pci_resource.c revision 1.4 1 1.4 jmcneill /* $NetBSD: pci_resource.c,v 1.4 2023/11/12 13:56:20 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * pci_resource.c --
31 1.1 jmcneill *
32 1.1 jmcneill * Scan current PCI resource allocations and attempt to assign resources
33 1.1 jmcneill * to devices that are not configured WITHOUT changing any configuration
34 1.1 jmcneill * performed by system firmware.
35 1.1 jmcneill */
36 1.1 jmcneill
37 1.1 jmcneill #include <sys/cdefs.h>
38 1.4 jmcneill __KERNEL_RCSID(0, "$NetBSD: pci_resource.c,v 1.4 2023/11/12 13:56:20 jmcneill Exp $");
39 1.1 jmcneill
40 1.1 jmcneill #include <sys/param.h>
41 1.1 jmcneill #include <sys/bus.h>
42 1.1 jmcneill #include <sys/systm.h>
43 1.1 jmcneill #include <sys/kmem.h>
44 1.1 jmcneill #include <sys/vmem.h>
45 1.1 jmcneill
46 1.1 jmcneill #include <dev/pci/pcireg.h>
47 1.1 jmcneill #include <dev/pci/pcivar.h>
48 1.1 jmcneill #include <dev/pci/pcidevs.h>
49 1.1 jmcneill #include <dev/pci/pci_resource.h>
50 1.1 jmcneill
51 1.1 jmcneill #define DPRINT aprint_debug
52 1.1 jmcneill
53 1.1 jmcneill #if defined(PCI_RESOURCE_TEST_VENDOR_ID) && \
54 1.1 jmcneill defined(PCI_RESOURCE_TEST_PRODUCT_ID)
55 1.1 jmcneill #define IS_TEST_DEVICE(_pd) \
56 1.1 jmcneill (PCI_VENDOR(pd->pd_id) == PCI_RESOURCE_TEST_VENDOR_ID && \
57 1.1 jmcneill PCI_PRODUCT(pd->pd_id) == PCI_RESOURCE_TEST_PRODUCT_ID)
58 1.1 jmcneill #else
59 1.1 jmcneill #define IS_TEST_DEVICE(_pd) 0
60 1.1 jmcneill #endif
61 1.1 jmcneill
62 1.1 jmcneill #define PCI_MAX_DEVICE 32
63 1.1 jmcneill #define PCI_MAX_FUNC 8
64 1.1 jmcneill
65 1.1 jmcneill #define PCI_MAX_IORES 6
66 1.1 jmcneill
67 1.1 jmcneill #define PCI_RANGE_FOREACH(_type) \
68 1.1 jmcneill for (u_int _type = PCI_RANGE_BUS; _type < NUM_PCI_RANGES; _type++)
69 1.1 jmcneill
70 1.1 jmcneill static const char *pci_range_typenames[NUM_PCI_RANGES] = {
71 1.1 jmcneill [PCI_RANGE_BUS] = "bus",
72 1.1 jmcneill [PCI_RANGE_IO] = "io",
73 1.1 jmcneill [PCI_RANGE_MEM] = "mem",
74 1.1 jmcneill [PCI_RANGE_PMEM] = "pmem",
75 1.1 jmcneill };
76 1.1 jmcneill
77 1.1 jmcneill struct pci_bus;
78 1.1 jmcneill
79 1.1 jmcneill struct pci_iores {
80 1.1 jmcneill uint64_t pi_base; /* Base address */
81 1.1 jmcneill uint64_t pi_size; /* Resource size */
82 1.1 jmcneill uint8_t pi_type; /* PCI_MAPREG_TYPE_* */
83 1.1 jmcneill u_int pi_bar; /* PCI bar number */
84 1.1 jmcneill union {
85 1.1 jmcneill struct {
86 1.1 jmcneill uint8_t memtype;
87 1.1 jmcneill bool prefetch;
88 1.1 jmcneill } pi_mem;
89 1.1 jmcneill };
90 1.1 jmcneill };
91 1.1 jmcneill
92 1.1 jmcneill struct pci_device {
93 1.1 jmcneill bool pd_present; /* Device is present */
94 1.1 jmcneill bool pd_configured; /* Device is configured */
95 1.1 jmcneill struct pci_bus *pd_bus; /* Parent bus */
96 1.1 jmcneill uint8_t pd_devno; /* Device number */
97 1.1 jmcneill uint8_t pd_funcno; /* Function number */
98 1.1 jmcneill pcitag_t pd_tag; /* PCI tag */
99 1.1 jmcneill
100 1.1 jmcneill pcireg_t pd_id; /* Vendor ID, Device ID */
101 1.1 jmcneill pcireg_t pd_class; /* Revision ID, Class Code */
102 1.1 jmcneill pcireg_t pd_bhlc; /* BIST, Header Type, Primary Latency
103 1.1 jmcneill * Timer, Cache Line Size */
104 1.1 jmcneill
105 1.1 jmcneill struct pci_iores pd_iores[PCI_MAX_IORES];
106 1.1 jmcneill u_int pd_niores;
107 1.1 jmcneill
108 1.1 jmcneill bool pd_ppb; /* PCI-PCI bridge */
109 1.1 jmcneill union {
110 1.1 jmcneill struct {
111 1.1 jmcneill pcireg_t bridge_bus;
112 1.1 jmcneill struct pci_resource_range ranges[NUM_PCI_RANGES];
113 1.1 jmcneill } pd_bridge;
114 1.1 jmcneill };
115 1.1 jmcneill };
116 1.1 jmcneill
117 1.1 jmcneill struct pci_bus {
118 1.1 jmcneill uint8_t pb_busno; /* Bus number */
119 1.1 jmcneill struct pci_device *pb_bridge; /* Parent bridge, or NULL */
120 1.1 jmcneill
121 1.1 jmcneill struct pci_device pb_device[PCI_MAX_DEVICE * PCI_MAX_FUNC];
122 1.1 jmcneill /* Devices on bus */
123 1.1 jmcneill u_int pb_lastdevno; /* Last device found */
124 1.1 jmcneill
125 1.1 jmcneill struct pci_resource_range pb_ranges[NUM_PCI_RANGES];
126 1.1 jmcneill vmem_t *pb_res[NUM_PCI_RANGES];
127 1.1 jmcneill };
128 1.1 jmcneill
129 1.1 jmcneill struct pci_resources {
130 1.1 jmcneill struct pci_bus **pr_bus; /* Bus list */
131 1.1 jmcneill pci_chipset_tag_t pr_pc; /* Chipset tag */
132 1.1 jmcneill uint8_t pr_startbus; /* First bus number */
133 1.1 jmcneill uint8_t pr_endbus; /* Last bus number */
134 1.1 jmcneill
135 1.1 jmcneill struct pci_resource_range pr_ranges[NUM_PCI_RANGES];
136 1.1 jmcneill vmem_t *pr_res[NUM_PCI_RANGES];
137 1.1 jmcneill };
138 1.1 jmcneill
139 1.1 jmcneill static void pci_resource_scan_bus(struct pci_resources *,
140 1.3 riastrad struct pci_device *, uint8_t);
141 1.1 jmcneill
142 1.1 jmcneill #define PCI_SBDF_FMT "%04x:%02x:%02x.%u"
143 1.1 jmcneill #define PCI_SBDF_FMT_ARGS(_pr, _pd) \
144 1.1 jmcneill pci_get_segment((_pr)->pr_pc), \
145 1.1 jmcneill (_pd)->pd_bus->pb_busno, \
146 1.1 jmcneill (_pd)->pd_devno, \
147 1.1 jmcneill (_pd)->pd_funcno
148 1.1 jmcneill
149 1.1 jmcneill #define PCICONF_RES_BUS(_pr, _busno) \
150 1.1 jmcneill ((_pr)->pr_bus[(_busno) - (_pr)->pr_startbus])
151 1.1 jmcneill #define PCICONF_BUS_DEVICE(_pb, _devno, _funcno) \
152 1.1 jmcneill (&(_pb)->pb_device[(_devno) * PCI_MAX_FUNC + (_funcno)])
153 1.1 jmcneill
154 1.1 jmcneill /*
155 1.1 jmcneill * pci_create_vmem --
156 1.1 jmcneill *
157 1.1 jmcneill * Create a vmem arena covering the specified range, used for tracking
158 1.1 jmcneill * PCI resources.
159 1.1 jmcneill */
160 1.1 jmcneill static vmem_t *
161 1.1 jmcneill pci_create_vmem(const char *name, bus_addr_t start, bus_addr_t end)
162 1.1 jmcneill {
163 1.1 jmcneill vmem_t *arena;
164 1.2 riastrad int error __diagused;
165 1.1 jmcneill
166 1.1 jmcneill arena = vmem_create(name, 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
167 1.1 jmcneill IPL_NONE);
168 1.2 riastrad error = vmem_add(arena, start, end - start + 1, VM_SLEEP);
169 1.2 riastrad KASSERTMSG(error == 0, "error=%d", error);
170 1.1 jmcneill
171 1.1 jmcneill return arena;
172 1.1 jmcneill }
173 1.1 jmcneill
174 1.1 jmcneill /*
175 1.1 jmcneill * pci_new_bus --
176 1.1 jmcneill *
177 1.1 jmcneill * Create a new PCI bus and initialize its resource ranges.
178 1.1 jmcneill */
179 1.1 jmcneill static struct pci_bus *
180 1.1 jmcneill pci_new_bus(struct pci_resources *pr, uint8_t busno, struct pci_device *bridge)
181 1.1 jmcneill {
182 1.1 jmcneill struct pci_bus *pb;
183 1.1 jmcneill struct pci_resource_range *ranges;
184 1.1 jmcneill
185 1.1 jmcneill pb = kmem_zalloc(sizeof(*pb), KM_SLEEP);
186 1.1 jmcneill pb->pb_busno = busno;
187 1.1 jmcneill pb->pb_bridge = bridge;
188 1.1 jmcneill if (bridge == NULL) {
189 1.1 jmcneill /*
190 1.1 jmcneill * No additional constraints on resource allocations for
191 1.1 jmcneill * the root bus.
192 1.1 jmcneill */
193 1.1 jmcneill ranges = pr->pr_ranges;
194 1.1 jmcneill } else {
195 1.1 jmcneill /*
196 1.1 jmcneill * Resource allocations for this bus are constrained by the
197 1.1 jmcneill * bridge forwarding settings.
198 1.1 jmcneill */
199 1.1 jmcneill ranges = bridge->pd_bridge.ranges;
200 1.1 jmcneill }
201 1.1 jmcneill memcpy(pb->pb_ranges, ranges, sizeof(pb->pb_ranges));
202 1.1 jmcneill
203 1.1 jmcneill return pb;
204 1.1 jmcneill }
205 1.1 jmcneill
206 1.1 jmcneill /*
207 1.1 jmcneill * pci_resource_device_functions --
208 1.1 jmcneill *
209 1.1 jmcneill * Returns the number of PCI functions for a a given bus and device.
210 1.1 jmcneill */
211 1.1 jmcneill static uint8_t
212 1.1 jmcneill pci_resource_device_functions(struct pci_resources *pr,
213 1.1 jmcneill uint8_t busno, uint8_t devno)
214 1.1 jmcneill {
215 1.1 jmcneill struct pci_bus *pb;
216 1.1 jmcneill struct pci_device *pd;
217 1.1 jmcneill
218 1.1 jmcneill pb = PCICONF_RES_BUS(pr, busno);
219 1.1 jmcneill pd = PCICONF_BUS_DEVICE(pb, devno, 0);
220 1.1 jmcneill if (!pd->pd_present) {
221 1.1 jmcneill return 0;
222 1.1 jmcneill }
223 1.1 jmcneill
224 1.1 jmcneill return PCI_HDRTYPE_MULTIFN(pd->pd_bhlc) ? 8 : 1;
225 1.1 jmcneill }
226 1.1 jmcneill
227 1.1 jmcneill /*
228 1.1 jmcneill * pci_resource_device_print --
229 1.1 jmcneill *
230 1.1 jmcneill * Log details about a device.
231 1.1 jmcneill */
232 1.1 jmcneill static void
233 1.1 jmcneill pci_resource_device_print(struct pci_resources *pr,
234 1.1 jmcneill struct pci_device *pd)
235 1.1 jmcneill {
236 1.1 jmcneill struct pci_iores *pi;
237 1.1 jmcneill u_int res;
238 1.1 jmcneill
239 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " %04x:%04x %02x 0x%06x",
240 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
241 1.1 jmcneill PCI_VENDOR(pd->pd_id), PCI_PRODUCT(pd->pd_id),
242 1.1 jmcneill PCI_REVISION(pd->pd_class), (pd->pd_class >> 8) & 0xffffff);
243 1.1 jmcneill
244 1.1 jmcneill switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
245 1.1 jmcneill case PCI_HDRTYPE_DEVICE:
246 1.1 jmcneill DPRINT(" (device)\n");
247 1.1 jmcneill break;
248 1.1 jmcneill case PCI_HDRTYPE_PPB:
249 1.1 jmcneill DPRINT(" (bridge %u -> %u-%u)\n",
250 1.1 jmcneill PCI_BRIDGE_BUS_NUM_PRIMARY(pd->pd_bridge.bridge_bus),
251 1.1 jmcneill PCI_BRIDGE_BUS_NUM_SECONDARY(pd->pd_bridge.bridge_bus),
252 1.1 jmcneill PCI_BRIDGE_BUS_NUM_SUBORDINATE(pd->pd_bridge.bridge_bus));
253 1.1 jmcneill
254 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_IO].end) {
255 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT
256 1.1 jmcneill " [bridge] window io %#" PRIx64 "-%#" PRIx64
257 1.1 jmcneill "\n",
258 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
259 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].start,
260 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].end);
261 1.1 jmcneill }
262 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_MEM].end) {
263 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT
264 1.1 jmcneill " [bridge] window mem %#" PRIx64 "-%#" PRIx64
265 1.1 jmcneill " (non-prefetchable)\n",
266 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
267 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].start,
268 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].end);
269 1.1 jmcneill }
270 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_PMEM].end) {
271 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT
272 1.1 jmcneill " [bridge] window mem %#" PRIx64 "-%#" PRIx64
273 1.1 jmcneill " (prefetchable)\n",
274 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
275 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].start,
276 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].end);
277 1.1 jmcneill }
278 1.1 jmcneill
279 1.1 jmcneill break;
280 1.1 jmcneill default:
281 1.1 jmcneill DPRINT(" (0x%02x)\n", PCI_HDRTYPE_TYPE(pd->pd_bhlc));
282 1.1 jmcneill }
283 1.1 jmcneill
284 1.1 jmcneill for (res = 0; res < pd->pd_niores; res++) {
285 1.1 jmcneill pi = &pd->pd_iores[res];
286 1.1 jmcneill
287 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT
288 1.1 jmcneill " [device] resource BAR%u: %s @ %#" PRIx64 " size %#"
289 1.1 jmcneill PRIx64,
290 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd), pi->pi_bar,
291 1.1 jmcneill pi->pi_type == PCI_MAPREG_TYPE_MEM ? "mem" : "io ",
292 1.1 jmcneill pi->pi_base, pi->pi_size);
293 1.1 jmcneill
294 1.1 jmcneill if (pi->pi_type == PCI_MAPREG_TYPE_MEM) {
295 1.1 jmcneill switch (pi->pi_mem.memtype) {
296 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_32BIT:
297 1.1 jmcneill DPRINT(", 32-bit");
298 1.1 jmcneill break;
299 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_32BIT_1M:
300 1.1 jmcneill DPRINT(", 32-bit (1M)");
301 1.1 jmcneill break;
302 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_64BIT:
303 1.1 jmcneill DPRINT(", 64-bit");
304 1.1 jmcneill break;
305 1.1 jmcneill }
306 1.1 jmcneill DPRINT(" %sprefetchable",
307 1.1 jmcneill pi->pi_mem.prefetch ? "" : "non-");
308 1.1 jmcneill }
309 1.1 jmcneill DPRINT("\n");
310 1.1 jmcneill }
311 1.1 jmcneill }
312 1.1 jmcneill
313 1.1 jmcneill /*
314 1.1 jmcneill * pci_resource_scan_bar --
315 1.1 jmcneill *
316 1.1 jmcneill * Determine the current BAR configuration for a given device.
317 1.1 jmcneill */
318 1.1 jmcneill static void
319 1.1 jmcneill pci_resource_scan_bar(struct pci_resources *pr,
320 1.1 jmcneill struct pci_device *pd, pcireg_t mapreg_start, pcireg_t mapreg_end,
321 1.1 jmcneill bool is_ppb)
322 1.1 jmcneill {
323 1.1 jmcneill pci_chipset_tag_t pc = pr->pr_pc;
324 1.1 jmcneill pcitag_t tag = pd->pd_tag;
325 1.1 jmcneill pcireg_t mapreg = mapreg_start;
326 1.1 jmcneill pcireg_t ocmd, cmd, bar[2], mask[2];
327 1.1 jmcneill uint64_t addr, size;
328 1.1 jmcneill struct pci_iores *pi;
329 1.1 jmcneill
330 1.1 jmcneill if (!is_ppb) {
331 1.1 jmcneill ocmd = cmd = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
332 1.1 jmcneill cmd &= ~(PCI_COMMAND_MASTER_ENABLE |
333 1.1 jmcneill PCI_COMMAND_MEM_ENABLE |
334 1.1 jmcneill PCI_COMMAND_IO_ENABLE);
335 1.1 jmcneill pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, cmd);
336 1.1 jmcneill }
337 1.1 jmcneill
338 1.1 jmcneill while (mapreg < mapreg_end) {
339 1.1 jmcneill u_int width = 4;
340 1.1 jmcneill
341 1.1 jmcneill bar[0] = pci_conf_read(pc, tag, mapreg);
342 1.1 jmcneill pci_conf_write(pc, tag, mapreg, 0xffffffff);
343 1.1 jmcneill mask[0] = pci_conf_read(pc, tag, mapreg);
344 1.1 jmcneill pci_conf_write(pc, tag, mapreg, bar[0]);
345 1.1 jmcneill
346 1.1 jmcneill switch (PCI_MAPREG_TYPE(mask[0])) {
347 1.1 jmcneill case PCI_MAPREG_TYPE_MEM:
348 1.1 jmcneill switch (PCI_MAPREG_MEM_TYPE(mask[0])) {
349 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_32BIT:
350 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_32BIT_1M:
351 1.1 jmcneill size = PCI_MAPREG_MEM_SIZE(mask[0]);
352 1.1 jmcneill addr = PCI_MAPREG_MEM_ADDR(bar[0]);
353 1.1 jmcneill break;
354 1.1 jmcneill case PCI_MAPREG_MEM_TYPE_64BIT:
355 1.1 jmcneill bar[1] = pci_conf_read(pc, tag, mapreg + 4);
356 1.1 jmcneill pci_conf_write(pc, tag, mapreg + 4, 0xffffffff);
357 1.1 jmcneill mask[1] = pci_conf_read(pc, tag, mapreg + 4);
358 1.1 jmcneill pci_conf_write(pc, tag, mapreg + 4, bar[1]);
359 1.1 jmcneill
360 1.1 jmcneill size = PCI_MAPREG_MEM64_SIZE(
361 1.1 jmcneill ((uint64_t)mask[1] << 32) | mask[0]);
362 1.1 jmcneill addr = PCI_MAPREG_MEM64_ADDR(
363 1.1 jmcneill ((uint64_t)bar[1] << 32) | bar[0]);
364 1.1 jmcneill width = 8;
365 1.1 jmcneill break;
366 1.1 jmcneill default:
367 1.1 jmcneill size = 0;
368 1.1 jmcneill }
369 1.1 jmcneill if (size > 0) {
370 1.1 jmcneill pi = &pd->pd_iores[pd->pd_niores++];
371 1.1 jmcneill pi->pi_type = PCI_MAPREG_TYPE_MEM;
372 1.1 jmcneill pi->pi_base = addr;
373 1.1 jmcneill pi->pi_size = size;
374 1.1 jmcneill pi->pi_bar = (mapreg - mapreg_start) / 4;
375 1.1 jmcneill pi->pi_mem.memtype =
376 1.1 jmcneill PCI_MAPREG_MEM_TYPE(mask[0]);
377 1.1 jmcneill pi->pi_mem.prefetch =
378 1.1 jmcneill PCI_MAPREG_MEM_PREFETCHABLE(mask[0]);
379 1.1 jmcneill }
380 1.1 jmcneill break;
381 1.1 jmcneill case PCI_MAPREG_TYPE_IO:
382 1.1 jmcneill size = PCI_MAPREG_IO_SIZE(mask[0] | 0xffff0000);
383 1.1 jmcneill addr = PCI_MAPREG_IO_ADDR(bar[0]);
384 1.1 jmcneill if (size > 0) {
385 1.1 jmcneill pi = &pd->pd_iores[pd->pd_niores++];
386 1.1 jmcneill pi->pi_type = PCI_MAPREG_TYPE_IO;
387 1.1 jmcneill pi->pi_base = addr;
388 1.1 jmcneill pi->pi_size = size;
389 1.1 jmcneill pi->pi_bar = (mapreg - mapreg_start) / 4;
390 1.1 jmcneill }
391 1.1 jmcneill break;
392 1.1 jmcneill }
393 1.1 jmcneill
394 1.1 jmcneill KASSERT(pd->pd_niores <= PCI_MAX_IORES);
395 1.1 jmcneill
396 1.1 jmcneill mapreg += width;
397 1.1 jmcneill }
398 1.1 jmcneill
399 1.1 jmcneill if (!is_ppb) {
400 1.1 jmcneill pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, ocmd);
401 1.1 jmcneill }
402 1.1 jmcneill }
403 1.1 jmcneill
404 1.1 jmcneill /*
405 1.1 jmcneill * pci_resource_scan_bridge --
406 1.1 jmcneill *
407 1.1 jmcneill * Determine the current configuration of a PCI-PCI bridge.
408 1.1 jmcneill */
409 1.1 jmcneill static void
410 1.1 jmcneill pci_resource_scan_bridge(struct pci_resources *pr,
411 1.1 jmcneill struct pci_device *pd)
412 1.1 jmcneill {
413 1.1 jmcneill pci_chipset_tag_t pc = pr->pr_pc;
414 1.1 jmcneill pcitag_t tag = pd->pd_tag;
415 1.1 jmcneill pcireg_t res, reshigh;
416 1.1 jmcneill
417 1.1 jmcneill pd->pd_ppb = true;
418 1.1 jmcneill
419 1.1 jmcneill res = pci_conf_read(pc, tag, PCI_BRIDGE_BUS_REG);
420 1.1 jmcneill pd->pd_bridge.bridge_bus = res;
421 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_BUS].start =
422 1.1 jmcneill PCI_BRIDGE_BUS_NUM_SECONDARY(res);
423 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_BUS].end =
424 1.1 jmcneill PCI_BRIDGE_BUS_NUM_SUBORDINATE(res);
425 1.1 jmcneill
426 1.1 jmcneill res = pci_conf_read(pc, tag, PCI_BRIDGE_STATIO_REG);
427 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].start =
428 1.1 jmcneill PCI_BRIDGE_STATIO_IOBASE_ADDR(res);
429 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].end =
430 1.1 jmcneill PCI_BRIDGE_STATIO_IOLIMIT_ADDR(res);
431 1.1 jmcneill if (PCI_BRIDGE_IO_32BITS(res)) {
432 1.1 jmcneill reshigh = pci_conf_read(pc, tag, PCI_BRIDGE_IOHIGH_REG);
433 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].start |=
434 1.1 jmcneill __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_BASE) << 16;
435 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].end |=
436 1.1 jmcneill __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_LIMIT) << 16;
437 1.1 jmcneill }
438 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_IO].start >=
439 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].end) {
440 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].start = 0;
441 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_IO].end = 0;
442 1.1 jmcneill }
443 1.1 jmcneill
444 1.1 jmcneill res = pci_conf_read(pc, tag, PCI_BRIDGE_MEMORY_REG);
445 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].start =
446 1.1 jmcneill PCI_BRIDGE_MEMORY_BASE_ADDR(res);
447 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].end =
448 1.1 jmcneill PCI_BRIDGE_MEMORY_LIMIT_ADDR(res);
449 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_MEM].start >=
450 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].end) {
451 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].start = 0;
452 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_MEM].end = 0;
453 1.1 jmcneill }
454 1.1 jmcneill
455 1.1 jmcneill res = pci_conf_read(pc, tag, PCI_BRIDGE_PREFETCHMEM_REG);
456 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].start =
457 1.1 jmcneill PCI_BRIDGE_PREFETCHMEM_BASE_ADDR(res);
458 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].end =
459 1.1 jmcneill PCI_BRIDGE_PREFETCHMEM_LIMIT_ADDR(res);
460 1.1 jmcneill if (PCI_BRIDGE_PREFETCHMEM_64BITS(res)) {
461 1.1 jmcneill reshigh = pci_conf_read(pc, tag,
462 1.1 jmcneill PCI_BRIDGE_PREFETCHBASEUP32_REG);
463 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].start |=
464 1.1 jmcneill (uint64_t)reshigh << 32;
465 1.1 jmcneill reshigh = pci_conf_read(pc, tag,
466 1.1 jmcneill PCI_BRIDGE_PREFETCHLIMITUP32_REG);
467 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].end |=
468 1.1 jmcneill (uint64_t)reshigh << 32;
469 1.1 jmcneill }
470 1.1 jmcneill if (pd->pd_bridge.ranges[PCI_RANGE_PMEM].start >=
471 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].end) {
472 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].start = 0;
473 1.1 jmcneill pd->pd_bridge.ranges[PCI_RANGE_PMEM].end = 0;
474 1.1 jmcneill }
475 1.1 jmcneill }
476 1.1 jmcneill
477 1.1 jmcneill /*
478 1.1 jmcneill * pci_resource_scan_device --
479 1.1 jmcneill *
480 1.1 jmcneill * Determine the current configuration of a PCI device.
481 1.1 jmcneill */
482 1.1 jmcneill static bool
483 1.1 jmcneill pci_resource_scan_device(struct pci_resources *pr,
484 1.1 jmcneill struct pci_bus *parent_bus, uint8_t devno, uint8_t funcno)
485 1.1 jmcneill {
486 1.1 jmcneill struct pci_device *pd;
487 1.1 jmcneill pcitag_t tag;
488 1.1 jmcneill pcireg_t id, bridge_bus;
489 1.1 jmcneill uint8_t sec_bus;
490 1.1 jmcneill
491 1.1 jmcneill tag = pci_make_tag(pr->pr_pc, parent_bus->pb_busno, devno, funcno);
492 1.1 jmcneill id = pci_conf_read(pr->pr_pc, tag, PCI_ID_REG);
493 1.1 jmcneill if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) {
494 1.1 jmcneill return false;
495 1.1 jmcneill }
496 1.1 jmcneill
497 1.1 jmcneill pd = PCICONF_BUS_DEVICE(parent_bus, devno, funcno);
498 1.1 jmcneill pd->pd_present = true;
499 1.1 jmcneill pd->pd_bus = parent_bus;
500 1.1 jmcneill pd->pd_tag = tag;
501 1.1 jmcneill pd->pd_devno = devno;
502 1.1 jmcneill pd->pd_funcno = funcno;
503 1.1 jmcneill pd->pd_id = id;
504 1.1 jmcneill pd->pd_class = pci_conf_read(pr->pr_pc, tag, PCI_CLASS_REG);
505 1.1 jmcneill pd->pd_bhlc = pci_conf_read(pr->pr_pc, tag, PCI_BHLC_REG);
506 1.1 jmcneill
507 1.1 jmcneill switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
508 1.1 jmcneill case PCI_HDRTYPE_DEVICE:
509 1.1 jmcneill pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
510 1.1 jmcneill PCI_MAPREG_END, false);
511 1.1 jmcneill break;
512 1.1 jmcneill case PCI_HDRTYPE_PPB:
513 1.1 jmcneill pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
514 1.1 jmcneill PCI_MAPREG_PPB_END, true);
515 1.1 jmcneill pci_resource_scan_bridge(pr, pd);
516 1.1 jmcneill break;
517 1.1 jmcneill }
518 1.1 jmcneill
519 1.1 jmcneill pci_resource_device_print(pr, pd);
520 1.1 jmcneill
521 1.1 jmcneill if (PCI_HDRTYPE_TYPE(pd->pd_bhlc) == PCI_HDRTYPE_PPB &&
522 1.1 jmcneill PCI_CLASS(pd->pd_class) == PCI_CLASS_BRIDGE &&
523 1.1 jmcneill PCI_SUBCLASS(pd->pd_class) == PCI_SUBCLASS_BRIDGE_PCI) {
524 1.1 jmcneill bridge_bus = pci_conf_read(pr->pr_pc, tag, PCI_BRIDGE_BUS_REG);
525 1.1 jmcneill sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(bridge_bus);
526 1.1 jmcneill if (sec_bus <= pr->pr_endbus) {
527 1.1 jmcneill pci_resource_scan_bus(pr, pd, sec_bus);
528 1.1 jmcneill }
529 1.1 jmcneill }
530 1.1 jmcneill
531 1.1 jmcneill return true;
532 1.1 jmcneill }
533 1.1 jmcneill
534 1.1 jmcneill /*
535 1.1 jmcneill * pci_resource_scan_bus --
536 1.1 jmcneill *
537 1.1 jmcneill * Enumerate devices on a bus, recursively.
538 1.1 jmcneill */
539 1.1 jmcneill static void
540 1.1 jmcneill pci_resource_scan_bus(struct pci_resources *pr,
541 1.1 jmcneill struct pci_device *bridge_dev, uint8_t busno)
542 1.1 jmcneill {
543 1.1 jmcneill struct pci_bus *pb;
544 1.1 jmcneill uint8_t devno, funcno;
545 1.1 jmcneill uint8_t nfunc;
546 1.1 jmcneill
547 1.1 jmcneill KASSERT(busno >= pr->pr_startbus);
548 1.1 jmcneill KASSERT(busno <= pr->pr_endbus);
549 1.1 jmcneill
550 1.1 jmcneill if (PCICONF_RES_BUS(pr, busno) != NULL) {
551 1.1 jmcneill /*
552 1.1 jmcneill * Firmware has configured more than one bridge with the
553 1.1 jmcneill * same secondary bus number.
554 1.1 jmcneill */
555 1.1 jmcneill panic("Bus %u already scanned (firmware bug!)", busno);
556 1.1 jmcneill return;
557 1.1 jmcneill }
558 1.1 jmcneill
559 1.1 jmcneill pb = pci_new_bus(pr, busno, bridge_dev);
560 1.1 jmcneill PCICONF_RES_BUS(pr, busno) = pb;
561 1.1 jmcneill
562 1.1 jmcneill for (devno = 0; devno < PCI_MAX_DEVICE; devno++) {
563 1.1 jmcneill if (!pci_resource_scan_device(pr, pb, devno, 0)) {
564 1.1 jmcneill continue;
565 1.1 jmcneill }
566 1.1 jmcneill pb->pb_lastdevno = devno;
567 1.1 jmcneill
568 1.1 jmcneill nfunc = pci_resource_device_functions(pr, busno, devno);
569 1.1 jmcneill for (funcno = 1; funcno < nfunc; funcno++) {
570 1.1 jmcneill pci_resource_scan_device(pr, pb, devno, funcno);
571 1.1 jmcneill }
572 1.1 jmcneill }
573 1.1 jmcneill }
574 1.1 jmcneill
575 1.1 jmcneill /*
576 1.1 jmcneill * pci_resource_claim --
577 1.1 jmcneill *
578 1.1 jmcneill * Claim a resource from a vmem arena. This is called to inform the
579 1.1 jmcneill * resource manager about resources already configured by system firmware.
580 1.1 jmcneill */
581 1.1 jmcneill static int
582 1.1 jmcneill pci_resource_claim(vmem_t *arena, vmem_addr_t start, vmem_addr_t end)
583 1.1 jmcneill {
584 1.1 jmcneill KASSERT(end >= start);
585 1.1 jmcneill
586 1.1 jmcneill return vmem_xalloc(arena, end - start + 1, 0, 0, 0, start, end,
587 1.1 jmcneill VM_BESTFIT | VM_NOSLEEP, NULL);
588 1.1 jmcneill }
589 1.1 jmcneill
590 1.1 jmcneill /*
591 1.1 jmcneill * pci_resource_alloc --
592 1.1 jmcneill *
593 1.1 jmcneill * Allocate a resource from a vmem arena. This is called when configuring
594 1.1 jmcneill * devices that were not already configured by system firmware.
595 1.1 jmcneill */
596 1.3 riastrad static int
597 1.1 jmcneill pci_resource_alloc(vmem_t *arena, vmem_size_t size, vmem_size_t align,
598 1.1 jmcneill uint64_t *base)
599 1.1 jmcneill {
600 1.1 jmcneill vmem_addr_t addr;
601 1.1 jmcneill int error;
602 1.1 jmcneill
603 1.1 jmcneill KASSERT(size != 0);
604 1.1 jmcneill
605 1.1 jmcneill error = vmem_xalloc(arena, size, align, 0, 0, VMEM_ADDR_MIN,
606 1.1 jmcneill VMEM_ADDR_MAX, VM_BESTFIT | VM_NOSLEEP, &addr);
607 1.1 jmcneill if (error == 0) {
608 1.1 jmcneill *base = (uint64_t)addr;
609 1.1 jmcneill }
610 1.1 jmcneill
611 1.1 jmcneill return error;
612 1.1 jmcneill }
613 1.1 jmcneill
614 1.1 jmcneill /*
615 1.1 jmcneill * pci_resource_init_device --
616 1.1 jmcneill *
617 1.1 jmcneill * Discover resources assigned by system firmware, notify the resource
618 1.1 jmcneill * manager of these ranges, and determine if the device has additional
619 1.1 jmcneill * resources that need to be allocated.
620 1.1 jmcneill */
621 1.1 jmcneill static void
622 1.1 jmcneill pci_resource_init_device(struct pci_resources *pr,
623 1.1 jmcneill struct pci_device *pd)
624 1.1 jmcneill {
625 1.1 jmcneill struct pci_iores *pi;
626 1.1 jmcneill struct pci_bus *pb = pd->pd_bus;
627 1.1 jmcneill vmem_t *res_io = pb->pb_res[PCI_RANGE_IO];
628 1.1 jmcneill vmem_t *res_mem = pb->pb_res[PCI_RANGE_MEM];
629 1.1 jmcneill vmem_t *res_pmem = pb->pb_res[PCI_RANGE_PMEM];
630 1.1 jmcneill pcireg_t cmd;
631 1.1 jmcneill u_int enabled, required;
632 1.1 jmcneill u_int iores;
633 1.1 jmcneill int error;
634 1.1 jmcneill
635 1.1 jmcneill KASSERT(pd->pd_present);
636 1.1 jmcneill
637 1.1 jmcneill if (IS_TEST_DEVICE(pd)) {
638 1.1 jmcneill cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
639 1.1 jmcneill PCI_COMMAND_STATUS_REG);
640 1.1 jmcneill cmd &= ~(PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_IO_ENABLE|
641 1.1 jmcneill PCI_COMMAND_MASTER_ENABLE);
642 1.1 jmcneill pci_conf_write(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG,
643 1.1 jmcneill cmd);
644 1.1 jmcneill }
645 1.1 jmcneill
646 1.1 jmcneill enabled = required = 0;
647 1.1 jmcneill cmd = pci_conf_read(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG);
648 1.1 jmcneill if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
649 1.1 jmcneill enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
650 1.1 jmcneill }
651 1.1 jmcneill if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
652 1.1 jmcneill enabled |= __BIT(PCI_MAPREG_TYPE_IO);
653 1.1 jmcneill }
654 1.1 jmcneill
655 1.1 jmcneill for (iores = 0; iores < pd->pd_niores; iores++) {
656 1.1 jmcneill pi = &pd->pd_iores[iores];
657 1.1 jmcneill
658 1.1 jmcneill required |= __BIT(pi->pi_type);
659 1.1 jmcneill
660 1.1 jmcneill if (IS_TEST_DEVICE(pd)) {
661 1.1 jmcneill pci_conf_write(pr->pr_pc, pd->pd_tag,
662 1.1 jmcneill PCI_BAR(pi->pi_bar), 0);
663 1.1 jmcneill continue;
664 1.1 jmcneill }
665 1.1 jmcneill if ((enabled & __BIT(pi->pi_type)) == 0) {
666 1.1 jmcneill continue;
667 1.1 jmcneill }
668 1.1 jmcneill
669 1.1 jmcneill if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
670 1.1 jmcneill error = res_io == NULL ? ERANGE :
671 1.1 jmcneill pci_resource_claim(res_io, pi->pi_base,
672 1.1 jmcneill pi->pi_base + pi->pi_size - 1);
673 1.1 jmcneill if (error) {
674 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " [device] io "
675 1.1 jmcneill " %#" PRIx64 "-%#" PRIx64
676 1.1 jmcneill " invalid (%d)\n",
677 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
678 1.1 jmcneill pi->pi_base,
679 1.1 jmcneill pi->pi_base + pi->pi_size - 1,
680 1.1 jmcneill error);
681 1.1 jmcneill }
682 1.1 jmcneill continue;
683 1.1 jmcneill }
684 1.1 jmcneill
685 1.1 jmcneill KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
686 1.1 jmcneill error = ERANGE;
687 1.4 jmcneill if (pi->pi_mem.prefetch) {
688 1.4 jmcneill /*
689 1.4 jmcneill * Prefetchable memory must be allocated from the
690 1.4 jmcneill * bridge's prefetchable region.
691 1.4 jmcneill */
692 1.4 jmcneill if (res_pmem != NULL) {
693 1.4 jmcneill error = pci_resource_claim(res_pmem, pi->pi_base,
694 1.4 jmcneill pi->pi_base + pi->pi_size - 1);
695 1.4 jmcneill }
696 1.4 jmcneill } else if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
697 1.4 jmcneill /*
698 1.4 jmcneill * Non-prefetchable 64-bit memory can be allocated from
699 1.4 jmcneill * any range. Prefer allocations from the prefetchable
700 1.4 jmcneill * region to save 32-bit only resources for 32-bit BARs.
701 1.4 jmcneill */
702 1.4 jmcneill if (res_pmem != NULL) {
703 1.4 jmcneill error = pci_resource_claim(res_pmem, pi->pi_base,
704 1.4 jmcneill pi->pi_base + pi->pi_size - 1);
705 1.4 jmcneill }
706 1.4 jmcneill if (error && res_mem != NULL) {
707 1.4 jmcneill error = pci_resource_claim(res_mem, pi->pi_base,
708 1.4 jmcneill pi->pi_base + pi->pi_size - 1);
709 1.4 jmcneill }
710 1.4 jmcneill } else {
711 1.4 jmcneill /*
712 1.4 jmcneill * Non-prefetchable 32-bit memory can be allocated from
713 1.4 jmcneill * any range, provided that the range is below 4GB. Try
714 1.4 jmcneill * the non-prefetchable range first, and if that fails,
715 1.4 jmcneill * make one last attempt at allocating from the
716 1.4 jmcneill * prefetchable range in case the platform provides
717 1.4 jmcneill * memory below 4GB.
718 1.4 jmcneill */
719 1.4 jmcneill if (res_mem != NULL) {
720 1.4 jmcneill error = pci_resource_claim(res_mem, pi->pi_base,
721 1.4 jmcneill pi->pi_base + pi->pi_size - 1);
722 1.4 jmcneill }
723 1.4 jmcneill if (error && res_pmem != NULL) {
724 1.4 jmcneill error = pci_resource_claim(res_pmem, pi->pi_base,
725 1.4 jmcneill pi->pi_base + pi->pi_size - 1);
726 1.4 jmcneill }
727 1.1 jmcneill }
728 1.1 jmcneill if (error) {
729 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " [device] mem"
730 1.1 jmcneill " (%sprefetchable)"
731 1.1 jmcneill " %#" PRIx64 "-%#" PRIx64
732 1.1 jmcneill " invalid (%d)\n",
733 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
734 1.1 jmcneill pi->pi_mem.prefetch ? "" : "non-",
735 1.1 jmcneill pi->pi_base,
736 1.1 jmcneill pi->pi_base + pi->pi_size - 1,
737 1.1 jmcneill error);
738 1.1 jmcneill }
739 1.1 jmcneill }
740 1.1 jmcneill
741 1.1 jmcneill pd->pd_configured = (enabled & required) == required;
742 1.1 jmcneill
743 1.1 jmcneill if (!pd->pd_configured) {
744 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " [device] "
745 1.1 jmcneill "not configured by firmware\n",
746 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd));
747 1.1 jmcneill }
748 1.1 jmcneill }
749 1.1 jmcneill
750 1.1 jmcneill /*
751 1.1 jmcneill * pci_resource_init_bus --
752 1.1 jmcneill *
753 1.1 jmcneill * Discover resources in use on a given bus, recursively.
754 1.1 jmcneill */
755 1.1 jmcneill static void
756 1.1 jmcneill pci_resource_init_bus(struct pci_resources *pr, uint8_t busno)
757 1.1 jmcneill {
758 1.1 jmcneill struct pci_bus *pb, *parent_bus;
759 1.1 jmcneill struct pci_device *pd, *bridge;
760 1.1 jmcneill uint8_t devno, funcno;
761 1.1 jmcneill uint8_t nfunc;
762 1.1 jmcneill int error;
763 1.1 jmcneill
764 1.1 jmcneill KASSERT(busno >= pr->pr_startbus);
765 1.1 jmcneill KASSERT(busno <= pr->pr_endbus);
766 1.1 jmcneill
767 1.1 jmcneill pb = PCICONF_RES_BUS(pr, busno);
768 1.1 jmcneill bridge = pb->pb_bridge;
769 1.1 jmcneill
770 1.1 jmcneill KASSERT(pb != NULL);
771 1.1 jmcneill KASSERT((busno == pr->pr_startbus) == (bridge == NULL));
772 1.1 jmcneill
773 1.1 jmcneill if (bridge == NULL) {
774 1.1 jmcneill /* Use resources provided by firmware. */
775 1.1 jmcneill PCI_RANGE_FOREACH(prtype) {
776 1.1 jmcneill pb->pb_res[prtype] = pr->pr_res[prtype];
777 1.1 jmcneill pr->pr_res[prtype] = NULL;
778 1.1 jmcneill }
779 1.1 jmcneill } else {
780 1.1 jmcneill /*
781 1.1 jmcneill * Using the resources configured in to the bridge by
782 1.1 jmcneill * firmware, claim the resources on the parent bus and
783 1.1 jmcneill * create a new vmem arena for the secondary bus.
784 1.1 jmcneill */
785 1.1 jmcneill KASSERT(bridge->pd_bus != NULL);
786 1.1 jmcneill parent_bus = bridge->pd_bus;
787 1.1 jmcneill PCI_RANGE_FOREACH(prtype) {
788 1.1 jmcneill if (parent_bus->pb_res[prtype] == NULL ||
789 1.1 jmcneill !bridge->pd_bridge.ranges[prtype].end) {
790 1.1 jmcneill continue;
791 1.1 jmcneill }
792 1.1 jmcneill error = pci_resource_claim(
793 1.1 jmcneill parent_bus->pb_res[prtype],
794 1.1 jmcneill bridge->pd_bridge.ranges[prtype].start,
795 1.1 jmcneill bridge->pd_bridge.ranges[prtype].end);
796 1.1 jmcneill if (error == 0) {
797 1.1 jmcneill pb->pb_res[prtype] = pci_create_vmem(
798 1.1 jmcneill pci_resource_typename(prtype),
799 1.1 jmcneill bridge->pd_bridge.ranges[prtype].start,
800 1.1 jmcneill bridge->pd_bridge.ranges[prtype].end);
801 1.1 jmcneill KASSERT(pb->pb_res[prtype] != NULL);
802 1.1 jmcneill } else {
803 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " bridge (bus %u)"
804 1.1 jmcneill " %-4s %#" PRIx64 "-%#" PRIx64
805 1.1 jmcneill " invalid\n",
806 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, bridge), busno,
807 1.1 jmcneill pci_resource_typename(prtype),
808 1.1 jmcneill bridge->pd_bridge.ranges[prtype].start,
809 1.1 jmcneill bridge->pd_bridge.ranges[prtype].end);
810 1.1 jmcneill }
811 1.1 jmcneill }
812 1.1 jmcneill }
813 1.1 jmcneill
814 1.1 jmcneill for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
815 1.1 jmcneill KASSERT(devno < PCI_MAX_DEVICE);
816 1.1 jmcneill nfunc = pci_resource_device_functions(pr, busno, devno);
817 1.1 jmcneill for (funcno = 0; funcno < nfunc; funcno++) {
818 1.1 jmcneill pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
819 1.1 jmcneill if (!pd->pd_present) {
820 1.1 jmcneill continue;
821 1.1 jmcneill }
822 1.1 jmcneill if (pd->pd_ppb) {
823 1.1 jmcneill uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
824 1.1 jmcneill pd->pd_bridge.bridge_bus);
825 1.1 jmcneill pci_resource_init_bus(pr, sec_bus);
826 1.1 jmcneill }
827 1.1 jmcneill pci_resource_init_device(pr, pd);
828 1.1 jmcneill }
829 1.1 jmcneill }
830 1.1 jmcneill }
831 1.1 jmcneill
832 1.1 jmcneill /*
833 1.1 jmcneill * pci_resource_probe --
834 1.1 jmcneill *
835 1.1 jmcneill * Scan for PCI devices and initialize the resource manager.
836 1.1 jmcneill */
837 1.1 jmcneill static void
838 1.1 jmcneill pci_resource_probe(struct pci_resources *pr,
839 1.1 jmcneill const struct pci_resource_info *info)
840 1.1 jmcneill {
841 1.1 jmcneill uint8_t startbus = (uint8_t)info->ranges[PCI_RANGE_BUS].start;
842 1.1 jmcneill uint8_t endbus = (uint8_t)info->ranges[PCI_RANGE_BUS].end;
843 1.1 jmcneill u_int nbus;
844 1.1 jmcneill
845 1.1 jmcneill KASSERT(startbus <= endbus);
846 1.1 jmcneill KASSERT(pr->pr_bus == NULL);
847 1.1 jmcneill
848 1.1 jmcneill nbus = endbus - startbus + 1;
849 1.1 jmcneill
850 1.1 jmcneill pr->pr_pc = info->pc;
851 1.1 jmcneill pr->pr_startbus = startbus;
852 1.1 jmcneill pr->pr_endbus = endbus;
853 1.1 jmcneill pr->pr_bus = kmem_zalloc(nbus * sizeof(struct pci_bus *), KM_SLEEP);
854 1.1 jmcneill memcpy(pr->pr_ranges, info->ranges, sizeof(pr->pr_ranges));
855 1.1 jmcneill PCI_RANGE_FOREACH(prtype) {
856 1.1 jmcneill if (prtype == PCI_RANGE_BUS || info->ranges[prtype].end) {
857 1.1 jmcneill pr->pr_res[prtype] = pci_create_vmem(
858 1.1 jmcneill pci_resource_typename(prtype),
859 1.1 jmcneill info->ranges[prtype].start,
860 1.1 jmcneill info->ranges[prtype].end);
861 1.1 jmcneill KASSERT(pr->pr_res[prtype] != NULL);
862 1.1 jmcneill }
863 1.1 jmcneill }
864 1.1 jmcneill
865 1.1 jmcneill /* Scan devices */
866 1.1 jmcneill pci_resource_scan_bus(pr, NULL, pr->pr_startbus);
867 1.1 jmcneill
868 1.1 jmcneill /*
869 1.1 jmcneill * Create per-bus resource pools and remove ranges that are already
870 1.1 jmcneill * in use by devices and downstream bridges.
871 1.1 jmcneill */
872 1.1 jmcneill pci_resource_init_bus(pr, pr->pr_startbus);
873 1.1 jmcneill }
874 1.1 jmcneill
875 1.1 jmcneill /*
876 1.1 jmcneill * pci_resource_alloc_device --
877 1.1 jmcneill *
878 1.1 jmcneill * Attempt to allocate resources for a given device.
879 1.1 jmcneill */
880 1.1 jmcneill static void
881 1.1 jmcneill pci_resource_alloc_device(struct pci_resources *pr, struct pci_device *pd)
882 1.1 jmcneill {
883 1.1 jmcneill struct pci_iores *pi;
884 1.1 jmcneill vmem_t *arena;
885 1.1 jmcneill pcireg_t cmd, ocmd, base;
886 1.1 jmcneill uint64_t addr;
887 1.1 jmcneill u_int enabled;
888 1.1 jmcneill u_int res;
889 1.1 jmcneill u_int align;
890 1.1 jmcneill int error;
891 1.1 jmcneill
892 1.1 jmcneill enabled = 0;
893 1.1 jmcneill ocmd = cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
894 1.1 jmcneill PCI_COMMAND_STATUS_REG);
895 1.1 jmcneill if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
896 1.1 jmcneill enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
897 1.1 jmcneill }
898 1.1 jmcneill if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
899 1.1 jmcneill enabled |= __BIT(PCI_MAPREG_TYPE_IO);
900 1.1 jmcneill }
901 1.1 jmcneill
902 1.1 jmcneill for (res = 0; res < pd->pd_niores; res++) {
903 1.1 jmcneill pi = &pd->pd_iores[res];
904 1.1 jmcneill
905 1.1 jmcneill if ((enabled & __BIT(pi->pi_type)) != 0) {
906 1.1 jmcneill continue;
907 1.1 jmcneill }
908 1.1 jmcneill
909 1.1 jmcneill if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
910 1.1 jmcneill arena = pd->pd_bus->pb_res[PCI_RANGE_IO];
911 1.1 jmcneill align = uimax(pi->pi_size, 4);
912 1.1 jmcneill } else {
913 1.1 jmcneill KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
914 1.1 jmcneill arena = NULL;
915 1.1 jmcneill align = uimax(pi->pi_size, 16);
916 1.1 jmcneill if (pi->pi_mem.prefetch) {
917 1.1 jmcneill arena = pd->pd_bus->pb_res[PCI_RANGE_PMEM];
918 1.1 jmcneill }
919 1.1 jmcneill if (arena == NULL) {
920 1.1 jmcneill arena = pd->pd_bus->pb_res[PCI_RANGE_MEM];
921 1.1 jmcneill }
922 1.1 jmcneill }
923 1.1 jmcneill if (arena == NULL) {
924 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
925 1.1 jmcneill " allocate %#" PRIx64 " bytes (no arena)\n",
926 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
927 1.1 jmcneill pi->pi_bar, pi->pi_size);
928 1.1 jmcneill return;
929 1.1 jmcneill }
930 1.1 jmcneill error = pci_resource_alloc(arena, pi->pi_size, align, &addr);
931 1.1 jmcneill if (error != 0) {
932 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
933 1.1 jmcneill " allocate %#" PRIx64 " bytes (no space)\n",
934 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
935 1.1 jmcneill pi->pi_bar, pi->pi_size);
936 1.1 jmcneill return;
937 1.1 jmcneill }
938 1.1 jmcneill DPRINT("PCI: " PCI_SBDF_FMT " BAR%u assigned range"
939 1.1 jmcneill " 0x%#" PRIx64 "-0x%#" PRIx64 "\n",
940 1.1 jmcneill PCI_SBDF_FMT_ARGS(pr, pd),
941 1.1 jmcneill pi->pi_bar, addr, addr + pi->pi_size - 1);
942 1.1 jmcneill
943 1.1 jmcneill if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
944 1.1 jmcneill cmd |= PCI_COMMAND_IO_ENABLE;
945 1.1 jmcneill pci_conf_write(pr->pr_pc, pd->pd_tag,
946 1.1 jmcneill PCI_BAR(pi->pi_bar),
947 1.1 jmcneill PCI_MAPREG_IO_ADDR(addr) | PCI_MAPREG_TYPE_IO);
948 1.1 jmcneill } else {
949 1.1 jmcneill cmd |= PCI_COMMAND_MEM_ENABLE;
950 1.1 jmcneill base = pci_conf_read(pr->pr_pc, pd->pd_tag,
951 1.1 jmcneill PCI_BAR(pi->pi_bar));
952 1.1 jmcneill base = PCI_MAPREG_MEM_ADDR(addr) |
953 1.1 jmcneill PCI_MAPREG_MEM_TYPE(base);
954 1.1 jmcneill pci_conf_write(pr->pr_pc, pd->pd_tag,
955 1.1 jmcneill PCI_BAR(pi->pi_bar), base);
956 1.1 jmcneill if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
957 1.3 riastrad base = (pcireg_t)
958 1.3 riastrad (PCI_MAPREG_MEM64_ADDR(addr) >> 32);
959 1.3 riastrad pci_conf_write(pr->pr_pc, pd->pd_tag,
960 1.1 jmcneill PCI_BAR(pi->pi_bar + 1), base);
961 1.1 jmcneill }
962 1.1 jmcneill }
963 1.1 jmcneill }
964 1.1 jmcneill
965 1.1 jmcneill if (ocmd != cmd) {
966 1.1 jmcneill pci_conf_write(pr->pr_pc, pd->pd_tag,
967 1.1 jmcneill PCI_COMMAND_STATUS_REG, cmd);
968 1.1 jmcneill }
969 1.1 jmcneill }
970 1.1 jmcneill
971 1.1 jmcneill /*
972 1.1 jmcneill * pci_resource_alloc_bus --
973 1.1 jmcneill *
974 1.1 jmcneill * Attempt to assign resources to all devices on a given bus, recursively.
975 1.1 jmcneill */
976 1.1 jmcneill static void
977 1.1 jmcneill pci_resource_alloc_bus(struct pci_resources *pr, uint8_t busno)
978 1.1 jmcneill {
979 1.1 jmcneill struct pci_bus *pb = PCICONF_RES_BUS(pr, busno);
980 1.1 jmcneill struct pci_device *pd;
981 1.1 jmcneill uint8_t devno, funcno;
982 1.1 jmcneill
983 1.1 jmcneill for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
984 1.1 jmcneill for (funcno = 0; funcno < 8; funcno++) {
985 1.1 jmcneill pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
986 1.1 jmcneill if (!pd->pd_present) {
987 1.1 jmcneill if (funcno == 0) {
988 1.1 jmcneill break;
989 1.1 jmcneill }
990 1.1 jmcneill continue;
991 1.1 jmcneill }
992 1.1 jmcneill if (!pd->pd_configured) {
993 1.1 jmcneill pci_resource_alloc_device(pr, pd);
994 1.1 jmcneill }
995 1.1 jmcneill if (pd->pd_ppb) {
996 1.1 jmcneill uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
997 1.1 jmcneill pd->pd_bridge.bridge_bus);
998 1.1 jmcneill pci_resource_alloc_bus(pr, sec_bus);
999 1.1 jmcneill }
1000 1.1 jmcneill }
1001 1.1 jmcneill }
1002 1.1 jmcneill }
1003 1.1 jmcneill
1004 1.1 jmcneill /*
1005 1.1 jmcneill * pci_resource_init --
1006 1.1 jmcneill *
1007 1.1 jmcneill * Public interface to PCI resource manager. Scans for available devices
1008 1.1 jmcneill * and assigns resources.
1009 1.1 jmcneill */
1010 1.1 jmcneill void
1011 1.1 jmcneill pci_resource_init(const struct pci_resource_info *info)
1012 1.1 jmcneill {
1013 1.1 jmcneill struct pci_resources pr = {};
1014 1.1 jmcneill
1015 1.1 jmcneill pci_resource_probe(&pr, info);
1016 1.1 jmcneill pci_resource_alloc_bus(&pr, pr.pr_startbus);
1017 1.1 jmcneill }
1018 1.1 jmcneill
1019 1.1 jmcneill /*
1020 1.1 jmcneill * pci_resource_typename --
1021 1.1 jmcneill *
1022 1.1 jmcneill * Return a string description of a PCI range type.
1023 1.1 jmcneill */
1024 1.1 jmcneill const char *
1025 1.1 jmcneill pci_resource_typename(enum pci_range_type prtype)
1026 1.1 jmcneill {
1027 1.1 jmcneill KASSERT(prtype < NUM_PCI_RANGES);
1028 1.1 jmcneill return pci_range_typenames[prtype];
1029 1.1 jmcneill }
1030