ixgbe_common.c revision 1.35 1 /* $NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $ */
2
3 /******************************************************************************
4 SPDX-License-Identifier: BSD-3-Clause
5
6 Copyright (c) 2001-2017, Intel Corporation
7 All rights reserved.
8
9 Redistribution and use in source and binary forms, with or without
10 modification, are permitted provided that the following conditions are met:
11
12 1. Redistributions of source code must retain the above copyright notice,
13 this list of conditions and the following disclaimer.
14
15 2. Redistributions in binary form must reproduce the above copyright
16 notice, this list of conditions and the following disclaimer in the
17 documentation and/or other materials provided with the distribution.
18
19 3. Neither the name of the Intel Corporation nor the names of its
20 contributors may be used to endorse or promote products derived from
21 this software without specific prior written permission.
22
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 POSSIBILITY OF SUCH DAMAGE.
34
35 ******************************************************************************/
36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.35 2021/12/10 11:20:13 msaitoh Exp $");
40
41 #include "ixgbe_common.h"
42 #include "ixgbe_phy.h"
43 #include "ixgbe_dcb.h"
44 #include "ixgbe_dcb_82599.h"
45 #include "ixgbe_api.h"
46
47 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
48 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
49 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
50 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
51 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
52 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
53 u16 count);
54 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
55 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
56 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
57 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
58
59 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
60 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
61 u16 *san_mac_offset);
62 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
63 u16 words, u16 *data);
64 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
65 u16 words, u16 *data);
66 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
67 u16 offset);
68
69 /**
70 * ixgbe_init_ops_generic - Inits function ptrs
71 * @hw: pointer to the hardware structure
72 *
73 * Initialize the function pointers.
74 **/
75 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
76 {
77 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
78 struct ixgbe_mac_info *mac = &hw->mac;
79 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
80
81 DEBUGFUNC("ixgbe_init_ops_generic");
82
83 /* EEPROM */
84 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
85 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
86 if (eec & IXGBE_EEC_PRES) {
87 eeprom->ops.read = ixgbe_read_eerd_generic;
88 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
89 } else {
90 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
91 eeprom->ops.read_buffer =
92 ixgbe_read_eeprom_buffer_bit_bang_generic;
93 }
94 eeprom->ops.write = ixgbe_write_eeprom_generic;
95 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
96 eeprom->ops.validate_checksum =
97 ixgbe_validate_eeprom_checksum_generic;
98 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
99 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
100
101 /* MAC */
102 mac->ops.init_hw = ixgbe_init_hw_generic;
103 mac->ops.reset_hw = NULL;
104 mac->ops.start_hw = ixgbe_start_hw_generic;
105 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
106 mac->ops.get_media_type = NULL;
107 mac->ops.get_supported_physical_layer = NULL;
108 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
109 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
110 mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
111 mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
112 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
113 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
114 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
115 mac->ops.prot_autoc_read = prot_autoc_read_generic;
116 mac->ops.prot_autoc_write = prot_autoc_write_generic;
117
118 /* LEDs */
119 mac->ops.led_on = ixgbe_led_on_generic;
120 mac->ops.led_off = ixgbe_led_off_generic;
121 mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
122 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
123 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
124
125 /* RAR, Multicast, VLAN */
126 mac->ops.set_rar = ixgbe_set_rar_generic;
127 mac->ops.clear_rar = ixgbe_clear_rar_generic;
128 mac->ops.insert_mac_addr = NULL;
129 mac->ops.set_vmdq = NULL;
130 mac->ops.clear_vmdq = NULL;
131 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
132 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
133 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
134 mac->ops.enable_mc = ixgbe_enable_mc_generic;
135 mac->ops.disable_mc = ixgbe_disable_mc_generic;
136 mac->ops.clear_vfta = NULL;
137 mac->ops.set_vfta = NULL;
138 mac->ops.set_vlvf = NULL;
139 mac->ops.init_uta_tables = NULL;
140 mac->ops.enable_rx = ixgbe_enable_rx_generic;
141 mac->ops.disable_rx = ixgbe_disable_rx_generic;
142 mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
143
144 /* Flow Control */
145 mac->ops.fc_enable = ixgbe_fc_enable_generic;
146 mac->ops.setup_fc = ixgbe_setup_fc_generic;
147 mac->ops.fc_autoneg = ixgbe_fc_autoneg;
148
149 /* Link */
150 mac->ops.get_link_capabilities = NULL;
151 mac->ops.setup_link = NULL;
152 mac->ops.check_link = NULL;
153 mac->ops.dmac_config = NULL;
154 mac->ops.dmac_update_tcs = NULL;
155 mac->ops.dmac_config_tcs = NULL;
156
157 return IXGBE_SUCCESS;
158 }
159
160 /**
161 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
162 * of flow control
163 * @hw: pointer to hardware structure
164 *
165 * This function returns TRUE if the device supports flow control
166 * autonegotiation, and FALSE if it does not.
167 *
168 **/
169 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
170 {
171 bool supported = FALSE;
172 ixgbe_link_speed speed;
173 bool link_up;
174
175 DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
176
177 switch (hw->phy.media_type) {
178 case ixgbe_media_type_fiber_fixed:
179 case ixgbe_media_type_fiber_qsfp:
180 case ixgbe_media_type_fiber:
181 /* flow control autoneg black list */
182 switch (hw->device_id) {
183 case IXGBE_DEV_ID_X550EM_A_SFP:
184 case IXGBE_DEV_ID_X550EM_A_SFP_N:
185 case IXGBE_DEV_ID_X550EM_A_QSFP:
186 case IXGBE_DEV_ID_X550EM_A_QSFP_N:
187 supported = FALSE;
188 break;
189 default:
190 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
191 /* if link is down, assume supported */
192 if (link_up)
193 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
194 TRUE : FALSE;
195 else
196 supported = TRUE;
197 }
198
199 break;
200 case ixgbe_media_type_backplane:
201 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
202 supported = FALSE;
203 else
204 supported = TRUE;
205 break;
206 case ixgbe_media_type_copper:
207 /* only some copper devices support flow control autoneg */
208 switch (hw->device_id) {
209 case IXGBE_DEV_ID_82599_T3_LOM:
210 case IXGBE_DEV_ID_X540T:
211 case IXGBE_DEV_ID_X540T1:
212 case IXGBE_DEV_ID_X540_BYPASS:
213 case IXGBE_DEV_ID_X550T:
214 case IXGBE_DEV_ID_X550T1:
215 case IXGBE_DEV_ID_X550EM_X_10G_T:
216 case IXGBE_DEV_ID_X550EM_A_10G_T:
217 case IXGBE_DEV_ID_X550EM_A_1G_T:
218 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
219 supported = TRUE;
220 break;
221 default:
222 supported = FALSE;
223 }
224 default:
225 break;
226 }
227
228 if (!supported)
229 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
230 "Device %x does not support flow control autoneg",
231 hw->device_id);
232
233 return supported;
234 }
235
236 /**
237 * ixgbe_setup_fc_generic - Set up flow control
238 * @hw: pointer to hardware structure
239 *
240 * Called at init time to set up flow control.
241 **/
242 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
243 {
244 s32 ret_val = IXGBE_SUCCESS;
245 u32 reg = 0, reg_bp = 0;
246 u16 reg_cu = 0;
247 bool locked = FALSE;
248
249 DEBUGFUNC("ixgbe_setup_fc_generic");
250
251 /* Validate the requested mode */
252 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
253 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
254 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
255 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
256 goto out;
257 }
258
259 /*
260 * 10gig parts do not have a word in the EEPROM to determine the
261 * default flow control setting, so we explicitly set it to full.
262 */
263 if (hw->fc.requested_mode == ixgbe_fc_default)
264 hw->fc.requested_mode = ixgbe_fc_full;
265
266 /*
267 * Set up the 1G and 10G flow control advertisement registers so the
268 * HW will be able to do fc autoneg once the cable is plugged in. If
269 * we link at 10G, the 1G advertisement is harmless and vice versa.
270 */
271 switch (hw->phy.media_type) {
272 case ixgbe_media_type_backplane:
273 /* some MAC's need RMW protection on AUTOC */
274 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
275 if (ret_val != IXGBE_SUCCESS)
276 goto out;
277
278 /* fall through - only backplane uses autoc */
279 case ixgbe_media_type_fiber_fixed:
280 case ixgbe_media_type_fiber_qsfp:
281 case ixgbe_media_type_fiber:
282 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
283
284 break;
285 case ixgbe_media_type_copper:
286 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
287 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu);
288 break;
289 default:
290 break;
291 }
292
293 /*
294 * The possible values of fc.requested_mode are:
295 * 0: Flow control is completely disabled
296 * 1: Rx flow control is enabled (we can receive pause frames,
297 * but not send pause frames).
298 * 2: Tx flow control is enabled (we can send pause frames but
299 * we do not support receiving pause frames).
300 * 3: Both Rx and Tx flow control (symmetric) are enabled.
301 * other: Invalid.
302 */
303 switch (hw->fc.requested_mode) {
304 case ixgbe_fc_none:
305 /* Flow control completely disabled by software override. */
306 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
307 if (hw->phy.media_type == ixgbe_media_type_backplane)
308 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
309 IXGBE_AUTOC_ASM_PAUSE);
310 else if (hw->phy.media_type == ixgbe_media_type_copper)
311 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
312 break;
313 case ixgbe_fc_tx_pause:
314 /*
315 * Tx Flow control is enabled, and Rx Flow control is
316 * disabled by software override.
317 */
318 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
319 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
320 if (hw->phy.media_type == ixgbe_media_type_backplane) {
321 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
322 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
323 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
324 reg_cu |= IXGBE_TAF_ASM_PAUSE;
325 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
326 }
327 break;
328 case ixgbe_fc_rx_pause:
329 /*
330 * Rx Flow control is enabled and Tx Flow control is
331 * disabled by software override. Since there really
332 * isn't a way to advertise that we are capable of RX
333 * Pause ONLY, we will advertise that we support both
334 * symmetric and asymmetric Rx PAUSE, as such we fall
335 * through to the fc_full statement. Later, we will
336 * disable the adapter's ability to send PAUSE frames.
337 */
338 case ixgbe_fc_full:
339 /* Flow control (both Rx and Tx) is enabled by SW override. */
340 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
341 if (hw->phy.media_type == ixgbe_media_type_backplane)
342 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
343 IXGBE_AUTOC_ASM_PAUSE;
344 else if (hw->phy.media_type == ixgbe_media_type_copper)
345 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
346 break;
347 default:
348 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
349 "Flow control param set incorrectly\n");
350 ret_val = IXGBE_ERR_CONFIG;
351 goto out;
352 break;
353 }
354
355 if (hw->mac.type < ixgbe_mac_X540) {
356 /*
357 * Enable auto-negotiation between the MAC & PHY;
358 * the MAC will advertise clause 37 flow control.
359 */
360 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
361 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
362
363 /* Disable AN timeout */
364 if (hw->fc.strict_ieee)
365 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
366
367 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
368 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
369 }
370
371 /*
372 * AUTOC restart handles negotiation of 1G and 10G on backplane
373 * and copper. There is no need to set the PCS1GCTL register.
374 *
375 */
376 if (hw->phy.media_type == ixgbe_media_type_backplane) {
377 reg_bp |= IXGBE_AUTOC_AN_RESTART;
378 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
379 if (ret_val)
380 goto out;
381 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
382 (ixgbe_device_supports_autoneg_fc(hw))) {
383 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
384 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
385 }
386
387 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
388 out:
389 return ret_val;
390 }
391
392 /**
393 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
394 * @hw: pointer to hardware structure
395 *
396 * Starts the hardware by filling the bus info structure and media type, clears
397 * all on chip counters, initializes receive address registers, multicast
398 * table, VLAN filter table, calls routine to set up link and flow control
399 * settings, and leaves transmit and receive units disabled and uninitialized
400 **/
401 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
402 {
403 s32 ret_val;
404 u32 ctrl_ext;
405 u16 device_caps;
406
407 DEBUGFUNC("ixgbe_start_hw_generic");
408
409 /* Set the media type */
410 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
411
412 /* PHY ops initialization must be done in reset_hw() */
413
414 /* Clear the VLAN filter table */
415 hw->mac.ops.clear_vfta(hw);
416
417 /* Clear statistics registers */
418 hw->mac.ops.clear_hw_cntrs(hw);
419
420 /* Set No Snoop Disable */
421 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
422 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
423 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
424 IXGBE_WRITE_FLUSH(hw);
425
426 /* Setup flow control */
427 ret_val = ixgbe_setup_fc(hw);
428 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
429 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
430 return ret_val;
431 }
432
433 /* Cache bit indicating need for crosstalk fix */
434 switch (hw->mac.type) {
435 case ixgbe_mac_82599EB:
436 case ixgbe_mac_X550EM_x:
437 case ixgbe_mac_X550EM_a:
438 hw->mac.ops.get_device_caps(hw, &device_caps);
439 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
440 hw->need_crosstalk_fix = FALSE;
441 else
442 hw->need_crosstalk_fix = TRUE;
443 break;
444 default:
445 hw->need_crosstalk_fix = FALSE;
446 break;
447 }
448
449 /* Clear adapter stopped flag */
450 hw->adapter_stopped = FALSE;
451
452 return IXGBE_SUCCESS;
453 }
454
455 /**
456 * ixgbe_start_hw_gen2 - Init sequence for common device family
457 * @hw: pointer to hw structure
458 *
459 * Performs the init sequence common to the second generation
460 * of 10 GbE devices.
461 * Devices in the second generation:
462 * 82599
463 * X540
464 **/
465 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
466 {
467 u32 i;
468 u32 regval;
469
470 DEBUGFUNC("ixgbe_start_hw_gen2");
471
472 /* Clear the rate limiters */
473 for (i = 0; i < hw->mac.max_tx_queues; i++) {
474 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
475 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
476 }
477 IXGBE_WRITE_FLUSH(hw);
478
479 /* Disable relaxed ordering */
480 for (i = 0; i < hw->mac.max_tx_queues; i++) {
481 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
482 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
483 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
484 }
485
486 for (i = 0; i < hw->mac.max_rx_queues; i++) {
487 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
488 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
489 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
490 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
491 }
492 }
493
494 /**
495 * ixgbe_init_hw_generic - Generic hardware initialization
496 * @hw: pointer to hardware structure
497 *
498 * Initialize the hardware by resetting the hardware, filling the bus info
499 * structure and media type, clears all on chip counters, initializes receive
500 * address registers, multicast table, VLAN filter table, calls routine to set
501 * up link and flow control settings, and leaves transmit and receive units
502 * disabled and uninitialized
503 **/
504 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
505 {
506 s32 status;
507
508 DEBUGFUNC("ixgbe_init_hw_generic");
509
510 /* Reset the hardware */
511 status = hw->mac.ops.reset_hw(hw);
512
513 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
514 /* Start the HW */
515 status = hw->mac.ops.start_hw(hw);
516 }
517
518 /* Initialize the LED link active for LED blink support */
519 if (hw->mac.ops.init_led_link_act)
520 hw->mac.ops.init_led_link_act(hw);
521
522 if (status != IXGBE_SUCCESS)
523 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
524
525 return status;
526 }
527
528 /**
529 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
530 * @hw: pointer to hardware structure
531 *
532 * Clears all hardware statistics counters by reading them from the hardware
533 * Statistics counters are clear on read.
534 **/
535 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
536 {
537 u16 i = 0;
538
539 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
540
541 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
542 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
543 IXGBE_READ_REG(hw, IXGBE_ERRBC);
544 IXGBE_READ_REG(hw, IXGBE_MSPDC);
545 if (hw->mac.type >= ixgbe_mac_X550)
546 IXGBE_READ_REG(hw, IXGBE_MBSDC);
547 for (i = 0; i < 8; i++)
548 IXGBE_READ_REG(hw, IXGBE_MPC(i));
549
550 IXGBE_READ_REG(hw, IXGBE_MLFC);
551 IXGBE_READ_REG(hw, IXGBE_MRFC);
552 IXGBE_READ_REG(hw, IXGBE_RLEC);
553 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
554 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
555 if (hw->mac.type >= ixgbe_mac_82599EB) {
556 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
557 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
558 } else {
559 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
560 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
561 }
562
563 for (i = 0; i < 8; i++) {
564 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
565 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
566 if (hw->mac.type >= ixgbe_mac_82599EB) {
567 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
568 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
569 } else {
570 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
571 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
572 }
573 }
574 if (hw->mac.type >= ixgbe_mac_82599EB)
575 for (i = 0; i < 8; i++)
576 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
577 IXGBE_READ_REG(hw, IXGBE_PRC64);
578 IXGBE_READ_REG(hw, IXGBE_PRC127);
579 IXGBE_READ_REG(hw, IXGBE_PRC255);
580 IXGBE_READ_REG(hw, IXGBE_PRC511);
581 IXGBE_READ_REG(hw, IXGBE_PRC1023);
582 IXGBE_READ_REG(hw, IXGBE_PRC1522);
583 IXGBE_READ_REG(hw, IXGBE_GPRC);
584 IXGBE_READ_REG(hw, IXGBE_BPRC);
585 IXGBE_READ_REG(hw, IXGBE_MPRC);
586 IXGBE_READ_REG(hw, IXGBE_GPTC);
587 IXGBE_READ_REG(hw, IXGBE_GORCL);
588 IXGBE_READ_REG(hw, IXGBE_GORCH);
589 IXGBE_READ_REG(hw, IXGBE_GOTCL);
590 IXGBE_READ_REG(hw, IXGBE_GOTCH);
591 if (hw->mac.type == ixgbe_mac_82598EB)
592 for (i = 0; i < 8; i++)
593 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
594 IXGBE_READ_REG(hw, IXGBE_RUC);
595 IXGBE_READ_REG(hw, IXGBE_RFC);
596 IXGBE_READ_REG(hw, IXGBE_ROC);
597 IXGBE_READ_REG(hw, IXGBE_RJC);
598 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
599 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
600 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
601 IXGBE_READ_REG(hw, IXGBE_TORL);
602 IXGBE_READ_REG(hw, IXGBE_TORH);
603 IXGBE_READ_REG(hw, IXGBE_TPR);
604 IXGBE_READ_REG(hw, IXGBE_TPT);
605 IXGBE_READ_REG(hw, IXGBE_PTC64);
606 IXGBE_READ_REG(hw, IXGBE_PTC127);
607 IXGBE_READ_REG(hw, IXGBE_PTC255);
608 IXGBE_READ_REG(hw, IXGBE_PTC511);
609 IXGBE_READ_REG(hw, IXGBE_PTC1023);
610 IXGBE_READ_REG(hw, IXGBE_PTC1522);
611 IXGBE_READ_REG(hw, IXGBE_MPTC);
612 IXGBE_READ_REG(hw, IXGBE_BPTC);
613 for (i = 0; i < 16; i++) {
614 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
615 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
616 if (hw->mac.type >= ixgbe_mac_82599EB) {
617 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
618 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
619 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
620 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
621 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
622 } else {
623 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
624 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
625 }
626 }
627
628 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
629 if (hw->phy.id == 0)
630 ixgbe_identify_phy(hw);
631 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
632 IXGBE_MDIO_PCS_DEV_TYPE, &i);
633 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
634 IXGBE_MDIO_PCS_DEV_TYPE, &i);
635 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
636 IXGBE_MDIO_PCS_DEV_TYPE, &i);
637 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
638 IXGBE_MDIO_PCS_DEV_TYPE, &i);
639 }
640
641 return IXGBE_SUCCESS;
642 }
643
644 /**
645 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
646 * @hw: pointer to hardware structure
647 * @pba_num: stores the part number string from the EEPROM
648 * @pba_num_size: part number string buffer length
649 *
650 * Reads the part number string from the EEPROM.
651 **/
652 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
653 u32 pba_num_size)
654 {
655 s32 ret_val;
656 u16 data;
657 u16 pba_ptr;
658 u16 offset;
659 u16 length;
660
661 DEBUGFUNC("ixgbe_read_pba_string_generic");
662
663 if (pba_num == NULL) {
664 DEBUGOUT("PBA string buffer was null\n");
665 return IXGBE_ERR_INVALID_ARGUMENT;
666 }
667
668 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
669 if (ret_val) {
670 DEBUGOUT("NVM Read Error\n");
671 return ret_val;
672 }
673
674 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
675 if (ret_val) {
676 DEBUGOUT("NVM Read Error\n");
677 return ret_val;
678 }
679
680 /*
681 * if data is not ptr guard the PBA must be in legacy format which
682 * means pba_ptr is actually our second data word for the PBA number
683 * and we can decode it into an ascii string
684 */
685 if (data != IXGBE_PBANUM_PTR_GUARD) {
686 DEBUGOUT("NVM PBA number is not stored as string\n");
687
688 /* we will need 11 characters to store the PBA */
689 if (pba_num_size < 11) {
690 DEBUGOUT("PBA string buffer too small\n");
691 return IXGBE_ERR_NO_SPACE;
692 }
693
694 /* extract hex string from data and pba_ptr */
695 pba_num[0] = (data >> 12) & 0xF;
696 pba_num[1] = (data >> 8) & 0xF;
697 pba_num[2] = (data >> 4) & 0xF;
698 pba_num[3] = data & 0xF;
699 pba_num[4] = (pba_ptr >> 12) & 0xF;
700 pba_num[5] = (pba_ptr >> 8) & 0xF;
701 pba_num[6] = '-';
702 pba_num[7] = 0;
703 pba_num[8] = (pba_ptr >> 4) & 0xF;
704 pba_num[9] = pba_ptr & 0xF;
705
706 /* put a null character on the end of our string */
707 pba_num[10] = '\0';
708
709 /* switch all the data but the '-' to hex char */
710 for (offset = 0; offset < 10; offset++) {
711 if (pba_num[offset] < 0xA)
712 pba_num[offset] += '0';
713 else if (pba_num[offset] < 0x10)
714 pba_num[offset] += 'A' - 0xA;
715 }
716
717 return IXGBE_SUCCESS;
718 }
719
720 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
721 if (ret_val) {
722 DEBUGOUT("NVM Read Error\n");
723 return ret_val;
724 }
725
726 if (length == 0xFFFF || length == 0) {
727 DEBUGOUT("NVM PBA number section invalid length\n");
728 return IXGBE_ERR_PBA_SECTION;
729 }
730
731 /* check if pba_num buffer is big enough */
732 if (pba_num_size < (((u32)length * 2) - 1)) {
733 DEBUGOUT("PBA string buffer too small\n");
734 return IXGBE_ERR_NO_SPACE;
735 }
736
737 /* trim pba length from start of string */
738 pba_ptr++;
739 length--;
740
741 for (offset = 0; offset < length; offset++) {
742 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
743 if (ret_val) {
744 DEBUGOUT("NVM Read Error\n");
745 return ret_val;
746 }
747 pba_num[offset * 2] = (u8)(data >> 8);
748 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
749 }
750 pba_num[offset * 2] = '\0';
751
752 return IXGBE_SUCCESS;
753 }
754
755 /**
756 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
757 * @hw: pointer to hardware structure
758 * @pba_num: stores the part number from the EEPROM
759 *
760 * Reads the part number from the EEPROM.
761 **/
762 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
763 {
764 s32 ret_val;
765 u16 data;
766
767 DEBUGFUNC("ixgbe_read_pba_num_generic");
768
769 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
770 if (ret_val) {
771 DEBUGOUT("NVM Read Error\n");
772 return ret_val;
773 } else if (data == IXGBE_PBANUM_PTR_GUARD) {
774 DEBUGOUT("NVM Not supported\n");
775 return IXGBE_NOT_IMPLEMENTED;
776 }
777 *pba_num = (u32)(data << 16);
778
779 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
780 if (ret_val) {
781 DEBUGOUT("NVM Read Error\n");
782 return ret_val;
783 }
784 *pba_num |= (u32)data;
785
786 return IXGBE_SUCCESS;
787 }
788
789 /**
790 * ixgbe_read_pba_raw
791 * @hw: pointer to the HW structure
792 * @eeprom_buf: optional pointer to EEPROM image
793 * @eeprom_buf_size: size of EEPROM image in words
794 * @max_pba_block_size: PBA block size limit
795 * @pba: pointer to output PBA structure
796 *
797 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
798 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
799 *
800 **/
801 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
802 u32 eeprom_buf_size, u16 max_pba_block_size,
803 struct ixgbe_pba *pba)
804 {
805 s32 ret_val;
806 u16 pba_block_size;
807
808 if (pba == NULL)
809 return IXGBE_ERR_PARAM;
810
811 if (eeprom_buf == NULL) {
812 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
813 &pba->word[0]);
814 if (ret_val)
815 return ret_val;
816 } else {
817 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
818 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
819 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
820 } else {
821 return IXGBE_ERR_PARAM;
822 }
823 }
824
825 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
826 if (pba->pba_block == NULL)
827 return IXGBE_ERR_PARAM;
828
829 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
830 eeprom_buf_size,
831 &pba_block_size);
832 if (ret_val)
833 return ret_val;
834
835 if (pba_block_size > max_pba_block_size)
836 return IXGBE_ERR_PARAM;
837
838 if (eeprom_buf == NULL) {
839 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
840 pba_block_size,
841 pba->pba_block);
842 if (ret_val)
843 return ret_val;
844 } else {
845 if (eeprom_buf_size > (u32)(pba->word[1] +
846 pba_block_size)) {
847 memcpy(pba->pba_block,
848 &eeprom_buf[pba->word[1]],
849 pba_block_size * sizeof(u16));
850 } else {
851 return IXGBE_ERR_PARAM;
852 }
853 }
854 }
855
856 return IXGBE_SUCCESS;
857 }
858
859 /**
860 * ixgbe_write_pba_raw
861 * @hw: pointer to the HW structure
862 * @eeprom_buf: optional pointer to EEPROM image
863 * @eeprom_buf_size: size of EEPROM image in words
864 * @pba: pointer to PBA structure
865 *
866 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
867 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
868 *
869 **/
870 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
871 u32 eeprom_buf_size, struct ixgbe_pba *pba)
872 {
873 s32 ret_val;
874
875 if (pba == NULL)
876 return IXGBE_ERR_PARAM;
877
878 if (eeprom_buf == NULL) {
879 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
880 &pba->word[0]);
881 if (ret_val)
882 return ret_val;
883 } else {
884 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
885 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
886 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
887 } else {
888 return IXGBE_ERR_PARAM;
889 }
890 }
891
892 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
893 if (pba->pba_block == NULL)
894 return IXGBE_ERR_PARAM;
895
896 if (eeprom_buf == NULL) {
897 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
898 pba->pba_block[0],
899 pba->pba_block);
900 if (ret_val)
901 return ret_val;
902 } else {
903 if (eeprom_buf_size > (u32)(pba->word[1] +
904 pba->pba_block[0])) {
905 memcpy(&eeprom_buf[pba->word[1]],
906 pba->pba_block,
907 pba->pba_block[0] * sizeof(u16));
908 } else {
909 return IXGBE_ERR_PARAM;
910 }
911 }
912 }
913
914 return IXGBE_SUCCESS;
915 }
916
917 /**
918 * ixgbe_get_pba_block_size
919 * @hw: pointer to the HW structure
920 * @eeprom_buf: optional pointer to EEPROM image
921 * @eeprom_buf_size: size of EEPROM image in words
922 * @pba_data_size: pointer to output variable
923 *
924 * Returns the size of the PBA block in words. Function operates on EEPROM
925 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
926 * EEPROM device.
927 *
928 **/
929 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
930 u32 eeprom_buf_size, u16 *pba_block_size)
931 {
932 s32 ret_val;
933 u16 pba_word[2];
934 u16 length;
935
936 DEBUGFUNC("ixgbe_get_pba_block_size");
937
938 if (eeprom_buf == NULL) {
939 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
940 &pba_word[0]);
941 if (ret_val)
942 return ret_val;
943 } else {
944 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
945 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
946 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
947 } else {
948 return IXGBE_ERR_PARAM;
949 }
950 }
951
952 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
953 if (eeprom_buf == NULL) {
954 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
955 &length);
956 if (ret_val)
957 return ret_val;
958 } else {
959 if (eeprom_buf_size > pba_word[1])
960 length = eeprom_buf[pba_word[1] + 0];
961 else
962 return IXGBE_ERR_PARAM;
963 }
964
965 if (length == 0xFFFF || length == 0)
966 return IXGBE_ERR_PBA_SECTION;
967 } else {
968 /* PBA number in legacy format, there is no PBA Block. */
969 length = 0;
970 }
971
972 if (pba_block_size != NULL)
973 *pba_block_size = length;
974
975 return IXGBE_SUCCESS;
976 }
977
978 /**
979 * ixgbe_get_mac_addr_generic - Generic get MAC address
980 * @hw: pointer to hardware structure
981 * @mac_addr: Adapter MAC address
982 *
983 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
984 * A reset of the adapter must be performed prior to calling this function
985 * in order for the MAC address to have been loaded from the EEPROM into RAR0
986 **/
987 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
988 {
989 u32 rar_high;
990 u32 rar_low;
991 u16 i;
992
993 DEBUGFUNC("ixgbe_get_mac_addr_generic");
994
995 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
996 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
997
998 for (i = 0; i < 4; i++)
999 mac_addr[i] = (u8)(rar_low >> (i*8));
1000
1001 for (i = 0; i < 2; i++)
1002 mac_addr[i+4] = (u8)(rar_high >> (i*8));
1003
1004 return IXGBE_SUCCESS;
1005 }
1006
1007 /**
1008 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1009 * @hw: pointer to hardware structure
1010 * @link_status: the link status returned by the PCI config space
1011 *
1012 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1013 **/
1014 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1015 {
1016 struct ixgbe_mac_info *mac = &hw->mac;
1017
1018 if (hw->bus.type == ixgbe_bus_type_unknown)
1019 hw->bus.type = ixgbe_bus_type_pci_express;
1020
1021 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1022 case IXGBE_PCI_LINK_WIDTH_1:
1023 hw->bus.width = ixgbe_bus_width_pcie_x1;
1024 break;
1025 case IXGBE_PCI_LINK_WIDTH_2:
1026 hw->bus.width = ixgbe_bus_width_pcie_x2;
1027 break;
1028 case IXGBE_PCI_LINK_WIDTH_4:
1029 hw->bus.width = ixgbe_bus_width_pcie_x4;
1030 break;
1031 case IXGBE_PCI_LINK_WIDTH_8:
1032 hw->bus.width = ixgbe_bus_width_pcie_x8;
1033 break;
1034 default:
1035 hw->bus.width = ixgbe_bus_width_unknown;
1036 break;
1037 }
1038
1039 switch (link_status & IXGBE_PCI_LINK_SPEED) {
1040 case IXGBE_PCI_LINK_SPEED_2500:
1041 hw->bus.speed = ixgbe_bus_speed_2500;
1042 break;
1043 case IXGBE_PCI_LINK_SPEED_5000:
1044 hw->bus.speed = ixgbe_bus_speed_5000;
1045 break;
1046 case IXGBE_PCI_LINK_SPEED_8000:
1047 hw->bus.speed = ixgbe_bus_speed_8000;
1048 break;
1049 default:
1050 hw->bus.speed = ixgbe_bus_speed_unknown;
1051 break;
1052 }
1053
1054 mac->ops.set_lan_id(hw);
1055 }
1056
1057 /**
1058 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1059 * @hw: pointer to hardware structure
1060 *
1061 * Gets the PCI bus info (speed, width, type) then calls helper function to
1062 * store this data within the ixgbe_hw structure.
1063 **/
1064 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1065 {
1066 u16 link_status;
1067
1068 DEBUGFUNC("ixgbe_get_bus_info_generic");
1069
1070 /* Get the negotiated link width and speed from PCI config space */
1071 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1072
1073 ixgbe_set_pci_config_data_generic(hw, link_status);
1074
1075 return IXGBE_SUCCESS;
1076 }
1077
1078 /**
1079 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1080 * @hw: pointer to the HW structure
1081 *
1082 * Determines the LAN function id by reading memory-mapped registers and swaps
1083 * the port value if requested, and set MAC instance for devices that share
1084 * CS4227.
1085 **/
1086 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1087 {
1088 struct ixgbe_bus_info *bus = &hw->bus;
1089 u32 reg;
1090 u16 ee_ctrl_4;
1091
1092 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1093
1094 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1095 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1096 bus->lan_id = (u8)bus->func;
1097
1098 /* check for a port swap */
1099 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1100 if (reg & IXGBE_FACTPS_LFS)
1101 bus->func ^= 0x1;
1102
1103 /* Get MAC instance from EEPROM for configuring CS4227 */
1104 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1105 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1106 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1107 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1108 }
1109 }
1110
1111 /**
1112 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1113 * @hw: pointer to hardware structure
1114 *
1115 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1116 * disables transmit and receive units. The adapter_stopped flag is used by
1117 * the shared code and drivers to determine if the adapter is in a stopped
1118 * state and should not touch the hardware.
1119 **/
1120 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1121 {
1122 u32 reg_val;
1123 u16 i;
1124
1125 DEBUGFUNC("ixgbe_stop_adapter_generic");
1126
1127 /*
1128 * Set the adapter_stopped flag so other driver functions stop touching
1129 * the hardware
1130 */
1131 hw->adapter_stopped = TRUE;
1132
1133 /* Disable the receive unit */
1134 ixgbe_disable_rx(hw);
1135
1136 /* Clear interrupt mask to stop interrupts from being generated */
1137 /*
1138 * XXX
1139 * This function is called in the state of both interrupt disabled
1140 * and interrupt enabled, e.g.
1141 * + interrupt disabled case:
1142 * - ixgbe_stop_locked()
1143 * - ixgbe_disable_intr() // interrupt disabled here
1144 * - ixgbe_stop_adapter()
1145 * - hw->mac.ops.stop_adapter()
1146 * == this function
1147 * + interrupt enabled case:
1148 * - ixgbe_local_timer1()
1149 * - ixgbe_init_locked()
1150 * - ixgbe_stop_adapter()
1151 * - hw->mac.ops.stop_adapter()
1152 * == this function
1153 * Therefore, it causes nest status breaking to nest the status
1154 * (that is, que->im_nest++) at all times. So, this function must
1155 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
1156 */
1157 ixgbe_ensure_disabled_intr(hw->back);
1158
1159 /* Clear any pending interrupts, flush previous writes */
1160 IXGBE_READ_REG(hw, IXGBE_EICR);
1161
1162 /* Disable the transmit unit. Each queue must be disabled. */
1163 for (i = 0; i < hw->mac.max_tx_queues; i++)
1164 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1165
1166 /* Disable the receive unit by stopping each queue */
1167 for (i = 0; i < hw->mac.max_rx_queues; i++) {
1168 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1169 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1170 reg_val |= IXGBE_RXDCTL_SWFLSH;
1171 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1172 }
1173
1174 /* flush all queues disables */
1175 IXGBE_WRITE_FLUSH(hw);
1176 msec_delay(2);
1177
1178 /*
1179 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1180 * access and verify no pending requests
1181 */
1182 return ixgbe_disable_pcie_master(hw);
1183 }
1184
1185 /**
1186 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1187 * @hw: pointer to hardware structure
1188 *
1189 * Store the index for the link active LED. This will be used to support
1190 * blinking the LED.
1191 **/
1192 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1193 {
1194 struct ixgbe_mac_info *mac = &hw->mac;
1195 u32 led_reg, led_mode;
1196 u8 i;
1197
1198 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1199
1200 /* Get LED link active from the LEDCTL register */
1201 for (i = 0; i < 4; i++) {
1202 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1203
1204 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1205 IXGBE_LED_LINK_ACTIVE) {
1206 mac->led_link_act = i;
1207 return IXGBE_SUCCESS;
1208 }
1209 }
1210
1211 /*
1212 * If LEDCTL register does not have the LED link active set, then use
1213 * known MAC defaults.
1214 */
1215 switch (hw->mac.type) {
1216 case ixgbe_mac_X550EM_a:
1217 case ixgbe_mac_X550EM_x:
1218 mac->led_link_act = 1;
1219 break;
1220 default:
1221 mac->led_link_act = 2;
1222 }
1223 return IXGBE_SUCCESS;
1224 }
1225
1226 /**
1227 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1228 * @hw: pointer to hardware structure
1229 * @index: led number to turn on
1230 **/
1231 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1232 {
1233 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1234
1235 DEBUGFUNC("ixgbe_led_on_generic");
1236
1237 if (index > 3)
1238 return IXGBE_ERR_PARAM;
1239
1240 /* To turn on the LED, set mode to ON. */
1241 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1242 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1243 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1244 IXGBE_WRITE_FLUSH(hw);
1245
1246 return IXGBE_SUCCESS;
1247 }
1248
1249 /**
1250 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1251 * @hw: pointer to hardware structure
1252 * @index: led number to turn off
1253 **/
1254 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1255 {
1256 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1257
1258 DEBUGFUNC("ixgbe_led_off_generic");
1259
1260 if (index > 3)
1261 return IXGBE_ERR_PARAM;
1262
1263 /* To turn off the LED, set mode to OFF. */
1264 led_reg &= ~IXGBE_LED_MODE_MASK(index);
1265 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1266 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1267 IXGBE_WRITE_FLUSH(hw);
1268
1269 return IXGBE_SUCCESS;
1270 }
1271
1272 /**
1273 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1274 * @hw: pointer to hardware structure
1275 *
1276 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1277 * ixgbe_hw struct in order to set up EEPROM access.
1278 **/
1279 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1280 {
1281 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1282 u32 eec;
1283 u16 eeprom_size;
1284
1285 DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1286
1287 if (eeprom->type == ixgbe_eeprom_uninitialized) {
1288 eeprom->type = ixgbe_eeprom_none;
1289 /* Set default semaphore delay to 10ms which is a well
1290 * tested value */
1291 eeprom->semaphore_delay = 10;
1292 /* Clear EEPROM page size, it will be initialized as needed */
1293 eeprom->word_page_size = 0;
1294
1295 /*
1296 * Check for EEPROM present first.
1297 * If not present leave as none
1298 */
1299 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1300 if (eec & IXGBE_EEC_PRES) {
1301 eeprom->type = ixgbe_eeprom_spi;
1302
1303 /*
1304 * SPI EEPROM is assumed here. This code would need to
1305 * change if a future EEPROM is not SPI.
1306 */
1307 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1308 IXGBE_EEC_SIZE_SHIFT);
1309 eeprom->word_size = 1 << (eeprom_size +
1310 IXGBE_EEPROM_WORD_SIZE_SHIFT);
1311 }
1312
1313 if (eec & IXGBE_EEC_ADDR_SIZE)
1314 eeprom->address_bits = 16;
1315 else
1316 eeprom->address_bits = 8;
1317 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1318 "%d\n", eeprom->type, eeprom->word_size,
1319 eeprom->address_bits);
1320 }
1321
1322 return IXGBE_SUCCESS;
1323 }
1324
1325 /**
1326 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1327 * @hw: pointer to hardware structure
1328 * @offset: offset within the EEPROM to write
1329 * @words: number of word(s)
1330 * @data: 16 bit word(s) to write to EEPROM
1331 *
1332 * Reads 16 bit word(s) from EEPROM through bit-bang method
1333 **/
1334 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1335 u16 words, u16 *data)
1336 {
1337 s32 status = IXGBE_SUCCESS;
1338 u16 i, count;
1339
1340 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1341
1342 hw->eeprom.ops.init_params(hw);
1343
1344 if (words == 0) {
1345 status = IXGBE_ERR_INVALID_ARGUMENT;
1346 goto out;
1347 }
1348
1349 if (offset + words > hw->eeprom.word_size) {
1350 status = IXGBE_ERR_EEPROM;
1351 goto out;
1352 }
1353
1354 /*
1355 * The EEPROM page size cannot be queried from the chip. We do lazy
1356 * initialization. It is worth to do that when we write large buffer.
1357 */
1358 if ((hw->eeprom.word_page_size == 0) &&
1359 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1360 ixgbe_detect_eeprom_page_size_generic(hw, offset);
1361
1362 /*
1363 * We cannot hold synchronization semaphores for too long
1364 * to avoid other entity starvation. However it is more efficient
1365 * to read in bursts than synchronizing access for each word.
1366 */
1367 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1368 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1369 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1370 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1371 count, &data[i]);
1372
1373 if (status != IXGBE_SUCCESS)
1374 break;
1375 }
1376
1377 out:
1378 return status;
1379 }
1380
1381 /**
1382 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1383 * @hw: pointer to hardware structure
1384 * @offset: offset within the EEPROM to be written to
1385 * @words: number of word(s)
1386 * @data: 16 bit word(s) to be written to the EEPROM
1387 *
1388 * If ixgbe_eeprom_update_checksum is not called after this function, the
1389 * EEPROM will most likely contain an invalid checksum.
1390 **/
1391 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1392 u16 words, u16 *data)
1393 {
1394 s32 status;
1395 u16 word;
1396 u16 page_size;
1397 u16 i;
1398 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1399
1400 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1401
1402 /* Prepare the EEPROM for writing */
1403 status = ixgbe_acquire_eeprom(hw);
1404
1405 if (status == IXGBE_SUCCESS) {
1406 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1407 ixgbe_release_eeprom(hw);
1408 status = IXGBE_ERR_EEPROM;
1409 }
1410 }
1411
1412 if (status == IXGBE_SUCCESS) {
1413 for (i = 0; i < words; i++) {
1414 ixgbe_standby_eeprom(hw);
1415
1416 /* Send the WRITE ENABLE command (8 bit opcode ) */
1417 ixgbe_shift_out_eeprom_bits(hw,
1418 IXGBE_EEPROM_WREN_OPCODE_SPI,
1419 IXGBE_EEPROM_OPCODE_BITS);
1420
1421 ixgbe_standby_eeprom(hw);
1422
1423 /*
1424 * Some SPI eeproms use the 8th address bit embedded
1425 * in the opcode
1426 */
1427 if ((hw->eeprom.address_bits == 8) &&
1428 ((offset + i) >= 128))
1429 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1430
1431 /* Send the Write command (8-bit opcode + addr) */
1432 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1433 IXGBE_EEPROM_OPCODE_BITS);
1434 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1435 hw->eeprom.address_bits);
1436
1437 page_size = hw->eeprom.word_page_size;
1438
1439 /* Send the data in burst via SPI*/
1440 do {
1441 word = data[i];
1442 word = (word >> 8) | (word << 8);
1443 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1444
1445 if (page_size == 0)
1446 break;
1447
1448 /* do not wrap around page */
1449 if (((offset + i) & (page_size - 1)) ==
1450 (page_size - 1))
1451 break;
1452 } while (++i < words);
1453
1454 ixgbe_standby_eeprom(hw);
1455 msec_delay(10);
1456 }
1457 /* Done with writing - release the EEPROM */
1458 ixgbe_release_eeprom(hw);
1459 }
1460
1461 return status;
1462 }
1463
1464 /**
1465 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1466 * @hw: pointer to hardware structure
1467 * @offset: offset within the EEPROM to be written to
1468 * @data: 16 bit word to be written to the EEPROM
1469 *
1470 * If ixgbe_eeprom_update_checksum is not called after this function, the
1471 * EEPROM will most likely contain an invalid checksum.
1472 **/
1473 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1474 {
1475 s32 status;
1476
1477 DEBUGFUNC("ixgbe_write_eeprom_generic");
1478
1479 hw->eeprom.ops.init_params(hw);
1480
1481 if (offset >= hw->eeprom.word_size) {
1482 status = IXGBE_ERR_EEPROM;
1483 goto out;
1484 }
1485
1486 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1487
1488 out:
1489 return status;
1490 }
1491
1492 /**
1493 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1494 * @hw: pointer to hardware structure
1495 * @offset: offset within the EEPROM to be read
1496 * @data: read 16 bit words(s) from EEPROM
1497 * @words: number of word(s)
1498 *
1499 * Reads 16 bit word(s) from EEPROM through bit-bang method
1500 **/
1501 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1502 u16 words, u16 *data)
1503 {
1504 s32 status = IXGBE_SUCCESS;
1505 u16 i, count;
1506
1507 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1508
1509 hw->eeprom.ops.init_params(hw);
1510
1511 if (words == 0) {
1512 status = IXGBE_ERR_INVALID_ARGUMENT;
1513 goto out;
1514 }
1515
1516 if (offset + words > hw->eeprom.word_size) {
1517 status = IXGBE_ERR_EEPROM;
1518 goto out;
1519 }
1520
1521 /*
1522 * We cannot hold synchronization semaphores for too long
1523 * to avoid other entity starvation. However it is more efficient
1524 * to read in bursts than synchronizing access for each word.
1525 */
1526 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1527 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1528 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1529
1530 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1531 count, &data[i]);
1532
1533 if (status != IXGBE_SUCCESS)
1534 break;
1535 }
1536
1537 out:
1538 return status;
1539 }
1540
1541 /**
1542 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1543 * @hw: pointer to hardware structure
1544 * @offset: offset within the EEPROM to be read
1545 * @words: number of word(s)
1546 * @data: read 16 bit word(s) from EEPROM
1547 *
1548 * Reads 16 bit word(s) from EEPROM through bit-bang method
1549 **/
1550 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1551 u16 words, u16 *data)
1552 {
1553 s32 status;
1554 u16 word_in;
1555 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1556 u16 i;
1557
1558 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1559
1560 /* Prepare the EEPROM for reading */
1561 status = ixgbe_acquire_eeprom(hw);
1562
1563 if (status == IXGBE_SUCCESS) {
1564 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1565 ixgbe_release_eeprom(hw);
1566 status = IXGBE_ERR_EEPROM;
1567 }
1568 }
1569
1570 if (status == IXGBE_SUCCESS) {
1571 for (i = 0; i < words; i++) {
1572 ixgbe_standby_eeprom(hw);
1573 /*
1574 * Some SPI eeproms use the 8th address bit embedded
1575 * in the opcode
1576 */
1577 if ((hw->eeprom.address_bits == 8) &&
1578 ((offset + i) >= 128))
1579 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1580
1581 /* Send the READ command (opcode + addr) */
1582 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1583 IXGBE_EEPROM_OPCODE_BITS);
1584 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1585 hw->eeprom.address_bits);
1586
1587 /* Read the data. */
1588 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1589 data[i] = (word_in >> 8) | (word_in << 8);
1590 }
1591
1592 /* End this read operation */
1593 ixgbe_release_eeprom(hw);
1594 }
1595
1596 return status;
1597 }
1598
1599 /**
1600 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1601 * @hw: pointer to hardware structure
1602 * @offset: offset within the EEPROM to be read
1603 * @data: read 16 bit value from EEPROM
1604 *
1605 * Reads 16 bit value from EEPROM through bit-bang method
1606 **/
1607 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1608 u16 *data)
1609 {
1610 s32 status;
1611
1612 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1613
1614 hw->eeprom.ops.init_params(hw);
1615
1616 if (offset >= hw->eeprom.word_size) {
1617 status = IXGBE_ERR_EEPROM;
1618 goto out;
1619 }
1620
1621 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1622
1623 out:
1624 return status;
1625 }
1626
1627 /**
1628 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1629 * @hw: pointer to hardware structure
1630 * @offset: offset of word in the EEPROM to read
1631 * @words: number of word(s)
1632 * @data: 16 bit word(s) from the EEPROM
1633 *
1634 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1635 **/
1636 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1637 u16 words, u16 *data)
1638 {
1639 u32 eerd;
1640 s32 status = IXGBE_SUCCESS;
1641 u32 i;
1642
1643 DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1644
1645 hw->eeprom.ops.init_params(hw);
1646
1647 if (words == 0) {
1648 status = IXGBE_ERR_INVALID_ARGUMENT;
1649 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1650 goto out;
1651 }
1652
1653 if (offset >= hw->eeprom.word_size) {
1654 status = IXGBE_ERR_EEPROM;
1655 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1656 goto out;
1657 }
1658
1659 for (i = 0; i < words; i++) {
1660 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1661 IXGBE_EEPROM_RW_REG_START;
1662
1663 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1664 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1665
1666 if (status == IXGBE_SUCCESS) {
1667 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1668 IXGBE_EEPROM_RW_REG_DATA);
1669 } else {
1670 DEBUGOUT("Eeprom read timed out\n");
1671 goto out;
1672 }
1673 }
1674 out:
1675 return status;
1676 }
1677
1678 /**
1679 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1680 * @hw: pointer to hardware structure
1681 * @offset: offset within the EEPROM to be used as a scratch pad
1682 *
1683 * Discover EEPROM page size by writing marching data at given offset.
1684 * This function is called only when we are writing a new large buffer
1685 * at given offset so the data would be overwritten anyway.
1686 **/
1687 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1688 u16 offset)
1689 {
1690 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1691 s32 status = IXGBE_SUCCESS;
1692 u16 i;
1693
1694 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1695
1696 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1697 data[i] = i;
1698
1699 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1700 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1701 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1702 hw->eeprom.word_page_size = 0;
1703 if (status != IXGBE_SUCCESS)
1704 goto out;
1705
1706 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1707 if (status != IXGBE_SUCCESS)
1708 goto out;
1709
1710 /*
1711 * When writing in burst more than the actual page size
1712 * EEPROM address wraps around current page.
1713 */
1714 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1715
1716 DEBUGOUT1("Detected EEPROM page size = %d words.",
1717 hw->eeprom.word_page_size);
1718 out:
1719 return status;
1720 }
1721
1722 /**
1723 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1724 * @hw: pointer to hardware structure
1725 * @offset: offset of word in the EEPROM to read
1726 * @data: word read from the EEPROM
1727 *
1728 * Reads a 16 bit word from the EEPROM using the EERD register.
1729 **/
1730 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1731 {
1732 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1733 }
1734
1735 /**
1736 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1737 * @hw: pointer to hardware structure
1738 * @offset: offset of word in the EEPROM to write
1739 * @words: number of word(s)
1740 * @data: word(s) write to the EEPROM
1741 *
1742 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1743 **/
1744 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1745 u16 words, u16 *data)
1746 {
1747 u32 eewr;
1748 s32 status = IXGBE_SUCCESS;
1749 u16 i;
1750
1751 DEBUGFUNC("ixgbe_write_eewr_generic");
1752
1753 hw->eeprom.ops.init_params(hw);
1754
1755 if (words == 0) {
1756 status = IXGBE_ERR_INVALID_ARGUMENT;
1757 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1758 goto out;
1759 }
1760
1761 if (offset >= hw->eeprom.word_size) {
1762 status = IXGBE_ERR_EEPROM;
1763 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1764 goto out;
1765 }
1766
1767 for (i = 0; i < words; i++) {
1768 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1769 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1770 IXGBE_EEPROM_RW_REG_START;
1771
1772 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1773 if (status != IXGBE_SUCCESS) {
1774 DEBUGOUT("Eeprom write EEWR timed out\n");
1775 goto out;
1776 }
1777
1778 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1779
1780 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1781 if (status != IXGBE_SUCCESS) {
1782 DEBUGOUT("Eeprom write EEWR timed out\n");
1783 goto out;
1784 }
1785 }
1786
1787 out:
1788 return status;
1789 }
1790
1791 /**
1792 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1793 * @hw: pointer to hardware structure
1794 * @offset: offset of word in the EEPROM to write
1795 * @data: word write to the EEPROM
1796 *
1797 * Write a 16 bit word to the EEPROM using the EEWR register.
1798 **/
1799 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1800 {
1801 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1802 }
1803
1804 /**
1805 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1806 * @hw: pointer to hardware structure
1807 * @ee_reg: EEPROM flag for polling
1808 *
1809 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1810 * read or write is done respectively.
1811 **/
1812 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1813 {
1814 u32 i;
1815 u32 reg;
1816 s32 status = IXGBE_ERR_EEPROM;
1817
1818 DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1819
1820 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1821 if (ee_reg == IXGBE_NVM_POLL_READ)
1822 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1823 else
1824 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1825
1826 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1827 status = IXGBE_SUCCESS;
1828 break;
1829 }
1830 usec_delay(5);
1831 }
1832
1833 if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1834 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1835 "EEPROM read/write done polling timed out");
1836
1837 return status;
1838 }
1839
1840 /**
1841 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1842 * @hw: pointer to hardware structure
1843 *
1844 * Prepares EEPROM for access using bit-bang method. This function should
1845 * be called before issuing a command to the EEPROM.
1846 **/
1847 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1848 {
1849 s32 status = IXGBE_SUCCESS;
1850 u32 eec;
1851 u32 i;
1852
1853 DEBUGFUNC("ixgbe_acquire_eeprom");
1854
1855 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1856 != IXGBE_SUCCESS)
1857 status = IXGBE_ERR_SWFW_SYNC;
1858
1859 if (status == IXGBE_SUCCESS) {
1860 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1861
1862 /* Request EEPROM Access */
1863 eec |= IXGBE_EEC_REQ;
1864 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1865
1866 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1867 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1868 if (eec & IXGBE_EEC_GNT)
1869 break;
1870 usec_delay(5);
1871 }
1872
1873 /* Release if grant not acquired */
1874 if (!(eec & IXGBE_EEC_GNT)) {
1875 eec &= ~IXGBE_EEC_REQ;
1876 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1877 DEBUGOUT("Could not acquire EEPROM grant\n");
1878
1879 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1880 status = IXGBE_ERR_EEPROM;
1881 }
1882
1883 /* Setup EEPROM for Read/Write */
1884 if (status == IXGBE_SUCCESS) {
1885 /* Clear CS and SK */
1886 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1887 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1888 IXGBE_WRITE_FLUSH(hw);
1889 usec_delay(1);
1890 }
1891 }
1892 return status;
1893 }
1894
1895 /**
1896 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1897 * @hw: pointer to hardware structure
1898 *
1899 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1900 **/
1901 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1902 {
1903 s32 status = IXGBE_ERR_EEPROM;
1904 u32 timeout = 2000;
1905 u32 i;
1906 u32 swsm;
1907
1908 DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1909
1910
1911 /* Get SMBI software semaphore between device drivers first */
1912 for (i = 0; i < timeout; i++) {
1913 /*
1914 * If the SMBI bit is 0 when we read it, then the bit will be
1915 * set and we have the semaphore
1916 */
1917 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1918 if (!(swsm & IXGBE_SWSM_SMBI)) {
1919 status = IXGBE_SUCCESS;
1920 break;
1921 }
1922 usec_delay(50);
1923 }
1924
1925 if (i == timeout) {
1926 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1927 "not granted.\n");
1928 /*
1929 * this release is particularly important because our attempts
1930 * above to get the semaphore may have succeeded, and if there
1931 * was a timeout, we should unconditionally clear the semaphore
1932 * bits to free the driver to make progress
1933 */
1934 ixgbe_release_eeprom_semaphore(hw);
1935
1936 usec_delay(50);
1937 /*
1938 * one last try
1939 * If the SMBI bit is 0 when we read it, then the bit will be
1940 * set and we have the semaphore
1941 */
1942 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1943 if (!(swsm & IXGBE_SWSM_SMBI))
1944 status = IXGBE_SUCCESS;
1945 }
1946
1947 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1948 if (status == IXGBE_SUCCESS) {
1949 for (i = 0; i < timeout; i++) {
1950 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1951
1952 /* Set the SW EEPROM semaphore bit to request access */
1953 swsm |= IXGBE_SWSM_SWESMBI;
1954 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1955
1956 /*
1957 * If we set the bit successfully then we got the
1958 * semaphore.
1959 */
1960 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1961 if (swsm & IXGBE_SWSM_SWESMBI)
1962 break;
1963
1964 usec_delay(50);
1965 }
1966
1967 /*
1968 * Release semaphores and return error if SW EEPROM semaphore
1969 * was not granted because we don't have access to the EEPROM
1970 */
1971 if (i >= timeout) {
1972 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1973 "SWESMBI Software EEPROM semaphore not granted.\n");
1974 ixgbe_release_eeprom_semaphore(hw);
1975 status = IXGBE_ERR_EEPROM;
1976 }
1977 } else {
1978 ERROR_REPORT1(IXGBE_ERROR_POLLING,
1979 "Software semaphore SMBI between device drivers "
1980 "not granted.\n");
1981 }
1982
1983 return status;
1984 }
1985
1986 /**
1987 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1988 * @hw: pointer to hardware structure
1989 *
1990 * This function clears hardware semaphore bits.
1991 **/
1992 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1993 {
1994 u32 swsm;
1995
1996 DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1997
1998 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1999
2000 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
2001 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
2002 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
2003 IXGBE_WRITE_FLUSH(hw);
2004 }
2005
2006 /**
2007 * ixgbe_ready_eeprom - Polls for EEPROM ready
2008 * @hw: pointer to hardware structure
2009 **/
2010 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
2011 {
2012 s32 status = IXGBE_SUCCESS;
2013 u16 i;
2014 u8 spi_stat_reg;
2015
2016 DEBUGFUNC("ixgbe_ready_eeprom");
2017
2018 /*
2019 * Read "Status Register" repeatedly until the LSB is cleared. The
2020 * EEPROM will signal that the command has been completed by clearing
2021 * bit 0 of the internal status register. If it's not cleared within
2022 * 5 milliseconds, then error out.
2023 */
2024 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
2025 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
2026 IXGBE_EEPROM_OPCODE_BITS);
2027 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2028 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2029 break;
2030
2031 usec_delay(5);
2032 ixgbe_standby_eeprom(hw);
2033 }
2034
2035 /*
2036 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2037 * devices (and only 0-5mSec on 5V devices)
2038 */
2039 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2040 DEBUGOUT("SPI EEPROM Status error\n");
2041 status = IXGBE_ERR_EEPROM;
2042 }
2043
2044 return status;
2045 }
2046
2047 /**
2048 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2049 * @hw: pointer to hardware structure
2050 **/
2051 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2052 {
2053 u32 eec;
2054
2055 DEBUGFUNC("ixgbe_standby_eeprom");
2056
2057 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2058
2059 /* Toggle CS to flush commands */
2060 eec |= IXGBE_EEC_CS;
2061 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2062 IXGBE_WRITE_FLUSH(hw);
2063 usec_delay(1);
2064 eec &= ~IXGBE_EEC_CS;
2065 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2066 IXGBE_WRITE_FLUSH(hw);
2067 usec_delay(1);
2068 }
2069
2070 /**
2071 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2072 * @hw: pointer to hardware structure
2073 * @data: data to send to the EEPROM
2074 * @count: number of bits to shift out
2075 **/
2076 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2077 u16 count)
2078 {
2079 u32 eec;
2080 u32 mask;
2081 u32 i;
2082
2083 DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2084
2085 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2086
2087 /*
2088 * Mask is used to shift "count" bits of "data" out to the EEPROM
2089 * one bit at a time. Determine the starting bit based on count
2090 */
2091 mask = 0x01 << (count - 1);
2092
2093 for (i = 0; i < count; i++) {
2094 /*
2095 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2096 * "1", and then raising and then lowering the clock (the SK
2097 * bit controls the clock input to the EEPROM). A "0" is
2098 * shifted out to the EEPROM by setting "DI" to "0" and then
2099 * raising and then lowering the clock.
2100 */
2101 if (data & mask)
2102 eec |= IXGBE_EEC_DI;
2103 else
2104 eec &= ~IXGBE_EEC_DI;
2105
2106 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2107 IXGBE_WRITE_FLUSH(hw);
2108
2109 usec_delay(1);
2110
2111 ixgbe_raise_eeprom_clk(hw, &eec);
2112 ixgbe_lower_eeprom_clk(hw, &eec);
2113
2114 /*
2115 * Shift mask to signify next bit of data to shift in to the
2116 * EEPROM
2117 */
2118 mask = mask >> 1;
2119 }
2120
2121 /* We leave the "DI" bit set to "0" when we leave this routine. */
2122 eec &= ~IXGBE_EEC_DI;
2123 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2124 IXGBE_WRITE_FLUSH(hw);
2125 }
2126
2127 /**
2128 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2129 * @hw: pointer to hardware structure
2130 * @count: number of bits to shift
2131 **/
2132 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2133 {
2134 u32 eec;
2135 u32 i;
2136 u16 data = 0;
2137
2138 DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2139
2140 /*
2141 * In order to read a register from the EEPROM, we need to shift
2142 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2143 * the clock input to the EEPROM (setting the SK bit), and then reading
2144 * the value of the "DO" bit. During this "shifting in" process the
2145 * "DI" bit should always be clear.
2146 */
2147 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2148
2149 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2150
2151 for (i = 0; i < count; i++) {
2152 data = data << 1;
2153 ixgbe_raise_eeprom_clk(hw, &eec);
2154
2155 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2156
2157 eec &= ~(IXGBE_EEC_DI);
2158 if (eec & IXGBE_EEC_DO)
2159 data |= 1;
2160
2161 ixgbe_lower_eeprom_clk(hw, &eec);
2162 }
2163
2164 return data;
2165 }
2166
2167 /**
2168 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2169 * @hw: pointer to hardware structure
2170 * @eec: EEC register's current value
2171 **/
2172 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2173 {
2174 DEBUGFUNC("ixgbe_raise_eeprom_clk");
2175
2176 /*
2177 * Raise the clock input to the EEPROM
2178 * (setting the SK bit), then delay
2179 */
2180 *eec = *eec | IXGBE_EEC_SK;
2181 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2182 IXGBE_WRITE_FLUSH(hw);
2183 usec_delay(1);
2184 }
2185
2186 /**
2187 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2188 * @hw: pointer to hardware structure
2189 * @eec: EEC's current value
2190 **/
2191 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2192 {
2193 DEBUGFUNC("ixgbe_lower_eeprom_clk");
2194
2195 /*
2196 * Lower the clock input to the EEPROM (clearing the SK bit), then
2197 * delay
2198 */
2199 *eec = *eec & ~IXGBE_EEC_SK;
2200 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2201 IXGBE_WRITE_FLUSH(hw);
2202 usec_delay(1);
2203 }
2204
2205 /**
2206 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2207 * @hw: pointer to hardware structure
2208 **/
2209 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2210 {
2211 u32 eec;
2212
2213 DEBUGFUNC("ixgbe_release_eeprom");
2214
2215 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2216
2217 eec |= IXGBE_EEC_CS; /* Pull CS high */
2218 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2219
2220 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2221 IXGBE_WRITE_FLUSH(hw);
2222
2223 usec_delay(1);
2224
2225 /* Stop requesting EEPROM access */
2226 eec &= ~IXGBE_EEC_REQ;
2227 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2228
2229 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2230
2231 /* Delay before attempt to obtain semaphore again to allow FW access */
2232 msec_delay(hw->eeprom.semaphore_delay);
2233 }
2234
2235 /**
2236 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2237 * @hw: pointer to hardware structure
2238 *
2239 * Returns a negative error code on error, or the 16-bit checksum
2240 **/
2241 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2242 {
2243 u16 i;
2244 u16 j;
2245 u16 checksum = 0;
2246 u16 length = 0;
2247 u16 pointer = 0;
2248 u16 word = 0;
2249
2250 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2251
2252 /* Include 0x0-0x3F in the checksum */
2253 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2254 if (hw->eeprom.ops.read(hw, i, &word)) {
2255 DEBUGOUT("EEPROM read failed\n");
2256 return IXGBE_ERR_EEPROM;
2257 }
2258 checksum += word;
2259 }
2260
2261 /* Include all data from pointers except for the fw pointer */
2262 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2263 if (hw->eeprom.ops.read(hw, i, &pointer)) {
2264 DEBUGOUT("EEPROM read failed\n");
2265 return IXGBE_ERR_EEPROM;
2266 }
2267
2268 /* If the pointer seems invalid */
2269 if (pointer == 0xFFFF || pointer == 0)
2270 continue;
2271
2272 if (hw->eeprom.ops.read(hw, pointer, &length)) {
2273 DEBUGOUT("EEPROM read failed\n");
2274 return IXGBE_ERR_EEPROM;
2275 }
2276
2277 if (length == 0xFFFF || length == 0)
2278 continue;
2279
2280 for (j = pointer + 1; j <= pointer + length; j++) {
2281 if (hw->eeprom.ops.read(hw, j, &word)) {
2282 DEBUGOUT("EEPROM read failed\n");
2283 return IXGBE_ERR_EEPROM;
2284 }
2285 checksum += word;
2286 }
2287 }
2288
2289 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2290
2291 return (s32)checksum;
2292 }
2293
2294 /**
2295 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2296 * @hw: pointer to hardware structure
2297 * @checksum_val: calculated checksum
2298 *
2299 * Performs checksum calculation and validates the EEPROM checksum. If the
2300 * caller does not need checksum_val, the value can be NULL.
2301 **/
2302 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2303 u16 *checksum_val)
2304 {
2305 s32 status;
2306 u16 checksum;
2307 u16 read_checksum = 0;
2308
2309 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2310
2311 /* Read the first word from the EEPROM. If this times out or fails, do
2312 * not continue or we could be in for a very long wait while every
2313 * EEPROM read fails
2314 */
2315 status = hw->eeprom.ops.read(hw, 0, &checksum);
2316 if (status) {
2317 DEBUGOUT("EEPROM read failed\n");
2318 return status;
2319 }
2320
2321 status = hw->eeprom.ops.calc_checksum(hw);
2322 if (status < 0)
2323 return status;
2324
2325 checksum = (u16)(status & 0xffff);
2326
2327 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2328 if (status) {
2329 DEBUGOUT("EEPROM read failed\n");
2330 return status;
2331 }
2332
2333 /* Verify read checksum from EEPROM is the same as
2334 * calculated checksum
2335 */
2336 if (read_checksum != checksum)
2337 status = IXGBE_ERR_EEPROM_CHECKSUM;
2338
2339 /* If the user cares, return the calculated checksum */
2340 if (checksum_val)
2341 *checksum_val = checksum;
2342
2343 return status;
2344 }
2345
2346 /**
2347 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2348 * @hw: pointer to hardware structure
2349 **/
2350 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2351 {
2352 s32 status;
2353 u16 checksum;
2354
2355 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2356
2357 /* Read the first word from the EEPROM. If this times out or fails, do
2358 * not continue or we could be in for a very long wait while every
2359 * EEPROM read fails
2360 */
2361 status = hw->eeprom.ops.read(hw, 0, &checksum);
2362 if (status) {
2363 DEBUGOUT("EEPROM read failed\n");
2364 return status;
2365 }
2366
2367 status = hw->eeprom.ops.calc_checksum(hw);
2368 if (status < 0)
2369 return status;
2370
2371 checksum = (u16)(status & 0xffff);
2372
2373 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2374
2375 return status;
2376 }
2377
2378 /**
2379 * ixgbe_validate_mac_addr - Validate MAC address
2380 * @mac_addr: pointer to MAC address.
2381 *
2382 * Tests a MAC address to ensure it is a valid Individual Address.
2383 **/
2384 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2385 {
2386 s32 status = IXGBE_SUCCESS;
2387
2388 DEBUGFUNC("ixgbe_validate_mac_addr");
2389
2390 /* Make sure it is not a multicast address */
2391 if (IXGBE_IS_MULTICAST(mac_addr)) {
2392 status = IXGBE_ERR_INVALID_MAC_ADDR;
2393 /* Not a broadcast address */
2394 } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2395 status = IXGBE_ERR_INVALID_MAC_ADDR;
2396 /* Reject the zero address */
2397 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2398 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2399 status = IXGBE_ERR_INVALID_MAC_ADDR;
2400 }
2401 return status;
2402 }
2403
2404 /**
2405 * ixgbe_set_rar_generic - Set Rx address register
2406 * @hw: pointer to hardware structure
2407 * @index: Receive address register to write
2408 * @addr: Address to put into receive address register
2409 * @vmdq: VMDq "set" or "pool" index
2410 * @enable_addr: set flag that address is active
2411 *
2412 * Puts an ethernet address into a receive address register.
2413 **/
2414 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2415 u32 enable_addr)
2416 {
2417 u32 rar_low, rar_high;
2418 u32 rar_entries = hw->mac.num_rar_entries;
2419
2420 DEBUGFUNC("ixgbe_set_rar_generic");
2421
2422 /* Make sure we are using a valid rar index range */
2423 if (index >= rar_entries) {
2424 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2425 "RAR index %d is out of range.\n", index);
2426 return IXGBE_ERR_INVALID_ARGUMENT;
2427 }
2428
2429 /* setup VMDq pool selection before this RAR gets enabled */
2430 hw->mac.ops.set_vmdq(hw, index, vmdq);
2431
2432 /*
2433 * HW expects these in little endian so we reverse the byte
2434 * order from network order (big endian) to little endian
2435 */
2436 rar_low = ((u32)addr[0] |
2437 ((u32)addr[1] << 8) |
2438 ((u32)addr[2] << 16) |
2439 ((u32)addr[3] << 24));
2440 /*
2441 * Some parts put the VMDq setting in the extra RAH bits,
2442 * so save everything except the lower 16 bits that hold part
2443 * of the address and the address valid bit.
2444 */
2445 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2446 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2447 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2448
2449 if (enable_addr != 0)
2450 rar_high |= IXGBE_RAH_AV;
2451
2452 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2453 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2454
2455 return IXGBE_SUCCESS;
2456 }
2457
2458 /**
2459 * ixgbe_clear_rar_generic - Remove Rx address register
2460 * @hw: pointer to hardware structure
2461 * @index: Receive address register to write
2462 *
2463 * Clears an ethernet address from a receive address register.
2464 **/
2465 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2466 {
2467 u32 rar_high;
2468 u32 rar_entries = hw->mac.num_rar_entries;
2469
2470 DEBUGFUNC("ixgbe_clear_rar_generic");
2471
2472 /* Make sure we are using a valid rar index range */
2473 if (index >= rar_entries) {
2474 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2475 "RAR index %d is out of range.\n", index);
2476 return IXGBE_ERR_INVALID_ARGUMENT;
2477 }
2478
2479 /*
2480 * Some parts put the VMDq setting in the extra RAH bits,
2481 * so save everything except the lower 16 bits that hold part
2482 * of the address and the address valid bit.
2483 */
2484 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2485 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2486
2487 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2488 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2489
2490 /* clear VMDq pool/queue selection for this RAR */
2491 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2492
2493 return IXGBE_SUCCESS;
2494 }
2495
2496 /**
2497 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2498 * @hw: pointer to hardware structure
2499 *
2500 * Places the MAC address in receive address register 0 and clears the rest
2501 * of the receive address registers. Clears the multicast table. Assumes
2502 * the receiver is in reset when the routine is called.
2503 **/
2504 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2505 {
2506 u32 i;
2507 u32 rar_entries = hw->mac.num_rar_entries;
2508
2509 DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2510
2511 /*
2512 * If the current mac address is valid, assume it is a software override
2513 * to the permanent address.
2514 * Otherwise, use the permanent address from the eeprom.
2515 */
2516 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2517 IXGBE_ERR_INVALID_MAC_ADDR) {
2518 /* Get the MAC address from the RAR0 for later reference */
2519 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2520
2521 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2522 hw->mac.addr[0], hw->mac.addr[1],
2523 hw->mac.addr[2]);
2524 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2525 hw->mac.addr[4], hw->mac.addr[5]);
2526 } else {
2527 /* Setup the receive address. */
2528 DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2529 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2530 hw->mac.addr[0], hw->mac.addr[1],
2531 hw->mac.addr[2]);
2532 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2533 hw->mac.addr[4], hw->mac.addr[5]);
2534
2535 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2536 }
2537
2538 /* clear VMDq pool/queue selection for RAR 0 */
2539 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2540
2541 hw->addr_ctrl.overflow_promisc = 0;
2542
2543 hw->addr_ctrl.rar_used_count = 1;
2544
2545 /* Zero out the other receive addresses. */
2546 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2547 for (i = 1; i < rar_entries; i++) {
2548 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2549 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2550 }
2551
2552 /* Clear the MTA */
2553 hw->addr_ctrl.mta_in_use = 0;
2554 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2555
2556 DEBUGOUT(" Clearing MTA\n");
2557 for (i = 0; i < hw->mac.mcft_size; i++)
2558 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2559
2560 ixgbe_init_uta_tables(hw);
2561
2562 return IXGBE_SUCCESS;
2563 }
2564
2565 /**
2566 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2567 * @hw: pointer to hardware structure
2568 * @addr: new address
2569 * @vmdq: VMDq "set" or "pool" index
2570 *
2571 * Adds it to unused receive address register or goes into promiscuous mode.
2572 **/
2573 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2574 {
2575 u32 rar_entries = hw->mac.num_rar_entries;
2576 u32 rar;
2577
2578 DEBUGFUNC("ixgbe_add_uc_addr");
2579
2580 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2581 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2582
2583 /*
2584 * Place this address in the RAR if there is room,
2585 * else put the controller into promiscuous mode
2586 */
2587 if (hw->addr_ctrl.rar_used_count < rar_entries) {
2588 rar = hw->addr_ctrl.rar_used_count;
2589 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2590 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2591 hw->addr_ctrl.rar_used_count++;
2592 } else {
2593 hw->addr_ctrl.overflow_promisc++;
2594 }
2595
2596 DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2597 }
2598
2599 /**
2600 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2601 * @hw: pointer to hardware structure
2602 * @addr_list: the list of new addresses
2603 * @addr_count: number of addresses
2604 * @next: iterator function to walk the address list
2605 *
2606 * The given list replaces any existing list. Clears the secondary addrs from
2607 * receive address registers. Uses unused receive address registers for the
2608 * first secondary addresses, and falls back to promiscuous mode as needed.
2609 *
2610 * Drivers using secondary unicast addresses must set user_set_promisc when
2611 * manually putting the device into promiscuous mode.
2612 **/
2613 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2614 u32 addr_count, ixgbe_mc_addr_itr next)
2615 {
2616 u8 *addr;
2617 u32 i;
2618 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2619 u32 uc_addr_in_use;
2620 u32 fctrl;
2621 u32 vmdq;
2622
2623 DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2624
2625 /*
2626 * Clear accounting of old secondary address list,
2627 * don't count RAR[0]
2628 */
2629 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2630 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2631 hw->addr_ctrl.overflow_promisc = 0;
2632
2633 /* Zero out the other receive addresses */
2634 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2635 for (i = 0; i < uc_addr_in_use; i++) {
2636 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2637 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2638 }
2639
2640 /* Add the new addresses */
2641 for (i = 0; i < addr_count; i++) {
2642 DEBUGOUT(" Adding the secondary addresses:\n");
2643 addr = next(hw, &addr_list, &vmdq);
2644 ixgbe_add_uc_addr(hw, addr, vmdq);
2645 }
2646
2647 if (hw->addr_ctrl.overflow_promisc) {
2648 /* enable promisc if not already in overflow or set by user */
2649 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2650 DEBUGOUT(" Entering address overflow promisc mode\n");
2651 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2652 fctrl |= IXGBE_FCTRL_UPE;
2653 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2654 }
2655 } else {
2656 /* only disable if set by overflow, not by user */
2657 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2658 DEBUGOUT(" Leaving address overflow promisc mode\n");
2659 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2660 fctrl &= ~IXGBE_FCTRL_UPE;
2661 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2662 }
2663 }
2664
2665 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2666 return IXGBE_SUCCESS;
2667 }
2668
2669 /**
2670 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2671 * @hw: pointer to hardware structure
2672 * @mc_addr: the multicast address
2673 *
2674 * Extracts the 12 bits, from a multicast address, to determine which
2675 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2676 * incoming rx multicast addresses, to determine the bit-vector to check in
2677 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2678 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2679 * to mc_filter_type.
2680 **/
2681 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2682 {
2683 u32 vector = 0;
2684
2685 DEBUGFUNC("ixgbe_mta_vector");
2686
2687 switch (hw->mac.mc_filter_type) {
2688 case 0: /* use bits [47:36] of the address */
2689 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2690 break;
2691 case 1: /* use bits [46:35] of the address */
2692 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2693 break;
2694 case 2: /* use bits [45:34] of the address */
2695 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2696 break;
2697 case 3: /* use bits [43:32] of the address */
2698 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2699 break;
2700 default: /* Invalid mc_filter_type */
2701 DEBUGOUT("MC filter type param set incorrectly\n");
2702 ASSERT(0);
2703 break;
2704 }
2705
2706 /* vector can only be 12-bits or boundary will be exceeded */
2707 vector &= 0xFFF;
2708 return vector;
2709 }
2710
2711 /**
2712 * ixgbe_set_mta - Set bit-vector in multicast table
2713 * @hw: pointer to hardware structure
2714 * @mc_addr: Multicast address
2715 *
2716 * Sets the bit-vector in the multicast table.
2717 **/
2718 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2719 {
2720 u32 vector;
2721 u32 vector_bit;
2722 u32 vector_reg;
2723
2724 DEBUGFUNC("ixgbe_set_mta");
2725
2726 hw->addr_ctrl.mta_in_use++;
2727
2728 vector = ixgbe_mta_vector(hw, mc_addr);
2729 DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2730
2731 /*
2732 * The MTA is a register array of 128 32-bit registers. It is treated
2733 * like an array of 4096 bits. We want to set bit
2734 * BitArray[vector_value]. So we figure out what register the bit is
2735 * in, read it, OR in the new bit, then write back the new value. The
2736 * register is determined by the upper 7 bits of the vector value and
2737 * the bit within that register are determined by the lower 5 bits of
2738 * the value.
2739 */
2740 vector_reg = (vector >> 5) & 0x7F;
2741 vector_bit = vector & 0x1F;
2742 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2743 }
2744
2745 /**
2746 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2747 * @hw: pointer to hardware structure
2748 * @mc_addr_list: the list of new multicast addresses
2749 * @mc_addr_count: number of addresses
2750 * @next: iterator function to walk the multicast address list
2751 * @clear: flag, when set clears the table beforehand
2752 *
2753 * When the clear flag is set, the given list replaces any existing list.
2754 * Hashes the given addresses into the multicast table.
2755 **/
2756 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2757 u32 mc_addr_count, ixgbe_mc_addr_itr next,
2758 bool clear)
2759 {
2760 u32 i;
2761 u32 vmdq;
2762
2763 DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2764
2765 /*
2766 * Set the new number of MC addresses that we are being requested to
2767 * use.
2768 */
2769 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2770 hw->addr_ctrl.mta_in_use = 0;
2771
2772 /* Clear mta_shadow */
2773 if (clear) {
2774 DEBUGOUT(" Clearing MTA\n");
2775 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2776 }
2777
2778 /* Update mta_shadow */
2779 for (i = 0; i < mc_addr_count; i++) {
2780 DEBUGOUT(" Adding the multicast addresses:\n");
2781 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2782 }
2783
2784 /* Enable mta */
2785 for (i = 0; i < hw->mac.mcft_size; i++)
2786 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2787 hw->mac.mta_shadow[i]);
2788
2789 if (hw->addr_ctrl.mta_in_use > 0)
2790 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2791 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2792
2793 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2794 return IXGBE_SUCCESS;
2795 }
2796
2797 /**
2798 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2799 * @hw: pointer to hardware structure
2800 *
2801 * Enables multicast address in RAR and the use of the multicast hash table.
2802 **/
2803 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2804 {
2805 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2806
2807 DEBUGFUNC("ixgbe_enable_mc_generic");
2808
2809 if (a->mta_in_use > 0)
2810 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2811 hw->mac.mc_filter_type);
2812
2813 return IXGBE_SUCCESS;
2814 }
2815
2816 /**
2817 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2818 * @hw: pointer to hardware structure
2819 *
2820 * Disables multicast address in RAR and the use of the multicast hash table.
2821 **/
2822 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2823 {
2824 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2825
2826 DEBUGFUNC("ixgbe_disable_mc_generic");
2827
2828 if (a->mta_in_use > 0)
2829 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2830
2831 return IXGBE_SUCCESS;
2832 }
2833
2834 /**
2835 * ixgbe_fc_enable_generic - Enable flow control
2836 * @hw: pointer to hardware structure
2837 *
2838 * Enable flow control according to the current settings.
2839 **/
2840 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2841 {
2842 s32 ret_val = IXGBE_SUCCESS;
2843 u32 mflcn_reg, fccfg_reg;
2844 u32 reg;
2845 u32 fcrtl, fcrth;
2846 int i;
2847
2848 DEBUGFUNC("ixgbe_fc_enable_generic");
2849
2850 /* Validate the water mark configuration */
2851 if (!hw->fc.pause_time) {
2852 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2853 goto out;
2854 }
2855
2856 /* Low water mark of zero causes XOFF floods */
2857 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2858 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2859 hw->fc.high_water[i]) {
2860 if (!hw->fc.low_water[i] ||
2861 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2862 DEBUGOUT("Invalid water mark configuration\n");
2863 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2864 goto out;
2865 }
2866 }
2867 }
2868
2869 /* Negotiate the fc mode to use */
2870 hw->mac.ops.fc_autoneg(hw);
2871
2872 /* Disable any previous flow control settings */
2873 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2874 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2875
2876 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2877 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2878
2879 /*
2880 * The possible values of fc.current_mode are:
2881 * 0: Flow control is completely disabled
2882 * 1: Rx flow control is enabled (we can receive pause frames,
2883 * but not send pause frames).
2884 * 2: Tx flow control is enabled (we can send pause frames but
2885 * we do not support receiving pause frames).
2886 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2887 * other: Invalid.
2888 */
2889 switch (hw->fc.current_mode) {
2890 case ixgbe_fc_none:
2891 /*
2892 * Flow control is disabled by software override or autoneg.
2893 * The code below will actually disable it in the HW.
2894 */
2895 break;
2896 case ixgbe_fc_rx_pause:
2897 /*
2898 * Rx Flow control is enabled and Tx Flow control is
2899 * disabled by software override. Since there really
2900 * isn't a way to advertise that we are capable of RX
2901 * Pause ONLY, we will advertise that we support both
2902 * symmetric and asymmetric Rx PAUSE. Later, we will
2903 * disable the adapter's ability to send PAUSE frames.
2904 */
2905 mflcn_reg |= IXGBE_MFLCN_RFCE;
2906 break;
2907 case ixgbe_fc_tx_pause:
2908 /*
2909 * Tx Flow control is enabled, and Rx Flow control is
2910 * disabled by software override.
2911 */
2912 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2913 break;
2914 case ixgbe_fc_full:
2915 /* Flow control (both Rx and Tx) is enabled by SW override. */
2916 mflcn_reg |= IXGBE_MFLCN_RFCE;
2917 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2918 break;
2919 default:
2920 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2921 "Flow control param set incorrectly\n");
2922 ret_val = IXGBE_ERR_CONFIG;
2923 goto out;
2924 break;
2925 }
2926
2927 /* Set 802.3x based flow control settings. */
2928 mflcn_reg |= IXGBE_MFLCN_DPF;
2929 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2930 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2931
2932
2933 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2934 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2935 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2936 hw->fc.high_water[i]) {
2937 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2938 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2939 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2940 } else {
2941 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2942 /*
2943 * In order to prevent Tx hangs when the internal Tx
2944 * switch is enabled we must set the high water mark
2945 * to the Rx packet buffer size - 24KB. This allows
2946 * the Tx switch to function even under heavy Rx
2947 * workloads.
2948 */
2949 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2950 }
2951
2952 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2953 }
2954
2955 /* Configure pause time (2 TCs per register) */
2956 reg = (u32)hw->fc.pause_time * 0x00010001;
2957 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2958 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2959
2960 /* Configure flow control refresh threshold value */
2961 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2962
2963 out:
2964 return ret_val;
2965 }
2966
2967 /**
2968 * ixgbe_negotiate_fc - Negotiate flow control
2969 * @hw: pointer to hardware structure
2970 * @adv_reg: flow control advertised settings
2971 * @lp_reg: link partner's flow control settings
2972 * @adv_sym: symmetric pause bit in advertisement
2973 * @adv_asm: asymmetric pause bit in advertisement
2974 * @lp_sym: symmetric pause bit in link partner advertisement
2975 * @lp_asm: asymmetric pause bit in link partner advertisement
2976 *
2977 * Find the intersection between advertised settings and link partner's
2978 * advertised settings
2979 **/
2980 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2981 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2982 {
2983 if ((!(adv_reg)) || (!(lp_reg))) {
2984 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2985 "Local or link partner's advertised flow control "
2986 "settings are NULL. Local: %x, link partner: %x\n",
2987 adv_reg, lp_reg);
2988 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2989 }
2990
2991 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2992 /*
2993 * Now we need to check if the user selected Rx ONLY
2994 * of pause frames. In this case, we had to advertise
2995 * FULL flow control because we could not advertise RX
2996 * ONLY. Hence, we must now check to see if we need to
2997 * turn OFF the TRANSMISSION of PAUSE frames.
2998 */
2999 if (hw->fc.requested_mode == ixgbe_fc_full) {
3000 hw->fc.current_mode = ixgbe_fc_full;
3001 DEBUGOUT("Flow Control = FULL.\n");
3002 } else {
3003 hw->fc.current_mode = ixgbe_fc_rx_pause;
3004 DEBUGOUT("Flow Control=RX PAUSE frames only\n");
3005 }
3006 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3007 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3008 hw->fc.current_mode = ixgbe_fc_tx_pause;
3009 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
3010 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
3011 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
3012 hw->fc.current_mode = ixgbe_fc_rx_pause;
3013 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
3014 } else {
3015 hw->fc.current_mode = ixgbe_fc_none;
3016 DEBUGOUT("Flow Control = NONE.\n");
3017 }
3018 return IXGBE_SUCCESS;
3019 }
3020
3021 /**
3022 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
3023 * @hw: pointer to hardware structure
3024 *
3025 * Enable flow control according on 1 gig fiber.
3026 **/
3027 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3028 {
3029 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3030 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3031
3032 /*
3033 * On multispeed fiber at 1g, bail out if
3034 * - link is up but AN did not complete, or if
3035 * - link is up and AN completed but timed out
3036 */
3037
3038 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3039 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3040 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3041 DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3042 goto out;
3043 }
3044
3045 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3046 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3047
3048 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3049 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3050 IXGBE_PCS1GANA_ASM_PAUSE,
3051 IXGBE_PCS1GANA_SYM_PAUSE,
3052 IXGBE_PCS1GANA_ASM_PAUSE);
3053
3054 out:
3055 return ret_val;
3056 }
3057
3058 /**
3059 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3060 * @hw: pointer to hardware structure
3061 *
3062 * Enable flow control according to IEEE clause 37.
3063 **/
3064 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3065 {
3066 u32 links2, anlp1_reg, autoc_reg, links;
3067 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3068
3069 /*
3070 * On backplane, bail out if
3071 * - backplane autoneg was not completed, or if
3072 * - we are 82599 and link partner is not AN enabled
3073 */
3074 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3075 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3076 DEBUGOUT("Auto-Negotiation did not complete\n");
3077 goto out;
3078 }
3079
3080 if (hw->mac.type == ixgbe_mac_82599EB) {
3081 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3082 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3083 DEBUGOUT("Link partner is not AN enabled\n");
3084 goto out;
3085 }
3086 }
3087 /*
3088 * Read the 10g AN autoc and LP ability registers and resolve
3089 * local flow control settings accordingly
3090 */
3091 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3092 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3093
3094 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3095 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3096 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3097
3098 out:
3099 return ret_val;
3100 }
3101
3102 /**
3103 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3104 * @hw: pointer to hardware structure
3105 *
3106 * Enable flow control according to IEEE clause 37.
3107 **/
3108 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3109 {
3110 u16 technology_ability_reg = 0;
3111 u16 lp_technology_ability_reg = 0;
3112
3113 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3114 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3115 &technology_ability_reg);
3116 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3117 IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3118 &lp_technology_ability_reg);
3119
3120 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3121 (u32)lp_technology_ability_reg,
3122 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3123 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3124 }
3125
3126 /**
3127 * ixgbe_fc_autoneg - Configure flow control
3128 * @hw: pointer to hardware structure
3129 *
3130 * Compares our advertised flow control capabilities to those advertised by
3131 * our link partner, and determines the proper flow control mode to use.
3132 **/
3133 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3134 {
3135 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3136 ixgbe_link_speed speed;
3137 bool link_up;
3138
3139 DEBUGFUNC("ixgbe_fc_autoneg");
3140
3141 /*
3142 * AN should have completed when the cable was plugged in.
3143 * Look for reasons to bail out. Bail out if:
3144 * - FC autoneg is disabled, or if
3145 * - link is not up.
3146 */
3147 if (hw->fc.disable_fc_autoneg) {
3148 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3149 "Flow control autoneg is disabled");
3150 goto out;
3151 }
3152
3153 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3154 if (!link_up) {
3155 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3156 goto out;
3157 }
3158
3159 switch (hw->phy.media_type) {
3160 /* Autoneg flow control on fiber adapters */
3161 case ixgbe_media_type_fiber_fixed:
3162 case ixgbe_media_type_fiber_qsfp:
3163 case ixgbe_media_type_fiber:
3164 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3165 ret_val = ixgbe_fc_autoneg_fiber(hw);
3166 break;
3167
3168 /* Autoneg flow control on backplane adapters */
3169 case ixgbe_media_type_backplane:
3170 ret_val = ixgbe_fc_autoneg_backplane(hw);
3171 break;
3172
3173 /* Autoneg flow control on copper adapters */
3174 case ixgbe_media_type_copper:
3175 if (ixgbe_device_supports_autoneg_fc(hw))
3176 ret_val = ixgbe_fc_autoneg_copper(hw);
3177 break;
3178
3179 default:
3180 break;
3181 }
3182
3183 out:
3184 if (ret_val == IXGBE_SUCCESS) {
3185 hw->fc.fc_was_autonegged = TRUE;
3186 } else {
3187 hw->fc.fc_was_autonegged = FALSE;
3188 hw->fc.current_mode = hw->fc.requested_mode;
3189 }
3190 }
3191
3192 /*
3193 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3194 * @hw: pointer to hardware structure
3195 *
3196 * System-wide timeout range is encoded in PCIe Device Control2 register.
3197 *
3198 * Add 10% to specified maximum and return the number of times to poll for
3199 * completion timeout, in units of 100 microsec. Never return less than
3200 * 800 = 80 millisec.
3201 */
3202 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3203 {
3204 s16 devctl2;
3205 u32 pollcnt;
3206
3207 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3208 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3209
3210 switch (devctl2) {
3211 case IXGBE_PCIDEVCTRL2_65_130ms:
3212 pollcnt = 1300; /* 130 millisec */
3213 break;
3214 case IXGBE_PCIDEVCTRL2_260_520ms:
3215 pollcnt = 5200; /* 520 millisec */
3216 break;
3217 case IXGBE_PCIDEVCTRL2_1_2s:
3218 pollcnt = 20000; /* 2 sec */
3219 break;
3220 case IXGBE_PCIDEVCTRL2_4_8s:
3221 pollcnt = 80000; /* 8 sec */
3222 break;
3223 case IXGBE_PCIDEVCTRL2_17_34s:
3224 pollcnt = 34000; /* 34 sec */
3225 break;
3226 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
3227 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
3228 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
3229 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
3230 default:
3231 pollcnt = 800; /* 80 millisec minimum */
3232 break;
3233 }
3234
3235 /* add 10% to spec maximum */
3236 return (pollcnt * 11) / 10;
3237 }
3238
3239 /**
3240 * ixgbe_disable_pcie_master - Disable PCI-express master access
3241 * @hw: pointer to hardware structure
3242 *
3243 * Disables PCI-Express master access and verifies there are no pending
3244 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3245 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3246 * is returned signifying master requests disabled.
3247 **/
3248 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3249 {
3250 s32 status = IXGBE_SUCCESS;
3251 u32 i, poll;
3252 u16 value;
3253
3254 DEBUGFUNC("ixgbe_disable_pcie_master");
3255
3256 /* Always set this bit to ensure any future transactions are blocked */
3257 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3258
3259 /* Exit if master requests are blocked */
3260 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3261 IXGBE_REMOVED(hw->hw_addr))
3262 goto out;
3263
3264 /* Poll for master request bit to clear */
3265 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3266 usec_delay(100);
3267 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3268 goto out;
3269 }
3270
3271 /*
3272 * Two consecutive resets are required via CTRL.RST per datasheet
3273 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
3274 * of this need. The first reset prevents new master requests from
3275 * being issued by our device. We then must wait 1usec or more for any
3276 * remaining completions from the PCIe bus to trickle in, and then reset
3277 * again to clear out any effects they may have had on our device.
3278 */
3279 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3280 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3281
3282 if (hw->mac.type >= ixgbe_mac_X550)
3283 goto out;
3284
3285 /*
3286 * Before proceeding, make sure that the PCIe block does not have
3287 * transactions pending.
3288 */
3289 poll = ixgbe_pcie_timeout_poll(hw);
3290 for (i = 0; i < poll; i++) {
3291 usec_delay(100);
3292 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3293 if (IXGBE_REMOVED(hw->hw_addr))
3294 goto out;
3295 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3296 goto out;
3297 }
3298
3299 ERROR_REPORT1(IXGBE_ERROR_POLLING,
3300 "PCIe transaction pending bit also did not clear.\n");
3301 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3302
3303 out:
3304 return status;
3305 }
3306
3307 /**
3308 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3309 * @hw: pointer to hardware structure
3310 * @mask: Mask to specify which semaphore to acquire
3311 *
3312 * Acquires the SWFW semaphore through the GSSR register for the specified
3313 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3314 **/
3315 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3316 {
3317 u32 gssr = 0;
3318 u32 swmask = mask;
3319 u32 fwmask = mask << 5;
3320 u32 timeout = 200;
3321 u32 i;
3322
3323 DEBUGFUNC("ixgbe_acquire_swfw_sync");
3324
3325 for (i = 0; i < timeout; i++) {
3326 /*
3327 * SW NVM semaphore bit is used for access to all
3328 * SW_FW_SYNC bits (not just NVM)
3329 */
3330 if (ixgbe_get_eeprom_semaphore(hw))
3331 return IXGBE_ERR_SWFW_SYNC;
3332
3333 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3334 if (!(gssr & (fwmask | swmask))) {
3335 gssr |= swmask;
3336 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3337 ixgbe_release_eeprom_semaphore(hw);
3338 return IXGBE_SUCCESS;
3339 } else {
3340 /* Resource is currently in use by FW or SW */
3341 ixgbe_release_eeprom_semaphore(hw);
3342 msec_delay(5);
3343 }
3344 }
3345
3346 /* If time expired clear the bits holding the lock and retry */
3347 if (gssr & (fwmask | swmask))
3348 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3349
3350 msec_delay(5);
3351 return IXGBE_ERR_SWFW_SYNC;
3352 }
3353
3354 /**
3355 * ixgbe_release_swfw_sync - Release SWFW semaphore
3356 * @hw: pointer to hardware structure
3357 * @mask: Mask to specify which semaphore to release
3358 *
3359 * Releases the SWFW semaphore through the GSSR register for the specified
3360 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3361 **/
3362 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3363 {
3364 u32 gssr;
3365 u32 swmask = mask;
3366
3367 DEBUGFUNC("ixgbe_release_swfw_sync");
3368
3369 ixgbe_get_eeprom_semaphore(hw);
3370
3371 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3372 gssr &= ~swmask;
3373 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3374
3375 ixgbe_release_eeprom_semaphore(hw);
3376 }
3377
3378 /**
3379 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3380 * @hw: pointer to hardware structure
3381 *
3382 * Stops the receive data path and waits for the HW to internally empty
3383 * the Rx security block
3384 **/
3385 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3386 {
3387 #define IXGBE_MAX_SECRX_POLL 4000
3388
3389 int i;
3390 int secrxreg;
3391
3392 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3393
3394
3395 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3396 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3397 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3398 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3399 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3400 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3401 break;
3402 else
3403 /* Use interrupt-safe sleep just in case */
3404 usec_delay(10);
3405 }
3406
3407 /* For informational purposes only */
3408 if (i >= IXGBE_MAX_SECRX_POLL)
3409 DEBUGOUT("Rx unit being enabled before security "
3410 "path fully disabled. Continuing with init.\n");
3411
3412 return IXGBE_SUCCESS;
3413 }
3414
3415 /**
3416 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3417 * @hw: pointer to hardware structure
3418 * @locked: bool to indicate whether the SW/FW lock was taken
3419 * @reg_val: Value we read from AUTOC
3420 *
3421 * The default case requires no protection so just to the register read.
3422 */
3423 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3424 {
3425 *locked = FALSE;
3426 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3427 return IXGBE_SUCCESS;
3428 }
3429
3430 /**
3431 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3432 * @hw: pointer to hardware structure
3433 * @reg_val: value to write to AUTOC
3434 * @locked: bool to indicate whether the SW/FW lock was already taken by
3435 * previous read.
3436 *
3437 * The default case requires no protection so just to the register write.
3438 */
3439 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3440 {
3441 UNREFERENCED_1PARAMETER(locked);
3442
3443 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3444 return IXGBE_SUCCESS;
3445 }
3446
3447 /**
3448 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3449 * @hw: pointer to hardware structure
3450 *
3451 * Enables the receive data path.
3452 **/
3453 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3454 {
3455 u32 secrxreg;
3456
3457 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3458
3459 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3460 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3461 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3462 IXGBE_WRITE_FLUSH(hw);
3463
3464 return IXGBE_SUCCESS;
3465 }
3466
3467 /**
3468 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3469 * @hw: pointer to hardware structure
3470 * @regval: register value to write to RXCTRL
3471 *
3472 * Enables the Rx DMA unit
3473 **/
3474 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3475 {
3476 DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3477
3478 if (regval & IXGBE_RXCTRL_RXEN)
3479 ixgbe_enable_rx(hw);
3480 else
3481 ixgbe_disable_rx(hw);
3482
3483 return IXGBE_SUCCESS;
3484 }
3485
3486 /**
3487 * ixgbe_blink_led_start_generic - Blink LED based on index.
3488 * @hw: pointer to hardware structure
3489 * @index: led number to blink
3490 **/
3491 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3492 {
3493 ixgbe_link_speed speed = 0;
3494 bool link_up = 0;
3495 u32 autoc_reg = 0;
3496 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3497 s32 ret_val = IXGBE_SUCCESS;
3498 bool locked = FALSE;
3499
3500 DEBUGFUNC("ixgbe_blink_led_start_generic");
3501
3502 if (index > 3)
3503 return IXGBE_ERR_PARAM;
3504
3505 /*
3506 * Link must be up to auto-blink the LEDs;
3507 * Force it if link is down.
3508 */
3509 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3510
3511 if (!link_up) {
3512 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3513 if (ret_val != IXGBE_SUCCESS)
3514 goto out;
3515
3516 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3517 autoc_reg |= IXGBE_AUTOC_FLU;
3518
3519 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3520 if (ret_val != IXGBE_SUCCESS)
3521 goto out;
3522
3523 IXGBE_WRITE_FLUSH(hw);
3524 msec_delay(10);
3525 }
3526
3527 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3528 led_reg |= IXGBE_LED_BLINK(index);
3529 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3530 IXGBE_WRITE_FLUSH(hw);
3531
3532 out:
3533 return ret_val;
3534 }
3535
3536 /**
3537 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3538 * @hw: pointer to hardware structure
3539 * @index: led number to stop blinking
3540 **/
3541 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3542 {
3543 u32 autoc_reg = 0;
3544 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3545 s32 ret_val = IXGBE_SUCCESS;
3546 bool locked = FALSE;
3547
3548 DEBUGFUNC("ixgbe_blink_led_stop_generic");
3549
3550 if (index > 3)
3551 return IXGBE_ERR_PARAM;
3552
3553 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3554 if (ret_val != IXGBE_SUCCESS)
3555 goto out;
3556
3557 autoc_reg &= ~IXGBE_AUTOC_FLU;
3558 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3559
3560 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3561 if (ret_val != IXGBE_SUCCESS)
3562 goto out;
3563
3564 led_reg &= ~IXGBE_LED_MODE_MASK(index);
3565 led_reg &= ~IXGBE_LED_BLINK(index);
3566 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3567 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3568 IXGBE_WRITE_FLUSH(hw);
3569
3570 out:
3571 return ret_val;
3572 }
3573
3574 /**
3575 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3576 * @hw: pointer to hardware structure
3577 * @san_mac_offset: SAN MAC address offset
3578 *
3579 * This function will read the EEPROM location for the SAN MAC address
3580 * pointer, and returns the value at that location. This is used in both
3581 * get and set mac_addr routines.
3582 **/
3583 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3584 u16 *san_mac_offset)
3585 {
3586 s32 ret_val;
3587
3588 DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3589
3590 /*
3591 * First read the EEPROM pointer to see if the MAC addresses are
3592 * available.
3593 */
3594 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3595 san_mac_offset);
3596 if (ret_val) {
3597 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3598 "eeprom at offset %d failed",
3599 IXGBE_SAN_MAC_ADDR_PTR);
3600 }
3601
3602 return ret_val;
3603 }
3604
3605 /**
3606 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3607 * @hw: pointer to hardware structure
3608 * @san_mac_addr: SAN MAC address
3609 *
3610 * Reads the SAN MAC address from the EEPROM, if it's available. This is
3611 * per-port, so set_lan_id() must be called before reading the addresses.
3612 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3613 * upon for non-SFP connections, so we must call it here.
3614 **/
3615 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3616 {
3617 u16 san_mac_data, san_mac_offset;
3618 u8 i;
3619 s32 ret_val;
3620
3621 DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3622
3623 /*
3624 * First read the EEPROM pointer to see if the MAC addresses are
3625 * available. If they're not, no point in calling set_lan_id() here.
3626 */
3627 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3628 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3629 goto san_mac_addr_out;
3630
3631 /* make sure we know which port we need to program */
3632 hw->mac.ops.set_lan_id(hw);
3633 /* apply the port offset to the address offset */
3634 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3635 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3636 for (i = 0; i < 3; i++) {
3637 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3638 &san_mac_data);
3639 if (ret_val) {
3640 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3641 "eeprom read at offset %d failed",
3642 san_mac_offset);
3643 goto san_mac_addr_out;
3644 }
3645 san_mac_addr[i * 2] = (u8)(san_mac_data);
3646 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3647 san_mac_offset++;
3648 }
3649 return IXGBE_SUCCESS;
3650
3651 san_mac_addr_out:
3652 /*
3653 * No addresses available in this EEPROM. It's not an
3654 * error though, so just wipe the local address and return.
3655 */
3656 for (i = 0; i < 6; i++)
3657 san_mac_addr[i] = 0xFF;
3658 return IXGBE_SUCCESS;
3659 }
3660
3661 /**
3662 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3663 * @hw: pointer to hardware structure
3664 * @san_mac_addr: SAN MAC address
3665 *
3666 * Write a SAN MAC address to the EEPROM.
3667 **/
3668 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3669 {
3670 s32 ret_val;
3671 u16 san_mac_data, san_mac_offset;
3672 u8 i;
3673
3674 DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3675
3676 /* Look for SAN mac address pointer. If not defined, return */
3677 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3678 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3679 return IXGBE_ERR_NO_SAN_ADDR_PTR;
3680
3681 /* Make sure we know which port we need to write */
3682 hw->mac.ops.set_lan_id(hw);
3683 /* Apply the port offset to the address offset */
3684 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3685 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3686
3687 for (i = 0; i < 3; i++) {
3688 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3689 san_mac_data |= (u16)(san_mac_addr[i * 2]);
3690 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3691 san_mac_offset++;
3692 }
3693
3694 return IXGBE_SUCCESS;
3695 }
3696
3697 /**
3698 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3699 * @hw: pointer to hardware structure
3700 *
3701 * Read PCIe configuration space, and get the MSI-X vector count from
3702 * the capabilities table.
3703 **/
3704 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3705 {
3706 u16 msix_count = 1;
3707 u16 max_msix_count;
3708 u16 pcie_offset;
3709
3710 switch (hw->mac.type) {
3711 case ixgbe_mac_82598EB:
3712 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3713 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3714 break;
3715 case ixgbe_mac_82599EB:
3716 case ixgbe_mac_X540:
3717 case ixgbe_mac_X550:
3718 case ixgbe_mac_X550EM_x:
3719 case ixgbe_mac_X550EM_a:
3720 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3721 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3722 break;
3723 default:
3724 return msix_count;
3725 }
3726
3727 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3728 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3729 if (IXGBE_REMOVED(hw->hw_addr))
3730 msix_count = 0;
3731 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3732
3733 /* MSI-X count is zero-based in HW */
3734 msix_count++;
3735
3736 if (msix_count > max_msix_count)
3737 msix_count = max_msix_count;
3738
3739 return msix_count;
3740 }
3741
3742 /**
3743 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3744 * @hw: pointer to hardware structure
3745 * @addr: Address to put into receive address register
3746 * @vmdq: VMDq pool to assign
3747 *
3748 * Puts an ethernet address into a receive address register, or
3749 * finds the rar that it is already in; adds to the pool list
3750 **/
3751 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3752 {
3753 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3754 u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3755 u32 rar;
3756 u32 rar_low, rar_high;
3757 u32 addr_low, addr_high;
3758
3759 DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3760
3761 /* swap bytes for HW little endian */
3762 addr_low = addr[0] | (addr[1] << 8)
3763 | (addr[2] << 16)
3764 | (addr[3] << 24);
3765 addr_high = addr[4] | (addr[5] << 8);
3766
3767 /*
3768 * Either find the mac_id in rar or find the first empty space.
3769 * rar_highwater points to just after the highest currently used
3770 * rar in order to shorten the search. It grows when we add a new
3771 * rar to the top.
3772 */
3773 for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3774 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3775
3776 if (((IXGBE_RAH_AV & rar_high) == 0)
3777 && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3778 first_empty_rar = rar;
3779 } else if ((rar_high & 0xFFFF) == addr_high) {
3780 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3781 if (rar_low == addr_low)
3782 break; /* found it already in the rars */
3783 }
3784 }
3785
3786 if (rar < hw->mac.rar_highwater) {
3787 /* already there so just add to the pool bits */
3788 ixgbe_set_vmdq(hw, rar, vmdq);
3789 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3790 /* stick it into first empty RAR slot we found */
3791 rar = first_empty_rar;
3792 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3793 } else if (rar == hw->mac.rar_highwater) {
3794 /* add it to the top of the list and inc the highwater mark */
3795 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3796 hw->mac.rar_highwater++;
3797 } else if (rar >= hw->mac.num_rar_entries) {
3798 return IXGBE_ERR_INVALID_MAC_ADDR;
3799 }
3800
3801 /*
3802 * If we found rar[0], make sure the default pool bit (we use pool 0)
3803 * remains cleared to be sure default pool packets will get delivered
3804 */
3805 if (rar == 0)
3806 ixgbe_clear_vmdq(hw, rar, 0);
3807
3808 return rar;
3809 }
3810
3811 /**
3812 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3813 * @hw: pointer to hardware struct
3814 * @rar: receive address register index to disassociate
3815 * @vmdq: VMDq pool index to remove from the rar
3816 **/
3817 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3818 {
3819 u32 mpsar_lo, mpsar_hi;
3820 u32 rar_entries = hw->mac.num_rar_entries;
3821
3822 DEBUGFUNC("ixgbe_clear_vmdq_generic");
3823
3824 /* Make sure we are using a valid rar index range */
3825 if (rar >= rar_entries) {
3826 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3827 "RAR index %d is out of range.\n", rar);
3828 return IXGBE_ERR_INVALID_ARGUMENT;
3829 }
3830
3831 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3832 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3833
3834 if (IXGBE_REMOVED(hw->hw_addr))
3835 goto done;
3836
3837 if (!mpsar_lo && !mpsar_hi)
3838 goto done;
3839
3840 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3841 if (mpsar_lo) {
3842 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3843 mpsar_lo = 0;
3844 }
3845 if (mpsar_hi) {
3846 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3847 mpsar_hi = 0;
3848 }
3849 } else if (vmdq < 32) {
3850 mpsar_lo &= ~(1 << vmdq);
3851 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3852 } else {
3853 mpsar_hi &= ~(1 << (vmdq - 32));
3854 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3855 }
3856
3857 /* was that the last pool using this rar? */
3858 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3859 rar != 0 && rar != hw->mac.san_mac_rar_index)
3860 hw->mac.ops.clear_rar(hw, rar);
3861 done:
3862 return IXGBE_SUCCESS;
3863 }
3864
3865 /**
3866 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3867 * @hw: pointer to hardware struct
3868 * @rar: receive address register index to associate with a VMDq index
3869 * @vmdq: VMDq pool index
3870 **/
3871 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3872 {
3873 u32 mpsar;
3874 u32 rar_entries = hw->mac.num_rar_entries;
3875
3876 DEBUGFUNC("ixgbe_set_vmdq_generic");
3877
3878 /* Make sure we are using a valid rar index range */
3879 if (rar >= rar_entries) {
3880 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3881 "RAR index %d is out of range.\n", rar);
3882 return IXGBE_ERR_INVALID_ARGUMENT;
3883 }
3884
3885 if (vmdq < 32) {
3886 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3887 mpsar |= 1 << vmdq;
3888 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3889 } else {
3890 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3891 mpsar |= 1 << (vmdq - 32);
3892 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3893 }
3894 return IXGBE_SUCCESS;
3895 }
3896
3897 /**
3898 * This function should only be involved in the IOV mode.
3899 * In IOV mode, Default pool is next pool after the number of
3900 * VFs advertized and not 0.
3901 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3902 *
3903 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3904 * @hw: pointer to hardware struct
3905 * @vmdq: VMDq pool index
3906 **/
3907 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3908 {
3909 u32 rar = hw->mac.san_mac_rar_index;
3910
3911 DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3912
3913 if (vmdq < 32) {
3914 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3915 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3916 } else {
3917 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3918 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3919 }
3920
3921 return IXGBE_SUCCESS;
3922 }
3923
3924 /**
3925 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3926 * @hw: pointer to hardware structure
3927 **/
3928 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3929 {
3930 int i;
3931
3932 DEBUGFUNC("ixgbe_init_uta_tables_generic");
3933 DEBUGOUT(" Clearing UTA\n");
3934
3935 for (i = 0; i < 128; i++)
3936 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3937
3938 return IXGBE_SUCCESS;
3939 }
3940
3941 /**
3942 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3943 * @hw: pointer to hardware structure
3944 * @vlan: VLAN id to write to VLAN filter
3945 * @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3946 * vlanid not found
3947 *
3948 *
3949 * return the VLVF index where this VLAN id should be placed
3950 *
3951 **/
3952 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3953 {
3954 s32 regindex, first_empty_slot;
3955 u32 bits;
3956
3957 /* short cut the special case */
3958 if (vlan == 0)
3959 return 0;
3960
3961 /* if vlvf_bypass is set we don't want to use an empty slot, we
3962 * will simply bypass the VLVF if there are no entries present in the
3963 * VLVF that contain our VLAN
3964 */
3965 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3966
3967 /* add VLAN enable bit for comparison */
3968 vlan |= IXGBE_VLVF_VIEN;
3969
3970 /* Search for the vlan id in the VLVF entries. Save off the first empty
3971 * slot found along the way.
3972 *
3973 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3974 */
3975 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3976 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3977 if (bits == vlan)
3978 return regindex;
3979 if (!first_empty_slot && !bits)
3980 first_empty_slot = regindex;
3981 }
3982
3983 /* If we are here then we didn't find the VLAN. Return first empty
3984 * slot we found during our search, else error.
3985 */
3986 if (!first_empty_slot)
3987 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3988
3989 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3990 }
3991
3992 /**
3993 * ixgbe_set_vfta_generic - Set VLAN filter table
3994 * @hw: pointer to hardware structure
3995 * @vlan: VLAN id to write to VLAN filter
3996 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3997 * @vlan_on: boolean flag to turn on/off VLAN
3998 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3999 *
4000 * Turn on/off specified VLAN in the VLAN filter table.
4001 **/
4002 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4003 bool vlan_on, bool vlvf_bypass)
4004 {
4005 u32 regidx, vfta_delta, vfta;
4006 s32 ret_val;
4007
4008 DEBUGFUNC("ixgbe_set_vfta_generic");
4009
4010 if (vlan > 4095 || vind > 63)
4011 return IXGBE_ERR_PARAM;
4012
4013 /*
4014 * this is a 2 part operation - first the VFTA, then the
4015 * VLVF and VLVFB if VT Mode is set
4016 * We don't write the VFTA until we know the VLVF part succeeded.
4017 */
4018
4019 /* Part 1
4020 * The VFTA is a bitstring made up of 128 32-bit registers
4021 * that enable the particular VLAN id, much like the MTA:
4022 * bits[11-5]: which register
4023 * bits[4-0]: which bit in the register
4024 */
4025 regidx = vlan / 32;
4026 vfta_delta = (u32)1 << (vlan % 32);
4027 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4028
4029 /*
4030 * vfta_delta represents the difference between the current value
4031 * of vfta and the value we want in the register. Since the diff
4032 * is an XOR mask we can just update the vfta using an XOR
4033 */
4034 vfta_delta &= vlan_on ? ~vfta : vfta;
4035 vfta ^= vfta_delta;
4036
4037 /* Part 2
4038 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4039 */
4040 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4041 vfta, vlvf_bypass);
4042 if (ret_val != IXGBE_SUCCESS) {
4043 if (vlvf_bypass)
4044 goto vfta_update;
4045 return ret_val;
4046 }
4047
4048 vfta_update:
4049 /* Update VFTA now that we are ready for traffic */
4050 if (vfta_delta)
4051 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4052
4053 return IXGBE_SUCCESS;
4054 }
4055
4056 /**
4057 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4058 * @hw: pointer to hardware structure
4059 * @vlan: VLAN id to write to VLAN filter
4060 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4061 * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4062 * @vfta_delta: pointer to the difference between the current value of VFTA
4063 * and the desired value
4064 * @vfta: the desired value of the VFTA
4065 * @vlvf_bypass: boolean flag indicating updating default pool is okay
4066 *
4067 * Turn on/off specified bit in VLVF table.
4068 **/
4069 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4070 bool vlan_on, u32 *vfta_delta, u32 vfta,
4071 bool vlvf_bypass)
4072 {
4073 u32 bits;
4074 s32 vlvf_index;
4075
4076 DEBUGFUNC("ixgbe_set_vlvf_generic");
4077
4078 if (vlan > 4095 || vind > 63)
4079 return IXGBE_ERR_PARAM;
4080
4081 /* If VT Mode is set
4082 * Either vlan_on
4083 * make sure the vlan is in VLVF
4084 * set the vind bit in the matching VLVFB
4085 * Or !vlan_on
4086 * clear the pool bit and possibly the vind
4087 */
4088 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4089 return IXGBE_SUCCESS;
4090
4091 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4092 if (vlvf_index < 0)
4093 return vlvf_index;
4094
4095 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4096
4097 /* set the pool bit */
4098 bits |= 1 << (vind % 32);
4099 if (vlan_on)
4100 goto vlvf_update;
4101
4102 /* clear the pool bit */
4103 bits ^= 1 << (vind % 32);
4104
4105 if (!bits &&
4106 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4107 /* Clear VFTA first, then disable VLVF. Otherwise
4108 * we run the risk of stray packets leaking into
4109 * the PF via the default pool
4110 */
4111 if (*vfta_delta)
4112 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4113
4114 /* disable VLVF and clear remaining bit from pool */
4115 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4116 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4117
4118 return IXGBE_SUCCESS;
4119 }
4120
4121 /* If there are still bits set in the VLVFB registers
4122 * for the VLAN ID indicated we need to see if the
4123 * caller is requesting that we clear the VFTA entry bit.
4124 * If the caller has requested that we clear the VFTA
4125 * entry bit but there are still pools/VFs using this VLAN
4126 * ID entry then ignore the request. We're not worried
4127 * about the case where we're turning the VFTA VLAN ID
4128 * entry bit on, only when requested to turn it off as
4129 * there may be multiple pools and/or VFs using the
4130 * VLAN ID entry. In that case we cannot clear the
4131 * VFTA bit until all pools/VFs using that VLAN ID have also
4132 * been cleared. This will be indicated by "bits" being
4133 * zero.
4134 */
4135 *vfta_delta = 0;
4136
4137 vlvf_update:
4138 /* record pool change and enable VLAN ID if not already enabled */
4139 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4140 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4141
4142 return IXGBE_SUCCESS;
4143 }
4144
4145 /**
4146 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4147 * @hw: pointer to hardware structure
4148 *
4149 * Clears the VLAN filer table, and the VMDq index associated with the filter
4150 **/
4151 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4152 {
4153 u32 offset;
4154
4155 DEBUGFUNC("ixgbe_clear_vfta_generic");
4156
4157 for (offset = 0; offset < hw->mac.vft_size; offset++)
4158 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4159
4160 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4161 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4162 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4163 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4164 }
4165
4166 return IXGBE_SUCCESS;
4167 }
4168
4169 /**
4170 * ixgbe_toggle_txdctl_generic - Toggle VF's queues
4171 * @hw: pointer to hardware structure
4172 * @vf_number: VF index
4173 *
4174 * Enable and disable each queue in VF.
4175 */
4176 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
4177 {
4178 u8 queue_count, i;
4179 u32 offset, reg;
4180
4181 if (vf_number > 63)
4182 return IXGBE_ERR_PARAM;
4183
4184 /*
4185 * Determine number of queues by checking
4186 * number of virtual functions
4187 */
4188 reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4189 switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
4190 case IXGBE_GCR_EXT_VT_MODE_64:
4191 queue_count = 2;
4192 break;
4193 case IXGBE_GCR_EXT_VT_MODE_32:
4194 queue_count = 4;
4195 break;
4196 case IXGBE_GCR_EXT_VT_MODE_16:
4197 queue_count = 8;
4198 break;
4199 default:
4200 return IXGBE_ERR_CONFIG;
4201 }
4202
4203 /* Toggle queues */
4204 for (i = 0; i < queue_count; ++i) {
4205 /* Calculate offset of current queue */
4206 offset = queue_count * vf_number + i;
4207
4208 /* Enable queue */
4209 reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4210 reg |= IXGBE_TXDCTL_ENABLE;
4211 IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4212 IXGBE_WRITE_FLUSH(hw);
4213
4214 /* Disable queue */
4215 reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
4216 reg &= ~IXGBE_TXDCTL_ENABLE;
4217 IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
4218 IXGBE_WRITE_FLUSH(hw);
4219 }
4220
4221 return IXGBE_SUCCESS;
4222 }
4223
4224 /**
4225 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4226 * @hw: pointer to hardware structure
4227 *
4228 * Contains the logic to identify if we need to verify link for the
4229 * crosstalk fix
4230 **/
4231 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4232 {
4233
4234 /* Does FW say we need the fix */
4235 if (!hw->need_crosstalk_fix)
4236 return FALSE;
4237
4238 /* Only consider SFP+ PHYs i.e. media type fiber */
4239 switch (hw->mac.ops.get_media_type(hw)) {
4240 case ixgbe_media_type_fiber:
4241 case ixgbe_media_type_fiber_qsfp:
4242 break;
4243 default:
4244 return FALSE;
4245 }
4246
4247 return TRUE;
4248 }
4249
4250 /**
4251 * ixgbe_check_mac_link_generic - Determine link and speed status
4252 * @hw: pointer to hardware structure
4253 * @speed: pointer to link speed
4254 * @link_up: TRUE when link is up
4255 * @link_up_wait_to_complete: bool used to wait for link up or not
4256 *
4257 * Reads the links register to determine if link is up and the current speed
4258 **/
4259 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4260 bool *link_up, bool link_up_wait_to_complete)
4261 {
4262 u32 links_reg, links_orig;
4263 u32 i;
4264
4265 DEBUGFUNC("ixgbe_check_mac_link_generic");
4266
4267 /* If Crosstalk fix enabled do the sanity check of making sure
4268 * the SFP+ cage is full.
4269 */
4270 if (ixgbe_need_crosstalk_fix(hw)) {
4271 if ((hw->mac.type != ixgbe_mac_82598EB) &&
4272 !ixgbe_sfp_cage_full(hw)) {
4273 *link_up = FALSE;
4274 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4275 return IXGBE_SUCCESS;
4276 }
4277 }
4278
4279 /* clear the old state */
4280 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4281
4282 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4283
4284 if (links_orig != links_reg) {
4285 DEBUGOUT2("LINKS changed from %08X to %08X\n",
4286 links_orig, links_reg);
4287 }
4288
4289 if (link_up_wait_to_complete) {
4290 for (i = 0; i < hw->mac.max_link_up_time; i++) {
4291 if (links_reg & IXGBE_LINKS_UP) {
4292 *link_up = TRUE;
4293 break;
4294 } else {
4295 *link_up = FALSE;
4296 }
4297 msec_delay(100);
4298 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4299 }
4300 } else {
4301 if (links_reg & IXGBE_LINKS_UP)
4302 *link_up = TRUE;
4303 else
4304 *link_up = FALSE;
4305 }
4306
4307 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4308 case IXGBE_LINKS_SPEED_10G_82599:
4309 *speed = IXGBE_LINK_SPEED_10GB_FULL;
4310 if (hw->mac.type >= ixgbe_mac_X550) {
4311 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4312 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4313 }
4314 break;
4315 case IXGBE_LINKS_SPEED_1G_82599:
4316 *speed = IXGBE_LINK_SPEED_1GB_FULL;
4317 break;
4318 case IXGBE_LINKS_SPEED_100_82599:
4319 *speed = IXGBE_LINK_SPEED_100_FULL;
4320 if (hw->mac.type >= ixgbe_mac_X550) {
4321 if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4322 *speed = IXGBE_LINK_SPEED_5GB_FULL;
4323 }
4324 break;
4325 case IXGBE_LINKS_SPEED_10_X550EM_A:
4326 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4327 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4328 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4329 *speed = IXGBE_LINK_SPEED_10_FULL;
4330 break;
4331 default:
4332 *speed = IXGBE_LINK_SPEED_UNKNOWN;
4333 }
4334
4335 return IXGBE_SUCCESS;
4336 }
4337
4338 /**
4339 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4340 * the EEPROM
4341 * @hw: pointer to hardware structure
4342 * @wwnn_prefix: the alternative WWNN prefix
4343 * @wwpn_prefix: the alternative WWPN prefix
4344 *
4345 * This function will read the EEPROM from the alternative SAN MAC address
4346 * block to check the support for the alternative WWNN/WWPN prefix support.
4347 **/
4348 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4349 u16 *wwpn_prefix)
4350 {
4351 u16 offset, caps;
4352 u16 alt_san_mac_blk_offset;
4353
4354 DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4355
4356 /* clear output first */
4357 *wwnn_prefix = 0xFFFF;
4358 *wwpn_prefix = 0xFFFF;
4359
4360 /* check if alternative SAN MAC is supported */
4361 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4362 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4363 goto wwn_prefix_err;
4364
4365 if ((alt_san_mac_blk_offset == 0) ||
4366 (alt_san_mac_blk_offset == 0xFFFF))
4367 goto wwn_prefix_out;
4368
4369 /* check capability in alternative san mac address block */
4370 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4371 if (hw->eeprom.ops.read(hw, offset, &caps))
4372 goto wwn_prefix_err;
4373 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4374 goto wwn_prefix_out;
4375
4376 /* get the corresponding prefix for WWNN/WWPN */
4377 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4378 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4379 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4380 "eeprom read at offset %d failed", offset);
4381 }
4382
4383 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4384 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4385 goto wwn_prefix_err;
4386
4387 wwn_prefix_out:
4388 return IXGBE_SUCCESS;
4389
4390 wwn_prefix_err:
4391 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4392 "eeprom read at offset %d failed", offset);
4393 return IXGBE_SUCCESS;
4394 }
4395
4396 /**
4397 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4398 * @hw: pointer to hardware structure
4399 * @bs: the fcoe boot status
4400 *
4401 * This function will read the FCOE boot status from the iSCSI FCOE block
4402 **/
4403 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4404 {
4405 u16 offset, caps, flags;
4406 s32 status;
4407
4408 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4409
4410 /* clear output first */
4411 *bs = ixgbe_fcoe_bootstatus_unavailable;
4412
4413 /* check if FCOE IBA block is present */
4414 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4415 status = hw->eeprom.ops.read(hw, offset, &caps);
4416 if (status != IXGBE_SUCCESS)
4417 goto out;
4418
4419 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4420 goto out;
4421
4422 /* check if iSCSI FCOE block is populated */
4423 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4424 if (status != IXGBE_SUCCESS)
4425 goto out;
4426
4427 if ((offset == 0) || (offset == 0xFFFF))
4428 goto out;
4429
4430 /* read fcoe flags in iSCSI FCOE block */
4431 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4432 status = hw->eeprom.ops.read(hw, offset, &flags);
4433 if (status != IXGBE_SUCCESS)
4434 goto out;
4435
4436 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4437 *bs = ixgbe_fcoe_bootstatus_enabled;
4438 else
4439 *bs = ixgbe_fcoe_bootstatus_disabled;
4440
4441 out:
4442 return status;
4443 }
4444
4445 /**
4446 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4447 * @hw: pointer to hardware structure
4448 * @enable: enable or disable switch for MAC anti-spoofing
4449 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4450 *
4451 **/
4452 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4453 {
4454 int vf_target_reg = vf >> 3;
4455 int vf_target_shift = vf % 8;
4456 u32 pfvfspoof;
4457
4458 if (hw->mac.type == ixgbe_mac_82598EB)
4459 return;
4460
4461 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4462 if (enable)
4463 pfvfspoof |= (1 << vf_target_shift);
4464 else
4465 pfvfspoof &= ~(1 << vf_target_shift);
4466 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4467 }
4468
4469 /**
4470 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4471 * @hw: pointer to hardware structure
4472 * @enable: enable or disable switch for VLAN anti-spoofing
4473 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4474 *
4475 **/
4476 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4477 {
4478 int vf_target_reg = vf >> 3;
4479 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4480 u32 pfvfspoof;
4481
4482 if (hw->mac.type == ixgbe_mac_82598EB)
4483 return;
4484
4485 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4486 if (enable)
4487 pfvfspoof |= (1 << vf_target_shift);
4488 else
4489 pfvfspoof &= ~(1 << vf_target_shift);
4490 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4491 }
4492
4493 /**
4494 * ixgbe_get_device_caps_generic - Get additional device capabilities
4495 * @hw: pointer to hardware structure
4496 * @device_caps: the EEPROM word with the extra device capabilities
4497 *
4498 * This function will read the EEPROM location for the device capabilities,
4499 * and return the word through device_caps.
4500 **/
4501 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4502 {
4503 DEBUGFUNC("ixgbe_get_device_caps_generic");
4504
4505 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4506
4507 return IXGBE_SUCCESS;
4508 }
4509
4510 /**
4511 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4512 * @hw: pointer to hardware structure
4513 *
4514 **/
4515 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4516 {
4517 u32 regval;
4518 u32 i;
4519
4520 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4521
4522 /* Enable relaxed ordering */
4523 for (i = 0; i < hw->mac.max_tx_queues; i++) {
4524 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4525 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4526 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4527 }
4528
4529 for (i = 0; i < hw->mac.max_rx_queues; i++) {
4530 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4531 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4532 IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4533 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4534 }
4535
4536 }
4537
4538 /**
4539 * ixgbe_calculate_checksum - Calculate checksum for buffer
4540 * @buffer: pointer to EEPROM
4541 * @length: size of EEPROM to calculate a checksum for
4542 * Calculates the checksum for some buffer on a specified length. The
4543 * checksum calculated is returned.
4544 **/
4545 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4546 {
4547 u32 i;
4548 u8 sum = 0;
4549
4550 DEBUGFUNC("ixgbe_calculate_checksum");
4551
4552 if (!buffer)
4553 return 0;
4554
4555 for (i = 0; i < length; i++)
4556 sum += buffer[i];
4557
4558 return (u8) (0 - sum);
4559 }
4560
4561 /**
4562 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4563 * @hw: pointer to the HW structure
4564 * @buffer: command to write and where the return status will be placed
4565 * @length: length of buffer, must be multiple of 4 bytes
4566 * @timeout: time in ms to wait for command completion
4567 *
4568 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4569 * else returns semaphore error when encountering an error acquiring
4570 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4571 *
4572 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4573 * by the caller.
4574 **/
4575 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4576 u32 timeout)
4577 {
4578 u32 hicr, i, fwsts;
4579 u16 dword_len;
4580
4581 DEBUGFUNC("ixgbe_hic_unlocked");
4582
4583 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4584 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4585 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4586 }
4587
4588 /* Set bit 9 of FWSTS clearing FW reset indication */
4589 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4590 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4591
4592 /* Check that the host interface is enabled. */
4593 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4594 if (!(hicr & IXGBE_HICR_EN)) {
4595 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4596 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4597 }
4598
4599 /* Calculate length in DWORDs. We must be DWORD aligned */
4600 if (length % sizeof(u32)) {
4601 DEBUGOUT("Buffer length failure, not aligned to dword");
4602 return IXGBE_ERR_INVALID_ARGUMENT;
4603 }
4604
4605 dword_len = length >> 2;
4606
4607 /* The device driver writes the relevant command block
4608 * into the ram area.
4609 */
4610 for (i = 0; i < dword_len; i++)
4611 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4612 i, IXGBE_CPU_TO_LE32(buffer[i]));
4613
4614 /* Setting this bit tells the ARC that a new command is pending. */
4615 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4616
4617 for (i = 0; i < timeout; i++) {
4618 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4619 if (!(hicr & IXGBE_HICR_C))
4620 break;
4621 msec_delay(1);
4622 }
4623
4624 /* For each command except "Apply Update" perform
4625 * status checks in the HICR registry.
4626 */
4627 if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4628 IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4629 return IXGBE_SUCCESS;
4630
4631 /* Check command completion */
4632 if ((timeout && i == timeout) ||
4633 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4634 ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4635 "Command has failed with no status valid.\n");
4636 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4637 }
4638
4639 return IXGBE_SUCCESS;
4640 }
4641
4642 /**
4643 * ixgbe_host_interface_command - Issue command to manageability block
4644 * @hw: pointer to the HW structure
4645 * @buffer: contains the command to write and where the return status will
4646 * be placed
4647 * @length: length of buffer, must be multiple of 4 bytes
4648 * @timeout: time in ms to wait for command completion
4649 * @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4650 * Needed because FW structures are big endian and decoding of
4651 * these fields can be 8 bit or 16 bit based on command. Decoding
4652 * is not easily understood without making a table of commands.
4653 * So we will leave this up to the caller to read back the data
4654 * in these cases.
4655 *
4656 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4657 * else returns semaphore error when encountering an error acquiring
4658 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4659 **/
4660 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4661 u32 length, u32 timeout, bool return_data)
4662 {
4663 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4664 struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4665 u16 buf_len;
4666 s32 status;
4667 u32 bi;
4668 u32 dword_len;
4669
4670 DEBUGFUNC("ixgbe_host_interface_command");
4671
4672 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4673 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4674 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4675 }
4676
4677 /* Take management host interface semaphore */
4678 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4679 if (status)
4680 return status;
4681
4682 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4683 if (status)
4684 goto rel_out;
4685
4686 if (!return_data)
4687 goto rel_out;
4688
4689 /* Calculate length in DWORDs */
4690 dword_len = hdr_size >> 2;
4691
4692 /* first pull in the header so we know the buffer length */
4693 for (bi = 0; bi < dword_len; bi++) {
4694 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4695 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4696 }
4697
4698 /*
4699 * If there is any thing in data position pull it in
4700 * Read Flash command requires reading buffer length from
4701 * two byes instead of one byte
4702 */
4703 if (resp->cmd == 0x30 || resp->cmd == 0x31) {
4704 for (; bi < dword_len + 2; bi++) {
4705 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4706 bi);
4707 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4708 }
4709 buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4710 & 0xF00) | resp->buf_len;
4711 hdr_size += (2 << 2);
4712 } else {
4713 buf_len = resp->buf_len;
4714 }
4715 if (!buf_len)
4716 goto rel_out;
4717
4718 if (length < buf_len + hdr_size) {
4719 DEBUGOUT("Buffer not large enough for reply message.\n");
4720 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4721 goto rel_out;
4722 }
4723
4724 /* Calculate length in DWORDs, add 3 for odd lengths */
4725 dword_len = (buf_len + 3) >> 2;
4726
4727 /* Pull in the rest of the buffer (bi is where we left off) */
4728 for (; bi <= dword_len; bi++) {
4729 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4730 IXGBE_LE32_TO_CPUS(&buffer[bi]);
4731 }
4732
4733 rel_out:
4734 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4735
4736 return status;
4737 }
4738
4739 /**
4740 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4741 * @hw: pointer to the HW structure
4742 * @maj: driver version major number
4743 * @minr: driver version minor number
4744 * @build: driver version build number
4745 * @sub: driver version sub build number
4746 * @len: unused
4747 * @driver_ver: unused
4748 *
4749 * Sends driver version number to firmware through the manageability
4750 * block. On success return IXGBE_SUCCESS
4751 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4752 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4753 **/
4754 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
4755 u8 build, u8 sub, u16 len,
4756 const char *driver_ver)
4757 {
4758 struct ixgbe_hic_drv_info fw_cmd;
4759 int i;
4760 s32 ret_val = IXGBE_SUCCESS;
4761
4762 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4763 UNREFERENCED_2PARAMETER(len, driver_ver);
4764
4765 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4766 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4767 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4768 fw_cmd.port_num = (u8)hw->bus.func;
4769 fw_cmd.ver_maj = maj;
4770 fw_cmd.ver_min = minr;
4771 fw_cmd.ver_build = build;
4772 fw_cmd.ver_sub = sub;
4773 fw_cmd.hdr.checksum = 0;
4774 fw_cmd.pad = 0;
4775 fw_cmd.pad2 = 0;
4776 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4777 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4778
4779 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4780 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4781 sizeof(fw_cmd),
4782 IXGBE_HI_COMMAND_TIMEOUT,
4783 TRUE);
4784 if (ret_val != IXGBE_SUCCESS)
4785 continue;
4786
4787 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4788 FW_CEM_RESP_STATUS_SUCCESS)
4789 ret_val = IXGBE_SUCCESS;
4790 else
4791 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4792
4793 break;
4794 }
4795
4796 return ret_val;
4797 }
4798
4799 /**
4800 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4801 * @hw: pointer to hardware structure
4802 * @num_pb: number of packet buffers to allocate
4803 * @headroom: reserve n KB of headroom
4804 * @strategy: packet buffer allocation strategy
4805 **/
4806 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4807 int strategy)
4808 {
4809 u32 pbsize = hw->mac.rx_pb_size;
4810 int i = 0;
4811 u32 rxpktsize, txpktsize, txpbthresh;
4812
4813 /* Reserve headroom */
4814 pbsize -= headroom;
4815
4816 if (!num_pb)
4817 num_pb = 1;
4818
4819 /* Divide remaining packet buffer space amongst the number of packet
4820 * buffers requested using supplied strategy.
4821 */
4822 switch (strategy) {
4823 case PBA_STRATEGY_WEIGHTED:
4824 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4825 * buffer with 5/8 of the packet buffer space.
4826 */
4827 rxpktsize = (pbsize * 5) / (num_pb * 4);
4828 pbsize -= rxpktsize * (num_pb / 2);
4829 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4830 for (; i < (num_pb / 2); i++)
4831 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4832 /* fall through - configure remaining packet buffers */
4833 case PBA_STRATEGY_EQUAL:
4834 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4835 for (; i < num_pb; i++)
4836 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4837 break;
4838 default:
4839 break;
4840 }
4841
4842 /* Only support an equally distributed Tx packet buffer strategy. */
4843 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4844 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4845 for (i = 0; i < num_pb; i++) {
4846 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4847 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4848 }
4849
4850 /* Clear unused TCs, if any, to zero buffer size*/
4851 for (; i < IXGBE_MAX_PB; i++) {
4852 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4853 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4854 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4855 }
4856 }
4857
4858 /**
4859 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4860 * @hw: pointer to the hardware structure
4861 *
4862 * The 82599 and x540 MACs can experience issues if TX work is still pending
4863 * when a reset occurs. This function prevents this by flushing the PCIe
4864 * buffers on the system.
4865 **/
4866 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4867 {
4868 u32 gcr_ext, hlreg0, i, poll;
4869 u16 value;
4870
4871 /*
4872 * If double reset is not requested then all transactions should
4873 * already be clear and as such there is no work to do
4874 */
4875 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4876 return;
4877
4878 /*
4879 * Set loopback enable to prevent any transmits from being sent
4880 * should the link come up. This assumes that the RXCTRL.RXEN bit
4881 * has already been cleared.
4882 */
4883 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4884 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4885
4886 /* Wait for a last completion before clearing buffers */
4887 IXGBE_WRITE_FLUSH(hw);
4888 msec_delay(3);
4889
4890 /*
4891 * Before proceeding, make sure that the PCIe block does not have
4892 * transactions pending.
4893 */
4894 poll = ixgbe_pcie_timeout_poll(hw);
4895 for (i = 0; i < poll; i++) {
4896 usec_delay(100);
4897 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4898 if (IXGBE_REMOVED(hw->hw_addr))
4899 goto out;
4900 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4901 goto out;
4902 }
4903
4904 out:
4905 /* initiate cleaning flow for buffers in the PCIe transaction layer */
4906 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4907 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4908 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4909
4910 /* Flush all writes and allow 20usec for all transactions to clear */
4911 IXGBE_WRITE_FLUSH(hw);
4912 usec_delay(20);
4913
4914 /* restore previous register values */
4915 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4916 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4917 }
4918
4919 /**
4920 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4921 *
4922 * @hw: pointer to hardware structure
4923 * @cmd: Command we send to the FW
4924 * @status: The reply from the FW
4925 *
4926 * Bit-bangs the cmd to the by_pass FW status points to what is returned.
4927 **/
4928 #define IXGBE_BYPASS_BB_WAIT 1
4929 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4930 {
4931 int i;
4932 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4933 u32 esdp;
4934
4935 if (!status)
4936 return IXGBE_ERR_PARAM;
4937
4938 *status = 0;
4939
4940 /* SDP vary by MAC type */
4941 switch (hw->mac.type) {
4942 case ixgbe_mac_82599EB:
4943 sck = IXGBE_ESDP_SDP7;
4944 sdi = IXGBE_ESDP_SDP0;
4945 sdo = IXGBE_ESDP_SDP6;
4946 dir_sck = IXGBE_ESDP_SDP7_DIR;
4947 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4948 dir_sdo = IXGBE_ESDP_SDP6_DIR;
4949 break;
4950 case ixgbe_mac_X540:
4951 sck = IXGBE_ESDP_SDP2;
4952 sdi = IXGBE_ESDP_SDP0;
4953 sdo = IXGBE_ESDP_SDP1;
4954 dir_sck = IXGBE_ESDP_SDP2_DIR;
4955 dir_sdi = IXGBE_ESDP_SDP0_DIR;
4956 dir_sdo = IXGBE_ESDP_SDP1_DIR;
4957 break;
4958 default:
4959 return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4960 }
4961
4962 /* Set SDP pins direction */
4963 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4964 esdp |= dir_sck; /* SCK as output */
4965 esdp |= dir_sdi; /* SDI as output */
4966 esdp &= ~dir_sdo; /* SDO as input */
4967 esdp |= sck;
4968 esdp |= sdi;
4969 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4970 IXGBE_WRITE_FLUSH(hw);
4971 msec_delay(IXGBE_BYPASS_BB_WAIT);
4972
4973 /* Generate start condition */
4974 esdp &= ~sdi;
4975 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4976 IXGBE_WRITE_FLUSH(hw);
4977 msec_delay(IXGBE_BYPASS_BB_WAIT);
4978
4979 esdp &= ~sck;
4980 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4981 IXGBE_WRITE_FLUSH(hw);
4982 msec_delay(IXGBE_BYPASS_BB_WAIT);
4983
4984 /* Clock out the new control word and clock in the status */
4985 for (i = 0; i < 32; i++) {
4986 if ((cmd >> (31 - i)) & 0x01) {
4987 esdp |= sdi;
4988 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4989 } else {
4990 esdp &= ~sdi;
4991 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4992 }
4993 IXGBE_WRITE_FLUSH(hw);
4994 msec_delay(IXGBE_BYPASS_BB_WAIT);
4995
4996 esdp |= sck;
4997 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4998 IXGBE_WRITE_FLUSH(hw);
4999 msec_delay(IXGBE_BYPASS_BB_WAIT);
5000
5001 esdp &= ~sck;
5002 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5003 IXGBE_WRITE_FLUSH(hw);
5004 msec_delay(IXGBE_BYPASS_BB_WAIT);
5005
5006 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5007 if (esdp & sdo)
5008 *status = (*status << 1) | 0x01;
5009 else
5010 *status = (*status << 1) | 0x00;
5011 msec_delay(IXGBE_BYPASS_BB_WAIT);
5012 }
5013
5014 /* stop condition */
5015 esdp |= sck;
5016 esdp &= ~sdi;
5017 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5018 IXGBE_WRITE_FLUSH(hw);
5019 msec_delay(IXGBE_BYPASS_BB_WAIT);
5020
5021 esdp |= sdi;
5022 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5023 IXGBE_WRITE_FLUSH(hw);
5024
5025 /* set the page bits to match the cmd that the status it belongs to */
5026 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5027
5028 return IXGBE_SUCCESS;
5029 }
5030
5031 /**
5032 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5033 *
5034 * If we send a write we can't be sure it took until we can read back
5035 * that same register. It can be a problem as some of the fields may
5036 * for valid reasons change in-between the time wrote the register and
5037 * we read it again to verify. So this function check everything we
5038 * can check and then assumes it worked.
5039 *
5040 * @u32 in_reg - The register cmd for the bit-bang read.
5041 * @u32 out_reg - The register returned from a bit-bang read.
5042 **/
5043 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5044 {
5045 u32 mask;
5046
5047 /* Page must match for all control pages */
5048 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5049 return FALSE;
5050
5051 switch (in_reg & BYPASS_PAGE_M) {
5052 case BYPASS_PAGE_CTL0:
5053 /* All the following can't change since the last write
5054 * - All the event actions
5055 * - The timeout value
5056 */
5057 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5058 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5059 BYPASS_WDTIMEOUT_M |
5060 BYPASS_WDT_VALUE_M;
5061 if ((out_reg & mask) != (in_reg & mask))
5062 return FALSE;
5063
5064 /* 0x0 is never a valid value for bypass status */
5065 if (!(out_reg & BYPASS_STATUS_OFF_M))
5066 return FALSE;
5067 break;
5068 case BYPASS_PAGE_CTL1:
5069 /* All the following can't change since the last write
5070 * - time valid bit
5071 * - time we last sent
5072 */
5073 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5074 if ((out_reg & mask) != (in_reg & mask))
5075 return FALSE;
5076 break;
5077 case BYPASS_PAGE_CTL2:
5078 /* All we can check in this page is control number
5079 * which is already done above.
5080 */
5081 break;
5082 }
5083
5084 /* We are as sure as we can be return TRUE */
5085 return TRUE;
5086 }
5087
5088 /**
5089 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
5090 *
5091 * @hw: pointer to hardware structure
5092 * @cmd: The control word we are setting.
5093 * @event: The event we are setting in the FW. This also happens to
5094 * be the mask for the event we are setting (handy)
5095 * @action: The action we set the event to in the FW. This is in a
5096 * bit field that happens to be what we want to put in
5097 * the event spot (also handy)
5098 **/
5099 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5100 u32 action)
5101 {
5102 u32 by_ctl = 0;
5103 u32 cmd, verify;
5104 u32 count = 0;
5105
5106 /* Get current values */
5107 cmd = ctrl; /* just reading only need control number */
5108 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5109 return IXGBE_ERR_INVALID_ARGUMENT;
5110
5111 /* Set to new action */
5112 cmd = (by_ctl & ~event) | BYPASS_WE | action;
5113 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5114 return IXGBE_ERR_INVALID_ARGUMENT;
5115
5116 /* Page 0 force a FW eeprom write which is slow so verify */
5117 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5118 verify = BYPASS_PAGE_CTL0;
5119 do {
5120 if (count++ > 5)
5121 return IXGBE_BYPASS_FW_WRITE_FAILURE;
5122
5123 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5124 return IXGBE_ERR_INVALID_ARGUMENT;
5125 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5126 } else {
5127 /* We have give the FW time for the write to stick */
5128 msec_delay(100);
5129 }
5130
5131 return IXGBE_SUCCESS;
5132 }
5133
5134 /**
5135 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
5136 *
5137 * @hw: pointer to hardware structure
5138 * @addr: The bypass eeprom address to read.
5139 * @value: The 8b of data at the address above.
5140 **/
5141 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5142 {
5143 u32 cmd;
5144 u32 status;
5145
5146
5147 /* send the request */
5148 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5149 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5150 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5151 return IXGBE_ERR_INVALID_ARGUMENT;
5152
5153 /* We have give the FW time for the write to stick */
5154 msec_delay(100);
5155
5156 /* now read the results */
5157 cmd &= ~BYPASS_WE;
5158 if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5159 return IXGBE_ERR_INVALID_ARGUMENT;
5160
5161 *value = status & BYPASS_CTL2_DATA_M;
5162
5163 return IXGBE_SUCCESS;
5164 }
5165
5166 /**
5167 * ixgbe_get_orom_version - Return option ROM from EEPROM
5168 *
5169 * @hw: pointer to hardware structure
5170 * @nvm_ver: pointer to output structure
5171 *
5172 * if valid option ROM version, nvm_ver->or_valid set to TRUE
5173 * else nvm_ver->or_valid is FALSE.
5174 **/
5175 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5176 struct ixgbe_nvm_version *nvm_ver)
5177 {
5178 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5179
5180 nvm_ver->or_valid = FALSE;
5181 /* Option Rom may or may not be present. Start with pointer */
5182 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5183
5184 /* make sure offset is valid */
5185 if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5186 return;
5187
5188 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5189 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5190
5191 /* option rom exists and is valid */
5192 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5193 eeprom_cfg_blkl == NVM_VER_INVALID ||
5194 eeprom_cfg_blkh == NVM_VER_INVALID)
5195 return;
5196
5197 nvm_ver->or_valid = TRUE;
5198 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5199 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5200 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5201 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5202 }
5203
5204 /**
5205 * ixgbe_get_oem_prod_version - Return OEM Product version
5206 *
5207 * @hw: pointer to hardware structure
5208 * @nvm_ver: pointer to output structure
5209 *
5210 * if valid OEM product version, nvm_ver->oem_valid set to TRUE
5211 * else nvm_ver->oem_valid is FALSE.
5212 **/
5213 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5214 struct ixgbe_nvm_version *nvm_ver)
5215 {
5216 u16 rel_num, prod_ver, mod_len, cap, offset;
5217
5218 nvm_ver->oem_valid = FALSE;
5219 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5220
5221 /* Return if offset to OEM Product Version block is invalid */
5222 if (offset == 0x0 || offset == NVM_INVALID_PTR)
5223 return;
5224
5225 /* Read product version block */
5226 hw->eeprom.ops.read(hw, offset, &mod_len);
5227 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5228
5229 /* Return if OEM product version block is invalid */
5230 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5231 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5232 return;
5233
5234 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5235 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5236
5237 /* Return if version is invalid */
5238 if ((rel_num | prod_ver) == 0x0 ||
5239 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5240 return;
5241
5242 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5243 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5244 nvm_ver->oem_release = rel_num;
5245 nvm_ver->oem_valid = TRUE;
5246 }
5247
5248 /**
5249 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5250 *
5251 * @hw: pointer to hardware structure
5252 * @nvm_ver: pointer to output structure
5253 *
5254 * word read errors will return 0xFFFF
5255 **/
5256 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5257 {
5258 u16 etk_id_l, etk_id_h;
5259
5260 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5261 etk_id_l = NVM_VER_INVALID;
5262 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5263 etk_id_h = NVM_VER_INVALID;
5264
5265 /* The word order for the version format is determined by high order
5266 * word bit 15.
5267 */
5268 if ((etk_id_h & NVM_ETK_VALID) == 0) {
5269 nvm_ver->etk_id = etk_id_h;
5270 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5271 } else {
5272 nvm_ver->etk_id = etk_id_l;
5273 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5274 }
5275 }
5276
5277
5278 /**
5279 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5280 * @hw: pointer to hardware structure
5281 * @map: pointer to u8 arr for returning map
5282 *
5283 * Read the rtrup2tc HW register and resolve its content into map
5284 **/
5285 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5286 {
5287 u32 reg, i;
5288
5289 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5290 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5291 map[i] = IXGBE_RTRUP2TC_UP_MASK &
5292 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5293 return;
5294 }
5295
5296 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5297 {
5298 u32 pfdtxgswc;
5299 u32 rxctrl;
5300
5301 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5302 if (rxctrl & IXGBE_RXCTRL_RXEN) {
5303 if (hw->mac.type != ixgbe_mac_82598EB) {
5304 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5305 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5306 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5307 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5308 hw->mac.set_lben = TRUE;
5309 } else {
5310 hw->mac.set_lben = FALSE;
5311 }
5312 }
5313 rxctrl &= ~IXGBE_RXCTRL_RXEN;
5314 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5315 }
5316 }
5317
5318 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5319 {
5320 u32 pfdtxgswc;
5321 u32 rxctrl;
5322
5323 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5324 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5325
5326 if (hw->mac.type != ixgbe_mac_82598EB) {
5327 if (hw->mac.set_lben) {
5328 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5329 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5330 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5331 hw->mac.set_lben = FALSE;
5332 }
5333 }
5334 }
5335
5336 /**
5337 * ixgbe_mng_present - returns TRUE when management capability is present
5338 * @hw: pointer to hardware structure
5339 */
5340 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5341 {
5342 u32 fwsm;
5343
5344 if (hw->mac.type < ixgbe_mac_82599EB)
5345 return FALSE;
5346
5347 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5348 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5349 }
5350
5351 /**
5352 * ixgbe_mng_enabled - Is the manageability engine enabled?
5353 * @hw: pointer to hardware structure
5354 *
5355 * Returns TRUE if the manageability engine is enabled.
5356 **/
5357 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5358 {
5359 u32 fwsm, manc, factps;
5360
5361 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5362 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5363 return FALSE;
5364
5365 manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5366 if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5367 return FALSE;
5368
5369 if (hw->mac.type <= ixgbe_mac_X540) {
5370 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5371 if (factps & IXGBE_FACTPS_MNGCG)
5372 return FALSE;
5373 }
5374
5375 return TRUE;
5376 }
5377
5378 /**
5379 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5380 * @hw: pointer to hardware structure
5381 * @speed: new link speed
5382 * @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5383 *
5384 * Set the link speed in the MAC and/or PHY register and restarts link.
5385 **/
5386 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5387 ixgbe_link_speed speed,
5388 bool autoneg_wait_to_complete)
5389 {
5390 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5391 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5392 s32 status = IXGBE_SUCCESS;
5393 u32 speedcnt = 0;
5394 u32 i = 0;
5395 bool autoneg, link_up = FALSE;
5396
5397 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5398
5399 /* Mask off requested but non-supported speeds */
5400 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5401 if (status != IXGBE_SUCCESS)
5402 return status;
5403
5404 speed &= link_speed;
5405
5406 /* Try each speed one by one, highest priority first. We do this in
5407 * software because 10Gb fiber doesn't support speed autonegotiation.
5408 */
5409 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5410 speedcnt++;
5411 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5412
5413 /* Set the module link speed */
5414 switch (hw->phy.media_type) {
5415 case ixgbe_media_type_fiber_fixed:
5416 case ixgbe_media_type_fiber:
5417 ixgbe_set_rate_select_speed(hw,
5418 IXGBE_LINK_SPEED_10GB_FULL);
5419 break;
5420 case ixgbe_media_type_fiber_qsfp:
5421 /* QSFP module automatically detects MAC link speed */
5422 break;
5423 default:
5424 DEBUGOUT("Unexpected media type.\n");
5425 break;
5426 }
5427
5428 /* Allow module to change analog characteristics (1G->10G) */
5429 msec_delay(40);
5430
5431 status = ixgbe_setup_mac_link(hw,
5432 IXGBE_LINK_SPEED_10GB_FULL,
5433 autoneg_wait_to_complete);
5434 if (status != IXGBE_SUCCESS)
5435 return status;
5436
5437 /* Flap the Tx laser if it has not already been done */
5438 ixgbe_flap_tx_laser(hw);
5439
5440 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
5441 * Section 73.10.2, we may have to wait up to 500ms if KR is
5442 * attempted. 82599 uses the same timing for 10g SFI.
5443 */
5444 for (i = 0; i < 5; i++) {
5445 /* Wait for the link partner to also set speed */
5446 msec_delay(100);
5447
5448 /* If we have link, just jump out */
5449 status = ixgbe_check_link(hw, &link_speed,
5450 &link_up, FALSE);
5451 if (status != IXGBE_SUCCESS)
5452 return status;
5453
5454 if (link_up)
5455 goto out;
5456 }
5457 }
5458
5459 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5460 speedcnt++;
5461 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5462 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5463
5464 /* Set the module link speed */
5465 switch (hw->phy.media_type) {
5466 case ixgbe_media_type_fiber_fixed:
5467 case ixgbe_media_type_fiber:
5468 ixgbe_set_rate_select_speed(hw,
5469 IXGBE_LINK_SPEED_1GB_FULL);
5470 break;
5471 case ixgbe_media_type_fiber_qsfp:
5472 /* QSFP module automatically detects link speed */
5473 break;
5474 default:
5475 DEBUGOUT("Unexpected media type.\n");
5476 break;
5477 }
5478
5479 /* Allow module to change analog characteristics (10G->1G) */
5480 msec_delay(40);
5481
5482 status = ixgbe_setup_mac_link(hw,
5483 IXGBE_LINK_SPEED_1GB_FULL,
5484 autoneg_wait_to_complete);
5485 if (status != IXGBE_SUCCESS)
5486 return status;
5487
5488 /* Flap the Tx laser if it has not already been done */
5489 ixgbe_flap_tx_laser(hw);
5490
5491 /* Wait for the link partner to also set speed */
5492 msec_delay(100);
5493
5494 /* If we have link, just jump out */
5495 status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5496 if (status != IXGBE_SUCCESS)
5497 return status;
5498
5499 if (link_up)
5500 goto out;
5501 }
5502
5503 if (speed == 0) {
5504 /* Disable the Tx laser for media none */
5505 ixgbe_disable_tx_laser(hw);
5506
5507 goto out;
5508 }
5509
5510 /* We didn't get link. Configure back to the highest speed we tried,
5511 * (if there was more than one). We call ourselves back with just the
5512 * single highest speed that the user requested.
5513 */
5514 if (speedcnt > 1)
5515 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5516 highest_link_speed,
5517 autoneg_wait_to_complete);
5518
5519 out:
5520 /* Set autoneg_advertised value based on input link speed */
5521 hw->phy.autoneg_advertised = 0;
5522
5523 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5524 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5525
5526 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5527 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5528
5529 return status;
5530 }
5531
5532 /**
5533 * ixgbe_set_soft_rate_select_speed - Set module link speed
5534 * @hw: pointer to hardware structure
5535 * @speed: link speed to set
5536 *
5537 * Set module link speed via the soft rate select.
5538 */
5539 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5540 ixgbe_link_speed speed)
5541 {
5542 s32 status;
5543 u8 rs, eeprom_data;
5544
5545 switch (speed) {
5546 case IXGBE_LINK_SPEED_10GB_FULL:
5547 /* one bit mask same as setting on */
5548 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5549 break;
5550 case IXGBE_LINK_SPEED_1GB_FULL:
5551 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5552 break;
5553 default:
5554 DEBUGOUT("Invalid fixed module speed\n");
5555 return;
5556 }
5557
5558 /* Set RS0 */
5559 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5560 IXGBE_I2C_EEPROM_DEV_ADDR2,
5561 &eeprom_data);
5562 if (status) {
5563 DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5564 goto out;
5565 }
5566
5567 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5568
5569 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5570 IXGBE_I2C_EEPROM_DEV_ADDR2,
5571 eeprom_data);
5572 if (status) {
5573 DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5574 goto out;
5575 }
5576
5577 /* Set RS1 */
5578 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5579 IXGBE_I2C_EEPROM_DEV_ADDR2,
5580 &eeprom_data);
5581 if (status) {
5582 DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5583 goto out;
5584 }
5585
5586 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5587
5588 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5589 IXGBE_I2C_EEPROM_DEV_ADDR2,
5590 eeprom_data);
5591 if (status) {
5592 DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5593 goto out;
5594 }
5595 out:
5596 return;
5597 }
5598