Home | History | Annotate | Line # | Download | only in pci
mly.c revision 1.37
      1 /*	$NetBSD: mly.c,v 1.37 2008/04/10 19:13:37 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 2000, 2001 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
     66  */
     67 
     68 /*
     69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
     70  *
     71  * TODO:
     72  *
     73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
     74  * o Handle FC and multiple LUNs.
     75  * o Fix mmbox usage.
     76  * o Fix transfer speed fudge.
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.37 2008/04/10 19:13:37 cegger Exp $");
     81 
     82 #include <sys/param.h>
     83 #include <sys/systm.h>
     84 #include <sys/device.h>
     85 #include <sys/kernel.h>
     86 #include <sys/queue.h>
     87 #include <sys/buf.h>
     88 #include <sys/endian.h>
     89 #include <sys/conf.h>
     90 #include <sys/malloc.h>
     91 #include <sys/ioctl.h>
     92 #include <sys/scsiio.h>
     93 #include <sys/kthread.h>
     94 #include <sys/kauth.h>
     95 
     96 #include <uvm/uvm_extern.h>
     97 
     98 #include <sys/bus.h>
     99 
    100 #include <dev/scsipi/scsi_all.h>
    101 #include <dev/scsipi/scsipi_all.h>
    102 #include <dev/scsipi/scsiconf.h>
    103 
    104 #include <dev/pci/pcireg.h>
    105 #include <dev/pci/pcivar.h>
    106 #include <dev/pci/pcidevs.h>
    107 
    108 #include <dev/pci/mlyreg.h>
    109 #include <dev/pci/mlyio.h>
    110 #include <dev/pci/mlyvar.h>
    111 #include <dev/pci/mly_tables.h>
    112 
    113 static void	mly_attach(struct device *, struct device *, void *);
    114 static int	mly_match(struct device *, struct cfdata *, void *);
    115 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
    116 static int	mly_fwhandshake(struct mly_softc *);
    117 static int	mly_flush(struct mly_softc *);
    118 static int	mly_intr(void *);
    119 static void	mly_shutdown(void *);
    120 
    121 static int	mly_alloc_ccbs(struct mly_softc *);
    122 static void	mly_check_event(struct mly_softc *);
    123 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
    124 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
    125 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
    126 				 void **, bus_addr_t *, bus_dma_segment_t *);
    127 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
    128 				void *, bus_dma_segment_t *);
    129 static int	mly_enable_mmbox(struct mly_softc *);
    130 static void	mly_fetch_event(struct mly_softc *);
    131 static int	mly_get_controllerinfo(struct mly_softc *);
    132 static int	mly_get_eventstatus(struct mly_softc *);
    133 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
    134 			  void **, size_t, void *, size_t *);
    135 static void	mly_padstr(char *, const char *, int);
    136 static void	mly_process_event(struct mly_softc *, struct mly_event *);
    137 static void	mly_release_ccbs(struct mly_softc *);
    138 static int	mly_scan_btl(struct mly_softc *, int, int);
    139 static void	mly_scan_channel(struct mly_softc *, int);
    140 static void	mly_thread(void *);
    141 
    142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
    143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
    144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
    145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
    146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
    147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
    148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
    149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
    150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
    151 
    152 static void	mly_get_xfer_mode(struct mly_softc *, int,
    153 				  struct scsipi_xfer_mode *);
    154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
    155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
    156 				 int, struct proc *);
    157 static void	mly_scsipi_minphys(struct buf *);
    158 static void	mly_scsipi_request(struct scsipi_channel *,
    159 				   scsipi_adapter_req_t, void *);
    160 
    161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
    162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
    163 
    164 extern struct	cfdriver mly_cd;
    165 
    166 CFATTACH_DECL(mly, sizeof(struct mly_softc),
    167     mly_match, mly_attach, NULL, NULL);
    168 
    169 dev_type_open(mlyopen);
    170 dev_type_close(mlyclose);
    171 dev_type_ioctl(mlyioctl);
    172 
    173 const struct cdevsw mly_cdevsw = {
    174 	mlyopen, mlyclose, noread, nowrite, mlyioctl,
    175 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
    176 };
    177 
    178 static struct mly_ident {
    179 	u_short	vendor;
    180 	u_short	product;
    181 	u_short	subvendor;
    182 	u_short	subproduct;
    183 	int	hwif;
    184 	const char	*desc;
    185 } const mly_ident[] = {
    186 	{
    187 		PCI_VENDOR_MYLEX,
    188 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    189 		PCI_VENDOR_MYLEX,
    190 		0x0040,
    191 		MLY_HWIF_STRONGARM,
    192 		"eXtremeRAID 2000"
    193 	},
    194 	{
    195 		PCI_VENDOR_MYLEX,
    196 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    197 		PCI_VENDOR_MYLEX,
    198 		0x0030,
    199 		MLY_HWIF_STRONGARM,
    200 		"eXtremeRAID 3000"
    201 	},
    202 	{
    203 		PCI_VENDOR_MYLEX,
    204 		PCI_PRODUCT_MYLEX_ACCELERAID,
    205 		PCI_VENDOR_MYLEX,
    206 		0x0050,
    207 		MLY_HWIF_I960RX,
    208 		"AcceleRAID 352"
    209 	},
    210 	{
    211 		PCI_VENDOR_MYLEX,
    212 		PCI_PRODUCT_MYLEX_ACCELERAID,
    213 		PCI_VENDOR_MYLEX,
    214 		0x0052,
    215 		MLY_HWIF_I960RX,
    216 		"AcceleRAID 170"
    217 	},
    218 	{
    219 		PCI_VENDOR_MYLEX,
    220 		PCI_PRODUCT_MYLEX_ACCELERAID,
    221 		PCI_VENDOR_MYLEX,
    222 		0x0054,
    223 		MLY_HWIF_I960RX,
    224 		"AcceleRAID 160"
    225 	},
    226 };
    227 
    228 static void	*mly_sdh;
    229 
    230 /*
    231  * Try to find a `mly_ident' entry corresponding to this board.
    232  */
    233 static const struct mly_ident *
    234 mly_find_ident(struct pci_attach_args *pa)
    235 {
    236 	const struct mly_ident *mpi, *maxmpi;
    237 	pcireg_t reg;
    238 
    239 	mpi = mly_ident;
    240 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
    241 
    242 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    243 		return (NULL);
    244 
    245 	for (; mpi < maxmpi; mpi++) {
    246 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
    247 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
    248 			continue;
    249 
    250 		if (mpi->subvendor == 0x0000)
    251 			return (mpi);
    252 
    253 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    254 
    255 		if (PCI_VENDOR(reg) == mpi->subvendor &&
    256 		    PCI_PRODUCT(reg) == mpi->subproduct)
    257 			return (mpi);
    258 	}
    259 
    260 	return (NULL);
    261 }
    262 
    263 /*
    264  * Match a supported board.
    265  */
    266 static int
    267 mly_match(struct device *parent, struct cfdata *cfdata,
    268     void *aux)
    269 {
    270 
    271 	return (mly_find_ident(aux) != NULL);
    272 }
    273 
    274 /*
    275  * Attach a supported board.
    276  */
    277 static void
    278 mly_attach(struct device *parent, struct device *self, void *aux)
    279 {
    280 	struct pci_attach_args *pa;
    281 	struct mly_softc *mly;
    282 	struct mly_ioctl_getcontrollerinfo *mi;
    283 	const struct mly_ident *ident;
    284 	pci_chipset_tag_t pc;
    285 	pci_intr_handle_t ih;
    286 	bus_space_handle_t memh, ioh;
    287 	bus_space_tag_t memt, iot;
    288 	pcireg_t reg;
    289 	const char *intrstr;
    290 	int ior, memr, i, rv, state;
    291 	struct scsipi_adapter *adapt;
    292 	struct scsipi_channel *chan;
    293 
    294 	mly = (struct mly_softc *)self;
    295 	pa = aux;
    296 	pc = pa->pa_pc;
    297 	ident = mly_find_ident(pa);
    298 	state = 0;
    299 
    300 	mly->mly_dmat = pa->pa_dmat;
    301 	mly->mly_hwif = ident->hwif;
    302 
    303 	printf(": Mylex %s\n", ident->desc);
    304 
    305 	/*
    306 	 * Map the PCI register window.
    307 	 */
    308 	memr = -1;
    309 	ior = -1;
    310 
    311 	for (i = 0x10; i <= 0x14; i += 4) {
    312 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
    313 
    314 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    315 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
    316 				ior = i;
    317 		} else {
    318 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
    319 				memr = i;
    320 		}
    321 	}
    322 
    323 	if (memr != -1)
    324 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
    325 		    &memt, &memh, NULL, NULL))
    326 			memr = -1;
    327 	if (ior != -1)
    328 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
    329 		    &iot, &ioh, NULL, NULL))
    330 		    	ior = -1;
    331 
    332 	if (memr != -1) {
    333 		mly->mly_iot = memt;
    334 		mly->mly_ioh = memh;
    335 	} else if (ior != -1) {
    336 		mly->mly_iot = iot;
    337 		mly->mly_ioh = ioh;
    338 	} else {
    339 		aprint_error_dev(self, "can't map i/o or memory space\n");
    340 		return;
    341 	}
    342 
    343 	/*
    344 	 * Enable the device.
    345 	 */
    346 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    347 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    348 	    reg | PCI_COMMAND_MASTER_ENABLE);
    349 
    350 	/*
    351 	 * Map and establish the interrupt.
    352 	 */
    353 	if (pci_intr_map(pa, &ih)) {
    354 		aprint_error_dev(self, "can't map interrupt\n");
    355 		return;
    356 	}
    357 	intrstr = pci_intr_string(pc, ih);
    358 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
    359 	if (mly->mly_ih == NULL) {
    360 		aprint_error_dev(self, "can't establish interrupt");
    361 		if (intrstr != NULL)
    362 			printf(" at %s", intrstr);
    363 		printf("\n");
    364 		return;
    365 	}
    366 
    367 	if (intrstr != NULL)
    368 		printf("%s: interrupting at %s\n", device_xname(&mly->mly_dv),
    369 		    intrstr);
    370 
    371 	/*
    372 	 * Take care of interface-specific tasks.
    373 	 */
    374 	switch (mly->mly_hwif) {
    375 	case MLY_HWIF_I960RX:
    376 		mly->mly_doorbell_true = 0x00;
    377 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
    378 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
    379 		mly->mly_idbr = MLY_I960RX_IDBR;
    380 		mly->mly_odbr = MLY_I960RX_ODBR;
    381 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
    382 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
    383 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
    384 		break;
    385 
    386 	case MLY_HWIF_STRONGARM:
    387 		mly->mly_doorbell_true = 0xff;
    388 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
    389 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
    390 		mly->mly_idbr = MLY_STRONGARM_IDBR;
    391 		mly->mly_odbr = MLY_STRONGARM_ODBR;
    392 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
    393 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
    394 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
    395 		break;
    396 	}
    397 
    398 	/*
    399 	 * Allocate and map the scatter/gather lists.
    400 	 */
    401 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    402 	    &mly->mly_sg_dmamap, (void **)&mly->mly_sg,
    403 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
    404 	if (rv) {
    405 		printf("%s: unable to allocate S/G maps\n",
    406 		    device_xname(&mly->mly_dv));
    407 		goto bad;
    408 	}
    409 	state++;
    410 
    411 	/*
    412 	 * Allocate and map the memory mailbox.
    413 	 */
    414 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
    415 	    &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
    416 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
    417 	if (rv) {
    418 		aprint_error_dev(&mly->mly_dv, "unable to allocate mailboxes\n");
    419 		goto bad;
    420 	}
    421 	state++;
    422 
    423 	/*
    424 	 * Initialise per-controller queues.
    425 	 */
    426 	SLIST_INIT(&mly->mly_ccb_free);
    427 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
    428 
    429 	/*
    430 	 * Disable interrupts before we start talking to the controller.
    431 	 */
    432 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
    433 
    434 	/*
    435 	 * Wait for the controller to come ready, handshaking with the
    436 	 * firmware if required.  This is typically only necessary on
    437 	 * platforms where the controller BIOS does not run.
    438 	 */
    439 	if (mly_fwhandshake(mly)) {
    440 		aprint_error_dev(&mly->mly_dv, "unable to bring controller online\n");
    441 		goto bad;
    442 	}
    443 
    444 	/*
    445 	 * Allocate initial command buffers, obtain controller feature
    446 	 * information, and then reallocate command buffers, since we'll
    447 	 * know how many we want.
    448 	 */
    449 	if (mly_alloc_ccbs(mly)) {
    450 		aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
    451 		goto bad;
    452 	}
    453 	state++;
    454 	if (mly_get_controllerinfo(mly)) {
    455 		aprint_error_dev(&mly->mly_dv, "unable to retrieve controller info\n");
    456 		goto bad;
    457 	}
    458 	mly_release_ccbs(mly);
    459 	if (mly_alloc_ccbs(mly)) {
    460 		aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
    461 		state--;
    462 		goto bad;
    463 	}
    464 
    465 	/*
    466 	 * Get the current event counter for health purposes, populate the
    467 	 * initial health status buffer.
    468 	 */
    469 	if (mly_get_eventstatus(mly)) {
    470 		aprint_error_dev(&mly->mly_dv, "unable to retrieve event status\n");
    471 		goto bad;
    472 	}
    473 
    474 	/*
    475 	 * Enable memory-mailbox mode.
    476 	 */
    477 	if (mly_enable_mmbox(mly)) {
    478 		aprint_error_dev(&mly->mly_dv, "unable to enable memory mailbox\n");
    479 		goto bad;
    480 	}
    481 
    482 	/*
    483 	 * Print a little information about the controller.
    484 	 */
    485 	mi = mly->mly_controllerinfo;
    486 
    487 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
    488 	    "(%02d%02d%02d%02d), %dMB RAM\n", device_xname(&mly->mly_dv),
    489 	    mi->physical_channels_present,
    490 	    (mi->physical_channels_present) > 1 ? "s" : "",
    491 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
    492 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
    493 	    le16toh(mi->memory_size));
    494 
    495 	/*
    496 	 * Register our `shutdownhook'.
    497 	 */
    498 	if (mly_sdh == NULL)
    499 		shutdownhook_establish(mly_shutdown, NULL);
    500 
    501 	/*
    502 	 * Clear any previous BTL information.  For each bus that scsipi
    503 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
    504 	 * all BTL info at that point.
    505 	 */
    506 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
    507 
    508 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
    509 	    mly->mly_controllerinfo->virtual_channels_present;
    510 
    511 	/*
    512 	 * Attach to scsipi.
    513 	 */
    514 	adapt = &mly->mly_adapt;
    515 	memset(adapt, 0, sizeof(*adapt));
    516 	adapt->adapt_dev = &mly->mly_dv;
    517 	adapt->adapt_nchannels = mly->mly_nchans;
    518 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
    519 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
    520 	adapt->adapt_request = mly_scsipi_request;
    521 	adapt->adapt_minphys = mly_scsipi_minphys;
    522 	adapt->adapt_ioctl = mly_scsipi_ioctl;
    523 
    524 	for (i = 0; i < mly->mly_nchans; i++) {
    525 		chan = &mly->mly_chans[i];
    526 		memset(chan, 0, sizeof(*chan));
    527 		chan->chan_adapter = adapt;
    528 		chan->chan_bustype = &scsi_bustype;
    529 		chan->chan_channel = i;
    530 		chan->chan_ntargets = MLY_MAX_TARGETS;
    531 		chan->chan_nluns = MLY_MAX_LUNS;
    532 		chan->chan_id = mly->mly_controllerparam->initiator_id;
    533 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
    534 		config_found(&mly->mly_dv, chan, scsiprint);
    535 	}
    536 
    537 	/*
    538 	 * Now enable interrupts...
    539 	 */
    540 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
    541 
    542 	/*
    543 	 * Finally, create our monitoring thread.
    544 	 */
    545 	mly->mly_state |= MLY_STATE_INITOK;
    546 	rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
    547 	    &mly->mly_thread, "%s", device_xname(&mly->mly_dv));
    548  	if (rv != 0)
    549 		aprint_error_dev(&mly->mly_dv, "unable to create thread (%d)\n",
    550 		    rv);
    551 	return;
    552 
    553  bad:
    554 	if (state > 2)
    555 		mly_release_ccbs(mly);
    556 	if (state > 1)
    557 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
    558 		    mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
    559 		    &mly->mly_mmbox_seg);
    560 	if (state > 0)
    561 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    562 		    mly->mly_sg_dmamap, (void *)mly->mly_sg,
    563 		    &mly->mly_sg_seg);
    564 }
    565 
    566 /*
    567  * Scan all possible devices on the specified channel.
    568  */
    569 static void
    570 mly_scan_channel(struct mly_softc *mly, int bus)
    571 {
    572 	int s, target;
    573 
    574 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
    575 		s = splbio();
    576 		if (!mly_scan_btl(mly, bus, target)) {
    577 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
    578 			    0);
    579 		}
    580 		splx(s);
    581 	}
    582 }
    583 
    584 /*
    585  * Shut down all configured `mly' devices.
    586  */
    587 static void
    588 mly_shutdown(void *cookie)
    589 {
    590 	struct mly_softc *mly;
    591 	int i;
    592 
    593 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
    594 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
    595 			continue;
    596 
    597 		if (mly_flush(mly))
    598 			aprint_error_dev(&mly->mly_dv, "unable to flush cache\n");
    599 	}
    600 }
    601 
    602 /*
    603  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
    604  * softc.
    605  */
    606 static int
    607 mly_get_controllerinfo(struct mly_softc *mly)
    608 {
    609 	struct mly_cmd_ioctl mci;
    610 	int rv;
    611 
    612 	/*
    613 	 * Build the getcontrollerinfo ioctl and send it.
    614 	 */
    615 	memset(&mci, 0, sizeof(mci));
    616 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
    617 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
    618 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
    619 	if (rv != 0)
    620 		return (rv);
    621 
    622 	/*
    623 	 * Build the getcontrollerparameter ioctl and send it.
    624 	 */
    625 	memset(&mci, 0, sizeof(mci));
    626 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
    627 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
    628 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
    629 
    630 	return (rv);
    631 }
    632 
    633 /*
    634  * Rescan a device, possibly as a consequence of getting an event which
    635  * suggests that it may have changed.  Must be called with interrupts
    636  * blocked.
    637  */
    638 static int
    639 mly_scan_btl(struct mly_softc *mly, int bus, int target)
    640 {
    641 	struct mly_ccb *mc;
    642 	struct mly_cmd_ioctl *mci;
    643 	int rv;
    644 
    645 	if (target == mly->mly_controllerparam->initiator_id) {
    646 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
    647 		return (EIO);
    648 	}
    649 
    650 	/* Don't re-scan if a scan is already in progress. */
    651 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
    652 		return (EBUSY);
    653 
    654 	/* Get a command. */
    655 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    656 		return (rv);
    657 
    658 	/* Set up the data buffer. */
    659 	mc->mc_data = malloc(sizeof(union mly_devinfo),
    660 	    M_DEVBUF, M_NOWAIT|M_ZERO);
    661 
    662 	mc->mc_flags |= MLY_CCB_DATAIN;
    663 	mc->mc_complete = mly_complete_rescan;
    664 
    665 	/*
    666 	 * Build the ioctl.
    667 	 */
    668 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    669 	mci->opcode = MDACMD_IOCTL;
    670 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    671 	memset(&mci->param, 0, sizeof(mci->param));
    672 
    673 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
    674 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
    675 		mci->data_size = htole32(mc->mc_length);
    676 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
    677 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
    678 		    mci->addr);
    679 	} else {
    680 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
    681 		mci->data_size = htole32(mc->mc_length);
    682 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
    683 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
    684 	}
    685 
    686 	/*
    687 	 * Dispatch the command.
    688 	 */
    689 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
    690 		free(mc->mc_data, M_DEVBUF);
    691 		mly_ccb_free(mly, mc);
    692 		return(rv);
    693 	}
    694 
    695 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
    696 	mly_ccb_enqueue(mly, mc);
    697 	return (0);
    698 }
    699 
    700 /*
    701  * Handle the completion of a rescan operation.
    702  */
    703 static void
    704 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
    705 {
    706 	struct mly_ioctl_getlogdevinfovalid *ldi;
    707 	struct mly_ioctl_getphysdevinfovalid *pdi;
    708 	struct mly_cmd_ioctl *mci;
    709 	struct mly_btl btl, *btlp;
    710 	struct scsipi_xfer_mode xm;
    711 	int bus, target, rescan;
    712 	u_int tmp;
    713 
    714 	mly_ccb_unmap(mly, mc);
    715 
    716 	/*
    717 	 * Recover the bus and target from the command.  We need these even
    718 	 * in the case where we don't have a useful response.
    719 	 */
    720 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    721 	tmp = _3ltol(mci->addr);
    722 	rescan = 0;
    723 
    724 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
    725 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
    726 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
    727 	} else {
    728 		bus = MLY_PHYADDR_CHANNEL(tmp);
    729 		target = MLY_PHYADDR_TARGET(tmp);
    730 	}
    731 
    732 	btlp = &mly->mly_btl[bus][target];
    733 
    734 	/* The default result is 'no device'. */
    735 	memset(&btl, 0, sizeof(btl));
    736 	btl.mb_flags = MLY_BTL_PROTECTED;
    737 
    738 	/* If the rescan completed OK, we have possibly-new BTL data. */
    739 	if (mc->mc_status != 0)
    740 		goto out;
    741 
    742 	if (mc->mc_length == sizeof(*ldi)) {
    743 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
    744 		tmp = le32toh(ldi->logical_device_number);
    745 
    746 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
    747 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
    748 #ifdef MLYDEBUG
    749 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
    750 			    "returned data for %d:%d instead\n",
    751 			   device_xname(&mly->mly_dv), bus, target,
    752 			   MLY_LOGDEV_BUS(mly, tmp),
    753 			   MLY_LOGDEV_TARGET(mly, tmp));
    754 #endif
    755 			goto out;
    756 		}
    757 
    758 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
    759 		btl.mb_type = ldi->raid_level;
    760 		btl.mb_state = ldi->state;
    761 	} else if (mc->mc_length == sizeof(*pdi)) {
    762 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
    763 
    764 		if (pdi->channel != bus || pdi->target != target) {
    765 #ifdef MLYDEBUG
    766 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
    767 			    " returned data for %d:%d instead\n",
    768 			   device_xname(&mly->mly_dv),
    769 			   bus, target, pdi->channel, pdi->target);
    770 #endif
    771 			goto out;
    772 		}
    773 
    774 		btl.mb_flags = MLY_BTL_PHYSICAL;
    775 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
    776 		btl.mb_state = pdi->state;
    777 		btl.mb_speed = pdi->speed;
    778 		btl.mb_width = pdi->width;
    779 
    780 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
    781 			btl.mb_flags |= MLY_BTL_PROTECTED;
    782 		if (pdi->command_tags != 0)
    783 			btl.mb_flags |= MLY_BTL_TQING;
    784 	} else {
    785 		printf("%s: BTL rescan result invalid\n", device_xname(&mly->mly_dv));
    786 		goto out;
    787 	}
    788 
    789 	/* Decide whether we need to rescan the device. */
    790 	if (btl.mb_flags != btlp->mb_flags ||
    791 	    btl.mb_speed != btlp->mb_speed ||
    792 	    btl.mb_width != btlp->mb_width)
    793 		rescan = 1;
    794 
    795  out:
    796 	*btlp = btl;
    797 
    798 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
    799 		xm.xm_target = target;
    800 		mly_get_xfer_mode(mly, bus, &xm);
    801 		/* XXX SCSI mid-layer rescan goes here. */
    802 	}
    803 
    804 	/* Wake anybody waiting on the device to be rescanned. */
    805 	wakeup(btlp);
    806 
    807 	free(mc->mc_data, M_DEVBUF);
    808 	mly_ccb_free(mly, mc);
    809 }
    810 
    811 /*
    812  * Get the current health status and set the 'next event' counter to suit.
    813  */
    814 static int
    815 mly_get_eventstatus(struct mly_softc *mly)
    816 {
    817 	struct mly_cmd_ioctl mci;
    818 	struct mly_health_status *mh;
    819 	int rv;
    820 
    821 	/* Build the gethealthstatus ioctl and send it. */
    822 	memset(&mci, 0, sizeof(mci));
    823 	mh = NULL;
    824 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
    825 
    826 	rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
    827 	if (rv)
    828 		return (rv);
    829 
    830 	/* Get the event counter. */
    831 	mly->mly_event_change = le32toh(mh->change_counter);
    832 	mly->mly_event_waiting = le32toh(mh->next_event);
    833 	mly->mly_event_counter = le32toh(mh->next_event);
    834 
    835 	/* Save the health status into the memory mailbox */
    836 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
    837 
    838 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    839 	    offsetof(struct mly_mmbox, mmm_health),
    840 	    sizeof(mly->mly_mmbox->mmm_health),
    841 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    842 
    843 	free(mh, M_DEVBUF);
    844 	return (0);
    845 }
    846 
    847 /*
    848  * Enable memory mailbox mode.
    849  */
    850 static int
    851 mly_enable_mmbox(struct mly_softc *mly)
    852 {
    853 	struct mly_cmd_ioctl mci;
    854 	u_int8_t *sp;
    855 	u_int64_t tmp;
    856 	int rv;
    857 
    858 	/* Build the ioctl and send it. */
    859 	memset(&mci, 0, sizeof(mci));
    860 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
    861 
    862 	/* Set buffer addresses. */
    863 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
    864 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
    865 
    866 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
    867 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
    868 
    869 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
    870 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
    871 
    872 	/* Set buffer sizes - abuse of data_size field is revolting. */
    873 	sp = (u_int8_t *)&mci.data_size;
    874 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
    875 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
    876 	mci.param.setmemorymailbox.health_buffer_size =
    877 	    sizeof(union mly_health_region) >> 10;
    878 
    879 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
    880 	if (rv)
    881 		return (rv);
    882 
    883 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
    884 	return (0);
    885 }
    886 
    887 /*
    888  * Flush all pending I/O from the controller.
    889  */
    890 static int
    891 mly_flush(struct mly_softc *mly)
    892 {
    893 	struct mly_cmd_ioctl mci;
    894 
    895 	/* Build the ioctl */
    896 	memset(&mci, 0, sizeof(mci));
    897 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
    898 	mci.param.deviceoperation.operation_device =
    899 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
    900 
    901 	/* Pass it off to the controller */
    902 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
    903 }
    904 
    905 /*
    906  * Perform an ioctl command.
    907  *
    908  * If (data) is not NULL, the command requires data transfer to the
    909  * controller.  If (*data) is NULL the command requires data transfer from
    910  * the controller, and we will allocate a buffer for it.
    911  */
    912 static int
    913 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
    914 	  size_t datasize, void *sense_buffer,
    915 	  size_t *sense_length)
    916 {
    917 	struct mly_ccb *mc;
    918 	struct mly_cmd_ioctl *mci;
    919 	u_int8_t status;
    920 	int rv;
    921 
    922 	mc = NULL;
    923 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    924 		goto bad;
    925 
    926 	/*
    927 	 * Copy the ioctl structure, but save some important fields and then
    928 	 * fixup.
    929 	 */
    930 	mci = &mc->mc_packet->ioctl;
    931 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
    932 	ioctl->maximum_sense_size = mci->maximum_sense_size;
    933 	*mci = *ioctl;
    934 	mci->opcode = MDACMD_IOCTL;
    935 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    936 
    937 	/* Handle the data buffer. */
    938 	if (data != NULL) {
    939 		if (*data == NULL) {
    940 			/* Allocate data buffer */
    941 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
    942 			mc->mc_flags |= MLY_CCB_DATAIN;
    943 		} else {
    944 			mc->mc_data = *data;
    945 			mc->mc_flags |= MLY_CCB_DATAOUT;
    946 		}
    947 		mc->mc_length = datasize;
    948 		mc->mc_packet->generic.data_size = htole32(datasize);
    949 	}
    950 
    951 	/* Run the command. */
    952 	if (datasize > 0)
    953 		if ((rv = mly_ccb_map(mly, mc)) != 0)
    954 			goto bad;
    955 	rv = mly_ccb_poll(mly, mc, 30000);
    956 	if (datasize > 0)
    957 		mly_ccb_unmap(mly, mc);
    958 	if (rv != 0)
    959 		goto bad;
    960 
    961 	/* Clean up and return any data. */
    962 	status = mc->mc_status;
    963 
    964 	if (status != 0)
    965 		printf("mly_ioctl: command status %d\n", status);
    966 
    967 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
    968 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
    969 		*sense_length = mc->mc_sense;
    970 		goto bad;
    971 	}
    972 
    973 	/* Should we return a data pointer? */
    974 	if (data != NULL && *data == NULL)
    975 		*data = mc->mc_data;
    976 
    977 	/* Command completed OK. */
    978 	rv = (status != 0 ? EIO : 0);
    979 
    980  bad:
    981 	if (mc != NULL) {
    982 		/* Do we need to free a data buffer we allocated? */
    983 		if (rv != 0 && mc->mc_data != NULL &&
    984 		    (data == NULL || *data == NULL))
    985 			free(mc->mc_data, M_DEVBUF);
    986 		mly_ccb_free(mly, mc);
    987 	}
    988 
    989 	return (rv);
    990 }
    991 
    992 /*
    993  * Check for event(s) outstanding in the controller.
    994  */
    995 static void
    996 mly_check_event(struct mly_softc *mly)
    997 {
    998 
    999 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1000 	    offsetof(struct mly_mmbox, mmm_health),
   1001 	    sizeof(mly->mly_mmbox->mmm_health),
   1002 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1003 
   1004 	/*
   1005 	 * The controller may have updated the health status information, so
   1006 	 * check for it here.  Note that the counters are all in host
   1007 	 * memory, so this check is very cheap.  Also note that we depend on
   1008 	 * checking on completion
   1009 	 */
   1010 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
   1011 	    mly->mly_event_change) {
   1012 		mly->mly_event_change =
   1013 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
   1014 		mly->mly_event_waiting =
   1015 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
   1016 
   1017 		/* Wake up anyone that might be interested in this. */
   1018 		wakeup(&mly->mly_event_change);
   1019 	}
   1020 
   1021 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1022 	    offsetof(struct mly_mmbox, mmm_health),
   1023 	    sizeof(mly->mly_mmbox->mmm_health),
   1024 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1025 
   1026 	if (mly->mly_event_counter != mly->mly_event_waiting)
   1027 		mly_fetch_event(mly);
   1028 }
   1029 
   1030 /*
   1031  * Fetch one event from the controller.  If we fail due to resource
   1032  * starvation, we'll be retried the next time a command completes.
   1033  */
   1034 static void
   1035 mly_fetch_event(struct mly_softc *mly)
   1036 {
   1037 	struct mly_ccb *mc;
   1038 	struct mly_cmd_ioctl *mci;
   1039 	int s;
   1040 	u_int32_t event;
   1041 
   1042 	/* Get a command. */
   1043 	if (mly_ccb_alloc(mly, &mc))
   1044 		return;
   1045 
   1046 	/* Set up the data buffer. */
   1047 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
   1048 	    M_NOWAIT|M_ZERO);
   1049 
   1050 	mc->mc_length = sizeof(struct mly_event);
   1051 	mc->mc_flags |= MLY_CCB_DATAIN;
   1052 	mc->mc_complete = mly_complete_event;
   1053 
   1054 	/*
   1055 	 * Get an event number to fetch.  It's possible that we've raced
   1056 	 * with another context for the last event, in which case there will
   1057 	 * be no more events.
   1058 	 */
   1059 	s = splbio();
   1060 	if (mly->mly_event_counter == mly->mly_event_waiting) {
   1061 		splx(s);
   1062 		free(mc->mc_data, M_DEVBUF);
   1063 		mly_ccb_free(mly, mc);
   1064 		return;
   1065 	}
   1066 	event = mly->mly_event_counter++;
   1067 	splx(s);
   1068 
   1069 	/*
   1070 	 * Build the ioctl.
   1071 	 *
   1072 	 * At this point we are committed to sending this request, as it
   1073 	 * will be the only one constructed for this particular event
   1074 	 * number.
   1075 	 */
   1076 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
   1077 	mci->opcode = MDACMD_IOCTL;
   1078 	mci->data_size = htole32(sizeof(struct mly_event));
   1079 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
   1080 	    mci->addr);
   1081 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
   1082 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
   1083 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
   1084 
   1085 	/*
   1086 	 * Submit the command.
   1087 	 */
   1088 	if (mly_ccb_map(mly, mc) != 0)
   1089 		goto bad;
   1090 	mly_ccb_enqueue(mly, mc);
   1091 	return;
   1092 
   1093  bad:
   1094 	printf("%s: couldn't fetch event %u\n", device_xname(&mly->mly_dv), event);
   1095 	free(mc->mc_data, M_DEVBUF);
   1096 	mly_ccb_free(mly, mc);
   1097 }
   1098 
   1099 /*
   1100  * Handle the completion of an event poll.
   1101  */
   1102 static void
   1103 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
   1104 {
   1105 	struct mly_event *me;
   1106 
   1107 	me = (struct mly_event *)mc->mc_data;
   1108 	mly_ccb_unmap(mly, mc);
   1109 	mly_ccb_free(mly, mc);
   1110 
   1111 	/* If the event was successfully fetched, process it. */
   1112 	if (mc->mc_status == SCSI_OK)
   1113 		mly_process_event(mly, me);
   1114 	else
   1115 		aprint_error_dev(&mly->mly_dv, "unable to fetch event; status = 0x%x\n",
   1116 		    mc->mc_status);
   1117 
   1118 	free(me, M_DEVBUF);
   1119 
   1120 	/* Check for another event. */
   1121 	mly_check_event(mly);
   1122 }
   1123 
   1124 /*
   1125  * Process a controller event.  Called with interrupts blocked (i.e., at
   1126  * interrupt time).
   1127  */
   1128 static void
   1129 mly_process_event(struct mly_softc *mly, struct mly_event *me)
   1130 {
   1131 	struct scsi_sense_data *ssd;
   1132 	int bus, target, event, class, action;
   1133 	const char *fp, *tp;
   1134 
   1135 	ssd = (struct scsi_sense_data *)&me->sense[0];
   1136 
   1137 	/*
   1138 	 * Errors can be reported using vendor-unique sense data.  In this
   1139 	 * case, the event code will be 0x1c (Request sense data present),
   1140 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
   1141 	 * will be set, and the actual event code will be a 16-bit value
   1142 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
   1143 	 * (low seven bits of the high byte).
   1144 	 */
   1145 	if (le32toh(me->code) == 0x1c &&
   1146 	    SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
   1147 	    (ssd->asc & 0x80) != 0) {
   1148 		event = ((int)(ssd->asc & ~0x80) << 8) +
   1149 		    ssd->ascq;
   1150 	} else
   1151 		event = le32toh(me->code);
   1152 
   1153 	/* Look up event, get codes. */
   1154 	fp = mly_describe_code(mly_table_event, event);
   1155 
   1156 	/* Quiet event? */
   1157 	class = fp[0];
   1158 #ifdef notyet
   1159 	if (isupper(class) && bootverbose)
   1160 		class = tolower(class);
   1161 #endif
   1162 
   1163 	/* Get action code, text string. */
   1164 	action = fp[1];
   1165 	tp = fp + 3;
   1166 
   1167 	/*
   1168 	 * Print some information about the event.
   1169 	 *
   1170 	 * This code uses a table derived from the corresponding portion of
   1171 	 * the Linux driver, and thus the parser is very similar.
   1172 	 */
   1173 	switch (class) {
   1174 	case 'p':
   1175 		/*
   1176 		 * Error on physical drive.
   1177 		 */
   1178 		printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
   1179 		    me->channel, me->target, tp);
   1180 		if (action == 'r')
   1181 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1182 			    MLY_BTL_RESCAN;
   1183 		break;
   1184 
   1185 	case 'l':
   1186 	case 'm':
   1187 		/*
   1188 		 * Error on logical unit, or message about logical unit.
   1189 	 	 */
   1190 		bus = MLY_LOGDEV_BUS(mly, me->lun);
   1191 		target = MLY_LOGDEV_TARGET(mly, me->lun);
   1192 		printf("%s: logical device %d:%d %s\n", device_xname(&mly->mly_dv),
   1193 		    bus, target, tp);
   1194 		if (action == 'r')
   1195 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
   1196 		break;
   1197 
   1198 	case 's':
   1199 		/*
   1200 		 * Report of sense data.
   1201 		 */
   1202 		if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
   1203 		     SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
   1204 		    ssd->asc == 0x04 &&
   1205 		    (ssd->ascq == 0x01 ||
   1206 		     ssd->ascq == 0x02)) {
   1207 			/* Ignore NO_SENSE or NOT_READY in one case */
   1208 			break;
   1209 		}
   1210 
   1211 		/*
   1212 		 * XXX Should translate this if SCSIVERBOSE.
   1213 		 */
   1214 		printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
   1215 		    me->channel, me->target, tp);
   1216 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
   1217 		    device_xname(&mly->mly_dv), SSD_SENSE_KEY(ssd->flags),
   1218 		    ssd->asc, ssd->ascq);
   1219 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
   1220 		    device_xname(&mly->mly_dv), ssd->info[0], ssd->info[1],
   1221 		    ssd->info[2], ssd->info[3], ssd->csi[0],
   1222 		    ssd->csi[1], ssd->csi[2],
   1223 		    ssd->csi[3]);
   1224 		if (action == 'r')
   1225 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1226 			    MLY_BTL_RESCAN;
   1227 		break;
   1228 
   1229 	case 'e':
   1230 		printf("%s: ", device_xname(&mly->mly_dv));
   1231 		printf(tp, me->target, me->lun);
   1232 		break;
   1233 
   1234 	case 'c':
   1235 		printf("%s: controller %s\n", device_xname(&mly->mly_dv), tp);
   1236 		break;
   1237 
   1238 	case '?':
   1239 		printf("%s: %s - %d\n", device_xname(&mly->mly_dv), tp, event);
   1240 		break;
   1241 
   1242 	default:
   1243 		/* Probably a 'noisy' event being ignored. */
   1244 		break;
   1245 	}
   1246 }
   1247 
   1248 /*
   1249  * Perform periodic activities.
   1250  */
   1251 static void
   1252 mly_thread(void *cookie)
   1253 {
   1254 	struct mly_softc *mly;
   1255 	struct mly_btl *btl;
   1256 	int s, bus, target, done;
   1257 
   1258 	mly = (struct mly_softc *)cookie;
   1259 
   1260 	for (;;) {
   1261 		/* Check for new events. */
   1262 		mly_check_event(mly);
   1263 
   1264 		/* Re-scan up to 1 device. */
   1265 		s = splbio();
   1266 		done = 0;
   1267 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
   1268 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
   1269 				/* Perform device rescan? */
   1270 				btl = &mly->mly_btl[bus][target];
   1271 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
   1272 					btl->mb_flags ^= MLY_BTL_RESCAN;
   1273 					mly_scan_btl(mly, bus, target);
   1274 					done = 1;
   1275 					break;
   1276 				}
   1277 			}
   1278 		}
   1279 		splx(s);
   1280 
   1281 		/* Sleep for N seconds. */
   1282 		tsleep(mly_thread, PWAIT, "mlyzzz",
   1283 		    hz * MLY_PERIODIC_INTERVAL);
   1284 	}
   1285 }
   1286 
   1287 /*
   1288  * Submit a command to the controller and poll on completion.  Return
   1289  * non-zero on timeout.
   1290  */
   1291 static int
   1292 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1293 {
   1294 	int rv;
   1295 
   1296 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
   1297 		return (rv);
   1298 
   1299 	for (timo *= 10; timo != 0; timo--) {
   1300 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
   1301 			break;
   1302 		mly_intr(mly);
   1303 		DELAY(100);
   1304 	}
   1305 
   1306 	return (timo == 0);
   1307 }
   1308 
   1309 /*
   1310  * Submit a command to the controller and sleep on completion.  Return
   1311  * non-zero on timeout.
   1312  */
   1313 static int
   1314 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1315 {
   1316 	int rv, s;
   1317 
   1318 	mly_ccb_enqueue(mly, mc);
   1319 
   1320 	s = splbio();
   1321 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
   1322 		splx(s);
   1323 		return (0);
   1324 	}
   1325 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
   1326 	splx(s);
   1327 
   1328 	return (rv);
   1329 }
   1330 
   1331 /*
   1332  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1333  * the order that they were enqueued and try to submit their command blocks
   1334  * to the controller for execution.
   1335  */
   1336 void
   1337 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
   1338 {
   1339 	int s;
   1340 
   1341 	s = splbio();
   1342 
   1343 	if (mc != NULL)
   1344 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1345 
   1346 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
   1347 		if (mly_ccb_submit(mly, mc))
   1348 			break;
   1349 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
   1350 	}
   1351 
   1352 	splx(s);
   1353 }
   1354 
   1355 /*
   1356  * Deliver a command to the controller.
   1357  */
   1358 static int
   1359 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
   1360 {
   1361 	union mly_cmd_packet *pkt;
   1362 	int s, off;
   1363 
   1364 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
   1365 
   1366 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1367 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1368 	    sizeof(union mly_cmd_packet),
   1369 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1370 
   1371 	s = splbio();
   1372 
   1373 	/*
   1374 	 * Do we have to use the hardware mailbox?
   1375 	 */
   1376 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
   1377 		/*
   1378 		 * Check to see if the controller is ready for us.
   1379 		 */
   1380 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
   1381 			splx(s);
   1382 			return (EBUSY);
   1383 		}
   1384 
   1385 		/*
   1386 		 * It's ready, send the command.
   1387 		 */
   1388 		mly_outl(mly, mly->mly_cmd_mailbox,
   1389 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
   1390 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
   1391 		    (u_int64_t)mc->mc_packetphys >> 32);
   1392 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
   1393 	} else {
   1394 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
   1395 		off = (char *)pkt - (char *)mly->mly_mmbox;
   1396 
   1397 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1398 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1399 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1400 
   1401 		/* Check to see if the next index is free yet. */
   1402 		if (pkt->mmbox.flag != 0) {
   1403 			splx(s);
   1404 			return (EBUSY);
   1405 		}
   1406 
   1407 		/* Copy in new command */
   1408 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
   1409 		    sizeof(pkt->mmbox.data));
   1410 
   1411 		/* Copy flag last. */
   1412 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
   1413 
   1414 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1415 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1416 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1417 
   1418 		/* Signal controller and update index. */
   1419 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
   1420 		mly->mly_mmbox_cmd_idx =
   1421 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
   1422 	}
   1423 
   1424 	splx(s);
   1425 	return (0);
   1426 }
   1427 
   1428 /*
   1429  * Pick up completed commands from the controller and handle accordingly.
   1430  */
   1431 int
   1432 mly_intr(void *cookie)
   1433 {
   1434 	struct mly_ccb *mc;
   1435 	union mly_status_packet	*sp;
   1436 	u_int16_t slot;
   1437 	int forus, off;
   1438 	struct mly_softc *mly;
   1439 
   1440 	mly = cookie;
   1441 	forus = 0;
   1442 
   1443 	/*
   1444 	 * Pick up hardware-mailbox commands.
   1445 	 */
   1446 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
   1447 		slot = mly_inw(mly, mly->mly_status_mailbox);
   1448 
   1449 		if (slot < MLY_SLOT_MAX) {
   1450 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1451 			mc->mc_status =
   1452 			    mly_inb(mly, mly->mly_status_mailbox + 2);
   1453 			mc->mc_sense =
   1454 			    mly_inb(mly, mly->mly_status_mailbox + 3);
   1455 			mc->mc_resid =
   1456 			    mly_inl(mly, mly->mly_status_mailbox + 4);
   1457 
   1458 			mly_ccb_complete(mly, mc);
   1459 		} else {
   1460 			/* Slot 0xffff may mean "extremely bogus command". */
   1461 			printf("%s: got HM completion for illegal slot %u\n",
   1462 			    device_xname(&mly->mly_dv), slot);
   1463 		}
   1464 
   1465 		/* Unconditionally acknowledge status. */
   1466 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
   1467 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   1468 		forus = 1;
   1469 	}
   1470 
   1471 	/*
   1472 	 * Pick up memory-mailbox commands.
   1473 	 */
   1474 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
   1475 		for (;;) {
   1476 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
   1477 			off = (char *)sp - (char *)mly->mly_mmbox;
   1478 
   1479 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1480 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1481 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1482 
   1483 			/* Check for more status. */
   1484 			if (sp->mmbox.flag == 0)
   1485 				break;
   1486 
   1487 			/* Get slot number. */
   1488 			slot = le16toh(sp->status.command_id);
   1489 			if (slot < MLY_SLOT_MAX) {
   1490 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1491 				mc->mc_status = sp->status.status;
   1492 				mc->mc_sense = sp->status.sense_length;
   1493 				mc->mc_resid = le32toh(sp->status.residue);
   1494 				mly_ccb_complete(mly, mc);
   1495 			} else {
   1496 				/*
   1497 				 * Slot 0xffff may mean "extremely bogus
   1498 				 * command".
   1499 				 */
   1500 				printf("%s: got AM completion for illegal "
   1501 				    "slot %u at %d\n", device_xname(&mly->mly_dv),
   1502 				    slot, mly->mly_mmbox_sts_idx);
   1503 			}
   1504 
   1505 			/* Clear and move to next index. */
   1506 			sp->mmbox.flag = 0;
   1507 			mly->mly_mmbox_sts_idx =
   1508 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
   1509 		}
   1510 
   1511 		/* Acknowledge that we have collected status value(s). */
   1512 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
   1513 		forus = 1;
   1514 	}
   1515 
   1516 	/*
   1517 	 * Run the queue.
   1518 	 */
   1519 	if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
   1520 		mly_ccb_enqueue(mly, NULL);
   1521 
   1522 	return (forus);
   1523 }
   1524 
   1525 /*
   1526  * Process completed commands
   1527  */
   1528 static void
   1529 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1530 {
   1531 	void (*complete)(struct mly_softc *, struct mly_ccb *);
   1532 
   1533 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1534 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1535 	    sizeof(union mly_cmd_packet),
   1536 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1537 
   1538 	complete = mc->mc_complete;
   1539 	mc->mc_flags |= MLY_CCB_COMPLETE;
   1540 
   1541 	/*
   1542 	 * Call completion handler or wake up sleeping consumer.
   1543 	 */
   1544 	if (complete != NULL)
   1545 		(*complete)(mly, mc);
   1546 	else
   1547 		wakeup(mc);
   1548 }
   1549 
   1550 /*
   1551  * Allocate a command.
   1552  */
   1553 int
   1554 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
   1555 {
   1556 	struct mly_ccb *mc;
   1557 	int s;
   1558 
   1559 	s = splbio();
   1560 	mc = SLIST_FIRST(&mly->mly_ccb_free);
   1561 	if (mc != NULL)
   1562 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
   1563 	splx(s);
   1564 
   1565 	*mcp = mc;
   1566 	return (mc == NULL ? EAGAIN : 0);
   1567 }
   1568 
   1569 /*
   1570  * Release a command back to the freelist.
   1571  */
   1572 void
   1573 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
   1574 {
   1575 	int s;
   1576 
   1577 	/*
   1578 	 * Fill in parts of the command that may cause confusion if a
   1579 	 * consumer doesn't when we are later allocated.
   1580 	 */
   1581 	mc->mc_data = NULL;
   1582 	mc->mc_flags = 0;
   1583 	mc->mc_complete = NULL;
   1584 	mc->mc_private = NULL;
   1585 	mc->mc_packet->generic.command_control = 0;
   1586 
   1587 	/*
   1588 	 * By default, we set up to overwrite the command packet with sense
   1589 	 * information.
   1590 	 */
   1591 	mc->mc_packet->generic.sense_buffer_address =
   1592 	    htole64(mc->mc_packetphys);
   1593 	mc->mc_packet->generic.maximum_sense_size =
   1594 	    sizeof(union mly_cmd_packet);
   1595 
   1596 	s = splbio();
   1597 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
   1598 	splx(s);
   1599 }
   1600 
   1601 /*
   1602  * Allocate and initialize command and packet structures.
   1603  *
   1604  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
   1605  * allocation to that number.  If we don't yet know how many commands the
   1606  * controller supports, allocate a very small set (suitable for initialization
   1607  * purposes only).
   1608  */
   1609 static int
   1610 mly_alloc_ccbs(struct mly_softc *mly)
   1611 {
   1612 	struct mly_ccb *mc;
   1613 	int i, rv;
   1614 
   1615 	if (mly->mly_controllerinfo == NULL)
   1616 		mly->mly_ncmds = MLY_CCBS_RESV;
   1617 	else {
   1618 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
   1619 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
   1620 	}
   1621 
   1622 	/*
   1623 	 * Allocate enough space for all the command packets in one chunk
   1624 	 * and map them permanently into controller-visible space.
   1625 	 */
   1626 	rv = mly_dmamem_alloc(mly,
   1627 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1628 	    &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
   1629 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
   1630 	if (rv)
   1631 		return (rv);
   1632 
   1633 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
   1634 	    M_DEVBUF, M_NOWAIT|M_ZERO);
   1635 
   1636 	for (i = 0; i < mly->mly_ncmds; i++) {
   1637 		mc = mly->mly_ccbs + i;
   1638 		mc->mc_slot = MLY_SLOT_START + i;
   1639 		mc->mc_packet = mly->mly_pkt + i;
   1640 		mc->mc_packetphys = mly->mly_pkt_busaddr +
   1641 		    (i * sizeof(union mly_cmd_packet));
   1642 
   1643 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
   1644 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
   1645 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1646 		    &mc->mc_datamap);
   1647 		if (rv) {
   1648 			mly_release_ccbs(mly);
   1649 			return (rv);
   1650 		}
   1651 
   1652 		mly_ccb_free(mly, mc);
   1653 	}
   1654 
   1655 	return (0);
   1656 }
   1657 
   1658 /*
   1659  * Free all the storage held by commands.
   1660  *
   1661  * Must be called with all commands on the free list.
   1662  */
   1663 static void
   1664 mly_release_ccbs(struct mly_softc *mly)
   1665 {
   1666 	struct mly_ccb *mc;
   1667 
   1668 	/* Throw away command buffer DMA maps. */
   1669 	while (mly_ccb_alloc(mly, &mc) == 0)
   1670 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
   1671 
   1672 	/* Release CCB storage. */
   1673 	free(mly->mly_ccbs, M_DEVBUF);
   1674 
   1675 	/* Release the packet storage. */
   1676 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1677 	    mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
   1678 }
   1679 
   1680 /*
   1681  * Map a command into controller-visible space.
   1682  */
   1683 static int
   1684 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
   1685 {
   1686 	struct mly_cmd_generic *gen;
   1687 	struct mly_sg_entry *sg;
   1688 	bus_dma_segment_t *ds;
   1689 	int flg, nseg, rv;
   1690 
   1691 #ifdef DIAGNOSTIC
   1692 	/* Don't map more than once. */
   1693 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
   1694 		panic("mly_ccb_map: already mapped");
   1695 	mc->mc_flags |= MLY_CCB_MAPPED;
   1696 
   1697 	/* Does the command have a data buffer? */
   1698 	if (mc->mc_data == NULL)
   1699 		panic("mly_ccb_map: no data buffer");
   1700 #endif
   1701 
   1702 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
   1703 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1704 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
   1705 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1706 	if (rv != 0)
   1707 		return (rv);
   1708 
   1709 	gen = &mc->mc_packet->generic;
   1710 
   1711 	/*
   1712 	 * Can we use the transfer structure directly?
   1713 	 */
   1714 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
   1715 		mc->mc_sgoff = -1;
   1716 		sg = &gen->transfer.direct.sg[0];
   1717 	} else {
   1718 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
   1719 		    MLY_MAX_SEGS;
   1720 		sg = mly->mly_sg + mc->mc_sgoff;
   1721 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
   1722 		gen->transfer.indirect.entries[0] = htole16(nseg);
   1723 		gen->transfer.indirect.table_physaddr[0] =
   1724 		    htole64(mly->mly_sg_busaddr +
   1725 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
   1726 	}
   1727 
   1728 	/*
   1729 	 * Fill the S/G table.
   1730 	 */
   1731 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
   1732 		sg->physaddr = htole64(ds->ds_addr);
   1733 		sg->length = htole64(ds->ds_len);
   1734 	}
   1735 
   1736 	/*
   1737 	 * Sync up the data map.
   1738 	 */
   1739 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1740 		flg = BUS_DMASYNC_PREREAD;
   1741 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
   1742 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
   1743 		flg = BUS_DMASYNC_PREWRITE;
   1744 	}
   1745 
   1746 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1747 
   1748 	/*
   1749 	 * Sync up the chained S/G table, if we're using one.
   1750 	 */
   1751 	if (mc->mc_sgoff == -1)
   1752 		return (0);
   1753 
   1754 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1755 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1756 
   1757 	return (0);
   1758 }
   1759 
   1760 /*
   1761  * Unmap a command from controller-visible space.
   1762  */
   1763 static void
   1764 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
   1765 {
   1766 	int flg;
   1767 
   1768 #ifdef DIAGNOSTIC
   1769 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
   1770 		panic("mly_ccb_unmap: not mapped");
   1771 	mc->mc_flags &= ~MLY_CCB_MAPPED;
   1772 #endif
   1773 
   1774 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1775 		flg = BUS_DMASYNC_POSTREAD;
   1776 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
   1777 		flg = BUS_DMASYNC_POSTWRITE;
   1778 
   1779 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1780 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
   1781 
   1782 	if (mc->mc_sgoff == -1)
   1783 		return;
   1784 
   1785 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1786 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
   1787 }
   1788 
   1789 /*
   1790  * Adjust the size of each I/O before it passes to the SCSI layer.
   1791  */
   1792 static void
   1793 mly_scsipi_minphys(struct buf *bp)
   1794 {
   1795 
   1796 	if (bp->b_bcount > MLY_MAX_XFER)
   1797 		bp->b_bcount = MLY_MAX_XFER;
   1798 	minphys(bp);
   1799 }
   1800 
   1801 /*
   1802  * Start a SCSI command.
   1803  */
   1804 static void
   1805 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1806 		   void *arg)
   1807 {
   1808 	struct mly_ccb *mc;
   1809 	struct mly_cmd_scsi_small *ss;
   1810 	struct scsipi_xfer *xs;
   1811 	struct scsipi_periph *periph;
   1812 	struct mly_softc *mly;
   1813 	struct mly_btl *btl;
   1814 	int s, tmp;
   1815 
   1816 	mly = (void *)chan->chan_adapter->adapt_dev;
   1817 
   1818 	switch (req) {
   1819 	case ADAPTER_REQ_RUN_XFER:
   1820 		xs = arg;
   1821 		periph = xs->xs_periph;
   1822 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
   1823 		s = splbio();
   1824 		tmp = btl->mb_flags;
   1825 		splx(s);
   1826 
   1827 		/*
   1828 		 * Check for I/O attempt to a protected or non-existant
   1829 		 * device.
   1830 		 */
   1831 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
   1832 			xs->error = XS_SELTIMEOUT;
   1833 			scsipi_done(xs);
   1834 			break;
   1835 		}
   1836 
   1837 #ifdef DIAGNOSTIC
   1838 		/* XXX Increase if/when we support large SCSI commands. */
   1839 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
   1840 			printf("%s: cmd too large\n", device_xname(&mly->mly_dv));
   1841 			xs->error = XS_DRIVER_STUFFUP;
   1842 			scsipi_done(xs);
   1843 			break;
   1844 		}
   1845 #endif
   1846 
   1847 		if (mly_ccb_alloc(mly, &mc)) {
   1848 			xs->error = XS_RESOURCE_SHORTAGE;
   1849 			scsipi_done(xs);
   1850 			break;
   1851 		}
   1852 
   1853 		/* Build the command. */
   1854 		mc->mc_data = xs->data;
   1855 		mc->mc_length = xs->datalen;
   1856 		mc->mc_complete = mly_scsipi_complete;
   1857 		mc->mc_private = xs;
   1858 
   1859 		/* Build the packet for the controller. */
   1860 		ss = &mc->mc_packet->scsi_small;
   1861 		ss->opcode = MDACMD_SCSI;
   1862 #ifdef notdef
   1863 		/*
   1864 		 * XXX FreeBSD does this, but it doesn't fix anything,
   1865 		 * XXX and appears potentially harmful.
   1866 		 */
   1867 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
   1868 #endif
   1869 
   1870 		ss->data_size = htole32(xs->datalen);
   1871 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
   1872 		    periph->periph_target, periph->periph_lun), ss->addr);
   1873 
   1874 		if (xs->timeout < 60 * 1000)
   1875 			ss->timeout = xs->timeout / 1000 |
   1876 			    MLY_TIMEOUT_SECONDS;
   1877 		else if (xs->timeout < 60 * 60 * 1000)
   1878 			ss->timeout = xs->timeout / (60 * 1000) |
   1879 			    MLY_TIMEOUT_MINUTES;
   1880 		else
   1881 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
   1882 			    MLY_TIMEOUT_HOURS;
   1883 
   1884 		ss->maximum_sense_size = sizeof(xs->sense);
   1885 		ss->cdb_length = xs->cmdlen;
   1886 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
   1887 
   1888 		if (mc->mc_length != 0) {
   1889 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
   1890 				mc->mc_flags |= MLY_CCB_DATAOUT;
   1891 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
   1892 				mc->mc_flags |= MLY_CCB_DATAIN;
   1893 
   1894 			if (mly_ccb_map(mly, mc) != 0) {
   1895 				xs->error = XS_DRIVER_STUFFUP;
   1896 				mly_ccb_free(mly, mc);
   1897 				scsipi_done(xs);
   1898 				break;
   1899 			}
   1900 		}
   1901 
   1902 		/*
   1903 		 * Give the command to the controller.
   1904 		 */
   1905 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
   1906 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
   1907 				xs->error = XS_REQUEUE;
   1908 				if (mc->mc_length != 0)
   1909 					mly_ccb_unmap(mly, mc);
   1910 				mly_ccb_free(mly, mc);
   1911 				scsipi_done(xs);
   1912 			}
   1913 		} else
   1914 			mly_ccb_enqueue(mly, mc);
   1915 
   1916 		break;
   1917 
   1918 	case ADAPTER_REQ_GROW_RESOURCES:
   1919 		/*
   1920 		 * Not supported.
   1921 		 */
   1922 		break;
   1923 
   1924 	case ADAPTER_REQ_SET_XFER_MODE:
   1925 		/*
   1926 		 * We can't change the transfer mode, but at least let
   1927 		 * scsipi know what the adapter has negotiated.
   1928 		 */
   1929 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
   1930 		break;
   1931 	}
   1932 }
   1933 
   1934 /*
   1935  * Handle completion of a SCSI command.
   1936  */
   1937 static void
   1938 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1939 {
   1940 	struct scsipi_xfer *xs;
   1941 	struct scsipi_channel *chan;
   1942 	struct scsipi_inquiry_data *inq;
   1943 	struct mly_btl *btl;
   1944 	int target, sl, s;
   1945 	const char *p;
   1946 
   1947 	xs = mc->mc_private;
   1948 	xs->status = mc->mc_status;
   1949 
   1950 	/*
   1951 	 * XXX The `resid' value as returned by the controller appears to be
   1952 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
   1953 	 * count?
   1954 	 */
   1955 	xs->resid = 0; /* mc->mc_resid; */
   1956 
   1957 	if (mc->mc_length != 0)
   1958 		mly_ccb_unmap(mly, mc);
   1959 
   1960 	switch (mc->mc_status) {
   1961 	case SCSI_OK:
   1962 		/*
   1963 		 * In order to report logical device type and status, we
   1964 		 * overwrite the result of the INQUIRY command to logical
   1965 		 * devices.
   1966 		 */
   1967 		if (xs->cmd->opcode == INQUIRY) {
   1968 			chan = xs->xs_periph->periph_channel;
   1969 			target = xs->xs_periph->periph_target;
   1970 			btl = &mly->mly_btl[chan->chan_channel][target];
   1971 
   1972 			s = splbio();
   1973 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
   1974 				inq = (struct scsipi_inquiry_data *)xs->data;
   1975 				mly_padstr(inq->vendor, "MYLEX", 8);
   1976 				p = mly_describe_code(mly_table_device_type,
   1977 				    btl->mb_type);
   1978 				mly_padstr(inq->product, p, 16);
   1979 				p = mly_describe_code(mly_table_device_state,
   1980 				    btl->mb_state);
   1981 				mly_padstr(inq->revision, p, 4);
   1982 			}
   1983 			splx(s);
   1984 		}
   1985 
   1986 		xs->error = XS_NOERROR;
   1987 		break;
   1988 
   1989 	case SCSI_CHECK:
   1990 		sl = mc->mc_sense;
   1991 		if (sl > sizeof(xs->sense.scsi_sense))
   1992 			sl = sizeof(xs->sense.scsi_sense);
   1993 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
   1994 		xs->error = XS_SENSE;
   1995 		break;
   1996 
   1997 	case SCSI_BUSY:
   1998 	case SCSI_QUEUE_FULL:
   1999 		xs->error = XS_BUSY;
   2000 		break;
   2001 
   2002 	default:
   2003 		printf("%s: unknown SCSI status 0x%x\n",
   2004 		    device_xname(&mly->mly_dv), xs->status);
   2005 		xs->error = XS_DRIVER_STUFFUP;
   2006 		break;
   2007 	}
   2008 
   2009 	mly_ccb_free(mly, mc);
   2010 	scsipi_done(xs);
   2011 }
   2012 
   2013 /*
   2014  * Notify scsipi about a target's transfer mode.
   2015  */
   2016 static void
   2017 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
   2018 {
   2019 	struct mly_btl *btl;
   2020 	int s;
   2021 
   2022 	btl = &mly->mly_btl[bus][xm->xm_target];
   2023 	xm->xm_mode = 0;
   2024 
   2025 	s = splbio();
   2026 
   2027 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
   2028 		if (btl->mb_speed == 0) {
   2029 			xm->xm_period = 0;
   2030 			xm->xm_offset = 0;
   2031 		} else {
   2032 			xm->xm_period = 12;			/* XXX */
   2033 			xm->xm_offset = 8;			/* XXX */
   2034 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
   2035 		}
   2036 
   2037 		switch (btl->mb_width) {
   2038 		case 32:
   2039 			xm->xm_mode = PERIPH_CAP_WIDE32;
   2040 			break;
   2041 		case 16:
   2042 			xm->xm_mode = PERIPH_CAP_WIDE16;
   2043 			break;
   2044 		default:
   2045 			xm->xm_mode = 0;
   2046 			break;
   2047 		}
   2048 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
   2049 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
   2050 		xm->xm_period = 12;
   2051 		xm->xm_offset = 8;
   2052 	}
   2053 
   2054 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
   2055 		xm->xm_mode |= PERIPH_CAP_TQING;
   2056 
   2057 	splx(s);
   2058 
   2059 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
   2060 }
   2061 
   2062 /*
   2063  * ioctl hook; used here only to initiate low-level rescans.
   2064  */
   2065 static int
   2066 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
   2067     int flag, struct proc *p)
   2068 {
   2069 	struct mly_softc *mly;
   2070 	int rv;
   2071 
   2072 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
   2073 
   2074 	switch (cmd) {
   2075 	case SCBUSIOLLSCAN:
   2076 		mly_scan_channel(mly, chan->chan_channel);
   2077 		rv = 0;
   2078 		break;
   2079 	default:
   2080 		rv = ENOTTY;
   2081 		break;
   2082 	}
   2083 
   2084 	return (rv);
   2085 }
   2086 
   2087 /*
   2088  * Handshake with the firmware while the card is being initialized.
   2089  */
   2090 static int
   2091 mly_fwhandshake(struct mly_softc *mly)
   2092 {
   2093 	u_int8_t error, param0, param1;
   2094 	int spinup;
   2095 
   2096 	spinup = 0;
   2097 
   2098 	/* Set HM_STSACK and let the firmware initialize. */
   2099 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   2100 	DELAY(1000);	/* too short? */
   2101 
   2102 	/* If HM_STSACK is still true, the controller is initializing. */
   2103 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
   2104 		return (0);
   2105 
   2106 	printf("%s: controller initialization started\n",
   2107 	    device_xname(&mly->mly_dv));
   2108 
   2109 	/*
   2110 	 * Spin waiting for initialization to finish, or for a message to be
   2111 	 * delivered.
   2112 	 */
   2113 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
   2114 		/* Check for a message */
   2115 		if (!mly_error_valid(mly))
   2116 			continue;
   2117 
   2118 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
   2119 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
   2120 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
   2121 
   2122 		switch (error) {
   2123 		case MLY_MSG_SPINUP:
   2124 			if (!spinup) {
   2125 				printf("%s: drive spinup in progress\n",
   2126 				    device_xname(&mly->mly_dv));
   2127 				spinup = 1;
   2128 			}
   2129 			break;
   2130 
   2131 		case MLY_MSG_RACE_RECOVERY_FAIL:
   2132 			printf("%s: mirror race recovery failed - \n",
   2133 			    device_xname(&mly->mly_dv));
   2134 			printf("%s: one or more drives offline\n",
   2135 			    device_xname(&mly->mly_dv));
   2136 			break;
   2137 
   2138 		case MLY_MSG_RACE_IN_PROGRESS:
   2139 			printf("%s: mirror race recovery in progress\n",
   2140 			    device_xname(&mly->mly_dv));
   2141 			break;
   2142 
   2143 		case MLY_MSG_RACE_ON_CRITICAL:
   2144 			printf("%s: mirror race recovery on critical drive\n",
   2145 			    device_xname(&mly->mly_dv));
   2146 			break;
   2147 
   2148 		case MLY_MSG_PARITY_ERROR:
   2149 			printf("%s: FATAL MEMORY PARITY ERROR\n",
   2150 			    device_xname(&mly->mly_dv));
   2151 			return (ENXIO);
   2152 
   2153 		default:
   2154 			printf("%s: unknown initialization code 0x%x\n",
   2155 			    device_xname(&mly->mly_dv), error);
   2156 			break;
   2157 		}
   2158 	}
   2159 
   2160 	return (0);
   2161 }
   2162 
   2163 /*
   2164  * Space-fill a character string
   2165  */
   2166 static void
   2167 mly_padstr(char *dst, const char *src, int len)
   2168 {
   2169 
   2170 	while (len-- > 0) {
   2171 		if (*src != '\0')
   2172 			*dst++ = *src++;
   2173 		else
   2174 			*dst++ = ' ';
   2175 	}
   2176 }
   2177 
   2178 /*
   2179  * Allocate DMA safe memory.
   2180  */
   2181 static int
   2182 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
   2183 		 void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
   2184 {
   2185 	int rseg, rv, state;
   2186 
   2187 	state = 0;
   2188 
   2189 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
   2190 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
   2191 		aprint_error_dev(&mly->mly_dv, "dmamem_alloc = %d\n", rv);
   2192 		goto bad;
   2193 	}
   2194 
   2195 	state++;
   2196 
   2197 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
   2198 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   2199 		aprint_error_dev(&mly->mly_dv, "dmamem_map = %d\n", rv);
   2200 		goto bad;
   2201 	}
   2202 
   2203 	state++;
   2204 
   2205 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
   2206 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
   2207 		aprint_error_dev(&mly->mly_dv, "dmamap_create = %d\n", rv);
   2208 		goto bad;
   2209 	}
   2210 
   2211 	state++;
   2212 
   2213 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
   2214 	    NULL, BUS_DMA_NOWAIT)) != 0) {
   2215 		aprint_error_dev(&mly->mly_dv, "dmamap_load = %d\n", rv);
   2216 		goto bad;
   2217 	}
   2218 
   2219 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
   2220 	memset(*kva, 0, size);
   2221 	return (0);
   2222 
   2223  bad:
   2224 	if (state > 2)
   2225 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
   2226 	if (state > 1)
   2227 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
   2228 	if (state > 0)
   2229 		bus_dmamem_free(mly->mly_dmat, seg, 1);
   2230 
   2231 	return (rv);
   2232 }
   2233 
   2234 /*
   2235  * Free DMA safe memory.
   2236  */
   2237 static void
   2238 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
   2239 		void *kva, bus_dma_segment_t *seg)
   2240 {
   2241 
   2242 	bus_dmamap_unload(mly->mly_dmat, dmamap);
   2243 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
   2244 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
   2245 	bus_dmamem_free(mly->mly_dmat, seg, 1);
   2246 }
   2247 
   2248 
   2249 /*
   2250  * Accept an open operation on the control device.
   2251  */
   2252 int
   2253 mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
   2254 {
   2255 	struct mly_softc *mly;
   2256 
   2257 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
   2258 		return (ENXIO);
   2259 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
   2260 		return (ENXIO);
   2261 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
   2262 		return (EBUSY);
   2263 
   2264 	mly->mly_state |= MLY_STATE_OPEN;
   2265 	return (0);
   2266 }
   2267 
   2268 /*
   2269  * Accept the last close on the control device.
   2270  */
   2271 int
   2272 mlyclose(dev_t dev, int flag, int mode,
   2273     struct lwp *l)
   2274 {
   2275 	struct mly_softc *mly;
   2276 
   2277 	mly = device_lookup(&mly_cd, minor(dev));
   2278 	mly->mly_state &= ~MLY_STATE_OPEN;
   2279 	return (0);
   2280 }
   2281 
   2282 /*
   2283  * Handle control operations.
   2284  */
   2285 int
   2286 mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
   2287     struct lwp *l)
   2288 {
   2289 	struct mly_softc *mly;
   2290 	int rv;
   2291 
   2292 	mly = device_lookup(&mly_cd, minor(dev));
   2293 
   2294 	switch (cmd) {
   2295 	case MLYIO_COMMAND:
   2296 		rv = kauth_authorize_device_passthru(l->l_cred, dev,
   2297 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
   2298 		if (rv)
   2299 			break;
   2300 
   2301 		rv = mly_user_command(mly, (void *)data);
   2302 		break;
   2303 	case MLYIO_HEALTH:
   2304 		rv = mly_user_health(mly, (void *)data);
   2305 		break;
   2306 	default:
   2307 		rv = ENOTTY;
   2308 		break;
   2309 	}
   2310 
   2311 	return (rv);
   2312 }
   2313 
   2314 /*
   2315  * Execute a command passed in from userspace.
   2316  *
   2317  * The control structure contains the actual command for the controller, as
   2318  * well as the user-space data pointer and data size, and an optional sense
   2319  * buffer size/pointer.  On completion, the data size is adjusted to the
   2320  * command residual, and the sense buffer size to the size of the returned
   2321  * sense data.
   2322  */
   2323 static int
   2324 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
   2325 {
   2326 	struct mly_ccb	*mc;
   2327 	int rv, mapped;
   2328 
   2329 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
   2330 		return (rv);
   2331 
   2332 	mapped = 0;
   2333 	mc->mc_data = NULL;
   2334 
   2335 	/*
   2336 	 * Handle data size/direction.
   2337 	 */
   2338 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
   2339 		if (mc->mc_length > MAXPHYS) {
   2340 			rv = EINVAL;
   2341 			goto out;
   2342 		}
   2343 
   2344 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
   2345 		if (mc->mc_data == NULL) {
   2346 			rv = ENOMEM;
   2347 			goto out;
   2348 		}
   2349 
   2350 		if (uc->DataTransferLength > 0) {
   2351 			mc->mc_flags |= MLY_CCB_DATAIN;
   2352 			memset(mc->mc_data, 0, mc->mc_length);
   2353 		}
   2354 
   2355 		if (uc->DataTransferLength < 0) {
   2356 			mc->mc_flags |= MLY_CCB_DATAOUT;
   2357 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
   2358 			    mc->mc_length);
   2359 			if (rv != 0)
   2360 				goto out;
   2361 		}
   2362 
   2363 		if ((rv = mly_ccb_map(mly, mc)) != 0)
   2364 			goto out;
   2365 		mapped = 1;
   2366 	}
   2367 
   2368 	/* Copy in the command and execute it. */
   2369 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
   2370 
   2371 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
   2372 		goto out;
   2373 
   2374 	/* Return the data to userspace. */
   2375 	if (uc->DataTransferLength > 0) {
   2376 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
   2377 		    mc->mc_length);
   2378 		if (rv != 0)
   2379 			goto out;
   2380 	}
   2381 
   2382 	/* Return the sense buffer to userspace. */
   2383 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
   2384 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
   2385 		    min(uc->RequestSenseLength, mc->mc_sense));
   2386 		if (rv != 0)
   2387 			goto out;
   2388 	}
   2389 
   2390 	/* Return command results to userspace (caller will copy out). */
   2391 	uc->DataTransferLength = mc->mc_resid;
   2392 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
   2393 	uc->CommandStatus = mc->mc_status;
   2394 	rv = 0;
   2395 
   2396  out:
   2397  	if (mapped)
   2398  		mly_ccb_unmap(mly, mc);
   2399 	if (mc->mc_data != NULL)
   2400 		free(mc->mc_data, M_DEVBUF);
   2401 	mly_ccb_free(mly, mc);
   2402 
   2403 	return (rv);
   2404 }
   2405 
   2406 /*
   2407  * Return health status to userspace.  If the health change index in the
   2408  * user structure does not match that currently exported by the controller,
   2409  * we return the current status immediately.  Otherwise, we block until
   2410  * either interrupted or new status is delivered.
   2411  */
   2412 static int
   2413 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
   2414 {
   2415 	struct mly_health_status mh;
   2416 	int rv, s;
   2417 
   2418 	/* Fetch the current health status from userspace. */
   2419 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
   2420 	if (rv != 0)
   2421 		return (rv);
   2422 
   2423 	/* spin waiting for a status update */
   2424 	s = splbio();
   2425 	if (mly->mly_event_change == mh.change_counter)
   2426 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
   2427 		    "mlyhealth", 0);
   2428 	splx(s);
   2429 
   2430 	if (rv == 0) {
   2431 		/*
   2432 		 * Copy the controller's health status buffer out (there is
   2433 		 * a race here if it changes again).
   2434 		 */
   2435 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
   2436 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
   2437 	}
   2438 
   2439 	return (rv);
   2440 }
   2441