Home | History | Annotate | Line # | Download | only in ixgbe
ixgbe_common.c revision 1.9
      1 /******************************************************************************
      2 
      3   Copyright (c) 2001-2015, Intel Corporation
      4   All rights reserved.
      5 
      6   Redistribution and use in source and binary forms, with or without
      7   modification, are permitted provided that the following conditions are met:
      8 
      9    1. Redistributions of source code must retain the above copyright notice,
     10       this list of conditions and the following disclaimer.
     11 
     12    2. Redistributions in binary form must reproduce the above copyright
     13       notice, this list of conditions and the following disclaimer in the
     14       documentation and/or other materials provided with the distribution.
     15 
     16    3. Neither the name of the Intel Corporation nor the names of its
     17       contributors may be used to endorse or promote products derived from
     18       this software without specific prior written permission.
     19 
     20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30   POSSIBILITY OF SUCH DAMAGE.
     31 
     32 ******************************************************************************/
     33 /*$FreeBSD: head/sys/dev/ixgbe/ixgbe_common.c 282289 2015-04-30 22:53:27Z erj $*/
     34 /*$NetBSD: ixgbe_common.c,v 1.9 2016/12/01 06:56:28 msaitoh Exp $*/
     35 
     36 #include "ixgbe_common.h"
     37 #include "ixgbe_phy.h"
     38 #include "ixgbe_dcb.h"
     39 #include "ixgbe_dcb_82599.h"
     40 #include "ixgbe_api.h"
     41 
     42 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     43 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     44 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     45 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     46 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     47 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     48 					u16 count);
     49 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     50 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     51 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     52 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     53 
     54 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     55 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
     56 					 u16 *san_mac_offset);
     57 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     58 					     u16 words, u16 *data);
     59 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     60 					      u16 words, u16 *data);
     61 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     62 						 u16 offset);
     63 
     64 /**
     65  *  ixgbe_init_ops_generic - Inits function ptrs
     66  *  @hw: pointer to the hardware structure
     67  *
     68  *  Initialize the function pointers.
     69  **/
     70 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
     71 {
     72 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
     73 	struct ixgbe_mac_info *mac = &hw->mac;
     74 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
     75 
     76 	DEBUGFUNC("ixgbe_init_ops_generic");
     77 
     78 	/* EEPROM */
     79 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
     80 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
     81 	if (eec & IXGBE_EEC_PRES) {
     82 		eeprom->ops.read = ixgbe_read_eerd_generic;
     83 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
     84 	} else {
     85 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
     86 		eeprom->ops.read_buffer =
     87 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
     88 	}
     89 	eeprom->ops.write = ixgbe_write_eeprom_generic;
     90 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
     91 	eeprom->ops.validate_checksum =
     92 				      ixgbe_validate_eeprom_checksum_generic;
     93 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
     94 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
     95 
     96 	/* MAC */
     97 	mac->ops.init_hw = ixgbe_init_hw_generic;
     98 	mac->ops.reset_hw = NULL;
     99 	mac->ops.start_hw = ixgbe_start_hw_generic;
    100 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
    101 	mac->ops.get_media_type = NULL;
    102 	mac->ops.get_supported_physical_layer = NULL;
    103 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
    104 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
    105 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
    106 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
    107 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
    108 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
    109 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
    110 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
    111 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
    112 
    113 	/* LEDs */
    114 	mac->ops.led_on = ixgbe_led_on_generic;
    115 	mac->ops.led_off = ixgbe_led_off_generic;
    116 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
    117 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
    118 
    119 	/* RAR, Multicast, VLAN */
    120 	mac->ops.set_rar = ixgbe_set_rar_generic;
    121 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
    122 	mac->ops.insert_mac_addr = NULL;
    123 	mac->ops.set_vmdq = NULL;
    124 	mac->ops.clear_vmdq = NULL;
    125 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
    126 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
    127 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
    128 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
    129 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
    130 	mac->ops.clear_vfta = NULL;
    131 	mac->ops.set_vfta = NULL;
    132 	mac->ops.set_vlvf = NULL;
    133 	mac->ops.init_uta_tables = NULL;
    134 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
    135 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
    136 
    137 	/* Flow Control */
    138 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
    139 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
    140 
    141 	/* Link */
    142 	mac->ops.get_link_capabilities = NULL;
    143 	mac->ops.setup_link = NULL;
    144 	mac->ops.check_link = NULL;
    145 	mac->ops.dmac_config = NULL;
    146 	mac->ops.dmac_update_tcs = NULL;
    147 	mac->ops.dmac_config_tcs = NULL;
    148 
    149 	return IXGBE_SUCCESS;
    150 }
    151 
    152 /**
    153  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
    154  * of flow control
    155  * @hw: pointer to hardware structure
    156  *
    157  * This function returns TRUE if the device supports flow control
    158  * autonegotiation, and FALSE if it does not.
    159  *
    160  **/
    161 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
    162 {
    163 	bool supported = FALSE;
    164 	ixgbe_link_speed speed;
    165 	bool link_up;
    166 
    167 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
    168 
    169 	switch (hw->phy.media_type) {
    170 	case ixgbe_media_type_fiber_fixed:
    171 	case ixgbe_media_type_fiber_qsfp:
    172 	case ixgbe_media_type_fiber:
    173 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
    174 		/* if link is down, assume supported */
    175 		if (link_up)
    176 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
    177 				TRUE : FALSE;
    178 		else
    179 			supported = TRUE;
    180 		break;
    181 	case ixgbe_media_type_backplane:
    182 		supported = TRUE;
    183 		break;
    184 	case ixgbe_media_type_copper:
    185 		/* only some copper devices support flow control autoneg */
    186 		switch (hw->device_id) {
    187 		case IXGBE_DEV_ID_82599_T3_LOM:
    188 		case IXGBE_DEV_ID_X540T:
    189 		case IXGBE_DEV_ID_X540T1:
    190 		case IXGBE_DEV_ID_X540_BYPASS:
    191 		case IXGBE_DEV_ID_X550T:
    192 		case IXGBE_DEV_ID_X550EM_X_10G_T:
    193 			supported = TRUE;
    194 			break;
    195 		default:
    196 			supported = FALSE;
    197 		}
    198 	default:
    199 		break;
    200 	}
    201 
    202 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
    203 		      "Device %x does not support flow control autoneg",
    204 		      hw->device_id);
    205 	return supported;
    206 }
    207 
    208 /**
    209  *  ixgbe_setup_fc_generic - Set up flow control
    210  *  @hw: pointer to hardware structure
    211  *
    212  *  Called at init time to set up flow control.
    213  **/
    214 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    215 {
    216 	s32 ret_val = IXGBE_SUCCESS;
    217 	u32 reg = 0, reg_bp = 0;
    218 	u16 reg_cu = 0;
    219 	bool locked = FALSE;
    220 
    221 	DEBUGFUNC("ixgbe_setup_fc_generic");
    222 
    223 	/* Validate the requested mode */
    224 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    225 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
    226 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    227 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
    228 		goto out;
    229 	}
    230 
    231 	/*
    232 	 * 10gig parts do not have a word in the EEPROM to determine the
    233 	 * default flow control setting, so we explicitly set it to full.
    234 	 */
    235 	if (hw->fc.requested_mode == ixgbe_fc_default)
    236 		hw->fc.requested_mode = ixgbe_fc_full;
    237 
    238 	/*
    239 	 * Set up the 1G and 10G flow control advertisement registers so the
    240 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    241 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    242 	 */
    243 	switch (hw->phy.media_type) {
    244 	case ixgbe_media_type_backplane:
    245 		/* some MAC's need RMW protection on AUTOC */
    246 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    247 		if (ret_val != IXGBE_SUCCESS)
    248 			goto out;
    249 
    250 		/* only backplane uses autoc so fall though */
    251 	case ixgbe_media_type_fiber_fixed:
    252 	case ixgbe_media_type_fiber_qsfp:
    253 	case ixgbe_media_type_fiber:
    254 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    255 
    256 		break;
    257 	case ixgbe_media_type_copper:
    258 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    259 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
    260 		break;
    261 	default:
    262 		break;
    263 	}
    264 
    265 	/*
    266 	 * The possible values of fc.requested_mode are:
    267 	 * 0: Flow control is completely disabled
    268 	 * 1: Rx flow control is enabled (we can receive pause frames,
    269 	 *    but not send pause frames).
    270 	 * 2: Tx flow control is enabled (we can send pause frames but
    271 	 *    we do not support receiving pause frames).
    272 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    273 	 * other: Invalid.
    274 	 */
    275 	switch (hw->fc.requested_mode) {
    276 	case ixgbe_fc_none:
    277 		/* Flow control completely disabled by software override. */
    278 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    279 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    280 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    281 				    IXGBE_AUTOC_ASM_PAUSE);
    282 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    283 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    284 		break;
    285 	case ixgbe_fc_tx_pause:
    286 		/*
    287 		 * Tx Flow control is enabled, and Rx Flow control is
    288 		 * disabled by software override.
    289 		 */
    290 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    291 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    292 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    293 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    294 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    295 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    296 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    297 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    298 		}
    299 		break;
    300 	case ixgbe_fc_rx_pause:
    301 		/*
    302 		 * Rx Flow control is enabled and Tx Flow control is
    303 		 * disabled by software override. Since there really
    304 		 * isn't a way to advertise that we are capable of RX
    305 		 * Pause ONLY, we will advertise that we support both
    306 		 * symmetric and asymmetric Rx PAUSE, as such we fall
    307 		 * through to the fc_full statement.  Later, we will
    308 		 * disable the adapter's ability to send PAUSE frames.
    309 		 */
    310 	case ixgbe_fc_full:
    311 		/* Flow control (both Rx and Tx) is enabled by SW override. */
    312 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    313 		if (hw->phy.media_type == ixgbe_media_type_backplane)
    314 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    315 				  IXGBE_AUTOC_ASM_PAUSE;
    316 		else if (hw->phy.media_type == ixgbe_media_type_copper)
    317 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    318 		break;
    319 	default:
    320 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
    321 			     "Flow control param set incorrectly\n");
    322 		ret_val = IXGBE_ERR_CONFIG;
    323 		goto out;
    324 		break;
    325 	}
    326 
    327 	if (hw->mac.type < ixgbe_mac_X540) {
    328 		/*
    329 		 * Enable auto-negotiation between the MAC & PHY;
    330 		 * the MAC will advertise clause 37 flow control.
    331 		 */
    332 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    333 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    334 
    335 		/* Disable AN timeout */
    336 		if (hw->fc.strict_ieee)
    337 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    338 
    339 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    340 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    341 	}
    342 
    343 	/*
    344 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    345 	 * and copper. There is no need to set the PCS1GCTL register.
    346 	 *
    347 	 */
    348 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    349 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
    350 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    351 		if (ret_val)
    352 			goto out;
    353 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    354 		    (ixgbe_device_supports_autoneg_fc(hw))) {
    355 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
    356 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
    357 	}
    358 
    359 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    360 out:
    361 	return ret_val;
    362 }
    363 
    364 /**
    365  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    366  *  @hw: pointer to hardware structure
    367  *
    368  *  Starts the hardware by filling the bus info structure and media type, clears
    369  *  all on chip counters, initializes receive address registers, multicast
    370  *  table, VLAN filter table, calls routine to set up link and flow control
    371  *  settings, and leaves transmit and receive units disabled and uninitialized
    372  **/
    373 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    374 {
    375 	s32 ret_val;
    376 	u32 ctrl_ext;
    377 
    378 	DEBUGFUNC("ixgbe_start_hw_generic");
    379 
    380 	/* Set the media type */
    381 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    382 
    383 	/* PHY ops initialization must be done in reset_hw() */
    384 
    385 	/* Clear the VLAN filter table */
    386 	hw->mac.ops.clear_vfta(hw);
    387 
    388 	/* Clear statistics registers */
    389 	hw->mac.ops.clear_hw_cntrs(hw);
    390 
    391 	/* Set No Snoop Disable */
    392 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    393 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    394 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    395 	IXGBE_WRITE_FLUSH(hw);
    396 
    397 	/* Setup flow control */
    398 	ret_val = ixgbe_setup_fc(hw);
    399 	if (ret_val != IXGBE_SUCCESS)
    400 		goto out;
    401 
    402 	/* Clear adapter stopped flag */
    403 	hw->adapter_stopped = FALSE;
    404 
    405 out:
    406 	return ret_val;
    407 }
    408 
    409 /**
    410  *  ixgbe_start_hw_gen2 - Init sequence for common device family
    411  *  @hw: pointer to hw structure
    412  *
    413  * Performs the init sequence common to the second generation
    414  * of 10 GbE devices.
    415  * Devices in the second generation:
    416  *     82599
    417  *     X540
    418  **/
    419 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    420 {
    421 	u32 i;
    422 	u32 regval;
    423 
    424 	/* Clear the rate limiters */
    425 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    426 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    427 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    428 	}
    429 	IXGBE_WRITE_FLUSH(hw);
    430 
    431 	/* Disable relaxed ordering */
    432 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    433 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
    434 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
    435 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
    436 	}
    437 
    438 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    439 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
    440 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
    441 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
    442 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
    443 	}
    444 
    445 	return IXGBE_SUCCESS;
    446 }
    447 
    448 /**
    449  *  ixgbe_init_hw_generic - Generic hardware initialization
    450  *  @hw: pointer to hardware structure
    451  *
    452  *  Initialize the hardware by resetting the hardware, filling the bus info
    453  *  structure and media type, clears all on chip counters, initializes receive
    454  *  address registers, multicast table, VLAN filter table, calls routine to set
    455  *  up link and flow control settings, and leaves transmit and receive units
    456  *  disabled and uninitialized
    457  **/
    458 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    459 {
    460 	s32 status;
    461 
    462 	DEBUGFUNC("ixgbe_init_hw_generic");
    463 
    464 	/* Reset the hardware */
    465 	status = hw->mac.ops.reset_hw(hw);
    466 
    467 	if (status == IXGBE_SUCCESS) {
    468 		/* Start the HW */
    469 		status = hw->mac.ops.start_hw(hw);
    470 	}
    471 
    472 	return status;
    473 }
    474 
    475 /**
    476  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    477  *  @hw: pointer to hardware structure
    478  *
    479  *  Clears all hardware statistics counters by reading them from the hardware
    480  *  Statistics counters are clear on read.
    481  **/
    482 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    483 {
    484 	u16 i = 0;
    485 
    486 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
    487 
    488 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    489 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    490 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    491 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    492 	for (i = 0; i < 8; i++)
    493 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    494 
    495 	IXGBE_READ_REG(hw, IXGBE_MLFC);
    496 	IXGBE_READ_REG(hw, IXGBE_MRFC);
    497 	IXGBE_READ_REG(hw, IXGBE_RLEC);
    498 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    499 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    500 	if (hw->mac.type >= ixgbe_mac_82599EB) {
    501 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    502 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    503 	} else {
    504 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    505 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    506 	}
    507 
    508 	for (i = 0; i < 8; i++) {
    509 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    510 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    511 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    512 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    513 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    514 		} else {
    515 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    516 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    517 		}
    518 	}
    519 	if (hw->mac.type >= ixgbe_mac_82599EB)
    520 		for (i = 0; i < 8; i++)
    521 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    522 	IXGBE_READ_REG(hw, IXGBE_PRC64);
    523 	IXGBE_READ_REG(hw, IXGBE_PRC127);
    524 	IXGBE_READ_REG(hw, IXGBE_PRC255);
    525 	IXGBE_READ_REG(hw, IXGBE_PRC511);
    526 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    527 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    528 	IXGBE_READ_REG(hw, IXGBE_GPRC);
    529 	IXGBE_READ_REG(hw, IXGBE_BPRC);
    530 	IXGBE_READ_REG(hw, IXGBE_MPRC);
    531 	IXGBE_READ_REG(hw, IXGBE_GPTC);
    532 	IXGBE_READ_REG(hw, IXGBE_GORCL);
    533 	IXGBE_READ_REG(hw, IXGBE_GORCH);
    534 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    535 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    536 	if (hw->mac.type == ixgbe_mac_82598EB)
    537 		for (i = 0; i < 8; i++)
    538 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    539 	IXGBE_READ_REG(hw, IXGBE_RUC);
    540 	IXGBE_READ_REG(hw, IXGBE_RFC);
    541 	IXGBE_READ_REG(hw, IXGBE_ROC);
    542 	IXGBE_READ_REG(hw, IXGBE_RJC);
    543 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    544 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    545 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    546 	IXGBE_READ_REG(hw, IXGBE_TORL);
    547 	IXGBE_READ_REG(hw, IXGBE_TORH);
    548 	IXGBE_READ_REG(hw, IXGBE_TPR);
    549 	IXGBE_READ_REG(hw, IXGBE_TPT);
    550 	IXGBE_READ_REG(hw, IXGBE_PTC64);
    551 	IXGBE_READ_REG(hw, IXGBE_PTC127);
    552 	IXGBE_READ_REG(hw, IXGBE_PTC255);
    553 	IXGBE_READ_REG(hw, IXGBE_PTC511);
    554 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    555 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    556 	IXGBE_READ_REG(hw, IXGBE_MPTC);
    557 	IXGBE_READ_REG(hw, IXGBE_BPTC);
    558 	for (i = 0; i < 16; i++) {
    559 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    560 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    561 		if (hw->mac.type >= ixgbe_mac_82599EB) {
    562 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    563 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    564 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    565 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    566 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    567 		} else {
    568 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    569 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    570 		}
    571 	}
    572 
    573 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    574 		if (hw->phy.id == 0)
    575 			ixgbe_identify_phy(hw);
    576 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
    577 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    578 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
    579 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    580 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
    581 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    582 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
    583 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
    584 	}
    585 
    586 	return IXGBE_SUCCESS;
    587 }
    588 
    589 /**
    590  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    591  *  @hw: pointer to hardware structure
    592  *  @pba_num: stores the part number string from the EEPROM
    593  *  @pba_num_size: part number string buffer length
    594  *
    595  *  Reads the part number string from the EEPROM.
    596  **/
    597 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    598 				  u32 pba_num_size)
    599 {
    600 	s32 ret_val;
    601 	u16 data;
    602 	u16 pba_ptr;
    603 	u16 offset;
    604 	u16 length;
    605 
    606 	DEBUGFUNC("ixgbe_read_pba_string_generic");
    607 
    608 	if (pba_num == NULL) {
    609 		DEBUGOUT("PBA string buffer was null\n");
    610 		return IXGBE_ERR_INVALID_ARGUMENT;
    611 	}
    612 
    613 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    614 	if (ret_val) {
    615 		DEBUGOUT("NVM Read Error\n");
    616 		return ret_val;
    617 	}
    618 
    619 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    620 	if (ret_val) {
    621 		DEBUGOUT("NVM Read Error\n");
    622 		return ret_val;
    623 	}
    624 
    625 	/*
    626 	 * if data is not ptr guard the PBA must be in legacy format which
    627 	 * means pba_ptr is actually our second data word for the PBA number
    628 	 * and we can decode it into an ascii string
    629 	 */
    630 	if (data != IXGBE_PBANUM_PTR_GUARD) {
    631 		DEBUGOUT("NVM PBA number is not stored as string\n");
    632 
    633 		/* we will need 11 characters to store the PBA */
    634 		if (pba_num_size < 11) {
    635 			DEBUGOUT("PBA string buffer too small\n");
    636 			return IXGBE_ERR_NO_SPACE;
    637 		}
    638 
    639 		/* extract hex string from data and pba_ptr */
    640 		pba_num[0] = (data >> 12) & 0xF;
    641 		pba_num[1] = (data >> 8) & 0xF;
    642 		pba_num[2] = (data >> 4) & 0xF;
    643 		pba_num[3] = data & 0xF;
    644 		pba_num[4] = (pba_ptr >> 12) & 0xF;
    645 		pba_num[5] = (pba_ptr >> 8) & 0xF;
    646 		pba_num[6] = '-';
    647 		pba_num[7] = 0;
    648 		pba_num[8] = (pba_ptr >> 4) & 0xF;
    649 		pba_num[9] = pba_ptr & 0xF;
    650 
    651 		/* put a null character on the end of our string */
    652 		pba_num[10] = '\0';
    653 
    654 		/* switch all the data but the '-' to hex char */
    655 		for (offset = 0; offset < 10; offset++) {
    656 			if (pba_num[offset] < 0xA)
    657 				pba_num[offset] += '0';
    658 			else if (pba_num[offset] < 0x10)
    659 				pba_num[offset] += 'A' - 0xA;
    660 		}
    661 
    662 		return IXGBE_SUCCESS;
    663 	}
    664 
    665 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    666 	if (ret_val) {
    667 		DEBUGOUT("NVM Read Error\n");
    668 		return ret_val;
    669 	}
    670 
    671 	if (length == 0xFFFF || length == 0) {
    672 		DEBUGOUT("NVM PBA number section invalid length\n");
    673 		return IXGBE_ERR_PBA_SECTION;
    674 	}
    675 
    676 	/* check if pba_num buffer is big enough */
    677 	if (pba_num_size  < (((u32)length * 2) - 1)) {
    678 		DEBUGOUT("PBA string buffer too small\n");
    679 		return IXGBE_ERR_NO_SPACE;
    680 	}
    681 
    682 	/* trim pba length from start of string */
    683 	pba_ptr++;
    684 	length--;
    685 
    686 	for (offset = 0; offset < length; offset++) {
    687 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    688 		if (ret_val) {
    689 			DEBUGOUT("NVM Read Error\n");
    690 			return ret_val;
    691 		}
    692 		pba_num[offset * 2] = (u8)(data >> 8);
    693 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    694 	}
    695 	pba_num[offset * 2] = '\0';
    696 
    697 	return IXGBE_SUCCESS;
    698 }
    699 
    700 /**
    701  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
    702  *  @hw: pointer to hardware structure
    703  *  @pba_num: stores the part number from the EEPROM
    704  *
    705  *  Reads the part number from the EEPROM.
    706  **/
    707 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
    708 {
    709 	s32 ret_val;
    710 	u16 data;
    711 
    712 	DEBUGFUNC("ixgbe_read_pba_num_generic");
    713 
    714 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    715 	if (ret_val) {
    716 		DEBUGOUT("NVM Read Error\n");
    717 		return ret_val;
    718 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
    719 		DEBUGOUT("NVM Not supported\n");
    720 		return IXGBE_NOT_IMPLEMENTED;
    721 	}
    722 	*pba_num = (u32)(data << 16);
    723 
    724 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
    725 	if (ret_val) {
    726 		DEBUGOUT("NVM Read Error\n");
    727 		return ret_val;
    728 	}
    729 	*pba_num |= data;
    730 
    731 	return IXGBE_SUCCESS;
    732 }
    733 
    734 /**
    735  *  ixgbe_read_pba_raw
    736  *  @hw: pointer to the HW structure
    737  *  @eeprom_buf: optional pointer to EEPROM image
    738  *  @eeprom_buf_size: size of EEPROM image in words
    739  *  @max_pba_block_size: PBA block size limit
    740  *  @pba: pointer to output PBA structure
    741  *
    742  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
    743  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
    744  *
    745  **/
    746 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    747 		       u32 eeprom_buf_size, u16 max_pba_block_size,
    748 		       struct ixgbe_pba *pba)
    749 {
    750 	s32 ret_val;
    751 	u16 pba_block_size;
    752 
    753 	if (pba == NULL)
    754 		return IXGBE_ERR_PARAM;
    755 
    756 	if (eeprom_buf == NULL) {
    757 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    758 						     &pba->word[0]);
    759 		if (ret_val)
    760 			return ret_val;
    761 	} else {
    762 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    763 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    764 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    765 		} else {
    766 			return IXGBE_ERR_PARAM;
    767 		}
    768 	}
    769 
    770 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    771 		if (pba->pba_block == NULL)
    772 			return IXGBE_ERR_PARAM;
    773 
    774 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
    775 						   eeprom_buf_size,
    776 						   &pba_block_size);
    777 		if (ret_val)
    778 			return ret_val;
    779 
    780 		if (pba_block_size > max_pba_block_size)
    781 			return IXGBE_ERR_PARAM;
    782 
    783 		if (eeprom_buf == NULL) {
    784 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
    785 							     pba_block_size,
    786 							     pba->pba_block);
    787 			if (ret_val)
    788 				return ret_val;
    789 		} else {
    790 			if (eeprom_buf_size > (u32)(pba->word[1] +
    791 					      pba_block_size)) {
    792 				memcpy(pba->pba_block,
    793 				       &eeprom_buf[pba->word[1]],
    794 				       pba_block_size * sizeof(u16));
    795 			} else {
    796 				return IXGBE_ERR_PARAM;
    797 			}
    798 		}
    799 	}
    800 
    801 	return IXGBE_SUCCESS;
    802 }
    803 
    804 /**
    805  *  ixgbe_write_pba_raw
    806  *  @hw: pointer to the HW structure
    807  *  @eeprom_buf: optional pointer to EEPROM image
    808  *  @eeprom_buf_size: size of EEPROM image in words
    809  *  @pba: pointer to PBA structure
    810  *
    811  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
    812  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
    813  *
    814  **/
    815 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
    816 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
    817 {
    818 	s32 ret_val;
    819 
    820 	if (pba == NULL)
    821 		return IXGBE_ERR_PARAM;
    822 
    823 	if (eeprom_buf == NULL) {
    824 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    825 						      &pba->word[0]);
    826 		if (ret_val)
    827 			return ret_val;
    828 	} else {
    829 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    830 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
    831 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
    832 		} else {
    833 			return IXGBE_ERR_PARAM;
    834 		}
    835 	}
    836 
    837 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
    838 		if (pba->pba_block == NULL)
    839 			return IXGBE_ERR_PARAM;
    840 
    841 		if (eeprom_buf == NULL) {
    842 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
    843 							      pba->pba_block[0],
    844 							      pba->pba_block);
    845 			if (ret_val)
    846 				return ret_val;
    847 		} else {
    848 			if (eeprom_buf_size > (u32)(pba->word[1] +
    849 					      pba->pba_block[0])) {
    850 				memcpy(&eeprom_buf[pba->word[1]],
    851 				       pba->pba_block,
    852 				       pba->pba_block[0] * sizeof(u16));
    853 			} else {
    854 				return IXGBE_ERR_PARAM;
    855 			}
    856 		}
    857 	}
    858 
    859 	return IXGBE_SUCCESS;
    860 }
    861 
    862 /**
    863  *  ixgbe_get_pba_block_size
    864  *  @hw: pointer to the HW structure
    865  *  @eeprom_buf: optional pointer to EEPROM image
    866  *  @eeprom_buf_size: size of EEPROM image in words
    867  *  @pba_data_size: pointer to output variable
    868  *
    869  *  Returns the size of the PBA block in words. Function operates on EEPROM
    870  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
    871  *  EEPROM device.
    872  *
    873  **/
    874 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
    875 			     u32 eeprom_buf_size, u16 *pba_block_size)
    876 {
    877 	s32 ret_val;
    878 	u16 pba_word[2];
    879 	u16 length;
    880 
    881 	DEBUGFUNC("ixgbe_get_pba_block_size");
    882 
    883 	if (eeprom_buf == NULL) {
    884 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
    885 						     &pba_word[0]);
    886 		if (ret_val)
    887 			return ret_val;
    888 	} else {
    889 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
    890 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
    891 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
    892 		} else {
    893 			return IXGBE_ERR_PARAM;
    894 		}
    895 	}
    896 
    897 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
    898 		if (eeprom_buf == NULL) {
    899 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
    900 						      &length);
    901 			if (ret_val)
    902 				return ret_val;
    903 		} else {
    904 			if (eeprom_buf_size > pba_word[1])
    905 				length = eeprom_buf[pba_word[1] + 0];
    906 			else
    907 				return IXGBE_ERR_PARAM;
    908 		}
    909 
    910 		if (length == 0xFFFF || length == 0)
    911 			return IXGBE_ERR_PBA_SECTION;
    912 	} else {
    913 		/* PBA number in legacy format, there is no PBA Block. */
    914 		length = 0;
    915 	}
    916 
    917 	if (pba_block_size != NULL)
    918 		*pba_block_size = length;
    919 
    920 	return IXGBE_SUCCESS;
    921 }
    922 
    923 /**
    924  *  ixgbe_get_mac_addr_generic - Generic get MAC address
    925  *  @hw: pointer to hardware structure
    926  *  @mac_addr: Adapter MAC address
    927  *
    928  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    929  *  A reset of the adapter must be performed prior to calling this function
    930  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    931  **/
    932 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    933 {
    934 	u32 rar_high;
    935 	u32 rar_low;
    936 	u16 i;
    937 
    938 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
    939 
    940 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    941 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    942 
    943 	for (i = 0; i < 4; i++)
    944 		mac_addr[i] = (u8)(rar_low >> (i*8));
    945 
    946 	for (i = 0; i < 2; i++)
    947 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    948 
    949 	return IXGBE_SUCCESS;
    950 }
    951 
    952 /**
    953  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
    954  *  @hw: pointer to hardware structure
    955  *  @link_status: the link status returned by the PCI config space
    956  *
    957  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
    958  **/
    959 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
    960 {
    961 	struct ixgbe_mac_info *mac = &hw->mac;
    962 
    963 	if (hw->bus.type == ixgbe_bus_type_unknown)
    964 		hw->bus.type = ixgbe_bus_type_pci_express;
    965 
    966 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    967 	case IXGBE_PCI_LINK_WIDTH_1:
    968 		hw->bus.width = ixgbe_bus_width_pcie_x1;
    969 		break;
    970 	case IXGBE_PCI_LINK_WIDTH_2:
    971 		hw->bus.width = ixgbe_bus_width_pcie_x2;
    972 		break;
    973 	case IXGBE_PCI_LINK_WIDTH_4:
    974 		hw->bus.width = ixgbe_bus_width_pcie_x4;
    975 		break;
    976 	case IXGBE_PCI_LINK_WIDTH_8:
    977 		hw->bus.width = ixgbe_bus_width_pcie_x8;
    978 		break;
    979 	default:
    980 		hw->bus.width = ixgbe_bus_width_unknown;
    981 		break;
    982 	}
    983 
    984 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    985 	case IXGBE_PCI_LINK_SPEED_2500:
    986 		hw->bus.speed = ixgbe_bus_speed_2500;
    987 		break;
    988 	case IXGBE_PCI_LINK_SPEED_5000:
    989 		hw->bus.speed = ixgbe_bus_speed_5000;
    990 		break;
    991 	case IXGBE_PCI_LINK_SPEED_8000:
    992 		hw->bus.speed = ixgbe_bus_speed_8000;
    993 		break;
    994 	default:
    995 		hw->bus.speed = ixgbe_bus_speed_unknown;
    996 		break;
    997 	}
    998 
    999 	mac->ops.set_lan_id(hw);
   1000 }
   1001 
   1002 /**
   1003  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
   1004  *  @hw: pointer to hardware structure
   1005  *
   1006  *  Gets the PCI bus info (speed, width, type) then calls helper function to
   1007  *  store this data within the ixgbe_hw structure.
   1008  **/
   1009 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
   1010 {
   1011 	u16 link_status;
   1012 
   1013 	DEBUGFUNC("ixgbe_get_bus_info_generic");
   1014 
   1015 	/* Get the negotiated link width and speed from PCI config space */
   1016 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
   1017 
   1018 	ixgbe_set_pci_config_data_generic(hw, link_status);
   1019 
   1020 	return IXGBE_SUCCESS;
   1021 }
   1022 
   1023 /**
   1024  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
   1025  *  @hw: pointer to the HW structure
   1026  *
   1027  *  Determines the LAN function id by reading memory-mapped registers
   1028  *  and swaps the port value if requested.
   1029  **/
   1030 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
   1031 {
   1032 	struct ixgbe_bus_info *bus = &hw->bus;
   1033 	u32 reg;
   1034 
   1035 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
   1036 
   1037 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
   1038 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
   1039 	bus->lan_id = bus->func;
   1040 
   1041 	/* check for a port swap */
   1042 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   1043 	if (reg & IXGBE_FACTPS_LFS)
   1044 		bus->func ^= 0x1;
   1045 }
   1046 
   1047 /**
   1048  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
   1049  *  @hw: pointer to hardware structure
   1050  *
   1051  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
   1052  *  disables transmit and receive units. The adapter_stopped flag is used by
   1053  *  the shared code and drivers to determine if the adapter is in a stopped
   1054  *  state and should not touch the hardware.
   1055  **/
   1056 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
   1057 {
   1058 	u32 reg_val;
   1059 	u16 i;
   1060 
   1061 	DEBUGFUNC("ixgbe_stop_adapter_generic");
   1062 
   1063 	/*
   1064 	 * Set the adapter_stopped flag so other driver functions stop touching
   1065 	 * the hardware
   1066 	 */
   1067 	hw->adapter_stopped = TRUE;
   1068 
   1069 	/* Disable the receive unit */
   1070 	ixgbe_disable_rx(hw);
   1071 
   1072 	/* Clear interrupt mask to stop interrupts from being generated */
   1073 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
   1074 
   1075 	/* Clear any pending interrupts, flush previous writes */
   1076 	IXGBE_READ_REG(hw, IXGBE_EICR);
   1077 
   1078 	/* Disable the transmit unit.  Each queue must be disabled. */
   1079 	for (i = 0; i < hw->mac.max_tx_queues; i++)
   1080 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
   1081 
   1082 	/* Disable the receive unit by stopping each queue */
   1083 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   1084 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
   1085 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
   1086 		reg_val |= IXGBE_RXDCTL_SWFLSH;
   1087 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
   1088 	}
   1089 
   1090 	/* flush all queues disables */
   1091 	IXGBE_WRITE_FLUSH(hw);
   1092 	msec_delay(2);
   1093 
   1094 	/*
   1095 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
   1096 	 * access and verify no pending requests
   1097 	 */
   1098 	return ixgbe_disable_pcie_master(hw);
   1099 }
   1100 
   1101 /**
   1102  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
   1103  *  @hw: pointer to hardware structure
   1104  *  @index: led number to turn on
   1105  **/
   1106 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
   1107 {
   1108 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1109 
   1110 	DEBUGFUNC("ixgbe_led_on_generic");
   1111 
   1112 	/* To turn on the LED, set mode to ON. */
   1113 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1114 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
   1115 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1116 	IXGBE_WRITE_FLUSH(hw);
   1117 
   1118 	return IXGBE_SUCCESS;
   1119 }
   1120 
   1121 /**
   1122  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
   1123  *  @hw: pointer to hardware structure
   1124  *  @index: led number to turn off
   1125  **/
   1126 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
   1127 {
   1128 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   1129 
   1130 	DEBUGFUNC("ixgbe_led_off_generic");
   1131 
   1132 	/* To turn off the LED, set mode to OFF. */
   1133 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   1134 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
   1135 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   1136 	IXGBE_WRITE_FLUSH(hw);
   1137 
   1138 	return IXGBE_SUCCESS;
   1139 }
   1140 
   1141 /**
   1142  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
   1143  *  @hw: pointer to hardware structure
   1144  *
   1145  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
   1146  *  ixgbe_hw struct in order to set up EEPROM access.
   1147  **/
   1148 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
   1149 {
   1150 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
   1151 	u32 eec;
   1152 	u16 eeprom_size;
   1153 
   1154 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
   1155 
   1156 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
   1157 		eeprom->type = ixgbe_eeprom_none;
   1158 		/* Set default semaphore delay to 10ms which is a well
   1159 		 * tested value */
   1160 		eeprom->semaphore_delay = 10;
   1161 		/* Clear EEPROM page size, it will be initialized as needed */
   1162 		eeprom->word_page_size = 0;
   1163 
   1164 		/*
   1165 		 * Check for EEPROM present first.
   1166 		 * If not present leave as none
   1167 		 */
   1168 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1169 		if (eec & IXGBE_EEC_PRES) {
   1170 			eeprom->type = ixgbe_eeprom_spi;
   1171 
   1172 			/*
   1173 			 * SPI EEPROM is assumed here.  This code would need to
   1174 			 * change if a future EEPROM is not SPI.
   1175 			 */
   1176 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
   1177 					    IXGBE_EEC_SIZE_SHIFT);
   1178 			eeprom->word_size = 1 << (eeprom_size +
   1179 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
   1180 		}
   1181 
   1182 		if (eec & IXGBE_EEC_ADDR_SIZE)
   1183 			eeprom->address_bits = 16;
   1184 		else
   1185 			eeprom->address_bits = 8;
   1186 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
   1187 			  "%d\n", eeprom->type, eeprom->word_size,
   1188 			  eeprom->address_bits);
   1189 	}
   1190 
   1191 	return IXGBE_SUCCESS;
   1192 }
   1193 
   1194 /**
   1195  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
   1196  *  @hw: pointer to hardware structure
   1197  *  @offset: offset within the EEPROM to write
   1198  *  @words: number of word(s)
   1199  *  @data: 16 bit word(s) to write to EEPROM
   1200  *
   1201  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1202  **/
   1203 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1204 					       u16 words, u16 *data)
   1205 {
   1206 	s32 status = IXGBE_SUCCESS;
   1207 	u16 i, count;
   1208 
   1209 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
   1210 
   1211 	hw->eeprom.ops.init_params(hw);
   1212 
   1213 	if (words == 0) {
   1214 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1215 		goto out;
   1216 	}
   1217 
   1218 	if (offset + words > hw->eeprom.word_size) {
   1219 		status = IXGBE_ERR_EEPROM;
   1220 		goto out;
   1221 	}
   1222 
   1223 	/*
   1224 	 * The EEPROM page size cannot be queried from the chip. We do lazy
   1225 	 * initialization. It is worth to do that when we write large buffer.
   1226 	 */
   1227 	if ((hw->eeprom.word_page_size == 0) &&
   1228 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
   1229 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
   1230 
   1231 	/*
   1232 	 * We cannot hold synchronization semaphores for too long
   1233 	 * to avoid other entity starvation. However it is more efficient
   1234 	 * to read in bursts than synchronizing access for each word.
   1235 	 */
   1236 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1237 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1238 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1239 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
   1240 							    count, &data[i]);
   1241 
   1242 		if (status != IXGBE_SUCCESS)
   1243 			break;
   1244 	}
   1245 
   1246 out:
   1247 	return status;
   1248 }
   1249 
   1250 /**
   1251  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
   1252  *  @hw: pointer to hardware structure
   1253  *  @offset: offset within the EEPROM to be written to
   1254  *  @words: number of word(s)
   1255  *  @data: 16 bit word(s) to be written to the EEPROM
   1256  *
   1257  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1258  *  EEPROM will most likely contain an invalid checksum.
   1259  **/
   1260 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1261 					      u16 words, u16 *data)
   1262 {
   1263 	s32 status;
   1264 	u16 word;
   1265 	u16 page_size;
   1266 	u16 i;
   1267 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
   1268 
   1269 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
   1270 
   1271 	/* Prepare the EEPROM for writing  */
   1272 	status = ixgbe_acquire_eeprom(hw);
   1273 
   1274 	if (status == IXGBE_SUCCESS) {
   1275 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1276 			ixgbe_release_eeprom(hw);
   1277 			status = IXGBE_ERR_EEPROM;
   1278 		}
   1279 	}
   1280 
   1281 	if (status == IXGBE_SUCCESS) {
   1282 		for (i = 0; i < words; i++) {
   1283 			ixgbe_standby_eeprom(hw);
   1284 
   1285 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
   1286 			ixgbe_shift_out_eeprom_bits(hw,
   1287 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
   1288 						   IXGBE_EEPROM_OPCODE_BITS);
   1289 
   1290 			ixgbe_standby_eeprom(hw);
   1291 
   1292 			/*
   1293 			 * Some SPI eeproms use the 8th address bit embedded
   1294 			 * in the opcode
   1295 			 */
   1296 			if ((hw->eeprom.address_bits == 8) &&
   1297 			    ((offset + i) >= 128))
   1298 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1299 
   1300 			/* Send the Write command (8-bit opcode + addr) */
   1301 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
   1302 						    IXGBE_EEPROM_OPCODE_BITS);
   1303 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1304 						    hw->eeprom.address_bits);
   1305 
   1306 			page_size = hw->eeprom.word_page_size;
   1307 
   1308 			/* Send the data in burst via SPI*/
   1309 			do {
   1310 				word = data[i];
   1311 				word = (word >> 8) | (word << 8);
   1312 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
   1313 
   1314 				if (page_size == 0)
   1315 					break;
   1316 
   1317 				/* do not wrap around page */
   1318 				if (((offset + i) & (page_size - 1)) ==
   1319 				    (page_size - 1))
   1320 					break;
   1321 			} while (++i < words);
   1322 
   1323 			ixgbe_standby_eeprom(hw);
   1324 			msec_delay(10);
   1325 		}
   1326 		/* Done with writing - release the EEPROM */
   1327 		ixgbe_release_eeprom(hw);
   1328 	}
   1329 
   1330 	return status;
   1331 }
   1332 
   1333 /**
   1334  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1335  *  @hw: pointer to hardware structure
   1336  *  @offset: offset within the EEPROM to be written to
   1337  *  @data: 16 bit word to be written to the EEPROM
   1338  *
   1339  *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1340  *  EEPROM will most likely contain an invalid checksum.
   1341  **/
   1342 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1343 {
   1344 	s32 status;
   1345 
   1346 	DEBUGFUNC("ixgbe_write_eeprom_generic");
   1347 
   1348 	hw->eeprom.ops.init_params(hw);
   1349 
   1350 	if (offset >= hw->eeprom.word_size) {
   1351 		status = IXGBE_ERR_EEPROM;
   1352 		goto out;
   1353 	}
   1354 
   1355 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1356 
   1357 out:
   1358 	return status;
   1359 }
   1360 
   1361 /**
   1362  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1363  *  @hw: pointer to hardware structure
   1364  *  @offset: offset within the EEPROM to be read
   1365  *  @data: read 16 bit words(s) from EEPROM
   1366  *  @words: number of word(s)
   1367  *
   1368  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1369  **/
   1370 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1371 					      u16 words, u16 *data)
   1372 {
   1373 	s32 status = IXGBE_SUCCESS;
   1374 	u16 i, count;
   1375 
   1376 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
   1377 
   1378 	hw->eeprom.ops.init_params(hw);
   1379 
   1380 	if (words == 0) {
   1381 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1382 		goto out;
   1383 	}
   1384 
   1385 	if (offset + words > hw->eeprom.word_size) {
   1386 		status = IXGBE_ERR_EEPROM;
   1387 		goto out;
   1388 	}
   1389 
   1390 	/*
   1391 	 * We cannot hold synchronization semaphores for too long
   1392 	 * to avoid other entity starvation. However it is more efficient
   1393 	 * to read in bursts than synchronizing access for each word.
   1394 	 */
   1395 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1396 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1397 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1398 
   1399 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1400 							   count, &data[i]);
   1401 
   1402 		if (status != IXGBE_SUCCESS)
   1403 			break;
   1404 	}
   1405 
   1406 out:
   1407 	return status;
   1408 }
   1409 
   1410 /**
   1411  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1412  *  @hw: pointer to hardware structure
   1413  *  @offset: offset within the EEPROM to be read
   1414  *  @words: number of word(s)
   1415  *  @data: read 16 bit word(s) from EEPROM
   1416  *
   1417  *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1418  **/
   1419 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1420 					     u16 words, u16 *data)
   1421 {
   1422 	s32 status;
   1423 	u16 word_in;
   1424 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1425 	u16 i;
   1426 
   1427 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
   1428 
   1429 	/* Prepare the EEPROM for reading  */
   1430 	status = ixgbe_acquire_eeprom(hw);
   1431 
   1432 	if (status == IXGBE_SUCCESS) {
   1433 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
   1434 			ixgbe_release_eeprom(hw);
   1435 			status = IXGBE_ERR_EEPROM;
   1436 		}
   1437 	}
   1438 
   1439 	if (status == IXGBE_SUCCESS) {
   1440 		for (i = 0; i < words; i++) {
   1441 			ixgbe_standby_eeprom(hw);
   1442 			/*
   1443 			 * Some SPI eeproms use the 8th address bit embedded
   1444 			 * in the opcode
   1445 			 */
   1446 			if ((hw->eeprom.address_bits == 8) &&
   1447 			    ((offset + i) >= 128))
   1448 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1449 
   1450 			/* Send the READ command (opcode + addr) */
   1451 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1452 						    IXGBE_EEPROM_OPCODE_BITS);
   1453 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1454 						    hw->eeprom.address_bits);
   1455 
   1456 			/* Read the data. */
   1457 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1458 			data[i] = (word_in >> 8) | (word_in << 8);
   1459 		}
   1460 
   1461 		/* End this read operation */
   1462 		ixgbe_release_eeprom(hw);
   1463 	}
   1464 
   1465 	return status;
   1466 }
   1467 
   1468 /**
   1469  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1470  *  @hw: pointer to hardware structure
   1471  *  @offset: offset within the EEPROM to be read
   1472  *  @data: read 16 bit value from EEPROM
   1473  *
   1474  *  Reads 16 bit value from EEPROM through bit-bang method
   1475  **/
   1476 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1477 				       u16 *data)
   1478 {
   1479 	s32 status;
   1480 
   1481 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
   1482 
   1483 	hw->eeprom.ops.init_params(hw);
   1484 
   1485 	if (offset >= hw->eeprom.word_size) {
   1486 		status = IXGBE_ERR_EEPROM;
   1487 		goto out;
   1488 	}
   1489 
   1490 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1491 
   1492 out:
   1493 	return status;
   1494 }
   1495 
   1496 /**
   1497  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1498  *  @hw: pointer to hardware structure
   1499  *  @offset: offset of word in the EEPROM to read
   1500  *  @words: number of word(s)
   1501  *  @data: 16 bit word(s) from the EEPROM
   1502  *
   1503  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1504  **/
   1505 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1506 				   u16 words, u16 *data)
   1507 {
   1508 	u32 eerd;
   1509 	s32 status = IXGBE_SUCCESS;
   1510 	u32 i;
   1511 
   1512 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
   1513 
   1514 	hw->eeprom.ops.init_params(hw);
   1515 
   1516 	if (words == 0) {
   1517 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1518 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1519 		goto out;
   1520 	}
   1521 
   1522 	if (offset >= hw->eeprom.word_size) {
   1523 		status = IXGBE_ERR_EEPROM;
   1524 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1525 		goto out;
   1526 	}
   1527 
   1528 	for (i = 0; i < words; i++) {
   1529 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1530 		       IXGBE_EEPROM_RW_REG_START;
   1531 
   1532 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1533 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1534 
   1535 		if (status == IXGBE_SUCCESS) {
   1536 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1537 				   IXGBE_EEPROM_RW_REG_DATA);
   1538 		} else {
   1539 			DEBUGOUT("Eeprom read timed out\n");
   1540 			goto out;
   1541 		}
   1542 	}
   1543 out:
   1544 	return status;
   1545 }
   1546 
   1547 /**
   1548  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1549  *  @hw: pointer to hardware structure
   1550  *  @offset: offset within the EEPROM to be used as a scratch pad
   1551  *
   1552  *  Discover EEPROM page size by writing marching data at given offset.
   1553  *  This function is called only when we are writing a new large buffer
   1554  *  at given offset so the data would be overwritten anyway.
   1555  **/
   1556 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1557 						 u16 offset)
   1558 {
   1559 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1560 	s32 status = IXGBE_SUCCESS;
   1561 	u16 i;
   1562 
   1563 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
   1564 
   1565 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1566 		data[i] = i;
   1567 
   1568 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1569 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1570 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1571 	hw->eeprom.word_page_size = 0;
   1572 	if (status != IXGBE_SUCCESS)
   1573 		goto out;
   1574 
   1575 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1576 	if (status != IXGBE_SUCCESS)
   1577 		goto out;
   1578 
   1579 	/*
   1580 	 * When writing in burst more than the actual page size
   1581 	 * EEPROM address wraps around current page.
   1582 	 */
   1583 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1584 
   1585 	DEBUGOUT1("Detected EEPROM page size = %d words.",
   1586 		  hw->eeprom.word_page_size);
   1587 out:
   1588 	return status;
   1589 }
   1590 
   1591 /**
   1592  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1593  *  @hw: pointer to hardware structure
   1594  *  @offset: offset of  word in the EEPROM to read
   1595  *  @data: word read from the EEPROM
   1596  *
   1597  *  Reads a 16 bit word from the EEPROM using the EERD register.
   1598  **/
   1599 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1600 {
   1601 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1602 }
   1603 
   1604 /**
   1605  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1606  *  @hw: pointer to hardware structure
   1607  *  @offset: offset of  word in the EEPROM to write
   1608  *  @words: number of word(s)
   1609  *  @data: word(s) write to the EEPROM
   1610  *
   1611  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1612  **/
   1613 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1614 				    u16 words, u16 *data)
   1615 {
   1616 	u32 eewr;
   1617 	s32 status = IXGBE_SUCCESS;
   1618 	u16 i;
   1619 
   1620 	DEBUGFUNC("ixgbe_write_eewr_generic");
   1621 
   1622 	hw->eeprom.ops.init_params(hw);
   1623 
   1624 	if (words == 0) {
   1625 		status = IXGBE_ERR_INVALID_ARGUMENT;
   1626 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
   1627 		goto out;
   1628 	}
   1629 
   1630 	if (offset >= hw->eeprom.word_size) {
   1631 		status = IXGBE_ERR_EEPROM;
   1632 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
   1633 		goto out;
   1634 	}
   1635 
   1636 	for (i = 0; i < words; i++) {
   1637 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1638 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1639 			IXGBE_EEPROM_RW_REG_START;
   1640 
   1641 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1642 		if (status != IXGBE_SUCCESS) {
   1643 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1644 			goto out;
   1645 		}
   1646 
   1647 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1648 
   1649 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1650 		if (status != IXGBE_SUCCESS) {
   1651 			DEBUGOUT("Eeprom write EEWR timed out\n");
   1652 			goto out;
   1653 		}
   1654 	}
   1655 
   1656 out:
   1657 	return status;
   1658 }
   1659 
   1660 /**
   1661  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1662  *  @hw: pointer to hardware structure
   1663  *  @offset: offset of  word in the EEPROM to write
   1664  *  @data: word write to the EEPROM
   1665  *
   1666  *  Write a 16 bit word to the EEPROM using the EEWR register.
   1667  **/
   1668 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1669 {
   1670 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1671 }
   1672 
   1673 /**
   1674  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1675  *  @hw: pointer to hardware structure
   1676  *  @ee_reg: EEPROM flag for polling
   1677  *
   1678  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1679  *  read or write is done respectively.
   1680  **/
   1681 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1682 {
   1683 	u32 i;
   1684 	u32 reg;
   1685 	s32 status = IXGBE_ERR_EEPROM;
   1686 
   1687 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
   1688 
   1689 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1690 		if (ee_reg == IXGBE_NVM_POLL_READ)
   1691 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1692 		else
   1693 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1694 
   1695 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1696 			status = IXGBE_SUCCESS;
   1697 			break;
   1698 		}
   1699 		usec_delay(5);
   1700 	}
   1701 
   1702 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
   1703 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1704 			     "EEPROM read/write done polling timed out");
   1705 
   1706 	return status;
   1707 }
   1708 
   1709 /**
   1710  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1711  *  @hw: pointer to hardware structure
   1712  *
   1713  *  Prepares EEPROM for access using bit-bang method. This function should
   1714  *  be called before issuing a command to the EEPROM.
   1715  **/
   1716 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1717 {
   1718 	s32 status = IXGBE_SUCCESS;
   1719 	u32 eec;
   1720 	u32 i;
   1721 
   1722 	DEBUGFUNC("ixgbe_acquire_eeprom");
   1723 
   1724 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
   1725 	    != IXGBE_SUCCESS)
   1726 		status = IXGBE_ERR_SWFW_SYNC;
   1727 
   1728 	if (status == IXGBE_SUCCESS) {
   1729 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1730 
   1731 		/* Request EEPROM Access */
   1732 		eec |= IXGBE_EEC_REQ;
   1733 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1734 
   1735 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1736 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1737 			if (eec & IXGBE_EEC_GNT)
   1738 				break;
   1739 			usec_delay(5);
   1740 		}
   1741 
   1742 		/* Release if grant not acquired */
   1743 		if (!(eec & IXGBE_EEC_GNT)) {
   1744 			eec &= ~IXGBE_EEC_REQ;
   1745 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1746 			DEBUGOUT("Could not acquire EEPROM grant\n");
   1747 
   1748 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1749 			status = IXGBE_ERR_EEPROM;
   1750 		}
   1751 
   1752 		/* Setup EEPROM for Read/Write */
   1753 		if (status == IXGBE_SUCCESS) {
   1754 			/* Clear CS and SK */
   1755 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1756 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1757 			IXGBE_WRITE_FLUSH(hw);
   1758 			usec_delay(1);
   1759 		}
   1760 	}
   1761 	return status;
   1762 }
   1763 
   1764 /**
   1765  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1766  *  @hw: pointer to hardware structure
   1767  *
   1768  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1769  **/
   1770 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1771 {
   1772 	s32 status = IXGBE_ERR_EEPROM;
   1773 	u32 timeout = 2000;
   1774 	u32 i;
   1775 	u32 swsm;
   1776 
   1777 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
   1778 
   1779 
   1780 	/* Get SMBI software semaphore between device drivers first */
   1781 	for (i = 0; i < timeout; i++) {
   1782 		/*
   1783 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1784 		 * set and we have the semaphore
   1785 		 */
   1786 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1787 		if (!(swsm & IXGBE_SWSM_SMBI)) {
   1788 			status = IXGBE_SUCCESS;
   1789 			break;
   1790 		}
   1791 		usec_delay(50);
   1792 	}
   1793 
   1794 	if (i == timeout) {
   1795 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
   1796 			 "not granted.\n");
   1797 		/*
   1798 		 * this release is particularly important because our attempts
   1799 		 * above to get the semaphore may have succeeded, and if there
   1800 		 * was a timeout, we should unconditionally clear the semaphore
   1801 		 * bits to free the driver to make progress
   1802 		 */
   1803 		ixgbe_release_eeprom_semaphore(hw);
   1804 
   1805 		usec_delay(50);
   1806 		/*
   1807 		 * one last try
   1808 		 * If the SMBI bit is 0 when we read it, then the bit will be
   1809 		 * set and we have the semaphore
   1810 		 */
   1811 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1812 		if (!(swsm & IXGBE_SWSM_SMBI))
   1813 			status = IXGBE_SUCCESS;
   1814 	}
   1815 
   1816 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1817 	if (status == IXGBE_SUCCESS) {
   1818 		for (i = 0; i < timeout; i++) {
   1819 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1820 
   1821 			/* Set the SW EEPROM semaphore bit to request access */
   1822 			swsm |= IXGBE_SWSM_SWESMBI;
   1823 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1824 
   1825 			/*
   1826 			 * If we set the bit successfully then we got the
   1827 			 * semaphore.
   1828 			 */
   1829 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1830 			if (swsm & IXGBE_SWSM_SWESMBI)
   1831 				break;
   1832 
   1833 			usec_delay(50);
   1834 		}
   1835 
   1836 		/*
   1837 		 * Release semaphores and return error if SW EEPROM semaphore
   1838 		 * was not granted because we don't have access to the EEPROM
   1839 		 */
   1840 		if (i >= timeout) {
   1841 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1842 			    "SWESMBI Software EEPROM semaphore not granted.\n");
   1843 			ixgbe_release_eeprom_semaphore(hw);
   1844 			status = IXGBE_ERR_EEPROM;
   1845 		}
   1846 	} else {
   1847 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
   1848 			     "Software semaphore SMBI between device drivers "
   1849 			     "not granted.\n");
   1850 	}
   1851 
   1852 	return status;
   1853 }
   1854 
   1855 /**
   1856  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1857  *  @hw: pointer to hardware structure
   1858  *
   1859  *  This function clears hardware semaphore bits.
   1860  **/
   1861 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1862 {
   1863 	u32 swsm;
   1864 
   1865 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
   1866 
   1867 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
   1868 
   1869 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1870 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1871 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
   1872 	IXGBE_WRITE_FLUSH(hw);
   1873 }
   1874 
   1875 /**
   1876  *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1877  *  @hw: pointer to hardware structure
   1878  **/
   1879 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1880 {
   1881 	s32 status = IXGBE_SUCCESS;
   1882 	u16 i;
   1883 	u8 spi_stat_reg;
   1884 
   1885 	DEBUGFUNC("ixgbe_ready_eeprom");
   1886 
   1887 	/*
   1888 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1889 	 * EEPROM will signal that the command has been completed by clearing
   1890 	 * bit 0 of the internal status register.  If it's not cleared within
   1891 	 * 5 milliseconds, then error out.
   1892 	 */
   1893 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1894 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1895 					    IXGBE_EEPROM_OPCODE_BITS);
   1896 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1897 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1898 			break;
   1899 
   1900 		usec_delay(5);
   1901 		ixgbe_standby_eeprom(hw);
   1902 	};
   1903 
   1904 	/*
   1905 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1906 	 * devices (and only 0-5mSec on 5V devices)
   1907 	 */
   1908 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1909 		DEBUGOUT("SPI EEPROM Status error\n");
   1910 		status = IXGBE_ERR_EEPROM;
   1911 	}
   1912 
   1913 	return status;
   1914 }
   1915 
   1916 /**
   1917  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1918  *  @hw: pointer to hardware structure
   1919  **/
   1920 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1921 {
   1922 	u32 eec;
   1923 
   1924 	DEBUGFUNC("ixgbe_standby_eeprom");
   1925 
   1926 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1927 
   1928 	/* Toggle CS to flush commands */
   1929 	eec |= IXGBE_EEC_CS;
   1930 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1931 	IXGBE_WRITE_FLUSH(hw);
   1932 	usec_delay(1);
   1933 	eec &= ~IXGBE_EEC_CS;
   1934 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1935 	IXGBE_WRITE_FLUSH(hw);
   1936 	usec_delay(1);
   1937 }
   1938 
   1939 /**
   1940  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1941  *  @hw: pointer to hardware structure
   1942  *  @data: data to send to the EEPROM
   1943  *  @count: number of bits to shift out
   1944  **/
   1945 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1946 					u16 count)
   1947 {
   1948 	u32 eec;
   1949 	u32 mask;
   1950 	u32 i;
   1951 
   1952 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
   1953 
   1954 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   1955 
   1956 	/*
   1957 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1958 	 * one bit at a time.  Determine the starting bit based on count
   1959 	 */
   1960 	mask = 0x01 << (count - 1);
   1961 
   1962 	for (i = 0; i < count; i++) {
   1963 		/*
   1964 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1965 		 * "1", and then raising and then lowering the clock (the SK
   1966 		 * bit controls the clock input to the EEPROM).  A "0" is
   1967 		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1968 		 * raising and then lowering the clock.
   1969 		 */
   1970 		if (data & mask)
   1971 			eec |= IXGBE_EEC_DI;
   1972 		else
   1973 			eec &= ~IXGBE_EEC_DI;
   1974 
   1975 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1976 		IXGBE_WRITE_FLUSH(hw);
   1977 
   1978 		usec_delay(1);
   1979 
   1980 		ixgbe_raise_eeprom_clk(hw, &eec);
   1981 		ixgbe_lower_eeprom_clk(hw, &eec);
   1982 
   1983 		/*
   1984 		 * Shift mask to signify next bit of data to shift in to the
   1985 		 * EEPROM
   1986 		 */
   1987 		mask = mask >> 1;
   1988 	};
   1989 
   1990 	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1991 	eec &= ~IXGBE_EEC_DI;
   1992 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   1993 	IXGBE_WRITE_FLUSH(hw);
   1994 }
   1995 
   1996 /**
   1997  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1998  *  @hw: pointer to hardware structure
   1999  **/
   2000 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   2001 {
   2002 	u32 eec;
   2003 	u32 i;
   2004 	u16 data = 0;
   2005 
   2006 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
   2007 
   2008 	/*
   2009 	 * In order to read a register from the EEPROM, we need to shift
   2010 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   2011 	 * the clock input to the EEPROM (setting the SK bit), and then reading
   2012 	 * the value of the "DO" bit.  During this "shifting in" process the
   2013 	 * "DI" bit should always be clear.
   2014 	 */
   2015 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2016 
   2017 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   2018 
   2019 	for (i = 0; i < count; i++) {
   2020 		data = data << 1;
   2021 		ixgbe_raise_eeprom_clk(hw, &eec);
   2022 
   2023 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2024 
   2025 		eec &= ~(IXGBE_EEC_DI);
   2026 		if (eec & IXGBE_EEC_DO)
   2027 			data |= 1;
   2028 
   2029 		ixgbe_lower_eeprom_clk(hw, &eec);
   2030 	}
   2031 
   2032 	return data;
   2033 }
   2034 
   2035 /**
   2036  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   2037  *  @hw: pointer to hardware structure
   2038  *  @eec: EEC register's current value
   2039  **/
   2040 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2041 {
   2042 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
   2043 
   2044 	/*
   2045 	 * Raise the clock input to the EEPROM
   2046 	 * (setting the SK bit), then delay
   2047 	 */
   2048 	*eec = *eec | IXGBE_EEC_SK;
   2049 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2050 	IXGBE_WRITE_FLUSH(hw);
   2051 	usec_delay(1);
   2052 }
   2053 
   2054 /**
   2055  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   2056  *  @hw: pointer to hardware structure
   2057  *  @eecd: EECD's current value
   2058  **/
   2059 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   2060 {
   2061 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
   2062 
   2063 	/*
   2064 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   2065 	 * delay
   2066 	 */
   2067 	*eec = *eec & ~IXGBE_EEC_SK;
   2068 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
   2069 	IXGBE_WRITE_FLUSH(hw);
   2070 	usec_delay(1);
   2071 }
   2072 
   2073 /**
   2074  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   2075  *  @hw: pointer to hardware structure
   2076  **/
   2077 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   2078 {
   2079 	u32 eec;
   2080 
   2081 	DEBUGFUNC("ixgbe_release_eeprom");
   2082 
   2083 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
   2084 
   2085 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   2086 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   2087 
   2088 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2089 	IXGBE_WRITE_FLUSH(hw);
   2090 
   2091 	usec_delay(1);
   2092 
   2093 	/* Stop requesting EEPROM access */
   2094 	eec &= ~IXGBE_EEC_REQ;
   2095 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
   2096 
   2097 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   2098 
   2099 	/* Delay before attempt to obtain semaphore again to allow FW access */
   2100 	msec_delay(hw->eeprom.semaphore_delay);
   2101 }
   2102 
   2103 /**
   2104  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   2105  *  @hw: pointer to hardware structure
   2106  *
   2107  *  Returns a negative error code on error, or the 16-bit checksum
   2108  **/
   2109 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2110 {
   2111 	u16 i;
   2112 	u16 j;
   2113 	u16 checksum = 0;
   2114 	u16 length = 0;
   2115 	u16 pointer = 0;
   2116 	u16 word = 0;
   2117 
   2118 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
   2119 
   2120 	/* Include 0x0-0x3F in the checksum */
   2121 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   2122 		if (hw->eeprom.ops.read(hw, i, &word)) {
   2123 			DEBUGOUT("EEPROM read failed\n");
   2124 			return IXGBE_ERR_EEPROM;
   2125 		}
   2126 		checksum += word;
   2127 	}
   2128 
   2129 	/* Include all data from pointers except for the fw pointer */
   2130 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   2131 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   2132 			DEBUGOUT("EEPROM read failed\n");
   2133 			return IXGBE_ERR_EEPROM;
   2134 		}
   2135 
   2136 		/* If the pointer seems invalid */
   2137 		if (pointer == 0xFFFF || pointer == 0)
   2138 			continue;
   2139 
   2140 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   2141 			DEBUGOUT("EEPROM read failed\n");
   2142 			return IXGBE_ERR_EEPROM;
   2143 		}
   2144 
   2145 		if (length == 0xFFFF || length == 0)
   2146 			continue;
   2147 
   2148 		for (j = pointer + 1; j <= pointer + length; j++) {
   2149 			if (hw->eeprom.ops.read(hw, j, &word)) {
   2150 				DEBUGOUT("EEPROM read failed\n");
   2151 				return IXGBE_ERR_EEPROM;
   2152 			}
   2153 			checksum += word;
   2154 		}
   2155 	}
   2156 
   2157 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   2158 
   2159 	return (s32)checksum;
   2160 }
   2161 
   2162 /**
   2163  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   2164  *  @hw: pointer to hardware structure
   2165  *  @checksum_val: calculated checksum
   2166  *
   2167  *  Performs checksum calculation and validates the EEPROM checksum.  If the
   2168  *  caller does not need checksum_val, the value can be NULL.
   2169  **/
   2170 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   2171 					   u16 *checksum_val)
   2172 {
   2173 	s32 status;
   2174 	u16 checksum;
   2175 	u16 read_checksum = 0;
   2176 
   2177 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
   2178 
   2179 	/* Read the first word from the EEPROM. If this times out or fails, do
   2180 	 * not continue or we could be in for a very long wait while every
   2181 	 * EEPROM read fails
   2182 	 */
   2183 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2184 	if (status) {
   2185 		DEBUGOUT("EEPROM read failed\n");
   2186 		return status;
   2187 	}
   2188 
   2189 	status = hw->eeprom.ops.calc_checksum(hw);
   2190 	if (status < 0)
   2191 		return status;
   2192 
   2193 	checksum = (u16)(status & 0xffff);
   2194 
   2195 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   2196 	if (status) {
   2197 		DEBUGOUT("EEPROM read failed\n");
   2198 		return status;
   2199 	}
   2200 
   2201 	/* Verify read checksum from EEPROM is the same as
   2202 	 * calculated checksum
   2203 	 */
   2204 	if (read_checksum != checksum)
   2205 		status = IXGBE_ERR_EEPROM_CHECKSUM;
   2206 
   2207 	/* If the user cares, return the calculated checksum */
   2208 	if (checksum_val)
   2209 		*checksum_val = checksum;
   2210 
   2211 	return status;
   2212 }
   2213 
   2214 /**
   2215  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   2216  *  @hw: pointer to hardware structure
   2217  **/
   2218 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   2219 {
   2220 	s32 status;
   2221 	u16 checksum;
   2222 
   2223 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
   2224 
   2225 	/* Read the first word from the EEPROM. If this times out or fails, do
   2226 	 * not continue or we could be in for a very long wait while every
   2227 	 * EEPROM read fails
   2228 	 */
   2229 	status = hw->eeprom.ops.read(hw, 0, &checksum);
   2230 	if (status) {
   2231 		DEBUGOUT("EEPROM read failed\n");
   2232 		return status;
   2233 	}
   2234 
   2235 	status = hw->eeprom.ops.calc_checksum(hw);
   2236 	if (status < 0)
   2237 		return status;
   2238 
   2239 	checksum = (u16)(status & 0xffff);
   2240 
   2241 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   2242 
   2243 	return status;
   2244 }
   2245 
   2246 /**
   2247  *  ixgbe_validate_mac_addr - Validate MAC address
   2248  *  @mac_addr: pointer to MAC address.
   2249  *
   2250  *  Tests a MAC address to ensure it is a valid Individual Address
   2251  **/
   2252 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
   2253 {
   2254 	s32 status = IXGBE_SUCCESS;
   2255 
   2256 	DEBUGFUNC("ixgbe_validate_mac_addr");
   2257 
   2258 	/* Make sure it is not a multicast address */
   2259 	if (IXGBE_IS_MULTICAST(mac_addr)) {
   2260 		DEBUGOUT("MAC address is multicast\n");
   2261 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2262 	/* Not a broadcast address */
   2263 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
   2264 		DEBUGOUT("MAC address is broadcast\n");
   2265 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2266 	/* Reject the zero address */
   2267 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
   2268 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
   2269 		DEBUGOUT("MAC address is all zeros\n");
   2270 		status = IXGBE_ERR_INVALID_MAC_ADDR;
   2271 	}
   2272 	return status;
   2273 }
   2274 
   2275 /**
   2276  *  ixgbe_set_rar_generic - Set Rx address register
   2277  *  @hw: pointer to hardware structure
   2278  *  @index: Receive address register to write
   2279  *  @addr: Address to put into receive address register
   2280  *  @vmdq: VMDq "set" or "pool" index
   2281  *  @enable_addr: set flag that address is active
   2282  *
   2283  *  Puts an ethernet address into a receive address register.
   2284  **/
   2285 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   2286 			  u32 enable_addr)
   2287 {
   2288 	u32 rar_low, rar_high;
   2289 	u32 rar_entries = hw->mac.num_rar_entries;
   2290 
   2291 	DEBUGFUNC("ixgbe_set_rar_generic");
   2292 
   2293 	/* Make sure we are using a valid rar index range */
   2294 	if (index >= rar_entries) {
   2295 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2296 			     "RAR index %d is out of range.\n", index);
   2297 		return IXGBE_ERR_INVALID_ARGUMENT;
   2298 	}
   2299 
   2300 	/* setup VMDq pool selection before this RAR gets enabled */
   2301 	hw->mac.ops.set_vmdq(hw, index, vmdq);
   2302 
   2303 	/*
   2304 	 * HW expects these in little endian so we reverse the byte
   2305 	 * order from network order (big endian) to little endian
   2306 	 */
   2307 	rar_low = ((u32)addr[0] |
   2308 		   ((u32)addr[1] << 8) |
   2309 		   ((u32)addr[2] << 16) |
   2310 		   ((u32)addr[3] << 24));
   2311 	/*
   2312 	 * Some parts put the VMDq setting in the extra RAH bits,
   2313 	 * so save everything except the lower 16 bits that hold part
   2314 	 * of the address and the address valid bit.
   2315 	 */
   2316 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2317 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2318 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   2319 
   2320 	if (enable_addr != 0)
   2321 		rar_high |= IXGBE_RAH_AV;
   2322 
   2323 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   2324 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2325 
   2326 	return IXGBE_SUCCESS;
   2327 }
   2328 
   2329 /**
   2330  *  ixgbe_clear_rar_generic - Remove Rx address register
   2331  *  @hw: pointer to hardware structure
   2332  *  @index: Receive address register to write
   2333  *
   2334  *  Clears an ethernet address from a receive address register.
   2335  **/
   2336 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   2337 {
   2338 	u32 rar_high;
   2339 	u32 rar_entries = hw->mac.num_rar_entries;
   2340 
   2341 	DEBUGFUNC("ixgbe_clear_rar_generic");
   2342 
   2343 	/* Make sure we are using a valid rar index range */
   2344 	if (index >= rar_entries) {
   2345 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   2346 			     "RAR index %d is out of range.\n", index);
   2347 		return IXGBE_ERR_INVALID_ARGUMENT;
   2348 	}
   2349 
   2350 	/*
   2351 	 * Some parts put the VMDq setting in the extra RAH bits,
   2352 	 * so save everything except the lower 16 bits that hold part
   2353 	 * of the address and the address valid bit.
   2354 	 */
   2355 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   2356 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   2357 
   2358 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   2359 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   2360 
   2361 	/* clear VMDq pool/queue selection for this RAR */
   2362 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   2363 
   2364 	return IXGBE_SUCCESS;
   2365 }
   2366 
   2367 /**
   2368  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   2369  *  @hw: pointer to hardware structure
   2370  *
   2371  *  Places the MAC address in receive address register 0 and clears the rest
   2372  *  of the receive address registers. Clears the multicast table. Assumes
   2373  *  the receiver is in reset when the routine is called.
   2374  **/
   2375 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   2376 {
   2377 	u32 i;
   2378 	u32 rar_entries = hw->mac.num_rar_entries;
   2379 
   2380 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
   2381 
   2382 	/*
   2383 	 * If the current mac address is valid, assume it is a software override
   2384 	 * to the permanent address.
   2385 	 * Otherwise, use the permanent address from the eeprom.
   2386 	 */
   2387 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
   2388 	    IXGBE_ERR_INVALID_MAC_ADDR) {
   2389 		/* Get the MAC address from the RAR0 for later reference */
   2390 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   2391 
   2392 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
   2393 			  hw->mac.addr[0], hw->mac.addr[1],
   2394 			  hw->mac.addr[2]);
   2395 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2396 			  hw->mac.addr[4], hw->mac.addr[5]);
   2397 	} else {
   2398 		/* Setup the receive address. */
   2399 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
   2400 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
   2401 			  hw->mac.addr[0], hw->mac.addr[1],
   2402 			  hw->mac.addr[2]);
   2403 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
   2404 			  hw->mac.addr[4], hw->mac.addr[5]);
   2405 
   2406 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   2407 
   2408 		/* clear VMDq pool/queue selection for RAR 0 */
   2409 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   2410 	}
   2411 	hw->addr_ctrl.overflow_promisc = 0;
   2412 
   2413 	hw->addr_ctrl.rar_used_count = 1;
   2414 
   2415 	/* Zero out the other receive addresses. */
   2416 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
   2417 	for (i = 1; i < rar_entries; i++) {
   2418 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   2419 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   2420 	}
   2421 
   2422 	/* Clear the MTA */
   2423 	hw->addr_ctrl.mta_in_use = 0;
   2424 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2425 
   2426 	DEBUGOUT(" Clearing MTA\n");
   2427 	for (i = 0; i < hw->mac.mcft_size; i++)
   2428 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   2429 
   2430 	ixgbe_init_uta_tables(hw);
   2431 
   2432 	return IXGBE_SUCCESS;
   2433 }
   2434 
   2435 /**
   2436  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
   2437  *  @hw: pointer to hardware structure
   2438  *  @addr: new address
   2439  *
   2440  *  Adds it to unused receive address register or goes into promiscuous mode.
   2441  **/
   2442 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   2443 {
   2444 	u32 rar_entries = hw->mac.num_rar_entries;
   2445 	u32 rar;
   2446 
   2447 	DEBUGFUNC("ixgbe_add_uc_addr");
   2448 
   2449 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
   2450 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
   2451 
   2452 	/*
   2453 	 * Place this address in the RAR if there is room,
   2454 	 * else put the controller into promiscuous mode
   2455 	 */
   2456 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
   2457 		rar = hw->addr_ctrl.rar_used_count;
   2458 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   2459 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
   2460 		hw->addr_ctrl.rar_used_count++;
   2461 	} else {
   2462 		hw->addr_ctrl.overflow_promisc++;
   2463 	}
   2464 
   2465 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
   2466 }
   2467 
   2468 /**
   2469  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
   2470  *  @hw: pointer to hardware structure
   2471  *  @addr_list: the list of new addresses
   2472  *  @addr_count: number of addresses
   2473  *  @next: iterator function to walk the address list
   2474  *
   2475  *  The given list replaces any existing list.  Clears the secondary addrs from
   2476  *  receive address registers.  Uses unused receive address registers for the
   2477  *  first secondary addresses, and falls back to promiscuous mode as needed.
   2478  *
   2479  *  Drivers using secondary unicast addresses must set user_set_promisc when
   2480  *  manually putting the device into promiscuous mode.
   2481  **/
   2482 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
   2483 				      u32 addr_count, ixgbe_mc_addr_itr next)
   2484 {
   2485 	u8 *addr;
   2486 	u32 i;
   2487 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
   2488 	u32 uc_addr_in_use;
   2489 	u32 fctrl;
   2490 	u32 vmdq;
   2491 
   2492 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
   2493 
   2494 	/*
   2495 	 * Clear accounting of old secondary address list,
   2496 	 * don't count RAR[0]
   2497 	 */
   2498 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
   2499 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
   2500 	hw->addr_ctrl.overflow_promisc = 0;
   2501 
   2502 	/* Zero out the other receive addresses */
   2503 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
   2504 	for (i = 0; i < uc_addr_in_use; i++) {
   2505 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
   2506 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
   2507 	}
   2508 
   2509 	/* Add the new addresses */
   2510 	for (i = 0; i < addr_count; i++) {
   2511 		DEBUGOUT(" Adding the secondary addresses:\n");
   2512 		addr = next(hw, &addr_list, &vmdq);
   2513 		ixgbe_add_uc_addr(hw, addr, vmdq);
   2514 	}
   2515 
   2516 	if (hw->addr_ctrl.overflow_promisc) {
   2517 		/* enable promisc if not already in overflow or set by user */
   2518 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2519 			DEBUGOUT(" Entering address overflow promisc mode\n");
   2520 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2521 			fctrl |= IXGBE_FCTRL_UPE;
   2522 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2523 		}
   2524 	} else {
   2525 		/* only disable if set by overflow, not by user */
   2526 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
   2527 			DEBUGOUT(" Leaving address overflow promisc mode\n");
   2528 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
   2529 			fctrl &= ~IXGBE_FCTRL_UPE;
   2530 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
   2531 		}
   2532 	}
   2533 
   2534 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
   2535 	return IXGBE_SUCCESS;
   2536 }
   2537 
   2538 /**
   2539  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   2540  *  @hw: pointer to hardware structure
   2541  *  @mc_addr: the multicast address
   2542  *
   2543  *  Extracts the 12 bits, from a multicast address, to determine which
   2544  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   2545  *  incoming rx multicast addresses, to determine the bit-vector to check in
   2546  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   2547  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   2548  *  to mc_filter_type.
   2549  **/
   2550 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   2551 {
   2552 	u32 vector = 0;
   2553 
   2554 	DEBUGFUNC("ixgbe_mta_vector");
   2555 
   2556 	switch (hw->mac.mc_filter_type) {
   2557 	case 0:   /* use bits [47:36] of the address */
   2558 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2559 		break;
   2560 	case 1:   /* use bits [46:35] of the address */
   2561 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2562 		break;
   2563 	case 2:   /* use bits [45:34] of the address */
   2564 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2565 		break;
   2566 	case 3:   /* use bits [43:32] of the address */
   2567 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2568 		break;
   2569 	default:  /* Invalid mc_filter_type */
   2570 		DEBUGOUT("MC filter type param set incorrectly\n");
   2571 		ASSERT(0);
   2572 		break;
   2573 	}
   2574 
   2575 	/* vector can only be 12-bits or boundary will be exceeded */
   2576 	vector &= 0xFFF;
   2577 	return vector;
   2578 }
   2579 
   2580 /**
   2581  *  ixgbe_set_mta - Set bit-vector in multicast table
   2582  *  @hw: pointer to hardware structure
   2583  *  @hash_value: Multicast address hash value
   2584  *
   2585  *  Sets the bit-vector in the multicast table.
   2586  **/
   2587 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2588 {
   2589 	u32 vector;
   2590 	u32 vector_bit;
   2591 	u32 vector_reg;
   2592 
   2593 	DEBUGFUNC("ixgbe_set_mta");
   2594 
   2595 	hw->addr_ctrl.mta_in_use++;
   2596 
   2597 	vector = ixgbe_mta_vector(hw, mc_addr);
   2598 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
   2599 
   2600 	/*
   2601 	 * The MTA is a register array of 128 32-bit registers. It is treated
   2602 	 * like an array of 4096 bits.  We want to set bit
   2603 	 * BitArray[vector_value]. So we figure out what register the bit is
   2604 	 * in, read it, OR in the new bit, then write back the new value.  The
   2605 	 * register is determined by the upper 7 bits of the vector value and
   2606 	 * the bit within that register are determined by the lower 5 bits of
   2607 	 * the value.
   2608 	 */
   2609 	vector_reg = (vector >> 5) & 0x7F;
   2610 	vector_bit = vector & 0x1F;
   2611 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
   2612 }
   2613 
   2614 /**
   2615  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2616  *  @hw: pointer to hardware structure
   2617  *  @mc_addr_list: the list of new multicast addresses
   2618  *  @mc_addr_count: number of addresses
   2619  *  @next: iterator function to walk the multicast address list
   2620  *  @clear: flag, when set clears the table beforehand
   2621  *
   2622  *  When the clear flag is set, the given list replaces any existing list.
   2623  *  Hashes the given addresses into the multicast table.
   2624  **/
   2625 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
   2626 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
   2627 				      bool clear)
   2628 {
   2629 	u32 i;
   2630 	u32 vmdq;
   2631 
   2632 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
   2633 
   2634 	/*
   2635 	 * Set the new number of MC addresses that we are being requested to
   2636 	 * use.
   2637 	 */
   2638 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
   2639 	hw->addr_ctrl.mta_in_use = 0;
   2640 
   2641 	/* Clear mta_shadow */
   2642 	if (clear) {
   2643 		DEBUGOUT(" Clearing MTA\n");
   2644 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2645 	}
   2646 
   2647 	/* Update mta_shadow */
   2648 	for (i = 0; i < mc_addr_count; i++) {
   2649 		DEBUGOUT(" Adding the multicast addresses:\n");
   2650 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
   2651 	}
   2652 
   2653 	/* Enable mta */
   2654 	for (i = 0; i < hw->mac.mcft_size; i++)
   2655 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2656 				      hw->mac.mta_shadow[i]);
   2657 
   2658 	if (hw->addr_ctrl.mta_in_use > 0)
   2659 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2660 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2661 
   2662 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
   2663 	return IXGBE_SUCCESS;
   2664 }
   2665 
   2666 /**
   2667  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2668  *  @hw: pointer to hardware structure
   2669  *
   2670  *  Enables multicast address in RAR and the use of the multicast hash table.
   2671  **/
   2672 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2673 {
   2674 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2675 
   2676 	DEBUGFUNC("ixgbe_enable_mc_generic");
   2677 
   2678 	if (a->mta_in_use > 0)
   2679 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2680 				hw->mac.mc_filter_type);
   2681 
   2682 	return IXGBE_SUCCESS;
   2683 }
   2684 
   2685 /**
   2686  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2687  *  @hw: pointer to hardware structure
   2688  *
   2689  *  Disables multicast address in RAR and the use of the multicast hash table.
   2690  **/
   2691 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2692 {
   2693 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2694 
   2695 	DEBUGFUNC("ixgbe_disable_mc_generic");
   2696 
   2697 	if (a->mta_in_use > 0)
   2698 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2699 
   2700 	return IXGBE_SUCCESS;
   2701 }
   2702 
   2703 /**
   2704  *  ixgbe_fc_enable_generic - Enable flow control
   2705  *  @hw: pointer to hardware structure
   2706  *
   2707  *  Enable flow control according to the current settings.
   2708  **/
   2709 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2710 {
   2711 	s32 ret_val = IXGBE_SUCCESS;
   2712 	u32 mflcn_reg, fccfg_reg;
   2713 	u32 reg;
   2714 	u32 fcrtl, fcrth;
   2715 	int i;
   2716 
   2717 	DEBUGFUNC("ixgbe_fc_enable_generic");
   2718 
   2719 	/* Validate the water mark configuration */
   2720 	if (!hw->fc.pause_time) {
   2721 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2722 		goto out;
   2723 	}
   2724 
   2725 	/* Low water mark of zero causes XOFF floods */
   2726 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2727 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2728 		    hw->fc.high_water[i]) {
   2729 			if (!hw->fc.low_water[i] ||
   2730 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2731 				DEBUGOUT("Invalid water mark configuration\n");
   2732 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
   2733 				goto out;
   2734 			}
   2735 		}
   2736 	}
   2737 
   2738 	/* Negotiate the fc mode to use */
   2739 	ixgbe_fc_autoneg(hw);
   2740 
   2741 	/* Disable any previous flow control settings */
   2742 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2743 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2744 
   2745 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2746 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2747 
   2748 	/*
   2749 	 * The possible values of fc.current_mode are:
   2750 	 * 0: Flow control is completely disabled
   2751 	 * 1: Rx flow control is enabled (we can receive pause frames,
   2752 	 *    but not send pause frames).
   2753 	 * 2: Tx flow control is enabled (we can send pause frames but
   2754 	 *    we do not support receiving pause frames).
   2755 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2756 	 * other: Invalid.
   2757 	 */
   2758 	switch (hw->fc.current_mode) {
   2759 	case ixgbe_fc_none:
   2760 		/*
   2761 		 * Flow control is disabled by software override or autoneg.
   2762 		 * The code below will actually disable it in the HW.
   2763 		 */
   2764 		break;
   2765 	case ixgbe_fc_rx_pause:
   2766 		/*
   2767 		 * Rx Flow control is enabled and Tx Flow control is
   2768 		 * disabled by software override. Since there really
   2769 		 * isn't a way to advertise that we are capable of RX
   2770 		 * Pause ONLY, we will advertise that we support both
   2771 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2772 		 * disable the adapter's ability to send PAUSE frames.
   2773 		 */
   2774 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2775 		break;
   2776 	case ixgbe_fc_tx_pause:
   2777 		/*
   2778 		 * Tx Flow control is enabled, and Rx Flow control is
   2779 		 * disabled by software override.
   2780 		 */
   2781 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2782 		break;
   2783 	case ixgbe_fc_full:
   2784 		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2785 		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2786 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2787 		break;
   2788 	default:
   2789 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
   2790 			     "Flow control param set incorrectly\n");
   2791 		ret_val = IXGBE_ERR_CONFIG;
   2792 		goto out;
   2793 		break;
   2794 	}
   2795 
   2796 	/* Set 802.3x based flow control settings. */
   2797 	mflcn_reg |= IXGBE_MFLCN_DPF;
   2798 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2799 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2800 
   2801 
   2802 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2803 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
   2804 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2805 		    hw->fc.high_water[i]) {
   2806 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2807 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2808 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2809 		} else {
   2810 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2811 			/*
   2812 			 * In order to prevent Tx hangs when the internal Tx
   2813 			 * switch is enabled we must set the high water mark
   2814 			 * to the Rx packet buffer size - 24KB.  This allows
   2815 			 * the Tx switch to function even under heavy Rx
   2816 			 * workloads.
   2817 			 */
   2818 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2819 		}
   2820 
   2821 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2822 	}
   2823 
   2824 	/* Configure pause time (2 TCs per register) */
   2825 	reg = hw->fc.pause_time * 0x00010001;
   2826 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
   2827 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2828 
   2829 	/* Configure flow control refresh threshold value */
   2830 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2831 
   2832 out:
   2833 	return ret_val;
   2834 }
   2835 
   2836 /**
   2837  *  ixgbe_negotiate_fc - Negotiate flow control
   2838  *  @hw: pointer to hardware structure
   2839  *  @adv_reg: flow control advertised settings
   2840  *  @lp_reg: link partner's flow control settings
   2841  *  @adv_sym: symmetric pause bit in advertisement
   2842  *  @adv_asm: asymmetric pause bit in advertisement
   2843  *  @lp_sym: symmetric pause bit in link partner advertisement
   2844  *  @lp_asm: asymmetric pause bit in link partner advertisement
   2845  *
   2846  *  Find the intersection between advertised settings and link partner's
   2847  *  advertised settings
   2848  **/
   2849 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2850 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2851 {
   2852 	if ((!(adv_reg)) ||  (!(lp_reg))) {
   2853 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
   2854 			     "Local or link partner's advertised flow control "
   2855 			     "settings are NULL. Local: %x, link partner: %x\n",
   2856 			     adv_reg, lp_reg);
   2857 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2858 	}
   2859 
   2860 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2861 		/*
   2862 		 * Now we need to check if the user selected Rx ONLY
   2863 		 * of pause frames.  In this case, we had to advertise
   2864 		 * FULL flow control because we could not advertise RX
   2865 		 * ONLY. Hence, we must now check to see if we need to
   2866 		 * turn OFF the TRANSMISSION of PAUSE frames.
   2867 		 */
   2868 		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2869 			hw->fc.current_mode = ixgbe_fc_full;
   2870 			DEBUGOUT("Flow Control = FULL.\n");
   2871 		} else {
   2872 			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2873 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
   2874 		}
   2875 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2876 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2877 		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2878 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
   2879 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2880 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2881 		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2882 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
   2883 	} else {
   2884 		hw->fc.current_mode = ixgbe_fc_none;
   2885 		DEBUGOUT("Flow Control = NONE.\n");
   2886 	}
   2887 	return IXGBE_SUCCESS;
   2888 }
   2889 
   2890 /**
   2891  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2892  *  @hw: pointer to hardware structure
   2893  *
   2894  *  Enable flow control according on 1 gig fiber.
   2895  **/
   2896 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2897 {
   2898 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2899 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2900 
   2901 	/*
   2902 	 * On multispeed fiber at 1g, bail out if
   2903 	 * - link is up but AN did not complete, or if
   2904 	 * - link is up and AN completed but timed out
   2905 	 */
   2906 
   2907 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2908 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2909 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
   2910 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
   2911 		goto out;
   2912 	}
   2913 
   2914 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2915 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2916 
   2917 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2918 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2919 				      IXGBE_PCS1GANA_ASM_PAUSE,
   2920 				      IXGBE_PCS1GANA_SYM_PAUSE,
   2921 				      IXGBE_PCS1GANA_ASM_PAUSE);
   2922 
   2923 out:
   2924 	return ret_val;
   2925 }
   2926 
   2927 /**
   2928  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2929  *  @hw: pointer to hardware structure
   2930  *
   2931  *  Enable flow control according to IEEE clause 37.
   2932  **/
   2933 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2934 {
   2935 	u32 links2, anlp1_reg, autoc_reg, links;
   2936 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2937 
   2938 	/*
   2939 	 * On backplane, bail out if
   2940 	 * - backplane autoneg was not completed, or if
   2941 	 * - we are 82599 and link partner is not AN enabled
   2942 	 */
   2943 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2944 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
   2945 		DEBUGOUT("Auto-Negotiation did not complete\n");
   2946 		goto out;
   2947 	}
   2948 
   2949 	if (hw->mac.type == ixgbe_mac_82599EB) {
   2950 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2951 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
   2952 			DEBUGOUT("Link partner is not AN enabled\n");
   2953 			goto out;
   2954 		}
   2955 	}
   2956 	/*
   2957 	 * Read the 10g AN autoc and LP ability registers and resolve
   2958 	 * local flow control settings accordingly
   2959 	 */
   2960 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2961 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2962 
   2963 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2964 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2965 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2966 
   2967 out:
   2968 	return ret_val;
   2969 }
   2970 
   2971 /**
   2972  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2973  *  @hw: pointer to hardware structure
   2974  *
   2975  *  Enable flow control according to IEEE clause 37.
   2976  **/
   2977 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2978 {
   2979 	u16 technology_ability_reg = 0;
   2980 	u16 lp_technology_ability_reg = 0;
   2981 
   2982 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
   2983 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2984 			     &technology_ability_reg);
   2985 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
   2986 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
   2987 			     &lp_technology_ability_reg);
   2988 
   2989 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2990 				  (u32)lp_technology_ability_reg,
   2991 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2992 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2993 }
   2994 
   2995 /**
   2996  *  ixgbe_fc_autoneg - Configure flow control
   2997  *  @hw: pointer to hardware structure
   2998  *
   2999  *  Compares our advertised flow control capabilities to those advertised by
   3000  *  our link partner, and determines the proper flow control mode to use.
   3001  **/
   3002 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   3003 {
   3004 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   3005 	ixgbe_link_speed speed;
   3006 	bool link_up;
   3007 
   3008 	DEBUGFUNC("ixgbe_fc_autoneg");
   3009 
   3010 	/*
   3011 	 * AN should have completed when the cable was plugged in.
   3012 	 * Look for reasons to bail out.  Bail out if:
   3013 	 * - FC autoneg is disabled, or if
   3014 	 * - link is not up.
   3015 	 */
   3016 	if (hw->fc.disable_fc_autoneg) {
   3017 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
   3018 			     "Flow control autoneg is disabled");
   3019 		goto out;
   3020 	}
   3021 
   3022 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3023 	if (!link_up) {
   3024 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
   3025 		goto out;
   3026 	}
   3027 
   3028 	switch (hw->phy.media_type) {
   3029 	/* Autoneg flow control on fiber adapters */
   3030 	case ixgbe_media_type_fiber_fixed:
   3031 	case ixgbe_media_type_fiber_qsfp:
   3032 	case ixgbe_media_type_fiber:
   3033 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   3034 			ret_val = ixgbe_fc_autoneg_fiber(hw);
   3035 		break;
   3036 
   3037 	/* Autoneg flow control on backplane adapters */
   3038 	case ixgbe_media_type_backplane:
   3039 		ret_val = ixgbe_fc_autoneg_backplane(hw);
   3040 		break;
   3041 
   3042 	/* Autoneg flow control on copper adapters */
   3043 	case ixgbe_media_type_copper:
   3044 		if (ixgbe_device_supports_autoneg_fc(hw))
   3045 			ret_val = ixgbe_fc_autoneg_copper(hw);
   3046 		break;
   3047 
   3048 	default:
   3049 		break;
   3050 	}
   3051 
   3052 out:
   3053 	if (ret_val == IXGBE_SUCCESS) {
   3054 		hw->fc.fc_was_autonegged = TRUE;
   3055 	} else {
   3056 		hw->fc.fc_was_autonegged = FALSE;
   3057 		hw->fc.current_mode = hw->fc.requested_mode;
   3058 	}
   3059 }
   3060 
   3061 /*
   3062  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   3063  * @hw: pointer to hardware structure
   3064  *
   3065  * System-wide timeout range is encoded in PCIe Device Control2 register.
   3066  *
   3067  * Add 10% to specified maximum and return the number of times to poll for
   3068  * completion timeout, in units of 100 microsec.  Never return less than
   3069  * 800 = 80 millisec.
   3070  */
   3071 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   3072 {
   3073 	s16 devctl2;
   3074 	u32 pollcnt;
   3075 
   3076 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
   3077 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   3078 
   3079 	switch (devctl2) {
   3080 	case IXGBE_PCIDEVCTRL2_65_130ms:
   3081 		pollcnt = 1300;		/* 130 millisec */
   3082 		break;
   3083 	case IXGBE_PCIDEVCTRL2_260_520ms:
   3084 		pollcnt = 5200;		/* 520 millisec */
   3085 		break;
   3086 	case IXGBE_PCIDEVCTRL2_1_2s:
   3087 		pollcnt = 20000;	/* 2 sec */
   3088 		break;
   3089 	case IXGBE_PCIDEVCTRL2_4_8s:
   3090 		pollcnt = 80000;	/* 8 sec */
   3091 		break;
   3092 	case IXGBE_PCIDEVCTRL2_17_34s:
   3093 		pollcnt = 34000;	/* 34 sec */
   3094 		break;
   3095 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
   3096 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
   3097 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
   3098 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
   3099 	default:
   3100 		pollcnt = 800;		/* 80 millisec minimum */
   3101 		break;
   3102 	}
   3103 
   3104 	/* add 10% to spec maximum */
   3105 	return (pollcnt * 11) / 10;
   3106 }
   3107 
   3108 /**
   3109  *  ixgbe_disable_pcie_master - Disable PCI-express master access
   3110  *  @hw: pointer to hardware structure
   3111  *
   3112  *  Disables PCI-Express master access and verifies there are no pending
   3113  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
   3114  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
   3115  *  is returned signifying master requests disabled.
   3116  **/
   3117 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
   3118 {
   3119 	s32 status = IXGBE_SUCCESS;
   3120 	u32 i, poll;
   3121 	u16 value;
   3122 
   3123 	DEBUGFUNC("ixgbe_disable_pcie_master");
   3124 
   3125 	/* Always set this bit to ensure any future transactions are blocked */
   3126 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   3127 
   3128 	/* Exit if master requests are blocked */
   3129 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   3130 	    IXGBE_REMOVED(hw->hw_addr))
   3131 		goto out;
   3132 
   3133 	/* Poll for master request bit to clear */
   3134 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
   3135 		usec_delay(100);
   3136 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   3137 			goto out;
   3138 	}
   3139 
   3140 	/*
   3141 	 * Two consecutive resets are required via CTRL.RST per datasheet
   3142 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
   3143 	 * of this need.  The first reset prevents new master requests from
   3144 	 * being issued by our device.  We then must wait 1usec or more for any
   3145 	 * remaining completions from the PCIe bus to trickle in, and then reset
   3146 	 * again to clear out any effects they may have had on our device.
   3147 	 */
   3148 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
   3149 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   3150 
   3151 	/*
   3152 	 * Before proceeding, make sure that the PCIe block does not have
   3153 	 * transactions pending.
   3154 	 */
   3155 	poll = ixgbe_pcie_timeout_poll(hw);
   3156 	for (i = 0; i < poll; i++) {
   3157 		usec_delay(100);
   3158 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   3159 		if (IXGBE_REMOVED(hw->hw_addr))
   3160 			goto out;
   3161 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3162 			goto out;
   3163 	}
   3164 
   3165 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
   3166 		     "PCIe transaction pending bit also did not clear.\n");
   3167 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
   3168 
   3169 out:
   3170 	return status;
   3171 }
   3172 
   3173 /**
   3174  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   3175  *  @hw: pointer to hardware structure
   3176  *  @mask: Mask to specify which semaphore to acquire
   3177  *
   3178  *  Acquires the SWFW semaphore through the GSSR register for the specified
   3179  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3180  **/
   3181 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3182 {
   3183 	u32 gssr = 0;
   3184 	u32 swmask = mask;
   3185 	u32 fwmask = mask << 5;
   3186 	u32 timeout = 200;
   3187 	u32 i;
   3188 
   3189 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
   3190 
   3191 	for (i = 0; i < timeout; i++) {
   3192 		/*
   3193 		 * SW NVM semaphore bit is used for access to all
   3194 		 * SW_FW_SYNC bits (not just NVM)
   3195 		 */
   3196 		if (ixgbe_get_eeprom_semaphore(hw))
   3197 			return IXGBE_ERR_SWFW_SYNC;
   3198 
   3199 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3200 		if (!(gssr & (fwmask | swmask))) {
   3201 			gssr |= swmask;
   3202 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3203 			ixgbe_release_eeprom_semaphore(hw);
   3204 			return IXGBE_SUCCESS;
   3205 		} else {
   3206 			/* Resource is currently in use by FW or SW */
   3207 			ixgbe_release_eeprom_semaphore(hw);
   3208 			msec_delay(5);
   3209 		}
   3210 	}
   3211 
   3212 	/* If time expired clear the bits holding the lock and retry */
   3213 	if (gssr & (fwmask | swmask))
   3214 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   3215 
   3216 	msec_delay(5);
   3217 	return IXGBE_ERR_SWFW_SYNC;
   3218 }
   3219 
   3220 /**
   3221  *  ixgbe_release_swfw_sync - Release SWFW semaphore
   3222  *  @hw: pointer to hardware structure
   3223  *  @mask: Mask to specify which semaphore to release
   3224  *
   3225  *  Releases the SWFW semaphore through the GSSR register for the specified
   3226  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   3227  **/
   3228 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   3229 {
   3230 	u32 gssr;
   3231 	u32 swmask = mask;
   3232 
   3233 	DEBUGFUNC("ixgbe_release_swfw_sync");
   3234 
   3235 	ixgbe_get_eeprom_semaphore(hw);
   3236 
   3237 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   3238 	gssr &= ~swmask;
   3239 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   3240 
   3241 	ixgbe_release_eeprom_semaphore(hw);
   3242 }
   3243 
   3244 /**
   3245  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
   3246  *  @hw: pointer to hardware structure
   3247  *
   3248  *  Stops the receive data path and waits for the HW to internally empty
   3249  *  the Rx security block
   3250  **/
   3251 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3252 {
   3253 #define IXGBE_MAX_SECRX_POLL 40
   3254 
   3255 	int i;
   3256 	int secrxreg;
   3257 
   3258 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
   3259 
   3260 
   3261 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3262 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   3263 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3264 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   3265 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   3266 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   3267 			break;
   3268 		else
   3269 			/* Use interrupt-safe sleep just in case */
   3270 			usec_delay(1000);
   3271 	}
   3272 
   3273 	/* For informational purposes only */
   3274 	if (i >= IXGBE_MAX_SECRX_POLL)
   3275 		DEBUGOUT("Rx unit being enabled before security "
   3276 			 "path fully disabled.  Continuing with init.\n");
   3277 
   3278 	return IXGBE_SUCCESS;
   3279 }
   3280 
   3281 /**
   3282  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   3283  *  @hw: pointer to hardware structure
   3284  *  @reg_val: Value we read from AUTOC
   3285  *
   3286  *  The default case requires no protection so just to the register read.
   3287  */
   3288 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   3289 {
   3290 	*locked = FALSE;
   3291 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   3292 	return IXGBE_SUCCESS;
   3293 }
   3294 
   3295 /**
   3296  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   3297  * @hw: pointer to hardware structure
   3298  * @reg_val: value to write to AUTOC
   3299  * @locked: bool to indicate whether the SW/FW lock was already taken by
   3300  *           previous read.
   3301  *
   3302  * The default case requires no protection so just to the register write.
   3303  */
   3304 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   3305 {
   3306 	UNREFERENCED_1PARAMETER(locked);
   3307 
   3308 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   3309 	return IXGBE_SUCCESS;
   3310 }
   3311 
   3312 /**
   3313  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
   3314  *  @hw: pointer to hardware structure
   3315  *
   3316  *  Enables the receive data path.
   3317  **/
   3318 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
   3319 {
   3320 	int secrxreg;
   3321 
   3322 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
   3323 
   3324 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   3325 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   3326 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   3327 	IXGBE_WRITE_FLUSH(hw);
   3328 
   3329 	return IXGBE_SUCCESS;
   3330 }
   3331 
   3332 /**
   3333  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   3334  *  @hw: pointer to hardware structure
   3335  *  @regval: register value to write to RXCTRL
   3336  *
   3337  *  Enables the Rx DMA unit
   3338  **/
   3339 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   3340 {
   3341 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
   3342 
   3343 	if (regval & IXGBE_RXCTRL_RXEN)
   3344 		ixgbe_enable_rx(hw);
   3345 	else
   3346 		ixgbe_disable_rx(hw);
   3347 
   3348 	return IXGBE_SUCCESS;
   3349 }
   3350 
   3351 /**
   3352  *  ixgbe_blink_led_start_generic - Blink LED based on index.
   3353  *  @hw: pointer to hardware structure
   3354  *  @index: led number to blink
   3355  **/
   3356 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   3357 {
   3358 	ixgbe_link_speed speed = 0;
   3359 	bool link_up = 0;
   3360 	u32 autoc_reg = 0;
   3361 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3362 	s32 ret_val = IXGBE_SUCCESS;
   3363 	bool locked = FALSE;
   3364 
   3365 	DEBUGFUNC("ixgbe_blink_led_start_generic");
   3366 
   3367 	/*
   3368 	 * Link must be up to auto-blink the LEDs;
   3369 	 * Force it if link is down.
   3370 	 */
   3371 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
   3372 
   3373 	if (!link_up) {
   3374 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3375 		if (ret_val != IXGBE_SUCCESS)
   3376 			goto out;
   3377 
   3378 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3379 		autoc_reg |= IXGBE_AUTOC_FLU;
   3380 
   3381 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3382 		if (ret_val != IXGBE_SUCCESS)
   3383 			goto out;
   3384 
   3385 		IXGBE_WRITE_FLUSH(hw);
   3386 		msec_delay(10);
   3387 	}
   3388 
   3389 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3390 	led_reg |= IXGBE_LED_BLINK(index);
   3391 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3392 	IXGBE_WRITE_FLUSH(hw);
   3393 
   3394 out:
   3395 	return ret_val;
   3396 }
   3397 
   3398 /**
   3399  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   3400  *  @hw: pointer to hardware structure
   3401  *  @index: led number to stop blinking
   3402  **/
   3403 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   3404 {
   3405 	u32 autoc_reg = 0;
   3406 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   3407 	s32 ret_val = IXGBE_SUCCESS;
   3408 	bool locked = FALSE;
   3409 
   3410 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
   3411 
   3412 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   3413 	if (ret_val != IXGBE_SUCCESS)
   3414 		goto out;
   3415 
   3416 	autoc_reg &= ~IXGBE_AUTOC_FLU;
   3417 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   3418 
   3419 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   3420 	if (ret_val != IXGBE_SUCCESS)
   3421 		goto out;
   3422 
   3423 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   3424 	led_reg &= ~IXGBE_LED_BLINK(index);
   3425 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   3426 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   3427 	IXGBE_WRITE_FLUSH(hw);
   3428 
   3429 out:
   3430 	return ret_val;
   3431 }
   3432 
   3433 /**
   3434  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   3435  *  @hw: pointer to hardware structure
   3436  *  @san_mac_offset: SAN MAC address offset
   3437  *
   3438  *  This function will read the EEPROM location for the SAN MAC address
   3439  *  pointer, and returns the value at that location.  This is used in both
   3440  *  get and set mac_addr routines.
   3441  **/
   3442 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   3443 					 u16 *san_mac_offset)
   3444 {
   3445 	s32 ret_val;
   3446 
   3447 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
   3448 
   3449 	/*
   3450 	 * First read the EEPROM pointer to see if the MAC addresses are
   3451 	 * available.
   3452 	 */
   3453 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   3454 				      san_mac_offset);
   3455 	if (ret_val) {
   3456 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3457 			      "eeprom at offset %d failed",
   3458 			      IXGBE_SAN_MAC_ADDR_PTR);
   3459 	}
   3460 
   3461 	return ret_val;
   3462 }
   3463 
   3464 /**
   3465  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   3466  *  @hw: pointer to hardware structure
   3467  *  @san_mac_addr: SAN MAC address
   3468  *
   3469  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   3470  *  per-port, so set_lan_id() must be called before reading the addresses.
   3471  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   3472  *  upon for non-SFP connections, so we must call it here.
   3473  **/
   3474 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3475 {
   3476 	u16 san_mac_data, san_mac_offset;
   3477 	u8 i;
   3478 	s32 ret_val;
   3479 
   3480 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
   3481 
   3482 	/*
   3483 	 * First read the EEPROM pointer to see if the MAC addresses are
   3484 	 * available.  If they're not, no point in calling set_lan_id() here.
   3485 	 */
   3486 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3487 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3488 		goto san_mac_addr_out;
   3489 
   3490 	/* make sure we know which port we need to program */
   3491 	hw->mac.ops.set_lan_id(hw);
   3492 	/* apply the port offset to the address offset */
   3493 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3494 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3495 	for (i = 0; i < 3; i++) {
   3496 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   3497 					      &san_mac_data);
   3498 		if (ret_val) {
   3499 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   3500 				      "eeprom read at offset %d failed",
   3501 				      san_mac_offset);
   3502 			goto san_mac_addr_out;
   3503 		}
   3504 		san_mac_addr[i * 2] = (u8)(san_mac_data);
   3505 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   3506 		san_mac_offset++;
   3507 	}
   3508 	return IXGBE_SUCCESS;
   3509 
   3510 san_mac_addr_out:
   3511 	/*
   3512 	 * No addresses available in this EEPROM.  It's not an
   3513 	 * error though, so just wipe the local address and return.
   3514 	 */
   3515 	for (i = 0; i < 6; i++)
   3516 		san_mac_addr[i] = 0xFF;
   3517 	return IXGBE_SUCCESS;
   3518 }
   3519 
   3520 /**
   3521  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
   3522  *  @hw: pointer to hardware structure
   3523  *  @san_mac_addr: SAN MAC address
   3524  *
   3525  *  Write a SAN MAC address to the EEPROM.
   3526  **/
   3527 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   3528 {
   3529 	s32 ret_val;
   3530 	u16 san_mac_data, san_mac_offset;
   3531 	u8 i;
   3532 
   3533 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
   3534 
   3535 	/* Look for SAN mac address pointer.  If not defined, return */
   3536 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   3537 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   3538 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
   3539 
   3540 	/* Make sure we know which port we need to write */
   3541 	hw->mac.ops.set_lan_id(hw);
   3542 	/* Apply the port offset to the address offset */
   3543 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   3544 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   3545 
   3546 	for (i = 0; i < 3; i++) {
   3547 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
   3548 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
   3549 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
   3550 		san_mac_offset++;
   3551 	}
   3552 
   3553 	return IXGBE_SUCCESS;
   3554 }
   3555 
   3556 /**
   3557  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   3558  *  @hw: pointer to hardware structure
   3559  *
   3560  *  Read PCIe configuration space, and get the MSI-X vector count from
   3561  *  the capabilities table.
   3562  **/
   3563 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   3564 {
   3565 	u16 msix_count = 1;
   3566 	u16 max_msix_count;
   3567 	u16 pcie_offset;
   3568 
   3569 	switch (hw->mac.type) {
   3570 	case ixgbe_mac_82598EB:
   3571 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   3572 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   3573 		break;
   3574 	case ixgbe_mac_82599EB:
   3575 	case ixgbe_mac_X540:
   3576 	case ixgbe_mac_X550:
   3577 	case ixgbe_mac_X550EM_x:
   3578 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   3579 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   3580 		break;
   3581 	default:
   3582 		return msix_count;
   3583 	}
   3584 
   3585 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
   3586 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
   3587 	if (IXGBE_REMOVED(hw->hw_addr))
   3588 		msix_count = 0;
   3589 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   3590 
   3591 	/* MSI-X count is zero-based in HW */
   3592 	msix_count++;
   3593 
   3594 	if (msix_count > max_msix_count)
   3595 		msix_count = max_msix_count;
   3596 
   3597 	return msix_count;
   3598 }
   3599 
   3600 /**
   3601  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
   3602  *  @hw: pointer to hardware structure
   3603  *  @addr: Address to put into receive address register
   3604  *  @vmdq: VMDq pool to assign
   3605  *
   3606  *  Puts an ethernet address into a receive address register, or
   3607  *  finds the rar that it is aleady in; adds to the pool list
   3608  **/
   3609 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
   3610 {
   3611 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
   3612 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
   3613 	u32 rar;
   3614 	u32 rar_low, rar_high;
   3615 	u32 addr_low, addr_high;
   3616 
   3617 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
   3618 
   3619 	/* swap bytes for HW little endian */
   3620 	addr_low  = addr[0] | (addr[1] << 8)
   3621 			    | (addr[2] << 16)
   3622 			    | (addr[3] << 24);
   3623 	addr_high = addr[4] | (addr[5] << 8);
   3624 
   3625 	/*
   3626 	 * Either find the mac_id in rar or find the first empty space.
   3627 	 * rar_highwater points to just after the highest currently used
   3628 	 * rar in order to shorten the search.  It grows when we add a new
   3629 	 * rar to the top.
   3630 	 */
   3631 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
   3632 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
   3633 
   3634 		if (((IXGBE_RAH_AV & rar_high) == 0)
   3635 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
   3636 			first_empty_rar = rar;
   3637 		} else if ((rar_high & 0xFFFF) == addr_high) {
   3638 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
   3639 			if (rar_low == addr_low)
   3640 				break;    /* found it already in the rars */
   3641 		}
   3642 	}
   3643 
   3644 	if (rar < hw->mac.rar_highwater) {
   3645 		/* already there so just add to the pool bits */
   3646 		ixgbe_set_vmdq(hw, rar, vmdq);
   3647 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
   3648 		/* stick it into first empty RAR slot we found */
   3649 		rar = first_empty_rar;
   3650 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3651 	} else if (rar == hw->mac.rar_highwater) {
   3652 		/* add it to the top of the list and inc the highwater mark */
   3653 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
   3654 		hw->mac.rar_highwater++;
   3655 	} else if (rar >= hw->mac.num_rar_entries) {
   3656 		return IXGBE_ERR_INVALID_MAC_ADDR;
   3657 	}
   3658 
   3659 	/*
   3660 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
   3661 	 * remains cleared to be sure default pool packets will get delivered
   3662 	 */
   3663 	if (rar == 0)
   3664 		ixgbe_clear_vmdq(hw, rar, 0);
   3665 
   3666 	return rar;
   3667 }
   3668 
   3669 /**
   3670  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   3671  *  @hw: pointer to hardware struct
   3672  *  @rar: receive address register index to disassociate
   3673  *  @vmdq: VMDq pool index to remove from the rar
   3674  **/
   3675 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3676 {
   3677 	u32 mpsar_lo, mpsar_hi;
   3678 	u32 rar_entries = hw->mac.num_rar_entries;
   3679 
   3680 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
   3681 
   3682 	/* Make sure we are using a valid rar index range */
   3683 	if (rar >= rar_entries) {
   3684 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3685 			     "RAR index %d is out of range.\n", rar);
   3686 		return IXGBE_ERR_INVALID_ARGUMENT;
   3687 	}
   3688 
   3689 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3690 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3691 
   3692 	if (IXGBE_REMOVED(hw->hw_addr))
   3693 		goto done;
   3694 
   3695 	if (!mpsar_lo && !mpsar_hi)
   3696 		goto done;
   3697 
   3698 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   3699 		if (mpsar_lo) {
   3700 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3701 			mpsar_lo = 0;
   3702 		}
   3703 		if (mpsar_hi) {
   3704 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3705 			mpsar_hi = 0;
   3706 		}
   3707 	} else if (vmdq < 32) {
   3708 		mpsar_lo &= ~(1 << vmdq);
   3709 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   3710 	} else {
   3711 		mpsar_hi &= ~(1 << (vmdq - 32));
   3712 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   3713 	}
   3714 
   3715 	/* was that the last pool using this rar? */
   3716 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
   3717 		hw->mac.ops.clear_rar(hw, rar);
   3718 done:
   3719 	return IXGBE_SUCCESS;
   3720 }
   3721 
   3722 /**
   3723  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3724  *  @hw: pointer to hardware struct
   3725  *  @rar: receive address register index to associate with a VMDq index
   3726  *  @vmdq: VMDq pool index
   3727  **/
   3728 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3729 {
   3730 	u32 mpsar;
   3731 	u32 rar_entries = hw->mac.num_rar_entries;
   3732 
   3733 	DEBUGFUNC("ixgbe_set_vmdq_generic");
   3734 
   3735 	/* Make sure we are using a valid rar index range */
   3736 	if (rar >= rar_entries) {
   3737 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
   3738 			     "RAR index %d is out of range.\n", rar);
   3739 		return IXGBE_ERR_INVALID_ARGUMENT;
   3740 	}
   3741 
   3742 	if (vmdq < 32) {
   3743 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3744 		mpsar |= 1 << vmdq;
   3745 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3746 	} else {
   3747 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3748 		mpsar |= 1 << (vmdq - 32);
   3749 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3750 	}
   3751 	return IXGBE_SUCCESS;
   3752 }
   3753 
   3754 /**
   3755  *  This function should only be involved in the IOV mode.
   3756  *  In IOV mode, Default pool is next pool after the number of
   3757  *  VFs advertized and not 0.
   3758  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3759  *
   3760  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
   3761  *  @hw: pointer to hardware struct
   3762  *  @vmdq: VMDq pool index
   3763  **/
   3764 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3765 {
   3766 	u32 rar = hw->mac.san_mac_rar_index;
   3767 
   3768 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
   3769 
   3770 	if (vmdq < 32) {
   3771 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
   3772 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3773 	} else {
   3774 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3775 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
   3776 	}
   3777 
   3778 	return IXGBE_SUCCESS;
   3779 }
   3780 
   3781 /**
   3782  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3783  *  @hw: pointer to hardware structure
   3784  **/
   3785 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3786 {
   3787 	int i;
   3788 
   3789 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
   3790 	DEBUGOUT(" Clearing UTA\n");
   3791 
   3792 	for (i = 0; i < 128; i++)
   3793 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3794 
   3795 	return IXGBE_SUCCESS;
   3796 }
   3797 
   3798 /**
   3799  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3800  *  @hw: pointer to hardware structure
   3801  *  @vlan: VLAN id to write to VLAN filter
   3802  *
   3803  *  return the VLVF index where this VLAN id should be placed
   3804  *
   3805  **/
   3806 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
   3807 {
   3808 	u32 bits = 0;
   3809 	u32 first_empty_slot = 0;
   3810 	s32 regindex;
   3811 
   3812 	/* short cut the special case */
   3813 	if (vlan == 0)
   3814 		return 0;
   3815 
   3816 	/*
   3817 	  * Search for the vlan id in the VLVF entries. Save off the first empty
   3818 	  * slot found along the way
   3819 	  */
   3820 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
   3821 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3822 		if (!bits && !(first_empty_slot))
   3823 			first_empty_slot = regindex;
   3824 		else if ((bits & 0x0FFF) == vlan)
   3825 			break;
   3826 	}
   3827 
   3828 	/*
   3829 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
   3830 	  * in the VLVF. Else use the first empty VLVF register for this
   3831 	  * vlan id.
   3832 	  */
   3833 	if (regindex >= IXGBE_VLVF_ENTRIES) {
   3834 		if (first_empty_slot)
   3835 			regindex = first_empty_slot;
   3836 		else {
   3837 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
   3838 				     "No space in VLVF.\n");
   3839 			regindex = IXGBE_ERR_NO_SPACE;
   3840 		}
   3841 	}
   3842 
   3843 	return regindex;
   3844 }
   3845 
   3846 /**
   3847  *  ixgbe_set_vfta_generic - Set VLAN filter table
   3848  *  @hw: pointer to hardware structure
   3849  *  @vlan: VLAN id to write to VLAN filter
   3850  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3851  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3852  *
   3853  *  Turn on/off specified VLAN in the VLAN filter table.
   3854  **/
   3855 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3856 			   bool vlan_on)
   3857 {
   3858 	s32 regindex;
   3859 	u32 bitindex;
   3860 	u32 vfta;
   3861 	u32 targetbit;
   3862 	s32 ret_val = IXGBE_SUCCESS;
   3863 	bool vfta_changed = FALSE;
   3864 
   3865 	DEBUGFUNC("ixgbe_set_vfta_generic");
   3866 
   3867 	if (vlan > 4095)
   3868 		return IXGBE_ERR_PARAM;
   3869 
   3870 	/*
   3871 	 * this is a 2 part operation - first the VFTA, then the
   3872 	 * VLVF and VLVFB if VT Mode is set
   3873 	 * We don't write the VFTA until we know the VLVF part succeeded.
   3874 	 */
   3875 
   3876 	/* Part 1
   3877 	 * The VFTA is a bitstring made up of 128 32-bit registers
   3878 	 * that enable the particular VLAN id, much like the MTA:
   3879 	 *    bits[11-5]: which register
   3880 	 *    bits[4-0]:  which bit in the register
   3881 	 */
   3882 	regindex = (vlan >> 5) & 0x7F;
   3883 	bitindex = vlan & 0x1F;
   3884 	targetbit = (1 << bitindex);
   3885 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
   3886 
   3887 	if (vlan_on) {
   3888 		if (!(vfta & targetbit)) {
   3889 			vfta |= targetbit;
   3890 			vfta_changed = TRUE;
   3891 		}
   3892 	} else {
   3893 		if ((vfta & targetbit)) {
   3894 			vfta &= ~targetbit;
   3895 			vfta_changed = TRUE;
   3896 		}
   3897 	}
   3898 
   3899 	/* Part 2
   3900 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
   3901 	 */
   3902 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
   3903 					 &vfta_changed);
   3904 	if (ret_val != IXGBE_SUCCESS)
   3905 		return ret_val;
   3906 
   3907 	if (vfta_changed)
   3908 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
   3909 
   3910 	return IXGBE_SUCCESS;
   3911 }
   3912 
   3913 /**
   3914  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
   3915  *  @hw: pointer to hardware structure
   3916  *  @vlan: VLAN id to write to VLAN filter
   3917  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3918  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3919  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
   3920  *                 should be changed
   3921  *
   3922  *  Turn on/off specified bit in VLVF table.
   3923  **/
   3924 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3925 			    bool vlan_on, bool *vfta_changed)
   3926 {
   3927 	u32 vt;
   3928 
   3929 	DEBUGFUNC("ixgbe_set_vlvf_generic");
   3930 
   3931 	if (vlan > 4095)
   3932 		return IXGBE_ERR_PARAM;
   3933 
   3934 	/* If VT Mode is set
   3935 	 *   Either vlan_on
   3936 	 *     make sure the vlan is in VLVF
   3937 	 *     set the vind bit in the matching VLVFB
   3938 	 *   Or !vlan_on
   3939 	 *     clear the pool bit and possibly the vind
   3940 	 */
   3941 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
   3942 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
   3943 		s32 vlvf_index;
   3944 		u32 bits;
   3945 
   3946 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
   3947 		if (vlvf_index < 0)
   3948 			return vlvf_index;
   3949 
   3950 		if (vlan_on) {
   3951 			/* set the pool bit */
   3952 			if (vind < 32) {
   3953 				bits = IXGBE_READ_REG(hw,
   3954 						IXGBE_VLVFB(vlvf_index * 2));
   3955 				bits |= (1 << vind);
   3956 				IXGBE_WRITE_REG(hw,
   3957 						IXGBE_VLVFB(vlvf_index * 2),
   3958 						bits);
   3959 			} else {
   3960 				bits = IXGBE_READ_REG(hw,
   3961 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3962 				bits |= (1 << (vind - 32));
   3963 				IXGBE_WRITE_REG(hw,
   3964 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3965 					bits);
   3966 			}
   3967 		} else {
   3968 			/* clear the pool bit */
   3969 			if (vind < 32) {
   3970 				bits = IXGBE_READ_REG(hw,
   3971 						IXGBE_VLVFB(vlvf_index * 2));
   3972 				bits &= ~(1 << vind);
   3973 				IXGBE_WRITE_REG(hw,
   3974 						IXGBE_VLVFB(vlvf_index * 2),
   3975 						bits);
   3976 				bits |= IXGBE_READ_REG(hw,
   3977 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3978 			} else {
   3979 				bits = IXGBE_READ_REG(hw,
   3980 					IXGBE_VLVFB((vlvf_index * 2) + 1));
   3981 				bits &= ~(1 << (vind - 32));
   3982 				IXGBE_WRITE_REG(hw,
   3983 					IXGBE_VLVFB((vlvf_index * 2) + 1),
   3984 					bits);
   3985 				bits |= IXGBE_READ_REG(hw,
   3986 						IXGBE_VLVFB(vlvf_index * 2));
   3987 			}
   3988 		}
   3989 
   3990 		/*
   3991 		 * If there are still bits set in the VLVFB registers
   3992 		 * for the VLAN ID indicated we need to see if the
   3993 		 * caller is requesting that we clear the VFTA entry bit.
   3994 		 * If the caller has requested that we clear the VFTA
   3995 		 * entry bit but there are still pools/VFs using this VLAN
   3996 		 * ID entry then ignore the request.  We're not worried
   3997 		 * about the case where we're turning the VFTA VLAN ID
   3998 		 * entry bit on, only when requested to turn it off as
   3999 		 * there may be multiple pools and/or VFs using the
   4000 		 * VLAN ID entry.  In that case we cannot clear the
   4001 		 * VFTA bit until all pools/VFs using that VLAN ID have also
   4002 		 * been cleared.  This will be indicated by "bits" being
   4003 		 * zero.
   4004 		 */
   4005 		if (bits) {
   4006 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
   4007 					(IXGBE_VLVF_VIEN | vlan));
   4008 			if ((!vlan_on) && (vfta_changed != NULL)) {
   4009 				/* someone wants to clear the vfta entry
   4010 				 * but some pools/VFs are still using it.
   4011 				 * Ignore it. */
   4012 				*vfta_changed = FALSE;
   4013 			}
   4014 		} else
   4015 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   4016 	}
   4017 
   4018 	return IXGBE_SUCCESS;
   4019 }
   4020 
   4021 /**
   4022  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   4023  *  @hw: pointer to hardware structure
   4024  *
   4025  *  Clears the VLAN filer table, and the VMDq index associated with the filter
   4026  **/
   4027 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   4028 {
   4029 	u32 offset;
   4030 
   4031 	DEBUGFUNC("ixgbe_clear_vfta_generic");
   4032 
   4033 	for (offset = 0; offset < hw->mac.vft_size; offset++)
   4034 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   4035 
   4036 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   4037 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   4038 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   4039 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
   4040 	}
   4041 
   4042 	return IXGBE_SUCCESS;
   4043 }
   4044 
   4045 /**
   4046  *  ixgbe_check_mac_link_generic - Determine link and speed status
   4047  *  @hw: pointer to hardware structure
   4048  *  @speed: pointer to link speed
   4049  *  @link_up: TRUE when link is up
   4050  *  @link_up_wait_to_complete: bool used to wait for link up or not
   4051  *
   4052  *  Reads the links register to determine if link is up and the current speed
   4053  **/
   4054 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   4055 				 bool *link_up, bool link_up_wait_to_complete)
   4056 {
   4057 	u32 links_reg, links_orig;
   4058 	u32 i;
   4059 
   4060 	DEBUGFUNC("ixgbe_check_mac_link_generic");
   4061 
   4062 	/* clear the old state */
   4063 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4064 
   4065 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4066 
   4067 	if (links_orig != links_reg) {
   4068 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
   4069 			  links_orig, links_reg);
   4070 	}
   4071 
   4072 	if (link_up_wait_to_complete) {
   4073 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   4074 			if (links_reg & IXGBE_LINKS_UP) {
   4075 				*link_up = TRUE;
   4076 				break;
   4077 			} else {
   4078 				*link_up = FALSE;
   4079 			}
   4080 			msec_delay(100);
   4081 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   4082 		}
   4083 	} else {
   4084 		if (links_reg & IXGBE_LINKS_UP)
   4085 			*link_up = TRUE;
   4086 		else
   4087 			*link_up = FALSE;
   4088 	}
   4089 
   4090 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   4091 	case IXGBE_LINKS_SPEED_10G_82599:
   4092 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
   4093 		if (hw->mac.type >= ixgbe_mac_X550) {
   4094 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4095 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   4096 		}
   4097 		break;
   4098 	case IXGBE_LINKS_SPEED_1G_82599:
   4099 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   4100 		break;
   4101 	case IXGBE_LINKS_SPEED_100_82599:
   4102 		*speed = IXGBE_LINK_SPEED_100_FULL;
   4103 		if (hw->mac.type >= ixgbe_mac_X550) {
   4104 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
   4105 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
   4106 		}
   4107 		break;
   4108 	default:
   4109 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   4110 	}
   4111 
   4112 	return IXGBE_SUCCESS;
   4113 }
   4114 
   4115 /**
   4116  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   4117  *  the EEPROM
   4118  *  @hw: pointer to hardware structure
   4119  *  @wwnn_prefix: the alternative WWNN prefix
   4120  *  @wwpn_prefix: the alternative WWPN prefix
   4121  *
   4122  *  This function will read the EEPROM from the alternative SAN MAC address
   4123  *  block to check the support for the alternative WWNN/WWPN prefix support.
   4124  **/
   4125 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   4126 				 u16 *wwpn_prefix)
   4127 {
   4128 	u16 offset, caps;
   4129 	u16 alt_san_mac_blk_offset;
   4130 
   4131 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
   4132 
   4133 	/* clear output first */
   4134 	*wwnn_prefix = 0xFFFF;
   4135 	*wwpn_prefix = 0xFFFF;
   4136 
   4137 	/* check if alternative SAN MAC is supported */
   4138 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   4139 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   4140 		goto wwn_prefix_err;
   4141 
   4142 	if ((alt_san_mac_blk_offset == 0) ||
   4143 	    (alt_san_mac_blk_offset == 0xFFFF))
   4144 		goto wwn_prefix_out;
   4145 
   4146 	/* check capability in alternative san mac address block */
   4147 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   4148 	if (hw->eeprom.ops.read(hw, offset, &caps))
   4149 		goto wwn_prefix_err;
   4150 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   4151 		goto wwn_prefix_out;
   4152 
   4153 	/* get the corresponding prefix for WWNN/WWPN */
   4154 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   4155 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
   4156 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4157 			      "eeprom read at offset %d failed", offset);
   4158 	}
   4159 
   4160 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   4161 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   4162 		goto wwn_prefix_err;
   4163 
   4164 wwn_prefix_out:
   4165 	return IXGBE_SUCCESS;
   4166 
   4167 wwn_prefix_err:
   4168 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
   4169 		      "eeprom read at offset %d failed", offset);
   4170 	return IXGBE_SUCCESS;
   4171 }
   4172 
   4173 /**
   4174  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
   4175  *  @hw: pointer to hardware structure
   4176  *  @bs: the fcoe boot status
   4177  *
   4178  *  This function will read the FCOE boot status from the iSCSI FCOE block
   4179  **/
   4180 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
   4181 {
   4182 	u16 offset, caps, flags;
   4183 	s32 status;
   4184 
   4185 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
   4186 
   4187 	/* clear output first */
   4188 	*bs = ixgbe_fcoe_bootstatus_unavailable;
   4189 
   4190 	/* check if FCOE IBA block is present */
   4191 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
   4192 	status = hw->eeprom.ops.read(hw, offset, &caps);
   4193 	if (status != IXGBE_SUCCESS)
   4194 		goto out;
   4195 
   4196 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
   4197 		goto out;
   4198 
   4199 	/* check if iSCSI FCOE block is populated */
   4200 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
   4201 	if (status != IXGBE_SUCCESS)
   4202 		goto out;
   4203 
   4204 	if ((offset == 0) || (offset == 0xFFFF))
   4205 		goto out;
   4206 
   4207 	/* read fcoe flags in iSCSI FCOE block */
   4208 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
   4209 	status = hw->eeprom.ops.read(hw, offset, &flags);
   4210 	if (status != IXGBE_SUCCESS)
   4211 		goto out;
   4212 
   4213 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
   4214 		*bs = ixgbe_fcoe_bootstatus_enabled;
   4215 	else
   4216 		*bs = ixgbe_fcoe_bootstatus_disabled;
   4217 
   4218 out:
   4219 	return status;
   4220 }
   4221 
   4222 /**
   4223  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   4224  *  @hw: pointer to hardware structure
   4225  *  @enable: enable or disable switch for anti-spoofing
   4226  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
   4227  *
   4228  **/
   4229 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
   4230 {
   4231 	int j;
   4232 	int pf_target_reg = pf >> 3;
   4233 	int pf_target_shift = pf % 8;
   4234 	u32 pfvfspoof = 0;
   4235 
   4236 	if (hw->mac.type == ixgbe_mac_82598EB)
   4237 		return;
   4238 
   4239 	if (enable)
   4240 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
   4241 
   4242 	/*
   4243 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
   4244 	 * MAC anti-spoof enables in each register array element.
   4245 	 */
   4246 	for (j = 0; j < pf_target_reg; j++)
   4247 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4248 
   4249 	/*
   4250 	 * The PF should be allowed to spoof so that it can support
   4251 	 * emulation mode NICs.  Do not set the bits assigned to the PF
   4252 	 */
   4253 	pfvfspoof &= (1 << pf_target_shift) - 1;
   4254 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
   4255 
   4256 	/*
   4257 	 * Remaining pools belong to the PF so they do not need to have
   4258 	 * anti-spoofing enabled.
   4259 	 */
   4260 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
   4261 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
   4262 }
   4263 
   4264 /**
   4265  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   4266  *  @hw: pointer to hardware structure
   4267  *  @enable: enable or disable switch for VLAN anti-spoofing
   4268  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   4269  *
   4270  **/
   4271 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   4272 {
   4273 	int vf_target_reg = vf >> 3;
   4274 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   4275 	u32 pfvfspoof;
   4276 
   4277 	if (hw->mac.type == ixgbe_mac_82598EB)
   4278 		return;
   4279 
   4280 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   4281 	if (enable)
   4282 		pfvfspoof |= (1 << vf_target_shift);
   4283 	else
   4284 		pfvfspoof &= ~(1 << vf_target_shift);
   4285 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   4286 }
   4287 
   4288 /**
   4289  *  ixgbe_get_device_caps_generic - Get additional device capabilities
   4290  *  @hw: pointer to hardware structure
   4291  *  @device_caps: the EEPROM word with the extra device capabilities
   4292  *
   4293  *  This function will read the EEPROM location for the device capabilities,
   4294  *  and return the word through device_caps.
   4295  **/
   4296 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   4297 {
   4298 	DEBUGFUNC("ixgbe_get_device_caps_generic");
   4299 
   4300 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   4301 
   4302 	return IXGBE_SUCCESS;
   4303 }
   4304 
   4305 /**
   4306  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
   4307  *  @hw: pointer to hardware structure
   4308  *
   4309  **/
   4310 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
   4311 {
   4312 	u32 regval;
   4313 	u32 i;
   4314 
   4315 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
   4316 
   4317 	/* Enable relaxed ordering */
   4318 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
   4319 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
   4320 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
   4321 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
   4322 	}
   4323 
   4324 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
   4325 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
   4326 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
   4327 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
   4328 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
   4329 	}
   4330 
   4331 }
   4332 
   4333 /**
   4334  *  ixgbe_calculate_checksum - Calculate checksum for buffer
   4335  *  @buffer: pointer to EEPROM
   4336  *  @length: size of EEPROM to calculate a checksum for
   4337  *  Calculates the checksum for some buffer on a specified length.  The
   4338  *  checksum calculated is returned.
   4339  **/
   4340 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   4341 {
   4342 	u32 i;
   4343 	u8 sum = 0;
   4344 
   4345 	DEBUGFUNC("ixgbe_calculate_checksum");
   4346 
   4347 	if (!buffer)
   4348 		return 0;
   4349 
   4350 	for (i = 0; i < length; i++)
   4351 		sum += buffer[i];
   4352 
   4353 	return (u8) (0 - sum);
   4354 }
   4355 
   4356 /**
   4357  *  ixgbe_host_interface_command - Issue command to manageability block
   4358  *  @hw: pointer to the HW structure
   4359  *  @buffer: contains the command to write and where the return status will
   4360  *   be placed
   4361  *  @length: length of buffer, must be multiple of 4 bytes
   4362  *  @timeout: time in ms to wait for command completion
   4363  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
   4364  *   Needed because FW structures are big endian and decoding of
   4365  *   these fields can be 8 bit or 16 bit based on command. Decoding
   4366  *   is not easily understood without making a table of commands.
   4367  *   So we will leave this up to the caller to read back the data
   4368  *   in these cases.
   4369  *
   4370  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
   4371  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   4372  **/
   4373 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
   4374 				 u32 length, u32 timeout, bool return_data)
   4375 {
   4376 	u32 hicr, i, bi, fwsts;
   4377 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   4378 	u16 buf_len;
   4379 	u16 dword_len;
   4380 
   4381 	DEBUGFUNC("ixgbe_host_interface_command");
   4382 
   4383 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   4384 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
   4385 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4386 	}
   4387 	/* Set bit 9 of FWSTS clearing FW reset indication */
   4388 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   4389 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   4390 
   4391 	/* Check that the host interface is enabled. */
   4392 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4393 	if ((hicr & IXGBE_HICR_EN) == 0) {
   4394 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
   4395 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4396 	}
   4397 
   4398 	/* Calculate length in DWORDs. We must be DWORD aligned */
   4399 	if ((length % (sizeof(u32))) != 0) {
   4400 		DEBUGOUT("Buffer length failure, not aligned to dword");
   4401 		return IXGBE_ERR_INVALID_ARGUMENT;
   4402 	}
   4403 
   4404 	dword_len = length >> 2;
   4405 
   4406 	/* The device driver writes the relevant command block
   4407 	 * into the ram area.
   4408 	 */
   4409 	for (i = 0; i < dword_len; i++)
   4410 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   4411 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
   4412 
   4413 	/* Setting this bit tells the ARC that a new command is pending. */
   4414 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   4415 
   4416 	for (i = 0; i < timeout; i++) {
   4417 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   4418 		if (!(hicr & IXGBE_HICR_C))
   4419 			break;
   4420 		msec_delay(1);
   4421 	}
   4422 
   4423 	/* Check command completion */
   4424 	if ((timeout != 0 && i == timeout) ||
   4425 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
   4426 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
   4427 			     "Command has failed with no status valid.\n");
   4428 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4429 	}
   4430 
   4431 	if (!return_data)
   4432 		return 0;
   4433 
   4434 	/* Calculate length in DWORDs */
   4435 	dword_len = hdr_size >> 2;
   4436 
   4437 	/* first pull in the header so we know the buffer length */
   4438 	for (bi = 0; bi < dword_len; bi++) {
   4439 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4440 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4441 	}
   4442 
   4443 	/* If there is any thing in data position pull it in */
   4444 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
   4445 	if (buf_len == 0)
   4446 		return 0;
   4447 
   4448 	if (length < buf_len + hdr_size) {
   4449 		DEBUGOUT("Buffer not large enough for reply message.\n");
   4450 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4451 	}
   4452 
   4453 	/* Calculate length in DWORDs, add 3 for odd lengths */
   4454 	dword_len = (buf_len + 3) >> 2;
   4455 
   4456 	/* Pull in the rest of the buffer (bi is where we left off) */
   4457 	for (; bi <= dword_len; bi++) {
   4458 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   4459 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
   4460 	}
   4461 
   4462 	return 0;
   4463 }
   4464 
   4465 /**
   4466  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   4467  *  @hw: pointer to the HW structure
   4468  *  @maj: driver version major number
   4469  *  @minr: driver version minor number
   4470  *  @build: driver version build number
   4471  *  @sub: driver version sub build number
   4472  *
   4473  *  Sends driver version number to firmware through the manageability
   4474  *  block.  On success return IXGBE_SUCCESS
   4475  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   4476  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   4477  **/
   4478 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 minr,
   4479 				 u8 build, u8 sub)
   4480 {
   4481 	struct ixgbe_hic_drv_info fw_cmd;
   4482 	int i;
   4483 	s32 ret_val = IXGBE_SUCCESS;
   4484 
   4485 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
   4486 
   4487 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
   4488 	    != IXGBE_SUCCESS) {
   4489 		ret_val = IXGBE_ERR_SWFW_SYNC;
   4490 		goto out;
   4491 	}
   4492 
   4493 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   4494 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   4495 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   4496 	fw_cmd.port_num = (u8)hw->bus.func;
   4497 	fw_cmd.ver_maj = maj;
   4498 	fw_cmd.ver_min = minr;
   4499 	fw_cmd.ver_build = build;
   4500 	fw_cmd.ver_sub = sub;
   4501 	fw_cmd.hdr.checksum = 0;
   4502 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   4503 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   4504 	fw_cmd.pad = 0;
   4505 	fw_cmd.pad2 = 0;
   4506 
   4507 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   4508 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
   4509 						       sizeof(fw_cmd),
   4510 						       IXGBE_HI_COMMAND_TIMEOUT,
   4511 						       TRUE);
   4512 		if (ret_val != IXGBE_SUCCESS)
   4513 			continue;
   4514 
   4515 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   4516 		    FW_CEM_RESP_STATUS_SUCCESS)
   4517 			ret_val = IXGBE_SUCCESS;
   4518 		else
   4519 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   4520 
   4521 		break;
   4522 	}
   4523 
   4524 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   4525 out:
   4526 	return ret_val;
   4527 }
   4528 
   4529 /**
   4530  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
   4531  * @hw: pointer to hardware structure
   4532  * @num_pb: number of packet buffers to allocate
   4533  * @headroom: reserve n KB of headroom
   4534  * @strategy: packet buffer allocation strategy
   4535  **/
   4536 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
   4537 			     int strategy)
   4538 {
   4539 	u32 pbsize = hw->mac.rx_pb_size;
   4540 	int i = 0;
   4541 	u32 rxpktsize, txpktsize, txpbthresh;
   4542 
   4543 	/* Reserve headroom */
   4544 	pbsize -= headroom;
   4545 
   4546 	if (!num_pb)
   4547 		num_pb = 1;
   4548 
   4549 	/* Divide remaining packet buffer space amongst the number of packet
   4550 	 * buffers requested using supplied strategy.
   4551 	 */
   4552 	switch (strategy) {
   4553 	case PBA_STRATEGY_WEIGHTED:
   4554 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
   4555 		 * buffer with 5/8 of the packet buffer space.
   4556 		 */
   4557 		rxpktsize = (pbsize * 5) / (num_pb * 4);
   4558 		pbsize -= rxpktsize * (num_pb / 2);
   4559 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   4560 		for (; i < (num_pb / 2); i++)
   4561 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4562 		/* Fall through to configure remaining packet buffers */
   4563 	case PBA_STRATEGY_EQUAL:
   4564 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   4565 		for (; i < num_pb; i++)
   4566 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   4567 		break;
   4568 	default:
   4569 		break;
   4570 	}
   4571 
   4572 	/* Only support an equally distributed Tx packet buffer strategy. */
   4573 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   4574 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   4575 	for (i = 0; i < num_pb; i++) {
   4576 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   4577 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   4578 	}
   4579 
   4580 	/* Clear unused TCs, if any, to zero buffer size*/
   4581 	for (; i < IXGBE_MAX_PB; i++) {
   4582 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   4583 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   4584 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   4585 	}
   4586 }
   4587 
   4588 /**
   4589  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   4590  * @hw: pointer to the hardware structure
   4591  *
   4592  * The 82599 and x540 MACs can experience issues if TX work is still pending
   4593  * when a reset occurs.  This function prevents this by flushing the PCIe
   4594  * buffers on the system.
   4595  **/
   4596 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   4597 {
   4598 	u32 gcr_ext, hlreg0, i, poll;
   4599 	u16 value;
   4600 
   4601 	/*
   4602 	 * If double reset is not requested then all transactions should
   4603 	 * already be clear and as such there is no work to do
   4604 	 */
   4605 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   4606 		return;
   4607 
   4608 	/*
   4609 	 * Set loopback enable to prevent any transmits from being sent
   4610 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   4611 	 * has already been cleared.
   4612 	 */
   4613 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   4614 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   4615 
   4616 	/* Wait for a last completion before clearing buffers */
   4617 	IXGBE_WRITE_FLUSH(hw);
   4618 	msec_delay(3);
   4619 
   4620 	/*
   4621 	 * Before proceeding, make sure that the PCIe block does not have
   4622 	 * transactions pending.
   4623 	 */
   4624 	poll = ixgbe_pcie_timeout_poll(hw);
   4625 	for (i = 0; i < poll; i++) {
   4626 		usec_delay(100);
   4627 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
   4628 		if (IXGBE_REMOVED(hw->hw_addr))
   4629 			goto out;
   4630 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   4631 			goto out;
   4632 	}
   4633 
   4634 out:
   4635 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   4636 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   4637 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   4638 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   4639 
   4640 	/* Flush all writes and allow 20usec for all transactions to clear */
   4641 	IXGBE_WRITE_FLUSH(hw);
   4642 	usec_delay(20);
   4643 
   4644 	/* restore previous register values */
   4645 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   4646 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   4647 }
   4648 
   4649 
   4650 /**
   4651  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
   4652  * @hw: pointer to hardware structure
   4653  * @map: pointer to u8 arr for returning map
   4654  *
   4655  * Read the rtrup2tc HW register and resolve its content into map
   4656  **/
   4657 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
   4658 {
   4659 	u32 reg, i;
   4660 
   4661 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
   4662 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
   4663 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
   4664 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
   4665 	return;
   4666 }
   4667 
   4668 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4669 {
   4670 	u32 pfdtxgswc;
   4671 	u32 rxctrl;
   4672 
   4673 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4674 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4675 		if (hw->mac.type != ixgbe_mac_82598EB) {
   4676 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4677 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4678 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4679 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4680 				hw->mac.set_lben = TRUE;
   4681 			} else {
   4682 				hw->mac.set_lben = FALSE;
   4683 			}
   4684 		}
   4685 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4686 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4687 	}
   4688 }
   4689 
   4690 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4691 {
   4692 	u32 pfdtxgswc;
   4693 	u32 rxctrl;
   4694 
   4695 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4696 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4697 
   4698 	if (hw->mac.type != ixgbe_mac_82598EB) {
   4699 		if (hw->mac.set_lben) {
   4700 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4701 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4702 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4703 			hw->mac.set_lben = FALSE;
   4704 		}
   4705 	}
   4706 }
   4707 
   4708 /**
   4709  * ixgbe_mng_present - returns TRUE when management capability is present
   4710  * @hw: pointer to hardware structure
   4711  */
   4712 bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4713 {
   4714 	u32 fwsm;
   4715 
   4716 	if (hw->mac.type < ixgbe_mac_82599EB)
   4717 		return FALSE;
   4718 
   4719 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4720 	fwsm &= IXGBE_FWSM_MODE_MASK;
   4721 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
   4722 }
   4723 
   4724 /**
   4725  * ixgbe_mng_enabled - Is the manageability engine enabled?
   4726  * @hw: pointer to hardware structure
   4727  *
   4728  * Returns TRUE if the manageability engine is enabled.
   4729  **/
   4730 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
   4731 {
   4732 	u32 fwsm, manc, factps;
   4733 
   4734 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
   4735 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
   4736 		return FALSE;
   4737 
   4738 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
   4739 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
   4740 		return FALSE;
   4741 
   4742 	if (hw->mac.type <= ixgbe_mac_X540) {
   4743 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
   4744 		if (factps & IXGBE_FACTPS_MNGCG)
   4745 			return FALSE;
   4746 	}
   4747 
   4748 	return TRUE;
   4749 }
   4750 
   4751 /**
   4752  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4753  *  @hw: pointer to hardware structure
   4754  *  @speed: new link speed
   4755  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
   4756  *
   4757  *  Set the link speed in the MAC and/or PHY register and restarts link.
   4758  **/
   4759 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4760 					  ixgbe_link_speed speed,
   4761 					  bool autoneg_wait_to_complete)
   4762 {
   4763 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4764 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4765 	s32 status = IXGBE_SUCCESS;
   4766 	u32 speedcnt = 0;
   4767 	u32 i = 0;
   4768 	bool autoneg, link_up = FALSE;
   4769 
   4770 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
   4771 
   4772 	/* Mask off requested but non-supported speeds */
   4773 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
   4774 	if (status != IXGBE_SUCCESS)
   4775 		return status;
   4776 
   4777 	speed &= link_speed;
   4778 
   4779 	/* Try each speed one by one, highest priority first.  We do this in
   4780 	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4781 	 */
   4782 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4783 		speedcnt++;
   4784 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4785 
   4786 		/* If we already have link at this speed, just jump out */
   4787 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4788 		if (status != IXGBE_SUCCESS)
   4789 			return status;
   4790 
   4791 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
   4792 			goto out;
   4793 
   4794 		/* Set the module link speed */
   4795 		switch (hw->phy.media_type) {
   4796 		case ixgbe_media_type_fiber_fixed:
   4797 		case ixgbe_media_type_fiber:
   4798 			ixgbe_set_rate_select_speed(hw,
   4799 						    IXGBE_LINK_SPEED_10GB_FULL);
   4800 			break;
   4801 		case ixgbe_media_type_fiber_qsfp:
   4802 			/* QSFP module automatically detects MAC link speed */
   4803 			break;
   4804 		default:
   4805 			DEBUGOUT("Unexpected media type.\n");
   4806 			break;
   4807 		}
   4808 
   4809 		/* Allow module to change analog characteristics (1G->10G) */
   4810 		msec_delay(40);
   4811 
   4812 		status = ixgbe_setup_mac_link(hw,
   4813 					      IXGBE_LINK_SPEED_10GB_FULL,
   4814 					      autoneg_wait_to_complete);
   4815 		if (status != IXGBE_SUCCESS)
   4816 			return status;
   4817 
   4818 		/* Flap the Tx laser if it has not already been done */
   4819 		ixgbe_flap_tx_laser(hw);
   4820 
   4821 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4822 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4823 		 * attempted.  82599 uses the same timing for 10g SFI.
   4824 		 */
   4825 		for (i = 0; i < 5; i++) {
   4826 			/* Wait for the link partner to also set speed */
   4827 			msec_delay(100);
   4828 
   4829 			/* If we have link, just jump out */
   4830 			status = ixgbe_check_link(hw, &link_speed,
   4831 						  &link_up, FALSE);
   4832 			if (status != IXGBE_SUCCESS)
   4833 				return status;
   4834 
   4835 			if (link_up)
   4836 				goto out;
   4837 		}
   4838 	}
   4839 
   4840 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4841 		speedcnt++;
   4842 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4843 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4844 
   4845 		/* If we already have link at this speed, just jump out */
   4846 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4847 		if (status != IXGBE_SUCCESS)
   4848 			return status;
   4849 
   4850 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
   4851 			goto out;
   4852 
   4853 		/* Set the module link speed */
   4854 		switch (hw->phy.media_type) {
   4855 		case ixgbe_media_type_fiber_fixed:
   4856 		case ixgbe_media_type_fiber:
   4857 			ixgbe_set_rate_select_speed(hw,
   4858 						    IXGBE_LINK_SPEED_1GB_FULL);
   4859 			break;
   4860 		case ixgbe_media_type_fiber_qsfp:
   4861 			/* QSFP module automatically detects link speed */
   4862 			break;
   4863 		default:
   4864 			DEBUGOUT("Unexpected media type.\n");
   4865 			break;
   4866 		}
   4867 
   4868 		/* Allow module to change analog characteristics (10G->1G) */
   4869 		msec_delay(40);
   4870 
   4871 		status = ixgbe_setup_mac_link(hw,
   4872 					      IXGBE_LINK_SPEED_1GB_FULL,
   4873 					      autoneg_wait_to_complete);
   4874 		if (status != IXGBE_SUCCESS)
   4875 			return status;
   4876 
   4877 		/* Flap the Tx laser if it has not already been done */
   4878 		ixgbe_flap_tx_laser(hw);
   4879 
   4880 		/* Wait for the link partner to also set speed */
   4881 		msec_delay(100);
   4882 
   4883 		/* If we have link, just jump out */
   4884 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
   4885 		if (status != IXGBE_SUCCESS)
   4886 			return status;
   4887 
   4888 		if (link_up)
   4889 			goto out;
   4890 	}
   4891 
   4892 	/* We didn't get link.  Configure back to the highest speed we tried,
   4893 	 * (if there was more than one).  We call ourselves back with just the
   4894 	 * single highest speed that the user requested.
   4895 	 */
   4896 	if (speedcnt > 1)
   4897 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4898 						      highest_link_speed,
   4899 						      autoneg_wait_to_complete);
   4900 
   4901 out:
   4902 	/* Set autoneg_advertised value based on input link speed */
   4903 	hw->phy.autoneg_advertised = 0;
   4904 
   4905 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4906 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4907 
   4908 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4909 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4910 
   4911 	return status;
   4912 }
   4913 
   4914 /**
   4915  *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4916  *  @hw: pointer to hardware structure
   4917  *  @speed: link speed to set
   4918  *
   4919  *  Set module link speed via the soft rate select.
   4920  */
   4921 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4922 					ixgbe_link_speed speed)
   4923 {
   4924 	s32 status;
   4925 	u8 rs, eeprom_data;
   4926 
   4927 	switch (speed) {
   4928 	case IXGBE_LINK_SPEED_10GB_FULL:
   4929 		/* one bit mask same as setting on */
   4930 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4931 		break;
   4932 	case IXGBE_LINK_SPEED_1GB_FULL:
   4933 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4934 		break;
   4935 	default:
   4936 		DEBUGOUT("Invalid fixed module speed\n");
   4937 		return;
   4938 	}
   4939 
   4940 	/* Set RS0 */
   4941 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4942 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4943 					   &eeprom_data);
   4944 	if (status) {
   4945 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
   4946 		goto out;
   4947 	}
   4948 
   4949 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4950 
   4951 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4952 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4953 					    eeprom_data);
   4954 	if (status) {
   4955 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
   4956 		goto out;
   4957 	}
   4958 
   4959 	/* Set RS1 */
   4960 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4961 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4962 					   &eeprom_data);
   4963 	if (status) {
   4964 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
   4965 		goto out;
   4966 	}
   4967 
   4968 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4969 
   4970 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4971 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4972 					    eeprom_data);
   4973 	if (status) {
   4974 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
   4975 		goto out;
   4976 	}
   4977 out:
   4978 	return;
   4979 }
   4980