Home | History | Annotate | Line # | Download | only in pci
mly.c revision 1.2
      1 /*	$NetBSD: mly.c,v 1.2 2001/07/30 23:29:08 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 2000, 2001 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
     66  */
     67 
     68 /*
     69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
     70  *
     71  * TODO:
     72  *
     73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
     74  * o Handle FC and multiple LUNs.
     75  * o Fix mmbox usage.
     76  * o Fix transfer speed fudge.
     77  */
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kernel.h>
     83 #include <sys/queue.h>
     84 #include <sys/buf.h>
     85 #include <sys/endian.h>
     86 #include <sys/conf.h>
     87 #include <sys/malloc.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/scsiio.h>
     90 #include <sys/kthread.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #include <machine/bus.h>
     95 
     96 #include <dev/scsipi/scsi_all.h>
     97 #include <dev/scsipi/scsipi_all.h>
     98 #include <dev/scsipi/scsiconf.h>
     99 
    100 #include <dev/pci/pcireg.h>
    101 #include <dev/pci/pcivar.h>
    102 #include <dev/pci/pcidevs.h>
    103 
    104 #include <dev/pci/mlyreg.h>
    105 #include <dev/pci/mlyio.h>
    106 #include <dev/pci/mlyvar.h>
    107 #include <dev/pci/mly_tables.h>
    108 
    109 static void	mly_attach(struct device *, struct device *, void *);
    110 static int	mly_match(struct device *, struct cfdata *, void *);
    111 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
    112 static int	mly_fwhandshake(struct mly_softc *);
    113 static int	mly_flush(struct mly_softc *);
    114 static int	mly_intr(void *);
    115 static void	mly_shutdown(void *);
    116 
    117 static int	mly_alloc_ccbs(struct mly_softc *);
    118 static void	mly_check_event(struct mly_softc *);
    119 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
    120 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
    121 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
    122 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
    123 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
    124 				caddr_t, bus_dma_segment_t *);
    125 static int	mly_enable_mmbox(struct mly_softc *);
    126 static void	mly_fetch_event(struct mly_softc *);
    127 static int	mly_get_controllerinfo(struct mly_softc *);
    128 static int	mly_get_eventstatus(struct mly_softc *);
    129 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
    130 			  void **, size_t, void *, size_t *);
    131 static void	mly_padstr(char *, const char *, int);
    132 static void	mly_process_event(struct mly_softc *, struct mly_event *);
    133 static void	mly_release_ccbs(struct mly_softc *);
    134 static int	mly_scan_btl(struct mly_softc *, int, int);
    135 static void	mly_scan_channel(struct mly_softc *, int);
    136 static void	mly_thread(void *);
    137 static void	mly_thread_create(void *);
    138 
    139 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
    140 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
    141 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
    142 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
    143 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
    144 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
    145 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
    146 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
    147 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
    148 
    149 static void	mly_get_xfer_mode(struct mly_softc *, int,
    150 				  struct scsipi_xfer_mode *);
    151 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
    152 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
    153 				 int, struct proc *);
    154 static void	mly_scsipi_minphys(struct buf *);
    155 static void	mly_scsipi_request(struct scsipi_channel *,
    156 				   scsipi_adapter_req_t, void *);
    157 
    158 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
    159 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
    160 
    161 cdev_decl(mly);
    162 
    163 extern struct	cfdriver mly_cd;
    164 
    165 struct cfattach mly_ca = {
    166 	sizeof(struct mly_softc), mly_match, mly_attach
    167 };
    168 
    169 struct mly_ident {
    170 	u_short	vendor;
    171 	u_short	product;
    172 	u_short	subvendor;
    173 	u_short	subproduct;
    174 	int	hwif;
    175 	const char	*desc;
    176 } static const mly_ident[] = {
    177 	{
    178 		PCI_VENDOR_MYLEX,
    179 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    180 		PCI_VENDOR_MYLEX,
    181 		0x0040,
    182 		MLY_HWIF_STRONGARM,
    183 		"eXtremeRAID 2000"
    184 	},
    185 	{
    186 		PCI_VENDOR_MYLEX,
    187 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    188 		PCI_VENDOR_MYLEX,
    189 		0x0030,
    190 		MLY_HWIF_STRONGARM,
    191 		"eXtremeRAID 3000"
    192 	},
    193 	{
    194 		PCI_VENDOR_MYLEX,
    195 		PCI_PRODUCT_MYLEX_ACCELERAID,
    196 		PCI_VENDOR_MYLEX,
    197 		0x0050,
    198 		MLY_HWIF_I960RX,
    199 		"AcceleRAID 352"
    200 	},
    201 	{
    202 		PCI_VENDOR_MYLEX,
    203 		PCI_PRODUCT_MYLEX_ACCELERAID,
    204 		PCI_VENDOR_MYLEX,
    205 		0x0052,
    206 		MLY_HWIF_I960RX,
    207 		"AcceleRAID 170"
    208 	},
    209 	{
    210 		PCI_VENDOR_MYLEX,
    211 		PCI_PRODUCT_MYLEX_ACCELERAID,
    212 		PCI_VENDOR_MYLEX,
    213 		0x0054,
    214 		MLY_HWIF_I960RX,
    215 		"AcceleRAID 160"
    216 	},
    217 };
    218 
    219 static void	*mly_sdh;
    220 
    221 /*
    222  * Try to find a `mly_ident' entry corresponding to this board.
    223  */
    224 static const struct mly_ident *
    225 mly_find_ident(struct pci_attach_args *pa)
    226 {
    227 	const struct mly_ident *mpi, *maxmpi;
    228 	pcireg_t reg;
    229 
    230 	mpi = mly_ident;
    231 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
    232 
    233 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    234 		return (NULL);
    235 
    236 	for (; mpi < maxmpi; mpi++) {
    237 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
    238 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
    239 			continue;
    240 
    241 		if (mpi->subvendor == 0x0000)
    242 			return (mpi);
    243 
    244 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    245 
    246 		if (PCI_VENDOR(reg) == mpi->subvendor &&
    247 		    PCI_PRODUCT(reg) == mpi->subproduct)
    248 			return (mpi);
    249 	}
    250 
    251 	return (NULL);
    252 }
    253 
    254 /*
    255  * Match a supported board.
    256  */
    257 static int
    258 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
    259 {
    260 
    261 	return (mly_find_ident(aux) != NULL);
    262 }
    263 
    264 /*
    265  * Attach a supported board.
    266  */
    267 static void
    268 mly_attach(struct device *parent, struct device *self, void *aux)
    269 {
    270 	struct pci_attach_args *pa;
    271 	struct mly_softc *mly;
    272 	struct mly_ioctl_getcontrollerinfo *mi;
    273 	const struct mly_ident *ident;
    274 	pci_chipset_tag_t pc;
    275 	pci_intr_handle_t ih;
    276 	bus_space_handle_t memh, ioh;
    277 	bus_space_tag_t memt, iot;
    278 	pcireg_t reg;
    279 	const char *intrstr;
    280 	int ior, memr, i, rv, state;
    281 	struct scsipi_adapter *adapt;
    282 	struct scsipi_channel *chan;
    283 
    284 	mly = (struct mly_softc *)self;
    285 	pa = aux;
    286 	pc = pa->pa_pc;
    287 	ident = mly_find_ident(pa);
    288 	state = 0;
    289 
    290 	mly->mly_dmat = pa->pa_dmat;
    291 	mly->mly_hwif = ident->hwif;
    292 
    293 	printf(": Mylex %s\n", ident->desc);
    294 
    295 	/*
    296 	 * Map the PCI register window.
    297 	 */
    298 	memr = -1;
    299 	ior = -1;
    300 
    301 	for (i = 0x10; i <= 0x14; i += 4) {
    302 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
    303 
    304 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    305 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
    306 				ior = i;
    307 		} else {
    308 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
    309 				memr = i;
    310 		}
    311 	}
    312 
    313 	if (memr != -1)
    314 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
    315 		    &memt, &memh, NULL, NULL))
    316 			memr = -1;
    317 	if (ior != -1)
    318 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
    319 		    &iot, &ioh, NULL, NULL))
    320 		    	ior = -1;
    321 
    322 	if (memr != -1) {
    323 		mly->mly_iot = memt;
    324 		mly->mly_ioh = memh;
    325 	} else if (ior != -1) {
    326 		mly->mly_iot = iot;
    327 		mly->mly_ioh = ioh;
    328 	} else {
    329 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
    330 		return;
    331 	}
    332 
    333 	/*
    334 	 * Enable the device.
    335 	 */
    336 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    337 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    338 	    reg | PCI_COMMAND_MASTER_ENABLE);
    339 
    340 	/*
    341 	 * Map and establish the interrupt.
    342 	 */
    343 	if (pci_intr_map(pa, &ih)) {
    344 		printf("%s: can't map interrupt\n", self->dv_xname);
    345 		return;
    346 	}
    347 	intrstr = pci_intr_string(pc, ih);
    348 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
    349 	if (mly->mly_ih == NULL) {
    350 		printf("%s: can't establish interrupt", self->dv_xname);
    351 		if (intrstr != NULL)
    352 			printf(" at %s", intrstr);
    353 		printf("\n");
    354 		return;
    355 	}
    356 
    357 	if (intrstr != NULL)
    358 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
    359 		    intrstr);
    360 
    361 	/*
    362 	 * Take care of interface-specific tasks.
    363 	 */
    364 	switch (mly->mly_hwif) {
    365 	case MLY_HWIF_I960RX:
    366 		mly->mly_doorbell_true = 0x00;
    367 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
    368 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
    369 		mly->mly_idbr = MLY_I960RX_IDBR;
    370 		mly->mly_odbr = MLY_I960RX_ODBR;
    371 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
    372 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
    373 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
    374 		break;
    375 
    376 	case MLY_HWIF_STRONGARM:
    377 		mly->mly_doorbell_true = 0xff;
    378 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
    379 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
    380 		mly->mly_idbr = MLY_STRONGARM_IDBR;
    381 		mly->mly_odbr = MLY_STRONGARM_ODBR;
    382 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
    383 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
    384 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
    385 		break;
    386 	}
    387 
    388 	/*
    389 	 * Allocate and map the scatter/gather lists.
    390 	 */
    391 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    392 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
    393 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
    394 	if (rv) {
    395 		printf("%s: unable to allocate S/G maps\n",
    396 		    mly->mly_dv.dv_xname);
    397 		goto bad;
    398 	}
    399 	state++;
    400 
    401 	/*
    402 	 * Allocate and map the memory mailbox.
    403 	 */
    404 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
    405 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
    406 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
    407 	if (rv) {
    408 		printf("%s: unable to allocate mailboxes\n",
    409 		    mly->mly_dv.dv_xname);
    410 		goto bad;
    411 	}
    412 	state++;
    413 
    414 	/*
    415 	 * Initialise per-controller queues.
    416 	 */
    417 	SLIST_INIT(&mly->mly_ccb_free);
    418 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
    419 
    420 	/*
    421 	 * Disable interrupts before we start talking to the controller.
    422 	 */
    423 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
    424 
    425 	/*
    426 	 * Wait for the controller to come ready, handshaking with the
    427 	 * firmware if required.  This is typically only necessary on
    428 	 * platforms where the controller BIOS does not run.
    429 	 */
    430 	if (mly_fwhandshake(mly)) {
    431 		printf("%s: unable to bring controller online\n",
    432 		    mly->mly_dv.dv_xname);
    433 		goto bad;
    434 	}
    435 
    436 	/*
    437 	 * Allocate initial command buffers, obtain controller feature
    438 	 * information, and then reallocate command buffers, since we'll
    439 	 * know how many we want.
    440 	 */
    441 	if (mly_alloc_ccbs(mly)) {
    442 		printf("%s: unable to allocate CCBs\n",
    443 		    mly->mly_dv.dv_xname);
    444 		goto bad;
    445 	}
    446 	state++;
    447 	if (mly_get_controllerinfo(mly)) {
    448 		printf("%s: unable to retrieve controller info\n",
    449 		    mly->mly_dv.dv_xname);
    450 		goto bad;
    451 	}
    452 	mly_release_ccbs(mly);
    453 	if (mly_alloc_ccbs(mly)) {
    454 		printf("%s: unable to allocate CCBs\n",
    455 		    mly->mly_dv.dv_xname);
    456 		state--;
    457 		goto bad;
    458 	}
    459 
    460 	/*
    461 	 * Get the current event counter for health purposes, populate the
    462 	 * initial health status buffer.
    463 	 */
    464 	if (mly_get_eventstatus(mly)) {
    465 		printf("%s: unable to retrieve event status\n",
    466 		    mly->mly_dv.dv_xname);
    467 		goto bad;
    468 	}
    469 
    470 	/*
    471 	 * Enable memory-mailbox mode.
    472 	 */
    473 	if (mly_enable_mmbox(mly)) {
    474 		printf("%s: unable to enable memory mailbox\n",
    475 		    mly->mly_dv.dv_xname);
    476 		goto bad;
    477 	}
    478 
    479 	/*
    480 	 * Print a little information about the controller.
    481 	 */
    482 	mi = mly->mly_controllerinfo;
    483 
    484 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
    485 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
    486 	    mi->physical_channels_present,
    487 	    (mi->physical_channels_present) > 1 ? "s" : "",
    488 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
    489 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
    490 	    le16toh(mi->memory_size));
    491 
    492 	/*
    493 	 * Register our `shutdownhook'.
    494 	 */
    495 	if (mly_sdh == NULL)
    496 		shutdownhook_establish(mly_shutdown, NULL);
    497 
    498 	/*
    499 	 * Clear any previous BTL information.  For each bus that scsipi
    500 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
    501 	 * all BTL info at that point.
    502 	 */
    503 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
    504 
    505 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
    506 	    mly->mly_controllerinfo->virtual_channels_present;
    507 
    508 	/*
    509 	 * Attach to scsipi.
    510 	 */
    511 	adapt = &mly->mly_adapt;
    512 	memset(adapt, 0, sizeof(*adapt));
    513 	adapt->adapt_dev = &mly->mly_dv;
    514 	adapt->adapt_nchannels = mly->mly_nchans;
    515 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
    516 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
    517 	adapt->adapt_request = mly_scsipi_request;
    518 	adapt->adapt_minphys = mly_scsipi_minphys;
    519 	adapt->adapt_ioctl = mly_scsipi_ioctl;
    520 
    521 	for (i = 0; i < mly->mly_nchans; i++) {
    522 		chan = &mly->mly_chans[i];
    523 		memset(chan, 0, sizeof(*chan));
    524 		chan->chan_adapter = adapt;
    525 		chan->chan_bustype = &scsi_bustype;
    526 		chan->chan_channel = i;
    527 		chan->chan_ntargets = MLY_MAX_TARGETS;
    528 		chan->chan_nluns = MLY_MAX_LUNS;
    529 		chan->chan_id = mly->mly_controllerparam->initiator_id;
    530 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
    531 		config_found(&mly->mly_dv, chan, scsiprint);
    532 	}
    533 
    534 	/*
    535 	 * Now enable interrupts...
    536 	 */
    537 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
    538 
    539 	/*
    540 	 * Finally, create our monitoring thread.
    541 	 */
    542 	kthread_create(mly_thread_create, mly);
    543 
    544 	mly->mly_state |= MLY_STATE_INITOK;
    545 	return;
    546 
    547  bad:
    548 	if (state > 2)
    549 		mly_release_ccbs(mly);
    550 	if (state > 1)
    551 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
    552 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
    553 		    &mly->mly_mmbox_seg);
    554 	if (state > 0)
    555 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    556 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
    557 		    &mly->mly_sg_seg);
    558 }
    559 
    560 /*
    561  * Scan all possible devices on the specified channel.
    562  */
    563 static void
    564 mly_scan_channel(struct mly_softc *mly, int bus)
    565 {
    566 	int startbus, endbus, s, target;
    567 
    568 	if (bus == -1) {
    569 		startbus = 0;
    570 		endbus = mly->mly_nchans - 1;
    571 	} else {
    572 		startbus = bus;
    573 		endbus = bus;
    574 	}
    575 
    576 	for (bus = startbus; bus <= endbus; bus++)
    577 		for (target = 0; target < MLY_MAX_TARGETS; target++) {
    578 			s = splbio();
    579 			if (!mly_scan_btl(mly, bus, target)) {
    580 				tsleep(&mly->mly_btl[bus][target], PRIBIO,
    581 				    "mlyscan", 0);
    582 			}
    583 			splx(s);
    584 		}
    585 }
    586 
    587 /*
    588  * Shut down all configured `mly' devices.
    589  */
    590 static void
    591 mly_shutdown(void *cookie)
    592 {
    593 	struct mly_softc *mly;
    594 	int i;
    595 
    596 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
    597 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
    598 			continue;
    599 
    600 		if (mly_flush(mly))
    601 			printf("%s: unable to flush cache\n",
    602 			    mly->mly_dv.dv_xname);
    603 	}
    604 }
    605 
    606 /*
    607  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
    608  * softc.
    609  */
    610 static int
    611 mly_get_controllerinfo(struct mly_softc *mly)
    612 {
    613 	struct mly_cmd_ioctl mci;
    614 	int rv;
    615 
    616 	/*
    617 	 * Build the getcontrollerinfo ioctl and send it.
    618 	 */
    619 	memset(&mci, 0, sizeof(mci));
    620 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
    621 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
    622 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
    623 	if (rv != 0)
    624 		return (rv);
    625 
    626 	/*
    627 	 * Build the getcontrollerparameter ioctl and send it.
    628 	 */
    629 	memset(&mci, 0, sizeof(mci));
    630 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
    631 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
    632 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
    633 
    634 	return (rv);
    635 }
    636 
    637 /*
    638  * Rescan a device, possibly as a consequence of getting an event which
    639  * suggests that it may have changed.  Must be called with interrupts
    640  * blocked.
    641  */
    642 static int
    643 mly_scan_btl(struct mly_softc *mly, int bus, int target)
    644 {
    645 	struct mly_ccb *mc;
    646 	struct mly_cmd_ioctl *mci;
    647 	int rv;
    648 
    649 	if (target == mly->mly_controllerparam->initiator_id) {
    650 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
    651 		return (EIO);
    652 	}
    653 
    654 	/* Don't re-scan if a scan is already in progress. */
    655 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
    656 		return (EBUSY);
    657 
    658 	/* Get a command. */
    659 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    660 		return (rv);
    661 
    662 	/* Set up the data buffer. */
    663 	mc->mc_data = malloc(sizeof(union mly_devinfo),
    664 	    M_DEVBUF, M_NOWAIT);
    665 	memset(mc->mc_data, 0, sizeof(union mly_devinfo));
    666 
    667 	mc->mc_flags |= MLY_CCB_DATAIN;
    668 	mc->mc_complete = mly_complete_rescan;
    669 
    670 	/*
    671 	 * Build the ioctl.
    672 	 */
    673 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    674 	mci->opcode = MDACMD_IOCTL;
    675 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    676 	memset(&mci->param, 0, sizeof(mci->param));
    677 
    678 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
    679 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
    680 		mci->data_size = htole32(mc->mc_length);
    681 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
    682 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
    683 		    mci->addr);
    684 	} else {
    685 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
    686 		mci->data_size = htole32(mc->mc_length);
    687 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
    688 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
    689 	}
    690 
    691 	/*
    692 	 * Dispatch the command.
    693 	 */
    694 	if ((rv = mly_ccb_map(mly, mc)) != 0)
    695 		goto bad;
    696 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
    697 	mly_ccb_enqueue(mly, mc);
    698 	return (0);
    699 
    700  bad:
    701 	free(mc->mc_data, M_DEVBUF);
    702 	mly_ccb_free(mly, mc);
    703 	return(rv);
    704 }
    705 
    706 /*
    707  * Handle the completion of a rescan operation.
    708  */
    709 static void
    710 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
    711 {
    712 	struct mly_ioctl_getlogdevinfovalid *ldi;
    713 	struct mly_ioctl_getphysdevinfovalid *pdi;
    714 	struct mly_cmd_ioctl *mci;
    715 	struct mly_btl btl, *btlp;
    716 	struct scsipi_xfer_mode xm;
    717 	int bus, target, rescan;
    718 	u_int tmp;
    719 
    720 	mly_ccb_unmap(mly, mc);
    721 
    722 	/*
    723 	 * Recover the bus and target from the command.  We need these even
    724 	 * in the case where we don't have a useful response.
    725 	 */
    726 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    727 	tmp = _3ltol(mci->addr);
    728 	rescan = 0;
    729 
    730 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
    731 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
    732 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
    733 	} else {
    734 		bus = MLY_PHYADDR_CHANNEL(tmp);
    735 		target = MLY_PHYADDR_TARGET(tmp);
    736 	}
    737 
    738 	/* XXX Validate bus/target? */
    739 	btlp = &mly->mly_btl[bus][target];
    740 
    741 	/* The default result is 'no device'. */
    742 	memset(&btl, 0, sizeof(btl));
    743 	btl.mb_flags = MLY_BTL_PROTECTED;
    744 
    745 	/* If the rescan completed OK, we have possibly-new BTL data. */
    746 	if (mc->mc_status != 0)
    747 		goto out;
    748 
    749 	if (mc->mc_length == sizeof(*ldi)) {
    750 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
    751 		tmp = le32toh(ldi->logical_device_number);
    752 
    753 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
    754 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
    755 #ifdef MLYDEBUG_OBNOXIOUS
    756 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
    757 			    "returned data for %d:%d instead\n",
    758 			   mly->mly_dv.dv_xname, bus, target,
    759 			   MLY_LOGDEV_BUS(mly, tmp),
    760 			   MLY_LOGDEV_TARGET(mly, tmp));
    761 #endif
    762 			goto out;
    763 		}
    764 
    765 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
    766 		btl.mb_type = ldi->raid_level;
    767 		btl.mb_state = ldi->state;
    768 	} else if (mc->mc_length == sizeof(*pdi)) {
    769 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
    770 
    771 		if (pdi->channel != bus || pdi->target != target) {
    772 #ifdef MLYDEBUG_OBNOXIOUS
    773 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
    774 			    " returned data for %d:%d instead\n",
    775 			   mly->mly_dv.dv_xname,
    776 			   bus, target, pdi->channel, pdi->target);
    777 #endif
    778 			goto out;
    779 		}
    780 
    781 		btl.mb_flags = MLY_BTL_PHYSICAL;
    782 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
    783 		btl.mb_state = pdi->state;
    784 		btl.mb_speed = pdi->speed;
    785 		btl.mb_width = pdi->width;
    786 
    787 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
    788 			btl.mb_flags |= MLY_BTL_PROTECTED;
    789 		if (pdi->command_tags != 0)
    790 			btl.mb_flags |= MLY_BTL_TQING;
    791 	} else {
    792 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
    793 		goto out;
    794 	}
    795 
    796 	/* Decide whether we need to rescan the device. */
    797 	if (btl.mb_flags != btlp->mb_flags ||
    798 	    btl.mb_speed != btlp->mb_speed ||
    799 	    btl.mb_width != btlp->mb_width)
    800 		rescan = 1;
    801 
    802  out:
    803 	*btlp = btl;
    804 
    805 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
    806 		xm.xm_target = target;
    807 		mly_get_xfer_mode(mly, bus, &xm);
    808 		/* XXX SCSI mid-layer rescan goes here. */
    809 	}
    810 
    811 	/* Wake anybody waiting on the device to be rescanned. */
    812 	wakeup(btlp);
    813 
    814 	free(mc->mc_data, M_DEVBUF);
    815 	mly_ccb_free(mly, mc);
    816 }
    817 
    818 /*
    819  * Get the current health status and set the 'next event' counter to suit.
    820  */
    821 static int
    822 mly_get_eventstatus(struct mly_softc *mly)
    823 {
    824 	struct mly_cmd_ioctl mci;
    825 	struct mly_health_status *mh;
    826 	int rv;
    827 
    828 	/* Build the gethealthstatus ioctl and send it. */
    829 	memset(&mci, 0, sizeof(mci));
    830 	mh = NULL;
    831 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
    832 
    833 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
    834 	if (rv)
    835 		return (rv);
    836 
    837 	/* Get the event counter. */
    838 	mly->mly_event_change = le32toh(mh->change_counter);
    839 	mly->mly_event_waiting = le32toh(mh->next_event);
    840 	mly->mly_event_counter = le32toh(mh->next_event);
    841 
    842 	/* Save the health status into the memory mailbox */
    843 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
    844 
    845 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    846 	    offsetof(struct mly_mmbox, mmm_health),
    847 	    sizeof(mly->mly_mmbox->mmm_health),
    848 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    849 
    850 	free(mh, M_DEVBUF);
    851 	return (0);
    852 }
    853 
    854 /*
    855  * Enable the memory mailbox mode.
    856  */
    857 static int
    858 mly_enable_mmbox(struct mly_softc *mly)
    859 {
    860 	struct mly_cmd_ioctl mci;
    861 	u_int8_t *sp;
    862 	u_int64_t tmp;
    863 	int rv;
    864 
    865 	/* Build the ioctl and send it. */
    866 	memset(&mci, 0, sizeof(mci));
    867 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
    868 
    869 	/* Set buffer addresses. */
    870 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
    871 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
    872 
    873 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
    874 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
    875 
    876 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
    877 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
    878 
    879 	/* Set buffer sizes - abuse of data_size field is revolting. */
    880 	sp = (u_int8_t *)&mci.data_size;
    881 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
    882 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
    883 	mci.param.setmemorymailbox.health_buffer_size =
    884 	    sizeof(union mly_health_region) >> 10;
    885 
    886 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
    887 	if (rv)
    888 		return (rv);
    889 
    890 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
    891 	return (0);
    892 }
    893 
    894 /*
    895  * Flush all pending I/O from the controller.
    896  */
    897 static int
    898 mly_flush(struct mly_softc *mly)
    899 {
    900 	struct mly_cmd_ioctl mci;
    901 
    902 	/* Build the ioctl */
    903 	memset(&mci, 0, sizeof(mci));
    904 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
    905 	mci.param.deviceoperation.operation_device =
    906 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
    907 
    908 	/* Pass it off to the controller */
    909 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
    910 }
    911 
    912 /*
    913  * Perform an ioctl command.
    914  *
    915  * If (data) is not NULL, the command requires data transfer.  If (*data) is
    916  * NULL the command requires data transfer from the controller, and we will
    917  * allocate a buffer for it.  If (*data) is not NULL, the command requires
    918  * data transfer to the controller.
    919  */
    920 static int
    921 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
    922 	  size_t datasize, void *sense_buffer,
    923 	  size_t *sense_length)
    924 {
    925 	struct mly_ccb *mc;
    926 	struct mly_cmd_ioctl *mci;
    927 	u_int8_t status;
    928 	int rv;
    929 
    930 	mc = NULL;
    931 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    932 		goto bad;
    933 
    934 	/*
    935 	 * Copy the ioctl structure, but save some important fields and then
    936 	 * fixup.
    937 	 */
    938 	mci = &mc->mc_packet->ioctl;
    939 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
    940 	ioctl->maximum_sense_size = mci->maximum_sense_size;
    941 	*mci = *ioctl;
    942 	mci->opcode = MDACMD_IOCTL;
    943 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    944 
    945 	/* Handle the data buffer. */
    946 	if (data != NULL) {
    947 		if (*data == NULL) {
    948 			/* Allocate data buffer */
    949 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
    950 			mc->mc_flags |= MLY_CCB_DATAIN;
    951 		} else {
    952 			mc->mc_data = *data;
    953 			mc->mc_flags |= MLY_CCB_DATAOUT;
    954 		}
    955 		mc->mc_length = datasize;
    956 		mc->mc_packet->generic.data_size = htole32(datasize);
    957 	}
    958 
    959 	/* Run the command. */
    960 	if (datasize > 0)
    961 		if ((rv = mly_ccb_map(mly, mc)) != 0)
    962 			goto bad;
    963 	rv = mly_ccb_poll(mly, mc, 30000);
    964 	if (datasize > 0)
    965 		mly_ccb_unmap(mly, mc);
    966 	if (rv != 0)
    967 		goto bad;
    968 
    969 	/* Clean up and return any data. */
    970 	status = mc->mc_status;
    971 
    972 	if (status != 0)
    973 		printf("mly_ioctl: command status %d\n", status);
    974 
    975 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
    976 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
    977 		*sense_length = mc->mc_sense;
    978 		goto bad;
    979 	}
    980 
    981 	/* Should we return a data pointer? */
    982 	if (data != NULL && *data == NULL)
    983 		*data = mc->mc_data;
    984 
    985 	/* Command completed OK. */
    986 	rv = (status != 0 ? EIO : 0);
    987 
    988  bad:
    989 	if (mc != NULL) {
    990 		/* Do we need to free a data buffer we allocated? */
    991 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
    992 			free(mc->mc_data, M_DEVBUF);
    993 		mly_ccb_free(mly, mc);
    994 	}
    995 
    996 	return (rv);
    997 }
    998 
    999 /*
   1000  * Check for event(s) outstanding in the controller.
   1001  */
   1002 static void
   1003 mly_check_event(struct mly_softc *mly)
   1004 {
   1005 
   1006 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1007 	    offsetof(struct mly_mmbox, mmm_health),
   1008 	    sizeof(mly->mly_mmbox->mmm_health),
   1009 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1010 
   1011 	/*
   1012 	 * The controller may have updated the health status information, so
   1013 	 * check for it here.  Note that the counters are all in host
   1014 	 * memory, so this check is very cheap.  Also note that we depend on
   1015 	 * checking on completion
   1016 	 */
   1017 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
   1018 	    mly->mly_event_change) {
   1019 		mly->mly_event_change =
   1020 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
   1021 		mly->mly_event_waiting =
   1022 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
   1023 
   1024 		/* Wake up anyone that might be interested in this. */
   1025 		wakeup(&mly->mly_event_change);
   1026 	}
   1027 
   1028 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1029 	    offsetof(struct mly_mmbox, mmm_health),
   1030 	    sizeof(mly->mly_mmbox->mmm_health),
   1031 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1032 
   1033 	if (mly->mly_event_counter != mly->mly_event_waiting)
   1034 		mly_fetch_event(mly);
   1035 }
   1036 
   1037 /*
   1038  * Fetch one event from the controller.  If we fail due to resource
   1039  * starvation, we'll be retried the next time a command completes.
   1040  */
   1041 static void
   1042 mly_fetch_event(struct mly_softc *mly)
   1043 {
   1044 	struct mly_ccb *mc;
   1045 	struct mly_cmd_ioctl *mci;
   1046 	int s;
   1047 	u_int32_t event;
   1048 
   1049 	/* Get a command. */
   1050 	if (mly_ccb_alloc(mly, &mc))
   1051 		return;
   1052 
   1053 	/* Set up the data buffer. */
   1054 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
   1055 	memset(mc->mc_data, 0, sizeof(struct mly_event));
   1056 
   1057 	mc->mc_length = sizeof(struct mly_event);
   1058 	mc->mc_flags |= MLY_CCB_DATAIN;
   1059 	mc->mc_complete = mly_complete_event;
   1060 
   1061 	/*
   1062 	 * Get an event number to fetch.  It's possible that we've raced
   1063 	 * with another context for the last event, in which case there will
   1064 	 * be no more events.
   1065 	 */
   1066 	s = splbio();
   1067 	if (mly->mly_event_counter == mly->mly_event_waiting) {
   1068 		splx(s);
   1069 		free(mc->mc_data, M_DEVBUF);
   1070 		mly_ccb_free(mly, mc);
   1071 		return;
   1072 	}
   1073 	event = mly->mly_event_counter++;
   1074 	splx(s);
   1075 
   1076 	/*
   1077 	 * Build the ioctl.
   1078 	 *
   1079 	 * At this point we are committed to sending this request, as it
   1080 	 * will be the only one constructed for this particular event
   1081 	 * number.
   1082 	 */
   1083 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
   1084 	mci->opcode = MDACMD_IOCTL;
   1085 	mci->data_size = htole32(sizeof(struct mly_event));
   1086 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
   1087 	    mci->addr);
   1088 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
   1089 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
   1090 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
   1091 
   1092 	/*
   1093 	 * Submit the command.
   1094 	 */
   1095 	if (mly_ccb_map(mly, mc) != 0)
   1096 		goto bad;
   1097 	mly_ccb_enqueue(mly, mc);
   1098 	return;
   1099 
   1100  bad:
   1101 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
   1102 	free(mc->mc_data, M_DEVBUF);
   1103 	mly_ccb_free(mly, mc);
   1104 }
   1105 
   1106 /*
   1107  * Handle the completion of an event poll.
   1108  */
   1109 static void
   1110 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
   1111 {
   1112 	struct mly_event *me;
   1113 
   1114 	me = (struct mly_event *)mc->mc_data;
   1115 	mly_ccb_unmap(mly, mc);
   1116 	mly_ccb_free(mly, mc);
   1117 
   1118 	/* If the event was successfully fetched, process it. */
   1119 	if (mc->mc_status == SCSI_OK)
   1120 		mly_process_event(mly, me);
   1121 	else
   1122 		printf("%s: unable to fetch event; status = 0x%x\n",
   1123 		    mly->mly_dv.dv_xname, mc->mc_status);
   1124 
   1125 	free(me, M_DEVBUF);
   1126 
   1127 	/* Check for another event. */
   1128 	mly_check_event(mly);
   1129 }
   1130 
   1131 /*
   1132  * Process a controller event.  Called with interupts blocked (i.e., at
   1133  * interrupt time).
   1134  */
   1135 static void
   1136 mly_process_event(struct mly_softc *mly, struct mly_event *me)
   1137 {
   1138 	struct scsipi_sense_data *ssd;
   1139 	int bus, target, event, class, action;
   1140 	const char *fp, *tp;
   1141 
   1142 	ssd = (struct scsipi_sense_data *)&me->sense[0];
   1143 
   1144 	/*
   1145 	 * Errors can be reported using vendor-unique sense data.  In this
   1146 	 * case, the event code will be 0x1c (Request sense data present),
   1147 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
   1148 	 * will be set, and the actual event code will be a 16-bit value
   1149 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
   1150 	 * (low seven bits of the high byte).
   1151 	 */
   1152 	if (le32toh(me->code) == 0x1c &&
   1153 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
   1154 	    (ssd->add_sense_code & 0x80) != 0) {
   1155 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
   1156 		    ssd->add_sense_code_qual;
   1157 	} else
   1158 		event = le32toh(me->code);
   1159 
   1160 	/* Look up event, get codes. */
   1161 	fp = mly_describe_code(mly_table_event, event);
   1162 
   1163 	/* Quiet event? */
   1164 	class = fp[0];
   1165 #ifdef notyet
   1166 	if (isupper(class) && bootverbose)
   1167 		class = tolower(class);
   1168 #endif
   1169 
   1170 	/* Get action code, text string. */
   1171 	action = fp[1];
   1172 	tp = fp + 3;
   1173 
   1174 	/*
   1175 	 * Print some information about the event.
   1176 	 *
   1177 	 * This code uses a table derived from the corresponding portion of
   1178 	 * the Linux driver, and thus the parser is very similar.
   1179 	 */
   1180 	switch (class) {
   1181 	case 'p':
   1182 		/*
   1183 		 * Error on physical drive.
   1184 		 */
   1185 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1186 		    me->channel, me->target, tp);
   1187 		if (action == 'r')
   1188 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1189 			    MLY_BTL_RESCAN;
   1190 		break;
   1191 
   1192 	case 'l':
   1193 	case 'm':
   1194 		/*
   1195 		 * Error on logical unit, or message about logical unit.
   1196 		 *
   1197 		 * XXX Splitting me->lun as we do in the following can't possibly
   1198 		 * be correct.  Where should we get this value?
   1199 	 	 */
   1200 		bus = MLY_LOGDEV_BUS(mly, me->lun);
   1201 		target = MLY_LOGDEV_TARGET(mly, me->lun);
   1202 		if (action == 'r')
   1203 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
   1204 		break;
   1205 
   1206 	case 's':
   1207 		/*
   1208 		 * Report of sense data.
   1209 		 */
   1210 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
   1211 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
   1212 		    ssd->add_sense_code == 0x04 &&
   1213 		    (ssd->add_sense_code_qual == 0x01 ||
   1214 		    ssd->add_sense_code_qual == 0x02)) {
   1215 			/* Ignore NO_SENSE or NOT_READY in one case */
   1216 			break;
   1217 		}
   1218 
   1219 		/*
   1220 		 * XXX Should translate this if SCSIVERBOSE.
   1221 		 */
   1222 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1223 		    me->channel, me->target, tp);
   1224 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
   1225 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
   1226 		    ssd->add_sense_code, ssd->add_sense_code_qual);
   1227 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
   1228 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
   1229 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
   1230 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
   1231 		    ssd->cmd_spec_info[3]);
   1232 		if (action == 'r')
   1233 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1234 			    MLY_BTL_RESCAN;
   1235 		break;
   1236 
   1237 	case 'e':
   1238 		printf("%s: ", mly->mly_dv.dv_xname);
   1239 		printf(tp, me->target, me->lun);
   1240 		break;
   1241 
   1242 	case 'c':
   1243 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
   1244 		break;
   1245 
   1246 	case '?':
   1247 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
   1248 		break;
   1249 
   1250 	default:
   1251 		/* Probably a 'noisy' event being ignored. */
   1252 		break;
   1253 	}
   1254 }
   1255 
   1256 /*
   1257  * Create the monitoring thread.  Called after the standard kernel threads
   1258  * have been created.
   1259  */
   1260 static void
   1261 mly_thread_create(void *cookie)
   1262 {
   1263 	struct mly_softc *mly;
   1264 	int rv;
   1265 
   1266 	mly = cookie;
   1267 
   1268 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
   1269 	    mly->mly_dv.dv_xname);
   1270  	if (rv != 0)
   1271 		printf("%s: unable to create thread (%d)\n",
   1272 		    mly->mly_dv.dv_xname, rv);
   1273 }
   1274 
   1275 /*
   1276  * Perform periodic activities.
   1277  */
   1278 static void
   1279 mly_thread(void *cookie)
   1280 {
   1281 	struct mly_softc *mly;
   1282 	struct mly_btl *btl;
   1283 	int s, bus, target, done;
   1284 
   1285 	mly = (struct mly_softc *)cookie;
   1286 
   1287 	for (;;) {
   1288 		/* Check for new events. */
   1289 		mly_check_event(mly);
   1290 
   1291 		/* Re-scan up to 1 device. */
   1292 		s = splbio();
   1293 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
   1294 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
   1295 				/* Perform device rescan? */
   1296 				btl = &mly->mly_btl[bus][target];
   1297 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
   1298 					btl->mb_flags ^= MLY_BTL_RESCAN;
   1299 					mly_scan_btl(mly, bus, target);
   1300 					done = 1;
   1301 					break;
   1302 				}
   1303 			}
   1304 		}
   1305 		splx(s);
   1306 
   1307 		/* Sleep for N seconds. */
   1308 		tsleep(mly_thread, PWAIT, "mlyzzz",
   1309 		    hz * MLY_PERIODIC_INTERVAL);
   1310 	}
   1311 }
   1312 
   1313 /*
   1314  * Submit a command to the controller and poll on completion.  Return
   1315  * non-zero on timeout.
   1316  */
   1317 static int
   1318 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1319 {
   1320 	int rv;
   1321 
   1322 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
   1323 		return (rv);
   1324 
   1325 	for (timo *= 10; timo != 0; timo--) {
   1326 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
   1327 			break;
   1328 		mly_intr(mly);
   1329 		DELAY(100);
   1330 	}
   1331 
   1332 	return (timo == 0);
   1333 }
   1334 
   1335 /*
   1336  * Submit a command to the controller and sleep on completion.  Return
   1337  * non-zero on timeout.
   1338  */
   1339 static int
   1340 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1341 {
   1342 	int rv, s;
   1343 
   1344 	mly_ccb_enqueue(mly, mc);
   1345 
   1346 	s = splbio();
   1347 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
   1348 		splx(s);
   1349 		return (0);
   1350 	}
   1351 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
   1352 	splx(s);
   1353 
   1354 	return (rv);
   1355 }
   1356 
   1357 /*
   1358  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1359  * the order that they were enqueued and try to submit their command blocks
   1360  * to the controller for execution.
   1361  */
   1362 void
   1363 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
   1364 {
   1365 	int s;
   1366 
   1367 	s = splbio();
   1368 
   1369 	if (mc != NULL)
   1370 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1371 
   1372 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
   1373 		if (mly_ccb_submit(mly, mc))
   1374 			break;
   1375 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1376 	}
   1377 
   1378 	splx(s);
   1379 }
   1380 
   1381 /*
   1382  * Deliver a command to the controller.
   1383  */
   1384 static int
   1385 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
   1386 {
   1387 	union mly_cmd_packet *pkt;
   1388 	int s, off;
   1389 
   1390 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
   1391 
   1392 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1393 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1394 	    sizeof(union mly_cmd_packet),
   1395 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1396 
   1397 	s = splbio();
   1398 
   1399 	/*
   1400 	 * Do we have to use the hardware mailbox?
   1401 	 */
   1402 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
   1403 		/*
   1404 		 * Check to see if the controller is ready for us.
   1405 		 */
   1406 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
   1407 			splx(s);
   1408 			return (EBUSY);
   1409 		}
   1410 
   1411 		/*
   1412 		 * It's ready, send the command.
   1413 		 */
   1414 		mly_outl(mly, mly->mly_cmd_mailbox,
   1415 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
   1416 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
   1417 		    (u_int64_t)mc->mc_packetphys >> 32);
   1418 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
   1419 	} else {
   1420 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
   1421 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
   1422 
   1423 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1424 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1425 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1426 
   1427 		/* Check to see if the next index is free yet. */
   1428 		if (pkt->mmbox.flag != 0) {
   1429 			splx(s);
   1430 			return (EBUSY);
   1431 		}
   1432 
   1433 		/* Copy in new command */
   1434 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
   1435 		    sizeof(pkt->mmbox.data));
   1436 
   1437 		/* Copy flag last. */
   1438 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
   1439 
   1440 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1441 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1442 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1443 
   1444 		/* Signal controller and update index. */
   1445 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
   1446 		mly->mly_mmbox_cmd_idx =
   1447 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
   1448 	}
   1449 
   1450 	splx(s);
   1451 	return (0);
   1452 }
   1453 
   1454 /*
   1455  * Pick up completed commands from the controller and handle accordingly.
   1456  */
   1457 int
   1458 mly_intr(void *cookie)
   1459 {
   1460 	struct mly_ccb *mc;
   1461 	union mly_status_packet	*sp;
   1462 	u_int16_t slot;
   1463 	int forus, off;
   1464 	struct mly_softc *mly;
   1465 
   1466 	mly = cookie;
   1467 	forus = 0;
   1468 
   1469 	/*
   1470 	 * Pick up hardware-mailbox commands.
   1471 	 */
   1472 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
   1473 		slot = mly_inw(mly, mly->mly_status_mailbox);
   1474 
   1475 		if (slot < MLY_SLOT_MAX) {
   1476 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1477 			mc->mc_status =
   1478 			    mly_inb(mly, mly->mly_status_mailbox + 2);
   1479 			mc->mc_sense =
   1480 			    mly_inb(mly, mly->mly_status_mailbox + 3);
   1481 			mc->mc_resid =
   1482 			    mly_inl(mly, mly->mly_status_mailbox + 4);
   1483 
   1484 			mly_ccb_complete(mly, mc);
   1485 		} else {
   1486 			/* Slot 0xffff may mean "extremely bogus command". */
   1487 			printf("%s: got HM completion for illegal slot %u\n",
   1488 			    mly->mly_dv.dv_xname, slot);
   1489 		}
   1490 
   1491 		/* Unconditionally acknowledge status. */
   1492 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
   1493 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   1494 		forus = 1;
   1495 	}
   1496 
   1497 	/*
   1498 	 * Pick up memory-mailbox commands.
   1499 	 */
   1500 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
   1501 		for (;;) {
   1502 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
   1503 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
   1504 
   1505 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1506 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1507 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1508 
   1509 			/* Check for more status. */
   1510 			if (sp->mmbox.flag == 0)
   1511 				break;
   1512 
   1513 			/* Get slot number. */
   1514 			slot = le16toh(sp->status.command_id);
   1515 			if (slot < MLY_SLOT_MAX) {
   1516 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1517 				mc->mc_status = sp->status.status;
   1518 				mc->mc_sense = sp->status.sense_length;
   1519 				mc->mc_resid = le32toh(sp->status.residue);
   1520 				mly_ccb_complete(mly, mc);
   1521 			} else {
   1522 				/*
   1523 				 * Slot 0xffff may mean "extremely bogus
   1524 				 * command".
   1525 				 */
   1526 				printf("%s: got AM completion for illegal "
   1527 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
   1528 				    slot, mly->mly_mmbox_sts_idx);
   1529 			}
   1530 
   1531 			/* Clear and move to next index. */
   1532 			sp->mmbox.flag = 0;
   1533 			mly->mly_mmbox_sts_idx =
   1534 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
   1535 		}
   1536 
   1537 		/* Acknowledge that we have collected status value(s). */
   1538 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
   1539 		forus = 1;
   1540 	}
   1541 
   1542 	/*
   1543 	 * Run the queue.
   1544 	 */
   1545 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
   1546 		mly_ccb_enqueue(mly, NULL);
   1547 
   1548 	return (forus);
   1549 }
   1550 
   1551 /*
   1552  * Process completed commands
   1553  */
   1554 static void
   1555 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1556 {
   1557 	void (*complete)(struct mly_softc *, struct mly_ccb *);
   1558 
   1559 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1560 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1561 	    sizeof(union mly_cmd_packet),
   1562 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1563 
   1564 	complete = mc->mc_complete;
   1565 	mc->mc_flags |= MLY_CCB_COMPLETE;
   1566 
   1567 	/*
   1568 	 * Call completion handler or wake up sleeping consumer.
   1569 	 */
   1570 	if (complete != NULL)
   1571 		(*complete)(mly, mc);
   1572 	else
   1573 		wakeup(mc);
   1574 }
   1575 
   1576 /*
   1577  * Allocate a command.
   1578  */
   1579 int
   1580 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
   1581 {
   1582 	struct mly_ccb *mc;
   1583 	int s;
   1584 
   1585 	s = splbio();
   1586 	mc = SLIST_FIRST(&mly->mly_ccb_free);
   1587 	if (mc != NULL)
   1588 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
   1589 	splx(s);
   1590 
   1591 	*mcp = mc;
   1592 	return (mc == NULL ? EAGAIN : 0);
   1593 }
   1594 
   1595 /*
   1596  * Release a command back to the freelist.
   1597  */
   1598 void
   1599 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
   1600 {
   1601 	int s;
   1602 
   1603 	/*
   1604 	 * Fill in parts of the command that may cause confusion if a
   1605 	 * consumer doesn't when we are later allocated.
   1606 	 */
   1607 	mc->mc_data = NULL;
   1608 	mc->mc_flags = 0;
   1609 	mc->mc_complete = NULL;
   1610 	mc->mc_private = NULL;
   1611 
   1612 	/*
   1613 	 * By default, we set up to overwrite the command packet with sense
   1614 	 * information.
   1615 	 */
   1616 	mc->mc_packet->generic.command_control = 0;
   1617 	mc->mc_packet->generic.sense_buffer_address =
   1618 	    htole64(mc->mc_packetphys);
   1619 	mc->mc_packet->generic.maximum_sense_size =
   1620 	    sizeof(union mly_cmd_packet);
   1621 
   1622 	s = splbio();
   1623 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
   1624 	splx(s);
   1625 }
   1626 
   1627 /*
   1628  * Allocate and initialise command and packet structures.
   1629  *
   1630  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
   1631  * allocation to that number.  If we don't yet know how many commands the
   1632  * controller supports, allocate a very small set (suitable for initialisation
   1633  * purposes only).
   1634  */
   1635 static int
   1636 mly_alloc_ccbs(struct mly_softc *mly)
   1637 {
   1638 	struct mly_ccb *mc;
   1639 	int i, rv;
   1640 
   1641 	if (mly->mly_controllerinfo == NULL)
   1642 		mly->mly_ncmds = MLY_CCBS_RESV;
   1643 	else {
   1644 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
   1645 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
   1646 	}
   1647 
   1648 	/*
   1649 	 * Allocate enough space for all the command packets in one chunk
   1650 	 * and map them permanently into controller-visible space.
   1651 	 */
   1652 	rv = mly_dmamem_alloc(mly,
   1653 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1654 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
   1655 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
   1656 	if (rv)
   1657 		return (rv);
   1658 
   1659 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
   1660 	    M_DEVBUF, M_NOWAIT);
   1661 	memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
   1662 
   1663 	for (i = 0; i < mly->mly_ncmds; i++) {
   1664 		mc = mly->mly_ccbs + i;
   1665 		mc->mc_slot = MLY_SLOT_START + i;
   1666 		mc->mc_packet = mly->mly_pkt + i;
   1667 		mc->mc_packetphys = mly->mly_pkt_busaddr +
   1668 		    (i * sizeof(union mly_cmd_packet));
   1669 
   1670 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
   1671 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
   1672 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1673 		    &mc->mc_datamap);
   1674 		if (rv) {
   1675 			mly_release_ccbs(mly);
   1676 			return (rv);
   1677 		}
   1678 
   1679 		mly_ccb_free(mly, mc);
   1680 	}
   1681 
   1682 	return (0);
   1683 }
   1684 
   1685 /*
   1686  * Free all the storage held by commands.
   1687  *
   1688  * Must be called with all commands on the free list.
   1689  */
   1690 static void
   1691 mly_release_ccbs(struct mly_softc *mly)
   1692 {
   1693 	struct mly_ccb *mc;
   1694 
   1695 	/* Throw away command buffer DMA maps. */
   1696 	while (mly_ccb_alloc(mly, &mc) == 0)
   1697 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
   1698 
   1699 	/* Release CCB storage. */
   1700 	free(mly->mly_ccbs, M_DEVBUF);
   1701 
   1702 	/* Release the packet storage. */
   1703 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1704 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
   1705 }
   1706 
   1707 /*
   1708  * Map a command into controller-visible space.
   1709  */
   1710 static int
   1711 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
   1712 {
   1713 	struct mly_cmd_generic *gen;
   1714 	struct mly_sg_entry *sg;
   1715 	bus_dma_segment_t *ds;
   1716 	int flg, nseg, rv;
   1717 
   1718 #ifdef DIAGNOSTIC
   1719 	/* Don't map more than once. */
   1720 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
   1721 		panic("mly_ccb_map: already mapped");
   1722 	mc->mc_flags |= MLY_CCB_MAPPED;
   1723 
   1724 	/* Does the command have a data buffer? */
   1725 	if (mc->mc_data == NULL)
   1726 		panic("mly_ccb_map: no data buffer");
   1727 #endif
   1728 
   1729 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
   1730 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1731 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
   1732 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1733 	if (rv != 0)
   1734 		return (rv);
   1735 
   1736 	gen = &mc->mc_packet->generic;
   1737 
   1738 	/*
   1739 	 * Can we use the transfer structure directly?
   1740 	 */
   1741 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
   1742 		mc->mc_sgoff = -1;
   1743 		sg = &gen->transfer.direct.sg[0];
   1744 	} else {
   1745 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
   1746 		    MLY_MAX_SEGS;
   1747 		sg = mly->mly_sg + mc->mc_sgoff;
   1748 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
   1749 		gen->transfer.indirect.entries[0] = htole16(nseg);
   1750 		gen->transfer.indirect.table_physaddr[0] =
   1751 		    htole64(mly->mly_sg_busaddr +
   1752 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
   1753 	}
   1754 
   1755 	/*
   1756 	 * Fill the S/G table.
   1757 	 */
   1758 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
   1759 		sg->physaddr = htole64(ds->ds_addr);
   1760 		sg->length = htole64(ds->ds_len);
   1761 	}
   1762 
   1763 	/*
   1764 	 * Sync up the data map.
   1765 	 */
   1766 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1767 		flg = BUS_DMASYNC_PREREAD;
   1768 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
   1769 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
   1770 		flg = BUS_DMASYNC_PREWRITE;
   1771 	}
   1772 
   1773 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1774 
   1775 	/*
   1776 	 * Sync up the chained S/G table, if we're using one.
   1777 	 */
   1778 	if (mc->mc_sgoff == -1)
   1779 		return (0);
   1780 
   1781 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1782 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1783 
   1784 	return (0);
   1785 }
   1786 
   1787 /*
   1788  * Unmap a command from controller-visible space.
   1789  */
   1790 static void
   1791 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
   1792 {
   1793 	int flg;
   1794 
   1795 #ifdef DIAGNOSTIC
   1796 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
   1797 		panic("mly_ccb_unmap: not mapped");
   1798 	mc->mc_flags &= ~MLY_CCB_MAPPED;
   1799 #endif
   1800 
   1801 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1802 		flg = BUS_DMASYNC_POSTREAD;
   1803 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
   1804 		flg = BUS_DMASYNC_POSTWRITE;
   1805 
   1806 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1807 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
   1808 
   1809 	if (mc->mc_sgoff == -1)
   1810 		return;
   1811 
   1812 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1813 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
   1814 }
   1815 
   1816 /*
   1817  * Adjust the size of each I/O before it passes to the SCSI layer.
   1818  */
   1819 static void
   1820 mly_scsipi_minphys(struct buf *bp)
   1821 {
   1822 
   1823 	if (bp->b_bcount > MLY_MAX_XFER)
   1824 		bp->b_bcount = MLY_MAX_XFER;
   1825 	minphys(bp);
   1826 }
   1827 
   1828 /*
   1829  * Start a SCSI command.
   1830  */
   1831 static void
   1832 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1833 		   void *arg)
   1834 {
   1835 	struct mly_ccb *mc;
   1836 	struct mly_cmd_scsi_small *ss;
   1837 	struct scsipi_xfer *xs;
   1838 	struct scsipi_periph *periph;
   1839 	struct mly_softc *mly;
   1840 	struct mly_btl *btl;
   1841 	int s, tmp;
   1842 
   1843 	mly = (void *)chan->chan_adapter->adapt_dev;
   1844 
   1845 	switch (req) {
   1846 	case ADAPTER_REQ_RUN_XFER:
   1847 		xs = arg;
   1848 		periph = xs->xs_periph;
   1849 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
   1850 		s = splbio();
   1851 		tmp = btl->mb_flags;
   1852 		splx(s);
   1853 
   1854 		/*
   1855 		 * Check for I/O attempt to a protected or non-existant
   1856 		 * device.
   1857 		 */
   1858 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
   1859 			xs->error = XS_SELTIMEOUT;
   1860 			scsipi_done(xs);
   1861 			break;
   1862 		}
   1863 
   1864 #ifdef DIAGNOSTIC
   1865 		/* XXX Increase if/when we support large SCSI commands. */
   1866 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
   1867 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
   1868 			xs->error = XS_DRIVER_STUFFUP;
   1869 			scsipi_done(xs);
   1870 			break;
   1871 		}
   1872 #endif
   1873 
   1874 		if (mly_ccb_alloc(mly, &mc)) {
   1875 			xs->error = XS_RESOURCE_SHORTAGE;
   1876 			scsipi_done(xs);
   1877 			break;
   1878 		}
   1879 
   1880 		/* Build the command. */
   1881 		mc->mc_data = xs->data;
   1882 		mc->mc_length = xs->datalen;
   1883 		mc->mc_complete = mly_scsipi_complete;
   1884 		mc->mc_private = xs;
   1885 
   1886 		/* Build the packet for the controller. */
   1887 		ss = &mc->mc_packet->scsi_small;
   1888 		ss->opcode = MDACMD_SCSI;
   1889 #ifdef notdef
   1890 		/*
   1891 		 * XXX FreeBSD does this, but it doesn't fix anything,
   1892 		 * XXX and appears potentially harmful.
   1893 		 */
   1894 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
   1895 #endif
   1896 		if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
   1897 			mc->mc_flags |= MLY_CCB_DATAOUT;
   1898 		else if ((xs->xs_control & XS_CTL_DATA_IN) != 0)
   1899 			mc->mc_flags |= MLY_CCB_DATAIN;
   1900 
   1901 		ss->data_size = htole32(xs->datalen);
   1902 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
   1903 		    periph->periph_target, periph->periph_lun), ss->addr);
   1904 
   1905 		if (xs->timeout < 60 * 1000)
   1906 			ss->timeout = xs->timeout / 1000 |
   1907 			    MLY_TIMEOUT_SECONDS;
   1908 		else if (xs->timeout < 60 * 60 * 1000)
   1909 			ss->timeout = xs->timeout / (60 * 1000) |
   1910 			    MLY_TIMEOUT_MINUTES;
   1911 		else
   1912 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
   1913 			    MLY_TIMEOUT_HOURS;
   1914 
   1915 		ss->maximum_sense_size = sizeof(xs->sense);
   1916 		ss->cdb_length = xs->cmdlen;
   1917 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
   1918 
   1919 		if (mc->mc_length != 0)
   1920 			if (mly_ccb_map(mly, mc) != 0) {
   1921 				xs->error = XS_DRIVER_STUFFUP;
   1922 				mly_ccb_free(mly, mc);
   1923 				scsipi_done(xs);
   1924 				break;
   1925 			}
   1926 
   1927 		/*
   1928 		 * Give the command to the controller.
   1929 		 */
   1930 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
   1931 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
   1932 				xs->error = XS_REQUEUE;
   1933 				if (mc->mc_length != 0)
   1934 					mly_ccb_unmap(mly, mc);
   1935 				mly_ccb_free(mly, mc);
   1936 				scsipi_done(xs);
   1937 			}
   1938 		} else
   1939 			mly_ccb_enqueue(mly, mc);
   1940 
   1941 		break;
   1942 
   1943 	case ADAPTER_REQ_GROW_RESOURCES:
   1944 		/*
   1945 		 * Not supported.
   1946 		 */
   1947 		break;
   1948 
   1949 	case ADAPTER_REQ_SET_XFER_MODE:
   1950 		/*
   1951 		 * We can't change the transfer mode, but at least let
   1952 		 * scsipi know what the adapter has negotiated.
   1953 		 */
   1954 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
   1955 		break;
   1956 	}
   1957 }
   1958 
   1959 /*
   1960  * Handle completion of a SCSI command.
   1961  */
   1962 static void
   1963 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1964 {
   1965 	struct scsipi_xfer *xs;
   1966 	struct scsipi_channel *chan;
   1967 	struct scsipi_inquiry_data *inq;
   1968 	struct mly_btl *btl;
   1969 	int target, sl, s;
   1970 	const char *p;
   1971 
   1972 	xs = mc->mc_private;
   1973 	xs->status = mc->mc_status;
   1974 
   1975 	/*
   1976 	 * XXX The `resid' value as returned by the controller appears to be
   1977 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
   1978 	 * count?
   1979 	 */
   1980 	xs->resid = 0; /* mc->mc_resid; */
   1981 
   1982 	if (mc->mc_length != 0)
   1983 		mly_ccb_unmap(mly, mc);
   1984 
   1985 	switch (mc->mc_status) {
   1986 	case SCSI_OK:
   1987 		/*
   1988 		 * In order to report logical device type and status, we
   1989 		 * overwrite the result of the INQUIRY command to logical
   1990 		 * devices.
   1991 		 */
   1992 		if (xs->cmd->opcode == INQUIRY) {
   1993 			chan = xs->xs_periph->periph_channel;
   1994 			target = xs->xs_periph->periph_target;
   1995 			btl = &mly->mly_btl[chan->chan_channel][target];
   1996 
   1997 			s = splbio();
   1998 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
   1999 				inq = (struct scsipi_inquiry_data *)xs->data;
   2000 				mly_padstr(inq->vendor, "MYLEX", 8);
   2001 				p = mly_describe_code(mly_table_device_type,
   2002 				    btl->mb_type);
   2003 				mly_padstr(inq->product, p, 16);
   2004 				p = mly_describe_code(mly_table_device_state,
   2005 				    btl->mb_state);
   2006 				mly_padstr(inq->revision, p, 4);
   2007 			}
   2008 			splx(s);
   2009 		}
   2010 
   2011 		xs->error = XS_NOERROR;
   2012 		break;
   2013 
   2014 	case SCSI_CHECK:
   2015 		sl = mc->mc_sense;
   2016 		if (sl > sizeof(xs->sense.scsi_sense))
   2017 			sl = sizeof(xs->sense.scsi_sense);
   2018 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
   2019 		xs->error = XS_SENSE;
   2020 		break;
   2021 
   2022 	case SCSI_BUSY:
   2023 	case SCSI_QUEUE_FULL:
   2024 		xs->error = XS_BUSY;
   2025 		break;
   2026 
   2027 	default:
   2028 		printf("%s: unknown SCSI status 0x%x\n",
   2029 		    mly->mly_dv.dv_xname, xs->status);
   2030 		xs->error = XS_DRIVER_STUFFUP;
   2031 		break;
   2032 	}
   2033 
   2034 	mly_ccb_free(mly, mc);
   2035 	scsipi_done(xs);
   2036 }
   2037 
   2038 /*
   2039  * Notify scsipi about a target's transfer mode.
   2040  */
   2041 static void
   2042 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
   2043 {
   2044 	struct mly_btl *btl;
   2045 	int s;
   2046 
   2047 	btl = &mly->mly_btl[bus][xm->xm_target];
   2048 	xm->xm_mode = 0;
   2049 
   2050 	s = splbio();
   2051 
   2052 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
   2053 		if (btl->mb_speed == 0) {
   2054 			xm->xm_period = 0;
   2055 			xm->xm_offset = 0;
   2056 		} else {
   2057 			xm->xm_period = 12;			/* XXX */
   2058 			xm->xm_offset = 8;			/* XXX */
   2059 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
   2060 		}
   2061 
   2062 		switch (btl->mb_width) {
   2063 		case 32:
   2064 			xm->xm_mode = PERIPH_CAP_WIDE32;
   2065 			break;
   2066 		case 16:
   2067 			xm->xm_mode = PERIPH_CAP_WIDE16;
   2068 			break;
   2069 		default:
   2070 			xm->xm_mode = 0;
   2071 			break;
   2072 		}
   2073 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
   2074 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
   2075 		xm->xm_period = 12;
   2076 		xm->xm_offset = 8;
   2077 	}
   2078 
   2079 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
   2080 		xm->xm_mode |= PERIPH_CAP_TQING;
   2081 
   2082 	splx(s);
   2083 
   2084 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
   2085 }
   2086 
   2087 /*
   2088  * ioctl hook; used here only to initiate low-level rescans.
   2089  */
   2090 static int
   2091 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
   2092 		 int flag, struct proc *p)
   2093 {
   2094 	struct mly_softc *mly;
   2095 	int rv;
   2096 
   2097 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
   2098 
   2099 	switch (cmd) {
   2100 	case SCBUSIOLLSCAN:
   2101 		mly_scan_channel(mly, chan->chan_channel);
   2102 		rv = 0;
   2103 		break;
   2104 	default:
   2105 		rv = ENOTTY;
   2106 		break;
   2107 	}
   2108 
   2109 	return (rv);
   2110 }
   2111 
   2112 /*
   2113  * Handshake with the firmware while the card is being initialised.
   2114  */
   2115 static int
   2116 mly_fwhandshake(struct mly_softc *mly)
   2117 {
   2118 	u_int8_t error, param0, param1;
   2119 	int spinup;
   2120 
   2121 	spinup = 0;
   2122 
   2123 	/* Set HM_STSACK and let the firmware initialise. */
   2124 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   2125 	DELAY(1000);	/* too short? */
   2126 
   2127 	/* If HM_STSACK is still true, the controller is initialising. */
   2128 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
   2129 		return (0);
   2130 
   2131 	printf("%s: controller initialisation started\n",
   2132 	    mly->mly_dv.dv_xname);
   2133 
   2134 	/*
   2135 	 * Spin waiting for initialisation to finish, or for a message to be
   2136 	 * delivered.
   2137 	 */
   2138 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
   2139 		/* Check for a message */
   2140 		if (!mly_error_valid(mly))
   2141 			continue;
   2142 
   2143 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
   2144 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
   2145 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
   2146 
   2147 		switch (error) {
   2148 		case MLY_MSG_SPINUP:
   2149 			if (!spinup) {
   2150 				printf("%s: drive spinup in progress\n",
   2151 				    mly->mly_dv.dv_xname);
   2152 				spinup = 1;
   2153 			}
   2154 			break;
   2155 
   2156 		case MLY_MSG_RACE_RECOVERY_FAIL:
   2157 			printf("%s: mirror race recovery failed - \n",
   2158 			    mly->mly_dv.dv_xname);
   2159 			printf("%s: one or more drives offline\n",
   2160 			    mly->mly_dv.dv_xname);
   2161 			break;
   2162 
   2163 		case MLY_MSG_RACE_IN_PROGRESS:
   2164 			printf("%s: mirror race recovery in progress\n",
   2165 			    mly->mly_dv.dv_xname);
   2166 			break;
   2167 
   2168 		case MLY_MSG_RACE_ON_CRITICAL:
   2169 			printf("%s: mirror race recovery on critical drive\n",
   2170 			    mly->mly_dv.dv_xname);
   2171 			break;
   2172 
   2173 		case MLY_MSG_PARITY_ERROR:
   2174 			printf("%s: FATAL MEMORY PARITY ERROR\n",
   2175 			    mly->mly_dv.dv_xname);
   2176 			return (ENXIO);
   2177 
   2178 		default:
   2179 			printf("%s: unknown initialisation code 0x%x\n",
   2180 			    mly->mly_dv.dv_xname, error);
   2181 			break;
   2182 		}
   2183 	}
   2184 
   2185 	return (0);
   2186 }
   2187 
   2188 /*
   2189  * Space-fill a character string
   2190  */
   2191 static void
   2192 mly_padstr(char *dst, const char *src, int len)
   2193 {
   2194 
   2195 	while (len-- > 0) {
   2196 		if (*src != '\0')
   2197 			*dst++ = *src++;
   2198 		else
   2199 			*dst++ = ' ';
   2200 	}
   2201 }
   2202 
   2203 /*
   2204  * Allocate DMA safe memory.
   2205  */
   2206 static int
   2207 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
   2208 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
   2209 {
   2210 	int rseg, rv, state;
   2211 
   2212 	state = 0;
   2213 
   2214 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
   2215 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
   2216 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
   2217 		goto bad;
   2218 	}
   2219 
   2220 	state++;
   2221 
   2222 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
   2223 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   2224 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
   2225 		goto bad;
   2226 	}
   2227 
   2228 	state++;
   2229 
   2230 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
   2231 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
   2232 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
   2233 		goto bad;
   2234 	}
   2235 
   2236 	state++;
   2237 
   2238 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
   2239 	    NULL, BUS_DMA_NOWAIT)) != 0) {
   2240 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
   2241 		goto bad;
   2242 	}
   2243 
   2244 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
   2245 	memset(*kva, 0, size);
   2246 	return (0);
   2247 
   2248  bad:
   2249 	if (state > 2)
   2250 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
   2251 	if (state > 1)
   2252 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
   2253 	if (state > 0)
   2254 		bus_dmamem_free(mly->mly_dmat, seg, 1);
   2255 
   2256 	return (rv);
   2257 }
   2258 
   2259 /*
   2260  * Free DMA safe memory.
   2261  */
   2262 static void
   2263 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
   2264 		caddr_t kva, bus_dma_segment_t *seg)
   2265 {
   2266 
   2267 	bus_dmamap_unload(mly->mly_dmat, dmamap);
   2268 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
   2269 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
   2270 	bus_dmamem_free(mly->mly_dmat, seg, 1);
   2271 }
   2272 
   2273 
   2274 /*
   2275  * Accept an open operation on the control device.
   2276  */
   2277 int
   2278 mlyopen(dev_t dev, int flag, int mode, struct proc *p)
   2279 {
   2280 	struct mly_softc *mly;
   2281 
   2282 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
   2283 		return (ENXIO);
   2284 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
   2285 		return (ENXIO);
   2286 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
   2287 		return (EBUSY);
   2288 
   2289 	mly->mly_state |= MLY_STATE_OPEN;
   2290 	return (0);
   2291 }
   2292 
   2293 /*
   2294  * Accept the last close on the control device.
   2295  */
   2296 int
   2297 mlyclose(dev_t dev, int flag, int mode, struct proc *p)
   2298 {
   2299 	struct mly_softc *mly;
   2300 
   2301 	mly = device_lookup(&mly_cd, minor(dev));
   2302 	mly->mly_state &= ~MLY_STATE_OPEN;
   2303 	return (0);
   2304 }
   2305 
   2306 /*
   2307  * Handle control operations.
   2308  */
   2309 int
   2310 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
   2311 {
   2312 	struct mly_softc *mly;
   2313 	int rv;
   2314 
   2315 	if (securelevel >= 2)
   2316 		return (EPERM);
   2317 
   2318 	mly = device_lookup(&mly_cd, minor(dev));
   2319 
   2320 	switch (cmd) {
   2321 	case MLYIO_COMMAND:
   2322 		rv = mly_user_command(mly, (void *)data);
   2323 		break;
   2324 	case MLYIO_HEALTH:
   2325 		rv = mly_user_health(mly, (void *)data);
   2326 		break;
   2327 	default:
   2328 		rv = ENOTTY;
   2329 		break;
   2330 	}
   2331 
   2332 	return (rv);
   2333 }
   2334 
   2335 /*
   2336  * Execute a command passed in from userspace.
   2337  *
   2338  * The control structure contains the actual command for the controller, as
   2339  * well as the user-space data pointer and data size, and an optional sense
   2340  * buffer size/pointer.  On completion, the data size is adjusted to the
   2341  * command residual, and the sense buffer size to the size of the returned
   2342  * sense data.
   2343  */
   2344 static int
   2345 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
   2346 {
   2347 	struct mly_ccb	*mc;
   2348 	int rv, mapped;
   2349 
   2350 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
   2351 		return (rv);
   2352 
   2353 	mapped = 0;
   2354 	mc->mc_data = NULL;
   2355 
   2356 	/*
   2357 	 * Handle data size/direction.
   2358 	 */
   2359 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
   2360 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
   2361 		if (mc->mc_data == NULL) {
   2362 			rv = ENOMEM;
   2363 			goto out;
   2364 		}
   2365 
   2366 		if (uc->DataTransferLength > 0) {
   2367 			mc->mc_flags |= MLY_CCB_DATAIN;
   2368 			memset(mc->mc_data, 0, mc->mc_length);
   2369 		}
   2370 
   2371 		if (uc->DataTransferLength < 0) {
   2372 			mc->mc_flags |= MLY_CCB_DATAOUT;
   2373 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
   2374 			    mc->mc_length);
   2375 			if (rv != 0)
   2376 				goto out;
   2377 		}
   2378 
   2379 		if ((rv = mly_ccb_map(mly, mc)) != 0)
   2380 			goto out;
   2381 		mapped = 1;
   2382 	}
   2383 
   2384 	/* Copy in the command and execute it. */
   2385 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
   2386 
   2387 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
   2388 		goto out;
   2389 
   2390 	/* Return the data to userspace. */
   2391 	if (uc->DataTransferLength > 0) {
   2392 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
   2393 		    mc->mc_length);
   2394 		if (rv != 0)
   2395 			goto out;
   2396 	}
   2397 
   2398 	/* Return the sense buffer to userspace. */
   2399 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
   2400 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
   2401 		    min(uc->RequestSenseLength, mc->mc_sense));
   2402 		if (rv != 0)
   2403 			goto out;
   2404 	}
   2405 
   2406 	/* Return command results to userspace (caller will copy out). */
   2407 	uc->DataTransferLength = mc->mc_resid;
   2408 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
   2409 	uc->CommandStatus = mc->mc_status;
   2410 	rv = 0;
   2411 
   2412  out:
   2413  	if (mapped)
   2414  		mly_ccb_unmap(mly, mc);
   2415 	if (mc->mc_data != NULL)
   2416 		free(mc->mc_data, M_DEVBUF);
   2417 	if (mc != NULL)
   2418 		mly_ccb_free(mly, mc);
   2419 
   2420 	return (rv);
   2421 }
   2422 
   2423 /*
   2424  * Return health status to userspace.  If the health change index in the
   2425  * user structure does not match that currently exported by the controller,
   2426  * we return the current status immediately.  Otherwise, we block until
   2427  * either interrupted or new status is delivered.
   2428  */
   2429 static int
   2430 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
   2431 {
   2432 	struct mly_health_status mh;
   2433 	int rv, s;
   2434 
   2435 	/* Fetch the current health status from userspace. */
   2436 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
   2437 	if (rv != 0)
   2438 		return (rv);
   2439 
   2440 	/* spin waiting for a status update */
   2441 	s = splbio();
   2442 	if (mly->mly_event_change == mh.change_counter)
   2443 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
   2444 		    "mlyhealth", 0);
   2445 	splx(s);
   2446 
   2447 	if (rv == 0) {
   2448 		/*
   2449 		 * Copy the controller's health status buffer out (there is
   2450 		 * a race here if it changes again).
   2451 		 */
   2452 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
   2453 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
   2454 	}
   2455 
   2456 	return (rv);
   2457 }
   2458