Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.4
      1 /******************************************************************************
      2 
      3   Copyright (c) 2001-2012, Intel Corporation
      4   All rights reserved.
      5 
      6   Redistribution and use in source and binary forms, with or without
      7   modification, are permitted provided that the following conditions are met:
      8 
      9    1. Redistributions of source code must retain the above copyright notice,
     10       this list of conditions and the following disclaimer.
     11 
     12    2. Redistributions in binary form must reproduce the above copyright
     13       notice, this list of conditions and the following disclaimer in the
     14       documentation and/or other materials provided with the distribution.
     15 
     16    3. Neither the name of the Intel Corporation nor the names of its
     17       contributors may be used to endorse or promote products derived from
     18       this software without specific prior written permission.
     19 
     20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   POSSIBILITY OF SUCH DAMAGE.
     31 
     32 ******************************************************************************/
     33 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 238149 2012-07-05 20:51:44Z jfv $*/
     34 /*$NetBSD: ixgbe_common.c,v 1.4 2015/04/02 09:26:55 msaitoh Exp $*/
     35 
     36 #include "ixgbe_common.h"
     37 #include "ixgbe_phy.h"
     38 #include "ixgbe_api.h"
     39 
     40 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     41 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     42 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     43 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     44 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     45 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     46 					u16 count);
     47 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     48 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     49 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     50 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     51 
     52 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     53 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     54 					 u16 *san_mac_offset);
     55 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     56 					     u16 words, u16 *data);
     57 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58 					      u16 words, u16 *data);
     59 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     60 						 u16 offset);
     61 
     62 /**
     63  *  ixgbe_init_ops_generic - Inits function ptrs
     64  *  @hw: pointer to the hardware structure
     65  *
     66  *  Initialize the function pointers.
     67  **/
     68 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     69 {
     70 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     71 	struct ixgbe_mac_info *mac = &hw->mac;
     72 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     73 
     74 	DEBUGFUNC("ixgbe_init_ops_generic");
     75 
     76 	/* EEPROM */
     77 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
     78 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     79 	if (eec & IXGBE_EEC_PRES) {
     80 		eeprom->ops.read = &ixgbe_read_eerd_generic;
     81 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
     82 	} else {
     83 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
     84 		eeprom->ops.read_buffer =
     85 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
     86 	}
     87 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
     88 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
     89 	eeprom->ops.validate_checksum =
     90 				      &ixgbe_validate_eeprom_checksum_generic;
     91 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
     92 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
     93 
     94 	/* MAC */
     95 	mac->ops.init_hw = &ixgbe_init_hw_generic;
     96 	mac->ops.reset_hw = NULL;
     97 	mac->ops.start_hw = &ixgbe_start_hw_generic;
     98 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
     99 	mac->ops.get_media_type = NULL;
    100 	mac->ops.get_supported_physical_layer = NULL;
    101 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
    102 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
    103 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
    104 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
    105 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
    106 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
    107 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
    108 
    109 	/* LEDs */
    110 	mac->ops.led_on = &ixgbe_led_on_generic;
    111 	mac->ops.led_off = &ixgbe_led_off_generic;
    112 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
    113 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
    114 
    115 	/* RAR, Multicast, VLAN */
    116 	mac->ops.set_rar = &ixgbe_set_rar_generic;
    117 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
    118 	mac->ops.insert_mac_addr = NULL;
    119 	mac->ops.set_vmdq = NULL;
    120 	mac->ops.clear_vmdq = NULL;
    121 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
    122 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
    123 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
    124 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
    125 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
    126 	mac->ops.clear_vfta = NULL;
    127 	mac->ops.set_vfta = NULL;
    128 	mac->ops.set_vlvf = NULL;
    129 	mac->ops.init_uta_tables = NULL;
    130 
    131 	/* Flow Control */
    132 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
    133 
    134 	/* Link */
    135 	mac->ops.get_link_capabilities = NULL;
    136 	mac->ops.setup_link = NULL;
    137 	mac->ops.check_link = NULL;
    138 
    139 	return IXGBE_SUCCESS;
    140 }
    141 
    142 /**
    143  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
    144  *  control
    145  *  @hw: pointer to hardware structure
    146  *
    147  *  There are several phys that do not support autoneg flow control. This
    148  *  function check the device id to see if the associated phy supports
    149  *  autoneg flow control.
    150  **/
    151 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    152 {
    153 
    154 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    155 
    156 	switch (hw->device_id) {
    157 	case IXGBE_DEV_ID_X540T:
    158 	case IXGBE_DEV_ID_X540T1:
    159 		return IXGBE_SUCCESS;
    160 	case IXGBE_DEV_ID_82599_T3_LOM:
    161 		return IXGBE_SUCCESS;
    162 	default:
    163 		return IXGBE_ERR_FC_NOT_SUPPORTED;
    164 	}
    165 }
    166 
    167 /**
    168  *  ixgbe_setup_fc - Set up flow control
    169  *  @hw: pointer to hardware structure
    170  *
    171  *  Called at init time to set up flow control.
    172  **/
    173 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
    174 {
    175 	s32 ret_val = IXGBE_SUCCESS;
    176 	u32 reg = 0, reg_bp = 0;
    177 	u16 reg_cu = 0;
    178 
    179 	DEBUGFUNC("ixgbe_setup_fc");
    180 
    181 	/*
    182 	 * Validate the requested mode.  Strict IEEE mode does not allow
    183 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
    184 	 */
    185 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    186 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    187 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    188 		goto out;
    189 	}
    190 
    191 	/*
    192 	 * 10gig parts do not have a word in the EEPROM to determine the
    193 	 * default flow control setting, so we explicitly set it to full.
    194 	 */
    195 	if (hw->fc.requested_mode == ixgbe_fc_default)
    196 		hw->fc.requested_mode = ixgbe_fc_full;
    197 
    198 	/*
    199 	 * Set up the 1G and 10G flow control advertisement registers so the
    200 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    201 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    202 	 */
    203 	switch (hw->phy.media_type) {
    204 	case ixgbe_media_type_fiber:
    205 	case ixgbe_media_type_backplane:
    206 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    207 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
    208 		break;
    209 	case ixgbe_media_type_copper:
    210 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    211 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    212 		break;
    213 	default:
    214 		break;
    215 	}
    216 
    217 	/*
    218 	 * The possible values of fc.requested_mode are:
    219 	 * 0: Flow control is completely disabled
    220 	 * 1: Rx flow control is enabled (we can receive pause frames,
    221 	 *    but not send pause frames).
    222 	 * 2: Tx flow control is enabled (we can send pause frames but
    223 	 *    we do not support receiving pause frames).
    224 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    225 	 * other: Invalid.
    226 	 */
    227 	switch (hw->fc.requested_mode) {
    228 	case ixgbe_fc_none:
    229 		/* Flow control completely disabled by software override. */
    230 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    231 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    232 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    233 				    IXGBE_AUTOC_ASM_PAUSE);
    234 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    235 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    236 		break;
    237 	case ixgbe_fc_tx_pause:
    238 		/*
    239 		 * Tx Flow control is enabled, and Rx Flow control is
    240 		 * disabled by software override.
    241 		 */
    242 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    243 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    244 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    245 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    246 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    247 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    248 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    249 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    250 		}
    251 		break;
    252 	case ixgbe_fc_rx_pause:
    253 		/*
    254 		 * Rx Flow control is enabled and Tx Flow control is
    255 		 * disabled by software override. Since there really
    256 		 * isn't a way to advertise that we are capable of RX
    257 		 * Pause ONLY, we will advertise that we support both
    258 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    259 		 * through to the fc_full statement.  Later, we will
    260 		 * disable the adapter's ability to send PAUSE frames.
    261 		 */
    262 	case ixgbe_fc_full:
    263 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    264 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    265 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    266 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    267 				  IXGBE_AUTOC_ASM_PAUSE;
    268 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    269 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    270 		break;
    271 	default:
    272 		DEBUGOUT("Flow control param set incorrectly\n");
    273 		ret_val = IXGBE_ERR_CONFIG;
    274 		goto out;
    275 		break;
    276 	}
    277 
    278 	if (hw->mac.type != ixgbe_mac_X540) {
    279 		/*
    280 		 * Enable auto-negotiation between the MAC & PHY;
    281 		 * the MAC will advertise clause 37 flow control.
    282 		 */
    283 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    284 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    285 
    286 		/* Disable AN timeout */
    287 		if (hw->fc.strict_ieee)
    288 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    289 
    290 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    291 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    292 	}
    293 
    294 	/*
    295 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    296 	 * and copper. There is no need to set the PCS1GCTL register.
    297 	 *
    298 	 */
    299 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    300 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    301 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
    302 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    303 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
    304 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    305 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    306 	}
    307 
    308 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
    309 out:
    310 	return ret_val;
    311 }
    312 
    313 /**
    314  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    315  *  @hw: pointer to hardware structure
    316  *
    317  *  Starts the hardware by filling the bus info structure and media type, clears
    318  *  all on chip counters, initializes receive address registers, multicast
    319  *  table, VLAN filter table, calls routine to set up link and flow control
    320  *  settings, and leaves transmit and receive units disabled and uninitialized
    321  **/
    322 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    323 {
    324 	s32 ret_val;
    325 	u32 ctrl_ext;
    326 
    327 	DEBUGFUNC("ixgbe_start_hw_generic");
    328 
    329 	/* Set the media type */
    330 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    331 
    332 	/* PHY ops initialization must be done in reset_hw() */
    333 
    334 	/* Clear the VLAN filter table */
    335 	hw->mac.ops.clear_vfta(hw);
    336 
    337 	/* Clear statistics registers */
    338 	hw->mac.ops.clear_hw_cntrs(hw);
    339 
    340 	/* Set No Snoop Disable */
    341 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    342 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    343 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    344 	IXGBE_WRITE_FLUSH(hw);
    345 
    346 	/* Setup flow control */
    347 	ret_val = ixgbe_setup_fc(hw);
    348 	if (ret_val != IXGBE_SUCCESS)
    349 		goto out;
    350 
    351 	/* Clear adapter stopped flag */
    352 	hw->adapter_stopped = FALSE;
    353 
    354 out:
    355 	return ret_val;
    356 }
    357 
    358 /**
    359  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    360  *  @hw: pointer to hw structure
    361  *
    362  * Performs the init sequence common to the second generation
    363  * of 10 GbE devices.
    364  * Devices in the second generation:
    365  *     82599
    366  *     X540
    367  **/
    368 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    369 {
    370 	u32 i;
    371 	u32 regval;
    372 
    373 	/* Clear the rate limiters */
    374 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    375 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    376 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    377 	}
    378 	IXGBE_WRITE_FLUSH(hw);
    379 
    380 	/* Disable relaxed ordering */
    381 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    382 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    383 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    384 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    385 	}
    386 
    387 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    388 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    389 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    390 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    391 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    392 	}
    393 
    394 	return IXGBE_SUCCESS;
    395 }
    396 
    397 /**
    398  *  ixgbe_init_hw_generic - Generic hardware initialization
    399  *  @hw: pointer to hardware structure
    400  *
    401  *  Initialize the hardware by resetting the hardware, filling the bus info
    402  *  structure and media type, clears all on chip counters, initializes receive
    403  *  address registers, multicast table, VLAN filter table, calls routine to set
    404  *  up link and flow control settings, and leaves transmit and receive units
    405  *  disabled and uninitialized
    406  **/
    407 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    408 {
    409 	s32 status;
    410 
    411 	DEBUGFUNC("ixgbe_init_hw_generic");
    412 
    413 	/* Reset the hardware */
    414 	status = hw->mac.ops.reset_hw(hw);
    415 
    416 	if (status == IXGBE_SUCCESS) {
    417 		/* Start the HW */
    418 		status = hw->mac.ops.start_hw(hw);
    419 	}
    420 
    421 	return status;
    422 }
    423 
    424 /**
    425  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    426  *  @hw: pointer to hardware structure
    427  *
    428  *  Clears all hardware statistics counters by reading them from the hardware
    429  *  Statistics counters are clear on read.
    430  **/
    431 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    432 {
    433 	u16 i = 0;
    434 
    435 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    436 
    437 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    438 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    439 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    440 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    441 	for (i = 0; i < 8; i++)
    442 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    443 
    444 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    445 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    446 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    447 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    448 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    449 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    450 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    451 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    452 	} else {
    453 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    454 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    455 	}
    456 
    457 	for (i = 0; i < 8; i++) {
    458 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    459 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    460 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    461 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    462 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    463 		} else {
    464 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    465 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    466 		}
    467 	}
    468 	if (hw->mac.type >= ixgbe_mac_82599EB)
    469 		for (i = 0; i < 8; i++)
    470 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    471 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    472 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    473 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    474 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    475 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    476 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    477 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    478 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    479 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    480 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    481 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    482 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    483 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    484 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    485 	if (hw->mac.type == ixgbe_mac_82598EB)
    486 		for (i = 0; i < 8; i++)
    487 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    488 	IXGBE_READ_REG(hw, IXGBE_RUC);
    489 	IXGBE_READ_REG(hw, IXGBE_RFC);
    490 	IXGBE_READ_REG(hw, IXGBE_ROC);
    491 	IXGBE_READ_REG(hw, IXGBE_RJC);
    492 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    493 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    494 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    495 	IXGBE_READ_REG(hw, IXGBE_TORL);
    496 	IXGBE_READ_REG(hw, IXGBE_TORH);
    497 	IXGBE_READ_REG(hw, IXGBE_TPR);
    498 	IXGBE_READ_REG(hw, IXGBE_TPT);
    499 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    500 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    501 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    502 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    503 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    504 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    505 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    506 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    507 	for (i = 0; i < 16; i++) {
    508 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    509 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    510 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    511 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    512 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    513 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    514 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    515 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    516 		} else {
    517 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    518 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    519 		}
    520 	}
    521 
    522 	if (hw->mac.type == ixgbe_mac_X540) {
    523 		if (hw->phy.id == 0)
    524 			ixgbe_identify_phy(hw);
    525 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    526 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    527 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    528 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    529 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    530 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    531 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    532 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    533 	}
    534 
    535 	return IXGBE_SUCCESS;
    536 }
    537 
    538 /**
    539  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    540  *  @hw: pointer to hardware structure
    541  *  @pba_num: stores the part number string from the EEPROM
    542  *  @pba_num_size: part number string buffer length
    543  *
    544  *  Reads the part number string from the EEPROM.
    545  **/
    546 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    547 				  u32 pba_num_size)
    548 {
    549 	s32 ret_val;
    550 	u16 data;
    551 	u16 pba_ptr;
    552 	u16 offset;
    553 	u16 length;
    554 
    555 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    556 
    557 	if (pba_num == NULL) {
    558 		DEBUGOUT("PBA string buffer was null\n");
    559 		return IXGBE_ERR_INVALID_ARGUMENT;
    560 	}
    561 
    562 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    563 	if (ret_val) {
    564 		DEBUGOUT("NVM Read Error\n");
    565 		return ret_val;
    566 	}
    567 
    568 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    569 	if (ret_val) {
    570 		DEBUGOUT("NVM Read Error\n");
    571 		return ret_val;
    572 	}
    573 
    574 	/*
    575 	 * if data is not ptr guard the PBA must be in legacy format which
    576 	 * means pba_ptr is actually our second data word for the PBA number
    577 	 * and we can decode it into an ascii string
    578 	 */
    579 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    580 		DEBUGOUT("NVM PBA number is not stored as string\n");
    581 
    582 		/* we will need 11 characters to store the PBA */
    583 		if (pba_num_size < 11) {
    584 			DEBUGOUT("PBA string buffer too small\n");
    585 			return IXGBE_ERR_NO_SPACE;
    586 		}
    587 
    588 		/* extract hex string from data and pba_ptr */
    589 		pba_num[0] = (data >> 12) & 0xF;
    590 		pba_num[1] = (data >> 8) & 0xF;
    591 		pba_num[2] = (data >> 4) & 0xF;
    592 		pba_num[3] = data & 0xF;
    593 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    594 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    595 		pba_num[6] = '-';
    596 		pba_num[7] = 0;
    597 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    598 		pba_num[9] = pba_ptr & 0xF;
    599 
    600 		/* put a null character on the end of our string */
    601 		pba_num[10] = '\0';
    602 
    603 		/* switch all the data but the '-' to hex char */
    604 		for (offset = 0; offset < 10; offset++) {
    605 			if (pba_num[offset] < 0xA)
    606 				pba_num[offset] += '0';
    607 			else if (pba_num[offset] < 0x10)
    608 				pba_num[offset] += 'A' - 0xA;
    609 		}
    610 
    611 		return IXGBE_SUCCESS;
    612 	}
    613 
    614 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    615 	if (ret_val) {
    616 		DEBUGOUT("NVM Read Error\n");
    617 		return ret_val;
    618 	}
    619 
    620 	if (length == 0xFFFF || length == 0) {
    621 		DEBUGOUT("NVM PBA number section invalid length\n");
    622 		return IXGBE_ERR_PBA_SECTION;
    623 	}
    624 
    625 	/* check if pba_num buffer is big enough */
    626 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    627 		DEBUGOUT("PBA string buffer too small\n");
    628 		return IXGBE_ERR_NO_SPACE;
    629 	}
    630 
    631 	/* trim pba length from start of string */
    632 	pba_ptr++;
    633 	length--;
    634 
    635 	for (offset = 0; offset < length; offset++) {
    636 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    637 		if (ret_val) {
    638 			DEBUGOUT("NVM Read Error\n");
    639 			return ret_val;
    640 		}
    641 		pba_num[offset * 2] = (u8)(data >> 8);
    642 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    643 	}
    644 	pba_num[offset * 2] = '\0';
    645 
    646 	return IXGBE_SUCCESS;
    647 }
    648 
    649 /**
    650  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    651  *  @hw: pointer to hardware structure
    652  *  @pba_num: stores the part number from the EEPROM
    653  *
    654  *  Reads the part number from the EEPROM.
    655  **/
    656 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    657 {
    658 	s32 ret_val;
    659 	u16 data;
    660 
    661 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    662 
    663 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    664 	if (ret_val) {
    665 		DEBUGOUT("NVM Read Error\n");
    666 		return ret_val;
    667 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    668 		DEBUGOUT("NVM Not supported\n");
    669 		return IXGBE_NOT_IMPLEMENTED;
    670 	}
    671 	*pba_num = (u32)(data << 16);
    672 
    673 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    674 	if (ret_val) {
    675 		DEBUGOUT("NVM Read Error\n");
    676 		return ret_val;
    677 	}
    678 	*pba_num |= data;
    679 
    680 	return IXGBE_SUCCESS;
    681 }
    682 
    683 /**
    684  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    685  *  @hw: pointer to hardware structure
    686  *  @mac_addr: Adapter MAC address
    687  *
    688  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    689  *  A reset of the adapter must be performed prior to calling this function
    690  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    691  **/
    692 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    693 {
    694 	u32 rar_high;
    695 	u32 rar_low;
    696 	u16 i;
    697 
    698 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    699 
    700 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    701 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    702 
    703 	for (i = 0; i < 4; i++)
    704 		mac_addr[i] = (u8)(rar_low >> (i*8));
    705 
    706 	for (i = 0; i < 2; i++)
    707 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    708 
    709 	return IXGBE_SUCCESS;
    710 }
    711 
    712 /**
    713  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    714  *  @hw: pointer to hardware structure
    715  *
    716  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    717  **/
    718 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    719 {
    720 	struct ixgbe_mac_info *mac = &hw->mac;
    721 	u16 link_status;
    722 
    723 	DEBUGFUNC("ixgbe_get_bus_info_generic");
    724 
    725 	hw->bus.type = ixgbe_bus_type_pci_express;
    726 
    727 	/* Get the negotiated link width and speed from PCI config space */
    728 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
    729 
    730 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    731 	case IXGBE_PCI_LINK_WIDTH_1:
    732 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    733 		break;
    734 	case IXGBE_PCI_LINK_WIDTH_2:
    735 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    736 		break;
    737 	case IXGBE_PCI_LINK_WIDTH_4:
    738 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    739 		break;
    740 	case IXGBE_PCI_LINK_WIDTH_8:
    741 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    742 		break;
    743 	default:
    744 		hw->bus.width = ixgbe_bus_width_unknown;
    745 		break;
    746 	}
    747 
    748 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    749 	case IXGBE_PCI_LINK_SPEED_2500:
    750 		hw->bus.speed = ixgbe_bus_speed_2500;
    751 		break;
    752 	case IXGBE_PCI_LINK_SPEED_5000:
    753 		hw->bus.speed = ixgbe_bus_speed_5000;
    754 		break;
    755 	case IXGBE_PCI_LINK_SPEED_8000:
    756 		hw->bus.speed = ixgbe_bus_speed_8000;
    757 		break;
    758 	default:
    759 		hw->bus.speed = ixgbe_bus_speed_unknown;
    760 		break;
    761 	}
    762 
    763 	mac->ops.set_lan_id(hw);
    764 
    765 	return IXGBE_SUCCESS;
    766 }
    767 
    768 /**
    769  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    770  *  @hw: pointer to the HW structure
    771  *
    772  *  Determines the LAN function id by reading memory-mapped registers
    773  *  and swaps the port value if requested.
    774  **/
    775 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    776 {
    777 	struct ixgbe_bus_info *bus = &hw->bus;
    778 	u32 reg;
    779 
    780 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
    781 
    782 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    783 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    784 	bus->lan_id = bus->func;
    785 
    786 	/* check for a port swap */
    787 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
    788 	if (reg & IXGBE_FACTPS_LFS)
    789 		bus->func ^= 0x1;
    790 }
    791 
    792 /**
    793  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
    794  *  @hw: pointer to hardware structure
    795  *
    796  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
    797  *  disables transmit and receive units. The adapter_stopped flag is used by
    798  *  the shared code and drivers to determine if the adapter is in a stopped
    799  *  state and should not touch the hardware.
    800  **/
    801 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
    802 {
    803 	u32 reg_val;
    804 	u16 i;
    805 
    806 	DEBUGFUNC("ixgbe_stop_adapter_generic");
    807 
    808 	/*
    809 	 * Set the adapter_stopped flag so other driver functions stop touching
    810 	 * the hardware
    811 	 */
    812 	hw->adapter_stopped = TRUE;
    813 
    814 	/* Disable the receive unit */
    815 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
    816 
    817 	/* Clear interrupt mask to stop interrupts from being generated */
    818 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
    819 
    820 	/* Clear any pending interrupts, flush previous writes */
    821 	IXGBE_READ_REG(hw, IXGBE_EICR);
    822 
    823 	/* Disable the transmit unit.  Each queue must be disabled. */
    824 	for (i = 0; i < hw->mac.max_tx_queues; i++)
    825 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
    826 
    827 	/* Disable the receive unit by stopping each queue */
    828 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    829 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
    830 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
    831 		reg_val |= IXGBE_RXDCTL_SWFLSH;
    832 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
    833 	}
    834 
    835 	/* flush all queues disables */
    836 	IXGBE_WRITE_FLUSH(hw);
    837 	msec_delay(2);
    838 
    839 	/*
    840 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
    841 	 * access and verify no pending requests
    842 	 */
    843 	return ixgbe_disable_pcie_master(hw);
    844 }
    845 
    846 /**
    847  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
    848  *  @hw: pointer to hardware structure
    849  *  @index: led number to turn on
    850  **/
    851 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
    852 {
    853 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    854 
    855 	DEBUGFUNC("ixgbe_led_on_generic");
    856 
    857 	/* To turn on the LED, set mode to ON. */
    858 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    859 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
    860 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    861 	IXGBE_WRITE_FLUSH(hw);
    862 
    863 	return IXGBE_SUCCESS;
    864 }
    865 
    866 /**
    867  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
    868  *  @hw: pointer to hardware structure
    869  *  @index: led number to turn off
    870  **/
    871 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
    872 {
    873 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    874 
    875 	DEBUGFUNC("ixgbe_led_off_generic");
    876 
    877 	/* To turn off the LED, set mode to OFF. */
    878 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    879 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
    880 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    881 	IXGBE_WRITE_FLUSH(hw);
    882 
    883 	return IXGBE_SUCCESS;
    884 }
    885 
    886 /**
    887  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
    888  *  @hw: pointer to hardware structure
    889  *
    890  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
    891  *  ixgbe_hw struct in order to set up EEPROM access.
    892  **/
    893 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
    894 {
    895 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
    896 	u32 eec;
    897 	u16 eeprom_size;
    898 
    899 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
    900 
    901 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
    902 		eeprom->type = ixgbe_eeprom_none;
    903 		/* Set default semaphore delay to 10ms which is a well
    904 		 * tested value */
    905 		eeprom->semaphore_delay = 10;
    906 		/* Clear EEPROM page size, it will be initialized as needed */
    907 		eeprom->word_page_size = 0;
    908 
    909 		/*
    910 		 * Check for EEPROM present first.
    911 		 * If not present leave as none
    912 		 */
    913 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
    914 		if (eec & IXGBE_EEC_PRES) {
    915 			eeprom->type = ixgbe_eeprom_spi;
    916 
    917 			/*
    918 			 * SPI EEPROM is assumed here.  This code would need to
    919 			 * change if a future EEPROM is not SPI.
    920 			 */
    921 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
    922 					    IXGBE_EEC_SIZE_SHIFT);
    923 			eeprom->word_size = 1 << (eeprom_size +
    924 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
    925 		}
    926 
    927 		if (eec & IXGBE_EEC_ADDR_SIZE)
    928 			eeprom->address_bits = 16;
    929 		else
    930 			eeprom->address_bits = 8;
    931 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
    932 			  "%d\n", eeprom->type, eeprom->word_size,
    933 			  eeprom->address_bits);
    934 	}
    935 
    936 	return IXGBE_SUCCESS;
    937 }
    938 
    939 /**
    940  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
    941  *  @hw: pointer to hardware structure
    942  *  @offset: offset within the EEPROM to write
    943  *  @words: number of word(s)
    944  *  @data: 16 bit word(s) to write to EEPROM
    945  *
    946  *  Reads 16 bit word(s) from EEPROM through bit-bang method
    947  **/
    948 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    949 					       u16 words, u16 *data)
    950 {
    951 	s32 status = IXGBE_SUCCESS;
    952 	u16 i, count;
    953 
    954 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
    955 
    956 	hw->eeprom.ops.init_params(hw);
    957 
    958 	if (words == 0) {
    959 		status = IXGBE_ERR_INVALID_ARGUMENT;
    960 		goto out;
    961 	}
    962 
    963 	if (offset + words > hw->eeprom.word_size) {
    964 		status = IXGBE_ERR_EEPROM;
    965 		goto out;
    966 	}
    967 
    968 	/*
    969 	 * The EEPROM page size cannot be queried from the chip. We do lazy
    970 	 * initialization. It is worth to do that when we write large buffer.
    971 	 */
    972 	if ((hw->eeprom.word_page_size == 0) &&
    973 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
    974 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
    975 
    976 	/*
    977 	 * We cannot hold synchronization semaphores for too long
    978 	 * to avoid other entity starvation. However it is more efficient
    979 	 * to read in bursts than synchronizing access for each word.
    980 	 */
    981 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
    982 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
    983 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
    984 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
    985 							    count, &data[i]);
    986 
    987 		if (status != IXGBE_SUCCESS)
    988 			break;
    989 	}
    990 
    991 out:
    992 	return status;
    993 }
    994 
    995 /**
    996  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
    997  *  @hw: pointer to hardware structure
    998  *  @offset: offset within the EEPROM to be written to
    999  *  @words: number of word(s)
   1000  *  @data: 16 bit word(s) to be written to the EEPROM
   1001  *
   1002  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1003  *  EEPROM will most likely contain an invalid checksum.
   1004  **/
   1005 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1006 					      u16 words, u16 *data)
   1007 {
   1008 	s32 status;
   1009 	u16 word;
   1010 	u16 page_size;
   1011 	u16 i;
   1012 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1013 
   1014 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1015 
   1016 	/* Prepare the EEPROM for writing  */
   1017 	status = ixgbe_acquire_eeprom(hw);
   1018 
   1019 	if (status == IXGBE_SUCCESS) {
   1020 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1021 			ixgbe_release_eeprom(hw);
   1022 			status = IXGBE_ERR_EEPROM;
   1023 		}
   1024 	}
   1025 
   1026 	if (status == IXGBE_SUCCESS) {
   1027 		for (i = 0; i < words; i++) {
   1028 			ixgbe_standby_eeprom(hw);
   1029 
   1030 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1031 			ixgbe_shift_out_eeprom_bits(hw,
   1032 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1033 						   IXGBE_EEPROM_OPCODE_BITS);
   1034 
   1035 			ixgbe_standby_eeprom(hw);
   1036 
   1037 			/*
   1038 			 * Some SPI eeproms use the 8th address bit embedded
   1039 			 * in the opcode
   1040 			 */
   1041 			if ((hw->eeprom.address_bits == 8) &&
   1042 			    ((offset + i) >= 128))
   1043 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1044 
   1045 			/* Send the Write command (8-bit opcode + addr) */
   1046 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1047 						    IXGBE_EEPROM_OPCODE_BITS);
   1048 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1049 						    hw->eeprom.address_bits);
   1050 
   1051 			page_size = hw->eeprom.word_page_size;
   1052 
   1053 			/* Send the data in burst via SPI*/
   1054 			do {
   1055 				word = data[i];
   1056 				word = (word >> 8) | (word << 8);
   1057 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1058 
   1059 				if (page_size == 0)
   1060 					break;
   1061 
   1062 				/* do not wrap around page */
   1063 				if (((offset + i) & (page_size - 1)) ==
   1064 				    (page_size - 1))
   1065 					break;
   1066 			} while (++i < words);
   1067 
   1068 			ixgbe_standby_eeprom(hw);
   1069 			msec_delay(10);
   1070 		}
   1071 		/* Done with writing - release the EEPROM */
   1072 		ixgbe_release_eeprom(hw);
   1073 	}
   1074 
   1075 	return status;
   1076 }
   1077 
   1078 /**
   1079  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1080  *  @hw: pointer to hardware structure
   1081  *  @offset: offset within the EEPROM to be written to
   1082  *  @data: 16 bit word to be written to the EEPROM
   1083  *
   1084  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1085  *  EEPROM will most likely contain an invalid checksum.
   1086  **/
   1087 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1088 {
   1089 	s32 status;
   1090 
   1091 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1092 
   1093 	hw->eeprom.ops.init_params(hw);
   1094 
   1095 	if (offset >= hw->eeprom.word_size) {
   1096 		status = IXGBE_ERR_EEPROM;
   1097 		goto out;
   1098 	}
   1099 
   1100 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1101 
   1102 out:
   1103 	return status;
   1104 }
   1105 
   1106 /**
   1107  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1108  *  @hw: pointer to hardware structure
   1109  *  @offset: offset within the EEPROM to be read
   1110  *  @data: read 16 bit words(s) from EEPROM
   1111  *  @words: number of word(s)
   1112  *
   1113  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1114  **/
   1115 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1116 					      u16 words, u16 *data)
   1117 {
   1118 	s32 status = IXGBE_SUCCESS;
   1119 	u16 i, count;
   1120 
   1121 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1122 
   1123 	hw->eeprom.ops.init_params(hw);
   1124 
   1125 	if (words == 0) {
   1126 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1127 		goto out;
   1128 	}
   1129 
   1130 	if (offset + words > hw->eeprom.word_size) {
   1131 		status = IXGBE_ERR_EEPROM;
   1132 		goto out;
   1133 	}
   1134 
   1135 	/*
   1136 	 * We cannot hold synchronization semaphores for too long
   1137 	 * to avoid other entity starvation. However it is more efficient
   1138 	 * to read in bursts than synchronizing access for each word.
   1139 	 */
   1140 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1141 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1142 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1143 
   1144 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1145 							   count, &data[i]);
   1146 
   1147 		if (status != IXGBE_SUCCESS)
   1148 			break;
   1149 	}
   1150 
   1151 out:
   1152 	return status;
   1153 }
   1154 
   1155 /**
   1156  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1157  *  @hw: pointer to hardware structure
   1158  *  @offset: offset within the EEPROM to be read
   1159  *  @words: number of word(s)
   1160  *  @data: read 16 bit word(s) from EEPROM
   1161  *
   1162  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1163  **/
   1164 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1165 					     u16 words, u16 *data)
   1166 {
   1167 	s32 status;
   1168 	u16 word_in;
   1169 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1170 	u16 i;
   1171 
   1172 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1173 
   1174 	/* Prepare the EEPROM for reading  */
   1175 	status = ixgbe_acquire_eeprom(hw);
   1176 
   1177 	if (status == IXGBE_SUCCESS) {
   1178 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1179 			ixgbe_release_eeprom(hw);
   1180 			status = IXGBE_ERR_EEPROM;
   1181 		}
   1182 	}
   1183 
   1184 	if (status == IXGBE_SUCCESS) {
   1185 		for (i = 0; i < words; i++) {
   1186 			ixgbe_standby_eeprom(hw);
   1187 			/*
   1188 			 * Some SPI eeproms use the 8th address bit embedded
   1189 			 * in the opcode
   1190 			 */
   1191 			if ((hw->eeprom.address_bits == 8) &&
   1192 			    ((offset + i) >= 128))
   1193 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1194 
   1195 			/* Send the READ command (opcode + addr) */
   1196 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1197 						    IXGBE_EEPROM_OPCODE_BITS);
   1198 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1199 						    hw->eeprom.address_bits);
   1200 
   1201 			/* Read the data. */
   1202 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1203 			data[i] = (word_in >> 8) | (word_in << 8);
   1204 		}
   1205 
   1206 		/* End this read operation */
   1207 		ixgbe_release_eeprom(hw);
   1208 	}
   1209 
   1210 	return status;
   1211 }
   1212 
   1213 /**
   1214  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1215  *  @hw: pointer to hardware structure
   1216  *  @offset: offset within the EEPROM to be read
   1217  *  @data: read 16 bit value from EEPROM
   1218  *
   1219  *  Reads 16 bit value from EEPROM through bit-bang method
   1220  **/
   1221 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1222 				       u16 *data)
   1223 {
   1224 	s32 status;
   1225 
   1226 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1227 
   1228 	hw->eeprom.ops.init_params(hw);
   1229 
   1230 	if (offset >= hw->eeprom.word_size) {
   1231 		status = IXGBE_ERR_EEPROM;
   1232 		goto out;
   1233 	}
   1234 
   1235 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1236 
   1237 out:
   1238 	return status;
   1239 }
   1240 
   1241 /**
   1242  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1243  *  @hw: pointer to hardware structure
   1244  *  @offset: offset of word in the EEPROM to read
   1245  *  @words: number of word(s)
   1246  *  @data: 16 bit word(s) from the EEPROM
   1247  *
   1248  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1249  **/
   1250 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1251 				   u16 words, u16 *data)
   1252 {
   1253 	u32 eerd;
   1254 	s32 status = IXGBE_SUCCESS;
   1255 	u32 i;
   1256 
   1257 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1258 
   1259 	hw->eeprom.ops.init_params(hw);
   1260 
   1261 	if (words == 0) {
   1262 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1263 		goto out;
   1264 	}
   1265 
   1266 	if (offset >= hw->eeprom.word_size) {
   1267 		status = IXGBE_ERR_EEPROM;
   1268 		goto out;
   1269 	}
   1270 
   1271 	for (i = 0; i < words; i++) {
   1272 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
   1273 		       IXGBE_EEPROM_RW_REG_START;
   1274 
   1275 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1276 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1277 
   1278 		if (status == IXGBE_SUCCESS) {
   1279 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1280 				   IXGBE_EEPROM_RW_REG_DATA);
   1281 		} else {
   1282 			DEBUGOUT("Eeprom read timed out\n");
   1283 			goto out;
   1284 		}
   1285 	}
   1286 out:
   1287 	return status;
   1288 }
   1289 
   1290 /**
   1291  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1292  *  @hw: pointer to hardware structure
   1293  *  @offset: offset within the EEPROM to be used as a scratch pad
   1294  *
   1295  *  Discover EEPROM page size by writing marching data at given offset.
   1296  *  This function is called only when we are writing a new large buffer
   1297  *  at given offset so the data would be overwritten anyway.
   1298  **/
   1299 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1300 						 u16 offset)
   1301 {
   1302 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1303 	s32 status = IXGBE_SUCCESS;
   1304 	u16 i;
   1305 
   1306 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1307 
   1308 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1309 		data[i] = i;
   1310 
   1311 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1312 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1313 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1314 	hw->eeprom.word_page_size = 0;
   1315 	if (status != IXGBE_SUCCESS)
   1316 		goto out;
   1317 
   1318 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1319 	if (status != IXGBE_SUCCESS)
   1320 		goto out;
   1321 
   1322 	/*
   1323 	 * When writing in burst more than the actual page size
   1324 	 * EEPROM address wraps around current page.
   1325 	 */
   1326 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1327 
   1328 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1329 		  hw->eeprom.word_page_size);
   1330 out:
   1331 	return status;
   1332 }
   1333 
   1334 /**
   1335  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1336  *  @hw: pointer to hardware structure
   1337  *  @offset: offset of  word in the EEPROM to read
   1338  *  @data: word read from the EEPROM
   1339  *
   1340  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1341  **/
   1342 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1343 {
   1344 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1345 }
   1346 
   1347 /**
   1348  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1349  *  @hw: pointer to hardware structure
   1350  *  @offset: offset of  word in the EEPROM to write
   1351  *  @words: number of word(s)
   1352  *  @data: word(s) write to the EEPROM
   1353  *
   1354  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1355  **/
   1356 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1357 				    u16 words, u16 *data)
   1358 {
   1359 	u32 eewr;
   1360 	s32 status = IXGBE_SUCCESS;
   1361 	u16 i;
   1362 
   1363 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1364 
   1365 	hw->eeprom.ops.init_params(hw);
   1366 
   1367 	if (words == 0) {
   1368 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1369 		goto out;
   1370 	}
   1371 
   1372 	if (offset >= hw->eeprom.word_size) {
   1373 		status = IXGBE_ERR_EEPROM;
   1374 		goto out;
   1375 	}
   1376 
   1377 	for (i = 0; i < words; i++) {
   1378 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1379 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1380 			IXGBE_EEPROM_RW_REG_START;
   1381 
   1382 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1383 		if (status != IXGBE_SUCCESS) {
   1384 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1385 			goto out;
   1386 		}
   1387 
   1388 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1389 
   1390 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1391 		if (status != IXGBE_SUCCESS) {
   1392 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1393 			goto out;
   1394 		}
   1395 	}
   1396 
   1397 out:
   1398 	return status;
   1399 }
   1400 
   1401 /**
   1402  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1403  *  @hw: pointer to hardware structure
   1404  *  @offset: offset of  word in the EEPROM to write
   1405  *  @data: word write to the EEPROM
   1406  *
   1407  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1408  **/
   1409 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1410 {
   1411 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1412 }
   1413 
   1414 /**
   1415  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1416  *  @hw: pointer to hardware structure
   1417  *  @ee_reg: EEPROM flag for polling
   1418  *
   1419  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1420  *  read or write is done respectively.
   1421  **/
   1422 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1423 {
   1424 	u32 i;
   1425 	u32 reg;
   1426 	s32 status = IXGBE_ERR_EEPROM;
   1427 
   1428 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1429 
   1430 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1431 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1432 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1433 		else
   1434 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1435 
   1436 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1437 			status = IXGBE_SUCCESS;
   1438 			break;
   1439 		}
   1440 		usec_delay(5);
   1441 	}
   1442 	return status;
   1443 }
   1444 
   1445 /**
   1446  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1447  *  @hw: pointer to hardware structure
   1448  *
   1449  *  Prepares EEPROM for access using bit-bang method. This function should
   1450  *  be called before issuing a command to the EEPROM.
   1451  **/
   1452 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1453 {
   1454 	s32 status = IXGBE_SUCCESS;
   1455 	u32 eec;
   1456 	u32 i;
   1457 
   1458 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1459 
   1460 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1461 	    != IXGBE_SUCCESS)
   1462 		status = IXGBE_ERR_SWFW_SYNC;
   1463 
   1464 	if (status == IXGBE_SUCCESS) {
   1465 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1466 
   1467 		/* Request EEPROM Access */
   1468 		eec |= IXGBE_EEC_REQ;
   1469 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1470 
   1471 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1472 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1473 			if (eec & IXGBE_EEC_GNT)
   1474 				break;
   1475 			usec_delay(5);
   1476 		}
   1477 
   1478 		/* Release if grant not acquired */
   1479 		if (!(eec & IXGBE_EEC_GNT)) {
   1480 			eec &= ~IXGBE_EEC_REQ;
   1481 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1482 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1483 
   1484 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1485 			status = IXGBE_ERR_EEPROM;
   1486 		}
   1487 
   1488 		/* Setup EEPROM for Read/Write */
   1489 		if (status == IXGBE_SUCCESS) {
   1490 			/* Clear CS and SK */
   1491 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1492 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1493 			IXGBE_WRITE_FLUSH(hw);
   1494 			usec_delay(1);
   1495 		}
   1496 	}
   1497 	return status;
   1498 }
   1499 
   1500 /**
   1501  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1502  *  @hw: pointer to hardware structure
   1503  *
   1504  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1505  **/
   1506 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1507 {
   1508 	s32 status = IXGBE_ERR_EEPROM;
   1509 	u32 timeout = 2000;
   1510 	u32 i;
   1511 	u32 swsm;
   1512 
   1513 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1514 
   1515 
   1516 	/* Get SMBI software semaphore between device drivers first */
   1517 	for (i = 0; i < timeout; i++) {
   1518 		/*
   1519 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1520 		 * set and we have the semaphore
   1521 		 */
   1522 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1523 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1524 			status = IXGBE_SUCCESS;
   1525 			break;
   1526 		}
   1527 		usec_delay(50);
   1528 	}
   1529 
   1530 	if (i == timeout) {
   1531 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1532 			 "not granted.\n");
   1533 		/*
   1534 		 * this release is particularly important because our attempts
   1535 		 * above to get the semaphore may have succeeded, and if there
   1536 		 * was a timeout, we should unconditionally clear the semaphore
   1537 		 * bits to free the driver to make progress
   1538 		 */
   1539 		ixgbe_release_eeprom_semaphore(hw);
   1540 
   1541 		usec_delay(50);
   1542 		/*
   1543 		 * one last try
   1544 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1545 		 * set and we have the semaphore
   1546 		 */
   1547 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1548 		if (!(swsm & IXGBE_SWSM_SMBI))
   1549 			status = IXGBE_SUCCESS;
   1550 	}
   1551 
   1552 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1553 	if (status == IXGBE_SUCCESS) {
   1554 		for (i = 0; i < timeout; i++) {
   1555 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1556 
   1557 			/* Set the SW EEPROM semaphore bit to request access */
   1558 			swsm |= IXGBE_SWSM_SWESMBI;
   1559 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1560 
   1561 			/*
   1562 			 * If we set the bit successfully then we got the
   1563 			 * semaphore.
   1564 			 */
   1565 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1566 			if (swsm & IXGBE_SWSM_SWESMBI)
   1567 				break;
   1568 
   1569 			usec_delay(50);
   1570 		}
   1571 
   1572 		/*
   1573 		 * Release semaphores and return error if SW EEPROM semaphore
   1574 		 * was not granted because we don't have access to the EEPROM
   1575 		 */
   1576 		if (i >= timeout) {
   1577 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
   1578 				 "not granted.\n");
   1579 			ixgbe_release_eeprom_semaphore(hw);
   1580 			status = IXGBE_ERR_EEPROM;
   1581 		}
   1582 	} else {
   1583 		DEBUGOUT("Software semaphore SMBI between device drivers "
   1584 			 "not granted.\n");
   1585 	}
   1586 
   1587 	return status;
   1588 }
   1589 
   1590 /**
   1591  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1592  *  @hw: pointer to hardware structure
   1593  *
   1594  *  This function clears hardware semaphore bits.
   1595  **/
   1596 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1597 {
   1598 	u32 swsm;
   1599 
   1600 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1601 
   1602 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1603 
   1604 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1605 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1606 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1607 	IXGBE_WRITE_FLUSH(hw);
   1608 }
   1609 
   1610 /**
   1611  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1612  *  @hw: pointer to hardware structure
   1613  **/
   1614 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1615 {
   1616 	s32 status = IXGBE_SUCCESS;
   1617 	u16 i;
   1618 	u8 spi_stat_reg;
   1619 
   1620 	DEBUGFUNC("ixgbe_ready_eeprom");
   1621 
   1622 	/*
   1623 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1624 	 * EEPROM will signal that the command has been completed by clearing
   1625 	 * bit 0 of the internal status register.  If it's not cleared within
   1626 	 * 5 milliseconds, then error out.
   1627 	 */
   1628 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1629 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1630 					    IXGBE_EEPROM_OPCODE_BITS);
   1631 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1632 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1633 			break;
   1634 
   1635 		usec_delay(5);
   1636 		ixgbe_standby_eeprom(hw);
   1637 	};
   1638 
   1639 	/*
   1640 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1641 	 * devices (and only 0-5mSec on 5V devices)
   1642 	 */
   1643 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1644 		DEBUGOUT("SPI EEPROM Status error\n");
   1645 		status = IXGBE_ERR_EEPROM;
   1646 	}
   1647 
   1648 	return status;
   1649 }
   1650 
   1651 /**
   1652  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1653  *  @hw: pointer to hardware structure
   1654  **/
   1655 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1656 {
   1657 	u32 eec;
   1658 
   1659 	DEBUGFUNC("ixgbe_standby_eeprom");
   1660 
   1661 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1662 
   1663 	/* Toggle CS to flush commands */
   1664 	eec |= IXGBE_EEC_CS;
   1665 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1666 	IXGBE_WRITE_FLUSH(hw);
   1667 	usec_delay(1);
   1668 	eec &= ~IXGBE_EEC_CS;
   1669 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1670 	IXGBE_WRITE_FLUSH(hw);
   1671 	usec_delay(1);
   1672 }
   1673 
   1674 /**
   1675  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1676  *  @hw: pointer to hardware structure
   1677  *  @data: data to send to the EEPROM
   1678  *  @count: number of bits to shift out
   1679  **/
   1680 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1681 					u16 count)
   1682 {
   1683 	u32 eec;
   1684 	u32 mask;
   1685 	u32 i;
   1686 
   1687 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1688 
   1689 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1690 
   1691 	/*
   1692 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1693 	 * one bit at a time.  Determine the starting bit based on count
   1694 	 */
   1695 	mask = 0x01 << (count - 1);
   1696 
   1697 	for (i = 0; i < count; i++) {
   1698 		/*
   1699 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1700 		 * "1", and then raising and then lowering the clock (the SK
   1701 		 * bit controls the clock input to the EEPROM).  A "0" is
   1702 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1703 		 * raising and then lowering the clock.
   1704 		 */
   1705 		if (data & mask)
   1706 			eec |= IXGBE_EEC_DI;
   1707 		else
   1708 			eec &= ~IXGBE_EEC_DI;
   1709 
   1710 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1711 		IXGBE_WRITE_FLUSH(hw);
   1712 
   1713 		usec_delay(1);
   1714 
   1715 		ixgbe_raise_eeprom_clk(hw, &eec);
   1716 		ixgbe_lower_eeprom_clk(hw, &eec);
   1717 
   1718 		/*
   1719 		 * Shift mask to signify next bit of data to shift in to the
   1720 		 * EEPROM
   1721 		 */
   1722 		mask = mask >> 1;
   1723 	};
   1724 
   1725 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1726 	eec &= ~IXGBE_EEC_DI;
   1727 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1728 	IXGBE_WRITE_FLUSH(hw);
   1729 }
   1730 
   1731 /**
   1732  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1733  *  @hw: pointer to hardware structure
   1734  **/
   1735 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1736 {
   1737 	u32 eec;
   1738 	u32 i;
   1739 	u16 data = 0;
   1740 
   1741 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   1742 
   1743 	/*
   1744 	 * In order to read a register from the EEPROM, we need to shift
   1745 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1746 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1747 	 * the value of the "DO" bit.  During this "shifting in" process the
   1748 	 * "DI" bit should always be clear.
   1749 	 */
   1750 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1751 
   1752 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1753 
   1754 	for (i = 0; i < count; i++) {
   1755 		data = data << 1;
   1756 		ixgbe_raise_eeprom_clk(hw, &eec);
   1757 
   1758 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1759 
   1760 		eec &= ~(IXGBE_EEC_DI);
   1761 		if (eec & IXGBE_EEC_DO)
   1762 			data |= 1;
   1763 
   1764 		ixgbe_lower_eeprom_clk(hw, &eec);
   1765 	}
   1766 
   1767 	return data;
   1768 }
   1769 
   1770 /**
   1771  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1772  *  @hw: pointer to hardware structure
   1773  *  @eec: EEC register's current value
   1774  **/
   1775 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1776 {
   1777 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   1778 
   1779 	/*
   1780 	 * Raise the clock input to the EEPROM
   1781 	 * (setting the SK bit), then delay
   1782 	 */
   1783 	*eec = *eec | IXGBE_EEC_SK;
   1784 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1785 	IXGBE_WRITE_FLUSH(hw);
   1786 	usec_delay(1);
   1787 }
   1788 
   1789 /**
   1790  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   1791  *  @hw: pointer to hardware structure
   1792  *  @eecd: EECD's current value
   1793  **/
   1794 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1795 {
   1796 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   1797 
   1798 	/*
   1799 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   1800 	 * delay
   1801 	 */
   1802 	*eec = *eec & ~IXGBE_EEC_SK;
   1803 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   1804 	IXGBE_WRITE_FLUSH(hw);
   1805 	usec_delay(1);
   1806 }
   1807 
   1808 /**
   1809  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   1810  *  @hw: pointer to hardware structure
   1811  **/
   1812 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   1813 {
   1814 	u32 eec;
   1815 
   1816 	DEBUGFUNC("ixgbe_release_eeprom");
   1817 
   1818 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1819 
   1820 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   1821 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   1822 
   1823 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1824 	IXGBE_WRITE_FLUSH(hw);
   1825 
   1826 	usec_delay(1);
   1827 
   1828 	/* Stop requesting EEPROM access */
   1829 	eec &= ~IXGBE_EEC_REQ;
   1830 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1831 
   1832 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1833 
   1834 	/* Delay before attempt to obtain semaphore again to allow FW access */
   1835 	msec_delay(hw->eeprom.semaphore_delay);
   1836 }
   1837 
   1838 /**
   1839  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   1840  *  @hw: pointer to hardware structure
   1841  **/
   1842 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1843 {
   1844 	u16 i;
   1845 	u16 j;
   1846 	u16 checksum = 0;
   1847 	u16 length = 0;
   1848 	u16 pointer = 0;
   1849 	u16 word = 0;
   1850 
   1851 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   1852 
   1853 	/* Include 0x0-0x3F in the checksum */
   1854 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   1855 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
   1856 			DEBUGOUT("EEPROM read failed\n");
   1857 			break;
   1858 		}
   1859 		checksum += word;
   1860 	}
   1861 
   1862 	/* Include all data from pointers except for the fw pointer */
   1863 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   1864 		hw->eeprom.ops.read(hw, i, &pointer);
   1865 
   1866 		/* Make sure the pointer seems valid */
   1867 		if (pointer != 0xFFFF && pointer != 0) {
   1868 			hw->eeprom.ops.read(hw, pointer, &length);
   1869 
   1870 			if (length != 0xFFFF && length != 0) {
   1871 				for (j = pointer+1; j <= pointer+length; j++) {
   1872 					hw->eeprom.ops.read(hw, j, &word);
   1873 					checksum += word;
   1874 				}
   1875 			}
   1876 		}
   1877 	}
   1878 
   1879 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   1880 
   1881 	return checksum;
   1882 }
   1883 
   1884 /**
   1885  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   1886  *  @hw: pointer to hardware structure
   1887  *  @checksum_val: calculated checksum
   1888  *
   1889  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   1890  *  caller does not need checksum_val, the value can be NULL.
   1891  **/
   1892 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   1893 					   u16 *checksum_val)
   1894 {
   1895 	s32 status;
   1896 	u16 checksum;
   1897 	u16 read_checksum = 0;
   1898 
   1899 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   1900 
   1901 	/*
   1902 	 * Read the first word from the EEPROM. If this times out or fails, do
   1903 	 * not continue or we could be in for a very long wait while every
   1904 	 * EEPROM read fails
   1905 	 */
   1906 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1907 
   1908 	if (status == IXGBE_SUCCESS) {
   1909 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1910 
   1911 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   1912 
   1913 		/*
   1914 		 * Verify read checksum from EEPROM is the same as
   1915 		 * calculated checksum
   1916 		 */
   1917 		if (read_checksum != checksum)
   1918 			status = IXGBE_ERR_EEPROM_CHECKSUM;
   1919 
   1920 		/* If the user cares, return the calculated checksum */
   1921 		if (checksum_val)
   1922 			*checksum_val = checksum;
   1923 	} else {
   1924 		DEBUGOUT("EEPROM read failed\n");
   1925 	}
   1926 
   1927 	return status;
   1928 }
   1929 
   1930 /**
   1931  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   1932  *  @hw: pointer to hardware structure
   1933  **/
   1934 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1935 {
   1936 	s32 status;
   1937 	u16 checksum;
   1938 
   1939 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   1940 
   1941 	/*
   1942 	 * Read the first word from the EEPROM. If this times out or fails, do
   1943 	 * not continue or we could be in for a very long wait while every
   1944 	 * EEPROM read fails
   1945 	 */
   1946 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1947 
   1948 	if (status == IXGBE_SUCCESS) {
   1949 		checksum = hw->eeprom.ops.calc_checksum(hw);
   1950 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
   1951 					      checksum);
   1952 	} else {
   1953 		DEBUGOUT("EEPROM read failed\n");
   1954 	}
   1955 
   1956 	return status;
   1957 }
   1958 
   1959 /**
   1960  *  ixgbe_validate_mac_addr - Validate MAC address
   1961  *  @mac_addr: pointer to MAC address.
   1962  *
   1963  *  Tests a MAC address to ensure it is a valid Individual Address
   1964  **/
   1965 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   1966 {
   1967 	s32 status = IXGBE_SUCCESS;
   1968 
   1969 	DEBUGFUNC("ixgbe_validate_mac_addr");
   1970 
   1971 	/* Make sure it is not a multicast address */
   1972 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   1973 		DEBUGOUT("MAC address is multicast\n");
   1974 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1975 	/* Not a broadcast address */
   1976 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   1977 		DEBUGOUT("MAC address is broadcast\n");
   1978 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1979 	/* Reject the zero address */
   1980 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   1981 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   1982 		DEBUGOUT("MAC address is all zeros\n");
   1983 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   1984 	}
   1985 	return status;
   1986 }
   1987 
   1988 /**
   1989  *  ixgbe_set_rar_generic - Set Rx address register
   1990  *  @hw: pointer to hardware structure
   1991  *  @index: Receive address register to write
   1992  *  @addr: Address to put into receive address register
   1993  *  @vmdq: VMDq "set" or "pool" index
   1994  *  @enable_addr: set flag that address is active
   1995  *
   1996  *  Puts an ethernet address into a receive address register.
   1997  **/
   1998 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   1999 			  u32 enable_addr)
   2000 {
   2001 	u32 rar_low, rar_high;
   2002 	u32 rar_entries = hw->mac.num_rar_entries;
   2003 
   2004 	DEBUGFUNC("ixgbe_set_rar_generic");
   2005 
   2006 	/* Make sure we are using a valid rar index range */
   2007 	if (index >= rar_entries) {
   2008 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2009 		return IXGBE_ERR_INVALID_ARGUMENT;
   2010 	}
   2011 
   2012 	/* setup VMDq pool selection before this RAR gets enabled */
   2013 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2014 
   2015 	/*
   2016 	 * HW expects these in little endian so we reverse the byte
   2017 	 * order from network order (big endian) to little endian
   2018 	 */
   2019 	rar_low = ((u32)addr[0] |
   2020 		   ((u32)addr[1] << 8) |
   2021 		   ((u32)addr[2] << 16) |
   2022 		   ((u32)addr[3] << 24));
   2023 	/*
   2024 	 * Some parts put the VMDq setting in the extra RAH bits,
   2025 	 * so save everything except the lower 16 bits that hold part
   2026 	 * of the address and the address valid bit.
   2027 	 */
   2028 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2029 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2030 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2031 
   2032 	if (enable_addr != 0)
   2033 		rar_high |= IXGBE_RAH_AV;
   2034 
   2035 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2036 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2037 
   2038 	return IXGBE_SUCCESS;
   2039 }
   2040 
   2041 /**
   2042  *  ixgbe_clear_rar_generic - Remove Rx address register
   2043  *  @hw: pointer to hardware structure
   2044  *  @index: Receive address register to write
   2045  *
   2046  *  Clears an ethernet address from a receive address register.
   2047  **/
   2048 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2049 {
   2050 	u32 rar_high;
   2051 	u32 rar_entries = hw->mac.num_rar_entries;
   2052 
   2053 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2054 
   2055 	/* Make sure we are using a valid rar index range */
   2056 	if (index >= rar_entries) {
   2057 		DEBUGOUT1("RAR index %d is out of range.\n", index);
   2058 		return IXGBE_ERR_INVALID_ARGUMENT;
   2059 	}
   2060 
   2061 	/*
   2062 	 * Some parts put the VMDq setting in the extra RAH bits,
   2063 	 * so save everything except the lower 16 bits that hold part
   2064 	 * of the address and the address valid bit.
   2065 	 */
   2066 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2067 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2068 
   2069 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2070 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2071 
   2072 	/* clear VMDq pool/queue selection for this RAR */
   2073 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2074 
   2075 	return IXGBE_SUCCESS;
   2076 }
   2077 
   2078 /**
   2079  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2080  *  @hw: pointer to hardware structure
   2081  *
   2082  *  Places the MAC address in receive address register 0 and clears the rest
   2083  *  of the receive address registers. Clears the multicast table. Assumes
   2084  *  the receiver is in reset when the routine is called.
   2085  **/
   2086 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2087 {
   2088 	u32 i;
   2089 	u32 rar_entries = hw->mac.num_rar_entries;
   2090 
   2091 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2092 
   2093 	/*
   2094 	 * If the current mac address is valid, assume it is a software override
   2095 	 * to the permanent address.
   2096 	 * Otherwise, use the permanent address from the eeprom.
   2097 	 */
   2098 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2099 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2100 		/* Get the MAC address from the RAR0 for later reference */
   2101 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2102 
   2103 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2104 			  hw->mac.addr[0], hw->mac.addr[1],
   2105 			  hw->mac.addr[2]);
   2106 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2107 			  hw->mac.addr[4], hw->mac.addr[5]);
   2108 	} else {
   2109 		/* Setup the receive address. */
   2110 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2111 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2112 			  hw->mac.addr[0], hw->mac.addr[1],
   2113 			  hw->mac.addr[2]);
   2114 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2115 			  hw->mac.addr[4], hw->mac.addr[5]);
   2116 
   2117 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2118 
   2119 		/* clear VMDq pool/queue selection for RAR 0 */
   2120 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2121 	}
   2122 	hw->addr_ctrl.overflow_promisc = 0;
   2123 
   2124 	hw->addr_ctrl.rar_used_count = 1;
   2125 
   2126 	/* Zero out the other receive addresses. */
   2127 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2128 	for (i = 1; i < rar_entries; i++) {
   2129 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2130 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2131 	}
   2132 
   2133 	/* Clear the MTA */
   2134 	hw->addr_ctrl.mta_in_use = 0;
   2135 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2136 
   2137 	DEBUGOUT(" Clearing MTA\n");
   2138 	for (i = 0; i < hw->mac.mcft_size; i++)
   2139 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2140 
   2141 	ixgbe_init_uta_tables(hw);
   2142 
   2143 	return IXGBE_SUCCESS;
   2144 }
   2145 
   2146 /**
   2147  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2148  *  @hw: pointer to hardware structure
   2149  *  @addr: new address
   2150  *
   2151  *  Adds it to unused receive address register or goes into promiscuous mode.
   2152  **/
   2153 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2154 {
   2155 	u32 rar_entries = hw->mac.num_rar_entries;
   2156 	u32 rar;
   2157 
   2158 	DEBUGFUNC("ixgbe_add_uc_addr");
   2159 
   2160 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2161 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2162 
   2163 	/*
   2164 	 * Place this address in the RAR if there is room,
   2165 	 * else put the controller into promiscuous mode
   2166 	 */
   2167 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2168 		rar = hw->addr_ctrl.rar_used_count;
   2169 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2170 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2171 		hw->addr_ctrl.rar_used_count++;
   2172 	} else {
   2173 		hw->addr_ctrl.overflow_promisc++;
   2174 	}
   2175 
   2176 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2177 }
   2178 
   2179 /**
   2180  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2181  *  @hw: pointer to hardware structure
   2182  *  @addr_list: the list of new addresses
   2183  *  @addr_count: number of addresses
   2184  *  @next: iterator function to walk the address list
   2185  *
   2186  *  The given list replaces any existing list.  Clears the secondary addrs from
   2187  *  receive address registers.  Uses unused receive address registers for the
   2188  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2189  *
   2190  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2191  *  manually putting the device into promiscuous mode.
   2192  **/
   2193 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2194 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2195 {
   2196 	u8 *addr;
   2197 	u32 i;
   2198 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2199 	u32 uc_addr_in_use;
   2200 	u32 fctrl;
   2201 	u32 vmdq;
   2202 
   2203 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2204 
   2205 	/*
   2206 	 * Clear accounting of old secondary address list,
   2207 	 * don't count RAR[0]
   2208 	 */
   2209 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2210 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2211 	hw->addr_ctrl.overflow_promisc = 0;
   2212 
   2213 	/* Zero out the other receive addresses */
   2214 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2215 	for (i = 0; i < uc_addr_in_use; i++) {
   2216 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2217 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2218 	}
   2219 
   2220 	/* Add the new addresses */
   2221 	for (i = 0; i < addr_count; i++) {
   2222 		DEBUGOUT(" Adding the secondary addresses:\n");
   2223 		addr = next(hw, &addr_list, &vmdq);
   2224 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2225 	}
   2226 
   2227 	if (hw->addr_ctrl.overflow_promisc) {
   2228 		/* enable promisc if not already in overflow or set by user */
   2229 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2230 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2231 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2232 			fctrl |= IXGBE_FCTRL_UPE;
   2233 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2234 		}
   2235 	} else {
   2236 		/* only disable if set by overflow, not by user */
   2237 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2238 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2239 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2240 			fctrl &= ~IXGBE_FCTRL_UPE;
   2241 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2242 		}
   2243 	}
   2244 
   2245 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2246 	return IXGBE_SUCCESS;
   2247 }
   2248 
   2249 /**
   2250  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2251  *  @hw: pointer to hardware structure
   2252  *  @mc_addr: the multicast address
   2253  *
   2254  *  Extracts the 12 bits, from a multicast address, to determine which
   2255  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2256  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2257  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2258  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2259  *  to mc_filter_type.
   2260  **/
   2261 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2262 {
   2263 	u32 vector = 0;
   2264 
   2265 	DEBUGFUNC("ixgbe_mta_vector");
   2266 
   2267 	switch (hw->mac.mc_filter_type) {
   2268 	case 0:   /* use bits [47:36] of the address */
   2269 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2270 		break;
   2271 	case 1:   /* use bits [46:35] of the address */
   2272 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2273 		break;
   2274 	case 2:   /* use bits [45:34] of the address */
   2275 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2276 		break;
   2277 	case 3:   /* use bits [43:32] of the address */
   2278 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2279 		break;
   2280 	default:  /* Invalid mc_filter_type */
   2281 		DEBUGOUT("MC filter type param set incorrectly\n");
   2282 		ASSERT(0);
   2283 		break;
   2284 	}
   2285 
   2286 	/* vector can only be 12-bits or boundary will be exceeded */
   2287 	vector &= 0xFFF;
   2288 	return vector;
   2289 }
   2290 
   2291 /**
   2292  *  ixgbe_set_mta - Set bit-vector in multicast table
   2293  *  @hw: pointer to hardware structure
   2294  *  @hash_value: Multicast address hash value
   2295  *
   2296  *  Sets the bit-vector in the multicast table.
   2297  **/
   2298 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2299 {
   2300 	u32 vector;
   2301 	u32 vector_bit;
   2302 	u32 vector_reg;
   2303 
   2304 	DEBUGFUNC("ixgbe_set_mta");
   2305 
   2306 	hw->addr_ctrl.mta_in_use++;
   2307 
   2308 	vector = ixgbe_mta_vector(hw, mc_addr);
   2309 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2310 
   2311 	/*
   2312 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2313 	 * like an array of 4096 bits.  We want to set bit
   2314 	 * BitArray[vector_value]. So we figure out what register the bit is
   2315 	 * in, read it, OR in the new bit, then write back the new value.  The
   2316 	 * register is determined by the upper 7 bits of the vector value and
   2317 	 * the bit within that register are determined by the lower 5 bits of
   2318 	 * the value.
   2319 	 */
   2320 	vector_reg = (vector >> 5) & 0x7F;
   2321 	vector_bit = vector & 0x1F;
   2322 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2323 }
   2324 
   2325 /**
   2326  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2327  *  @hw: pointer to hardware structure
   2328  *  @mc_addr_list: the list of new multicast addresses
   2329  *  @mc_addr_count: number of addresses
   2330  *  @next: iterator function to walk the multicast address list
   2331  *  @clear: flag, when set clears the table beforehand
   2332  *
   2333  *  When the clear flag is set, the given list replaces any existing list.
   2334  *  Hashes the given addresses into the multicast table.
   2335  **/
   2336 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2337 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2338 				      bool clear)
   2339 {
   2340 	u32 i;
   2341 	u32 vmdq;
   2342 
   2343 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2344 
   2345 	/*
   2346 	 * Set the new number of MC addresses that we are being requested to
   2347 	 * use.
   2348 	 */
   2349 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2350 	hw->addr_ctrl.mta_in_use = 0;
   2351 
   2352 	/* Clear mta_shadow */
   2353 	if (clear) {
   2354 		DEBUGOUT(" Clearing MTA\n");
   2355 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2356 	}
   2357 
   2358 	/* Update mta_shadow */
   2359 	for (i = 0; i < mc_addr_count; i++) {
   2360 		DEBUGOUT(" Adding the multicast addresses:\n");
   2361 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2362 	}
   2363 
   2364 	/* Enable mta */
   2365 	for (i = 0; i < hw->mac.mcft_size; i++)
   2366 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2367 				      hw->mac.mta_shadow[i]);
   2368 
   2369 	if (hw->addr_ctrl.mta_in_use > 0)
   2370 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2371 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2372 
   2373 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2374 	return IXGBE_SUCCESS;
   2375 }
   2376 
   2377 /**
   2378  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2379  *  @hw: pointer to hardware structure
   2380  *
   2381  *  Enables multicast address in RAR and the use of the multicast hash table.
   2382  **/
   2383 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2384 {
   2385 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2386 
   2387 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2388 
   2389 	if (a->mta_in_use > 0)
   2390 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2391 				hw->mac.mc_filter_type);
   2392 
   2393 	return IXGBE_SUCCESS;
   2394 }
   2395 
   2396 /**
   2397  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2398  *  @hw: pointer to hardware structure
   2399  *
   2400  *  Disables multicast address in RAR and the use of the multicast hash table.
   2401  **/
   2402 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2403 {
   2404 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2405 
   2406 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2407 
   2408 	if (a->mta_in_use > 0)
   2409 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2410 
   2411 	return IXGBE_SUCCESS;
   2412 }
   2413 
   2414 /**
   2415  *  ixgbe_fc_enable_generic - Enable flow control
   2416  *  @hw: pointer to hardware structure
   2417  *
   2418  *  Enable flow control according to the current settings.
   2419  **/
   2420 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2421 {
   2422 	s32 ret_val = IXGBE_SUCCESS;
   2423 	u32 mflcn_reg, fccfg_reg;
   2424 	u32 reg;
   2425 	u32 fcrtl, fcrth;
   2426 	int i;
   2427 
   2428 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2429 
   2430 	/* Validate the water mark configuration */
   2431 	if (!hw->fc.pause_time) {
   2432 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2433 		goto out;
   2434 	}
   2435 
   2436 	/* Low water mark of zero causes XOFF floods */
   2437 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2438 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2439 		    hw->fc.high_water[i]) {
   2440 			if (!hw->fc.low_water[i] ||
   2441 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2442 				DEBUGOUT("Invalid water mark configuration\n");
   2443 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2444 				goto out;
   2445 			}
   2446 		}
   2447 	}
   2448 
   2449 	/* Negotiate the fc mode to use */
   2450 	ixgbe_fc_autoneg(hw);
   2451 
   2452 	/* Disable any previous flow control settings */
   2453 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2454 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2455 
   2456 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2457 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2458 
   2459 	/*
   2460 	 * The possible values of fc.current_mode are:
   2461 	 * 0: Flow control is completely disabled
   2462 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2463 	 *    but not send pause frames).
   2464 	 * 2: Tx flow control is enabled (we can send pause frames but
   2465 	 *    we do not support receiving pause frames).
   2466 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2467 	 * other: Invalid.
   2468 	 */
   2469 	switch (hw->fc.current_mode) {
   2470 	case ixgbe_fc_none:
   2471 		/*
   2472 		 * Flow control is disabled by software override or autoneg.
   2473 		 * The code below will actually disable it in the HW.
   2474 		 */
   2475 		break;
   2476 	case ixgbe_fc_rx_pause:
   2477 		/*
   2478 		 * Rx Flow control is enabled and Tx Flow control is
   2479 		 * disabled by software override. Since there really
   2480 		 * isn't a way to advertise that we are capable of RX
   2481 		 * Pause ONLY, we will advertise that we support both
   2482 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2483 		 * disable the adapter's ability to send PAUSE frames.
   2484 		 */
   2485 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2486 		break;
   2487 	case ixgbe_fc_tx_pause:
   2488 		/*
   2489 		 * Tx Flow control is enabled, and Rx Flow control is
   2490 		 * disabled by software override.
   2491 		 */
   2492 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2493 		break;
   2494 	case ixgbe_fc_full:
   2495 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2496 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2497 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2498 		break;
   2499 	default:
   2500 		DEBUGOUT("Flow control param set incorrectly\n");
   2501 		ret_val = IXGBE_ERR_CONFIG;
   2502 		goto out;
   2503 		break;
   2504 	}
   2505 
   2506 	/* Set 802.3x based flow control settings. */
   2507 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2508 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2509 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2510 
   2511 
   2512 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2513 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2514 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2515 		    hw->fc.high_water[i]) {
   2516 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2517 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2518 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2519 		} else {
   2520 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2521 			/*
   2522 			 * In order to prevent Tx hangs when the internal Tx
   2523 			 * switch is enabled we must set the high water mark
   2524 			 * to the maximum FCRTH value.  This allows the Tx
   2525 			 * switch to function even under heavy Rx workloads.
   2526 			 */
   2527 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
   2528 		}
   2529 
   2530 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2531 	}
   2532 
   2533 	/* Configure pause time (2 TCs per register) */
   2534 	reg = hw->fc.pause_time * 0x00010001;
   2535 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2536 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2537 
   2538 	/* Configure flow control refresh threshold value */
   2539 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2540 
   2541 out:
   2542 	return ret_val;
   2543 }
   2544 
   2545 /**
   2546  *  ixgbe_negotiate_fc - Negotiate flow control
   2547  *  @hw: pointer to hardware structure
   2548  *  @adv_reg: flow control advertised settings
   2549  *  @lp_reg: link partner's flow control settings
   2550  *  @adv_sym: symmetric pause bit in advertisement
   2551  *  @adv_asm: asymmetric pause bit in advertisement
   2552  *  @lp_sym: symmetric pause bit in link partner advertisement
   2553  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2554  *
   2555  *  Find the intersection between advertised settings and link partner's
   2556  *  advertised settings
   2557  **/
   2558 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2559 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2560 {
   2561 	if ((!(adv_reg)) ||  (!(lp_reg)))
   2562 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2563 
   2564 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2565 		/*
   2566 		 * Now we need to check if the user selected Rx ONLY
   2567 		 * of pause frames.  In this case, we had to advertise
   2568 		 * FULL flow control because we could not advertise RX
   2569 		 * ONLY. Hence, we must now check to see if we need to
   2570 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2571 		 */
   2572 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2573 			hw->fc.current_mode = ixgbe_fc_full;
   2574 			DEBUGOUT("Flow Control = FULL.\n");
   2575 		} else {
   2576 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2577 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2578 		}
   2579 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2580 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2581 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2582 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2583 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2584 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2585 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2586 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2587 	} else {
   2588 		hw->fc.current_mode = ixgbe_fc_none;
   2589 		DEBUGOUT("Flow Control = NONE.\n");
   2590 	}
   2591 	return IXGBE_SUCCESS;
   2592 }
   2593 
   2594 /**
   2595  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2596  *  @hw: pointer to hardware structure
   2597  *
   2598  *  Enable flow control according on 1 gig fiber.
   2599  **/
   2600 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2601 {
   2602 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2603 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2604 
   2605 	/*
   2606 	 * On multispeed fiber at 1g, bail out if
   2607 	 * - link is up but AN did not complete, or if
   2608 	 * - link is up and AN completed but timed out
   2609 	 */
   2610 
   2611 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2612 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2613 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
   2614 		goto out;
   2615 
   2616 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2617 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2618 
   2619 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2620 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2621 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2622 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2623 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2624 
   2625 out:
   2626 	return ret_val;
   2627 }
   2628 
   2629 /**
   2630  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2631  *  @hw: pointer to hardware structure
   2632  *
   2633  *  Enable flow control according to IEEE clause 37.
   2634  **/
   2635 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2636 {
   2637 	u32 links2, anlp1_reg, autoc_reg, links;
   2638 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2639 
   2640 	/*
   2641 	 * On backplane, bail out if
   2642 	 * - backplane autoneg was not completed, or if
   2643 	 * - we are 82599 and link partner is not AN enabled
   2644 	 */
   2645 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2646 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
   2647 		goto out;
   2648 
   2649 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2650 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2651 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
   2652 			goto out;
   2653 	}
   2654 	/*
   2655 	 * Read the 10g AN autoc and LP ability registers and resolve
   2656 	 * local flow control settings accordingly
   2657 	 */
   2658 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2659 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2660 
   2661 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2662 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2663 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2664 
   2665 out:
   2666 	return ret_val;
   2667 }
   2668 
   2669 /**
   2670  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2671  *  @hw: pointer to hardware structure
   2672  *
   2673  *  Enable flow control according to IEEE clause 37.
   2674  **/
   2675 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2676 {
   2677 	u16 technology_ability_reg = 0;
   2678 	u16 lp_technology_ability_reg = 0;
   2679 
   2680 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2681 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2682 			     &technology_ability_reg);
   2683 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2684 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2685 			     &lp_technology_ability_reg);
   2686 
   2687 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2688 				  (u32)lp_technology_ability_reg,
   2689 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2690 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2691 }
   2692 
   2693 /**
   2694  *  ixgbe_fc_autoneg - Configure flow control
   2695  *  @hw: pointer to hardware structure
   2696  *
   2697  *  Compares our advertised flow control capabilities to those advertised by
   2698  *  our link partner, and determines the proper flow control mode to use.
   2699  **/
   2700 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2701 {
   2702 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2703 	ixgbe_link_speed speed;
   2704 	bool link_up;
   2705 
   2706 	DEBUGFUNC("ixgbe_fc_autoneg");
   2707 
   2708 	/*
   2709 	 * AN should have completed when the cable was plugged in.
   2710 	 * Look for reasons to bail out.  Bail out if:
   2711 	 * - FC autoneg is disabled, or if
   2712 	 * - link is not up.
   2713 	 */
   2714 	if (hw->fc.disable_fc_autoneg)
   2715 		goto out;
   2716 
   2717 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2718 	if (!link_up)
   2719 		goto out;
   2720 
   2721 	switch (hw->phy.media_type) {
   2722 	/* Autoneg flow control on fiber adapters */
   2723 	case ixgbe_media_type_fiber:
   2724 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2725 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2726 		break;
   2727 
   2728 	/* Autoneg flow control on backplane adapters */
   2729 	case ixgbe_media_type_backplane:
   2730 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2731 		break;
   2732 
   2733 	/* Autoneg flow control on copper adapters */
   2734 	case ixgbe_media_type_copper:
   2735 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
   2736 			ret_val = ixgbe_fc_autoneg_copper(hw);
   2737 		break;
   2738 
   2739 	default:
   2740 		break;
   2741 	}
   2742 
   2743 out:
   2744 	if (ret_val == IXGBE_SUCCESS) {
   2745 		hw->fc.fc_was_autonegged = TRUE;
   2746 	} else {
   2747 		hw->fc.fc_was_autonegged = FALSE;
   2748 		hw->fc.current_mode = hw->fc.requested_mode;
   2749 	}
   2750 }
   2751 
   2752 /**
   2753  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   2754  *  @hw: pointer to hardware structure
   2755  *
   2756  *  Disables PCI-Express master access and verifies there are no pending
   2757  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   2758  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   2759  *  is returned signifying master requests disabled.
   2760  **/
   2761 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   2762 {
   2763 	s32 status = IXGBE_SUCCESS;
   2764 	u32 i;
   2765 
   2766 	DEBUGFUNC("ixgbe_disable_pcie_master");
   2767 
   2768 	/* Always set this bit to ensure any future transactions are blocked */
   2769 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   2770 
   2771 	/* Exit if master requets are blocked */
   2772 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2773 		goto out;
   2774 
   2775 	/* Poll for master request bit to clear */
   2776 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2777 		usec_delay(100);
   2778 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2779 			goto out;
   2780 	}
   2781 
   2782 	/*
   2783 	 * Two consecutive resets are required via CTRL.RST per datasheet
   2784 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   2785 	 * of this need.  The first reset prevents new master requests from
   2786 	 * being issued by our device.  We then must wait 1usec or more for any
   2787 	 * remaining completions from the PCIe bus to trickle in, and then reset
   2788 	 * again to clear out any effects they may have had on our device.
   2789 	 */
   2790 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   2791 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   2792 
   2793 	/*
   2794 	 * Before proceeding, make sure that the PCIe block does not have
   2795 	 * transactions pending.
   2796 	 */
   2797 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   2798 		usec_delay(100);
   2799 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
   2800 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   2801 			goto out;
   2802 	}
   2803 
   2804 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
   2805 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   2806 
   2807 out:
   2808 	return status;
   2809 }
   2810 
   2811 /**
   2812  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   2813  *  @hw: pointer to hardware structure
   2814  *  @mask: Mask to specify which semaphore to acquire
   2815  *
   2816  *  Acquires the SWFW semaphore through the GSSR register for the specified
   2817  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2818  **/
   2819 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2820 {
   2821 	u32 gssr;
   2822 	u32 swmask = mask;
   2823 	u32 fwmask = mask << 5;
   2824 	s32 timeout = 200;
   2825 
   2826 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   2827 
   2828 	while (timeout) {
   2829 		/*
   2830 		 * SW EEPROM semaphore bit is used for access to all
   2831 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
   2832 		 */
   2833 		if (ixgbe_get_eeprom_semaphore(hw))
   2834 			return IXGBE_ERR_SWFW_SYNC;
   2835 
   2836 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2837 		if (!(gssr & (fwmask | swmask)))
   2838 			break;
   2839 
   2840 		/*
   2841 		 * Firmware currently using resource (fwmask) or other software
   2842 		 * thread currently using resource (swmask)
   2843 		 */
   2844 		ixgbe_release_eeprom_semaphore(hw);
   2845 		msec_delay(5);
   2846 		timeout--;
   2847 	}
   2848 
   2849 	if (!timeout) {
   2850 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
   2851 		return IXGBE_ERR_SWFW_SYNC;
   2852 	}
   2853 
   2854 	gssr |= swmask;
   2855 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2856 
   2857 	ixgbe_release_eeprom_semaphore(hw);
   2858 	return IXGBE_SUCCESS;
   2859 }
   2860 
   2861 /**
   2862  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   2863  *  @hw: pointer to hardware structure
   2864  *  @mask: Mask to specify which semaphore to release
   2865  *
   2866  *  Releases the SWFW semaphore through the GSSR register for the specified
   2867  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2868  **/
   2869 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
   2870 {
   2871 	u32 gssr;
   2872 	u32 swmask = mask;
   2873 
   2874 	DEBUGFUNC("ixgbe_release_swfw_sync");
   2875 
   2876 	ixgbe_get_eeprom_semaphore(hw);
   2877 
   2878 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2879 	gssr &= ~swmask;
   2880 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2881 
   2882 	ixgbe_release_eeprom_semaphore(hw);
   2883 }
   2884 
   2885 /**
   2886  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   2887  *  @hw: pointer to hardware structure
   2888  *
   2889  *  Stops the receive data path and waits for the HW to internally empty
   2890  *  the Rx security block
   2891  **/
   2892 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2893 {
   2894 #define IXGBE_MAX_SECRX_POLL 40
   2895 
   2896 	int i;
   2897 	int secrxreg;
   2898 
   2899 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   2900 
   2901 
   2902 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2903 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   2904 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2905 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   2906 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   2907 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   2908 			break;
   2909 		else
   2910 			/* Use interrupt-safe sleep just in case */
   2911 			usec_delay(1000);
   2912 	}
   2913 
   2914 	/* For informational purposes only */
   2915 	if (i >= IXGBE_MAX_SECRX_POLL)
   2916 		DEBUGOUT("Rx unit being enabled before security "
   2917 			 "path fully disabled.  Continuing with init.\n");
   2918 
   2919 	return IXGBE_SUCCESS;
   2920 }
   2921 
   2922 /**
   2923  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   2924  *  @hw: pointer to hardware structure
   2925  *
   2926  *  Enables the receive data path.
   2927  **/
   2928 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   2929 {
   2930 	int secrxreg;
   2931 
   2932 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   2933 
   2934 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2935 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   2936 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2937 	IXGBE_WRITE_FLUSH(hw);
   2938 
   2939 	return IXGBE_SUCCESS;
   2940 }
   2941 
   2942 /**
   2943  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   2944  *  @hw: pointer to hardware structure
   2945  *  @regval: register value to write to RXCTRL
   2946  *
   2947  *  Enables the Rx DMA unit
   2948  **/
   2949 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   2950 {
   2951 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   2952 
   2953 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
   2954 
   2955 	return IXGBE_SUCCESS;
   2956 }
   2957 
   2958 /**
   2959  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   2960  *  @hw: pointer to hardware structure
   2961  *  @index: led number to blink
   2962  **/
   2963 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   2964 {
   2965 	ixgbe_link_speed speed = 0;
   2966 	bool link_up = 0;
   2967 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2968 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2969 
   2970 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   2971 
   2972 	/*
   2973 	 * Link must be up to auto-blink the LEDs;
   2974 	 * Force it if link is down.
   2975 	 */
   2976 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   2977 
   2978 	if (!link_up) {
   2979 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2980 		autoc_reg |= IXGBE_AUTOC_FLU;
   2981 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   2982 		IXGBE_WRITE_FLUSH(hw);
   2983 		msec_delay(10);
   2984 	}
   2985 
   2986 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2987 	led_reg |= IXGBE_LED_BLINK(index);
   2988 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2989 	IXGBE_WRITE_FLUSH(hw);
   2990 
   2991 	return IXGBE_SUCCESS;
   2992 }
   2993 
   2994 /**
   2995  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   2996  *  @hw: pointer to hardware structure
   2997  *  @index: led number to stop blinking
   2998  **/
   2999 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3000 {
   3001 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3002 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3003 
   3004 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3005 
   3006 
   3007 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3008 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3009 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
   3010 
   3011 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3012 	led_reg &= ~IXGBE_LED_BLINK(index);
   3013 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3014 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3015 	IXGBE_WRITE_FLUSH(hw);
   3016 
   3017 	return IXGBE_SUCCESS;
   3018 }
   3019 
   3020 /**
   3021  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3022  *  @hw: pointer to hardware structure
   3023  *  @san_mac_offset: SAN MAC address offset
   3024  *
   3025  *  This function will read the EEPROM location for the SAN MAC address
   3026  *  pointer, and returns the value at that location.  This is used in both
   3027  *  get and set mac_addr routines.
   3028  **/
   3029 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3030 					 u16 *san_mac_offset)
   3031 {
   3032 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3033 
   3034 	/*
   3035 	 * First read the EEPROM pointer to see if the MAC addresses are
   3036 	 * available.
   3037 	 */
   3038 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
   3039 
   3040 	return IXGBE_SUCCESS;
   3041 }
   3042 
   3043 /**
   3044  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3045  *  @hw: pointer to hardware structure
   3046  *  @san_mac_addr: SAN MAC address
   3047  *
   3048  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3049  *  per-port, so set_lan_id() must be called before reading the addresses.
   3050  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3051  *  upon for non-SFP connections, so we must call it here.
   3052  **/
   3053 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3054 {
   3055 	u16 san_mac_data, san_mac_offset;
   3056 	u8 i;
   3057 
   3058 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3059 
   3060 	/*
   3061 	 * First read the EEPROM pointer to see if the MAC addresses are
   3062 	 * available.  If they're not, no point in calling set_lan_id() here.
   3063 	 */
   3064 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3065 
   3066 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3067 		/*
   3068 		 * No addresses available in this EEPROM.  It's not an
   3069 		 * error though, so just wipe the local address and return.
   3070 		 */
   3071 		for (i = 0; i < 6; i++)
   3072 			san_mac_addr[i] = 0xFF;
   3073 
   3074 		goto san_mac_addr_out;
   3075 	}
   3076 
   3077 	/* make sure we know which port we need to program */
   3078 	hw->mac.ops.set_lan_id(hw);
   3079 	/* apply the port offset to the address offset */
   3080 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3081 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3082 	for (i = 0; i < 3; i++) {
   3083 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
   3084 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3085 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3086 		san_mac_offset++;
   3087 	}
   3088 
   3089 san_mac_addr_out:
   3090 	return IXGBE_SUCCESS;
   3091 }
   3092 
   3093 /**
   3094  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3095  *  @hw: pointer to hardware structure
   3096  *  @san_mac_addr: SAN MAC address
   3097  *
   3098  *  Write a SAN MAC address to the EEPROM.
   3099  **/
   3100 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3101 {
   3102 	s32 status = IXGBE_SUCCESS;
   3103 	u16 san_mac_data, san_mac_offset;
   3104 	u8 i;
   3105 
   3106 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3107 
   3108 	/* Look for SAN mac address pointer.  If not defined, return */
   3109 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3110 
   3111 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
   3112 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
   3113 		goto san_mac_addr_out;
   3114 	}
   3115 
   3116 	/* Make sure we know which port we need to write */
   3117 	hw->mac.ops.set_lan_id(hw);
   3118 	/* Apply the port offset to the address offset */
   3119 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3120 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3121 
   3122 	for (i = 0; i < 3; i++) {
   3123 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3124 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3125 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3126 		san_mac_offset++;
   3127 	}
   3128 
   3129 san_mac_addr_out:
   3130 	return status;
   3131 }
   3132 
   3133 /**
   3134  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3135  *  @hw: pointer to hardware structure
   3136  *
   3137  *  Read PCIe configuration space, and get the MSI-X vector count from
   3138  *  the capabilities table.
   3139  **/
   3140 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3141 {
   3142 	u16 msix_count = 1;
   3143 	u16 max_msix_count;
   3144 	u16 pcie_offset;
   3145 
   3146 	switch (hw->mac.type) {
   3147 	case ixgbe_mac_82598EB:
   3148 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3149 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3150 		break;
   3151 	case ixgbe_mac_82599EB:
   3152 	case ixgbe_mac_X540:
   3153 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3154 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3155 		break;
   3156 	default:
   3157 		return msix_count;
   3158 	}
   3159 
   3160 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3161 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3162 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3163 
   3164 	/* MSI-X count is zero-based in HW */
   3165 	msix_count++;
   3166 
   3167 	if (msix_count > max_msix_count)
   3168 		msix_count = max_msix_count;
   3169 
   3170 	return msix_count;
   3171 }
   3172 
   3173 /**
   3174  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3175  *  @hw: pointer to hardware structure
   3176  *  @addr: Address to put into receive address register
   3177  *  @vmdq: VMDq pool to assign
   3178  *
   3179  *  Puts an ethernet address into a receive address register, or
   3180  *  finds the rar that it is aleady in; adds to the pool list
   3181  **/
   3182 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3183 {
   3184 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3185 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3186 	u32 rar;
   3187 	u32 rar_low, rar_high;
   3188 	u32 addr_low, addr_high;
   3189 
   3190 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3191 
   3192 	/* swap bytes for HW little endian */
   3193 	addr_low  = addr[0] | (addr[1] << 8)
   3194 			    | (addr[2] << 16)
   3195 			    | (addr[3] << 24);
   3196 	addr_high = addr[4] | (addr[5] << 8);
   3197 
   3198 	/*
   3199 	 * Either find the mac_id in rar or find the first empty space.
   3200 	 * rar_highwater points to just after the highest currently used
   3201 	 * rar in order to shorten the search.  It grows when we add a new
   3202 	 * rar to the top.
   3203 	 */
   3204 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3205 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3206 
   3207 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3208 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3209 			first_empty_rar = rar;
   3210 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3211 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3212 			if (rar_low == addr_low)
   3213 				break;    /* found it already in the rars */
   3214 		}
   3215 	}
   3216 
   3217 	if (rar < hw->mac.rar_highwater) {
   3218 		/* already there so just add to the pool bits */
   3219 		ixgbe_set_vmdq(hw, rar, vmdq);
   3220 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3221 		/* stick it into first empty RAR slot we found */
   3222 		rar = first_empty_rar;
   3223 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3224 	} else if (rar == hw->mac.rar_highwater) {
   3225 		/* add it to the top of the list and inc the highwater mark */
   3226 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3227 		hw->mac.rar_highwater++;
   3228 	} else if (rar >= hw->mac.num_rar_entries) {
   3229 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3230 	}
   3231 
   3232 	/*
   3233 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3234 	 * remains cleared to be sure default pool packets will get delivered
   3235 	 */
   3236 	if (rar == 0)
   3237 		ixgbe_clear_vmdq(hw, rar, 0);
   3238 
   3239 	return rar;
   3240 }
   3241 
   3242 /**
   3243  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3244  *  @hw: pointer to hardware struct
   3245  *  @rar: receive address register index to disassociate
   3246  *  @vmdq: VMDq pool index to remove from the rar
   3247  **/
   3248 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3249 {
   3250 	u32 mpsar_lo, mpsar_hi;
   3251 	u32 rar_entries = hw->mac.num_rar_entries;
   3252 
   3253 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3254 
   3255 	/* Make sure we are using a valid rar index range */
   3256 	if (rar >= rar_entries) {
   3257 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3258 		return IXGBE_ERR_INVALID_ARGUMENT;
   3259 	}
   3260 
   3261 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3262 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3263 
   3264 	if (!mpsar_lo && !mpsar_hi)
   3265 		goto done;
   3266 
   3267 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3268 		if (mpsar_lo) {
   3269 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3270 			mpsar_lo = 0;
   3271 		}
   3272 		if (mpsar_hi) {
   3273 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3274 			mpsar_hi = 0;
   3275 		}
   3276 	} else if (vmdq < 32) {
   3277 		mpsar_lo &= ~(1 << vmdq);
   3278 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3279 	} else {
   3280 		mpsar_hi &= ~(1 << (vmdq - 32));
   3281 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3282 	}
   3283 
   3284 	/* was that the last pool using this rar? */
   3285 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3286 		hw->mac.ops.clear_rar(hw, rar);
   3287 done:
   3288 	return IXGBE_SUCCESS;
   3289 }
   3290 
   3291 /**
   3292  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3293  *  @hw: pointer to hardware struct
   3294  *  @rar: receive address register index to associate with a VMDq index
   3295  *  @vmdq: VMDq pool index
   3296  **/
   3297 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3298 {
   3299 	u32 mpsar;
   3300 	u32 rar_entries = hw->mac.num_rar_entries;
   3301 
   3302 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3303 
   3304 	/* Make sure we are using a valid rar index range */
   3305 	if (rar >= rar_entries) {
   3306 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
   3307 		return IXGBE_ERR_INVALID_ARGUMENT;
   3308 	}
   3309 
   3310 	if (vmdq < 32) {
   3311 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3312 		mpsar |= 1 << vmdq;
   3313 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3314 	} else {
   3315 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3316 		mpsar |= 1 << (vmdq - 32);
   3317 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3318 	}
   3319 	return IXGBE_SUCCESS;
   3320 }
   3321 
   3322 /**
   3323  *  This function should only be involved in the IOV mode.
   3324  *  In IOV mode, Default pool is next pool after the number of
   3325  *  VFs advertized and not 0.
   3326  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3327  *
   3328  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3329  *  @hw: pointer to hardware struct
   3330  *  @vmdq: VMDq pool index
   3331  **/
   3332 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3333 {
   3334 	u32 rar = hw->mac.san_mac_rar_index;
   3335 
   3336 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3337 
   3338 	if (vmdq < 32) {
   3339 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3340 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3341 	} else {
   3342 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3343 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3344 	}
   3345 
   3346 	return IXGBE_SUCCESS;
   3347 }
   3348 
   3349 /**
   3350  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3351  *  @hw: pointer to hardware structure
   3352  **/
   3353 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3354 {
   3355 	int i;
   3356 
   3357 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3358 	DEBUGOUT(" Clearing UTA\n");
   3359 
   3360 	for (i = 0; i < 128; i++)
   3361 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3362 
   3363 	return IXGBE_SUCCESS;
   3364 }
   3365 
   3366 /**
   3367  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3368  *  @hw: pointer to hardware structure
   3369  *  @vlan: VLAN id to write to VLAN filter
   3370  *
   3371  *  return the VLVF index where this VLAN id should be placed
   3372  *
   3373  **/
   3374 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3375 {
   3376 	u32 bits = 0;
   3377 	u32 first_empty_slot = 0;
   3378 	s32 regindex;
   3379 
   3380 	/* short cut the special case */
   3381 	if (vlan == 0)
   3382 		return 0;
   3383 
   3384 	/*
   3385 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3386 	  * slot found along the way
   3387 	  */
   3388 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3389 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3390 		if (!bits && !(first_empty_slot))
   3391 			first_empty_slot = regindex;
   3392 		else if ((bits & 0x0FFF) == vlan)
   3393 			break;
   3394 	}
   3395 
   3396 	/*
   3397 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3398 	  * in the VLVF. Else use the first empty VLVF register for this
   3399 	  * vlan id.
   3400 	  */
   3401 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3402 		if (first_empty_slot)
   3403 			regindex = first_empty_slot;
   3404 		else {
   3405 			DEBUGOUT("No space in VLVF.\n");
   3406 			regindex = IXGBE_ERR_NO_SPACE;
   3407 		}
   3408 	}
   3409 
   3410 	return regindex;
   3411 }
   3412 
   3413 /**
   3414  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3415  *  @hw: pointer to hardware structure
   3416  *  @vlan: VLAN id to write to VLAN filter
   3417  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3418  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3419  *
   3420  *  Turn on/off specified VLAN in the VLAN filter table.
   3421  **/
   3422 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3423 			   bool vlan_on)
   3424 {
   3425 	s32 regindex;
   3426 	u32 bitindex;
   3427 	u32 vfta;
   3428 	u32 targetbit;
   3429 	s32 ret_val = IXGBE_SUCCESS;
   3430 	bool vfta_changed = FALSE;
   3431 
   3432 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3433 
   3434 	if (vlan > 4095)
   3435 		return IXGBE_ERR_PARAM;
   3436 
   3437 	/*
   3438 	 * this is a 2 part operation - first the VFTA, then the
   3439 	 * VLVF and VLVFB if VT Mode is set
   3440 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3441 	 */
   3442 
   3443 	/* Part 1
   3444 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3445 	 * that enable the particular VLAN id, much like the MTA:
   3446 	 *    bits[11-5]: which register
   3447 	 *    bits[4-0]:  which bit in the register
   3448 	 */
   3449 	regindex = (vlan >> 5) & 0x7F;
   3450 	bitindex = vlan & 0x1F;
   3451 	targetbit = (1 << bitindex);
   3452 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3453 
   3454 	if (vlan_on) {
   3455 		if (!(vfta & targetbit)) {
   3456 			vfta |= targetbit;
   3457 			vfta_changed = TRUE;
   3458 		}
   3459 	} else {
   3460 		if ((vfta & targetbit)) {
   3461 			vfta &= ~targetbit;
   3462 			vfta_changed = TRUE;
   3463 		}
   3464 	}
   3465 
   3466 	/* Part 2
   3467 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3468 	 */
   3469 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3470 					 &vfta_changed);
   3471 	if (ret_val != IXGBE_SUCCESS)
   3472 		return ret_val;
   3473 
   3474 	if (vfta_changed)
   3475 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3476 
   3477 	return IXGBE_SUCCESS;
   3478 }
   3479 
   3480 /**
   3481  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3482  *  @hw: pointer to hardware structure
   3483  *  @vlan: VLAN id to write to VLAN filter
   3484  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3485  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3486  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3487  *                 should be changed
   3488  *
   3489  *  Turn on/off specified bit in VLVF table.
   3490  **/
   3491 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3492 			    bool vlan_on, bool *vfta_changed)
   3493 {
   3494 	u32 vt;
   3495 
   3496 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3497 
   3498 	if (vlan > 4095)
   3499 		return IXGBE_ERR_PARAM;
   3500 
   3501 	/* If VT Mode is set
   3502 	 *   Either vlan_on
   3503 	 *     make sure the vlan is in VLVF
   3504 	 *     set the vind bit in the matching VLVFB
   3505 	 *   Or !vlan_on
   3506 	 *     clear the pool bit and possibly the vind
   3507 	 */
   3508 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3509 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3510 		s32 vlvf_index;
   3511 		u32 bits;
   3512 
   3513 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3514 		if (vlvf_index < 0)
   3515 			return vlvf_index;
   3516 
   3517 		if (vlan_on) {
   3518 			/* set the pool bit */
   3519 			if (vind < 32) {
   3520 				bits = IXGBE_READ_REG(hw,
   3521 						IXGBE_VLVFB(vlvf_index * 2));
   3522 				bits |= (1 << vind);
   3523 				IXGBE_WRITE_REG(hw,
   3524 						IXGBE_VLVFB(vlvf_index * 2),
   3525 						bits);
   3526 			} else {
   3527 				bits = IXGBE_READ_REG(hw,
   3528 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3529 				bits |= (1 << (vind - 32));
   3530 				IXGBE_WRITE_REG(hw,
   3531 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3532 					bits);
   3533 			}
   3534 		} else {
   3535 			/* clear the pool bit */
   3536 			if (vind < 32) {
   3537 				bits = IXGBE_READ_REG(hw,
   3538 						IXGBE_VLVFB(vlvf_index * 2));
   3539 				bits &= ~(1 << vind);
   3540 				IXGBE_WRITE_REG(hw,
   3541 						IXGBE_VLVFB(vlvf_index * 2),
   3542 						bits);
   3543 				bits |= IXGBE_READ_REG(hw,
   3544 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3545 			} else {
   3546 				bits = IXGBE_READ_REG(hw,
   3547 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3548 				bits &= ~(1 << (vind - 32));
   3549 				IXGBE_WRITE_REG(hw,
   3550 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3551 					bits);
   3552 				bits |= IXGBE_READ_REG(hw,
   3553 						IXGBE_VLVFB(vlvf_index * 2));
   3554 			}
   3555 		}
   3556 
   3557 		/*
   3558 		 * If there are still bits set in the VLVFB registers
   3559 		 * for the VLAN ID indicated we need to see if the
   3560 		 * caller is requesting that we clear the VFTA entry bit.
   3561 		 * If the caller has requested that we clear the VFTA
   3562 		 * entry bit but there are still pools/VFs using this VLAN
   3563 		 * ID entry then ignore the request.  We're not worried
   3564 		 * about the case where we're turning the VFTA VLAN ID
   3565 		 * entry bit on, only when requested to turn it off as
   3566 		 * there may be multiple pools and/or VFs using the
   3567 		 * VLAN ID entry.  In that case we cannot clear the
   3568 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   3569 		 * been cleared.  This will be indicated by "bits" being
   3570 		 * zero.
   3571 		 */
   3572 		if (bits) {
   3573 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   3574 					(IXGBE_VLVF_VIEN | vlan));
   3575 			if ((!vlan_on) && (vfta_changed != NULL)) {
   3576 				/* someone wants to clear the vfta entry
   3577 				 * but some pools/VFs are still using it.
   3578 				 * Ignore it. */
   3579 				*vfta_changed = FALSE;
   3580 			}
   3581 		} else
   3582 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3583 	}
   3584 
   3585 	return IXGBE_SUCCESS;
   3586 }
   3587 
   3588 /**
   3589  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3590  *  @hw: pointer to hardware structure
   3591  *
   3592  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3593  **/
   3594 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3595 {
   3596 	u32 offset;
   3597 
   3598 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   3599 
   3600 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3601 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3602 
   3603 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3604 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3605 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   3606 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   3607 	}
   3608 
   3609 	return IXGBE_SUCCESS;
   3610 }
   3611 
   3612 /**
   3613  *  ixgbe_check_mac_link_generic - Determine link and speed status
   3614  *  @hw: pointer to hardware structure
   3615  *  @speed: pointer to link speed
   3616  *  @link_up: TRUE when link is up
   3617  *  @link_up_wait_to_complete: bool used to wait for link up or not
   3618  *
   3619  *  Reads the links register to determine if link is up and the current speed
   3620  **/
   3621 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3622 				 bool *link_up, bool link_up_wait_to_complete)
   3623 {
   3624 	u32 links_reg, links_orig;
   3625 	u32 i;
   3626 
   3627 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   3628 
   3629 	/* clear the old state */
   3630 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3631 
   3632 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3633 
   3634 	if (links_orig != links_reg) {
   3635 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   3636 			  links_orig, links_reg);
   3637 	}
   3638 
   3639 	if (link_up_wait_to_complete) {
   3640 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3641 			if (links_reg & IXGBE_LINKS_UP) {
   3642 				*link_up = TRUE;
   3643 				break;
   3644 			} else {
   3645 				*link_up = FALSE;
   3646 			}
   3647 			msec_delay(100);
   3648 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3649 		}
   3650 	} else {
   3651 		if (links_reg & IXGBE_LINKS_UP)
   3652 			*link_up = TRUE;
   3653 		else
   3654 			*link_up = FALSE;
   3655 	}
   3656 
   3657 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3658 	    IXGBE_LINKS_SPEED_10G_82599)
   3659 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3660 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3661 		 IXGBE_LINKS_SPEED_1G_82599)
   3662 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3663 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
   3664 		 IXGBE_LINKS_SPEED_100_82599)
   3665 		*speed = IXGBE_LINK_SPEED_100_FULL;
   3666 	else
   3667 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3668 
   3669 	return IXGBE_SUCCESS;
   3670 }
   3671 
   3672 /**
   3673  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3674  *  the EEPROM
   3675  *  @hw: pointer to hardware structure
   3676  *  @wwnn_prefix: the alternative WWNN prefix
   3677  *  @wwpn_prefix: the alternative WWPN prefix
   3678  *
   3679  *  This function will read the EEPROM from the alternative SAN MAC address
   3680  *  block to check the support for the alternative WWNN/WWPN prefix support.
   3681  **/
   3682 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3683 				 u16 *wwpn_prefix)
   3684 {
   3685 	u16 offset, caps;
   3686 	u16 alt_san_mac_blk_offset;
   3687 
   3688 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   3689 
   3690 	/* clear output first */
   3691 	*wwnn_prefix = 0xFFFF;
   3692 	*wwpn_prefix = 0xFFFF;
   3693 
   3694 	/* check if alternative SAN MAC is supported */
   3695 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
   3696 			    &alt_san_mac_blk_offset);
   3697 
   3698 	if ((alt_san_mac_blk_offset == 0) ||
   3699 	    (alt_san_mac_blk_offset == 0xFFFF))
   3700 		goto wwn_prefix_out;
   3701 
   3702 	/* check capability in alternative san mac address block */
   3703 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3704 	hw->eeprom.ops.read(hw, offset, &caps);
   3705 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3706 		goto wwn_prefix_out;
   3707 
   3708 	/* get the corresponding prefix for WWNN/WWPN */
   3709 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3710 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
   3711 
   3712 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3713 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
   3714 
   3715 wwn_prefix_out:
   3716 	return IXGBE_SUCCESS;
   3717 }
   3718 
   3719 /**
   3720  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   3721  *  @hw: pointer to hardware structure
   3722  *  @bs: the fcoe boot status
   3723  *
   3724  *  This function will read the FCOE boot status from the iSCSI FCOE block
   3725  **/
   3726 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   3727 {
   3728 	u16 offset, caps, flags;
   3729 	s32 status;
   3730 
   3731 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   3732 
   3733 	/* clear output first */
   3734 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   3735 
   3736 	/* check if FCOE IBA block is present */
   3737 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   3738 	status = hw->eeprom.ops.read(hw, offset, &caps);
   3739 	if (status != IXGBE_SUCCESS)
   3740 		goto out;
   3741 
   3742 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   3743 		goto out;
   3744 
   3745 	/* check if iSCSI FCOE block is populated */
   3746 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   3747 	if (status != IXGBE_SUCCESS)
   3748 		goto out;
   3749 
   3750 	if ((offset == 0) || (offset == 0xFFFF))
   3751 		goto out;
   3752 
   3753 	/* read fcoe flags in iSCSI FCOE block */
   3754 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   3755 	status = hw->eeprom.ops.read(hw, offset, &flags);
   3756 	if (status != IXGBE_SUCCESS)
   3757 		goto out;
   3758 
   3759 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   3760 		*bs = ixgbe_fcoe_bootstatus_enabled;
   3761 	else
   3762 		*bs = ixgbe_fcoe_bootstatus_disabled;
   3763 
   3764 out:
   3765 	return status;
   3766 }
   3767 
   3768 /**
   3769  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   3770  *  @hw: pointer to hardware structure
   3771  *  @enable: enable or disable switch for anti-spoofing
   3772  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   3773  *
   3774  **/
   3775 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   3776 {
   3777 	int j;
   3778 	int pf_target_reg = pf >> 3;
   3779 	int pf_target_shift = pf % 8;
   3780 	u32 pfvfspoof = 0;
   3781 
   3782 	if (hw->mac.type == ixgbe_mac_82598EB)
   3783 		return;
   3784 
   3785 	if (enable)
   3786 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   3787 
   3788 	/*
   3789 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   3790 	 * MAC anti-spoof enables in each register array element.
   3791 	 */
   3792 	for (j = 0; j < pf_target_reg; j++)
   3793 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3794 
   3795 	/*
   3796 	 * The PF should be allowed to spoof so that it can support
   3797 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   3798 	 */
   3799 	pfvfspoof &= (1 << pf_target_shift) - 1;
   3800 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   3801 
   3802 	/*
   3803 	 * Remaining pools belong to the PF so they do not need to have
   3804 	 * anti-spoofing enabled.
   3805 	 */
   3806 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   3807 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   3808 }
   3809 
   3810 /**
   3811  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   3812  *  @hw: pointer to hardware structure
   3813  *  @enable: enable or disable switch for VLAN anti-spoofing
   3814  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   3815  *
   3816  **/
   3817 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3818 {
   3819 	int vf_target_reg = vf >> 3;
   3820 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   3821 	u32 pfvfspoof;
   3822 
   3823 	if (hw->mac.type == ixgbe_mac_82598EB)
   3824 		return;
   3825 
   3826 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3827 	if (enable)
   3828 		pfvfspoof |= (1 << vf_target_shift);
   3829 	else
   3830 		pfvfspoof &= ~(1 << vf_target_shift);
   3831 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3832 }
   3833 
   3834 /**
   3835  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   3836  *  @hw: pointer to hardware structure
   3837  *  @device_caps: the EEPROM word with the extra device capabilities
   3838  *
   3839  *  This function will read the EEPROM location for the device capabilities,
   3840  *  and return the word through device_caps.
   3841  **/
   3842 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   3843 {
   3844 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   3845 
   3846 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   3847 
   3848 	return IXGBE_SUCCESS;
   3849 }
   3850 
   3851 /**
   3852  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   3853  *  @hw: pointer to hardware structure
   3854  *
   3855  **/
   3856 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   3857 {
   3858 	u32 regval;
   3859 	u32 i;
   3860 
   3861 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   3862 
   3863 	/* Enable relaxed ordering */
   3864 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   3865 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   3866 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   3867 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   3868 	}
   3869 
   3870 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   3871 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   3872 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   3873 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   3874 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   3875 	}
   3876 
   3877 }
   3878 
   3879 /**
   3880  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   3881  *  @buffer: pointer to EEPROM
   3882  *  @length: size of EEPROM to calculate a checksum for
   3883  *  Calculates the checksum for some buffer on a specified length.  The
   3884  *  checksum calculated is returned.
   3885  **/
   3886 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   3887 {
   3888 	u32 i;
   3889 	u8 sum = 0;
   3890 
   3891 	DEBUGFUNC("ixgbe_calculate_checksum");
   3892 
   3893 	if (!buffer)
   3894 		return 0;
   3895 
   3896 	for (i = 0; i < length; i++)
   3897 		sum += buffer[i];
   3898 
   3899 	return (u8) (0 - sum);
   3900 }
   3901 
   3902 /**
   3903  *  ixgbe_host_interface_command - Issue command to manageability block
   3904  *  @hw: pointer to the HW structure
   3905  *  @buffer: contains the command to write and where the return status will
   3906  *   be placed
   3907  *  @length: length of buffer, must be multiple of 4 bytes
   3908  *
   3909  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   3910  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   3911  **/
   3912 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   3913 					u32 length)
   3914 {
   3915 	u32 hicr, i, bi;
   3916 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   3917 	u8 buf_len, dword_len;
   3918 
   3919 	s32 ret_val = IXGBE_SUCCESS;
   3920 
   3921 	DEBUGFUNC("ixgbe_host_interface_command");
   3922 
   3923 	if (length == 0 || length & 0x3 ||
   3924 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   3925 		DEBUGOUT("Buffer length failure.\n");
   3926 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3927 		goto out;
   3928 	}
   3929 
   3930 	/* Check that the host interface is enabled. */
   3931 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3932 	if ((hicr & IXGBE_HICR_EN) == 0) {
   3933 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   3934 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3935 		goto out;
   3936 	}
   3937 
   3938 	/* Calculate length in DWORDs */
   3939 	dword_len = length >> 2;
   3940 
   3941 	/*
   3942 	 * The device driver writes the relevant command block
   3943 	 * into the ram area.
   3944 	 */
   3945 	for (i = 0; i < dword_len; i++)
   3946 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   3947 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   3948 
   3949 	/* Setting this bit tells the ARC that a new command is pending. */
   3950 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   3951 
   3952 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
   3953 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3954 		if (!(hicr & IXGBE_HICR_C))
   3955 			break;
   3956 		msec_delay(1);
   3957 	}
   3958 
   3959 	/* Check command successful completion. */
   3960 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
   3961 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
   3962 		DEBUGOUT("Command has failed with no status valid.\n");
   3963 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3964 		goto out;
   3965 	}
   3966 
   3967 	/* Calculate length in DWORDs */
   3968 	dword_len = hdr_size >> 2;
   3969 
   3970 	/* first pull in the header so we know the buffer length */
   3971 	for (bi = 0; bi < dword_len; bi++) {
   3972 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3973 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3974 	}
   3975 
   3976 	/* If there is any thing in data position pull it in */
   3977 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   3978 	if (buf_len == 0)
   3979 		goto out;
   3980 
   3981 	if (length < (buf_len + hdr_size)) {
   3982 		DEBUGOUT("Buffer not large enough for reply message.\n");
   3983 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3984 		goto out;
   3985 	}
   3986 
   3987 	/* Calculate length in DWORDs, add 3 for odd lengths */
   3988 	dword_len = (buf_len + 3) >> 2;
   3989 
   3990 	/* Pull in the rest of the buffer (bi is where we left off)*/
   3991 	for (; bi <= dword_len; bi++) {
   3992 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3993 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   3994 	}
   3995 
   3996 out:
   3997 	return ret_val;
   3998 }
   3999 
   4000 /**
   4001  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4002  *  @hw: pointer to the HW structure
   4003  *  @maj: driver version major number
   4004  *  @min: driver version minor number
   4005  *  @build: driver version build number
   4006  *  @sub: driver version sub build number
   4007  *
   4008  *  Sends driver version number to firmware through the manageability
   4009  *  block.  On success return IXGBE_SUCCESS
   4010  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4011  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4012  **/
   4013 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
   4014 				 u8 build, u8 sub)
   4015 {
   4016 	struct ixgbe_hic_drv_info fw_cmd;
   4017 	int i;
   4018 	s32 ret_val = IXGBE_SUCCESS;
   4019 
   4020 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4021 
   4022 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4023 	    != IXGBE_SUCCESS) {
   4024 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4025 		goto out;
   4026 	}
   4027 
   4028 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4029 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4030 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4031 	fw_cmd.port_num = (u8)hw->bus.func;
   4032 	fw_cmd.ver_maj = maj;
   4033 	fw_cmd.ver_min = min;
   4034 	fw_cmd.ver_build = build;
   4035 	fw_cmd.ver_sub = sub;
   4036 	fw_cmd.hdr.checksum = 0;
   4037 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4038 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4039 	fw_cmd.pad = 0;
   4040 	fw_cmd.pad2 = 0;
   4041 
   4042 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4043 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4044 						       sizeof(fw_cmd));
   4045 		if (ret_val != IXGBE_SUCCESS)
   4046 			continue;
   4047 
   4048 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4049 		    FW_CEM_RESP_STATUS_SUCCESS)
   4050 			ret_val = IXGBE_SUCCESS;
   4051 		else
   4052 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4053 
   4054 		break;
   4055 	}
   4056 
   4057 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4058 out:
   4059 	return ret_val;
   4060 }
   4061 
   4062 /**
   4063  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4064  * @hw: pointer to hardware structure
   4065  * @num_pb: number of packet buffers to allocate
   4066  * @headroom: reserve n KB of headroom
   4067  * @strategy: packet buffer allocation strategy
   4068  **/
   4069 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4070 			     int strategy)
   4071 {
   4072 	u32 pbsize = hw->mac.rx_pb_size;
   4073 	int i = 0;
   4074 	u32 rxpktsize, txpktsize, txpbthresh;
   4075 
   4076 	/* Reserve headroom */
   4077 	pbsize -= headroom;
   4078 
   4079 	if (!num_pb)
   4080 		num_pb = 1;
   4081 
   4082 	/* Divide remaining packet buffer space amongst the number of packet
   4083 	 * buffers requested using supplied strategy.
   4084 	 */
   4085 	switch (strategy) {
   4086 	case PBA_STRATEGY_WEIGHTED:
   4087 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4088 		 * buffer with 5/8 of the packet buffer space.
   4089 		 */
   4090 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4091 		pbsize -= rxpktsize * (num_pb / 2);
   4092 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4093 		for (; i < (num_pb / 2); i++)
   4094 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4095 		/* Fall through to configure remaining packet buffers */
   4096 	case PBA_STRATEGY_EQUAL:
   4097 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4098 		for (; i < num_pb; i++)
   4099 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4100 		break;
   4101 	default:
   4102 		break;
   4103 	}
   4104 
   4105 	/* Only support an equally distributed Tx packet buffer strategy. */
   4106 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4107 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4108 	for (i = 0; i < num_pb; i++) {
   4109 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4110 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4111 	}
   4112 
   4113 	/* Clear unused TCs, if any, to zero buffer size*/
   4114 	for (; i < IXGBE_MAX_PB; i++) {
   4115 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4116 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4117 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4118 	}
   4119 }
   4120 
   4121 /**
   4122  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4123  * @hw: pointer to the hardware structure
   4124  *
   4125  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4126  * when a reset occurs.  This function prevents this by flushing the PCIe
   4127  * buffers on the system.
   4128  **/
   4129 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4130 {
   4131 	u32 gcr_ext, hlreg0;
   4132 
   4133 	/*
   4134 	 * If double reset is not requested then all transactions should
   4135 	 * already be clear and as such there is no work to do
   4136 	 */
   4137 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4138 		return;
   4139 
   4140 	/*
   4141 	 * Set loopback enable to prevent any transmits from being sent
   4142 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4143 	 * has already been cleared.
   4144 	 */
   4145 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4146 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4147 
   4148 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4149 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4150 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4151 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4152 
   4153 	/* Flush all writes and allow 20usec for all transactions to clear */
   4154 	IXGBE_WRITE_FLUSH(hw);
   4155 	usec_delay(20);
   4156 
   4157 	/* restore previous register values */
   4158 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4159 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4160 }
   4161 
   4162