Home | History | Annotate | Line # | Download | only in pci
mly.c revision 1.35
      1 /*	$NetBSD: mly.c,v 1.35 2007/07/09 21:00:57 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 2000, 2001 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
     66  */
     67 
     68 /*
     69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
     70  *
     71  * TODO:
     72  *
     73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
     74  * o Handle FC and multiple LUNs.
     75  * o Fix mmbox usage.
     76  * o Fix transfer speed fudge.
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.35 2007/07/09 21:00:57 ad Exp $");
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/device.h>
     85 #include <sys/kernel.h>
     86 #include <sys/queue.h>
     87 #include <sys/buf.h>
     88 #include <sys/endian.h>
     89 #include <sys/conf.h>
     90 #include <sys/malloc.h>
     91 #include <sys/ioctl.h>
     92 #include <sys/scsiio.h>
     93 #include <sys/kthread.h>
     94 #include <sys/kauth.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #include <machine/bus.h>
     99 
    100 #include <dev/scsipi/scsi_all.h>
    101 #include <dev/scsipi/scsipi_all.h>
    102 #include <dev/scsipi/scsiconf.h>
    103 
    104 #include <dev/pci/pcireg.h>
    105 #include <dev/pci/pcivar.h>
    106 #include <dev/pci/pcidevs.h>
    107 
    108 #include <dev/pci/mlyreg.h>
    109 #include <dev/pci/mlyio.h>
    110 #include <dev/pci/mlyvar.h>
    111 #include <dev/pci/mly_tables.h>
    112 
    113 static void	mly_attach(struct device *, struct device *, void *);
    114 static int	mly_match(struct device *, struct cfdata *, void *);
    115 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
    116 static int	mly_fwhandshake(struct mly_softc *);
    117 static int	mly_flush(struct mly_softc *);
    118 static int	mly_intr(void *);
    119 static void	mly_shutdown(void *);
    120 
    121 static int	mly_alloc_ccbs(struct mly_softc *);
    122 static void	mly_check_event(struct mly_softc *);
    123 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
    124 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
    125 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
    126 				 void **, bus_addr_t *, bus_dma_segment_t *);
    127 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
    128 				void *, bus_dma_segment_t *);
    129 static int	mly_enable_mmbox(struct mly_softc *);
    130 static void	mly_fetch_event(struct mly_softc *);
    131 static int	mly_get_controllerinfo(struct mly_softc *);
    132 static int	mly_get_eventstatus(struct mly_softc *);
    133 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
    134 			  void **, size_t, void *, size_t *);
    135 static void	mly_padstr(char *, const char *, int);
    136 static void	mly_process_event(struct mly_softc *, struct mly_event *);
    137 static void	mly_release_ccbs(struct mly_softc *);
    138 static int	mly_scan_btl(struct mly_softc *, int, int);
    139 static void	mly_scan_channel(struct mly_softc *, int);
    140 static void	mly_thread(void *);
    141 
    142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
    143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
    144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
    145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
    146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
    147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
    148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
    149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
    150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
    151 
    152 static void	mly_get_xfer_mode(struct mly_softc *, int,
    153 				  struct scsipi_xfer_mode *);
    154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
    155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
    156 				 int, struct proc *);
    157 static void	mly_scsipi_minphys(struct buf *);
    158 static void	mly_scsipi_request(struct scsipi_channel *,
    159 				   scsipi_adapter_req_t, void *);
    160 
    161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
    162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
    163 
    164 extern struct	cfdriver mly_cd;
    165 
    166 CFATTACH_DECL(mly, sizeof(struct mly_softc),
    167     mly_match, mly_attach, NULL, NULL);
    168 
    169 dev_type_open(mlyopen);
    170 dev_type_close(mlyclose);
    171 dev_type_ioctl(mlyioctl);
    172 
    173 const struct cdevsw mly_cdevsw = {
    174 	mlyopen, mlyclose, noread, nowrite, mlyioctl,
    175 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
    176 };
    177 
    178 static struct mly_ident {
    179 	u_short	vendor;
    180 	u_short	product;
    181 	u_short	subvendor;
    182 	u_short	subproduct;
    183 	int	hwif;
    184 	const char	*desc;
    185 } const mly_ident[] = {
    186 	{
    187 		PCI_VENDOR_MYLEX,
    188 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    189 		PCI_VENDOR_MYLEX,
    190 		0x0040,
    191 		MLY_HWIF_STRONGARM,
    192 		"eXtremeRAID 2000"
    193 	},
    194 	{
    195 		PCI_VENDOR_MYLEX,
    196 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    197 		PCI_VENDOR_MYLEX,
    198 		0x0030,
    199 		MLY_HWIF_STRONGARM,
    200 		"eXtremeRAID 3000"
    201 	},
    202 	{
    203 		PCI_VENDOR_MYLEX,
    204 		PCI_PRODUCT_MYLEX_ACCELERAID,
    205 		PCI_VENDOR_MYLEX,
    206 		0x0050,
    207 		MLY_HWIF_I960RX,
    208 		"AcceleRAID 352"
    209 	},
    210 	{
    211 		PCI_VENDOR_MYLEX,
    212 		PCI_PRODUCT_MYLEX_ACCELERAID,
    213 		PCI_VENDOR_MYLEX,
    214 		0x0052,
    215 		MLY_HWIF_I960RX,
    216 		"AcceleRAID 170"
    217 	},
    218 	{
    219 		PCI_VENDOR_MYLEX,
    220 		PCI_PRODUCT_MYLEX_ACCELERAID,
    221 		PCI_VENDOR_MYLEX,
    222 		0x0054,
    223 		MLY_HWIF_I960RX,
    224 		"AcceleRAID 160"
    225 	},
    226 };
    227 
    228 static void	*mly_sdh;
    229 
    230 /*
    231  * Try to find a `mly_ident' entry corresponding to this board.
    232  */
    233 static const struct mly_ident *
    234 mly_find_ident(struct pci_attach_args *pa)
    235 {
    236 	const struct mly_ident *mpi, *maxmpi;
    237 	pcireg_t reg;
    238 
    239 	mpi = mly_ident;
    240 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
    241 
    242 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    243 		return (NULL);
    244 
    245 	for (; mpi < maxmpi; mpi++) {
    246 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
    247 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
    248 			continue;
    249 
    250 		if (mpi->subvendor == 0x0000)
    251 			return (mpi);
    252 
    253 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    254 
    255 		if (PCI_VENDOR(reg) == mpi->subvendor &&
    256 		    PCI_PRODUCT(reg) == mpi->subproduct)
    257 			return (mpi);
    258 	}
    259 
    260 	return (NULL);
    261 }
    262 
    263 /*
    264  * Match a supported board.
    265  */
    266 static int
    267 mly_match(struct device *parent, struct cfdata *cfdata,
    268     void *aux)
    269 {
    270 
    271 	return (mly_find_ident(aux) != NULL);
    272 }
    273 
    274 /*
    275  * Attach a supported board.
    276  */
    277 static void
    278 mly_attach(struct device *parent, struct device *self, void *aux)
    279 {
    280 	struct pci_attach_args *pa;
    281 	struct mly_softc *mly;
    282 	struct mly_ioctl_getcontrollerinfo *mi;
    283 	const struct mly_ident *ident;
    284 	pci_chipset_tag_t pc;
    285 	pci_intr_handle_t ih;
    286 	bus_space_handle_t memh, ioh;
    287 	bus_space_tag_t memt, iot;
    288 	pcireg_t reg;
    289 	const char *intrstr;
    290 	int ior, memr, i, rv, state;
    291 	struct scsipi_adapter *adapt;
    292 	struct scsipi_channel *chan;
    293 
    294 	mly = (struct mly_softc *)self;
    295 	pa = aux;
    296 	pc = pa->pa_pc;
    297 	ident = mly_find_ident(pa);
    298 	state = 0;
    299 
    300 	mly->mly_dmat = pa->pa_dmat;
    301 	mly->mly_hwif = ident->hwif;
    302 
    303 	printf(": Mylex %s\n", ident->desc);
    304 
    305 	/*
    306 	 * Map the PCI register window.
    307 	 */
    308 	memr = -1;
    309 	ior = -1;
    310 
    311 	for (i = 0x10; i <= 0x14; i += 4) {
    312 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
    313 
    314 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    315 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
    316 				ior = i;
    317 		} else {
    318 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
    319 				memr = i;
    320 		}
    321 	}
    322 
    323 	if (memr != -1)
    324 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
    325 		    &memt, &memh, NULL, NULL))
    326 			memr = -1;
    327 	if (ior != -1)
    328 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
    329 		    &iot, &ioh, NULL, NULL))
    330 		    	ior = -1;
    331 
    332 	if (memr != -1) {
    333 		mly->mly_iot = memt;
    334 		mly->mly_ioh = memh;
    335 	} else if (ior != -1) {
    336 		mly->mly_iot = iot;
    337 		mly->mly_ioh = ioh;
    338 	} else {
    339 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
    340 		return;
    341 	}
    342 
    343 	/*
    344 	 * Enable the device.
    345 	 */
    346 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    347 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    348 	    reg | PCI_COMMAND_MASTER_ENABLE);
    349 
    350 	/*
    351 	 * Map and establish the interrupt.
    352 	 */
    353 	if (pci_intr_map(pa, &ih)) {
    354 		printf("%s: can't map interrupt\n", self->dv_xname);
    355 		return;
    356 	}
    357 	intrstr = pci_intr_string(pc, ih);
    358 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
    359 	if (mly->mly_ih == NULL) {
    360 		printf("%s: can't establish interrupt", self->dv_xname);
    361 		if (intrstr != NULL)
    362 			printf(" at %s", intrstr);
    363 		printf("\n");
    364 		return;
    365 	}
    366 
    367 	if (intrstr != NULL)
    368 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
    369 		    intrstr);
    370 
    371 	/*
    372 	 * Take care of interface-specific tasks.
    373 	 */
    374 	switch (mly->mly_hwif) {
    375 	case MLY_HWIF_I960RX:
    376 		mly->mly_doorbell_true = 0x00;
    377 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
    378 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
    379 		mly->mly_idbr = MLY_I960RX_IDBR;
    380 		mly->mly_odbr = MLY_I960RX_ODBR;
    381 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
    382 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
    383 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
    384 		break;
    385 
    386 	case MLY_HWIF_STRONGARM:
    387 		mly->mly_doorbell_true = 0xff;
    388 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
    389 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
    390 		mly->mly_idbr = MLY_STRONGARM_IDBR;
    391 		mly->mly_odbr = MLY_STRONGARM_ODBR;
    392 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
    393 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
    394 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
    395 		break;
    396 	}
    397 
    398 	/*
    399 	 * Allocate and map the scatter/gather lists.
    400 	 */
    401 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    402 	    &mly->mly_sg_dmamap, (void **)&mly->mly_sg,
    403 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
    404 	if (rv) {
    405 		printf("%s: unable to allocate S/G maps\n",
    406 		    mly->mly_dv.dv_xname);
    407 		goto bad;
    408 	}
    409 	state++;
    410 
    411 	/*
    412 	 * Allocate and map the memory mailbox.
    413 	 */
    414 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
    415 	    &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
    416 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
    417 	if (rv) {
    418 		printf("%s: unable to allocate mailboxes\n",
    419 		    mly->mly_dv.dv_xname);
    420 		goto bad;
    421 	}
    422 	state++;
    423 
    424 	/*
    425 	 * Initialise per-controller queues.
    426 	 */
    427 	SLIST_INIT(&mly->mly_ccb_free);
    428 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
    429 
    430 	/*
    431 	 * Disable interrupts before we start talking to the controller.
    432 	 */
    433 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
    434 
    435 	/*
    436 	 * Wait for the controller to come ready, handshaking with the
    437 	 * firmware if required.  This is typically only necessary on
    438 	 * platforms where the controller BIOS does not run.
    439 	 */
    440 	if (mly_fwhandshake(mly)) {
    441 		printf("%s: unable to bring controller online\n",
    442 		    mly->mly_dv.dv_xname);
    443 		goto bad;
    444 	}
    445 
    446 	/*
    447 	 * Allocate initial command buffers, obtain controller feature
    448 	 * information, and then reallocate command buffers, since we'll
    449 	 * know how many we want.
    450 	 */
    451 	if (mly_alloc_ccbs(mly)) {
    452 		printf("%s: unable to allocate CCBs\n",
    453 		    mly->mly_dv.dv_xname);
    454 		goto bad;
    455 	}
    456 	state++;
    457 	if (mly_get_controllerinfo(mly)) {
    458 		printf("%s: unable to retrieve controller info\n",
    459 		    mly->mly_dv.dv_xname);
    460 		goto bad;
    461 	}
    462 	mly_release_ccbs(mly);
    463 	if (mly_alloc_ccbs(mly)) {
    464 		printf("%s: unable to allocate CCBs\n",
    465 		    mly->mly_dv.dv_xname);
    466 		state--;
    467 		goto bad;
    468 	}
    469 
    470 	/*
    471 	 * Get the current event counter for health purposes, populate the
    472 	 * initial health status buffer.
    473 	 */
    474 	if (mly_get_eventstatus(mly)) {
    475 		printf("%s: unable to retrieve event status\n",
    476 		    mly->mly_dv.dv_xname);
    477 		goto bad;
    478 	}
    479 
    480 	/*
    481 	 * Enable memory-mailbox mode.
    482 	 */
    483 	if (mly_enable_mmbox(mly)) {
    484 		printf("%s: unable to enable memory mailbox\n",
    485 		    mly->mly_dv.dv_xname);
    486 		goto bad;
    487 	}
    488 
    489 	/*
    490 	 * Print a little information about the controller.
    491 	 */
    492 	mi = mly->mly_controllerinfo;
    493 
    494 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
    495 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
    496 	    mi->physical_channels_present,
    497 	    (mi->physical_channels_present) > 1 ? "s" : "",
    498 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
    499 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
    500 	    le16toh(mi->memory_size));
    501 
    502 	/*
    503 	 * Register our `shutdownhook'.
    504 	 */
    505 	if (mly_sdh == NULL)
    506 		shutdownhook_establish(mly_shutdown, NULL);
    507 
    508 	/*
    509 	 * Clear any previous BTL information.  For each bus that scsipi
    510 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
    511 	 * all BTL info at that point.
    512 	 */
    513 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
    514 
    515 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
    516 	    mly->mly_controllerinfo->virtual_channels_present;
    517 
    518 	/*
    519 	 * Attach to scsipi.
    520 	 */
    521 	adapt = &mly->mly_adapt;
    522 	memset(adapt, 0, sizeof(*adapt));
    523 	adapt->adapt_dev = &mly->mly_dv;
    524 	adapt->adapt_nchannels = mly->mly_nchans;
    525 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
    526 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
    527 	adapt->adapt_request = mly_scsipi_request;
    528 	adapt->adapt_minphys = mly_scsipi_minphys;
    529 	adapt->adapt_ioctl = mly_scsipi_ioctl;
    530 
    531 	for (i = 0; i < mly->mly_nchans; i++) {
    532 		chan = &mly->mly_chans[i];
    533 		memset(chan, 0, sizeof(*chan));
    534 		chan->chan_adapter = adapt;
    535 		chan->chan_bustype = &scsi_bustype;
    536 		chan->chan_channel = i;
    537 		chan->chan_ntargets = MLY_MAX_TARGETS;
    538 		chan->chan_nluns = MLY_MAX_LUNS;
    539 		chan->chan_id = mly->mly_controllerparam->initiator_id;
    540 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
    541 		config_found(&mly->mly_dv, chan, scsiprint);
    542 	}
    543 
    544 	/*
    545 	 * Now enable interrupts...
    546 	 */
    547 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
    548 
    549 	/*
    550 	 * Finally, create our monitoring thread.
    551 	 */
    552 	mly->mly_state |= MLY_STATE_INITOK;
    553 	rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
    554 	    &mly->mly_thread, "%s", mly->mly_dv.dv_xname);
    555  	if (rv != 0)
    556 		printf("%s: unable to create thread (%d)\n",
    557 		    mly->mly_dv.dv_xname, rv);
    558 	return;
    559 
    560  bad:
    561 	if (state > 2)
    562 		mly_release_ccbs(mly);
    563 	if (state > 1)
    564 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
    565 		    mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
    566 		    &mly->mly_mmbox_seg);
    567 	if (state > 0)
    568 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    569 		    mly->mly_sg_dmamap, (void *)mly->mly_sg,
    570 		    &mly->mly_sg_seg);
    571 }
    572 
    573 /*
    574  * Scan all possible devices on the specified channel.
    575  */
    576 static void
    577 mly_scan_channel(struct mly_softc *mly, int bus)
    578 {
    579 	int s, target;
    580 
    581 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
    582 		s = splbio();
    583 		if (!mly_scan_btl(mly, bus, target)) {
    584 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
    585 			    0);
    586 		}
    587 		splx(s);
    588 	}
    589 }
    590 
    591 /*
    592  * Shut down all configured `mly' devices.
    593  */
    594 static void
    595 mly_shutdown(void *cookie)
    596 {
    597 	struct mly_softc *mly;
    598 	int i;
    599 
    600 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
    601 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
    602 			continue;
    603 
    604 		if (mly_flush(mly))
    605 			printf("%s: unable to flush cache\n",
    606 			    mly->mly_dv.dv_xname);
    607 	}
    608 }
    609 
    610 /*
    611  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
    612  * softc.
    613  */
    614 static int
    615 mly_get_controllerinfo(struct mly_softc *mly)
    616 {
    617 	struct mly_cmd_ioctl mci;
    618 	int rv;
    619 
    620 	/*
    621 	 * Build the getcontrollerinfo ioctl and send it.
    622 	 */
    623 	memset(&mci, 0, sizeof(mci));
    624 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
    625 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
    626 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
    627 	if (rv != 0)
    628 		return (rv);
    629 
    630 	/*
    631 	 * Build the getcontrollerparameter ioctl and send it.
    632 	 */
    633 	memset(&mci, 0, sizeof(mci));
    634 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
    635 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
    636 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
    637 
    638 	return (rv);
    639 }
    640 
    641 /*
    642  * Rescan a device, possibly as a consequence of getting an event which
    643  * suggests that it may have changed.  Must be called with interrupts
    644  * blocked.
    645  */
    646 static int
    647 mly_scan_btl(struct mly_softc *mly, int bus, int target)
    648 {
    649 	struct mly_ccb *mc;
    650 	struct mly_cmd_ioctl *mci;
    651 	int rv;
    652 
    653 	if (target == mly->mly_controllerparam->initiator_id) {
    654 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
    655 		return (EIO);
    656 	}
    657 
    658 	/* Don't re-scan if a scan is already in progress. */
    659 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
    660 		return (EBUSY);
    661 
    662 	/* Get a command. */
    663 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    664 		return (rv);
    665 
    666 	/* Set up the data buffer. */
    667 	mc->mc_data = malloc(sizeof(union mly_devinfo),
    668 	    M_DEVBUF, M_NOWAIT|M_ZERO);
    669 
    670 	mc->mc_flags |= MLY_CCB_DATAIN;
    671 	mc->mc_complete = mly_complete_rescan;
    672 
    673 	/*
    674 	 * Build the ioctl.
    675 	 */
    676 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    677 	mci->opcode = MDACMD_IOCTL;
    678 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    679 	memset(&mci->param, 0, sizeof(mci->param));
    680 
    681 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
    682 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
    683 		mci->data_size = htole32(mc->mc_length);
    684 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
    685 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
    686 		    mci->addr);
    687 	} else {
    688 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
    689 		mci->data_size = htole32(mc->mc_length);
    690 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
    691 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
    692 	}
    693 
    694 	/*
    695 	 * Dispatch the command.
    696 	 */
    697 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
    698 		free(mc->mc_data, M_DEVBUF);
    699 		mly_ccb_free(mly, mc);
    700 		return(rv);
    701 	}
    702 
    703 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
    704 	mly_ccb_enqueue(mly, mc);
    705 	return (0);
    706 }
    707 
    708 /*
    709  * Handle the completion of a rescan operation.
    710  */
    711 static void
    712 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
    713 {
    714 	struct mly_ioctl_getlogdevinfovalid *ldi;
    715 	struct mly_ioctl_getphysdevinfovalid *pdi;
    716 	struct mly_cmd_ioctl *mci;
    717 	struct mly_btl btl, *btlp;
    718 	struct scsipi_xfer_mode xm;
    719 	int bus, target, rescan;
    720 	u_int tmp;
    721 
    722 	mly_ccb_unmap(mly, mc);
    723 
    724 	/*
    725 	 * Recover the bus and target from the command.  We need these even
    726 	 * in the case where we don't have a useful response.
    727 	 */
    728 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    729 	tmp = _3ltol(mci->addr);
    730 	rescan = 0;
    731 
    732 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
    733 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
    734 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
    735 	} else {
    736 		bus = MLY_PHYADDR_CHANNEL(tmp);
    737 		target = MLY_PHYADDR_TARGET(tmp);
    738 	}
    739 
    740 	btlp = &mly->mly_btl[bus][target];
    741 
    742 	/* The default result is 'no device'. */
    743 	memset(&btl, 0, sizeof(btl));
    744 	btl.mb_flags = MLY_BTL_PROTECTED;
    745 
    746 	/* If the rescan completed OK, we have possibly-new BTL data. */
    747 	if (mc->mc_status != 0)
    748 		goto out;
    749 
    750 	if (mc->mc_length == sizeof(*ldi)) {
    751 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
    752 		tmp = le32toh(ldi->logical_device_number);
    753 
    754 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
    755 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
    756 #ifdef MLYDEBUG
    757 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
    758 			    "returned data for %d:%d instead\n",
    759 			   mly->mly_dv.dv_xname, bus, target,
    760 			   MLY_LOGDEV_BUS(mly, tmp),
    761 			   MLY_LOGDEV_TARGET(mly, tmp));
    762 #endif
    763 			goto out;
    764 		}
    765 
    766 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
    767 		btl.mb_type = ldi->raid_level;
    768 		btl.mb_state = ldi->state;
    769 	} else if (mc->mc_length == sizeof(*pdi)) {
    770 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
    771 
    772 		if (pdi->channel != bus || pdi->target != target) {
    773 #ifdef MLYDEBUG
    774 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
    775 			    " returned data for %d:%d instead\n",
    776 			   mly->mly_dv.dv_xname,
    777 			   bus, target, pdi->channel, pdi->target);
    778 #endif
    779 			goto out;
    780 		}
    781 
    782 		btl.mb_flags = MLY_BTL_PHYSICAL;
    783 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
    784 		btl.mb_state = pdi->state;
    785 		btl.mb_speed = pdi->speed;
    786 		btl.mb_width = pdi->width;
    787 
    788 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
    789 			btl.mb_flags |= MLY_BTL_PROTECTED;
    790 		if (pdi->command_tags != 0)
    791 			btl.mb_flags |= MLY_BTL_TQING;
    792 	} else {
    793 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
    794 		goto out;
    795 	}
    796 
    797 	/* Decide whether we need to rescan the device. */
    798 	if (btl.mb_flags != btlp->mb_flags ||
    799 	    btl.mb_speed != btlp->mb_speed ||
    800 	    btl.mb_width != btlp->mb_width)
    801 		rescan = 1;
    802 
    803  out:
    804 	*btlp = btl;
    805 
    806 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
    807 		xm.xm_target = target;
    808 		mly_get_xfer_mode(mly, bus, &xm);
    809 		/* XXX SCSI mid-layer rescan goes here. */
    810 	}
    811 
    812 	/* Wake anybody waiting on the device to be rescanned. */
    813 	wakeup(btlp);
    814 
    815 	free(mc->mc_data, M_DEVBUF);
    816 	mly_ccb_free(mly, mc);
    817 }
    818 
    819 /*
    820  * Get the current health status and set the 'next event' counter to suit.
    821  */
    822 static int
    823 mly_get_eventstatus(struct mly_softc *mly)
    824 {
    825 	struct mly_cmd_ioctl mci;
    826 	struct mly_health_status *mh;
    827 	int rv;
    828 
    829 	/* Build the gethealthstatus ioctl and send it. */
    830 	memset(&mci, 0, sizeof(mci));
    831 	mh = NULL;
    832 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
    833 
    834 	rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
    835 	if (rv)
    836 		return (rv);
    837 
    838 	/* Get the event counter. */
    839 	mly->mly_event_change = le32toh(mh->change_counter);
    840 	mly->mly_event_waiting = le32toh(mh->next_event);
    841 	mly->mly_event_counter = le32toh(mh->next_event);
    842 
    843 	/* Save the health status into the memory mailbox */
    844 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
    845 
    846 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    847 	    offsetof(struct mly_mmbox, mmm_health),
    848 	    sizeof(mly->mly_mmbox->mmm_health),
    849 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    850 
    851 	free(mh, M_DEVBUF);
    852 	return (0);
    853 }
    854 
    855 /*
    856  * Enable memory mailbox mode.
    857  */
    858 static int
    859 mly_enable_mmbox(struct mly_softc *mly)
    860 {
    861 	struct mly_cmd_ioctl mci;
    862 	u_int8_t *sp;
    863 	u_int64_t tmp;
    864 	int rv;
    865 
    866 	/* Build the ioctl and send it. */
    867 	memset(&mci, 0, sizeof(mci));
    868 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
    869 
    870 	/* Set buffer addresses. */
    871 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
    872 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
    873 
    874 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
    875 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
    876 
    877 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
    878 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
    879 
    880 	/* Set buffer sizes - abuse of data_size field is revolting. */
    881 	sp = (u_int8_t *)&mci.data_size;
    882 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
    883 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
    884 	mci.param.setmemorymailbox.health_buffer_size =
    885 	    sizeof(union mly_health_region) >> 10;
    886 
    887 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
    888 	if (rv)
    889 		return (rv);
    890 
    891 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
    892 	return (0);
    893 }
    894 
    895 /*
    896  * Flush all pending I/O from the controller.
    897  */
    898 static int
    899 mly_flush(struct mly_softc *mly)
    900 {
    901 	struct mly_cmd_ioctl mci;
    902 
    903 	/* Build the ioctl */
    904 	memset(&mci, 0, sizeof(mci));
    905 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
    906 	mci.param.deviceoperation.operation_device =
    907 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
    908 
    909 	/* Pass it off to the controller */
    910 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
    911 }
    912 
    913 /*
    914  * Perform an ioctl command.
    915  *
    916  * If (data) is not NULL, the command requires data transfer to the
    917  * controller.  If (*data) is NULL the command requires data transfer from
    918  * the controller, and we will allocate a buffer for it.
    919  */
    920 static int
    921 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
    922 	  size_t datasize, void *sense_buffer,
    923 	  size_t *sense_length)
    924 {
    925 	struct mly_ccb *mc;
    926 	struct mly_cmd_ioctl *mci;
    927 	u_int8_t status;
    928 	int rv;
    929 
    930 	mc = NULL;
    931 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    932 		goto bad;
    933 
    934 	/*
    935 	 * Copy the ioctl structure, but save some important fields and then
    936 	 * fixup.
    937 	 */
    938 	mci = &mc->mc_packet->ioctl;
    939 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
    940 	ioctl->maximum_sense_size = mci->maximum_sense_size;
    941 	*mci = *ioctl;
    942 	mci->opcode = MDACMD_IOCTL;
    943 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    944 
    945 	/* Handle the data buffer. */
    946 	if (data != NULL) {
    947 		if (*data == NULL) {
    948 			/* Allocate data buffer */
    949 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
    950 			mc->mc_flags |= MLY_CCB_DATAIN;
    951 		} else {
    952 			mc->mc_data = *data;
    953 			mc->mc_flags |= MLY_CCB_DATAOUT;
    954 		}
    955 		mc->mc_length = datasize;
    956 		mc->mc_packet->generic.data_size = htole32(datasize);
    957 	}
    958 
    959 	/* Run the command. */
    960 	if (datasize > 0)
    961 		if ((rv = mly_ccb_map(mly, mc)) != 0)
    962 			goto bad;
    963 	rv = mly_ccb_poll(mly, mc, 30000);
    964 	if (datasize > 0)
    965 		mly_ccb_unmap(mly, mc);
    966 	if (rv != 0)
    967 		goto bad;
    968 
    969 	/* Clean up and return any data. */
    970 	status = mc->mc_status;
    971 
    972 	if (status != 0)
    973 		printf("mly_ioctl: command status %d\n", status);
    974 
    975 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
    976 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
    977 		*sense_length = mc->mc_sense;
    978 		goto bad;
    979 	}
    980 
    981 	/* Should we return a data pointer? */
    982 	if (data != NULL && *data == NULL)
    983 		*data = mc->mc_data;
    984 
    985 	/* Command completed OK. */
    986 	rv = (status != 0 ? EIO : 0);
    987 
    988  bad:
    989 	if (mc != NULL) {
    990 		/* Do we need to free a data buffer we allocated? */
    991 		if (rv != 0 && mc->mc_data != NULL &&
    992 		    (data == NULL || *data == NULL))
    993 			free(mc->mc_data, M_DEVBUF);
    994 		mly_ccb_free(mly, mc);
    995 	}
    996 
    997 	return (rv);
    998 }
    999 
   1000 /*
   1001  * Check for event(s) outstanding in the controller.
   1002  */
   1003 static void
   1004 mly_check_event(struct mly_softc *mly)
   1005 {
   1006 
   1007 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1008 	    offsetof(struct mly_mmbox, mmm_health),
   1009 	    sizeof(mly->mly_mmbox->mmm_health),
   1010 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1011 
   1012 	/*
   1013 	 * The controller may have updated the health status information, so
   1014 	 * check for it here.  Note that the counters are all in host
   1015 	 * memory, so this check is very cheap.  Also note that we depend on
   1016 	 * checking on completion
   1017 	 */
   1018 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
   1019 	    mly->mly_event_change) {
   1020 		mly->mly_event_change =
   1021 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
   1022 		mly->mly_event_waiting =
   1023 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
   1024 
   1025 		/* Wake up anyone that might be interested in this. */
   1026 		wakeup(&mly->mly_event_change);
   1027 	}
   1028 
   1029 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1030 	    offsetof(struct mly_mmbox, mmm_health),
   1031 	    sizeof(mly->mly_mmbox->mmm_health),
   1032 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1033 
   1034 	if (mly->mly_event_counter != mly->mly_event_waiting)
   1035 		mly_fetch_event(mly);
   1036 }
   1037 
   1038 /*
   1039  * Fetch one event from the controller.  If we fail due to resource
   1040  * starvation, we'll be retried the next time a command completes.
   1041  */
   1042 static void
   1043 mly_fetch_event(struct mly_softc *mly)
   1044 {
   1045 	struct mly_ccb *mc;
   1046 	struct mly_cmd_ioctl *mci;
   1047 	int s;
   1048 	u_int32_t event;
   1049 
   1050 	/* Get a command. */
   1051 	if (mly_ccb_alloc(mly, &mc))
   1052 		return;
   1053 
   1054 	/* Set up the data buffer. */
   1055 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
   1056 	    M_NOWAIT|M_ZERO);
   1057 
   1058 	mc->mc_length = sizeof(struct mly_event);
   1059 	mc->mc_flags |= MLY_CCB_DATAIN;
   1060 	mc->mc_complete = mly_complete_event;
   1061 
   1062 	/*
   1063 	 * Get an event number to fetch.  It's possible that we've raced
   1064 	 * with another context for the last event, in which case there will
   1065 	 * be no more events.
   1066 	 */
   1067 	s = splbio();
   1068 	if (mly->mly_event_counter == mly->mly_event_waiting) {
   1069 		splx(s);
   1070 		free(mc->mc_data, M_DEVBUF);
   1071 		mly_ccb_free(mly, mc);
   1072 		return;
   1073 	}
   1074 	event = mly->mly_event_counter++;
   1075 	splx(s);
   1076 
   1077 	/*
   1078 	 * Build the ioctl.
   1079 	 *
   1080 	 * At this point we are committed to sending this request, as it
   1081 	 * will be the only one constructed for this particular event
   1082 	 * number.
   1083 	 */
   1084 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
   1085 	mci->opcode = MDACMD_IOCTL;
   1086 	mci->data_size = htole32(sizeof(struct mly_event));
   1087 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
   1088 	    mci->addr);
   1089 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
   1090 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
   1091 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
   1092 
   1093 	/*
   1094 	 * Submit the command.
   1095 	 */
   1096 	if (mly_ccb_map(mly, mc) != 0)
   1097 		goto bad;
   1098 	mly_ccb_enqueue(mly, mc);
   1099 	return;
   1100 
   1101  bad:
   1102 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
   1103 	free(mc->mc_data, M_DEVBUF);
   1104 	mly_ccb_free(mly, mc);
   1105 }
   1106 
   1107 /*
   1108  * Handle the completion of an event poll.
   1109  */
   1110 static void
   1111 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
   1112 {
   1113 	struct mly_event *me;
   1114 
   1115 	me = (struct mly_event *)mc->mc_data;
   1116 	mly_ccb_unmap(mly, mc);
   1117 	mly_ccb_free(mly, mc);
   1118 
   1119 	/* If the event was successfully fetched, process it. */
   1120 	if (mc->mc_status == SCSI_OK)
   1121 		mly_process_event(mly, me);
   1122 	else
   1123 		printf("%s: unable to fetch event; status = 0x%x\n",
   1124 		    mly->mly_dv.dv_xname, mc->mc_status);
   1125 
   1126 	free(me, M_DEVBUF);
   1127 
   1128 	/* Check for another event. */
   1129 	mly_check_event(mly);
   1130 }
   1131 
   1132 /*
   1133  * Process a controller event.  Called with interrupts blocked (i.e., at
   1134  * interrupt time).
   1135  */
   1136 static void
   1137 mly_process_event(struct mly_softc *mly, struct mly_event *me)
   1138 {
   1139 	struct scsi_sense_data *ssd;
   1140 	int bus, target, event, class, action;
   1141 	const char *fp, *tp;
   1142 
   1143 	ssd = (struct scsi_sense_data *)&me->sense[0];
   1144 
   1145 	/*
   1146 	 * Errors can be reported using vendor-unique sense data.  In this
   1147 	 * case, the event code will be 0x1c (Request sense data present),
   1148 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
   1149 	 * will be set, and the actual event code will be a 16-bit value
   1150 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
   1151 	 * (low seven bits of the high byte).
   1152 	 */
   1153 	if (le32toh(me->code) == 0x1c &&
   1154 	    SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
   1155 	    (ssd->asc & 0x80) != 0) {
   1156 		event = ((int)(ssd->asc & ~0x80) << 8) +
   1157 		    ssd->ascq;
   1158 	} else
   1159 		event = le32toh(me->code);
   1160 
   1161 	/* Look up event, get codes. */
   1162 	fp = mly_describe_code(mly_table_event, event);
   1163 
   1164 	/* Quiet event? */
   1165 	class = fp[0];
   1166 #ifdef notyet
   1167 	if (isupper(class) && bootverbose)
   1168 		class = tolower(class);
   1169 #endif
   1170 
   1171 	/* Get action code, text string. */
   1172 	action = fp[1];
   1173 	tp = fp + 3;
   1174 
   1175 	/*
   1176 	 * Print some information about the event.
   1177 	 *
   1178 	 * This code uses a table derived from the corresponding portion of
   1179 	 * the Linux driver, and thus the parser is very similar.
   1180 	 */
   1181 	switch (class) {
   1182 	case 'p':
   1183 		/*
   1184 		 * Error on physical drive.
   1185 		 */
   1186 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1187 		    me->channel, me->target, tp);
   1188 		if (action == 'r')
   1189 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1190 			    MLY_BTL_RESCAN;
   1191 		break;
   1192 
   1193 	case 'l':
   1194 	case 'm':
   1195 		/*
   1196 		 * Error on logical unit, or message about logical unit.
   1197 	 	 */
   1198 		bus = MLY_LOGDEV_BUS(mly, me->lun);
   1199 		target = MLY_LOGDEV_TARGET(mly, me->lun);
   1200 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1201 		    bus, target, tp);
   1202 		if (action == 'r')
   1203 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
   1204 		break;
   1205 
   1206 	case 's':
   1207 		/*
   1208 		 * Report of sense data.
   1209 		 */
   1210 		if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
   1211 		     SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
   1212 		    ssd->asc == 0x04 &&
   1213 		    (ssd->ascq == 0x01 ||
   1214 		     ssd->ascq == 0x02)) {
   1215 			/* Ignore NO_SENSE or NOT_READY in one case */
   1216 			break;
   1217 		}
   1218 
   1219 		/*
   1220 		 * XXX Should translate this if SCSIVERBOSE.
   1221 		 */
   1222 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1223 		    me->channel, me->target, tp);
   1224 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
   1225 		    mly->mly_dv.dv_xname, SSD_SENSE_KEY(ssd->flags),
   1226 		    ssd->asc, ssd->ascq);
   1227 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
   1228 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
   1229 		    ssd->info[2], ssd->info[3], ssd->csi[0],
   1230 		    ssd->csi[1], ssd->csi[2],
   1231 		    ssd->csi[3]);
   1232 		if (action == 'r')
   1233 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1234 			    MLY_BTL_RESCAN;
   1235 		break;
   1236 
   1237 	case 'e':
   1238 		printf("%s: ", mly->mly_dv.dv_xname);
   1239 		printf(tp, me->target, me->lun);
   1240 		break;
   1241 
   1242 	case 'c':
   1243 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
   1244 		break;
   1245 
   1246 	case '?':
   1247 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
   1248 		break;
   1249 
   1250 	default:
   1251 		/* Probably a 'noisy' event being ignored. */
   1252 		break;
   1253 	}
   1254 }
   1255 
   1256 /*
   1257  * Perform periodic activities.
   1258  */
   1259 static void
   1260 mly_thread(void *cookie)
   1261 {
   1262 	struct mly_softc *mly;
   1263 	struct mly_btl *btl;
   1264 	int s, bus, target, done;
   1265 
   1266 	mly = (struct mly_softc *)cookie;
   1267 
   1268 	for (;;) {
   1269 		/* Check for new events. */
   1270 		mly_check_event(mly);
   1271 
   1272 		/* Re-scan up to 1 device. */
   1273 		s = splbio();
   1274 		done = 0;
   1275 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
   1276 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
   1277 				/* Perform device rescan? */
   1278 				btl = &mly->mly_btl[bus][target];
   1279 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
   1280 					btl->mb_flags ^= MLY_BTL_RESCAN;
   1281 					mly_scan_btl(mly, bus, target);
   1282 					done = 1;
   1283 					break;
   1284 				}
   1285 			}
   1286 		}
   1287 		splx(s);
   1288 
   1289 		/* Sleep for N seconds. */
   1290 		tsleep(mly_thread, PWAIT, "mlyzzz",
   1291 		    hz * MLY_PERIODIC_INTERVAL);
   1292 	}
   1293 }
   1294 
   1295 /*
   1296  * Submit a command to the controller and poll on completion.  Return
   1297  * non-zero on timeout.
   1298  */
   1299 static int
   1300 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1301 {
   1302 	int rv;
   1303 
   1304 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
   1305 		return (rv);
   1306 
   1307 	for (timo *= 10; timo != 0; timo--) {
   1308 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
   1309 			break;
   1310 		mly_intr(mly);
   1311 		DELAY(100);
   1312 	}
   1313 
   1314 	return (timo == 0);
   1315 }
   1316 
   1317 /*
   1318  * Submit a command to the controller and sleep on completion.  Return
   1319  * non-zero on timeout.
   1320  */
   1321 static int
   1322 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1323 {
   1324 	int rv, s;
   1325 
   1326 	mly_ccb_enqueue(mly, mc);
   1327 
   1328 	s = splbio();
   1329 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
   1330 		splx(s);
   1331 		return (0);
   1332 	}
   1333 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
   1334 	splx(s);
   1335 
   1336 	return (rv);
   1337 }
   1338 
   1339 /*
   1340  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1341  * the order that they were enqueued and try to submit their command blocks
   1342  * to the controller for execution.
   1343  */
   1344 void
   1345 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
   1346 {
   1347 	int s;
   1348 
   1349 	s = splbio();
   1350 
   1351 	if (mc != NULL)
   1352 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1353 
   1354 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
   1355 		if (mly_ccb_submit(mly, mc))
   1356 			break;
   1357 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
   1358 	}
   1359 
   1360 	splx(s);
   1361 }
   1362 
   1363 /*
   1364  * Deliver a command to the controller.
   1365  */
   1366 static int
   1367 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
   1368 {
   1369 	union mly_cmd_packet *pkt;
   1370 	int s, off;
   1371 
   1372 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
   1373 
   1374 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1375 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1376 	    sizeof(union mly_cmd_packet),
   1377 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1378 
   1379 	s = splbio();
   1380 
   1381 	/*
   1382 	 * Do we have to use the hardware mailbox?
   1383 	 */
   1384 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
   1385 		/*
   1386 		 * Check to see if the controller is ready for us.
   1387 		 */
   1388 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
   1389 			splx(s);
   1390 			return (EBUSY);
   1391 		}
   1392 
   1393 		/*
   1394 		 * It's ready, send the command.
   1395 		 */
   1396 		mly_outl(mly, mly->mly_cmd_mailbox,
   1397 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
   1398 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
   1399 		    (u_int64_t)mc->mc_packetphys >> 32);
   1400 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
   1401 	} else {
   1402 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
   1403 		off = (char *)pkt - (char *)mly->mly_mmbox;
   1404 
   1405 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1406 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1407 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1408 
   1409 		/* Check to see if the next index is free yet. */
   1410 		if (pkt->mmbox.flag != 0) {
   1411 			splx(s);
   1412 			return (EBUSY);
   1413 		}
   1414 
   1415 		/* Copy in new command */
   1416 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
   1417 		    sizeof(pkt->mmbox.data));
   1418 
   1419 		/* Copy flag last. */
   1420 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
   1421 
   1422 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1423 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1424 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1425 
   1426 		/* Signal controller and update index. */
   1427 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
   1428 		mly->mly_mmbox_cmd_idx =
   1429 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
   1430 	}
   1431 
   1432 	splx(s);
   1433 	return (0);
   1434 }
   1435 
   1436 /*
   1437  * Pick up completed commands from the controller and handle accordingly.
   1438  */
   1439 int
   1440 mly_intr(void *cookie)
   1441 {
   1442 	struct mly_ccb *mc;
   1443 	union mly_status_packet	*sp;
   1444 	u_int16_t slot;
   1445 	int forus, off;
   1446 	struct mly_softc *mly;
   1447 
   1448 	mly = cookie;
   1449 	forus = 0;
   1450 
   1451 	/*
   1452 	 * Pick up hardware-mailbox commands.
   1453 	 */
   1454 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
   1455 		slot = mly_inw(mly, mly->mly_status_mailbox);
   1456 
   1457 		if (slot < MLY_SLOT_MAX) {
   1458 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1459 			mc->mc_status =
   1460 			    mly_inb(mly, mly->mly_status_mailbox + 2);
   1461 			mc->mc_sense =
   1462 			    mly_inb(mly, mly->mly_status_mailbox + 3);
   1463 			mc->mc_resid =
   1464 			    mly_inl(mly, mly->mly_status_mailbox + 4);
   1465 
   1466 			mly_ccb_complete(mly, mc);
   1467 		} else {
   1468 			/* Slot 0xffff may mean "extremely bogus command". */
   1469 			printf("%s: got HM completion for illegal slot %u\n",
   1470 			    mly->mly_dv.dv_xname, slot);
   1471 		}
   1472 
   1473 		/* Unconditionally acknowledge status. */
   1474 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
   1475 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   1476 		forus = 1;
   1477 	}
   1478 
   1479 	/*
   1480 	 * Pick up memory-mailbox commands.
   1481 	 */
   1482 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
   1483 		for (;;) {
   1484 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
   1485 			off = (char *)sp - (char *)mly->mly_mmbox;
   1486 
   1487 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1488 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1489 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1490 
   1491 			/* Check for more status. */
   1492 			if (sp->mmbox.flag == 0)
   1493 				break;
   1494 
   1495 			/* Get slot number. */
   1496 			slot = le16toh(sp->status.command_id);
   1497 			if (slot < MLY_SLOT_MAX) {
   1498 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1499 				mc->mc_status = sp->status.status;
   1500 				mc->mc_sense = sp->status.sense_length;
   1501 				mc->mc_resid = le32toh(sp->status.residue);
   1502 				mly_ccb_complete(mly, mc);
   1503 			} else {
   1504 				/*
   1505 				 * Slot 0xffff may mean "extremely bogus
   1506 				 * command".
   1507 				 */
   1508 				printf("%s: got AM completion for illegal "
   1509 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
   1510 				    slot, mly->mly_mmbox_sts_idx);
   1511 			}
   1512 
   1513 			/* Clear and move to next index. */
   1514 			sp->mmbox.flag = 0;
   1515 			mly->mly_mmbox_sts_idx =
   1516 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
   1517 		}
   1518 
   1519 		/* Acknowledge that we have collected status value(s). */
   1520 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
   1521 		forus = 1;
   1522 	}
   1523 
   1524 	/*
   1525 	 * Run the queue.
   1526 	 */
   1527 	if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
   1528 		mly_ccb_enqueue(mly, NULL);
   1529 
   1530 	return (forus);
   1531 }
   1532 
   1533 /*
   1534  * Process completed commands
   1535  */
   1536 static void
   1537 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1538 {
   1539 	void (*complete)(struct mly_softc *, struct mly_ccb *);
   1540 
   1541 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1542 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1543 	    sizeof(union mly_cmd_packet),
   1544 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1545 
   1546 	complete = mc->mc_complete;
   1547 	mc->mc_flags |= MLY_CCB_COMPLETE;
   1548 
   1549 	/*
   1550 	 * Call completion handler or wake up sleeping consumer.
   1551 	 */
   1552 	if (complete != NULL)
   1553 		(*complete)(mly, mc);
   1554 	else
   1555 		wakeup(mc);
   1556 }
   1557 
   1558 /*
   1559  * Allocate a command.
   1560  */
   1561 int
   1562 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
   1563 {
   1564 	struct mly_ccb *mc;
   1565 	int s;
   1566 
   1567 	s = splbio();
   1568 	mc = SLIST_FIRST(&mly->mly_ccb_free);
   1569 	if (mc != NULL)
   1570 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
   1571 	splx(s);
   1572 
   1573 	*mcp = mc;
   1574 	return (mc == NULL ? EAGAIN : 0);
   1575 }
   1576 
   1577 /*
   1578  * Release a command back to the freelist.
   1579  */
   1580 void
   1581 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
   1582 {
   1583 	int s;
   1584 
   1585 	/*
   1586 	 * Fill in parts of the command that may cause confusion if a
   1587 	 * consumer doesn't when we are later allocated.
   1588 	 */
   1589 	mc->mc_data = NULL;
   1590 	mc->mc_flags = 0;
   1591 	mc->mc_complete = NULL;
   1592 	mc->mc_private = NULL;
   1593 	mc->mc_packet->generic.command_control = 0;
   1594 
   1595 	/*
   1596 	 * By default, we set up to overwrite the command packet with sense
   1597 	 * information.
   1598 	 */
   1599 	mc->mc_packet->generic.sense_buffer_address =
   1600 	    htole64(mc->mc_packetphys);
   1601 	mc->mc_packet->generic.maximum_sense_size =
   1602 	    sizeof(union mly_cmd_packet);
   1603 
   1604 	s = splbio();
   1605 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
   1606 	splx(s);
   1607 }
   1608 
   1609 /*
   1610  * Allocate and initialize command and packet structures.
   1611  *
   1612  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
   1613  * allocation to that number.  If we don't yet know how many commands the
   1614  * controller supports, allocate a very small set (suitable for initialization
   1615  * purposes only).
   1616  */
   1617 static int
   1618 mly_alloc_ccbs(struct mly_softc *mly)
   1619 {
   1620 	struct mly_ccb *mc;
   1621 	int i, rv;
   1622 
   1623 	if (mly->mly_controllerinfo == NULL)
   1624 		mly->mly_ncmds = MLY_CCBS_RESV;
   1625 	else {
   1626 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
   1627 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
   1628 	}
   1629 
   1630 	/*
   1631 	 * Allocate enough space for all the command packets in one chunk
   1632 	 * and map them permanently into controller-visible space.
   1633 	 */
   1634 	rv = mly_dmamem_alloc(mly,
   1635 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1636 	    &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
   1637 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
   1638 	if (rv)
   1639 		return (rv);
   1640 
   1641 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
   1642 	    M_DEVBUF, M_NOWAIT|M_ZERO);
   1643 
   1644 	for (i = 0; i < mly->mly_ncmds; i++) {
   1645 		mc = mly->mly_ccbs + i;
   1646 		mc->mc_slot = MLY_SLOT_START + i;
   1647 		mc->mc_packet = mly->mly_pkt + i;
   1648 		mc->mc_packetphys = mly->mly_pkt_busaddr +
   1649 		    (i * sizeof(union mly_cmd_packet));
   1650 
   1651 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
   1652 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
   1653 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1654 		    &mc->mc_datamap);
   1655 		if (rv) {
   1656 			mly_release_ccbs(mly);
   1657 			return (rv);
   1658 		}
   1659 
   1660 		mly_ccb_free(mly, mc);
   1661 	}
   1662 
   1663 	return (0);
   1664 }
   1665 
   1666 /*
   1667  * Free all the storage held by commands.
   1668  *
   1669  * Must be called with all commands on the free list.
   1670  */
   1671 static void
   1672 mly_release_ccbs(struct mly_softc *mly)
   1673 {
   1674 	struct mly_ccb *mc;
   1675 
   1676 	/* Throw away command buffer DMA maps. */
   1677 	while (mly_ccb_alloc(mly, &mc) == 0)
   1678 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
   1679 
   1680 	/* Release CCB storage. */
   1681 	free(mly->mly_ccbs, M_DEVBUF);
   1682 
   1683 	/* Release the packet storage. */
   1684 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1685 	    mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
   1686 }
   1687 
   1688 /*
   1689  * Map a command into controller-visible space.
   1690  */
   1691 static int
   1692 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
   1693 {
   1694 	struct mly_cmd_generic *gen;
   1695 	struct mly_sg_entry *sg;
   1696 	bus_dma_segment_t *ds;
   1697 	int flg, nseg, rv;
   1698 
   1699 #ifdef DIAGNOSTIC
   1700 	/* Don't map more than once. */
   1701 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
   1702 		panic("mly_ccb_map: already mapped");
   1703 	mc->mc_flags |= MLY_CCB_MAPPED;
   1704 
   1705 	/* Does the command have a data buffer? */
   1706 	if (mc->mc_data == NULL)
   1707 		panic("mly_ccb_map: no data buffer");
   1708 #endif
   1709 
   1710 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
   1711 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1712 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
   1713 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1714 	if (rv != 0)
   1715 		return (rv);
   1716 
   1717 	gen = &mc->mc_packet->generic;
   1718 
   1719 	/*
   1720 	 * Can we use the transfer structure directly?
   1721 	 */
   1722 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
   1723 		mc->mc_sgoff = -1;
   1724 		sg = &gen->transfer.direct.sg[0];
   1725 	} else {
   1726 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
   1727 		    MLY_MAX_SEGS;
   1728 		sg = mly->mly_sg + mc->mc_sgoff;
   1729 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
   1730 		gen->transfer.indirect.entries[0] = htole16(nseg);
   1731 		gen->transfer.indirect.table_physaddr[0] =
   1732 		    htole64(mly->mly_sg_busaddr +
   1733 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
   1734 	}
   1735 
   1736 	/*
   1737 	 * Fill the S/G table.
   1738 	 */
   1739 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
   1740 		sg->physaddr = htole64(ds->ds_addr);
   1741 		sg->length = htole64(ds->ds_len);
   1742 	}
   1743 
   1744 	/*
   1745 	 * Sync up the data map.
   1746 	 */
   1747 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1748 		flg = BUS_DMASYNC_PREREAD;
   1749 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
   1750 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
   1751 		flg = BUS_DMASYNC_PREWRITE;
   1752 	}
   1753 
   1754 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1755 
   1756 	/*
   1757 	 * Sync up the chained S/G table, if we're using one.
   1758 	 */
   1759 	if (mc->mc_sgoff == -1)
   1760 		return (0);
   1761 
   1762 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1763 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1764 
   1765 	return (0);
   1766 }
   1767 
   1768 /*
   1769  * Unmap a command from controller-visible space.
   1770  */
   1771 static void
   1772 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
   1773 {
   1774 	int flg;
   1775 
   1776 #ifdef DIAGNOSTIC
   1777 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
   1778 		panic("mly_ccb_unmap: not mapped");
   1779 	mc->mc_flags &= ~MLY_CCB_MAPPED;
   1780 #endif
   1781 
   1782 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1783 		flg = BUS_DMASYNC_POSTREAD;
   1784 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
   1785 		flg = BUS_DMASYNC_POSTWRITE;
   1786 
   1787 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1788 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
   1789 
   1790 	if (mc->mc_sgoff == -1)
   1791 		return;
   1792 
   1793 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1794 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
   1795 }
   1796 
   1797 /*
   1798  * Adjust the size of each I/O before it passes to the SCSI layer.
   1799  */
   1800 static void
   1801 mly_scsipi_minphys(struct buf *bp)
   1802 {
   1803 
   1804 	if (bp->b_bcount > MLY_MAX_XFER)
   1805 		bp->b_bcount = MLY_MAX_XFER;
   1806 	minphys(bp);
   1807 }
   1808 
   1809 /*
   1810  * Start a SCSI command.
   1811  */
   1812 static void
   1813 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1814 		   void *arg)
   1815 {
   1816 	struct mly_ccb *mc;
   1817 	struct mly_cmd_scsi_small *ss;
   1818 	struct scsipi_xfer *xs;
   1819 	struct scsipi_periph *periph;
   1820 	struct mly_softc *mly;
   1821 	struct mly_btl *btl;
   1822 	int s, tmp;
   1823 
   1824 	mly = (void *)chan->chan_adapter->adapt_dev;
   1825 
   1826 	switch (req) {
   1827 	case ADAPTER_REQ_RUN_XFER:
   1828 		xs = arg;
   1829 		periph = xs->xs_periph;
   1830 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
   1831 		s = splbio();
   1832 		tmp = btl->mb_flags;
   1833 		splx(s);
   1834 
   1835 		/*
   1836 		 * Check for I/O attempt to a protected or non-existant
   1837 		 * device.
   1838 		 */
   1839 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
   1840 			xs->error = XS_SELTIMEOUT;
   1841 			scsipi_done(xs);
   1842 			break;
   1843 		}
   1844 
   1845 #ifdef DIAGNOSTIC
   1846 		/* XXX Increase if/when we support large SCSI commands. */
   1847 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
   1848 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
   1849 			xs->error = XS_DRIVER_STUFFUP;
   1850 			scsipi_done(xs);
   1851 			break;
   1852 		}
   1853 #endif
   1854 
   1855 		if (mly_ccb_alloc(mly, &mc)) {
   1856 			xs->error = XS_RESOURCE_SHORTAGE;
   1857 			scsipi_done(xs);
   1858 			break;
   1859 		}
   1860 
   1861 		/* Build the command. */
   1862 		mc->mc_data = xs->data;
   1863 		mc->mc_length = xs->datalen;
   1864 		mc->mc_complete = mly_scsipi_complete;
   1865 		mc->mc_private = xs;
   1866 
   1867 		/* Build the packet for the controller. */
   1868 		ss = &mc->mc_packet->scsi_small;
   1869 		ss->opcode = MDACMD_SCSI;
   1870 #ifdef notdef
   1871 		/*
   1872 		 * XXX FreeBSD does this, but it doesn't fix anything,
   1873 		 * XXX and appears potentially harmful.
   1874 		 */
   1875 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
   1876 #endif
   1877 
   1878 		ss->data_size = htole32(xs->datalen);
   1879 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
   1880 		    periph->periph_target, periph->periph_lun), ss->addr);
   1881 
   1882 		if (xs->timeout < 60 * 1000)
   1883 			ss->timeout = xs->timeout / 1000 |
   1884 			    MLY_TIMEOUT_SECONDS;
   1885 		else if (xs->timeout < 60 * 60 * 1000)
   1886 			ss->timeout = xs->timeout / (60 * 1000) |
   1887 			    MLY_TIMEOUT_MINUTES;
   1888 		else
   1889 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
   1890 			    MLY_TIMEOUT_HOURS;
   1891 
   1892 		ss->maximum_sense_size = sizeof(xs->sense);
   1893 		ss->cdb_length = xs->cmdlen;
   1894 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
   1895 
   1896 		if (mc->mc_length != 0) {
   1897 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
   1898 				mc->mc_flags |= MLY_CCB_DATAOUT;
   1899 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
   1900 				mc->mc_flags |= MLY_CCB_DATAIN;
   1901 
   1902 			if (mly_ccb_map(mly, mc) != 0) {
   1903 				xs->error = XS_DRIVER_STUFFUP;
   1904 				mly_ccb_free(mly, mc);
   1905 				scsipi_done(xs);
   1906 				break;
   1907 			}
   1908 		}
   1909 
   1910 		/*
   1911 		 * Give the command to the controller.
   1912 		 */
   1913 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
   1914 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
   1915 				xs->error = XS_REQUEUE;
   1916 				if (mc->mc_length != 0)
   1917 					mly_ccb_unmap(mly, mc);
   1918 				mly_ccb_free(mly, mc);
   1919 				scsipi_done(xs);
   1920 			}
   1921 		} else
   1922 			mly_ccb_enqueue(mly, mc);
   1923 
   1924 		break;
   1925 
   1926 	case ADAPTER_REQ_GROW_RESOURCES:
   1927 		/*
   1928 		 * Not supported.
   1929 		 */
   1930 		break;
   1931 
   1932 	case ADAPTER_REQ_SET_XFER_MODE:
   1933 		/*
   1934 		 * We can't change the transfer mode, but at least let
   1935 		 * scsipi know what the adapter has negotiated.
   1936 		 */
   1937 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
   1938 		break;
   1939 	}
   1940 }
   1941 
   1942 /*
   1943  * Handle completion of a SCSI command.
   1944  */
   1945 static void
   1946 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1947 {
   1948 	struct scsipi_xfer *xs;
   1949 	struct scsipi_channel *chan;
   1950 	struct scsipi_inquiry_data *inq;
   1951 	struct mly_btl *btl;
   1952 	int target, sl, s;
   1953 	const char *p;
   1954 
   1955 	xs = mc->mc_private;
   1956 	xs->status = mc->mc_status;
   1957 
   1958 	/*
   1959 	 * XXX The `resid' value as returned by the controller appears to be
   1960 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
   1961 	 * count?
   1962 	 */
   1963 	xs->resid = 0; /* mc->mc_resid; */
   1964 
   1965 	if (mc->mc_length != 0)
   1966 		mly_ccb_unmap(mly, mc);
   1967 
   1968 	switch (mc->mc_status) {
   1969 	case SCSI_OK:
   1970 		/*
   1971 		 * In order to report logical device type and status, we
   1972 		 * overwrite the result of the INQUIRY command to logical
   1973 		 * devices.
   1974 		 */
   1975 		if (xs->cmd->opcode == INQUIRY) {
   1976 			chan = xs->xs_periph->periph_channel;
   1977 			target = xs->xs_periph->periph_target;
   1978 			btl = &mly->mly_btl[chan->chan_channel][target];
   1979 
   1980 			s = splbio();
   1981 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
   1982 				inq = (struct scsipi_inquiry_data *)xs->data;
   1983 				mly_padstr(inq->vendor, "MYLEX", 8);
   1984 				p = mly_describe_code(mly_table_device_type,
   1985 				    btl->mb_type);
   1986 				mly_padstr(inq->product, p, 16);
   1987 				p = mly_describe_code(mly_table_device_state,
   1988 				    btl->mb_state);
   1989 				mly_padstr(inq->revision, p, 4);
   1990 			}
   1991 			splx(s);
   1992 		}
   1993 
   1994 		xs->error = XS_NOERROR;
   1995 		break;
   1996 
   1997 	case SCSI_CHECK:
   1998 		sl = mc->mc_sense;
   1999 		if (sl > sizeof(xs->sense.scsi_sense))
   2000 			sl = sizeof(xs->sense.scsi_sense);
   2001 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
   2002 		xs->error = XS_SENSE;
   2003 		break;
   2004 
   2005 	case SCSI_BUSY:
   2006 	case SCSI_QUEUE_FULL:
   2007 		xs->error = XS_BUSY;
   2008 		break;
   2009 
   2010 	default:
   2011 		printf("%s: unknown SCSI status 0x%x\n",
   2012 		    mly->mly_dv.dv_xname, xs->status);
   2013 		xs->error = XS_DRIVER_STUFFUP;
   2014 		break;
   2015 	}
   2016 
   2017 	mly_ccb_free(mly, mc);
   2018 	scsipi_done(xs);
   2019 }
   2020 
   2021 /*
   2022  * Notify scsipi about a target's transfer mode.
   2023  */
   2024 static void
   2025 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
   2026 {
   2027 	struct mly_btl *btl;
   2028 	int s;
   2029 
   2030 	btl = &mly->mly_btl[bus][xm->xm_target];
   2031 	xm->xm_mode = 0;
   2032 
   2033 	s = splbio();
   2034 
   2035 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
   2036 		if (btl->mb_speed == 0) {
   2037 			xm->xm_period = 0;
   2038 			xm->xm_offset = 0;
   2039 		} else {
   2040 			xm->xm_period = 12;			/* XXX */
   2041 			xm->xm_offset = 8;			/* XXX */
   2042 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
   2043 		}
   2044 
   2045 		switch (btl->mb_width) {
   2046 		case 32:
   2047 			xm->xm_mode = PERIPH_CAP_WIDE32;
   2048 			break;
   2049 		case 16:
   2050 			xm->xm_mode = PERIPH_CAP_WIDE16;
   2051 			break;
   2052 		default:
   2053 			xm->xm_mode = 0;
   2054 			break;
   2055 		}
   2056 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
   2057 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
   2058 		xm->xm_period = 12;
   2059 		xm->xm_offset = 8;
   2060 	}
   2061 
   2062 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
   2063 		xm->xm_mode |= PERIPH_CAP_TQING;
   2064 
   2065 	splx(s);
   2066 
   2067 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
   2068 }
   2069 
   2070 /*
   2071  * ioctl hook; used here only to initiate low-level rescans.
   2072  */
   2073 static int
   2074 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
   2075     int flag, struct proc *p)
   2076 {
   2077 	struct mly_softc *mly;
   2078 	int rv;
   2079 
   2080 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
   2081 
   2082 	switch (cmd) {
   2083 	case SCBUSIOLLSCAN:
   2084 		mly_scan_channel(mly, chan->chan_channel);
   2085 		rv = 0;
   2086 		break;
   2087 	default:
   2088 		rv = ENOTTY;
   2089 		break;
   2090 	}
   2091 
   2092 	return (rv);
   2093 }
   2094 
   2095 /*
   2096  * Handshake with the firmware while the card is being initialized.
   2097  */
   2098 static int
   2099 mly_fwhandshake(struct mly_softc *mly)
   2100 {
   2101 	u_int8_t error, param0, param1;
   2102 	int spinup;
   2103 
   2104 	spinup = 0;
   2105 
   2106 	/* Set HM_STSACK and let the firmware initialize. */
   2107 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   2108 	DELAY(1000);	/* too short? */
   2109 
   2110 	/* If HM_STSACK is still true, the controller is initializing. */
   2111 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
   2112 		return (0);
   2113 
   2114 	printf("%s: controller initialization started\n",
   2115 	    mly->mly_dv.dv_xname);
   2116 
   2117 	/*
   2118 	 * Spin waiting for initialization to finish, or for a message to be
   2119 	 * delivered.
   2120 	 */
   2121 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
   2122 		/* Check for a message */
   2123 		if (!mly_error_valid(mly))
   2124 			continue;
   2125 
   2126 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
   2127 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
   2128 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
   2129 
   2130 		switch (error) {
   2131 		case MLY_MSG_SPINUP:
   2132 			if (!spinup) {
   2133 				printf("%s: drive spinup in progress\n",
   2134 				    mly->mly_dv.dv_xname);
   2135 				spinup = 1;
   2136 			}
   2137 			break;
   2138 
   2139 		case MLY_MSG_RACE_RECOVERY_FAIL:
   2140 			printf("%s: mirror race recovery failed - \n",
   2141 			    mly->mly_dv.dv_xname);
   2142 			printf("%s: one or more drives offline\n",
   2143 			    mly->mly_dv.dv_xname);
   2144 			break;
   2145 
   2146 		case MLY_MSG_RACE_IN_PROGRESS:
   2147 			printf("%s: mirror race recovery in progress\n",
   2148 			    mly->mly_dv.dv_xname);
   2149 			break;
   2150 
   2151 		case MLY_MSG_RACE_ON_CRITICAL:
   2152 			printf("%s: mirror race recovery on critical drive\n",
   2153 			    mly->mly_dv.dv_xname);
   2154 			break;
   2155 
   2156 		case MLY_MSG_PARITY_ERROR:
   2157 			printf("%s: FATAL MEMORY PARITY ERROR\n",
   2158 			    mly->mly_dv.dv_xname);
   2159 			return (ENXIO);
   2160 
   2161 		default:
   2162 			printf("%s: unknown initialization code 0x%x\n",
   2163 			    mly->mly_dv.dv_xname, error);
   2164 			break;
   2165 		}
   2166 	}
   2167 
   2168 	return (0);
   2169 }
   2170 
   2171 /*
   2172  * Space-fill a character string
   2173  */
   2174 static void
   2175 mly_padstr(char *dst, const char *src, int len)
   2176 {
   2177 
   2178 	while (len-- > 0) {
   2179 		if (*src != '\0')
   2180 			*dst++ = *src++;
   2181 		else
   2182 			*dst++ = ' ';
   2183 	}
   2184 }
   2185 
   2186 /*
   2187  * Allocate DMA safe memory.
   2188  */
   2189 static int
   2190 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
   2191 		 void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
   2192 {
   2193 	int rseg, rv, state;
   2194 
   2195 	state = 0;
   2196 
   2197 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
   2198 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
   2199 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
   2200 		goto bad;
   2201 	}
   2202 
   2203 	state++;
   2204 
   2205 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
   2206 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   2207 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
   2208 		goto bad;
   2209 	}
   2210 
   2211 	state++;
   2212 
   2213 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
   2214 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
   2215 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
   2216 		goto bad;
   2217 	}
   2218 
   2219 	state++;
   2220 
   2221 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
   2222 	    NULL, BUS_DMA_NOWAIT)) != 0) {
   2223 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
   2224 		goto bad;
   2225 	}
   2226 
   2227 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
   2228 	memset(*kva, 0, size);
   2229 	return (0);
   2230 
   2231  bad:
   2232 	if (state > 2)
   2233 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
   2234 	if (state > 1)
   2235 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
   2236 	if (state > 0)
   2237 		bus_dmamem_free(mly->mly_dmat, seg, 1);
   2238 
   2239 	return (rv);
   2240 }
   2241 
   2242 /*
   2243  * Free DMA safe memory.
   2244  */
   2245 static void
   2246 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
   2247 		void *kva, bus_dma_segment_t *seg)
   2248 {
   2249 
   2250 	bus_dmamap_unload(mly->mly_dmat, dmamap);
   2251 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
   2252 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
   2253 	bus_dmamem_free(mly->mly_dmat, seg, 1);
   2254 }
   2255 
   2256 
   2257 /*
   2258  * Accept an open operation on the control device.
   2259  */
   2260 int
   2261 mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
   2262 {
   2263 	struct mly_softc *mly;
   2264 
   2265 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
   2266 		return (ENXIO);
   2267 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
   2268 		return (ENXIO);
   2269 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
   2270 		return (EBUSY);
   2271 
   2272 	mly->mly_state |= MLY_STATE_OPEN;
   2273 	return (0);
   2274 }
   2275 
   2276 /*
   2277  * Accept the last close on the control device.
   2278  */
   2279 int
   2280 mlyclose(dev_t dev, int flag, int mode,
   2281     struct lwp *l)
   2282 {
   2283 	struct mly_softc *mly;
   2284 
   2285 	mly = device_lookup(&mly_cd, minor(dev));
   2286 	mly->mly_state &= ~MLY_STATE_OPEN;
   2287 	return (0);
   2288 }
   2289 
   2290 /*
   2291  * Handle control operations.
   2292  */
   2293 int
   2294 mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
   2295     struct lwp *l)
   2296 {
   2297 	struct mly_softc *mly;
   2298 	int rv;
   2299 
   2300 	mly = device_lookup(&mly_cd, minor(dev));
   2301 
   2302 	switch (cmd) {
   2303 	case MLYIO_COMMAND:
   2304 		rv = kauth_authorize_device_passthru(l->l_cred, dev,
   2305 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   2306 		if (rv)
   2307 			break;
   2308 
   2309 		rv = mly_user_command(mly, (void *)data);
   2310 		break;
   2311 	case MLYIO_HEALTH:
   2312 		rv = mly_user_health(mly, (void *)data);
   2313 		break;
   2314 	default:
   2315 		rv = ENOTTY;
   2316 		break;
   2317 	}
   2318 
   2319 	return (rv);
   2320 }
   2321 
   2322 /*
   2323  * Execute a command passed in from userspace.
   2324  *
   2325  * The control structure contains the actual command for the controller, as
   2326  * well as the user-space data pointer and data size, and an optional sense
   2327  * buffer size/pointer.  On completion, the data size is adjusted to the
   2328  * command residual, and the sense buffer size to the size of the returned
   2329  * sense data.
   2330  */
   2331 static int
   2332 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
   2333 {
   2334 	struct mly_ccb	*mc;
   2335 	int rv, mapped;
   2336 
   2337 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
   2338 		return (rv);
   2339 
   2340 	mapped = 0;
   2341 	mc->mc_data = NULL;
   2342 
   2343 	/*
   2344 	 * Handle data size/direction.
   2345 	 */
   2346 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
   2347 		if (mc->mc_length > MAXPHYS) {
   2348 			rv = EINVAL;
   2349 			goto out;
   2350 		}
   2351 
   2352 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
   2353 		if (mc->mc_data == NULL) {
   2354 			rv = ENOMEM;
   2355 			goto out;
   2356 		}
   2357 
   2358 		if (uc->DataTransferLength > 0) {
   2359 			mc->mc_flags |= MLY_CCB_DATAIN;
   2360 			memset(mc->mc_data, 0, mc->mc_length);
   2361 		}
   2362 
   2363 		if (uc->DataTransferLength < 0) {
   2364 			mc->mc_flags |= MLY_CCB_DATAOUT;
   2365 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
   2366 			    mc->mc_length);
   2367 			if (rv != 0)
   2368 				goto out;
   2369 		}
   2370 
   2371 		if ((rv = mly_ccb_map(mly, mc)) != 0)
   2372 			goto out;
   2373 		mapped = 1;
   2374 	}
   2375 
   2376 	/* Copy in the command and execute it. */
   2377 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
   2378 
   2379 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
   2380 		goto out;
   2381 
   2382 	/* Return the data to userspace. */
   2383 	if (uc->DataTransferLength > 0) {
   2384 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
   2385 		    mc->mc_length);
   2386 		if (rv != 0)
   2387 			goto out;
   2388 	}
   2389 
   2390 	/* Return the sense buffer to userspace. */
   2391 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
   2392 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
   2393 		    min(uc->RequestSenseLength, mc->mc_sense));
   2394 		if (rv != 0)
   2395 			goto out;
   2396 	}
   2397 
   2398 	/* Return command results to userspace (caller will copy out). */
   2399 	uc->DataTransferLength = mc->mc_resid;
   2400 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
   2401 	uc->CommandStatus = mc->mc_status;
   2402 	rv = 0;
   2403 
   2404  out:
   2405  	if (mapped)
   2406  		mly_ccb_unmap(mly, mc);
   2407 	if (mc->mc_data != NULL)
   2408 		free(mc->mc_data, M_DEVBUF);
   2409 	mly_ccb_free(mly, mc);
   2410 
   2411 	return (rv);
   2412 }
   2413 
   2414 /*
   2415  * Return health status to userspace.  If the health change index in the
   2416  * user structure does not match that currently exported by the controller,
   2417  * we return the current status immediately.  Otherwise, we block until
   2418  * either interrupted or new status is delivered.
   2419  */
   2420 static int
   2421 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
   2422 {
   2423 	struct mly_health_status mh;
   2424 	int rv, s;
   2425 
   2426 	/* Fetch the current health status from userspace. */
   2427 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
   2428 	if (rv != 0)
   2429 		return (rv);
   2430 
   2431 	/* spin waiting for a status update */
   2432 	s = splbio();
   2433 	if (mly->mly_event_change == mh.change_counter)
   2434 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
   2435 		    "mlyhealth", 0);
   2436 	splx(s);
   2437 
   2438 	if (rv == 0) {
   2439 		/*
   2440 		 * Copy the controller's health status buffer out (there is
   2441 		 * a race here if it changes again).
   2442 		 */
   2443 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
   2444 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
   2445 	}
   2446 
   2447 	return (rv);
   2448 }
   2449