ixgbe_common.c revision 1.32 1 /* $NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $ */
2
3 /******************************************************************************
4 SPDX-License-Identifier: BSD-3-Clause
5
6 Copyright (c) 2001-2017, Intel Corporation
7 All rights reserved.
8
9 Redistribution and use in source and binary forms, with or without
10 modification, are permitted provided that the following conditions are met:
11
12 1. Redistributions of source code must retain the above copyright notice,
13 this list of conditions and the following disclaimer.
14
15 2. Redistributions in binary form must reproduce the above copyright
16 notice, this list of conditions and the following disclaimer in the
17 documentation and/or other materials provided with the distribution.
18
19 3. Neither the name of the Intel Corporation nor the names of its
20 contributors may be used to endorse or promote products derived from
21 this software without specific prior written permission.
22
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 POSSIBILITY OF SUCH DAMAGE.
34
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.32 2021/07/24 21:31:38 andvar Exp $");
40
41 #include "ixgbe_common.h"
42 #include "ixgbe_phy.h"
43 #include "ixgbe_dcb.h"
44 #include "ixgbe_dcb_82599.h"
45 #include "ixgbe_api.h"
46
47 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 u16 count);
54 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58
59 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 u16 *san_mac_offset);
62 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 u16 words, u16 *data);
64 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 u16 words, u16 *data);
66 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 u16 offset);
68
69 /**
70 * ixgbe_init_ops_generic - Inits function ptrs
71 * @hw: pointer to the hardware structure
72 *
73 * Initialize the function pointers.
74 **/
75 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 {
77 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 struct ixgbe_mac_info *mac = &hw->mac;
79 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80
81 DEBUGFUNC("ixgbe_init_ops_generic");
82
83 /* EEPROM */
84 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 if (eec & IXGBE_EEC_PRES) {
87 eeprom->ops.read = ixgbe_read_eerd_generic;
88 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 } else {
90 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 eeprom->ops.read_buffer =
92 ixgbe_read_eeprom_buffer_bit_bang_generic;
93 }
94 eeprom->ops.write = ixgbe_write_eeprom_generic;
95 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 eeprom->ops.validate_checksum =
97 ixgbe_validate_eeprom_checksum_generic;
98 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100
101 /* MAC */
102 mac->ops.init_hw = ixgbe_init_hw_generic;
103 mac->ops.reset_hw = NULL;
104 mac->ops.start_hw = ixgbe_start_hw_generic;
105 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 mac->ops.get_media_type = NULL;
107 mac->ops.get_supported_physical_layer = NULL;
108 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 mac->ops.prot_autoc_write = prot_autoc_write_generic;
117
118 /* LEDs */
119 mac->ops.led_on = ixgbe_led_on_generic;
120 mac->ops.led_off = ixgbe_led_off_generic;
121 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124
125 /* RAR, Multicast, VLAN */
126 mac->ops.set_rar = ixgbe_set_rar_generic;
127 mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 mac->ops.insert_mac_addr = NULL;
129 mac->ops.set_vmdq = NULL;
130 mac->ops.clear_vmdq = NULL;
131 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 mac->ops.clear_vfta = NULL;
137 mac->ops.set_vfta = NULL;
138 mac->ops.set_vlvf = NULL;
139 mac->ops.init_uta_tables = NULL;
140 mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143
144 /* Flow Control */
145 mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148
149 /* Link */
150 mac->ops.get_link_capabilities = NULL;
151 mac->ops.setup_link = NULL;
152 mac->ops.check_link = NULL;
153 mac->ops.dmac_config = NULL;
154 mac->ops.dmac_update_tcs = NULL;
155 mac->ops.dmac_config_tcs = NULL;
156
157 return IXGBE_SUCCESS;
158 }
159
160 /**
161 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 * of flow control
163 * @hw: pointer to hardware structure
164 *
165 * This function returns TRUE if the device supports flow control
166 * autonegotiation, and FALSE if it does not.
167 *
168 **/
169 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 {
171 bool supported = FALSE;
172 ixgbe_link_speed speed;
173 bool link_up;
174
175 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176
177 switch (hw->phy.media_type) {
178 case ixgbe_media_type_fiber_fixed:
179 case ixgbe_media_type_fiber_qsfp:
180 case ixgbe_media_type_fiber:
181 /* flow control autoneg black list */
182 switch (hw->device_id) {
183 case IXGBE_DEV_ID_X550EM_A_SFP:
184 case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 case IXGBE_DEV_ID_X550EM_A_QSFP:
186 case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 supported = FALSE;
188 break;
189 default:
190 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 /* if link is down, assume supported */
192 if (link_up)
193 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 TRUE : FALSE;
195 else
196 supported = TRUE;
197 }
198
199 break;
200 case ixgbe_media_type_backplane:
201 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 supported = FALSE;
203 else
204 supported = TRUE;
205 break;
206 case ixgbe_media_type_copper:
207 /* only some copper devices support flow control autoneg */
208 switch (hw->device_id) {
209 case IXGBE_DEV_ID_82599_T3_LOM:
210 case IXGBE_DEV_ID_X540T:
211 case IXGBE_DEV_ID_X540T1:
212 case IXGBE_DEV_ID_X540_BYPASS:
213 case IXGBE_DEV_ID_X550T:
214 case IXGBE_DEV_ID_X550T1:
215 case IXGBE_DEV_ID_X550EM_X_10G_T:
216 case IXGBE_DEV_ID_X550EM_A_10G_T:
217 case IXGBE_DEV_ID_X550EM_A_1G_T:
218 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 supported = TRUE;
220 break;
221 default:
222 supported = FALSE;
223 }
224 default:
225 break;
226 }
227
228 if (!supported)
229 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
230 "Device %x does not support flow control autoneg",
231 hw->device_id);
232
233 return supported;
234 }
235
236 /**
237 * ixgbe_setup_fc_generic - Set up flow control
238 * @hw: pointer to hardware structure
239 *
240 * Called at init time to set up flow control.
241 **/
242 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
243 {
244 s32 ret_val = IXGBE_SUCCESS;
245 u32 reg = 0, reg_bp = 0;
246 u16 reg_cu = 0;
247 bool locked = FALSE;
248
249 DEBUGFUNC("ixgbe_setup_fc_generic");
250
251 /* Validate the requested mode */
252 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
253 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
254 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
255 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
256 goto out;
257 }
258
259 /*
260 * 10gig parts do not have a word in the EEPROM to determine the
261 * default flow control setting, so we explicitly set it to full.
262 */
263 if (hw->fc.requested_mode == ixgbe_fc_default)
264 hw->fc.requested_mode = ixgbe_fc_full;
265
266 /*
267 * Set up the 1G and 10G flow control advertisement registers so the
268 * HW will be able to do fc autoneg once the cable is plugged in. If
269 * we link at 10G, the 1G advertisement is harmless and vice versa.
270 */
271 switch (hw->phy.media_type) {
272 case ixgbe_media_type_backplane:
273 /* some MAC's need RMW protection on AUTOC */
274 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
275 if (ret_val != IXGBE_SUCCESS)
276 goto out;
277
278 /* fall through - only backplane uses autoc */
279 case ixgbe_media_type_fiber_fixed:
280 case ixgbe_media_type_fiber_qsfp:
281 case ixgbe_media_type_fiber:
282 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
283
284 break;
285 case ixgbe_media_type_copper:
286 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
287 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
288 break;
289 default:
290 break;
291 }
292
293 /*
294 * The possible values of fc.requested_mode are:
295 * 0: Flow control is completely disabled
296 * 1: Rx flow control is enabled (we can receive pause frames,
297 * but not send pause frames).
298 * 2: Tx flow control is enabled (we can send pause frames but
299 * we do not support receiving pause frames).
300 * 3: Both Rx and Tx flow control (symmetric) are enabled.
301 * other: Invalid.
302 */
303 switch (hw->fc.requested_mode) {
304 case ixgbe_fc_none:
305 /* Flow control completely disabled by software override. */
306 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
307 if (hw->phy.media_type == ixgbe_media_type_backplane)
308 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
309 IXGBE_AUTOC_ASM_PAUSE);
310 else if (hw->phy.media_type == ixgbe_media_type_copper)
311 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
312 break;
313 case ixgbe_fc_tx_pause:
314 /*
315 * Tx Flow control is enabled, and Rx Flow control is
316 * disabled by software override.
317 */
318 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
319 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
320 if (hw->phy.media_type == ixgbe_media_type_backplane) {
321 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
322 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
323 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
324 reg_cu |= IXGBE_TAF_ASM_PAUSE;
325 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
326 }
327 break;
328 case ixgbe_fc_rx_pause:
329 /*
330 * Rx Flow control is enabled and Tx Flow control is
331 * disabled by software override. Since there really
332 * isn't a way to advertise that we are capable of RX
333 * Pause ONLY, we will advertise that we support both
334 * symmetric and asymmetric Rx PAUSE, as such we fall
335 * through to the fc_full statement. Later, we will
336 * disable the adapter's ability to send PAUSE frames.
337 */
338 case ixgbe_fc_full:
339 /* Flow control (both Rx and Tx) is enabled by SW override. */
340 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
341 if (hw->phy.media_type == ixgbe_media_type_backplane)
342 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
343 IXGBE_AUTOC_ASM_PAUSE;
344 else if (hw->phy.media_type == ixgbe_media_type_copper)
345 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
346 break;
347 default:
348 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
349 "Flow control param set incorrectly\n");
350 ret_val = IXGBE_ERR_CONFIG;
351 goto out;
352 break;
353 }
354
355 if (hw->mac.type < ixgbe_mac_X540) {
356 /*
357 * Enable auto-negotiation between the MAC & PHY;
358 * the MAC will advertise clause 37 flow control.
359 */
360 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
361 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
362
363 /* Disable AN timeout */
364 if (hw->fc.strict_ieee)
365 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
366
367 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
368 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
369 }
370
371 /*
372 * AUTOC restart handles negotiation of 1G and 10G on backplane
373 * and copper. There is no need to set the PCS1GCTL register.
374 *
375 */
376 if (hw->phy.media_type == ixgbe_media_type_backplane) {
377 reg_bp |= IXGBE_AUTOC_AN_RESTART;
378 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
379 if (ret_val)
380 goto out;
381 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
382 (ixgbe_device_supports_autoneg_fc(hw))) {
383 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
384 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
385 }
386
387 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
388 out:
389 return ret_val;
390 }
391
392 /**
393 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
394 * @hw: pointer to hardware structure
395 *
396 * Starts the hardware by filling the bus info structure and media type, clears
397 * all on chip counters, initializes receive address registers, multicast
398 * table, VLAN filter table, calls routine to set up link and flow control
399 * settings, and leaves transmit and receive units disabled and uninitialized
400 **/
401 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
402 {
403 s32 ret_val;
404 u32 ctrl_ext;
405 u16 device_caps;
406
407 DEBUGFUNC("ixgbe_start_hw_generic");
408
409 /* Set the media type */
410 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
411
412 /* PHY ops initialization must be done in reset_hw() */
413
414 /* Clear the VLAN filter table */
415 hw->mac.ops.clear_vfta(hw);
416
417 /* Clear statistics registers */
418 hw->mac.ops.clear_hw_cntrs(hw);
419
420 /* Set No Snoop Disable */
421 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
422 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
423 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
424 IXGBE_WRITE_FLUSH(hw);
425
426 /* Setup flow control */
427 ret_val = ixgbe_setup_fc(hw);
428 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
429 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
430 return ret_val;
431 }
432
433 /* Cache bit indicating need for crosstalk fix */
434 switch (hw->mac.type) {
435 case ixgbe_mac_82599EB:
436 case ixgbe_mac_X550EM_x:
437 case ixgbe_mac_X550EM_a:
438 hw->mac.ops.get_device_caps(hw, &device_caps);
439 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
440 hw->need_crosstalk_fix = FALSE;
441 else
442 hw->need_crosstalk_fix = TRUE;
443 break;
444 default:
445 hw->need_crosstalk_fix = FALSE;
446 break;
447 }
448
449 /* Clear adapter stopped flag */
450 hw->adapter_stopped = FALSE;
451
452 return IXGBE_SUCCESS;
453 }
454
455 /**
456 * ixgbe_start_hw_gen2 - Init sequence for common device family
457 * @hw: pointer to hw structure
458 *
459 * Performs the init sequence common to the second generation
460 * of 10 GbE devices.
461 * Devices in the second generation:
462 * 82599
463 * X540
464 **/
465 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
466 {
467 u32 i;
468 u32 regval;
469
470 DEBUGFUNC("ixgbe_start_hw_gen2");
471
472 /* Clear the rate limiters */
473 for (i = 0; i < hw->mac.max_tx_queues; i++) {
474 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
475 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
476 }
477 IXGBE_WRITE_FLUSH(hw);
478
479 /* Disable relaxed ordering */
480 for (i = 0; i < hw->mac.max_tx_queues; i++) {
481 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
482 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
483 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
484 }
485
486 for (i = 0; i < hw->mac.max_rx_queues; i++) {
487 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
488 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
489 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
490 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
491 }
492
493 return IXGBE_SUCCESS;
494 }
495
496 /**
497 * ixgbe_init_hw_generic - Generic hardware initialization
498 * @hw: pointer to hardware structure
499 *
500 * Initialize the hardware by resetting the hardware, filling the bus info
501 * structure and media type, clears all on chip counters, initializes receive
502 * address registers, multicast table, VLAN filter table, calls routine to set
503 * up link and flow control settings, and leaves transmit and receive units
504 * disabled and uninitialized
505 **/
506 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
507 {
508 s32 status;
509
510 DEBUGFUNC("ixgbe_init_hw_generic");
511
512 /* Reset the hardware */
513 status = hw->mac.ops.reset_hw(hw);
514
515 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
516 /* Start the HW */
517 status = hw->mac.ops.start_hw(hw);
518 }
519
520 /* Initialize the LED link active for LED blink support */
521 if (hw->mac.ops.init_led_link_act)
522 hw->mac.ops.init_led_link_act(hw);
523
524 if (status != IXGBE_SUCCESS)
525 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
526
527 return status;
528 }
529
530 /**
531 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
532 * @hw: pointer to hardware structure
533 *
534 * Clears all hardware statistics counters by reading them from the hardware
535 * Statistics counters are clear on read.
536 **/
537 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
538 {
539 u16 i = 0;
540
541 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
542
543 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
544 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
545 IXGBE_READ_REG(hw, IXGBE_ERRBC);
546 IXGBE_READ_REG(hw, IXGBE_MSPDC);
547 if (hw->mac.type >= ixgbe_mac_X550)
548 IXGBE_READ_REG(hw, IXGBE_MBSDC);
549 for (i = 0; i < 8; i++)
550 IXGBE_READ_REG(hw, IXGBE_MPC(i));
551
552 IXGBE_READ_REG(hw, IXGBE_MLFC);
553 IXGBE_READ_REG(hw, IXGBE_MRFC);
554 IXGBE_READ_REG(hw, IXGBE_RLEC);
555 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
556 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
557 if (hw->mac.type >= ixgbe_mac_82599EB) {
558 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
559 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
560 } else {
561 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
562 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
563 }
564
565 for (i = 0; i < 8; i++) {
566 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
567 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
568 if (hw->mac.type >= ixgbe_mac_82599EB) {
569 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
570 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
571 } else {
572 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
573 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
574 }
575 }
576 if (hw->mac.type >= ixgbe_mac_82599EB)
577 for (i = 0; i < 8; i++)
578 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
579 IXGBE_READ_REG(hw, IXGBE_PRC64);
580 IXGBE_READ_REG(hw, IXGBE_PRC127);
581 IXGBE_READ_REG(hw, IXGBE_PRC255);
582 IXGBE_READ_REG(hw, IXGBE_PRC511);
583 IXGBE_READ_REG(hw, IXGBE_PRC1023);
584 IXGBE_READ_REG(hw, IXGBE_PRC1522);
585 IXGBE_READ_REG(hw, IXGBE_GPRC);
586 IXGBE_READ_REG(hw, IXGBE_BPRC);
587 IXGBE_READ_REG(hw, IXGBE_MPRC);
588 IXGBE_READ_REG(hw, IXGBE_GPTC);
589 IXGBE_READ_REG(hw, IXGBE_GORCL);
590 IXGBE_READ_REG(hw, IXGBE_GORCH);
591 IXGBE_READ_REG(hw, IXGBE_GOTCL);
592 IXGBE_READ_REG(hw, IXGBE_GOTCH);
593 if (hw->mac.type == ixgbe_mac_82598EB)
594 for (i = 0; i < 8; i++)
595 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
596 IXGBE_READ_REG(hw, IXGBE_RUC);
597 IXGBE_READ_REG(hw, IXGBE_RFC);
598 IXGBE_READ_REG(hw, IXGBE_ROC);
599 IXGBE_READ_REG(hw, IXGBE_RJC);
600 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
601 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
602 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
603 IXGBE_READ_REG(hw, IXGBE_TORL);
604 IXGBE_READ_REG(hw, IXGBE_TORH);
605 IXGBE_READ_REG(hw, IXGBE_TPR);
606 IXGBE_READ_REG(hw, IXGBE_TPT);
607 IXGBE_READ_REG(hw, IXGBE_PTC64);
608 IXGBE_READ_REG(hw, IXGBE_PTC127);
609 IXGBE_READ_REG(hw, IXGBE_PTC255);
610 IXGBE_READ_REG(hw, IXGBE_PTC511);
611 IXGBE_READ_REG(hw, IXGBE_PTC1023);
612 IXGBE_READ_REG(hw, IXGBE_PTC1522);
613 IXGBE_READ_REG(hw, IXGBE_MPTC);
614 IXGBE_READ_REG(hw, IXGBE_BPTC);
615 for (i = 0; i < 16; i++) {
616 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
617 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
618 if (hw->mac.type >= ixgbe_mac_82599EB) {
619 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
620 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
621 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
622 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
623 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
624 } else {
625 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
626 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
627 }
628 }
629
630 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
631 if (hw->phy.id == 0)
632 ixgbe_identify_phy(hw);
633 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
634 IXGBE_MDIO_PCS_DEV_TYPE, &i);
635 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
636 IXGBE_MDIO_PCS_DEV_TYPE, &i);
637 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
638 IXGBE_MDIO_PCS_DEV_TYPE, &i);
639 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
640 IXGBE_MDIO_PCS_DEV_TYPE, &i);
641 }
642
643 return IXGBE_SUCCESS;
644 }
645
646 /**
647 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
648 * @hw: pointer to hardware structure
649 * @pba_num: stores the part number string from the EEPROM
650 * @pba_num_size: part number string buffer length
651 *
652 * Reads the part number string from the EEPROM.
653 **/
654 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
655 u32 pba_num_size)
656 {
657 s32 ret_val;
658 u16 data;
659 u16 pba_ptr;
660 u16 offset;
661 u16 length;
662
663 DEBUGFUNC("ixgbe_read_pba_string_generic");
664
665 if (pba_num == NULL) {
666 DEBUGOUT("PBA string buffer was null\n");
667 return IXGBE_ERR_INVALID_ARGUMENT;
668 }
669
670 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
671 if (ret_val) {
672 DEBUGOUT("NVM Read Error\n");
673 return ret_val;
674 }
675
676 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
677 if (ret_val) {
678 DEBUGOUT("NVM Read Error\n");
679 return ret_val;
680 }
681
682 /*
683 * if data is not ptr guard the PBA must be in legacy format which
684 * means pba_ptr is actually our second data word for the PBA number
685 * and we can decode it into an ascii string
686 */
687 if (data != IXGBE_PBANUM_PTR_GUARD) {
688 DEBUGOUT("NVM PBA number is not stored as string\n");
689
690 /* we will need 11 characters to store the PBA */
691 if (pba_num_size < 11) {
692 DEBUGOUT("PBA string buffer too small\n");
693 return IXGBE_ERR_NO_SPACE;
694 }
695
696 /* extract hex string from data and pba_ptr */
697 pba_num[0] = (data >> 12) & 0xF;
698 pba_num[1] = (data >> 8) & 0xF;
699 pba_num[2] = (data >> 4) & 0xF;
700 pba_num[3] = data & 0xF;
701 pba_num[4] = (pba_ptr >> 12) & 0xF;
702 pba_num[5] = (pba_ptr >> 8) & 0xF;
703 pba_num[6] = '-';
704 pba_num[7] = 0;
705 pba_num[8] = (pba_ptr >> 4) & 0xF;
706 pba_num[9] = pba_ptr & 0xF;
707
708 /* put a null character on the end of our string */
709 pba_num[10] = '\0';
710
711 /* switch all the data but the '-' to hex char */
712 for (offset = 0; offset < 10; offset++) {
713 if (pba_num[offset] < 0xA)
714 pba_num[offset] += '0';
715 else if (pba_num[offset] < 0x10)
716 pba_num[offset] += 'A' - 0xA;
717 }
718
719 return IXGBE_SUCCESS;
720 }
721
722 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
723 if (ret_val) {
724 DEBUGOUT("NVM Read Error\n");
725 return ret_val;
726 }
727
728 if (length == 0xFFFF || length == 0) {
729 DEBUGOUT("NVM PBA number section invalid length\n");
730 return IXGBE_ERR_PBA_SECTION;
731 }
732
733 /* check if pba_num buffer is big enough */
734 if (pba_num_size < (((u32)length * 2) - 1)) {
735 DEBUGOUT("PBA string buffer too small\n");
736 return IXGBE_ERR_NO_SPACE;
737 }
738
739 /* trim pba length from start of string */
740 pba_ptr++;
741 length--;
742
743 for (offset = 0; offset < length; offset++) {
744 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
745 if (ret_val) {
746 DEBUGOUT("NVM Read Error\n");
747 return ret_val;
748 }
749 pba_num[offset * 2] = (u8)(data >> 8);
750 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
751 }
752 pba_num[offset * 2] = '\0';
753
754 return IXGBE_SUCCESS;
755 }
756
757 /**
758 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
759 * @hw: pointer to hardware structure
760 * @pba_num: stores the part number from the EEPROM
761 *
762 * Reads the part number from the EEPROM.
763 **/
764 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
765 {
766 s32 ret_val;
767 u16 data;
768
769 DEBUGFUNC("ixgbe_read_pba_num_generic");
770
771 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
772 if (ret_val) {
773 DEBUGOUT("NVM Read Error\n");
774 return ret_val;
775 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
776 DEBUGOUT("NVM Not supported\n");
777 return IXGBE_NOT_IMPLEMENTED;
778 }
779 *pba_num = (u32)(data << 16);
780
781 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
782 if (ret_val) {
783 DEBUGOUT("NVM Read Error\n");
784 return ret_val;
785 }
786 *pba_num |= data;
787
788 return IXGBE_SUCCESS;
789 }
790
791 /**
792 * ixgbe_read_pba_raw
793 * @hw: pointer to the HW structure
794 * @eeprom_buf: optional pointer to EEPROM image
795 * @eeprom_buf_size: size of EEPROM image in words
796 * @max_pba_block_size: PBA block size limit
797 * @pba: pointer to output PBA structure
798 *
799 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
800 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
801 *
802 **/
803 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
804 u32 eeprom_buf_size, u16 max_pba_block_size,
805 struct ixgbe_pba *pba)
806 {
807 s32 ret_val;
808 u16 pba_block_size;
809
810 if (pba == NULL)
811 return IXGBE_ERR_PARAM;
812
813 if (eeprom_buf == NULL) {
814 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
815 &pba->word[0]);
816 if (ret_val)
817 return ret_val;
818 } else {
819 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
820 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
821 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
822 } else {
823 return IXGBE_ERR_PARAM;
824 }
825 }
826
827 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
828 if (pba->pba_block == NULL)
829 return IXGBE_ERR_PARAM;
830
831 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
832 eeprom_buf_size,
833 &pba_block_size);
834 if (ret_val)
835 return ret_val;
836
837 if (pba_block_size > max_pba_block_size)
838 return IXGBE_ERR_PARAM;
839
840 if (eeprom_buf == NULL) {
841 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
842 pba_block_size,
843 pba->pba_block);
844 if (ret_val)
845 return ret_val;
846 } else {
847 if (eeprom_buf_size > (u32)(pba->word[1] +
848 pba_block_size)) {
849 memcpy(pba->pba_block,
850 &eeprom_buf[pba->word[1]],
851 pba_block_size * sizeof(u16));
852 } else {
853 return IXGBE_ERR_PARAM;
854 }
855 }
856 }
857
858 return IXGBE_SUCCESS;
859 }
860
861 /**
862 * ixgbe_write_pba_raw
863 * @hw: pointer to the HW structure
864 * @eeprom_buf: optional pointer to EEPROM image
865 * @eeprom_buf_size: size of EEPROM image in words
866 * @pba: pointer to PBA structure
867 *
868 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
869 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
870 *
871 **/
872 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
873 u32 eeprom_buf_size, struct ixgbe_pba *pba)
874 {
875 s32 ret_val;
876
877 if (pba == NULL)
878 return IXGBE_ERR_PARAM;
879
880 if (eeprom_buf == NULL) {
881 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
882 &pba->word[0]);
883 if (ret_val)
884 return ret_val;
885 } else {
886 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
887 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
888 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
889 } else {
890 return IXGBE_ERR_PARAM;
891 }
892 }
893
894 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
895 if (pba->pba_block == NULL)
896 return IXGBE_ERR_PARAM;
897
898 if (eeprom_buf == NULL) {
899 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
900 pba->pba_block[0],
901 pba->pba_block);
902 if (ret_val)
903 return ret_val;
904 } else {
905 if (eeprom_buf_size > (u32)(pba->word[1] +
906 pba->pba_block[0])) {
907 memcpy(&eeprom_buf[pba->word[1]],
908 pba->pba_block,
909 pba->pba_block[0] * sizeof(u16));
910 } else {
911 return IXGBE_ERR_PARAM;
912 }
913 }
914 }
915
916 return IXGBE_SUCCESS;
917 }
918
919 /**
920 * ixgbe_get_pba_block_size
921 * @hw: pointer to the HW structure
922 * @eeprom_buf: optional pointer to EEPROM image
923 * @eeprom_buf_size: size of EEPROM image in words
924 * @pba_data_size: pointer to output variable
925 *
926 * Returns the size of the PBA block in words. Function operates on EEPROM
927 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
928 * EEPROM device.
929 *
930 **/
931 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
932 u32 eeprom_buf_size, u16 *pba_block_size)
933 {
934 s32 ret_val;
935 u16 pba_word[2];
936 u16 length;
937
938 DEBUGFUNC("ixgbe_get_pba_block_size");
939
940 if (eeprom_buf == NULL) {
941 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
942 &pba_word[0]);
943 if (ret_val)
944 return ret_val;
945 } else {
946 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
947 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
948 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
949 } else {
950 return IXGBE_ERR_PARAM;
951 }
952 }
953
954 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
955 if (eeprom_buf == NULL) {
956 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
957 &length);
958 if (ret_val)
959 return ret_val;
960 } else {
961 if (eeprom_buf_size > pba_word[1])
962 length = eeprom_buf[pba_word[1] + 0];
963 else
964 return IXGBE_ERR_PARAM;
965 }
966
967 if (length == 0xFFFF || length == 0)
968 return IXGBE_ERR_PBA_SECTION;
969 } else {
970 /* PBA number in legacy format, there is no PBA Block. */
971 length = 0;
972 }
973
974 if (pba_block_size != NULL)
975 *pba_block_size = length;
976
977 return IXGBE_SUCCESS;
978 }
979
980 /**
981 * ixgbe_get_mac_addr_generic - Generic get MAC address
982 * @hw: pointer to hardware structure
983 * @mac_addr: Adapter MAC address
984 *
985 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
986 * A reset of the adapter must be performed prior to calling this function
987 * in order for the MAC address to have been loaded from the EEPROM into RAR0
988 **/
989 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
990 {
991 u32 rar_high;
992 u32 rar_low;
993 u16 i;
994
995 DEBUGFUNC("ixgbe_get_mac_addr_generic");
996
997 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
998 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
999
1000 for (i = 0; i < 4; i++)
1001 mac_addr[i] = (u8)(rar_low >> (i*8));
1002
1003 for (i = 0; i < 2; i++)
1004 mac_addr[i+4] = (u8)(rar_high >> (i*8));
1005
1006 return IXGBE_SUCCESS;
1007 }
1008
1009 /**
1010 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1011 * @hw: pointer to hardware structure
1012 * @link_status: the link status returned by the PCI config space
1013 *
1014 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1015 **/
1016 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1017 {
1018 struct ixgbe_mac_info *mac = &hw->mac;
1019
1020 if (hw->bus.type == ixgbe_bus_type_unknown)
1021 hw->bus.type = ixgbe_bus_type_pci_express;
1022
1023 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1024 case IXGBE_PCI_LINK_WIDTH_1:
1025 hw->bus.width = ixgbe_bus_width_pcie_x1;
1026 break;
1027 case IXGBE_PCI_LINK_WIDTH_2:
1028 hw->bus.width = ixgbe_bus_width_pcie_x2;
1029 break;
1030 case IXGBE_PCI_LINK_WIDTH_4:
1031 hw->bus.width = ixgbe_bus_width_pcie_x4;
1032 break;
1033 case IXGBE_PCI_LINK_WIDTH_8:
1034 hw->bus.width = ixgbe_bus_width_pcie_x8;
1035 break;
1036 default:
1037 hw->bus.width = ixgbe_bus_width_unknown;
1038 break;
1039 }
1040
1041 switch (link_status & IXGBE_PCI_LINK_SPEED) {
1042 case IXGBE_PCI_LINK_SPEED_2500:
1043 hw->bus.speed = ixgbe_bus_speed_2500;
1044 break;
1045 case IXGBE_PCI_LINK_SPEED_5000:
1046 hw->bus.speed = ixgbe_bus_speed_5000;
1047 break;
1048 case IXGBE_PCI_LINK_SPEED_8000:
1049 hw->bus.speed = ixgbe_bus_speed_8000;
1050 break;
1051 default:
1052 hw->bus.speed = ixgbe_bus_speed_unknown;
1053 break;
1054 }
1055
1056 mac->ops.set_lan_id(hw);
1057 }
1058
1059 /**
1060 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1061 * @hw: pointer to hardware structure
1062 *
1063 * Gets the PCI bus info (speed, width, type) then calls helper function to
1064 * store this data within the ixgbe_hw structure.
1065 **/
1066 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1067 {
1068 u16 link_status;
1069
1070 DEBUGFUNC("ixgbe_get_bus_info_generic");
1071
1072 /* Get the negotiated link width and speed from PCI config space */
1073 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1074
1075 ixgbe_set_pci_config_data_generic(hw, link_status);
1076
1077 return IXGBE_SUCCESS;
1078 }
1079
1080 /**
1081 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1082 * @hw: pointer to the HW structure
1083 *
1084 * Determines the LAN function id by reading memory-mapped registers and swaps
1085 * the port value if requested, and set MAC instance for devices that share
1086 * CS4227.
1087 **/
1088 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1089 {
1090 struct ixgbe_bus_info *bus = &hw->bus;
1091 u32 reg;
1092 u16 ee_ctrl_4;
1093
1094 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1095
1096 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1097 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1098 bus->lan_id = (u8)bus->func;
1099
1100 /* check for a port swap */
1101 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1102 if (reg & IXGBE_FACTPS_LFS)
1103 bus->func ^= 0x1;
1104
1105 /* Get MAC instance from EEPROM for configuring CS4227 */
1106 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1107 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1108 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1109 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1110 }
1111 }
1112
1113 /**
1114 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1115 * @hw: pointer to hardware structure
1116 *
1117 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1118 * disables transmit and receive units. The adapter_stopped flag is used by
1119 * the shared code and drivers to determine if the adapter is in a stopped
1120 * state and should not touch the hardware.
1121 **/
1122 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1123 {
1124 u32 reg_val;
1125 u16 i;
1126
1127 DEBUGFUNC("ixgbe_stop_adapter_generic");
1128
1129 /*
1130 * Set the adapter_stopped flag so other driver functions stop touching
1131 * the hardware
1132 */
1133 hw->adapter_stopped = TRUE;
1134
1135 /* Disable the receive unit */
1136 ixgbe_disable_rx(hw);
1137
1138 /* Clear interrupt mask to stop interrupts from being generated */
1139 /*
1140 * XXX
1141 * This function is called in the state of both interrupt disabled
1142 * and interrupt enabled, e.g.
1143 * + interrupt disabled case:
1144 * - ixgbe_stop_locked()
1145 * - ixgbe_disable_intr() // interrupt disabled here
1146 * - ixgbe_stop_adapter()
1147 * - hw->mac.ops.stop_adapter()
1148 * == this function
1149 * + interrupt enabled case:
1150 * - ixgbe_local_timer1()
1151 * - ixgbe_init_locked()
1152 * - ixgbe_stop_adapter()
1153 * - hw->mac.ops.stop_adapter()
1154 * == this function
1155 * Therefore, it causes nest status breaking to nest the status
1156 * (that is, que->im_nest++) at all times. So, this function must
1157 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1158 */
1159 ixgbe_ensure_disabled_intr(hw->back);
1160
1161 /* Clear any pending interrupts, flush previous writes */
1162 IXGBE_READ_REG(hw, IXGBE_EICR);
1163
1164 /* Disable the transmit unit. Each queue must be disabled. */
1165 for (i = 0; i < hw->mac.max_tx_queues; i++)
1166 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1167
1168 /* Disable the receive unit by stopping each queue */
1169 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1170 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1171 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1172 reg_val |= IXGBE_RXDCTL_SWFLSH;
1173 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1174 }
1175
1176 /* flush all queues disables */
1177 IXGBE_WRITE_FLUSH(hw);
1178 msec_delay(2);
1179
1180 /*
1181 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1182 * access and verify no pending requests
1183 */
1184 return ixgbe_disable_pcie_master(hw);
1185 }
1186
1187 /**
1188 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1189 * @hw: pointer to hardware structure
1190 *
1191 * Store the index for the link active LED. This will be used to support
1192 * blinking the LED.
1193 **/
1194 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1195 {
1196 struct ixgbe_mac_info *mac = &hw->mac;
1197 u32 led_reg, led_mode;
1198 u8 i;
1199
1200 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1201
1202 /* Get LED link active from the LEDCTL register */
1203 for (i = 0; i < 4; i++) {
1204 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1205
1206 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1207 IXGBE_LED_LINK_ACTIVE) {
1208 mac->led_link_act = i;
1209 return IXGBE_SUCCESS;
1210 }
1211 }
1212
1213 /*
1214 * If LEDCTL register does not have the LED link active set, then use
1215 * known MAC defaults.
1216 */
1217 switch (hw->mac.type) {
1218 case ixgbe_mac_X550EM_a:
1219 case ixgbe_mac_X550EM_x:
1220 mac->led_link_act = 1;
1221 break;
1222 default:
1223 mac->led_link_act = 2;
1224 }
1225 return IXGBE_SUCCESS;
1226 }
1227
1228 /**
1229 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1230 * @hw: pointer to hardware structure
1231 * @index: led number to turn on
1232 **/
1233 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1234 {
1235 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1236
1237 DEBUGFUNC("ixgbe_led_on_generic");
1238
1239 if (index > 3)
1240 return IXGBE_ERR_PARAM;
1241
1242 /* To turn on the LED, set mode to ON. */
1243 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1244 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1245 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1246 IXGBE_WRITE_FLUSH(hw);
1247
1248 return IXGBE_SUCCESS;
1249 }
1250
1251 /**
1252 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1253 * @hw: pointer to hardware structure
1254 * @index: led number to turn off
1255 **/
1256 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1257 {
1258 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1259
1260 DEBUGFUNC("ixgbe_led_off_generic");
1261
1262 if (index > 3)
1263 return IXGBE_ERR_PARAM;
1264
1265 /* To turn off the LED, set mode to OFF. */
1266 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1267 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1268 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1269 IXGBE_WRITE_FLUSH(hw);
1270
1271 return IXGBE_SUCCESS;
1272 }
1273
1274 /**
1275 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1276 * @hw: pointer to hardware structure
1277 *
1278 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1279 * ixgbe_hw struct in order to set up EEPROM access.
1280 **/
1281 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1282 {
1283 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1284 u32 eec;
1285 u16 eeprom_size;
1286
1287 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1288
1289 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1290 eeprom->type = ixgbe_eeprom_none;
1291 /* Set default semaphore delay to 10ms which is a well
1292 * tested value */
1293 eeprom->semaphore_delay = 10;
1294 /* Clear EEPROM page size, it will be initialized as needed */
1295 eeprom->word_page_size = 0;
1296
1297 /*
1298 * Check for EEPROM present first.
1299 * If not present leave as none
1300 */
1301 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1302 if (eec & IXGBE_EEC_PRES) {
1303 eeprom->type = ixgbe_eeprom_spi;
1304
1305 /*
1306 * SPI EEPROM is assumed here. This code would need to
1307 * change if a future EEPROM is not SPI.
1308 */
1309 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1310 IXGBE_EEC_SIZE_SHIFT);
1311 eeprom->word_size = 1 << (eeprom_size +
1312 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1313 }
1314
1315 if (eec & IXGBE_EEC_ADDR_SIZE)
1316 eeprom->address_bits = 16;
1317 else
1318 eeprom->address_bits = 8;
1319 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1320 "%d\n", eeprom->type, eeprom->word_size,
1321 eeprom->address_bits);
1322 }
1323
1324 return IXGBE_SUCCESS;
1325 }
1326
1327 /**
1328 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1329 * @hw: pointer to hardware structure
1330 * @offset: offset within the EEPROM to write
1331 * @words: number of word(s)
1332 * @data: 16 bit word(s) to write to EEPROM
1333 *
1334 * Reads 16 bit word(s) from EEPROM through bit-bang method
1335 **/
1336 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1337 u16 words, u16 *data)
1338 {
1339 s32 status = IXGBE_SUCCESS;
1340 u16 i, count;
1341
1342 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1343
1344 hw->eeprom.ops.init_params(hw);
1345
1346 if (words == 0) {
1347 status = IXGBE_ERR_INVALID_ARGUMENT;
1348 goto out;
1349 }
1350
1351 if (offset + words > hw->eeprom.word_size) {
1352 status = IXGBE_ERR_EEPROM;
1353 goto out;
1354 }
1355
1356 /*
1357 * The EEPROM page size cannot be queried from the chip. We do lazy
1358 * initialization. It is worth to do that when we write large buffer.
1359 */
1360 if ((hw->eeprom.word_page_size == 0) &&
1361 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1362 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1363
1364 /*
1365 * We cannot hold synchronization semaphores for too long
1366 * to avoid other entity starvation. However it is more efficient
1367 * to read in bursts than synchronizing access for each word.
1368 */
1369 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1370 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1371 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1372 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1373 count, &data[i]);
1374
1375 if (status != IXGBE_SUCCESS)
1376 break;
1377 }
1378
1379 out:
1380 return status;
1381 }
1382
1383 /**
1384 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1385 * @hw: pointer to hardware structure
1386 * @offset: offset within the EEPROM to be written to
1387 * @words: number of word(s)
1388 * @data: 16 bit word(s) to be written to the EEPROM
1389 *
1390 * If ixgbe_eeprom_update_checksum is not called after this function, the
1391 * EEPROM will most likely contain an invalid checksum.
1392 **/
1393 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1394 u16 words, u16 *data)
1395 {
1396 s32 status;
1397 u16 word;
1398 u16 page_size;
1399 u16 i;
1400 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1401
1402 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1403
1404 /* Prepare the EEPROM for writing */
1405 status = ixgbe_acquire_eeprom(hw);
1406
1407 if (status == IXGBE_SUCCESS) {
1408 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1409 ixgbe_release_eeprom(hw);
1410 status = IXGBE_ERR_EEPROM;
1411 }
1412 }
1413
1414 if (status == IXGBE_SUCCESS) {
1415 for (i = 0; i < words; i++) {
1416 ixgbe_standby_eeprom(hw);
1417
1418 /* Send the WRITE ENABLE command (8 bit opcode ) */
1419 ixgbe_shift_out_eeprom_bits(hw,
1420 IXGBE_EEPROM_WREN_OPCODE_SPI,
1421 IXGBE_EEPROM_OPCODE_BITS);
1422
1423 ixgbe_standby_eeprom(hw);
1424
1425 /*
1426 * Some SPI eeproms use the 8th address bit embedded
1427 * in the opcode
1428 */
1429 if ((hw->eeprom.address_bits == 8) &&
1430 ((offset + i) >= 128))
1431 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1432
1433 /* Send the Write command (8-bit opcode + addr) */
1434 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1435 IXGBE_EEPROM_OPCODE_BITS);
1436 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1437 hw->eeprom.address_bits);
1438
1439 page_size = hw->eeprom.word_page_size;
1440
1441 /* Send the data in burst via SPI*/
1442 do {
1443 word = data[i];
1444 word = (word >> 8) | (word << 8);
1445 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1446
1447 if (page_size == 0)
1448 break;
1449
1450 /* do not wrap around page */
1451 if (((offset + i) & (page_size - 1)) ==
1452 (page_size - 1))
1453 break;
1454 } while (++i < words);
1455
1456 ixgbe_standby_eeprom(hw);
1457 msec_delay(10);
1458 }
1459 /* Done with writing - release the EEPROM */
1460 ixgbe_release_eeprom(hw);
1461 }
1462
1463 return status;
1464 }
1465
1466 /**
1467 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1468 * @hw: pointer to hardware structure
1469 * @offset: offset within the EEPROM to be written to
1470 * @data: 16 bit word to be written to the EEPROM
1471 *
1472 * If ixgbe_eeprom_update_checksum is not called after this function, the
1473 * EEPROM will most likely contain an invalid checksum.
1474 **/
1475 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1476 {
1477 s32 status;
1478
1479 DEBUGFUNC("ixgbe_write_eeprom_generic");
1480
1481 hw->eeprom.ops.init_params(hw);
1482
1483 if (offset >= hw->eeprom.word_size) {
1484 status = IXGBE_ERR_EEPROM;
1485 goto out;
1486 }
1487
1488 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1489
1490 out:
1491 return status;
1492 }
1493
1494 /**
1495 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1496 * @hw: pointer to hardware structure
1497 * @offset: offset within the EEPROM to be read
1498 * @data: read 16 bit words(s) from EEPROM
1499 * @words: number of word(s)
1500 *
1501 * Reads 16 bit word(s) from EEPROM through bit-bang method
1502 **/
1503 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1504 u16 words, u16 *data)
1505 {
1506 s32 status = IXGBE_SUCCESS;
1507 u16 i, count;
1508
1509 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1510
1511 hw->eeprom.ops.init_params(hw);
1512
1513 if (words == 0) {
1514 status = IXGBE_ERR_INVALID_ARGUMENT;
1515 goto out;
1516 }
1517
1518 if (offset + words > hw->eeprom.word_size) {
1519 status = IXGBE_ERR_EEPROM;
1520 goto out;
1521 }
1522
1523 /*
1524 * We cannot hold synchronization semaphores for too long
1525 * to avoid other entity starvation. However it is more efficient
1526 * to read in bursts than synchronizing access for each word.
1527 */
1528 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1529 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1530 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1531
1532 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1533 count, &data[i]);
1534
1535 if (status != IXGBE_SUCCESS)
1536 break;
1537 }
1538
1539 out:
1540 return status;
1541 }
1542
1543 /**
1544 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1545 * @hw: pointer to hardware structure
1546 * @offset: offset within the EEPROM to be read
1547 * @words: number of word(s)
1548 * @data: read 16 bit word(s) from EEPROM
1549 *
1550 * Reads 16 bit word(s) from EEPROM through bit-bang method
1551 **/
1552 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1553 u16 words, u16 *data)
1554 {
1555 s32 status;
1556 u16 word_in;
1557 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1558 u16 i;
1559
1560 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1561
1562 /* Prepare the EEPROM for reading */
1563 status = ixgbe_acquire_eeprom(hw);
1564
1565 if (status == IXGBE_SUCCESS) {
1566 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1567 ixgbe_release_eeprom(hw);
1568 status = IXGBE_ERR_EEPROM;
1569 }
1570 }
1571
1572 if (status == IXGBE_SUCCESS) {
1573 for (i = 0; i < words; i++) {
1574 ixgbe_standby_eeprom(hw);
1575 /*
1576 * Some SPI eeproms use the 8th address bit embedded
1577 * in the opcode
1578 */
1579 if ((hw->eeprom.address_bits == 8) &&
1580 ((offset + i) >= 128))
1581 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1582
1583 /* Send the READ command (opcode + addr) */
1584 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1585 IXGBE_EEPROM_OPCODE_BITS);
1586 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1587 hw->eeprom.address_bits);
1588
1589 /* Read the data. */
1590 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1591 data[i] = (word_in >> 8) | (word_in << 8);
1592 }
1593
1594 /* End this read operation */
1595 ixgbe_release_eeprom(hw);
1596 }
1597
1598 return status;
1599 }
1600
1601 /**
1602 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1603 * @hw: pointer to hardware structure
1604 * @offset: offset within the EEPROM to be read
1605 * @data: read 16 bit value from EEPROM
1606 *
1607 * Reads 16 bit value from EEPROM through bit-bang method
1608 **/
1609 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1610 u16 *data)
1611 {
1612 s32 status;
1613
1614 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1615
1616 hw->eeprom.ops.init_params(hw);
1617
1618 if (offset >= hw->eeprom.word_size) {
1619 status = IXGBE_ERR_EEPROM;
1620 goto out;
1621 }
1622
1623 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1624
1625 out:
1626 return status;
1627 }
1628
1629 /**
1630 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1631 * @hw: pointer to hardware structure
1632 * @offset: offset of word in the EEPROM to read
1633 * @words: number of word(s)
1634 * @data: 16 bit word(s) from the EEPROM
1635 *
1636 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1637 **/
1638 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1639 u16 words, u16 *data)
1640 {
1641 u32 eerd;
1642 s32 status = IXGBE_SUCCESS;
1643 u32 i;
1644
1645 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1646
1647 hw->eeprom.ops.init_params(hw);
1648
1649 if (words == 0) {
1650 status = IXGBE_ERR_INVALID_ARGUMENT;
1651 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1652 goto out;
1653 }
1654
1655 if (offset >= hw->eeprom.word_size) {
1656 status = IXGBE_ERR_EEPROM;
1657 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1658 goto out;
1659 }
1660
1661 for (i = 0; i < words; i++) {
1662 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1663 IXGBE_EEPROM_RW_REG_START;
1664
1665 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1666 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1667
1668 if (status == IXGBE_SUCCESS) {
1669 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1670 IXGBE_EEPROM_RW_REG_DATA);
1671 } else {
1672 DEBUGOUT("Eeprom read timed out\n");
1673 goto out;
1674 }
1675 }
1676 out:
1677 return status;
1678 }
1679
1680 /**
1681 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1682 * @hw: pointer to hardware structure
1683 * @offset: offset within the EEPROM to be used as a scratch pad
1684 *
1685 * Discover EEPROM page size by writing marching data at given offset.
1686 * This function is called only when we are writing a new large buffer
1687 * at given offset so the data would be overwritten anyway.
1688 **/
1689 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1690 u16 offset)
1691 {
1692 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1693 s32 status = IXGBE_SUCCESS;
1694 u16 i;
1695
1696 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1697
1698 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1699 data[i] = i;
1700
1701 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1702 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1703 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1704 hw->eeprom.word_page_size = 0;
1705 if (status != IXGBE_SUCCESS)
1706 goto out;
1707
1708 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1709 if (status != IXGBE_SUCCESS)
1710 goto out;
1711
1712 /*
1713 * When writing in burst more than the actual page size
1714 * EEPROM address wraps around current page.
1715 */
1716 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1717
1718 DEBUGOUT1("Detected EEPROM page size = %d words.",
1719 hw->eeprom.word_page_size);
1720 out:
1721 return status;
1722 }
1723
1724 /**
1725 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1726 * @hw: pointer to hardware structure
1727 * @offset: offset of word in the EEPROM to read
1728 * @data: word read from the EEPROM
1729 *
1730 * Reads a 16 bit word from the EEPROM using the EERD register.
1731 **/
1732 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1733 {
1734 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1735 }
1736
1737 /**
1738 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1739 * @hw: pointer to hardware structure
1740 * @offset: offset of word in the EEPROM to write
1741 * @words: number of word(s)
1742 * @data: word(s) write to the EEPROM
1743 *
1744 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1745 **/
1746 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1747 u16 words, u16 *data)
1748 {
1749 u32 eewr;
1750 s32 status = IXGBE_SUCCESS;
1751 u16 i;
1752
1753 DEBUGFUNC("ixgbe_write_eewr_generic");
1754
1755 hw->eeprom.ops.init_params(hw);
1756
1757 if (words == 0) {
1758 status = IXGBE_ERR_INVALID_ARGUMENT;
1759 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1760 goto out;
1761 }
1762
1763 if (offset >= hw->eeprom.word_size) {
1764 status = IXGBE_ERR_EEPROM;
1765 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1766 goto out;
1767 }
1768
1769 for (i = 0; i < words; i++) {
1770 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1771 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1772 IXGBE_EEPROM_RW_REG_START;
1773
1774 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1775 if (status != IXGBE_SUCCESS) {
1776 DEBUGOUT("Eeprom write EEWR timed out\n");
1777 goto out;
1778 }
1779
1780 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1781
1782 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1783 if (status != IXGBE_SUCCESS) {
1784 DEBUGOUT("Eeprom write EEWR timed out\n");
1785 goto out;
1786 }
1787 }
1788
1789 out:
1790 return status;
1791 }
1792
1793 /**
1794 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1795 * @hw: pointer to hardware structure
1796 * @offset: offset of word in the EEPROM to write
1797 * @data: word write to the EEPROM
1798 *
1799 * Write a 16 bit word to the EEPROM using the EEWR register.
1800 **/
1801 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1802 {
1803 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1804 }
1805
1806 /**
1807 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1808 * @hw: pointer to hardware structure
1809 * @ee_reg: EEPROM flag for polling
1810 *
1811 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1812 * read or write is done respectively.
1813 **/
1814 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1815 {
1816 u32 i;
1817 u32 reg;
1818 s32 status = IXGBE_ERR_EEPROM;
1819
1820 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1821
1822 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1823 if (ee_reg == IXGBE_NVM_POLL_READ)
1824 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1825 else
1826 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1827
1828 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1829 status = IXGBE_SUCCESS;
1830 break;
1831 }
1832 usec_delay(5);
1833 }
1834
1835 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1836 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1837 "EEPROM read/write done polling timed out");
1838
1839 return status;
1840 }
1841
1842 /**
1843 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1844 * @hw: pointer to hardware structure
1845 *
1846 * Prepares EEPROM for access using bit-bang method. This function should
1847 * be called before issuing a command to the EEPROM.
1848 **/
1849 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1850 {
1851 s32 status = IXGBE_SUCCESS;
1852 u32 eec;
1853 u32 i;
1854
1855 DEBUGFUNC("ixgbe_acquire_eeprom");
1856
1857 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1858 != IXGBE_SUCCESS)
1859 status = IXGBE_ERR_SWFW_SYNC;
1860
1861 if (status == IXGBE_SUCCESS) {
1862 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1863
1864 /* Request EEPROM Access */
1865 eec |= IXGBE_EEC_REQ;
1866 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1867
1868 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1869 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1870 if (eec & IXGBE_EEC_GNT)
1871 break;
1872 usec_delay(5);
1873 }
1874
1875 /* Release if grant not acquired */
1876 if (!(eec & IXGBE_EEC_GNT)) {
1877 eec &= ~IXGBE_EEC_REQ;
1878 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1879 DEBUGOUT("Could not acquire EEPROM grant\n");
1880
1881 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1882 status = IXGBE_ERR_EEPROM;
1883 }
1884
1885 /* Setup EEPROM for Read/Write */
1886 if (status == IXGBE_SUCCESS) {
1887 /* Clear CS and SK */
1888 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1889 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1890 IXGBE_WRITE_FLUSH(hw);
1891 usec_delay(1);
1892 }
1893 }
1894 return status;
1895 }
1896
1897 /**
1898 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1899 * @hw: pointer to hardware structure
1900 *
1901 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1902 **/
1903 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1904 {
1905 s32 status = IXGBE_ERR_EEPROM;
1906 u32 timeout = 2000;
1907 u32 i;
1908 u32 swsm;
1909
1910 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1911
1912
1913 /* Get SMBI software semaphore between device drivers first */
1914 for (i = 0; i < timeout; i++) {
1915 /*
1916 * If the SMBI bit is 0 when we read it, then the bit will be
1917 * set and we have the semaphore
1918 */
1919 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1920 if (!(swsm & IXGBE_SWSM_SMBI)) {
1921 status = IXGBE_SUCCESS;
1922 break;
1923 }
1924 usec_delay(50);
1925 }
1926
1927 if (i == timeout) {
1928 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1929 "not granted.\n");
1930 /*
1931 * this release is particularly important because our attempts
1932 * above to get the semaphore may have succeeded, and if there
1933 * was a timeout, we should unconditionally clear the semaphore
1934 * bits to free the driver to make progress
1935 */
1936 ixgbe_release_eeprom_semaphore(hw);
1937
1938 usec_delay(50);
1939 /*
1940 * one last try
1941 * If the SMBI bit is 0 when we read it, then the bit will be
1942 * set and we have the semaphore
1943 */
1944 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1945 if (!(swsm & IXGBE_SWSM_SMBI))
1946 status = IXGBE_SUCCESS;
1947 }
1948
1949 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1950 if (status == IXGBE_SUCCESS) {
1951 for (i = 0; i < timeout; i++) {
1952 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1953
1954 /* Set the SW EEPROM semaphore bit to request access */
1955 swsm |= IXGBE_SWSM_SWESMBI;
1956 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1957
1958 /*
1959 * If we set the bit successfully then we got the
1960 * semaphore.
1961 */
1962 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1963 if (swsm & IXGBE_SWSM_SWESMBI)
1964 break;
1965
1966 usec_delay(50);
1967 }
1968
1969 /*
1970 * Release semaphores and return error if SW EEPROM semaphore
1971 * was not granted because we don't have access to the EEPROM
1972 */
1973 if (i >= timeout) {
1974 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1975 "SWESMBI Software EEPROM semaphore not granted.\n");
1976 ixgbe_release_eeprom_semaphore(hw);
1977 status = IXGBE_ERR_EEPROM;
1978 }
1979 } else {
1980 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1981 "Software semaphore SMBI between device drivers "
1982 "not granted.\n");
1983 }
1984
1985 return status;
1986 }
1987
1988 /**
1989 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1990 * @hw: pointer to hardware structure
1991 *
1992 * This function clears hardware semaphore bits.
1993 **/
1994 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1995 {
1996 u32 swsm;
1997
1998 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1999
2000 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
2001
2002 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
2003 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
2004 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2005 IXGBE_WRITE_FLUSH(hw);
2006 }
2007
2008 /**
2009 * ixgbe_ready_eeprom - Polls for EEPROM ready
2010 * @hw: pointer to hardware structure
2011 **/
2012 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2013 {
2014 s32 status = IXGBE_SUCCESS;
2015 u16 i;
2016 u8 spi_stat_reg;
2017
2018 DEBUGFUNC("ixgbe_ready_eeprom");
2019
2020 /*
2021 * Read "Status Register" repeatedly until the LSB is cleared. The
2022 * EEPROM will signal that the command has been completed by clearing
2023 * bit 0 of the internal status register. If it's not cleared within
2024 * 5 milliseconds, then error out.
2025 */
2026 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2027 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2028 IXGBE_EEPROM_OPCODE_BITS);
2029 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2030 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2031 break;
2032
2033 usec_delay(5);
2034 ixgbe_standby_eeprom(hw);
2035 }
2036
2037 /*
2038 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2039 * devices (and only 0-5mSec on 5V devices)
2040 */
2041 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2042 DEBUGOUT("SPI EEPROM Status error\n");
2043 status = IXGBE_ERR_EEPROM;
2044 }
2045
2046 return status;
2047 }
2048
2049 /**
2050 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2051 * @hw: pointer to hardware structure
2052 **/
2053 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2054 {
2055 u32 eec;
2056
2057 DEBUGFUNC("ixgbe_standby_eeprom");
2058
2059 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2060
2061 /* Toggle CS to flush commands */
2062 eec |= IXGBE_EEC_CS;
2063 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2064 IXGBE_WRITE_FLUSH(hw);
2065 usec_delay(1);
2066 eec &= ~IXGBE_EEC_CS;
2067 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2068 IXGBE_WRITE_FLUSH(hw);
2069 usec_delay(1);
2070 }
2071
2072 /**
2073 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2074 * @hw: pointer to hardware structure
2075 * @data: data to send to the EEPROM
2076 * @count: number of bits to shift out
2077 **/
2078 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2079 u16 count)
2080 {
2081 u32 eec;
2082 u32 mask;
2083 u32 i;
2084
2085 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2086
2087 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2088
2089 /*
2090 * Mask is used to shift "count" bits of "data" out to the EEPROM
2091 * one bit at a time. Determine the starting bit based on count
2092 */
2093 mask = 0x01 << (count - 1);
2094
2095 for (i = 0; i < count; i++) {
2096 /*
2097 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2098 * "1", and then raising and then lowering the clock (the SK
2099 * bit controls the clock input to the EEPROM). A "0" is
2100 * shifted out to the EEPROM by setting "DI" to "0" and then
2101 * raising and then lowering the clock.
2102 */
2103 if (data & mask)
2104 eec |= IXGBE_EEC_DI;
2105 else
2106 eec &= ~IXGBE_EEC_DI;
2107
2108 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2109 IXGBE_WRITE_FLUSH(hw);
2110
2111 usec_delay(1);
2112
2113 ixgbe_raise_eeprom_clk(hw, &eec);
2114 ixgbe_lower_eeprom_clk(hw, &eec);
2115
2116 /*
2117 * Shift mask to signify next bit of data to shift in to the
2118 * EEPROM
2119 */
2120 mask = mask >> 1;
2121 }
2122
2123 /* We leave the "DI" bit set to "0" when we leave this routine. */
2124 eec &= ~IXGBE_EEC_DI;
2125 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2126 IXGBE_WRITE_FLUSH(hw);
2127 }
2128
2129 /**
2130 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2131 * @hw: pointer to hardware structure
2132 * @count: number of bits to shift
2133 **/
2134 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2135 {
2136 u32 eec;
2137 u32 i;
2138 u16 data = 0;
2139
2140 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2141
2142 /*
2143 * In order to read a register from the EEPROM, we need to shift
2144 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2145 * the clock input to the EEPROM (setting the SK bit), and then reading
2146 * the value of the "DO" bit. During this "shifting in" process the
2147 * "DI" bit should always be clear.
2148 */
2149 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2150
2151 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2152
2153 for (i = 0; i < count; i++) {
2154 data = data << 1;
2155 ixgbe_raise_eeprom_clk(hw, &eec);
2156
2157 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2158
2159 eec &= ~(IXGBE_EEC_DI);
2160 if (eec & IXGBE_EEC_DO)
2161 data |= 1;
2162
2163 ixgbe_lower_eeprom_clk(hw, &eec);
2164 }
2165
2166 return data;
2167 }
2168
2169 /**
2170 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2171 * @hw: pointer to hardware structure
2172 * @eec: EEC register's current value
2173 **/
2174 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2175 {
2176 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2177
2178 /*
2179 * Raise the clock input to the EEPROM
2180 * (setting the SK bit), then delay
2181 */
2182 *eec = *eec | IXGBE_EEC_SK;
2183 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2184 IXGBE_WRITE_FLUSH(hw);
2185 usec_delay(1);
2186 }
2187
2188 /**
2189 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2190 * @hw: pointer to hardware structure
2191 * @eec: EEC's current value
2192 **/
2193 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2194 {
2195 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2196
2197 /*
2198 * Lower the clock input to the EEPROM (clearing the SK bit), then
2199 * delay
2200 */
2201 *eec = *eec & ~IXGBE_EEC_SK;
2202 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2203 IXGBE_WRITE_FLUSH(hw);
2204 usec_delay(1);
2205 }
2206
2207 /**
2208 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2209 * @hw: pointer to hardware structure
2210 **/
2211 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2212 {
2213 u32 eec;
2214
2215 DEBUGFUNC("ixgbe_release_eeprom");
2216
2217 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2218
2219 eec |= IXGBE_EEC_CS; /* Pull CS high */
2220 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2221
2222 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2223 IXGBE_WRITE_FLUSH(hw);
2224
2225 usec_delay(1);
2226
2227 /* Stop requesting EEPROM access */
2228 eec &= ~IXGBE_EEC_REQ;
2229 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2230
2231 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2232
2233 /* Delay before attempt to obtain semaphore again to allow FW access */
2234 msec_delay(hw->eeprom.semaphore_delay);
2235 }
2236
2237 /**
2238 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2239 * @hw: pointer to hardware structure
2240 *
2241 * Returns a negative error code on error, or the 16-bit checksum
2242 **/
2243 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2244 {
2245 u16 i;
2246 u16 j;
2247 u16 checksum = 0;
2248 u16 length = 0;
2249 u16 pointer = 0;
2250 u16 word = 0;
2251
2252 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2253
2254 /* Include 0x0-0x3F in the checksum */
2255 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2256 if (hw->eeprom.ops.read(hw, i, &word)) {
2257 DEBUGOUT("EEPROM read failed\n");
2258 return IXGBE_ERR_EEPROM;
2259 }
2260 checksum += word;
2261 }
2262
2263 /* Include all data from pointers except for the fw pointer */
2264 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2265 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2266 DEBUGOUT("EEPROM read failed\n");
2267 return IXGBE_ERR_EEPROM;
2268 }
2269
2270 /* If the pointer seems invalid */
2271 if (pointer == 0xFFFF || pointer == 0)
2272 continue;
2273
2274 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2275 DEBUGOUT("EEPROM read failed\n");
2276 return IXGBE_ERR_EEPROM;
2277 }
2278
2279 if (length == 0xFFFF || length == 0)
2280 continue;
2281
2282 for (j = pointer + 1; j <= pointer + length; j++) {
2283 if (hw->eeprom.ops.read(hw, j, &word)) {
2284 DEBUGOUT("EEPROM read failed\n");
2285 return IXGBE_ERR_EEPROM;
2286 }
2287 checksum += word;
2288 }
2289 }
2290
2291 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2292
2293 return (s32)checksum;
2294 }
2295
2296 /**
2297 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2298 * @hw: pointer to hardware structure
2299 * @checksum_val: calculated checksum
2300 *
2301 * Performs checksum calculation and validates the EEPROM checksum. If the
2302 * caller does not need checksum_val, the value can be NULL.
2303 **/
2304 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2305 u16 *checksum_val)
2306 {
2307 s32 status;
2308 u16 checksum;
2309 u16 read_checksum = 0;
2310
2311 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2312
2313 /* Read the first word from the EEPROM. If this times out or fails, do
2314 * not continue or we could be in for a very long wait while every
2315 * EEPROM read fails
2316 */
2317 status = hw->eeprom.ops.read(hw, 0, &checksum);
2318 if (status) {
2319 DEBUGOUT("EEPROM read failed\n");
2320 return status;
2321 }
2322
2323 status = hw->eeprom.ops.calc_checksum(hw);
2324 if (status < 0)
2325 return status;
2326
2327 checksum = (u16)(status & 0xffff);
2328
2329 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2330 if (status) {
2331 DEBUGOUT("EEPROM read failed\n");
2332 return status;
2333 }
2334
2335 /* Verify read checksum from EEPROM is the same as
2336 * calculated checksum
2337 */
2338 if (read_checksum != checksum)
2339 status = IXGBE_ERR_EEPROM_CHECKSUM;
2340
2341 /* If the user cares, return the calculated checksum */
2342 if (checksum_val)
2343 *checksum_val = checksum;
2344
2345 return status;
2346 }
2347
2348 /**
2349 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2350 * @hw: pointer to hardware structure
2351 **/
2352 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2353 {
2354 s32 status;
2355 u16 checksum;
2356
2357 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2358
2359 /* Read the first word from the EEPROM. If this times out or fails, do
2360 * not continue or we could be in for a very long wait while every
2361 * EEPROM read fails
2362 */
2363 status = hw->eeprom.ops.read(hw, 0, &checksum);
2364 if (status) {
2365 DEBUGOUT("EEPROM read failed\n");
2366 return status;
2367 }
2368
2369 status = hw->eeprom.ops.calc_checksum(hw);
2370 if (status < 0)
2371 return status;
2372
2373 checksum = (u16)(status & 0xffff);
2374
2375 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2376
2377 return status;
2378 }
2379
2380 /**
2381 * ixgbe_validate_mac_addr - Validate MAC address
2382 * @mac_addr: pointer to MAC address.
2383 *
2384 * Tests a MAC address to ensure it is a valid Individual Address.
2385 **/
2386 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2387 {
2388 s32 status = IXGBE_SUCCESS;
2389
2390 DEBUGFUNC("ixgbe_validate_mac_addr");
2391
2392 /* Make sure it is not a multicast address */
2393 if (IXGBE_IS_MULTICAST(mac_addr)) {
2394 status = IXGBE_ERR_INVALID_MAC_ADDR;
2395 /* Not a broadcast address */
2396 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2397 status = IXGBE_ERR_INVALID_MAC_ADDR;
2398 /* Reject the zero address */
2399 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2400 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2401 status = IXGBE_ERR_INVALID_MAC_ADDR;
2402 }
2403 return status;
2404 }
2405
2406 /**
2407 * ixgbe_set_rar_generic - Set Rx address register
2408 * @hw: pointer to hardware structure
2409 * @index: Receive address register to write
2410 * @addr: Address to put into receive address register
2411 * @vmdq: VMDq "set" or "pool" index
2412 * @enable_addr: set flag that address is active
2413 *
2414 * Puts an ethernet address into a receive address register.
2415 **/
2416 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2417 u32 enable_addr)
2418 {
2419 u32 rar_low, rar_high;
2420 u32 rar_entries = hw->mac.num_rar_entries;
2421
2422 DEBUGFUNC("ixgbe_set_rar_generic");
2423
2424 /* Make sure we are using a valid rar index range */
2425 if (index >= rar_entries) {
2426 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2427 "RAR index %d is out of range.\n", index);
2428 return IXGBE_ERR_INVALID_ARGUMENT;
2429 }
2430
2431 /* setup VMDq pool selection before this RAR gets enabled */
2432 hw->mac.ops.set_vmdq(hw, index, vmdq);
2433
2434 /*
2435 * HW expects these in little endian so we reverse the byte
2436 * order from network order (big endian) to little endian
2437 */
2438 rar_low = ((u32)addr[0] |
2439 ((u32)addr[1] << 8) |
2440 ((u32)addr[2] << 16) |
2441 ((u32)addr[3] << 24));
2442 /*
2443 * Some parts put the VMDq setting in the extra RAH bits,
2444 * so save everything except the lower 16 bits that hold part
2445 * of the address and the address valid bit.
2446 */
2447 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2448 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2449 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2450
2451 if (enable_addr != 0)
2452 rar_high |= IXGBE_RAH_AV;
2453
2454 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2455 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2456
2457 return IXGBE_SUCCESS;
2458 }
2459
2460 /**
2461 * ixgbe_clear_rar_generic - Remove Rx address register
2462 * @hw: pointer to hardware structure
2463 * @index: Receive address register to write
2464 *
2465 * Clears an ethernet address from a receive address register.
2466 **/
2467 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2468 {
2469 u32 rar_high;
2470 u32 rar_entries = hw->mac.num_rar_entries;
2471
2472 DEBUGFUNC("ixgbe_clear_rar_generic");
2473
2474 /* Make sure we are using a valid rar index range */
2475 if (index >= rar_entries) {
2476 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2477 "RAR index %d is out of range.\n", index);
2478 return IXGBE_ERR_INVALID_ARGUMENT;
2479 }
2480
2481 /*
2482 * Some parts put the VMDq setting in the extra RAH bits,
2483 * so save everything except the lower 16 bits that hold part
2484 * of the address and the address valid bit.
2485 */
2486 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2487 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2488
2489 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2490 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2491
2492 /* clear VMDq pool/queue selection for this RAR */
2493 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2494
2495 return IXGBE_SUCCESS;
2496 }
2497
2498 /**
2499 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2500 * @hw: pointer to hardware structure
2501 *
2502 * Places the MAC address in receive address register 0 and clears the rest
2503 * of the receive address registers. Clears the multicast table. Assumes
2504 * the receiver is in reset when the routine is called.
2505 **/
2506 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2507 {
2508 u32 i;
2509 u32 rar_entries = hw->mac.num_rar_entries;
2510
2511 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2512
2513 /*
2514 * If the current mac address is valid, assume it is a software override
2515 * to the permanent address.
2516 * Otherwise, use the permanent address from the eeprom.
2517 */
2518 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2519 IXGBE_ERR_INVALID_MAC_ADDR) {
2520 /* Get the MAC address from the RAR0 for later reference */
2521 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2522
2523 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2524 hw->mac.addr[0], hw->mac.addr[1],
2525 hw->mac.addr[2]);
2526 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2527 hw->mac.addr[4], hw->mac.addr[5]);
2528 } else {
2529 /* Setup the receive address. */
2530 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2531 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2532 hw->mac.addr[0], hw->mac.addr[1],
2533 hw->mac.addr[2]);
2534 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2535 hw->mac.addr[4], hw->mac.addr[5]);
2536
2537 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2538 }
2539
2540 /* clear VMDq pool/queue selection for RAR 0 */
2541 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2542
2543 hw->addr_ctrl.overflow_promisc = 0;
2544
2545 hw->addr_ctrl.rar_used_count = 1;
2546
2547 /* Zero out the other receive addresses. */
2548 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2549 for (i = 1; i < rar_entries; i++) {
2550 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2551 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2552 }
2553
2554 /* Clear the MTA */
2555 hw->addr_ctrl.mta_in_use = 0;
2556 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2557
2558 DEBUGOUT(" Clearing MTA\n");
2559 for (i = 0; i < hw->mac.mcft_size; i++)
2560 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2561
2562 ixgbe_init_uta_tables(hw);
2563
2564 return IXGBE_SUCCESS;
2565 }
2566
2567 /**
2568 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2569 * @hw: pointer to hardware structure
2570 * @addr: new address
2571 * @vmdq: VMDq "set" or "pool" index
2572 *
2573 * Adds it to unused receive address register or goes into promiscuous mode.
2574 **/
2575 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2576 {
2577 u32 rar_entries = hw->mac.num_rar_entries;
2578 u32 rar;
2579
2580 DEBUGFUNC("ixgbe_add_uc_addr");
2581
2582 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2583 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2584
2585 /*
2586 * Place this address in the RAR if there is room,
2587 * else put the controller into promiscuous mode
2588 */
2589 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2590 rar = hw->addr_ctrl.rar_used_count;
2591 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2592 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2593 hw->addr_ctrl.rar_used_count++;
2594 } else {
2595 hw->addr_ctrl.overflow_promisc++;
2596 }
2597
2598 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2599 }
2600
2601 /**
2602 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2603 * @hw: pointer to hardware structure
2604 * @addr_list: the list of new addresses
2605 * @addr_count: number of addresses
2606 * @next: iterator function to walk the address list
2607 *
2608 * The given list replaces any existing list. Clears the secondary addrs from
2609 * receive address registers. Uses unused receive address registers for the
2610 * first secondary addresses, and falls back to promiscuous mode as needed.
2611 *
2612 * Drivers using secondary unicast addresses must set user_set_promisc when
2613 * manually putting the device into promiscuous mode.
2614 **/
2615 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2616 u32 addr_count, ixgbe_mc_addr_itr next)
2617 {
2618 u8 *addr;
2619 u32 i;
2620 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2621 u32 uc_addr_in_use;
2622 u32 fctrl;
2623 u32 vmdq;
2624
2625 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2626
2627 /*
2628 * Clear accounting of old secondary address list,
2629 * don't count RAR[0]
2630 */
2631 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2632 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2633 hw->addr_ctrl.overflow_promisc = 0;
2634
2635 /* Zero out the other receive addresses */
2636 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2637 for (i = 0; i < uc_addr_in_use; i++) {
2638 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2639 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2640 }
2641
2642 /* Add the new addresses */
2643 for (i = 0; i < addr_count; i++) {
2644 DEBUGOUT(" Adding the secondary addresses:\n");
2645 addr = next(hw, &addr_list, &vmdq);
2646 ixgbe_add_uc_addr(hw, addr, vmdq);
2647 }
2648
2649 if (hw->addr_ctrl.overflow_promisc) {
2650 /* enable promisc if not already in overflow or set by user */
2651 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2652 DEBUGOUT(" Entering address overflow promisc mode\n");
2653 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2654 fctrl |= IXGBE_FCTRL_UPE;
2655 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2656 }
2657 } else {
2658 /* only disable if set by overflow, not by user */
2659 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2660 DEBUGOUT(" Leaving address overflow promisc mode\n");
2661 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2662 fctrl &= ~IXGBE_FCTRL_UPE;
2663 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2664 }
2665 }
2666
2667 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2668 return IXGBE_SUCCESS;
2669 }
2670
2671 /**
2672 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2673 * @hw: pointer to hardware structure
2674 * @mc_addr: the multicast address
2675 *
2676 * Extracts the 12 bits, from a multicast address, to determine which
2677 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2678 * incoming rx multicast addresses, to determine the bit-vector to check in
2679 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2680 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2681 * to mc_filter_type.
2682 **/
2683 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2684 {
2685 u32 vector = 0;
2686
2687 DEBUGFUNC("ixgbe_mta_vector");
2688
2689 switch (hw->mac.mc_filter_type) {
2690 case 0: /* use bits [47:36] of the address */
2691 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2692 break;
2693 case 1: /* use bits [46:35] of the address */
2694 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2695 break;
2696 case 2: /* use bits [45:34] of the address */
2697 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2698 break;
2699 case 3: /* use bits [43:32] of the address */
2700 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2701 break;
2702 default: /* Invalid mc_filter_type */
2703 DEBUGOUT("MC filter type param set incorrectly\n");
2704 ASSERT(0);
2705 break;
2706 }
2707
2708 /* vector can only be 12-bits or boundary will be exceeded */
2709 vector &= 0xFFF;
2710 return vector;
2711 }
2712
2713 /**
2714 * ixgbe_set_mta - Set bit-vector in multicast table
2715 * @hw: pointer to hardware structure
2716 * @mc_addr: Multicast address
2717 *
2718 * Sets the bit-vector in the multicast table.
2719 **/
2720 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2721 {
2722 u32 vector;
2723 u32 vector_bit;
2724 u32 vector_reg;
2725
2726 DEBUGFUNC("ixgbe_set_mta");
2727
2728 hw->addr_ctrl.mta_in_use++;
2729
2730 vector = ixgbe_mta_vector(hw, mc_addr);
2731 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2732
2733 /*
2734 * The MTA is a register array of 128 32-bit registers. It is treated
2735 * like an array of 4096 bits. We want to set bit
2736 * BitArray[vector_value]. So we figure out what register the bit is
2737 * in, read it, OR in the new bit, then write back the new value. The
2738 * register is determined by the upper 7 bits of the vector value and
2739 * the bit within that register are determined by the lower 5 bits of
2740 * the value.
2741 */
2742 vector_reg = (vector >> 5) & 0x7F;
2743 vector_bit = vector & 0x1F;
2744 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2745 }
2746
2747 /**
2748 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2749 * @hw: pointer to hardware structure
2750 * @mc_addr_list: the list of new multicast addresses
2751 * @mc_addr_count: number of addresses
2752 * @next: iterator function to walk the multicast address list
2753 * @clear: flag, when set clears the table beforehand
2754 *
2755 * When the clear flag is set, the given list replaces any existing list.
2756 * Hashes the given addresses into the multicast table.
2757 **/
2758 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2759 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2760 bool clear)
2761 {
2762 u32 i;
2763 u32 vmdq;
2764
2765 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2766
2767 /*
2768 * Set the new number of MC addresses that we are being requested to
2769 * use.
2770 */
2771 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2772 hw->addr_ctrl.mta_in_use = 0;
2773
2774 /* Clear mta_shadow */
2775 if (clear) {
2776 DEBUGOUT(" Clearing MTA\n");
2777 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2778 }
2779
2780 /* Update mta_shadow */
2781 for (i = 0; i < mc_addr_count; i++) {
2782 DEBUGOUT(" Adding the multicast addresses:\n");
2783 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2784 }
2785
2786 /* Enable mta */
2787 for (i = 0; i < hw->mac.mcft_size; i++)
2788 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2789 hw->mac.mta_shadow[i]);
2790
2791 if (hw->addr_ctrl.mta_in_use > 0)
2792 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2793 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2794
2795 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2796 return IXGBE_SUCCESS;
2797 }
2798
2799 /**
2800 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2801 * @hw: pointer to hardware structure
2802 *
2803 * Enables multicast address in RAR and the use of the multicast hash table.
2804 **/
2805 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2806 {
2807 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2808
2809 DEBUGFUNC("ixgbe_enable_mc_generic");
2810
2811 if (a->mta_in_use > 0)
2812 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2813 hw->mac.mc_filter_type);
2814
2815 return IXGBE_SUCCESS;
2816 }
2817
2818 /**
2819 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2820 * @hw: pointer to hardware structure
2821 *
2822 * Disables multicast address in RAR and the use of the multicast hash table.
2823 **/
2824 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2825 {
2826 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2827
2828 DEBUGFUNC("ixgbe_disable_mc_generic");
2829
2830 if (a->mta_in_use > 0)
2831 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2832
2833 return IXGBE_SUCCESS;
2834 }
2835
2836 /**
2837 * ixgbe_fc_enable_generic - Enable flow control
2838 * @hw: pointer to hardware structure
2839 *
2840 * Enable flow control according to the current settings.
2841 **/
2842 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2843 {
2844 s32 ret_val = IXGBE_SUCCESS;
2845 u32 mflcn_reg, fccfg_reg;
2846 u32 reg;
2847 u32 fcrtl, fcrth;
2848 int i;
2849
2850 DEBUGFUNC("ixgbe_fc_enable_generic");
2851
2852 /* Validate the water mark configuration */
2853 if (!hw->fc.pause_time) {
2854 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2855 goto out;
2856 }
2857
2858 /* Low water mark of zero causes XOFF floods */
2859 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2860 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2861 hw->fc.high_water[i]) {
2862 if (!hw->fc.low_water[i] ||
2863 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2864 DEBUGOUT("Invalid water mark configuration\n");
2865 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2866 goto out;
2867 }
2868 }
2869 }
2870
2871 /* Negotiate the fc mode to use */
2872 hw->mac.ops.fc_autoneg(hw);
2873
2874 /* Disable any previous flow control settings */
2875 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2876 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2877
2878 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2879 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2880
2881 /*
2882 * The possible values of fc.current_mode are:
2883 * 0: Flow control is completely disabled
2884 * 1: Rx flow control is enabled (we can receive pause frames,
2885 * but not send pause frames).
2886 * 2: Tx flow control is enabled (we can send pause frames but
2887 * we do not support receiving pause frames).
2888 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2889 * other: Invalid.
2890 */
2891 switch (hw->fc.current_mode) {
2892 case ixgbe_fc_none:
2893 /*
2894 * Flow control is disabled by software override or autoneg.
2895 * The code below will actually disable it in the HW.
2896 */
2897 break;
2898 case ixgbe_fc_rx_pause:
2899 /*
2900 * Rx Flow control is enabled and Tx Flow control is
2901 * disabled by software override. Since there really
2902 * isn't a way to advertise that we are capable of RX
2903 * Pause ONLY, we will advertise that we support both
2904 * symmetric and asymmetric Rx PAUSE. Later, we will
2905 * disable the adapter's ability to send PAUSE frames.
2906 */
2907 mflcn_reg |= IXGBE_MFLCN_RFCE;
2908 break;
2909 case ixgbe_fc_tx_pause:
2910 /*
2911 * Tx Flow control is enabled, and Rx Flow control is
2912 * disabled by software override.
2913 */
2914 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2915 break;
2916 case ixgbe_fc_full:
2917 /* Flow control (both Rx and Tx) is enabled by SW override. */
2918 mflcn_reg |= IXGBE_MFLCN_RFCE;
2919 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2920 break;
2921 default:
2922 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2923 "Flow control param set incorrectly\n");
2924 ret_val = IXGBE_ERR_CONFIG;
2925 goto out;
2926 break;
2927 }
2928
2929 /* Set 802.3x based flow control settings. */
2930 mflcn_reg |= IXGBE_MFLCN_DPF;
2931 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2932 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2933
2934
2935 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2936 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2937 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2938 hw->fc.high_water[i]) {
2939 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2940 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2941 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2942 } else {
2943 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2944 /*
2945 * In order to prevent Tx hangs when the internal Tx
2946 * switch is enabled we must set the high water mark
2947 * to the Rx packet buffer size - 24KB. This allows
2948 * the Tx switch to function even under heavy Rx
2949 * workloads.
2950 */
2951 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2952 }
2953
2954 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2955 }
2956
2957 /* Configure pause time (2 TCs per register) */
2958 reg = (u32)hw->fc.pause_time * 0x00010001;
2959 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2960 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2961
2962 /* Configure flow control refresh threshold value */
2963 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2964
2965 out:
2966 return ret_val;
2967 }
2968
2969 /**
2970 * ixgbe_negotiate_fc - Negotiate flow control
2971 * @hw: pointer to hardware structure
2972 * @adv_reg: flow control advertised settings
2973 * @lp_reg: link partner's flow control settings
2974 * @adv_sym: symmetric pause bit in advertisement
2975 * @adv_asm: asymmetric pause bit in advertisement
2976 * @lp_sym: symmetric pause bit in link partner advertisement
2977 * @lp_asm: asymmetric pause bit in link partner advertisement
2978 *
2979 * Find the intersection between advertised settings and link partner's
2980 * advertised settings
2981 **/
2982 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2983 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2984 {
2985 if ((!(adv_reg)) || (!(lp_reg))) {
2986 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2987 "Local or link partner's advertised flow control "
2988 "settings are NULL. Local: %x, link partner: %x\n",
2989 adv_reg, lp_reg);
2990 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2991 }
2992
2993 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2994 /*
2995 * Now we need to check if the user selected Rx ONLY
2996 * of pause frames. In this case, we had to advertise
2997 * FULL flow control because we could not advertise RX
2998 * ONLY. Hence, we must now check to see if we need to
2999 * turn OFF the TRANSMISSION of PAUSE frames.
3000 */
3001 if (hw->fc.requested_mode == ixgbe_fc_full) {
3002 hw->fc.current_mode = ixgbe_fc_full;
3003 DEBUGOUT("Flow Control = FULL.\n");
3004 } else {
3005 hw->fc.current_mode = ixgbe_fc_rx_pause;
3006 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3007 }
3008 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3009 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3010 hw->fc.current_mode = ixgbe_fc_tx_pause;
3011 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3012 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3013 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3014 hw->fc.current_mode = ixgbe_fc_rx_pause;
3015 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3016 } else {
3017 hw->fc.current_mode = ixgbe_fc_none;
3018 DEBUGOUT("Flow Control = NONE.\n");
3019 }
3020 return IXGBE_SUCCESS;
3021 }
3022
3023 /**
3024 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3025 * @hw: pointer to hardware structure
3026 *
3027 * Enable flow control according on 1 gig fiber.
3028 **/
3029 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3030 {
3031 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3032 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3033
3034 /*
3035 * On multispeed fiber at 1g, bail out if
3036 * - link is up but AN did not complete, or if
3037 * - link is up and AN completed but timed out
3038 */
3039
3040 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3041 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3042 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3043 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3044 goto out;
3045 }
3046
3047 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3048 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3049
3050 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3051 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3052 IXGBE_PCS1GANA_ASM_PAUSE,
3053 IXGBE_PCS1GANA_SYM_PAUSE,
3054 IXGBE_PCS1GANA_ASM_PAUSE);
3055
3056 out:
3057 return ret_val;
3058 }
3059
3060 /**
3061 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3062 * @hw: pointer to hardware structure
3063 *
3064 * Enable flow control according to IEEE clause 37.
3065 **/
3066 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3067 {
3068 u32 links2, anlp1_reg, autoc_reg, links;
3069 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3070
3071 /*
3072 * On backplane, bail out if
3073 * - backplane autoneg was not completed, or if
3074 * - we are 82599 and link partner is not AN enabled
3075 */
3076 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3077 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3078 DEBUGOUT("Auto-Negotiation did not complete\n");
3079 goto out;
3080 }
3081
3082 if (hw->mac.type == ixgbe_mac_82599EB) {
3083 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3084 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3085 DEBUGOUT("Link partner is not AN enabled\n");
3086 goto out;
3087 }
3088 }
3089 /*
3090 * Read the 10g AN autoc and LP ability registers and resolve
3091 * local flow control settings accordingly
3092 */
3093 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3094 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3095
3096 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3097 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3098 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3099
3100 out:
3101 return ret_val;
3102 }
3103
3104 /**
3105 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3106 * @hw: pointer to hardware structure
3107 *
3108 * Enable flow control according to IEEE clause 37.
3109 **/
3110 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3111 {
3112 u16 technology_ability_reg = 0;
3113 u16 lp_technology_ability_reg = 0;
3114
3115 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3116 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3117 &technology_ability_reg);
3118 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3119 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3120 &lp_technology_ability_reg);
3121
3122 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3123 (u32)lp_technology_ability_reg,
3124 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3125 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3126 }
3127
3128 /**
3129 * ixgbe_fc_autoneg - Configure flow control
3130 * @hw: pointer to hardware structure
3131 *
3132 * Compares our advertised flow control capabilities to those advertised by
3133 * our link partner, and determines the proper flow control mode to use.
3134 **/
3135 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3136 {
3137 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3138 ixgbe_link_speed speed;
3139 bool link_up;
3140
3141 DEBUGFUNC("ixgbe_fc_autoneg");
3142
3143 /*
3144 * AN should have completed when the cable was plugged in.
3145 * Look for reasons to bail out. Bail out if:
3146 * - FC autoneg is disabled, or if
3147 * - link is not up.
3148 */
3149 if (hw->fc.disable_fc_autoneg) {
3150 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3151 "Flow control autoneg is disabled");
3152 goto out;
3153 }
3154
3155 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3156 if (!link_up) {
3157 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3158 goto out;
3159 }
3160
3161 switch (hw->phy.media_type) {
3162 /* Autoneg flow control on fiber adapters */
3163 case ixgbe_media_type_fiber_fixed:
3164 case ixgbe_media_type_fiber_qsfp:
3165 case ixgbe_media_type_fiber:
3166 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3167 ret_val = ixgbe_fc_autoneg_fiber(hw);
3168 break;
3169
3170 /* Autoneg flow control on backplane adapters */
3171 case ixgbe_media_type_backplane:
3172 ret_val = ixgbe_fc_autoneg_backplane(hw);
3173 break;
3174
3175 /* Autoneg flow control on copper adapters */
3176 case ixgbe_media_type_copper:
3177 if (ixgbe_device_supports_autoneg_fc(hw))
3178 ret_val = ixgbe_fc_autoneg_copper(hw);
3179 break;
3180
3181 default:
3182 break;
3183 }
3184
3185 out:
3186 if (ret_val == IXGBE_SUCCESS) {
3187 hw->fc.fc_was_autonegged = TRUE;
3188 } else {
3189 hw->fc.fc_was_autonegged = FALSE;
3190 hw->fc.current_mode = hw->fc.requested_mode;
3191 }
3192 }
3193
3194 /*
3195 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3196 * @hw: pointer to hardware structure
3197 *
3198 * System-wide timeout range is encoded in PCIe Device Control2 register.
3199 *
3200 * Add 10% to specified maximum and return the number of times to poll for
3201 * completion timeout, in units of 100 microsec. Never return less than
3202 * 800 = 80 millisec.
3203 */
3204 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3205 {
3206 s16 devctl2;
3207 u32 pollcnt;
3208
3209 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3210 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3211
3212 switch (devctl2) {
3213 case IXGBE_PCIDEVCTRL2_65_130ms:
3214 pollcnt = 1300; /* 130 millisec */
3215 break;
3216 case IXGBE_PCIDEVCTRL2_260_520ms:
3217 pollcnt = 5200; /* 520 millisec */
3218 break;
3219 case IXGBE_PCIDEVCTRL2_1_2s:
3220 pollcnt = 20000; /* 2 sec */
3221 break;
3222 case IXGBE_PCIDEVCTRL2_4_8s:
3223 pollcnt = 80000; /* 8 sec */
3224 break;
3225 case IXGBE_PCIDEVCTRL2_17_34s:
3226 pollcnt = 34000; /* 34 sec */
3227 break;
3228 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3229 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3230 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3231 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3232 default:
3233 pollcnt = 800; /* 80 millisec minimum */
3234 break;
3235 }
3236
3237 /* add 10% to spec maximum */
3238 return (pollcnt * 11) / 10;
3239 }
3240
3241 /**
3242 * ixgbe_disable_pcie_master - Disable PCI-express master access
3243 * @hw: pointer to hardware structure
3244 *
3245 * Disables PCI-Express master access and verifies there are no pending
3246 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3247 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3248 * is returned signifying master requests disabled.
3249 **/
3250 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3251 {
3252 s32 status = IXGBE_SUCCESS;
3253 u32 i, poll;
3254 u16 value;
3255
3256 DEBUGFUNC("ixgbe_disable_pcie_master");
3257
3258 /* Always set this bit to ensure any future transactions are blocked */
3259 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3260
3261 /* Exit if master requests are blocked */
3262 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3263 IXGBE_REMOVED(hw->hw_addr))
3264 goto out;
3265
3266 /* Poll for master request bit to clear */
3267 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3268 usec_delay(100);
3269 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3270 goto out;
3271 }
3272
3273 /*
3274 * Two consecutive resets are required via CTRL.RST per datasheet
3275 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3276 * of this need. The first reset prevents new master requests from
3277 * being issued by our device. We then must wait 1usec or more for any
3278 * remaining completions from the PCIe bus to trickle in, and then reset
3279 * again to clear out any effects they may have had on our device.
3280 */
3281 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3282 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3283
3284 if (hw->mac.type >= ixgbe_mac_X550)
3285 goto out;
3286
3287 /*
3288 * Before proceeding, make sure that the PCIe block does not have
3289 * transactions pending.
3290 */
3291 poll = ixgbe_pcie_timeout_poll(hw);
3292 for (i = 0; i < poll; i++) {
3293 usec_delay(100);
3294 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3295 if (IXGBE_REMOVED(hw->hw_addr))
3296 goto out;
3297 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3298 goto out;
3299 }
3300
3301 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3302 "PCIe transaction pending bit also did not clear.\n");
3303 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3304
3305 out:
3306 return status;
3307 }
3308
3309 /**
3310 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3311 * @hw: pointer to hardware structure
3312 * @mask: Mask to specify which semaphore to acquire
3313 *
3314 * Acquires the SWFW semaphore through the GSSR register for the specified
3315 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3316 **/
3317 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3318 {
3319 u32 gssr = 0;
3320 u32 swmask = mask;
3321 u32 fwmask = mask << 5;
3322 u32 timeout = 200;
3323 u32 i;
3324
3325 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3326
3327 for (i = 0; i < timeout; i++) {
3328 /*
3329 * SW NVM semaphore bit is used for access to all
3330 * SW_FW_SYNC bits (not just NVM)
3331 */
3332 if (ixgbe_get_eeprom_semaphore(hw))
3333 return IXGBE_ERR_SWFW_SYNC;
3334
3335 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3336 if (!(gssr & (fwmask | swmask))) {
3337 gssr |= swmask;
3338 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3339 ixgbe_release_eeprom_semaphore(hw);
3340 return IXGBE_SUCCESS;
3341 } else {
3342 /* Resource is currently in use by FW or SW */
3343 ixgbe_release_eeprom_semaphore(hw);
3344 msec_delay(5);
3345 }
3346 }
3347
3348 /* If time expired clear the bits holding the lock and retry */
3349 if (gssr & (fwmask | swmask))
3350 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3351
3352 msec_delay(5);
3353 return IXGBE_ERR_SWFW_SYNC;
3354 }
3355
3356 /**
3357 * ixgbe_release_swfw_sync - Release SWFW semaphore
3358 * @hw: pointer to hardware structure
3359 * @mask: Mask to specify which semaphore to release
3360 *
3361 * Releases the SWFW semaphore through the GSSR register for the specified
3362 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3363 **/
3364 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3365 {
3366 u32 gssr;
3367 u32 swmask = mask;
3368
3369 DEBUGFUNC("ixgbe_release_swfw_sync");
3370
3371 ixgbe_get_eeprom_semaphore(hw);
3372
3373 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3374 gssr &= ~swmask;
3375 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3376
3377 ixgbe_release_eeprom_semaphore(hw);
3378 }
3379
3380 /**
3381 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3382 * @hw: pointer to hardware structure
3383 *
3384 * Stops the receive data path and waits for the HW to internally empty
3385 * the Rx security block
3386 **/
3387 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3388 {
3389 #define IXGBE_MAX_SECRX_POLL 4000
3390
3391 int i;
3392 int secrxreg;
3393
3394 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3395
3396
3397 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3398 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3399 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3400 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3401 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3402 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3403 break;
3404 else
3405 /* Use interrupt-safe sleep just in case */
3406 usec_delay(10);
3407 }
3408
3409 /* For informational purposes only */
3410 if (i >= IXGBE_MAX_SECRX_POLL)
3411 DEBUGOUT("Rx unit being enabled before security "
3412 "path fully disabled. Continuing with init.\n");
3413
3414 return IXGBE_SUCCESS;
3415 }
3416
3417 /**
3418 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3419 * @hw: pointer to hardware structure
3420 * @locked: bool to indicate whether the SW/FW lock was taken
3421 * @reg_val: Value we read from AUTOC
3422 *
3423 * The default case requires no protection so just to the register read.
3424 */
3425 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3426 {
3427 *locked = FALSE;
3428 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3429 return IXGBE_SUCCESS;
3430 }
3431
3432 /**
3433 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3434 * @hw: pointer to hardware structure
3435 * @reg_val: value to write to AUTOC
3436 * @locked: bool to indicate whether the SW/FW lock was already taken by
3437 * previous read.
3438 *
3439 * The default case requires no protection so just to the register write.
3440 */
3441 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3442 {
3443 UNREFERENCED_1PARAMETER(locked);
3444
3445 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3446 return IXGBE_SUCCESS;
3447 }
3448
3449 /**
3450 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3451 * @hw: pointer to hardware structure
3452 *
3453 * Enables the receive data path.
3454 **/
3455 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3456 {
3457 u32 secrxreg;
3458
3459 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3460
3461 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3462 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3463 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3464 IXGBE_WRITE_FLUSH(hw);
3465
3466 return IXGBE_SUCCESS;
3467 }
3468
3469 /**
3470 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3471 * @hw: pointer to hardware structure
3472 * @regval: register value to write to RXCTRL
3473 *
3474 * Enables the Rx DMA unit
3475 **/
3476 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3477 {
3478 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3479
3480 if (regval & IXGBE_RXCTRL_RXEN)
3481 ixgbe_enable_rx(hw);
3482 else
3483 ixgbe_disable_rx(hw);
3484
3485 return IXGBE_SUCCESS;
3486 }
3487
3488 /**
3489 * ixgbe_blink_led_start_generic - Blink LED based on index.
3490 * @hw: pointer to hardware structure
3491 * @index: led number to blink
3492 **/
3493 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3494 {
3495 ixgbe_link_speed speed = 0;
3496 bool link_up = 0;
3497 u32 autoc_reg = 0;
3498 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3499 s32 ret_val = IXGBE_SUCCESS;
3500 bool locked = FALSE;
3501
3502 DEBUGFUNC("ixgbe_blink_led_start_generic");
3503
3504 if (index > 3)
3505 return IXGBE_ERR_PARAM;
3506
3507 /*
3508 * Link must be up to auto-blink the LEDs;
3509 * Force it if link is down.
3510 */
3511 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3512
3513 if (!link_up) {
3514 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3515 if (ret_val != IXGBE_SUCCESS)
3516 goto out;
3517
3518 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3519 autoc_reg |= IXGBE_AUTOC_FLU;
3520
3521 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3522 if (ret_val != IXGBE_SUCCESS)
3523 goto out;
3524
3525 IXGBE_WRITE_FLUSH(hw);
3526 msec_delay(10);
3527 }
3528
3529 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3530 led_reg |= IXGBE_LED_BLINK(index);
3531 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3532 IXGBE_WRITE_FLUSH(hw);
3533
3534 out:
3535 return ret_val;
3536 }
3537
3538 /**
3539 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3540 * @hw: pointer to hardware structure
3541 * @index: led number to stop blinking
3542 **/
3543 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3544 {
3545 u32 autoc_reg = 0;
3546 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3547 s32 ret_val = IXGBE_SUCCESS;
3548 bool locked = FALSE;
3549
3550 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3551
3552 if (index > 3)
3553 return IXGBE_ERR_PARAM;
3554
3555 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3556 if (ret_val != IXGBE_SUCCESS)
3557 goto out;
3558
3559 autoc_reg &= ~IXGBE_AUTOC_FLU;
3560 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3561
3562 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3563 if (ret_val != IXGBE_SUCCESS)
3564 goto out;
3565
3566 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3567 led_reg &= ~IXGBE_LED_BLINK(index);
3568 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3569 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3570 IXGBE_WRITE_FLUSH(hw);
3571
3572 out:
3573 return ret_val;
3574 }
3575
3576 /**
3577 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3578 * @hw: pointer to hardware structure
3579 * @san_mac_offset: SAN MAC address offset
3580 *
3581 * This function will read the EEPROM location for the SAN MAC address
3582 * pointer, and returns the value at that location. This is used in both
3583 * get and set mac_addr routines.
3584 **/
3585 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3586 u16 *san_mac_offset)
3587 {
3588 s32 ret_val;
3589
3590 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3591
3592 /*
3593 * First read the EEPROM pointer to see if the MAC addresses are
3594 * available.
3595 */
3596 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3597 san_mac_offset);
3598 if (ret_val) {
3599 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3600 "eeprom at offset %d failed",
3601 IXGBE_SAN_MAC_ADDR_PTR);
3602 }
3603
3604 return ret_val;
3605 }
3606
3607 /**
3608 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3609 * @hw: pointer to hardware structure
3610 * @san_mac_addr: SAN MAC address
3611 *
3612 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3613 * per-port, so set_lan_id() must be called before reading the addresses.
3614 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3615 * upon for non-SFP connections, so we must call it here.
3616 **/
3617 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3618 {
3619 u16 san_mac_data, san_mac_offset;
3620 u8 i;
3621 s32 ret_val;
3622
3623 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3624
3625 /*
3626 * First read the EEPROM pointer to see if the MAC addresses are
3627 * available. If they're not, no point in calling set_lan_id() here.
3628 */
3629 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3630 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3631 goto san_mac_addr_out;
3632
3633 /* make sure we know which port we need to program */
3634 hw->mac.ops.set_lan_id(hw);
3635 /* apply the port offset to the address offset */
3636 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3637 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3638 for (i = 0; i < 3; i++) {
3639 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3640 &san_mac_data);
3641 if (ret_val) {
3642 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3643 "eeprom read at offset %d failed",
3644 san_mac_offset);
3645 goto san_mac_addr_out;
3646 }
3647 san_mac_addr[i * 2] = (u8)(san_mac_data);
3648 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3649 san_mac_offset++;
3650 }
3651 return IXGBE_SUCCESS;
3652
3653 san_mac_addr_out:
3654 /*
3655 * No addresses available in this EEPROM. It's not an
3656 * error though, so just wipe the local address and return.
3657 */
3658 for (i = 0; i < 6; i++)
3659 san_mac_addr[i] = 0xFF;
3660 return IXGBE_SUCCESS;
3661 }
3662
3663 /**
3664 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3665 * @hw: pointer to hardware structure
3666 * @san_mac_addr: SAN MAC address
3667 *
3668 * Write a SAN MAC address to the EEPROM.
3669 **/
3670 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3671 {
3672 s32 ret_val;
3673 u16 san_mac_data, san_mac_offset;
3674 u8 i;
3675
3676 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3677
3678 /* Look for SAN mac address pointer. If not defined, return */
3679 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3680 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3681 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3682
3683 /* Make sure we know which port we need to write */
3684 hw->mac.ops.set_lan_id(hw);
3685 /* Apply the port offset to the address offset */
3686 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3687 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3688
3689 for (i = 0; i < 3; i++) {
3690 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3691 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3692 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3693 san_mac_offset++;
3694 }
3695
3696 return IXGBE_SUCCESS;
3697 }
3698
3699 /**
3700 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3701 * @hw: pointer to hardware structure
3702 *
3703 * Read PCIe configuration space, and get the MSI-X vector count from
3704 * the capabilities table.
3705 **/
3706 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3707 {
3708 u16 msix_count = 1;
3709 u16 max_msix_count;
3710 u16 pcie_offset;
3711
3712 switch (hw->mac.type) {
3713 case ixgbe_mac_82598EB:
3714 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3715 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3716 break;
3717 case ixgbe_mac_82599EB:
3718 case ixgbe_mac_X540:
3719 case ixgbe_mac_X550:
3720 case ixgbe_mac_X550EM_x:
3721 case ixgbe_mac_X550EM_a:
3722 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3723 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3724 break;
3725 default:
3726 return msix_count;
3727 }
3728
3729 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3730 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3731 if (IXGBE_REMOVED(hw->hw_addr))
3732 msix_count = 0;
3733 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3734
3735 /* MSI-X count is zero-based in HW */
3736 msix_count++;
3737
3738 if (msix_count > max_msix_count)
3739 msix_count = max_msix_count;
3740
3741 return msix_count;
3742 }
3743
3744 /**
3745 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3746 * @hw: pointer to hardware structure
3747 * @addr: Address to put into receive address register
3748 * @vmdq: VMDq pool to assign
3749 *
3750 * Puts an ethernet address into a receive address register, or
3751 * finds the rar that it is already in; adds to the pool list
3752 **/
3753 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3754 {
3755 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3756 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3757 u32 rar;
3758 u32 rar_low, rar_high;
3759 u32 addr_low, addr_high;
3760
3761 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3762
3763 /* swap bytes for HW little endian */
3764 addr_low = addr[0] | (addr[1] << 8)
3765 | (addr[2] << 16)
3766 | (addr[3] << 24);
3767 addr_high = addr[4] | (addr[5] << 8);
3768
3769 /*
3770 * Either find the mac_id in rar or find the first empty space.
3771 * rar_highwater points to just after the highest currently used
3772 * rar in order to shorten the search. It grows when we add a new
3773 * rar to the top.
3774 */
3775 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3776 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3777
3778 if (((IXGBE_RAH_AV & rar_high) == 0)
3779 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3780 first_empty_rar = rar;
3781 } else if ((rar_high & 0xFFFF) == addr_high) {
3782 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3783 if (rar_low == addr_low)
3784 break; /* found it already in the rars */
3785 }
3786 }
3787
3788 if (rar < hw->mac.rar_highwater) {
3789 /* already there so just add to the pool bits */
3790 ixgbe_set_vmdq(hw, rar, vmdq);
3791 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3792 /* stick it into first empty RAR slot we found */
3793 rar = first_empty_rar;
3794 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3795 } else if (rar == hw->mac.rar_highwater) {
3796 /* add it to the top of the list and inc the highwater mark */
3797 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3798 hw->mac.rar_highwater++;
3799 } else if (rar >= hw->mac.num_rar_entries) {
3800 return IXGBE_ERR_INVALID_MAC_ADDR;
3801 }
3802
3803 /*
3804 * If we found rar[0], make sure the default pool bit (we use pool 0)
3805 * remains cleared to be sure default pool packets will get delivered
3806 */
3807 if (rar == 0)
3808 ixgbe_clear_vmdq(hw, rar, 0);
3809
3810 return rar;
3811 }
3812
3813 /**
3814 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3815 * @hw: pointer to hardware struct
3816 * @rar: receive address register index to disassociate
3817 * @vmdq: VMDq pool index to remove from the rar
3818 **/
3819 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3820 {
3821 u32 mpsar_lo, mpsar_hi;
3822 u32 rar_entries = hw->mac.num_rar_entries;
3823
3824 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3825
3826 /* Make sure we are using a valid rar index range */
3827 if (rar >= rar_entries) {
3828 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3829 "RAR index %d is out of range.\n", rar);
3830 return IXGBE_ERR_INVALID_ARGUMENT;
3831 }
3832
3833 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3834 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3835
3836 if (IXGBE_REMOVED(hw->hw_addr))
3837 goto done;
3838
3839 if (!mpsar_lo && !mpsar_hi)
3840 goto done;
3841
3842 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3843 if (mpsar_lo) {
3844 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3845 mpsar_lo = 0;
3846 }
3847 if (mpsar_hi) {
3848 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3849 mpsar_hi = 0;
3850 }
3851 } else if (vmdq < 32) {
3852 mpsar_lo &= ~(1 << vmdq);
3853 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3854 } else {
3855 mpsar_hi &= ~(1 << (vmdq - 32));
3856 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3857 }
3858
3859 /* was that the last pool using this rar? */
3860 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3861 rar != 0 && rar != hw->mac.san_mac_rar_index)
3862 hw->mac.ops.clear_rar(hw, rar);
3863 done:
3864 return IXGBE_SUCCESS;
3865 }
3866
3867 /**
3868 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3869 * @hw: pointer to hardware struct
3870 * @rar: receive address register index to associate with a VMDq index
3871 * @vmdq: VMDq pool index
3872 **/
3873 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3874 {
3875 u32 mpsar;
3876 u32 rar_entries = hw->mac.num_rar_entries;
3877
3878 DEBUGFUNC("ixgbe_set_vmdq_generic");
3879
3880 /* Make sure we are using a valid rar index range */
3881 if (rar >= rar_entries) {
3882 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3883 "RAR index %d is out of range.\n", rar);
3884 return IXGBE_ERR_INVALID_ARGUMENT;
3885 }
3886
3887 if (vmdq < 32) {
3888 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3889 mpsar |= 1 << vmdq;
3890 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3891 } else {
3892 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3893 mpsar |= 1 << (vmdq - 32);
3894 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3895 }
3896 return IXGBE_SUCCESS;
3897 }
3898
3899 /**
3900 * This function should only be involved in the IOV mode.
3901 * In IOV mode, Default pool is next pool after the number of
3902 * VFs advertized and not 0.
3903 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3904 *
3905 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3906 * @hw: pointer to hardware struct
3907 * @vmdq: VMDq pool index
3908 **/
3909 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3910 {
3911 u32 rar = hw->mac.san_mac_rar_index;
3912
3913 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3914
3915 if (vmdq < 32) {
3916 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3917 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3918 } else {
3919 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3920 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3921 }
3922
3923 return IXGBE_SUCCESS;
3924 }
3925
3926 /**
3927 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3928 * @hw: pointer to hardware structure
3929 **/
3930 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3931 {
3932 int i;
3933
3934 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3935 DEBUGOUT(" Clearing UTA\n");
3936
3937 for (i = 0; i < 128; i++)
3938 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3939
3940 return IXGBE_SUCCESS;
3941 }
3942
3943 /**
3944 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3945 * @hw: pointer to hardware structure
3946 * @vlan: VLAN id to write to VLAN filter
3947 * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3948 * vlanid not found
3949 *
3950 *
3951 * return the VLVF index where this VLAN id should be placed
3952 *
3953 **/
3954 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3955 {
3956 s32 regindex, first_empty_slot;
3957 u32 bits;
3958
3959 /* short cut the special case */
3960 if (vlan == 0)
3961 return 0;
3962
3963 /* if vlvf_bypass is set we don't want to use an empty slot, we
3964 * will simply bypass the VLVF if there are no entries present in the
3965 * VLVF that contain our VLAN
3966 */
3967 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3968
3969 /* add VLAN enable bit for comparison */
3970 vlan |= IXGBE_VLVF_VIEN;
3971
3972 /* Search for the vlan id in the VLVF entries. Save off the first empty
3973 * slot found along the way.
3974 *
3975 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3976 */
3977 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3978 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3979 if (bits == vlan)
3980 return regindex;
3981 if (!first_empty_slot && !bits)
3982 first_empty_slot = regindex;
3983 }
3984
3985 /* If we are here then we didn't find the VLAN. Return first empty
3986 * slot we found during our search, else error.
3987 */
3988 if (!first_empty_slot)
3989 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3990
3991 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3992 }
3993
3994 /**
3995 * ixgbe_set_vfta_generic - Set VLAN filter table
3996 * @hw: pointer to hardware structure
3997 * @vlan: VLAN id to write to VLAN filter
3998 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3999 * @vlan_on: boolean flag to turn on/off VLAN
4000 * @vlvf_bypass: boolean flag indicating updating default pool is okay
4001 *
4002 * Turn on/off specified VLAN in the VLAN filter table.
4003 **/
4004 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4005 bool vlan_on, bool vlvf_bypass)
4006 {
4007 u32 regidx, vfta_delta, vfta;
4008 s32 ret_val;
4009
4010 DEBUGFUNC("ixgbe_set_vfta_generic");
4011
4012 if (vlan > 4095 || vind > 63)
4013 return IXGBE_ERR_PARAM;
4014
4015 /*
4016 * this is a 2 part operation - first the VFTA, then the
4017 * VLVF and VLVFB if VT Mode is set
4018 * We don't write the VFTA until we know the VLVF part succeeded.
4019 */
4020
4021 /* Part 1
4022 * The VFTA is a bitstring made up of 128 32-bit registers
4023 * that enable the particular VLAN id, much like the MTA:
4024 * bits[11-5]: which register
4025 * bits[4-0]: which bit in the register
4026 */
4027 regidx = vlan / 32;
4028 vfta_delta = (u32)1 << (vlan % 32);
4029 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4030
4031 /*
4032 * vfta_delta represents the difference between the current value
4033 * of vfta and the value we want in the register. Since the diff
4034 * is an XOR mask we can just update the vfta using an XOR
4035 */
4036 vfta_delta &= vlan_on ? ~vfta : vfta;
4037 vfta ^= vfta_delta;
4038
4039 /* Part 2
4040 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4041 */
4042 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4043 vfta, vlvf_bypass);
4044 if (ret_val != IXGBE_SUCCESS) {
4045 if (vlvf_bypass)
4046 goto vfta_update;
4047 return ret_val;
4048 }
4049
4050 vfta_update:
4051 /* Update VFTA now that we are ready for traffic */
4052 if (vfta_delta)
4053 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4054
4055 return IXGBE_SUCCESS;
4056 }
4057
4058 /**
4059 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4060 * @hw: pointer to hardware structure
4061 * @vlan: VLAN id to write to VLAN filter
4062 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4063 * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4064 * @vfta_delta: pointer to the difference between the current value of VFTA
4065 * and the desired value
4066 * @vfta: the desired value of the VFTA
4067 * @vlvf_bypass: boolean flag indicating updating default pool is okay
4068 *
4069 * Turn on/off specified bit in VLVF table.
4070 **/
4071 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4072 bool vlan_on, u32 *vfta_delta, u32 vfta,
4073 bool vlvf_bypass)
4074 {
4075 u32 bits;
4076 s32 vlvf_index;
4077
4078 DEBUGFUNC("ixgbe_set_vlvf_generic");
4079
4080 if (vlan > 4095 || vind > 63)
4081 return IXGBE_ERR_PARAM;
4082
4083 /* If VT Mode is set
4084 * Either vlan_on
4085 * make sure the vlan is in VLVF
4086 * set the vind bit in the matching VLVFB
4087 * Or !vlan_on
4088 * clear the pool bit and possibly the vind
4089 */
4090 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4091 return IXGBE_SUCCESS;
4092
4093 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4094 if (vlvf_index < 0)
4095 return vlvf_index;
4096
4097 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4098
4099 /* set the pool bit */
4100 bits |= 1 << (vind % 32);
4101 if (vlan_on)
4102 goto vlvf_update;
4103
4104 /* clear the pool bit */
4105 bits ^= 1 << (vind % 32);
4106
4107 if (!bits &&
4108 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4109 /* Clear VFTA first, then disable VLVF. Otherwise
4110 * we run the risk of stray packets leaking into
4111 * the PF via the default pool
4112 */
4113 if (*vfta_delta)
4114 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4115
4116 /* disable VLVF and clear remaining bit from pool */
4117 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4118 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4119
4120 return IXGBE_SUCCESS;
4121 }
4122
4123 /* If there are still bits set in the VLVFB registers
4124 * for the VLAN ID indicated we need to see if the
4125 * caller is requesting that we clear the VFTA entry bit.
4126 * If the caller has requested that we clear the VFTA
4127 * entry bit but there are still pools/VFs using this VLAN
4128 * ID entry then ignore the request. We're not worried
4129 * about the case where we're turning the VFTA VLAN ID
4130 * entry bit on, only when requested to turn it off as
4131 * there may be multiple pools and/or VFs using the
4132 * VLAN ID entry. In that case we cannot clear the
4133 * VFTA bit until all pools/VFs using that VLAN ID have also
4134 * been cleared. This will be indicated by "bits" being
4135 * zero.
4136 */
4137 *vfta_delta = 0;
4138
4139 vlvf_update:
4140 /* record pool change and enable VLAN ID if not already enabled */
4141 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4142 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4143
4144 return IXGBE_SUCCESS;
4145 }
4146
4147 /**
4148 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4149 * @hw: pointer to hardware structure
4150 *
4151 * Clears the VLAN filer table, and the VMDq index associated with the filter
4152 **/
4153 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4154 {
4155 u32 offset;
4156
4157 DEBUGFUNC("ixgbe_clear_vfta_generic");
4158
4159 for (offset = 0; offset < hw->mac.vft_size; offset++)
4160 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4161
4162 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4163 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4164 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4165 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4166 }
4167
4168 return IXGBE_SUCCESS;
4169 }
4170
4171 /**
4172 * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4173 * @hw: pointer to hardware structure
4174 * @vf_number: VF index
4175 *
4176 * Enable and disable each queue in VF.
4177 */
4178 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4179 {
4180 u8 queue_count, i;
4181 u32 offset, reg;
4182
4183 if (vf_number > 63)
4184 return IXGBE_ERR_PARAM;
4185
4186 /*
4187 * Determine number of queues by checking
4188 * number of virtual functions
4189 */
4190 reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4191 switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4192 case IXGBE_GCR_EXT_VT_MODE_64:
4193 queue_count = 2;
4194 break;
4195 case IXGBE_GCR_EXT_VT_MODE_32:
4196 queue_count = 4;
4197 break;
4198 case IXGBE_GCR_EXT_VT_MODE_16:
4199 queue_count = 8;
4200 break;
4201 default:
4202 return IXGBE_ERR_CONFIG;
4203 }
4204
4205 /* Toggle queues */
4206 for (i = 0; i < queue_count; ++i) {
4207 /* Calculate offset of current queue */
4208 offset = queue_count * vf_number + i;
4209
4210 /* Enable queue */
4211 reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4212 reg |= IXGBE_TXDCTL_ENABLE;
4213 IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4214 IXGBE_WRITE_FLUSH(hw);
4215
4216 /* Disable queue */
4217 reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4218 reg &= ~IXGBE_TXDCTL_ENABLE;
4219 IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4220 IXGBE_WRITE_FLUSH(hw);
4221 }
4222
4223 return IXGBE_SUCCESS;
4224 }
4225
4226 /**
4227 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4228 * @hw: pointer to hardware structure
4229 *
4230 * Contains the logic to identify if we need to verify link for the
4231 * crosstalk fix
4232 **/
4233 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4234 {
4235
4236 /* Does FW say we need the fix */
4237 if (!hw->need_crosstalk_fix)
4238 return FALSE;
4239
4240 /* Only consider SFP+ PHYs i.e. media type fiber */
4241 switch (hw->mac.ops.get_media_type(hw)) {
4242 case ixgbe_media_type_fiber:
4243 case ixgbe_media_type_fiber_qsfp:
4244 break;
4245 default:
4246 return FALSE;
4247 }
4248
4249 return TRUE;
4250 }
4251
4252 /**
4253 * ixgbe_check_mac_link_generic - Determine link and speed status
4254 * @hw: pointer to hardware structure
4255 * @speed: pointer to link speed
4256 * @link_up: TRUE when link is up
4257 * @link_up_wait_to_complete: bool used to wait for link up or not
4258 *
4259 * Reads the links register to determine if link is up and the current speed
4260 **/
4261 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4262 bool *link_up, bool link_up_wait_to_complete)
4263 {
4264 u32 links_reg, links_orig;
4265 u32 i;
4266
4267 DEBUGFUNC("ixgbe_check_mac_link_generic");
4268
4269 /* If Crosstalk fix enabled do the sanity check of making sure
4270 * the SFP+ cage is full.
4271 */
4272 if (ixgbe_need_crosstalk_fix(hw)) {
4273 if ((hw->mac.type != ixgbe_mac_82598EB) &&
4274 !ixgbe_sfp_cage_full(hw)) {
4275 *link_up = FALSE;
4276 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4277 return IXGBE_SUCCESS;
4278 }
4279 }
4280
4281 /* clear the old state */
4282 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4283
4284 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4285
4286 if (links_orig != links_reg) {
4287 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4288 links_orig, links_reg);
4289 }
4290
4291 if (link_up_wait_to_complete) {
4292 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4293 if (links_reg & IXGBE_LINKS_UP) {
4294 *link_up = TRUE;
4295 break;
4296 } else {
4297 *link_up = FALSE;
4298 }
4299 msec_delay(100);
4300 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4301 }
4302 } else {
4303 if (links_reg & IXGBE_LINKS_UP)
4304 *link_up = TRUE;
4305 else
4306 *link_up = FALSE;
4307 }
4308
4309 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4310 case IXGBE_LINKS_SPEED_10G_82599:
4311 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4312 if (hw->mac.type >= ixgbe_mac_X550) {
4313 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4314 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4315 }
4316 break;
4317 case IXGBE_LINKS_SPEED_1G_82599:
4318 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4319 break;
4320 case IXGBE_LINKS_SPEED_100_82599:
4321 *speed = IXGBE_LINK_SPEED_100_FULL;
4322 if (hw->mac.type >= ixgbe_mac_X550) {
4323 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4324 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4325 }
4326 break;
4327 case IXGBE_LINKS_SPEED_10_X550EM_A:
4328 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4329 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4330 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4331 *speed = IXGBE_LINK_SPEED_10_FULL;
4332 break;
4333 default:
4334 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4335 }
4336
4337 return IXGBE_SUCCESS;
4338 }
4339
4340 /**
4341 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4342 * the EEPROM
4343 * @hw: pointer to hardware structure
4344 * @wwnn_prefix: the alternative WWNN prefix
4345 * @wwpn_prefix: the alternative WWPN prefix
4346 *
4347 * This function will read the EEPROM from the alternative SAN MAC address
4348 * block to check the support for the alternative WWNN/WWPN prefix support.
4349 **/
4350 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4351 u16 *wwpn_prefix)
4352 {
4353 u16 offset, caps;
4354 u16 alt_san_mac_blk_offset;
4355
4356 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4357
4358 /* clear output first */
4359 *wwnn_prefix = 0xFFFF;
4360 *wwpn_prefix = 0xFFFF;
4361
4362 /* check if alternative SAN MAC is supported */
4363 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4364 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4365 goto wwn_prefix_err;
4366
4367 if ((alt_san_mac_blk_offset == 0) ||
4368 (alt_san_mac_blk_offset == 0xFFFF))
4369 goto wwn_prefix_out;
4370
4371 /* check capability in alternative san mac address block */
4372 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4373 if (hw->eeprom.ops.read(hw, offset, &caps))
4374 goto wwn_prefix_err;
4375 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4376 goto wwn_prefix_out;
4377
4378 /* get the corresponding prefix for WWNN/WWPN */
4379 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4380 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4381 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4382 "eeprom read at offset %d failed", offset);
4383 }
4384
4385 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4386 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4387 goto wwn_prefix_err;
4388
4389 wwn_prefix_out:
4390 return IXGBE_SUCCESS;
4391
4392 wwn_prefix_err:
4393 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4394 "eeprom read at offset %d failed", offset);
4395 return IXGBE_SUCCESS;
4396 }
4397
4398 /**
4399 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4400 * @hw: pointer to hardware structure
4401 * @bs: the fcoe boot status
4402 *
4403 * This function will read the FCOE boot status from the iSCSI FCOE block
4404 **/
4405 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4406 {
4407 u16 offset, caps, flags;
4408 s32 status;
4409
4410 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4411
4412 /* clear output first */
4413 *bs = ixgbe_fcoe_bootstatus_unavailable;
4414
4415 /* check if FCOE IBA block is present */
4416 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4417 status = hw->eeprom.ops.read(hw, offset, &caps);
4418 if (status != IXGBE_SUCCESS)
4419 goto out;
4420
4421 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4422 goto out;
4423
4424 /* check if iSCSI FCOE block is populated */
4425 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4426 if (status != IXGBE_SUCCESS)
4427 goto out;
4428
4429 if ((offset == 0) || (offset == 0xFFFF))
4430 goto out;
4431
4432 /* read fcoe flags in iSCSI FCOE block */
4433 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4434 status = hw->eeprom.ops.read(hw, offset, &flags);
4435 if (status != IXGBE_SUCCESS)
4436 goto out;
4437
4438 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4439 *bs = ixgbe_fcoe_bootstatus_enabled;
4440 else
4441 *bs = ixgbe_fcoe_bootstatus_disabled;
4442
4443 out:
4444 return status;
4445 }
4446
4447 /**
4448 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4449 * @hw: pointer to hardware structure
4450 * @enable: enable or disable switch for MAC anti-spoofing
4451 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4452 *
4453 **/
4454 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4455 {
4456 int vf_target_reg = vf >> 3;
4457 int vf_target_shift = vf % 8;
4458 u32 pfvfspoof;
4459
4460 if (hw->mac.type == ixgbe_mac_82598EB)
4461 return;
4462
4463 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4464 if (enable)
4465 pfvfspoof |= (1 << vf_target_shift);
4466 else
4467 pfvfspoof &= ~(1 << vf_target_shift);
4468 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4469 }
4470
4471 /**
4472 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4473 * @hw: pointer to hardware structure
4474 * @enable: enable or disable switch for VLAN anti-spoofing
4475 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4476 *
4477 **/
4478 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4479 {
4480 int vf_target_reg = vf >> 3;
4481 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4482 u32 pfvfspoof;
4483
4484 if (hw->mac.type == ixgbe_mac_82598EB)
4485 return;
4486
4487 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4488 if (enable)
4489 pfvfspoof |= (1 << vf_target_shift);
4490 else
4491 pfvfspoof &= ~(1 << vf_target_shift);
4492 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4493 }
4494
4495 /**
4496 * ixgbe_get_device_caps_generic - Get additional device capabilities
4497 * @hw: pointer to hardware structure
4498 * @device_caps: the EEPROM word with the extra device capabilities
4499 *
4500 * This function will read the EEPROM location for the device capabilities,
4501 * and return the word through device_caps.
4502 **/
4503 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4504 {
4505 DEBUGFUNC("ixgbe_get_device_caps_generic");
4506
4507 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4508
4509 return IXGBE_SUCCESS;
4510 }
4511
4512 /**
4513 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4514 * @hw: pointer to hardware structure
4515 *
4516 **/
4517 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4518 {
4519 u32 regval;
4520 u32 i;
4521
4522 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4523
4524 /* Enable relaxed ordering */
4525 for (i = 0; i < hw->mac.max_tx_queues; i++) {
4526 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4527 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4528 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4529 }
4530
4531 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4532 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4533 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4534 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4535 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4536 }
4537
4538 }
4539
4540 /**
4541 * ixgbe_calculate_checksum - Calculate checksum for buffer
4542 * @buffer: pointer to EEPROM
4543 * @length: size of EEPROM to calculate a checksum for
4544 * Calculates the checksum for some buffer on a specified length. The
4545 * checksum calculated is returned.
4546 **/
4547 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4548 {
4549 u32 i;
4550 u8 sum = 0;
4551
4552 DEBUGFUNC("ixgbe_calculate_checksum");
4553
4554 if (!buffer)
4555 return 0;
4556
4557 for (i = 0; i < length; i++)
4558 sum += buffer[i];
4559
4560 return (u8) (0 - sum);
4561 }
4562
4563 /**
4564 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4565 * @hw: pointer to the HW structure
4566 * @buffer: command to write and where the return status will be placed
4567 * @length: length of buffer, must be multiple of 4 bytes
4568 * @timeout: time in ms to wait for command completion
4569 *
4570 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4571 * else returns semaphore error when encountering an error acquiring
4572 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4573 *
4574 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4575 * by the caller.
4576 **/
4577 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4578 u32 timeout)
4579 {
4580 u32 hicr, i, fwsts;
4581 u16 dword_len;
4582
4583 DEBUGFUNC("ixgbe_hic_unlocked");
4584
4585 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4586 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4587 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4588 }
4589
4590 /* Set bit 9 of FWSTS clearing FW reset indication */
4591 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4592 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4593
4594 /* Check that the host interface is enabled. */
4595 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4596 if (!(hicr & IXGBE_HICR_EN)) {
4597 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4598 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4599 }
4600
4601 /* Calculate length in DWORDs. We must be DWORD aligned */
4602 if (length % sizeof(u32)) {
4603 DEBUGOUT("Buffer length failure, not aligned to dword");
4604 return IXGBE_ERR_INVALID_ARGUMENT;
4605 }
4606
4607 dword_len = length >> 2;
4608
4609 /* The device driver writes the relevant command block
4610 * into the ram area.
4611 */
4612 for (i = 0; i < dword_len; i++)
4613 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4614 i, IXGBE_CPU_TO_LE32(buffer[i]));
4615
4616 /* Setting this bit tells the ARC that a new command is pending. */
4617 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4618
4619 for (i = 0; i < timeout; i++) {
4620 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4621 if (!(hicr & IXGBE_HICR_C))
4622 break;
4623 msec_delay(1);
4624 }
4625
4626 /* For each command except "Apply Update" perform
4627 * status checks in the HICR registry.
4628 */
4629 if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4630 IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4631 return IXGBE_SUCCESS;
4632
4633 /* Check command completion */
4634 if ((timeout && i == timeout) ||
4635 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4636 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4637 "Command has failed with no status valid.\n");
4638 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4639 }
4640
4641 return IXGBE_SUCCESS;
4642 }
4643
4644 /**
4645 * ixgbe_host_interface_command - Issue command to manageability block
4646 * @hw: pointer to the HW structure
4647 * @buffer: contains the command to write and where the return status will
4648 * be placed
4649 * @length: length of buffer, must be multiple of 4 bytes
4650 * @timeout: time in ms to wait for command completion
4651 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4652 * Needed because FW structures are big endian and decoding of
4653 * these fields can be 8 bit or 16 bit based on command. Decoding
4654 * is not easily understood without making a table of commands.
4655 * So we will leave this up to the caller to read back the data
4656 * in these cases.
4657 *
4658 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4659 * else returns semaphore error when encountering an error acquiring
4660 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4661 **/
4662 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4663 u32 length, u32 timeout, bool return_data)
4664 {
4665 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4666 struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4667 u16 buf_len;
4668 s32 status;
4669 u32 bi;
4670 u32 dword_len;
4671
4672 DEBUGFUNC("ixgbe_host_interface_command");
4673
4674 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4675 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4676 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4677 }
4678
4679 /* Take management host interface semaphore */
4680 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4681 if (status)
4682 return status;
4683
4684 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4685 if (status)
4686 goto rel_out;
4687
4688 if (!return_data)
4689 goto rel_out;
4690
4691 /* Calculate length in DWORDs */
4692 dword_len = hdr_size >> 2;
4693
4694 /* first pull in the header so we know the buffer length */
4695 for (bi = 0; bi < dword_len; bi++) {
4696 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4697 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4698 }
4699
4700 /*
4701 * If there is any thing in data position pull it in
4702 * Read Flash command requires reading buffer length from
4703 * two byes instead of one byte
4704 */
4705 if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4706 for (; bi < dword_len + 2; bi++) {
4707 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4708 bi);
4709 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4710 }
4711 buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4712 & 0xF00) | resp->buf_len;
4713 hdr_size += (2 << 2);
4714 } else {
4715 buf_len = resp->buf_len;
4716 }
4717 if (!buf_len)
4718 goto rel_out;
4719
4720 if (length < buf_len + hdr_size) {
4721 DEBUGOUT("Buffer not large enough for reply message.\n");
4722 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4723 goto rel_out;
4724 }
4725
4726 /* Calculate length in DWORDs, add 3 for odd lengths */
4727 dword_len = (buf_len + 3) >> 2;
4728
4729 /* Pull in the rest of the buffer (bi is where we left off) */
4730 for (; bi <= dword_len; bi++) {
4731 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4732 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4733 }
4734
4735 rel_out:
4736 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4737
4738 return status;
4739 }
4740
4741 /**
4742 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4743 * @hw: pointer to the HW structure
4744 * @maj: driver version major number
4745 * @minr: driver version minor number
4746 * @build: driver version build number
4747 * @sub: driver version sub build number
4748 * @len: unused
4749 * @driver_ver: unused
4750 *
4751 * Sends driver version number to firmware through the manageability
4752 * block. On success return IXGBE_SUCCESS
4753 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4754 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4755 **/
4756 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4757 u8 build, u8 sub, u16 len,
4758 const char *driver_ver)
4759 {
4760 struct ixgbe_hic_drv_info fw_cmd;
4761 int i;
4762 s32 ret_val = IXGBE_SUCCESS;
4763
4764 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4765 UNREFERENCED_2PARAMETER(len, driver_ver);
4766
4767 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4768 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4769 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4770 fw_cmd.port_num = (u8)hw->bus.func;
4771 fw_cmd.ver_maj = maj;
4772 fw_cmd.ver_min = minr;
4773 fw_cmd.ver_build = build;
4774 fw_cmd.ver_sub = sub;
4775 fw_cmd.hdr.checksum = 0;
4776 fw_cmd.pad = 0;
4777 fw_cmd.pad2 = 0;
4778 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4779 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4780
4781 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4782 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4783 sizeof(fw_cmd),
4784 IXGBE_HI_COMMAND_TIMEOUT,
4785 TRUE);
4786 if (ret_val != IXGBE_SUCCESS)
4787 continue;
4788
4789 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4790 FW_CEM_RESP_STATUS_SUCCESS)
4791 ret_val = IXGBE_SUCCESS;
4792 else
4793 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4794
4795 break;
4796 }
4797
4798 return ret_val;
4799 }
4800
4801 /**
4802 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4803 * @hw: pointer to hardware structure
4804 * @num_pb: number of packet buffers to allocate
4805 * @headroom: reserve n KB of headroom
4806 * @strategy: packet buffer allocation strategy
4807 **/
4808 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4809 int strategy)
4810 {
4811 u32 pbsize = hw->mac.rx_pb_size;
4812 int i = 0;
4813 u32 rxpktsize, txpktsize, txpbthresh;
4814
4815 /* Reserve headroom */
4816 pbsize -= headroom;
4817
4818 if (!num_pb)
4819 num_pb = 1;
4820
4821 /* Divide remaining packet buffer space amongst the number of packet
4822 * buffers requested using supplied strategy.
4823 */
4824 switch (strategy) {
4825 case PBA_STRATEGY_WEIGHTED:
4826 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4827 * buffer with 5/8 of the packet buffer space.
4828 */
4829 rxpktsize = (pbsize * 5) / (num_pb * 4);
4830 pbsize -= rxpktsize * (num_pb / 2);
4831 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4832 for (; i < (num_pb / 2); i++)
4833 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4834 /* fall through - configure remaining packet buffers */
4835 case PBA_STRATEGY_EQUAL:
4836 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4837 for (; i < num_pb; i++)
4838 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4839 break;
4840 default:
4841 break;
4842 }
4843
4844 /* Only support an equally distributed Tx packet buffer strategy. */
4845 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4846 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4847 for (i = 0; i < num_pb; i++) {
4848 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4849 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4850 }
4851
4852 /* Clear unused TCs, if any, to zero buffer size*/
4853 for (; i < IXGBE_MAX_PB; i++) {
4854 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4855 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4856 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4857 }
4858 }
4859
4860 /**
4861 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4862 * @hw: pointer to the hardware structure
4863 *
4864 * The 82599 and x540 MACs can experience issues if TX work is still pending
4865 * when a reset occurs. This function prevents this by flushing the PCIe
4866 * buffers on the system.
4867 **/
4868 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4869 {
4870 u32 gcr_ext, hlreg0, i, poll;
4871 u16 value;
4872
4873 /*
4874 * If double reset is not requested then all transactions should
4875 * already be clear and as such there is no work to do
4876 */
4877 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4878 return;
4879
4880 /*
4881 * Set loopback enable to prevent any transmits from being sent
4882 * should the link come up. This assumes that the RXCTRL.RXEN bit
4883 * has already been cleared.
4884 */
4885 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4886 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4887
4888 /* Wait for a last completion before clearing buffers */
4889 IXGBE_WRITE_FLUSH(hw);
4890 msec_delay(3);
4891
4892 /*
4893 * Before proceeding, make sure that the PCIe block does not have
4894 * transactions pending.
4895 */
4896 poll = ixgbe_pcie_timeout_poll(hw);
4897 for (i = 0; i < poll; i++) {
4898 usec_delay(100);
4899 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4900 if (IXGBE_REMOVED(hw->hw_addr))
4901 goto out;
4902 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4903 goto out;
4904 }
4905
4906 out:
4907 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4908 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4909 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4910 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4911
4912 /* Flush all writes and allow 20usec for all transactions to clear */
4913 IXGBE_WRITE_FLUSH(hw);
4914 usec_delay(20);
4915
4916 /* restore previous register values */
4917 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4918 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4919 }
4920
4921 /**
4922 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4923 *
4924 * @hw: pointer to hardware structure
4925 * @cmd: Command we send to the FW
4926 * @status: The reply from the FW
4927 *
4928 * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4929 **/
4930 #define IXGBE_BYPASS_BB_WAIT 1
4931 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4932 {
4933 int i;
4934 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4935 u32 esdp;
4936
4937 if (!status)
4938 return IXGBE_ERR_PARAM;
4939
4940 *status = 0;
4941
4942 /* SDP vary by MAC type */
4943 switch (hw->mac.type) {
4944 case ixgbe_mac_82599EB:
4945 sck = IXGBE_ESDP_SDP7;
4946 sdi = IXGBE_ESDP_SDP0;
4947 sdo = IXGBE_ESDP_SDP6;
4948 dir_sck = IXGBE_ESDP_SDP7_DIR;
4949 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4950 dir_sdo = IXGBE_ESDP_SDP6_DIR;
4951 break;
4952 case ixgbe_mac_X540:
4953 sck = IXGBE_ESDP_SDP2;
4954 sdi = IXGBE_ESDP_SDP0;
4955 sdo = IXGBE_ESDP_SDP1;
4956 dir_sck = IXGBE_ESDP_SDP2_DIR;
4957 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4958 dir_sdo = IXGBE_ESDP_SDP1_DIR;
4959 break;
4960 default:
4961 return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4962 }
4963
4964 /* Set SDP pins direction */
4965 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4966 esdp |= dir_sck; /* SCK as output */
4967 esdp |= dir_sdi; /* SDI as output */
4968 esdp &= ~dir_sdo; /* SDO as input */
4969 esdp |= sck;
4970 esdp |= sdi;
4971 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4972 IXGBE_WRITE_FLUSH(hw);
4973 msec_delay(IXGBE_BYPASS_BB_WAIT);
4974
4975 /* Generate start condition */
4976 esdp &= ~sdi;
4977 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4978 IXGBE_WRITE_FLUSH(hw);
4979 msec_delay(IXGBE_BYPASS_BB_WAIT);
4980
4981 esdp &= ~sck;
4982 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4983 IXGBE_WRITE_FLUSH(hw);
4984 msec_delay(IXGBE_BYPASS_BB_WAIT);
4985
4986 /* Clock out the new control word and clock in the status */
4987 for (i = 0; i < 32; i++) {
4988 if ((cmd >> (31 - i)) & 0x01) {
4989 esdp |= sdi;
4990 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4991 } else {
4992 esdp &= ~sdi;
4993 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4994 }
4995 IXGBE_WRITE_FLUSH(hw);
4996 msec_delay(IXGBE_BYPASS_BB_WAIT);
4997
4998 esdp |= sck;
4999 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5000 IXGBE_WRITE_FLUSH(hw);
5001 msec_delay(IXGBE_BYPASS_BB_WAIT);
5002
5003 esdp &= ~sck;
5004 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5005 IXGBE_WRITE_FLUSH(hw);
5006 msec_delay(IXGBE_BYPASS_BB_WAIT);
5007
5008 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5009 if (esdp & sdo)
5010 *status = (*status << 1) | 0x01;
5011 else
5012 *status = (*status << 1) | 0x00;
5013 msec_delay(IXGBE_BYPASS_BB_WAIT);
5014 }
5015
5016 /* stop condition */
5017 esdp |= sck;
5018 esdp &= ~sdi;
5019 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5020 IXGBE_WRITE_FLUSH(hw);
5021 msec_delay(IXGBE_BYPASS_BB_WAIT);
5022
5023 esdp |= sdi;
5024 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5025 IXGBE_WRITE_FLUSH(hw);
5026
5027 /* set the page bits to match the cmd that the status it belongs to */
5028 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5029
5030 return IXGBE_SUCCESS;
5031 }
5032
5033 /**
5034 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5035 *
5036 * If we send a write we can't be sure it took until we can read back
5037 * that same register. It can be a problem as some of the fields may
5038 * for valid reasons change in-between the time wrote the register and
5039 * we read it again to verify. So this function check everything we
5040 * can check and then assumes it worked.
5041 *
5042 * @u32 in_reg - The register cmd for the bit-bang read.
5043 * @u32 out_reg - The register returned from a bit-bang read.
5044 **/
5045 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5046 {
5047 u32 mask;
5048
5049 /* Page must match for all control pages */
5050 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5051 return FALSE;
5052
5053 switch (in_reg & BYPASS_PAGE_M) {
5054 case BYPASS_PAGE_CTL0:
5055 /* All the following can't change since the last write
5056 * - All the event actions
5057 * - The timeout value
5058 */
5059 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5060 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5061 BYPASS_WDTIMEOUT_M |
5062 BYPASS_WDT_VALUE_M;
5063 if ((out_reg & mask) != (in_reg & mask))
5064 return FALSE;
5065
5066 /* 0x0 is never a valid value for bypass status */
5067 if (!(out_reg & BYPASS_STATUS_OFF_M))
5068 return FALSE;
5069 break;
5070 case BYPASS_PAGE_CTL1:
5071 /* All the following can't change since the last write
5072 * - time valid bit
5073 * - time we last sent
5074 */
5075 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5076 if ((out_reg & mask) != (in_reg & mask))
5077 return FALSE;
5078 break;
5079 case BYPASS_PAGE_CTL2:
5080 /* All we can check in this page is control number
5081 * which is already done above.
5082 */
5083 break;
5084 }
5085
5086 /* We are as sure as we can be return TRUE */
5087 return TRUE;
5088 }
5089
5090 /**
5091 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5092 *
5093 * @hw: pointer to hardware structure
5094 * @cmd: The control word we are setting.
5095 * @event: The event we are setting in the FW. This also happens to
5096 * be the mask for the event we are setting (handy)
5097 * @action: The action we set the event to in the FW. This is in a
5098 * bit field that happens to be what we want to put in
5099 * the event spot (also handy)
5100 **/
5101 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5102 u32 action)
5103 {
5104 u32 by_ctl = 0;
5105 u32 cmd, verify;
5106 u32 count = 0;
5107
5108 /* Get current values */
5109 cmd = ctrl; /* just reading only need control number */
5110 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5111 return IXGBE_ERR_INVALID_ARGUMENT;
5112
5113 /* Set to new action */
5114 cmd = (by_ctl & ~event) | BYPASS_WE | action;
5115 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5116 return IXGBE_ERR_INVALID_ARGUMENT;
5117
5118 /* Page 0 force a FW eeprom write which is slow so verify */
5119 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5120 verify = BYPASS_PAGE_CTL0;
5121 do {
5122 if (count++ > 5)
5123 return IXGBE_BYPASS_FW_WRITE_FAILURE;
5124
5125 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5126 return IXGBE_ERR_INVALID_ARGUMENT;
5127 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5128 } else {
5129 /* We have give the FW time for the write to stick */
5130 msec_delay(100);
5131 }
5132
5133 return IXGBE_SUCCESS;
5134 }
5135
5136 /**
5137 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5138 *
5139 * @hw: pointer to hardware structure
5140 * @addr: The bypass eeprom address to read.
5141 * @value: The 8b of data at the address above.
5142 **/
5143 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5144 {
5145 u32 cmd;
5146 u32 status;
5147
5148
5149 /* send the request */
5150 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5151 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5152 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5153 return IXGBE_ERR_INVALID_ARGUMENT;
5154
5155 /* We have give the FW time for the write to stick */
5156 msec_delay(100);
5157
5158 /* now read the results */
5159 cmd &= ~BYPASS_WE;
5160 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5161 return IXGBE_ERR_INVALID_ARGUMENT;
5162
5163 *value = status & BYPASS_CTL2_DATA_M;
5164
5165 return IXGBE_SUCCESS;
5166 }
5167
5168 /**
5169 * ixgbe_get_orom_version - Return option ROM from EEPROM
5170 *
5171 * @hw: pointer to hardware structure
5172 * @nvm_ver: pointer to output structure
5173 *
5174 * if valid option ROM version, nvm_ver->or_valid set to TRUE
5175 * else nvm_ver->or_valid is FALSE.
5176 **/
5177 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5178 struct ixgbe_nvm_version *nvm_ver)
5179 {
5180 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5181
5182 nvm_ver->or_valid = FALSE;
5183 /* Option Rom may or may not be present. Start with pointer */
5184 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5185
5186 /* make sure offset is valid */
5187 if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5188 return;
5189
5190 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5191 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5192
5193 /* option rom exists and is valid */
5194 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5195 eeprom_cfg_blkl == NVM_VER_INVALID ||
5196 eeprom_cfg_blkh == NVM_VER_INVALID)
5197 return;
5198
5199 nvm_ver->or_valid = TRUE;
5200 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5201 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5202 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5203 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5204 }
5205
5206 /**
5207 * ixgbe_get_oem_prod_version - Return OEM Product version
5208 *
5209 * @hw: pointer to hardware structure
5210 * @nvm_ver: pointer to output structure
5211 *
5212 * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5213 * else nvm_ver->oem_valid is FALSE.
5214 **/
5215 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5216 struct ixgbe_nvm_version *nvm_ver)
5217 {
5218 u16 rel_num, prod_ver, mod_len, cap, offset;
5219
5220 nvm_ver->oem_valid = FALSE;
5221 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5222
5223 /* Return if offset to OEM Product Version block is invalid */
5224 if (offset == 0x0 || offset == NVM_INVALID_PTR)
5225 return;
5226
5227 /* Read product version block */
5228 hw->eeprom.ops.read(hw, offset, &mod_len);
5229 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5230
5231 /* Return if OEM product version block is invalid */
5232 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5233 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5234 return;
5235
5236 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5237 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5238
5239 /* Return if version is invalid */
5240 if ((rel_num | prod_ver) == 0x0 ||
5241 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5242 return;
5243
5244 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5245 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5246 nvm_ver->oem_release = rel_num;
5247 nvm_ver->oem_valid = TRUE;
5248 }
5249
5250 /**
5251 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5252 *
5253 * @hw: pointer to hardware structure
5254 * @nvm_ver: pointer to output structure
5255 *
5256 * word read errors will return 0xFFFF
5257 **/
5258 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5259 {
5260 u16 etk_id_l, etk_id_h;
5261
5262 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5263 etk_id_l = NVM_VER_INVALID;
5264 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5265 etk_id_h = NVM_VER_INVALID;
5266
5267 /* The word order for the version format is determined by high order
5268 * word bit 15.
5269 */
5270 if ((etk_id_h & NVM_ETK_VALID) == 0) {
5271 nvm_ver->etk_id = etk_id_h;
5272 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5273 } else {
5274 nvm_ver->etk_id = etk_id_l;
5275 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5276 }
5277 }
5278
5279
5280 /**
5281 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5282 * @hw: pointer to hardware structure
5283 * @map: pointer to u8 arr for returning map
5284 *
5285 * Read the rtrup2tc HW register and resolve its content into map
5286 **/
5287 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5288 {
5289 u32 reg, i;
5290
5291 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5292 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5293 map[i] = IXGBE_RTRUP2TC_UP_MASK &
5294 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5295 return;
5296 }
5297
5298 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5299 {
5300 u32 pfdtxgswc;
5301 u32 rxctrl;
5302
5303 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5304 if (rxctrl & IXGBE_RXCTRL_RXEN) {
5305 if (hw->mac.type != ixgbe_mac_82598EB) {
5306 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5307 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5308 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5309 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5310 hw->mac.set_lben = TRUE;
5311 } else {
5312 hw->mac.set_lben = FALSE;
5313 }
5314 }
5315 rxctrl &= ~IXGBE_RXCTRL_RXEN;
5316 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5317 }
5318 }
5319
5320 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5321 {
5322 u32 pfdtxgswc;
5323 u32 rxctrl;
5324
5325 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5326 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5327
5328 if (hw->mac.type != ixgbe_mac_82598EB) {
5329 if (hw->mac.set_lben) {
5330 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5331 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5332 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5333 hw->mac.set_lben = FALSE;
5334 }
5335 }
5336 }
5337
5338 /**
5339 * ixgbe_mng_present - returns TRUE when management capability is present
5340 * @hw: pointer to hardware structure
5341 */
5342 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5343 {
5344 u32 fwsm;
5345
5346 if (hw->mac.type < ixgbe_mac_82599EB)
5347 return FALSE;
5348
5349 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5350 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5351 }
5352
5353 /**
5354 * ixgbe_mng_enabled - Is the manageability engine enabled?
5355 * @hw: pointer to hardware structure
5356 *
5357 * Returns TRUE if the manageability engine is enabled.
5358 **/
5359 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5360 {
5361 u32 fwsm, manc, factps;
5362
5363 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5364 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5365 return FALSE;
5366
5367 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5368 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5369 return FALSE;
5370
5371 if (hw->mac.type <= ixgbe_mac_X540) {
5372 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5373 if (factps & IXGBE_FACTPS_MNGCG)
5374 return FALSE;
5375 }
5376
5377 return TRUE;
5378 }
5379
5380 /**
5381 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5382 * @hw: pointer to hardware structure
5383 * @speed: new link speed
5384 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5385 *
5386 * Set the link speed in the MAC and/or PHY register and restarts link.
5387 **/
5388 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5389 ixgbe_link_speed speed,
5390 bool autoneg_wait_to_complete)
5391 {
5392 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5393 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5394 s32 status = IXGBE_SUCCESS;
5395 u32 speedcnt = 0;
5396 u32 i = 0;
5397 bool autoneg, link_up = FALSE;
5398
5399 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5400
5401 /* Mask off requested but non-supported speeds */
5402 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5403 if (status != IXGBE_SUCCESS)
5404 return status;
5405
5406 speed &= link_speed;
5407
5408 /* Try each speed one by one, highest priority first. We do this in
5409 * software because 10Gb fiber doesn't support speed autonegotiation.
5410 */
5411 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5412 speedcnt++;
5413 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5414
5415 /* Set the module link speed */
5416 switch (hw->phy.media_type) {
5417 case ixgbe_media_type_fiber_fixed:
5418 case ixgbe_media_type_fiber:
5419 ixgbe_set_rate_select_speed(hw,
5420 IXGBE_LINK_SPEED_10GB_FULL);
5421 break;
5422 case ixgbe_media_type_fiber_qsfp:
5423 /* QSFP module automatically detects MAC link speed */
5424 break;
5425 default:
5426 DEBUGOUT("Unexpected media type.\n");
5427 break;
5428 }
5429
5430 /* Allow module to change analog characteristics (1G->10G) */
5431 msec_delay(40);
5432
5433 status = ixgbe_setup_mac_link(hw,
5434 IXGBE_LINK_SPEED_10GB_FULL,
5435 autoneg_wait_to_complete);
5436 if (status != IXGBE_SUCCESS)
5437 return status;
5438
5439 /* Flap the Tx laser if it has not already been done */
5440 ixgbe_flap_tx_laser(hw);
5441
5442 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5443 * Section 73.10.2, we may have to wait up to 500ms if KR is
5444 * attempted. 82599 uses the same timing for 10g SFI.
5445 */
5446 for (i = 0; i < 5; i++) {
5447 /* Wait for the link partner to also set speed */
5448 msec_delay(100);
5449
5450 /* If we have link, just jump out */
5451 status = ixgbe_check_link(hw, &link_speed,
5452 &link_up, FALSE);
5453 if (status != IXGBE_SUCCESS)
5454 return status;
5455
5456 if (link_up)
5457 goto out;
5458 }
5459 }
5460
5461 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5462 speedcnt++;
5463 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5464 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5465
5466 /* Set the module link speed */
5467 switch (hw->phy.media_type) {
5468 case ixgbe_media_type_fiber_fixed:
5469 case ixgbe_media_type_fiber:
5470 ixgbe_set_rate_select_speed(hw,
5471 IXGBE_LINK_SPEED_1GB_FULL);
5472 break;
5473 case ixgbe_media_type_fiber_qsfp:
5474 /* QSFP module automatically detects link speed */
5475 break;
5476 default:
5477 DEBUGOUT("Unexpected media type.\n");
5478 break;
5479 }
5480
5481 /* Allow module to change analog characteristics (10G->1G) */
5482 msec_delay(40);
5483
5484 status = ixgbe_setup_mac_link(hw,
5485 IXGBE_LINK_SPEED_1GB_FULL,
5486 autoneg_wait_to_complete);
5487 if (status != IXGBE_SUCCESS)
5488 return status;
5489
5490 /* Flap the Tx laser if it has not already been done */
5491 ixgbe_flap_tx_laser(hw);
5492
5493 /* Wait for the link partner to also set speed */
5494 msec_delay(100);
5495
5496 /* If we have link, just jump out */
5497 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5498 if (status != IXGBE_SUCCESS)
5499 return status;
5500
5501 if (link_up)
5502 goto out;
5503 }
5504
5505 if (speed == 0) {
5506 /* Disable the Tx laser for media none */
5507 ixgbe_disable_tx_laser(hw);
5508
5509 goto out;
5510 }
5511
5512 /* We didn't get link. Configure back to the highest speed we tried,
5513 * (if there was more than one). We call ourselves back with just the
5514 * single highest speed that the user requested.
5515 */
5516 if (speedcnt > 1)
5517 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5518 highest_link_speed,
5519 autoneg_wait_to_complete);
5520
5521 out:
5522 /* Set autoneg_advertised value based on input link speed */
5523 hw->phy.autoneg_advertised = 0;
5524
5525 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5526 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5527
5528 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5529 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5530
5531 return status;
5532 }
5533
5534 /**
5535 * ixgbe_set_soft_rate_select_speed - Set module link speed
5536 * @hw: pointer to hardware structure
5537 * @speed: link speed to set
5538 *
5539 * Set module link speed via the soft rate select.
5540 */
5541 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5542 ixgbe_link_speed speed)
5543 {
5544 s32 status;
5545 u8 rs, eeprom_data;
5546
5547 switch (speed) {
5548 case IXGBE_LINK_SPEED_10GB_FULL:
5549 /* one bit mask same as setting on */
5550 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5551 break;
5552 case IXGBE_LINK_SPEED_1GB_FULL:
5553 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5554 break;
5555 default:
5556 DEBUGOUT("Invalid fixed module speed\n");
5557 return;
5558 }
5559
5560 /* Set RS0 */
5561 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5562 IXGBE_I2C_EEPROM_DEV_ADDR2,
5563 &eeprom_data);
5564 if (status) {
5565 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5566 goto out;
5567 }
5568
5569 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5570
5571 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5572 IXGBE_I2C_EEPROM_DEV_ADDR2,
5573 eeprom_data);
5574 if (status) {
5575 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5576 goto out;
5577 }
5578
5579 /* Set RS1 */
5580 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5581 IXGBE_I2C_EEPROM_DEV_ADDR2,
5582 &eeprom_data);
5583 if (status) {
5584 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5585 goto out;
5586 }
5587
5588 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5589
5590 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5591 IXGBE_I2C_EEPROM_DEV_ADDR2,
5592 eeprom_data);
5593 if (status) {
5594 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5595 goto out;
5596 }
5597 out:
5598 return;
5599 }
5600