Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.37
      1 /* $NetBSD: ixgbe_common.c,v 1.37 2021/12/10 11:25:22 msaitoh Exp $ */
      2 
      3 /******************************************************************************
      4   SPDX-License-Identifier: BSD-3-Clause
      5 
      6   Copyright (c) 2001-2017, Intel Corporation
      7   All rights reserved.
      8 
      9   Redistribution and use in source and binary forms, with or without
     10   modification, are permitted provided that the following conditions are met:
     11 
     12    1. Redistributions of source code must retain the above copyright notice,
     13       this list of conditions and the following disclaimer.
     14 
     15    2. Redistributions in binary form must reproduce the above copyright
     16       notice, this list of conditions and the following disclaimer in the
     17       documentation and/or other materials provided with the distribution.
     18 
     19    3. Neither the name of the Intel Corporation nor the names of its
     20       contributors may be used to endorse or promote products derived from
     21       this software without specific prior written permission.
     22 
     23   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     24   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     27   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33   POSSIBILITY OF SUCH DAMAGE.
     34 
     35 ******************************************************************************/
     36 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 331224 2018-03-19 20:55:05Z erj $*/
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ixgbe_common.c,v 1.37 2021/12/10 11:25:22 msaitoh Exp $");
     40 
     41 #include "ixgbe_common.h"
     42 #include "ixgbe_phy.h"
     43 #include "ixgbe_dcb.h"
     44 #include "ixgbe_dcb_82599.h"
     45 #include "ixgbe_api.h"
     46 
     47 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     48 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     49 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     50 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     51 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     52 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     53 					u16 count);
     54 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     55 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     56 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     57 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     58 
     59 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     60 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     61 					 u16 *san_mac_offset);
     62 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     63 					     u16 words, u16 *data);
     64 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     65 					      u16 words, u16 *data);
     66 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     67 						 u16 offset);
     68 
     69 /**
     70  *  ixgbe_init_ops_generic - Inits function ptrs
     71  *  @hw: pointer to the hardware structure
     72  *
     73  *  Initialize the function pointers.
     74  **/
     75 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     76 {
     77 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     78 	struct ixgbe_mac_info *mac = &hw->mac;
     79 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
     80 
     81 	DEBUGFUNC("ixgbe_init_ops_generic");
     82 
     83 	/* EEPROM */
     84 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     85 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     86 	if (eec & IXGBE_EEC_PRES) {
     87 		eeprom->ops.read = ixgbe_read_eerd_generic;
     88 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     89 	} else {
     90 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     91 		eeprom->ops.read_buffer =
     92 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     93 	}
     94 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     95 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     96 	eeprom->ops.validate_checksum =
     97 				      ixgbe_validate_eeprom_checksum_generic;
     98 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     99 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
    100 
    101 	/* MAC */
    102 	mac->ops.init_hw = ixgbe_init_hw_generic;
    103 	mac->ops.reset_hw = NULL;
    104 	mac->ops.start_hw = ixgbe_start_hw_generic;
    105 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    106 	mac->ops.get_media_type = NULL;
    107 	mac->ops.get_supported_physical_layer = NULL;
    108 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    109 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    110 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    111 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    112 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    113 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    114 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    115 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    116 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    117 
    118 	/* LEDs */
    119 	mac->ops.led_on = ixgbe_led_on_generic;
    120 	mac->ops.led_off = ixgbe_led_off_generic;
    121 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    122 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    123 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
    124 
    125 	/* RAR, Multicast, VLAN */
    126 	mac->ops.set_rar = ixgbe_set_rar_generic;
    127 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    128 	mac->ops.insert_mac_addr = NULL;
    129 	mac->ops.set_vmdq = NULL;
    130 	mac->ops.clear_vmdq = NULL;
    131 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    132 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    133 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    134 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    135 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    136 	mac->ops.clear_vfta = NULL;
    137 	mac->ops.set_vfta = NULL;
    138 	mac->ops.set_vlvf = NULL;
    139 	mac->ops.init_uta_tables = NULL;
    140 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    141 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    142 	mac->ops.toggle_txdctl = ixgbe_toggle_txdctl_generic;
    143 
    144 	/* Flow Control */
    145 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    146 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    147 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
    148 
    149 	/* Link */
    150 	mac->ops.get_link_capabilities = NULL;
    151 	mac->ops.setup_link = NULL;
    152 	mac->ops.check_link = NULL;
    153 	mac->ops.dmac_config = NULL;
    154 	mac->ops.dmac_update_tcs = NULL;
    155 	mac->ops.dmac_config_tcs = NULL;
    156 
    157 	return IXGBE_SUCCESS;
    158 }
    159 
    160 /**
    161  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    162  * of flow control
    163  * @hw: pointer to hardware structure
    164  *
    165  * This function returns TRUE if the device supports flow control
    166  * autonegotiation, and FALSE if it does not.
    167  *
    168  **/
    169 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    170 {
    171 	bool supported = FALSE;
    172 	ixgbe_link_speed speed;
    173 	bool link_up;
    174 
    175 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    176 
    177 	switch (hw->phy.media_type) {
    178 	case ixgbe_media_type_fiber_fixed:
    179 	case ixgbe_media_type_fiber_qsfp:
    180 	case ixgbe_media_type_fiber:
    181 		/* flow control autoneg black list */
    182 		switch (hw->device_id) {
    183 		case IXGBE_DEV_ID_X550EM_A_SFP:
    184 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
    185 		case IXGBE_DEV_ID_X550EM_A_QSFP:
    186 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
    187 			supported = FALSE;
    188 			break;
    189 		default:
    190 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    191 			/* if link is down, assume supported */
    192 			if (link_up)
    193 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    194 				    TRUE : FALSE;
    195 			else
    196 				supported = TRUE;
    197 		}
    198 
    199 		break;
    200 	case ixgbe_media_type_backplane:
    201 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
    202 			supported = FALSE;
    203 		else
    204 			supported = TRUE;
    205 		break;
    206 	case ixgbe_media_type_copper:
    207 		/* only some copper devices support flow control autoneg */
    208 		switch (hw->device_id) {
    209 		case IXGBE_DEV_ID_82599_T3_LOM:
    210 		case IXGBE_DEV_ID_X540T:
    211 		case IXGBE_DEV_ID_X540T1:
    212 		case IXGBE_DEV_ID_X540_BYPASS:
    213 		case IXGBE_DEV_ID_X550T:
    214 		case IXGBE_DEV_ID_X550T1:
    215 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    216 		case IXGBE_DEV_ID_X550EM_A_10G_T:
    217 		case IXGBE_DEV_ID_X550EM_A_1G_T:
    218 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
    219 			supported = TRUE;
    220 			break;
    221 		default:
    222 			supported = FALSE;
    223 		}
    224 	default:
    225 		break;
    226 	}
    227 
    228 	return supported;
    229 }
    230 
    231 /**
    232  *  ixgbe_setup_fc_generic - Set up flow control
    233  *  @hw: pointer to hardware structure
    234  *
    235  *  Called at init time to set up flow control.
    236  **/
    237 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    238 {
    239 	s32 ret_val = IXGBE_SUCCESS;
    240 	u32 reg = 0, reg_bp = 0;
    241 	u16 reg_cu = 0;
    242 	bool locked = FALSE;
    243 
    244 	DEBUGFUNC("ixgbe_setup_fc_generic");
    245 
    246 	/* Validate the requested mode */
    247 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    248 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    249 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    250 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    251 		goto out;
    252 	}
    253 
    254 	/*
    255 	 * 10gig parts do not have a word in the EEPROM to determine the
    256 	 * default flow control setting, so we explicitly set it to full.
    257 	 */
    258 	if (hw->fc.requested_mode == ixgbe_fc_default)
    259 		hw->fc.requested_mode = ixgbe_fc_full;
    260 
    261 	/*
    262 	 * Set up the 1G and 10G flow control advertisement registers so the
    263 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    264 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    265 	 */
    266 	switch (hw->phy.media_type) {
    267 	case ixgbe_media_type_backplane:
    268 		/* some MAC's need RMW protection on AUTOC */
    269 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    270 		if (ret_val != IXGBE_SUCCESS)
    271 			goto out;
    272 
    273 		/* fall through - only backplane uses autoc */
    274 	case ixgbe_media_type_fiber_fixed:
    275 	case ixgbe_media_type_fiber_qsfp:
    276 	case ixgbe_media_type_fiber:
    277 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    278 
    279 		break;
    280 	case ixgbe_media_type_copper:
    281 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    282 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    283 		break;
    284 	default:
    285 		break;
    286 	}
    287 
    288 	/*
    289 	 * The possible values of fc.requested_mode are:
    290 	 * 0: Flow control is completely disabled
    291 	 * 1: Rx flow control is enabled (we can receive pause frames,
    292 	 *    but not send pause frames).
    293 	 * 2: Tx flow control is enabled (we can send pause frames but
    294 	 *    we do not support receiving pause frames).
    295 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    296 	 * other: Invalid.
    297 	 */
    298 	switch (hw->fc.requested_mode) {
    299 	case ixgbe_fc_none:
    300 		/* Flow control completely disabled by software override. */
    301 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    302 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    303 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    304 				    IXGBE_AUTOC_ASM_PAUSE);
    305 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    306 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    307 		break;
    308 	case ixgbe_fc_tx_pause:
    309 		/*
    310 		 * Tx Flow control is enabled, and Rx Flow control is
    311 		 * disabled by software override.
    312 		 */
    313 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    314 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    315 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    316 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    317 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    318 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    319 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    320 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    321 		}
    322 		break;
    323 	case ixgbe_fc_rx_pause:
    324 		/*
    325 		 * Rx Flow control is enabled and Tx Flow control is
    326 		 * disabled by software override. Since there really
    327 		 * isn't a way to advertise that we are capable of RX
    328 		 * Pause ONLY, we will advertise that we support both
    329 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    330 		 * through to the fc_full statement.  Later, we will
    331 		 * disable the adapter's ability to send PAUSE frames.
    332 		 */
    333 	case ixgbe_fc_full:
    334 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    335 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    336 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    337 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    338 				  IXGBE_AUTOC_ASM_PAUSE;
    339 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    340 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    341 		break;
    342 	default:
    343 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    344 			     "Flow control param set incorrectly\n");
    345 		ret_val = IXGBE_ERR_CONFIG;
    346 		goto out;
    347 		break;
    348 	}
    349 
    350 	if (hw->mac.type < ixgbe_mac_X540) {
    351 		/*
    352 		 * Enable auto-negotiation between the MAC & PHY;
    353 		 * the MAC will advertise clause 37 flow control.
    354 		 */
    355 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    356 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    357 
    358 		/* Disable AN timeout */
    359 		if (hw->fc.strict_ieee)
    360 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    361 
    362 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    363 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    364 	}
    365 
    366 	/*
    367 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    368 	 * and copper. There is no need to set the PCS1GCTL register.
    369 	 *
    370 	 */
    371 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    372 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    373 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    374 		if (ret_val)
    375 			goto out;
    376 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    377 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    378 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    379 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    380 	}
    381 
    382 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    383 out:
    384 	return ret_val;
    385 }
    386 
    387 /**
    388  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    389  *  @hw: pointer to hardware structure
    390  *
    391  *  Starts the hardware by filling the bus info structure and media type, clears
    392  *  all on chip counters, initializes receive address registers, multicast
    393  *  table, VLAN filter table, calls routine to set up link and flow control
    394  *  settings, and leaves transmit and receive units disabled and uninitialized
    395  **/
    396 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    397 {
    398 	s32 ret_val;
    399 	u32 ctrl_ext;
    400 	u16 device_caps;
    401 
    402 	DEBUGFUNC("ixgbe_start_hw_generic");
    403 
    404 	/* Set the media type */
    405 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    406 
    407 	/* PHY ops initialization must be done in reset_hw() */
    408 
    409 	/* Clear the VLAN filter table */
    410 	hw->mac.ops.clear_vfta(hw);
    411 
    412 	/* Clear statistics registers */
    413 	hw->mac.ops.clear_hw_cntrs(hw);
    414 
    415 	/* Set No Snoop Disable */
    416 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    417 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    418 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    419 	IXGBE_WRITE_FLUSH(hw);
    420 
    421 	/* Setup flow control */
    422 	ret_val = ixgbe_setup_fc(hw);
    423 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
    424 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
    425 		return ret_val;
    426 	}
    427 
    428 	/* Cache bit indicating need for crosstalk fix */
    429 	switch (hw->mac.type) {
    430 	case ixgbe_mac_82599EB:
    431 	case ixgbe_mac_X550EM_x:
    432 	case ixgbe_mac_X550EM_a:
    433 		hw->mac.ops.get_device_caps(hw, &device_caps);
    434 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    435 			hw->need_crosstalk_fix = FALSE;
    436 		else
    437 			hw->need_crosstalk_fix = TRUE;
    438 		break;
    439 	default:
    440 		hw->need_crosstalk_fix = FALSE;
    441 		break;
    442 	}
    443 
    444 	/* Clear adapter stopped flag */
    445 	hw->adapter_stopped = FALSE;
    446 
    447 	return IXGBE_SUCCESS;
    448 }
    449 
    450 /**
    451  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    452  *  @hw: pointer to hw structure
    453  *
    454  * Performs the init sequence common to the second generation
    455  * of 10 GbE devices.
    456  * Devices in the second generation:
    457  *     82599
    458  *     X540
    459  **/
    460 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    461 {
    462 	u32 i;
    463 	u32 regval;
    464 
    465 	DEBUGFUNC("ixgbe_start_hw_gen2");
    466 
    467 	/* Clear the rate limiters */
    468 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    469 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    470 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    471 	}
    472 	IXGBE_WRITE_FLUSH(hw);
    473 
    474 	/* Disable relaxed ordering */
    475 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    476 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    477 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    478 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    479 	}
    480 
    481 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    482 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    483 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    484 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    485 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    486 	}
    487 }
    488 
    489 /**
    490  *  ixgbe_init_hw_generic - Generic hardware initialization
    491  *  @hw: pointer to hardware structure
    492  *
    493  *  Initialize the hardware by resetting the hardware, filling the bus info
    494  *  structure and media type, clears all on chip counters, initializes receive
    495  *  address registers, multicast table, VLAN filter table, calls routine to set
    496  *  up link and flow control settings, and leaves transmit and receive units
    497  *  disabled and uninitialized
    498  **/
    499 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    500 {
    501 	s32 status;
    502 
    503 	DEBUGFUNC("ixgbe_init_hw_generic");
    504 
    505 	/* Reset the hardware */
    506 	status = hw->mac.ops.reset_hw(hw);
    507 
    508 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
    509 		/* Start the HW */
    510 		status = hw->mac.ops.start_hw(hw);
    511 	}
    512 
    513 	/* Initialize the LED link active for LED blink support */
    514 	if (hw->mac.ops.init_led_link_act)
    515 		hw->mac.ops.init_led_link_act(hw);
    516 
    517 	if (status != IXGBE_SUCCESS)
    518 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
    519 
    520 	return status;
    521 }
    522 
    523 /**
    524  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    525  *  @hw: pointer to hardware structure
    526  *
    527  *  Clears all hardware statistics counters by reading them from the hardware
    528  *  Statistics counters are clear on read.
    529  **/
    530 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    531 {
    532 	u16 i = 0;
    533 
    534 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    535 
    536 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    537 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    538 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    539 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    540 	if (hw->mac.type >= ixgbe_mac_X550)
    541 		IXGBE_READ_REG(hw, IXGBE_MBSDC);
    542 	for (i = 0; i < 8; i++)
    543 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    544 
    545 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    546 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    547 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    548 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    549 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    550 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    551 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    552 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    553 	} else {
    554 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    555 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    556 	}
    557 
    558 	for (i = 0; i < 8; i++) {
    559 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    560 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    561 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    562 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    563 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    564 		} else {
    565 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    566 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    567 		}
    568 	}
    569 	if (hw->mac.type >= ixgbe_mac_82599EB)
    570 		for (i = 0; i < 8; i++)
    571 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    572 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    573 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    574 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    575 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    576 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    577 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    578 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    579 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    580 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    581 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    582 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    583 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    584 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    585 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    586 	if (hw->mac.type == ixgbe_mac_82598EB)
    587 		for (i = 0; i < 8; i++)
    588 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    589 	IXGBE_READ_REG(hw, IXGBE_RUC);
    590 	IXGBE_READ_REG(hw, IXGBE_RFC);
    591 	IXGBE_READ_REG(hw, IXGBE_ROC);
    592 	IXGBE_READ_REG(hw, IXGBE_RJC);
    593 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    594 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    595 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    596 	IXGBE_READ_REG(hw, IXGBE_TORL);
    597 	IXGBE_READ_REG(hw, IXGBE_TORH);
    598 	IXGBE_READ_REG(hw, IXGBE_TPR);
    599 	IXGBE_READ_REG(hw, IXGBE_TPT);
    600 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    601 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    602 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    603 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    604 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    605 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    606 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    607 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    608 	for (i = 0; i < 16; i++) {
    609 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    610 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    611 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    612 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    613 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    614 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    615 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    616 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    617 		} else {
    618 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    619 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    620 		}
    621 	}
    622 
    623 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    624 		if (hw->phy.id == 0)
    625 			ixgbe_identify_phy(hw);
    626 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    627 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    628 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    629 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    630 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    631 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    632 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    633 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    634 	}
    635 
    636 	return IXGBE_SUCCESS;
    637 }
    638 
    639 /**
    640  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    641  *  @hw: pointer to hardware structure
    642  *  @pba_num: stores the part number string from the EEPROM
    643  *  @pba_num_size: part number string buffer length
    644  *
    645  *  Reads the part number string from the EEPROM.
    646  **/
    647 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    648 				  u32 pba_num_size)
    649 {
    650 	s32 ret_val;
    651 	u16 data;
    652 	u16 pba_ptr;
    653 	u16 offset;
    654 	u16 length;
    655 
    656 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    657 
    658 	if (pba_num == NULL) {
    659 		DEBUGOUT("PBA string buffer was null\n");
    660 		return IXGBE_ERR_INVALID_ARGUMENT;
    661 	}
    662 
    663 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    664 	if (ret_val) {
    665 		DEBUGOUT("NVM Read Error\n");
    666 		return ret_val;
    667 	}
    668 
    669 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    670 	if (ret_val) {
    671 		DEBUGOUT("NVM Read Error\n");
    672 		return ret_val;
    673 	}
    674 
    675 	/*
    676 	 * if data is not ptr guard the PBA must be in legacy format which
    677 	 * means pba_ptr is actually our second data word for the PBA number
    678 	 * and we can decode it into an ascii string
    679 	 */
    680 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    681 		DEBUGOUT("NVM PBA number is not stored as string\n");
    682 
    683 		/* we will need 11 characters to store the PBA */
    684 		if (pba_num_size < 11) {
    685 			DEBUGOUT("PBA string buffer too small\n");
    686 			return IXGBE_ERR_NO_SPACE;
    687 		}
    688 
    689 		/* extract hex string from data and pba_ptr */
    690 		pba_num[0] = (data >> 12) & 0xF;
    691 		pba_num[1] = (data >> 8) & 0xF;
    692 		pba_num[2] = (data >> 4) & 0xF;
    693 		pba_num[3] = data & 0xF;
    694 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    695 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    696 		pba_num[6] = '-';
    697 		pba_num[7] = 0;
    698 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    699 		pba_num[9] = pba_ptr & 0xF;
    700 
    701 		/* put a null character on the end of our string */
    702 		pba_num[10] = '\0';
    703 
    704 		/* switch all the data but the '-' to hex char */
    705 		for (offset = 0; offset < 10; offset++) {
    706 			if (pba_num[offset] < 0xA)
    707 				pba_num[offset] += '0';
    708 			else if (pba_num[offset] < 0x10)
    709 				pba_num[offset] += 'A' - 0xA;
    710 		}
    711 
    712 		return IXGBE_SUCCESS;
    713 	}
    714 
    715 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    716 	if (ret_val) {
    717 		DEBUGOUT("NVM Read Error\n");
    718 		return ret_val;
    719 	}
    720 
    721 	if (length == 0xFFFF || length == 0) {
    722 		DEBUGOUT("NVM PBA number section invalid length\n");
    723 		return IXGBE_ERR_PBA_SECTION;
    724 	}
    725 
    726 	/* check if pba_num buffer is big enough */
    727 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    728 		DEBUGOUT("PBA string buffer too small\n");
    729 		return IXGBE_ERR_NO_SPACE;
    730 	}
    731 
    732 	/* trim pba length from start of string */
    733 	pba_ptr++;
    734 	length--;
    735 
    736 	for (offset = 0; offset < length; offset++) {
    737 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    738 		if (ret_val) {
    739 			DEBUGOUT("NVM Read Error\n");
    740 			return ret_val;
    741 		}
    742 		pba_num[offset * 2] = (u8)(data >> 8);
    743 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    744 	}
    745 	pba_num[offset * 2] = '\0';
    746 
    747 	return IXGBE_SUCCESS;
    748 }
    749 
    750 /**
    751  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    752  *  @hw: pointer to hardware structure
    753  *  @pba_num: stores the part number from the EEPROM
    754  *
    755  *  Reads the part number from the EEPROM.
    756  **/
    757 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    758 {
    759 	s32 ret_val;
    760 	u16 data;
    761 
    762 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    763 
    764 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    765 	if (ret_val) {
    766 		DEBUGOUT("NVM Read Error\n");
    767 		return ret_val;
    768 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    769 		DEBUGOUT("NVM Not supported\n");
    770 		return IXGBE_NOT_IMPLEMENTED;
    771 	}
    772 	*pba_num = (u32)(data << 16);
    773 
    774 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    775 	if (ret_val) {
    776 		DEBUGOUT("NVM Read Error\n");
    777 		return ret_val;
    778 	}
    779 	*pba_num |= (u32)data;
    780 
    781 	return IXGBE_SUCCESS;
    782 }
    783 
    784 /**
    785  *  ixgbe_read_pba_raw
    786  *  @hw: pointer to the HW structure
    787  *  @eeprom_buf: optional pointer to EEPROM image
    788  *  @eeprom_buf_size: size of EEPROM image in words
    789  *  @max_pba_block_size: PBA block size limit
    790  *  @pba: pointer to output PBA structure
    791  *
    792  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    793  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    794  *
    795  **/
    796 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    797 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    798 		       struct ixgbe_pba *pba)
    799 {
    800 	s32 ret_val;
    801 	u16 pba_block_size;
    802 
    803 	if (pba == NULL)
    804 		return IXGBE_ERR_PARAM;
    805 
    806 	if (eeprom_buf == NULL) {
    807 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    808 						     &pba->word[0]);
    809 		if (ret_val)
    810 			return ret_val;
    811 	} else {
    812 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    813 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    814 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    815 		} else {
    816 			return IXGBE_ERR_PARAM;
    817 		}
    818 	}
    819 
    820 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    821 		if (pba->pba_block == NULL)
    822 			return IXGBE_ERR_PARAM;
    823 
    824 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    825 						   eeprom_buf_size,
    826 						   &pba_block_size);
    827 		if (ret_val)
    828 			return ret_val;
    829 
    830 		if (pba_block_size > max_pba_block_size)
    831 			return IXGBE_ERR_PARAM;
    832 
    833 		if (eeprom_buf == NULL) {
    834 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    835 							     pba_block_size,
    836 							     pba->pba_block);
    837 			if (ret_val)
    838 				return ret_val;
    839 		} else {
    840 			if (eeprom_buf_size > (u32)(pba->word[1] +
    841 					      pba_block_size)) {
    842 				memcpy(pba->pba_block,
    843 				       &eeprom_buf[pba->word[1]],
    844 				       pba_block_size * sizeof(u16));
    845 			} else {
    846 				return IXGBE_ERR_PARAM;
    847 			}
    848 		}
    849 	}
    850 
    851 	return IXGBE_SUCCESS;
    852 }
    853 
    854 /**
    855  *  ixgbe_write_pba_raw
    856  *  @hw: pointer to the HW structure
    857  *  @eeprom_buf: optional pointer to EEPROM image
    858  *  @eeprom_buf_size: size of EEPROM image in words
    859  *  @pba: pointer to PBA structure
    860  *
    861  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    862  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    863  *
    864  **/
    865 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    866 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    867 {
    868 	s32 ret_val;
    869 
    870 	if (pba == NULL)
    871 		return IXGBE_ERR_PARAM;
    872 
    873 	if (eeprom_buf == NULL) {
    874 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    875 						      &pba->word[0]);
    876 		if (ret_val)
    877 			return ret_val;
    878 	} else {
    879 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    880 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    881 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    882 		} else {
    883 			return IXGBE_ERR_PARAM;
    884 		}
    885 	}
    886 
    887 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    888 		if (pba->pba_block == NULL)
    889 			return IXGBE_ERR_PARAM;
    890 
    891 		if (eeprom_buf == NULL) {
    892 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    893 							      pba->pba_block[0],
    894 							      pba->pba_block);
    895 			if (ret_val)
    896 				return ret_val;
    897 		} else {
    898 			if (eeprom_buf_size > (u32)(pba->word[1] +
    899 					      pba->pba_block[0])) {
    900 				memcpy(&eeprom_buf[pba->word[1]],
    901 				       pba->pba_block,
    902 				       pba->pba_block[0] * sizeof(u16));
    903 			} else {
    904 				return IXGBE_ERR_PARAM;
    905 			}
    906 		}
    907 	}
    908 
    909 	return IXGBE_SUCCESS;
    910 }
    911 
    912 /**
    913  *  ixgbe_get_pba_block_size
    914  *  @hw: pointer to the HW structure
    915  *  @eeprom_buf: optional pointer to EEPROM image
    916  *  @eeprom_buf_size: size of EEPROM image in words
    917  *  @pba_data_size: pointer to output variable
    918  *
    919  *  Returns the size of the PBA block in words. Function operates on EEPROM
    920  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    921  *  EEPROM device.
    922  *
    923  **/
    924 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    925 			     u32 eeprom_buf_size, u16 *pba_block_size)
    926 {
    927 	s32 ret_val;
    928 	u16 pba_word[2];
    929 	u16 length;
    930 
    931 	DEBUGFUNC("ixgbe_get_pba_block_size");
    932 
    933 	if (eeprom_buf == NULL) {
    934 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    935 						     &pba_word[0]);
    936 		if (ret_val)
    937 			return ret_val;
    938 	} else {
    939 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    940 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    941 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    942 		} else {
    943 			return IXGBE_ERR_PARAM;
    944 		}
    945 	}
    946 
    947 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    948 		if (eeprom_buf == NULL) {
    949 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    950 						      &length);
    951 			if (ret_val)
    952 				return ret_val;
    953 		} else {
    954 			if (eeprom_buf_size > pba_word[1])
    955 				length = eeprom_buf[pba_word[1] + 0];
    956 			else
    957 				return IXGBE_ERR_PARAM;
    958 		}
    959 
    960 		if (length == 0xFFFF || length == 0)
    961 			return IXGBE_ERR_PBA_SECTION;
    962 	} else {
    963 		/* PBA number in legacy format, there is no PBA Block. */
    964 		length = 0;
    965 	}
    966 
    967 	if (pba_block_size != NULL)
    968 		*pba_block_size = length;
    969 
    970 	return IXGBE_SUCCESS;
    971 }
    972 
    973 /**
    974  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    975  *  @hw: pointer to hardware structure
    976  *  @mac_addr: Adapter MAC address
    977  *
    978  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    979  *  A reset of the adapter must be performed prior to calling this function
    980  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    981  **/
    982 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    983 {
    984 	u32 rar_high;
    985 	u32 rar_low;
    986 	u16 i;
    987 
    988 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    989 
    990 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    991 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    992 
    993 	for (i = 0; i < 4; i++)
    994 		mac_addr[i] = (u8)(rar_low >> (i*8));
    995 
    996 	for (i = 0; i < 2; i++)
    997 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    998 
    999 	return IXGBE_SUCCESS;
   1000 }
   1001 
   1002 /**
   1003  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
   1004  *  @hw: pointer to hardware structure
   1005  *  @link_status: the link status returned by the PCI config space
   1006  *
   1007  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
   1008  **/
   1009 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
   1010 {
   1011 	struct ixgbe_mac_info *mac = &hw->mac;
   1012 
   1013 	if (hw->bus.type == ixgbe_bus_type_unknown)
   1014 		hw->bus.type = ixgbe_bus_type_pci_express;
   1015 
   1016 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
   1017 	case IXGBE_PCI_LINK_WIDTH_1:
   1018 		hw->bus.width = ixgbe_bus_width_pcie_x1;
   1019 		break;
   1020 	case IXGBE_PCI_LINK_WIDTH_2:
   1021 		hw->bus.width = ixgbe_bus_width_pcie_x2;
   1022 		break;
   1023 	case IXGBE_PCI_LINK_WIDTH_4:
   1024 		hw->bus.width = ixgbe_bus_width_pcie_x4;
   1025 		break;
   1026 	case IXGBE_PCI_LINK_WIDTH_8:
   1027 		hw->bus.width = ixgbe_bus_width_pcie_x8;
   1028 		break;
   1029 	default:
   1030 		hw->bus.width = ixgbe_bus_width_unknown;
   1031 		break;
   1032 	}
   1033 
   1034 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
   1035 	case IXGBE_PCI_LINK_SPEED_2500:
   1036 		hw->bus.speed = ixgbe_bus_speed_2500;
   1037 		break;
   1038 	case IXGBE_PCI_LINK_SPEED_5000:
   1039 		hw->bus.speed = ixgbe_bus_speed_5000;
   1040 		break;
   1041 	case IXGBE_PCI_LINK_SPEED_8000:
   1042 		hw->bus.speed = ixgbe_bus_speed_8000;
   1043 		break;
   1044 	default:
   1045 		hw->bus.speed = ixgbe_bus_speed_unknown;
   1046 		break;
   1047 	}
   1048 
   1049 	mac->ops.set_lan_id(hw);
   1050 }
   1051 
   1052 /**
   1053  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1054  *  @hw: pointer to hardware structure
   1055  *
   1056  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1057  *  store this data within the ixgbe_hw structure.
   1058  **/
   1059 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1060 {
   1061 	u16 link_status;
   1062 
   1063 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1064 
   1065 	/* Get the negotiated link width and speed from PCI config space */
   1066 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1067 
   1068 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1069 
   1070 	return IXGBE_SUCCESS;
   1071 }
   1072 
   1073 /**
   1074  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1075  *  @hw: pointer to the HW structure
   1076  *
   1077  *  Determines the LAN function id by reading memory-mapped registers and swaps
   1078  *  the port value if requested, and set MAC instance for devices that share
   1079  *  CS4227.
   1080  **/
   1081 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1082 {
   1083 	struct ixgbe_bus_info *bus = &hw->bus;
   1084 	u32 reg;
   1085 	u16 ee_ctrl_4;
   1086 
   1087 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1088 
   1089 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1090 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1091 	bus->lan_id = (u8)bus->func;
   1092 
   1093 	/* check for a port swap */
   1094 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   1095 	if (reg & IXGBE_FACTPS_LFS)
   1096 		bus->func ^= 0x1;
   1097 
   1098 	/* Get MAC instance from EEPROM for configuring CS4227 */
   1099 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
   1100 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
   1101 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
   1102 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
   1103 	}
   1104 }
   1105 
   1106 /**
   1107  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1108  *  @hw: pointer to hardware structure
   1109  *
   1110  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1111  *  disables transmit and receive units. The adapter_stopped flag is used by
   1112  *  the shared code and drivers to determine if the adapter is in a stopped
   1113  *  state and should not touch the hardware.
   1114  **/
   1115 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1116 {
   1117 	u32 reg_val;
   1118 	u16 i;
   1119 
   1120 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1121 
   1122 	/*
   1123 	 * Set the adapter_stopped flag so other driver functions stop touching
   1124 	 * the hardware
   1125 	 */
   1126 	hw->adapter_stopped = TRUE;
   1127 
   1128 	/* Disable the receive unit */
   1129 	ixgbe_disable_rx(hw);
   1130 
   1131 	/* Clear interrupt mask to stop interrupts from being generated */
   1132 	/*
   1133 	 * XXX
   1134 	 * This function is called in the state of both interrupt disabled
   1135 	 * and interrupt enabled, e.g.
   1136 	 * + interrupt disabled case:
   1137 	 *   - ixgbe_stop_locked()
   1138 	 *     - ixgbe_disable_intr() // interrupt disabled here
   1139 	 *     - ixgbe_stop_adapter()
   1140 	 *       - hw->mac.ops.stop_adapter()
   1141 	 *         == this function
   1142 	 * + interrupt enabled case:
   1143 	 *   - ixgbe_local_timer1()
   1144 	 *     - ixgbe_init_locked()
   1145 	 *       - ixgbe_stop_adapter()
   1146 	 *         - hw->mac.ops.stop_adapter()
   1147 	 *           == this function
   1148 	 * Therefore, it causes nest status breaking to nest the status
   1149 	 * (that is, que->im_nest++) at all times. So, this function must
   1150 	 * use ixgbe_ensure_disabled_intr() instead of ixgbe_disable_intr().
   1151 	 */
   1152 	ixgbe_ensure_disabled_intr(hw->back);
   1153 
   1154 	/* Clear any pending interrupts, flush previous writes */
   1155 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1156 
   1157 	/* Disable the transmit unit.  Each queue must be disabled. */
   1158 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1159 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1160 
   1161 	/* Disable the receive unit by stopping each queue */
   1162 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1163 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1164 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1165 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1166 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1167 	}
   1168 
   1169 	/* flush all queues disables */
   1170 	IXGBE_WRITE_FLUSH(hw);
   1171 	msec_delay(2);
   1172 
   1173 	/*
   1174 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1175 	 * access and verify no pending requests
   1176 	 */
   1177 	return ixgbe_disable_pcie_master(hw);
   1178 }
   1179 
   1180 /**
   1181  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
   1182  *  @hw: pointer to hardware structure
   1183  *
   1184  *  Store the index for the link active LED. This will be used to support
   1185  *  blinking the LED.
   1186  **/
   1187 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
   1188 {
   1189 	struct ixgbe_mac_info *mac = &hw->mac;
   1190 	u32 led_reg, led_mode;
   1191 	u8 i;
   1192 
   1193 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1194 
   1195 	/* Get LED link active from the LEDCTL register */
   1196 	for (i = 0; i < 4; i++) {
   1197 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
   1198 
   1199 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
   1200 		     IXGBE_LED_LINK_ACTIVE) {
   1201 			mac->led_link_act = i;
   1202 			return IXGBE_SUCCESS;
   1203 		}
   1204 	}
   1205 
   1206 	/*
   1207 	 * If LEDCTL register does not have the LED link active set, then use
   1208 	 * known MAC defaults.
   1209 	 */
   1210 	switch (hw->mac.type) {
   1211 	case ixgbe_mac_X550EM_a:
   1212 	case ixgbe_mac_X550EM_x:
   1213 		mac->led_link_act = 1;
   1214 		break;
   1215 	default:
   1216 		mac->led_link_act = 2;
   1217 	}
   1218 	return IXGBE_SUCCESS;
   1219 }
   1220 
   1221 /**
   1222  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1223  *  @hw: pointer to hardware structure
   1224  *  @index: led number to turn on
   1225  **/
   1226 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1227 {
   1228 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1229 
   1230 	DEBUGFUNC("ixgbe_led_on_generic");
   1231 
   1232 	if (index > 3)
   1233 		return IXGBE_ERR_PARAM;
   1234 
   1235 	/* To turn on the LED, set mode to ON. */
   1236 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1237 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1238 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1239 	IXGBE_WRITE_FLUSH(hw);
   1240 
   1241 	return IXGBE_SUCCESS;
   1242 }
   1243 
   1244 /**
   1245  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1246  *  @hw: pointer to hardware structure
   1247  *  @index: led number to turn off
   1248  **/
   1249 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1250 {
   1251 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1252 
   1253 	DEBUGFUNC("ixgbe_led_off_generic");
   1254 
   1255 	if (index > 3)
   1256 		return IXGBE_ERR_PARAM;
   1257 
   1258 	/* To turn off the LED, set mode to OFF. */
   1259 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1260 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1261 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1262 	IXGBE_WRITE_FLUSH(hw);
   1263 
   1264 	return IXGBE_SUCCESS;
   1265 }
   1266 
   1267 /**
   1268  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1269  *  @hw: pointer to hardware structure
   1270  *
   1271  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1272  *  ixgbe_hw struct in order to set up EEPROM access.
   1273  **/
   1274 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1275 {
   1276 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1277 	u32 eec;
   1278 	u16 eeprom_size;
   1279 
   1280 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1281 
   1282 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1283 		eeprom->type = ixgbe_eeprom_none;
   1284 		/* Set default semaphore delay to 10ms which is a well
   1285 		 * tested value */
   1286 		eeprom->semaphore_delay = 10;
   1287 		/* Clear EEPROM page size, it will be initialized as needed */
   1288 		eeprom->word_page_size = 0;
   1289 
   1290 		/*
   1291 		 * Check for EEPROM present first.
   1292 		 * If not present leave as none
   1293 		 */
   1294 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1295 		if (eec & IXGBE_EEC_PRES) {
   1296 			eeprom->type = ixgbe_eeprom_spi;
   1297 
   1298 			/*
   1299 			 * SPI EEPROM is assumed here.  This code would need to
   1300 			 * change if a future EEPROM is not SPI.
   1301 			 */
   1302 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1303 					    IXGBE_EEC_SIZE_SHIFT);
   1304 			eeprom->word_size = 1 << (eeprom_size +
   1305 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1306 		}
   1307 
   1308 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1309 			eeprom->address_bits = 16;
   1310 		else
   1311 			eeprom->address_bits = 8;
   1312 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1313 			  "%d\n", eeprom->type, eeprom->word_size,
   1314 			  eeprom->address_bits);
   1315 	}
   1316 
   1317 	return IXGBE_SUCCESS;
   1318 }
   1319 
   1320 /**
   1321  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1322  *  @hw: pointer to hardware structure
   1323  *  @offset: offset within the EEPROM to write
   1324  *  @words: number of word(s)
   1325  *  @data: 16 bit word(s) to write to EEPROM
   1326  *
   1327  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1328  **/
   1329 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1330 					       u16 words, u16 *data)
   1331 {
   1332 	s32 status = IXGBE_SUCCESS;
   1333 	u16 i, count;
   1334 
   1335 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1336 
   1337 	hw->eeprom.ops.init_params(hw);
   1338 
   1339 	if (words == 0) {
   1340 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1341 		goto out;
   1342 	}
   1343 
   1344 	if (offset + words > hw->eeprom.word_size) {
   1345 		status = IXGBE_ERR_EEPROM;
   1346 		goto out;
   1347 	}
   1348 
   1349 	/*
   1350 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1351 	 * initialization. It is worth to do that when we write large buffer.
   1352 	 */
   1353 	if ((hw->eeprom.word_page_size == 0) &&
   1354 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1355 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1356 
   1357 	/*
   1358 	 * We cannot hold synchronization semaphores for too long
   1359 	 * to avoid other entity starvation. However it is more efficient
   1360 	 * to read in bursts than synchronizing access for each word.
   1361 	 */
   1362 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1363 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1364 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1365 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1366 							    count, &data[i]);
   1367 
   1368 		if (status != IXGBE_SUCCESS)
   1369 			break;
   1370 	}
   1371 
   1372 out:
   1373 	return status;
   1374 }
   1375 
   1376 /**
   1377  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1378  *  @hw: pointer to hardware structure
   1379  *  @offset: offset within the EEPROM to be written to
   1380  *  @words: number of word(s)
   1381  *  @data: 16 bit word(s) to be written to the EEPROM
   1382  *
   1383  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1384  *  EEPROM will most likely contain an invalid checksum.
   1385  **/
   1386 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1387 					      u16 words, u16 *data)
   1388 {
   1389 	s32 status;
   1390 	u16 word;
   1391 	u16 page_size;
   1392 	u16 i;
   1393 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1394 
   1395 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1396 
   1397 	/* Prepare the EEPROM for writing  */
   1398 	status = ixgbe_acquire_eeprom(hw);
   1399 
   1400 	if (status == IXGBE_SUCCESS) {
   1401 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1402 			ixgbe_release_eeprom(hw);
   1403 			status = IXGBE_ERR_EEPROM;
   1404 		}
   1405 	}
   1406 
   1407 	if (status == IXGBE_SUCCESS) {
   1408 		for (i = 0; i < words; i++) {
   1409 			ixgbe_standby_eeprom(hw);
   1410 
   1411 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1412 			ixgbe_shift_out_eeprom_bits(hw,
   1413 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1414 						   IXGBE_EEPROM_OPCODE_BITS);
   1415 
   1416 			ixgbe_standby_eeprom(hw);
   1417 
   1418 			/*
   1419 			 * Some SPI eeproms use the 8th address bit embedded
   1420 			 * in the opcode
   1421 			 */
   1422 			if ((hw->eeprom.address_bits == 8) &&
   1423 			    ((offset + i) >= 128))
   1424 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1425 
   1426 			/* Send the Write command (8-bit opcode + addr) */
   1427 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1428 						    IXGBE_EEPROM_OPCODE_BITS);
   1429 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1430 						    hw->eeprom.address_bits);
   1431 
   1432 			page_size = hw->eeprom.word_page_size;
   1433 
   1434 			/* Send the data in burst via SPI*/
   1435 			do {
   1436 				word = data[i];
   1437 				word = (word >> 8) | (word << 8);
   1438 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1439 
   1440 				if (page_size == 0)
   1441 					break;
   1442 
   1443 				/* do not wrap around page */
   1444 				if (((offset + i) & (page_size - 1)) ==
   1445 				    (page_size - 1))
   1446 					break;
   1447 			} while (++i < words);
   1448 
   1449 			ixgbe_standby_eeprom(hw);
   1450 			msec_delay(10);
   1451 		}
   1452 		/* Done with writing - release the EEPROM */
   1453 		ixgbe_release_eeprom(hw);
   1454 	}
   1455 
   1456 	return status;
   1457 }
   1458 
   1459 /**
   1460  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1461  *  @hw: pointer to hardware structure
   1462  *  @offset: offset within the EEPROM to be written to
   1463  *  @data: 16 bit word to be written to the EEPROM
   1464  *
   1465  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1466  *  EEPROM will most likely contain an invalid checksum.
   1467  **/
   1468 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1469 {
   1470 	s32 status;
   1471 
   1472 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1473 
   1474 	hw->eeprom.ops.init_params(hw);
   1475 
   1476 	if (offset >= hw->eeprom.word_size) {
   1477 		status = IXGBE_ERR_EEPROM;
   1478 		goto out;
   1479 	}
   1480 
   1481 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1482 
   1483 out:
   1484 	return status;
   1485 }
   1486 
   1487 /**
   1488  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1489  *  @hw: pointer to hardware structure
   1490  *  @offset: offset within the EEPROM to be read
   1491  *  @data: read 16 bit words(s) from EEPROM
   1492  *  @words: number of word(s)
   1493  *
   1494  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1495  **/
   1496 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1497 					      u16 words, u16 *data)
   1498 {
   1499 	s32 status = IXGBE_SUCCESS;
   1500 	u16 i, count;
   1501 
   1502 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1503 
   1504 	hw->eeprom.ops.init_params(hw);
   1505 
   1506 	if (words == 0) {
   1507 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1508 		goto out;
   1509 	}
   1510 
   1511 	if (offset + words > hw->eeprom.word_size) {
   1512 		status = IXGBE_ERR_EEPROM;
   1513 		goto out;
   1514 	}
   1515 
   1516 	/*
   1517 	 * We cannot hold synchronization semaphores for too long
   1518 	 * to avoid other entity starvation. However it is more efficient
   1519 	 * to read in bursts than synchronizing access for each word.
   1520 	 */
   1521 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1522 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1523 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1524 
   1525 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1526 							   count, &data[i]);
   1527 
   1528 		if (status != IXGBE_SUCCESS)
   1529 			break;
   1530 	}
   1531 
   1532 out:
   1533 	return status;
   1534 }
   1535 
   1536 /**
   1537  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1538  *  @hw: pointer to hardware structure
   1539  *  @offset: offset within the EEPROM to be read
   1540  *  @words: number of word(s)
   1541  *  @data: read 16 bit word(s) from EEPROM
   1542  *
   1543  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1544  **/
   1545 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1546 					     u16 words, u16 *data)
   1547 {
   1548 	s32 status;
   1549 	u16 word_in;
   1550 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1551 	u16 i;
   1552 
   1553 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1554 
   1555 	/* Prepare the EEPROM for reading  */
   1556 	status = ixgbe_acquire_eeprom(hw);
   1557 
   1558 	if (status == IXGBE_SUCCESS) {
   1559 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1560 			ixgbe_release_eeprom(hw);
   1561 			status = IXGBE_ERR_EEPROM;
   1562 		}
   1563 	}
   1564 
   1565 	if (status == IXGBE_SUCCESS) {
   1566 		for (i = 0; i < words; i++) {
   1567 			ixgbe_standby_eeprom(hw);
   1568 			/*
   1569 			 * Some SPI eeproms use the 8th address bit embedded
   1570 			 * in the opcode
   1571 			 */
   1572 			if ((hw->eeprom.address_bits == 8) &&
   1573 			    ((offset + i) >= 128))
   1574 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1575 
   1576 			/* Send the READ command (opcode + addr) */
   1577 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1578 						    IXGBE_EEPROM_OPCODE_BITS);
   1579 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1580 						    hw->eeprom.address_bits);
   1581 
   1582 			/* Read the data. */
   1583 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1584 			data[i] = (word_in >> 8) | (word_in << 8);
   1585 		}
   1586 
   1587 		/* End this read operation */
   1588 		ixgbe_release_eeprom(hw);
   1589 	}
   1590 
   1591 	return status;
   1592 }
   1593 
   1594 /**
   1595  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1596  *  @hw: pointer to hardware structure
   1597  *  @offset: offset within the EEPROM to be read
   1598  *  @data: read 16 bit value from EEPROM
   1599  *
   1600  *  Reads 16 bit value from EEPROM through bit-bang method
   1601  **/
   1602 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1603 				       u16 *data)
   1604 {
   1605 	s32 status;
   1606 
   1607 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1608 
   1609 	hw->eeprom.ops.init_params(hw);
   1610 
   1611 	if (offset >= hw->eeprom.word_size) {
   1612 		status = IXGBE_ERR_EEPROM;
   1613 		goto out;
   1614 	}
   1615 
   1616 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1617 
   1618 out:
   1619 	return status;
   1620 }
   1621 
   1622 /**
   1623  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1624  *  @hw: pointer to hardware structure
   1625  *  @offset: offset of word in the EEPROM to read
   1626  *  @words: number of word(s)
   1627  *  @data: 16 bit word(s) from the EEPROM
   1628  *
   1629  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1630  **/
   1631 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1632 				   u16 words, u16 *data)
   1633 {
   1634 	u32 eerd;
   1635 	s32 status = IXGBE_SUCCESS;
   1636 	u32 i;
   1637 
   1638 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1639 
   1640 	hw->eeprom.ops.init_params(hw);
   1641 
   1642 	if (words == 0) {
   1643 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1644 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1645 		goto out;
   1646 	}
   1647 
   1648 	if (offset >= hw->eeprom.word_size) {
   1649 		status = IXGBE_ERR_EEPROM;
   1650 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1651 		goto out;
   1652 	}
   1653 
   1654 	for (i = 0; i < words; i++) {
   1655 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1656 		       IXGBE_EEPROM_RW_REG_START;
   1657 
   1658 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1659 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1660 
   1661 		if (status == IXGBE_SUCCESS) {
   1662 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1663 				   IXGBE_EEPROM_RW_REG_DATA);
   1664 		} else {
   1665 			DEBUGOUT("Eeprom read timed out\n");
   1666 			goto out;
   1667 		}
   1668 	}
   1669 out:
   1670 	return status;
   1671 }
   1672 
   1673 /**
   1674  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1675  *  @hw: pointer to hardware structure
   1676  *  @offset: offset within the EEPROM to be used as a scratch pad
   1677  *
   1678  *  Discover EEPROM page size by writing marching data at given offset.
   1679  *  This function is called only when we are writing a new large buffer
   1680  *  at given offset so the data would be overwritten anyway.
   1681  **/
   1682 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1683 						 u16 offset)
   1684 {
   1685 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1686 	s32 status = IXGBE_SUCCESS;
   1687 	u16 i;
   1688 
   1689 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1690 
   1691 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1692 		data[i] = i;
   1693 
   1694 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1695 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1696 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1697 	hw->eeprom.word_page_size = 0;
   1698 	if (status != IXGBE_SUCCESS)
   1699 		goto out;
   1700 
   1701 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1702 	if (status != IXGBE_SUCCESS)
   1703 		goto out;
   1704 
   1705 	/*
   1706 	 * When writing in burst more than the actual page size
   1707 	 * EEPROM address wraps around current page.
   1708 	 */
   1709 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1710 
   1711 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1712 		  hw->eeprom.word_page_size);
   1713 out:
   1714 	return status;
   1715 }
   1716 
   1717 /**
   1718  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1719  *  @hw: pointer to hardware structure
   1720  *  @offset: offset of  word in the EEPROM to read
   1721  *  @data: word read from the EEPROM
   1722  *
   1723  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1724  **/
   1725 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1726 {
   1727 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1728 }
   1729 
   1730 /**
   1731  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1732  *  @hw: pointer to hardware structure
   1733  *  @offset: offset of  word in the EEPROM to write
   1734  *  @words: number of word(s)
   1735  *  @data: word(s) write to the EEPROM
   1736  *
   1737  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1738  **/
   1739 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1740 				    u16 words, u16 *data)
   1741 {
   1742 	u32 eewr;
   1743 	s32 status = IXGBE_SUCCESS;
   1744 	u16 i;
   1745 
   1746 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1747 
   1748 	hw->eeprom.ops.init_params(hw);
   1749 
   1750 	if (words == 0) {
   1751 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1752 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1753 		goto out;
   1754 	}
   1755 
   1756 	if (offset >= hw->eeprom.word_size) {
   1757 		status = IXGBE_ERR_EEPROM;
   1758 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1759 		goto out;
   1760 	}
   1761 
   1762 	for (i = 0; i < words; i++) {
   1763 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1764 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1765 			IXGBE_EEPROM_RW_REG_START;
   1766 
   1767 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1768 		if (status != IXGBE_SUCCESS) {
   1769 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1770 			goto out;
   1771 		}
   1772 
   1773 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1774 
   1775 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1776 		if (status != IXGBE_SUCCESS) {
   1777 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1778 			goto out;
   1779 		}
   1780 	}
   1781 
   1782 out:
   1783 	return status;
   1784 }
   1785 
   1786 /**
   1787  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1788  *  @hw: pointer to hardware structure
   1789  *  @offset: offset of  word in the EEPROM to write
   1790  *  @data: word write to the EEPROM
   1791  *
   1792  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1793  **/
   1794 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1795 {
   1796 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1797 }
   1798 
   1799 /**
   1800  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1801  *  @hw: pointer to hardware structure
   1802  *  @ee_reg: EEPROM flag for polling
   1803  *
   1804  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1805  *  read or write is done respectively.
   1806  **/
   1807 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1808 {
   1809 	u32 i;
   1810 	u32 reg;
   1811 	s32 status = IXGBE_ERR_EEPROM;
   1812 
   1813 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1814 
   1815 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1816 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1817 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1818 		else
   1819 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1820 
   1821 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1822 			status = IXGBE_SUCCESS;
   1823 			break;
   1824 		}
   1825 		usec_delay(5);
   1826 	}
   1827 
   1828 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1829 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1830 			     "EEPROM read/write done polling timed out");
   1831 
   1832 	return status;
   1833 }
   1834 
   1835 /**
   1836  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1837  *  @hw: pointer to hardware structure
   1838  *
   1839  *  Prepares EEPROM for access using bit-bang method. This function should
   1840  *  be called before issuing a command to the EEPROM.
   1841  **/
   1842 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1843 {
   1844 	s32 status = IXGBE_SUCCESS;
   1845 	u32 eec;
   1846 	u32 i;
   1847 
   1848 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1849 
   1850 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1851 	    != IXGBE_SUCCESS)
   1852 		status = IXGBE_ERR_SWFW_SYNC;
   1853 
   1854 	if (status == IXGBE_SUCCESS) {
   1855 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1856 
   1857 		/* Request EEPROM Access */
   1858 		eec |= IXGBE_EEC_REQ;
   1859 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1860 
   1861 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1862 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   1863 			if (eec & IXGBE_EEC_GNT)
   1864 				break;
   1865 			usec_delay(5);
   1866 		}
   1867 
   1868 		/* Release if grant not acquired */
   1869 		if (!(eec & IXGBE_EEC_GNT)) {
   1870 			eec &= ~IXGBE_EEC_REQ;
   1871 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1872 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1873 
   1874 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1875 			status = IXGBE_ERR_EEPROM;
   1876 		}
   1877 
   1878 		/* Setup EEPROM for Read/Write */
   1879 		if (status == IXGBE_SUCCESS) {
   1880 			/* Clear CS and SK */
   1881 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1882 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   1883 			IXGBE_WRITE_FLUSH(hw);
   1884 			usec_delay(1);
   1885 		}
   1886 	}
   1887 	return status;
   1888 }
   1889 
   1890 /**
   1891  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1892  *  @hw: pointer to hardware structure
   1893  *
   1894  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1895  **/
   1896 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1897 {
   1898 	s32 status = IXGBE_ERR_EEPROM;
   1899 	u32 timeout = 2000;
   1900 	u32 i;
   1901 	u32 swsm;
   1902 
   1903 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1904 
   1905 
   1906 	/* Get SMBI software semaphore between device drivers first */
   1907 	for (i = 0; i < timeout; i++) {
   1908 		/*
   1909 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1910 		 * set and we have the semaphore
   1911 		 */
   1912 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1913 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1914 			status = IXGBE_SUCCESS;
   1915 			break;
   1916 		}
   1917 		usec_delay(50);
   1918 	}
   1919 
   1920 	if (i == timeout) {
   1921 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1922 			 "not granted.\n");
   1923 		/*
   1924 		 * this release is particularly important because our attempts
   1925 		 * above to get the semaphore may have succeeded, and if there
   1926 		 * was a timeout, we should unconditionally clear the semaphore
   1927 		 * bits to free the driver to make progress
   1928 		 */
   1929 		ixgbe_release_eeprom_semaphore(hw);
   1930 
   1931 		usec_delay(50);
   1932 		/*
   1933 		 * one last try
   1934 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1935 		 * set and we have the semaphore
   1936 		 */
   1937 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1938 		if (!(swsm & IXGBE_SWSM_SMBI))
   1939 			status = IXGBE_SUCCESS;
   1940 	}
   1941 
   1942 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1943 	if (status == IXGBE_SUCCESS) {
   1944 		for (i = 0; i < timeout; i++) {
   1945 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1946 
   1947 			/* Set the SW EEPROM semaphore bit to request access */
   1948 			swsm |= IXGBE_SWSM_SWESMBI;
   1949 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
   1950 
   1951 			/*
   1952 			 * If we set the bit successfully then we got the
   1953 			 * semaphore.
   1954 			 */
   1955 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
   1956 			if (swsm & IXGBE_SWSM_SWESMBI)
   1957 				break;
   1958 
   1959 			usec_delay(50);
   1960 		}
   1961 
   1962 		/*
   1963 		 * Release semaphores and return error if SW EEPROM semaphore
   1964 		 * was not granted because we don't have access to the EEPROM
   1965 		 */
   1966 		if (i >= timeout) {
   1967 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1968 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1969 			ixgbe_release_eeprom_semaphore(hw);
   1970 			status = IXGBE_ERR_EEPROM;
   1971 		}
   1972 	} else {
   1973 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1974 			     "Software semaphore SMBI between device drivers "
   1975 			     "not granted.\n");
   1976 	}
   1977 
   1978 	return status;
   1979 }
   1980 
   1981 /**
   1982  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1983  *  @hw: pointer to hardware structure
   1984  *
   1985  *  This function clears hardware semaphore bits.
   1986  **/
   1987 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1988 {
   1989 	u32 swsm;
   1990 
   1991 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1992 
   1993 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1994 
   1995 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1996 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1997 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1998 	IXGBE_WRITE_FLUSH(hw);
   1999 }
   2000 
   2001 /**
   2002  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   2003  *  @hw: pointer to hardware structure
   2004  **/
   2005 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   2006 {
   2007 	s32 status = IXGBE_SUCCESS;
   2008 	u16 i;
   2009 	u8 spi_stat_reg;
   2010 
   2011 	DEBUGFUNC("ixgbe_ready_eeprom");
   2012 
   2013 	/*
   2014 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   2015 	 * EEPROM will signal that the command has been completed by clearing
   2016 	 * bit 0 of the internal status register.  If it's not cleared within
   2017 	 * 5 milliseconds, then error out.
   2018 	 */
   2019 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   2020 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   2021 					    IXGBE_EEPROM_OPCODE_BITS);
   2022 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   2023 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   2024 			break;
   2025 
   2026 		usec_delay(5);
   2027 		ixgbe_standby_eeprom(hw);
   2028 	}
   2029 
   2030 	/*
   2031 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   2032 	 * devices (and only 0-5mSec on 5V devices)
   2033 	 */
   2034 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   2035 		DEBUGOUT("SPI EEPROM Status error\n");
   2036 		status = IXGBE_ERR_EEPROM;
   2037 	}
   2038 
   2039 	return status;
   2040 }
   2041 
   2042 /**
   2043  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   2044  *  @hw: pointer to hardware structure
   2045  **/
   2046 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   2047 {
   2048 	u32 eec;
   2049 
   2050 	DEBUGFUNC("ixgbe_standby_eeprom");
   2051 
   2052 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2053 
   2054 	/* Toggle CS to flush commands */
   2055 	eec |= IXGBE_EEC_CS;
   2056 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2057 	IXGBE_WRITE_FLUSH(hw);
   2058 	usec_delay(1);
   2059 	eec &= ~IXGBE_EEC_CS;
   2060 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2061 	IXGBE_WRITE_FLUSH(hw);
   2062 	usec_delay(1);
   2063 }
   2064 
   2065 /**
   2066  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   2067  *  @hw: pointer to hardware structure
   2068  *  @data: data to send to the EEPROM
   2069  *  @count: number of bits to shift out
   2070  **/
   2071 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   2072 					u16 count)
   2073 {
   2074 	u32 eec;
   2075 	u32 mask;
   2076 	u32 i;
   2077 
   2078 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   2079 
   2080 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2081 
   2082 	/*
   2083 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   2084 	 * one bit at a time.  Determine the starting bit based on count
   2085 	 */
   2086 	mask = 0x01 << (count - 1);
   2087 
   2088 	for (i = 0; i < count; i++) {
   2089 		/*
   2090 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   2091 		 * "1", and then raising and then lowering the clock (the SK
   2092 		 * bit controls the clock input to the EEPROM).  A "0" is
   2093 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   2094 		 * raising and then lowering the clock.
   2095 		 */
   2096 		if (data & mask)
   2097 			eec |= IXGBE_EEC_DI;
   2098 		else
   2099 			eec &= ~IXGBE_EEC_DI;
   2100 
   2101 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2102 		IXGBE_WRITE_FLUSH(hw);
   2103 
   2104 		usec_delay(1);
   2105 
   2106 		ixgbe_raise_eeprom_clk(hw, &eec);
   2107 		ixgbe_lower_eeprom_clk(hw, &eec);
   2108 
   2109 		/*
   2110 		 * Shift mask to signify next bit of data to shift in to the
   2111 		 * EEPROM
   2112 		 */
   2113 		mask = mask >> 1;
   2114 	}
   2115 
   2116 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   2117 	eec &= ~IXGBE_EEC_DI;
   2118 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2119 	IXGBE_WRITE_FLUSH(hw);
   2120 }
   2121 
   2122 /**
   2123  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   2124  *  @hw: pointer to hardware structure
   2125  *  @count: number of bits to shift
   2126  **/
   2127 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2128 {
   2129 	u32 eec;
   2130 	u32 i;
   2131 	u16 data = 0;
   2132 
   2133 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2134 
   2135 	/*
   2136 	 * In order to read a register from the EEPROM, we need to shift
   2137 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2138 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2139 	 * the value of the "DO" bit.  During this "shifting in" process the
   2140 	 * "DI" bit should always be clear.
   2141 	 */
   2142 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2143 
   2144 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2145 
   2146 	for (i = 0; i < count; i++) {
   2147 		data = data << 1;
   2148 		ixgbe_raise_eeprom_clk(hw, &eec);
   2149 
   2150 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2151 
   2152 		eec &= ~(IXGBE_EEC_DI);
   2153 		if (eec & IXGBE_EEC_DO)
   2154 			data |= 1;
   2155 
   2156 		ixgbe_lower_eeprom_clk(hw, &eec);
   2157 	}
   2158 
   2159 	return data;
   2160 }
   2161 
   2162 /**
   2163  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2164  *  @hw: pointer to hardware structure
   2165  *  @eec: EEC register's current value
   2166  **/
   2167 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2168 {
   2169 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2170 
   2171 	/*
   2172 	 * Raise the clock input to the EEPROM
   2173 	 * (setting the SK bit), then delay
   2174 	 */
   2175 	*eec = *eec | IXGBE_EEC_SK;
   2176 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2177 	IXGBE_WRITE_FLUSH(hw);
   2178 	usec_delay(1);
   2179 }
   2180 
   2181 /**
   2182  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2183  *  @hw: pointer to hardware structure
   2184  *  @eec: EEC's current value
   2185  **/
   2186 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2187 {
   2188 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2189 
   2190 	/*
   2191 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2192 	 * delay
   2193 	 */
   2194 	*eec = *eec & ~IXGBE_EEC_SK;
   2195 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
   2196 	IXGBE_WRITE_FLUSH(hw);
   2197 	usec_delay(1);
   2198 }
   2199 
   2200 /**
   2201  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2202  *  @hw: pointer to hardware structure
   2203  **/
   2204 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2205 {
   2206 	u32 eec;
   2207 
   2208 	DEBUGFUNC("ixgbe_release_eeprom");
   2209 
   2210 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
   2211 
   2212 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2213 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2214 
   2215 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2216 	IXGBE_WRITE_FLUSH(hw);
   2217 
   2218 	usec_delay(1);
   2219 
   2220 	/* Stop requesting EEPROM access */
   2221 	eec &= ~IXGBE_EEC_REQ;
   2222 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
   2223 
   2224 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2225 
   2226 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2227 	msec_delay(hw->eeprom.semaphore_delay);
   2228 }
   2229 
   2230 /**
   2231  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2232  *  @hw: pointer to hardware structure
   2233  *
   2234  *  Returns a negative error code on error, or the 16-bit checksum
   2235  **/
   2236 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2237 {
   2238 	u16 i;
   2239 	u16 j;
   2240 	u16 checksum = 0;
   2241 	u16 length = 0;
   2242 	u16 pointer = 0;
   2243 	u16 word = 0;
   2244 
   2245 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2246 
   2247 	/* Include 0x0-0x3F in the checksum */
   2248 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2249 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2250 			DEBUGOUT("EEPROM read failed\n");
   2251 			return IXGBE_ERR_EEPROM;
   2252 		}
   2253 		checksum += word;
   2254 	}
   2255 
   2256 	/* Include all data from pointers except for the fw pointer */
   2257 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2258 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2259 			DEBUGOUT("EEPROM read failed\n");
   2260 			return IXGBE_ERR_EEPROM;
   2261 		}
   2262 
   2263 		/* If the pointer seems invalid */
   2264 		if (pointer == 0xFFFF || pointer == 0)
   2265 			continue;
   2266 
   2267 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2268 			DEBUGOUT("EEPROM read failed\n");
   2269 			return IXGBE_ERR_EEPROM;
   2270 		}
   2271 
   2272 		if (length == 0xFFFF || length == 0)
   2273 			continue;
   2274 
   2275 		for (j = pointer + 1; j <= pointer + length; j++) {
   2276 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2277 				DEBUGOUT("EEPROM read failed\n");
   2278 				return IXGBE_ERR_EEPROM;
   2279 			}
   2280 			checksum += word;
   2281 		}
   2282 	}
   2283 
   2284 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2285 
   2286 	return (s32)checksum;
   2287 }
   2288 
   2289 /**
   2290  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2291  *  @hw: pointer to hardware structure
   2292  *  @checksum_val: calculated checksum
   2293  *
   2294  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2295  *  caller does not need checksum_val, the value can be NULL.
   2296  **/
   2297 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2298 					   u16 *checksum_val)
   2299 {
   2300 	s32 status;
   2301 	u16 checksum;
   2302 	u16 read_checksum = 0;
   2303 
   2304 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2305 
   2306 	/* Read the first word from the EEPROM. If this times out or fails, do
   2307 	 * not continue or we could be in for a very long wait while every
   2308 	 * EEPROM read fails
   2309 	 */
   2310 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2311 	if (status) {
   2312 		DEBUGOUT("EEPROM read failed\n");
   2313 		return status;
   2314 	}
   2315 
   2316 	status = hw->eeprom.ops.calc_checksum(hw);
   2317 	if (status < 0)
   2318 		return status;
   2319 
   2320 	checksum = (u16)(status & 0xffff);
   2321 
   2322 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2323 	if (status) {
   2324 		DEBUGOUT("EEPROM read failed\n");
   2325 		return status;
   2326 	}
   2327 
   2328 	/* Verify read checksum from EEPROM is the same as
   2329 	 * calculated checksum
   2330 	 */
   2331 	if (read_checksum != checksum)
   2332 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2333 
   2334 	/* If the user cares, return the calculated checksum */
   2335 	if (checksum_val)
   2336 		*checksum_val = checksum;
   2337 
   2338 	return status;
   2339 }
   2340 
   2341 /**
   2342  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2343  *  @hw: pointer to hardware structure
   2344  **/
   2345 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2346 {
   2347 	s32 status;
   2348 	u16 checksum;
   2349 
   2350 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2351 
   2352 	/* Read the first word from the EEPROM. If this times out or fails, do
   2353 	 * not continue or we could be in for a very long wait while every
   2354 	 * EEPROM read fails
   2355 	 */
   2356 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2357 	if (status) {
   2358 		DEBUGOUT("EEPROM read failed\n");
   2359 		return status;
   2360 	}
   2361 
   2362 	status = hw->eeprom.ops.calc_checksum(hw);
   2363 	if (status < 0)
   2364 		return status;
   2365 
   2366 	checksum = (u16)(status & 0xffff);
   2367 
   2368 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2369 
   2370 	return status;
   2371 }
   2372 
   2373 /**
   2374  *  ixgbe_validate_mac_addr - Validate MAC address
   2375  *  @mac_addr: pointer to MAC address.
   2376  *
   2377  *  Tests a MAC address to ensure it is a valid Individual Address.
   2378  **/
   2379 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2380 {
   2381 	s32 status = IXGBE_SUCCESS;
   2382 
   2383 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2384 
   2385 	/* Make sure it is not a multicast address */
   2386 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2387 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2388 	/* Not a broadcast address */
   2389 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2390 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2391 	/* Reject the zero address */
   2392 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2393 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2394 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2395 	}
   2396 	return status;
   2397 }
   2398 
   2399 /**
   2400  *  ixgbe_set_rar_generic - Set Rx address register
   2401  *  @hw: pointer to hardware structure
   2402  *  @index: Receive address register to write
   2403  *  @addr: Address to put into receive address register
   2404  *  @vmdq: VMDq "set" or "pool" index
   2405  *  @enable_addr: set flag that address is active
   2406  *
   2407  *  Puts an ethernet address into a receive address register.
   2408  **/
   2409 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2410 			  u32 enable_addr)
   2411 {
   2412 	u32 rar_low, rar_high;
   2413 	u32 rar_entries = hw->mac.num_rar_entries;
   2414 
   2415 	DEBUGFUNC("ixgbe_set_rar_generic");
   2416 
   2417 	/* Make sure we are using a valid rar index range */
   2418 	if (index >= rar_entries) {
   2419 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2420 			     "RAR index %d is out of range.\n", index);
   2421 		return IXGBE_ERR_INVALID_ARGUMENT;
   2422 	}
   2423 
   2424 	/* setup VMDq pool selection before this RAR gets enabled */
   2425 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2426 
   2427 	/*
   2428 	 * HW expects these in little endian so we reverse the byte
   2429 	 * order from network order (big endian) to little endian
   2430 	 */
   2431 	rar_low = ((u32)addr[0] |
   2432 		   ((u32)addr[1] << 8) |
   2433 		   ((u32)addr[2] << 16) |
   2434 		   ((u32)addr[3] << 24));
   2435 	/*
   2436 	 * Some parts put the VMDq setting in the extra RAH bits,
   2437 	 * so save everything except the lower 16 bits that hold part
   2438 	 * of the address and the address valid bit.
   2439 	 */
   2440 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2441 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2442 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2443 
   2444 	if (enable_addr != 0)
   2445 		rar_high |= IXGBE_RAH_AV;
   2446 
   2447 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2448 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2449 
   2450 	return IXGBE_SUCCESS;
   2451 }
   2452 
   2453 /**
   2454  *  ixgbe_clear_rar_generic - Remove Rx address register
   2455  *  @hw: pointer to hardware structure
   2456  *  @index: Receive address register to write
   2457  *
   2458  *  Clears an ethernet address from a receive address register.
   2459  **/
   2460 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2461 {
   2462 	u32 rar_high;
   2463 	u32 rar_entries = hw->mac.num_rar_entries;
   2464 
   2465 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2466 
   2467 	/* Make sure we are using a valid rar index range */
   2468 	if (index >= rar_entries) {
   2469 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2470 			     "RAR index %d is out of range.\n", index);
   2471 		return IXGBE_ERR_INVALID_ARGUMENT;
   2472 	}
   2473 
   2474 	/*
   2475 	 * Some parts put the VMDq setting in the extra RAH bits,
   2476 	 * so save everything except the lower 16 bits that hold part
   2477 	 * of the address and the address valid bit.
   2478 	 */
   2479 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2480 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2481 
   2482 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2483 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2484 
   2485 	/* clear VMDq pool/queue selection for this RAR */
   2486 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2487 
   2488 	return IXGBE_SUCCESS;
   2489 }
   2490 
   2491 /**
   2492  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2493  *  @hw: pointer to hardware structure
   2494  *
   2495  *  Places the MAC address in receive address register 0 and clears the rest
   2496  *  of the receive address registers. Clears the multicast table. Assumes
   2497  *  the receiver is in reset when the routine is called.
   2498  **/
   2499 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2500 {
   2501 	u32 i;
   2502 	u32 rar_entries = hw->mac.num_rar_entries;
   2503 
   2504 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2505 
   2506 	/*
   2507 	 * If the current mac address is valid, assume it is a software override
   2508 	 * to the permanent address.
   2509 	 * Otherwise, use the permanent address from the eeprom.
   2510 	 */
   2511 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2512 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2513 		/* Get the MAC address from the RAR0 for later reference */
   2514 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2515 
   2516 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2517 			  hw->mac.addr[0], hw->mac.addr[1],
   2518 			  hw->mac.addr[2]);
   2519 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2520 			  hw->mac.addr[4], hw->mac.addr[5]);
   2521 	} else {
   2522 		/* Setup the receive address. */
   2523 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2524 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2525 			  hw->mac.addr[0], hw->mac.addr[1],
   2526 			  hw->mac.addr[2]);
   2527 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2528 			  hw->mac.addr[4], hw->mac.addr[5]);
   2529 
   2530 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2531 	}
   2532 
   2533 	/* clear VMDq pool/queue selection for RAR 0 */
   2534 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2535 
   2536 	hw->addr_ctrl.overflow_promisc = 0;
   2537 
   2538 	hw->addr_ctrl.rar_used_count = 1;
   2539 
   2540 	/* Zero out the other receive addresses. */
   2541 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2542 	for (i = 1; i < rar_entries; i++) {
   2543 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2544 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2545 	}
   2546 
   2547 	/* Clear the MTA */
   2548 	hw->addr_ctrl.mta_in_use = 0;
   2549 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2550 
   2551 	DEBUGOUT(" Clearing MTA\n");
   2552 	for (i = 0; i < hw->mac.mcft_size; i++)
   2553 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2554 
   2555 	ixgbe_init_uta_tables(hw);
   2556 
   2557 	return IXGBE_SUCCESS;
   2558 }
   2559 
   2560 /**
   2561  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2562  *  @hw: pointer to hardware structure
   2563  *  @addr: new address
   2564  *  @vmdq: VMDq "set" or "pool" index
   2565  *
   2566  *  Adds it to unused receive address register or goes into promiscuous mode.
   2567  **/
   2568 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2569 {
   2570 	u32 rar_entries = hw->mac.num_rar_entries;
   2571 	u32 rar;
   2572 
   2573 	DEBUGFUNC("ixgbe_add_uc_addr");
   2574 
   2575 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2576 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2577 
   2578 	/*
   2579 	 * Place this address in the RAR if there is room,
   2580 	 * else put the controller into promiscuous mode
   2581 	 */
   2582 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2583 		rar = hw->addr_ctrl.rar_used_count;
   2584 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2585 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2586 		hw->addr_ctrl.rar_used_count++;
   2587 	} else {
   2588 		hw->addr_ctrl.overflow_promisc++;
   2589 	}
   2590 
   2591 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2592 }
   2593 
   2594 /**
   2595  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2596  *  @hw: pointer to hardware structure
   2597  *  @addr_list: the list of new addresses
   2598  *  @addr_count: number of addresses
   2599  *  @next: iterator function to walk the address list
   2600  *
   2601  *  The given list replaces any existing list.  Clears the secondary addrs from
   2602  *  receive address registers.  Uses unused receive address registers for the
   2603  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2604  *
   2605  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2606  *  manually putting the device into promiscuous mode.
   2607  **/
   2608 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2609 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2610 {
   2611 	u8 *addr;
   2612 	u32 i;
   2613 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2614 	u32 uc_addr_in_use;
   2615 	u32 fctrl;
   2616 	u32 vmdq;
   2617 
   2618 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2619 
   2620 	/*
   2621 	 * Clear accounting of old secondary address list,
   2622 	 * don't count RAR[0]
   2623 	 */
   2624 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2625 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2626 	hw->addr_ctrl.overflow_promisc = 0;
   2627 
   2628 	/* Zero out the other receive addresses */
   2629 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2630 	for (i = 0; i < uc_addr_in_use; i++) {
   2631 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2632 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2633 	}
   2634 
   2635 	/* Add the new addresses */
   2636 	for (i = 0; i < addr_count; i++) {
   2637 		DEBUGOUT(" Adding the secondary addresses:\n");
   2638 		addr = next(hw, &addr_list, &vmdq);
   2639 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2640 	}
   2641 
   2642 	if (hw->addr_ctrl.overflow_promisc) {
   2643 		/* enable promisc if not already in overflow or set by user */
   2644 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2645 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2646 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2647 			fctrl |= IXGBE_FCTRL_UPE;
   2648 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2649 		}
   2650 	} else {
   2651 		/* only disable if set by overflow, not by user */
   2652 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2653 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2654 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2655 			fctrl &= ~IXGBE_FCTRL_UPE;
   2656 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2657 		}
   2658 	}
   2659 
   2660 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2661 	return IXGBE_SUCCESS;
   2662 }
   2663 
   2664 /**
   2665  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2666  *  @hw: pointer to hardware structure
   2667  *  @mc_addr: the multicast address
   2668  *
   2669  *  Extracts the 12 bits, from a multicast address, to determine which
   2670  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2671  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2672  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2673  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2674  *  to mc_filter_type.
   2675  **/
   2676 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2677 {
   2678 	u32 vector = 0;
   2679 
   2680 	DEBUGFUNC("ixgbe_mta_vector");
   2681 
   2682 	switch (hw->mac.mc_filter_type) {
   2683 	case 0:   /* use bits [47:36] of the address */
   2684 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2685 		break;
   2686 	case 1:   /* use bits [46:35] of the address */
   2687 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2688 		break;
   2689 	case 2:   /* use bits [45:34] of the address */
   2690 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2691 		break;
   2692 	case 3:   /* use bits [43:32] of the address */
   2693 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2694 		break;
   2695 	default:  /* Invalid mc_filter_type */
   2696 		DEBUGOUT("MC filter type param set incorrectly\n");
   2697 		ASSERT(0);
   2698 		break;
   2699 	}
   2700 
   2701 	/* vector can only be 12-bits or boundary will be exceeded */
   2702 	vector &= 0xFFF;
   2703 	return vector;
   2704 }
   2705 
   2706 /**
   2707  *  ixgbe_set_mta - Set bit-vector in multicast table
   2708  *  @hw: pointer to hardware structure
   2709  *  @mc_addr: Multicast address
   2710  *
   2711  *  Sets the bit-vector in the multicast table.
   2712  **/
   2713 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2714 {
   2715 	u32 vector;
   2716 	u32 vector_bit;
   2717 	u32 vector_reg;
   2718 
   2719 	DEBUGFUNC("ixgbe_set_mta");
   2720 
   2721 	hw->addr_ctrl.mta_in_use++;
   2722 
   2723 	vector = ixgbe_mta_vector(hw, mc_addr);
   2724 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2725 
   2726 	/*
   2727 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2728 	 * like an array of 4096 bits.  We want to set bit
   2729 	 * BitArray[vector_value]. So we figure out what register the bit is
   2730 	 * in, read it, OR in the new bit, then write back the new value.  The
   2731 	 * register is determined by the upper 7 bits of the vector value and
   2732 	 * the bit within that register are determined by the lower 5 bits of
   2733 	 * the value.
   2734 	 */
   2735 	vector_reg = (vector >> 5) & 0x7F;
   2736 	vector_bit = vector & 0x1F;
   2737 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2738 }
   2739 
   2740 /**
   2741  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2742  *  @hw: pointer to hardware structure
   2743  *  @mc_addr_list: the list of new multicast addresses
   2744  *  @mc_addr_count: number of addresses
   2745  *  @next: iterator function to walk the multicast address list
   2746  *  @clear: flag, when set clears the table beforehand
   2747  *
   2748  *  When the clear flag is set, the given list replaces any existing list.
   2749  *  Hashes the given addresses into the multicast table.
   2750  **/
   2751 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2752 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2753 				      bool clear)
   2754 {
   2755 	u32 i;
   2756 	u32 vmdq;
   2757 
   2758 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2759 
   2760 	/*
   2761 	 * Set the new number of MC addresses that we are being requested to
   2762 	 * use.
   2763 	 */
   2764 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2765 	hw->addr_ctrl.mta_in_use = 0;
   2766 
   2767 	/* Clear mta_shadow */
   2768 	if (clear) {
   2769 		DEBUGOUT(" Clearing MTA\n");
   2770 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2771 	}
   2772 
   2773 	/* Update mta_shadow */
   2774 	for (i = 0; i < mc_addr_count; i++) {
   2775 		DEBUGOUT(" Adding the multicast addresses:\n");
   2776 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2777 	}
   2778 
   2779 	/* Enable mta */
   2780 	for (i = 0; i < hw->mac.mcft_size; i++)
   2781 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2782 				      hw->mac.mta_shadow[i]);
   2783 
   2784 	if (hw->addr_ctrl.mta_in_use > 0)
   2785 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2786 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2787 
   2788 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2789 	return IXGBE_SUCCESS;
   2790 }
   2791 
   2792 /**
   2793  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2794  *  @hw: pointer to hardware structure
   2795  *
   2796  *  Enables multicast address in RAR and the use of the multicast hash table.
   2797  **/
   2798 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2799 {
   2800 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2801 
   2802 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2803 
   2804 	if (a->mta_in_use > 0)
   2805 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2806 				hw->mac.mc_filter_type);
   2807 
   2808 	return IXGBE_SUCCESS;
   2809 }
   2810 
   2811 /**
   2812  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2813  *  @hw: pointer to hardware structure
   2814  *
   2815  *  Disables multicast address in RAR and the use of the multicast hash table.
   2816  **/
   2817 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2818 {
   2819 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2820 
   2821 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2822 
   2823 	if (a->mta_in_use > 0)
   2824 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2825 
   2826 	return IXGBE_SUCCESS;
   2827 }
   2828 
   2829 /**
   2830  *  ixgbe_fc_enable_generic - Enable flow control
   2831  *  @hw: pointer to hardware structure
   2832  *
   2833  *  Enable flow control according to the current settings.
   2834  **/
   2835 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2836 {
   2837 	s32 ret_val = IXGBE_SUCCESS;
   2838 	u32 mflcn_reg, fccfg_reg;
   2839 	u32 reg;
   2840 	u32 fcrtl, fcrth;
   2841 	int i;
   2842 
   2843 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2844 
   2845 	/* Validate the water mark configuration */
   2846 	if (!hw->fc.pause_time) {
   2847 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2848 		goto out;
   2849 	}
   2850 
   2851 	/* Low water mark of zero causes XOFF floods */
   2852 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2853 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2854 		    hw->fc.high_water[i]) {
   2855 			if (!hw->fc.low_water[i] ||
   2856 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2857 				DEBUGOUT("Invalid water mark configuration\n");
   2858 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2859 				goto out;
   2860 			}
   2861 		}
   2862 	}
   2863 
   2864 	/* Negotiate the fc mode to use */
   2865 	hw->mac.ops.fc_autoneg(hw);
   2866 
   2867 	/* Disable any previous flow control settings */
   2868 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2869 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2870 
   2871 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2872 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2873 
   2874 	/*
   2875 	 * The possible values of fc.current_mode are:
   2876 	 * 0: Flow control is completely disabled
   2877 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2878 	 *    but not send pause frames).
   2879 	 * 2: Tx flow control is enabled (we can send pause frames but
   2880 	 *    we do not support receiving pause frames).
   2881 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2882 	 * other: Invalid.
   2883 	 */
   2884 	switch (hw->fc.current_mode) {
   2885 	case ixgbe_fc_none:
   2886 		/*
   2887 		 * Flow control is disabled by software override or autoneg.
   2888 		 * The code below will actually disable it in the HW.
   2889 		 */
   2890 		break;
   2891 	case ixgbe_fc_rx_pause:
   2892 		/*
   2893 		 * Rx Flow control is enabled and Tx Flow control is
   2894 		 * disabled by software override. Since there really
   2895 		 * isn't a way to advertise that we are capable of RX
   2896 		 * Pause ONLY, we will advertise that we support both
   2897 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2898 		 * disable the adapter's ability to send PAUSE frames.
   2899 		 */
   2900 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2901 		break;
   2902 	case ixgbe_fc_tx_pause:
   2903 		/*
   2904 		 * Tx Flow control is enabled, and Rx Flow control is
   2905 		 * disabled by software override.
   2906 		 */
   2907 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2908 		break;
   2909 	case ixgbe_fc_full:
   2910 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2911 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2912 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2913 		break;
   2914 	default:
   2915 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2916 			     "Flow control param set incorrectly\n");
   2917 		ret_val = IXGBE_ERR_CONFIG;
   2918 		goto out;
   2919 		break;
   2920 	}
   2921 
   2922 	/* Set 802.3x based flow control settings. */
   2923 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2924 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2925 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2926 
   2927 
   2928 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2929 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2930 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2931 		    hw->fc.high_water[i]) {
   2932 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2933 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2934 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2935 		} else {
   2936 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2937 			/*
   2938 			 * In order to prevent Tx hangs when the internal Tx
   2939 			 * switch is enabled we must set the high water mark
   2940 			 * to the Rx packet buffer size - 24KB.  This allows
   2941 			 * the Tx switch to function even under heavy Rx
   2942 			 * workloads.
   2943 			 */
   2944 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2945 		}
   2946 
   2947 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2948 	}
   2949 
   2950 	/* Configure pause time (2 TCs per register) */
   2951 	reg = (u32)hw->fc.pause_time * 0x00010001;
   2952 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2953 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2954 
   2955 	/* Configure flow control refresh threshold value */
   2956 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2957 
   2958 out:
   2959 	return ret_val;
   2960 }
   2961 
   2962 /**
   2963  *  ixgbe_negotiate_fc - Negotiate flow control
   2964  *  @hw: pointer to hardware structure
   2965  *  @adv_reg: flow control advertised settings
   2966  *  @lp_reg: link partner's flow control settings
   2967  *  @adv_sym: symmetric pause bit in advertisement
   2968  *  @adv_asm: asymmetric pause bit in advertisement
   2969  *  @lp_sym: symmetric pause bit in link partner advertisement
   2970  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2971  *
   2972  *  Find the intersection between advertised settings and link partner's
   2973  *  advertised settings
   2974  **/
   2975 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2976 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2977 {
   2978 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2979 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2980 			     "Local or link partner's advertised flow control "
   2981 			     "settings are NULL. Local: %x, link partner: %x\n",
   2982 			     adv_reg, lp_reg);
   2983 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2984 	}
   2985 
   2986 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2987 		/*
   2988 		 * Now we need to check if the user selected Rx ONLY
   2989 		 * of pause frames.  In this case, we had to advertise
   2990 		 * FULL flow control because we could not advertise RX
   2991 		 * ONLY. Hence, we must now check to see if we need to
   2992 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2993 		 */
   2994 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2995 			hw->fc.current_mode = ixgbe_fc_full;
   2996 			DEBUGOUT("Flow Control = FULL.\n");
   2997 		} else {
   2998 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2999 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   3000 		}
   3001 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3002 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3003 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   3004 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   3005 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   3006 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   3007 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   3008 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   3009 	} else {
   3010 		hw->fc.current_mode = ixgbe_fc_none;
   3011 		DEBUGOUT("Flow Control = NONE.\n");
   3012 	}
   3013 	return IXGBE_SUCCESS;
   3014 }
   3015 
   3016 /**
   3017  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   3018  *  @hw: pointer to hardware structure
   3019  *
   3020  *  Enable flow control according on 1 gig fiber.
   3021  **/
   3022 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   3023 {
   3024 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   3025 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3026 
   3027 	/*
   3028 	 * On multispeed fiber at 1g, bail out if
   3029 	 * - link is up but AN did not complete, or if
   3030 	 * - link is up and AN completed but timed out
   3031 	 */
   3032 
   3033 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   3034 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   3035 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   3036 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   3037 		goto out;
   3038 	}
   3039 
   3040 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   3041 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   3042 
   3043 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   3044 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   3045 				      IXGBE_PCS1GANA_ASM_PAUSE,
   3046 				      IXGBE_PCS1GANA_SYM_PAUSE,
   3047 				      IXGBE_PCS1GANA_ASM_PAUSE);
   3048 
   3049 out:
   3050 	return ret_val;
   3051 }
   3052 
   3053 /**
   3054  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   3055  *  @hw: pointer to hardware structure
   3056  *
   3057  *  Enable flow control according to IEEE clause 37.
   3058  **/
   3059 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   3060 {
   3061 	u32 links2, anlp1_reg, autoc_reg, links;
   3062 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3063 
   3064 	/*
   3065 	 * On backplane, bail out if
   3066 	 * - backplane autoneg was not completed, or if
   3067 	 * - we are 82599 and link partner is not AN enabled
   3068 	 */
   3069 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3070 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   3071 		DEBUGOUT("Auto-Negotiation did not complete\n");
   3072 		goto out;
   3073 	}
   3074 
   3075 	if (hw->mac.type == ixgbe_mac_82599EB) {
   3076 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   3077 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   3078 			DEBUGOUT("Link partner is not AN enabled\n");
   3079 			goto out;
   3080 		}
   3081 	}
   3082 	/*
   3083 	 * Read the 10g AN autoc and LP ability registers and resolve
   3084 	 * local flow control settings accordingly
   3085 	 */
   3086 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3087 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   3088 
   3089 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   3090 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   3091 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   3092 
   3093 out:
   3094 	return ret_val;
   3095 }
   3096 
   3097 /**
   3098  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   3099  *  @hw: pointer to hardware structure
   3100  *
   3101  *  Enable flow control according to IEEE clause 37.
   3102  **/
   3103 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   3104 {
   3105 	u16 technology_ability_reg = 0;
   3106 	u16 lp_technology_ability_reg = 0;
   3107 
   3108 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   3109 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3110 			     &technology_ability_reg);
   3111 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   3112 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   3113 			     &lp_technology_ability_reg);
   3114 
   3115 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   3116 				  (u32)lp_technology_ability_reg,
   3117 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   3118 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   3119 }
   3120 
   3121 /**
   3122  *  ixgbe_fc_autoneg - Configure flow control
   3123  *  @hw: pointer to hardware structure
   3124  *
   3125  *  Compares our advertised flow control capabilities to those advertised by
   3126  *  our link partner, and determines the proper flow control mode to use.
   3127  **/
   3128 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3129 {
   3130 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3131 	ixgbe_link_speed speed;
   3132 	bool link_up;
   3133 
   3134 	DEBUGFUNC("ixgbe_fc_autoneg");
   3135 
   3136 	/*
   3137 	 * AN should have completed when the cable was plugged in.
   3138 	 * Look for reasons to bail out.  Bail out if:
   3139 	 * - FC autoneg is disabled, or if
   3140 	 * - link is not up.
   3141 	 */
   3142 	if (hw->fc.disable_fc_autoneg) {
   3143 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3144 			     "Flow control autoneg is disabled");
   3145 		goto out;
   3146 	}
   3147 
   3148 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3149 	if (!link_up) {
   3150 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3151 		goto out;
   3152 	}
   3153 
   3154 	switch (hw->phy.media_type) {
   3155 	/* Autoneg flow control on fiber adapters */
   3156 	case ixgbe_media_type_fiber_fixed:
   3157 	case ixgbe_media_type_fiber_qsfp:
   3158 	case ixgbe_media_type_fiber:
   3159 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3160 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3161 		break;
   3162 
   3163 	/* Autoneg flow control on backplane adapters */
   3164 	case ixgbe_media_type_backplane:
   3165 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3166 		break;
   3167 
   3168 	/* Autoneg flow control on copper adapters */
   3169 	case ixgbe_media_type_copper:
   3170 		if (ixgbe_device_supports_autoneg_fc(hw))
   3171 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3172 		break;
   3173 
   3174 	default:
   3175 		break;
   3176 	}
   3177 
   3178 out:
   3179 	if (ret_val == IXGBE_SUCCESS) {
   3180 		hw->fc.fc_was_autonegged = TRUE;
   3181 	} else {
   3182 		hw->fc.fc_was_autonegged = FALSE;
   3183 		hw->fc.current_mode = hw->fc.requested_mode;
   3184 	}
   3185 }
   3186 
   3187 /*
   3188  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3189  * @hw: pointer to hardware structure
   3190  *
   3191  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3192  *
   3193  * Add 10% to specified maximum and return the number of times to poll for
   3194  * completion timeout, in units of 100 microsec.  Never return less than
   3195  * 800 = 80 millisec.
   3196  */
   3197 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3198 {
   3199 	s16 devctl2;
   3200 	u32 pollcnt;
   3201 
   3202 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3203 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3204 
   3205 	switch (devctl2) {
   3206 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3207 		pollcnt = 1300;		/* 130 millisec */
   3208 		break;
   3209 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3210 		pollcnt = 5200;		/* 520 millisec */
   3211 		break;
   3212 	case IXGBE_PCIDEVCTRL2_1_2s:
   3213 		pollcnt = 20000;	/* 2 sec */
   3214 		break;
   3215 	case IXGBE_PCIDEVCTRL2_4_8s:
   3216 		pollcnt = 80000;	/* 8 sec */
   3217 		break;
   3218 	case IXGBE_PCIDEVCTRL2_17_34s:
   3219 		pollcnt = 34000;	/* 34 sec */
   3220 		break;
   3221 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3222 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3223 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3224 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3225 	default:
   3226 		pollcnt = 800;		/* 80 millisec minimum */
   3227 		break;
   3228 	}
   3229 
   3230 	/* add 10% to spec maximum */
   3231 	return (pollcnt * 11) / 10;
   3232 }
   3233 
   3234 /**
   3235  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3236  *  @hw: pointer to hardware structure
   3237  *
   3238  *  Disables PCI-Express master access and verifies there are no pending
   3239  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3240  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3241  *  is returned signifying master requests disabled.
   3242  **/
   3243 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3244 {
   3245 	s32 status = IXGBE_SUCCESS;
   3246 	u32 i, poll;
   3247 	u16 value;
   3248 
   3249 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3250 
   3251 	/* Always set this bit to ensure any future transactions are blocked */
   3252 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3253 
   3254 	/* Exit if master requests are blocked */
   3255 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3256 	    IXGBE_REMOVED(hw->hw_addr))
   3257 		goto out;
   3258 
   3259 	/* Poll for master request bit to clear */
   3260 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3261 		usec_delay(100);
   3262 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3263 			goto out;
   3264 	}
   3265 
   3266 	/*
   3267 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3268 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3269 	 * of this need.  The first reset prevents new master requests from
   3270 	 * being issued by our device.  We then must wait 1usec or more for any
   3271 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3272 	 * again to clear out any effects they may have had on our device.
   3273 	 */
   3274 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3275 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3276 
   3277 	if (hw->mac.type >= ixgbe_mac_X550)
   3278 		goto out;
   3279 
   3280 	/*
   3281 	 * Before proceeding, make sure that the PCIe block does not have
   3282 	 * transactions pending.
   3283 	 */
   3284 	poll = ixgbe_pcie_timeout_poll(hw);
   3285 	for (i = 0; i < poll; i++) {
   3286 		usec_delay(100);
   3287 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3288 		if (IXGBE_REMOVED(hw->hw_addr))
   3289 			goto out;
   3290 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3291 			goto out;
   3292 	}
   3293 
   3294 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3295 		     "PCIe transaction pending bit also did not clear.\n");
   3296 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3297 
   3298 out:
   3299 	return status;
   3300 }
   3301 
   3302 /**
   3303  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3304  *  @hw: pointer to hardware structure
   3305  *  @mask: Mask to specify which semaphore to acquire
   3306  *
   3307  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3308  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3309  **/
   3310 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3311 {
   3312 	u32 gssr = 0;
   3313 	u32 swmask = mask;
   3314 	u32 fwmask = mask << 5;
   3315 	u32 timeout = 200;
   3316 	u32 i;
   3317 
   3318 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3319 
   3320 	for (i = 0; i < timeout; i++) {
   3321 		/*
   3322 		 * SW NVM semaphore bit is used for access to all
   3323 		 * SW_FW_SYNC bits (not just NVM)
   3324 		 */
   3325 		if (ixgbe_get_eeprom_semaphore(hw))
   3326 			return IXGBE_ERR_SWFW_SYNC;
   3327 
   3328 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3329 		if (!(gssr & (fwmask | swmask))) {
   3330 			gssr |= swmask;
   3331 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3332 			ixgbe_release_eeprom_semaphore(hw);
   3333 			return IXGBE_SUCCESS;
   3334 		} else {
   3335 			/* Resource is currently in use by FW or SW */
   3336 			ixgbe_release_eeprom_semaphore(hw);
   3337 			msec_delay(5);
   3338 		}
   3339 	}
   3340 
   3341 	/* If time expired clear the bits holding the lock and retry */
   3342 	if (gssr & (fwmask | swmask))
   3343 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3344 
   3345 	msec_delay(5);
   3346 	return IXGBE_ERR_SWFW_SYNC;
   3347 }
   3348 
   3349 /**
   3350  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3351  *  @hw: pointer to hardware structure
   3352  *  @mask: Mask to specify which semaphore to release
   3353  *
   3354  *  Releases the SWFW semaphore through the GSSR register for the specified
   3355  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3356  **/
   3357 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3358 {
   3359 	u32 gssr;
   3360 	u32 swmask = mask;
   3361 
   3362 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3363 
   3364 	ixgbe_get_eeprom_semaphore(hw);
   3365 
   3366 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3367 	gssr &= ~swmask;
   3368 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3369 
   3370 	ixgbe_release_eeprom_semaphore(hw);
   3371 }
   3372 
   3373 /**
   3374  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3375  *  @hw: pointer to hardware structure
   3376  *
   3377  *  Stops the receive data path and waits for the HW to internally empty
   3378  *  the Rx security block
   3379  **/
   3380 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3381 {
   3382 #define IXGBE_MAX_SECRX_POLL 4000
   3383 
   3384 	int i;
   3385 	int secrxreg;
   3386 
   3387 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3388 
   3389 
   3390 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3391 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3392 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3393 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3394 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3395 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3396 			break;
   3397 		else
   3398 			/* Use interrupt-safe sleep just in case */
   3399 			usec_delay(10);
   3400 	}
   3401 
   3402 	/* For informational purposes only */
   3403 	if (i >= IXGBE_MAX_SECRX_POLL)
   3404 		DEBUGOUT("Rx unit being enabled before security "
   3405 			 "path fully disabled.  Continuing with init.\n");
   3406 
   3407 	return IXGBE_SUCCESS;
   3408 }
   3409 
   3410 /**
   3411  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3412  *  @hw: pointer to hardware structure
   3413  *  @locked: bool to indicate whether the SW/FW lock was taken
   3414  *  @reg_val: Value we read from AUTOC
   3415  *
   3416  *  The default case requires no protection so just to the register read.
   3417  */
   3418 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3419 {
   3420 	*locked = FALSE;
   3421 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3422 	return IXGBE_SUCCESS;
   3423 }
   3424 
   3425 /**
   3426  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3427  * @hw: pointer to hardware structure
   3428  * @reg_val: value to write to AUTOC
   3429  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3430  *           previous read.
   3431  *
   3432  * The default case requires no protection so just to the register write.
   3433  */
   3434 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3435 {
   3436 	UNREFERENCED_1PARAMETER(locked);
   3437 
   3438 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3439 	return IXGBE_SUCCESS;
   3440 }
   3441 
   3442 /**
   3443  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3444  *  @hw: pointer to hardware structure
   3445  *
   3446  *  Enables the receive data path.
   3447  **/
   3448 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3449 {
   3450 	u32 secrxreg;
   3451 
   3452 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3453 
   3454 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3455 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3456 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3457 	IXGBE_WRITE_FLUSH(hw);
   3458 
   3459 	return IXGBE_SUCCESS;
   3460 }
   3461 
   3462 /**
   3463  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3464  *  @hw: pointer to hardware structure
   3465  *  @regval: register value to write to RXCTRL
   3466  *
   3467  *  Enables the Rx DMA unit
   3468  **/
   3469 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3470 {
   3471 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3472 
   3473 	if (regval & IXGBE_RXCTRL_RXEN)
   3474 		ixgbe_enable_rx(hw);
   3475 	else
   3476 		ixgbe_disable_rx(hw);
   3477 
   3478 	return IXGBE_SUCCESS;
   3479 }
   3480 
   3481 /**
   3482  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3483  *  @hw: pointer to hardware structure
   3484  *  @index: led number to blink
   3485  **/
   3486 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3487 {
   3488 	ixgbe_link_speed speed = 0;
   3489 	bool link_up = 0;
   3490 	u32 autoc_reg = 0;
   3491 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3492 	s32 ret_val = IXGBE_SUCCESS;
   3493 	bool locked = FALSE;
   3494 
   3495 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3496 
   3497 	if (index > 3)
   3498 		return IXGBE_ERR_PARAM;
   3499 
   3500 	/*
   3501 	 * Link must be up to auto-blink the LEDs;
   3502 	 * Force it if link is down.
   3503 	 */
   3504 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3505 
   3506 	if (!link_up) {
   3507 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3508 		if (ret_val != IXGBE_SUCCESS)
   3509 			goto out;
   3510 
   3511 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3512 		autoc_reg |= IXGBE_AUTOC_FLU;
   3513 
   3514 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3515 		if (ret_val != IXGBE_SUCCESS)
   3516 			goto out;
   3517 
   3518 		IXGBE_WRITE_FLUSH(hw);
   3519 		msec_delay(10);
   3520 	}
   3521 
   3522 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3523 	led_reg |= IXGBE_LED_BLINK(index);
   3524 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3525 	IXGBE_WRITE_FLUSH(hw);
   3526 
   3527 out:
   3528 	return ret_val;
   3529 }
   3530 
   3531 /**
   3532  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3533  *  @hw: pointer to hardware structure
   3534  *  @index: led number to stop blinking
   3535  **/
   3536 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3537 {
   3538 	u32 autoc_reg = 0;
   3539 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3540 	s32 ret_val = IXGBE_SUCCESS;
   3541 	bool locked = FALSE;
   3542 
   3543 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3544 
   3545 	if (index > 3)
   3546 		return IXGBE_ERR_PARAM;
   3547 
   3548 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3549 	if (ret_val != IXGBE_SUCCESS)
   3550 		goto out;
   3551 
   3552 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3553 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3554 
   3555 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3556 	if (ret_val != IXGBE_SUCCESS)
   3557 		goto out;
   3558 
   3559 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3560 	led_reg &= ~IXGBE_LED_BLINK(index);
   3561 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3562 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3563 	IXGBE_WRITE_FLUSH(hw);
   3564 
   3565 out:
   3566 	return ret_val;
   3567 }
   3568 
   3569 /**
   3570  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3571  *  @hw: pointer to hardware structure
   3572  *  @san_mac_offset: SAN MAC address offset
   3573  *
   3574  *  This function will read the EEPROM location for the SAN MAC address
   3575  *  pointer, and returns the value at that location.  This is used in both
   3576  *  get and set mac_addr routines.
   3577  **/
   3578 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3579 					 u16 *san_mac_offset)
   3580 {
   3581 	s32 ret_val;
   3582 
   3583 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3584 
   3585 	/*
   3586 	 * First read the EEPROM pointer to see if the MAC addresses are
   3587 	 * available.
   3588 	 */
   3589 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3590 				      san_mac_offset);
   3591 	if (ret_val) {
   3592 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3593 			      "eeprom at offset %d failed",
   3594 			      IXGBE_SAN_MAC_ADDR_PTR);
   3595 	}
   3596 
   3597 	return ret_val;
   3598 }
   3599 
   3600 /**
   3601  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3602  *  @hw: pointer to hardware structure
   3603  *  @san_mac_addr: SAN MAC address
   3604  *
   3605  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3606  *  per-port, so set_lan_id() must be called before reading the addresses.
   3607  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3608  *  upon for non-SFP connections, so we must call it here.
   3609  **/
   3610 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3611 {
   3612 	u16 san_mac_data, san_mac_offset;
   3613 	u8 i;
   3614 	s32 ret_val;
   3615 
   3616 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3617 
   3618 	/*
   3619 	 * First read the EEPROM pointer to see if the MAC addresses are
   3620 	 * available.  If they're not, no point in calling set_lan_id() here.
   3621 	 */
   3622 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3623 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3624 		goto san_mac_addr_out;
   3625 
   3626 	/* make sure we know which port we need to program */
   3627 	hw->mac.ops.set_lan_id(hw);
   3628 	/* apply the port offset to the address offset */
   3629 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3630 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3631 	for (i = 0; i < 3; i++) {
   3632 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3633 					      &san_mac_data);
   3634 		if (ret_val) {
   3635 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3636 				      "eeprom read at offset %d failed",
   3637 				      san_mac_offset);
   3638 			goto san_mac_addr_out;
   3639 		}
   3640 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3641 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3642 		san_mac_offset++;
   3643 	}
   3644 	return IXGBE_SUCCESS;
   3645 
   3646 san_mac_addr_out:
   3647 	/*
   3648 	 * No addresses available in this EEPROM.  It's not an
   3649 	 * error though, so just wipe the local address and return.
   3650 	 */
   3651 	for (i = 0; i < 6; i++)
   3652 		san_mac_addr[i] = 0xFF;
   3653 	return IXGBE_SUCCESS;
   3654 }
   3655 
   3656 /**
   3657  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3658  *  @hw: pointer to hardware structure
   3659  *  @san_mac_addr: SAN MAC address
   3660  *
   3661  *  Write a SAN MAC address to the EEPROM.
   3662  **/
   3663 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3664 {
   3665 	s32 ret_val;
   3666 	u16 san_mac_data, san_mac_offset;
   3667 	u8 i;
   3668 
   3669 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3670 
   3671 	/* Look for SAN mac address pointer.  If not defined, return */
   3672 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3673 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3674 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3675 
   3676 	/* Make sure we know which port we need to write */
   3677 	hw->mac.ops.set_lan_id(hw);
   3678 	/* Apply the port offset to the address offset */
   3679 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3680 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3681 
   3682 	for (i = 0; i < 3; i++) {
   3683 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3684 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3685 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3686 		san_mac_offset++;
   3687 	}
   3688 
   3689 	return IXGBE_SUCCESS;
   3690 }
   3691 
   3692 /**
   3693  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3694  *  @hw: pointer to hardware structure
   3695  *
   3696  *  Read PCIe configuration space, and get the MSI-X vector count from
   3697  *  the capabilities table.
   3698  **/
   3699 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3700 {
   3701 	u16 msix_count = 1;
   3702 	u16 max_msix_count;
   3703 	u16 pcie_offset;
   3704 
   3705 	switch (hw->mac.type) {
   3706 	case ixgbe_mac_82598EB:
   3707 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3708 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3709 		break;
   3710 	case ixgbe_mac_82599EB:
   3711 	case ixgbe_mac_X540:
   3712 	case ixgbe_mac_X550:
   3713 	case ixgbe_mac_X550EM_x:
   3714 	case ixgbe_mac_X550EM_a:
   3715 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3716 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3717 		break;
   3718 	default:
   3719 		return msix_count;
   3720 	}
   3721 
   3722 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3723 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3724 	if (IXGBE_REMOVED(hw->hw_addr))
   3725 		msix_count = 0;
   3726 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3727 
   3728 	/* MSI-X count is zero-based in HW */
   3729 	msix_count++;
   3730 
   3731 	if (msix_count > max_msix_count)
   3732 		msix_count = max_msix_count;
   3733 
   3734 	return msix_count;
   3735 }
   3736 
   3737 /**
   3738  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3739  *  @hw: pointer to hardware structure
   3740  *  @addr: Address to put into receive address register
   3741  *  @vmdq: VMDq pool to assign
   3742  *
   3743  *  Puts an ethernet address into a receive address register, or
   3744  *  finds the rar that it is already in; adds to the pool list
   3745  **/
   3746 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3747 {
   3748 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3749 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3750 	u32 rar;
   3751 	u32 rar_low, rar_high;
   3752 	u32 addr_low, addr_high;
   3753 
   3754 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3755 
   3756 	/* swap bytes for HW little endian */
   3757 	addr_low  = addr[0] | (addr[1] << 8)
   3758 			    | (addr[2] << 16)
   3759 			    | (addr[3] << 24);
   3760 	addr_high = addr[4] | (addr[5] << 8);
   3761 
   3762 	/*
   3763 	 * Either find the mac_id in rar or find the first empty space.
   3764 	 * rar_highwater points to just after the highest currently used
   3765 	 * rar in order to shorten the search.  It grows when we add a new
   3766 	 * rar to the top.
   3767 	 */
   3768 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3769 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3770 
   3771 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3772 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3773 			first_empty_rar = rar;
   3774 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3775 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3776 			if (rar_low == addr_low)
   3777 				break;    /* found it already in the rars */
   3778 		}
   3779 	}
   3780 
   3781 	if (rar < hw->mac.rar_highwater) {
   3782 		/* already there so just add to the pool bits */
   3783 		ixgbe_set_vmdq(hw, rar, vmdq);
   3784 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3785 		/* stick it into first empty RAR slot we found */
   3786 		rar = first_empty_rar;
   3787 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3788 	} else if (rar == hw->mac.rar_highwater) {
   3789 		/* add it to the top of the list and inc the highwater mark */
   3790 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3791 		hw->mac.rar_highwater++;
   3792 	} else if (rar >= hw->mac.num_rar_entries) {
   3793 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3794 	}
   3795 
   3796 	/*
   3797 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3798 	 * remains cleared to be sure default pool packets will get delivered
   3799 	 */
   3800 	if (rar == 0)
   3801 		ixgbe_clear_vmdq(hw, rar, 0);
   3802 
   3803 	return rar;
   3804 }
   3805 
   3806 /**
   3807  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3808  *  @hw: pointer to hardware struct
   3809  *  @rar: receive address register index to disassociate
   3810  *  @vmdq: VMDq pool index to remove from the rar
   3811  **/
   3812 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3813 {
   3814 	u32 mpsar_lo, mpsar_hi;
   3815 	u32 rar_entries = hw->mac.num_rar_entries;
   3816 
   3817 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3818 
   3819 	/* Make sure we are using a valid rar index range */
   3820 	if (rar >= rar_entries) {
   3821 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3822 			     "RAR index %d is out of range.\n", rar);
   3823 		return IXGBE_ERR_INVALID_ARGUMENT;
   3824 	}
   3825 
   3826 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3827 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3828 
   3829 	if (IXGBE_REMOVED(hw->hw_addr))
   3830 		goto done;
   3831 
   3832 	if (!mpsar_lo && !mpsar_hi)
   3833 		goto done;
   3834 
   3835 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3836 		if (mpsar_lo) {
   3837 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3838 			mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3839 		}
   3840 		if (mpsar_hi) {
   3841 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3842 			mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3843 		}
   3844 	} else if (vmdq < 32) {
   3845 		mpsar_lo &= ~(1 << vmdq);
   3846 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3847 	} else {
   3848 		mpsar_hi &= ~(1 << (vmdq - 32));
   3849 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3850 	}
   3851 
   3852 	/* was that the last pool using this rar? */
   3853 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   3854 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   3855 		hw->mac.ops.clear_rar(hw, rar);
   3856 done:
   3857 	return IXGBE_SUCCESS;
   3858 }
   3859 
   3860 /**
   3861  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3862  *  @hw: pointer to hardware struct
   3863  *  @rar: receive address register index to associate with a VMDq index
   3864  *  @vmdq: VMDq pool index
   3865  **/
   3866 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3867 {
   3868 	u32 mpsar;
   3869 	u32 rar_entries = hw->mac.num_rar_entries;
   3870 
   3871 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3872 
   3873 	/* Make sure we are using a valid rar index range */
   3874 	if (rar >= rar_entries) {
   3875 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3876 			     "RAR index %d is out of range.\n", rar);
   3877 		return IXGBE_ERR_INVALID_ARGUMENT;
   3878 	}
   3879 
   3880 	if (vmdq < 32) {
   3881 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3882 		mpsar |= 1 << vmdq;
   3883 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3884 	} else {
   3885 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3886 		mpsar |= 1 << (vmdq - 32);
   3887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3888 	}
   3889 	return IXGBE_SUCCESS;
   3890 }
   3891 
   3892 /**
   3893  *  This function should only be involved in the IOV mode.
   3894  *  In IOV mode, Default pool is next pool after the number of
   3895  *  VFs advertized and not 0.
   3896  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3897  *
   3898  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3899  *  @hw: pointer to hardware struct
   3900  *  @vmdq: VMDq pool index
   3901  **/
   3902 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3903 {
   3904 	u32 rar = hw->mac.san_mac_rar_index;
   3905 
   3906 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3907 
   3908 	if (vmdq < 32) {
   3909 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3910 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3911 	} else {
   3912 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3913 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3914 	}
   3915 
   3916 	return IXGBE_SUCCESS;
   3917 }
   3918 
   3919 /**
   3920  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3921  *  @hw: pointer to hardware structure
   3922  **/
   3923 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3924 {
   3925 	int i;
   3926 
   3927 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3928 	DEBUGOUT(" Clearing UTA\n");
   3929 
   3930 	for (i = 0; i < 128; i++)
   3931 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3932 
   3933 	return IXGBE_SUCCESS;
   3934 }
   3935 
   3936 /**
   3937  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3938  *  @hw: pointer to hardware structure
   3939  *  @vlan: VLAN id to write to VLAN filter
   3940  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
   3941  *		  vlanid not found
   3942  *
   3943  *
   3944  *  return the VLVF index where this VLAN id should be placed
   3945  *
   3946  **/
   3947 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3948 {
   3949 	s32 regindex, first_empty_slot;
   3950 	u32 bits;
   3951 
   3952 	/* short cut the special case */
   3953 	if (vlan == 0)
   3954 		return 0;
   3955 
   3956 	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3957 	 * will simply bypass the VLVF if there are no entries present in the
   3958 	 * VLVF that contain our VLAN
   3959 	 */
   3960 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3961 
   3962 	/* add VLAN enable bit for comparison */
   3963 	vlan |= IXGBE_VLVF_VIEN;
   3964 
   3965 	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3966 	 * slot found along the way.
   3967 	 *
   3968 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3969 	 */
   3970 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3971 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3972 		if (bits == vlan)
   3973 			return regindex;
   3974 		if (!first_empty_slot && !bits)
   3975 			first_empty_slot = regindex;
   3976 	}
   3977 
   3978 	/* If we are here then we didn't find the VLAN.  Return first empty
   3979 	 * slot we found during our search, else error.
   3980 	 */
   3981 	if (!first_empty_slot)
   3982 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
   3983 
   3984 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
   3985 }
   3986 
   3987 /**
   3988  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3989  *  @hw: pointer to hardware structure
   3990  *  @vlan: VLAN id to write to VLAN filter
   3991  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   3992  *  @vlan_on: boolean flag to turn on/off VLAN
   3993  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3994  *
   3995  *  Turn on/off specified VLAN in the VLAN filter table.
   3996  **/
   3997 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3998 			   bool vlan_on, bool vlvf_bypass)
   3999 {
   4000 	u32 regidx, vfta_delta, vfta;
   4001 	s32 ret_val;
   4002 
   4003 	DEBUGFUNC("ixgbe_set_vfta_generic");
   4004 
   4005 	if (vlan > 4095 || vind > 63)
   4006 		return IXGBE_ERR_PARAM;
   4007 
   4008 	/*
   4009 	 * this is a 2 part operation - first the VFTA, then the
   4010 	 * VLVF and VLVFB if VT Mode is set
   4011 	 * We don't write the VFTA until we know the VLVF part succeeded.
   4012 	 */
   4013 
   4014 	/* Part 1
   4015 	 * The VFTA is a bitstring made up of 128 32-bit registers
   4016 	 * that enable the particular VLAN id, much like the MTA:
   4017 	 *    bits[11-5]: which register
   4018 	 *    bits[4-0]:  which bit in the register
   4019 	 */
   4020 	regidx = vlan / 32;
   4021 	vfta_delta = (u32)1 << (vlan % 32);
   4022 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   4023 
   4024 	/*
   4025 	 * vfta_delta represents the difference between the current value
   4026 	 * of vfta and the value we want in the register.  Since the diff
   4027 	 * is an XOR mask we can just update the vfta using an XOR
   4028 	 */
   4029 	vfta_delta &= vlan_on ? ~vfta : vfta;
   4030 	vfta ^= vfta_delta;
   4031 
   4032 	/* Part 2
   4033 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   4034 	 */
   4035 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
   4036 					 vfta, vlvf_bypass);
   4037 	if (ret_val != IXGBE_SUCCESS) {
   4038 		if (vlvf_bypass)
   4039 			goto vfta_update;
   4040 		return ret_val;
   4041 	}
   4042 
   4043 vfta_update:
   4044 	/* Update VFTA now that we are ready for traffic */
   4045 	if (vfta_delta)
   4046 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   4047 
   4048 	return IXGBE_SUCCESS;
   4049 }
   4050 
   4051 /**
   4052  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   4053  *  @hw: pointer to hardware structure
   4054  *  @vlan: VLAN id to write to VLAN filter
   4055  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
   4056  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
   4057  *  @vfta_delta: pointer to the difference between the current value of VFTA
   4058  *		 and the desired value
   4059  *  @vfta: the desired value of the VFTA
   4060  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   4061  *
   4062  *  Turn on/off specified bit in VLVF table.
   4063  **/
   4064 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   4065 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
   4066 			   bool vlvf_bypass)
   4067 {
   4068 	u32 bits;
   4069 	s32 vlvf_index;
   4070 
   4071 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   4072 
   4073 	if (vlan > 4095 || vind > 63)
   4074 		return IXGBE_ERR_PARAM;
   4075 
   4076 	/* If VT Mode is set
   4077 	 *   Either vlan_on
   4078 	 *     make sure the vlan is in VLVF
   4079 	 *     set the vind bit in the matching VLVFB
   4080 	 *   Or !vlan_on
   4081 	 *     clear the pool bit and possibly the vind
   4082 	 */
   4083 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   4084 		return IXGBE_SUCCESS;
   4085 
   4086 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   4087 	if (vlvf_index < 0)
   4088 		return vlvf_index;
   4089 
   4090 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   4091 
   4092 	/* set the pool bit */
   4093 	bits |= 1 << (vind % 32);
   4094 	if (vlan_on)
   4095 		goto vlvf_update;
   4096 
   4097 	/* clear the pool bit */
   4098 	bits ^= 1 << (vind % 32);
   4099 
   4100 	if (!bits &&
   4101 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   4102 		/* Clear VFTA first, then disable VLVF.  Otherwise
   4103 		 * we run the risk of stray packets leaking into
   4104 		 * the PF via the default pool
   4105 		 */
   4106 		if (*vfta_delta)
   4107 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
   4108 
   4109 		/* disable VLVF and clear remaining bit from pool */
   4110 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4111 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   4112 
   4113 		return IXGBE_SUCCESS;
   4114 	}
   4115 
   4116 	/* If there are still bits set in the VLVFB registers
   4117 	 * for the VLAN ID indicated we need to see if the
   4118 	 * caller is requesting that we clear the VFTA entry bit.
   4119 	 * If the caller has requested that we clear the VFTA
   4120 	 * entry bit but there are still pools/VFs using this VLAN
   4121 	 * ID entry then ignore the request.  We're not worried
   4122 	 * about the case where we're turning the VFTA VLAN ID
   4123 	 * entry bit on, only when requested to turn it off as
   4124 	 * there may be multiple pools and/or VFs using the
   4125 	 * VLAN ID entry.  In that case we cannot clear the
   4126 	 * VFTA bit until all pools/VFs using that VLAN ID have also
   4127 	 * been cleared.  This will be indicated by "bits" being
   4128 	 * zero.
   4129 	 */
   4130 	*vfta_delta = 0;
   4131 
   4132 vlvf_update:
   4133 	/* record pool change and enable VLAN ID if not already enabled */
   4134 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   4135 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   4136 
   4137 	return IXGBE_SUCCESS;
   4138 }
   4139 
   4140 /**
   4141  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4142  *  @hw: pointer to hardware structure
   4143  *
   4144  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4145  **/
   4146 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4147 {
   4148 	u32 offset;
   4149 
   4150 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4151 
   4152 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4153 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4154 
   4155 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4156 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4157 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4158 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4159 	}
   4160 
   4161 	return IXGBE_SUCCESS;
   4162 }
   4163 
   4164 /**
   4165  *  ixgbe_toggle_txdctl_generic - Toggle VF's queues
   4166  *  @hw: pointer to hardware structure
   4167  *  @vf_number: VF index
   4168  *
   4169  *  Enable and disable each queue in VF.
   4170  */
   4171 s32 ixgbe_toggle_txdctl_generic(struct ixgbe_hw *hw, u32 vf_number)
   4172 {
   4173 	u8  queue_count, i;
   4174 	u32 offset, reg;
   4175 
   4176 	if (vf_number > 63)
   4177 		return IXGBE_ERR_PARAM;
   4178 
   4179 	/*
   4180 	 * Determine number of queues by checking
   4181 	 * number of virtual functions
   4182 	 */
   4183 	reg = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4184 	switch (reg & IXGBE_GCR_EXT_VT_MODE_MASK) {
   4185 	case IXGBE_GCR_EXT_VT_MODE_64:
   4186 		queue_count = 2;
   4187 		break;
   4188 	case IXGBE_GCR_EXT_VT_MODE_32:
   4189 		queue_count = 4;
   4190 		break;
   4191 	case IXGBE_GCR_EXT_VT_MODE_16:
   4192 		queue_count = 8;
   4193 		break;
   4194 	default:
   4195 		return IXGBE_ERR_CONFIG;
   4196 	}
   4197 
   4198 	/* Toggle queues */
   4199 	for (i = 0; i < queue_count; ++i) {
   4200 		/* Calculate offset of current queue */
   4201 		offset = queue_count * vf_number + i;
   4202 
   4203 		/* Enable queue */
   4204 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4205 		reg |= IXGBE_TXDCTL_ENABLE;
   4206 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4207 		IXGBE_WRITE_FLUSH(hw);
   4208 
   4209 		/* Disable queue */
   4210 		reg = IXGBE_READ_REG(hw, IXGBE_PVFTXDCTL(offset));
   4211 		reg &= ~IXGBE_TXDCTL_ENABLE;
   4212 		IXGBE_WRITE_REG(hw, IXGBE_PVFTXDCTL(offset), reg);
   4213 		IXGBE_WRITE_FLUSH(hw);
   4214 	}
   4215 
   4216 	return IXGBE_SUCCESS;
   4217 }
   4218 
   4219 /**
   4220  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   4221  *  @hw: pointer to hardware structure
   4222  *
   4223  *  Contains the logic to identify if we need to verify link for the
   4224  *  crosstalk fix
   4225  **/
   4226 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   4227 {
   4228 
   4229 	/* Does FW say we need the fix */
   4230 	if (!hw->need_crosstalk_fix)
   4231 		return FALSE;
   4232 
   4233 	/* Only consider SFP+ PHYs i.e. media type fiber */
   4234 	switch (hw->mac.ops.get_media_type(hw)) {
   4235 	case ixgbe_media_type_fiber:
   4236 	case ixgbe_media_type_fiber_qsfp:
   4237 		break;
   4238 	default:
   4239 		return FALSE;
   4240 	}
   4241 
   4242 	return TRUE;
   4243 }
   4244 
   4245 /**
   4246  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4247  *  @hw: pointer to hardware structure
   4248  *  @speed: pointer to link speed
   4249  *  @link_up: TRUE when link is up
   4250  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4251  *
   4252  *  Reads the links register to determine if link is up and the current speed
   4253  **/
   4254 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4255 				 bool *link_up, bool link_up_wait_to_complete)
   4256 {
   4257 	u32 links_reg, links_orig;
   4258 	u32 i;
   4259 
   4260 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4261 
   4262 	/* If Crosstalk fix enabled do the sanity check of making sure
   4263 	 * the SFP+ cage is full.
   4264 	 */
   4265 	if (ixgbe_need_crosstalk_fix(hw)) {
   4266 		if ((hw->mac.type != ixgbe_mac_82598EB) &&
   4267 		    !ixgbe_sfp_cage_full(hw)) {
   4268 			*link_up = FALSE;
   4269 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4270 			return IXGBE_SUCCESS;
   4271 		}
   4272 	}
   4273 
   4274 	/* clear the old state */
   4275 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4276 
   4277 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4278 
   4279 	if (links_orig != links_reg) {
   4280 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4281 			  links_orig, links_reg);
   4282 	}
   4283 
   4284 	if (link_up_wait_to_complete) {
   4285 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
   4286 			if (links_reg & IXGBE_LINKS_UP) {
   4287 				*link_up = TRUE;
   4288 				break;
   4289 			} else {
   4290 				*link_up = FALSE;
   4291 			}
   4292 			msec_delay(100);
   4293 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4294 		}
   4295 	} else {
   4296 		if (links_reg & IXGBE_LINKS_UP)
   4297 			*link_up = TRUE;
   4298 		else
   4299 			*link_up = FALSE;
   4300 	}
   4301 
   4302 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4303 	case IXGBE_LINKS_SPEED_10G_82599:
   4304 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4305 		if (hw->mac.type >= ixgbe_mac_X550) {
   4306 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4307 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4308 		}
   4309 		break;
   4310 	case IXGBE_LINKS_SPEED_1G_82599:
   4311 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4312 		break;
   4313 	case IXGBE_LINKS_SPEED_100_82599:
   4314 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4315 		if (hw->mac.type >= ixgbe_mac_X550) {
   4316 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4317 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4318 		}
   4319 		break;
   4320 	case IXGBE_LINKS_SPEED_10_X550EM_A:
   4321 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4322 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   4323 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
   4324 			*speed = IXGBE_LINK_SPEED_10_FULL;
   4325 		break;
   4326 	default:
   4327 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4328 	}
   4329 
   4330 	return IXGBE_SUCCESS;
   4331 }
   4332 
   4333 /**
   4334  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4335  *  the EEPROM
   4336  *  @hw: pointer to hardware structure
   4337  *  @wwnn_prefix: the alternative WWNN prefix
   4338  *  @wwpn_prefix: the alternative WWPN prefix
   4339  *
   4340  *  This function will read the EEPROM from the alternative SAN MAC address
   4341  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4342  **/
   4343 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4344 				 u16 *wwpn_prefix)
   4345 {
   4346 	u16 offset, caps;
   4347 	u16 alt_san_mac_blk_offset;
   4348 
   4349 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4350 
   4351 	/* clear output first */
   4352 	*wwnn_prefix = 0xFFFF;
   4353 	*wwpn_prefix = 0xFFFF;
   4354 
   4355 	/* check if alternative SAN MAC is supported */
   4356 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4357 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4358 		goto wwn_prefix_err;
   4359 
   4360 	if ((alt_san_mac_blk_offset == 0) ||
   4361 	    (alt_san_mac_blk_offset == 0xFFFF))
   4362 		goto wwn_prefix_out;
   4363 
   4364 	/* check capability in alternative san mac address block */
   4365 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4366 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4367 		goto wwn_prefix_err;
   4368 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4369 		goto wwn_prefix_out;
   4370 
   4371 	/* get the corresponding prefix for WWNN/WWPN */
   4372 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4373 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4374 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4375 			      "eeprom read at offset %d failed", offset);
   4376 	}
   4377 
   4378 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4379 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4380 		goto wwn_prefix_err;
   4381 
   4382 wwn_prefix_out:
   4383 	return IXGBE_SUCCESS;
   4384 
   4385 wwn_prefix_err:
   4386 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4387 		      "eeprom read at offset %d failed", offset);
   4388 	return IXGBE_SUCCESS;
   4389 }
   4390 
   4391 /**
   4392  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4393  *  @hw: pointer to hardware structure
   4394  *  @bs: the fcoe boot status
   4395  *
   4396  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4397  **/
   4398 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4399 {
   4400 	u16 offset, caps, flags;
   4401 	s32 status;
   4402 
   4403 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4404 
   4405 	/* clear output first */
   4406 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4407 
   4408 	/* check if FCOE IBA block is present */
   4409 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4410 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4411 	if (status != IXGBE_SUCCESS)
   4412 		goto out;
   4413 
   4414 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4415 		goto out;
   4416 
   4417 	/* check if iSCSI FCOE block is populated */
   4418 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4419 	if (status != IXGBE_SUCCESS)
   4420 		goto out;
   4421 
   4422 	if ((offset == 0) || (offset == 0xFFFF))
   4423 		goto out;
   4424 
   4425 	/* read fcoe flags in iSCSI FCOE block */
   4426 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4427 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4428 	if (status != IXGBE_SUCCESS)
   4429 		goto out;
   4430 
   4431 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4432 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4433 	else
   4434 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4435 
   4436 out:
   4437 	return status;
   4438 }
   4439 
   4440 /**
   4441  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4442  *  @hw: pointer to hardware structure
   4443  *  @enable: enable or disable switch for MAC anti-spoofing
   4444  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   4445  *
   4446  **/
   4447 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4448 {
   4449 	int vf_target_reg = vf >> 3;
   4450 	int vf_target_shift = vf % 8;
   4451 	u32 pfvfspoof;
   4452 
   4453 	if (hw->mac.type == ixgbe_mac_82598EB)
   4454 		return;
   4455 
   4456 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4457 	if (enable)
   4458 		pfvfspoof |= (1 << vf_target_shift);
   4459 	else
   4460 		pfvfspoof &= ~(1 << vf_target_shift);
   4461 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4462 }
   4463 
   4464 /**
   4465  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4466  *  @hw: pointer to hardware structure
   4467  *  @enable: enable or disable switch for VLAN anti-spoofing
   4468  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4469  *
   4470  **/
   4471 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4472 {
   4473 	int vf_target_reg = vf >> 3;
   4474 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4475 	u32 pfvfspoof;
   4476 
   4477 	if (hw->mac.type == ixgbe_mac_82598EB)
   4478 		return;
   4479 
   4480 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4481 	if (enable)
   4482 		pfvfspoof |= (1 << vf_target_shift);
   4483 	else
   4484 		pfvfspoof &= ~(1 << vf_target_shift);
   4485 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4486 }
   4487 
   4488 /**
   4489  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4490  *  @hw: pointer to hardware structure
   4491  *  @device_caps: the EEPROM word with the extra device capabilities
   4492  *
   4493  *  This function will read the EEPROM location for the device capabilities,
   4494  *  and return the word through device_caps.
   4495  **/
   4496 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4497 {
   4498 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4499 
   4500 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4501 
   4502 	return IXGBE_SUCCESS;
   4503 }
   4504 
   4505 /**
   4506  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4507  *  @hw: pointer to hardware structure
   4508  *
   4509  **/
   4510 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4511 {
   4512 	u32 regval;
   4513 	u32 i;
   4514 
   4515 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4516 
   4517 	/* Enable relaxed ordering */
   4518 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4519 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4520 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4521 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4522 	}
   4523 
   4524 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4525 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4526 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4527 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4528 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4529 	}
   4530 
   4531 }
   4532 
   4533 /**
   4534  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4535  *  @buffer: pointer to EEPROM
   4536  *  @length: size of EEPROM to calculate a checksum for
   4537  *  Calculates the checksum for some buffer on a specified length.  The
   4538  *  checksum calculated is returned.
   4539  **/
   4540 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4541 {
   4542 	u32 i;
   4543 	u8 sum = 0;
   4544 
   4545 	DEBUGFUNC("ixgbe_calculate_checksum");
   4546 
   4547 	if (!buffer)
   4548 		return 0;
   4549 
   4550 	for (i = 0; i < length; i++)
   4551 		sum += buffer[i];
   4552 
   4553 	return (u8) (0 - sum);
   4554 }
   4555 
   4556 /**
   4557  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   4558  *  @hw: pointer to the HW structure
   4559  *  @buffer: command to write and where the return status will be placed
   4560  *  @length: length of buffer, must be multiple of 4 bytes
   4561  *  @timeout: time in ms to wait for command completion
   4562  *
   4563  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4564  *  else returns semaphore error when encountering an error acquiring
   4565  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4566  *
   4567  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   4568  *  by the caller.
   4569  **/
   4570 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   4571 		       u32 timeout)
   4572 {
   4573 	u32 hicr, i, fwsts;
   4574 	u16 dword_len;
   4575 
   4576 	DEBUGFUNC("ixgbe_hic_unlocked");
   4577 
   4578 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4579 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4580 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4581 	}
   4582 
   4583 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4584 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4585 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4586 
   4587 	/* Check that the host interface is enabled. */
   4588 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4589 	if (!(hicr & IXGBE_HICR_EN)) {
   4590 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4591 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4592 	}
   4593 
   4594 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4595 	if (length % sizeof(u32)) {
   4596 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4597 		return IXGBE_ERR_INVALID_ARGUMENT;
   4598 	}
   4599 
   4600 	dword_len = length >> 2;
   4601 
   4602 	/* The device driver writes the relevant command block
   4603 	 * into the ram area.
   4604 	 */
   4605 	for (i = 0; i < dword_len; i++)
   4606 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4607 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4608 
   4609 	/* Setting this bit tells the ARC that a new command is pending. */
   4610 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4611 
   4612 	for (i = 0; i < timeout; i++) {
   4613 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4614 		if (!(hicr & IXGBE_HICR_C))
   4615 			break;
   4616 		msec_delay(1);
   4617 	}
   4618 
   4619 	/* For each command except "Apply Update" perform
   4620 	 * status checks in the HICR registry.
   4621 	 */
   4622 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
   4623 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
   4624 		return IXGBE_SUCCESS;
   4625 
   4626 	/* Check command completion */
   4627 	if ((timeout && i == timeout) ||
   4628 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4629 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4630 			      "Command has failed with no status valid.\n");
   4631 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4632 	}
   4633 
   4634 	return IXGBE_SUCCESS;
   4635 }
   4636 
   4637 /**
   4638  *  ixgbe_host_interface_command - Issue command to manageability block
   4639  *  @hw: pointer to the HW structure
   4640  *  @buffer: contains the command to write and where the return status will
   4641  *   be placed
   4642  *  @length: length of buffer, must be multiple of 4 bytes
   4643  *  @timeout: time in ms to wait for command completion
   4644  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4645  *   Needed because FW structures are big endian and decoding of
   4646  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4647  *   is not easily understood without making a table of commands.
   4648  *   So we will leave this up to the caller to read back the data
   4649  *   in these cases.
   4650  *
   4651  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
   4652  *  else returns semaphore error when encountering an error acquiring
   4653  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4654  **/
   4655 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4656 				 u32 length, u32 timeout, bool return_data)
   4657 {
   4658 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4659 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
   4660 	u16 buf_len;
   4661 	s32 status;
   4662 	u32 bi;
   4663 	u32 dword_len;
   4664 
   4665 	DEBUGFUNC("ixgbe_host_interface_command");
   4666 
   4667 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4668 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4669 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4670 	}
   4671 
   4672 	/* Take management host interface semaphore */
   4673 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4674 	if (status)
   4675 		return status;
   4676 
   4677 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   4678 	if (status)
   4679 		goto rel_out;
   4680 
   4681 	if (!return_data)
   4682 		goto rel_out;
   4683 
   4684 	/* Calculate length in DWORDs */
   4685 	dword_len = hdr_size >> 2;
   4686 
   4687 	/* first pull in the header so we know the buffer length */
   4688 	for (bi = 0; bi < dword_len; bi++) {
   4689 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4690 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4691 	}
   4692 
   4693 	/*
   4694 	 * If there is any thing in data position pull it in
   4695 	 * Read Flash command requires reading buffer length from
   4696 	 * two byes instead of one byte
   4697 	 */
   4698 	if (resp->cmd == 0x30 || resp->cmd == 0x31) {
   4699 		for (; bi < dword_len + 2; bi++) {
   4700 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4701 							  bi);
   4702 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4703 		}
   4704 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
   4705 				  & 0xF00) | resp->buf_len;
   4706 		hdr_size += (2 << 2);
   4707 	} else {
   4708 		buf_len = resp->buf_len;
   4709 	}
   4710 	if (!buf_len)
   4711 		goto rel_out;
   4712 
   4713 	if (length < buf_len + hdr_size) {
   4714 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4715 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4716 		goto rel_out;
   4717 	}
   4718 
   4719 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4720 	dword_len = (buf_len + 3) >> 2;
   4721 
   4722 	/* Pull in the rest of the buffer (bi is where we left off) */
   4723 	for (; bi <= dword_len; bi++) {
   4724 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4725 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4726 	}
   4727 
   4728 rel_out:
   4729 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4730 
   4731 	return status;
   4732 }
   4733 
   4734 /**
   4735  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4736  *  @hw: pointer to the HW structure
   4737  *  @maj: driver version major number
   4738  *  @minr: driver version minor number
   4739  *  @build: driver version build number
   4740  *  @sub: driver version sub build number
   4741  *  @len: unused
   4742  *  @driver_ver: unused
   4743  *
   4744  *  Sends driver version number to firmware through the manageability
   4745  *  block.  On success return IXGBE_SUCCESS
   4746  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4747  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4748  **/
   4749 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4750 				 u8 build, u8 sub, u16 len,
   4751 				 const char *driver_ver)
   4752 {
   4753 	struct ixgbe_hic_drv_info fw_cmd;
   4754 	int i;
   4755 	s32 ret_val = IXGBE_SUCCESS;
   4756 
   4757 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4758 	UNREFERENCED_2PARAMETER(len, driver_ver);
   4759 
   4760 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4761 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4762 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4763 	fw_cmd.port_num = (u8)hw->bus.func;
   4764 	fw_cmd.ver_maj = maj;
   4765 	fw_cmd.ver_min = minr;
   4766 	fw_cmd.ver_build = build;
   4767 	fw_cmd.ver_sub = sub;
   4768 	fw_cmd.hdr.checksum = 0;
   4769 	fw_cmd.pad = 0;
   4770 	fw_cmd.pad2 = 0;
   4771 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4772 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4773 
   4774 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4775 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4776 						       sizeof(fw_cmd),
   4777 						       IXGBE_HI_COMMAND_TIMEOUT,
   4778 						       TRUE);
   4779 		if (ret_val != IXGBE_SUCCESS)
   4780 			continue;
   4781 
   4782 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4783 		    FW_CEM_RESP_STATUS_SUCCESS)
   4784 			ret_val = IXGBE_SUCCESS;
   4785 		else
   4786 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4787 
   4788 		break;
   4789 	}
   4790 
   4791 	return ret_val;
   4792 }
   4793 
   4794 /**
   4795  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4796  * @hw: pointer to hardware structure
   4797  * @num_pb: number of packet buffers to allocate
   4798  * @headroom: reserve n KB of headroom
   4799  * @strategy: packet buffer allocation strategy
   4800  **/
   4801 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4802 			     int strategy)
   4803 {
   4804 	u32 pbsize = hw->mac.rx_pb_size;
   4805 	int i = 0;
   4806 	u32 rxpktsize, txpktsize, txpbthresh;
   4807 
   4808 	/* Reserve headroom */
   4809 	pbsize -= headroom;
   4810 
   4811 	if (!num_pb)
   4812 		num_pb = 1;
   4813 
   4814 	/* Divide remaining packet buffer space amongst the number of packet
   4815 	 * buffers requested using supplied strategy.
   4816 	 */
   4817 	switch (strategy) {
   4818 	case PBA_STRATEGY_WEIGHTED:
   4819 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4820 		 * buffer with 5/8 of the packet buffer space.
   4821 		 */
   4822 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4823 		pbsize -= rxpktsize * (num_pb / 2);
   4824 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4825 		for (; i < (num_pb / 2); i++)
   4826 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4827 		/* fall through - configure remaining packet buffers */
   4828 	case PBA_STRATEGY_EQUAL:
   4829 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4830 		for (; i < num_pb; i++)
   4831 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4832 		break;
   4833 	default:
   4834 		break;
   4835 	}
   4836 
   4837 	/* Only support an equally distributed Tx packet buffer strategy. */
   4838 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4839 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4840 	for (i = 0; i < num_pb; i++) {
   4841 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4842 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4843 	}
   4844 
   4845 	/* Clear unused TCs, if any, to zero buffer size*/
   4846 	for (; i < IXGBE_MAX_PB; i++) {
   4847 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4848 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4849 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4850 	}
   4851 }
   4852 
   4853 /**
   4854  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4855  * @hw: pointer to the hardware structure
   4856  *
   4857  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4858  * when a reset occurs.  This function prevents this by flushing the PCIe
   4859  * buffers on the system.
   4860  **/
   4861 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4862 {
   4863 	u32 gcr_ext, hlreg0, i, poll;
   4864 	u16 value;
   4865 
   4866 	/*
   4867 	 * If double reset is not requested then all transactions should
   4868 	 * already be clear and as such there is no work to do
   4869 	 */
   4870 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4871 		return;
   4872 
   4873 	/*
   4874 	 * Set loopback enable to prevent any transmits from being sent
   4875 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4876 	 * has already been cleared.
   4877 	 */
   4878 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4879 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4880 
   4881 	/* Wait for a last completion before clearing buffers */
   4882 	IXGBE_WRITE_FLUSH(hw);
   4883 	msec_delay(3);
   4884 
   4885 	/*
   4886 	 * Before proceeding, make sure that the PCIe block does not have
   4887 	 * transactions pending.
   4888 	 */
   4889 	poll = ixgbe_pcie_timeout_poll(hw);
   4890 	for (i = 0; i < poll; i++) {
   4891 		usec_delay(100);
   4892 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4893 		if (IXGBE_REMOVED(hw->hw_addr))
   4894 			goto out;
   4895 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4896 			goto out;
   4897 	}
   4898 
   4899 out:
   4900 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4901 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4902 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4903 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4904 
   4905 	/* Flush all writes and allow 20usec for all transactions to clear */
   4906 	IXGBE_WRITE_FLUSH(hw);
   4907 	usec_delay(20);
   4908 
   4909 	/* restore previous register values */
   4910 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4911 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4912 }
   4913 
   4914 /**
   4915  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
   4916  *
   4917  *  @hw: pointer to hardware structure
   4918  *  @cmd: Command we send to the FW
   4919  *  @status: The reply from the FW
   4920  *
   4921  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
   4922  **/
   4923 #define IXGBE_BYPASS_BB_WAIT 1
   4924 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
   4925 {
   4926 	int i;
   4927 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
   4928 	u32 esdp;
   4929 
   4930 	if (!status)
   4931 		return IXGBE_ERR_PARAM;
   4932 
   4933 	*status = 0;
   4934 
   4935 	/* SDP vary by MAC type */
   4936 	switch (hw->mac.type) {
   4937 	case ixgbe_mac_82599EB:
   4938 		sck = IXGBE_ESDP_SDP7;
   4939 		sdi = IXGBE_ESDP_SDP0;
   4940 		sdo = IXGBE_ESDP_SDP6;
   4941 		dir_sck = IXGBE_ESDP_SDP7_DIR;
   4942 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4943 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
   4944 		break;
   4945 	case ixgbe_mac_X540:
   4946 		sck = IXGBE_ESDP_SDP2;
   4947 		sdi = IXGBE_ESDP_SDP0;
   4948 		sdo = IXGBE_ESDP_SDP1;
   4949 		dir_sck = IXGBE_ESDP_SDP2_DIR;
   4950 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
   4951 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
   4952 		break;
   4953 	default:
   4954 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
   4955 	}
   4956 
   4957 	/* Set SDP pins direction */
   4958 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   4959 	esdp |= dir_sck;	/* SCK as output */
   4960 	esdp |= dir_sdi;	/* SDI as output */
   4961 	esdp &= ~dir_sdo;	/* SDO as input */
   4962 	esdp |= sck;
   4963 	esdp |= sdi;
   4964 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4965 	IXGBE_WRITE_FLUSH(hw);
   4966 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4967 
   4968 	/* Generate start condition */
   4969 	esdp &= ~sdi;
   4970 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4971 	IXGBE_WRITE_FLUSH(hw);
   4972 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4973 
   4974 	esdp &= ~sck;
   4975 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4976 	IXGBE_WRITE_FLUSH(hw);
   4977 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   4978 
   4979 	/* Clock out the new control word and clock in the status */
   4980 	for (i = 0; i < 32; i++) {
   4981 		if ((cmd >> (31 - i)) & 0x01) {
   4982 			esdp |= sdi;
   4983 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4984 		} else {
   4985 			esdp &= ~sdi;
   4986 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4987 		}
   4988 		IXGBE_WRITE_FLUSH(hw);
   4989 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4990 
   4991 		esdp |= sck;
   4992 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4993 		IXGBE_WRITE_FLUSH(hw);
   4994 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   4995 
   4996 		esdp &= ~sck;
   4997 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   4998 		IXGBE_WRITE_FLUSH(hw);
   4999 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5000 
   5001 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
   5002 		if (esdp & sdo)
   5003 			*status = (*status << 1) | 0x01;
   5004 		else
   5005 			*status = (*status << 1) | 0x00;
   5006 		msec_delay(IXGBE_BYPASS_BB_WAIT);
   5007 	}
   5008 
   5009 	/* stop condition */
   5010 	esdp |= sck;
   5011 	esdp &= ~sdi;
   5012 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5013 	IXGBE_WRITE_FLUSH(hw);
   5014 	msec_delay(IXGBE_BYPASS_BB_WAIT);
   5015 
   5016 	esdp |= sdi;
   5017 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
   5018 	IXGBE_WRITE_FLUSH(hw);
   5019 
   5020 	/* set the page bits to match the cmd that the status it belongs to */
   5021 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
   5022 
   5023 	return IXGBE_SUCCESS;
   5024 }
   5025 
   5026 /**
   5027  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
   5028  *
   5029  * If we send a write we can't be sure it took until we can read back
   5030  * that same register.  It can be a problem as some of the fields may
   5031  * for valid reasons change in-between the time wrote the register and
   5032  * we read it again to verify.  So this function check everything we
   5033  * can check and then assumes it worked.
   5034  *
   5035  * @u32 in_reg - The register cmd for the bit-bang read.
   5036  * @u32 out_reg - The register returned from a bit-bang read.
   5037  **/
   5038 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
   5039 {
   5040 	u32 mask;
   5041 
   5042 	/* Page must match for all control pages */
   5043 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
   5044 		return FALSE;
   5045 
   5046 	switch (in_reg & BYPASS_PAGE_M) {
   5047 	case BYPASS_PAGE_CTL0:
   5048 		/* All the following can't change since the last write
   5049 		 *  - All the event actions
   5050 		 *  - The timeout value
   5051 		 */
   5052 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
   5053 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
   5054 		       BYPASS_WDTIMEOUT_M |
   5055 		       BYPASS_WDT_VALUE_M;
   5056 		if ((out_reg & mask) != (in_reg & mask))
   5057 			return FALSE;
   5058 
   5059 		/* 0x0 is never a valid value for bypass status */
   5060 		if (!(out_reg & BYPASS_STATUS_OFF_M))
   5061 			return FALSE;
   5062 		break;
   5063 	case BYPASS_PAGE_CTL1:
   5064 		/* All the following can't change since the last write
   5065 		 *  - time valid bit
   5066 		 *  - time we last sent
   5067 		 */
   5068 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
   5069 		if ((out_reg & mask) != (in_reg & mask))
   5070 			return FALSE;
   5071 		break;
   5072 	case BYPASS_PAGE_CTL2:
   5073 		/* All we can check in this page is control number
   5074 		 * which is already done above.
   5075 		 */
   5076 		break;
   5077 	}
   5078 
   5079 	/* We are as sure as we can be return TRUE */
   5080 	return TRUE;
   5081 }
   5082 
   5083 /**
   5084  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Register.
   5085  *
   5086  *  @hw: pointer to hardware structure
   5087  *  @cmd: The control word we are setting.
   5088  *  @event: The event we are setting in the FW.  This also happens to
   5089  *	    be the mask for the event we are setting (handy)
   5090  *  @action: The action we set the event to in the FW. This is in a
   5091  *	     bit field that happens to be what we want to put in
   5092  *	     the event spot (also handy)
   5093  **/
   5094 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
   5095 			     u32 action)
   5096 {
   5097 	u32 by_ctl = 0;
   5098 	u32 cmd, verify;
   5099 	u32 count = 0;
   5100 
   5101 	/* Get current values */
   5102 	cmd = ctrl;	/* just reading only need control number */
   5103 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5104 		return IXGBE_ERR_INVALID_ARGUMENT;
   5105 
   5106 	/* Set to new action */
   5107 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
   5108 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
   5109 		return IXGBE_ERR_INVALID_ARGUMENT;
   5110 
   5111 	/* Page 0 force a FW eeprom write which is slow so verify */
   5112 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
   5113 		verify = BYPASS_PAGE_CTL0;
   5114 		do {
   5115 			if (count++ > 5)
   5116 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
   5117 
   5118 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
   5119 				return IXGBE_ERR_INVALID_ARGUMENT;
   5120 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
   5121 	} else {
   5122 		/* We have give the FW time for the write to stick */
   5123 		msec_delay(100);
   5124 	}
   5125 
   5126 	return IXGBE_SUCCESS;
   5127 }
   5128 
   5129 /**
   5130  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom address.
   5131  *
   5132  *  @hw: pointer to hardware structure
   5133  *  @addr: The bypass eeprom address to read.
   5134  *  @value: The 8b of data at the address above.
   5135  **/
   5136 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
   5137 {
   5138 	u32 cmd;
   5139 	u32 status;
   5140 
   5141 
   5142 	/* send the request */
   5143 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
   5144 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
   5145 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5146 		return IXGBE_ERR_INVALID_ARGUMENT;
   5147 
   5148 	/* We have give the FW time for the write to stick */
   5149 	msec_delay(100);
   5150 
   5151 	/* now read the results */
   5152 	cmd &= ~BYPASS_WE;
   5153 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
   5154 		return IXGBE_ERR_INVALID_ARGUMENT;
   5155 
   5156 	*value = status & BYPASS_CTL2_DATA_M;
   5157 
   5158 	return IXGBE_SUCCESS;
   5159 }
   5160 
   5161 /**
   5162  *  ixgbe_get_orom_version - Return option ROM from EEPROM
   5163  *
   5164  *  @hw: pointer to hardware structure
   5165  *  @nvm_ver: pointer to output structure
   5166  *
   5167  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
   5168  *  else nvm_ver->or_valid is FALSE.
   5169  **/
   5170 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
   5171 			    struct ixgbe_nvm_version *nvm_ver)
   5172 {
   5173 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
   5174 
   5175 	nvm_ver->or_valid = FALSE;
   5176 	/* Option Rom may or may not be present.  Start with pointer */
   5177 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
   5178 
   5179 	/* make sure offset is valid */
   5180 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
   5181 		return;
   5182 
   5183 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
   5184 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
   5185 
   5186 	/* option rom exists and is valid */
   5187 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
   5188 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
   5189 	    eeprom_cfg_blkh == NVM_VER_INVALID)
   5190 		return;
   5191 
   5192 	nvm_ver->or_valid = TRUE;
   5193 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
   5194 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
   5195 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
   5196 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
   5197 }
   5198 
   5199 /**
   5200  *  ixgbe_get_oem_prod_version - Return OEM Product version
   5201  *
   5202  *  @hw: pointer to hardware structure
   5203  *  @nvm_ver: pointer to output structure
   5204  *
   5205  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
   5206  *  else nvm_ver->oem_valid is FALSE.
   5207  **/
   5208 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
   5209 				struct ixgbe_nvm_version *nvm_ver)
   5210 {
   5211 	u16 rel_num, prod_ver, mod_len, cap, offset;
   5212 
   5213 	nvm_ver->oem_valid = FALSE;
   5214 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
   5215 
   5216 	/* Return if offset to OEM Product Version block is invalid */
   5217 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   5218 		return;
   5219 
   5220 	/* Read product version block */
   5221 	hw->eeprom.ops.read(hw, offset, &mod_len);
   5222 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
   5223 
   5224 	/* Return if OEM product version block is invalid */
   5225 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
   5226 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
   5227 		return;
   5228 
   5229 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
   5230 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
   5231 
   5232 	/* Return if version is invalid */
   5233 	if ((rel_num | prod_ver) == 0x0 ||
   5234 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
   5235 		return;
   5236 
   5237 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
   5238 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
   5239 	nvm_ver->oem_release = rel_num;
   5240 	nvm_ver->oem_valid = TRUE;
   5241 }
   5242 
   5243 /**
   5244  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
   5245  *
   5246  *  @hw: pointer to hardware structure
   5247  *  @nvm_ver: pointer to output structure
   5248  *
   5249  *  word read errors will return 0xFFFF
   5250  **/
   5251 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
   5252 {
   5253 	u16 etk_id_l, etk_id_h;
   5254 
   5255 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
   5256 		etk_id_l = NVM_VER_INVALID;
   5257 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
   5258 		etk_id_h = NVM_VER_INVALID;
   5259 
   5260 	/* The word order for the version format is determined by high order
   5261 	 * word bit 15.
   5262 	 */
   5263 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
   5264 		nvm_ver->etk_id = etk_id_h;
   5265 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
   5266 	} else {
   5267 		nvm_ver->etk_id = etk_id_l;
   5268 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
   5269 	}
   5270 }
   5271 
   5272 
   5273 /**
   5274  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   5275  * @hw: pointer to hardware structure
   5276  * @map: pointer to u8 arr for returning map
   5277  *
   5278  * Read the rtrup2tc HW register and resolve its content into map
   5279  **/
   5280 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   5281 {
   5282 	u32 reg, i;
   5283 
   5284 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   5285 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   5286 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   5287 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   5288 	return;
   5289 }
   5290 
   5291 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   5292 {
   5293 	u32 pfdtxgswc;
   5294 	u32 rxctrl;
   5295 
   5296 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5297 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   5298 		if (hw->mac.type != ixgbe_mac_82598EB) {
   5299 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5300 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   5301 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   5302 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5303 				hw->mac.set_lben = TRUE;
   5304 			} else {
   5305 				hw->mac.set_lben = FALSE;
   5306 			}
   5307 		}
   5308 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   5309 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   5310 	}
   5311 }
   5312 
   5313 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   5314 {
   5315 	u32 pfdtxgswc;
   5316 	u32 rxctrl;
   5317 
   5318 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   5319 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   5320 
   5321 	if (hw->mac.type != ixgbe_mac_82598EB) {
   5322 		if (hw->mac.set_lben) {
   5323 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   5324 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   5325 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   5326 			hw->mac.set_lben = FALSE;
   5327 		}
   5328 	}
   5329 }
   5330 
   5331 /**
   5332  * ixgbe_mng_present - returns TRUE when management capability is present
   5333  * @hw: pointer to hardware structure
   5334  */
   5335 bool ixgbe_mng_present(struct ixgbe_hw *hw)
   5336 {
   5337 	u32 fwsm;
   5338 
   5339 	if (hw->mac.type < ixgbe_mac_82599EB)
   5340 		return FALSE;
   5341 
   5342 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5343 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
   5344 }
   5345 
   5346 /**
   5347  * ixgbe_mng_enabled - Is the manageability engine enabled?
   5348  * @hw: pointer to hardware structure
   5349  *
   5350  * Returns TRUE if the manageability engine is enabled.
   5351  **/
   5352 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   5353 {
   5354 	u32 fwsm, manc, factps;
   5355 
   5356 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
   5357 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   5358 		return FALSE;
   5359 
   5360 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   5361 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   5362 		return FALSE;
   5363 
   5364 	if (hw->mac.type <= ixgbe_mac_X540) {
   5365 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
   5366 		if (factps & IXGBE_FACTPS_MNGCG)
   5367 			return FALSE;
   5368 	}
   5369 
   5370 	return TRUE;
   5371 }
   5372 
   5373 /**
   5374  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   5375  *  @hw: pointer to hardware structure
   5376  *  @speed: new link speed
   5377  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   5378  *
   5379  *  Set the link speed in the MAC and/or PHY register and restarts link.
   5380  **/
   5381 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   5382 					  ixgbe_link_speed speed,
   5383 					  bool autoneg_wait_to_complete)
   5384 {
   5385 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5386 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   5387 	s32 status = IXGBE_SUCCESS;
   5388 	u32 speedcnt = 0;
   5389 	u32 i = 0;
   5390 	bool autoneg, link_up = FALSE;
   5391 
   5392 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   5393 
   5394 	/* Mask off requested but non-supported speeds */
   5395 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   5396 	if (status != IXGBE_SUCCESS)
   5397 		return status;
   5398 
   5399 	speed &= link_speed;
   5400 
   5401 	/* Try each speed one by one, highest priority first.  We do this in
   5402 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   5403 	 */
   5404 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   5405 		speedcnt++;
   5406 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   5407 
   5408 		/* Set the module link speed */
   5409 		switch (hw->phy.media_type) {
   5410 		case ixgbe_media_type_fiber_fixed:
   5411 		case ixgbe_media_type_fiber:
   5412 			ixgbe_set_rate_select_speed(hw,
   5413 						    IXGBE_LINK_SPEED_10GB_FULL);
   5414 			break;
   5415 		case ixgbe_media_type_fiber_qsfp:
   5416 			/* QSFP module automatically detects MAC link speed */
   5417 			break;
   5418 		default:
   5419 			DEBUGOUT("Unexpected media type.\n");
   5420 			break;
   5421 		}
   5422 
   5423 		/* Allow module to change analog characteristics (1G->10G) */
   5424 		msec_delay(40);
   5425 
   5426 		status = ixgbe_setup_mac_link(hw,
   5427 					      IXGBE_LINK_SPEED_10GB_FULL,
   5428 					      autoneg_wait_to_complete);
   5429 		if (status != IXGBE_SUCCESS)
   5430 			return status;
   5431 
   5432 		/* Flap the Tx laser if it has not already been done */
   5433 		ixgbe_flap_tx_laser(hw);
   5434 
   5435 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   5436 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   5437 		 * attempted.  82599 uses the same timing for 10g SFI.
   5438 		 */
   5439 		for (i = 0; i < 5; i++) {
   5440 			/* Wait for the link partner to also set speed */
   5441 			msec_delay(100);
   5442 
   5443 			/* If we have link, just jump out */
   5444 			status = ixgbe_check_link(hw, &link_speed,
   5445 						  &link_up, FALSE);
   5446 			if (status != IXGBE_SUCCESS)
   5447 				return status;
   5448 
   5449 			if (link_up)
   5450 				goto out;
   5451 		}
   5452 	}
   5453 
   5454 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   5455 		speedcnt++;
   5456 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   5457 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   5458 
   5459 		/* Set the module link speed */
   5460 		switch (hw->phy.media_type) {
   5461 		case ixgbe_media_type_fiber_fixed:
   5462 		case ixgbe_media_type_fiber:
   5463 			ixgbe_set_rate_select_speed(hw,
   5464 						    IXGBE_LINK_SPEED_1GB_FULL);
   5465 			break;
   5466 		case ixgbe_media_type_fiber_qsfp:
   5467 			/* QSFP module automatically detects link speed */
   5468 			break;
   5469 		default:
   5470 			DEBUGOUT("Unexpected media type.\n");
   5471 			break;
   5472 		}
   5473 
   5474 		/* Allow module to change analog characteristics (10G->1G) */
   5475 		msec_delay(40);
   5476 
   5477 		status = ixgbe_setup_mac_link(hw,
   5478 					      IXGBE_LINK_SPEED_1GB_FULL,
   5479 					      autoneg_wait_to_complete);
   5480 		if (status != IXGBE_SUCCESS)
   5481 			return status;
   5482 
   5483 		/* Flap the Tx laser if it has not already been done */
   5484 		ixgbe_flap_tx_laser(hw);
   5485 
   5486 		/* Wait for the link partner to also set speed */
   5487 		msec_delay(100);
   5488 
   5489 		/* If we have link, just jump out */
   5490 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   5491 		if (status != IXGBE_SUCCESS)
   5492 			return status;
   5493 
   5494 		if (link_up)
   5495 			goto out;
   5496 	}
   5497 
   5498 	if (speed == 0) {
   5499 		/* Disable the Tx laser for media none */
   5500 		ixgbe_disable_tx_laser(hw);
   5501 
   5502 		goto out;
   5503 	}
   5504 
   5505 	/* We didn't get link.  Configure back to the highest speed we tried,
   5506 	 * (if there was more than one).  We call ourselves back with just the
   5507 	 * single highest speed that the user requested.
   5508 	 */
   5509 	if (speedcnt > 1)
   5510 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   5511 						      highest_link_speed,
   5512 						      autoneg_wait_to_complete);
   5513 
   5514 out:
   5515 	/* Set autoneg_advertised value based on input link speed */
   5516 	hw->phy.autoneg_advertised = 0;
   5517 
   5518 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   5519 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   5520 
   5521 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   5522 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   5523 
   5524 	return status;
   5525 }
   5526 
   5527 /**
   5528  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   5529  *  @hw: pointer to hardware structure
   5530  *  @speed: link speed to set
   5531  *
   5532  *  Set module link speed via the soft rate select.
   5533  */
   5534 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   5535 					ixgbe_link_speed speed)
   5536 {
   5537 	s32 status;
   5538 	u8 rs, eeprom_data;
   5539 
   5540 	switch (speed) {
   5541 	case IXGBE_LINK_SPEED_10GB_FULL:
   5542 		/* one bit mask same as setting on */
   5543 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   5544 		break;
   5545 	case IXGBE_LINK_SPEED_1GB_FULL:
   5546 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   5547 		break;
   5548 	default:
   5549 		DEBUGOUT("Invalid fixed module speed\n");
   5550 		return;
   5551 	}
   5552 
   5553 	/* Set RS0 */
   5554 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5555 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5556 					   &eeprom_data);
   5557 	if (status) {
   5558 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   5559 		goto out;
   5560 	}
   5561 
   5562 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5563 
   5564 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   5565 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5566 					    eeprom_data);
   5567 	if (status) {
   5568 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   5569 		goto out;
   5570 	}
   5571 
   5572 	/* Set RS1 */
   5573 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5574 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   5575 					   &eeprom_data);
   5576 	if (status) {
   5577 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   5578 		goto out;
   5579 	}
   5580 
   5581 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   5582 
   5583 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   5584 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   5585 					    eeprom_data);
   5586 	if (status) {
   5587 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   5588 		goto out;
   5589 	}
   5590 out:
   5591 	return;
   5592 }
   5593