mly.c revision 1.7.4.1 1 /* $NetBSD: mly.c,v 1.7.4.1 2001/09/07 04:45:27 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*-
40 * Copyright (c) 2000, 2001 Michael Smith
41 * Copyright (c) 2000 BSDi
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
66 */
67
68 /*
69 * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
70 *
71 * TODO:
72 *
73 * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
74 * o Handle FC and multiple LUNs.
75 * o Fix mmbox usage.
76 * o Fix transfer speed fudge.
77 */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/device.h>
82 #include <sys/kernel.h>
83 #include <sys/queue.h>
84 #include <sys/buf.h>
85 #include <sys/endian.h>
86 #include <sys/conf.h>
87 #include <sys/malloc.h>
88 #include <sys/ioctl.h>
89 #include <sys/scsiio.h>
90 #include <sys/kthread.h>
91 #include <sys/vnode.h>
92
93 #include <miscfs/specfs/specdev.h>
94
95 #include <uvm/uvm_extern.h>
96
97 #include <machine/bus.h>
98
99 #include <dev/scsipi/scsi_all.h>
100 #include <dev/scsipi/scsipi_all.h>
101 #include <dev/scsipi/scsiconf.h>
102
103 #include <dev/pci/pcireg.h>
104 #include <dev/pci/pcivar.h>
105 #include <dev/pci/pcidevs.h>
106
107 #include <dev/pci/mlyreg.h>
108 #include <dev/pci/mlyio.h>
109 #include <dev/pci/mlyvar.h>
110 #include <dev/pci/mly_tables.h>
111
112 static void mly_attach(struct device *, struct device *, void *);
113 static int mly_match(struct device *, struct cfdata *, void *);
114 static const struct mly_ident *mly_find_ident(struct pci_attach_args *);
115 static int mly_fwhandshake(struct mly_softc *);
116 static int mly_flush(struct mly_softc *);
117 static int mly_intr(void *);
118 static void mly_shutdown(void *);
119
120 static int mly_alloc_ccbs(struct mly_softc *);
121 static void mly_check_event(struct mly_softc *);
122 static void mly_complete_event(struct mly_softc *, struct mly_ccb *);
123 static void mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
124 static int mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
125 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
126 static void mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
127 caddr_t, bus_dma_segment_t *);
128 static int mly_enable_mmbox(struct mly_softc *);
129 static void mly_fetch_event(struct mly_softc *);
130 static int mly_get_controllerinfo(struct mly_softc *);
131 static int mly_get_eventstatus(struct mly_softc *);
132 static int mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
133 void **, size_t, void *, size_t *);
134 static void mly_padstr(char *, const char *, int);
135 static void mly_process_event(struct mly_softc *, struct mly_event *);
136 static void mly_release_ccbs(struct mly_softc *);
137 static int mly_scan_btl(struct mly_softc *, int, int);
138 static void mly_scan_channel(struct mly_softc *, int);
139 static void mly_thread(void *);
140 static void mly_thread_create(void *);
141
142 static int mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
143 static void mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
144 static void mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
145 static void mly_ccb_free(struct mly_softc *, struct mly_ccb *);
146 static int mly_ccb_map(struct mly_softc *, struct mly_ccb *);
147 static int mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
148 static int mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
149 static void mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
150 static int mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
151
152 static void mly_get_xfer_mode(struct mly_softc *, int,
153 struct scsipi_xfer_mode *);
154 static void mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
155 static int mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
156 int, struct proc *);
157 static void mly_scsipi_minphys(struct buf *);
158 static void mly_scsipi_request(struct scsipi_channel *,
159 scsipi_adapter_req_t, void *);
160
161 static int mly_user_command(struct mly_softc *, struct mly_user_command *);
162 static int mly_user_health(struct mly_softc *, struct mly_user_health *);
163
164 cdev_decl(mly);
165
166 extern struct cfdriver mly_cd;
167
168 struct cfattach mly_ca = {
169 sizeof(struct mly_softc), mly_match, mly_attach
170 };
171
172 struct mly_ident {
173 u_short vendor;
174 u_short product;
175 u_short subvendor;
176 u_short subproduct;
177 int hwif;
178 const char *desc;
179 } static const mly_ident[] = {
180 {
181 PCI_VENDOR_MYLEX,
182 PCI_PRODUCT_MYLEX_EXTREMERAID,
183 PCI_VENDOR_MYLEX,
184 0x0040,
185 MLY_HWIF_STRONGARM,
186 "eXtremeRAID 2000"
187 },
188 {
189 PCI_VENDOR_MYLEX,
190 PCI_PRODUCT_MYLEX_EXTREMERAID,
191 PCI_VENDOR_MYLEX,
192 0x0030,
193 MLY_HWIF_STRONGARM,
194 "eXtremeRAID 3000"
195 },
196 {
197 PCI_VENDOR_MYLEX,
198 PCI_PRODUCT_MYLEX_ACCELERAID,
199 PCI_VENDOR_MYLEX,
200 0x0050,
201 MLY_HWIF_I960RX,
202 "AcceleRAID 352"
203 },
204 {
205 PCI_VENDOR_MYLEX,
206 PCI_PRODUCT_MYLEX_ACCELERAID,
207 PCI_VENDOR_MYLEX,
208 0x0052,
209 MLY_HWIF_I960RX,
210 "AcceleRAID 170"
211 },
212 {
213 PCI_VENDOR_MYLEX,
214 PCI_PRODUCT_MYLEX_ACCELERAID,
215 PCI_VENDOR_MYLEX,
216 0x0054,
217 MLY_HWIF_I960RX,
218 "AcceleRAID 160"
219 },
220 };
221
222 static void *mly_sdh;
223
224 /*
225 * Try to find a `mly_ident' entry corresponding to this board.
226 */
227 static const struct mly_ident *
228 mly_find_ident(struct pci_attach_args *pa)
229 {
230 const struct mly_ident *mpi, *maxmpi;
231 pcireg_t reg;
232
233 mpi = mly_ident;
234 maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
235
236 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
237 return (NULL);
238
239 for (; mpi < maxmpi; mpi++) {
240 if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
241 PCI_PRODUCT(pa->pa_id) != mpi->product)
242 continue;
243
244 if (mpi->subvendor == 0x0000)
245 return (mpi);
246
247 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
248
249 if (PCI_VENDOR(reg) == mpi->subvendor &&
250 PCI_PRODUCT(reg) == mpi->subproduct)
251 return (mpi);
252 }
253
254 return (NULL);
255 }
256
257 /*
258 * Match a supported board.
259 */
260 static int
261 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
262 {
263
264 return (mly_find_ident(aux) != NULL);
265 }
266
267 /*
268 * Attach a supported board.
269 */
270 static void
271 mly_attach(struct device *parent, struct device *self, void *aux)
272 {
273 struct pci_attach_args *pa;
274 struct mly_softc *mly;
275 struct mly_ioctl_getcontrollerinfo *mi;
276 const struct mly_ident *ident;
277 pci_chipset_tag_t pc;
278 pci_intr_handle_t ih;
279 bus_space_handle_t memh, ioh;
280 bus_space_tag_t memt, iot;
281 pcireg_t reg;
282 const char *intrstr;
283 int ior, memr, i, rv, state;
284 struct scsipi_adapter *adapt;
285 struct scsipi_channel *chan;
286
287 mly = (struct mly_softc *)self;
288 pa = aux;
289 pc = pa->pa_pc;
290 ident = mly_find_ident(pa);
291 state = 0;
292
293 mly->mly_dmat = pa->pa_dmat;
294 mly->mly_hwif = ident->hwif;
295
296 printf(": Mylex %s\n", ident->desc);
297
298 /*
299 * Map the PCI register window.
300 */
301 memr = -1;
302 ior = -1;
303
304 for (i = 0x10; i <= 0x14; i += 4) {
305 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
306
307 if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
308 if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
309 ior = i;
310 } else {
311 if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
312 memr = i;
313 }
314 }
315
316 if (memr != -1)
317 if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
318 &memt, &memh, NULL, NULL))
319 memr = -1;
320 if (ior != -1)
321 if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
322 &iot, &ioh, NULL, NULL))
323 ior = -1;
324
325 if (memr != -1) {
326 mly->mly_iot = memt;
327 mly->mly_ioh = memh;
328 } else if (ior != -1) {
329 mly->mly_iot = iot;
330 mly->mly_ioh = ioh;
331 } else {
332 printf("%s: can't map i/o or memory space\n", self->dv_xname);
333 return;
334 }
335
336 /*
337 * Enable the device.
338 */
339 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
340 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
341 reg | PCI_COMMAND_MASTER_ENABLE);
342
343 /*
344 * Map and establish the interrupt.
345 */
346 if (pci_intr_map(pa, &ih)) {
347 printf("%s: can't map interrupt\n", self->dv_xname);
348 return;
349 }
350 intrstr = pci_intr_string(pc, ih);
351 mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
352 if (mly->mly_ih == NULL) {
353 printf("%s: can't establish interrupt", self->dv_xname);
354 if (intrstr != NULL)
355 printf(" at %s", intrstr);
356 printf("\n");
357 return;
358 }
359
360 if (intrstr != NULL)
361 printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
362 intrstr);
363
364 /*
365 * Take care of interface-specific tasks.
366 */
367 switch (mly->mly_hwif) {
368 case MLY_HWIF_I960RX:
369 mly->mly_doorbell_true = 0x00;
370 mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
371 mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
372 mly->mly_idbr = MLY_I960RX_IDBR;
373 mly->mly_odbr = MLY_I960RX_ODBR;
374 mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
375 mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
376 mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
377 break;
378
379 case MLY_HWIF_STRONGARM:
380 mly->mly_doorbell_true = 0xff;
381 mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
382 mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
383 mly->mly_idbr = MLY_STRONGARM_IDBR;
384 mly->mly_odbr = MLY_STRONGARM_ODBR;
385 mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
386 mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
387 mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
388 break;
389 }
390
391 /*
392 * Allocate and map the scatter/gather lists.
393 */
394 rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
395 &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
396 &mly->mly_sg_busaddr, &mly->mly_sg_seg);
397 if (rv) {
398 printf("%s: unable to allocate S/G maps\n",
399 mly->mly_dv.dv_xname);
400 goto bad;
401 }
402 state++;
403
404 /*
405 * Allocate and map the memory mailbox.
406 */
407 rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
408 &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
409 &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
410 if (rv) {
411 printf("%s: unable to allocate mailboxes\n",
412 mly->mly_dv.dv_xname);
413 goto bad;
414 }
415 state++;
416
417 /*
418 * Initialise per-controller queues.
419 */
420 SLIST_INIT(&mly->mly_ccb_free);
421 SIMPLEQ_INIT(&mly->mly_ccb_queue);
422
423 /*
424 * Disable interrupts before we start talking to the controller.
425 */
426 mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
427
428 /*
429 * Wait for the controller to come ready, handshaking with the
430 * firmware if required. This is typically only necessary on
431 * platforms where the controller BIOS does not run.
432 */
433 if (mly_fwhandshake(mly)) {
434 printf("%s: unable to bring controller online\n",
435 mly->mly_dv.dv_xname);
436 goto bad;
437 }
438
439 /*
440 * Allocate initial command buffers, obtain controller feature
441 * information, and then reallocate command buffers, since we'll
442 * know how many we want.
443 */
444 if (mly_alloc_ccbs(mly)) {
445 printf("%s: unable to allocate CCBs\n",
446 mly->mly_dv.dv_xname);
447 goto bad;
448 }
449 state++;
450 if (mly_get_controllerinfo(mly)) {
451 printf("%s: unable to retrieve controller info\n",
452 mly->mly_dv.dv_xname);
453 goto bad;
454 }
455 mly_release_ccbs(mly);
456 if (mly_alloc_ccbs(mly)) {
457 printf("%s: unable to allocate CCBs\n",
458 mly->mly_dv.dv_xname);
459 state--;
460 goto bad;
461 }
462
463 /*
464 * Get the current event counter for health purposes, populate the
465 * initial health status buffer.
466 */
467 if (mly_get_eventstatus(mly)) {
468 printf("%s: unable to retrieve event status\n",
469 mly->mly_dv.dv_xname);
470 goto bad;
471 }
472
473 /*
474 * Enable memory-mailbox mode.
475 */
476 if (mly_enable_mmbox(mly)) {
477 printf("%s: unable to enable memory mailbox\n",
478 mly->mly_dv.dv_xname);
479 goto bad;
480 }
481
482 /*
483 * Print a little information about the controller.
484 */
485 mi = mly->mly_controllerinfo;
486
487 printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
488 "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
489 mi->physical_channels_present,
490 (mi->physical_channels_present) > 1 ? "s" : "",
491 mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
492 mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
493 le16toh(mi->memory_size));
494
495 /*
496 * Register our `shutdownhook'.
497 */
498 if (mly_sdh == NULL)
499 shutdownhook_establish(mly_shutdown, NULL);
500
501 /*
502 * Clear any previous BTL information. For each bus that scsipi
503 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
504 * all BTL info at that point.
505 */
506 memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
507
508 mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
509 mly->mly_controllerinfo->virtual_channels_present;
510
511 /*
512 * Attach to scsipi.
513 */
514 adapt = &mly->mly_adapt;
515 memset(adapt, 0, sizeof(*adapt));
516 adapt->adapt_dev = &mly->mly_dv;
517 adapt->adapt_nchannels = mly->mly_nchans;
518 adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
519 adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
520 adapt->adapt_request = mly_scsipi_request;
521 adapt->adapt_minphys = mly_scsipi_minphys;
522 adapt->adapt_ioctl = mly_scsipi_ioctl;
523
524 for (i = 0; i < mly->mly_nchans; i++) {
525 chan = &mly->mly_chans[i];
526 memset(chan, 0, sizeof(*chan));
527 chan->chan_adapter = adapt;
528 chan->chan_bustype = &scsi_bustype;
529 chan->chan_channel = i;
530 chan->chan_ntargets = MLY_MAX_TARGETS;
531 chan->chan_nluns = MLY_MAX_LUNS;
532 chan->chan_id = mly->mly_controllerparam->initiator_id;
533 chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
534 config_found(&mly->mly_dv, chan, scsiprint);
535 }
536
537 /*
538 * Now enable interrupts...
539 */
540 mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
541
542 /*
543 * Finally, create our monitoring thread.
544 */
545 kthread_create(mly_thread_create, mly);
546
547 mly->mly_state |= MLY_STATE_INITOK;
548 return;
549
550 bad:
551 if (state > 2)
552 mly_release_ccbs(mly);
553 if (state > 1)
554 mly_dmamem_free(mly, sizeof(struct mly_mmbox),
555 mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
556 &mly->mly_mmbox_seg);
557 if (state > 0)
558 mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
559 mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
560 &mly->mly_sg_seg);
561 }
562
563 /*
564 * Scan all possible devices on the specified channel.
565 */
566 static void
567 mly_scan_channel(struct mly_softc *mly, int bus)
568 {
569 int s, target;
570
571 for (target = 0; target < MLY_MAX_TARGETS; target++) {
572 s = splbio();
573 if (!mly_scan_btl(mly, bus, target)) {
574 tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
575 0);
576 }
577 splx(s);
578 }
579 }
580
581 /*
582 * Shut down all configured `mly' devices.
583 */
584 static void
585 mly_shutdown(void *cookie)
586 {
587 struct mly_softc *mly;
588 int i;
589
590 for (i = 0; i < mly_cd.cd_ndevs; i++) {
591 if ((mly = device_lookup(&mly_cd, i)) == NULL)
592 continue;
593
594 if (mly_flush(mly))
595 printf("%s: unable to flush cache\n",
596 mly->mly_dv.dv_xname);
597 }
598 }
599
600 /*
601 * Fill in the mly_controllerinfo and mly_controllerparam fields in the
602 * softc.
603 */
604 static int
605 mly_get_controllerinfo(struct mly_softc *mly)
606 {
607 struct mly_cmd_ioctl mci;
608 int rv;
609
610 /*
611 * Build the getcontrollerinfo ioctl and send it.
612 */
613 memset(&mci, 0, sizeof(mci));
614 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
615 rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
616 sizeof(*mly->mly_controllerinfo), NULL, NULL);
617 if (rv != 0)
618 return (rv);
619
620 /*
621 * Build the getcontrollerparameter ioctl and send it.
622 */
623 memset(&mci, 0, sizeof(mci));
624 mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
625 rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
626 sizeof(*mly->mly_controllerparam), NULL, NULL);
627
628 return (rv);
629 }
630
631 /*
632 * Rescan a device, possibly as a consequence of getting an event which
633 * suggests that it may have changed. Must be called with interrupts
634 * blocked.
635 */
636 static int
637 mly_scan_btl(struct mly_softc *mly, int bus, int target)
638 {
639 struct mly_ccb *mc;
640 struct mly_cmd_ioctl *mci;
641 int rv;
642
643 if (target == mly->mly_controllerparam->initiator_id) {
644 mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
645 return (EIO);
646 }
647
648 /* Don't re-scan if a scan is already in progress. */
649 if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
650 return (EBUSY);
651
652 /* Get a command. */
653 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
654 return (rv);
655
656 /* Set up the data buffer. */
657 mc->mc_data = malloc(sizeof(union mly_devinfo),
658 M_DEVBUF, M_NOWAIT);
659 memset(mc->mc_data, 0, sizeof(union mly_devinfo));
660
661 mc->mc_flags |= MLY_CCB_DATAIN;
662 mc->mc_complete = mly_complete_rescan;
663
664 /*
665 * Build the ioctl.
666 */
667 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
668 mci->opcode = MDACMD_IOCTL;
669 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
670 memset(&mci->param, 0, sizeof(mci->param));
671
672 if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
673 mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
674 mci->data_size = htole32(mc->mc_length);
675 mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
676 _lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
677 mci->addr);
678 } else {
679 mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
680 mci->data_size = htole32(mc->mc_length);
681 mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
682 _lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
683 }
684
685 /*
686 * Dispatch the command.
687 */
688 if ((rv = mly_ccb_map(mly, mc)) != 0) {
689 free(mc->mc_data, M_DEVBUF);
690 mly_ccb_free(mly, mc);
691 return(rv);
692 }
693
694 mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
695 mly_ccb_enqueue(mly, mc);
696 return (0);
697 }
698
699 /*
700 * Handle the completion of a rescan operation.
701 */
702 static void
703 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
704 {
705 struct mly_ioctl_getlogdevinfovalid *ldi;
706 struct mly_ioctl_getphysdevinfovalid *pdi;
707 struct mly_cmd_ioctl *mci;
708 struct mly_btl btl, *btlp;
709 struct scsipi_xfer_mode xm;
710 int bus, target, rescan;
711 u_int tmp;
712
713 mly_ccb_unmap(mly, mc);
714
715 /*
716 * Recover the bus and target from the command. We need these even
717 * in the case where we don't have a useful response.
718 */
719 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
720 tmp = _3ltol(mci->addr);
721 rescan = 0;
722
723 if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
724 bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
725 target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
726 } else {
727 bus = MLY_PHYADDR_CHANNEL(tmp);
728 target = MLY_PHYADDR_TARGET(tmp);
729 }
730
731 btlp = &mly->mly_btl[bus][target];
732
733 /* The default result is 'no device'. */
734 memset(&btl, 0, sizeof(btl));
735 btl.mb_flags = MLY_BTL_PROTECTED;
736
737 /* If the rescan completed OK, we have possibly-new BTL data. */
738 if (mc->mc_status != 0)
739 goto out;
740
741 if (mc->mc_length == sizeof(*ldi)) {
742 ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
743 tmp = le32toh(ldi->logical_device_number);
744
745 if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
746 MLY_LOGDEV_TARGET(mly, tmp) != target) {
747 #ifdef MLYDEBUG
748 printf("%s: WARNING: BTL rescan (logical) for %d:%d "
749 "returned data for %d:%d instead\n",
750 mly->mly_dv.dv_xname, bus, target,
751 MLY_LOGDEV_BUS(mly, tmp),
752 MLY_LOGDEV_TARGET(mly, tmp));
753 #endif
754 goto out;
755 }
756
757 btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
758 btl.mb_type = ldi->raid_level;
759 btl.mb_state = ldi->state;
760 } else if (mc->mc_length == sizeof(*pdi)) {
761 pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
762
763 if (pdi->channel != bus || pdi->target != target) {
764 #ifdef MLYDEBUG
765 printf("%s: WARNING: BTL rescan (physical) for %d:%d "
766 " returned data for %d:%d instead\n",
767 mly->mly_dv.dv_xname,
768 bus, target, pdi->channel, pdi->target);
769 #endif
770 goto out;
771 }
772
773 btl.mb_flags = MLY_BTL_PHYSICAL;
774 btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
775 btl.mb_state = pdi->state;
776 btl.mb_speed = pdi->speed;
777 btl.mb_width = pdi->width;
778
779 if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
780 btl.mb_flags |= MLY_BTL_PROTECTED;
781 if (pdi->command_tags != 0)
782 btl.mb_flags |= MLY_BTL_TQING;
783 } else {
784 printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
785 goto out;
786 }
787
788 /* Decide whether we need to rescan the device. */
789 if (btl.mb_flags != btlp->mb_flags ||
790 btl.mb_speed != btlp->mb_speed ||
791 btl.mb_width != btlp->mb_width)
792 rescan = 1;
793
794 out:
795 *btlp = btl;
796
797 if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
798 xm.xm_target = target;
799 mly_get_xfer_mode(mly, bus, &xm);
800 /* XXX SCSI mid-layer rescan goes here. */
801 }
802
803 /* Wake anybody waiting on the device to be rescanned. */
804 wakeup(btlp);
805
806 free(mc->mc_data, M_DEVBUF);
807 mly_ccb_free(mly, mc);
808 }
809
810 /*
811 * Get the current health status and set the 'next event' counter to suit.
812 */
813 static int
814 mly_get_eventstatus(struct mly_softc *mly)
815 {
816 struct mly_cmd_ioctl mci;
817 struct mly_health_status *mh;
818 int rv;
819
820 /* Build the gethealthstatus ioctl and send it. */
821 memset(&mci, 0, sizeof(mci));
822 mh = NULL;
823 mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
824
825 rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
826 if (rv)
827 return (rv);
828
829 /* Get the event counter. */
830 mly->mly_event_change = le32toh(mh->change_counter);
831 mly->mly_event_waiting = le32toh(mh->next_event);
832 mly->mly_event_counter = le32toh(mh->next_event);
833
834 /* Save the health status into the memory mailbox */
835 memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
836
837 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
838 offsetof(struct mly_mmbox, mmm_health),
839 sizeof(mly->mly_mmbox->mmm_health),
840 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
841
842 free(mh, M_DEVBUF);
843 return (0);
844 }
845
846 /*
847 * Enable memory mailbox mode.
848 */
849 static int
850 mly_enable_mmbox(struct mly_softc *mly)
851 {
852 struct mly_cmd_ioctl mci;
853 u_int8_t *sp;
854 u_int64_t tmp;
855 int rv;
856
857 /* Build the ioctl and send it. */
858 memset(&mci, 0, sizeof(mci));
859 mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
860
861 /* Set buffer addresses. */
862 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
863 mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
864
865 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
866 mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
867
868 tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
869 mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
870
871 /* Set buffer sizes - abuse of data_size field is revolting. */
872 sp = (u_int8_t *)&mci.data_size;
873 sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
874 sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
875 mci.param.setmemorymailbox.health_buffer_size =
876 sizeof(union mly_health_region) >> 10;
877
878 rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
879 if (rv)
880 return (rv);
881
882 mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
883 return (0);
884 }
885
886 /*
887 * Flush all pending I/O from the controller.
888 */
889 static int
890 mly_flush(struct mly_softc *mly)
891 {
892 struct mly_cmd_ioctl mci;
893
894 /* Build the ioctl */
895 memset(&mci, 0, sizeof(mci));
896 mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
897 mci.param.deviceoperation.operation_device =
898 MLY_OPDEVICE_PHYSICAL_CONTROLLER;
899
900 /* Pass it off to the controller */
901 return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
902 }
903
904 /*
905 * Perform an ioctl command.
906 *
907 * If (data) is not NULL, the command requires data transfer to the
908 * controller. If (*data) is NULL the command requires data transfer from
909 * the controller, and we will allocate a buffer for it.
910 */
911 static int
912 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
913 size_t datasize, void *sense_buffer,
914 size_t *sense_length)
915 {
916 struct mly_ccb *mc;
917 struct mly_cmd_ioctl *mci;
918 u_int8_t status;
919 int rv;
920
921 mc = NULL;
922 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
923 goto bad;
924
925 /*
926 * Copy the ioctl structure, but save some important fields and then
927 * fixup.
928 */
929 mci = &mc->mc_packet->ioctl;
930 ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
931 ioctl->maximum_sense_size = mci->maximum_sense_size;
932 *mci = *ioctl;
933 mci->opcode = MDACMD_IOCTL;
934 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
935
936 /* Handle the data buffer. */
937 if (data != NULL) {
938 if (*data == NULL) {
939 /* Allocate data buffer */
940 mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
941 mc->mc_flags |= MLY_CCB_DATAIN;
942 } else {
943 mc->mc_data = *data;
944 mc->mc_flags |= MLY_CCB_DATAOUT;
945 }
946 mc->mc_length = datasize;
947 mc->mc_packet->generic.data_size = htole32(datasize);
948 }
949
950 /* Run the command. */
951 if (datasize > 0)
952 if ((rv = mly_ccb_map(mly, mc)) != 0)
953 goto bad;
954 rv = mly_ccb_poll(mly, mc, 30000);
955 if (datasize > 0)
956 mly_ccb_unmap(mly, mc);
957 if (rv != 0)
958 goto bad;
959
960 /* Clean up and return any data. */
961 status = mc->mc_status;
962
963 if (status != 0)
964 printf("mly_ioctl: command status %d\n", status);
965
966 if (mc->mc_sense > 0 && sense_buffer != NULL) {
967 memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
968 *sense_length = mc->mc_sense;
969 goto bad;
970 }
971
972 /* Should we return a data pointer? */
973 if (data != NULL && *data == NULL)
974 *data = mc->mc_data;
975
976 /* Command completed OK. */
977 rv = (status != 0 ? EIO : 0);
978
979 bad:
980 if (mc != NULL) {
981 /* Do we need to free a data buffer we allocated? */
982 if (rv != 0 && mc->mc_data != NULL && *data == NULL)
983 free(mc->mc_data, M_DEVBUF);
984 mly_ccb_free(mly, mc);
985 }
986
987 return (rv);
988 }
989
990 /*
991 * Check for event(s) outstanding in the controller.
992 */
993 static void
994 mly_check_event(struct mly_softc *mly)
995 {
996
997 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
998 offsetof(struct mly_mmbox, mmm_health),
999 sizeof(mly->mly_mmbox->mmm_health),
1000 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1001
1002 /*
1003 * The controller may have updated the health status information, so
1004 * check for it here. Note that the counters are all in host
1005 * memory, so this check is very cheap. Also note that we depend on
1006 * checking on completion
1007 */
1008 if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
1009 mly->mly_event_change) {
1010 mly->mly_event_change =
1011 le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
1012 mly->mly_event_waiting =
1013 le32toh(mly->mly_mmbox->mmm_health.status.next_event);
1014
1015 /* Wake up anyone that might be interested in this. */
1016 wakeup(&mly->mly_event_change);
1017 }
1018
1019 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1020 offsetof(struct mly_mmbox, mmm_health),
1021 sizeof(mly->mly_mmbox->mmm_health),
1022 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1023
1024 if (mly->mly_event_counter != mly->mly_event_waiting)
1025 mly_fetch_event(mly);
1026 }
1027
1028 /*
1029 * Fetch one event from the controller. If we fail due to resource
1030 * starvation, we'll be retried the next time a command completes.
1031 */
1032 static void
1033 mly_fetch_event(struct mly_softc *mly)
1034 {
1035 struct mly_ccb *mc;
1036 struct mly_cmd_ioctl *mci;
1037 int s;
1038 u_int32_t event;
1039
1040 /* Get a command. */
1041 if (mly_ccb_alloc(mly, &mc))
1042 return;
1043
1044 /* Set up the data buffer. */
1045 mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
1046 memset(mc->mc_data, 0, sizeof(struct mly_event));
1047
1048 mc->mc_length = sizeof(struct mly_event);
1049 mc->mc_flags |= MLY_CCB_DATAIN;
1050 mc->mc_complete = mly_complete_event;
1051
1052 /*
1053 * Get an event number to fetch. It's possible that we've raced
1054 * with another context for the last event, in which case there will
1055 * be no more events.
1056 */
1057 s = splbio();
1058 if (mly->mly_event_counter == mly->mly_event_waiting) {
1059 splx(s);
1060 free(mc->mc_data, M_DEVBUF);
1061 mly_ccb_free(mly, mc);
1062 return;
1063 }
1064 event = mly->mly_event_counter++;
1065 splx(s);
1066
1067 /*
1068 * Build the ioctl.
1069 *
1070 * At this point we are committed to sending this request, as it
1071 * will be the only one constructed for this particular event
1072 * number.
1073 */
1074 mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
1075 mci->opcode = MDACMD_IOCTL;
1076 mci->data_size = htole32(sizeof(struct mly_event));
1077 _lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
1078 mci->addr);
1079 mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
1080 mci->sub_ioctl = MDACIOCTL_GETEVENT;
1081 mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
1082
1083 /*
1084 * Submit the command.
1085 */
1086 if (mly_ccb_map(mly, mc) != 0)
1087 goto bad;
1088 mly_ccb_enqueue(mly, mc);
1089 return;
1090
1091 bad:
1092 printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
1093 free(mc->mc_data, M_DEVBUF);
1094 mly_ccb_free(mly, mc);
1095 }
1096
1097 /*
1098 * Handle the completion of an event poll.
1099 */
1100 static void
1101 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
1102 {
1103 struct mly_event *me;
1104
1105 me = (struct mly_event *)mc->mc_data;
1106 mly_ccb_unmap(mly, mc);
1107 mly_ccb_free(mly, mc);
1108
1109 /* If the event was successfully fetched, process it. */
1110 if (mc->mc_status == SCSI_OK)
1111 mly_process_event(mly, me);
1112 else
1113 printf("%s: unable to fetch event; status = 0x%x\n",
1114 mly->mly_dv.dv_xname, mc->mc_status);
1115
1116 free(me, M_DEVBUF);
1117
1118 /* Check for another event. */
1119 mly_check_event(mly);
1120 }
1121
1122 /*
1123 * Process a controller event. Called with interupts blocked (i.e., at
1124 * interrupt time).
1125 */
1126 static void
1127 mly_process_event(struct mly_softc *mly, struct mly_event *me)
1128 {
1129 struct scsipi_sense_data *ssd;
1130 int bus, target, event, class, action;
1131 const char *fp, *tp;
1132
1133 ssd = (struct scsipi_sense_data *)&me->sense[0];
1134
1135 /*
1136 * Errors can be reported using vendor-unique sense data. In this
1137 * case, the event code will be 0x1c (Request sense data present),
1138 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
1139 * will be set, and the actual event code will be a 16-bit value
1140 * comprised of the ASCQ (low byte) and low seven bits of the ASC
1141 * (low seven bits of the high byte).
1142 */
1143 if (le32toh(me->code) == 0x1c &&
1144 (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
1145 (ssd->add_sense_code & 0x80) != 0) {
1146 event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
1147 ssd->add_sense_code_qual;
1148 } else
1149 event = le32toh(me->code);
1150
1151 /* Look up event, get codes. */
1152 fp = mly_describe_code(mly_table_event, event);
1153
1154 /* Quiet event? */
1155 class = fp[0];
1156 #ifdef notyet
1157 if (isupper(class) && bootverbose)
1158 class = tolower(class);
1159 #endif
1160
1161 /* Get action code, text string. */
1162 action = fp[1];
1163 tp = fp + 3;
1164
1165 /*
1166 * Print some information about the event.
1167 *
1168 * This code uses a table derived from the corresponding portion of
1169 * the Linux driver, and thus the parser is very similar.
1170 */
1171 switch (class) {
1172 case 'p':
1173 /*
1174 * Error on physical drive.
1175 */
1176 printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1177 me->channel, me->target, tp);
1178 if (action == 'r')
1179 mly->mly_btl[me->channel][me->target].mb_flags |=
1180 MLY_BTL_RESCAN;
1181 break;
1182
1183 case 'l':
1184 case 'm':
1185 /*
1186 * Error on logical unit, or message about logical unit.
1187 */
1188 bus = MLY_LOGDEV_BUS(mly, me->lun);
1189 target = MLY_LOGDEV_TARGET(mly, me->lun);
1190 printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
1191 bus, target, tp);
1192 if (action == 'r')
1193 mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1194 break;
1195
1196 case 's':
1197 /*
1198 * Report of sense data.
1199 */
1200 if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
1201 (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
1202 ssd->add_sense_code == 0x04 &&
1203 (ssd->add_sense_code_qual == 0x01 ||
1204 ssd->add_sense_code_qual == 0x02)) {
1205 /* Ignore NO_SENSE or NOT_READY in one case */
1206 break;
1207 }
1208
1209 /*
1210 * XXX Should translate this if SCSIVERBOSE.
1211 */
1212 printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
1213 me->channel, me->target, tp);
1214 printf("%s: sense key %d asc %02x ascq %02x\n",
1215 mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
1216 ssd->add_sense_code, ssd->add_sense_code_qual);
1217 printf("%s: info %x%x%x%x csi %x%x%x%x\n",
1218 mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
1219 ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
1220 ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
1221 ssd->cmd_spec_info[3]);
1222 if (action == 'r')
1223 mly->mly_btl[me->channel][me->target].mb_flags |=
1224 MLY_BTL_RESCAN;
1225 break;
1226
1227 case 'e':
1228 printf("%s: ", mly->mly_dv.dv_xname);
1229 printf(tp, me->target, me->lun);
1230 break;
1231
1232 case 'c':
1233 printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
1234 break;
1235
1236 case '?':
1237 printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
1238 break;
1239
1240 default:
1241 /* Probably a 'noisy' event being ignored. */
1242 break;
1243 }
1244 }
1245
1246 /*
1247 * Create the monitoring thread. Called after the standard kernel threads
1248 * have been created.
1249 */
1250 static void
1251 mly_thread_create(void *cookie)
1252 {
1253 struct mly_softc *mly;
1254 int rv;
1255
1256 mly = cookie;
1257
1258 rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
1259 mly->mly_dv.dv_xname);
1260 if (rv != 0)
1261 printf("%s: unable to create thread (%d)\n",
1262 mly->mly_dv.dv_xname, rv);
1263 }
1264
1265 /*
1266 * Perform periodic activities.
1267 */
1268 static void
1269 mly_thread(void *cookie)
1270 {
1271 struct mly_softc *mly;
1272 struct mly_btl *btl;
1273 int s, bus, target, done;
1274
1275 mly = (struct mly_softc *)cookie;
1276
1277 for (;;) {
1278 /* Check for new events. */
1279 mly_check_event(mly);
1280
1281 /* Re-scan up to 1 device. */
1282 s = splbio();
1283 done = 0;
1284 for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
1285 for (target = 0; target < MLY_MAX_TARGETS; target++) {
1286 /* Perform device rescan? */
1287 btl = &mly->mly_btl[bus][target];
1288 if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
1289 btl->mb_flags ^= MLY_BTL_RESCAN;
1290 mly_scan_btl(mly, bus, target);
1291 done = 1;
1292 break;
1293 }
1294 }
1295 }
1296 splx(s);
1297
1298 /* Sleep for N seconds. */
1299 tsleep(mly_thread, PWAIT, "mlyzzz",
1300 hz * MLY_PERIODIC_INTERVAL);
1301 }
1302 }
1303
1304 /*
1305 * Submit a command to the controller and poll on completion. Return
1306 * non-zero on timeout.
1307 */
1308 static int
1309 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1310 {
1311 int rv;
1312
1313 if ((rv = mly_ccb_submit(mly, mc)) != 0)
1314 return (rv);
1315
1316 for (timo *= 10; timo != 0; timo--) {
1317 if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
1318 break;
1319 mly_intr(mly);
1320 DELAY(100);
1321 }
1322
1323 return (timo == 0);
1324 }
1325
1326 /*
1327 * Submit a command to the controller and sleep on completion. Return
1328 * non-zero on timeout.
1329 */
1330 static int
1331 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
1332 {
1333 int rv, s;
1334
1335 mly_ccb_enqueue(mly, mc);
1336
1337 s = splbio();
1338 if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
1339 splx(s);
1340 return (0);
1341 }
1342 rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
1343 splx(s);
1344
1345 return (rv);
1346 }
1347
1348 /*
1349 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
1350 * the order that they were enqueued and try to submit their command blocks
1351 * to the controller for execution.
1352 */
1353 void
1354 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
1355 {
1356 int s;
1357
1358 s = splbio();
1359
1360 if (mc != NULL)
1361 SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1362
1363 while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
1364 if (mly_ccb_submit(mly, mc))
1365 break;
1366 SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
1367 }
1368
1369 splx(s);
1370 }
1371
1372 /*
1373 * Deliver a command to the controller.
1374 */
1375 static int
1376 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
1377 {
1378 union mly_cmd_packet *pkt;
1379 int s, off;
1380
1381 mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
1382
1383 bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1384 mc->mc_packetphys - mly->mly_pkt_busaddr,
1385 sizeof(union mly_cmd_packet),
1386 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1387
1388 s = splbio();
1389
1390 /*
1391 * Do we have to use the hardware mailbox?
1392 */
1393 if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
1394 /*
1395 * Check to see if the controller is ready for us.
1396 */
1397 if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
1398 splx(s);
1399 return (EBUSY);
1400 }
1401
1402 /*
1403 * It's ready, send the command.
1404 */
1405 mly_outl(mly, mly->mly_cmd_mailbox,
1406 (u_int64_t)mc->mc_packetphys & 0xffffffff);
1407 mly_outl(mly, mly->mly_cmd_mailbox + 4,
1408 (u_int64_t)mc->mc_packetphys >> 32);
1409 mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
1410 } else {
1411 pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
1412 off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
1413
1414 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1415 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1416 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1417
1418 /* Check to see if the next index is free yet. */
1419 if (pkt->mmbox.flag != 0) {
1420 splx(s);
1421 return (EBUSY);
1422 }
1423
1424 /* Copy in new command */
1425 memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
1426 sizeof(pkt->mmbox.data));
1427
1428 /* Copy flag last. */
1429 pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1430
1431 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1432 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1433 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1434
1435 /* Signal controller and update index. */
1436 mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
1437 mly->mly_mmbox_cmd_idx =
1438 (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
1439 }
1440
1441 splx(s);
1442 return (0);
1443 }
1444
1445 /*
1446 * Pick up completed commands from the controller and handle accordingly.
1447 */
1448 int
1449 mly_intr(void *cookie)
1450 {
1451 struct mly_ccb *mc;
1452 union mly_status_packet *sp;
1453 u_int16_t slot;
1454 int forus, off;
1455 struct mly_softc *mly;
1456
1457 mly = cookie;
1458 forus = 0;
1459
1460 /*
1461 * Pick up hardware-mailbox commands.
1462 */
1463 if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
1464 slot = mly_inw(mly, mly->mly_status_mailbox);
1465
1466 if (slot < MLY_SLOT_MAX) {
1467 mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1468 mc->mc_status =
1469 mly_inb(mly, mly->mly_status_mailbox + 2);
1470 mc->mc_sense =
1471 mly_inb(mly, mly->mly_status_mailbox + 3);
1472 mc->mc_resid =
1473 mly_inl(mly, mly->mly_status_mailbox + 4);
1474
1475 mly_ccb_complete(mly, mc);
1476 } else {
1477 /* Slot 0xffff may mean "extremely bogus command". */
1478 printf("%s: got HM completion for illegal slot %u\n",
1479 mly->mly_dv.dv_xname, slot);
1480 }
1481
1482 /* Unconditionally acknowledge status. */
1483 mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
1484 mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
1485 forus = 1;
1486 }
1487
1488 /*
1489 * Pick up memory-mailbox commands.
1490 */
1491 if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
1492 for (;;) {
1493 sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
1494 off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
1495
1496 bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
1497 off, sizeof(mly->mly_mmbox->mmm_command[0]),
1498 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1499
1500 /* Check for more status. */
1501 if (sp->mmbox.flag == 0)
1502 break;
1503
1504 /* Get slot number. */
1505 slot = le16toh(sp->status.command_id);
1506 if (slot < MLY_SLOT_MAX) {
1507 mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
1508 mc->mc_status = sp->status.status;
1509 mc->mc_sense = sp->status.sense_length;
1510 mc->mc_resid = le32toh(sp->status.residue);
1511 mly_ccb_complete(mly, mc);
1512 } else {
1513 /*
1514 * Slot 0xffff may mean "extremely bogus
1515 * command".
1516 */
1517 printf("%s: got AM completion for illegal "
1518 "slot %u at %d\n", mly->mly_dv.dv_xname,
1519 slot, mly->mly_mmbox_sts_idx);
1520 }
1521
1522 /* Clear and move to next index. */
1523 sp->mmbox.flag = 0;
1524 mly->mly_mmbox_sts_idx =
1525 (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
1526 }
1527
1528 /* Acknowledge that we have collected status value(s). */
1529 mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
1530 forus = 1;
1531 }
1532
1533 /*
1534 * Run the queue.
1535 */
1536 if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
1537 mly_ccb_enqueue(mly, NULL);
1538
1539 return (forus);
1540 }
1541
1542 /*
1543 * Process completed commands
1544 */
1545 static void
1546 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
1547 {
1548 void (*complete)(struct mly_softc *, struct mly_ccb *);
1549
1550 bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
1551 mc->mc_packetphys - mly->mly_pkt_busaddr,
1552 sizeof(union mly_cmd_packet),
1553 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1554
1555 complete = mc->mc_complete;
1556 mc->mc_flags |= MLY_CCB_COMPLETE;
1557
1558 /*
1559 * Call completion handler or wake up sleeping consumer.
1560 */
1561 if (complete != NULL)
1562 (*complete)(mly, mc);
1563 else
1564 wakeup(mc);
1565 }
1566
1567 /*
1568 * Allocate a command.
1569 */
1570 int
1571 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
1572 {
1573 struct mly_ccb *mc;
1574 int s;
1575
1576 s = splbio();
1577 mc = SLIST_FIRST(&mly->mly_ccb_free);
1578 if (mc != NULL)
1579 SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
1580 splx(s);
1581
1582 *mcp = mc;
1583 return (mc == NULL ? EAGAIN : 0);
1584 }
1585
1586 /*
1587 * Release a command back to the freelist.
1588 */
1589 void
1590 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
1591 {
1592 int s;
1593
1594 /*
1595 * Fill in parts of the command that may cause confusion if a
1596 * consumer doesn't when we are later allocated.
1597 */
1598 mc->mc_data = NULL;
1599 mc->mc_flags = 0;
1600 mc->mc_complete = NULL;
1601 mc->mc_private = NULL;
1602 mc->mc_packet->generic.command_control = 0;
1603
1604 /*
1605 * By default, we set up to overwrite the command packet with sense
1606 * information.
1607 */
1608 mc->mc_packet->generic.sense_buffer_address =
1609 htole64(mc->mc_packetphys);
1610 mc->mc_packet->generic.maximum_sense_size =
1611 sizeof(union mly_cmd_packet);
1612
1613 s = splbio();
1614 SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
1615 splx(s);
1616 }
1617
1618 /*
1619 * Allocate and initialise command and packet structures.
1620 *
1621 * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
1622 * allocation to that number. If we don't yet know how many commands the
1623 * controller supports, allocate a very small set (suitable for initialisation
1624 * purposes only).
1625 */
1626 static int
1627 mly_alloc_ccbs(struct mly_softc *mly)
1628 {
1629 struct mly_ccb *mc;
1630 int i, rv;
1631
1632 if (mly->mly_controllerinfo == NULL)
1633 mly->mly_ncmds = MLY_CCBS_RESV;
1634 else {
1635 i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
1636 mly->mly_ncmds = min(MLY_MAX_CCBS, i);
1637 }
1638
1639 /*
1640 * Allocate enough space for all the command packets in one chunk
1641 * and map them permanently into controller-visible space.
1642 */
1643 rv = mly_dmamem_alloc(mly,
1644 mly->mly_ncmds * sizeof(union mly_cmd_packet),
1645 &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
1646 &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
1647 if (rv)
1648 return (rv);
1649
1650 mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
1651 M_DEVBUF, M_NOWAIT);
1652 memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
1653
1654 for (i = 0; i < mly->mly_ncmds; i++) {
1655 mc = mly->mly_ccbs + i;
1656 mc->mc_slot = MLY_SLOT_START + i;
1657 mc->mc_packet = mly->mly_pkt + i;
1658 mc->mc_packetphys = mly->mly_pkt_busaddr +
1659 (i * sizeof(union mly_cmd_packet));
1660
1661 rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
1662 MLY_MAX_SEGS, MLY_MAX_XFER, 0,
1663 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1664 &mc->mc_datamap);
1665 if (rv) {
1666 mly_release_ccbs(mly);
1667 return (rv);
1668 }
1669
1670 mly_ccb_free(mly, mc);
1671 }
1672
1673 return (0);
1674 }
1675
1676 /*
1677 * Free all the storage held by commands.
1678 *
1679 * Must be called with all commands on the free list.
1680 */
1681 static void
1682 mly_release_ccbs(struct mly_softc *mly)
1683 {
1684 struct mly_ccb *mc;
1685
1686 /* Throw away command buffer DMA maps. */
1687 while (mly_ccb_alloc(mly, &mc) == 0)
1688 bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
1689
1690 /* Release CCB storage. */
1691 free(mly->mly_ccbs, M_DEVBUF);
1692
1693 /* Release the packet storage. */
1694 mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
1695 mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
1696 }
1697
1698 /*
1699 * Map a command into controller-visible space.
1700 */
1701 static int
1702 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
1703 {
1704 struct mly_cmd_generic *gen;
1705 struct mly_sg_entry *sg;
1706 bus_dma_segment_t *ds;
1707 int flg, nseg, rv;
1708
1709 #ifdef DIAGNOSTIC
1710 /* Don't map more than once. */
1711 if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
1712 panic("mly_ccb_map: already mapped");
1713 mc->mc_flags |= MLY_CCB_MAPPED;
1714
1715 /* Does the command have a data buffer? */
1716 if (mc->mc_data == NULL)
1717 panic("mly_ccb_map: no data buffer");
1718 #endif
1719
1720 rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
1721 mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1722 ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
1723 BUS_DMA_READ : BUS_DMA_WRITE));
1724 if (rv != 0)
1725 return (rv);
1726
1727 gen = &mc->mc_packet->generic;
1728
1729 /*
1730 * Can we use the transfer structure directly?
1731 */
1732 if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
1733 mc->mc_sgoff = -1;
1734 sg = &gen->transfer.direct.sg[0];
1735 } else {
1736 mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
1737 MLY_MAX_SEGS;
1738 sg = mly->mly_sg + mc->mc_sgoff;
1739 gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
1740 gen->transfer.indirect.entries[0] = htole16(nseg);
1741 gen->transfer.indirect.table_physaddr[0] =
1742 htole64(mly->mly_sg_busaddr +
1743 (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
1744 }
1745
1746 /*
1747 * Fill the S/G table.
1748 */
1749 for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
1750 sg->physaddr = htole64(ds->ds_addr);
1751 sg->length = htole64(ds->ds_len);
1752 }
1753
1754 /*
1755 * Sync up the data map.
1756 */
1757 if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1758 flg = BUS_DMASYNC_PREREAD;
1759 else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
1760 gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
1761 flg = BUS_DMASYNC_PREWRITE;
1762 }
1763
1764 bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1765
1766 /*
1767 * Sync up the chained S/G table, if we're using one.
1768 */
1769 if (mc->mc_sgoff == -1)
1770 return (0);
1771
1772 bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1773 MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1774
1775 return (0);
1776 }
1777
1778 /*
1779 * Unmap a command from controller-visible space.
1780 */
1781 static void
1782 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
1783 {
1784 int flg;
1785
1786 #ifdef DIAGNOSTIC
1787 if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
1788 panic("mly_ccb_unmap: not mapped");
1789 mc->mc_flags &= ~MLY_CCB_MAPPED;
1790 #endif
1791
1792 if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
1793 flg = BUS_DMASYNC_POSTREAD;
1794 else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
1795 flg = BUS_DMASYNC_POSTWRITE;
1796
1797 bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
1798 bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
1799
1800 if (mc->mc_sgoff == -1)
1801 return;
1802
1803 bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
1804 MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
1805 }
1806
1807 /*
1808 * Adjust the size of each I/O before it passes to the SCSI layer.
1809 */
1810 static void
1811 mly_scsipi_minphys(struct buf *bp)
1812 {
1813
1814 if (bp->b_bcount > MLY_MAX_XFER)
1815 bp->b_bcount = MLY_MAX_XFER;
1816 minphys(bp);
1817 }
1818
1819 /*
1820 * Start a SCSI command.
1821 */
1822 static void
1823 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
1824 void *arg)
1825 {
1826 struct mly_ccb *mc;
1827 struct mly_cmd_scsi_small *ss;
1828 struct scsipi_xfer *xs;
1829 struct scsipi_periph *periph;
1830 struct mly_softc *mly;
1831 struct mly_btl *btl;
1832 int s, tmp;
1833
1834 mly = (void *)chan->chan_adapter->adapt_dev;
1835
1836 switch (req) {
1837 case ADAPTER_REQ_RUN_XFER:
1838 xs = arg;
1839 periph = xs->xs_periph;
1840 btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
1841 s = splbio();
1842 tmp = btl->mb_flags;
1843 splx(s);
1844
1845 /*
1846 * Check for I/O attempt to a protected or non-existant
1847 * device.
1848 */
1849 if ((tmp & MLY_BTL_PROTECTED) != 0) {
1850 xs->error = XS_SELTIMEOUT;
1851 scsipi_done(xs);
1852 break;
1853 }
1854
1855 #ifdef DIAGNOSTIC
1856 /* XXX Increase if/when we support large SCSI commands. */
1857 if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
1858 printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
1859 xs->error = XS_DRIVER_STUFFUP;
1860 scsipi_done(xs);
1861 break;
1862 }
1863 #endif
1864
1865 if (mly_ccb_alloc(mly, &mc)) {
1866 xs->error = XS_RESOURCE_SHORTAGE;
1867 scsipi_done(xs);
1868 break;
1869 }
1870
1871 /* Build the command. */
1872 mc->mc_data = xs->data;
1873 mc->mc_length = xs->datalen;
1874 mc->mc_complete = mly_scsipi_complete;
1875 mc->mc_private = xs;
1876
1877 /* Build the packet for the controller. */
1878 ss = &mc->mc_packet->scsi_small;
1879 ss->opcode = MDACMD_SCSI;
1880 #ifdef notdef
1881 /*
1882 * XXX FreeBSD does this, but it doesn't fix anything,
1883 * XXX and appears potentially harmful.
1884 */
1885 ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
1886 #endif
1887
1888 ss->data_size = htole32(xs->datalen);
1889 _lto3l(MLY_PHYADDR(0, chan->chan_channel,
1890 periph->periph_target, periph->periph_lun), ss->addr);
1891
1892 if (xs->timeout < 60 * 1000)
1893 ss->timeout = xs->timeout / 1000 |
1894 MLY_TIMEOUT_SECONDS;
1895 else if (xs->timeout < 60 * 60 * 1000)
1896 ss->timeout = xs->timeout / (60 * 1000) |
1897 MLY_TIMEOUT_MINUTES;
1898 else
1899 ss->timeout = xs->timeout / (60 * 60 * 1000) |
1900 MLY_TIMEOUT_HOURS;
1901
1902 ss->maximum_sense_size = sizeof(xs->sense);
1903 ss->cdb_length = xs->cmdlen;
1904 memcpy(ss->cdb, xs->cmd, xs->cmdlen);
1905
1906 if (mc->mc_length != 0) {
1907 if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
1908 mc->mc_flags |= MLY_CCB_DATAOUT;
1909 else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
1910 mc->mc_flags |= MLY_CCB_DATAIN;
1911
1912 if (mly_ccb_map(mly, mc) != 0) {
1913 xs->error = XS_DRIVER_STUFFUP;
1914 mly_ccb_free(mly, mc);
1915 scsipi_done(xs);
1916 break;
1917 }
1918 }
1919
1920 /*
1921 * Give the command to the controller.
1922 */
1923 if ((xs->xs_control & XS_CTL_POLL) != 0) {
1924 if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
1925 xs->error = XS_REQUEUE;
1926 if (mc->mc_length != 0)
1927 mly_ccb_unmap(mly, mc);
1928 mly_ccb_free(mly, mc);
1929 scsipi_done(xs);
1930 }
1931 } else
1932 mly_ccb_enqueue(mly, mc);
1933
1934 break;
1935
1936 case ADAPTER_REQ_GROW_RESOURCES:
1937 /*
1938 * Not supported.
1939 */
1940 break;
1941
1942 case ADAPTER_REQ_SET_XFER_MODE:
1943 /*
1944 * We can't change the transfer mode, but at least let
1945 * scsipi know what the adapter has negotiated.
1946 */
1947 mly_get_xfer_mode(mly, chan->chan_channel, arg);
1948 break;
1949 }
1950 }
1951
1952 /*
1953 * Handle completion of a SCSI command.
1954 */
1955 static void
1956 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
1957 {
1958 struct scsipi_xfer *xs;
1959 struct scsipi_channel *chan;
1960 struct scsipi_inquiry_data *inq;
1961 struct mly_btl *btl;
1962 int target, sl, s;
1963 const char *p;
1964
1965 xs = mc->mc_private;
1966 xs->status = mc->mc_status;
1967
1968 /*
1969 * XXX The `resid' value as returned by the controller appears to be
1970 * bogus, so we always set it to zero. Is it perhaps the transfer
1971 * count?
1972 */
1973 xs->resid = 0; /* mc->mc_resid; */
1974
1975 if (mc->mc_length != 0)
1976 mly_ccb_unmap(mly, mc);
1977
1978 switch (mc->mc_status) {
1979 case SCSI_OK:
1980 /*
1981 * In order to report logical device type and status, we
1982 * overwrite the result of the INQUIRY command to logical
1983 * devices.
1984 */
1985 if (xs->cmd->opcode == INQUIRY) {
1986 chan = xs->xs_periph->periph_channel;
1987 target = xs->xs_periph->periph_target;
1988 btl = &mly->mly_btl[chan->chan_channel][target];
1989
1990 s = splbio();
1991 if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
1992 inq = (struct scsipi_inquiry_data *)xs->data;
1993 mly_padstr(inq->vendor, "MYLEX", 8);
1994 p = mly_describe_code(mly_table_device_type,
1995 btl->mb_type);
1996 mly_padstr(inq->product, p, 16);
1997 p = mly_describe_code(mly_table_device_state,
1998 btl->mb_state);
1999 mly_padstr(inq->revision, p, 4);
2000 }
2001 splx(s);
2002 }
2003
2004 xs->error = XS_NOERROR;
2005 break;
2006
2007 case SCSI_CHECK:
2008 sl = mc->mc_sense;
2009 if (sl > sizeof(xs->sense.scsi_sense))
2010 sl = sizeof(xs->sense.scsi_sense);
2011 memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
2012 xs->error = XS_SENSE;
2013 break;
2014
2015 case SCSI_BUSY:
2016 case SCSI_QUEUE_FULL:
2017 xs->error = XS_BUSY;
2018 break;
2019
2020 default:
2021 printf("%s: unknown SCSI status 0x%x\n",
2022 mly->mly_dv.dv_xname, xs->status);
2023 xs->error = XS_DRIVER_STUFFUP;
2024 break;
2025 }
2026
2027 mly_ccb_free(mly, mc);
2028 scsipi_done(xs);
2029 }
2030
2031 /*
2032 * Notify scsipi about a target's transfer mode.
2033 */
2034 static void
2035 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
2036 {
2037 struct mly_btl *btl;
2038 int s;
2039
2040 btl = &mly->mly_btl[bus][xm->xm_target];
2041 xm->xm_mode = 0;
2042
2043 s = splbio();
2044
2045 if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
2046 if (btl->mb_speed == 0) {
2047 xm->xm_period = 0;
2048 xm->xm_offset = 0;
2049 } else {
2050 xm->xm_period = 12; /* XXX */
2051 xm->xm_offset = 8; /* XXX */
2052 xm->xm_mode |= PERIPH_CAP_SYNC; /* XXX */
2053 }
2054
2055 switch (btl->mb_width) {
2056 case 32:
2057 xm->xm_mode = PERIPH_CAP_WIDE32;
2058 break;
2059 case 16:
2060 xm->xm_mode = PERIPH_CAP_WIDE16;
2061 break;
2062 default:
2063 xm->xm_mode = 0;
2064 break;
2065 }
2066 } else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
2067 xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
2068 xm->xm_period = 12;
2069 xm->xm_offset = 8;
2070 }
2071
2072 if ((btl->mb_flags & MLY_BTL_TQING) != 0)
2073 xm->xm_mode |= PERIPH_CAP_TQING;
2074
2075 splx(s);
2076
2077 scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
2078 }
2079
2080 /*
2081 * ioctl hook; used here only to initiate low-level rescans.
2082 */
2083 static int
2084 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
2085 int flag, struct proc *p)
2086 {
2087 struct mly_softc *mly;
2088 int rv;
2089
2090 mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
2091
2092 switch (cmd) {
2093 case SCBUSIOLLSCAN:
2094 mly_scan_channel(mly, chan->chan_channel);
2095 rv = 0;
2096 break;
2097 default:
2098 rv = ENOTTY;
2099 break;
2100 }
2101
2102 return (rv);
2103 }
2104
2105 /*
2106 * Handshake with the firmware while the card is being initialised.
2107 */
2108 static int
2109 mly_fwhandshake(struct mly_softc *mly)
2110 {
2111 u_int8_t error, param0, param1;
2112 int spinup;
2113
2114 spinup = 0;
2115
2116 /* Set HM_STSACK and let the firmware initialise. */
2117 mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
2118 DELAY(1000); /* too short? */
2119
2120 /* If HM_STSACK is still true, the controller is initialising. */
2121 if (!mly_idbr_true(mly, MLY_HM_STSACK))
2122 return (0);
2123
2124 printf("%s: controller initialisation started\n",
2125 mly->mly_dv.dv_xname);
2126
2127 /*
2128 * Spin waiting for initialisation to finish, or for a message to be
2129 * delivered.
2130 */
2131 while (mly_idbr_true(mly, MLY_HM_STSACK)) {
2132 /* Check for a message */
2133 if (!mly_error_valid(mly))
2134 continue;
2135
2136 error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
2137 param0 = mly_inb(mly, mly->mly_cmd_mailbox);
2138 param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
2139
2140 switch (error) {
2141 case MLY_MSG_SPINUP:
2142 if (!spinup) {
2143 printf("%s: drive spinup in progress\n",
2144 mly->mly_dv.dv_xname);
2145 spinup = 1;
2146 }
2147 break;
2148
2149 case MLY_MSG_RACE_RECOVERY_FAIL:
2150 printf("%s: mirror race recovery failed - \n",
2151 mly->mly_dv.dv_xname);
2152 printf("%s: one or more drives offline\n",
2153 mly->mly_dv.dv_xname);
2154 break;
2155
2156 case MLY_MSG_RACE_IN_PROGRESS:
2157 printf("%s: mirror race recovery in progress\n",
2158 mly->mly_dv.dv_xname);
2159 break;
2160
2161 case MLY_MSG_RACE_ON_CRITICAL:
2162 printf("%s: mirror race recovery on critical drive\n",
2163 mly->mly_dv.dv_xname);
2164 break;
2165
2166 case MLY_MSG_PARITY_ERROR:
2167 printf("%s: FATAL MEMORY PARITY ERROR\n",
2168 mly->mly_dv.dv_xname);
2169 return (ENXIO);
2170
2171 default:
2172 printf("%s: unknown initialisation code 0x%x\n",
2173 mly->mly_dv.dv_xname, error);
2174 break;
2175 }
2176 }
2177
2178 return (0);
2179 }
2180
2181 /*
2182 * Space-fill a character string
2183 */
2184 static void
2185 mly_padstr(char *dst, const char *src, int len)
2186 {
2187
2188 while (len-- > 0) {
2189 if (*src != '\0')
2190 *dst++ = *src++;
2191 else
2192 *dst++ = ' ';
2193 }
2194 }
2195
2196 /*
2197 * Allocate DMA safe memory.
2198 */
2199 static int
2200 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
2201 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
2202 {
2203 int rseg, rv, state;
2204
2205 state = 0;
2206
2207 if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
2208 seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
2209 printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
2210 goto bad;
2211 }
2212
2213 state++;
2214
2215 if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
2216 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2217 printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
2218 goto bad;
2219 }
2220
2221 state++;
2222
2223 if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
2224 BUS_DMA_NOWAIT, dmamap)) != 0) {
2225 printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
2226 goto bad;
2227 }
2228
2229 state++;
2230
2231 if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
2232 NULL, BUS_DMA_NOWAIT)) != 0) {
2233 printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
2234 goto bad;
2235 }
2236
2237 *paddr = (*dmamap)->dm_segs[0].ds_addr;
2238 memset(*kva, 0, size);
2239 return (0);
2240
2241 bad:
2242 if (state > 2)
2243 bus_dmamap_destroy(mly->mly_dmat, *dmamap);
2244 if (state > 1)
2245 bus_dmamem_unmap(mly->mly_dmat, *kva, size);
2246 if (state > 0)
2247 bus_dmamem_free(mly->mly_dmat, seg, 1);
2248
2249 return (rv);
2250 }
2251
2252 /*
2253 * Free DMA safe memory.
2254 */
2255 static void
2256 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
2257 caddr_t kva, bus_dma_segment_t *seg)
2258 {
2259
2260 bus_dmamap_unload(mly->mly_dmat, dmamap);
2261 bus_dmamap_destroy(mly->mly_dmat, dmamap);
2262 bus_dmamem_unmap(mly->mly_dmat, kva, size);
2263 bus_dmamem_free(mly->mly_dmat, seg, 1);
2264 }
2265
2266
2267 /*
2268 * Accept an open operation on the control device.
2269 */
2270 int
2271 mlyopen(struct vnode *devvp, int flag, int mode, struct proc *p)
2272 {
2273 struct mly_softc *mly;
2274
2275 if ((mly = device_lookup(&mly_cd, minor(devvp->v_rdev))) == NULL)
2276 return (ENXIO);
2277 devvp->v_devcookie = mly;
2278 if ((mly->mly_state & MLY_STATE_INITOK) == 0)
2279 return (ENXIO);
2280 if ((mly->mly_state & MLY_STATE_OPEN) != 0)
2281 return (EBUSY);
2282
2283 mly->mly_state |= MLY_STATE_OPEN;
2284 return (0);
2285 }
2286
2287 /*
2288 * Accept the last close on the control device.
2289 */
2290 int
2291 mlyclose(struct vnode *devvp, int flag, int mode, struct proc *p)
2292 {
2293 struct mly_softc *mly;
2294
2295 mly = devvp->v_devcookie;
2296 mly->mly_state &= ~MLY_STATE_OPEN;
2297 return (0);
2298 }
2299
2300 /*
2301 * Handle control operations.
2302 */
2303 int
2304 mlyioctl(struct vnode *devvp, u_long cmd, caddr_t data, int flag,
2305 struct proc *p)
2306 {
2307 struct mly_softc *mly;
2308 int rv;
2309
2310 if (securelevel >= 2)
2311 return (EPERM);
2312
2313 mly = devvp->v_devcookie;
2314
2315 switch (cmd) {
2316 case MLYIO_COMMAND:
2317 rv = mly_user_command(mly, (void *)data);
2318 break;
2319 case MLYIO_HEALTH:
2320 rv = mly_user_health(mly, (void *)data);
2321 break;
2322 default:
2323 rv = ENOTTY;
2324 break;
2325 }
2326
2327 return (rv);
2328 }
2329
2330 /*
2331 * Execute a command passed in from userspace.
2332 *
2333 * The control structure contains the actual command for the controller, as
2334 * well as the user-space data pointer and data size, and an optional sense
2335 * buffer size/pointer. On completion, the data size is adjusted to the
2336 * command residual, and the sense buffer size to the size of the returned
2337 * sense data.
2338 */
2339 static int
2340 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
2341 {
2342 struct mly_ccb *mc;
2343 int rv, mapped;
2344
2345 if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
2346 return (rv);
2347
2348 mapped = 0;
2349 mc->mc_data = NULL;
2350
2351 /*
2352 * Handle data size/direction.
2353 */
2354 if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
2355 if (mc->mc_length > MAXPHYS) {
2356 rv = EINVAL;
2357 goto out;
2358 }
2359
2360 mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
2361 if (mc->mc_data == NULL) {
2362 rv = ENOMEM;
2363 goto out;
2364 }
2365
2366 if (uc->DataTransferLength > 0) {
2367 mc->mc_flags |= MLY_CCB_DATAIN;
2368 memset(mc->mc_data, 0, mc->mc_length);
2369 }
2370
2371 if (uc->DataTransferLength < 0) {
2372 mc->mc_flags |= MLY_CCB_DATAOUT;
2373 rv = copyin(uc->DataTransferBuffer, mc->mc_data,
2374 mc->mc_length);
2375 if (rv != 0)
2376 goto out;
2377 }
2378
2379 if ((rv = mly_ccb_map(mly, mc)) != 0)
2380 goto out;
2381 mapped = 1;
2382 }
2383
2384 /* Copy in the command and execute it. */
2385 memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
2386
2387 if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
2388 goto out;
2389
2390 /* Return the data to userspace. */
2391 if (uc->DataTransferLength > 0) {
2392 rv = copyout(mc->mc_data, uc->DataTransferBuffer,
2393 mc->mc_length);
2394 if (rv != 0)
2395 goto out;
2396 }
2397
2398 /* Return the sense buffer to userspace. */
2399 if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
2400 rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2401 min(uc->RequestSenseLength, mc->mc_sense));
2402 if (rv != 0)
2403 goto out;
2404 }
2405
2406 /* Return command results to userspace (caller will copy out). */
2407 uc->DataTransferLength = mc->mc_resid;
2408 uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2409 uc->CommandStatus = mc->mc_status;
2410 rv = 0;
2411
2412 out:
2413 if (mapped)
2414 mly_ccb_unmap(mly, mc);
2415 if (mc->mc_data != NULL)
2416 free(mc->mc_data, M_DEVBUF);
2417 if (mc != NULL)
2418 mly_ccb_free(mly, mc);
2419
2420 return (rv);
2421 }
2422
2423 /*
2424 * Return health status to userspace. If the health change index in the
2425 * user structure does not match that currently exported by the controller,
2426 * we return the current status immediately. Otherwise, we block until
2427 * either interrupted or new status is delivered.
2428 */
2429 static int
2430 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
2431 {
2432 struct mly_health_status mh;
2433 int rv, s;
2434
2435 /* Fetch the current health status from userspace. */
2436 rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
2437 if (rv != 0)
2438 return (rv);
2439
2440 /* spin waiting for a status update */
2441 s = splbio();
2442 if (mly->mly_event_change == mh.change_counter)
2443 rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
2444 "mlyhealth", 0);
2445 splx(s);
2446
2447 if (rv == 0) {
2448 /*
2449 * Copy the controller's health status buffer out (there is
2450 * a race here if it changes again).
2451 */
2452 rv = copyout(&mly->mly_mmbox->mmm_health.status,
2453 uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
2454 }
2455
2456 return (rv);
2457 }
2458