Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.14
      1 /* $NetBSD: ixgbe_common.c,v 1.14 2017/08/30 08:49:18 msaitoh Exp $ */
      2 
      3 /******************************************************************************
      4 
      5   Copyright (c) 2001-2017, Intel Corporation
      6   All rights reserved.
      7 
      8   Redistribution and use in source and binary forms, with or without
      9   modification, are permitted provided that the following conditions are met:
     10 
     11    1. Redistributions of source code must retain the above copyright notice,
     12       this list of conditions and the following disclaimer.
     13 
     14    2. Redistributions in binary form must reproduce the above copyright
     15       notice, this list of conditions and the following disclaimer in the
     16       documentation and/or other materials provided with the distribution.
     17 
     18    3. Neither the name of the Intel Corporation nor the names of its
     19       contributors may be used to endorse or promote products derived from
     20       this software without specific prior written permission.
     21 
     22   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     23   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     26   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32   POSSIBILITY OF SUCH DAMAGE.
     33 
     34 ******************************************************************************/
     35 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 320688 2017-07-05 17:27:03Z erj $*/
     36 
     37 #include "ixgbe_common.h"
     38 #include "ixgbe_phy.h"
     39 #include "ixgbe_dcb.h"
     40 #include "ixgbe_dcb_82599.h"
     41 #include "ixgbe_api.h"
     42 
     43 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     44 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     45 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     46 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     47 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     48 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     49 					u16 count);
     50 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     51 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     53 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     54 
     55 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     56 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     57 					 u16 *san_mac_offset);
     58 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     59 					     u16 words, u16 *data);
     60 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     61 					      u16 words, u16 *data);
     62 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     63 						 u16 offset);
     64 
     65 /**
     66  *  ixgbe_init_ops_generic - Inits function ptrs
     67  *  @hw: pointer to the hardware structure
     68  *
     69  *  Initialize the function pointers.
     70  **/
     71 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     72 {
     73 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     74 	struct ixgbe_mac_info *mac = &hw->mac;
     75 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     76 
     77 	DEBUGFUNC("ixgbe_init_ops_generic");
     78 
     79 	/* EEPROM */
     80 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     81 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     82 	if (eec & IXGBE_EEC_PRES) {
     83 		eeprom->ops.read = ixgbe_read_eerd_generic;
     84 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     85 	} else {
     86 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     87 		eeprom->ops.read_buffer =
     88 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     89 	}
     90 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     91 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     92 	eeprom->ops.validate_checksum =
     93 				      ixgbe_validate_eeprom_checksum_generic;
     94 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     95 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     96 
     97 	/* MAC */
     98 	mac->ops.init_hw = ixgbe_init_hw_generic;
     99 	mac->ops.reset_hw = NULL;
    100 	mac->ops.start_hw = ixgbe_start_hw_generic;
    101 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    102 	mac->ops.get_media_type = NULL;
    103 	mac->ops.get_supported_physical_layer = NULL;
    104 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    105 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    106 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    107 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    108 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    109 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    110 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    111 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    112 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    113 
    114 	/* LEDs */
    115 	mac->ops.led_on = ixgbe_led_on_generic;
    116 	mac->ops.led_off = ixgbe_led_off_generic;
    117 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    118 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    119 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    120 
    121 	/* RAR, Multicast, VLAN */
    122 	mac->ops.set_rar = ixgbe_set_rar_generic;
    123 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    124 	mac->ops.insert_mac_addr = NULL;
    125 	mac->ops.set_vmdq = NULL;
    126 	mac->ops.clear_vmdq = NULL;
    127 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    128 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    129 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    130 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    131 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    132 	mac->ops.clear_vfta = NULL;
    133 	mac->ops.set_vfta = NULL;
    134 	mac->ops.set_vlvf = NULL;
    135 	mac->ops.init_uta_tables = NULL;
    136 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    137 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    138 
    139 	/* Flow Control */
    140 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    141 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    142 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    143 
    144 	/* Link */
    145 	mac->ops.get_link_capabilities = NULL;
    146 	mac->ops.setup_link = NULL;
    147 	mac->ops.check_link = NULL;
    148 	mac->ops.dmac_config = NULL;
    149 	mac->ops.dmac_update_tcs = NULL;
    150 	mac->ops.dmac_config_tcs = NULL;
    151 
    152 	return IXGBE_SUCCESS;
    153 }
    154 
    155 /**
    156  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    157  * of flow control
    158  * @hw: pointer to hardware structure
    159  *
    160  * This function returns TRUE if the device supports flow control
    161  * autonegotiation, and FALSE if it does not.
    162  *
    163  **/
    164 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    165 {
    166 	bool supported = FALSE;
    167 	ixgbe_link_speed speed;
    168 	bool link_up;
    169 
    170 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    171 
    172 	switch (hw->phy.media_type) {
    173 	case ixgbe_media_type_fiber_fixed:
    174 	case ixgbe_media_type_fiber_qsfp:
    175 	case ixgbe_media_type_fiber:
    176 		/* flow control autoneg black list */
    177 		switch (hw->device_id) {
    178 		case IXGBE_DEV_ID_X550EM_A_SFP:
    179 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    180 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    181 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    182 			supported = FALSE;
    183 			break;
    184 		default:
    185 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    186 			/* if link is down, assume supported */
    187 			if (link_up)
    188 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    189 				    TRUE : FALSE;
    190 			else
    191 				supported = TRUE;
    192 		}
    193 
    194 		break;
    195 	case ixgbe_media_type_backplane:
    196 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    197 			supported = FALSE;
    198 		else
    199 			supported = TRUE;
    200 		break;
    201 	case ixgbe_media_type_copper:
    202 		/* only some copper devices support flow control autoneg */
    203 		switch (hw->device_id) {
    204 		case IXGBE_DEV_ID_82599_T3_LOM:
    205 		case IXGBE_DEV_ID_X540T:
    206 		case IXGBE_DEV_ID_X540T1:
    207 		case IXGBE_DEV_ID_X540_BYPASS:
    208 		case IXGBE_DEV_ID_X550T:
    209 		case IXGBE_DEV_ID_X550T1:
    210 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    211 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    212 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    213 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    214 			supported = TRUE;
    215 			break;
    216 		default:
    217 			supported = FALSE;
    218 		}
    219 	default:
    220 		break;
    221 	}
    222 
    223 	if (!supported)
    224 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    225 			      "Device %x does not support flow control autoneg",
    226 			      hw->device_id);
    227 	return supported;
    228 }
    229 
    230 /**
    231  *  ixgbe_setup_fc_generic - Set up flow control
    232  *  @hw: pointer to hardware structure
    233  *
    234  *  Called at init time to set up flow control.
    235  **/
    236 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    237 {
    238 	s32 ret_val = IXGBE_SUCCESS;
    239 	u32 reg = 0, reg_bp = 0;
    240 	u16 reg_cu = 0;
    241 	bool locked = FALSE;
    242 
    243 	DEBUGFUNC("ixgbe_setup_fc_generic");
    244 
    245 	/* Validate the requested mode */
    246 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    247 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    248 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    249 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    250 		goto out;
    251 	}
    252 
    253 	/*
    254 	 * 10gig parts do not have a word in the EEPROM to determine the
    255 	 * default flow control setting, so we explicitly set it to full.
    256 	 */
    257 	if (hw->fc.requested_mode == ixgbe_fc_default)
    258 		hw->fc.requested_mode = ixgbe_fc_full;
    259 
    260 	/*
    261 	 * Set up the 1G and 10G flow control advertisement registers so the
    262 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    263 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    264 	 */
    265 	switch (hw->phy.media_type) {
    266 	case ixgbe_media_type_backplane:
    267 		/* some MAC's need RMW protection on AUTOC */
    268 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    269 		if (ret_val != IXGBE_SUCCESS)
    270 			goto out;
    271 
    272 		/* fall through - only backplane uses autoc */
    273 	case ixgbe_media_type_fiber_fixed:
    274 	case ixgbe_media_type_fiber_qsfp:
    275 	case ixgbe_media_type_fiber:
    276 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    277 
    278 		break;
    279 	case ixgbe_media_type_copper:
    280 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    281 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    282 		break;
    283 	default:
    284 		break;
    285 	}
    286 
    287 	/*
    288 	 * The possible values of fc.requested_mode are:
    289 	 * 0: Flow control is completely disabled
    290 	 * 1: Rx flow control is enabled (we can receive pause frames,
    291 	 *    but not send pause frames).
    292 	 * 2: Tx flow control is enabled (we can send pause frames but
    293 	 *    we do not support receiving pause frames).
    294 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    295 	 * other: Invalid.
    296 	 */
    297 	switch (hw->fc.requested_mode) {
    298 	case ixgbe_fc_none:
    299 		/* Flow control completely disabled by software override. */
    300 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    301 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    302 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    303 				    IXGBE_AUTOC_ASM_PAUSE);
    304 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    305 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    306 		break;
    307 	case ixgbe_fc_tx_pause:
    308 		/*
    309 		 * Tx Flow control is enabled, and Rx Flow control is
    310 		 * disabled by software override.
    311 		 */
    312 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    313 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    314 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    315 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    316 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    317 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    318 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    319 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    320 		}
    321 		break;
    322 	case ixgbe_fc_rx_pause:
    323 		/*
    324 		 * Rx Flow control is enabled and Tx Flow control is
    325 		 * disabled by software override. Since there really
    326 		 * isn't a way to advertise that we are capable of RX
    327 		 * Pause ONLY, we will advertise that we support both
    328 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    329 		 * through to the fc_full statement.  Later, we will
    330 		 * disable the adapter's ability to send PAUSE frames.
    331 		 */
    332 	case ixgbe_fc_full:
    333 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    334 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    335 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    336 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    337 				  IXGBE_AUTOC_ASM_PAUSE;
    338 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    339 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    340 		break;
    341 	default:
    342 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    343 			     "Flow control param set incorrectly\n");
    344 		ret_val = IXGBE_ERR_CONFIG;
    345 		goto out;
    346 		break;
    347 	}
    348 
    349 	if (hw->mac.type < ixgbe_mac_X540) {
    350 		/*
    351 		 * Enable auto-negotiation between the MAC & PHY;
    352 		 * the MAC will advertise clause 37 flow control.
    353 		 */
    354 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    355 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    356 
    357 		/* Disable AN timeout */
    358 		if (hw->fc.strict_ieee)
    359 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    360 
    361 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    362 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    363 	}
    364 
    365 	/*
    366 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    367 	 * and copper. There is no need to set the PCS1GCTL register.
    368 	 *
    369 	 */
    370 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    371 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    372 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    373 		if (ret_val)
    374 			goto out;
    375 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    376 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    377 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    378 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    379 	}
    380 
    381 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    382 out:
    383 	return ret_val;
    384 }
    385 
    386 /**
    387  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    388  *  @hw: pointer to hardware structure
    389  *
    390  *  Starts the hardware by filling the bus info structure and media type, clears
    391  *  all on chip counters, initializes receive address registers, multicast
    392  *  table, VLAN filter table, calls routine to set up link and flow control
    393  *  settings, and leaves transmit and receive units disabled and uninitialized
    394  **/
    395 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    396 {
    397 	s32 ret_val;
    398 	u32 ctrl_ext;
    399 	u16 device_caps;
    400 
    401 	DEBUGFUNC("ixgbe_start_hw_generic");
    402 
    403 	/* Set the media type */
    404 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    405 
    406 	/* PHY ops initialization must be done in reset_hw() */
    407 
    408 	/* Clear the VLAN filter table */
    409 	hw->mac.ops.clear_vfta(hw);
    410 
    411 	/* Clear statistics registers */
    412 	hw->mac.ops.clear_hw_cntrs(hw);
    413 
    414 	/* Set No Snoop Disable */
    415 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    416 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    417 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    418 	IXGBE_WRITE_FLUSH(hw);
    419 
    420 	/* Setup flow control */
    421 	ret_val = ixgbe_setup_fc(hw);
    422 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    423 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    424 		return ret_val;
    425 	}
    426 
    427 	/* Cache bit indicating need for crosstalk fix */
    428 	switch (hw->mac.type) {
    429 	case ixgbe_mac_82599EB:
    430 	case ixgbe_mac_X550EM_x:
    431 	case ixgbe_mac_X550EM_a:
    432 		hw->mac.ops.get_device_caps(hw, &device_caps);
    433 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    434 			hw->need_crosstalk_fix = FALSE;
    435 		else
    436 			hw->need_crosstalk_fix = TRUE;
    437 		break;
    438 	default:
    439 		hw->need_crosstalk_fix = FALSE;
    440 		break;
    441 	}
    442 
    443 	/* Clear adapter stopped flag */
    444 	hw->adapter_stopped = FALSE;
    445 
    446 	return IXGBE_SUCCESS;
    447 }
    448 
    449 /**
    450  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    451  *  @hw: pointer to hw structure
    452  *
    453  * Performs the init sequence common to the second generation
    454  * of 10 GbE devices.
    455  * Devices in the second generation:
    456  *     82599
    457  *     X540
    458  **/
    459 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    460 {
    461 	u32 i;
    462 	u32 regval;
    463 
    464 	/* Clear the rate limiters */
    465 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    466 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    467 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    468 	}
    469 	IXGBE_WRITE_FLUSH(hw);
    470 
    471 	/* Disable relaxed ordering */
    472 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    473 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    474 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    475 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    476 	}
    477 
    478 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    479 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    480 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    481 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    482 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    483 	}
    484 
    485 	return IXGBE_SUCCESS;
    486 }
    487 
    488 /**
    489  *  ixgbe_init_hw_generic - Generic hardware initialization
    490  *  @hw: pointer to hardware structure
    491  *
    492  *  Initialize the hardware by resetting the hardware, filling the bus info
    493  *  structure and media type, clears all on chip counters, initializes receive
    494  *  address registers, multicast table, VLAN filter table, calls routine to set
    495  *  up link and flow control settings, and leaves transmit and receive units
    496  *  disabled and uninitialized
    497  **/
    498 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    499 {
    500 	s32 status;
    501 
    502 	DEBUGFUNC("ixgbe_init_hw_generic");
    503 
    504 	/* Reset the hardware */
    505 	status = hw->mac.ops.reset_hw(hw);
    506 
    507 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    508 		/* Start the HW */
    509 		status = hw->mac.ops.start_hw(hw);
    510 	}
    511 
    512 	/* Initialize the LED link active for LED blink support */
    513 	if (hw->mac.ops.init_led_link_act)
    514 		hw->mac.ops.init_led_link_act(hw);
    515 
    516 	if (status != IXGBE_SUCCESS)
    517 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    518 
    519 	return status;
    520 }
    521 
    522 /**
    523  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    524  *  @hw: pointer to hardware structure
    525  *
    526  *  Clears all hardware statistics counters by reading them from the hardware
    527  *  Statistics counters are clear on read.
    528  **/
    529 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    530 {
    531 	u16 i = 0;
    532 
    533 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    534 
    535 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    536 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    537 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    538 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    539 	if (hw->mac.type >= ixgbe_mac_X550)
    540 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    541 	for (i = 0; i < 8; i++)
    542 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    543 
    544 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    545 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    546 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    547 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    548 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    549 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    550 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    551 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    552 	} else {
    553 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    554 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    555 	}
    556 
    557 	for (i = 0; i < 8; i++) {
    558 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    559 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    560 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    561 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    562 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    563 		} else {
    564 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    565 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    566 		}
    567 	}
    568 	if (hw->mac.type >= ixgbe_mac_82599EB)
    569 		for (i = 0; i < 8; i++)
    570 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    571 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    572 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    573 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    574 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    575 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    576 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    577 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    578 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    579 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    580 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    581 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    582 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    583 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    584 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    585 	if (hw->mac.type == ixgbe_mac_82598EB)
    586 		for (i = 0; i < 8; i++)
    587 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    588 	IXGBE_READ_REG(hw, IXGBE_RUC);
    589 	IXGBE_READ_REG(hw, IXGBE_RFC);
    590 	IXGBE_READ_REG(hw, IXGBE_ROC);
    591 	IXGBE_READ_REG(hw, IXGBE_RJC);
    592 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    593 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    594 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    595 	IXGBE_READ_REG(hw, IXGBE_TORL);
    596 	IXGBE_READ_REG(hw, IXGBE_TORH);
    597 	IXGBE_READ_REG(hw, IXGBE_TPR);
    598 	IXGBE_READ_REG(hw, IXGBE_TPT);
    599 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    600 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    601 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    602 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    603 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    604 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    605 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    606 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    607 	for (i = 0; i < 16; i++) {
    608 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    609 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    610 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    611 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    612 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    613 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    614 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    615 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    616 		} else {
    617 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    618 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    619 		}
    620 	}
    621 
    622 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    623 		if (hw->phy.id == 0)
    624 			ixgbe_identify_phy(hw);
    625 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    626 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    627 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    629 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    630 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    631 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    632 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    633 	}
    634 
    635 	return IXGBE_SUCCESS;
    636 }
    637 
    638 /**
    639  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    640  *  @hw: pointer to hardware structure
    641  *  @pba_num: stores the part number string from the EEPROM
    642  *  @pba_num_size: part number string buffer length
    643  *
    644  *  Reads the part number string from the EEPROM.
    645  **/
    646 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    647 				  u32 pba_num_size)
    648 {
    649 	s32 ret_val;
    650 	u16 data;
    651 	u16 pba_ptr;
    652 	u16 offset;
    653 	u16 length;
    654 
    655 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    656 
    657 	if (pba_num == NULL) {
    658 		DEBUGOUT("PBA string buffer was null\n");
    659 		return IXGBE_ERR_INVALID_ARGUMENT;
    660 	}
    661 
    662 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    663 	if (ret_val) {
    664 		DEBUGOUT("NVM Read Error\n");
    665 		return ret_val;
    666 	}
    667 
    668 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    669 	if (ret_val) {
    670 		DEBUGOUT("NVM Read Error\n");
    671 		return ret_val;
    672 	}
    673 
    674 	/*
    675 	 * if data is not ptr guard the PBA must be in legacy format which
    676 	 * means pba_ptr is actually our second data word for the PBA number
    677 	 * and we can decode it into an ascii string
    678 	 */
    679 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    680 		DEBUGOUT("NVM PBA number is not stored as string\n");
    681 
    682 		/* we will need 11 characters to store the PBA */
    683 		if (pba_num_size < 11) {
    684 			DEBUGOUT("PBA string buffer too small\n");
    685 			return IXGBE_ERR_NO_SPACE;
    686 		}
    687 
    688 		/* extract hex string from data and pba_ptr */
    689 		pba_num[0] = (data >> 12) & 0xF;
    690 		pba_num[1] = (data >> 8) & 0xF;
    691 		pba_num[2] = (data >> 4) & 0xF;
    692 		pba_num[3] = data & 0xF;
    693 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    694 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    695 		pba_num[6] = '-';
    696 		pba_num[7] = 0;
    697 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    698 		pba_num[9] = pba_ptr & 0xF;
    699 
    700 		/* put a null character on the end of our string */
    701 		pba_num[10] = '\0';
    702 
    703 		/* switch all the data but the '-' to hex char */
    704 		for (offset = 0; offset < 10; offset++) {
    705 			if (pba_num[offset] < 0xA)
    706 				pba_num[offset] += '0';
    707 			else if (pba_num[offset] < 0x10)
    708 				pba_num[offset] += 'A' - 0xA;
    709 		}
    710 
    711 		return IXGBE_SUCCESS;
    712 	}
    713 
    714 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    715 	if (ret_val) {
    716 		DEBUGOUT("NVM Read Error\n");
    717 		return ret_val;
    718 	}
    719 
    720 	if (length == 0xFFFF || length == 0) {
    721 		DEBUGOUT("NVM PBA number section invalid length\n");
    722 		return IXGBE_ERR_PBA_SECTION;
    723 	}
    724 
    725 	/* check if pba_num buffer is big enough */
    726 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    727 		DEBUGOUT("PBA string buffer too small\n");
    728 		return IXGBE_ERR_NO_SPACE;
    729 	}
    730 
    731 	/* trim pba length from start of string */
    732 	pba_ptr++;
    733 	length--;
    734 
    735 	for (offset = 0; offset < length; offset++) {
    736 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    737 		if (ret_val) {
    738 			DEBUGOUT("NVM Read Error\n");
    739 			return ret_val;
    740 		}
    741 		pba_num[offset * 2] = (u8)(data >> 8);
    742 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    743 	}
    744 	pba_num[offset * 2] = '\0';
    745 
    746 	return IXGBE_SUCCESS;
    747 }
    748 
    749 /**
    750  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    751  *  @hw: pointer to hardware structure
    752  *  @pba_num: stores the part number from the EEPROM
    753  *
    754  *  Reads the part number from the EEPROM.
    755  **/
    756 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    757 {
    758 	s32 ret_val;
    759 	u16 data;
    760 
    761 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    762 
    763 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    764 	if (ret_val) {
    765 		DEBUGOUT("NVM Read Error\n");
    766 		return ret_val;
    767 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    768 		DEBUGOUT("NVM Not supported\n");
    769 		return IXGBE_NOT_IMPLEMENTED;
    770 	}
    771 	*pba_num = (u32)(data << 16);
    772 
    773 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    774 	if (ret_val) {
    775 		DEBUGOUT("NVM Read Error\n");
    776 		return ret_val;
    777 	}
    778 	*pba_num |= data;
    779 
    780 	return IXGBE_SUCCESS;
    781 }
    782 
    783 /**
    784  *  ixgbe_read_pba_raw
    785  *  @hw: pointer to the HW structure
    786  *  @eeprom_buf: optional pointer to EEPROM image
    787  *  @eeprom_buf_size: size of EEPROM image in words
    788  *  @max_pba_block_size: PBA block size limit
    789  *  @pba: pointer to output PBA structure
    790  *
    791  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    792  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    793  *
    794  **/
    795 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    796 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    797 		       struct ixgbe_pba *pba)
    798 {
    799 	s32 ret_val;
    800 	u16 pba_block_size;
    801 
    802 	if (pba == NULL)
    803 		return IXGBE_ERR_PARAM;
    804 
    805 	if (eeprom_buf == NULL) {
    806 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    807 						     &pba->word[0]);
    808 		if (ret_val)
    809 			return ret_val;
    810 	} else {
    811 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    812 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    813 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    814 		} else {
    815 			return IXGBE_ERR_PARAM;
    816 		}
    817 	}
    818 
    819 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    820 		if (pba->pba_block == NULL)
    821 			return IXGBE_ERR_PARAM;
    822 
    823 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    824 						   eeprom_buf_size,
    825 						   &pba_block_size);
    826 		if (ret_val)
    827 			return ret_val;
    828 
    829 		if (pba_block_size > max_pba_block_size)
    830 			return IXGBE_ERR_PARAM;
    831 
    832 		if (eeprom_buf == NULL) {
    833 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    834 							     pba_block_size,
    835 							     pba->pba_block);
    836 			if (ret_val)
    837 				return ret_val;
    838 		} else {
    839 			if (eeprom_buf_size > (u32)(pba->word[1] +
    840 					      pba_block_size)) {
    841 				memcpy(pba->pba_block,
    842 				       &eeprom_buf[pba->word[1]],
    843 				       pba_block_size * sizeof(u16));
    844 			} else {
    845 				return IXGBE_ERR_PARAM;
    846 			}
    847 		}
    848 	}
    849 
    850 	return IXGBE_SUCCESS;
    851 }
    852 
    853 /**
    854  *  ixgbe_write_pba_raw
    855  *  @hw: pointer to the HW structure
    856  *  @eeprom_buf: optional pointer to EEPROM image
    857  *  @eeprom_buf_size: size of EEPROM image in words
    858  *  @pba: pointer to PBA structure
    859  *
    860  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    861  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    862  *
    863  **/
    864 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    865 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    866 {
    867 	s32 ret_val;
    868 
    869 	if (pba == NULL)
    870 		return IXGBE_ERR_PARAM;
    871 
    872 	if (eeprom_buf == NULL) {
    873 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    874 						      &pba->word[0]);
    875 		if (ret_val)
    876 			return ret_val;
    877 	} else {
    878 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    879 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    880 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    881 		} else {
    882 			return IXGBE_ERR_PARAM;
    883 		}
    884 	}
    885 
    886 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    887 		if (pba->pba_block == NULL)
    888 			return IXGBE_ERR_PARAM;
    889 
    890 		if (eeprom_buf == NULL) {
    891 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    892 							      pba->pba_block[0],
    893 							      pba->pba_block);
    894 			if (ret_val)
    895 				return ret_val;
    896 		} else {
    897 			if (eeprom_buf_size > (u32)(pba->word[1] +
    898 					      pba->pba_block[0])) {
    899 				memcpy(&eeprom_buf[pba->word[1]],
    900 				       pba->pba_block,
    901 				       pba->pba_block[0] * sizeof(u16));
    902 			} else {
    903 				return IXGBE_ERR_PARAM;
    904 			}
    905 		}
    906 	}
    907 
    908 	return IXGBE_SUCCESS;
    909 }
    910 
    911 /**
    912  *  ixgbe_get_pba_block_size
    913  *  @hw: pointer to the HW structure
    914  *  @eeprom_buf: optional pointer to EEPROM image
    915  *  @eeprom_buf_size: size of EEPROM image in words
    916  *  @pba_data_size: pointer to output variable
    917  *
    918  *  Returns the size of the PBA block in words. Function operates on EEPROM
    919  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    920  *  EEPROM device.
    921  *
    922  **/
    923 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    924 			     u32 eeprom_buf_size, u16 *pba_block_size)
    925 {
    926 	s32 ret_val;
    927 	u16 pba_word[2];
    928 	u16 length;
    929 
    930 	DEBUGFUNC("ixgbe_get_pba_block_size");
    931 
    932 	if (eeprom_buf == NULL) {
    933 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    934 						     &pba_word[0]);
    935 		if (ret_val)
    936 			return ret_val;
    937 	} else {
    938 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    939 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    940 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    941 		} else {
    942 			return IXGBE_ERR_PARAM;
    943 		}
    944 	}
    945 
    946 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    947 		if (eeprom_buf == NULL) {
    948 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    949 						      &length);
    950 			if (ret_val)
    951 				return ret_val;
    952 		} else {
    953 			if (eeprom_buf_size > pba_word[1])
    954 				length = eeprom_buf[pba_word[1] + 0];
    955 			else
    956 				return IXGBE_ERR_PARAM;
    957 		}
    958 
    959 		if (length == 0xFFFF || length == 0)
    960 			return IXGBE_ERR_PBA_SECTION;
    961 	} else {
    962 		/* PBA number in legacy format, there is no PBA Block. */
    963 		length = 0;
    964 	}
    965 
    966 	if (pba_block_size != NULL)
    967 		*pba_block_size = length;
    968 
    969 	return IXGBE_SUCCESS;
    970 }
    971 
    972 /**
    973  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    974  *  @hw: pointer to hardware structure
    975  *  @mac_addr: Adapter MAC address
    976  *
    977  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    978  *  A reset of the adapter must be performed prior to calling this function
    979  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    980  **/
    981 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    982 {
    983 	u32 rar_high;
    984 	u32 rar_low;
    985 	u16 i;
    986 
    987 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    988 
    989 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    990 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    991 
    992 	for (i = 0; i < 4; i++)
    993 		mac_addr[i] = (u8)(rar_low >> (i*8));
    994 
    995 	for (i = 0; i < 2; i++)
    996 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    997 
    998 	return IXGBE_SUCCESS;
    999 }
   1000 
   1001 /**
   1002  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1003  *  @hw: pointer to hardware structure
   1004  *  @link_status: the link status returned by the PCI config space
   1005  *
   1006  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1007  **/
   1008 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1009 {
   1010 	struct ixgbe_mac_info *mac = &hw->mac;
   1011 
   1012 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1013 		hw->bus.type = ixgbe_bus_type_pci_express;
   1014 
   1015 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1016 	case IXGBE_PCI_LINK_WIDTH_1:
   1017 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1018 		break;
   1019 	case IXGBE_PCI_LINK_WIDTH_2:
   1020 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1021 		break;
   1022 	case IXGBE_PCI_LINK_WIDTH_4:
   1023 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1024 		break;
   1025 	case IXGBE_PCI_LINK_WIDTH_8:
   1026 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1027 		break;
   1028 	default:
   1029 		hw->bus.width = ixgbe_bus_width_unknown;
   1030 		break;
   1031 	}
   1032 
   1033 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1034 	case IXGBE_PCI_LINK_SPEED_2500:
   1035 		hw->bus.speed = ixgbe_bus_speed_2500;
   1036 		break;
   1037 	case IXGBE_PCI_LINK_SPEED_5000:
   1038 		hw->bus.speed = ixgbe_bus_speed_5000;
   1039 		break;
   1040 	case IXGBE_PCI_LINK_SPEED_8000:
   1041 		hw->bus.speed = ixgbe_bus_speed_8000;
   1042 		break;
   1043 	default:
   1044 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1045 		break;
   1046 	}
   1047 
   1048 	mac->ops.set_lan_id(hw);
   1049 }
   1050 
   1051 /**
   1052  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1053  *  @hw: pointer to hardware structure
   1054  *
   1055  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1056  *  store this data within the ixgbe_hw structure.
   1057  **/
   1058 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1059 {
   1060 	u16 link_status;
   1061 
   1062 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1063 
   1064 	/* Get the negotiated link width and speed from PCI config space */
   1065 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1066 
   1067 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1068 
   1069 	return IXGBE_SUCCESS;
   1070 }
   1071 
   1072 /**
   1073  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1074  *  @hw: pointer to the HW structure
   1075  *
   1076  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1077  *  the port value if requested, and set MAC instance for devices that share
   1078  *  CS4227.
   1079  **/
   1080 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1081 {
   1082 	struct ixgbe_bus_info *bus = &hw->bus;
   1083 	u32 reg;
   1084 	u16 ee_ctrl_4;
   1085 
   1086 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1087 
   1088 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1089 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1090 	bus->lan_id = (u8)bus->func;
   1091 
   1092 	/* check for a port swap */
   1093 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1094 	if (reg & IXGBE_FACTPS_LFS)
   1095 		bus->func ^= 0x1;
   1096 
   1097 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1098 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1099 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1100 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1101 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1102 	}
   1103 }
   1104 
   1105 /**
   1106  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1107  *  @hw: pointer to hardware structure
   1108  *
   1109  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1110  *  disables transmit and receive units. The adapter_stopped flag is used by
   1111  *  the shared code and drivers to determine if the adapter is in a stopped
   1112  *  state and should not touch the hardware.
   1113  **/
   1114 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1115 {
   1116 	u32 reg_val;
   1117 	u16 i;
   1118 
   1119 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1120 
   1121 	/*
   1122 	 * Set the adapter_stopped flag so other driver functions stop touching
   1123 	 * the hardware
   1124 	 */
   1125 	hw->adapter_stopped = TRUE;
   1126 
   1127 	/* Disable the receive unit */
   1128 	ixgbe_disable_rx(hw);
   1129 
   1130 	/* Clear interrupt mask to stop interrupts from being generated */
   1131 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1132 
   1133 	/* Clear any pending interrupts, flush previous writes */
   1134 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1135 
   1136 	/* Disable the transmit unit.  Each queue must be disabled. */
   1137 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1138 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1139 
   1140 	/* Disable the receive unit by stopping each queue */
   1141 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1142 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1143 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1144 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1145 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1146 	}
   1147 
   1148 	/* flush all queues disables */
   1149 	IXGBE_WRITE_FLUSH(hw);
   1150 	msec_delay(2);
   1151 
   1152 	/*
   1153 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1154 	 * access and verify no pending requests
   1155 	 */
   1156 	return ixgbe_disable_pcie_master(hw);
   1157 }
   1158 
   1159 /**
   1160  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1161  *  @hw: pointer to hardware structure
   1162  *
   1163  *  Store the index for the link active LED. This will be used to support
   1164  *  blinking the LED.
   1165  **/
   1166 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1167 {
   1168 	struct ixgbe_mac_info *mac = &hw->mac;
   1169 	u32 led_reg, led_mode;
   1170 	u8 i;
   1171 
   1172 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1173 
   1174 	/* Get LED link active from the LEDCTL register */
   1175 	for (i = 0; i < 4; i++) {
   1176 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1177 
   1178 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1179 		     IXGBE_LED_LINK_ACTIVE) {
   1180 			mac->led_link_act = i;
   1181 			return IXGBE_SUCCESS;
   1182 		}
   1183 	}
   1184 
   1185 	/*
   1186 	 * If LEDCTL register does not have the LED link active set, then use
   1187 	 * known MAC defaults.
   1188 	 */
   1189 	switch (hw->mac.type) {
   1190 	case ixgbe_mac_X550EM_a:
   1191 	case ixgbe_mac_X550EM_x:
   1192 		mac->led_link_act = 1;
   1193 		break;
   1194 	default:
   1195 		mac->led_link_act = 2;
   1196 	}
   1197 	return IXGBE_SUCCESS;
   1198 }
   1199 
   1200 /**
   1201  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1202  *  @hw: pointer to hardware structure
   1203  *  @index: led number to turn on
   1204  **/
   1205 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1206 {
   1207 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1208 
   1209 	DEBUGFUNC("ixgbe_led_on_generic");
   1210 
   1211 	if (index > 3)
   1212 		return IXGBE_ERR_PARAM;
   1213 
   1214 	/* To turn on the LED, set mode to ON. */
   1215 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1216 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1217 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1218 	IXGBE_WRITE_FLUSH(hw);
   1219 
   1220 	return IXGBE_SUCCESS;
   1221 }
   1222 
   1223 /**
   1224  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1225  *  @hw: pointer to hardware structure
   1226  *  @index: led number to turn off
   1227  **/
   1228 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1229 {
   1230 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1231 
   1232 	DEBUGFUNC("ixgbe_led_off_generic");
   1233 
   1234 	if (index > 3)
   1235 		return IXGBE_ERR_PARAM;
   1236 
   1237 	/* To turn off the LED, set mode to OFF. */
   1238 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1239 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1240 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1241 	IXGBE_WRITE_FLUSH(hw);
   1242 
   1243 	return IXGBE_SUCCESS;
   1244 }
   1245 
   1246 /**
   1247  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1248  *  @hw: pointer to hardware structure
   1249  *
   1250  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1251  *  ixgbe_hw struct in order to set up EEPROM access.
   1252  **/
   1253 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1254 {
   1255 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1256 	u32 eec;
   1257 	u16 eeprom_size;
   1258 
   1259 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1260 
   1261 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1262 		eeprom->type = ixgbe_eeprom_none;
   1263 		/* Set default semaphore delay to 10ms which is a well
   1264 		 * tested value */
   1265 		eeprom->semaphore_delay = 10;
   1266 		/* Clear EEPROM page size, it will be initialized as needed */
   1267 		eeprom->word_page_size = 0;
   1268 
   1269 		/*
   1270 		 * Check for EEPROM present first.
   1271 		 * If not present leave as none
   1272 		 */
   1273 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1274 		if (eec & IXGBE_EEC_PRES) {
   1275 			eeprom->type = ixgbe_eeprom_spi;
   1276 
   1277 			/*
   1278 			 * SPI EEPROM is assumed here.  This code would need to
   1279 			 * change if a future EEPROM is not SPI.
   1280 			 */
   1281 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1282 					    IXGBE_EEC_SIZE_SHIFT);
   1283 			eeprom->word_size = 1 << (eeprom_size +
   1284 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1285 		}
   1286 
   1287 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1288 			eeprom->address_bits = 16;
   1289 		else
   1290 			eeprom->address_bits = 8;
   1291 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1292 			  "%d\n", eeprom->type, eeprom->word_size,
   1293 			  eeprom->address_bits);
   1294 	}
   1295 
   1296 	return IXGBE_SUCCESS;
   1297 }
   1298 
   1299 /**
   1300  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1301  *  @hw: pointer to hardware structure
   1302  *  @offset: offset within the EEPROM to write
   1303  *  @words: number of word(s)
   1304  *  @data: 16 bit word(s) to write to EEPROM
   1305  *
   1306  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1307  **/
   1308 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1309 					       u16 words, u16 *data)
   1310 {
   1311 	s32 status = IXGBE_SUCCESS;
   1312 	u16 i, count;
   1313 
   1314 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1315 
   1316 	hw->eeprom.ops.init_params(hw);
   1317 
   1318 	if (words == 0) {
   1319 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1320 		goto out;
   1321 	}
   1322 
   1323 	if (offset + words > hw->eeprom.word_size) {
   1324 		status = IXGBE_ERR_EEPROM;
   1325 		goto out;
   1326 	}
   1327 
   1328 	/*
   1329 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1330 	 * initialization. It is worth to do that when we write large buffer.
   1331 	 */
   1332 	if ((hw->eeprom.word_page_size == 0) &&
   1333 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1334 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1335 
   1336 	/*
   1337 	 * We cannot hold synchronization semaphores for too long
   1338 	 * to avoid other entity starvation. However it is more efficient
   1339 	 * to read in bursts than synchronizing access for each word.
   1340 	 */
   1341 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1342 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1343 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1344 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1345 							    count, &data[i]);
   1346 
   1347 		if (status != IXGBE_SUCCESS)
   1348 			break;
   1349 	}
   1350 
   1351 out:
   1352 	return status;
   1353 }
   1354 
   1355 /**
   1356  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1357  *  @hw: pointer to hardware structure
   1358  *  @offset: offset within the EEPROM to be written to
   1359  *  @words: number of word(s)
   1360  *  @data: 16 bit word(s) to be written to the EEPROM
   1361  *
   1362  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1363  *  EEPROM will most likely contain an invalid checksum.
   1364  **/
   1365 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1366 					      u16 words, u16 *data)
   1367 {
   1368 	s32 status;
   1369 	u16 word;
   1370 	u16 page_size;
   1371 	u16 i;
   1372 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1373 
   1374 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1375 
   1376 	/* Prepare the EEPROM for writing  */
   1377 	status = ixgbe_acquire_eeprom(hw);
   1378 
   1379 	if (status == IXGBE_SUCCESS) {
   1380 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1381 			ixgbe_release_eeprom(hw);
   1382 			status = IXGBE_ERR_EEPROM;
   1383 		}
   1384 	}
   1385 
   1386 	if (status == IXGBE_SUCCESS) {
   1387 		for (i = 0; i < words; i++) {
   1388 			ixgbe_standby_eeprom(hw);
   1389 
   1390 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1391 			ixgbe_shift_out_eeprom_bits(hw,
   1392 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1393 						   IXGBE_EEPROM_OPCODE_BITS);
   1394 
   1395 			ixgbe_standby_eeprom(hw);
   1396 
   1397 			/*
   1398 			 * Some SPI eeproms use the 8th address bit embedded
   1399 			 * in the opcode
   1400 			 */
   1401 			if ((hw->eeprom.address_bits == 8) &&
   1402 			    ((offset + i) >= 128))
   1403 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1404 
   1405 			/* Send the Write command (8-bit opcode + addr) */
   1406 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1407 						    IXGBE_EEPROM_OPCODE_BITS);
   1408 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1409 						    hw->eeprom.address_bits);
   1410 
   1411 			page_size = hw->eeprom.word_page_size;
   1412 
   1413 			/* Send the data in burst via SPI*/
   1414 			do {
   1415 				word = data[i];
   1416 				word = (word >> 8) | (word << 8);
   1417 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1418 
   1419 				if (page_size == 0)
   1420 					break;
   1421 
   1422 				/* do not wrap around page */
   1423 				if (((offset + i) & (page_size - 1)) ==
   1424 				    (page_size - 1))
   1425 					break;
   1426 			} while (++i < words);
   1427 
   1428 			ixgbe_standby_eeprom(hw);
   1429 			msec_delay(10);
   1430 		}
   1431 		/* Done with writing - release the EEPROM */
   1432 		ixgbe_release_eeprom(hw);
   1433 	}
   1434 
   1435 	return status;
   1436 }
   1437 
   1438 /**
   1439  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1440  *  @hw: pointer to hardware structure
   1441  *  @offset: offset within the EEPROM to be written to
   1442  *  @data: 16 bit word to be written to the EEPROM
   1443  *
   1444  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1445  *  EEPROM will most likely contain an invalid checksum.
   1446  **/
   1447 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1448 {
   1449 	s32 status;
   1450 
   1451 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1452 
   1453 	hw->eeprom.ops.init_params(hw);
   1454 
   1455 	if (offset >= hw->eeprom.word_size) {
   1456 		status = IXGBE_ERR_EEPROM;
   1457 		goto out;
   1458 	}
   1459 
   1460 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1461 
   1462 out:
   1463 	return status;
   1464 }
   1465 
   1466 /**
   1467  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1468  *  @hw: pointer to hardware structure
   1469  *  @offset: offset within the EEPROM to be read
   1470  *  @data: read 16 bit words(s) from EEPROM
   1471  *  @words: number of word(s)
   1472  *
   1473  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1474  **/
   1475 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1476 					      u16 words, u16 *data)
   1477 {
   1478 	s32 status = IXGBE_SUCCESS;
   1479 	u16 i, count;
   1480 
   1481 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1482 
   1483 	hw->eeprom.ops.init_params(hw);
   1484 
   1485 	if (words == 0) {
   1486 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1487 		goto out;
   1488 	}
   1489 
   1490 	if (offset + words > hw->eeprom.word_size) {
   1491 		status = IXGBE_ERR_EEPROM;
   1492 		goto out;
   1493 	}
   1494 
   1495 	/*
   1496 	 * We cannot hold synchronization semaphores for too long
   1497 	 * to avoid other entity starvation. However it is more efficient
   1498 	 * to read in bursts than synchronizing access for each word.
   1499 	 */
   1500 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1501 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1502 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1503 
   1504 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1505 							   count, &data[i]);
   1506 
   1507 		if (status != IXGBE_SUCCESS)
   1508 			break;
   1509 	}
   1510 
   1511 out:
   1512 	return status;
   1513 }
   1514 
   1515 /**
   1516  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1517  *  @hw: pointer to hardware structure
   1518  *  @offset: offset within the EEPROM to be read
   1519  *  @words: number of word(s)
   1520  *  @data: read 16 bit word(s) from EEPROM
   1521  *
   1522  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1523  **/
   1524 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1525 					     u16 words, u16 *data)
   1526 {
   1527 	s32 status;
   1528 	u16 word_in;
   1529 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1530 	u16 i;
   1531 
   1532 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1533 
   1534 	/* Prepare the EEPROM for reading  */
   1535 	status = ixgbe_acquire_eeprom(hw);
   1536 
   1537 	if (status == IXGBE_SUCCESS) {
   1538 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1539 			ixgbe_release_eeprom(hw);
   1540 			status = IXGBE_ERR_EEPROM;
   1541 		}
   1542 	}
   1543 
   1544 	if (status == IXGBE_SUCCESS) {
   1545 		for (i = 0; i < words; i++) {
   1546 			ixgbe_standby_eeprom(hw);
   1547 			/*
   1548 			 * Some SPI eeproms use the 8th address bit embedded
   1549 			 * in the opcode
   1550 			 */
   1551 			if ((hw->eeprom.address_bits == 8) &&
   1552 			    ((offset + i) >= 128))
   1553 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1554 
   1555 			/* Send the READ command (opcode + addr) */
   1556 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1557 						    IXGBE_EEPROM_OPCODE_BITS);
   1558 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1559 						    hw->eeprom.address_bits);
   1560 
   1561 			/* Read the data. */
   1562 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1563 			data[i] = (word_in >> 8) | (word_in << 8);
   1564 		}
   1565 
   1566 		/* End this read operation */
   1567 		ixgbe_release_eeprom(hw);
   1568 	}
   1569 
   1570 	return status;
   1571 }
   1572 
   1573 /**
   1574  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1575  *  @hw: pointer to hardware structure
   1576  *  @offset: offset within the EEPROM to be read
   1577  *  @data: read 16 bit value from EEPROM
   1578  *
   1579  *  Reads 16 bit value from EEPROM through bit-bang method
   1580  **/
   1581 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1582 				       u16 *data)
   1583 {
   1584 	s32 status;
   1585 
   1586 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1587 
   1588 	hw->eeprom.ops.init_params(hw);
   1589 
   1590 	if (offset >= hw->eeprom.word_size) {
   1591 		status = IXGBE_ERR_EEPROM;
   1592 		goto out;
   1593 	}
   1594 
   1595 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1596 
   1597 out:
   1598 	return status;
   1599 }
   1600 
   1601 /**
   1602  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1603  *  @hw: pointer to hardware structure
   1604  *  @offset: offset of word in the EEPROM to read
   1605  *  @words: number of word(s)
   1606  *  @data: 16 bit word(s) from the EEPROM
   1607  *
   1608  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1609  **/
   1610 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1611 				   u16 words, u16 *data)
   1612 {
   1613 	u32 eerd;
   1614 	s32 status = IXGBE_SUCCESS;
   1615 	u32 i;
   1616 
   1617 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1618 
   1619 	hw->eeprom.ops.init_params(hw);
   1620 
   1621 	if (words == 0) {
   1622 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1623 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1624 		goto out;
   1625 	}
   1626 
   1627 	if (offset >= hw->eeprom.word_size) {
   1628 		status = IXGBE_ERR_EEPROM;
   1629 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1630 		goto out;
   1631 	}
   1632 
   1633 	for (i = 0; i < words; i++) {
   1634 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1635 		       IXGBE_EEPROM_RW_REG_START;
   1636 
   1637 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1638 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1639 
   1640 		if (status == IXGBE_SUCCESS) {
   1641 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1642 				   IXGBE_EEPROM_RW_REG_DATA);
   1643 		} else {
   1644 			DEBUGOUT("Eeprom read timed out\n");
   1645 			goto out;
   1646 		}
   1647 	}
   1648 out:
   1649 	return status;
   1650 }
   1651 
   1652 /**
   1653  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1654  *  @hw: pointer to hardware structure
   1655  *  @offset: offset within the EEPROM to be used as a scratch pad
   1656  *
   1657  *  Discover EEPROM page size by writing marching data at given offset.
   1658  *  This function is called only when we are writing a new large buffer
   1659  *  at given offset so the data would be overwritten anyway.
   1660  **/
   1661 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1662 						 u16 offset)
   1663 {
   1664 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1665 	s32 status = IXGBE_SUCCESS;
   1666 	u16 i;
   1667 
   1668 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1669 
   1670 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1671 		data[i] = i;
   1672 
   1673 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1674 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1675 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1676 	hw->eeprom.word_page_size = 0;
   1677 	if (status != IXGBE_SUCCESS)
   1678 		goto out;
   1679 
   1680 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1681 	if (status != IXGBE_SUCCESS)
   1682 		goto out;
   1683 
   1684 	/*
   1685 	 * When writing in burst more than the actual page size
   1686 	 * EEPROM address wraps around current page.
   1687 	 */
   1688 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1689 
   1690 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1691 		  hw->eeprom.word_page_size);
   1692 out:
   1693 	return status;
   1694 }
   1695 
   1696 /**
   1697  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1698  *  @hw: pointer to hardware structure
   1699  *  @offset: offset of  word in the EEPROM to read
   1700  *  @data: word read from the EEPROM
   1701  *
   1702  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1703  **/
   1704 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1705 {
   1706 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1707 }
   1708 
   1709 /**
   1710  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1711  *  @hw: pointer to hardware structure
   1712  *  @offset: offset of  word in the EEPROM to write
   1713  *  @words: number of word(s)
   1714  *  @data: word(s) write to the EEPROM
   1715  *
   1716  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1717  **/
   1718 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1719 				    u16 words, u16 *data)
   1720 {
   1721 	u32 eewr;
   1722 	s32 status = IXGBE_SUCCESS;
   1723 	u16 i;
   1724 
   1725 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1726 
   1727 	hw->eeprom.ops.init_params(hw);
   1728 
   1729 	if (words == 0) {
   1730 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1731 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1732 		goto out;
   1733 	}
   1734 
   1735 	if (offset >= hw->eeprom.word_size) {
   1736 		status = IXGBE_ERR_EEPROM;
   1737 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1738 		goto out;
   1739 	}
   1740 
   1741 	for (i = 0; i < words; i++) {
   1742 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1743 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1744 			IXGBE_EEPROM_RW_REG_START;
   1745 
   1746 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1747 		if (status != IXGBE_SUCCESS) {
   1748 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1749 			goto out;
   1750 		}
   1751 
   1752 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1753 
   1754 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1755 		if (status != IXGBE_SUCCESS) {
   1756 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1757 			goto out;
   1758 		}
   1759 	}
   1760 
   1761 out:
   1762 	return status;
   1763 }
   1764 
   1765 /**
   1766  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1767  *  @hw: pointer to hardware structure
   1768  *  @offset: offset of  word in the EEPROM to write
   1769  *  @data: word write to the EEPROM
   1770  *
   1771  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1772  **/
   1773 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1774 {
   1775 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1776 }
   1777 
   1778 /**
   1779  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1780  *  @hw: pointer to hardware structure
   1781  *  @ee_reg: EEPROM flag for polling
   1782  *
   1783  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1784  *  read or write is done respectively.
   1785  **/
   1786 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1787 {
   1788 	u32 i;
   1789 	u32 reg;
   1790 	s32 status = IXGBE_ERR_EEPROM;
   1791 
   1792 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1793 
   1794 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1795 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1796 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1797 		else
   1798 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1799 
   1800 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1801 			status = IXGBE_SUCCESS;
   1802 			break;
   1803 		}
   1804 		usec_delay(5);
   1805 	}
   1806 
   1807 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1808 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1809 			     "EEPROM read/write done polling timed out");
   1810 
   1811 	return status;
   1812 }
   1813 
   1814 /**
   1815  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1816  *  @hw: pointer to hardware structure
   1817  *
   1818  *  Prepares EEPROM for access using bit-bang method. This function should
   1819  *  be called before issuing a command to the EEPROM.
   1820  **/
   1821 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1822 {
   1823 	s32 status = IXGBE_SUCCESS;
   1824 	u32 eec;
   1825 	u32 i;
   1826 
   1827 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1828 
   1829 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1830 	    != IXGBE_SUCCESS)
   1831 		status = IXGBE_ERR_SWFW_SYNC;
   1832 
   1833 	if (status == IXGBE_SUCCESS) {
   1834 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1835 
   1836 		/* Request EEPROM Access */
   1837 		eec |= IXGBE_EEC_REQ;
   1838 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1839 
   1840 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1841 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1842 			if (eec & IXGBE_EEC_GNT)
   1843 				break;
   1844 			usec_delay(5);
   1845 		}
   1846 
   1847 		/* Release if grant not acquired */
   1848 		if (!(eec & IXGBE_EEC_GNT)) {
   1849 			eec &= ~IXGBE_EEC_REQ;
   1850 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1851 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1852 
   1853 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1854 			status = IXGBE_ERR_EEPROM;
   1855 		}
   1856 
   1857 		/* Setup EEPROM for Read/Write */
   1858 		if (status == IXGBE_SUCCESS) {
   1859 			/* Clear CS and SK */
   1860 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1861 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1862 			IXGBE_WRITE_FLUSH(hw);
   1863 			usec_delay(1);
   1864 		}
   1865 	}
   1866 	return status;
   1867 }
   1868 
   1869 /**
   1870  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1871  *  @hw: pointer to hardware structure
   1872  *
   1873  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1874  **/
   1875 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1876 {
   1877 	s32 status = IXGBE_ERR_EEPROM;
   1878 	u32 timeout = 2000;
   1879 	u32 i;
   1880 	u32 swsm;
   1881 
   1882 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1883 
   1884 
   1885 	/* Get SMBI software semaphore between device drivers first */
   1886 	for (i = 0; i < timeout; i++) {
   1887 		/*
   1888 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1889 		 * set and we have the semaphore
   1890 		 */
   1891 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1892 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1893 			status = IXGBE_SUCCESS;
   1894 			break;
   1895 		}
   1896 		usec_delay(50);
   1897 	}
   1898 
   1899 	if (i == timeout) {
   1900 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1901 			 "not granted.\n");
   1902 		/*
   1903 		 * this release is particularly important because our attempts
   1904 		 * above to get the semaphore may have succeeded, and if there
   1905 		 * was a timeout, we should unconditionally clear the semaphore
   1906 		 * bits to free the driver to make progress
   1907 		 */
   1908 		ixgbe_release_eeprom_semaphore(hw);
   1909 
   1910 		usec_delay(50);
   1911 		/*
   1912 		 * one last try
   1913 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1914 		 * set and we have the semaphore
   1915 		 */
   1916 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1917 		if (!(swsm & IXGBE_SWSM_SMBI))
   1918 			status = IXGBE_SUCCESS;
   1919 	}
   1920 
   1921 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1922 	if (status == IXGBE_SUCCESS) {
   1923 		for (i = 0; i < timeout; i++) {
   1924 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1925 
   1926 			/* Set the SW EEPROM semaphore bit to request access */
   1927 			swsm |= IXGBE_SWSM_SWESMBI;
   1928 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1929 
   1930 			/*
   1931 			 * If we set the bit successfully then we got the
   1932 			 * semaphore.
   1933 			 */
   1934 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1935 			if (swsm & IXGBE_SWSM_SWESMBI)
   1936 				break;
   1937 
   1938 			usec_delay(50);
   1939 		}
   1940 
   1941 		/*
   1942 		 * Release semaphores and return error if SW EEPROM semaphore
   1943 		 * was not granted because we don't have access to the EEPROM
   1944 		 */
   1945 		if (i >= timeout) {
   1946 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1947 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1948 			ixgbe_release_eeprom_semaphore(hw);
   1949 			status = IXGBE_ERR_EEPROM;
   1950 		}
   1951 	} else {
   1952 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1953 			     "Software semaphore SMBI between device drivers "
   1954 			     "not granted.\n");
   1955 	}
   1956 
   1957 	return status;
   1958 }
   1959 
   1960 /**
   1961  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1962  *  @hw: pointer to hardware structure
   1963  *
   1964  *  This function clears hardware semaphore bits.
   1965  **/
   1966 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1967 {
   1968 	u32 swsm;
   1969 
   1970 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1971 
   1972 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1973 
   1974 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1975 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1976 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1977 	IXGBE_WRITE_FLUSH(hw);
   1978 }
   1979 
   1980 /**
   1981  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1982  *  @hw: pointer to hardware structure
   1983  **/
   1984 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1985 {
   1986 	s32 status = IXGBE_SUCCESS;
   1987 	u16 i;
   1988 	u8 spi_stat_reg;
   1989 
   1990 	DEBUGFUNC("ixgbe_ready_eeprom");
   1991 
   1992 	/*
   1993 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1994 	 * EEPROM will signal that the command has been completed by clearing
   1995 	 * bit 0 of the internal status register.  If it's not cleared within
   1996 	 * 5 milliseconds, then error out.
   1997 	 */
   1998 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1999 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2000 					    IXGBE_EEPROM_OPCODE_BITS);
   2001 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2002 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2003 			break;
   2004 
   2005 		usec_delay(5);
   2006 		ixgbe_standby_eeprom(hw);
   2007 	}
   2008 
   2009 	/*
   2010 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2011 	 * devices (and only 0-5mSec on 5V devices)
   2012 	 */
   2013 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2014 		DEBUGOUT("SPI EEPROM Status error\n");
   2015 		status = IXGBE_ERR_EEPROM;
   2016 	}
   2017 
   2018 	return status;
   2019 }
   2020 
   2021 /**
   2022  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2023  *  @hw: pointer to hardware structure
   2024  **/
   2025 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2026 {
   2027 	u32 eec;
   2028 
   2029 	DEBUGFUNC("ixgbe_standby_eeprom");
   2030 
   2031 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2032 
   2033 	/* Toggle CS to flush commands */
   2034 	eec |= IXGBE_EEC_CS;
   2035 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2036 	IXGBE_WRITE_FLUSH(hw);
   2037 	usec_delay(1);
   2038 	eec &= ~IXGBE_EEC_CS;
   2039 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2040 	IXGBE_WRITE_FLUSH(hw);
   2041 	usec_delay(1);
   2042 }
   2043 
   2044 /**
   2045  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2046  *  @hw: pointer to hardware structure
   2047  *  @data: data to send to the EEPROM
   2048  *  @count: number of bits to shift out
   2049  **/
   2050 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2051 					u16 count)
   2052 {
   2053 	u32 eec;
   2054 	u32 mask;
   2055 	u32 i;
   2056 
   2057 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2058 
   2059 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2060 
   2061 	/*
   2062 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2063 	 * one bit at a time.  Determine the starting bit based on count
   2064 	 */
   2065 	mask = 0x01 << (count - 1);
   2066 
   2067 	for (i = 0; i < count; i++) {
   2068 		/*
   2069 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2070 		 * "1", and then raising and then lowering the clock (the SK
   2071 		 * bit controls the clock input to the EEPROM).  A "0" is
   2072 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2073 		 * raising and then lowering the clock.
   2074 		 */
   2075 		if (data & mask)
   2076 			eec |= IXGBE_EEC_DI;
   2077 		else
   2078 			eec &= ~IXGBE_EEC_DI;
   2079 
   2080 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2081 		IXGBE_WRITE_FLUSH(hw);
   2082 
   2083 		usec_delay(1);
   2084 
   2085 		ixgbe_raise_eeprom_clk(hw, &eec);
   2086 		ixgbe_lower_eeprom_clk(hw, &eec);
   2087 
   2088 		/*
   2089 		 * Shift mask to signify next bit of data to shift in to the
   2090 		 * EEPROM
   2091 		 */
   2092 		mask = mask >> 1;
   2093 	}
   2094 
   2095 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2096 	eec &= ~IXGBE_EEC_DI;
   2097 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2098 	IXGBE_WRITE_FLUSH(hw);
   2099 }
   2100 
   2101 /**
   2102  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2103  *  @hw: pointer to hardware structure
   2104  **/
   2105 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2106 {
   2107 	u32 eec;
   2108 	u32 i;
   2109 	u16 data = 0;
   2110 
   2111 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2112 
   2113 	/*
   2114 	 * In order to read a register from the EEPROM, we need to shift
   2115 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2116 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2117 	 * the value of the "DO" bit.  During this "shifting in" process the
   2118 	 * "DI" bit should always be clear.
   2119 	 */
   2120 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2121 
   2122 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2123 
   2124 	for (i = 0; i < count; i++) {
   2125 		data = data << 1;
   2126 		ixgbe_raise_eeprom_clk(hw, &eec);
   2127 
   2128 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2129 
   2130 		eec &= ~(IXGBE_EEC_DI);
   2131 		if (eec & IXGBE_EEC_DO)
   2132 			data |= 1;
   2133 
   2134 		ixgbe_lower_eeprom_clk(hw, &eec);
   2135 	}
   2136 
   2137 	return data;
   2138 }
   2139 
   2140 /**
   2141  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2142  *  @hw: pointer to hardware structure
   2143  *  @eec: EEC register's current value
   2144  **/
   2145 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2146 {
   2147 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2148 
   2149 	/*
   2150 	 * Raise the clock input to the EEPROM
   2151 	 * (setting the SK bit), then delay
   2152 	 */
   2153 	*eec = *eec | IXGBE_EEC_SK;
   2154 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2155 	IXGBE_WRITE_FLUSH(hw);
   2156 	usec_delay(1);
   2157 }
   2158 
   2159 /**
   2160  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2161  *  @hw: pointer to hardware structure
   2162  *  @eecd: EECD's current value
   2163  **/
   2164 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2165 {
   2166 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2167 
   2168 	/*
   2169 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2170 	 * delay
   2171 	 */
   2172 	*eec = *eec & ~IXGBE_EEC_SK;
   2173 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2174 	IXGBE_WRITE_FLUSH(hw);
   2175 	usec_delay(1);
   2176 }
   2177 
   2178 /**
   2179  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2180  *  @hw: pointer to hardware structure
   2181  **/
   2182 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2183 {
   2184 	u32 eec;
   2185 
   2186 	DEBUGFUNC("ixgbe_release_eeprom");
   2187 
   2188 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2189 
   2190 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2191 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2192 
   2193 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2194 	IXGBE_WRITE_FLUSH(hw);
   2195 
   2196 	usec_delay(1);
   2197 
   2198 	/* Stop requesting EEPROM access */
   2199 	eec &= ~IXGBE_EEC_REQ;
   2200 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2201 
   2202 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2203 
   2204 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2205 	msec_delay(hw->eeprom.semaphore_delay);
   2206 }
   2207 
   2208 /**
   2209  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2210  *  @hw: pointer to hardware structure
   2211  *
   2212  *  Returns a negative error code on error, or the 16-bit checksum
   2213  **/
   2214 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2215 {
   2216 	u16 i;
   2217 	u16 j;
   2218 	u16 checksum = 0;
   2219 	u16 length = 0;
   2220 	u16 pointer = 0;
   2221 	u16 word = 0;
   2222 
   2223 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2224 
   2225 	/* Include 0x0-0x3F in the checksum */
   2226 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2227 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2228 			DEBUGOUT("EEPROM read failed\n");
   2229 			return IXGBE_ERR_EEPROM;
   2230 		}
   2231 		checksum += word;
   2232 	}
   2233 
   2234 	/* Include all data from pointers except for the fw pointer */
   2235 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2236 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2237 			DEBUGOUT("EEPROM read failed\n");
   2238 			return IXGBE_ERR_EEPROM;
   2239 		}
   2240 
   2241 		/* If the pointer seems invalid */
   2242 		if (pointer == 0xFFFF || pointer == 0)
   2243 			continue;
   2244 
   2245 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2246 			DEBUGOUT("EEPROM read failed\n");
   2247 			return IXGBE_ERR_EEPROM;
   2248 		}
   2249 
   2250 		if (length == 0xFFFF || length == 0)
   2251 			continue;
   2252 
   2253 		for (j = pointer + 1; j <= pointer + length; j++) {
   2254 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2255 				DEBUGOUT("EEPROM read failed\n");
   2256 				return IXGBE_ERR_EEPROM;
   2257 			}
   2258 			checksum += word;
   2259 		}
   2260 	}
   2261 
   2262 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2263 
   2264 	return (s32)checksum;
   2265 }
   2266 
   2267 /**
   2268  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2269  *  @hw: pointer to hardware structure
   2270  *  @checksum_val: calculated checksum
   2271  *
   2272  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2273  *  caller does not need checksum_val, the value can be NULL.
   2274  **/
   2275 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2276 					   u16 *checksum_val)
   2277 {
   2278 	s32 status;
   2279 	u16 checksum;
   2280 	u16 read_checksum = 0;
   2281 
   2282 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2283 
   2284 	/* Read the first word from the EEPROM. If this times out or fails, do
   2285 	 * not continue or we could be in for a very long wait while every
   2286 	 * EEPROM read fails
   2287 	 */
   2288 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2289 	if (status) {
   2290 		DEBUGOUT("EEPROM read failed\n");
   2291 		return status;
   2292 	}
   2293 
   2294 	status = hw->eeprom.ops.calc_checksum(hw);
   2295 	if (status < 0)
   2296 		return status;
   2297 
   2298 	checksum = (u16)(status & 0xffff);
   2299 
   2300 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2301 	if (status) {
   2302 		DEBUGOUT("EEPROM read failed\n");
   2303 		return status;
   2304 	}
   2305 
   2306 	/* Verify read checksum from EEPROM is the same as
   2307 	 * calculated checksum
   2308 	 */
   2309 	if (read_checksum != checksum)
   2310 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2311 
   2312 	/* If the user cares, return the calculated checksum */
   2313 	if (checksum_val)
   2314 		*checksum_val = checksum;
   2315 
   2316 	return status;
   2317 }
   2318 
   2319 /**
   2320  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2321  *  @hw: pointer to hardware structure
   2322  **/
   2323 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2324 {
   2325 	s32 status;
   2326 	u16 checksum;
   2327 
   2328 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2329 
   2330 	/* Read the first word from the EEPROM. If this times out or fails, do
   2331 	 * not continue or we could be in for a very long wait while every
   2332 	 * EEPROM read fails
   2333 	 */
   2334 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2335 	if (status) {
   2336 		DEBUGOUT("EEPROM read failed\n");
   2337 		return status;
   2338 	}
   2339 
   2340 	status = hw->eeprom.ops.calc_checksum(hw);
   2341 	if (status < 0)
   2342 		return status;
   2343 
   2344 	checksum = (u16)(status & 0xffff);
   2345 
   2346 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2347 
   2348 	return status;
   2349 }
   2350 
   2351 /**
   2352  *  ixgbe_validate_mac_addr - Validate MAC address
   2353  *  @mac_addr: pointer to MAC address.
   2354  *
   2355  *  Tests a MAC address to ensure it is a valid Individual Address.
   2356  **/
   2357 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2358 {
   2359 	s32 status = IXGBE_SUCCESS;
   2360 
   2361 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2362 
   2363 	/* Make sure it is not a multicast address */
   2364 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2365 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2366 	/* Not a broadcast address */
   2367 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2368 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2369 	/* Reject the zero address */
   2370 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2371 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2372 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2373 	}
   2374 	return status;
   2375 }
   2376 
   2377 /**
   2378  *  ixgbe_set_rar_generic - Set Rx address register
   2379  *  @hw: pointer to hardware structure
   2380  *  @index: Receive address register to write
   2381  *  @addr: Address to put into receive address register
   2382  *  @vmdq: VMDq "set" or "pool" index
   2383  *  @enable_addr: set flag that address is active
   2384  *
   2385  *  Puts an ethernet address into a receive address register.
   2386  **/
   2387 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2388 			  u32 enable_addr)
   2389 {
   2390 	u32 rar_low, rar_high;
   2391 	u32 rar_entries = hw->mac.num_rar_entries;
   2392 
   2393 	DEBUGFUNC("ixgbe_set_rar_generic");
   2394 
   2395 	/* Make sure we are using a valid rar index range */
   2396 	if (index >= rar_entries) {
   2397 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2398 			     "RAR index %d is out of range.\n", index);
   2399 		return IXGBE_ERR_INVALID_ARGUMENT;
   2400 	}
   2401 
   2402 	/* setup VMDq pool selection before this RAR gets enabled */
   2403 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2404 
   2405 	/*
   2406 	 * HW expects these in little endian so we reverse the byte
   2407 	 * order from network order (big endian) to little endian
   2408 	 */
   2409 	rar_low = ((u32)addr[0] |
   2410 		   ((u32)addr[1] << 8) |
   2411 		   ((u32)addr[2] << 16) |
   2412 		   ((u32)addr[3] << 24));
   2413 	/*
   2414 	 * Some parts put the VMDq setting in the extra RAH bits,
   2415 	 * so save everything except the lower 16 bits that hold part
   2416 	 * of the address and the address valid bit.
   2417 	 */
   2418 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2419 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2420 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2421 
   2422 	if (enable_addr != 0)
   2423 		rar_high |= IXGBE_RAH_AV;
   2424 
   2425 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2426 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2427 
   2428 	return IXGBE_SUCCESS;
   2429 }
   2430 
   2431 /**
   2432  *  ixgbe_clear_rar_generic - Remove Rx address register
   2433  *  @hw: pointer to hardware structure
   2434  *  @index: Receive address register to write
   2435  *
   2436  *  Clears an ethernet address from a receive address register.
   2437  **/
   2438 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2439 {
   2440 	u32 rar_high;
   2441 	u32 rar_entries = hw->mac.num_rar_entries;
   2442 
   2443 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2444 
   2445 	/* Make sure we are using a valid rar index range */
   2446 	if (index >= rar_entries) {
   2447 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2448 			     "RAR index %d is out of range.\n", index);
   2449 		return IXGBE_ERR_INVALID_ARGUMENT;
   2450 	}
   2451 
   2452 	/*
   2453 	 * Some parts put the VMDq setting in the extra RAH bits,
   2454 	 * so save everything except the lower 16 bits that hold part
   2455 	 * of the address and the address valid bit.
   2456 	 */
   2457 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2458 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2459 
   2460 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2461 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2462 
   2463 	/* clear VMDq pool/queue selection for this RAR */
   2464 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2465 
   2466 	return IXGBE_SUCCESS;
   2467 }
   2468 
   2469 /**
   2470  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2471  *  @hw: pointer to hardware structure
   2472  *
   2473  *  Places the MAC address in receive address register 0 and clears the rest
   2474  *  of the receive address registers. Clears the multicast table. Assumes
   2475  *  the receiver is in reset when the routine is called.
   2476  **/
   2477 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2478 {
   2479 	u32 i;
   2480 	u32 rar_entries = hw->mac.num_rar_entries;
   2481 
   2482 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2483 
   2484 	/*
   2485 	 * If the current mac address is valid, assume it is a software override
   2486 	 * to the permanent address.
   2487 	 * Otherwise, use the permanent address from the eeprom.
   2488 	 */
   2489 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2490 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2491 		/* Get the MAC address from the RAR0 for later reference */
   2492 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2493 
   2494 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2495 			  hw->mac.addr[0], hw->mac.addr[1],
   2496 			  hw->mac.addr[2]);
   2497 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2498 			  hw->mac.addr[4], hw->mac.addr[5]);
   2499 	} else {
   2500 		/* Setup the receive address. */
   2501 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2502 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2503 			  hw->mac.addr[0], hw->mac.addr[1],
   2504 			  hw->mac.addr[2]);
   2505 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2506 			  hw->mac.addr[4], hw->mac.addr[5]);
   2507 
   2508 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2509 	}
   2510 
   2511 	/* clear VMDq pool/queue selection for RAR 0 */
   2512 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2513 
   2514 	hw->addr_ctrl.overflow_promisc = 0;
   2515 
   2516 	hw->addr_ctrl.rar_used_count = 1;
   2517 
   2518 	/* Zero out the other receive addresses. */
   2519 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2520 	for (i = 1; i < rar_entries; i++) {
   2521 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2522 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2523 	}
   2524 
   2525 	/* Clear the MTA */
   2526 	hw->addr_ctrl.mta_in_use = 0;
   2527 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2528 
   2529 	DEBUGOUT(" Clearing MTA\n");
   2530 	for (i = 0; i < hw->mac.mcft_size; i++)
   2531 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2532 
   2533 	ixgbe_init_uta_tables(hw);
   2534 
   2535 	return IXGBE_SUCCESS;
   2536 }
   2537 
   2538 /**
   2539  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2540  *  @hw: pointer to hardware structure
   2541  *  @addr: new address
   2542  *
   2543  *  Adds it to unused receive address register or goes into promiscuous mode.
   2544  **/
   2545 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2546 {
   2547 	u32 rar_entries = hw->mac.num_rar_entries;
   2548 	u32 rar;
   2549 
   2550 	DEBUGFUNC("ixgbe_add_uc_addr");
   2551 
   2552 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2553 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2554 
   2555 	/*
   2556 	 * Place this address in the RAR if there is room,
   2557 	 * else put the controller into promiscuous mode
   2558 	 */
   2559 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2560 		rar = hw->addr_ctrl.rar_used_count;
   2561 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2562 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2563 		hw->addr_ctrl.rar_used_count++;
   2564 	} else {
   2565 		hw->addr_ctrl.overflow_promisc++;
   2566 	}
   2567 
   2568 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2569 }
   2570 
   2571 /**
   2572  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2573  *  @hw: pointer to hardware structure
   2574  *  @addr_list: the list of new addresses
   2575  *  @addr_count: number of addresses
   2576  *  @next: iterator function to walk the address list
   2577  *
   2578  *  The given list replaces any existing list.  Clears the secondary addrs from
   2579  *  receive address registers.  Uses unused receive address registers for the
   2580  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2581  *
   2582  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2583  *  manually putting the device into promiscuous mode.
   2584  **/
   2585 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2586 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2587 {
   2588 	u8 *addr;
   2589 	u32 i;
   2590 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2591 	u32 uc_addr_in_use;
   2592 	u32 fctrl;
   2593 	u32 vmdq;
   2594 
   2595 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2596 
   2597 	/*
   2598 	 * Clear accounting of old secondary address list,
   2599 	 * don't count RAR[0]
   2600 	 */
   2601 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2602 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2603 	hw->addr_ctrl.overflow_promisc = 0;
   2604 
   2605 	/* Zero out the other receive addresses */
   2606 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2607 	for (i = 0; i < uc_addr_in_use; i++) {
   2608 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2609 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2610 	}
   2611 
   2612 	/* Add the new addresses */
   2613 	for (i = 0; i < addr_count; i++) {
   2614 		DEBUGOUT(" Adding the secondary addresses:\n");
   2615 		addr = next(hw, &addr_list, &vmdq);
   2616 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2617 	}
   2618 
   2619 	if (hw->addr_ctrl.overflow_promisc) {
   2620 		/* enable promisc if not already in overflow or set by user */
   2621 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2622 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2623 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2624 			fctrl |= IXGBE_FCTRL_UPE;
   2625 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2626 		}
   2627 	} else {
   2628 		/* only disable if set by overflow, not by user */
   2629 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2630 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2631 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2632 			fctrl &= ~IXGBE_FCTRL_UPE;
   2633 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2634 		}
   2635 	}
   2636 
   2637 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2638 	return IXGBE_SUCCESS;
   2639 }
   2640 
   2641 /**
   2642  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2643  *  @hw: pointer to hardware structure
   2644  *  @mc_addr: the multicast address
   2645  *
   2646  *  Extracts the 12 bits, from a multicast address, to determine which
   2647  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2648  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2649  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2650  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2651  *  to mc_filter_type.
   2652  **/
   2653 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2654 {
   2655 	u32 vector = 0;
   2656 
   2657 	DEBUGFUNC("ixgbe_mta_vector");
   2658 
   2659 	switch (hw->mac.mc_filter_type) {
   2660 	case 0:   /* use bits [47:36] of the address */
   2661 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2662 		break;
   2663 	case 1:   /* use bits [46:35] of the address */
   2664 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2665 		break;
   2666 	case 2:   /* use bits [45:34] of the address */
   2667 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2668 		break;
   2669 	case 3:   /* use bits [43:32] of the address */
   2670 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2671 		break;
   2672 	default:  /* Invalid mc_filter_type */
   2673 		DEBUGOUT("MC filter type param set incorrectly\n");
   2674 		ASSERT(0);
   2675 		break;
   2676 	}
   2677 
   2678 	/* vector can only be 12-bits or boundary will be exceeded */
   2679 	vector &= 0xFFF;
   2680 	return vector;
   2681 }
   2682 
   2683 /**
   2684  *  ixgbe_set_mta - Set bit-vector in multicast table
   2685  *  @hw: pointer to hardware structure
   2686  *  @hash_value: Multicast address hash value
   2687  *
   2688  *  Sets the bit-vector in the multicast table.
   2689  **/
   2690 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2691 {
   2692 	u32 vector;
   2693 	u32 vector_bit;
   2694 	u32 vector_reg;
   2695 
   2696 	DEBUGFUNC("ixgbe_set_mta");
   2697 
   2698 	hw->addr_ctrl.mta_in_use++;
   2699 
   2700 	vector = ixgbe_mta_vector(hw, mc_addr);
   2701 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2702 
   2703 	/*
   2704 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2705 	 * like an array of 4096 bits.  We want to set bit
   2706 	 * BitArray[vector_value]. So we figure out what register the bit is
   2707 	 * in, read it, OR in the new bit, then write back the new value.  The
   2708 	 * register is determined by the upper 7 bits of the vector value and
   2709 	 * the bit within that register are determined by the lower 5 bits of
   2710 	 * the value.
   2711 	 */
   2712 	vector_reg = (vector >> 5) & 0x7F;
   2713 	vector_bit = vector & 0x1F;
   2714 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2715 }
   2716 
   2717 /**
   2718  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2719  *  @hw: pointer to hardware structure
   2720  *  @mc_addr_list: the list of new multicast addresses
   2721  *  @mc_addr_count: number of addresses
   2722  *  @next: iterator function to walk the multicast address list
   2723  *  @clear: flag, when set clears the table beforehand
   2724  *
   2725  *  When the clear flag is set, the given list replaces any existing list.
   2726  *  Hashes the given addresses into the multicast table.
   2727  **/
   2728 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2729 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2730 				      bool clear)
   2731 {
   2732 	u32 i;
   2733 	u32 vmdq;
   2734 
   2735 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2736 
   2737 	/*
   2738 	 * Set the new number of MC addresses that we are being requested to
   2739 	 * use.
   2740 	 */
   2741 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2742 	hw->addr_ctrl.mta_in_use = 0;
   2743 
   2744 	/* Clear mta_shadow */
   2745 	if (clear) {
   2746 		DEBUGOUT(" Clearing MTA\n");
   2747 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2748 	}
   2749 
   2750 	/* Update mta_shadow */
   2751 	for (i = 0; i < mc_addr_count; i++) {
   2752 		DEBUGOUT(" Adding the multicast addresses:\n");
   2753 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2754 	}
   2755 
   2756 	/* Enable mta */
   2757 	for (i = 0; i < hw->mac.mcft_size; i++)
   2758 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2759 				      hw->mac.mta_shadow[i]);
   2760 
   2761 	if (hw->addr_ctrl.mta_in_use > 0)
   2762 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2763 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2764 
   2765 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2766 	return IXGBE_SUCCESS;
   2767 }
   2768 
   2769 /**
   2770  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2771  *  @hw: pointer to hardware structure
   2772  *
   2773  *  Enables multicast address in RAR and the use of the multicast hash table.
   2774  **/
   2775 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2776 {
   2777 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2778 
   2779 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2780 
   2781 	if (a->mta_in_use > 0)
   2782 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2783 				hw->mac.mc_filter_type);
   2784 
   2785 	return IXGBE_SUCCESS;
   2786 }
   2787 
   2788 /**
   2789  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2790  *  @hw: pointer to hardware structure
   2791  *
   2792  *  Disables multicast address in RAR and the use of the multicast hash table.
   2793  **/
   2794 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2795 {
   2796 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2797 
   2798 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2799 
   2800 	if (a->mta_in_use > 0)
   2801 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2802 
   2803 	return IXGBE_SUCCESS;
   2804 }
   2805 
   2806 /**
   2807  *  ixgbe_fc_enable_generic - Enable flow control
   2808  *  @hw: pointer to hardware structure
   2809  *
   2810  *  Enable flow control according to the current settings.
   2811  **/
   2812 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2813 {
   2814 	s32 ret_val = IXGBE_SUCCESS;
   2815 	u32 mflcn_reg, fccfg_reg;
   2816 	u32 reg;
   2817 	u32 fcrtl, fcrth;
   2818 	int i;
   2819 
   2820 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2821 
   2822 	/* Validate the water mark configuration */
   2823 	if (!hw->fc.pause_time) {
   2824 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2825 		goto out;
   2826 	}
   2827 
   2828 	/* Low water mark of zero causes XOFF floods */
   2829 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2830 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2831 		    hw->fc.high_water[i]) {
   2832 			if (!hw->fc.low_water[i] ||
   2833 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2834 				DEBUGOUT("Invalid water mark configuration\n");
   2835 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2836 				goto out;
   2837 			}
   2838 		}
   2839 	}
   2840 
   2841 	/* Negotiate the fc mode to use */
   2842 	hw->mac.ops.fc_autoneg(hw);
   2843 
   2844 	/* Disable any previous flow control settings */
   2845 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2846 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2847 
   2848 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2849 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2850 
   2851 	/*
   2852 	 * The possible values of fc.current_mode are:
   2853 	 * 0: Flow control is completely disabled
   2854 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2855 	 *    but not send pause frames).
   2856 	 * 2: Tx flow control is enabled (we can send pause frames but
   2857 	 *    we do not support receiving pause frames).
   2858 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2859 	 * other: Invalid.
   2860 	 */
   2861 	switch (hw->fc.current_mode) {
   2862 	case ixgbe_fc_none:
   2863 		/*
   2864 		 * Flow control is disabled by software override or autoneg.
   2865 		 * The code below will actually disable it in the HW.
   2866 		 */
   2867 		break;
   2868 	case ixgbe_fc_rx_pause:
   2869 		/*
   2870 		 * Rx Flow control is enabled and Tx Flow control is
   2871 		 * disabled by software override. Since there really
   2872 		 * isn't a way to advertise that we are capable of RX
   2873 		 * Pause ONLY, we will advertise that we support both
   2874 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2875 		 * disable the adapter's ability to send PAUSE frames.
   2876 		 */
   2877 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2878 		break;
   2879 	case ixgbe_fc_tx_pause:
   2880 		/*
   2881 		 * Tx Flow control is enabled, and Rx Flow control is
   2882 		 * disabled by software override.
   2883 		 */
   2884 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2885 		break;
   2886 	case ixgbe_fc_full:
   2887 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2888 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2889 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2890 		break;
   2891 	default:
   2892 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2893 			     "Flow control param set incorrectly\n");
   2894 		ret_val = IXGBE_ERR_CONFIG;
   2895 		goto out;
   2896 		break;
   2897 	}
   2898 
   2899 	/* Set 802.3x based flow control settings. */
   2900 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2901 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2902 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2903 
   2904 
   2905 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2906 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2907 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2908 		    hw->fc.high_water[i]) {
   2909 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2910 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2911 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2912 		} else {
   2913 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2914 			/*
   2915 			 * In order to prevent Tx hangs when the internal Tx
   2916 			 * switch is enabled we must set the high water mark
   2917 			 * to the Rx packet buffer size - 24KB.  This allows
   2918 			 * the Tx switch to function even under heavy Rx
   2919 			 * workloads.
   2920 			 */
   2921 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2922 		}
   2923 
   2924 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2925 	}
   2926 
   2927 	/* Configure pause time (2 TCs per register) */
   2928 	reg = hw->fc.pause_time * 0x00010001;
   2929 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2930 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2931 
   2932 	/* Configure flow control refresh threshold value */
   2933 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2934 
   2935 out:
   2936 	return ret_val;
   2937 }
   2938 
   2939 /**
   2940  *  ixgbe_negotiate_fc - Negotiate flow control
   2941  *  @hw: pointer to hardware structure
   2942  *  @adv_reg: flow control advertised settings
   2943  *  @lp_reg: link partner's flow control settings
   2944  *  @adv_sym: symmetric pause bit in advertisement
   2945  *  @adv_asm: asymmetric pause bit in advertisement
   2946  *  @lp_sym: symmetric pause bit in link partner advertisement
   2947  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2948  *
   2949  *  Find the intersection between advertised settings and link partner's
   2950  *  advertised settings
   2951  **/
   2952 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2953 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2954 {
   2955 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2956 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2957 			     "Local or link partner's advertised flow control "
   2958 			     "settings are NULL. Local: %x, link partner: %x\n",
   2959 			     adv_reg, lp_reg);
   2960 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2961 	}
   2962 
   2963 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2964 		/*
   2965 		 * Now we need to check if the user selected Rx ONLY
   2966 		 * of pause frames.  In this case, we had to advertise
   2967 		 * FULL flow control because we could not advertise RX
   2968 		 * ONLY. Hence, we must now check to see if we need to
   2969 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2970 		 */
   2971 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2972 			hw->fc.current_mode = ixgbe_fc_full;
   2973 			DEBUGOUT("Flow Control = FULL.\n");
   2974 		} else {
   2975 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2976 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2977 		}
   2978 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2979 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2980 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2981 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2982 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2983 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2984 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2985 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2986 	} else {
   2987 		hw->fc.current_mode = ixgbe_fc_none;
   2988 		DEBUGOUT("Flow Control = NONE.\n");
   2989 	}
   2990 	return IXGBE_SUCCESS;
   2991 }
   2992 
   2993 /**
   2994  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2995  *  @hw: pointer to hardware structure
   2996  *
   2997  *  Enable flow control according on 1 gig fiber.
   2998  **/
   2999 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3000 {
   3001 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3002 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3003 
   3004 	/*
   3005 	 * On multispeed fiber at 1g, bail out if
   3006 	 * - link is up but AN did not complete, or if
   3007 	 * - link is up and AN completed but timed out
   3008 	 */
   3009 
   3010 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3011 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3012 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3013 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3014 		goto out;
   3015 	}
   3016 
   3017 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3018 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3019 
   3020 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3021 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3022 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3023 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3024 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3025 
   3026 out:
   3027 	return ret_val;
   3028 }
   3029 
   3030 /**
   3031  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3032  *  @hw: pointer to hardware structure
   3033  *
   3034  *  Enable flow control according to IEEE clause 37.
   3035  **/
   3036 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3037 {
   3038 	u32 links2, anlp1_reg, autoc_reg, links;
   3039 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3040 
   3041 	/*
   3042 	 * On backplane, bail out if
   3043 	 * - backplane autoneg was not completed, or if
   3044 	 * - we are 82599 and link partner is not AN enabled
   3045 	 */
   3046 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3047 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3048 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3049 		goto out;
   3050 	}
   3051 
   3052 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3053 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3054 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3055 			DEBUGOUT("Link partner is not AN enabled\n");
   3056 			goto out;
   3057 		}
   3058 	}
   3059 	/*
   3060 	 * Read the 10g AN autoc and LP ability registers and resolve
   3061 	 * local flow control settings accordingly
   3062 	 */
   3063 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3064 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3065 
   3066 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3067 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3068 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3069 
   3070 out:
   3071 	return ret_val;
   3072 }
   3073 
   3074 /**
   3075  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3076  *  @hw: pointer to hardware structure
   3077  *
   3078  *  Enable flow control according to IEEE clause 37.
   3079  **/
   3080 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3081 {
   3082 	u16 technology_ability_reg = 0;
   3083 	u16 lp_technology_ability_reg = 0;
   3084 
   3085 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3086 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3087 			     &technology_ability_reg);
   3088 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3089 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3090 			     &lp_technology_ability_reg);
   3091 
   3092 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3093 				  (u32)lp_technology_ability_reg,
   3094 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3095 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3096 }
   3097 
   3098 /**
   3099  *  ixgbe_fc_autoneg - Configure flow control
   3100  *  @hw: pointer to hardware structure
   3101  *
   3102  *  Compares our advertised flow control capabilities to those advertised by
   3103  *  our link partner, and determines the proper flow control mode to use.
   3104  **/
   3105 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3106 {
   3107 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3108 	ixgbe_link_speed speed;
   3109 	bool link_up;
   3110 
   3111 	DEBUGFUNC("ixgbe_fc_autoneg");
   3112 
   3113 	/*
   3114 	 * AN should have completed when the cable was plugged in.
   3115 	 * Look for reasons to bail out.  Bail out if:
   3116 	 * - FC autoneg is disabled, or if
   3117 	 * - link is not up.
   3118 	 */
   3119 	if (hw->fc.disable_fc_autoneg) {
   3120 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3121 			     "Flow control autoneg is disabled");
   3122 		goto out;
   3123 	}
   3124 
   3125 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3126 	if (!link_up) {
   3127 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3128 		goto out;
   3129 	}
   3130 
   3131 	switch (hw->phy.media_type) {
   3132 	/* Autoneg flow control on fiber adapters */
   3133 	case ixgbe_media_type_fiber_fixed:
   3134 	case ixgbe_media_type_fiber_qsfp:
   3135 	case ixgbe_media_type_fiber:
   3136 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3137 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3138 		break;
   3139 
   3140 	/* Autoneg flow control on backplane adapters */
   3141 	case ixgbe_media_type_backplane:
   3142 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3143 		break;
   3144 
   3145 	/* Autoneg flow control on copper adapters */
   3146 	case ixgbe_media_type_copper:
   3147 		if (ixgbe_device_supports_autoneg_fc(hw))
   3148 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3149 		break;
   3150 
   3151 	default:
   3152 		break;
   3153 	}
   3154 
   3155 out:
   3156 	if (ret_val == IXGBE_SUCCESS) {
   3157 		hw->fc.fc_was_autonegged = TRUE;
   3158 	} else {
   3159 		hw->fc.fc_was_autonegged = FALSE;
   3160 		hw->fc.current_mode = hw->fc.requested_mode;
   3161 	}
   3162 }
   3163 
   3164 /*
   3165  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3166  * @hw: pointer to hardware structure
   3167  *
   3168  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3169  *
   3170  * Add 10% to specified maximum and return the number of times to poll for
   3171  * completion timeout, in units of 100 microsec.  Never return less than
   3172  * 800 = 80 millisec.
   3173  */
   3174 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3175 {
   3176 	s16 devctl2;
   3177 	u32 pollcnt;
   3178 
   3179 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3180 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3181 
   3182 	switch (devctl2) {
   3183 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3184 		pollcnt = 1300;		/* 130 millisec */
   3185 		break;
   3186 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3187 		pollcnt = 5200;		/* 520 millisec */
   3188 		break;
   3189 	case IXGBE_PCIDEVCTRL2_1_2s:
   3190 		pollcnt = 20000;	/* 2 sec */
   3191 		break;
   3192 	case IXGBE_PCIDEVCTRL2_4_8s:
   3193 		pollcnt = 80000;	/* 8 sec */
   3194 		break;
   3195 	case IXGBE_PCIDEVCTRL2_17_34s:
   3196 		pollcnt = 34000;	/* 34 sec */
   3197 		break;
   3198 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3199 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3200 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3201 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3202 	default:
   3203 		pollcnt = 800;		/* 80 millisec minimum */
   3204 		break;
   3205 	}
   3206 
   3207 	/* add 10% to spec maximum */
   3208 	return (pollcnt * 11) / 10;
   3209 }
   3210 
   3211 /**
   3212  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3213  *  @hw: pointer to hardware structure
   3214  *
   3215  *  Disables PCI-Express master access and verifies there are no pending
   3216  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3217  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3218  *  is returned signifying master requests disabled.
   3219  **/
   3220 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3221 {
   3222 	s32 status = IXGBE_SUCCESS;
   3223 	u32 i, poll;
   3224 	u16 value;
   3225 
   3226 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3227 
   3228 	/* Always set this bit to ensure any future transactions are blocked */
   3229 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3230 
   3231 	/* Exit if master requests are blocked */
   3232 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3233 	    IXGBE_REMOVED(hw->hw_addr))
   3234 		goto out;
   3235 
   3236 	/* Poll for master request bit to clear */
   3237 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3238 		usec_delay(100);
   3239 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3240 			goto out;
   3241 	}
   3242 
   3243 	/*
   3244 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3245 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3246 	 * of this need.  The first reset prevents new master requests from
   3247 	 * being issued by our device.  We then must wait 1usec or more for any
   3248 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3249 	 * again to clear out any effects they may have had on our device.
   3250 	 */
   3251 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3252 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3253 
   3254 	if (hw->mac.type >= ixgbe_mac_X550)
   3255 		goto out;
   3256 
   3257 	/*
   3258 	 * Before proceeding, make sure that the PCIe block does not have
   3259 	 * transactions pending.
   3260 	 */
   3261 	poll = ixgbe_pcie_timeout_poll(hw);
   3262 	for (i = 0; i < poll; i++) {
   3263 		usec_delay(100);
   3264 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3265 		if (IXGBE_REMOVED(hw->hw_addr))
   3266 			goto out;
   3267 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3268 			goto out;
   3269 	}
   3270 
   3271 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3272 		     "PCIe transaction pending bit also did not clear.\n");
   3273 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3274 
   3275 out:
   3276 	return status;
   3277 }
   3278 
   3279 /**
   3280  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3281  *  @hw: pointer to hardware structure
   3282  *  @mask: Mask to specify which semaphore to acquire
   3283  *
   3284  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3285  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3286  **/
   3287 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3288 {
   3289 	u32 gssr = 0;
   3290 	u32 swmask = mask;
   3291 	u32 fwmask = mask << 5;
   3292 	u32 timeout = 200;
   3293 	u32 i;
   3294 
   3295 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3296 
   3297 	for (i = 0; i < timeout; i++) {
   3298 		/*
   3299 		 * SW NVM semaphore bit is used for access to all
   3300 		 * SW_FW_SYNC bits (not just NVM)
   3301 		 */
   3302 		if (ixgbe_get_eeprom_semaphore(hw))
   3303 			return IXGBE_ERR_SWFW_SYNC;
   3304 
   3305 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3306 		if (!(gssr & (fwmask | swmask))) {
   3307 			gssr |= swmask;
   3308 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3309 			ixgbe_release_eeprom_semaphore(hw);
   3310 			return IXGBE_SUCCESS;
   3311 		} else {
   3312 			/* Resource is currently in use by FW or SW */
   3313 			ixgbe_release_eeprom_semaphore(hw);
   3314 			msec_delay(5);
   3315 		}
   3316 	}
   3317 
   3318 	/* If time expired clear the bits holding the lock and retry */
   3319 	if (gssr & (fwmask | swmask))
   3320 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3321 
   3322 	msec_delay(5);
   3323 	return IXGBE_ERR_SWFW_SYNC;
   3324 }
   3325 
   3326 /**
   3327  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3328  *  @hw: pointer to hardware structure
   3329  *  @mask: Mask to specify which semaphore to release
   3330  *
   3331  *  Releases the SWFW semaphore through the GSSR register for the specified
   3332  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3333  **/
   3334 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3335 {
   3336 	u32 gssr;
   3337 	u32 swmask = mask;
   3338 
   3339 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3340 
   3341 	ixgbe_get_eeprom_semaphore(hw);
   3342 
   3343 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3344 	gssr &= ~swmask;
   3345 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3346 
   3347 	ixgbe_release_eeprom_semaphore(hw);
   3348 }
   3349 
   3350 /**
   3351  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3352  *  @hw: pointer to hardware structure
   3353  *
   3354  *  Stops the receive data path and waits for the HW to internally empty
   3355  *  the Rx security block
   3356  **/
   3357 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3358 {
   3359 #define IXGBE_MAX_SECRX_POLL 40
   3360 
   3361 	int i;
   3362 	int secrxreg;
   3363 
   3364 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3365 
   3366 
   3367 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3368 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3369 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3370 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3371 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3372 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3373 			break;
   3374 		else
   3375 			/* Use interrupt-safe sleep just in case */
   3376 			usec_delay(1000);
   3377 	}
   3378 
   3379 	/* For informational purposes only */
   3380 	if (i >= IXGBE_MAX_SECRX_POLL)
   3381 		DEBUGOUT("Rx unit being enabled before security "
   3382 			 "path fully disabled.  Continuing with init.\n");
   3383 
   3384 	return IXGBE_SUCCESS;
   3385 }
   3386 
   3387 /**
   3388  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3389  *  @hw: pointer to hardware structure
   3390  *  @reg_val: Value we read from AUTOC
   3391  *
   3392  *  The default case requires no protection so just to the register read.
   3393  */
   3394 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3395 {
   3396 	*locked = FALSE;
   3397 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3398 	return IXGBE_SUCCESS;
   3399 }
   3400 
   3401 /**
   3402  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3403  * @hw: pointer to hardware structure
   3404  * @reg_val: value to write to AUTOC
   3405  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3406  *           previous read.
   3407  *
   3408  * The default case requires no protection so just to the register write.
   3409  */
   3410 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3411 {
   3412 	UNREFERENCED_1PARAMETER(locked);
   3413 
   3414 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3415 	return IXGBE_SUCCESS;
   3416 }
   3417 
   3418 /**
   3419  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3420  *  @hw: pointer to hardware structure
   3421  *
   3422  *  Enables the receive data path.
   3423  **/
   3424 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3425 {
   3426 	u32 secrxreg;
   3427 
   3428 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3429 
   3430 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3431 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3432 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3433 	IXGBE_WRITE_FLUSH(hw);
   3434 
   3435 	return IXGBE_SUCCESS;
   3436 }
   3437 
   3438 /**
   3439  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3440  *  @hw: pointer to hardware structure
   3441  *  @regval: register value to write to RXCTRL
   3442  *
   3443  *  Enables the Rx DMA unit
   3444  **/
   3445 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3446 {
   3447 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3448 
   3449 	if (regval & IXGBE_RXCTRL_RXEN)
   3450 		ixgbe_enable_rx(hw);
   3451 	else
   3452 		ixgbe_disable_rx(hw);
   3453 
   3454 	return IXGBE_SUCCESS;
   3455 }
   3456 
   3457 /**
   3458  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3459  *  @hw: pointer to hardware structure
   3460  *  @index: led number to blink
   3461  **/
   3462 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3463 {
   3464 	ixgbe_link_speed speed = 0;
   3465 	bool link_up = 0;
   3466 	u32 autoc_reg = 0;
   3467 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3468 	s32 ret_val = IXGBE_SUCCESS;
   3469 	bool locked = FALSE;
   3470 
   3471 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3472 
   3473 	if (index > 3)
   3474 		return IXGBE_ERR_PARAM;
   3475 
   3476 	/*
   3477 	 * Link must be up to auto-blink the LEDs;
   3478 	 * Force it if link is down.
   3479 	 */
   3480 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3481 
   3482 	if (!link_up) {
   3483 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3484 		if (ret_val != IXGBE_SUCCESS)
   3485 			goto out;
   3486 
   3487 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3488 		autoc_reg |= IXGBE_AUTOC_FLU;
   3489 
   3490 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3491 		if (ret_val != IXGBE_SUCCESS)
   3492 			goto out;
   3493 
   3494 		IXGBE_WRITE_FLUSH(hw);
   3495 		msec_delay(10);
   3496 	}
   3497 
   3498 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3499 	led_reg |= IXGBE_LED_BLINK(index);
   3500 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3501 	IXGBE_WRITE_FLUSH(hw);
   3502 
   3503 out:
   3504 	return ret_val;
   3505 }
   3506 
   3507 /**
   3508  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3509  *  @hw: pointer to hardware structure
   3510  *  @index: led number to stop blinking
   3511  **/
   3512 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3513 {
   3514 	u32 autoc_reg = 0;
   3515 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3516 	s32 ret_val = IXGBE_SUCCESS;
   3517 	bool locked = FALSE;
   3518 
   3519 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3520 
   3521 	if (index > 3)
   3522 		return IXGBE_ERR_PARAM;
   3523 
   3524 
   3525 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3526 	if (ret_val != IXGBE_SUCCESS)
   3527 		goto out;
   3528 
   3529 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3530 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3531 
   3532 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3533 	if (ret_val != IXGBE_SUCCESS)
   3534 		goto out;
   3535 
   3536 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3537 	led_reg &= ~IXGBE_LED_BLINK(index);
   3538 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3539 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3540 	IXGBE_WRITE_FLUSH(hw);
   3541 
   3542 out:
   3543 	return ret_val;
   3544 }
   3545 
   3546 /**
   3547  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3548  *  @hw: pointer to hardware structure
   3549  *  @san_mac_offset: SAN MAC address offset
   3550  *
   3551  *  This function will read the EEPROM location for the SAN MAC address
   3552  *  pointer, and returns the value at that location.  This is used in both
   3553  *  get and set mac_addr routines.
   3554  **/
   3555 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3556 					 u16 *san_mac_offset)
   3557 {
   3558 	s32 ret_val;
   3559 
   3560 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3561 
   3562 	/*
   3563 	 * First read the EEPROM pointer to see if the MAC addresses are
   3564 	 * available.
   3565 	 */
   3566 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3567 				      san_mac_offset);
   3568 	if (ret_val) {
   3569 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3570 			      "eeprom at offset %d failed",
   3571 			      IXGBE_SAN_MAC_ADDR_PTR);
   3572 	}
   3573 
   3574 	return ret_val;
   3575 }
   3576 
   3577 /**
   3578  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3579  *  @hw: pointer to hardware structure
   3580  *  @san_mac_addr: SAN MAC address
   3581  *
   3582  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3583  *  per-port, so set_lan_id() must be called before reading the addresses.
   3584  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3585  *  upon for non-SFP connections, so we must call it here.
   3586  **/
   3587 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3588 {
   3589 	u16 san_mac_data, san_mac_offset;
   3590 	u8 i;
   3591 	s32 ret_val;
   3592 
   3593 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3594 
   3595 	/*
   3596 	 * First read the EEPROM pointer to see if the MAC addresses are
   3597 	 * available.  If they're not, no point in calling set_lan_id() here.
   3598 	 */
   3599 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3600 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3601 		goto san_mac_addr_out;
   3602 
   3603 	/* make sure we know which port we need to program */
   3604 	hw->mac.ops.set_lan_id(hw);
   3605 	/* apply the port offset to the address offset */
   3606 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3607 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3608 	for (i = 0; i < 3; i++) {
   3609 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3610 					      &san_mac_data);
   3611 		if (ret_val) {
   3612 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3613 				      "eeprom read at offset %d failed",
   3614 				      san_mac_offset);
   3615 			goto san_mac_addr_out;
   3616 		}
   3617 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3618 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3619 		san_mac_offset++;
   3620 	}
   3621 	return IXGBE_SUCCESS;
   3622 
   3623 san_mac_addr_out:
   3624 	/*
   3625 	 * No addresses available in this EEPROM.  It's not an
   3626 	 * error though, so just wipe the local address and return.
   3627 	 */
   3628 	for (i = 0; i < 6; i++)
   3629 		san_mac_addr[i] = 0xFF;
   3630 	return IXGBE_SUCCESS;
   3631 }
   3632 
   3633 /**
   3634  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3635  *  @hw: pointer to hardware structure
   3636  *  @san_mac_addr: SAN MAC address
   3637  *
   3638  *  Write a SAN MAC address to the EEPROM.
   3639  **/
   3640 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3641 {
   3642 	s32 ret_val;
   3643 	u16 san_mac_data, san_mac_offset;
   3644 	u8 i;
   3645 
   3646 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3647 
   3648 	/* Look for SAN mac address pointer.  If not defined, return */
   3649 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3650 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3651 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3652 
   3653 	/* Make sure we know which port we need to write */
   3654 	hw->mac.ops.set_lan_id(hw);
   3655 	/* Apply the port offset to the address offset */
   3656 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3657 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3658 
   3659 	for (i = 0; i < 3; i++) {
   3660 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3661 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3662 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3663 		san_mac_offset++;
   3664 	}
   3665 
   3666 	return IXGBE_SUCCESS;
   3667 }
   3668 
   3669 /**
   3670  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3671  *  @hw: pointer to hardware structure
   3672  *
   3673  *  Read PCIe configuration space, and get the MSI-X vector count from
   3674  *  the capabilities table.
   3675  **/
   3676 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3677 {
   3678 	u16 msix_count = 1;
   3679 	u16 max_msix_count;
   3680 	u16 pcie_offset;
   3681 
   3682 	switch (hw->mac.type) {
   3683 	case ixgbe_mac_82598EB:
   3684 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3685 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3686 		break;
   3687 	case ixgbe_mac_82599EB:
   3688 	case ixgbe_mac_X540:
   3689 	case ixgbe_mac_X550:
   3690 	case ixgbe_mac_X550EM_x:
   3691 	case ixgbe_mac_X550EM_a:
   3692 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3693 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3694 		break;
   3695 	default:
   3696 		return msix_count;
   3697 	}
   3698 
   3699 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3700 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3701 	if (IXGBE_REMOVED(hw->hw_addr))
   3702 		msix_count = 0;
   3703 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3704 
   3705 	/* MSI-X count is zero-based in HW */
   3706 	msix_count++;
   3707 
   3708 	if (msix_count > max_msix_count)
   3709 		msix_count = max_msix_count;
   3710 
   3711 	return msix_count;
   3712 }
   3713 
   3714 /**
   3715  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3716  *  @hw: pointer to hardware structure
   3717  *  @addr: Address to put into receive address register
   3718  *  @vmdq: VMDq pool to assign
   3719  *
   3720  *  Puts an ethernet address into a receive address register, or
   3721  *  finds the rar that it is already in; adds to the pool list
   3722  **/
   3723 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3724 {
   3725 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3726 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3727 	u32 rar;
   3728 	u32 rar_low, rar_high;
   3729 	u32 addr_low, addr_high;
   3730 
   3731 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3732 
   3733 	/* swap bytes for HW little endian */
   3734 	addr_low  = addr[0] | (addr[1] << 8)
   3735 			    | (addr[2] << 16)
   3736 			    | (addr[3] << 24);
   3737 	addr_high = addr[4] | (addr[5] << 8);
   3738 
   3739 	/*
   3740 	 * Either find the mac_id in rar or find the first empty space.
   3741 	 * rar_highwater points to just after the highest currently used
   3742 	 * rar in order to shorten the search.  It grows when we add a new
   3743 	 * rar to the top.
   3744 	 */
   3745 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3746 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3747 
   3748 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3749 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3750 			first_empty_rar = rar;
   3751 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3752 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3753 			if (rar_low == addr_low)
   3754 				break;    /* found it already in the rars */
   3755 		}
   3756 	}
   3757 
   3758 	if (rar < hw->mac.rar_highwater) {
   3759 		/* already there so just add to the pool bits */
   3760 		ixgbe_set_vmdq(hw, rar, vmdq);
   3761 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3762 		/* stick it into first empty RAR slot we found */
   3763 		rar = first_empty_rar;
   3764 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3765 	} else if (rar == hw->mac.rar_highwater) {
   3766 		/* add it to the top of the list and inc the highwater mark */
   3767 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3768 		hw->mac.rar_highwater++;
   3769 	} else if (rar >= hw->mac.num_rar_entries) {
   3770 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3771 	}
   3772 
   3773 	/*
   3774 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3775 	 * remains cleared to be sure default pool packets will get delivered
   3776 	 */
   3777 	if (rar == 0)
   3778 		ixgbe_clear_vmdq(hw, rar, 0);
   3779 
   3780 	return rar;
   3781 }
   3782 
   3783 /**
   3784  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3785  *  @hw: pointer to hardware struct
   3786  *  @rar: receive address register index to disassociate
   3787  *  @vmdq: VMDq pool index to remove from the rar
   3788  **/
   3789 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3790 {
   3791 	u32 mpsar_lo, mpsar_hi;
   3792 	u32 rar_entries = hw->mac.num_rar_entries;
   3793 
   3794 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3795 
   3796 	/* Make sure we are using a valid rar index range */
   3797 	if (rar >= rar_entries) {
   3798 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3799 			     "RAR index %d is out of range.\n", rar);
   3800 		return IXGBE_ERR_INVALID_ARGUMENT;
   3801 	}
   3802 
   3803 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3804 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3805 
   3806 	if (IXGBE_REMOVED(hw->hw_addr))
   3807 		goto done;
   3808 
   3809 	if (!mpsar_lo && !mpsar_hi)
   3810 		goto done;
   3811 
   3812 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3813 		if (mpsar_lo) {
   3814 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3815 			mpsar_lo = 0;
   3816 		}
   3817 		if (mpsar_hi) {
   3818 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3819 			mpsar_hi = 0;
   3820 		}
   3821 	} else if (vmdq < 32) {
   3822 		mpsar_lo &= ~(1 << vmdq);
   3823 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3824 	} else {
   3825 		mpsar_hi &= ~(1 << (vmdq - 32));
   3826 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3827 	}
   3828 
   3829 	/* was that the last pool using this rar? */
   3830 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3831 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3832 		hw->mac.ops.clear_rar(hw, rar);
   3833 done:
   3834 	return IXGBE_SUCCESS;
   3835 }
   3836 
   3837 /**
   3838  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3839  *  @hw: pointer to hardware struct
   3840  *  @rar: receive address register index to associate with a VMDq index
   3841  *  @vmdq: VMDq pool index
   3842  **/
   3843 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3844 {
   3845 	u32 mpsar;
   3846 	u32 rar_entries = hw->mac.num_rar_entries;
   3847 
   3848 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3849 
   3850 	/* Make sure we are using a valid rar index range */
   3851 	if (rar >= rar_entries) {
   3852 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3853 			     "RAR index %d is out of range.\n", rar);
   3854 		return IXGBE_ERR_INVALID_ARGUMENT;
   3855 	}
   3856 
   3857 	if (vmdq < 32) {
   3858 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3859 		mpsar |= 1 << vmdq;
   3860 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3861 	} else {
   3862 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3863 		mpsar |= 1 << (vmdq - 32);
   3864 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3865 	}
   3866 	return IXGBE_SUCCESS;
   3867 }
   3868 
   3869 /**
   3870  *  This function should only be involved in the IOV mode.
   3871  *  In IOV mode, Default pool is next pool after the number of
   3872  *  VFs advertized and not 0.
   3873  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3874  *
   3875  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3876  *  @hw: pointer to hardware struct
   3877  *  @vmdq: VMDq pool index
   3878  **/
   3879 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3880 {
   3881 	u32 rar = hw->mac.san_mac_rar_index;
   3882 
   3883 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3884 
   3885 	if (vmdq < 32) {
   3886 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3888 	} else {
   3889 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3890 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3891 	}
   3892 
   3893 	return IXGBE_SUCCESS;
   3894 }
   3895 
   3896 /**
   3897  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3898  *  @hw: pointer to hardware structure
   3899  **/
   3900 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3901 {
   3902 	int i;
   3903 
   3904 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3905 	DEBUGOUT(" Clearing UTA\n");
   3906 
   3907 	for (i = 0; i < 128; i++)
   3908 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3909 
   3910 	return IXGBE_SUCCESS;
   3911 }
   3912 
   3913 /**
   3914  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3915  *  @hw: pointer to hardware structure
   3916  *  @vlan: VLAN id to write to VLAN filter
   3917  *
   3918  *  return the VLVF index where this VLAN id should be placed
   3919  *
   3920  **/
   3921 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3922 {
   3923 	s32 regindex, first_empty_slot;
   3924 	u32 bits;
   3925 
   3926 	/* short cut the special case */
   3927 	if (vlan == 0)
   3928 		return 0;
   3929 
   3930 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3931 	 * will simply bypass the VLVF if there are no entries present in the
   3932 	 * VLVF that contain our VLAN
   3933 	 */
   3934 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3935 
   3936 	/* add VLAN enable bit for comparison */
   3937 	vlan |= IXGBE_VLVF_VIEN;
   3938 
   3939 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3940 	 * slot found along the way.
   3941 	 *
   3942 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3943 	 */
   3944 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3945 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3946 		if (bits == vlan)
   3947 			return regindex;
   3948 		if (!first_empty_slot && !bits)
   3949 			first_empty_slot = regindex;
   3950 	}
   3951 
   3952 	/* If we are here then we didn't find the VLAN.  Return first empty
   3953 	 * slot we found during our search, else error.
   3954 	 */
   3955 	if (!first_empty_slot)
   3956 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3957 
   3958 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3959 }
   3960 
   3961 /**
   3962  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3963  *  @hw: pointer to hardware structure
   3964  *  @vlan: VLAN id to write to VLAN filter
   3965  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3966  *  @vlan_on: boolean flag to turn on/off VLAN
   3967  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3968  *
   3969  *  Turn on/off specified VLAN in the VLAN filter table.
   3970  **/
   3971 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3972 			   bool vlan_on, bool vlvf_bypass)
   3973 {
   3974 	u32 regidx, vfta_delta, vfta;
   3975 	s32 ret_val;
   3976 
   3977 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3978 
   3979 	if (vlan > 4095 || vind > 63)
   3980 		return IXGBE_ERR_PARAM;
   3981 
   3982 	/*
   3983 	 * this is a 2 part operation - first the VFTA, then the
   3984 	 * VLVF and VLVFB if VT Mode is set
   3985 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3986 	 */
   3987 
   3988 	/* Part 1
   3989 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3990 	 * that enable the particular VLAN id, much like the MTA:
   3991 	 *    bits[11-5]: which register
   3992 	 *    bits[4-0]:  which bit in the register
   3993 	 */
   3994 	regidx = vlan / 32;
   3995 	vfta_delta = 1 << (vlan % 32);
   3996 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   3997 
   3998 	/*
   3999 	 * vfta_delta represents the difference between the current value
   4000 	 * of vfta and the value we want in the register.  Since the diff
   4001 	 * is an XOR mask we can just update the vfta using an XOR
   4002 	 */
   4003 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4004 	vfta ^= vfta_delta;
   4005 
   4006 	/* Part 2
   4007 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4008 	 */
   4009 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4010 					 vfta, vlvf_bypass);
   4011 	if (ret_val != IXGBE_SUCCESS) {
   4012 		if (vlvf_bypass)
   4013 			goto vfta_update;
   4014 		return ret_val;
   4015 	}
   4016 
   4017 vfta_update:
   4018 	/* Update VFTA now that we are ready for traffic */
   4019 	if (vfta_delta)
   4020 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4021 
   4022 	return IXGBE_SUCCESS;
   4023 }
   4024 
   4025 /**
   4026  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4027  *  @hw: pointer to hardware structure
   4028  *  @vlan: VLAN id to write to VLAN filter
   4029  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4030  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4031  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4032  *		 and the desired value
   4033  *  @vfta: the desired value of the VFTA
   4034  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4035  *
   4036  *  Turn on/off specified bit in VLVF table.
   4037  **/
   4038 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4039 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4040 			   bool vlvf_bypass)
   4041 {
   4042 	u32 bits;
   4043 	s32 vlvf_index;
   4044 
   4045 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4046 
   4047 	if (vlan > 4095 || vind > 63)
   4048 		return IXGBE_ERR_PARAM;
   4049 
   4050 	/* If VT Mode is set
   4051 	 *   Either vlan_on
   4052 	 *     make sure the vlan is in VLVF
   4053 	 *     set the vind bit in the matching VLVFB
   4054 	 *   Or !vlan_on
   4055 	 *     clear the pool bit and possibly the vind
   4056 	 */
   4057 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4058 		return IXGBE_SUCCESS;
   4059 
   4060 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4061 	if (vlvf_index < 0)
   4062 		return vlvf_index;
   4063 
   4064 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4065 
   4066 	/* set the pool bit */
   4067 	bits |= 1 << (vind % 32);
   4068 	if (vlan_on)
   4069 		goto vlvf_update;
   4070 
   4071 	/* clear the pool bit */
   4072 	bits ^= 1 << (vind % 32);
   4073 
   4074 	if (!bits &&
   4075 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4076 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4077 		 * we run the risk of stray packets leaking into
   4078 		 * the PF via the default pool
   4079 		 */
   4080 		if (*vfta_delta)
   4081 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4082 
   4083 		/* disable VLVF and clear remaining bit from pool */
   4084 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4085 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4086 
   4087 		return IXGBE_SUCCESS;
   4088 	}
   4089 
   4090 	/* If there are still bits set in the VLVFB registers
   4091 	 * for the VLAN ID indicated we need to see if the
   4092 	 * caller is requesting that we clear the VFTA entry bit.
   4093 	 * If the caller has requested that we clear the VFTA
   4094 	 * entry bit but there are still pools/VFs using this VLAN
   4095 	 * ID entry then ignore the request.  We're not worried
   4096 	 * about the case where we're turning the VFTA VLAN ID
   4097 	 * entry bit on, only when requested to turn it off as
   4098 	 * there may be multiple pools and/or VFs using the
   4099 	 * VLAN ID entry.  In that case we cannot clear the
   4100 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4101 	 * been cleared.  This will be indicated by "bits" being
   4102 	 * zero.
   4103 	 */
   4104 	*vfta_delta = 0;
   4105 
   4106 vlvf_update:
   4107 	/* record pool change and enable VLAN ID if not already enabled */
   4108 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4109 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4110 
   4111 	return IXGBE_SUCCESS;
   4112 }
   4113 
   4114 /**
   4115  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4116  *  @hw: pointer to hardware structure
   4117  *
   4118  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4119  **/
   4120 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4121 {
   4122 	u32 offset;
   4123 
   4124 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4125 
   4126 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4127 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4128 
   4129 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4130 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4131 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4132 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
   4133 	}
   4134 
   4135 	return IXGBE_SUCCESS;
   4136 }
   4137 
   4138 /**
   4139  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4140  *  @hw: pointer to hardware structure
   4141  *
   4142  *  Contains the logic to identify if we need to verify link for the
   4143  *  crosstalk fix
   4144  **/
   4145 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4146 {
   4147 
   4148 	/* Does FW say we need the fix */
   4149 	if (!hw->need_crosstalk_fix)
   4150 		return FALSE;
   4151 
   4152 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4153 	switch (hw->mac.ops.get_media_type(hw)) {
   4154 	case ixgbe_media_type_fiber:
   4155 	case ixgbe_media_type_fiber_qsfp:
   4156 		break;
   4157 	default:
   4158 		return FALSE;
   4159 	}
   4160 
   4161 	return TRUE;
   4162 }
   4163 
   4164 /**
   4165  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4166  *  @hw: pointer to hardware structure
   4167  *  @speed: pointer to link speed
   4168  *  @link_up: TRUE when link is up
   4169  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4170  *
   4171  *  Reads the links register to determine if link is up and the current speed
   4172  **/
   4173 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4174 				 bool *link_up, bool link_up_wait_to_complete)
   4175 {
   4176 	u32 links_reg, links_orig;
   4177 	u32 i;
   4178 
   4179 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4180 
   4181 	/* If Crosstalk fix enabled do the sanity check of making sure
   4182 	 * the SFP+ cage is full.
   4183 	 */
   4184 	if (ixgbe_need_crosstalk_fix(hw)) {
   4185 		u32 sfp_cage_full;
   4186 
   4187 		switch (hw->mac.type) {
   4188 		case ixgbe_mac_82599EB:
   4189 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4190 					IXGBE_ESDP_SDP2;
   4191 			break;
   4192 		case ixgbe_mac_X550EM_x:
   4193 		case ixgbe_mac_X550EM_a:
   4194 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   4195 					IXGBE_ESDP_SDP0;
   4196 			break;
   4197 		default:
   4198 			/* sanity check - No SFP+ devices here */
   4199 			sfp_cage_full = FALSE;
   4200 			break;
   4201 		}
   4202 
   4203 		if (!sfp_cage_full) {
   4204 			*link_up = FALSE;
   4205 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4206 			return IXGBE_SUCCESS;
   4207 		}
   4208 	}
   4209 
   4210 	/* clear the old state */
   4211 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4212 
   4213 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4214 
   4215 	if (links_orig != links_reg) {
   4216 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4217 			  links_orig, links_reg);
   4218 	}
   4219 
   4220 	if (link_up_wait_to_complete) {
   4221 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4222 			if (links_reg & IXGBE_LINKS_UP) {
   4223 				*link_up = TRUE;
   4224 				break;
   4225 			} else {
   4226 				*link_up = FALSE;
   4227 			}
   4228 			msec_delay(100);
   4229 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4230 		}
   4231 	} else {
   4232 		if (links_reg & IXGBE_LINKS_UP)
   4233 			*link_up = TRUE;
   4234 		else
   4235 			*link_up = FALSE;
   4236 	}
   4237 
   4238 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4239 	case IXGBE_LINKS_SPEED_10G_82599:
   4240 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4241 		if (hw->mac.type >= ixgbe_mac_X550) {
   4242 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4243 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4244 		}
   4245 		break;
   4246 	case IXGBE_LINKS_SPEED_1G_82599:
   4247 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4248 		break;
   4249 	case IXGBE_LINKS_SPEED_100_82599:
   4250 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4251 		if (hw->mac.type == ixgbe_mac_X550) {
   4252 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4253 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4254 		}
   4255 		break;
   4256 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4257 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4258 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4259 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
   4260 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4261 		}
   4262 		break;
   4263 	default:
   4264 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4265 	}
   4266 
   4267 	return IXGBE_SUCCESS;
   4268 }
   4269 
   4270 /**
   4271  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4272  *  the EEPROM
   4273  *  @hw: pointer to hardware structure
   4274  *  @wwnn_prefix: the alternative WWNN prefix
   4275  *  @wwpn_prefix: the alternative WWPN prefix
   4276  *
   4277  *  This function will read the EEPROM from the alternative SAN MAC address
   4278  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4279  **/
   4280 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4281 				 u16 *wwpn_prefix)
   4282 {
   4283 	u16 offset, caps;
   4284 	u16 alt_san_mac_blk_offset;
   4285 
   4286 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4287 
   4288 	/* clear output first */
   4289 	*wwnn_prefix = 0xFFFF;
   4290 	*wwpn_prefix = 0xFFFF;
   4291 
   4292 	/* check if alternative SAN MAC is supported */
   4293 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4294 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4295 		goto wwn_prefix_err;
   4296 
   4297 	if ((alt_san_mac_blk_offset == 0) ||
   4298 	    (alt_san_mac_blk_offset == 0xFFFF))
   4299 		goto wwn_prefix_out;
   4300 
   4301 	/* check capability in alternative san mac address block */
   4302 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4303 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4304 		goto wwn_prefix_err;
   4305 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4306 		goto wwn_prefix_out;
   4307 
   4308 	/* get the corresponding prefix for WWNN/WWPN */
   4309 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4310 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4311 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4312 			      "eeprom read at offset %d failed", offset);
   4313 	}
   4314 
   4315 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4316 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4317 		goto wwn_prefix_err;
   4318 
   4319 wwn_prefix_out:
   4320 	return IXGBE_SUCCESS;
   4321 
   4322 wwn_prefix_err:
   4323 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4324 		      "eeprom read at offset %d failed", offset);
   4325 	return IXGBE_SUCCESS;
   4326 }
   4327 
   4328 /**
   4329  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4330  *  @hw: pointer to hardware structure
   4331  *  @bs: the fcoe boot status
   4332  *
   4333  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4334  **/
   4335 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4336 {
   4337 	u16 offset, caps, flags;
   4338 	s32 status;
   4339 
   4340 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4341 
   4342 	/* clear output first */
   4343 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4344 
   4345 	/* check if FCOE IBA block is present */
   4346 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4347 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4348 	if (status != IXGBE_SUCCESS)
   4349 		goto out;
   4350 
   4351 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4352 		goto out;
   4353 
   4354 	/* check if iSCSI FCOE block is populated */
   4355 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4356 	if (status != IXGBE_SUCCESS)
   4357 		goto out;
   4358 
   4359 	if ((offset == 0) || (offset == 0xFFFF))
   4360 		goto out;
   4361 
   4362 	/* read fcoe flags in iSCSI FCOE block */
   4363 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4364 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4365 	if (status != IXGBE_SUCCESS)
   4366 		goto out;
   4367 
   4368 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4369 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4370 	else
   4371 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4372 
   4373 out:
   4374 	return status;
   4375 }
   4376 
   4377 /**
   4378  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4379  *  @hw: pointer to hardware structure
   4380  *  @enable: enable or disable switch for MAC anti-spoofing
   4381  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4382  *
   4383  **/
   4384 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4385 {
   4386 	int vf_target_reg = vf >> 3;
   4387 	int vf_target_shift = vf % 8;
   4388 	u32 pfvfspoof;
   4389 
   4390 	if (hw->mac.type == ixgbe_mac_82598EB)
   4391 		return;
   4392 
   4393 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4394 	if (enable)
   4395 		pfvfspoof |= (1 << vf_target_shift);
   4396 	else
   4397 		pfvfspoof &= ~(1 << vf_target_shift);
   4398 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4399 }
   4400 
   4401 /**
   4402  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4403  *  @hw: pointer to hardware structure
   4404  *  @enable: enable or disable switch for VLAN anti-spoofing
   4405  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4406  *
   4407  **/
   4408 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4409 {
   4410 	int vf_target_reg = vf >> 3;
   4411 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4412 	u32 pfvfspoof;
   4413 
   4414 	if (hw->mac.type == ixgbe_mac_82598EB)
   4415 		return;
   4416 
   4417 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4418 	if (enable)
   4419 		pfvfspoof |= (1 << vf_target_shift);
   4420 	else
   4421 		pfvfspoof &= ~(1 << vf_target_shift);
   4422 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4423 }
   4424 
   4425 /**
   4426  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4427  *  @hw: pointer to hardware structure
   4428  *  @device_caps: the EEPROM word with the extra device capabilities
   4429  *
   4430  *  This function will read the EEPROM location for the device capabilities,
   4431  *  and return the word through device_caps.
   4432  **/
   4433 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4434 {
   4435 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4436 
   4437 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4438 
   4439 	return IXGBE_SUCCESS;
   4440 }
   4441 
   4442 /**
   4443  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4444  *  @hw: pointer to hardware structure
   4445  *
   4446  **/
   4447 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4448 {
   4449 	u32 regval;
   4450 	u32 i;
   4451 
   4452 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4453 
   4454 	/* Enable relaxed ordering */
   4455 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4456 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4457 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4458 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4459 	}
   4460 
   4461 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4462 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4463 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4464 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4465 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4466 	}
   4467 
   4468 }
   4469 
   4470 /**
   4471  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4472  *  @buffer: pointer to EEPROM
   4473  *  @length: size of EEPROM to calculate a checksum for
   4474  *  Calculates the checksum for some buffer on a specified length.  The
   4475  *  checksum calculated is returned.
   4476  **/
   4477 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4478 {
   4479 	u32 i;
   4480 	u8 sum = 0;
   4481 
   4482 	DEBUGFUNC("ixgbe_calculate_checksum");
   4483 
   4484 	if (!buffer)
   4485 		return 0;
   4486 
   4487 	for (i = 0; i < length; i++)
   4488 		sum += buffer[i];
   4489 
   4490 	return (u8) (0 - sum);
   4491 }
   4492 
   4493 /**
   4494  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4495  *  @hw: pointer to the HW structure
   4496  *  @buffer: command to write and where the return status will be placed
   4497  *  @length: length of buffer, must be multiple of 4 bytes
   4498  *  @timeout: time in ms to wait for command completion
   4499  *
   4500  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4501  *  else returns semaphore error when encountering an error acquiring
   4502  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4503  *
   4504  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4505  *  by the caller.
   4506  **/
   4507 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4508 		       u32 timeout)
   4509 {
   4510 	u32 hicr, i, fwsts;
   4511 	u16 dword_len;
   4512 
   4513 	DEBUGFUNC("ixgbe_hic_unlocked");
   4514 
   4515 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4516 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4517 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4518 	}
   4519 
   4520 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4521 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4522 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4523 
   4524 	/* Check that the host interface is enabled. */
   4525 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4526 	if (!(hicr & IXGBE_HICR_EN)) {
   4527 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4528 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4529 	}
   4530 
   4531 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4532 	if (length % sizeof(u32)) {
   4533 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4534 		return IXGBE_ERR_INVALID_ARGUMENT;
   4535 	}
   4536 
   4537 	dword_len = length >> 2;
   4538 
   4539 	/* The device driver writes the relevant command block
   4540 	 * into the ram area.
   4541 	 */
   4542 	for (i = 0; i < dword_len; i++)
   4543 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4544 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4545 
   4546 	/* Setting this bit tells the ARC that a new command is pending. */
   4547 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4548 
   4549 	for (i = 0; i < timeout; i++) {
   4550 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4551 		if (!(hicr & IXGBE_HICR_C))
   4552 			break;
   4553 		msec_delay(1);
   4554 	}
   4555 
   4556 	/* Check command completion */
   4557 	if ((timeout && i == timeout) ||
   4558 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4559 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4560 			     "Command has failed with no status valid.\n");
   4561 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4562 	}
   4563 
   4564 	return IXGBE_SUCCESS;
   4565 }
   4566 
   4567 /**
   4568  *  ixgbe_host_interface_command - Issue command to manageability block
   4569  *  @hw: pointer to the HW structure
   4570  *  @buffer: contains the command to write and where the return status will
   4571  *   be placed
   4572  *  @length: length of buffer, must be multiple of 4 bytes
   4573  *  @timeout: time in ms to wait for command completion
   4574  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4575  *   Needed because FW structures are big endian and decoding of
   4576  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4577  *   is not easily understood without making a table of commands.
   4578  *   So we will leave this up to the caller to read back the data
   4579  *   in these cases.
   4580  *
   4581  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4582  *  else returns semaphore error when encountering an error acquiring
   4583  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4584  **/
   4585 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4586 				 u32 length, u32 timeout, bool return_data)
   4587 {
   4588 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4589 	u16 dword_len;
   4590 	u16 buf_len;
   4591 	s32 status;
   4592 	u32 bi;
   4593 
   4594 	DEBUGFUNC("ixgbe_host_interface_command");
   4595 
   4596 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4597 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4598 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4599 	}
   4600 
   4601 	/* Take management host interface semaphore */
   4602 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4603 	if (status)
   4604 		return status;
   4605 
   4606 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4607 	if (status)
   4608 		goto rel_out;
   4609 
   4610 	if (!return_data)
   4611 		goto rel_out;
   4612 
   4613 	/* Calculate length in DWORDs */
   4614 	dword_len = hdr_size >> 2;
   4615 
   4616 	/* first pull in the header so we know the buffer length */
   4617 	for (bi = 0; bi < dword_len; bi++) {
   4618 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4619 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4620 	}
   4621 
   4622 	/* If there is any thing in data position pull it in */
   4623 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4624 	if (!buf_len)
   4625 		goto rel_out;
   4626 
   4627 	if (length < buf_len + hdr_size) {
   4628 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4629 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4630 		goto rel_out;
   4631 	}
   4632 
   4633 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4634 	dword_len = (buf_len + 3) >> 2;
   4635 
   4636 	/* Pull in the rest of the buffer (bi is where we left off) */
   4637 	for (; bi <= dword_len; bi++) {
   4638 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4639 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4640 	}
   4641 
   4642 rel_out:
   4643 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4644 
   4645 	return status;
   4646 }
   4647 
   4648 /**
   4649  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4650  *  @hw: pointer to the HW structure
   4651  *  @maj: driver version major number
   4652  *  @minr: driver version minor number
   4653  *  @build: driver version build number
   4654  *  @sub: driver version sub build number
   4655  *
   4656  *  Sends driver version number to firmware through the manageability
   4657  *  block.  On success return IXGBE_SUCCESS
   4658  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4659  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4660  **/
   4661 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4662 				 u8 build, u8 sub, u16 len,
   4663 				 const char *driver_ver)
   4664 {
   4665 	struct ixgbe_hic_drv_info fw_cmd;
   4666 	int i;
   4667 	s32 ret_val = IXGBE_SUCCESS;
   4668 
   4669 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4670 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4671 
   4672 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4673 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4674 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4675 	fw_cmd.port_num = (u8)hw->bus.func;
   4676 	fw_cmd.ver_maj = maj;
   4677 	fw_cmd.ver_min = minr;
   4678 	fw_cmd.ver_build = build;
   4679 	fw_cmd.ver_sub = sub;
   4680 	fw_cmd.hdr.checksum = 0;
   4681 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4682 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4683 	fw_cmd.pad = 0;
   4684 	fw_cmd.pad2 = 0;
   4685 
   4686 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4687 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4688 						       sizeof(fw_cmd),
   4689 						       IXGBE_HI_COMMAND_TIMEOUT,
   4690 						       TRUE);
   4691 		if (ret_val != IXGBE_SUCCESS)
   4692 			continue;
   4693 
   4694 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4695 		    FW_CEM_RESP_STATUS_SUCCESS)
   4696 			ret_val = IXGBE_SUCCESS;
   4697 		else
   4698 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4699 
   4700 		break;
   4701 	}
   4702 
   4703 	return ret_val;
   4704 }
   4705 
   4706 /**
   4707  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4708  * @hw: pointer to hardware structure
   4709  * @num_pb: number of packet buffers to allocate
   4710  * @headroom: reserve n KB of headroom
   4711  * @strategy: packet buffer allocation strategy
   4712  **/
   4713 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4714 			     int strategy)
   4715 {
   4716 	u32 pbsize = hw->mac.rx_pb_size;
   4717 	int i = 0;
   4718 	u32 rxpktsize, txpktsize, txpbthresh;
   4719 
   4720 	/* Reserve headroom */
   4721 	pbsize -= headroom;
   4722 
   4723 	if (!num_pb)
   4724 		num_pb = 1;
   4725 
   4726 	/* Divide remaining packet buffer space amongst the number of packet
   4727 	 * buffers requested using supplied strategy.
   4728 	 */
   4729 	switch (strategy) {
   4730 	case PBA_STRATEGY_WEIGHTED:
   4731 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4732 		 * buffer with 5/8 of the packet buffer space.
   4733 		 */
   4734 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4735 		pbsize -= rxpktsize * (num_pb / 2);
   4736 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4737 		for (; i < (num_pb / 2); i++)
   4738 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4739 		/* fall through - configure remaining packet buffers */
   4740 	case PBA_STRATEGY_EQUAL:
   4741 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4742 		for (; i < num_pb; i++)
   4743 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4744 		break;
   4745 	default:
   4746 		break;
   4747 	}
   4748 
   4749 	/* Only support an equally distributed Tx packet buffer strategy. */
   4750 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4751 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4752 	for (i = 0; i < num_pb; i++) {
   4753 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4754 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4755 	}
   4756 
   4757 	/* Clear unused TCs, if any, to zero buffer size*/
   4758 	for (; i < IXGBE_MAX_PB; i++) {
   4759 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4760 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4761 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4762 	}
   4763 }
   4764 
   4765 /**
   4766  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4767  * @hw: pointer to the hardware structure
   4768  *
   4769  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4770  * when a reset occurs.  This function prevents this by flushing the PCIe
   4771  * buffers on the system.
   4772  **/
   4773 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4774 {
   4775 	u32 gcr_ext, hlreg0, i, poll;
   4776 	u16 value;
   4777 
   4778 	/*
   4779 	 * If double reset is not requested then all transactions should
   4780 	 * already be clear and as such there is no work to do
   4781 	 */
   4782 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4783 		return;
   4784 
   4785 	/*
   4786 	 * Set loopback enable to prevent any transmits from being sent
   4787 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4788 	 * has already been cleared.
   4789 	 */
   4790 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4791 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4792 
   4793 	/* Wait for a last completion before clearing buffers */
   4794 	IXGBE_WRITE_FLUSH(hw);
   4795 	msec_delay(3);
   4796 
   4797 	/*
   4798 	 * Before proceeding, make sure that the PCIe block does not have
   4799 	 * transactions pending.
   4800 	 */
   4801 	poll = ixgbe_pcie_timeout_poll(hw);
   4802 	for (i = 0; i < poll; i++) {
   4803 		usec_delay(100);
   4804 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4805 		if (IXGBE_REMOVED(hw->hw_addr))
   4806 			goto out;
   4807 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4808 			goto out;
   4809 	}
   4810 
   4811 out:
   4812 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4813 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4814 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4815 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4816 
   4817 	/* Flush all writes and allow 20usec for all transactions to clear */
   4818 	IXGBE_WRITE_FLUSH(hw);
   4819 	usec_delay(20);
   4820 
   4821 	/* restore previous register values */
   4822 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4823 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4824 }
   4825 
   4826 /**
   4827  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4828  *
   4829  *  @hw: pointer to hardware structure
   4830  *  @cmd: Command we send to the FW
   4831  *  @status: The reply from the FW
   4832  *
   4833  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4834  **/
   4835 #define IXGBE_BYPASS_BB_WAIT 1
   4836 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4837 {
   4838 	int i;
   4839 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4840 	u32 esdp;
   4841 
   4842 	if (!status)
   4843 		return IXGBE_ERR_PARAM;
   4844 
   4845 	*status = 0;
   4846 
   4847 	/* SDP vary by MAC type */
   4848 	switch (hw->mac.type) {
   4849 	case ixgbe_mac_82599EB:
   4850 		sck = IXGBE_ESDP_SDP7;
   4851 		sdi = IXGBE_ESDP_SDP0;
   4852 		sdo = IXGBE_ESDP_SDP6;
   4853 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4854 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4855 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4856 		break;
   4857 	case ixgbe_mac_X540:
   4858 		sck = IXGBE_ESDP_SDP2;
   4859 		sdi = IXGBE_ESDP_SDP0;
   4860 		sdo = IXGBE_ESDP_SDP1;
   4861 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4862 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4863 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4864 		break;
   4865 	default:
   4866 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4867 	}
   4868 
   4869 	/* Set SDP pins direction */
   4870 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4871 	esdp |= dir_sck;	/* SCK as output */
   4872 	esdp |= dir_sdi;	/* SDI as output */
   4873 	esdp &= ~dir_sdo;	/* SDO as input */
   4874 	esdp |= sck;
   4875 	esdp |= sdi;
   4876 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4877 	IXGBE_WRITE_FLUSH(hw);
   4878 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4879 
   4880 	/* Generate start condition */
   4881 	esdp &= ~sdi;
   4882 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4883 	IXGBE_WRITE_FLUSH(hw);
   4884 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4885 
   4886 	esdp &= ~sck;
   4887 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4888 	IXGBE_WRITE_FLUSH(hw);
   4889 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4890 
   4891 	/* Clock out the new control word and clock in the status */
   4892 	for (i = 0; i < 32; i++) {
   4893 		if ((cmd >> (31 - i)) & 0x01) {
   4894 			esdp |= sdi;
   4895 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4896 		} else {
   4897 			esdp &= ~sdi;
   4898 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4899 		}
   4900 		IXGBE_WRITE_FLUSH(hw);
   4901 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4902 
   4903 		esdp |= sck;
   4904 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4905 		IXGBE_WRITE_FLUSH(hw);
   4906 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4907 
   4908 		esdp &= ~sck;
   4909 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4910 		IXGBE_WRITE_FLUSH(hw);
   4911 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4912 
   4913 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4914 		if (esdp & sdo)
   4915 			*status = (*status << 1) | 0x01;
   4916 		else
   4917 			*status = (*status << 1) | 0x00;
   4918 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4919 	}
   4920 
   4921 	/* stop condition */
   4922 	esdp |= sck;
   4923 	esdp &= ~sdi;
   4924 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4925 	IXGBE_WRITE_FLUSH(hw);
   4926 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4927 
   4928 	esdp |= sdi;
   4929 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4930 	IXGBE_WRITE_FLUSH(hw);
   4931 
   4932 	/* set the page bits to match the cmd that the status it belongs to */
   4933 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   4934 
   4935 	return IXGBE_SUCCESS;
   4936 }
   4937 
   4938 /**
   4939  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   4940  *
   4941  * If we send a write we can't be sure it took until we can read back
   4942  * that same register.  It can be a problem as some of the feilds may
   4943  * for valid reasons change inbetween the time wrote the register and
   4944  * we read it again to verify.  So this function check everything we
   4945  * can check and then assumes it worked.
   4946  *
   4947  * @u32 in_reg - The register cmd for the bit-bang read.
   4948  * @u32 out_reg - The register returned from a bit-bang read.
   4949  **/
   4950 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   4951 {
   4952 	u32 mask;
   4953 
   4954 	/* Page must match for all control pages */
   4955 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   4956 		return FALSE;
   4957 
   4958 	switch (in_reg & BYPASS_PAGE_M) {
   4959 	case BYPASS_PAGE_CTL0:
   4960 		/* All the following can't change since the last write
   4961 		 *  - All the event actions
   4962 		 *  - The timeout value
   4963 		 */
   4964 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   4965 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   4966 		       BYPASS_WDTIMEOUT_M |
   4967 		       BYPASS_WDT_VALUE_M;
   4968 		if ((out_reg & mask) != (in_reg & mask))
   4969 			return FALSE;
   4970 
   4971 		/* 0x0 is never a valid value for bypass status */
   4972 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   4973 			return FALSE;
   4974 		break;
   4975 	case BYPASS_PAGE_CTL1:
   4976 		/* All the following can't change since the last write
   4977 		 *  - time valid bit
   4978 		 *  - time we last sent
   4979 		 */
   4980 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   4981 		if ((out_reg & mask) != (in_reg & mask))
   4982 			return FALSE;
   4983 		break;
   4984 	case BYPASS_PAGE_CTL2:
   4985 		/* All we can check in this page is control number
   4986 		 * which is already done above.
   4987 		 */
   4988 		break;
   4989 	}
   4990 
   4991 	/* We are as sure as we can be return TRUE */
   4992 	return TRUE;
   4993 }
   4994 
   4995 /**
   4996  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
   4997  *
   4998  *  @hw: pointer to hardware structure
   4999  *  @cmd: The control word we are setting.
   5000  *  @event: The event we are setting in the FW.  This also happens to
   5001  *	    be the mask for the event we are setting (handy)
   5002  *  @action: The action we set the event to in the FW. This is in a
   5003  *	     bit field that happens to be what we want to put in
   5004  *	     the event spot (also handy)
   5005  **/
   5006 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5007 			     u32 action)
   5008 {
   5009 	u32 by_ctl = 0;
   5010 	u32 cmd, verify;
   5011 	u32 count = 0;
   5012 
   5013 	/* Get current values */
   5014 	cmd = ctrl;	/* just reading only need control number */
   5015 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5016 		return IXGBE_ERR_INVALID_ARGUMENT;
   5017 
   5018 	/* Set to new action */
   5019 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5020 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5021 		return IXGBE_ERR_INVALID_ARGUMENT;
   5022 
   5023 	/* Page 0 force a FW eeprom write which is slow so verify */
   5024 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5025 		verify = BYPASS_PAGE_CTL0;
   5026 		do {
   5027 			if (count++ > 5)
   5028 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5029 
   5030 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5031 				return IXGBE_ERR_INVALID_ARGUMENT;
   5032 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5033 	} else {
   5034 		/* We have give the FW time for the write to stick */
   5035 		msec_delay(100);
   5036 	}
   5037 
   5038 	return IXGBE_SUCCESS;
   5039 }
   5040 
   5041 /**
   5042  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
   5043  *
   5044  *  @hw: pointer to hardware structure
   5045  *  @addr: The bypass eeprom address to read.
   5046  *  @value: The 8b of data at the address above.
   5047  **/
   5048 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5049 {
   5050 	u32 cmd;
   5051 	u32 status;
   5052 
   5053 
   5054 	/* send the request */
   5055 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5056 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5057 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5058 		return IXGBE_ERR_INVALID_ARGUMENT;
   5059 
   5060 	/* We have give the FW time for the write to stick */
   5061 	msec_delay(100);
   5062 
   5063 	/* now read the results */
   5064 	cmd &= ~BYPASS_WE;
   5065 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5066 		return IXGBE_ERR_INVALID_ARGUMENT;
   5067 
   5068 	*value = status & BYPASS_CTL2_DATA_M;
   5069 
   5070 	return IXGBE_SUCCESS;
   5071 }
   5072 
   5073 
   5074 /**
   5075  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5076  * @hw: pointer to hardware structure
   5077  * @map: pointer to u8 arr for returning map
   5078  *
   5079  * Read the rtrup2tc HW register and resolve its content into map
   5080  **/
   5081 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5082 {
   5083 	u32 reg, i;
   5084 
   5085 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5086 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5087 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5088 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5089 	return;
   5090 }
   5091 
   5092 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5093 {
   5094 	u32 pfdtxgswc;
   5095 	u32 rxctrl;
   5096 
   5097 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5098 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5099 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5100 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5101 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5102 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5103 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5104 				hw->mac.set_lben = TRUE;
   5105 			} else {
   5106 				hw->mac.set_lben = FALSE;
   5107 			}
   5108 		}
   5109 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5110 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5111 	}
   5112 }
   5113 
   5114 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5115 {
   5116 	u32 pfdtxgswc;
   5117 	u32 rxctrl;
   5118 
   5119 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5120 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5121 
   5122 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5123 		if (hw->mac.set_lben) {
   5124 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5125 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5126 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5127 			hw->mac.set_lben = FALSE;
   5128 		}
   5129 	}
   5130 }
   5131 
   5132 /**
   5133  * ixgbe_mng_present - returns TRUE when management capability is present
   5134  * @hw: pointer to hardware structure
   5135  */
   5136 bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5137 {
   5138 	u32 fwsm;
   5139 
   5140 	if (hw->mac.type < ixgbe_mac_82599EB)
   5141 		return FALSE;
   5142 
   5143 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5144 	fwsm &= IXGBE_FWSM_MODE_MASK;
   5145 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   5146 }
   5147 
   5148 /**
   5149  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5150  * @hw: pointer to hardware structure
   5151  *
   5152  * Returns TRUE if the manageability engine is enabled.
   5153  **/
   5154 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5155 {
   5156 	u32 fwsm, manc, factps;
   5157 
   5158 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5159 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5160 		return FALSE;
   5161 
   5162 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5163 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5164 		return FALSE;
   5165 
   5166 	if (hw->mac.type <= ixgbe_mac_X540) {
   5167 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5168 		if (factps & IXGBE_FACTPS_MNGCG)
   5169 			return FALSE;
   5170 	}
   5171 
   5172 	return TRUE;
   5173 }
   5174 
   5175 /**
   5176  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5177  *  @hw: pointer to hardware structure
   5178  *  @speed: new link speed
   5179  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5180  *
   5181  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5182  **/
   5183 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5184 					  ixgbe_link_speed speed,
   5185 					  bool autoneg_wait_to_complete)
   5186 {
   5187 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5188 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5189 	s32 status = IXGBE_SUCCESS;
   5190 	u32 speedcnt = 0;
   5191 	u32 i = 0;
   5192 	bool autoneg, link_up = FALSE;
   5193 
   5194 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5195 
   5196 	/* Mask off requested but non-supported speeds */
   5197 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5198 	if (status != IXGBE_SUCCESS)
   5199 		return status;
   5200 
   5201 	speed &= link_speed;
   5202 
   5203 	/* Try each speed one by one, highest priority first.  We do this in
   5204 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5205 	 */
   5206 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5207 		speedcnt++;
   5208 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5209 
   5210 		/* Set the module link speed */
   5211 		switch (hw->phy.media_type) {
   5212 		case ixgbe_media_type_fiber_fixed:
   5213 		case ixgbe_media_type_fiber:
   5214 			ixgbe_set_rate_select_speed(hw,
   5215 						    IXGBE_LINK_SPEED_10GB_FULL);
   5216 			break;
   5217 		case ixgbe_media_type_fiber_qsfp:
   5218 			/* QSFP module automatically detects MAC link speed */
   5219 			break;
   5220 		default:
   5221 			DEBUGOUT("Unexpected media type.\n");
   5222 			break;
   5223 		}
   5224 
   5225 		/* Allow module to change analog characteristics (1G->10G) */
   5226 		msec_delay(40);
   5227 
   5228 		status = ixgbe_setup_mac_link(hw,
   5229 					      IXGBE_LINK_SPEED_10GB_FULL,
   5230 					      autoneg_wait_to_complete);
   5231 		if (status != IXGBE_SUCCESS)
   5232 			return status;
   5233 
   5234 		/* Flap the Tx laser if it has not already been done */
   5235 		ixgbe_flap_tx_laser(hw);
   5236 
   5237 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5238 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5239 		 * attempted.  82599 uses the same timing for 10g SFI.
   5240 		 */
   5241 		for (i = 0; i < 5; i++) {
   5242 			/* Wait for the link partner to also set speed */
   5243 			msec_delay(100);
   5244 
   5245 			/* If we have link, just jump out */
   5246 			status = ixgbe_check_link(hw, &link_speed,
   5247 						  &link_up, FALSE);
   5248 			if (status != IXGBE_SUCCESS)
   5249 				return status;
   5250 
   5251 			if (link_up)
   5252 				goto out;
   5253 		}
   5254 	}
   5255 
   5256 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5257 		speedcnt++;
   5258 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5259 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5260 
   5261 		/* Set the module link speed */
   5262 		switch (hw->phy.media_type) {
   5263 		case ixgbe_media_type_fiber_fixed:
   5264 		case ixgbe_media_type_fiber:
   5265 			ixgbe_set_rate_select_speed(hw,
   5266 						    IXGBE_LINK_SPEED_1GB_FULL);
   5267 			break;
   5268 		case ixgbe_media_type_fiber_qsfp:
   5269 			/* QSFP module automatically detects link speed */
   5270 			break;
   5271 		default:
   5272 			DEBUGOUT("Unexpected media type.\n");
   5273 			break;
   5274 		}
   5275 
   5276 		/* Allow module to change analog characteristics (10G->1G) */
   5277 		msec_delay(40);
   5278 
   5279 		status = ixgbe_setup_mac_link(hw,
   5280 					      IXGBE_LINK_SPEED_1GB_FULL,
   5281 					      autoneg_wait_to_complete);
   5282 		if (status != IXGBE_SUCCESS)
   5283 			return status;
   5284 
   5285 		/* Flap the Tx laser if it has not already been done */
   5286 		ixgbe_flap_tx_laser(hw);
   5287 
   5288 		/* Wait for the link partner to also set speed */
   5289 		msec_delay(100);
   5290 
   5291 		/* If we have link, just jump out */
   5292 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5293 		if (status != IXGBE_SUCCESS)
   5294 			return status;
   5295 
   5296 		if (link_up)
   5297 			goto out;
   5298 	}
   5299 
   5300 	/* We didn't get link.  Configure back to the highest speed we tried,
   5301 	 * (if there was more than one).  We call ourselves back with just the
   5302 	 * single highest speed that the user requested.
   5303 	 */
   5304 	if (speedcnt > 1)
   5305 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5306 						      highest_link_speed,
   5307 						      autoneg_wait_to_complete);
   5308 
   5309 out:
   5310 	/* Set autoneg_advertised value based on input link speed */
   5311 	hw->phy.autoneg_advertised = 0;
   5312 
   5313 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5314 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5315 
   5316 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5317 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5318 
   5319 	return status;
   5320 }
   5321 
   5322 /**
   5323  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5324  *  @hw: pointer to hardware structure
   5325  *  @speed: link speed to set
   5326  *
   5327  *  Set module link speed via the soft rate select.
   5328  */
   5329 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5330 					ixgbe_link_speed speed)
   5331 {
   5332 	s32 status;
   5333 	u8 rs, eeprom_data;
   5334 
   5335 	switch (speed) {
   5336 	case IXGBE_LINK_SPEED_10GB_FULL:
   5337 		/* one bit mask same as setting on */
   5338 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5339 		break;
   5340 	case IXGBE_LINK_SPEED_1GB_FULL:
   5341 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5342 		break;
   5343 	default:
   5344 		DEBUGOUT("Invalid fixed module speed\n");
   5345 		return;
   5346 	}
   5347 
   5348 	/* Set RS0 */
   5349 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5350 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5351 					   &eeprom_data);
   5352 	if (status) {
   5353 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5354 		goto out;
   5355 	}
   5356 
   5357 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5358 
   5359 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5360 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5361 					    eeprom_data);
   5362 	if (status) {
   5363 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5364 		goto out;
   5365 	}
   5366 
   5367 	/* Set RS1 */
   5368 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5369 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5370 					   &eeprom_data);
   5371 	if (status) {
   5372 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5373 		goto out;
   5374 	}
   5375 
   5376 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5377 
   5378 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5379 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5380 					    eeprom_data);
   5381 	if (status) {
   5382 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5383 		goto out;
   5384 	}
   5385 out:
   5386 	return;
   5387 }
   5388