Home | History | Annotate | Line # | Download | only in pci
mly.c revision 1.4
      1 /*	$NetBSD: mly.c,v 1.4 2001/07/30 23:49:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 2000, 2001 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
     66  */
     67 
     68 /*
     69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
     70  *
     71  * TODO:
     72  *
     73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
     74  * o Handle FC and multiple LUNs.
     75  * o Fix mmbox usage.
     76  * o Fix transfer speed fudge.
     77  */
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kernel.h>
     83 #include <sys/queue.h>
     84 #include <sys/buf.h>
     85 #include <sys/endian.h>
     86 #include <sys/conf.h>
     87 #include <sys/malloc.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/scsiio.h>
     90 #include <sys/kthread.h>
     91 
     92 #include <uvm/uvm_extern.h>
     93 
     94 #include <machine/bus.h>
     95 
     96 #include <dev/scsipi/scsi_all.h>
     97 #include <dev/scsipi/scsipi_all.h>
     98 #include <dev/scsipi/scsiconf.h>
     99 
    100 #include <dev/pci/pcireg.h>
    101 #include <dev/pci/pcivar.h>
    102 #include <dev/pci/pcidevs.h>
    103 
    104 #include <dev/pci/mlyreg.h>
    105 #include <dev/pci/mlyio.h>
    106 #include <dev/pci/mlyvar.h>
    107 #include <dev/pci/mly_tables.h>
    108 
    109 static void	mly_attach(struct device *, struct device *, void *);
    110 static int	mly_match(struct device *, struct cfdata *, void *);
    111 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
    112 static int	mly_fwhandshake(struct mly_softc *);
    113 static int	mly_flush(struct mly_softc *);
    114 static int	mly_intr(void *);
    115 static void	mly_shutdown(void *);
    116 
    117 static int	mly_alloc_ccbs(struct mly_softc *);
    118 static void	mly_check_event(struct mly_softc *);
    119 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
    120 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
    121 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
    122 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
    123 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
    124 				caddr_t, bus_dma_segment_t *);
    125 static int	mly_enable_mmbox(struct mly_softc *);
    126 static void	mly_fetch_event(struct mly_softc *);
    127 static int	mly_get_controllerinfo(struct mly_softc *);
    128 static int	mly_get_eventstatus(struct mly_softc *);
    129 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
    130 			  void **, size_t, void *, size_t *);
    131 static void	mly_padstr(char *, const char *, int);
    132 static void	mly_process_event(struct mly_softc *, struct mly_event *);
    133 static void	mly_release_ccbs(struct mly_softc *);
    134 static int	mly_scan_btl(struct mly_softc *, int, int);
    135 static void	mly_scan_channel(struct mly_softc *, int);
    136 static void	mly_thread(void *);
    137 static void	mly_thread_create(void *);
    138 
    139 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
    140 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
    141 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
    142 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
    143 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
    144 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
    145 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
    146 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
    147 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
    148 
    149 static void	mly_get_xfer_mode(struct mly_softc *, int,
    150 				  struct scsipi_xfer_mode *);
    151 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
    152 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
    153 				 int, struct proc *);
    154 static void	mly_scsipi_minphys(struct buf *);
    155 static void	mly_scsipi_request(struct scsipi_channel *,
    156 				   scsipi_adapter_req_t, void *);
    157 
    158 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
    159 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
    160 
    161 cdev_decl(mly);
    162 
    163 extern struct	cfdriver mly_cd;
    164 
    165 struct cfattach mly_ca = {
    166 	sizeof(struct mly_softc), mly_match, mly_attach
    167 };
    168 
    169 struct mly_ident {
    170 	u_short	vendor;
    171 	u_short	product;
    172 	u_short	subvendor;
    173 	u_short	subproduct;
    174 	int	hwif;
    175 	const char	*desc;
    176 } static const mly_ident[] = {
    177 	{
    178 		PCI_VENDOR_MYLEX,
    179 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    180 		PCI_VENDOR_MYLEX,
    181 		0x0040,
    182 		MLY_HWIF_STRONGARM,
    183 		"eXtremeRAID 2000"
    184 	},
    185 	{
    186 		PCI_VENDOR_MYLEX,
    187 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    188 		PCI_VENDOR_MYLEX,
    189 		0x0030,
    190 		MLY_HWIF_STRONGARM,
    191 		"eXtremeRAID 3000"
    192 	},
    193 	{
    194 		PCI_VENDOR_MYLEX,
    195 		PCI_PRODUCT_MYLEX_ACCELERAID,
    196 		PCI_VENDOR_MYLEX,
    197 		0x0050,
    198 		MLY_HWIF_I960RX,
    199 		"AcceleRAID 352"
    200 	},
    201 	{
    202 		PCI_VENDOR_MYLEX,
    203 		PCI_PRODUCT_MYLEX_ACCELERAID,
    204 		PCI_VENDOR_MYLEX,
    205 		0x0052,
    206 		MLY_HWIF_I960RX,
    207 		"AcceleRAID 170"
    208 	},
    209 	{
    210 		PCI_VENDOR_MYLEX,
    211 		PCI_PRODUCT_MYLEX_ACCELERAID,
    212 		PCI_VENDOR_MYLEX,
    213 		0x0054,
    214 		MLY_HWIF_I960RX,
    215 		"AcceleRAID 160"
    216 	},
    217 };
    218 
    219 static void	*mly_sdh;
    220 
    221 /*
    222  * Try to find a `mly_ident' entry corresponding to this board.
    223  */
    224 static const struct mly_ident *
    225 mly_find_ident(struct pci_attach_args *pa)
    226 {
    227 	const struct mly_ident *mpi, *maxmpi;
    228 	pcireg_t reg;
    229 
    230 	mpi = mly_ident;
    231 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
    232 
    233 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    234 		return (NULL);
    235 
    236 	for (; mpi < maxmpi; mpi++) {
    237 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
    238 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
    239 			continue;
    240 
    241 		if (mpi->subvendor == 0x0000)
    242 			return (mpi);
    243 
    244 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    245 
    246 		if (PCI_VENDOR(reg) == mpi->subvendor &&
    247 		    PCI_PRODUCT(reg) == mpi->subproduct)
    248 			return (mpi);
    249 	}
    250 
    251 	return (NULL);
    252 }
    253 
    254 /*
    255  * Match a supported board.
    256  */
    257 static int
    258 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
    259 {
    260 
    261 	return (mly_find_ident(aux) != NULL);
    262 }
    263 
    264 /*
    265  * Attach a supported board.
    266  */
    267 static void
    268 mly_attach(struct device *parent, struct device *self, void *aux)
    269 {
    270 	struct pci_attach_args *pa;
    271 	struct mly_softc *mly;
    272 	struct mly_ioctl_getcontrollerinfo *mi;
    273 	const struct mly_ident *ident;
    274 	pci_chipset_tag_t pc;
    275 	pci_intr_handle_t ih;
    276 	bus_space_handle_t memh, ioh;
    277 	bus_space_tag_t memt, iot;
    278 	pcireg_t reg;
    279 	const char *intrstr;
    280 	int ior, memr, i, rv, state;
    281 	struct scsipi_adapter *adapt;
    282 	struct scsipi_channel *chan;
    283 
    284 	mly = (struct mly_softc *)self;
    285 	pa = aux;
    286 	pc = pa->pa_pc;
    287 	ident = mly_find_ident(pa);
    288 	state = 0;
    289 
    290 	mly->mly_dmat = pa->pa_dmat;
    291 	mly->mly_hwif = ident->hwif;
    292 
    293 	printf(": Mylex %s\n", ident->desc);
    294 
    295 	/*
    296 	 * Map the PCI register window.
    297 	 */
    298 	memr = -1;
    299 	ior = -1;
    300 
    301 	for (i = 0x10; i <= 0x14; i += 4) {
    302 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
    303 
    304 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    305 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
    306 				ior = i;
    307 		} else {
    308 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
    309 				memr = i;
    310 		}
    311 	}
    312 
    313 	if (memr != -1)
    314 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
    315 		    &memt, &memh, NULL, NULL))
    316 			memr = -1;
    317 	if (ior != -1)
    318 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
    319 		    &iot, &ioh, NULL, NULL))
    320 		    	ior = -1;
    321 
    322 	if (memr != -1) {
    323 		mly->mly_iot = memt;
    324 		mly->mly_ioh = memh;
    325 	} else if (ior != -1) {
    326 		mly->mly_iot = iot;
    327 		mly->mly_ioh = ioh;
    328 	} else {
    329 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
    330 		return;
    331 	}
    332 
    333 	/*
    334 	 * Enable the device.
    335 	 */
    336 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    337 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    338 	    reg | PCI_COMMAND_MASTER_ENABLE);
    339 
    340 	/*
    341 	 * Map and establish the interrupt.
    342 	 */
    343 	if (pci_intr_map(pa, &ih)) {
    344 		printf("%s: can't map interrupt\n", self->dv_xname);
    345 		return;
    346 	}
    347 	intrstr = pci_intr_string(pc, ih);
    348 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
    349 	if (mly->mly_ih == NULL) {
    350 		printf("%s: can't establish interrupt", self->dv_xname);
    351 		if (intrstr != NULL)
    352 			printf(" at %s", intrstr);
    353 		printf("\n");
    354 		return;
    355 	}
    356 
    357 	if (intrstr != NULL)
    358 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
    359 		    intrstr);
    360 
    361 	/*
    362 	 * Take care of interface-specific tasks.
    363 	 */
    364 	switch (mly->mly_hwif) {
    365 	case MLY_HWIF_I960RX:
    366 		mly->mly_doorbell_true = 0x00;
    367 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
    368 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
    369 		mly->mly_idbr = MLY_I960RX_IDBR;
    370 		mly->mly_odbr = MLY_I960RX_ODBR;
    371 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
    372 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
    373 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
    374 		break;
    375 
    376 	case MLY_HWIF_STRONGARM:
    377 		mly->mly_doorbell_true = 0xff;
    378 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
    379 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
    380 		mly->mly_idbr = MLY_STRONGARM_IDBR;
    381 		mly->mly_odbr = MLY_STRONGARM_ODBR;
    382 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
    383 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
    384 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
    385 		break;
    386 	}
    387 
    388 	/*
    389 	 * Allocate and map the scatter/gather lists.
    390 	 */
    391 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    392 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
    393 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
    394 	if (rv) {
    395 		printf("%s: unable to allocate S/G maps\n",
    396 		    mly->mly_dv.dv_xname);
    397 		goto bad;
    398 	}
    399 	state++;
    400 
    401 	/*
    402 	 * Allocate and map the memory mailbox.
    403 	 */
    404 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
    405 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
    406 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
    407 	if (rv) {
    408 		printf("%s: unable to allocate mailboxes\n",
    409 		    mly->mly_dv.dv_xname);
    410 		goto bad;
    411 	}
    412 	state++;
    413 
    414 	/*
    415 	 * Initialise per-controller queues.
    416 	 */
    417 	SLIST_INIT(&mly->mly_ccb_free);
    418 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
    419 
    420 	/*
    421 	 * Disable interrupts before we start talking to the controller.
    422 	 */
    423 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
    424 
    425 	/*
    426 	 * Wait for the controller to come ready, handshaking with the
    427 	 * firmware if required.  This is typically only necessary on
    428 	 * platforms where the controller BIOS does not run.
    429 	 */
    430 	if (mly_fwhandshake(mly)) {
    431 		printf("%s: unable to bring controller online\n",
    432 		    mly->mly_dv.dv_xname);
    433 		goto bad;
    434 	}
    435 
    436 	/*
    437 	 * Allocate initial command buffers, obtain controller feature
    438 	 * information, and then reallocate command buffers, since we'll
    439 	 * know how many we want.
    440 	 */
    441 	if (mly_alloc_ccbs(mly)) {
    442 		printf("%s: unable to allocate CCBs\n",
    443 		    mly->mly_dv.dv_xname);
    444 		goto bad;
    445 	}
    446 	state++;
    447 	if (mly_get_controllerinfo(mly)) {
    448 		printf("%s: unable to retrieve controller info\n",
    449 		    mly->mly_dv.dv_xname);
    450 		goto bad;
    451 	}
    452 	mly_release_ccbs(mly);
    453 	if (mly_alloc_ccbs(mly)) {
    454 		printf("%s: unable to allocate CCBs\n",
    455 		    mly->mly_dv.dv_xname);
    456 		state--;
    457 		goto bad;
    458 	}
    459 
    460 	/*
    461 	 * Get the current event counter for health purposes, populate the
    462 	 * initial health status buffer.
    463 	 */
    464 	if (mly_get_eventstatus(mly)) {
    465 		printf("%s: unable to retrieve event status\n",
    466 		    mly->mly_dv.dv_xname);
    467 		goto bad;
    468 	}
    469 
    470 	/*
    471 	 * Enable memory-mailbox mode.
    472 	 */
    473 	if (mly_enable_mmbox(mly)) {
    474 		printf("%s: unable to enable memory mailbox\n",
    475 		    mly->mly_dv.dv_xname);
    476 		goto bad;
    477 	}
    478 
    479 	/*
    480 	 * Print a little information about the controller.
    481 	 */
    482 	mi = mly->mly_controllerinfo;
    483 
    484 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
    485 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
    486 	    mi->physical_channels_present,
    487 	    (mi->physical_channels_present) > 1 ? "s" : "",
    488 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
    489 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
    490 	    le16toh(mi->memory_size));
    491 
    492 	/*
    493 	 * Register our `shutdownhook'.
    494 	 */
    495 	if (mly_sdh == NULL)
    496 		shutdownhook_establish(mly_shutdown, NULL);
    497 
    498 	/*
    499 	 * Clear any previous BTL information.  For each bus that scsipi
    500 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
    501 	 * all BTL info at that point.
    502 	 */
    503 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
    504 
    505 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
    506 	    mly->mly_controllerinfo->virtual_channels_present;
    507 
    508 	/*
    509 	 * Attach to scsipi.
    510 	 */
    511 	adapt = &mly->mly_adapt;
    512 	memset(adapt, 0, sizeof(*adapt));
    513 	adapt->adapt_dev = &mly->mly_dv;
    514 	adapt->adapt_nchannels = mly->mly_nchans;
    515 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
    516 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
    517 	adapt->adapt_request = mly_scsipi_request;
    518 	adapt->adapt_minphys = mly_scsipi_minphys;
    519 	adapt->adapt_ioctl = mly_scsipi_ioctl;
    520 
    521 	for (i = 0; i < mly->mly_nchans; i++) {
    522 		chan = &mly->mly_chans[i];
    523 		memset(chan, 0, sizeof(*chan));
    524 		chan->chan_adapter = adapt;
    525 		chan->chan_bustype = &scsi_bustype;
    526 		chan->chan_channel = i;
    527 		chan->chan_ntargets = MLY_MAX_TARGETS;
    528 		chan->chan_nluns = MLY_MAX_LUNS;
    529 		chan->chan_id = mly->mly_controllerparam->initiator_id;
    530 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
    531 		config_found(&mly->mly_dv, chan, scsiprint);
    532 	}
    533 
    534 	/*
    535 	 * Now enable interrupts...
    536 	 */
    537 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
    538 
    539 	/*
    540 	 * Finally, create our monitoring thread.
    541 	 */
    542 	kthread_create(mly_thread_create, mly);
    543 
    544 	mly->mly_state |= MLY_STATE_INITOK;
    545 	return;
    546 
    547  bad:
    548 	if (state > 2)
    549 		mly_release_ccbs(mly);
    550 	if (state > 1)
    551 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
    552 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
    553 		    &mly->mly_mmbox_seg);
    554 	if (state > 0)
    555 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    556 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
    557 		    &mly->mly_sg_seg);
    558 }
    559 
    560 /*
    561  * Scan all possible devices on the specified channel.
    562  */
    563 static void
    564 mly_scan_channel(struct mly_softc *mly, int bus)
    565 {
    566 	int s, target;
    567 
    568 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
    569 		s = splbio();
    570 		if (!mly_scan_btl(mly, bus, target)) {
    571 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
    572 			    0);
    573 		}
    574 		splx(s);
    575 	}
    576 }
    577 
    578 /*
    579  * Shut down all configured `mly' devices.
    580  */
    581 static void
    582 mly_shutdown(void *cookie)
    583 {
    584 	struct mly_softc *mly;
    585 	int i;
    586 
    587 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
    588 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
    589 			continue;
    590 
    591 		if (mly_flush(mly))
    592 			printf("%s: unable to flush cache\n",
    593 			    mly->mly_dv.dv_xname);
    594 	}
    595 }
    596 
    597 /*
    598  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
    599  * softc.
    600  */
    601 static int
    602 mly_get_controllerinfo(struct mly_softc *mly)
    603 {
    604 	struct mly_cmd_ioctl mci;
    605 	int rv;
    606 
    607 	/*
    608 	 * Build the getcontrollerinfo ioctl and send it.
    609 	 */
    610 	memset(&mci, 0, sizeof(mci));
    611 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
    612 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
    613 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
    614 	if (rv != 0)
    615 		return (rv);
    616 
    617 	/*
    618 	 * Build the getcontrollerparameter ioctl and send it.
    619 	 */
    620 	memset(&mci, 0, sizeof(mci));
    621 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
    622 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
    623 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
    624 
    625 	return (rv);
    626 }
    627 
    628 /*
    629  * Rescan a device, possibly as a consequence of getting an event which
    630  * suggests that it may have changed.  Must be called with interrupts
    631  * blocked.
    632  */
    633 static int
    634 mly_scan_btl(struct mly_softc *mly, int bus, int target)
    635 {
    636 	struct mly_ccb *mc;
    637 	struct mly_cmd_ioctl *mci;
    638 	int rv;
    639 
    640 	if (target == mly->mly_controllerparam->initiator_id) {
    641 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
    642 		return (EIO);
    643 	}
    644 
    645 	/* Don't re-scan if a scan is already in progress. */
    646 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
    647 		return (EBUSY);
    648 
    649 	/* Get a command. */
    650 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    651 		return (rv);
    652 
    653 	/* Set up the data buffer. */
    654 	mc->mc_data = malloc(sizeof(union mly_devinfo),
    655 	    M_DEVBUF, M_NOWAIT);
    656 	memset(mc->mc_data, 0, sizeof(union mly_devinfo));
    657 
    658 	mc->mc_flags |= MLY_CCB_DATAIN;
    659 	mc->mc_complete = mly_complete_rescan;
    660 
    661 	/*
    662 	 * Build the ioctl.
    663 	 */
    664 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    665 	mci->opcode = MDACMD_IOCTL;
    666 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    667 	memset(&mci->param, 0, sizeof(mci->param));
    668 
    669 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
    670 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
    671 		mci->data_size = htole32(mc->mc_length);
    672 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
    673 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
    674 		    mci->addr);
    675 	} else {
    676 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
    677 		mci->data_size = htole32(mc->mc_length);
    678 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
    679 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
    680 	}
    681 
    682 	/*
    683 	 * Dispatch the command.
    684 	 */
    685 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
    686 		free(mc->mc_data, M_DEVBUF);
    687 		mly_ccb_free(mly, mc);
    688 		return(rv);
    689 	}
    690 
    691 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
    692 	mly_ccb_enqueue(mly, mc);
    693 	return (0);
    694 }
    695 
    696 /*
    697  * Handle the completion of a rescan operation.
    698  */
    699 static void
    700 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
    701 {
    702 	struct mly_ioctl_getlogdevinfovalid *ldi;
    703 	struct mly_ioctl_getphysdevinfovalid *pdi;
    704 	struct mly_cmd_ioctl *mci;
    705 	struct mly_btl btl, *btlp;
    706 	struct scsipi_xfer_mode xm;
    707 	int bus, target, rescan;
    708 	u_int tmp;
    709 
    710 	mly_ccb_unmap(mly, mc);
    711 
    712 	/*
    713 	 * Recover the bus and target from the command.  We need these even
    714 	 * in the case where we don't have a useful response.
    715 	 */
    716 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    717 	tmp = _3ltol(mci->addr);
    718 	rescan = 0;
    719 
    720 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
    721 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
    722 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
    723 	} else {
    724 		bus = MLY_PHYADDR_CHANNEL(tmp);
    725 		target = MLY_PHYADDR_TARGET(tmp);
    726 	}
    727 
    728 	btlp = &mly->mly_btl[bus][target];
    729 
    730 	/* The default result is 'no device'. */
    731 	memset(&btl, 0, sizeof(btl));
    732 	btl.mb_flags = MLY_BTL_PROTECTED;
    733 
    734 	/* If the rescan completed OK, we have possibly-new BTL data. */
    735 	if (mc->mc_status != 0)
    736 		goto out;
    737 
    738 	if (mc->mc_length == sizeof(*ldi)) {
    739 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
    740 		tmp = le32toh(ldi->logical_device_number);
    741 
    742 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
    743 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
    744 #ifdef MLYDEBUG
    745 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
    746 			    "returned data for %d:%d instead\n",
    747 			   mly->mly_dv.dv_xname, bus, target,
    748 			   MLY_LOGDEV_BUS(mly, tmp),
    749 			   MLY_LOGDEV_TARGET(mly, tmp));
    750 #endif
    751 			goto out;
    752 		}
    753 
    754 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
    755 		btl.mb_type = ldi->raid_level;
    756 		btl.mb_state = ldi->state;
    757 	} else if (mc->mc_length == sizeof(*pdi)) {
    758 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
    759 
    760 		if (pdi->channel != bus || pdi->target != target) {
    761 #ifdef MLYDEBUG
    762 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
    763 			    " returned data for %d:%d instead\n",
    764 			   mly->mly_dv.dv_xname,
    765 			   bus, target, pdi->channel, pdi->target);
    766 #endif
    767 			goto out;
    768 		}
    769 
    770 		btl.mb_flags = MLY_BTL_PHYSICAL;
    771 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
    772 		btl.mb_state = pdi->state;
    773 		btl.mb_speed = pdi->speed;
    774 		btl.mb_width = pdi->width;
    775 
    776 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
    777 			btl.mb_flags |= MLY_BTL_PROTECTED;
    778 		if (pdi->command_tags != 0)
    779 			btl.mb_flags |= MLY_BTL_TQING;
    780 	} else {
    781 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
    782 		goto out;
    783 	}
    784 
    785 	/* Decide whether we need to rescan the device. */
    786 	if (btl.mb_flags != btlp->mb_flags ||
    787 	    btl.mb_speed != btlp->mb_speed ||
    788 	    btl.mb_width != btlp->mb_width)
    789 		rescan = 1;
    790 
    791  out:
    792 	*btlp = btl;
    793 
    794 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
    795 		xm.xm_target = target;
    796 		mly_get_xfer_mode(mly, bus, &xm);
    797 		/* XXX SCSI mid-layer rescan goes here. */
    798 	}
    799 
    800 	/* Wake anybody waiting on the device to be rescanned. */
    801 	wakeup(btlp);
    802 
    803 	free(mc->mc_data, M_DEVBUF);
    804 	mly_ccb_free(mly, mc);
    805 }
    806 
    807 /*
    808  * Get the current health status and set the 'next event' counter to suit.
    809  */
    810 static int
    811 mly_get_eventstatus(struct mly_softc *mly)
    812 {
    813 	struct mly_cmd_ioctl mci;
    814 	struct mly_health_status *mh;
    815 	int rv;
    816 
    817 	/* Build the gethealthstatus ioctl and send it. */
    818 	memset(&mci, 0, sizeof(mci));
    819 	mh = NULL;
    820 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
    821 
    822 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
    823 	if (rv)
    824 		return (rv);
    825 
    826 	/* Get the event counter. */
    827 	mly->mly_event_change = le32toh(mh->change_counter);
    828 	mly->mly_event_waiting = le32toh(mh->next_event);
    829 	mly->mly_event_counter = le32toh(mh->next_event);
    830 
    831 	/* Save the health status into the memory mailbox */
    832 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
    833 
    834 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    835 	    offsetof(struct mly_mmbox, mmm_health),
    836 	    sizeof(mly->mly_mmbox->mmm_health),
    837 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    838 
    839 	free(mh, M_DEVBUF);
    840 	return (0);
    841 }
    842 
    843 /*
    844  * Enable memory mailbox mode.
    845  */
    846 static int
    847 mly_enable_mmbox(struct mly_softc *mly)
    848 {
    849 	struct mly_cmd_ioctl mci;
    850 	u_int8_t *sp;
    851 	u_int64_t tmp;
    852 	int rv;
    853 
    854 	/* Build the ioctl and send it. */
    855 	memset(&mci, 0, sizeof(mci));
    856 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
    857 
    858 	/* Set buffer addresses. */
    859 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
    860 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
    861 
    862 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
    863 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
    864 
    865 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
    866 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
    867 
    868 	/* Set buffer sizes - abuse of data_size field is revolting. */
    869 	sp = (u_int8_t *)&mci.data_size;
    870 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
    871 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
    872 	mci.param.setmemorymailbox.health_buffer_size =
    873 	    sizeof(union mly_health_region) >> 10;
    874 
    875 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
    876 	if (rv)
    877 		return (rv);
    878 
    879 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
    880 	return (0);
    881 }
    882 
    883 /*
    884  * Flush all pending I/O from the controller.
    885  */
    886 static int
    887 mly_flush(struct mly_softc *mly)
    888 {
    889 	struct mly_cmd_ioctl mci;
    890 
    891 	/* Build the ioctl */
    892 	memset(&mci, 0, sizeof(mci));
    893 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
    894 	mci.param.deviceoperation.operation_device =
    895 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
    896 
    897 	/* Pass it off to the controller */
    898 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
    899 }
    900 
    901 /*
    902  * Perform an ioctl command.
    903  *
    904  * If (data) is not NULL, the command requires data transfer to the
    905  * controller.  If (*data) is NULL the command requires data transfer from
    906  * the controller, and we will allocate a buffer for it.
    907  */
    908 static int
    909 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
    910 	  size_t datasize, void *sense_buffer,
    911 	  size_t *sense_length)
    912 {
    913 	struct mly_ccb *mc;
    914 	struct mly_cmd_ioctl *mci;
    915 	u_int8_t status;
    916 	int rv;
    917 
    918 	mc = NULL;
    919 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    920 		goto bad;
    921 
    922 	/*
    923 	 * Copy the ioctl structure, but save some important fields and then
    924 	 * fixup.
    925 	 */
    926 	mci = &mc->mc_packet->ioctl;
    927 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
    928 	ioctl->maximum_sense_size = mci->maximum_sense_size;
    929 	*mci = *ioctl;
    930 	mci->opcode = MDACMD_IOCTL;
    931 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    932 
    933 	/* Handle the data buffer. */
    934 	if (data != NULL) {
    935 		if (*data == NULL) {
    936 			/* Allocate data buffer */
    937 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
    938 			mc->mc_flags |= MLY_CCB_DATAIN;
    939 		} else {
    940 			mc->mc_data = *data;
    941 			mc->mc_flags |= MLY_CCB_DATAOUT;
    942 		}
    943 		mc->mc_length = datasize;
    944 		mc->mc_packet->generic.data_size = htole32(datasize);
    945 	}
    946 
    947 	/* Run the command. */
    948 	if (datasize > 0)
    949 		if ((rv = mly_ccb_map(mly, mc)) != 0)
    950 			goto bad;
    951 	rv = mly_ccb_poll(mly, mc, 30000);
    952 	if (datasize > 0)
    953 		mly_ccb_unmap(mly, mc);
    954 	if (rv != 0)
    955 		goto bad;
    956 
    957 	/* Clean up and return any data. */
    958 	status = mc->mc_status;
    959 
    960 	if (status != 0)
    961 		printf("mly_ioctl: command status %d\n", status);
    962 
    963 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
    964 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
    965 		*sense_length = mc->mc_sense;
    966 		goto bad;
    967 	}
    968 
    969 	/* Should we return a data pointer? */
    970 	if (data != NULL && *data == NULL)
    971 		*data = mc->mc_data;
    972 
    973 	/* Command completed OK. */
    974 	rv = (status != 0 ? EIO : 0);
    975 
    976  bad:
    977 	if (mc != NULL) {
    978 		/* Do we need to free a data buffer we allocated? */
    979 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
    980 			free(mc->mc_data, M_DEVBUF);
    981 		mly_ccb_free(mly, mc);
    982 	}
    983 
    984 	return (rv);
    985 }
    986 
    987 /*
    988  * Check for event(s) outstanding in the controller.
    989  */
    990 static void
    991 mly_check_event(struct mly_softc *mly)
    992 {
    993 
    994 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    995 	    offsetof(struct mly_mmbox, mmm_health),
    996 	    sizeof(mly->mly_mmbox->mmm_health),
    997 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
    998 
    999 	/*
   1000 	 * The controller may have updated the health status information, so
   1001 	 * check for it here.  Note that the counters are all in host
   1002 	 * memory, so this check is very cheap.  Also note that we depend on
   1003 	 * checking on completion
   1004 	 */
   1005 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
   1006 	    mly->mly_event_change) {
   1007 		mly->mly_event_change =
   1008 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
   1009 		mly->mly_event_waiting =
   1010 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
   1011 
   1012 		/* Wake up anyone that might be interested in this. */
   1013 		wakeup(&mly->mly_event_change);
   1014 	}
   1015 
   1016 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1017 	    offsetof(struct mly_mmbox, mmm_health),
   1018 	    sizeof(mly->mly_mmbox->mmm_health),
   1019 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1020 
   1021 	if (mly->mly_event_counter != mly->mly_event_waiting)
   1022 		mly_fetch_event(mly);
   1023 }
   1024 
   1025 /*
   1026  * Fetch one event from the controller.  If we fail due to resource
   1027  * starvation, we'll be retried the next time a command completes.
   1028  */
   1029 static void
   1030 mly_fetch_event(struct mly_softc *mly)
   1031 {
   1032 	struct mly_ccb *mc;
   1033 	struct mly_cmd_ioctl *mci;
   1034 	int s;
   1035 	u_int32_t event;
   1036 
   1037 	/* Get a command. */
   1038 	if (mly_ccb_alloc(mly, &mc))
   1039 		return;
   1040 
   1041 	/* Set up the data buffer. */
   1042 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
   1043 	memset(mc->mc_data, 0, sizeof(struct mly_event));
   1044 
   1045 	mc->mc_length = sizeof(struct mly_event);
   1046 	mc->mc_flags |= MLY_CCB_DATAIN;
   1047 	mc->mc_complete = mly_complete_event;
   1048 
   1049 	/*
   1050 	 * Get an event number to fetch.  It's possible that we've raced
   1051 	 * with another context for the last event, in which case there will
   1052 	 * be no more events.
   1053 	 */
   1054 	s = splbio();
   1055 	if (mly->mly_event_counter == mly->mly_event_waiting) {
   1056 		splx(s);
   1057 		free(mc->mc_data, M_DEVBUF);
   1058 		mly_ccb_free(mly, mc);
   1059 		return;
   1060 	}
   1061 	event = mly->mly_event_counter++;
   1062 	splx(s);
   1063 
   1064 	/*
   1065 	 * Build the ioctl.
   1066 	 *
   1067 	 * At this point we are committed to sending this request, as it
   1068 	 * will be the only one constructed for this particular event
   1069 	 * number.
   1070 	 */
   1071 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
   1072 	mci->opcode = MDACMD_IOCTL;
   1073 	mci->data_size = htole32(sizeof(struct mly_event));
   1074 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
   1075 	    mci->addr);
   1076 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
   1077 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
   1078 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
   1079 
   1080 	/*
   1081 	 * Submit the command.
   1082 	 */
   1083 	if (mly_ccb_map(mly, mc) != 0)
   1084 		goto bad;
   1085 	mly_ccb_enqueue(mly, mc);
   1086 	return;
   1087 
   1088  bad:
   1089 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
   1090 	free(mc->mc_data, M_DEVBUF);
   1091 	mly_ccb_free(mly, mc);
   1092 }
   1093 
   1094 /*
   1095  * Handle the completion of an event poll.
   1096  */
   1097 static void
   1098 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
   1099 {
   1100 	struct mly_event *me;
   1101 
   1102 	me = (struct mly_event *)mc->mc_data;
   1103 	mly_ccb_unmap(mly, mc);
   1104 	mly_ccb_free(mly, mc);
   1105 
   1106 	/* If the event was successfully fetched, process it. */
   1107 	if (mc->mc_status == SCSI_OK)
   1108 		mly_process_event(mly, me);
   1109 	else
   1110 		printf("%s: unable to fetch event; status = 0x%x\n",
   1111 		    mly->mly_dv.dv_xname, mc->mc_status);
   1112 
   1113 	free(me, M_DEVBUF);
   1114 
   1115 	/* Check for another event. */
   1116 	mly_check_event(mly);
   1117 }
   1118 
   1119 /*
   1120  * Process a controller event.  Called with interupts blocked (i.e., at
   1121  * interrupt time).
   1122  */
   1123 static void
   1124 mly_process_event(struct mly_softc *mly, struct mly_event *me)
   1125 {
   1126 	struct scsipi_sense_data *ssd;
   1127 	int bus, target, event, class, action;
   1128 	const char *fp, *tp;
   1129 
   1130 	ssd = (struct scsipi_sense_data *)&me->sense[0];
   1131 
   1132 	/*
   1133 	 * Errors can be reported using vendor-unique sense data.  In this
   1134 	 * case, the event code will be 0x1c (Request sense data present),
   1135 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
   1136 	 * will be set, and the actual event code will be a 16-bit value
   1137 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
   1138 	 * (low seven bits of the high byte).
   1139 	 */
   1140 	if (le32toh(me->code) == 0x1c &&
   1141 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
   1142 	    (ssd->add_sense_code & 0x80) != 0) {
   1143 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
   1144 		    ssd->add_sense_code_qual;
   1145 	} else
   1146 		event = le32toh(me->code);
   1147 
   1148 	/* Look up event, get codes. */
   1149 	fp = mly_describe_code(mly_table_event, event);
   1150 
   1151 	/* Quiet event? */
   1152 	class = fp[0];
   1153 #ifdef notyet
   1154 	if (isupper(class) && bootverbose)
   1155 		class = tolower(class);
   1156 #endif
   1157 
   1158 	/* Get action code, text string. */
   1159 	action = fp[1];
   1160 	tp = fp + 3;
   1161 
   1162 	/*
   1163 	 * Print some information about the event.
   1164 	 *
   1165 	 * This code uses a table derived from the corresponding portion of
   1166 	 * the Linux driver, and thus the parser is very similar.
   1167 	 */
   1168 	switch (class) {
   1169 	case 'p':
   1170 		/*
   1171 		 * Error on physical drive.
   1172 		 */
   1173 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1174 		    me->channel, me->target, tp);
   1175 		if (action == 'r')
   1176 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1177 			    MLY_BTL_RESCAN;
   1178 		break;
   1179 
   1180 	case 'l':
   1181 	case 'm':
   1182 		/*
   1183 		 * Error on logical unit, or message about logical unit.
   1184 	 	 */
   1185 		bus = MLY_LOGDEV_BUS(mly, me->lun);
   1186 		target = MLY_LOGDEV_TARGET(mly, me->lun);
   1187 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1188 		    bus, target, tp);
   1189 		if (action == 'r')
   1190 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
   1191 		break;
   1192 
   1193 	case 's':
   1194 		/*
   1195 		 * Report of sense data.
   1196 		 */
   1197 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
   1198 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
   1199 		    ssd->add_sense_code == 0x04 &&
   1200 		    (ssd->add_sense_code_qual == 0x01 ||
   1201 		    ssd->add_sense_code_qual == 0x02)) {
   1202 			/* Ignore NO_SENSE or NOT_READY in one case */
   1203 			break;
   1204 		}
   1205 
   1206 		/*
   1207 		 * XXX Should translate this if SCSIVERBOSE.
   1208 		 */
   1209 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1210 		    me->channel, me->target, tp);
   1211 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
   1212 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
   1213 		    ssd->add_sense_code, ssd->add_sense_code_qual);
   1214 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
   1215 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
   1216 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
   1217 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
   1218 		    ssd->cmd_spec_info[3]);
   1219 		if (action == 'r')
   1220 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1221 			    MLY_BTL_RESCAN;
   1222 		break;
   1223 
   1224 	case 'e':
   1225 		printf("%s: ", mly->mly_dv.dv_xname);
   1226 		printf(tp, me->target, me->lun);
   1227 		break;
   1228 
   1229 	case 'c':
   1230 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
   1231 		break;
   1232 
   1233 	case '?':
   1234 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
   1235 		break;
   1236 
   1237 	default:
   1238 		/* Probably a 'noisy' event being ignored. */
   1239 		break;
   1240 	}
   1241 }
   1242 
   1243 /*
   1244  * Create the monitoring thread.  Called after the standard kernel threads
   1245  * have been created.
   1246  */
   1247 static void
   1248 mly_thread_create(void *cookie)
   1249 {
   1250 	struct mly_softc *mly;
   1251 	int rv;
   1252 
   1253 	mly = cookie;
   1254 
   1255 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
   1256 	    mly->mly_dv.dv_xname);
   1257  	if (rv != 0)
   1258 		printf("%s: unable to create thread (%d)\n",
   1259 		    mly->mly_dv.dv_xname, rv);
   1260 }
   1261 
   1262 /*
   1263  * Perform periodic activities.
   1264  */
   1265 static void
   1266 mly_thread(void *cookie)
   1267 {
   1268 	struct mly_softc *mly;
   1269 	struct mly_btl *btl;
   1270 	int s, bus, target, done;
   1271 
   1272 	mly = (struct mly_softc *)cookie;
   1273 
   1274 	for (;;) {
   1275 		/* Check for new events. */
   1276 		mly_check_event(mly);
   1277 
   1278 		/* Re-scan up to 1 device. */
   1279 		s = splbio();
   1280 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
   1281 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
   1282 				/* Perform device rescan? */
   1283 				btl = &mly->mly_btl[bus][target];
   1284 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
   1285 					btl->mb_flags ^= MLY_BTL_RESCAN;
   1286 					mly_scan_btl(mly, bus, target);
   1287 					done = 1;
   1288 					break;
   1289 				}
   1290 			}
   1291 		}
   1292 		splx(s);
   1293 
   1294 		/* Sleep for N seconds. */
   1295 		tsleep(mly_thread, PWAIT, "mlyzzz",
   1296 		    hz * MLY_PERIODIC_INTERVAL);
   1297 	}
   1298 }
   1299 
   1300 /*
   1301  * Submit a command to the controller and poll on completion.  Return
   1302  * non-zero on timeout.
   1303  */
   1304 static int
   1305 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1306 {
   1307 	int rv;
   1308 
   1309 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
   1310 		return (rv);
   1311 
   1312 	for (timo *= 10; timo != 0; timo--) {
   1313 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
   1314 			break;
   1315 		mly_intr(mly);
   1316 		DELAY(100);
   1317 	}
   1318 
   1319 	return (timo == 0);
   1320 }
   1321 
   1322 /*
   1323  * Submit a command to the controller and sleep on completion.  Return
   1324  * non-zero on timeout.
   1325  */
   1326 static int
   1327 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1328 {
   1329 	int rv, s;
   1330 
   1331 	mly_ccb_enqueue(mly, mc);
   1332 
   1333 	s = splbio();
   1334 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
   1335 		splx(s);
   1336 		return (0);
   1337 	}
   1338 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
   1339 	splx(s);
   1340 
   1341 	return (rv);
   1342 }
   1343 
   1344 /*
   1345  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1346  * the order that they were enqueued and try to submit their command blocks
   1347  * to the controller for execution.
   1348  */
   1349 void
   1350 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
   1351 {
   1352 	int s;
   1353 
   1354 	s = splbio();
   1355 
   1356 	if (mc != NULL)
   1357 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1358 
   1359 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
   1360 		if (mly_ccb_submit(mly, mc))
   1361 			break;
   1362 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1363 	}
   1364 
   1365 	splx(s);
   1366 }
   1367 
   1368 /*
   1369  * Deliver a command to the controller.
   1370  */
   1371 static int
   1372 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
   1373 {
   1374 	union mly_cmd_packet *pkt;
   1375 	int s, off;
   1376 
   1377 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
   1378 
   1379 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1380 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1381 	    sizeof(union mly_cmd_packet),
   1382 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1383 
   1384 	s = splbio();
   1385 
   1386 	/*
   1387 	 * Do we have to use the hardware mailbox?
   1388 	 */
   1389 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
   1390 		/*
   1391 		 * Check to see if the controller is ready for us.
   1392 		 */
   1393 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
   1394 			splx(s);
   1395 			return (EBUSY);
   1396 		}
   1397 
   1398 		/*
   1399 		 * It's ready, send the command.
   1400 		 */
   1401 		mly_outl(mly, mly->mly_cmd_mailbox,
   1402 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
   1403 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
   1404 		    (u_int64_t)mc->mc_packetphys >> 32);
   1405 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
   1406 	} else {
   1407 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
   1408 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
   1409 
   1410 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1411 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1412 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1413 
   1414 		/* Check to see if the next index is free yet. */
   1415 		if (pkt->mmbox.flag != 0) {
   1416 			splx(s);
   1417 			return (EBUSY);
   1418 		}
   1419 
   1420 		/* Copy in new command */
   1421 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
   1422 		    sizeof(pkt->mmbox.data));
   1423 
   1424 		/* Copy flag last. */
   1425 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
   1426 
   1427 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1428 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1429 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1430 
   1431 		/* Signal controller and update index. */
   1432 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
   1433 		mly->mly_mmbox_cmd_idx =
   1434 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
   1435 	}
   1436 
   1437 	splx(s);
   1438 	return (0);
   1439 }
   1440 
   1441 /*
   1442  * Pick up completed commands from the controller and handle accordingly.
   1443  */
   1444 int
   1445 mly_intr(void *cookie)
   1446 {
   1447 	struct mly_ccb *mc;
   1448 	union mly_status_packet	*sp;
   1449 	u_int16_t slot;
   1450 	int forus, off;
   1451 	struct mly_softc *mly;
   1452 
   1453 	mly = cookie;
   1454 	forus = 0;
   1455 
   1456 	/*
   1457 	 * Pick up hardware-mailbox commands.
   1458 	 */
   1459 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
   1460 		slot = mly_inw(mly, mly->mly_status_mailbox);
   1461 
   1462 		if (slot < MLY_SLOT_MAX) {
   1463 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1464 			mc->mc_status =
   1465 			    mly_inb(mly, mly->mly_status_mailbox + 2);
   1466 			mc->mc_sense =
   1467 			    mly_inb(mly, mly->mly_status_mailbox + 3);
   1468 			mc->mc_resid =
   1469 			    mly_inl(mly, mly->mly_status_mailbox + 4);
   1470 
   1471 			mly_ccb_complete(mly, mc);
   1472 		} else {
   1473 			/* Slot 0xffff may mean "extremely bogus command". */
   1474 			printf("%s: got HM completion for illegal slot %u\n",
   1475 			    mly->mly_dv.dv_xname, slot);
   1476 		}
   1477 
   1478 		/* Unconditionally acknowledge status. */
   1479 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
   1480 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   1481 		forus = 1;
   1482 	}
   1483 
   1484 	/*
   1485 	 * Pick up memory-mailbox commands.
   1486 	 */
   1487 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
   1488 		for (;;) {
   1489 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
   1490 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
   1491 
   1492 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1493 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1494 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1495 
   1496 			/* Check for more status. */
   1497 			if (sp->mmbox.flag == 0)
   1498 				break;
   1499 
   1500 			/* Get slot number. */
   1501 			slot = le16toh(sp->status.command_id);
   1502 			if (slot < MLY_SLOT_MAX) {
   1503 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1504 				mc->mc_status = sp->status.status;
   1505 				mc->mc_sense = sp->status.sense_length;
   1506 				mc->mc_resid = le32toh(sp->status.residue);
   1507 				mly_ccb_complete(mly, mc);
   1508 			} else {
   1509 				/*
   1510 				 * Slot 0xffff may mean "extremely bogus
   1511 				 * command".
   1512 				 */
   1513 				printf("%s: got AM completion for illegal "
   1514 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
   1515 				    slot, mly->mly_mmbox_sts_idx);
   1516 			}
   1517 
   1518 			/* Clear and move to next index. */
   1519 			sp->mmbox.flag = 0;
   1520 			mly->mly_mmbox_sts_idx =
   1521 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
   1522 		}
   1523 
   1524 		/* Acknowledge that we have collected status value(s). */
   1525 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
   1526 		forus = 1;
   1527 	}
   1528 
   1529 	/*
   1530 	 * Run the queue.
   1531 	 */
   1532 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
   1533 		mly_ccb_enqueue(mly, NULL);
   1534 
   1535 	return (forus);
   1536 }
   1537 
   1538 /*
   1539  * Process completed commands
   1540  */
   1541 static void
   1542 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1543 {
   1544 	void (*complete)(struct mly_softc *, struct mly_ccb *);
   1545 
   1546 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1547 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1548 	    sizeof(union mly_cmd_packet),
   1549 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1550 
   1551 	complete = mc->mc_complete;
   1552 	mc->mc_flags |= MLY_CCB_COMPLETE;
   1553 
   1554 	/*
   1555 	 * Call completion handler or wake up sleeping consumer.
   1556 	 */
   1557 	if (complete != NULL)
   1558 		(*complete)(mly, mc);
   1559 	else
   1560 		wakeup(mc);
   1561 }
   1562 
   1563 /*
   1564  * Allocate a command.
   1565  */
   1566 int
   1567 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
   1568 {
   1569 	struct mly_ccb *mc;
   1570 	int s;
   1571 
   1572 	s = splbio();
   1573 	mc = SLIST_FIRST(&mly->mly_ccb_free);
   1574 	if (mc != NULL)
   1575 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
   1576 	splx(s);
   1577 
   1578 	*mcp = mc;
   1579 	return (mc == NULL ? EAGAIN : 0);
   1580 }
   1581 
   1582 /*
   1583  * Release a command back to the freelist.
   1584  */
   1585 void
   1586 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
   1587 {
   1588 	int s;
   1589 
   1590 	/*
   1591 	 * Fill in parts of the command that may cause confusion if a
   1592 	 * consumer doesn't when we are later allocated.
   1593 	 */
   1594 	mc->mc_data = NULL;
   1595 	mc->mc_flags = 0;
   1596 	mc->mc_complete = NULL;
   1597 	mc->mc_private = NULL;
   1598 	mc->mc_packet->generic.command_control = 0;
   1599 
   1600 	/*
   1601 	 * By default, we set up to overwrite the command packet with sense
   1602 	 * information.
   1603 	 */
   1604 	mc->mc_packet->generic.sense_buffer_address =
   1605 	    htole64(mc->mc_packetphys);
   1606 	mc->mc_packet->generic.maximum_sense_size =
   1607 	    sizeof(union mly_cmd_packet);
   1608 
   1609 	s = splbio();
   1610 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
   1611 	splx(s);
   1612 }
   1613 
   1614 /*
   1615  * Allocate and initialise command and packet structures.
   1616  *
   1617  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
   1618  * allocation to that number.  If we don't yet know how many commands the
   1619  * controller supports, allocate a very small set (suitable for initialisation
   1620  * purposes only).
   1621  */
   1622 static int
   1623 mly_alloc_ccbs(struct mly_softc *mly)
   1624 {
   1625 	struct mly_ccb *mc;
   1626 	int i, rv;
   1627 
   1628 	if (mly->mly_controllerinfo == NULL)
   1629 		mly->mly_ncmds = MLY_CCBS_RESV;
   1630 	else {
   1631 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
   1632 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
   1633 	}
   1634 
   1635 	/*
   1636 	 * Allocate enough space for all the command packets in one chunk
   1637 	 * and map them permanently into controller-visible space.
   1638 	 */
   1639 	rv = mly_dmamem_alloc(mly,
   1640 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1641 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
   1642 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
   1643 	if (rv)
   1644 		return (rv);
   1645 
   1646 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
   1647 	    M_DEVBUF, M_NOWAIT);
   1648 	memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
   1649 
   1650 	for (i = 0; i < mly->mly_ncmds; i++) {
   1651 		mc = mly->mly_ccbs + i;
   1652 		mc->mc_slot = MLY_SLOT_START + i;
   1653 		mc->mc_packet = mly->mly_pkt + i;
   1654 		mc->mc_packetphys = mly->mly_pkt_busaddr +
   1655 		    (i * sizeof(union mly_cmd_packet));
   1656 
   1657 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
   1658 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
   1659 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1660 		    &mc->mc_datamap);
   1661 		if (rv) {
   1662 			mly_release_ccbs(mly);
   1663 			return (rv);
   1664 		}
   1665 
   1666 		mly_ccb_free(mly, mc);
   1667 	}
   1668 
   1669 	return (0);
   1670 }
   1671 
   1672 /*
   1673  * Free all the storage held by commands.
   1674  *
   1675  * Must be called with all commands on the free list.
   1676  */
   1677 static void
   1678 mly_release_ccbs(struct mly_softc *mly)
   1679 {
   1680 	struct mly_ccb *mc;
   1681 
   1682 	/* Throw away command buffer DMA maps. */
   1683 	while (mly_ccb_alloc(mly, &mc) == 0)
   1684 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
   1685 
   1686 	/* Release CCB storage. */
   1687 	free(mly->mly_ccbs, M_DEVBUF);
   1688 
   1689 	/* Release the packet storage. */
   1690 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1691 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
   1692 }
   1693 
   1694 /*
   1695  * Map a command into controller-visible space.
   1696  */
   1697 static int
   1698 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
   1699 {
   1700 	struct mly_cmd_generic *gen;
   1701 	struct mly_sg_entry *sg;
   1702 	bus_dma_segment_t *ds;
   1703 	int flg, nseg, rv;
   1704 
   1705 #ifdef DIAGNOSTIC
   1706 	/* Don't map more than once. */
   1707 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
   1708 		panic("mly_ccb_map: already mapped");
   1709 	mc->mc_flags |= MLY_CCB_MAPPED;
   1710 
   1711 	/* Does the command have a data buffer? */
   1712 	if (mc->mc_data == NULL)
   1713 		panic("mly_ccb_map: no data buffer");
   1714 #endif
   1715 
   1716 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
   1717 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1718 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
   1719 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1720 	if (rv != 0)
   1721 		return (rv);
   1722 
   1723 	gen = &mc->mc_packet->generic;
   1724 
   1725 	/*
   1726 	 * Can we use the transfer structure directly?
   1727 	 */
   1728 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
   1729 		mc->mc_sgoff = -1;
   1730 		sg = &gen->transfer.direct.sg[0];
   1731 	} else {
   1732 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
   1733 		    MLY_MAX_SEGS;
   1734 		sg = mly->mly_sg + mc->mc_sgoff;
   1735 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
   1736 		gen->transfer.indirect.entries[0] = htole16(nseg);
   1737 		gen->transfer.indirect.table_physaddr[0] =
   1738 		    htole64(mly->mly_sg_busaddr +
   1739 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
   1740 	}
   1741 
   1742 	/*
   1743 	 * Fill the S/G table.
   1744 	 */
   1745 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
   1746 		sg->physaddr = htole64(ds->ds_addr);
   1747 		sg->length = htole64(ds->ds_len);
   1748 	}
   1749 
   1750 	/*
   1751 	 * Sync up the data map.
   1752 	 */
   1753 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1754 		flg = BUS_DMASYNC_PREREAD;
   1755 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
   1756 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
   1757 		flg = BUS_DMASYNC_PREWRITE;
   1758 	}
   1759 
   1760 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1761 
   1762 	/*
   1763 	 * Sync up the chained S/G table, if we're using one.
   1764 	 */
   1765 	if (mc->mc_sgoff == -1)
   1766 		return (0);
   1767 
   1768 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1769 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1770 
   1771 	return (0);
   1772 }
   1773 
   1774 /*
   1775  * Unmap a command from controller-visible space.
   1776  */
   1777 static void
   1778 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
   1779 {
   1780 	int flg;
   1781 
   1782 #ifdef DIAGNOSTIC
   1783 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
   1784 		panic("mly_ccb_unmap: not mapped");
   1785 	mc->mc_flags &= ~MLY_CCB_MAPPED;
   1786 #endif
   1787 
   1788 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1789 		flg = BUS_DMASYNC_POSTREAD;
   1790 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
   1791 		flg = BUS_DMASYNC_POSTWRITE;
   1792 
   1793 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1794 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
   1795 
   1796 	if (mc->mc_sgoff == -1)
   1797 		return;
   1798 
   1799 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1800 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
   1801 }
   1802 
   1803 /*
   1804  * Adjust the size of each I/O before it passes to the SCSI layer.
   1805  */
   1806 static void
   1807 mly_scsipi_minphys(struct buf *bp)
   1808 {
   1809 
   1810 	if (bp->b_bcount > MLY_MAX_XFER)
   1811 		bp->b_bcount = MLY_MAX_XFER;
   1812 	minphys(bp);
   1813 }
   1814 
   1815 /*
   1816  * Start a SCSI command.
   1817  */
   1818 static void
   1819 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1820 		   void *arg)
   1821 {
   1822 	struct mly_ccb *mc;
   1823 	struct mly_cmd_scsi_small *ss;
   1824 	struct scsipi_xfer *xs;
   1825 	struct scsipi_periph *periph;
   1826 	struct mly_softc *mly;
   1827 	struct mly_btl *btl;
   1828 	int s, tmp;
   1829 
   1830 	mly = (void *)chan->chan_adapter->adapt_dev;
   1831 
   1832 	switch (req) {
   1833 	case ADAPTER_REQ_RUN_XFER:
   1834 		xs = arg;
   1835 		periph = xs->xs_periph;
   1836 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
   1837 		s = splbio();
   1838 		tmp = btl->mb_flags;
   1839 		splx(s);
   1840 
   1841 		/*
   1842 		 * Check for I/O attempt to a protected or non-existant
   1843 		 * device.
   1844 		 */
   1845 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
   1846 			xs->error = XS_SELTIMEOUT;
   1847 			scsipi_done(xs);
   1848 			break;
   1849 		}
   1850 
   1851 #ifdef DIAGNOSTIC
   1852 		/* XXX Increase if/when we support large SCSI commands. */
   1853 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
   1854 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
   1855 			xs->error = XS_DRIVER_STUFFUP;
   1856 			scsipi_done(xs);
   1857 			break;
   1858 		}
   1859 #endif
   1860 
   1861 		if (mly_ccb_alloc(mly, &mc)) {
   1862 			xs->error = XS_RESOURCE_SHORTAGE;
   1863 			scsipi_done(xs);
   1864 			break;
   1865 		}
   1866 
   1867 		/* Build the command. */
   1868 		mc->mc_data = xs->data;
   1869 		mc->mc_length = xs->datalen;
   1870 		mc->mc_complete = mly_scsipi_complete;
   1871 		mc->mc_private = xs;
   1872 
   1873 		/* Build the packet for the controller. */
   1874 		ss = &mc->mc_packet->scsi_small;
   1875 		ss->opcode = MDACMD_SCSI;
   1876 #ifdef notdef
   1877 		/*
   1878 		 * XXX FreeBSD does this, but it doesn't fix anything,
   1879 		 * XXX and appears potentially harmful.
   1880 		 */
   1881 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
   1882 #endif
   1883 
   1884 		if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
   1885 			mc->mc_flags |= MLY_CCB_DATAOUT;
   1886 		else if ((xs->xs_control & XS_CTL_DATA_IN) != 0)
   1887 			mc->mc_flags |= MLY_CCB_DATAIN;
   1888 
   1889 		ss->data_size = htole32(xs->datalen);
   1890 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
   1891 		    periph->periph_target, periph->periph_lun), ss->addr);
   1892 
   1893 		if (xs->timeout < 60 * 1000)
   1894 			ss->timeout = xs->timeout / 1000 |
   1895 			    MLY_TIMEOUT_SECONDS;
   1896 		else if (xs->timeout < 60 * 60 * 1000)
   1897 			ss->timeout = xs->timeout / (60 * 1000) |
   1898 			    MLY_TIMEOUT_MINUTES;
   1899 		else
   1900 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
   1901 			    MLY_TIMEOUT_HOURS;
   1902 
   1903 		ss->maximum_sense_size = sizeof(xs->sense);
   1904 		ss->cdb_length = xs->cmdlen;
   1905 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
   1906 
   1907 		if (mc->mc_length != 0)
   1908 			if (mly_ccb_map(mly, mc) != 0) {
   1909 				xs->error = XS_DRIVER_STUFFUP;
   1910 				mly_ccb_free(mly, mc);
   1911 				scsipi_done(xs);
   1912 				break;
   1913 			}
   1914 
   1915 		/*
   1916 		 * Give the command to the controller.
   1917 		 */
   1918 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
   1919 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
   1920 				xs->error = XS_REQUEUE;
   1921 				if (mc->mc_length != 0)
   1922 					mly_ccb_unmap(mly, mc);
   1923 				mly_ccb_free(mly, mc);
   1924 				scsipi_done(xs);
   1925 			}
   1926 		} else
   1927 			mly_ccb_enqueue(mly, mc);
   1928 
   1929 		break;
   1930 
   1931 	case ADAPTER_REQ_GROW_RESOURCES:
   1932 		/*
   1933 		 * Not supported.
   1934 		 */
   1935 		break;
   1936 
   1937 	case ADAPTER_REQ_SET_XFER_MODE:
   1938 		/*
   1939 		 * We can't change the transfer mode, but at least let
   1940 		 * scsipi know what the adapter has negotiated.
   1941 		 */
   1942 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
   1943 		break;
   1944 	}
   1945 }
   1946 
   1947 /*
   1948  * Handle completion of a SCSI command.
   1949  */
   1950 static void
   1951 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1952 {
   1953 	struct scsipi_xfer *xs;
   1954 	struct scsipi_channel *chan;
   1955 	struct scsipi_inquiry_data *inq;
   1956 	struct mly_btl *btl;
   1957 	int target, sl, s;
   1958 	const char *p;
   1959 
   1960 	xs = mc->mc_private;
   1961 	xs->status = mc->mc_status;
   1962 
   1963 	/*
   1964 	 * XXX The `resid' value as returned by the controller appears to be
   1965 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
   1966 	 * count?
   1967 	 */
   1968 	xs->resid = 0; /* mc->mc_resid; */
   1969 
   1970 	if (mc->mc_length != 0)
   1971 		mly_ccb_unmap(mly, mc);
   1972 
   1973 	switch (mc->mc_status) {
   1974 	case SCSI_OK:
   1975 		/*
   1976 		 * In order to report logical device type and status, we
   1977 		 * overwrite the result of the INQUIRY command to logical
   1978 		 * devices.
   1979 		 */
   1980 		if (xs->cmd->opcode == INQUIRY) {
   1981 			chan = xs->xs_periph->periph_channel;
   1982 			target = xs->xs_periph->periph_target;
   1983 			btl = &mly->mly_btl[chan->chan_channel][target];
   1984 
   1985 			s = splbio();
   1986 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
   1987 				inq = (struct scsipi_inquiry_data *)xs->data;
   1988 				mly_padstr(inq->vendor, "MYLEX", 8);
   1989 				p = mly_describe_code(mly_table_device_type,
   1990 				    btl->mb_type);
   1991 				mly_padstr(inq->product, p, 16);
   1992 				p = mly_describe_code(mly_table_device_state,
   1993 				    btl->mb_state);
   1994 				mly_padstr(inq->revision, p, 4);
   1995 			}
   1996 			splx(s);
   1997 		}
   1998 
   1999 		xs->error = XS_NOERROR;
   2000 		break;
   2001 
   2002 	case SCSI_CHECK:
   2003 		sl = mc->mc_sense;
   2004 		if (sl > sizeof(xs->sense.scsi_sense))
   2005 			sl = sizeof(xs->sense.scsi_sense);
   2006 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
   2007 		xs->error = XS_SENSE;
   2008 		break;
   2009 
   2010 	case SCSI_BUSY:
   2011 	case SCSI_QUEUE_FULL:
   2012 		xs->error = XS_BUSY;
   2013 		break;
   2014 
   2015 	default:
   2016 		printf("%s: unknown SCSI status 0x%x\n",
   2017 		    mly->mly_dv.dv_xname, xs->status);
   2018 		xs->error = XS_DRIVER_STUFFUP;
   2019 		break;
   2020 	}
   2021 
   2022 	mly_ccb_free(mly, mc);
   2023 	scsipi_done(xs);
   2024 }
   2025 
   2026 /*
   2027  * Notify scsipi about a target's transfer mode.
   2028  */
   2029 static void
   2030 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
   2031 {
   2032 	struct mly_btl *btl;
   2033 	int s;
   2034 
   2035 	btl = &mly->mly_btl[bus][xm->xm_target];
   2036 	xm->xm_mode = 0;
   2037 
   2038 	s = splbio();
   2039 
   2040 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
   2041 		if (btl->mb_speed == 0) {
   2042 			xm->xm_period = 0;
   2043 			xm->xm_offset = 0;
   2044 		} else {
   2045 			xm->xm_period = 12;			/* XXX */
   2046 			xm->xm_offset = 8;			/* XXX */
   2047 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
   2048 		}
   2049 
   2050 		switch (btl->mb_width) {
   2051 		case 32:
   2052 			xm->xm_mode = PERIPH_CAP_WIDE32;
   2053 			break;
   2054 		case 16:
   2055 			xm->xm_mode = PERIPH_CAP_WIDE16;
   2056 			break;
   2057 		default:
   2058 			xm->xm_mode = 0;
   2059 			break;
   2060 		}
   2061 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
   2062 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
   2063 		xm->xm_period = 12;
   2064 		xm->xm_offset = 8;
   2065 	}
   2066 
   2067 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
   2068 		xm->xm_mode |= PERIPH_CAP_TQING;
   2069 
   2070 	splx(s);
   2071 
   2072 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
   2073 }
   2074 
   2075 /*
   2076  * ioctl hook; used here only to initiate low-level rescans.
   2077  */
   2078 static int
   2079 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
   2080 		 int flag, struct proc *p)
   2081 {
   2082 	struct mly_softc *mly;
   2083 	int rv;
   2084 
   2085 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
   2086 
   2087 	switch (cmd) {
   2088 	case SCBUSIOLLSCAN:
   2089 		mly_scan_channel(mly, chan->chan_channel);
   2090 		rv = 0;
   2091 		break;
   2092 	default:
   2093 		rv = ENOTTY;
   2094 		break;
   2095 	}
   2096 
   2097 	return (rv);
   2098 }
   2099 
   2100 /*
   2101  * Handshake with the firmware while the card is being initialised.
   2102  */
   2103 static int
   2104 mly_fwhandshake(struct mly_softc *mly)
   2105 {
   2106 	u_int8_t error, param0, param1;
   2107 	int spinup;
   2108 
   2109 	spinup = 0;
   2110 
   2111 	/* Set HM_STSACK and let the firmware initialise. */
   2112 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   2113 	DELAY(1000);	/* too short? */
   2114 
   2115 	/* If HM_STSACK is still true, the controller is initialising. */
   2116 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
   2117 		return (0);
   2118 
   2119 	printf("%s: controller initialisation started\n",
   2120 	    mly->mly_dv.dv_xname);
   2121 
   2122 	/*
   2123 	 * Spin waiting for initialisation to finish, or for a message to be
   2124 	 * delivered.
   2125 	 */
   2126 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
   2127 		/* Check for a message */
   2128 		if (!mly_error_valid(mly))
   2129 			continue;
   2130 
   2131 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
   2132 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
   2133 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
   2134 
   2135 		switch (error) {
   2136 		case MLY_MSG_SPINUP:
   2137 			if (!spinup) {
   2138 				printf("%s: drive spinup in progress\n",
   2139 				    mly->mly_dv.dv_xname);
   2140 				spinup = 1;
   2141 			}
   2142 			break;
   2143 
   2144 		case MLY_MSG_RACE_RECOVERY_FAIL:
   2145 			printf("%s: mirror race recovery failed - \n",
   2146 			    mly->mly_dv.dv_xname);
   2147 			printf("%s: one or more drives offline\n",
   2148 			    mly->mly_dv.dv_xname);
   2149 			break;
   2150 
   2151 		case MLY_MSG_RACE_IN_PROGRESS:
   2152 			printf("%s: mirror race recovery in progress\n",
   2153 			    mly->mly_dv.dv_xname);
   2154 			break;
   2155 
   2156 		case MLY_MSG_RACE_ON_CRITICAL:
   2157 			printf("%s: mirror race recovery on critical drive\n",
   2158 			    mly->mly_dv.dv_xname);
   2159 			break;
   2160 
   2161 		case MLY_MSG_PARITY_ERROR:
   2162 			printf("%s: FATAL MEMORY PARITY ERROR\n",
   2163 			    mly->mly_dv.dv_xname);
   2164 			return (ENXIO);
   2165 
   2166 		default:
   2167 			printf("%s: unknown initialisation code 0x%x\n",
   2168 			    mly->mly_dv.dv_xname, error);
   2169 			break;
   2170 		}
   2171 	}
   2172 
   2173 	return (0);
   2174 }
   2175 
   2176 /*
   2177  * Space-fill a character string
   2178  */
   2179 static void
   2180 mly_padstr(char *dst, const char *src, int len)
   2181 {
   2182 
   2183 	while (len-- > 0) {
   2184 		if (*src != '\0')
   2185 			*dst++ = *src++;
   2186 		else
   2187 			*dst++ = ' ';
   2188 	}
   2189 }
   2190 
   2191 /*
   2192  * Allocate DMA safe memory.
   2193  */
   2194 static int
   2195 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
   2196 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
   2197 {
   2198 	int rseg, rv, state;
   2199 
   2200 	state = 0;
   2201 
   2202 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
   2203 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
   2204 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
   2205 		goto bad;
   2206 	}
   2207 
   2208 	state++;
   2209 
   2210 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
   2211 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   2212 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
   2213 		goto bad;
   2214 	}
   2215 
   2216 	state++;
   2217 
   2218 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
   2219 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
   2220 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
   2221 		goto bad;
   2222 	}
   2223 
   2224 	state++;
   2225 
   2226 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
   2227 	    NULL, BUS_DMA_NOWAIT)) != 0) {
   2228 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
   2229 		goto bad;
   2230 	}
   2231 
   2232 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
   2233 	memset(*kva, 0, size);
   2234 	return (0);
   2235 
   2236  bad:
   2237 	if (state > 2)
   2238 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
   2239 	if (state > 1)
   2240 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
   2241 	if (state > 0)
   2242 		bus_dmamem_free(mly->mly_dmat, seg, 1);
   2243 
   2244 	return (rv);
   2245 }
   2246 
   2247 /*
   2248  * Free DMA safe memory.
   2249  */
   2250 static void
   2251 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
   2252 		caddr_t kva, bus_dma_segment_t *seg)
   2253 {
   2254 
   2255 	bus_dmamap_unload(mly->mly_dmat, dmamap);
   2256 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
   2257 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
   2258 	bus_dmamem_free(mly->mly_dmat, seg, 1);
   2259 }
   2260 
   2261 
   2262 /*
   2263  * Accept an open operation on the control device.
   2264  */
   2265 int
   2266 mlyopen(dev_t dev, int flag, int mode, struct proc *p)
   2267 {
   2268 	struct mly_softc *mly;
   2269 
   2270 	if ((mly = device_lookup(&mly_cd, minor(dev))) == NULL)
   2271 		return (ENXIO);
   2272 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
   2273 		return (ENXIO);
   2274 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
   2275 		return (EBUSY);
   2276 
   2277 	mly->mly_state |= MLY_STATE_OPEN;
   2278 	return (0);
   2279 }
   2280 
   2281 /*
   2282  * Accept the last close on the control device.
   2283  */
   2284 int
   2285 mlyclose(dev_t dev, int flag, int mode, struct proc *p)
   2286 {
   2287 	struct mly_softc *mly;
   2288 
   2289 	mly = device_lookup(&mly_cd, minor(dev));
   2290 	mly->mly_state &= ~MLY_STATE_OPEN;
   2291 	return (0);
   2292 }
   2293 
   2294 /*
   2295  * Handle control operations.
   2296  */
   2297 int
   2298 mlyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
   2299 {
   2300 	struct mly_softc *mly;
   2301 	int rv;
   2302 
   2303 	if (securelevel >= 2)
   2304 		return (EPERM);
   2305 
   2306 	mly = device_lookup(&mly_cd, minor(dev));
   2307 
   2308 	switch (cmd) {
   2309 	case MLYIO_COMMAND:
   2310 		rv = mly_user_command(mly, (void *)data);
   2311 		break;
   2312 	case MLYIO_HEALTH:
   2313 		rv = mly_user_health(mly, (void *)data);
   2314 		break;
   2315 	default:
   2316 		rv = ENOTTY;
   2317 		break;
   2318 	}
   2319 
   2320 	return (rv);
   2321 }
   2322 
   2323 /*
   2324  * Execute a command passed in from userspace.
   2325  *
   2326  * The control structure contains the actual command for the controller, as
   2327  * well as the user-space data pointer and data size, and an optional sense
   2328  * buffer size/pointer.  On completion, the data size is adjusted to the
   2329  * command residual, and the sense buffer size to the size of the returned
   2330  * sense data.
   2331  */
   2332 static int
   2333 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
   2334 {
   2335 	struct mly_ccb	*mc;
   2336 	int rv, mapped;
   2337 
   2338 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
   2339 		return (rv);
   2340 
   2341 	mapped = 0;
   2342 	mc->mc_data = NULL;
   2343 
   2344 	/*
   2345 	 * Handle data size/direction.
   2346 	 */
   2347 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
   2348 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
   2349 		if (mc->mc_data == NULL) {
   2350 			rv = ENOMEM;
   2351 			goto out;
   2352 		}
   2353 
   2354 		if (uc->DataTransferLength > 0) {
   2355 			mc->mc_flags |= MLY_CCB_DATAIN;
   2356 			memset(mc->mc_data, 0, mc->mc_length);
   2357 		}
   2358 
   2359 		if (uc->DataTransferLength < 0) {
   2360 			mc->mc_flags |= MLY_CCB_DATAOUT;
   2361 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
   2362 			    mc->mc_length);
   2363 			if (rv != 0)
   2364 				goto out;
   2365 		}
   2366 
   2367 		if ((rv = mly_ccb_map(mly, mc)) != 0)
   2368 			goto out;
   2369 		mapped = 1;
   2370 	}
   2371 
   2372 	/* Copy in the command and execute it. */
   2373 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
   2374 
   2375 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
   2376 		goto out;
   2377 
   2378 	/* Return the data to userspace. */
   2379 	if (uc->DataTransferLength > 0) {
   2380 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
   2381 		    mc->mc_length);
   2382 		if (rv != 0)
   2383 			goto out;
   2384 	}
   2385 
   2386 	/* Return the sense buffer to userspace. */
   2387 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
   2388 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
   2389 		    min(uc->RequestSenseLength, mc->mc_sense));
   2390 		if (rv != 0)
   2391 			goto out;
   2392 	}
   2393 
   2394 	/* Return command results to userspace (caller will copy out). */
   2395 	uc->DataTransferLength = mc->mc_resid;
   2396 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
   2397 	uc->CommandStatus = mc->mc_status;
   2398 	rv = 0;
   2399 
   2400  out:
   2401  	if (mapped)
   2402  		mly_ccb_unmap(mly, mc);
   2403 	if (mc->mc_data != NULL)
   2404 		free(mc->mc_data, M_DEVBUF);
   2405 	if (mc != NULL)
   2406 		mly_ccb_free(mly, mc);
   2407 
   2408 	return (rv);
   2409 }
   2410 
   2411 /*
   2412  * Return health status to userspace.  If the health change index in the
   2413  * user structure does not match that currently exported by the controller,
   2414  * we return the current status immediately.  Otherwise, we block until
   2415  * either interrupted or new status is delivered.
   2416  */
   2417 static int
   2418 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
   2419 {
   2420 	struct mly_health_status mh;
   2421 	int rv, s;
   2422 
   2423 	/* Fetch the current health status from userspace. */
   2424 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
   2425 	if (rv != 0)
   2426 		return (rv);
   2427 
   2428 	/* spin waiting for a status update */
   2429 	s = splbio();
   2430 	if (mly->mly_event_change == mh.change_counter)
   2431 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
   2432 		    "mlyhealth", 0);
   2433 	splx(s);
   2434 
   2435 	if (rv == 0) {
   2436 		/*
   2437 		 * Copy the controller's health status buffer out (there is
   2438 		 * a race here if it changes again).
   2439 		 */
   2440 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
   2441 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
   2442 	}
   2443 
   2444 	return (rv);
   2445 }
   2446