaitoh 					u16 count)
   1947  1.1    dyoung {
   1948  1.1    dyoung 	u32 eec;
   1949  1.1    dyoung 	u32 mask;
   1950  1.1    dyoung 	u32 i;
   1951  1.1    dyoung 
   1952  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1953  1.1    dyoung 
   1954  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1955  1.1    dyoung 
   1956  1.1    dyoung 	/*
   1957  1.1    dyoung 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1958  1.1    dyoung 	 * one bit at a time.  Determine the starting bit based on count
   1959  1.1    dyoung 	 */
   1960  1.1    dyoung 	mask = 0x01 << (count - 1);
   1961  1.1    dyoung 
   1962  1.1    dyoung 	for (i = 0; i < count; i++) {
   1963  1.1    dyoung 		/*
   1964  1.1    dyoung 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1965  1.1    dyoung 		 * "1", and then raising and then lowering the clock (the SK
   1966  1.1    dyoung 		 * bit controls the clock input to the EEPROM).  A "0" is
   1967  1.1    dyoung 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1968  1.1    dyoung 		 * raising and then lowering the clock.
   1969  1.1    dyoung 		 */
   1970  1.1    dyoung 		if (data & mask)
   1971  1.1    dyoung 			eec |= IXGBE_EEC_DI;
   1972  1.1    dyoung 		else
   1973  1.1    dyoung 			eec &= ~IXGBE_EEC_DI;
   1974  1.1    dyoung 
   1975  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1976  1.1    dyoung 		IXGBE_WRITE_FLUSH(hw);
   1977  1.1    dyoung 
   1978  1.1    dyoung 		usec_delay(1);
   1979  1.1    dyoung 
   1980  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   1981  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   1982  1.1    dyoung 
   1983  1.1    dyoung 		/*
   1984  1.1    dyoung 		 * Shift mask to signify next bit of data to shift in to the
   1985  1.1    dyoung 		 * EEPROM
   1986  1.1    dyoung 		 */
   1987  1.1    dyoung 		mask = mask >> 1;
   1988  1.1    dyoung 	};
   1989  1.1    dyoung 
   1990  1.1    dyoung 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1991  1.1    dyoung 	eec &= ~IXGBE_EEC_DI;
   1992  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1993  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   1994  1.1    dyoung }
   1995  1.1    dyoung 
   1996  1.1    dyoung /**
   1997  1.1    dyoung  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1998  1.1    dyoung  *  @hw: pointer to hardware structure
   1999  1.1    dyoung  **/
   2000  1.1    dyoung static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2001  1.1    dyoung {
   2002  1.1    dyoung 	u32 eec;
   2003  1.1    dyoung 	u32 i;
   2004  1.1    dyoung 	u16 data = 0;
   2005  1.1    dyoung 
   2006  1.1    dyoung 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2007  1.1    dyoung 
   2008  1.1    dyoung 	/*
   2009  1.1    dyoung 	 * In order to read a register from the EEPROM, we need to shift
   2010  1.1    dyoung 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2011  1.1    dyoung 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2012  1.1    dyoung 	 * the value of the "DO" bit.  During this "shifting in" process the
   2013  1.1    dyoung 	 * "DI" bit should always be clear.
   2014  1.1    dyoung 	 */
   2015  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2016  1.1    dyoung 
   2017  1.1    dyoung 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2018  1.1    dyoung 
   2019  1.1    dyoung 	for (i = 0; i < count; i++) {
   2020  1.1    dyoung 		data = data << 1;
   2021  1.1    dyoung 		ixgbe_raise_eeprom_clk(hw, &eec);
   2022  1.1    dyoung 
   2023  1.1    dyoung 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2024  1.1    dyoung 
   2025  1.1    dyoung 		eec &= ~(IXGBE_EEC_DI);
   2026  1.1    dyoung 		if (eec & IXGBE_EEC_DO)
   2027  1.1    dyoung 			data |= 1;
   2028  1.1    dyoung 
   2029  1.1    dyoung 		ixgbe_lower_eeprom_clk(hw, &eec);
   2030  1.1    dyoung 	}
   2031  1.1    dyoung 
   2032  1.1    dyoung 	return data;
   2033  1.1    dyoung }
   2034  1.1    dyoung 
   2035  1.1    dyoung /**
   2036  1.1    dyoung  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2037  1.1    dyoung  *  @hw: pointer to hardware structure
   2038  1.1    dyoung  *  @eec: EEC register's current value
   2039  1.1    dyoung  **/
   2040  1.1    dyoung static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2041  1.1    dyoung {
   2042  1.1    dyoung 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2043  1.1    dyoung 
   2044  1.1    dyoung 	/*
   2045  1.1    dyoung 	 * Raise the clock input to the EEPROM
   2046  1.1    dyoung 	 * (setting the SK bit), then delay
   2047  1.1    dyoung 	 */
   2048  1.1    dyoung 	*eec = *eec | IXGBE_EEC_SK;
   2049  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2050  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2051  1.1    dyoung 	usec_delay(1);
   2052  1.1    dyoung }
   2053  1.1    dyoung 
   2054  1.1    dyoung /**
   2055  1.1    dyoung  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2056  1.1    dyoung  *  @hw: pointer to hardware structure
   2057  1.1    dyoung  *  @eecd: EECD's current value
   2058  1.1    dyoung  **/
   2059  1.1    dyoung static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2060  1.1    dyoung {
   2061  1.1    dyoung 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2062  1.1    dyoung 
   2063  1.1    dyoung 	/*
   2064  1.1    dyoung 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2065  1.1    dyoung 	 * delay
   2066  1.1    dyoung 	 */
   2067  1.1    dyoung 	*eec = *eec & ~IXGBE_EEC_SK;
   2068  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2069  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2070  1.1    dyoung 	usec_delay(1);
   2071  1.1    dyoung }
   2072  1.1    dyoung 
   2073  1.1    dyoung /**
   2074  1.1    dyoung  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2075  1.1    dyoung  *  @hw: pointer to hardware structure
   2076  1.1    dyoung  **/
   2077  1.1    dyoung static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2078  1.1    dyoung {
   2079  1.1    dyoung 	u32 eec;
   2080  1.1    dyoung 
   2081  1.1    dyoung 	DEBUGFUNC("ixgbe_release_eeprom");
   2082  1.1    dyoung 
   2083  1.1    dyoung 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2084  1.1    dyoung 
   2085  1.1    dyoung 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2086  1.1    dyoung 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2087  1.1    dyoung 
   2088  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2089  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   2090  1.1    dyoung 
   2091  1.1    dyoung 	usec_delay(1);
   2092  1.1    dyoung 
   2093  1.1    dyoung 	/* Stop requesting EEPROM access */
   2094  1.1    dyoung 	eec &= ~IXGBE_EEC_REQ;
   2095  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2096  1.1    dyoung 
   2097  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2098  1.1    dyoung 
   2099  1.1    dyoung 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2100  1.1    dyoung 	msec_delay(hw->eeprom.semaphore_delay);
   2101  1.1    dyoung }
   2102  1.1    dyoung 
   2103  1.1    dyoung /**
   2104  1.1    dyoung  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2105  1.1    dyoung  *  @hw: pointer to hardware structure
   2106  1.8   msaitoh  *
   2107  1.8   msaitoh  *  Returns a negative error code on error, or the 16-bit checksum
   2108  1.1    dyoung  **/
   2109  1.8   msaitoh s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2110  1.1    dyoung {
   2111  1.1    dyoung 	u16 i;
   2112  1.1    dyoung 	u16 j;
   2113  1.1    dyoung 	u16 checksum = 0;
   2114  1.1    dyoung 	u16 length = 0;
   2115  1.1    dyoung 	u16 pointer = 0;
   2116  1.1    dyoung 	u16 word = 0;
   2117  1.1    dyoung 
   2118  1.1    dyoung 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2119  1.1    dyoung 
   2120  1.1    dyoung 	/* Include 0x0-0x3F in the checksum */
   2121  1.1    dyoung 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2122  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2123  1.1    dyoung 			DEBUGOUT("EEPROM read failed\n");
   2124  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2125  1.1    dyoung 		}
   2126  1.1    dyoung 		checksum += word;
   2127  1.1    dyoung 	}
   2128  1.1    dyoung 
   2129  1.1    dyoung 	/* Include all data from pointers except for the fw pointer */
   2130  1.1    dyoung 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2131  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2132  1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2133  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2134  1.8   msaitoh 		}
   2135  1.8   msaitoh 
   2136  1.8   msaitoh 		/* If the pointer seems invalid */
   2137  1.8   msaitoh 		if (pointer == 0xFFFF || pointer == 0)
   2138  1.8   msaitoh 			continue;
   2139  1.8   msaitoh 
   2140  1.8   msaitoh 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2141  1.8   msaitoh 			DEBUGOUT("EEPROM read failed\n");
   2142  1.8   msaitoh 			return IXGBE_ERR_EEPROM;
   2143  1.8   msaitoh 		}
   2144  1.8   msaitoh 
   2145  1.8   msaitoh 		if (length == 0xFFFF || length == 0)
   2146  1.8   msaitoh 			continue;
   2147  1.1    dyoung 
   2148  1.8   msaitoh 		for (j = pointer + 1; j <= pointer + length; j++) {
   2149  1.8   msaitoh 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2150  1.8   msaitoh 				DEBUGOUT("EEPROM read failed\n");
   2151  1.8   msaitoh 				return IXGBE_ERR_EEPROM;
   2152  1.1    dyoung 			}
   2153  1.8   msaitoh 			checksum += word;
   2154  1.1    dyoung 		}
   2155  1.1    dyoung 	}
   2156  1.1    dyoung 
   2157  1.1    dyoung 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2158  1.1    dyoung 
   2159  1.8   msaitoh 	return (s32)checksum;
   2160  1.1    dyoung }
   2161  1.1    dyoung 
   2162  1.1    dyoung /**
   2163  1.1    dyoung  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2164  1.1    dyoung  *  @hw: pointer to hardware structure
   2165  1.1    dyoung  *  @checksum_val: calculated checksum
   2166  1.1    dyoung  *
   2167  1.1    dyoung  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2168  1.1    dyoung  *  caller does not need checksum_val, the value can be NULL.
   2169  1.1    dyoung  **/
   2170  1.1    dyoung s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2171  1.3   msaitoh 					   u16 *checksum_val)
   2172  1.1    dyoung {
   2173  1.1    dyoung 	s32 status;
   2174  1.1    dyoung 	u16 checksum;
   2175  1.1    dyoung 	u16 read_checksum = 0;
   2176  1.1    dyoung 
   2177  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2178  1.1    dyoung 
   2179  1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2180  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2181  1.1    dyoung 	 * EEPROM read fails
   2182  1.1    dyoung 	 */
   2183  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2184  1.8   msaitoh 	if (status) {
   2185  1.8   msaitoh 		DEBUGOUT("EEPROM read failed\n");
   2186  1.8   msaitoh 		return status;
   2187  1.8   msaitoh 	}
   2188  1.1    dyoung 
   2189  1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2190  1.8   msaitoh 	if (status < 0)
   2191  1.8   msaitoh 		return status;
   2192  1.1    dyoung 
   2193  1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2194  1.1    dyoung 
   2195  1.8   msaitoh 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2196  1.8   msaitoh 	if (status) {
   2197  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2198  1.8   msaitoh 		return status;
   2199  1.1    dyoung 	}
   2200  1.1    dyoung 
   2201  1.8   msaitoh 	/* Verify read checksum from EEPROM is the same as
   2202  1.8   msaitoh 	 * calculated checksum
   2203  1.8   msaitoh 	 */
   2204  1.8   msaitoh 	if (read_checksum != checksum)
   2205  1.8   msaitoh 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2206  1.8   msaitoh 
   2207  1.8   msaitoh 	/* If the user cares, return the calculated checksum */
   2208  1.8   msaitoh 	if (checksum_val)
   2209  1.8   msaitoh 		*checksum_val = checksum;
   2210  1.8   msaitoh 
   2211  1.1    dyoung 	return status;
   2212  1.1    dyoung }
   2213  1.1    dyoung 
   2214  1.1    dyoung /**
   2215  1.1    dyoung  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2216  1.1    dyoung  *  @hw: pointer to hardware structure
   2217  1.1    dyoung  **/
   2218  1.1    dyoung s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2219  1.1    dyoung {
   2220  1.1    dyoung 	s32 status;
   2221  1.1    dyoung 	u16 checksum;
   2222  1.1    dyoung 
   2223  1.1    dyoung 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2224  1.1    dyoung 
   2225  1.8   msaitoh 	/* Read the first word from the EEPROM. If this times out or fails, do
   2226  1.1    dyoung 	 * not continue or we could be in for a very long wait while every
   2227  1.1    dyoung 	 * EEPROM read fails
   2228  1.1    dyoung 	 */
   2229  1.1    dyoung 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2230  1.8   msaitoh 	if (status) {
   2231  1.1    dyoung 		DEBUGOUT("EEPROM read failed\n");
   2232  1.8   msaitoh 		return status;
   2233  1.1    dyoung 	}
   2234  1.1    dyoung 
   2235  1.8   msaitoh 	status = hw->eeprom.ops.calc_checksum(hw);
   2236  1.8   msaitoh 	if (status < 0)
   2237  1.8   msaitoh 		return status;
   2238  1.8   msaitoh 
   2239  1.8   msaitoh 	checksum = (u16)(status & 0xffff);
   2240  1.8   msaitoh 
   2241  1.8   msaitoh 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2242  1.8   msaitoh 
   2243  1.1    dyoung 	return status;
   2244  1.1    dyoung }
   2245  1.1    dyoung 
   2246  1.1    dyoung /**
   2247  1.1    dyoung  *  ixgbe_validate_mac_addr - Validate MAC address
   2248  1.1    dyoung  *  @mac_addr: pointer to MAC address.
   2249  1.1    dyoung  *
   2250  1.1    dyoung  *  Tests a MAC address to ensure it is a valid Individual Address
   2251  1.1    dyoung  **/
   2252  1.1    dyoung s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2253  1.1    dyoung {
   2254  1.1    dyoung 	s32 status = IXGBE_SUCCESS;
   2255  1.1    dyoung 
   2256  1.1    dyoung 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2257  1.1    dyoung 
   2258  1.1    dyoung 	/* Make sure it is not a multicast address */
   2259  1.1    dyoung 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2260  1.1    dyoung 		DEBUGOUT("MAC address is multicast\n");
   2261  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2262  1.1    dyoung 	/* Not a broadcast address */
   2263  1.1    dyoung 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2264  1.1    dyoung 		DEBUGOUT("MAC address is broadcast\n");
   2265  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2266  1.1    dyoung 	/* Reject the zero address */
   2267  1.1    dyoung 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2268  1.3   msaitoh 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2269  1.1    dyoung 		DEBUGOUT("MAC address is all zeros\n");
   2270  1.1    dyoung 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2271  1.1    dyoung 	}
   2272  1.1    dyoung 	return status;
   2273  1.1    dyoung }
   2274  1.1    dyoung 
   2275  1.1    dyoung /**
   2276  1.1    dyoung  *  ixgbe_set_rar_generic - Set Rx address register
   2277  1.1    dyoung  *  @hw: pointer to hardware structure
   2278  1.1    dyoung  *  @index: Receive address register to write
   2279  1.1    dyoung  *  @addr: Address to put into receive address register
   2280  1.1    dyoung  *  @vmdq: VMDq "set" or "pool" index
   2281  1.1    dyoung  *  @enable_addr: set flag that address is active
   2282  1.1    dyoung  *
   2283  1.1    dyoung  *  Puts an ethernet address into a receive address register.
   2284  1.1    dyoung  **/
   2285  1.1    dyoung s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2286  1.3   msaitoh 			  u32 enable_addr)
   2287  1.1    dyoung {
   2288  1.1    dyoung 	u32 rar_low, rar_high;
   2289  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2290  1.1    dyoung 
   2291  1.1    dyoung 	DEBUGFUNC("ixgbe_set_rar_generic");
   2292  1.1    dyoung 
   2293  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2294  1.1    dyoung 	if (index >= rar_entries) {
   2295  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2296  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2297  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2298  1.1    dyoung 	}
   2299  1.1    dyoung 
   2300  1.1    dyoung 	/* setup VMDq pool selection before this RAR gets enabled */
   2301  1.1    dyoung 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2302  1.1    dyoung 
   2303  1.1    dyoung 	/*
   2304  1.1    dyoung 	 * HW expects these in little endian so we reverse the byte
   2305  1.1    dyoung 	 * order from network order (big endian) to little endian
   2306  1.1    dyoung 	 */
   2307  1.1    dyoung 	rar_low = ((u32)addr[0] |
   2308  1.3   msaitoh 		   ((u32)addr[1] << 8) |
   2309  1.3   msaitoh 		   ((u32)addr[2] << 16) |
   2310  1.3   msaitoh 		   ((u32)addr[3] << 24));
   2311  1.1    dyoung 	/*
   2312  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2313  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2314  1.1    dyoung 	 * of the address and the address valid bit.
   2315  1.1    dyoung 	 */
   2316  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2317  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2318  1.1    dyoung 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2319  1.1    dyoung 
   2320  1.1    dyoung 	if (enable_addr != 0)
   2321  1.1    dyoung 		rar_high |= IXGBE_RAH_AV;
   2322  1.1    dyoung 
   2323  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2324  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2325  1.1    dyoung 
   2326  1.1    dyoung 	return IXGBE_SUCCESS;
   2327  1.1    dyoung }
   2328  1.1    dyoung 
   2329  1.1    dyoung /**
   2330  1.1    dyoung  *  ixgbe_clear_rar_generic - Remove Rx address register
   2331  1.1    dyoung  *  @hw: pointer to hardware structure
   2332  1.1    dyoung  *  @index: Receive address register to write
   2333  1.1    dyoung  *
   2334  1.1    dyoung  *  Clears an ethernet address from a receive address register.
   2335  1.1    dyoung  **/
   2336  1.1    dyoung s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2337  1.1    dyoung {
   2338  1.1    dyoung 	u32 rar_high;
   2339  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2340  1.1    dyoung 
   2341  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2342  1.1    dyoung 
   2343  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   2344  1.1    dyoung 	if (index >= rar_entries) {
   2345  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2346  1.6   msaitoh 			     "RAR index %d is out of range.\n", index);
   2347  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   2348  1.1    dyoung 	}
   2349  1.1    dyoung 
   2350  1.1    dyoung 	/*
   2351  1.1    dyoung 	 * Some parts put the VMDq setting in the extra RAH bits,
   2352  1.1    dyoung 	 * so save everything except the lower 16 bits that hold part
   2353  1.1    dyoung 	 * of the address and the address valid bit.
   2354  1.1    dyoung 	 */
   2355  1.1    dyoung 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2356  1.1    dyoung 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2357  1.1    dyoung 
   2358  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2359  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2360  1.1    dyoung 
   2361  1.1    dyoung 	/* clear VMDq pool/queue selection for this RAR */
   2362  1.1    dyoung 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2363  1.1    dyoung 
   2364  1.1    dyoung 	return IXGBE_SUCCESS;
   2365  1.1    dyoung }
   2366  1.1    dyoung 
   2367  1.1    dyoung /**
   2368  1.1    dyoung  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2369  1.1    dyoung  *  @hw: pointer to hardware structure
   2370  1.1    dyoung  *
   2371  1.1    dyoung  *  Places the MAC address in receive address register 0 and clears the rest
   2372  1.1    dyoung  *  of the receive address registers. Clears the multicast table. Assumes
   2373  1.1    dyoung  *  the receiver is in reset when the routine is called.
   2374  1.1    dyoung  **/
   2375  1.1    dyoung s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2376  1.1    dyoung {
   2377  1.1    dyoung 	u32 i;
   2378  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2379  1.1    dyoung 
   2380  1.1    dyoung 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2381  1.1    dyoung 
   2382  1.1    dyoung 	/*
   2383  1.1    dyoung 	 * If the current mac address is valid, assume it is a software override
   2384  1.1    dyoung 	 * to the permanent address.
   2385  1.1    dyoung 	 * Otherwise, use the permanent address from the eeprom.
   2386  1.1    dyoung 	 */
   2387  1.1    dyoung 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2388  1.1    dyoung 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2389  1.1    dyoung 		/* Get the MAC address from the RAR0 for later reference */
   2390  1.1    dyoung 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2391  1.1    dyoung 
   2392  1.1    dyoung 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2393  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2394  1.3   msaitoh 			  hw->mac.addr[2]);
   2395  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2396  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2397  1.1    dyoung 	} else {
   2398  1.1    dyoung 		/* Setup the receive address. */
   2399  1.1    dyoung 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2400  1.1    dyoung 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2401  1.3   msaitoh 			  hw->mac.addr[0], hw->mac.addr[1],
   2402  1.3   msaitoh 			  hw->mac.addr[2]);
   2403  1.1    dyoung 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2404  1.3   msaitoh 			  hw->mac.addr[4], hw->mac.addr[5]);
   2405  1.1    dyoung 
   2406  1.1    dyoung 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2407  1.1    dyoung 
   2408  1.1    dyoung 		/* clear VMDq pool/queue selection for RAR 0 */
   2409  1.1    dyoung 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2410  1.1    dyoung 	}
   2411  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2412  1.1    dyoung 
   2413  1.1    dyoung 	hw->addr_ctrl.rar_used_count = 1;
   2414  1.1    dyoung 
   2415  1.1    dyoung 	/* Zero out the other receive addresses. */
   2416  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2417  1.1    dyoung 	for (i = 1; i < rar_entries; i++) {
   2418  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2419  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2420  1.1    dyoung 	}
   2421  1.1    dyoung 
   2422  1.1    dyoung 	/* Clear the MTA */
   2423  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2424  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2425  1.1    dyoung 
   2426  1.1    dyoung 	DEBUGOUT(" Clearing MTA\n");
   2427  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2428  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2429  1.1    dyoung 
   2430  1.1    dyoung 	ixgbe_init_uta_tables(hw);
   2431  1.1    dyoung 
   2432  1.1    dyoung 	return IXGBE_SUCCESS;
   2433  1.1    dyoung }
   2434  1.1    dyoung 
   2435  1.1    dyoung /**
   2436  1.1    dyoung  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2437  1.1    dyoung  *  @hw: pointer to hardware structure
   2438  1.1    dyoung  *  @addr: new address
   2439  1.1    dyoung  *
   2440  1.1    dyoung  *  Adds it to unused receive address register or goes into promiscuous mode.
   2441  1.1    dyoung  **/
   2442  1.1    dyoung void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2443  1.1    dyoung {
   2444  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   2445  1.1    dyoung 	u32 rar;
   2446  1.1    dyoung 
   2447  1.1    dyoung 	DEBUGFUNC("ixgbe_add_uc_addr");
   2448  1.1    dyoung 
   2449  1.1    dyoung 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2450  1.3   msaitoh 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2451  1.1    dyoung 
   2452  1.1    dyoung 	/*
   2453  1.1    dyoung 	 * Place this address in the RAR if there is room,
   2454  1.1    dyoung 	 * else put the controller into promiscuous mode
   2455  1.1    dyoung 	 */
   2456  1.1    dyoung 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2457  1.1    dyoung 		rar = hw->addr_ctrl.rar_used_count;
   2458  1.1    dyoung 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2459  1.1    dyoung 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2460  1.1    dyoung 		hw->addr_ctrl.rar_used_count++;
   2461  1.1    dyoung 	} else {
   2462  1.1    dyoung 		hw->addr_ctrl.overflow_promisc++;
   2463  1.1    dyoung 	}
   2464  1.1    dyoung 
   2465  1.1    dyoung 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2466  1.1    dyoung }
   2467  1.1    dyoung 
   2468  1.1    dyoung /**
   2469  1.1    dyoung  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2470  1.1    dyoung  *  @hw: pointer to hardware structure
   2471  1.1    dyoung  *  @addr_list: the list of new addresses
   2472  1.1    dyoung  *  @addr_count: number of addresses
   2473  1.1    dyoung  *  @next: iterator function to walk the address list
   2474  1.1    dyoung  *
   2475  1.1    dyoung  *  The given list replaces any existing list.  Clears the secondary addrs from
   2476  1.1    dyoung  *  receive address registers.  Uses unused receive address registers for the
   2477  1.1    dyoung  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2478  1.1    dyoung  *
   2479  1.1    dyoung  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2480  1.1    dyoung  *  manually putting the device into promiscuous mode.
   2481  1.1    dyoung  **/
   2482  1.1    dyoung s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2483  1.3   msaitoh 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2484  1.1    dyoung {
   2485  1.1    dyoung 	u8 *addr;
   2486  1.1    dyoung 	u32 i;
   2487  1.1    dyoung 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2488  1.1    dyoung 	u32 uc_addr_in_use;
   2489  1.1    dyoung 	u32 fctrl;
   2490  1.1    dyoung 	u32 vmdq;
   2491  1.1    dyoung 
   2492  1.1    dyoung 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2493  1.1    dyoung 
   2494  1.1    dyoung 	/*
   2495  1.1    dyoung 	 * Clear accounting of old secondary address list,
   2496  1.1    dyoung 	 * don't count RAR[0]
   2497  1.1    dyoung 	 */
   2498  1.1    dyoung 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2499  1.1    dyoung 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2500  1.1    dyoung 	hw->addr_ctrl.overflow_promisc = 0;
   2501  1.1    dyoung 
   2502  1.1    dyoung 	/* Zero out the other receive addresses */
   2503  1.1    dyoung 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2504  1.1    dyoung 	for (i = 0; i < uc_addr_in_use; i++) {
   2505  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2506  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2507  1.1    dyoung 	}
   2508  1.1    dyoung 
   2509  1.1    dyoung 	/* Add the new addresses */
   2510  1.1    dyoung 	for (i = 0; i < addr_count; i++) {
   2511  1.1    dyoung 		DEBUGOUT(" Adding the secondary addresses:\n");
   2512  1.1    dyoung 		addr = next(hw, &addr_list, &vmdq);
   2513  1.1    dyoung 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2514  1.1    dyoung 	}
   2515  1.1    dyoung 
   2516  1.1    dyoung 	if (hw->addr_ctrl.overflow_promisc) {
   2517  1.1    dyoung 		/* enable promisc if not already in overflow or set by user */
   2518  1.1    dyoung 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2519  1.1    dyoung 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2520  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2521  1.1    dyoung 			fctrl |= IXGBE_FCTRL_UPE;
   2522  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2523  1.1    dyoung 		}
   2524  1.1    dyoung 	} else {
   2525  1.1    dyoung 		/* only disable if set by overflow, not by user */
   2526  1.1    dyoung 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2527  1.1    dyoung 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2528  1.1    dyoung 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2529  1.1    dyoung 			fctrl &= ~IXGBE_FCTRL_UPE;
   2530  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2531  1.1    dyoung 		}
   2532  1.1    dyoung 	}
   2533  1.1    dyoung 
   2534  1.1    dyoung 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2535  1.1    dyoung 	return IXGBE_SUCCESS;
   2536  1.1    dyoung }
   2537  1.1    dyoung 
   2538  1.1    dyoung /**
   2539  1.1    dyoung  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2540  1.1    dyoung  *  @hw: pointer to hardware structure
   2541  1.1    dyoung  *  @mc_addr: the multicast address
   2542  1.1    dyoung  *
   2543  1.1    dyoung  *  Extracts the 12 bits, from a multicast address, to determine which
   2544  1.1    dyoung  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2545  1.1    dyoung  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2546  1.1    dyoung  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2547  1.1    dyoung  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2548  1.1    dyoung  *  to mc_filter_type.
   2549  1.1    dyoung  **/
   2550  1.1    dyoung static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2551  1.1    dyoung {
   2552  1.1    dyoung 	u32 vector = 0;
   2553  1.1    dyoung 
   2554  1.1    dyoung 	DEBUGFUNC("ixgbe_mta_vector");
   2555  1.1    dyoung 
   2556  1.1    dyoung 	switch (hw->mac.mc_filter_type) {
   2557  1.1    dyoung 	case 0:   /* use bits [47:36] of the address */
   2558  1.1    dyoung 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2559  1.1    dyoung 		break;
   2560  1.1    dyoung 	case 1:   /* use bits [46:35] of the address */
   2561  1.1    dyoung 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2562  1.1    dyoung 		break;
   2563  1.1    dyoung 	case 2:   /* use bits [45:34] of the address */
   2564  1.1    dyoung 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2565  1.1    dyoung 		break;
   2566  1.1    dyoung 	case 3:   /* use bits [43:32] of the address */
   2567  1.1    dyoung 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2568  1.1    dyoung 		break;
   2569  1.1    dyoung 	default:  /* Invalid mc_filter_type */
   2570  1.1    dyoung 		DEBUGOUT("MC filter type param set incorrectly\n");
   2571  1.1    dyoung 		ASSERT(0);
   2572  1.1    dyoung 		break;
   2573  1.1    dyoung 	}
   2574  1.1    dyoung 
   2575  1.1    dyoung 	/* vector can only be 12-bits or boundary will be exceeded */
   2576  1.1    dyoung 	vector &= 0xFFF;
   2577  1.1    dyoung 	return vector;
   2578  1.1    dyoung }
   2579  1.1    dyoung 
   2580  1.1    dyoung /**
   2581  1.1    dyoung  *  ixgbe_set_mta - Set bit-vector in multicast table
   2582  1.1    dyoung  *  @hw: pointer to hardware structure
   2583  1.1    dyoung  *  @hash_value: Multicast address hash value
   2584  1.1    dyoung  *
   2585  1.1    dyoung  *  Sets the bit-vector in the multicast table.
   2586  1.1    dyoung  **/
   2587  1.1    dyoung void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2588  1.1    dyoung {
   2589  1.1    dyoung 	u32 vector;
   2590  1.1    dyoung 	u32 vector_bit;
   2591  1.1    dyoung 	u32 vector_reg;
   2592  1.1    dyoung 
   2593  1.1    dyoung 	DEBUGFUNC("ixgbe_set_mta");
   2594  1.1    dyoung 
   2595  1.1    dyoung 	hw->addr_ctrl.mta_in_use++;
   2596  1.1    dyoung 
   2597  1.1    dyoung 	vector = ixgbe_mta_vector(hw, mc_addr);
   2598  1.1    dyoung 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2599  1.1    dyoung 
   2600  1.1    dyoung 	/*
   2601  1.1    dyoung 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2602  1.1    dyoung 	 * like an array of 4096 bits.  We want to set bit
   2603  1.1    dyoung 	 * BitArray[vector_value]. So we figure out what register the bit is
   2604  1.1    dyoung 	 * in, read it, OR in the new bit, then write back the new value.  The
   2605  1.1    dyoung 	 * register is determined by the upper 7 bits of the vector value and
   2606  1.1    dyoung 	 * the bit within that register are determined by the lower 5 bits of
   2607  1.1    dyoung 	 * the value.
   2608  1.1    dyoung 	 */
   2609  1.1    dyoung 	vector_reg = (vector >> 5) & 0x7F;
   2610  1.1    dyoung 	vector_bit = vector & 0x1F;
   2611  1.1    dyoung 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2612  1.1    dyoung }
   2613  1.1    dyoung 
   2614  1.1    dyoung /**
   2615  1.1    dyoung  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2616  1.1    dyoung  *  @hw: pointer to hardware structure
   2617  1.1    dyoung  *  @mc_addr_list: the list of new multicast addresses
   2618  1.1    dyoung  *  @mc_addr_count: number of addresses
   2619  1.1    dyoung  *  @next: iterator function to walk the multicast address list
   2620  1.3   msaitoh  *  @clear: flag, when set clears the table beforehand
   2621  1.1    dyoung  *
   2622  1.3   msaitoh  *  When the clear flag is set, the given list replaces any existing list.
   2623  1.3   msaitoh  *  Hashes the given addresses into the multicast table.
   2624  1.1    dyoung  **/
   2625  1.1    dyoung s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2626  1.3   msaitoh 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2627  1.3   msaitoh 				      bool clear)
   2628  1.1    dyoung {
   2629  1.1    dyoung 	u32 i;
   2630  1.1    dyoung 	u32 vmdq;
   2631  1.1    dyoung 
   2632  1.1    dyoung 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2633  1.1    dyoung 
   2634  1.1    dyoung 	/*
   2635  1.1    dyoung 	 * Set the new number of MC addresses that we are being requested to
   2636  1.1    dyoung 	 * use.
   2637  1.1    dyoung 	 */
   2638  1.1    dyoung 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2639  1.1    dyoung 	hw->addr_ctrl.mta_in_use = 0;
   2640  1.1    dyoung 
   2641  1.1    dyoung 	/* Clear mta_shadow */
   2642  1.3   msaitoh 	if (clear) {
   2643  1.3   msaitoh 		DEBUGOUT(" Clearing MTA\n");
   2644  1.3   msaitoh 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2645  1.3   msaitoh 	}
   2646  1.1    dyoung 
   2647  1.1    dyoung 	/* Update mta_shadow */
   2648  1.1    dyoung 	for (i = 0; i < mc_addr_count; i++) {
   2649  1.1    dyoung 		DEBUGOUT(" Adding the multicast addresses:\n");
   2650  1.1    dyoung 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2651  1.1    dyoung 	}
   2652  1.1    dyoung 
   2653  1.1    dyoung 	/* Enable mta */
   2654  1.1    dyoung 	for (i = 0; i < hw->mac.mcft_size; i++)
   2655  1.1    dyoung 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2656  1.1    dyoung 				      hw->mac.mta_shadow[i]);
   2657  1.1    dyoung 
   2658  1.1    dyoung 	if (hw->addr_ctrl.mta_in_use > 0)
   2659  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2660  1.3   msaitoh 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2661  1.1    dyoung 
   2662  1.1    dyoung 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2663  1.1    dyoung 	return IXGBE_SUCCESS;
   2664  1.1    dyoung }
   2665  1.1    dyoung 
   2666  1.1    dyoung /**
   2667  1.1    dyoung  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2668  1.1    dyoung  *  @hw: pointer to hardware structure
   2669  1.1    dyoung  *
   2670  1.1    dyoung  *  Enables multicast address in RAR and the use of the multicast hash table.
   2671  1.1    dyoung  **/
   2672  1.1    dyoung s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2673  1.1    dyoung {
   2674  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2675  1.1    dyoung 
   2676  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2677  1.1    dyoung 
   2678  1.1    dyoung 	if (a->mta_in_use > 0)
   2679  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2680  1.3   msaitoh 				hw->mac.mc_filter_type);
   2681  1.1    dyoung 
   2682  1.1    dyoung 	return IXGBE_SUCCESS;
   2683  1.1    dyoung }
   2684  1.1    dyoung 
   2685  1.1    dyoung /**
   2686  1.1    dyoung  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2687  1.1    dyoung  *  @hw: pointer to hardware structure
   2688  1.1    dyoung  *
   2689  1.1    dyoung  *  Disables multicast address in RAR and the use of the multicast hash table.
   2690  1.1    dyoung  **/
   2691  1.1    dyoung s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2692  1.1    dyoung {
   2693  1.1    dyoung 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2694  1.1    dyoung 
   2695  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2696  1.1    dyoung 
   2697  1.1    dyoung 	if (a->mta_in_use > 0)
   2698  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2699  1.1    dyoung 
   2700  1.1    dyoung 	return IXGBE_SUCCESS;
   2701  1.1    dyoung }
   2702  1.1    dyoung 
   2703  1.1    dyoung /**
   2704  1.1    dyoung  *  ixgbe_fc_enable_generic - Enable flow control
   2705  1.1    dyoung  *  @hw: pointer to hardware structure
   2706  1.1    dyoung  *
   2707  1.1    dyoung  *  Enable flow control according to the current settings.
   2708  1.1    dyoung  **/
   2709  1.4   msaitoh s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2710  1.1    dyoung {
   2711  1.1    dyoung 	s32 ret_val = IXGBE_SUCCESS;
   2712  1.1    dyoung 	u32 mflcn_reg, fccfg_reg;
   2713  1.1    dyoung 	u32 reg;
   2714  1.1    dyoung 	u32 fcrtl, fcrth;
   2715  1.4   msaitoh 	int i;
   2716  1.1    dyoung 
   2717  1.1    dyoung 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2718  1.1    dyoung 
   2719  1.4   msaitoh 	/* Validate the water mark configuration */
   2720  1.4   msaitoh 	if (!hw->fc.pause_time) {
   2721  1.4   msaitoh 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2722  1.4   msaitoh 		goto out;
   2723  1.4   msaitoh 	}
   2724  1.4   msaitoh 
   2725  1.4   msaitoh 	/* Low water mark of zero causes XOFF floods */
   2726  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2727  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2728  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2729  1.4   msaitoh 			if (!hw->fc.low_water[i] ||
   2730  1.4   msaitoh 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2731  1.4   msaitoh 				DEBUGOUT("Invalid water mark configuration\n");
   2732  1.4   msaitoh 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2733  1.4   msaitoh 				goto out;
   2734  1.4   msaitoh 			}
   2735  1.4   msaitoh 		}
   2736  1.4   msaitoh 	}
   2737  1.4   msaitoh 
   2738  1.1    dyoung 	/* Negotiate the fc mode to use */
   2739  1.4   msaitoh 	ixgbe_fc_autoneg(hw);
   2740  1.1    dyoung 
   2741  1.1    dyoung 	/* Disable any previous flow control settings */
   2742  1.1    dyoung 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2743  1.4   msaitoh 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2744  1.1    dyoung 
   2745  1.1    dyoung 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2746  1.1    dyoung 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2747  1.1    dyoung 
   2748  1.1    dyoung 	/*
   2749  1.1    dyoung 	 * The possible values of fc.current_mode are:
   2750  1.1    dyoung 	 * 0: Flow control is completely disabled
   2751  1.1    dyoung 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2752  1.1    dyoung 	 *    but not send pause frames).
   2753  1.1    dyoung 	 * 2: Tx flow control is enabled (we can send pause frames but
   2754  1.1    dyoung 	 *    we do not support receiving pause frames).
   2755  1.1    dyoung 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2756  1.1    dyoung 	 * other: Invalid.
   2757  1.1    dyoung 	 */
   2758  1.1    dyoung 	switch (hw->fc.current_mode) {
   2759  1.1    dyoung 	case ixgbe_fc_none:
   2760  1.1    dyoung 		/*
   2761  1.1    dyoung 		 * Flow control is disabled by software override or autoneg.
   2762  1.1    dyoung 		 * The code below will actually disable it in the HW.
   2763  1.1    dyoung 		 */
   2764  1.1    dyoung 		break;
   2765  1.1    dyoung 	case ixgbe_fc_rx_pause:
   2766  1.1    dyoung 		/*
   2767  1.1    dyoung 		 * Rx Flow control is enabled and Tx Flow control is
   2768  1.1    dyoung 		 * disabled by software override. Since there really
   2769  1.1    dyoung 		 * isn't a way to advertise that we are capable of RX
   2770  1.1    dyoung 		 * Pause ONLY, we will advertise that we support both
   2771  1.1    dyoung 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2772  1.1    dyoung 		 * disable the adapter's ability to send PAUSE frames.
   2773  1.1    dyoung 		 */
   2774  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2775  1.1    dyoung 		break;
   2776  1.1    dyoung 	case ixgbe_fc_tx_pause:
   2777  1.1    dyoung 		/*
   2778  1.1    dyoung 		 * Tx Flow control is enabled, and Rx Flow control is
   2779  1.1    dyoung 		 * disabled by software override.
   2780  1.1    dyoung 		 */
   2781  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2782  1.1    dyoung 		break;
   2783  1.1    dyoung 	case ixgbe_fc_full:
   2784  1.1    dyoung 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2785  1.1    dyoung 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2786  1.1    dyoung 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2787  1.1    dyoung 		break;
   2788  1.1    dyoung 	default:
   2789  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2790  1.6   msaitoh 			     "Flow control param set incorrectly\n");
   2791  1.1    dyoung 		ret_val = IXGBE_ERR_CONFIG;
   2792  1.1    dyoung 		goto out;
   2793  1.1    dyoung 		break;
   2794  1.1    dyoung 	}
   2795  1.1    dyoung 
   2796  1.1    dyoung 	/* Set 802.3x based flow control settings. */
   2797  1.1    dyoung 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2798  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2799  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2800  1.1    dyoung 
   2801  1.1    dyoung 
   2802  1.4   msaitoh 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2803  1.4   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2804  1.4   msaitoh 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2805  1.4   msaitoh 		    hw->fc.high_water[i]) {
   2806  1.4   msaitoh 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2807  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2808  1.4   msaitoh 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2809  1.4   msaitoh 		} else {
   2810  1.4   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2811  1.4   msaitoh 			/*
   2812  1.4   msaitoh 			 * In order to prevent Tx hangs when the internal Tx
   2813  1.4   msaitoh 			 * switch is enabled we must set the high water mark
   2814  1.8   msaitoh 			 * to the Rx packet buffer size - 24KB.  This allows
   2815  1.8   msaitoh 			 * the Tx switch to function even under heavy Rx
   2816  1.8   msaitoh 			 * workloads.
   2817  1.4   msaitoh 			 */
   2818  1.8   msaitoh 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2819  1.4   msaitoh 		}
   2820  1.4   msaitoh 
   2821  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2822  1.1    dyoung 	}
   2823  1.1    dyoung 
   2824  1.1    dyoung 	/* Configure pause time (2 TCs per register) */
   2825  1.4   msaitoh 	reg = hw->fc.pause_time * 0x00010001;
   2826  1.4   msaitoh 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2827  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2828  1.1    dyoung 
   2829  1.4   msaitoh 	/* Configure flow control refresh threshold value */
   2830  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2831  1.1    dyoung 
   2832  1.1    dyoung out:
   2833  1.1    dyoung 	return ret_val;
   2834  1.1    dyoung }
   2835  1.1    dyoung 
   2836  1.1    dyoung /**
   2837  1.4   msaitoh  *  ixgbe_negotiate_fc - Negotiate flow control
   2838  1.1    dyoung  *  @hw: pointer to hardware structure
   2839  1.4   msaitoh  *  @adv_reg: flow control advertised settings
   2840  1.4   msaitoh  *  @lp_reg: link partner's flow control settings
   2841  1.4   msaitoh  *  @adv_sym: symmetric pause bit in advertisement
   2842  1.4   msaitoh  *  @adv_asm: asymmetric pause bit in advertisement
   2843  1.4   msaitoh  *  @lp_sym: symmetric pause bit in link partner advertisement
   2844  1.4   msaitoh  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2845  1.1    dyoung  *
   2846  1.4   msaitoh  *  Find the intersection between advertised settings and link partner's
   2847  1.4   msaitoh  *  advertised settings
   2848  1.1    dyoung  **/
   2849  1.4   msaitoh static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2850  1.4   msaitoh 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2851  1.1    dyoung {
   2852  1.6   msaitoh 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2853  1.6   msaitoh 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2854  1.6   msaitoh 			     "Local or link partner's advertised flow control "
   2855  1.6   msaitoh 			     "settings are NULL. Local: %x, link partner: %x\n",
   2856  1.6   msaitoh 			     adv_reg, lp_reg);
   2857  1.4   msaitoh 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2858  1.6   msaitoh 	}
   2859  1.1    dyoung 
   2860  1.4   msaitoh 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2861  1.4   msaitoh 		/*
   2862  1.4   msaitoh 		 * Now we need to check if the user selected Rx ONLY
   2863  1.4   msaitoh 		 * of pause frames.  In this case, we had to advertise
   2864  1.4   msaitoh 		 * FULL flow control because we could not advertise RX
   2865  1.4   msaitoh 		 * ONLY. Hence, we must now check to see if we need to
   2866  1.4   msaitoh 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2867  1.4   msaitoh 		 */
   2868  1.4   msaitoh 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2869  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_full;
   2870  1.4   msaitoh 			DEBUGOUT("Flow Control = FULL.\n");
   2871  1.4   msaitoh 		} else {
   2872  1.4   msaitoh 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2873  1.4   msaitoh 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2874  1.4   msaitoh 		}
   2875  1.4   msaitoh 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2876  1.4   msaitoh 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2877  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2878  1.4   msaitoh 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2879  1.4   msaitoh 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2880  1.4   msaitoh 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2881  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2882  1.4   msaitoh 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2883  1.4   msaitoh 	} else {
   2884  1.4   msaitoh 		hw->fc.current_mode = ixgbe_fc_none;
   2885  1.4   msaitoh 		DEBUGOUT("Flow Control = NONE.\n");
   2886  1.4   msaitoh 	}
   2887  1.4   msaitoh 	return IXGBE_SUCCESS;
   2888  1.4   msaitoh }
   2889  1.1    dyoung 
   2890  1.4   msaitoh /**
   2891  1.4   msaitoh  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2892  1.4   msaitoh  *  @hw: pointer to hardware structure
   2893  1.4   msaitoh  *
   2894  1.4   msaitoh  *  Enable flow control according on 1 gig fiber.
   2895  1.4   msaitoh  **/
   2896  1.4   msaitoh static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2897  1.4   msaitoh {
   2898  1.4   msaitoh 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2899  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2900  1.1    dyoung 
   2901  1.1    dyoung 	/*
   2902  1.4   msaitoh 	 * On multispeed fiber at 1g, bail out if
   2903  1.4   msaitoh 	 * - link is up but AN did not complete, or if
   2904  1.4   msaitoh 	 * - link is up and AN completed but timed out
   2905  1.1    dyoung 	 */
   2906  1.4   msaitoh 
   2907  1.4   msaitoh 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2908  1.4   msaitoh 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2909  1.6   msaitoh 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2910  1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   2911  1.1    dyoung 		goto out;
   2912  1.6   msaitoh 	}
   2913  1.1    dyoung 
   2914  1.1    dyoung 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2915  1.1    dyoung 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2916  1.1    dyoung 
   2917  1.1    dyoung 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2918  1.3   msaitoh 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2919  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2920  1.3   msaitoh 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2921  1.3   msaitoh 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2922  1.1    dyoung 
   2923  1.1    dyoung out:
   2924  1.1    dyoung 	return ret_val;
   2925  1.1    dyoung }
   2926  1.1    dyoung 
   2927  1.1    dyoung /**
   2928  1.1    dyoung  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2929  1.1    dyoung  *  @hw: pointer to hardware structure
   2930  1.1    dyoung  *
   2931  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2932  1.1    dyoung  **/
   2933  1.1    dyoung static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2934  1.1    dyoung {
   2935  1.1    dyoung 	u32 links2, anlp1_reg, autoc_reg, links;
   2936  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2937  1.1    dyoung 
   2938  1.1    dyoung 	/*
   2939  1.1    dyoung 	 * On backplane, bail out if
   2940  1.1    dyoung 	 * - backplane autoneg was not completed, or if
   2941  1.1    dyoung 	 * - we are 82599 and link partner is not AN enabled
   2942  1.1    dyoung 	 */
   2943  1.1    dyoung 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2944  1.6   msaitoh 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2945  1.8   msaitoh 		DEBUGOUT("Auto-Negotiation did not complete\n");
   2946  1.1    dyoung 		goto out;
   2947  1.6   msaitoh 	}
   2948  1.1    dyoung 
   2949  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2950  1.1    dyoung 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2951  1.6   msaitoh 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2952  1.8   msaitoh 			DEBUGOUT("Link partner is not AN enabled\n");
   2953  1.1    dyoung 			goto out;
   2954  1.6   msaitoh 		}
   2955  1.1    dyoung 	}
   2956  1.1    dyoung 	/*
   2957  1.1    dyoung 	 * Read the 10g AN autoc and LP ability registers and resolve
   2958  1.1    dyoung 	 * local flow control settings accordingly
   2959  1.1    dyoung 	 */
   2960  1.1    dyoung 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2961  1.1    dyoung 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2962  1.1    dyoung 
   2963  1.1    dyoung 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2964  1.1    dyoung 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2965  1.1    dyoung 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2966  1.1    dyoung 
   2967  1.1    dyoung out:
   2968  1.1    dyoung 	return ret_val;
   2969  1.1    dyoung }
   2970  1.1    dyoung 
   2971  1.1    dyoung /**
   2972  1.1    dyoung  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2973  1.1    dyoung  *  @hw: pointer to hardware structure
   2974  1.1    dyoung  *
   2975  1.1    dyoung  *  Enable flow control according to IEEE clause 37.
   2976  1.1    dyoung  **/
   2977  1.1    dyoung static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2978  1.1    dyoung {
   2979  1.1    dyoung 	u16 technology_ability_reg = 0;
   2980  1.1    dyoung 	u16 lp_technology_ability_reg = 0;
   2981  1.1    dyoung 
   2982  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2983  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2984  1.1    dyoung 			     &technology_ability_reg);
   2985  1.1    dyoung 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2986  1.1    dyoung 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2987  1.1    dyoung 			     &lp_technology_ability_reg);
   2988  1.1    dyoung 
   2989  1.1    dyoung 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2990  1.1    dyoung 				  (u32)lp_technology_ability_reg,
   2991  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2992  1.1    dyoung 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2993  1.1    dyoung }
   2994  1.1    dyoung 
   2995  1.1    dyoung /**
   2996  1.4   msaitoh  *  ixgbe_fc_autoneg - Configure flow control
   2997  1.1    dyoung  *  @hw: pointer to hardware structure
   2998  1.1    dyoung  *
   2999  1.4   msaitoh  *  Compares our advertised flow control capabilities to those advertised by
   3000  1.4   msaitoh  *  our link partner, and determines the proper flow control mode to use.
   3001  1.1    dyoung  **/
   3002  1.4   msaitoh void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3003  1.1    dyoung {
   3004  1.4   msaitoh 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3005  1.4   msaitoh 	ixgbe_link_speed speed;
   3006  1.4   msaitoh 	bool link_up;
   3007  1.1    dyoung 
   3008  1.4   msaitoh 	DEBUGFUNC("ixgbe_fc_autoneg");
   3009  1.1    dyoung 
   3010  1.1    dyoung 	/*
   3011  1.4   msaitoh 	 * AN should have completed when the cable was plugged in.
   3012  1.4   msaitoh 	 * Look for reasons to bail out.  Bail out if:
   3013  1.4   msaitoh 	 * - FC autoneg is disabled, or if
   3014  1.4   msaitoh 	 * - link is not up.
   3015  1.1    dyoung 	 */
   3016  1.6   msaitoh 	if (hw->fc.disable_fc_autoneg) {
   3017  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3018  1.6   msaitoh 			     "Flow control autoneg is disabled");
   3019  1.1    dyoung 		goto out;
   3020  1.6   msaitoh 	}
   3021  1.1    dyoung 
   3022  1.4   msaitoh 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3023  1.6   msaitoh 	if (!link_up) {
   3024  1.6   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3025  1.1    dyoung 		goto out;
   3026  1.6   msaitoh 	}
   3027  1.1    dyoung 
   3028  1.1    dyoung 	switch (hw->phy.media_type) {
   3029  1.4   msaitoh 	/* Autoneg flow control on fiber adapters */
   3030  1.5   msaitoh 	case ixgbe_media_type_fiber_fixed:
   3031  1.8   msaitoh 	case ixgbe_media_type_fiber_qsfp:
   3032  1.1    dyoung 	case ixgbe_media_type_fiber:
   3033  1.4   msaitoh 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3034  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3035  1.4   msaitoh 		break;
   3036  1.4   msaitoh 
   3037  1.4   msaitoh 	/* Autoneg flow control on backplane adapters */
   3038  1.1    dyoung 	case ixgbe_media_type_backplane:
   3039  1.4   msaitoh 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3040  1.1    dyoung 		break;
   3041  1.1    dyoung 
   3042  1.4   msaitoh 	/* Autoneg flow control on copper adapters */
   3043  1.1    dyoung 	case ixgbe_media_type_copper:
   3044  1.6   msaitoh 		if (ixgbe_device_supports_autoneg_fc(hw))
   3045  1.4   msaitoh 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3046  1.1    dyoung 		break;
   3047  1.1    dyoung 
   3048  1.1    dyoung 	default:
   3049  1.1    dyoung 		break;
   3050  1.1    dyoung 	}
   3051  1.1    dyoung 
   3052  1.4   msaitoh out:
   3053  1.4   msaitoh 	if (ret_val == IXGBE_SUCCESS) {
   3054  1.4   msaitoh 		hw->fc.fc_was_autonegged = TRUE;
   3055  1.4   msaitoh 	} else {
   3056  1.4   msaitoh 		hw->fc.fc_was_autonegged = FALSE;
   3057  1.4   msaitoh 		hw->fc.current_mode = hw->fc.requested_mode;
   3058  1.3   msaitoh 	}
   3059  1.1    dyoung }
   3060  1.1    dyoung 
   3061  1.6   msaitoh /*
   3062  1.6   msaitoh  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3063  1.6   msaitoh  * @hw: pointer to hardware structure
   3064  1.6   msaitoh  *
   3065  1.6   msaitoh  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3066  1.6   msaitoh  *
   3067  1.6   msaitoh  * Add 10% to specified maximum and return the number of times to poll for
   3068  1.6   msaitoh  * completion timeout, in units of 100 microsec.  Never return less than
   3069  1.6   msaitoh  * 800 = 80 millisec.
   3070  1.6   msaitoh  */
   3071  1.6   msaitoh static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3072  1.6   msaitoh {
   3073  1.6   msaitoh 	s16 devctl2;
   3074  1.6   msaitoh 	u32 pollcnt;
   3075  1.6   msaitoh 
   3076  1.6   msaitoh 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3077  1.6   msaitoh 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3078  1.6   msaitoh 
   3079  1.6   msaitoh 	switch (devctl2) {
   3080  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3081  1.6   msaitoh 		pollcnt = 1300;		/* 130 millisec */
   3082  1.6   msaitoh 		break;
   3083  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3084  1.6   msaitoh 		pollcnt = 5200;		/* 520 millisec */
   3085  1.6   msaitoh 		break;
   3086  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2s:
   3087  1.6   msaitoh 		pollcnt = 20000;	/* 2 sec */
   3088  1.6   msaitoh 		break;
   3089  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_4_8s:
   3090  1.6   msaitoh 		pollcnt = 80000;	/* 8 sec */
   3091  1.6   msaitoh 		break;
   3092  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_17_34s:
   3093  1.6   msaitoh 		pollcnt = 34000;	/* 34 sec */
   3094  1.6   msaitoh 		break;
   3095  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3096  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3097  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3098  1.6   msaitoh 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3099  1.6   msaitoh 	default:
   3100  1.6   msaitoh 		pollcnt = 800;		/* 80 millisec minimum */
   3101  1.6   msaitoh 		break;
   3102  1.6   msaitoh 	}
   3103  1.6   msaitoh 
   3104  1.6   msaitoh 	/* add 10% to spec maximum */
   3105  1.6   msaitoh 	return (pollcnt * 11) / 10;
   3106  1.6   msaitoh }
   3107  1.6   msaitoh 
   3108  1.1    dyoung /**
   3109  1.1    dyoung  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3110  1.1    dyoung  *  @hw: pointer to hardware structure
   3111  1.1    dyoung  *
   3112  1.1    dyoung  *  Disables PCI-Express master access and verifies there are no pending
   3113  1.1    dyoung  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3114  1.1    dyoung  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3115  1.1    dyoung  *  is returned signifying master requests disabled.
   3116  1.1    dyoung  **/
   3117  1.1    dyoung s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3118  1.1    dyoung {
   3119  1.3   msaitoh 	s32 status = IXGBE_SUCCESS;
   3120  1.6   msaitoh 	u32 i, poll;
   3121  1.8   msaitoh 	u16 value;
   3122  1.1    dyoung 
   3123  1.1    dyoung 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3124  1.1    dyoung 
   3125  1.3   msaitoh 	/* Always set this bit to ensure any future transactions are blocked */
   3126  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3127  1.3   msaitoh 
   3128  1.6   msaitoh 	/* Exit if master requests are blocked */
   3129  1.8   msaitoh 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3130  1.8   msaitoh 	    IXGBE_REMOVED(hw->hw_addr))
   3131  1.1    dyoung 		goto out;
   3132  1.1    dyoung 
   3133  1.3   msaitoh 	/* Poll for master request bit to clear */
   3134  1.1    dyoung 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3135  1.3   msaitoh 		usec_delay(100);
   3136  1.1    dyoung 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3137  1.3   msaitoh 			goto out;
   3138  1.1    dyoung 	}
   3139  1.1    dyoung 
   3140  1.3   msaitoh 	/*
   3141  1.3   msaitoh 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3142  1.3   msaitoh 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3143  1.3   msaitoh 	 * of this need.  The first reset prevents new master requests from
   3144  1.3   msaitoh 	 * being issued by our device.  We then must wait 1usec or more for any
   3145  1.3   msaitoh 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3146  1.3   msaitoh 	 * again to clear out any effects they may have had on our device.
   3147  1.3   msaitoh 	 */
   3148  1.1    dyoung 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3149  1.3   msaitoh 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3150  1.1    dyoung 
   3151  1.1    dyoung 	/*
   3152  1.1    dyoung 	 * Before proceeding, make sure that the PCIe block does not have
   3153  1.1    dyoung 	 * transactions pending.
   3154  1.1    dyoung 	 */
   3155  1.6   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   3156  1.6   msaitoh 	for (i = 0; i < poll; i++) {
   3157  1.3   msaitoh 		usec_delay(100);
   3158  1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3159  1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   3160  1.8   msaitoh 			goto out;
   3161  1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3162  1.3   msaitoh 			goto out;
   3163  1.1    dyoung 	}
   3164  1.1    dyoung 
   3165  1.6   msaitoh 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3166  1.6   msaitoh 		     "PCIe transaction pending bit also did not clear.\n");
   3167  1.3   msaitoh 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3168  1.1    dyoung 
   3169  1.1    dyoung out:
   3170  1.1    dyoung 	return status;
   3171  1.1    dyoung }
   3172  1.1    dyoung 
   3173  1.1    dyoung /**
   3174  1.1    dyoung  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3175  1.1    dyoung  *  @hw: pointer to hardware structure
   3176  1.1    dyoung  *  @mask: Mask to specify which semaphore to acquire
   3177  1.1    dyoung  *
   3178  1.3   msaitoh  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3179  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3180  1.1    dyoung  **/
   3181  1.8   msaitoh s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3182  1.1    dyoung {
   3183  1.6   msaitoh 	u32 gssr = 0;
   3184  1.1    dyoung 	u32 swmask = mask;
   3185  1.1    dyoung 	u32 fwmask = mask << 5;
   3186  1.6   msaitoh 	u32 timeout = 200;
   3187  1.6   msaitoh 	u32 i;
   3188  1.1    dyoung 
   3189  1.1    dyoung 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3190  1.1    dyoung 
   3191  1.6   msaitoh 	for (i = 0; i < timeout; i++) {
   3192  1.1    dyoung 		/*
   3193  1.6   msaitoh 		 * SW NVM semaphore bit is used for access to all
   3194  1.6   msaitoh 		 * SW_FW_SYNC bits (not just NVM)
   3195  1.1    dyoung 		 */
   3196  1.1    dyoung 		if (ixgbe_get_eeprom_semaphore(hw))
   3197  1.1    dyoung 			return IXGBE_ERR_SWFW_SYNC;
   3198  1.1    dyoung 
   3199  1.1    dyoung 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3200  1.6   msaitoh 		if (!(gssr & (fwmask | swmask))) {
   3201  1.6   msaitoh 			gssr |= swmask;
   3202  1.6   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3203  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3204  1.6   msaitoh 			return IXGBE_SUCCESS;
   3205  1.6   msaitoh 		} else {
   3206  1.6   msaitoh 			/* Resource is currently in use by FW or SW */
   3207  1.6   msaitoh 			ixgbe_release_eeprom_semaphore(hw);
   3208  1.6   msaitoh 			msec_delay(5);
   3209  1.6   msaitoh 		}
   3210  1.1    dyoung 	}
   3211  1.1    dyoung 
   3212  1.6   msaitoh 	/* If time expired clear the bits holding the lock and retry */
   3213  1.6   msaitoh 	if (gssr & (fwmask | swmask))
   3214  1.6   msaitoh 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3215  1.1    dyoung 
   3216  1.6   msaitoh 	msec_delay(5);
   3217  1.6   msaitoh 	return IXGBE_ERR_SWFW_SYNC;
   3218  1.1    dyoung }
   3219  1.1    dyoung 
   3220  1.1    dyoung /**
   3221  1.1    dyoung  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3222  1.1    dyoung  *  @hw: pointer to hardware structure
   3223  1.1    dyoung  *  @mask: Mask to specify which semaphore to release
   3224  1.1    dyoung  *
   3225  1.3   msaitoh  *  Releases the SWFW semaphore through the GSSR register for the specified
   3226  1.1    dyoung  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3227  1.1    dyoung  **/
   3228  1.8   msaitoh void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3229  1.1    dyoung {
   3230  1.1    dyoung 	u32 gssr;
   3231  1.1    dyoung 	u32 swmask = mask;
   3232  1.1    dyoung 
   3233  1.1    dyoung 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3234  1.1    dyoung 
   3235  1.1    dyoung 	ixgbe_get_eeprom_semaphore(hw);
   3236  1.1    dyoung 
   3237  1.1    dyoung 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3238  1.1    dyoung 	gssr &= ~swmask;
   3239  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3240  1.1    dyoung 
   3241  1.1    dyoung 	ixgbe_release_eeprom_semaphore(hw);
   3242  1.1    dyoung }
   3243  1.1    dyoung 
   3244  1.1    dyoung /**
   3245  1.3   msaitoh  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3246  1.3   msaitoh  *  @hw: pointer to hardware structure
   3247  1.3   msaitoh  *
   3248  1.3   msaitoh  *  Stops the receive data path and waits for the HW to internally empty
   3249  1.3   msaitoh  *  the Rx security block
   3250  1.3   msaitoh  **/
   3251  1.3   msaitoh s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3252  1.3   msaitoh {
   3253  1.3   msaitoh #define IXGBE_MAX_SECRX_POLL 40
   3254  1.3   msaitoh 
   3255  1.3   msaitoh 	int i;
   3256  1.3   msaitoh 	int secrxreg;
   3257  1.3   msaitoh 
   3258  1.3   msaitoh 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3259  1.3   msaitoh 
   3260  1.3   msaitoh 
   3261  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3262  1.3   msaitoh 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3263  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3264  1.3   msaitoh 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3265  1.3   msaitoh 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3266  1.3   msaitoh 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3267  1.3   msaitoh 			break;
   3268  1.3   msaitoh 		else
   3269  1.3   msaitoh 			/* Use interrupt-safe sleep just in case */
   3270  1.3   msaitoh 			usec_delay(1000);
   3271  1.3   msaitoh 	}
   3272  1.3   msaitoh 
   3273  1.3   msaitoh 	/* For informational purposes only */
   3274  1.3   msaitoh 	if (i >= IXGBE_MAX_SECRX_POLL)
   3275  1.3   msaitoh 		DEBUGOUT("Rx unit being enabled before security "
   3276  1.3   msaitoh 			 "path fully disabled.  Continuing with init.\n");
   3277  1.3   msaitoh 
   3278  1.3   msaitoh 	return IXGBE_SUCCESS;
   3279  1.3   msaitoh }
   3280  1.3   msaitoh 
   3281  1.3   msaitoh /**
   3282  1.8   msaitoh  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3283  1.8   msaitoh  *  @hw: pointer to hardware structure
   3284  1.8   msaitoh  *  @reg_val: Value we read from AUTOC
   3285  1.8   msaitoh  *
   3286  1.8   msaitoh  *  The default case requires no protection so just to the register read.
   3287  1.8   msaitoh  */
   3288  1.8   msaitoh s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3289  1.8   msaitoh {
   3290  1.8   msaitoh 	*locked = FALSE;
   3291  1.8   msaitoh 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3292  1.8   msaitoh 	return IXGBE_SUCCESS;
   3293  1.8   msaitoh }
   3294  1.8   msaitoh 
   3295  1.8   msaitoh /**
   3296  1.8   msaitoh  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3297  1.8   msaitoh  * @hw: pointer to hardware structure
   3298  1.8   msaitoh  * @reg_val: value to write to AUTOC
   3299  1.8   msaitoh  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3300  1.8   msaitoh  *           previous read.
   3301  1.8   msaitoh  *
   3302  1.8   msaitoh  * The default case requires no protection so just to the register write.
   3303  1.8   msaitoh  */
   3304  1.8   msaitoh s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3305  1.8   msaitoh {
   3306  1.8   msaitoh 	UNREFERENCED_1PARAMETER(locked);
   3307  1.8   msaitoh 
   3308  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3309  1.8   msaitoh 	return IXGBE_SUCCESS;
   3310  1.8   msaitoh }
   3311  1.8   msaitoh 
   3312  1.8   msaitoh /**
   3313  1.3   msaitoh  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3314  1.3   msaitoh  *  @hw: pointer to hardware structure
   3315  1.3   msaitoh  *
   3316  1.3   msaitoh  *  Enables the receive data path.
   3317  1.3   msaitoh  **/
   3318  1.3   msaitoh s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3319  1.3   msaitoh {
   3320  1.3   msaitoh 	int secrxreg;
   3321  1.3   msaitoh 
   3322  1.3   msaitoh 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3323  1.3   msaitoh 
   3324  1.3   msaitoh 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3325  1.3   msaitoh 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3326  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3327  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   3328  1.3   msaitoh 
   3329  1.3   msaitoh 	return IXGBE_SUCCESS;
   3330  1.3   msaitoh }
   3331  1.3   msaitoh 
   3332  1.3   msaitoh /**
   3333  1.1    dyoung  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3334  1.1    dyoung  *  @hw: pointer to hardware structure
   3335  1.1    dyoung  *  @regval: register value to write to RXCTRL
   3336  1.1    dyoung  *
   3337  1.1    dyoung  *  Enables the Rx DMA unit
   3338  1.1    dyoung  **/
   3339  1.1    dyoung s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3340  1.1    dyoung {
   3341  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3342  1.1    dyoung 
   3343  1.8   msaitoh 	if (regval & IXGBE_RXCTRL_RXEN)
   3344  1.8   msaitoh 		ixgbe_enable_rx(hw);
   3345  1.8   msaitoh 	else
   3346  1.8   msaitoh 		ixgbe_disable_rx(hw);
   3347  1.1    dyoung 
   3348  1.1    dyoung 	return IXGBE_SUCCESS;
   3349  1.1    dyoung }
   3350  1.1    dyoung 
   3351  1.1    dyoung /**
   3352  1.1    dyoung  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3353  1.1    dyoung  *  @hw: pointer to hardware structure
   3354  1.1    dyoung  *  @index: led number to blink
   3355  1.1    dyoung  **/
   3356  1.1    dyoung s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3357  1.1    dyoung {
   3358  1.1    dyoung 	ixgbe_link_speed speed = 0;
   3359  1.1    dyoung 	bool link_up = 0;
   3360  1.8   msaitoh 	u32 autoc_reg = 0;
   3361  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3362  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3363  1.8   msaitoh 	bool locked = FALSE;
   3364  1.1    dyoung 
   3365  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3366  1.1    dyoung 
   3367  1.1    dyoung 	/*
   3368  1.1    dyoung 	 * Link must be up to auto-blink the LEDs;
   3369  1.1    dyoung 	 * Force it if link is down.
   3370  1.1    dyoung 	 */
   3371  1.1    dyoung 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3372  1.1    dyoung 
   3373  1.1    dyoung 	if (!link_up) {
   3374  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3375  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3376  1.8   msaitoh 			goto out;
   3377  1.5   msaitoh 
   3378  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3379  1.1    dyoung 		autoc_reg |= IXGBE_AUTOC_FLU;
   3380  1.8   msaitoh 
   3381  1.8   msaitoh 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3382  1.8   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   3383  1.8   msaitoh 			goto out;
   3384  1.8   msaitoh 
   3385  1.3   msaitoh 		IXGBE_WRITE_FLUSH(hw);
   3386  1.1    dyoung 		msec_delay(10);
   3387  1.1    dyoung 	}
   3388  1.1    dyoung 
   3389  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3390  1.1    dyoung 	led_reg |= IXGBE_LED_BLINK(index);
   3391  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3392  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3393  1.1    dyoung 
   3394  1.5   msaitoh out:
   3395  1.5   msaitoh 	return ret_val;
   3396  1.1    dyoung }
   3397  1.1    dyoung 
   3398  1.1    dyoung /**
   3399  1.1    dyoung  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3400  1.1    dyoung  *  @hw: pointer to hardware structure
   3401  1.1    dyoung  *  @index: led number to stop blinking
   3402  1.1    dyoung  **/
   3403  1.1    dyoung s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3404  1.1    dyoung {
   3405  1.8   msaitoh 	u32 autoc_reg = 0;
   3406  1.1    dyoung 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3407  1.5   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3408  1.8   msaitoh 	bool locked = FALSE;
   3409  1.1    dyoung 
   3410  1.1    dyoung 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3411  1.1    dyoung 
   3412  1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3413  1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3414  1.8   msaitoh 		goto out;
   3415  1.1    dyoung 
   3416  1.1    dyoung 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3417  1.1    dyoung 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3418  1.1    dyoung 
   3419  1.8   msaitoh 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3420  1.8   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3421  1.8   msaitoh 		goto out;
   3422  1.5   msaitoh 
   3423  1.1    dyoung 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3424  1.1    dyoung 	led_reg &= ~IXGBE_LED_BLINK(index);
   3425  1.1    dyoung 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3426  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3427  1.1    dyoung 	IXGBE_WRITE_FLUSH(hw);
   3428  1.1    dyoung 
   3429  1.5   msaitoh out:
   3430  1.5   msaitoh 	return ret_val;
   3431  1.1    dyoung }
   3432  1.1    dyoung 
   3433  1.1    dyoung /**
   3434  1.1    dyoung  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3435  1.1    dyoung  *  @hw: pointer to hardware structure
   3436  1.1    dyoung  *  @san_mac_offset: SAN MAC address offset
   3437  1.1    dyoung  *
   3438  1.1    dyoung  *  This function will read the EEPROM location for the SAN MAC address
   3439  1.1    dyoung  *  pointer, and returns the value at that location.  This is used in both
   3440  1.1    dyoung  *  get and set mac_addr routines.
   3441  1.1    dyoung  **/
   3442  1.1    dyoung static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3443  1.3   msaitoh 					 u16 *san_mac_offset)
   3444  1.1    dyoung {
   3445  1.6   msaitoh 	s32 ret_val;
   3446  1.6   msaitoh 
   3447  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3448  1.1    dyoung 
   3449  1.1    dyoung 	/*
   3450  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3451  1.1    dyoung 	 * available.
   3452  1.1    dyoung 	 */
   3453  1.6   msaitoh 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3454  1.6   msaitoh 				      san_mac_offset);
   3455  1.6   msaitoh 	if (ret_val) {
   3456  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3457  1.6   msaitoh 			      "eeprom at offset %d failed",
   3458  1.6   msaitoh 			      IXGBE_SAN_MAC_ADDR_PTR);
   3459  1.6   msaitoh 	}
   3460  1.1    dyoung 
   3461  1.6   msaitoh 	return ret_val;
   3462  1.1    dyoung }
   3463  1.1    dyoung 
   3464  1.1    dyoung /**
   3465  1.1    dyoung  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3466  1.1    dyoung  *  @hw: pointer to hardware structure
   3467  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3468  1.1    dyoung  *
   3469  1.1    dyoung  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3470  1.1    dyoung  *  per-port, so set_lan_id() must be called before reading the addresses.
   3471  1.1    dyoung  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3472  1.1    dyoung  *  upon for non-SFP connections, so we must call it here.
   3473  1.1    dyoung  **/
   3474  1.1    dyoung s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3475  1.1    dyoung {
   3476  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3477  1.1    dyoung 	u8 i;
   3478  1.6   msaitoh 	s32 ret_val;
   3479  1.1    dyoung 
   3480  1.1    dyoung 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3481  1.1    dyoung 
   3482  1.1    dyoung 	/*
   3483  1.1    dyoung 	 * First read the EEPROM pointer to see if the MAC addresses are
   3484  1.1    dyoung 	 * available.  If they're not, no point in calling set_lan_id() here.
   3485  1.1    dyoung 	 */
   3486  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3487  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3488  1.1    dyoung 		goto san_mac_addr_out;
   3489  1.1    dyoung 
   3490  1.1    dyoung 	/* make sure we know which port we need to program */
   3491  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3492  1.1    dyoung 	/* apply the port offset to the address offset */
   3493  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3494  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3495  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3496  1.6   msaitoh 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3497  1.6   msaitoh 					      &san_mac_data);
   3498  1.6   msaitoh 		if (ret_val) {
   3499  1.6   msaitoh 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3500  1.6   msaitoh 				      "eeprom read at offset %d failed",
   3501  1.6   msaitoh 				      san_mac_offset);
   3502  1.6   msaitoh 			goto san_mac_addr_out;
   3503  1.6   msaitoh 		}
   3504  1.1    dyoung 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3505  1.1    dyoung 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3506  1.1    dyoung 		san_mac_offset++;
   3507  1.1    dyoung 	}
   3508  1.6   msaitoh 	return IXGBE_SUCCESS;
   3509  1.1    dyoung 
   3510  1.1    dyoung san_mac_addr_out:
   3511  1.6   msaitoh 	/*
   3512  1.6   msaitoh 	 * No addresses available in this EEPROM.  It's not an
   3513  1.6   msaitoh 	 * error though, so just wipe the local address and return.
   3514  1.6   msaitoh 	 */
   3515  1.6   msaitoh 	for (i = 0; i < 6; i++)
   3516  1.6   msaitoh 		san_mac_addr[i] = 0xFF;
   3517  1.1    dyoung 	return IXGBE_SUCCESS;
   3518  1.1    dyoung }
   3519  1.1    dyoung 
   3520  1.1    dyoung /**
   3521  1.1    dyoung  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3522  1.1    dyoung  *  @hw: pointer to hardware structure
   3523  1.1    dyoung  *  @san_mac_addr: SAN MAC address
   3524  1.1    dyoung  *
   3525  1.1    dyoung  *  Write a SAN MAC address to the EEPROM.
   3526  1.1    dyoung  **/
   3527  1.1    dyoung s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3528  1.1    dyoung {
   3529  1.6   msaitoh 	s32 ret_val;
   3530  1.1    dyoung 	u16 san_mac_data, san_mac_offset;
   3531  1.1    dyoung 	u8 i;
   3532  1.1    dyoung 
   3533  1.1    dyoung 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3534  1.1    dyoung 
   3535  1.1    dyoung 	/* Look for SAN mac address pointer.  If not defined, return */
   3536  1.6   msaitoh 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3537  1.6   msaitoh 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3538  1.6   msaitoh 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3539  1.1    dyoung 
   3540  1.1    dyoung 	/* Make sure we know which port we need to write */
   3541  1.1    dyoung 	hw->mac.ops.set_lan_id(hw);
   3542  1.1    dyoung 	/* Apply the port offset to the address offset */
   3543  1.1    dyoung 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3544  1.3   msaitoh 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3545  1.1    dyoung 
   3546  1.1    dyoung 	for (i = 0; i < 3; i++) {
   3547  1.1    dyoung 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3548  1.1    dyoung 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3549  1.1    dyoung 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3550  1.1    dyoung 		san_mac_offset++;
   3551  1.1    dyoung 	}
   3552  1.1    dyoung 
   3553  1.6   msaitoh 	return IXGBE_SUCCESS;
   3554  1.1    dyoung }
   3555  1.1    dyoung 
   3556  1.1    dyoung /**
   3557  1.1    dyoung  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3558  1.1    dyoung  *  @hw: pointer to hardware structure
   3559  1.1    dyoung  *
   3560  1.1    dyoung  *  Read PCIe configuration space, and get the MSI-X vector count from
   3561  1.1    dyoung  *  the capabilities table.
   3562  1.1    dyoung  **/
   3563  1.4   msaitoh u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3564  1.1    dyoung {
   3565  1.4   msaitoh 	u16 msix_count = 1;
   3566  1.4   msaitoh 	u16 max_msix_count;
   3567  1.4   msaitoh 	u16 pcie_offset;
   3568  1.4   msaitoh 
   3569  1.4   msaitoh 	switch (hw->mac.type) {
   3570  1.4   msaitoh 	case ixgbe_mac_82598EB:
   3571  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3572  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3573  1.4   msaitoh 		break;
   3574  1.4   msaitoh 	case ixgbe_mac_82599EB:
   3575  1.4   msaitoh 	case ixgbe_mac_X540:
   3576  1.8   msaitoh 	case ixgbe_mac_X550:
   3577  1.8   msaitoh 	case ixgbe_mac_X550EM_x:
   3578  1.4   msaitoh 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3579  1.4   msaitoh 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3580  1.4   msaitoh 		break;
   3581  1.4   msaitoh 	default:
   3582  1.4   msaitoh 		return msix_count;
   3583  1.4   msaitoh 	}
   3584  1.1    dyoung 
   3585  1.1    dyoung 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3586  1.4   msaitoh 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3587  1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3588  1.8   msaitoh 		msix_count = 0;
   3589  1.4   msaitoh 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3590  1.4   msaitoh 
   3591  1.4   msaitoh 	/* MSI-X count is zero-based in HW */
   3592  1.4   msaitoh 	msix_count++;
   3593  1.4   msaitoh 
   3594  1.4   msaitoh 	if (msix_count > max_msix_count)
   3595  1.4   msaitoh 		msix_count = max_msix_count;
   3596  1.1    dyoung 
   3597  1.1    dyoung 	return msix_count;
   3598  1.1    dyoung }
   3599  1.1    dyoung 
   3600  1.1    dyoung /**
   3601  1.1    dyoung  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3602  1.1    dyoung  *  @hw: pointer to hardware structure
   3603  1.1    dyoung  *  @addr: Address to put into receive address register
   3604  1.1    dyoung  *  @vmdq: VMDq pool to assign
   3605  1.1    dyoung  *
   3606  1.1    dyoung  *  Puts an ethernet address into a receive address register, or
   3607  1.1    dyoung  *  finds the rar that it is aleady in; adds to the pool list
   3608  1.1    dyoung  **/
   3609  1.1    dyoung s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3610  1.1    dyoung {
   3611  1.1    dyoung 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3612  1.1    dyoung 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3613  1.1    dyoung 	u32 rar;
   3614  1.1    dyoung 	u32 rar_low, rar_high;
   3615  1.1    dyoung 	u32 addr_low, addr_high;
   3616  1.1    dyoung 
   3617  1.1    dyoung 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3618  1.1    dyoung 
   3619  1.1    dyoung 	/* swap bytes for HW little endian */
   3620  1.1    dyoung 	addr_low  = addr[0] | (addr[1] << 8)
   3621  1.1    dyoung 			    | (addr[2] << 16)
   3622  1.1    dyoung 			    | (addr[3] << 24);
   3623  1.1    dyoung 	addr_high = addr[4] | (addr[5] << 8);
   3624  1.1    dyoung 
   3625  1.1    dyoung 	/*
   3626  1.1    dyoung 	 * Either find the mac_id in rar or find the first empty space.
   3627  1.1    dyoung 	 * rar_highwater points to just after the highest currently used
   3628  1.1    dyoung 	 * rar in order to shorten the search.  It grows when we add a new
   3629  1.1    dyoung 	 * rar to the top.
   3630  1.1    dyoung 	 */
   3631  1.1    dyoung 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3632  1.1    dyoung 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3633  1.1    dyoung 
   3634  1.1    dyoung 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3635  1.1    dyoung 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3636  1.1    dyoung 			first_empty_rar = rar;
   3637  1.1    dyoung 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3638  1.1    dyoung 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3639  1.1    dyoung 			if (rar_low == addr_low)
   3640  1.1    dyoung 				break;    /* found it already in the rars */
   3641  1.1    dyoung 		}
   3642  1.1    dyoung 	}
   3643  1.1    dyoung 
   3644  1.1    dyoung 	if (rar < hw->mac.rar_highwater) {
   3645  1.1    dyoung 		/* already there so just add to the pool bits */
   3646  1.1    dyoung 		ixgbe_set_vmdq(hw, rar, vmdq);
   3647  1.1    dyoung 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3648  1.1    dyoung 		/* stick it into first empty RAR slot we found */
   3649  1.1    dyoung 		rar = first_empty_rar;
   3650  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3651  1.1    dyoung 	} else if (rar == hw->mac.rar_highwater) {
   3652  1.1    dyoung 		/* add it to the top of the list and inc the highwater mark */
   3653  1.1    dyoung 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3654  1.1    dyoung 		hw->mac.rar_highwater++;
   3655  1.1    dyoung 	} else if (rar >= hw->mac.num_rar_entries) {
   3656  1.1    dyoung 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3657  1.1    dyoung 	}
   3658  1.1    dyoung 
   3659  1.1    dyoung 	/*
   3660  1.1    dyoung 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3661  1.1    dyoung 	 * remains cleared to be sure default pool packets will get delivered
   3662  1.1    dyoung 	 */
   3663  1.1    dyoung 	if (rar == 0)
   3664  1.1    dyoung 		ixgbe_clear_vmdq(hw, rar, 0);
   3665  1.1    dyoung 
   3666  1.1    dyoung 	return rar;
   3667  1.1    dyoung }
   3668  1.1    dyoung 
   3669  1.1    dyoung /**
   3670  1.1    dyoung  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3671  1.1    dyoung  *  @hw: pointer to hardware struct
   3672  1.1    dyoung  *  @rar: receive address register index to disassociate
   3673  1.1    dyoung  *  @vmdq: VMDq pool index to remove from the rar
   3674  1.1    dyoung  **/
   3675  1.1    dyoung s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3676  1.1    dyoung {
   3677  1.1    dyoung 	u32 mpsar_lo, mpsar_hi;
   3678  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3679  1.1    dyoung 
   3680  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3681  1.1    dyoung 
   3682  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3683  1.1    dyoung 	if (rar >= rar_entries) {
   3684  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3685  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3686  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3687  1.1    dyoung 	}
   3688  1.1    dyoung 
   3689  1.1    dyoung 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3690  1.1    dyoung 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3691  1.1    dyoung 
   3692  1.8   msaitoh 	if (IXGBE_REMOVED(hw->hw_addr))
   3693  1.8   msaitoh 		goto done;
   3694  1.8   msaitoh 
   3695  1.1    dyoung 	if (!mpsar_lo && !mpsar_hi)
   3696  1.1    dyoung 		goto done;
   3697  1.1    dyoung 
   3698  1.1    dyoung 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3699  1.1    dyoung 		if (mpsar_lo) {
   3700  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3701  1.1    dyoung 			mpsar_lo = 0;
   3702  1.1    dyoung 		}
   3703  1.1    dyoung 		if (mpsar_hi) {
   3704  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3705  1.1    dyoung 			mpsar_hi = 0;
   3706  1.1    dyoung 		}
   3707  1.1    dyoung 	} else if (vmdq < 32) {
   3708  1.1    dyoung 		mpsar_lo &= ~(1 << vmdq);
   3709  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3710  1.1    dyoung 	} else {
   3711  1.1    dyoung 		mpsar_hi &= ~(1 << (vmdq - 32));
   3712  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3713  1.1    dyoung 	}
   3714  1.1    dyoung 
   3715  1.1    dyoung 	/* was that the last pool using this rar? */
   3716  1.1    dyoung 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3717  1.1    dyoung 		hw->mac.ops.clear_rar(hw, rar);
   3718  1.1    dyoung done:
   3719  1.1    dyoung 	return IXGBE_SUCCESS;
   3720  1.1    dyoung }
   3721  1.1    dyoung 
   3722  1.1    dyoung /**
   3723  1.1    dyoung  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3724  1.1    dyoung  *  @hw: pointer to hardware struct
   3725  1.1    dyoung  *  @rar: receive address register index to associate with a VMDq index
   3726  1.1    dyoung  *  @vmdq: VMDq pool index
   3727  1.1    dyoung  **/
   3728  1.1    dyoung s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3729  1.1    dyoung {
   3730  1.1    dyoung 	u32 mpsar;
   3731  1.1    dyoung 	u32 rar_entries = hw->mac.num_rar_entries;
   3732  1.1    dyoung 
   3733  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3734  1.1    dyoung 
   3735  1.1    dyoung 	/* Make sure we are using a valid rar index range */
   3736  1.1    dyoung 	if (rar >= rar_entries) {
   3737  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3738  1.6   msaitoh 			     "RAR index %d is out of range.\n", rar);
   3739  1.1    dyoung 		return IXGBE_ERR_INVALID_ARGUMENT;
   3740  1.1    dyoung 	}
   3741  1.1    dyoung 
   3742  1.1    dyoung 	if (vmdq < 32) {
   3743  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3744  1.1    dyoung 		mpsar |= 1 << vmdq;
   3745  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3746  1.1    dyoung 	} else {
   3747  1.1    dyoung 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3748  1.1    dyoung 		mpsar |= 1 << (vmdq - 32);
   3749  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3750  1.1    dyoung 	}
   3751  1.1    dyoung 	return IXGBE_SUCCESS;
   3752  1.1    dyoung }
   3753  1.1    dyoung 
   3754  1.1    dyoung /**
   3755  1.4   msaitoh  *  This function should only be involved in the IOV mode.
   3756  1.4   msaitoh  *  In IOV mode, Default pool is next pool after the number of
   3757  1.4   msaitoh  *  VFs advertized and not 0.
   3758  1.4   msaitoh  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3759  1.4   msaitoh  *
   3760  1.4   msaitoh  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3761  1.4   msaitoh  *  @hw: pointer to hardware struct
   3762  1.4   msaitoh  *  @vmdq: VMDq pool index
   3763  1.4   msaitoh  **/
   3764  1.4   msaitoh s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3765  1.4   msaitoh {
   3766  1.4   msaitoh 	u32 rar = hw->mac.san_mac_rar_index;
   3767  1.4   msaitoh 
   3768  1.4   msaitoh 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3769  1.4   msaitoh 
   3770  1.4   msaitoh 	if (vmdq < 32) {
   3771  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3772  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3773  1.4   msaitoh 	} else {
   3774  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3775  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3776  1.4   msaitoh 	}
   3777  1.4   msaitoh 
   3778  1.4   msaitoh 	return IXGBE_SUCCESS;
   3779  1.4   msaitoh }
   3780  1.4   msaitoh 
   3781  1.4   msaitoh /**
   3782  1.1    dyoung  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3783  1.1    dyoung  *  @hw: pointer to hardware structure
   3784  1.1    dyoung  **/
   3785  1.1    dyoung s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3786  1.1    dyoung {
   3787  1.1    dyoung 	int i;
   3788  1.1    dyoung 
   3789  1.1    dyoung 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3790  1.1    dyoung 	DEBUGOUT(" Clearing UTA\n");
   3791  1.1    dyoung 
   3792  1.1    dyoung 	for (i = 0; i < 128; i++)
   3793  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3794  1.1    dyoung 
   3795  1.1    dyoung 	return IXGBE_SUCCESS;
   3796  1.1    dyoung }
   3797  1.1    dyoung 
   3798  1.1    dyoung /**
   3799  1.1    dyoung  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3800  1.1    dyoung  *  @hw: pointer to hardware structure
   3801  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3802  1.1    dyoung  *
   3803  1.1    dyoung  *  return the VLVF index where this VLAN id should be placed
   3804  1.1    dyoung  *
   3805  1.1    dyoung  **/
   3806  1.1    dyoung s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3807  1.1    dyoung {
   3808  1.1    dyoung 	u32 bits = 0;
   3809  1.1    dyoung 	u32 first_empty_slot = 0;
   3810  1.1    dyoung 	s32 regindex;
   3811  1.1    dyoung 
   3812  1.1    dyoung 	/* short cut the special case */
   3813  1.1    dyoung 	if (vlan == 0)
   3814  1.1    dyoung 		return 0;
   3815  1.1    dyoung 
   3816  1.1    dyoung 	/*
   3817  1.1    dyoung 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3818  1.1    dyoung 	  * slot found along the way
   3819  1.1    dyoung 	  */
   3820  1.1    dyoung 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3821  1.1    dyoung 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3822  1.1    dyoung 		if (!bits && !(first_empty_slot))
   3823  1.1    dyoung 			first_empty_slot = regindex;
   3824  1.1    dyoung 		else if ((bits & 0x0FFF) == vlan)
   3825  1.1    dyoung 			break;
   3826  1.1    dyoung 	}
   3827  1.1    dyoung 
   3828  1.1    dyoung 	/*
   3829  1.1    dyoung 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3830  1.1    dyoung 	  * in the VLVF. Else use the first empty VLVF register for this
   3831  1.1    dyoung 	  * vlan id.
   3832  1.1    dyoung 	  */
   3833  1.1    dyoung 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3834  1.1    dyoung 		if (first_empty_slot)
   3835  1.1    dyoung 			regindex = first_empty_slot;
   3836  1.1    dyoung 		else {
   3837  1.6   msaitoh 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3838  1.6   msaitoh 				     "No space in VLVF.\n");
   3839  1.1    dyoung 			regindex = IXGBE_ERR_NO_SPACE;
   3840  1.1    dyoung 		}
   3841  1.1    dyoung 	}
   3842  1.1    dyoung 
   3843  1.1    dyoung 	return regindex;
   3844  1.1    dyoung }
   3845  1.1    dyoung 
   3846  1.1    dyoung /**
   3847  1.1    dyoung  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3848  1.1    dyoung  *  @hw: pointer to hardware structure
   3849  1.1    dyoung  *  @vlan: VLAN id to write to VLAN filter
   3850  1.1    dyoung  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3851  1.1    dyoung  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3852  1.1    dyoung  *
   3853  1.1    dyoung  *  Turn on/off specified VLAN in the VLAN filter table.
   3854  1.1    dyoung  **/
   3855  1.1    dyoung s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3856  1.3   msaitoh 			   bool vlan_on)
   3857  1.1    dyoung {
   3858  1.1    dyoung 	s32 regindex;
   3859  1.1    dyoung 	u32 bitindex;
   3860  1.1    dyoung 	u32 vfta;
   3861  1.1    dyoung 	u32 targetbit;
   3862  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   3863  1.1    dyoung 	bool vfta_changed = FALSE;
   3864  1.1    dyoung 
   3865  1.1    dyoung 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3866  1.1    dyoung 
   3867  1.1    dyoung 	if (vlan > 4095)
   3868  1.1    dyoung 		return IXGBE_ERR_PARAM;
   3869  1.1    dyoung 
   3870  1.1    dyoung 	/*
   3871  1.1    dyoung 	 * this is a 2 part operation - first the VFTA, then the
   3872  1.1    dyoung 	 * VLVF and VLVFB if VT Mode is set
   3873  1.1    dyoung 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3874  1.1    dyoung 	 */
   3875  1.1    dyoung 
   3876  1.1    dyoung 	/* Part 1
   3877  1.1    dyoung 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3878  1.1    dyoung 	 * that enable the particular VLAN id, much like the MTA:
   3879  1.1    dyoung 	 *    bits[11-5]: which register
   3880  1.1    dyoung 	 *    bits[4-0]:  which bit in the register
   3881  1.1    dyoung 	 */
   3882  1.1    dyoung 	regindex = (vlan >> 5) & 0x7F;
   3883  1.1    dyoung 	bitindex = vlan & 0x1F;
   3884  1.1    dyoung 	targetbit = (1 << bitindex);
   3885  1.1    dyoung 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3886  1.1    dyoung 
   3887  1.1    dyoung 	if (vlan_on) {
   3888  1.1    dyoung 		if (!(vfta & targetbit)) {
   3889  1.1    dyoung 			vfta |= targetbit;
   3890  1.1    dyoung 			vfta_changed = TRUE;
   3891  1.1    dyoung 		}
   3892  1.1    dyoung 	} else {
   3893  1.1    dyoung 		if ((vfta & targetbit)) {
   3894  1.1    dyoung 			vfta &= ~targetbit;
   3895  1.1    dyoung 			vfta_changed = TRUE;
   3896  1.1    dyoung 		}
   3897  1.1    dyoung 	}
   3898  1.1    dyoung 
   3899  1.1    dyoung 	/* Part 2
   3900  1.3   msaitoh 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3901  1.3   msaitoh 	 */
   3902  1.3   msaitoh 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3903  1.3   msaitoh 					 &vfta_changed);
   3904  1.3   msaitoh 	if (ret_val != IXGBE_SUCCESS)
   3905  1.3   msaitoh 		return ret_val;
   3906  1.3   msaitoh 
   3907  1.3   msaitoh 	if (vfta_changed)
   3908  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3909  1.3   msaitoh 
   3910  1.3   msaitoh 	return IXGBE_SUCCESS;
   3911  1.3   msaitoh }
   3912  1.3   msaitoh 
   3913  1.3   msaitoh /**
   3914  1.3   msaitoh  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3915  1.3   msaitoh  *  @hw: pointer to hardware structure
   3916  1.3   msaitoh  *  @vlan: VLAN id to write to VLAN filter
   3917  1.3   msaitoh  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3918  1.3   msaitoh  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3919  1.3   msaitoh  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3920  1.3   msaitoh  *                 should be changed
   3921  1.3   msaitoh  *
   3922  1.3   msaitoh  *  Turn on/off specified bit in VLVF table.
   3923  1.3   msaitoh  **/
   3924  1.3   msaitoh s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3925  1.3   msaitoh 			    bool vlan_on, bool *vfta_changed)
   3926  1.3   msaitoh {
   3927  1.3   msaitoh 	u32 vt;
   3928  1.3   msaitoh 
   3929  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3930  1.3   msaitoh 
   3931  1.3   msaitoh 	if (vlan > 4095)
   3932  1.3   msaitoh 		return IXGBE_ERR_PARAM;
   3933  1.3   msaitoh 
   3934  1.3   msaitoh 	/* If VT Mode is set
   3935  1.1    dyoung 	 *   Either vlan_on
   3936  1.1    dyoung 	 *     make sure the vlan is in VLVF
   3937  1.1    dyoung 	 *     set the vind bit in the matching VLVFB
   3938  1.1    dyoung 	 *   Or !vlan_on
   3939  1.1    dyoung 	 *     clear the pool bit and possibly the vind
   3940  1.1    dyoung 	 */
   3941  1.1    dyoung 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3942  1.1    dyoung 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3943  1.1    dyoung 		s32 vlvf_index;
   3944  1.3   msaitoh 		u32 bits;
   3945  1.1    dyoung 
   3946  1.1    dyoung 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3947  1.1    dyoung 		if (vlvf_index < 0)
   3948  1.1    dyoung 			return vlvf_index;
   3949  1.1    dyoung 
   3950  1.1    dyoung 		if (vlan_on) {
   3951  1.1    dyoung 			/* set the pool bit */
   3952  1.1    dyoung 			if (vind < 32) {
   3953  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3954  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3955  1.1    dyoung 				bits |= (1 << vind);
   3956  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3957  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3958  1.1    dyoung 						bits);
   3959  1.1    dyoung 			} else {
   3960  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3961  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3962  1.3   msaitoh 				bits |= (1 << (vind - 32));
   3963  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3964  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3965  1.3   msaitoh 					bits);
   3966  1.1    dyoung 			}
   3967  1.1    dyoung 		} else {
   3968  1.1    dyoung 			/* clear the pool bit */
   3969  1.1    dyoung 			if (vind < 32) {
   3970  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3971  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3972  1.1    dyoung 				bits &= ~(1 << vind);
   3973  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3974  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2),
   3975  1.1    dyoung 						bits);
   3976  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3977  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3978  1.1    dyoung 			} else {
   3979  1.1    dyoung 				bits = IXGBE_READ_REG(hw,
   3980  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3981  1.3   msaitoh 				bits &= ~(1 << (vind - 32));
   3982  1.1    dyoung 				IXGBE_WRITE_REG(hw,
   3983  1.3   msaitoh 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3984  1.3   msaitoh 					bits);
   3985  1.1    dyoung 				bits |= IXGBE_READ_REG(hw,
   3986  1.3   msaitoh 						IXGBE_VLVFB(vlvf_index * 2));
   3987  1.1    dyoung 			}
   3988  1.1    dyoung 		}
   3989  1.1    dyoung 
   3990  1.1    dyoung 		/*
   3991  1.1    dyoung 		 * If there are still bits set in the VLVFB registers
   3992  1.1    dyoung 		 * for the VLAN ID indicated we need to see if the
   3993  1.1    dyoung 		 * caller is requesting that we clear the VFTA entry bit.
   3994  1.1    dyoung 		 * If the caller has requested that we clear the VFTA
   3995  1.1    dyoung 		 * entry bit but there are still pools/VFs using this VLAN
   3996  1.1    dyoung 		 * ID entry then ignore the request.  We're not worried
   3997  1.1    dyoung 		 * about the case where we're turning the VFTA VLAN ID
   3998  1.1    dyoung 		 * entry bit on, only when requested to turn it off as
   3999  1.1    dyoung 		 * there may be multiple pools and/or VFs using the
   4000  1.1    dyoung 		 * VLAN ID entry.  In that case we cannot clear the
   4001  1.1    dyoung 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   4002  1.1    dyoung 		 * been cleared.  This will be indicated by "bits" being
   4003  1.1    dyoung 		 * zero.
   4004  1.1    dyoung 		 */
   4005  1.1    dyoung 		if (bits) {
   4006  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   4007  1.1    dyoung 					(IXGBE_VLVF_VIEN | vlan));
   4008  1.3   msaitoh 			if ((!vlan_on) && (vfta_changed != NULL)) {
   4009  1.1    dyoung 				/* someone wants to clear the vfta entry
   4010  1.1    dyoung 				 * but some pools/VFs are still using it.
   4011  1.1    dyoung 				 * Ignore it. */
   4012  1.3   msaitoh 				*vfta_changed = FALSE;
   4013  1.1    dyoung 			}
   4014  1.3   msaitoh 		} else
   4015  1.1    dyoung 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4016  1.1    dyoung 	}
   4017  1.1    dyoung 
   4018  1.1    dyoung 	return IXGBE_SUCCESS;
   4019  1.1    dyoung }
   4020  1.1    dyoung 
   4021  1.1    dyoung /**
   4022  1.1    dyoung  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4023  1.1    dyoung  *  @hw: pointer to hardware structure
   4024  1.1    dyoung  *
   4025  1.1    dyoung  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4026  1.1    dyoung  **/
   4027  1.1    dyoung s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4028  1.1    dyoung {
   4029  1.1    dyoung 	u32 offset;
   4030  1.1    dyoung 
   4031  1.1    dyoung 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4032  1.1    dyoung 
   4033  1.1    dyoung 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4034  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4035  1.1    dyoung 
   4036  1.1    dyoung 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4037  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4038  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4039  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4040  1.1    dyoung 	}
   4041  1.1    dyoung 
   4042  1.1    dyoung 	return IXGBE_SUCCESS;
   4043  1.1    dyoung }
   4044  1.1    dyoung 
   4045  1.1    dyoung /**
   4046  1.1    dyoung  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4047  1.1    dyoung  *  @hw: pointer to hardware structure
   4048  1.1    dyoung  *  @speed: pointer to link speed
   4049  1.1    dyoung  *  @link_up: TRUE when link is up
   4050  1.1    dyoung  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4051  1.1    dyoung  *
   4052  1.1    dyoung  *  Reads the links register to determine if link is up and the current speed
   4053  1.1    dyoung  **/
   4054  1.1    dyoung s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4055  1.3   msaitoh 				 bool *link_up, bool link_up_wait_to_complete)
   4056  1.1    dyoung {
   4057  1.1    dyoung 	u32 links_reg, links_orig;
   4058  1.1    dyoung 	u32 i;
   4059  1.1    dyoung 
   4060  1.1    dyoung 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4061  1.1    dyoung 
   4062  1.1    dyoung 	/* clear the old state */
   4063  1.1    dyoung 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4064  1.1    dyoung 
   4065  1.1    dyoung 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4066  1.1    dyoung 
   4067  1.1    dyoung 	if (links_orig != links_reg) {
   4068  1.1    dyoung 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4069  1.3   msaitoh 			  links_orig, links_reg);
   4070  1.1    dyoung 	}
   4071  1.1    dyoung 
   4072  1.1    dyoung 	if (link_up_wait_to_complete) {
   4073  1.1    dyoung 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   4074  1.1    dyoung 			if (links_reg & IXGBE_LINKS_UP) {
   4075  1.1    dyoung 				*link_up = TRUE;
   4076  1.1    dyoung 				break;
   4077  1.1    dyoung 			} else {
   4078  1.1    dyoung 				*link_up = FALSE;
   4079  1.1    dyoung 			}
   4080  1.1    dyoung 			msec_delay(100);
   4081  1.1    dyoung 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4082  1.1    dyoung 		}
   4083  1.1    dyoung 	} else {
   4084  1.1    dyoung 		if (links_reg & IXGBE_LINKS_UP)
   4085  1.1    dyoung 			*link_up = TRUE;
   4086  1.1    dyoung 		else
   4087  1.1    dyoung 			*link_up = FALSE;
   4088  1.1    dyoung 	}
   4089  1.1    dyoung 
   4090  1.8   msaitoh 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4091  1.8   msaitoh 	case IXGBE_LINKS_SPEED_10G_82599:
   4092  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4093  1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4094  1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4095  1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4096  1.8   msaitoh 		}
   4097  1.8   msaitoh 		break;
   4098  1.8   msaitoh 	case IXGBE_LINKS_SPEED_1G_82599:
   4099  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4100  1.8   msaitoh 		break;
   4101  1.8   msaitoh 	case IXGBE_LINKS_SPEED_100_82599:
   4102  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4103  1.8   msaitoh 		if (hw->mac.type >= ixgbe_mac_X550) {
   4104  1.8   msaitoh 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4105  1.8   msaitoh 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4106  1.8   msaitoh 		}
   4107  1.8   msaitoh 		break;
   4108  1.8   msaitoh 	default:
   4109  1.1    dyoung 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4110  1.8   msaitoh 	}
   4111  1.1    dyoung 
   4112  1.1    dyoung 	return IXGBE_SUCCESS;
   4113  1.1    dyoung }
   4114  1.1    dyoung 
   4115  1.1    dyoung /**
   4116  1.1    dyoung  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4117  1.1    dyoung  *  the EEPROM
   4118  1.1    dyoung  *  @hw: pointer to hardware structure
   4119  1.1    dyoung  *  @wwnn_prefix: the alternative WWNN prefix
   4120  1.1    dyoung  *  @wwpn_prefix: the alternative WWPN prefix
   4121  1.1    dyoung  *
   4122  1.1    dyoung  *  This function will read the EEPROM from the alternative SAN MAC address
   4123  1.1    dyoung  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4124  1.1    dyoung  **/
   4125  1.1    dyoung s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4126  1.3   msaitoh 				 u16 *wwpn_prefix)
   4127  1.1    dyoung {
   4128  1.1    dyoung 	u16 offset, caps;
   4129  1.1    dyoung 	u16 alt_san_mac_blk_offset;
   4130  1.1    dyoung 
   4131  1.1    dyoung 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4132  1.1    dyoung 
   4133  1.1    dyoung 	/* clear output first */
   4134  1.1    dyoung 	*wwnn_prefix = 0xFFFF;
   4135  1.1    dyoung 	*wwpn_prefix = 0xFFFF;
   4136  1.1    dyoung 
   4137  1.1    dyoung 	/* check if alternative SAN MAC is supported */
   4138  1.6   msaitoh 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4139  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4140  1.6   msaitoh 		goto wwn_prefix_err;
   4141  1.1    dyoung 
   4142  1.1    dyoung 	if ((alt_san_mac_blk_offset == 0) ||
   4143  1.1    dyoung 	    (alt_san_mac_blk_offset == 0xFFFF))
   4144  1.1    dyoung 		goto wwn_prefix_out;
   4145  1.1    dyoung 
   4146  1.1    dyoung 	/* check capability in alternative san mac address block */
   4147  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4148  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4149  1.6   msaitoh 		goto wwn_prefix_err;
   4150  1.1    dyoung 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4151  1.1    dyoung 		goto wwn_prefix_out;
   4152  1.1    dyoung 
   4153  1.1    dyoung 	/* get the corresponding prefix for WWNN/WWPN */
   4154  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4155  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4156  1.6   msaitoh 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4157  1.6   msaitoh 			      "eeprom read at offset %d failed", offset);
   4158  1.6   msaitoh 	}
   4159  1.1    dyoung 
   4160  1.1    dyoung 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4161  1.6   msaitoh 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4162  1.6   msaitoh 		goto wwn_prefix_err;
   4163  1.1    dyoung 
   4164  1.1    dyoung wwn_prefix_out:
   4165  1.1    dyoung 	return IXGBE_SUCCESS;
   4166  1.6   msaitoh 
   4167  1.6   msaitoh wwn_prefix_err:
   4168  1.6   msaitoh 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4169  1.6   msaitoh 		      "eeprom read at offset %d failed", offset);
   4170  1.6   msaitoh 	return IXGBE_SUCCESS;
   4171  1.1    dyoung }
   4172  1.1    dyoung 
   4173  1.1    dyoung /**
   4174  1.1    dyoung  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4175  1.1    dyoung  *  @hw: pointer to hardware structure
   4176  1.1    dyoung  *  @bs: the fcoe boot status
   4177  1.1    dyoung  *
   4178  1.1    dyoung  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4179  1.1    dyoung  **/
   4180  1.1    dyoung s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4181  1.1    dyoung {
   4182  1.1    dyoung 	u16 offset, caps, flags;
   4183  1.1    dyoung 	s32 status;
   4184  1.1    dyoung 
   4185  1.1    dyoung 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4186  1.1    dyoung 
   4187  1.1    dyoung 	/* clear output first */
   4188  1.1    dyoung 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4189  1.1    dyoung 
   4190  1.1    dyoung 	/* check if FCOE IBA block is present */
   4191  1.1    dyoung 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4192  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4193  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4194  1.1    dyoung 		goto out;
   4195  1.1    dyoung 
   4196  1.1    dyoung 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4197  1.1    dyoung 		goto out;
   4198  1.1    dyoung 
   4199  1.1    dyoung 	/* check if iSCSI FCOE block is populated */
   4200  1.1    dyoung 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4201  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4202  1.1    dyoung 		goto out;
   4203  1.1    dyoung 
   4204  1.1    dyoung 	if ((offset == 0) || (offset == 0xFFFF))
   4205  1.1    dyoung 		goto out;
   4206  1.1    dyoung 
   4207  1.1    dyoung 	/* read fcoe flags in iSCSI FCOE block */
   4208  1.1    dyoung 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4209  1.1    dyoung 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4210  1.1    dyoung 	if (status != IXGBE_SUCCESS)
   4211  1.1    dyoung 		goto out;
   4212  1.1    dyoung 
   4213  1.1    dyoung 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4214  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4215  1.1    dyoung 	else
   4216  1.1    dyoung 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4217  1.1    dyoung 
   4218  1.1    dyoung out:
   4219  1.1    dyoung 	return status;
   4220  1.1    dyoung }
   4221  1.1    dyoung 
   4222  1.1    dyoung /**
   4223  1.1    dyoung  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4224  1.1    dyoung  *  @hw: pointer to hardware structure
   4225  1.1    dyoung  *  @enable: enable or disable switch for anti-spoofing
   4226  1.1    dyoung  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4227  1.1    dyoung  *
   4228  1.1    dyoung  **/
   4229  1.1    dyoung void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4230  1.1    dyoung {
   4231  1.1    dyoung 	int j;
   4232  1.1    dyoung 	int pf_target_reg = pf >> 3;
   4233  1.1    dyoung 	int pf_target_shift = pf % 8;
   4234  1.1    dyoung 	u32 pfvfspoof = 0;
   4235  1.1    dyoung 
   4236  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4237  1.1    dyoung 		return;
   4238  1.1    dyoung 
   4239  1.1    dyoung 	if (enable)
   4240  1.1    dyoung 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4241  1.1    dyoung 
   4242  1.1    dyoung 	/*
   4243  1.1    dyoung 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4244  1.1    dyoung 	 * MAC anti-spoof enables in each register array element.
   4245  1.1    dyoung 	 */
   4246  1.4   msaitoh 	for (j = 0; j < pf_target_reg; j++)
   4247  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4248  1.1    dyoung 
   4249  1.4   msaitoh 	/*
   4250  1.4   msaitoh 	 * The PF should be allowed to spoof so that it can support
   4251  1.4   msaitoh 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4252  1.4   msaitoh 	 */
   4253  1.4   msaitoh 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4254  1.4   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4255  1.1    dyoung 
   4256  1.1    dyoung 	/*
   4257  1.4   msaitoh 	 * Remaining pools belong to the PF so they do not need to have
   4258  1.4   msaitoh 	 * anti-spoofing enabled.
   4259  1.1    dyoung 	 */
   4260  1.4   msaitoh 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4261  1.4   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4262  1.1    dyoung }
   4263  1.1    dyoung 
   4264  1.1    dyoung /**
   4265  1.1    dyoung  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4266  1.1    dyoung  *  @hw: pointer to hardware structure
   4267  1.1    dyoung  *  @enable: enable or disable switch for VLAN anti-spoofing
   4268  1.8   msaitoh  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4269  1.1    dyoung  *
   4270  1.1    dyoung  **/
   4271  1.1    dyoung void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4272  1.1    dyoung {
   4273  1.1    dyoung 	int vf_target_reg = vf >> 3;
   4274  1.1    dyoung 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4275  1.1    dyoung 	u32 pfvfspoof;
   4276  1.1    dyoung 
   4277  1.1    dyoung 	if (hw->mac.type == ixgbe_mac_82598EB)
   4278  1.1    dyoung 		return;
   4279  1.1    dyoung 
   4280  1.1    dyoung 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4281  1.1    dyoung 	if (enable)
   4282  1.1    dyoung 		pfvfspoof |= (1 << vf_target_shift);
   4283  1.1    dyoung 	else
   4284  1.1    dyoung 		pfvfspoof &= ~(1 << vf_target_shift);
   4285  1.1    dyoung 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4286  1.1    dyoung }
   4287  1.1    dyoung 
   4288  1.1    dyoung /**
   4289  1.1    dyoung  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4290  1.1    dyoung  *  @hw: pointer to hardware structure
   4291  1.1    dyoung  *  @device_caps: the EEPROM word with the extra device capabilities
   4292  1.1    dyoung  *
   4293  1.1    dyoung  *  This function will read the EEPROM location for the device capabilities,
   4294  1.1    dyoung  *  and return the word through device_caps.
   4295  1.1    dyoung  **/
   4296  1.1    dyoung s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4297  1.1    dyoung {
   4298  1.1    dyoung 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4299  1.1    dyoung 
   4300  1.1    dyoung 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4301  1.1    dyoung 
   4302  1.1    dyoung 	return IXGBE_SUCCESS;
   4303  1.1    dyoung }
   4304  1.1    dyoung 
   4305  1.1    dyoung /**
   4306  1.1    dyoung  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4307  1.1    dyoung  *  @hw: pointer to hardware structure
   4308  1.1    dyoung  *
   4309  1.1    dyoung  **/
   4310  1.1    dyoung void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4311  1.1    dyoung {
   4312  1.1    dyoung 	u32 regval;
   4313  1.1    dyoung 	u32 i;
   4314  1.1    dyoung 
   4315  1.1    dyoung 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4316  1.1    dyoung 
   4317  1.1    dyoung 	/* Enable relaxed ordering */
   4318  1.1    dyoung 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4319  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4320  1.4   msaitoh 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4321  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4322  1.1    dyoung 	}
   4323  1.1    dyoung 
   4324  1.1    dyoung 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4325  1.1    dyoung 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4326  1.4   msaitoh 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4327  1.4   msaitoh 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4328  1.1    dyoung 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4329  1.1    dyoung 	}
   4330  1.1    dyoung 
   4331  1.1    dyoung }
   4332  1.3   msaitoh 
   4333  1.3   msaitoh /**
   4334  1.3   msaitoh  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4335  1.3   msaitoh  *  @buffer: pointer to EEPROM
   4336  1.3   msaitoh  *  @length: size of EEPROM to calculate a checksum for
   4337  1.3   msaitoh  *  Calculates the checksum for some buffer on a specified length.  The
   4338  1.3   msaitoh  *  checksum calculated is returned.
   4339  1.3   msaitoh  **/
   4340  1.5   msaitoh u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4341  1.3   msaitoh {
   4342  1.3   msaitoh 	u32 i;
   4343  1.3   msaitoh 	u8 sum = 0;
   4344  1.3   msaitoh 
   4345  1.3   msaitoh 	DEBUGFUNC("ixgbe_calculate_checksum");
   4346  1.3   msaitoh 
   4347  1.3   msaitoh 	if (!buffer)
   4348  1.3   msaitoh 		return 0;
   4349  1.3   msaitoh 
   4350  1.3   msaitoh 	for (i = 0; i < length; i++)
   4351  1.3   msaitoh 		sum += buffer[i];
   4352  1.3   msaitoh 
   4353  1.3   msaitoh 	return (u8) (0 - sum);
   4354  1.3   msaitoh }
   4355  1.3   msaitoh 
   4356  1.3   msaitoh /**
   4357  1.3   msaitoh  *  ixgbe_host_interface_command - Issue command to manageability block
   4358  1.3   msaitoh  *  @hw: pointer to the HW structure
   4359  1.3   msaitoh  *  @buffer: contains the command to write and where the return status will
   4360  1.3   msaitoh  *   be placed
   4361  1.4   msaitoh  *  @length: length of buffer, must be multiple of 4 bytes
   4362  1.8   msaitoh  *  @timeout: time in ms to wait for command completion
   4363  1.8   msaitoh  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4364  1.8   msaitoh  *   Needed because FW structures are big endian and decoding of
   4365  1.8   msaitoh  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4366  1.8   msaitoh  *   is not easily understood without making a table of commands.
   4367  1.8   msaitoh  *   So we will leave this up to the caller to read back the data
   4368  1.8   msaitoh  *   in these cases.
   4369  1.3   msaitoh  *
   4370  1.3   msaitoh  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4371  1.3   msaitoh  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4372  1.3   msaitoh  **/
   4373  1.5   msaitoh s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4374  1.8   msaitoh 				 u32 length, u32 timeout, bool return_data)
   4375  1.3   msaitoh {
   4376  1.8   msaitoh 	u32 hicr, i, bi, fwsts;
   4377  1.3   msaitoh 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4378  1.8   msaitoh 	u16 buf_len;
   4379  1.8   msaitoh 	u16 dword_len;
   4380  1.3   msaitoh 
   4381  1.3   msaitoh 	DEBUGFUNC("ixgbe_host_interface_command");
   4382  1.3   msaitoh 
   4383  1.8   msaitoh 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4384  1.8   msaitoh 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4385  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4386  1.8   msaitoh 	}
   4387  1.8   msaitoh 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4388  1.8   msaitoh 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4389  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4390  1.3   msaitoh 
   4391  1.3   msaitoh 	/* Check that the host interface is enabled. */
   4392  1.3   msaitoh 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4393  1.3   msaitoh 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4394  1.3   msaitoh 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4395  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4396  1.8   msaitoh 	}
   4397  1.8   msaitoh 
   4398  1.8   msaitoh 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4399  1.8   msaitoh 	if ((length % (sizeof(u32))) != 0) {
   4400  1.8   msaitoh 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4401  1.8   msaitoh 		return IXGBE_ERR_INVALID_ARGUMENT;
   4402  1.3   msaitoh 	}
   4403  1.3   msaitoh 
   4404  1.3   msaitoh 	dword_len = length >> 2;
   4405  1.3   msaitoh 
   4406  1.8   msaitoh 	/* The device driver writes the relevant command block
   4407  1.3   msaitoh 	 * into the ram area.
   4408  1.3   msaitoh 	 */
   4409  1.3   msaitoh 	for (i = 0; i < dword_len; i++)
   4410  1.3   msaitoh 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4411  1.3   msaitoh 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4412  1.3   msaitoh 
   4413  1.3   msaitoh 	/* Setting this bit tells the ARC that a new command is pending. */
   4414  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4415  1.3   msaitoh 
   4416  1.8   msaitoh 	for (i = 0; i < timeout; i++) {
   4417  1.3   msaitoh 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4418  1.3   msaitoh 		if (!(hicr & IXGBE_HICR_C))
   4419  1.3   msaitoh 			break;
   4420  1.3   msaitoh 		msec_delay(1);
   4421  1.3   msaitoh 	}
   4422  1.3   msaitoh 
   4423  1.8   msaitoh 	/* Check command completion */
   4424  1.8   msaitoh 	if ((timeout != 0 && i == timeout) ||
   4425  1.8   msaitoh 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4426  1.8   msaitoh 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4427  1.8   msaitoh 			     "Command has failed with no status valid.\n");
   4428  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4429  1.3   msaitoh 	}
   4430  1.3   msaitoh 
   4431  1.8   msaitoh 	if (!return_data)
   4432  1.8   msaitoh 		return 0;
   4433  1.8   msaitoh 
   4434  1.3   msaitoh 	/* Calculate length in DWORDs */
   4435  1.3   msaitoh 	dword_len = hdr_size >> 2;
   4436  1.3   msaitoh 
   4437  1.3   msaitoh 	/* first pull in the header so we know the buffer length */
   4438  1.3   msaitoh 	for (bi = 0; bi < dword_len; bi++) {
   4439  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4440  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4441  1.3   msaitoh 	}
   4442  1.3   msaitoh 
   4443  1.3   msaitoh 	/* If there is any thing in data position pull it in */
   4444  1.3   msaitoh 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4445  1.3   msaitoh 	if (buf_len == 0)
   4446  1.8   msaitoh 		return 0;
   4447  1.3   msaitoh 
   4448  1.8   msaitoh 	if (length < buf_len + hdr_size) {
   4449  1.3   msaitoh 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4450  1.8   msaitoh 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4451  1.3   msaitoh 	}
   4452  1.3   msaitoh 
   4453  1.3   msaitoh 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4454  1.3   msaitoh 	dword_len = (buf_len + 3) >> 2;
   4455  1.3   msaitoh 
   4456  1.8   msaitoh 	/* Pull in the rest of the buffer (bi is where we left off) */
   4457  1.3   msaitoh 	for (; bi <= dword_len; bi++) {
   4458  1.3   msaitoh 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4459  1.3   msaitoh 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4460  1.3   msaitoh 	}
   4461  1.3   msaitoh 
   4462  1.8   msaitoh 	return 0;
   4463  1.3   msaitoh }
   4464  1.3   msaitoh 
   4465  1.3   msaitoh /**
   4466  1.3   msaitoh  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4467  1.3   msaitoh  *  @hw: pointer to the HW structure
   4468  1.3   msaitoh  *  @maj: driver version major number
   4469  1.7  riastrad  *  @minr: driver version minor number
   4470  1.3   msaitoh  *  @build: driver version build number
   4471  1.3   msaitoh  *  @sub: driver version sub build number
   4472  1.3   msaitoh  *
   4473  1.3   msaitoh  *  Sends driver version number to firmware through the manageability
   4474  1.3   msaitoh  *  block.  On success return IXGBE_SUCCESS
   4475  1.3   msaitoh  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4476  1.3   msaitoh  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4477  1.3   msaitoh  **/
   4478  1.7  riastrad s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4479  1.3   msaitoh 				 u8 build, u8 sub)
   4480  1.3   msaitoh {
   4481  1.3   msaitoh 	struct ixgbe_hic_drv_info fw_cmd;
   4482  1.3   msaitoh 	int i;
   4483  1.3   msaitoh 	s32 ret_val = IXGBE_SUCCESS;
   4484  1.3   msaitoh 
   4485  1.3   msaitoh 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4486  1.3   msaitoh 
   4487  1.3   msaitoh 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4488  1.3   msaitoh 	    != IXGBE_SUCCESS) {
   4489  1.3   msaitoh 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4490  1.3   msaitoh 		goto out;
   4491  1.3   msaitoh 	}
   4492  1.3   msaitoh 
   4493  1.3   msaitoh 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4494  1.3   msaitoh 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4495  1.3   msaitoh 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4496  1.3   msaitoh 	fw_cmd.port_num = (u8)hw->bus.func;
   4497  1.3   msaitoh 	fw_cmd.ver_maj = maj;
   4498  1.7  riastrad 	fw_cmd.ver_min = minr;
   4499  1.3   msaitoh 	fw_cmd.ver_build = build;
   4500  1.3   msaitoh 	fw_cmd.ver_sub = sub;
   4501  1.3   msaitoh 	fw_cmd.hdr.checksum = 0;
   4502  1.3   msaitoh 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4503  1.3   msaitoh 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4504  1.3   msaitoh 	fw_cmd.pad = 0;
   4505  1.3   msaitoh 	fw_cmd.pad2 = 0;
   4506  1.3   msaitoh 
   4507  1.3   msaitoh 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4508  1.3   msaitoh 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4509  1.8   msaitoh 						       sizeof(fw_cmd),
   4510  1.8   msaitoh 						       IXGBE_HI_COMMAND_TIMEOUT,
   4511  1.8   msaitoh 						       TRUE);
   4512  1.3   msaitoh 		if (ret_val != IXGBE_SUCCESS)
   4513  1.3   msaitoh 			continue;
   4514  1.3   msaitoh 
   4515  1.3   msaitoh 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4516  1.3   msaitoh 		    FW_CEM_RESP_STATUS_SUCCESS)
   4517  1.3   msaitoh 			ret_val = IXGBE_SUCCESS;
   4518  1.3   msaitoh 		else
   4519  1.3   msaitoh 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4520  1.3   msaitoh 
   4521  1.3   msaitoh 		break;
   4522  1.3   msaitoh 	}
   4523  1.3   msaitoh 
   4524  1.3   msaitoh 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4525  1.3   msaitoh out:
   4526  1.3   msaitoh 	return ret_val;
   4527  1.3   msaitoh }
   4528  1.3   msaitoh 
   4529  1.3   msaitoh /**
   4530  1.3   msaitoh  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4531  1.3   msaitoh  * @hw: pointer to hardware structure
   4532  1.3   msaitoh  * @num_pb: number of packet buffers to allocate
   4533  1.3   msaitoh  * @headroom: reserve n KB of headroom
   4534  1.3   msaitoh  * @strategy: packet buffer allocation strategy
   4535  1.3   msaitoh  **/
   4536  1.3   msaitoh void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4537  1.3   msaitoh 			     int strategy)
   4538  1.3   msaitoh {
   4539  1.3   msaitoh 	u32 pbsize = hw->mac.rx_pb_size;
   4540  1.3   msaitoh 	int i = 0;
   4541  1.3   msaitoh 	u32 rxpktsize, txpktsize, txpbthresh;
   4542  1.3   msaitoh 
   4543  1.3   msaitoh 	/* Reserve headroom */
   4544  1.3   msaitoh 	pbsize -= headroom;
   4545  1.3   msaitoh 
   4546  1.3   msaitoh 	if (!num_pb)
   4547  1.3   msaitoh 		num_pb = 1;
   4548  1.3   msaitoh 
   4549  1.3   msaitoh 	/* Divide remaining packet buffer space amongst the number of packet
   4550  1.3   msaitoh 	 * buffers requested using supplied strategy.
   4551  1.3   msaitoh 	 */
   4552  1.3   msaitoh 	switch (strategy) {
   4553  1.4   msaitoh 	case PBA_STRATEGY_WEIGHTED:
   4554  1.3   msaitoh 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4555  1.3   msaitoh 		 * buffer with 5/8 of the packet buffer space.
   4556  1.3   msaitoh 		 */
   4557  1.4   msaitoh 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4558  1.3   msaitoh 		pbsize -= rxpktsize * (num_pb / 2);
   4559  1.3   msaitoh 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4560  1.3   msaitoh 		for (; i < (num_pb / 2); i++)
   4561  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4562  1.3   msaitoh 		/* Fall through to configure remaining packet buffers */
   4563  1.4   msaitoh 	case PBA_STRATEGY_EQUAL:
   4564  1.3   msaitoh 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4565  1.3   msaitoh 		for (; i < num_pb; i++)
   4566  1.3   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4567  1.3   msaitoh 		break;
   4568  1.3   msaitoh 	default:
   4569  1.3   msaitoh 		break;
   4570  1.3   msaitoh 	}
   4571  1.3   msaitoh 
   4572  1.3   msaitoh 	/* Only support an equally distributed Tx packet buffer strategy. */
   4573  1.3   msaitoh 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4574  1.3   msaitoh 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4575  1.3   msaitoh 	for (i = 0; i < num_pb; i++) {
   4576  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4577  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4578  1.3   msaitoh 	}
   4579  1.3   msaitoh 
   4580  1.3   msaitoh 	/* Clear unused TCs, if any, to zero buffer size*/
   4581  1.3   msaitoh 	for (; i < IXGBE_MAX_PB; i++) {
   4582  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4583  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4584  1.3   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4585  1.3   msaitoh 	}
   4586  1.3   msaitoh }
   4587  1.3   msaitoh 
   4588  1.3   msaitoh /**
   4589  1.3   msaitoh  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4590  1.3   msaitoh  * @hw: pointer to the hardware structure
   4591  1.3   msaitoh  *
   4592  1.3   msaitoh  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4593  1.3   msaitoh  * when a reset occurs.  This function prevents this by flushing the PCIe
   4594  1.3   msaitoh  * buffers on the system.
   4595  1.3   msaitoh  **/
   4596  1.3   msaitoh void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4597  1.3   msaitoh {
   4598  1.8   msaitoh 	u32 gcr_ext, hlreg0, i, poll;
   4599  1.8   msaitoh 	u16 value;
   4600  1.3   msaitoh 
   4601  1.3   msaitoh 	/*
   4602  1.3   msaitoh 	 * If double reset is not requested then all transactions should
   4603  1.3   msaitoh 	 * already be clear and as such there is no work to do
   4604  1.3   msaitoh 	 */
   4605  1.3   msaitoh 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4606  1.3   msaitoh 		return;
   4607  1.3   msaitoh 
   4608  1.3   msaitoh 	/*
   4609  1.3   msaitoh 	 * Set loopback enable to prevent any transmits from being sent
   4610  1.3   msaitoh 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4611  1.3   msaitoh 	 * has already been cleared.
   4612  1.3   msaitoh 	 */
   4613  1.3   msaitoh 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4614  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4615  1.3   msaitoh 
   4616  1.8   msaitoh 	/* Wait for a last completion before clearing buffers */
   4617  1.8   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4618  1.8   msaitoh 	msec_delay(3);
   4619  1.8   msaitoh 
   4620  1.8   msaitoh 	/*
   4621  1.8   msaitoh 	 * Before proceeding, make sure that the PCIe block does not have
   4622  1.8   msaitoh 	 * transactions pending.
   4623  1.8   msaitoh 	 */
   4624  1.8   msaitoh 	poll = ixgbe_pcie_timeout_poll(hw);
   4625  1.8   msaitoh 	for (i = 0; i < poll; i++) {
   4626  1.8   msaitoh 		usec_delay(100);
   4627  1.8   msaitoh 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4628  1.8   msaitoh 		if (IXGBE_REMOVED(hw->hw_addr))
   4629  1.8   msaitoh 			goto out;
   4630  1.8   msaitoh 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4631  1.8   msaitoh 			goto out;
   4632  1.8   msaitoh 	}
   4633  1.8   msaitoh 
   4634  1.8   msaitoh out:
   4635  1.3   msaitoh 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4636  1.3   msaitoh 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4637  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4638  1.3   msaitoh 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4639  1.3   msaitoh 
   4640  1.3   msaitoh 	/* Flush all writes and allow 20usec for all transactions to clear */
   4641  1.3   msaitoh 	IXGBE_WRITE_FLUSH(hw);
   4642  1.3   msaitoh 	usec_delay(20);
   4643  1.3   msaitoh 
   4644  1.3   msaitoh 	/* restore previous register values */
   4645  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4646  1.3   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4647  1.3   msaitoh }
   4648  1.3   msaitoh 
   4649  1.6   msaitoh 
   4650  1.6   msaitoh /**
   4651  1.6   msaitoh  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4652  1.6   msaitoh  * @hw: pointer to hardware structure
   4653  1.6   msaitoh  * @map: pointer to u8 arr for returning map
   4654  1.6   msaitoh  *
   4655  1.6   msaitoh  * Read the rtrup2tc HW register and resolve its content into map
   4656  1.6   msaitoh  **/
   4657  1.6   msaitoh void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4658  1.6   msaitoh {
   4659  1.6   msaitoh 	u32 reg, i;
   4660  1.6   msaitoh 
   4661  1.6   msaitoh 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4662  1.6   msaitoh 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4663  1.6   msaitoh 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4664  1.6   msaitoh 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4665  1.6   msaitoh 	return;
   4666  1.6   msaitoh }
   4667  1.8   msaitoh 
   4668  1.8   msaitoh void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4669  1.8   msaitoh {
   4670  1.8   msaitoh 	u32 pfdtxgswc;
   4671  1.8   msaitoh 	u32 rxctrl;
   4672  1.8   msaitoh 
   4673  1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4674  1.8   msaitoh 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4675  1.8   msaitoh 		if (hw->mac.type != ixgbe_mac_82598EB) {
   4676  1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4677  1.8   msaitoh 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4678  1.8   msaitoh 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4679  1.8   msaitoh 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4680  1.8   msaitoh 				hw->mac.set_lben = TRUE;
   4681  1.8   msaitoh 			} else {
   4682  1.8   msaitoh 				hw->mac.set_lben = FALSE;
   4683  1.8   msaitoh 			}
   4684  1.8   msaitoh 		}
   4685  1.8   msaitoh 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4686  1.8   msaitoh 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4687  1.8   msaitoh 	}
   4688  1.8   msaitoh }
   4689  1.8   msaitoh 
   4690  1.8   msaitoh void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4691  1.8   msaitoh {
   4692  1.8   msaitoh 	u32 pfdtxgswc;
   4693  1.8   msaitoh 	u32 rxctrl;
   4694  1.8   msaitoh 
   4695  1.8   msaitoh 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4696  1.8   msaitoh 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4697  1.8   msaitoh 
   4698  1.8   msaitoh 	if (hw->mac.type != ixgbe_mac_82598EB) {
   4699  1.8   msaitoh 		if (hw->mac.set_lben) {
   4700  1.8   msaitoh 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4701  1.8   msaitoh 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4702  1.8   msaitoh 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4703  1.8   msaitoh 			hw->mac.set_lben = FALSE;
   4704  1.8   msaitoh 		}
   4705  1.8   msaitoh 	}
   4706  1.8   msaitoh }
   4707  1.8   msaitoh 
   4708  1.8   msaitoh /**
   4709  1.8   msaitoh  * ixgbe_mng_present - returns TRUE when management capability is present
   4710  1.8   msaitoh  * @hw: pointer to hardware structure
   4711  1.8   msaitoh  */
   4712  1.8   msaitoh bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4713  1.8   msaitoh {
   4714  1.8   msaitoh 	u32 fwsm;
   4715  1.8   msaitoh 
   4716  1.8   msaitoh 	if (hw->mac.type < ixgbe_mac_82599EB)
   4717  1.8   msaitoh 		return FALSE;
   4718  1.8   msaitoh 
   4719  1.8   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4720  1.8   msaitoh 	fwsm &= IXGBE_FWSM_MODE_MASK;
   4721  1.8   msaitoh 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   4722  1.8   msaitoh }
   4723  1.8   msaitoh 
   4724  1.8   msaitoh /**
   4725  1.8   msaitoh  * ixgbe_mng_enabled - Is the manageability engine enabled?
   4726  1.8   msaitoh  * @hw: pointer to hardware structure
   4727  1.8   msaitoh  *
   4728  1.8   msaitoh  * Returns TRUE if the manageability engine is enabled.
   4729  1.8   msaitoh  **/
   4730  1.8   msaitoh bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   4731  1.8   msaitoh {
   4732  1.8   msaitoh 	u32 fwsm, manc, factps;
   4733  1.8   msaitoh 
   4734  1.8   msaitoh 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4735  1.8   msaitoh 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   4736  1.8   msaitoh 		return FALSE;
   4737  1.8   msaitoh 
   4738  1.8   msaitoh 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   4739  1.8   msaitoh 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   4740  1.8   msaitoh 		return FALSE;
   4741  1.8   msaitoh 
   4742  1.8   msaitoh 	if (hw->mac.type <= ixgbe_mac_X540) {
   4743  1.8   msaitoh 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   4744  1.8   msaitoh 		if (factps & IXGBE_FACTPS_MNGCG)
   4745  1.8   msaitoh 			return FALSE;
   4746  1.8   msaitoh 	}
   4747  1.8   msaitoh 
   4748  1.8   msaitoh 	return TRUE;
   4749  1.8   msaitoh }
   4750  1.8   msaitoh 
   4751  1.8   msaitoh /**
   4752  1.8   msaitoh  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4753  1.8   msaitoh  *  @hw: pointer to hardware structure
   4754  1.8   msaitoh  *  @speed: new link speed
   4755  1.8   msaitoh  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   4756  1.8   msaitoh  *
   4757  1.8   msaitoh  *  Set the link speed in the MAC and/or PHY register and restarts link.
   4758  1.8   msaitoh  **/
   4759  1.8   msaitoh s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4760  1.8   msaitoh 					  ixgbe_link_speed speed,
   4761  1.8   msaitoh 					  bool autoneg_wait_to_complete)
   4762  1.8   msaitoh {
   4763  1.8   msaitoh 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4764  1.8   msaitoh 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4765  1.8   msaitoh 	s32 status = IXGBE_SUCCESS;
   4766  1.8   msaitoh 	u32 speedcnt = 0;
   4767  1.8   msaitoh 	u32 i = 0;
   4768  1.8   msaitoh 	bool autoneg, link_up = FALSE;
   4769  1.8   msaitoh 
   4770  1.8   msaitoh 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   4771  1.8   msaitoh 
   4772  1.8   msaitoh 	/* Mask off requested but non-supported speeds */
   4773  1.8   msaitoh 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   4774  1.8   msaitoh 	if (status != IXGBE_SUCCESS)
   4775  1.8   msaitoh 		return status;
   4776  1.8   msaitoh 
   4777  1.8   msaitoh 	speed &= link_speed;
   4778  1.8   msaitoh 
   4779  1.8   msaitoh 	/* Try each speed one by one, highest priority first.  We do this in
   4780  1.8   msaitoh 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4781  1.8   msaitoh 	 */
   4782  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4783  1.8   msaitoh 		speedcnt++;
   4784  1.8   msaitoh 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4785  1.8   msaitoh 
   4786  1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4787  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4788  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4789  1.8   msaitoh 			return status;
   4790  1.8   msaitoh 
   4791  1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
   4792  1.8   msaitoh 			goto out;
   4793  1.8   msaitoh 
   4794  1.8   msaitoh 		/* Set the module link speed */
   4795  1.8   msaitoh 		switch (hw->phy.media_type) {
   4796  1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4797  1.8   msaitoh 		case ixgbe_media_type_fiber:
   4798  1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4799  1.8   msaitoh 						    IXGBE_LINK_SPEED_10GB_FULL);
   4800  1.8   msaitoh 			break;
   4801  1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4802  1.8   msaitoh 			/* QSFP module automatically detects MAC link speed */
   4803  1.8   msaitoh 			break;
   4804  1.8   msaitoh 		default:
   4805  1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4806  1.8   msaitoh 			break;
   4807  1.8   msaitoh 		}
   4808  1.8   msaitoh 
   4809  1.8   msaitoh 		/* Allow module to change analog characteristics (1G->10G) */
   4810  1.8   msaitoh 		msec_delay(40);
   4811  1.8   msaitoh 
   4812  1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4813  1.8   msaitoh 					      IXGBE_LINK_SPEED_10GB_FULL,
   4814  1.8   msaitoh 					      autoneg_wait_to_complete);
   4815  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4816  1.8   msaitoh 			return status;
   4817  1.8   msaitoh 
   4818  1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4819  1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4820  1.8   msaitoh 
   4821  1.8   msaitoh 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4822  1.8   msaitoh 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4823  1.8   msaitoh 		 * attempted.  82599 uses the same timing for 10g SFI.
   4824  1.8   msaitoh 		 */
   4825  1.8   msaitoh 		for (i = 0; i < 5; i++) {
   4826  1.8   msaitoh 			/* Wait for the link partner to also set speed */
   4827  1.8   msaitoh 			msec_delay(100);
   4828  1.8   msaitoh 
   4829  1.8   msaitoh 			/* If we have link, just jump out */
   4830  1.8   msaitoh 			status = ixgbe_check_link(hw, &link_speed,
   4831  1.8   msaitoh 						  &link_up, FALSE);
   4832  1.8   msaitoh 			if (status != IXGBE_SUCCESS)
   4833  1.8   msaitoh 				return status;
   4834  1.8   msaitoh 
   4835  1.8   msaitoh 			if (link_up)
   4836  1.8   msaitoh 				goto out;
   4837  1.8   msaitoh 		}
   4838  1.8   msaitoh 	}
   4839  1.8   msaitoh 
   4840  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4841  1.8   msaitoh 		speedcnt++;
   4842  1.8   msaitoh 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4843  1.8   msaitoh 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4844  1.8   msaitoh 
   4845  1.8   msaitoh 		/* If we already have link at this speed, just jump out */
   4846  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4847  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4848  1.8   msaitoh 			return status;
   4849  1.8   msaitoh 
   4850  1.8   msaitoh 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
   4851  1.8   msaitoh 			goto out;
   4852  1.8   msaitoh 
   4853  1.8   msaitoh 		/* Set the module link speed */
   4854  1.8   msaitoh 		switch (hw->phy.media_type) {
   4855  1.8   msaitoh 		case ixgbe_media_type_fiber_fixed:
   4856  1.8   msaitoh 		case ixgbe_media_type_fiber:
   4857  1.8   msaitoh 			ixgbe_set_rate_select_speed(hw,
   4858  1.8   msaitoh 						    IXGBE_LINK_SPEED_1GB_FULL);
   4859  1.8   msaitoh 			break;
   4860  1.8   msaitoh 		case ixgbe_media_type_fiber_qsfp:
   4861  1.8   msaitoh 			/* QSFP module automatically detects link speed */
   4862  1.8   msaitoh 			break;
   4863  1.8   msaitoh 		default:
   4864  1.8   msaitoh 			DEBUGOUT("Unexpected media type.\n");
   4865  1.8   msaitoh 			break;
   4866  1.8   msaitoh 		}
   4867  1.8   msaitoh 
   4868  1.8   msaitoh 		/* Allow module to change analog characteristics (10G->1G) */
   4869  1.8   msaitoh 		msec_delay(40);
   4870  1.8   msaitoh 
   4871  1.8   msaitoh 		status = ixgbe_setup_mac_link(hw,
   4872  1.8   msaitoh 					      IXGBE_LINK_SPEED_1GB_FULL,
   4873  1.8   msaitoh 					      autoneg_wait_to_complete);
   4874  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4875  1.8   msaitoh 			return status;
   4876  1.8   msaitoh 
   4877  1.8   msaitoh 		/* Flap the Tx laser if it has not already been done */
   4878  1.8   msaitoh 		ixgbe_flap_tx_laser(hw);
   4879  1.8   msaitoh 
   4880  1.8   msaitoh 		/* Wait for the link partner to also set speed */
   4881  1.8   msaitoh 		msec_delay(100);
   4882  1.8   msaitoh 
   4883  1.8   msaitoh 		/* If we have link, just jump out */
   4884  1.8   msaitoh 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4885  1.8   msaitoh 		if (status != IXGBE_SUCCESS)
   4886  1.8   msaitoh 			return status;
   4887  1.8   msaitoh 
   4888  1.8   msaitoh 		if (link_up)
   4889  1.8   msaitoh 			goto out;
   4890  1.8   msaitoh 	}
   4891  1.8   msaitoh 
   4892  1.8   msaitoh 	/* We didn't get link.  Configure back to the highest speed we tried,
   4893  1.8   msaitoh 	 * (if there was more than one).  We call ourselves back with just the
   4894  1.8   msaitoh 	 * single highest speed that the user requested.
   4895  1.8   msaitoh 	 */
   4896  1.8   msaitoh 	if (speedcnt > 1)
   4897  1.8   msaitoh 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4898  1.8   msaitoh 						      highest_link_speed,
   4899  1.8   msaitoh 						      autoneg_wait_to_complete);
   4900  1.8   msaitoh 
   4901  1.8   msaitoh out:
   4902  1.8   msaitoh 	/* Set autoneg_advertised value based on input link speed */
   4903  1.8   msaitoh 	hw->phy.autoneg_advertised = 0;
   4904  1.8   msaitoh 
   4905  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4906  1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4907  1.8   msaitoh 
   4908  1.8   msaitoh 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4909  1.8   msaitoh 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4910  1.8   msaitoh 
   4911  1.8   msaitoh 	return status;
   4912  1.8   msaitoh }
   4913  1.8   msaitoh 
   4914  1.8   msaitoh /**
   4915  1.8   msaitoh  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4916  1.8   msaitoh  *  @hw: pointer to hardware structure
   4917  1.8   msaitoh  *  @speed: link speed to set
   4918  1.8   msaitoh  *
   4919  1.8   msaitoh  *  Set module link speed via the soft rate select.
   4920  1.8   msaitoh  */
   4921  1.8   msaitoh void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4922  1.8   msaitoh 					ixgbe_link_speed speed)
   4923  1.8   msaitoh {
   4924  1.8   msaitoh 	s32 status;
   4925  1.8   msaitoh 	u8 rs, eeprom_data;
   4926  1.8   msaitoh 
   4927  1.8   msaitoh 	switch (speed) {
   4928  1.8   msaitoh 	case IXGBE_LINK_SPEED_10GB_FULL:
   4929  1.8   msaitoh 		/* one bit mask same as setting on */
   4930  1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4931  1.8   msaitoh 		break;
   4932  1.8   msaitoh 	case IXGBE_LINK_SPEED_1GB_FULL:
   4933  1.8   msaitoh 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4934  1.8   msaitoh 		break;
   4935  1.8   msaitoh 	default:
   4936  1.8   msaitoh 		DEBUGOUT("Invalid fixed module speed\n");
   4937  1.8   msaitoh 		return;
   4938  1.8   msaitoh 	}
   4939  1.8   msaitoh 
   4940  1.8   msaitoh 	/* Set RS0 */
   4941  1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4942  1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4943  1.8   msaitoh 					   &eeprom_data);
   4944  1.8   msaitoh 	if (status) {
   4945  1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   4946  1.8   msaitoh 		goto out;
   4947  1.8   msaitoh 	}
   4948  1.8   msaitoh 
   4949  1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4950  1.8   msaitoh 
   4951  1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4952  1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4953  1.8   msaitoh 					    eeprom_data);
   4954  1.8   msaitoh 	if (status) {
   4955  1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   4956  1.8   msaitoh 		goto out;
   4957  1.8   msaitoh 	}
   4958  1.8   msaitoh 
   4959  1.8   msaitoh 	/* Set RS1 */
   4960  1.8   msaitoh 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4961  1.8   msaitoh 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4962  1.8   msaitoh 					   &eeprom_data);
   4963  1.8   msaitoh 	if (status) {
   4964  1.8   msaitoh 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   4965  1.8   msaitoh 		goto out;
   4966  1.8   msaitoh 	}
   4967  1.8   msaitoh 
   4968  1.8   msaitoh 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4969  1.8   msaitoh 
   4970  1.8   msaitoh 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4971  1.8   msaitoh 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4972  1.8   msaitoh 					    eeprom_data);
   4973  1.8   msaitoh 	if (status) {
   4974  1.8   msaitoh 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   4975  1.8   msaitoh 		goto out;
   4976  1.8   msaitoh 	}
   4977  1.8   msaitoh out:
   4978  1.8   msaitoh 	return;
   4979  1.8   msaitoh }
   4980