Home | History | Annotate | Line # | Download | only in pci
mly.c revision 1.7.4.1
      1 /*	$NetBSD: mly.c,v 1.7.4.1 2001/09/07 04:45:27 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*-
     40  * Copyright (c) 2000, 2001 Michael Smith
     41  * Copyright (c) 2000 BSDi
     42  * All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
     66  */
     67 
     68 /*
     69  * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
     70  *
     71  * TODO:
     72  *
     73  * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
     74  * o Handle FC and multiple LUNs.
     75  * o Fix mmbox usage.
     76  * o Fix transfer speed fudge.
     77  */
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/device.h>
     82 #include <sys/kernel.h>
     83 #include <sys/queue.h>
     84 #include <sys/buf.h>
     85 #include <sys/endian.h>
     86 #include <sys/conf.h>
     87 #include <sys/malloc.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/scsiio.h>
     90 #include <sys/kthread.h>
     91 #include <sys/vnode.h>
     92 
     93 #include <miscfs/specfs/specdev.h>
     94 
     95 #include <uvm/uvm_extern.h>
     96 
     97 #include <machine/bus.h>
     98 
     99 #include <dev/scsipi/scsi_all.h>
    100 #include <dev/scsipi/scsipi_all.h>
    101 #include <dev/scsipi/scsiconf.h>
    102 
    103 #include <dev/pci/pcireg.h>
    104 #include <dev/pci/pcivar.h>
    105 #include <dev/pci/pcidevs.h>
    106 
    107 #include <dev/pci/mlyreg.h>
    108 #include <dev/pci/mlyio.h>
    109 #include <dev/pci/mlyvar.h>
    110 #include <dev/pci/mly_tables.h>
    111 
    112 static void	mly_attach(struct device *, struct device *, void *);
    113 static int	mly_match(struct device *, struct cfdata *, void *);
    114 static const	struct mly_ident *mly_find_ident(struct pci_attach_args *);
    115 static int	mly_fwhandshake(struct mly_softc *);
    116 static int	mly_flush(struct mly_softc *);
    117 static int	mly_intr(void *);
    118 static void	mly_shutdown(void *);
    119 
    120 static int	mly_alloc_ccbs(struct mly_softc *);
    121 static void	mly_check_event(struct mly_softc *);
    122 static void	mly_complete_event(struct mly_softc *, struct mly_ccb *);
    123 static void	mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
    124 static int	mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
    125 				 caddr_t *, bus_addr_t *, bus_dma_segment_t *);
    126 static void	mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
    127 				caddr_t, bus_dma_segment_t *);
    128 static int	mly_enable_mmbox(struct mly_softc *);
    129 static void	mly_fetch_event(struct mly_softc *);
    130 static int	mly_get_controllerinfo(struct mly_softc *);
    131 static int	mly_get_eventstatus(struct mly_softc *);
    132 static int	mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
    133 			  void **, size_t, void *, size_t *);
    134 static void	mly_padstr(char *, const char *, int);
    135 static void	mly_process_event(struct mly_softc *, struct mly_event *);
    136 static void	mly_release_ccbs(struct mly_softc *);
    137 static int	mly_scan_btl(struct mly_softc *, int, int);
    138 static void	mly_scan_channel(struct mly_softc *, int);
    139 static void	mly_thread(void *);
    140 static void	mly_thread_create(void *);
    141 
    142 static int	mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
    143 static void	mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
    144 static void	mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
    145 static void	mly_ccb_free(struct mly_softc *, struct mly_ccb *);
    146 static int	mly_ccb_map(struct mly_softc *, struct mly_ccb *);
    147 static int	mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
    148 static int	mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
    149 static void	mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
    150 static int	mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
    151 
    152 static void	mly_get_xfer_mode(struct mly_softc *, int,
    153 				  struct scsipi_xfer_mode *);
    154 static void	mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
    155 static int	mly_scsipi_ioctl(struct scsipi_channel *, u_long, caddr_t,
    156 				 int, struct proc *);
    157 static void	mly_scsipi_minphys(struct buf *);
    158 static void	mly_scsipi_request(struct scsipi_channel *,
    159 				   scsipi_adapter_req_t, void *);
    160 
    161 static int	mly_user_command(struct mly_softc *, struct mly_user_command *);
    162 static int	mly_user_health(struct mly_softc *, struct mly_user_health *);
    163 
    164 cdev_decl(mly);
    165 
    166 extern struct	cfdriver mly_cd;
    167 
    168 struct cfattach mly_ca = {
    169 	sizeof(struct mly_softc), mly_match, mly_attach
    170 };
    171 
    172 struct mly_ident {
    173 	u_short	vendor;
    174 	u_short	product;
    175 	u_short	subvendor;
    176 	u_short	subproduct;
    177 	int	hwif;
    178 	const char	*desc;
    179 } static const mly_ident[] = {
    180 	{
    181 		PCI_VENDOR_MYLEX,
    182 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    183 		PCI_VENDOR_MYLEX,
    184 		0x0040,
    185 		MLY_HWIF_STRONGARM,
    186 		"eXtremeRAID 2000"
    187 	},
    188 	{
    189 		PCI_VENDOR_MYLEX,
    190 		PCI_PRODUCT_MYLEX_EXTREMERAID,
    191 		PCI_VENDOR_MYLEX,
    192 		0x0030,
    193 		MLY_HWIF_STRONGARM,
    194 		"eXtremeRAID 3000"
    195 	},
    196 	{
    197 		PCI_VENDOR_MYLEX,
    198 		PCI_PRODUCT_MYLEX_ACCELERAID,
    199 		PCI_VENDOR_MYLEX,
    200 		0x0050,
    201 		MLY_HWIF_I960RX,
    202 		"AcceleRAID 352"
    203 	},
    204 	{
    205 		PCI_VENDOR_MYLEX,
    206 		PCI_PRODUCT_MYLEX_ACCELERAID,
    207 		PCI_VENDOR_MYLEX,
    208 		0x0052,
    209 		MLY_HWIF_I960RX,
    210 		"AcceleRAID 170"
    211 	},
    212 	{
    213 		PCI_VENDOR_MYLEX,
    214 		PCI_PRODUCT_MYLEX_ACCELERAID,
    215 		PCI_VENDOR_MYLEX,
    216 		0x0054,
    217 		MLY_HWIF_I960RX,
    218 		"AcceleRAID 160"
    219 	},
    220 };
    221 
    222 static void	*mly_sdh;
    223 
    224 /*
    225  * Try to find a `mly_ident' entry corresponding to this board.
    226  */
    227 static const struct mly_ident *
    228 mly_find_ident(struct pci_attach_args *pa)
    229 {
    230 	const struct mly_ident *mpi, *maxmpi;
    231 	pcireg_t reg;
    232 
    233 	mpi = mly_ident;
    234 	maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
    235 
    236 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
    237 		return (NULL);
    238 
    239 	for (; mpi < maxmpi; mpi++) {
    240 		if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
    241 		    PCI_PRODUCT(pa->pa_id) != mpi->product)
    242 			continue;
    243 
    244 		if (mpi->subvendor == 0x0000)
    245 			return (mpi);
    246 
    247 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    248 
    249 		if (PCI_VENDOR(reg) == mpi->subvendor &&
    250 		    PCI_PRODUCT(reg) == mpi->subproduct)
    251 			return (mpi);
    252 	}
    253 
    254 	return (NULL);
    255 }
    256 
    257 /*
    258  * Match a supported board.
    259  */
    260 static int
    261 mly_match(struct device *parent, struct cfdata *cfdata, void *aux)
    262 {
    263 
    264 	return (mly_find_ident(aux) != NULL);
    265 }
    266 
    267 /*
    268  * Attach a supported board.
    269  */
    270 static void
    271 mly_attach(struct device *parent, struct device *self, void *aux)
    272 {
    273 	struct pci_attach_args *pa;
    274 	struct mly_softc *mly;
    275 	struct mly_ioctl_getcontrollerinfo *mi;
    276 	const struct mly_ident *ident;
    277 	pci_chipset_tag_t pc;
    278 	pci_intr_handle_t ih;
    279 	bus_space_handle_t memh, ioh;
    280 	bus_space_tag_t memt, iot;
    281 	pcireg_t reg;
    282 	const char *intrstr;
    283 	int ior, memr, i, rv, state;
    284 	struct scsipi_adapter *adapt;
    285 	struct scsipi_channel *chan;
    286 
    287 	mly = (struct mly_softc *)self;
    288 	pa = aux;
    289 	pc = pa->pa_pc;
    290 	ident = mly_find_ident(pa);
    291 	state = 0;
    292 
    293 	mly->mly_dmat = pa->pa_dmat;
    294 	mly->mly_hwif = ident->hwif;
    295 
    296 	printf(": Mylex %s\n", ident->desc);
    297 
    298 	/*
    299 	 * Map the PCI register window.
    300 	 */
    301 	memr = -1;
    302 	ior = -1;
    303 
    304 	for (i = 0x10; i <= 0x14; i += 4) {
    305 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
    306 
    307 		if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
    308 			if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
    309 				ior = i;
    310 		} else {
    311 			if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
    312 				memr = i;
    313 		}
    314 	}
    315 
    316 	if (memr != -1)
    317 		if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
    318 		    &memt, &memh, NULL, NULL))
    319 			memr = -1;
    320 	if (ior != -1)
    321 		if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
    322 		    &iot, &ioh, NULL, NULL))
    323 		    	ior = -1;
    324 
    325 	if (memr != -1) {
    326 		mly->mly_iot = memt;
    327 		mly->mly_ioh = memh;
    328 	} else if (ior != -1) {
    329 		mly->mly_iot = iot;
    330 		mly->mly_ioh = ioh;
    331 	} else {
    332 		printf("%s: can't map i/o or memory space\n", self->dv_xname);
    333 		return;
    334 	}
    335 
    336 	/*
    337 	 * Enable the device.
    338 	 */
    339 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    340 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
    341 	    reg | PCI_COMMAND_MASTER_ENABLE);
    342 
    343 	/*
    344 	 * Map and establish the interrupt.
    345 	 */
    346 	if (pci_intr_map(pa, &ih)) {
    347 		printf("%s: can't map interrupt\n", self->dv_xname);
    348 		return;
    349 	}
    350 	intrstr = pci_intr_string(pc, ih);
    351 	mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
    352 	if (mly->mly_ih == NULL) {
    353 		printf("%s: can't establish interrupt", self->dv_xname);
    354 		if (intrstr != NULL)
    355 			printf(" at %s", intrstr);
    356 		printf("\n");
    357 		return;
    358 	}
    359 
    360 	if (intrstr != NULL)
    361 		printf("%s: interrupting at %s\n", mly->mly_dv.dv_xname,
    362 		    intrstr);
    363 
    364 	/*
    365 	 * Take care of interface-specific tasks.
    366 	 */
    367 	switch (mly->mly_hwif) {
    368 	case MLY_HWIF_I960RX:
    369 		mly->mly_doorbell_true = 0x00;
    370 		mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
    371 		mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
    372 		mly->mly_idbr = MLY_I960RX_IDBR;
    373 		mly->mly_odbr = MLY_I960RX_ODBR;
    374 		mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
    375 		mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
    376 		mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
    377 		break;
    378 
    379 	case MLY_HWIF_STRONGARM:
    380 		mly->mly_doorbell_true = 0xff;
    381 		mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
    382 		mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
    383 		mly->mly_idbr = MLY_STRONGARM_IDBR;
    384 		mly->mly_odbr = MLY_STRONGARM_ODBR;
    385 		mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
    386 		mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
    387 		mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
    388 		break;
    389 	}
    390 
    391 	/*
    392 	 * Allocate and map the scatter/gather lists.
    393 	 */
    394 	rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    395 	    &mly->mly_sg_dmamap, (caddr_t *)&mly->mly_sg,
    396 	    &mly->mly_sg_busaddr, &mly->mly_sg_seg);
    397 	if (rv) {
    398 		printf("%s: unable to allocate S/G maps\n",
    399 		    mly->mly_dv.dv_xname);
    400 		goto bad;
    401 	}
    402 	state++;
    403 
    404 	/*
    405 	 * Allocate and map the memory mailbox.
    406 	 */
    407 	rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
    408 	    &mly->mly_mmbox_dmamap, (caddr_t *)&mly->mly_mmbox,
    409 	    &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
    410 	if (rv) {
    411 		printf("%s: unable to allocate mailboxes\n",
    412 		    mly->mly_dv.dv_xname);
    413 		goto bad;
    414 	}
    415 	state++;
    416 
    417 	/*
    418 	 * Initialise per-controller queues.
    419 	 */
    420 	SLIST_INIT(&mly->mly_ccb_free);
    421 	SIMPLEQ_INIT(&mly->mly_ccb_queue);
    422 
    423 	/*
    424 	 * Disable interrupts before we start talking to the controller.
    425 	 */
    426 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
    427 
    428 	/*
    429 	 * Wait for the controller to come ready, handshaking with the
    430 	 * firmware if required.  This is typically only necessary on
    431 	 * platforms where the controller BIOS does not run.
    432 	 */
    433 	if (mly_fwhandshake(mly)) {
    434 		printf("%s: unable to bring controller online\n",
    435 		    mly->mly_dv.dv_xname);
    436 		goto bad;
    437 	}
    438 
    439 	/*
    440 	 * Allocate initial command buffers, obtain controller feature
    441 	 * information, and then reallocate command buffers, since we'll
    442 	 * know how many we want.
    443 	 */
    444 	if (mly_alloc_ccbs(mly)) {
    445 		printf("%s: unable to allocate CCBs\n",
    446 		    mly->mly_dv.dv_xname);
    447 		goto bad;
    448 	}
    449 	state++;
    450 	if (mly_get_controllerinfo(mly)) {
    451 		printf("%s: unable to retrieve controller info\n",
    452 		    mly->mly_dv.dv_xname);
    453 		goto bad;
    454 	}
    455 	mly_release_ccbs(mly);
    456 	if (mly_alloc_ccbs(mly)) {
    457 		printf("%s: unable to allocate CCBs\n",
    458 		    mly->mly_dv.dv_xname);
    459 		state--;
    460 		goto bad;
    461 	}
    462 
    463 	/*
    464 	 * Get the current event counter for health purposes, populate the
    465 	 * initial health status buffer.
    466 	 */
    467 	if (mly_get_eventstatus(mly)) {
    468 		printf("%s: unable to retrieve event status\n",
    469 		    mly->mly_dv.dv_xname);
    470 		goto bad;
    471 	}
    472 
    473 	/*
    474 	 * Enable memory-mailbox mode.
    475 	 */
    476 	if (mly_enable_mmbox(mly)) {
    477 		printf("%s: unable to enable memory mailbox\n",
    478 		    mly->mly_dv.dv_xname);
    479 		goto bad;
    480 	}
    481 
    482 	/*
    483 	 * Print a little information about the controller.
    484 	 */
    485 	mi = mly->mly_controllerinfo;
    486 
    487 	printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
    488 	    "(%02d%02d%02d%02d), %dMB RAM\n", mly->mly_dv.dv_xname,
    489 	    mi->physical_channels_present,
    490 	    (mi->physical_channels_present) > 1 ? "s" : "",
    491 	    mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
    492 	    mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
    493 	    le16toh(mi->memory_size));
    494 
    495 	/*
    496 	 * Register our `shutdownhook'.
    497 	 */
    498 	if (mly_sdh == NULL)
    499 		shutdownhook_establish(mly_shutdown, NULL);
    500 
    501 	/*
    502 	 * Clear any previous BTL information.  For each bus that scsipi
    503 	 * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
    504 	 * all BTL info at that point.
    505 	 */
    506 	memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
    507 
    508 	mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
    509 	    mly->mly_controllerinfo->virtual_channels_present;
    510 
    511 	/*
    512 	 * Attach to scsipi.
    513 	 */
    514 	adapt = &mly->mly_adapt;
    515 	memset(adapt, 0, sizeof(*adapt));
    516 	adapt->adapt_dev = &mly->mly_dv;
    517 	adapt->adapt_nchannels = mly->mly_nchans;
    518 	adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
    519 	adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
    520 	adapt->adapt_request = mly_scsipi_request;
    521 	adapt->adapt_minphys = mly_scsipi_minphys;
    522 	adapt->adapt_ioctl = mly_scsipi_ioctl;
    523 
    524 	for (i = 0; i < mly->mly_nchans; i++) {
    525 		chan = &mly->mly_chans[i];
    526 		memset(chan, 0, sizeof(*chan));
    527 		chan->chan_adapter = adapt;
    528 		chan->chan_bustype = &scsi_bustype;
    529 		chan->chan_channel = i;
    530 		chan->chan_ntargets = MLY_MAX_TARGETS;
    531 		chan->chan_nluns = MLY_MAX_LUNS;
    532 		chan->chan_id = mly->mly_controllerparam->initiator_id;
    533 		chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
    534 		config_found(&mly->mly_dv, chan, scsiprint);
    535 	}
    536 
    537 	/*
    538 	 * Now enable interrupts...
    539 	 */
    540 	mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
    541 
    542 	/*
    543 	 * Finally, create our monitoring thread.
    544 	 */
    545 	kthread_create(mly_thread_create, mly);
    546 
    547 	mly->mly_state |= MLY_STATE_INITOK;
    548 	return;
    549 
    550  bad:
    551 	if (state > 2)
    552 		mly_release_ccbs(mly);
    553 	if (state > 1)
    554 		mly_dmamem_free(mly, sizeof(struct mly_mmbox),
    555 		    mly->mly_mmbox_dmamap, (caddr_t)mly->mly_mmbox,
    556 		    &mly->mly_mmbox_seg);
    557 	if (state > 0)
    558 		mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
    559 		    mly->mly_sg_dmamap, (caddr_t)mly->mly_sg,
    560 		    &mly->mly_sg_seg);
    561 }
    562 
    563 /*
    564  * Scan all possible devices on the specified channel.
    565  */
    566 static void
    567 mly_scan_channel(struct mly_softc *mly, int bus)
    568 {
    569 	int s, target;
    570 
    571 	for (target = 0; target < MLY_MAX_TARGETS; target++) {
    572 		s = splbio();
    573 		if (!mly_scan_btl(mly, bus, target)) {
    574 			tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
    575 			    0);
    576 		}
    577 		splx(s);
    578 	}
    579 }
    580 
    581 /*
    582  * Shut down all configured `mly' devices.
    583  */
    584 static void
    585 mly_shutdown(void *cookie)
    586 {
    587 	struct mly_softc *mly;
    588 	int i;
    589 
    590 	for (i = 0; i < mly_cd.cd_ndevs; i++) {
    591 		if ((mly = device_lookup(&mly_cd, i)) == NULL)
    592 			continue;
    593 
    594 		if (mly_flush(mly))
    595 			printf("%s: unable to flush cache\n",
    596 			    mly->mly_dv.dv_xname);
    597 	}
    598 }
    599 
    600 /*
    601  * Fill in the mly_controllerinfo and mly_controllerparam fields in the
    602  * softc.
    603  */
    604 static int
    605 mly_get_controllerinfo(struct mly_softc *mly)
    606 {
    607 	struct mly_cmd_ioctl mci;
    608 	int rv;
    609 
    610 	/*
    611 	 * Build the getcontrollerinfo ioctl and send it.
    612 	 */
    613 	memset(&mci, 0, sizeof(mci));
    614 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
    615 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
    616 	    sizeof(*mly->mly_controllerinfo), NULL, NULL);
    617 	if (rv != 0)
    618 		return (rv);
    619 
    620 	/*
    621 	 * Build the getcontrollerparameter ioctl and send it.
    622 	 */
    623 	memset(&mci, 0, sizeof(mci));
    624 	mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
    625 	rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
    626 	    sizeof(*mly->mly_controllerparam), NULL, NULL);
    627 
    628 	return (rv);
    629 }
    630 
    631 /*
    632  * Rescan a device, possibly as a consequence of getting an event which
    633  * suggests that it may have changed.  Must be called with interrupts
    634  * blocked.
    635  */
    636 static int
    637 mly_scan_btl(struct mly_softc *mly, int bus, int target)
    638 {
    639 	struct mly_ccb *mc;
    640 	struct mly_cmd_ioctl *mci;
    641 	int rv;
    642 
    643 	if (target == mly->mly_controllerparam->initiator_id) {
    644 		mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
    645 		return (EIO);
    646 	}
    647 
    648 	/* Don't re-scan if a scan is already in progress. */
    649 	if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
    650 		return (EBUSY);
    651 
    652 	/* Get a command. */
    653 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    654 		return (rv);
    655 
    656 	/* Set up the data buffer. */
    657 	mc->mc_data = malloc(sizeof(union mly_devinfo),
    658 	    M_DEVBUF, M_NOWAIT);
    659 	memset(mc->mc_data, 0, sizeof(union mly_devinfo));
    660 
    661 	mc->mc_flags |= MLY_CCB_DATAIN;
    662 	mc->mc_complete = mly_complete_rescan;
    663 
    664 	/*
    665 	 * Build the ioctl.
    666 	 */
    667 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    668 	mci->opcode = MDACMD_IOCTL;
    669 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    670 	memset(&mci->param, 0, sizeof(mci->param));
    671 
    672 	if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
    673 		mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
    674 		mci->data_size = htole32(mc->mc_length);
    675 		mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
    676 		_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
    677 		    mci->addr);
    678 	} else {
    679 		mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
    680 		mci->data_size = htole32(mc->mc_length);
    681 		mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
    682 		_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
    683 	}
    684 
    685 	/*
    686 	 * Dispatch the command.
    687 	 */
    688 	if ((rv = mly_ccb_map(mly, mc)) != 0) {
    689 		free(mc->mc_data, M_DEVBUF);
    690 		mly_ccb_free(mly, mc);
    691 		return(rv);
    692 	}
    693 
    694 	mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
    695 	mly_ccb_enqueue(mly, mc);
    696 	return (0);
    697 }
    698 
    699 /*
    700  * Handle the completion of a rescan operation.
    701  */
    702 static void
    703 mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
    704 {
    705 	struct mly_ioctl_getlogdevinfovalid *ldi;
    706 	struct mly_ioctl_getphysdevinfovalid *pdi;
    707 	struct mly_cmd_ioctl *mci;
    708 	struct mly_btl btl, *btlp;
    709 	struct scsipi_xfer_mode xm;
    710 	int bus, target, rescan;
    711 	u_int tmp;
    712 
    713 	mly_ccb_unmap(mly, mc);
    714 
    715 	/*
    716 	 * Recover the bus and target from the command.  We need these even
    717 	 * in the case where we don't have a useful response.
    718 	 */
    719 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
    720 	tmp = _3ltol(mci->addr);
    721 	rescan = 0;
    722 
    723 	if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
    724 		bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
    725 		target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
    726 	} else {
    727 		bus = MLY_PHYADDR_CHANNEL(tmp);
    728 		target = MLY_PHYADDR_TARGET(tmp);
    729 	}
    730 
    731 	btlp = &mly->mly_btl[bus][target];
    732 
    733 	/* The default result is 'no device'. */
    734 	memset(&btl, 0, sizeof(btl));
    735 	btl.mb_flags = MLY_BTL_PROTECTED;
    736 
    737 	/* If the rescan completed OK, we have possibly-new BTL data. */
    738 	if (mc->mc_status != 0)
    739 		goto out;
    740 
    741 	if (mc->mc_length == sizeof(*ldi)) {
    742 		ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
    743 		tmp = le32toh(ldi->logical_device_number);
    744 
    745 		if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
    746 		    MLY_LOGDEV_TARGET(mly, tmp) != target) {
    747 #ifdef MLYDEBUG
    748 			printf("%s: WARNING: BTL rescan (logical) for %d:%d "
    749 			    "returned data for %d:%d instead\n",
    750 			   mly->mly_dv.dv_xname, bus, target,
    751 			   MLY_LOGDEV_BUS(mly, tmp),
    752 			   MLY_LOGDEV_TARGET(mly, tmp));
    753 #endif
    754 			goto out;
    755 		}
    756 
    757 		btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
    758 		btl.mb_type = ldi->raid_level;
    759 		btl.mb_state = ldi->state;
    760 	} else if (mc->mc_length == sizeof(*pdi)) {
    761 		pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
    762 
    763 		if (pdi->channel != bus || pdi->target != target) {
    764 #ifdef MLYDEBUG
    765 			printf("%s: WARNING: BTL rescan (physical) for %d:%d "
    766 			    " returned data for %d:%d instead\n",
    767 			   mly->mly_dv.dv_xname,
    768 			   bus, target, pdi->channel, pdi->target);
    769 #endif
    770 			goto out;
    771 		}
    772 
    773 		btl.mb_flags = MLY_BTL_PHYSICAL;
    774 		btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
    775 		btl.mb_state = pdi->state;
    776 		btl.mb_speed = pdi->speed;
    777 		btl.mb_width = pdi->width;
    778 
    779 		if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
    780 			btl.mb_flags |= MLY_BTL_PROTECTED;
    781 		if (pdi->command_tags != 0)
    782 			btl.mb_flags |= MLY_BTL_TQING;
    783 	} else {
    784 		printf("%s: BTL rescan result invalid\n", mly->mly_dv.dv_xname);
    785 		goto out;
    786 	}
    787 
    788 	/* Decide whether we need to rescan the device. */
    789 	if (btl.mb_flags != btlp->mb_flags ||
    790 	    btl.mb_speed != btlp->mb_speed ||
    791 	    btl.mb_width != btlp->mb_width)
    792 		rescan = 1;
    793 
    794  out:
    795 	*btlp = btl;
    796 
    797 	if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
    798 		xm.xm_target = target;
    799 		mly_get_xfer_mode(mly, bus, &xm);
    800 		/* XXX SCSI mid-layer rescan goes here. */
    801 	}
    802 
    803 	/* Wake anybody waiting on the device to be rescanned. */
    804 	wakeup(btlp);
    805 
    806 	free(mc->mc_data, M_DEVBUF);
    807 	mly_ccb_free(mly, mc);
    808 }
    809 
    810 /*
    811  * Get the current health status and set the 'next event' counter to suit.
    812  */
    813 static int
    814 mly_get_eventstatus(struct mly_softc *mly)
    815 {
    816 	struct mly_cmd_ioctl mci;
    817 	struct mly_health_status *mh;
    818 	int rv;
    819 
    820 	/* Build the gethealthstatus ioctl and send it. */
    821 	memset(&mci, 0, sizeof(mci));
    822 	mh = NULL;
    823 	mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
    824 
    825 	rv = mly_ioctl(mly, &mci, (void **)&mh, sizeof(*mh), NULL, NULL);
    826 	if (rv)
    827 		return (rv);
    828 
    829 	/* Get the event counter. */
    830 	mly->mly_event_change = le32toh(mh->change_counter);
    831 	mly->mly_event_waiting = le32toh(mh->next_event);
    832 	mly->mly_event_counter = le32toh(mh->next_event);
    833 
    834 	/* Save the health status into the memory mailbox */
    835 	memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
    836 
    837 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    838 	    offsetof(struct mly_mmbox, mmm_health),
    839 	    sizeof(mly->mly_mmbox->mmm_health),
    840 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    841 
    842 	free(mh, M_DEVBUF);
    843 	return (0);
    844 }
    845 
    846 /*
    847  * Enable memory mailbox mode.
    848  */
    849 static int
    850 mly_enable_mmbox(struct mly_softc *mly)
    851 {
    852 	struct mly_cmd_ioctl mci;
    853 	u_int8_t *sp;
    854 	u_int64_t tmp;
    855 	int rv;
    856 
    857 	/* Build the ioctl and send it. */
    858 	memset(&mci, 0, sizeof(mci));
    859 	mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
    860 
    861 	/* Set buffer addresses. */
    862 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
    863 	mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
    864 
    865 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
    866 	mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
    867 
    868 	tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
    869 	mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
    870 
    871 	/* Set buffer sizes - abuse of data_size field is revolting. */
    872 	sp = (u_int8_t *)&mci.data_size;
    873 	sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
    874 	sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
    875 	mci.param.setmemorymailbox.health_buffer_size =
    876 	    sizeof(union mly_health_region) >> 10;
    877 
    878 	rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
    879 	if (rv)
    880 		return (rv);
    881 
    882 	mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
    883 	return (0);
    884 }
    885 
    886 /*
    887  * Flush all pending I/O from the controller.
    888  */
    889 static int
    890 mly_flush(struct mly_softc *mly)
    891 {
    892 	struct mly_cmd_ioctl mci;
    893 
    894 	/* Build the ioctl */
    895 	memset(&mci, 0, sizeof(mci));
    896 	mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
    897 	mci.param.deviceoperation.operation_device =
    898 	    MLY_OPDEVICE_PHYSICAL_CONTROLLER;
    899 
    900 	/* Pass it off to the controller */
    901 	return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
    902 }
    903 
    904 /*
    905  * Perform an ioctl command.
    906  *
    907  * If (data) is not NULL, the command requires data transfer to the
    908  * controller.  If (*data) is NULL the command requires data transfer from
    909  * the controller, and we will allocate a buffer for it.
    910  */
    911 static int
    912 mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
    913 	  size_t datasize, void *sense_buffer,
    914 	  size_t *sense_length)
    915 {
    916 	struct mly_ccb *mc;
    917 	struct mly_cmd_ioctl *mci;
    918 	u_int8_t status;
    919 	int rv;
    920 
    921 	mc = NULL;
    922 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
    923 		goto bad;
    924 
    925 	/*
    926 	 * Copy the ioctl structure, but save some important fields and then
    927 	 * fixup.
    928 	 */
    929 	mci = &mc->mc_packet->ioctl;
    930 	ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
    931 	ioctl->maximum_sense_size = mci->maximum_sense_size;
    932 	*mci = *ioctl;
    933 	mci->opcode = MDACMD_IOCTL;
    934 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
    935 
    936 	/* Handle the data buffer. */
    937 	if (data != NULL) {
    938 		if (*data == NULL) {
    939 			/* Allocate data buffer */
    940 			mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
    941 			mc->mc_flags |= MLY_CCB_DATAIN;
    942 		} else {
    943 			mc->mc_data = *data;
    944 			mc->mc_flags |= MLY_CCB_DATAOUT;
    945 		}
    946 		mc->mc_length = datasize;
    947 		mc->mc_packet->generic.data_size = htole32(datasize);
    948 	}
    949 
    950 	/* Run the command. */
    951 	if (datasize > 0)
    952 		if ((rv = mly_ccb_map(mly, mc)) != 0)
    953 			goto bad;
    954 	rv = mly_ccb_poll(mly, mc, 30000);
    955 	if (datasize > 0)
    956 		mly_ccb_unmap(mly, mc);
    957 	if (rv != 0)
    958 		goto bad;
    959 
    960 	/* Clean up and return any data. */
    961 	status = mc->mc_status;
    962 
    963 	if (status != 0)
    964 		printf("mly_ioctl: command status %d\n", status);
    965 
    966 	if (mc->mc_sense > 0 && sense_buffer != NULL) {
    967 		memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
    968 		*sense_length = mc->mc_sense;
    969 		goto bad;
    970 	}
    971 
    972 	/* Should we return a data pointer? */
    973 	if (data != NULL && *data == NULL)
    974 		*data = mc->mc_data;
    975 
    976 	/* Command completed OK. */
    977 	rv = (status != 0 ? EIO : 0);
    978 
    979  bad:
    980 	if (mc != NULL) {
    981 		/* Do we need to free a data buffer we allocated? */
    982 		if (rv != 0 && mc->mc_data != NULL && *data == NULL)
    983 			free(mc->mc_data, M_DEVBUF);
    984 		mly_ccb_free(mly, mc);
    985 	}
    986 
    987 	return (rv);
    988 }
    989 
    990 /*
    991  * Check for event(s) outstanding in the controller.
    992  */
    993 static void
    994 mly_check_event(struct mly_softc *mly)
    995 {
    996 
    997 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
    998 	    offsetof(struct mly_mmbox, mmm_health),
    999 	    sizeof(mly->mly_mmbox->mmm_health),
   1000 	    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1001 
   1002 	/*
   1003 	 * The controller may have updated the health status information, so
   1004 	 * check for it here.  Note that the counters are all in host
   1005 	 * memory, so this check is very cheap.  Also note that we depend on
   1006 	 * checking on completion
   1007 	 */
   1008 	if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
   1009 	    mly->mly_event_change) {
   1010 		mly->mly_event_change =
   1011 		    le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
   1012 		mly->mly_event_waiting =
   1013 		    le32toh(mly->mly_mmbox->mmm_health.status.next_event);
   1014 
   1015 		/* Wake up anyone that might be interested in this. */
   1016 		wakeup(&mly->mly_event_change);
   1017 	}
   1018 
   1019 	bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1020 	    offsetof(struct mly_mmbox, mmm_health),
   1021 	    sizeof(mly->mly_mmbox->mmm_health),
   1022 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1023 
   1024 	if (mly->mly_event_counter != mly->mly_event_waiting)
   1025 		mly_fetch_event(mly);
   1026 }
   1027 
   1028 /*
   1029  * Fetch one event from the controller.  If we fail due to resource
   1030  * starvation, we'll be retried the next time a command completes.
   1031  */
   1032 static void
   1033 mly_fetch_event(struct mly_softc *mly)
   1034 {
   1035 	struct mly_ccb *mc;
   1036 	struct mly_cmd_ioctl *mci;
   1037 	int s;
   1038 	u_int32_t event;
   1039 
   1040 	/* Get a command. */
   1041 	if (mly_ccb_alloc(mly, &mc))
   1042 		return;
   1043 
   1044 	/* Set up the data buffer. */
   1045 	mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT);
   1046 	memset(mc->mc_data, 0, sizeof(struct mly_event));
   1047 
   1048 	mc->mc_length = sizeof(struct mly_event);
   1049 	mc->mc_flags |= MLY_CCB_DATAIN;
   1050 	mc->mc_complete = mly_complete_event;
   1051 
   1052 	/*
   1053 	 * Get an event number to fetch.  It's possible that we've raced
   1054 	 * with another context for the last event, in which case there will
   1055 	 * be no more events.
   1056 	 */
   1057 	s = splbio();
   1058 	if (mly->mly_event_counter == mly->mly_event_waiting) {
   1059 		splx(s);
   1060 		free(mc->mc_data, M_DEVBUF);
   1061 		mly_ccb_free(mly, mc);
   1062 		return;
   1063 	}
   1064 	event = mly->mly_event_counter++;
   1065 	splx(s);
   1066 
   1067 	/*
   1068 	 * Build the ioctl.
   1069 	 *
   1070 	 * At this point we are committed to sending this request, as it
   1071 	 * will be the only one constructed for this particular event
   1072 	 * number.
   1073 	 */
   1074 	mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
   1075 	mci->opcode = MDACMD_IOCTL;
   1076 	mci->data_size = htole32(sizeof(struct mly_event));
   1077 	_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
   1078 	    mci->addr);
   1079 	mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
   1080 	mci->sub_ioctl = MDACIOCTL_GETEVENT;
   1081 	mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
   1082 
   1083 	/*
   1084 	 * Submit the command.
   1085 	 */
   1086 	if (mly_ccb_map(mly, mc) != 0)
   1087 		goto bad;
   1088 	mly_ccb_enqueue(mly, mc);
   1089 	return;
   1090 
   1091  bad:
   1092 	printf("%s: couldn't fetch event %u\n", mly->mly_dv.dv_xname, event);
   1093 	free(mc->mc_data, M_DEVBUF);
   1094 	mly_ccb_free(mly, mc);
   1095 }
   1096 
   1097 /*
   1098  * Handle the completion of an event poll.
   1099  */
   1100 static void
   1101 mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
   1102 {
   1103 	struct mly_event *me;
   1104 
   1105 	me = (struct mly_event *)mc->mc_data;
   1106 	mly_ccb_unmap(mly, mc);
   1107 	mly_ccb_free(mly, mc);
   1108 
   1109 	/* If the event was successfully fetched, process it. */
   1110 	if (mc->mc_status == SCSI_OK)
   1111 		mly_process_event(mly, me);
   1112 	else
   1113 		printf("%s: unable to fetch event; status = 0x%x\n",
   1114 		    mly->mly_dv.dv_xname, mc->mc_status);
   1115 
   1116 	free(me, M_DEVBUF);
   1117 
   1118 	/* Check for another event. */
   1119 	mly_check_event(mly);
   1120 }
   1121 
   1122 /*
   1123  * Process a controller event.  Called with interupts blocked (i.e., at
   1124  * interrupt time).
   1125  */
   1126 static void
   1127 mly_process_event(struct mly_softc *mly, struct mly_event *me)
   1128 {
   1129 	struct scsipi_sense_data *ssd;
   1130 	int bus, target, event, class, action;
   1131 	const char *fp, *tp;
   1132 
   1133 	ssd = (struct scsipi_sense_data *)&me->sense[0];
   1134 
   1135 	/*
   1136 	 * Errors can be reported using vendor-unique sense data.  In this
   1137 	 * case, the event code will be 0x1c (Request sense data present),
   1138 	 * the sense key will be 0x09 (vendor specific), the MSB of the ASC
   1139 	 * will be set, and the actual event code will be a 16-bit value
   1140 	 * comprised of the ASCQ (low byte) and low seven bits of the ASC
   1141 	 * (low seven bits of the high byte).
   1142 	 */
   1143 	if (le32toh(me->code) == 0x1c &&
   1144 	    (ssd->flags & SSD_KEY) == SKEY_VENDOR_UNIQUE &&
   1145 	    (ssd->add_sense_code & 0x80) != 0) {
   1146 		event = ((int)(ssd->add_sense_code & ~0x80) << 8) +
   1147 		    ssd->add_sense_code_qual;
   1148 	} else
   1149 		event = le32toh(me->code);
   1150 
   1151 	/* Look up event, get codes. */
   1152 	fp = mly_describe_code(mly_table_event, event);
   1153 
   1154 	/* Quiet event? */
   1155 	class = fp[0];
   1156 #ifdef notyet
   1157 	if (isupper(class) && bootverbose)
   1158 		class = tolower(class);
   1159 #endif
   1160 
   1161 	/* Get action code, text string. */
   1162 	action = fp[1];
   1163 	tp = fp + 3;
   1164 
   1165 	/*
   1166 	 * Print some information about the event.
   1167 	 *
   1168 	 * This code uses a table derived from the corresponding portion of
   1169 	 * the Linux driver, and thus the parser is very similar.
   1170 	 */
   1171 	switch (class) {
   1172 	case 'p':
   1173 		/*
   1174 		 * Error on physical drive.
   1175 		 */
   1176 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1177 		    me->channel, me->target, tp);
   1178 		if (action == 'r')
   1179 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1180 			    MLY_BTL_RESCAN;
   1181 		break;
   1182 
   1183 	case 'l':
   1184 	case 'm':
   1185 		/*
   1186 		 * Error on logical unit, or message about logical unit.
   1187 	 	 */
   1188 		bus = MLY_LOGDEV_BUS(mly, me->lun);
   1189 		target = MLY_LOGDEV_TARGET(mly, me->lun);
   1190 		printf("%s: logical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1191 		    bus, target, tp);
   1192 		if (action == 'r')
   1193 			mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
   1194 		break;
   1195 
   1196 	case 's':
   1197 		/*
   1198 		 * Report of sense data.
   1199 		 */
   1200 		if (((ssd->flags & SSD_KEY) == SKEY_NO_SENSE ||
   1201 		    (ssd->flags & SSD_KEY) == SKEY_NOT_READY) &&
   1202 		    ssd->add_sense_code == 0x04 &&
   1203 		    (ssd->add_sense_code_qual == 0x01 ||
   1204 		    ssd->add_sense_code_qual == 0x02)) {
   1205 			/* Ignore NO_SENSE or NOT_READY in one case */
   1206 			break;
   1207 		}
   1208 
   1209 		/*
   1210 		 * XXX Should translate this if SCSIVERBOSE.
   1211 		 */
   1212 		printf("%s: physical device %d:%d %s\n", mly->mly_dv.dv_xname,
   1213 		    me->channel, me->target, tp);
   1214 		printf("%s:  sense key %d  asc %02x  ascq %02x\n",
   1215 		    mly->mly_dv.dv_xname, ssd->flags & SSD_KEY,
   1216 		    ssd->add_sense_code, ssd->add_sense_code_qual);
   1217 		printf("%s:  info %x%x%x%x  csi %x%x%x%x\n",
   1218 		    mly->mly_dv.dv_xname, ssd->info[0], ssd->info[1],
   1219 		    ssd->info[2], ssd->info[3], ssd->cmd_spec_info[0],
   1220 		    ssd->cmd_spec_info[1], ssd->cmd_spec_info[2],
   1221 		    ssd->cmd_spec_info[3]);
   1222 		if (action == 'r')
   1223 			mly->mly_btl[me->channel][me->target].mb_flags |=
   1224 			    MLY_BTL_RESCAN;
   1225 		break;
   1226 
   1227 	case 'e':
   1228 		printf("%s: ", mly->mly_dv.dv_xname);
   1229 		printf(tp, me->target, me->lun);
   1230 		break;
   1231 
   1232 	case 'c':
   1233 		printf("%s: controller %s\n", mly->mly_dv.dv_xname, tp);
   1234 		break;
   1235 
   1236 	case '?':
   1237 		printf("%s: %s - %d\n", mly->mly_dv.dv_xname, tp, event);
   1238 		break;
   1239 
   1240 	default:
   1241 		/* Probably a 'noisy' event being ignored. */
   1242 		break;
   1243 	}
   1244 }
   1245 
   1246 /*
   1247  * Create the monitoring thread.  Called after the standard kernel threads
   1248  * have been created.
   1249  */
   1250 static void
   1251 mly_thread_create(void *cookie)
   1252 {
   1253 	struct mly_softc *mly;
   1254 	int rv;
   1255 
   1256 	mly = cookie;
   1257 
   1258 	rv = kthread_create1(mly_thread, mly, &mly->mly_thread, "%s",
   1259 	    mly->mly_dv.dv_xname);
   1260  	if (rv != 0)
   1261 		printf("%s: unable to create thread (%d)\n",
   1262 		    mly->mly_dv.dv_xname, rv);
   1263 }
   1264 
   1265 /*
   1266  * Perform periodic activities.
   1267  */
   1268 static void
   1269 mly_thread(void *cookie)
   1270 {
   1271 	struct mly_softc *mly;
   1272 	struct mly_btl *btl;
   1273 	int s, bus, target, done;
   1274 
   1275 	mly = (struct mly_softc *)cookie;
   1276 
   1277 	for (;;) {
   1278 		/* Check for new events. */
   1279 		mly_check_event(mly);
   1280 
   1281 		/* Re-scan up to 1 device. */
   1282 		s = splbio();
   1283 		done = 0;
   1284 		for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
   1285 			for (target = 0; target < MLY_MAX_TARGETS; target++) {
   1286 				/* Perform device rescan? */
   1287 				btl = &mly->mly_btl[bus][target];
   1288 				if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
   1289 					btl->mb_flags ^= MLY_BTL_RESCAN;
   1290 					mly_scan_btl(mly, bus, target);
   1291 					done = 1;
   1292 					break;
   1293 				}
   1294 			}
   1295 		}
   1296 		splx(s);
   1297 
   1298 		/* Sleep for N seconds. */
   1299 		tsleep(mly_thread, PWAIT, "mlyzzz",
   1300 		    hz * MLY_PERIODIC_INTERVAL);
   1301 	}
   1302 }
   1303 
   1304 /*
   1305  * Submit a command to the controller and poll on completion.  Return
   1306  * non-zero on timeout.
   1307  */
   1308 static int
   1309 mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1310 {
   1311 	int rv;
   1312 
   1313 	if ((rv = mly_ccb_submit(mly, mc)) != 0)
   1314 		return (rv);
   1315 
   1316 	for (timo *= 10; timo != 0; timo--) {
   1317 		if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
   1318 			break;
   1319 		mly_intr(mly);
   1320 		DELAY(100);
   1321 	}
   1322 
   1323 	return (timo == 0);
   1324 }
   1325 
   1326 /*
   1327  * Submit a command to the controller and sleep on completion.  Return
   1328  * non-zero on timeout.
   1329  */
   1330 static int
   1331 mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
   1332 {
   1333 	int rv, s;
   1334 
   1335 	mly_ccb_enqueue(mly, mc);
   1336 
   1337 	s = splbio();
   1338 	if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
   1339 		splx(s);
   1340 		return (0);
   1341 	}
   1342 	rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
   1343 	splx(s);
   1344 
   1345 	return (rv);
   1346 }
   1347 
   1348 /*
   1349  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
   1350  * the order that they were enqueued and try to submit their command blocks
   1351  * to the controller for execution.
   1352  */
   1353 void
   1354 mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
   1355 {
   1356 	int s;
   1357 
   1358 	s = splbio();
   1359 
   1360 	if (mc != NULL)
   1361 		SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1362 
   1363 	while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
   1364 		if (mly_ccb_submit(mly, mc))
   1365 			break;
   1366 		SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc, mc_link.simpleq);
   1367 	}
   1368 
   1369 	splx(s);
   1370 }
   1371 
   1372 /*
   1373  * Deliver a command to the controller.
   1374  */
   1375 static int
   1376 mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
   1377 {
   1378 	union mly_cmd_packet *pkt;
   1379 	int s, off;
   1380 
   1381 	mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
   1382 
   1383 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1384 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1385 	    sizeof(union mly_cmd_packet),
   1386 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1387 
   1388 	s = splbio();
   1389 
   1390 	/*
   1391 	 * Do we have to use the hardware mailbox?
   1392 	 */
   1393 	if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
   1394 		/*
   1395 		 * Check to see if the controller is ready for us.
   1396 		 */
   1397 		if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
   1398 			splx(s);
   1399 			return (EBUSY);
   1400 		}
   1401 
   1402 		/*
   1403 		 * It's ready, send the command.
   1404 		 */
   1405 		mly_outl(mly, mly->mly_cmd_mailbox,
   1406 		    (u_int64_t)mc->mc_packetphys & 0xffffffff);
   1407 		mly_outl(mly, mly->mly_cmd_mailbox + 4,
   1408 		    (u_int64_t)mc->mc_packetphys >> 32);
   1409 		mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
   1410 	} else {
   1411 		pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
   1412 		off = (caddr_t)pkt - (caddr_t)mly->mly_mmbox;
   1413 
   1414 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1415 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1416 		    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1417 
   1418 		/* Check to see if the next index is free yet. */
   1419 		if (pkt->mmbox.flag != 0) {
   1420 			splx(s);
   1421 			return (EBUSY);
   1422 		}
   1423 
   1424 		/* Copy in new command */
   1425 		memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
   1426 		    sizeof(pkt->mmbox.data));
   1427 
   1428 		/* Copy flag last. */
   1429 		pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
   1430 
   1431 		bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1432 		    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1433 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1434 
   1435 		/* Signal controller and update index. */
   1436 		mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
   1437 		mly->mly_mmbox_cmd_idx =
   1438 		    (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
   1439 	}
   1440 
   1441 	splx(s);
   1442 	return (0);
   1443 }
   1444 
   1445 /*
   1446  * Pick up completed commands from the controller and handle accordingly.
   1447  */
   1448 int
   1449 mly_intr(void *cookie)
   1450 {
   1451 	struct mly_ccb *mc;
   1452 	union mly_status_packet	*sp;
   1453 	u_int16_t slot;
   1454 	int forus, off;
   1455 	struct mly_softc *mly;
   1456 
   1457 	mly = cookie;
   1458 	forus = 0;
   1459 
   1460 	/*
   1461 	 * Pick up hardware-mailbox commands.
   1462 	 */
   1463 	if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
   1464 		slot = mly_inw(mly, mly->mly_status_mailbox);
   1465 
   1466 		if (slot < MLY_SLOT_MAX) {
   1467 			mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1468 			mc->mc_status =
   1469 			    mly_inb(mly, mly->mly_status_mailbox + 2);
   1470 			mc->mc_sense =
   1471 			    mly_inb(mly, mly->mly_status_mailbox + 3);
   1472 			mc->mc_resid =
   1473 			    mly_inl(mly, mly->mly_status_mailbox + 4);
   1474 
   1475 			mly_ccb_complete(mly, mc);
   1476 		} else {
   1477 			/* Slot 0xffff may mean "extremely bogus command". */
   1478 			printf("%s: got HM completion for illegal slot %u\n",
   1479 			    mly->mly_dv.dv_xname, slot);
   1480 		}
   1481 
   1482 		/* Unconditionally acknowledge status. */
   1483 		mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
   1484 		mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   1485 		forus = 1;
   1486 	}
   1487 
   1488 	/*
   1489 	 * Pick up memory-mailbox commands.
   1490 	 */
   1491 	if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
   1492 		for (;;) {
   1493 			sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
   1494 			off = (caddr_t)sp - (caddr_t)mly->mly_mmbox;
   1495 
   1496 			bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
   1497 			    off, sizeof(mly->mly_mmbox->mmm_command[0]),
   1498 			    BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
   1499 
   1500 			/* Check for more status. */
   1501 			if (sp->mmbox.flag == 0)
   1502 				break;
   1503 
   1504 			/* Get slot number. */
   1505 			slot = le16toh(sp->status.command_id);
   1506 			if (slot < MLY_SLOT_MAX) {
   1507 				mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
   1508 				mc->mc_status = sp->status.status;
   1509 				mc->mc_sense = sp->status.sense_length;
   1510 				mc->mc_resid = le32toh(sp->status.residue);
   1511 				mly_ccb_complete(mly, mc);
   1512 			} else {
   1513 				/*
   1514 				 * Slot 0xffff may mean "extremely bogus
   1515 				 * command".
   1516 				 */
   1517 				printf("%s: got AM completion for illegal "
   1518 				    "slot %u at %d\n", mly->mly_dv.dv_xname,
   1519 				    slot, mly->mly_mmbox_sts_idx);
   1520 			}
   1521 
   1522 			/* Clear and move to next index. */
   1523 			sp->mmbox.flag = 0;
   1524 			mly->mly_mmbox_sts_idx =
   1525 			    (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
   1526 		}
   1527 
   1528 		/* Acknowledge that we have collected status value(s). */
   1529 		mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
   1530 		forus = 1;
   1531 	}
   1532 
   1533 	/*
   1534 	 * Run the queue.
   1535 	 */
   1536 	if (forus && SIMPLEQ_FIRST(&mly->mly_ccb_queue) != NULL)
   1537 		mly_ccb_enqueue(mly, NULL);
   1538 
   1539 	return (forus);
   1540 }
   1541 
   1542 /*
   1543  * Process completed commands
   1544  */
   1545 static void
   1546 mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1547 {
   1548 	void (*complete)(struct mly_softc *, struct mly_ccb *);
   1549 
   1550 	bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
   1551 	    mc->mc_packetphys - mly->mly_pkt_busaddr,
   1552 	    sizeof(union mly_cmd_packet),
   1553 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1554 
   1555 	complete = mc->mc_complete;
   1556 	mc->mc_flags |= MLY_CCB_COMPLETE;
   1557 
   1558 	/*
   1559 	 * Call completion handler or wake up sleeping consumer.
   1560 	 */
   1561 	if (complete != NULL)
   1562 		(*complete)(mly, mc);
   1563 	else
   1564 		wakeup(mc);
   1565 }
   1566 
   1567 /*
   1568  * Allocate a command.
   1569  */
   1570 int
   1571 mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
   1572 {
   1573 	struct mly_ccb *mc;
   1574 	int s;
   1575 
   1576 	s = splbio();
   1577 	mc = SLIST_FIRST(&mly->mly_ccb_free);
   1578 	if (mc != NULL)
   1579 		SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
   1580 	splx(s);
   1581 
   1582 	*mcp = mc;
   1583 	return (mc == NULL ? EAGAIN : 0);
   1584 }
   1585 
   1586 /*
   1587  * Release a command back to the freelist.
   1588  */
   1589 void
   1590 mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
   1591 {
   1592 	int s;
   1593 
   1594 	/*
   1595 	 * Fill in parts of the command that may cause confusion if a
   1596 	 * consumer doesn't when we are later allocated.
   1597 	 */
   1598 	mc->mc_data = NULL;
   1599 	mc->mc_flags = 0;
   1600 	mc->mc_complete = NULL;
   1601 	mc->mc_private = NULL;
   1602 	mc->mc_packet->generic.command_control = 0;
   1603 
   1604 	/*
   1605 	 * By default, we set up to overwrite the command packet with sense
   1606 	 * information.
   1607 	 */
   1608 	mc->mc_packet->generic.sense_buffer_address =
   1609 	    htole64(mc->mc_packetphys);
   1610 	mc->mc_packet->generic.maximum_sense_size =
   1611 	    sizeof(union mly_cmd_packet);
   1612 
   1613 	s = splbio();
   1614 	SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
   1615 	splx(s);
   1616 }
   1617 
   1618 /*
   1619  * Allocate and initialise command and packet structures.
   1620  *
   1621  * If the controller supports fewer than MLY_MAX_CCBS commands, limit our
   1622  * allocation to that number.  If we don't yet know how many commands the
   1623  * controller supports, allocate a very small set (suitable for initialisation
   1624  * purposes only).
   1625  */
   1626 static int
   1627 mly_alloc_ccbs(struct mly_softc *mly)
   1628 {
   1629 	struct mly_ccb *mc;
   1630 	int i, rv;
   1631 
   1632 	if (mly->mly_controllerinfo == NULL)
   1633 		mly->mly_ncmds = MLY_CCBS_RESV;
   1634 	else {
   1635 		i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
   1636 		mly->mly_ncmds = min(MLY_MAX_CCBS, i);
   1637 	}
   1638 
   1639 	/*
   1640 	 * Allocate enough space for all the command packets in one chunk
   1641 	 * and map them permanently into controller-visible space.
   1642 	 */
   1643 	rv = mly_dmamem_alloc(mly,
   1644 	    mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1645 	    &mly->mly_pkt_dmamap, (caddr_t *)&mly->mly_pkt,
   1646 	    &mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
   1647 	if (rv)
   1648 		return (rv);
   1649 
   1650 	mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
   1651 	    M_DEVBUF, M_NOWAIT);
   1652 	memset(mly->mly_ccbs, 0, sizeof(struct mly_ccb) * mly->mly_ncmds);
   1653 
   1654 	for (i = 0; i < mly->mly_ncmds; i++) {
   1655 		mc = mly->mly_ccbs + i;
   1656 		mc->mc_slot = MLY_SLOT_START + i;
   1657 		mc->mc_packet = mly->mly_pkt + i;
   1658 		mc->mc_packetphys = mly->mly_pkt_busaddr +
   1659 		    (i * sizeof(union mly_cmd_packet));
   1660 
   1661 		rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
   1662 		    MLY_MAX_SEGS, MLY_MAX_XFER, 0,
   1663 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1664 		    &mc->mc_datamap);
   1665 		if (rv) {
   1666 			mly_release_ccbs(mly);
   1667 			return (rv);
   1668 		}
   1669 
   1670 		mly_ccb_free(mly, mc);
   1671 	}
   1672 
   1673 	return (0);
   1674 }
   1675 
   1676 /*
   1677  * Free all the storage held by commands.
   1678  *
   1679  * Must be called with all commands on the free list.
   1680  */
   1681 static void
   1682 mly_release_ccbs(struct mly_softc *mly)
   1683 {
   1684 	struct mly_ccb *mc;
   1685 
   1686 	/* Throw away command buffer DMA maps. */
   1687 	while (mly_ccb_alloc(mly, &mc) == 0)
   1688 		bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
   1689 
   1690 	/* Release CCB storage. */
   1691 	free(mly->mly_ccbs, M_DEVBUF);
   1692 
   1693 	/* Release the packet storage. */
   1694 	mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
   1695 	    mly->mly_pkt_dmamap, (caddr_t)mly->mly_pkt, &mly->mly_pkt_seg);
   1696 }
   1697 
   1698 /*
   1699  * Map a command into controller-visible space.
   1700  */
   1701 static int
   1702 mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
   1703 {
   1704 	struct mly_cmd_generic *gen;
   1705 	struct mly_sg_entry *sg;
   1706 	bus_dma_segment_t *ds;
   1707 	int flg, nseg, rv;
   1708 
   1709 #ifdef DIAGNOSTIC
   1710 	/* Don't map more than once. */
   1711 	if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
   1712 		panic("mly_ccb_map: already mapped");
   1713 	mc->mc_flags |= MLY_CCB_MAPPED;
   1714 
   1715 	/* Does the command have a data buffer? */
   1716 	if (mc->mc_data == NULL)
   1717 		panic("mly_ccb_map: no data buffer");
   1718 #endif
   1719 
   1720 	rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
   1721 	    mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
   1722 	    ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
   1723 	    BUS_DMA_READ : BUS_DMA_WRITE));
   1724 	if (rv != 0)
   1725 		return (rv);
   1726 
   1727 	gen = &mc->mc_packet->generic;
   1728 
   1729 	/*
   1730 	 * Can we use the transfer structure directly?
   1731 	 */
   1732 	if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
   1733 		mc->mc_sgoff = -1;
   1734 		sg = &gen->transfer.direct.sg[0];
   1735 	} else {
   1736 		mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
   1737 		    MLY_MAX_SEGS;
   1738 		sg = mly->mly_sg + mc->mc_sgoff;
   1739 		gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
   1740 		gen->transfer.indirect.entries[0] = htole16(nseg);
   1741 		gen->transfer.indirect.table_physaddr[0] =
   1742 		    htole64(mly->mly_sg_busaddr +
   1743 		    (mc->mc_sgoff * sizeof(struct mly_sg_entry)));
   1744 	}
   1745 
   1746 	/*
   1747 	 * Fill the S/G table.
   1748 	 */
   1749 	for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
   1750 		sg->physaddr = htole64(ds->ds_addr);
   1751 		sg->length = htole64(ds->ds_len);
   1752 	}
   1753 
   1754 	/*
   1755 	 * Sync up the data map.
   1756 	 */
   1757 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1758 		flg = BUS_DMASYNC_PREREAD;
   1759 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
   1760 		gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
   1761 		flg = BUS_DMASYNC_PREWRITE;
   1762 	}
   1763 
   1764 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1765 
   1766 	/*
   1767 	 * Sync up the chained S/G table, if we're using one.
   1768 	 */
   1769 	if (mc->mc_sgoff == -1)
   1770 		return (0);
   1771 
   1772 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1773 	    MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
   1774 
   1775 	return (0);
   1776 }
   1777 
   1778 /*
   1779  * Unmap a command from controller-visible space.
   1780  */
   1781 static void
   1782 mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
   1783 {
   1784 	int flg;
   1785 
   1786 #ifdef DIAGNOSTIC
   1787 	if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
   1788 		panic("mly_ccb_unmap: not mapped");
   1789 	mc->mc_flags &= ~MLY_CCB_MAPPED;
   1790 #endif
   1791 
   1792 	if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
   1793 		flg = BUS_DMASYNC_POSTREAD;
   1794 	else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
   1795 		flg = BUS_DMASYNC_POSTWRITE;
   1796 
   1797 	bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
   1798 	bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
   1799 
   1800 	if (mc->mc_sgoff == -1)
   1801 		return;
   1802 
   1803 	bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
   1804 	    MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
   1805 }
   1806 
   1807 /*
   1808  * Adjust the size of each I/O before it passes to the SCSI layer.
   1809  */
   1810 static void
   1811 mly_scsipi_minphys(struct buf *bp)
   1812 {
   1813 
   1814 	if (bp->b_bcount > MLY_MAX_XFER)
   1815 		bp->b_bcount = MLY_MAX_XFER;
   1816 	minphys(bp);
   1817 }
   1818 
   1819 /*
   1820  * Start a SCSI command.
   1821  */
   1822 static void
   1823 mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
   1824 		   void *arg)
   1825 {
   1826 	struct mly_ccb *mc;
   1827 	struct mly_cmd_scsi_small *ss;
   1828 	struct scsipi_xfer *xs;
   1829 	struct scsipi_periph *periph;
   1830 	struct mly_softc *mly;
   1831 	struct mly_btl *btl;
   1832 	int s, tmp;
   1833 
   1834 	mly = (void *)chan->chan_adapter->adapt_dev;
   1835 
   1836 	switch (req) {
   1837 	case ADAPTER_REQ_RUN_XFER:
   1838 		xs = arg;
   1839 		periph = xs->xs_periph;
   1840 		btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
   1841 		s = splbio();
   1842 		tmp = btl->mb_flags;
   1843 		splx(s);
   1844 
   1845 		/*
   1846 		 * Check for I/O attempt to a protected or non-existant
   1847 		 * device.
   1848 		 */
   1849 		if ((tmp & MLY_BTL_PROTECTED) != 0) {
   1850 			xs->error = XS_SELTIMEOUT;
   1851 			scsipi_done(xs);
   1852 			break;
   1853 		}
   1854 
   1855 #ifdef DIAGNOSTIC
   1856 		/* XXX Increase if/when we support large SCSI commands. */
   1857 		if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
   1858 			printf("%s: cmd too large\n", mly->mly_dv.dv_xname);
   1859 			xs->error = XS_DRIVER_STUFFUP;
   1860 			scsipi_done(xs);
   1861 			break;
   1862 		}
   1863 #endif
   1864 
   1865 		if (mly_ccb_alloc(mly, &mc)) {
   1866 			xs->error = XS_RESOURCE_SHORTAGE;
   1867 			scsipi_done(xs);
   1868 			break;
   1869 		}
   1870 
   1871 		/* Build the command. */
   1872 		mc->mc_data = xs->data;
   1873 		mc->mc_length = xs->datalen;
   1874 		mc->mc_complete = mly_scsipi_complete;
   1875 		mc->mc_private = xs;
   1876 
   1877 		/* Build the packet for the controller. */
   1878 		ss = &mc->mc_packet->scsi_small;
   1879 		ss->opcode = MDACMD_SCSI;
   1880 #ifdef notdef
   1881 		/*
   1882 		 * XXX FreeBSD does this, but it doesn't fix anything,
   1883 		 * XXX and appears potentially harmful.
   1884 		 */
   1885 		ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
   1886 #endif
   1887 
   1888 		ss->data_size = htole32(xs->datalen);
   1889 		_lto3l(MLY_PHYADDR(0, chan->chan_channel,
   1890 		    periph->periph_target, periph->periph_lun), ss->addr);
   1891 
   1892 		if (xs->timeout < 60 * 1000)
   1893 			ss->timeout = xs->timeout / 1000 |
   1894 			    MLY_TIMEOUT_SECONDS;
   1895 		else if (xs->timeout < 60 * 60 * 1000)
   1896 			ss->timeout = xs->timeout / (60 * 1000) |
   1897 			    MLY_TIMEOUT_MINUTES;
   1898 		else
   1899 			ss->timeout = xs->timeout / (60 * 60 * 1000) |
   1900 			    MLY_TIMEOUT_HOURS;
   1901 
   1902 		ss->maximum_sense_size = sizeof(xs->sense);
   1903 		ss->cdb_length = xs->cmdlen;
   1904 		memcpy(ss->cdb, xs->cmd, xs->cmdlen);
   1905 
   1906 		if (mc->mc_length != 0) {
   1907 			if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
   1908 				mc->mc_flags |= MLY_CCB_DATAOUT;
   1909 			else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
   1910 				mc->mc_flags |= MLY_CCB_DATAIN;
   1911 
   1912 			if (mly_ccb_map(mly, mc) != 0) {
   1913 				xs->error = XS_DRIVER_STUFFUP;
   1914 				mly_ccb_free(mly, mc);
   1915 				scsipi_done(xs);
   1916 				break;
   1917 			}
   1918 		}
   1919 
   1920 		/*
   1921 		 * Give the command to the controller.
   1922 		 */
   1923 		if ((xs->xs_control & XS_CTL_POLL) != 0) {
   1924 			if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
   1925 				xs->error = XS_REQUEUE;
   1926 				if (mc->mc_length != 0)
   1927 					mly_ccb_unmap(mly, mc);
   1928 				mly_ccb_free(mly, mc);
   1929 				scsipi_done(xs);
   1930 			}
   1931 		} else
   1932 			mly_ccb_enqueue(mly, mc);
   1933 
   1934 		break;
   1935 
   1936 	case ADAPTER_REQ_GROW_RESOURCES:
   1937 		/*
   1938 		 * Not supported.
   1939 		 */
   1940 		break;
   1941 
   1942 	case ADAPTER_REQ_SET_XFER_MODE:
   1943 		/*
   1944 		 * We can't change the transfer mode, but at least let
   1945 		 * scsipi know what the adapter has negotiated.
   1946 		 */
   1947 		mly_get_xfer_mode(mly, chan->chan_channel, arg);
   1948 		break;
   1949 	}
   1950 }
   1951 
   1952 /*
   1953  * Handle completion of a SCSI command.
   1954  */
   1955 static void
   1956 mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
   1957 {
   1958 	struct scsipi_xfer *xs;
   1959 	struct scsipi_channel *chan;
   1960 	struct scsipi_inquiry_data *inq;
   1961 	struct mly_btl *btl;
   1962 	int target, sl, s;
   1963 	const char *p;
   1964 
   1965 	xs = mc->mc_private;
   1966 	xs->status = mc->mc_status;
   1967 
   1968 	/*
   1969 	 * XXX The `resid' value as returned by the controller appears to be
   1970 	 * bogus, so we always set it to zero.  Is it perhaps the transfer
   1971 	 * count?
   1972 	 */
   1973 	xs->resid = 0; /* mc->mc_resid; */
   1974 
   1975 	if (mc->mc_length != 0)
   1976 		mly_ccb_unmap(mly, mc);
   1977 
   1978 	switch (mc->mc_status) {
   1979 	case SCSI_OK:
   1980 		/*
   1981 		 * In order to report logical device type and status, we
   1982 		 * overwrite the result of the INQUIRY command to logical
   1983 		 * devices.
   1984 		 */
   1985 		if (xs->cmd->opcode == INQUIRY) {
   1986 			chan = xs->xs_periph->periph_channel;
   1987 			target = xs->xs_periph->periph_target;
   1988 			btl = &mly->mly_btl[chan->chan_channel][target];
   1989 
   1990 			s = splbio();
   1991 			if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
   1992 				inq = (struct scsipi_inquiry_data *)xs->data;
   1993 				mly_padstr(inq->vendor, "MYLEX", 8);
   1994 				p = mly_describe_code(mly_table_device_type,
   1995 				    btl->mb_type);
   1996 				mly_padstr(inq->product, p, 16);
   1997 				p = mly_describe_code(mly_table_device_state,
   1998 				    btl->mb_state);
   1999 				mly_padstr(inq->revision, p, 4);
   2000 			}
   2001 			splx(s);
   2002 		}
   2003 
   2004 		xs->error = XS_NOERROR;
   2005 		break;
   2006 
   2007 	case SCSI_CHECK:
   2008 		sl = mc->mc_sense;
   2009 		if (sl > sizeof(xs->sense.scsi_sense))
   2010 			sl = sizeof(xs->sense.scsi_sense);
   2011 		memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
   2012 		xs->error = XS_SENSE;
   2013 		break;
   2014 
   2015 	case SCSI_BUSY:
   2016 	case SCSI_QUEUE_FULL:
   2017 		xs->error = XS_BUSY;
   2018 		break;
   2019 
   2020 	default:
   2021 		printf("%s: unknown SCSI status 0x%x\n",
   2022 		    mly->mly_dv.dv_xname, xs->status);
   2023 		xs->error = XS_DRIVER_STUFFUP;
   2024 		break;
   2025 	}
   2026 
   2027 	mly_ccb_free(mly, mc);
   2028 	scsipi_done(xs);
   2029 }
   2030 
   2031 /*
   2032  * Notify scsipi about a target's transfer mode.
   2033  */
   2034 static void
   2035 mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
   2036 {
   2037 	struct mly_btl *btl;
   2038 	int s;
   2039 
   2040 	btl = &mly->mly_btl[bus][xm->xm_target];
   2041 	xm->xm_mode = 0;
   2042 
   2043 	s = splbio();
   2044 
   2045 	if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
   2046 		if (btl->mb_speed == 0) {
   2047 			xm->xm_period = 0;
   2048 			xm->xm_offset = 0;
   2049 		} else {
   2050 			xm->xm_period = 12;			/* XXX */
   2051 			xm->xm_offset = 8;			/* XXX */
   2052 			xm->xm_mode |= PERIPH_CAP_SYNC;		/* XXX */
   2053 		}
   2054 
   2055 		switch (btl->mb_width) {
   2056 		case 32:
   2057 			xm->xm_mode = PERIPH_CAP_WIDE32;
   2058 			break;
   2059 		case 16:
   2060 			xm->xm_mode = PERIPH_CAP_WIDE16;
   2061 			break;
   2062 		default:
   2063 			xm->xm_mode = 0;
   2064 			break;
   2065 		}
   2066 	} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
   2067 		xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
   2068 		xm->xm_period = 12;
   2069 		xm->xm_offset = 8;
   2070 	}
   2071 
   2072 	if ((btl->mb_flags & MLY_BTL_TQING) != 0)
   2073 		xm->xm_mode |= PERIPH_CAP_TQING;
   2074 
   2075 	splx(s);
   2076 
   2077 	scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
   2078 }
   2079 
   2080 /*
   2081  * ioctl hook; used here only to initiate low-level rescans.
   2082  */
   2083 static int
   2084 mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, caddr_t data,
   2085 		 int flag, struct proc *p)
   2086 {
   2087 	struct mly_softc *mly;
   2088 	int rv;
   2089 
   2090 	mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
   2091 
   2092 	switch (cmd) {
   2093 	case SCBUSIOLLSCAN:
   2094 		mly_scan_channel(mly, chan->chan_channel);
   2095 		rv = 0;
   2096 		break;
   2097 	default:
   2098 		rv = ENOTTY;
   2099 		break;
   2100 	}
   2101 
   2102 	return (rv);
   2103 }
   2104 
   2105 /*
   2106  * Handshake with the firmware while the card is being initialised.
   2107  */
   2108 static int
   2109 mly_fwhandshake(struct mly_softc *mly)
   2110 {
   2111 	u_int8_t error, param0, param1;
   2112 	int spinup;
   2113 
   2114 	spinup = 0;
   2115 
   2116 	/* Set HM_STSACK and let the firmware initialise. */
   2117 	mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
   2118 	DELAY(1000);	/* too short? */
   2119 
   2120 	/* If HM_STSACK is still true, the controller is initialising. */
   2121 	if (!mly_idbr_true(mly, MLY_HM_STSACK))
   2122 		return (0);
   2123 
   2124 	printf("%s: controller initialisation started\n",
   2125 	    mly->mly_dv.dv_xname);
   2126 
   2127 	/*
   2128 	 * Spin waiting for initialisation to finish, or for a message to be
   2129 	 * delivered.
   2130 	 */
   2131 	while (mly_idbr_true(mly, MLY_HM_STSACK)) {
   2132 		/* Check for a message */
   2133 		if (!mly_error_valid(mly))
   2134 			continue;
   2135 
   2136 		error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
   2137 		param0 = mly_inb(mly, mly->mly_cmd_mailbox);
   2138 		param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
   2139 
   2140 		switch (error) {
   2141 		case MLY_MSG_SPINUP:
   2142 			if (!spinup) {
   2143 				printf("%s: drive spinup in progress\n",
   2144 				    mly->mly_dv.dv_xname);
   2145 				spinup = 1;
   2146 			}
   2147 			break;
   2148 
   2149 		case MLY_MSG_RACE_RECOVERY_FAIL:
   2150 			printf("%s: mirror race recovery failed - \n",
   2151 			    mly->mly_dv.dv_xname);
   2152 			printf("%s: one or more drives offline\n",
   2153 			    mly->mly_dv.dv_xname);
   2154 			break;
   2155 
   2156 		case MLY_MSG_RACE_IN_PROGRESS:
   2157 			printf("%s: mirror race recovery in progress\n",
   2158 			    mly->mly_dv.dv_xname);
   2159 			break;
   2160 
   2161 		case MLY_MSG_RACE_ON_CRITICAL:
   2162 			printf("%s: mirror race recovery on critical drive\n",
   2163 			    mly->mly_dv.dv_xname);
   2164 			break;
   2165 
   2166 		case MLY_MSG_PARITY_ERROR:
   2167 			printf("%s: FATAL MEMORY PARITY ERROR\n",
   2168 			    mly->mly_dv.dv_xname);
   2169 			return (ENXIO);
   2170 
   2171 		default:
   2172 			printf("%s: unknown initialisation code 0x%x\n",
   2173 			    mly->mly_dv.dv_xname, error);
   2174 			break;
   2175 		}
   2176 	}
   2177 
   2178 	return (0);
   2179 }
   2180 
   2181 /*
   2182  * Space-fill a character string
   2183  */
   2184 static void
   2185 mly_padstr(char *dst, const char *src, int len)
   2186 {
   2187 
   2188 	while (len-- > 0) {
   2189 		if (*src != '\0')
   2190 			*dst++ = *src++;
   2191 		else
   2192 			*dst++ = ' ';
   2193 	}
   2194 }
   2195 
   2196 /*
   2197  * Allocate DMA safe memory.
   2198  */
   2199 static int
   2200 mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
   2201 		 caddr_t *kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
   2202 {
   2203 	int rseg, rv, state;
   2204 
   2205 	state = 0;
   2206 
   2207 	if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, NBPG, 0,
   2208 	    seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
   2209 		printf("%s: dmamem_alloc = %d\n", mly->mly_dv.dv_xname, rv);
   2210 		goto bad;
   2211 	}
   2212 
   2213 	state++;
   2214 
   2215 	if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
   2216 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
   2217 		printf("%s: dmamem_map = %d\n", mly->mly_dv.dv_xname, rv);
   2218 		goto bad;
   2219 	}
   2220 
   2221 	state++;
   2222 
   2223 	if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
   2224 	    BUS_DMA_NOWAIT, dmamap)) != 0) {
   2225 		printf("%s: dmamap_create = %d\n", mly->mly_dv.dv_xname, rv);
   2226 		goto bad;
   2227 	}
   2228 
   2229 	state++;
   2230 
   2231 	if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
   2232 	    NULL, BUS_DMA_NOWAIT)) != 0) {
   2233 		printf("%s: dmamap_load = %d\n", mly->mly_dv.dv_xname, rv);
   2234 		goto bad;
   2235 	}
   2236 
   2237 	*paddr = (*dmamap)->dm_segs[0].ds_addr;
   2238 	memset(*kva, 0, size);
   2239 	return (0);
   2240 
   2241  bad:
   2242 	if (state > 2)
   2243 		bus_dmamap_destroy(mly->mly_dmat, *dmamap);
   2244 	if (state > 1)
   2245 		bus_dmamem_unmap(mly->mly_dmat, *kva, size);
   2246 	if (state > 0)
   2247 		bus_dmamem_free(mly->mly_dmat, seg, 1);
   2248 
   2249 	return (rv);
   2250 }
   2251 
   2252 /*
   2253  * Free DMA safe memory.
   2254  */
   2255 static void
   2256 mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
   2257 		caddr_t kva, bus_dma_segment_t *seg)
   2258 {
   2259 
   2260 	bus_dmamap_unload(mly->mly_dmat, dmamap);
   2261 	bus_dmamap_destroy(mly->mly_dmat, dmamap);
   2262 	bus_dmamem_unmap(mly->mly_dmat, kva, size);
   2263 	bus_dmamem_free(mly->mly_dmat, seg, 1);
   2264 }
   2265 
   2266 
   2267 /*
   2268  * Accept an open operation on the control device.
   2269  */
   2270 int
   2271 mlyopen(struct vnode *devvp, int flag, int mode, struct proc *p)
   2272 {
   2273 	struct mly_softc *mly;
   2274 
   2275 	if ((mly = device_lookup(&mly_cd, minor(devvp->v_rdev))) == NULL)
   2276 		return (ENXIO);
   2277 	devvp->v_devcookie = mly;
   2278 	if ((mly->mly_state & MLY_STATE_INITOK) == 0)
   2279 		return (ENXIO);
   2280 	if ((mly->mly_state & MLY_STATE_OPEN) != 0)
   2281 		return (EBUSY);
   2282 
   2283 	mly->mly_state |= MLY_STATE_OPEN;
   2284 	return (0);
   2285 }
   2286 
   2287 /*
   2288  * Accept the last close on the control device.
   2289  */
   2290 int
   2291 mlyclose(struct vnode *devvp, int flag, int mode, struct proc *p)
   2292 {
   2293 	struct mly_softc *mly;
   2294 
   2295 	mly = devvp->v_devcookie;
   2296 	mly->mly_state &= ~MLY_STATE_OPEN;
   2297 	return (0);
   2298 }
   2299 
   2300 /*
   2301  * Handle control operations.
   2302  */
   2303 int
   2304 mlyioctl(struct vnode *devvp, u_long cmd, caddr_t data, int flag,
   2305     struct proc *p)
   2306 {
   2307 	struct mly_softc *mly;
   2308 	int rv;
   2309 
   2310 	if (securelevel >= 2)
   2311 		return (EPERM);
   2312 
   2313 	mly = devvp->v_devcookie;
   2314 
   2315 	switch (cmd) {
   2316 	case MLYIO_COMMAND:
   2317 		rv = mly_user_command(mly, (void *)data);
   2318 		break;
   2319 	case MLYIO_HEALTH:
   2320 		rv = mly_user_health(mly, (void *)data);
   2321 		break;
   2322 	default:
   2323 		rv = ENOTTY;
   2324 		break;
   2325 	}
   2326 
   2327 	return (rv);
   2328 }
   2329 
   2330 /*
   2331  * Execute a command passed in from userspace.
   2332  *
   2333  * The control structure contains the actual command for the controller, as
   2334  * well as the user-space data pointer and data size, and an optional sense
   2335  * buffer size/pointer.  On completion, the data size is adjusted to the
   2336  * command residual, and the sense buffer size to the size of the returned
   2337  * sense data.
   2338  */
   2339 static int
   2340 mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
   2341 {
   2342 	struct mly_ccb	*mc;
   2343 	int rv, mapped;
   2344 
   2345 	if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
   2346 		return (rv);
   2347 
   2348 	mapped = 0;
   2349 	mc->mc_data = NULL;
   2350 
   2351 	/*
   2352 	 * Handle data size/direction.
   2353 	 */
   2354 	if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
   2355 		if (mc->mc_length > MAXPHYS) {
   2356 			rv = EINVAL;
   2357 			goto out;
   2358 		}
   2359 
   2360 		mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
   2361 		if (mc->mc_data == NULL) {
   2362 			rv = ENOMEM;
   2363 			goto out;
   2364 		}
   2365 
   2366 		if (uc->DataTransferLength > 0) {
   2367 			mc->mc_flags |= MLY_CCB_DATAIN;
   2368 			memset(mc->mc_data, 0, mc->mc_length);
   2369 		}
   2370 
   2371 		if (uc->DataTransferLength < 0) {
   2372 			mc->mc_flags |= MLY_CCB_DATAOUT;
   2373 			rv = copyin(uc->DataTransferBuffer, mc->mc_data,
   2374 			    mc->mc_length);
   2375 			if (rv != 0)
   2376 				goto out;
   2377 		}
   2378 
   2379 		if ((rv = mly_ccb_map(mly, mc)) != 0)
   2380 			goto out;
   2381 		mapped = 1;
   2382 	}
   2383 
   2384 	/* Copy in the command and execute it. */
   2385 	memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
   2386 
   2387 	if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
   2388 		goto out;
   2389 
   2390 	/* Return the data to userspace. */
   2391 	if (uc->DataTransferLength > 0) {
   2392 		rv = copyout(mc->mc_data, uc->DataTransferBuffer,
   2393 		    mc->mc_length);
   2394 		if (rv != 0)
   2395 			goto out;
   2396 	}
   2397 
   2398 	/* Return the sense buffer to userspace. */
   2399 	if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
   2400 		rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
   2401 		    min(uc->RequestSenseLength, mc->mc_sense));
   2402 		if (rv != 0)
   2403 			goto out;
   2404 	}
   2405 
   2406 	/* Return command results to userspace (caller will copy out). */
   2407 	uc->DataTransferLength = mc->mc_resid;
   2408 	uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
   2409 	uc->CommandStatus = mc->mc_status;
   2410 	rv = 0;
   2411 
   2412  out:
   2413  	if (mapped)
   2414  		mly_ccb_unmap(mly, mc);
   2415 	if (mc->mc_data != NULL)
   2416 		free(mc->mc_data, M_DEVBUF);
   2417 	if (mc != NULL)
   2418 		mly_ccb_free(mly, mc);
   2419 
   2420 	return (rv);
   2421 }
   2422 
   2423 /*
   2424  * Return health status to userspace.  If the health change index in the
   2425  * user structure does not match that currently exported by the controller,
   2426  * we return the current status immediately.  Otherwise, we block until
   2427  * either interrupted or new status is delivered.
   2428  */
   2429 static int
   2430 mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
   2431 {
   2432 	struct mly_health_status mh;
   2433 	int rv, s;
   2434 
   2435 	/* Fetch the current health status from userspace. */
   2436 	rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
   2437 	if (rv != 0)
   2438 		return (rv);
   2439 
   2440 	/* spin waiting for a status update */
   2441 	s = splbio();
   2442 	if (mly->mly_event_change == mh.change_counter)
   2443 		rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
   2444 		    "mlyhealth", 0);
   2445 	splx(s);
   2446 
   2447 	if (rv == 0) {
   2448 		/*
   2449 		 * Copy the controller's health status buffer out (there is
   2450 		 * a race here if it changes again).
   2451 		 */
   2452 		rv = copyout(&mly->mly_mmbox->mmm_health.status,
   2453 		    uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
   2454 	}
   2455 
   2456 	return (rv);
   2457 }
   2458