pci_resource.c revision 1.4 1 /* $NetBSD: pci_resource.c,v 1.4 2023/11/12 13:56:20 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * pci_resource.c --
31 *
32 * Scan current PCI resource allocations and attempt to assign resources
33 * to devices that are not configured WITHOUT changing any configuration
34 * performed by system firmware.
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: pci_resource.c,v 1.4 2023/11/12 13:56:20 jmcneill Exp $");
39
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/systm.h>
43 #include <sys/kmem.h>
44 #include <sys/vmem.h>
45
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49 #include <dev/pci/pci_resource.h>
50
51 #define DPRINT aprint_debug
52
53 #if defined(PCI_RESOURCE_TEST_VENDOR_ID) && \
54 defined(PCI_RESOURCE_TEST_PRODUCT_ID)
55 #define IS_TEST_DEVICE(_pd) \
56 (PCI_VENDOR(pd->pd_id) == PCI_RESOURCE_TEST_VENDOR_ID && \
57 PCI_PRODUCT(pd->pd_id) == PCI_RESOURCE_TEST_PRODUCT_ID)
58 #else
59 #define IS_TEST_DEVICE(_pd) 0
60 #endif
61
62 #define PCI_MAX_DEVICE 32
63 #define PCI_MAX_FUNC 8
64
65 #define PCI_MAX_IORES 6
66
67 #define PCI_RANGE_FOREACH(_type) \
68 for (u_int _type = PCI_RANGE_BUS; _type < NUM_PCI_RANGES; _type++)
69
70 static const char *pci_range_typenames[NUM_PCI_RANGES] = {
71 [PCI_RANGE_BUS] = "bus",
72 [PCI_RANGE_IO] = "io",
73 [PCI_RANGE_MEM] = "mem",
74 [PCI_RANGE_PMEM] = "pmem",
75 };
76
77 struct pci_bus;
78
79 struct pci_iores {
80 uint64_t pi_base; /* Base address */
81 uint64_t pi_size; /* Resource size */
82 uint8_t pi_type; /* PCI_MAPREG_TYPE_* */
83 u_int pi_bar; /* PCI bar number */
84 union {
85 struct {
86 uint8_t memtype;
87 bool prefetch;
88 } pi_mem;
89 };
90 };
91
92 struct pci_device {
93 bool pd_present; /* Device is present */
94 bool pd_configured; /* Device is configured */
95 struct pci_bus *pd_bus; /* Parent bus */
96 uint8_t pd_devno; /* Device number */
97 uint8_t pd_funcno; /* Function number */
98 pcitag_t pd_tag; /* PCI tag */
99
100 pcireg_t pd_id; /* Vendor ID, Device ID */
101 pcireg_t pd_class; /* Revision ID, Class Code */
102 pcireg_t pd_bhlc; /* BIST, Header Type, Primary Latency
103 * Timer, Cache Line Size */
104
105 struct pci_iores pd_iores[PCI_MAX_IORES];
106 u_int pd_niores;
107
108 bool pd_ppb; /* PCI-PCI bridge */
109 union {
110 struct {
111 pcireg_t bridge_bus;
112 struct pci_resource_range ranges[NUM_PCI_RANGES];
113 } pd_bridge;
114 };
115 };
116
117 struct pci_bus {
118 uint8_t pb_busno; /* Bus number */
119 struct pci_device *pb_bridge; /* Parent bridge, or NULL */
120
121 struct pci_device pb_device[PCI_MAX_DEVICE * PCI_MAX_FUNC];
122 /* Devices on bus */
123 u_int pb_lastdevno; /* Last device found */
124
125 struct pci_resource_range pb_ranges[NUM_PCI_RANGES];
126 vmem_t *pb_res[NUM_PCI_RANGES];
127 };
128
129 struct pci_resources {
130 struct pci_bus **pr_bus; /* Bus list */
131 pci_chipset_tag_t pr_pc; /* Chipset tag */
132 uint8_t pr_startbus; /* First bus number */
133 uint8_t pr_endbus; /* Last bus number */
134
135 struct pci_resource_range pr_ranges[NUM_PCI_RANGES];
136 vmem_t *pr_res[NUM_PCI_RANGES];
137 };
138
139 static void pci_resource_scan_bus(struct pci_resources *,
140 struct pci_device *, uint8_t);
141
142 #define PCI_SBDF_FMT "%04x:%02x:%02x.%u"
143 #define PCI_SBDF_FMT_ARGS(_pr, _pd) \
144 pci_get_segment((_pr)->pr_pc), \
145 (_pd)->pd_bus->pb_busno, \
146 (_pd)->pd_devno, \
147 (_pd)->pd_funcno
148
149 #define PCICONF_RES_BUS(_pr, _busno) \
150 ((_pr)->pr_bus[(_busno) - (_pr)->pr_startbus])
151 #define PCICONF_BUS_DEVICE(_pb, _devno, _funcno) \
152 (&(_pb)->pb_device[(_devno) * PCI_MAX_FUNC + (_funcno)])
153
154 /*
155 * pci_create_vmem --
156 *
157 * Create a vmem arena covering the specified range, used for tracking
158 * PCI resources.
159 */
160 static vmem_t *
161 pci_create_vmem(const char *name, bus_addr_t start, bus_addr_t end)
162 {
163 vmem_t *arena;
164 int error __diagused;
165
166 arena = vmem_create(name, 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
167 IPL_NONE);
168 error = vmem_add(arena, start, end - start + 1, VM_SLEEP);
169 KASSERTMSG(error == 0, "error=%d", error);
170
171 return arena;
172 }
173
174 /*
175 * pci_new_bus --
176 *
177 * Create a new PCI bus and initialize its resource ranges.
178 */
179 static struct pci_bus *
180 pci_new_bus(struct pci_resources *pr, uint8_t busno, struct pci_device *bridge)
181 {
182 struct pci_bus *pb;
183 struct pci_resource_range *ranges;
184
185 pb = kmem_zalloc(sizeof(*pb), KM_SLEEP);
186 pb->pb_busno = busno;
187 pb->pb_bridge = bridge;
188 if (bridge == NULL) {
189 /*
190 * No additional constraints on resource allocations for
191 * the root bus.
192 */
193 ranges = pr->pr_ranges;
194 } else {
195 /*
196 * Resource allocations for this bus are constrained by the
197 * bridge forwarding settings.
198 */
199 ranges = bridge->pd_bridge.ranges;
200 }
201 memcpy(pb->pb_ranges, ranges, sizeof(pb->pb_ranges));
202
203 return pb;
204 }
205
206 /*
207 * pci_resource_device_functions --
208 *
209 * Returns the number of PCI functions for a a given bus and device.
210 */
211 static uint8_t
212 pci_resource_device_functions(struct pci_resources *pr,
213 uint8_t busno, uint8_t devno)
214 {
215 struct pci_bus *pb;
216 struct pci_device *pd;
217
218 pb = PCICONF_RES_BUS(pr, busno);
219 pd = PCICONF_BUS_DEVICE(pb, devno, 0);
220 if (!pd->pd_present) {
221 return 0;
222 }
223
224 return PCI_HDRTYPE_MULTIFN(pd->pd_bhlc) ? 8 : 1;
225 }
226
227 /*
228 * pci_resource_device_print --
229 *
230 * Log details about a device.
231 */
232 static void
233 pci_resource_device_print(struct pci_resources *pr,
234 struct pci_device *pd)
235 {
236 struct pci_iores *pi;
237 u_int res;
238
239 DPRINT("PCI: " PCI_SBDF_FMT " %04x:%04x %02x 0x%06x",
240 PCI_SBDF_FMT_ARGS(pr, pd),
241 PCI_VENDOR(pd->pd_id), PCI_PRODUCT(pd->pd_id),
242 PCI_REVISION(pd->pd_class), (pd->pd_class >> 8) & 0xffffff);
243
244 switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
245 case PCI_HDRTYPE_DEVICE:
246 DPRINT(" (device)\n");
247 break;
248 case PCI_HDRTYPE_PPB:
249 DPRINT(" (bridge %u -> %u-%u)\n",
250 PCI_BRIDGE_BUS_NUM_PRIMARY(pd->pd_bridge.bridge_bus),
251 PCI_BRIDGE_BUS_NUM_SECONDARY(pd->pd_bridge.bridge_bus),
252 PCI_BRIDGE_BUS_NUM_SUBORDINATE(pd->pd_bridge.bridge_bus));
253
254 if (pd->pd_bridge.ranges[PCI_RANGE_IO].end) {
255 DPRINT("PCI: " PCI_SBDF_FMT
256 " [bridge] window io %#" PRIx64 "-%#" PRIx64
257 "\n",
258 PCI_SBDF_FMT_ARGS(pr, pd),
259 pd->pd_bridge.ranges[PCI_RANGE_IO].start,
260 pd->pd_bridge.ranges[PCI_RANGE_IO].end);
261 }
262 if (pd->pd_bridge.ranges[PCI_RANGE_MEM].end) {
263 DPRINT("PCI: " PCI_SBDF_FMT
264 " [bridge] window mem %#" PRIx64 "-%#" PRIx64
265 " (non-prefetchable)\n",
266 PCI_SBDF_FMT_ARGS(pr, pd),
267 pd->pd_bridge.ranges[PCI_RANGE_MEM].start,
268 pd->pd_bridge.ranges[PCI_RANGE_MEM].end);
269 }
270 if (pd->pd_bridge.ranges[PCI_RANGE_PMEM].end) {
271 DPRINT("PCI: " PCI_SBDF_FMT
272 " [bridge] window mem %#" PRIx64 "-%#" PRIx64
273 " (prefetchable)\n",
274 PCI_SBDF_FMT_ARGS(pr, pd),
275 pd->pd_bridge.ranges[PCI_RANGE_PMEM].start,
276 pd->pd_bridge.ranges[PCI_RANGE_PMEM].end);
277 }
278
279 break;
280 default:
281 DPRINT(" (0x%02x)\n", PCI_HDRTYPE_TYPE(pd->pd_bhlc));
282 }
283
284 for (res = 0; res < pd->pd_niores; res++) {
285 pi = &pd->pd_iores[res];
286
287 DPRINT("PCI: " PCI_SBDF_FMT
288 " [device] resource BAR%u: %s @ %#" PRIx64 " size %#"
289 PRIx64,
290 PCI_SBDF_FMT_ARGS(pr, pd), pi->pi_bar,
291 pi->pi_type == PCI_MAPREG_TYPE_MEM ? "mem" : "io ",
292 pi->pi_base, pi->pi_size);
293
294 if (pi->pi_type == PCI_MAPREG_TYPE_MEM) {
295 switch (pi->pi_mem.memtype) {
296 case PCI_MAPREG_MEM_TYPE_32BIT:
297 DPRINT(", 32-bit");
298 break;
299 case PCI_MAPREG_MEM_TYPE_32BIT_1M:
300 DPRINT(", 32-bit (1M)");
301 break;
302 case PCI_MAPREG_MEM_TYPE_64BIT:
303 DPRINT(", 64-bit");
304 break;
305 }
306 DPRINT(" %sprefetchable",
307 pi->pi_mem.prefetch ? "" : "non-");
308 }
309 DPRINT("\n");
310 }
311 }
312
313 /*
314 * pci_resource_scan_bar --
315 *
316 * Determine the current BAR configuration for a given device.
317 */
318 static void
319 pci_resource_scan_bar(struct pci_resources *pr,
320 struct pci_device *pd, pcireg_t mapreg_start, pcireg_t mapreg_end,
321 bool is_ppb)
322 {
323 pci_chipset_tag_t pc = pr->pr_pc;
324 pcitag_t tag = pd->pd_tag;
325 pcireg_t mapreg = mapreg_start;
326 pcireg_t ocmd, cmd, bar[2], mask[2];
327 uint64_t addr, size;
328 struct pci_iores *pi;
329
330 if (!is_ppb) {
331 ocmd = cmd = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
332 cmd &= ~(PCI_COMMAND_MASTER_ENABLE |
333 PCI_COMMAND_MEM_ENABLE |
334 PCI_COMMAND_IO_ENABLE);
335 pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, cmd);
336 }
337
338 while (mapreg < mapreg_end) {
339 u_int width = 4;
340
341 bar[0] = pci_conf_read(pc, tag, mapreg);
342 pci_conf_write(pc, tag, mapreg, 0xffffffff);
343 mask[0] = pci_conf_read(pc, tag, mapreg);
344 pci_conf_write(pc, tag, mapreg, bar[0]);
345
346 switch (PCI_MAPREG_TYPE(mask[0])) {
347 case PCI_MAPREG_TYPE_MEM:
348 switch (PCI_MAPREG_MEM_TYPE(mask[0])) {
349 case PCI_MAPREG_MEM_TYPE_32BIT:
350 case PCI_MAPREG_MEM_TYPE_32BIT_1M:
351 size = PCI_MAPREG_MEM_SIZE(mask[0]);
352 addr = PCI_MAPREG_MEM_ADDR(bar[0]);
353 break;
354 case PCI_MAPREG_MEM_TYPE_64BIT:
355 bar[1] = pci_conf_read(pc, tag, mapreg + 4);
356 pci_conf_write(pc, tag, mapreg + 4, 0xffffffff);
357 mask[1] = pci_conf_read(pc, tag, mapreg + 4);
358 pci_conf_write(pc, tag, mapreg + 4, bar[1]);
359
360 size = PCI_MAPREG_MEM64_SIZE(
361 ((uint64_t)mask[1] << 32) | mask[0]);
362 addr = PCI_MAPREG_MEM64_ADDR(
363 ((uint64_t)bar[1] << 32) | bar[0]);
364 width = 8;
365 break;
366 default:
367 size = 0;
368 }
369 if (size > 0) {
370 pi = &pd->pd_iores[pd->pd_niores++];
371 pi->pi_type = PCI_MAPREG_TYPE_MEM;
372 pi->pi_base = addr;
373 pi->pi_size = size;
374 pi->pi_bar = (mapreg - mapreg_start) / 4;
375 pi->pi_mem.memtype =
376 PCI_MAPREG_MEM_TYPE(mask[0]);
377 pi->pi_mem.prefetch =
378 PCI_MAPREG_MEM_PREFETCHABLE(mask[0]);
379 }
380 break;
381 case PCI_MAPREG_TYPE_IO:
382 size = PCI_MAPREG_IO_SIZE(mask[0] | 0xffff0000);
383 addr = PCI_MAPREG_IO_ADDR(bar[0]);
384 if (size > 0) {
385 pi = &pd->pd_iores[pd->pd_niores++];
386 pi->pi_type = PCI_MAPREG_TYPE_IO;
387 pi->pi_base = addr;
388 pi->pi_size = size;
389 pi->pi_bar = (mapreg - mapreg_start) / 4;
390 }
391 break;
392 }
393
394 KASSERT(pd->pd_niores <= PCI_MAX_IORES);
395
396 mapreg += width;
397 }
398
399 if (!is_ppb) {
400 pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, ocmd);
401 }
402 }
403
404 /*
405 * pci_resource_scan_bridge --
406 *
407 * Determine the current configuration of a PCI-PCI bridge.
408 */
409 static void
410 pci_resource_scan_bridge(struct pci_resources *pr,
411 struct pci_device *pd)
412 {
413 pci_chipset_tag_t pc = pr->pr_pc;
414 pcitag_t tag = pd->pd_tag;
415 pcireg_t res, reshigh;
416
417 pd->pd_ppb = true;
418
419 res = pci_conf_read(pc, tag, PCI_BRIDGE_BUS_REG);
420 pd->pd_bridge.bridge_bus = res;
421 pd->pd_bridge.ranges[PCI_RANGE_BUS].start =
422 PCI_BRIDGE_BUS_NUM_SECONDARY(res);
423 pd->pd_bridge.ranges[PCI_RANGE_BUS].end =
424 PCI_BRIDGE_BUS_NUM_SUBORDINATE(res);
425
426 res = pci_conf_read(pc, tag, PCI_BRIDGE_STATIO_REG);
427 pd->pd_bridge.ranges[PCI_RANGE_IO].start =
428 PCI_BRIDGE_STATIO_IOBASE_ADDR(res);
429 pd->pd_bridge.ranges[PCI_RANGE_IO].end =
430 PCI_BRIDGE_STATIO_IOLIMIT_ADDR(res);
431 if (PCI_BRIDGE_IO_32BITS(res)) {
432 reshigh = pci_conf_read(pc, tag, PCI_BRIDGE_IOHIGH_REG);
433 pd->pd_bridge.ranges[PCI_RANGE_IO].start |=
434 __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_BASE) << 16;
435 pd->pd_bridge.ranges[PCI_RANGE_IO].end |=
436 __SHIFTOUT(reshigh, PCI_BRIDGE_IOHIGH_LIMIT) << 16;
437 }
438 if (pd->pd_bridge.ranges[PCI_RANGE_IO].start >=
439 pd->pd_bridge.ranges[PCI_RANGE_IO].end) {
440 pd->pd_bridge.ranges[PCI_RANGE_IO].start = 0;
441 pd->pd_bridge.ranges[PCI_RANGE_IO].end = 0;
442 }
443
444 res = pci_conf_read(pc, tag, PCI_BRIDGE_MEMORY_REG);
445 pd->pd_bridge.ranges[PCI_RANGE_MEM].start =
446 PCI_BRIDGE_MEMORY_BASE_ADDR(res);
447 pd->pd_bridge.ranges[PCI_RANGE_MEM].end =
448 PCI_BRIDGE_MEMORY_LIMIT_ADDR(res);
449 if (pd->pd_bridge.ranges[PCI_RANGE_MEM].start >=
450 pd->pd_bridge.ranges[PCI_RANGE_MEM].end) {
451 pd->pd_bridge.ranges[PCI_RANGE_MEM].start = 0;
452 pd->pd_bridge.ranges[PCI_RANGE_MEM].end = 0;
453 }
454
455 res = pci_conf_read(pc, tag, PCI_BRIDGE_PREFETCHMEM_REG);
456 pd->pd_bridge.ranges[PCI_RANGE_PMEM].start =
457 PCI_BRIDGE_PREFETCHMEM_BASE_ADDR(res);
458 pd->pd_bridge.ranges[PCI_RANGE_PMEM].end =
459 PCI_BRIDGE_PREFETCHMEM_LIMIT_ADDR(res);
460 if (PCI_BRIDGE_PREFETCHMEM_64BITS(res)) {
461 reshigh = pci_conf_read(pc, tag,
462 PCI_BRIDGE_PREFETCHBASEUP32_REG);
463 pd->pd_bridge.ranges[PCI_RANGE_PMEM].start |=
464 (uint64_t)reshigh << 32;
465 reshigh = pci_conf_read(pc, tag,
466 PCI_BRIDGE_PREFETCHLIMITUP32_REG);
467 pd->pd_bridge.ranges[PCI_RANGE_PMEM].end |=
468 (uint64_t)reshigh << 32;
469 }
470 if (pd->pd_bridge.ranges[PCI_RANGE_PMEM].start >=
471 pd->pd_bridge.ranges[PCI_RANGE_PMEM].end) {
472 pd->pd_bridge.ranges[PCI_RANGE_PMEM].start = 0;
473 pd->pd_bridge.ranges[PCI_RANGE_PMEM].end = 0;
474 }
475 }
476
477 /*
478 * pci_resource_scan_device --
479 *
480 * Determine the current configuration of a PCI device.
481 */
482 static bool
483 pci_resource_scan_device(struct pci_resources *pr,
484 struct pci_bus *parent_bus, uint8_t devno, uint8_t funcno)
485 {
486 struct pci_device *pd;
487 pcitag_t tag;
488 pcireg_t id, bridge_bus;
489 uint8_t sec_bus;
490
491 tag = pci_make_tag(pr->pr_pc, parent_bus->pb_busno, devno, funcno);
492 id = pci_conf_read(pr->pr_pc, tag, PCI_ID_REG);
493 if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) {
494 return false;
495 }
496
497 pd = PCICONF_BUS_DEVICE(parent_bus, devno, funcno);
498 pd->pd_present = true;
499 pd->pd_bus = parent_bus;
500 pd->pd_tag = tag;
501 pd->pd_devno = devno;
502 pd->pd_funcno = funcno;
503 pd->pd_id = id;
504 pd->pd_class = pci_conf_read(pr->pr_pc, tag, PCI_CLASS_REG);
505 pd->pd_bhlc = pci_conf_read(pr->pr_pc, tag, PCI_BHLC_REG);
506
507 switch (PCI_HDRTYPE_TYPE(pd->pd_bhlc)) {
508 case PCI_HDRTYPE_DEVICE:
509 pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
510 PCI_MAPREG_END, false);
511 break;
512 case PCI_HDRTYPE_PPB:
513 pci_resource_scan_bar(pr, pd, PCI_MAPREG_START,
514 PCI_MAPREG_PPB_END, true);
515 pci_resource_scan_bridge(pr, pd);
516 break;
517 }
518
519 pci_resource_device_print(pr, pd);
520
521 if (PCI_HDRTYPE_TYPE(pd->pd_bhlc) == PCI_HDRTYPE_PPB &&
522 PCI_CLASS(pd->pd_class) == PCI_CLASS_BRIDGE &&
523 PCI_SUBCLASS(pd->pd_class) == PCI_SUBCLASS_BRIDGE_PCI) {
524 bridge_bus = pci_conf_read(pr->pr_pc, tag, PCI_BRIDGE_BUS_REG);
525 sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(bridge_bus);
526 if (sec_bus <= pr->pr_endbus) {
527 pci_resource_scan_bus(pr, pd, sec_bus);
528 }
529 }
530
531 return true;
532 }
533
534 /*
535 * pci_resource_scan_bus --
536 *
537 * Enumerate devices on a bus, recursively.
538 */
539 static void
540 pci_resource_scan_bus(struct pci_resources *pr,
541 struct pci_device *bridge_dev, uint8_t busno)
542 {
543 struct pci_bus *pb;
544 uint8_t devno, funcno;
545 uint8_t nfunc;
546
547 KASSERT(busno >= pr->pr_startbus);
548 KASSERT(busno <= pr->pr_endbus);
549
550 if (PCICONF_RES_BUS(pr, busno) != NULL) {
551 /*
552 * Firmware has configured more than one bridge with the
553 * same secondary bus number.
554 */
555 panic("Bus %u already scanned (firmware bug!)", busno);
556 return;
557 }
558
559 pb = pci_new_bus(pr, busno, bridge_dev);
560 PCICONF_RES_BUS(pr, busno) = pb;
561
562 for (devno = 0; devno < PCI_MAX_DEVICE; devno++) {
563 if (!pci_resource_scan_device(pr, pb, devno, 0)) {
564 continue;
565 }
566 pb->pb_lastdevno = devno;
567
568 nfunc = pci_resource_device_functions(pr, busno, devno);
569 for (funcno = 1; funcno < nfunc; funcno++) {
570 pci_resource_scan_device(pr, pb, devno, funcno);
571 }
572 }
573 }
574
575 /*
576 * pci_resource_claim --
577 *
578 * Claim a resource from a vmem arena. This is called to inform the
579 * resource manager about resources already configured by system firmware.
580 */
581 static int
582 pci_resource_claim(vmem_t *arena, vmem_addr_t start, vmem_addr_t end)
583 {
584 KASSERT(end >= start);
585
586 return vmem_xalloc(arena, end - start + 1, 0, 0, 0, start, end,
587 VM_BESTFIT | VM_NOSLEEP, NULL);
588 }
589
590 /*
591 * pci_resource_alloc --
592 *
593 * Allocate a resource from a vmem arena. This is called when configuring
594 * devices that were not already configured by system firmware.
595 */
596 static int
597 pci_resource_alloc(vmem_t *arena, vmem_size_t size, vmem_size_t align,
598 uint64_t *base)
599 {
600 vmem_addr_t addr;
601 int error;
602
603 KASSERT(size != 0);
604
605 error = vmem_xalloc(arena, size, align, 0, 0, VMEM_ADDR_MIN,
606 VMEM_ADDR_MAX, VM_BESTFIT | VM_NOSLEEP, &addr);
607 if (error == 0) {
608 *base = (uint64_t)addr;
609 }
610
611 return error;
612 }
613
614 /*
615 * pci_resource_init_device --
616 *
617 * Discover resources assigned by system firmware, notify the resource
618 * manager of these ranges, and determine if the device has additional
619 * resources that need to be allocated.
620 */
621 static void
622 pci_resource_init_device(struct pci_resources *pr,
623 struct pci_device *pd)
624 {
625 struct pci_iores *pi;
626 struct pci_bus *pb = pd->pd_bus;
627 vmem_t *res_io = pb->pb_res[PCI_RANGE_IO];
628 vmem_t *res_mem = pb->pb_res[PCI_RANGE_MEM];
629 vmem_t *res_pmem = pb->pb_res[PCI_RANGE_PMEM];
630 pcireg_t cmd;
631 u_int enabled, required;
632 u_int iores;
633 int error;
634
635 KASSERT(pd->pd_present);
636
637 if (IS_TEST_DEVICE(pd)) {
638 cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
639 PCI_COMMAND_STATUS_REG);
640 cmd &= ~(PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_IO_ENABLE|
641 PCI_COMMAND_MASTER_ENABLE);
642 pci_conf_write(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG,
643 cmd);
644 }
645
646 enabled = required = 0;
647 cmd = pci_conf_read(pr->pr_pc, pd->pd_tag, PCI_COMMAND_STATUS_REG);
648 if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
649 enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
650 }
651 if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
652 enabled |= __BIT(PCI_MAPREG_TYPE_IO);
653 }
654
655 for (iores = 0; iores < pd->pd_niores; iores++) {
656 pi = &pd->pd_iores[iores];
657
658 required |= __BIT(pi->pi_type);
659
660 if (IS_TEST_DEVICE(pd)) {
661 pci_conf_write(pr->pr_pc, pd->pd_tag,
662 PCI_BAR(pi->pi_bar), 0);
663 continue;
664 }
665 if ((enabled & __BIT(pi->pi_type)) == 0) {
666 continue;
667 }
668
669 if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
670 error = res_io == NULL ? ERANGE :
671 pci_resource_claim(res_io, pi->pi_base,
672 pi->pi_base + pi->pi_size - 1);
673 if (error) {
674 DPRINT("PCI: " PCI_SBDF_FMT " [device] io "
675 " %#" PRIx64 "-%#" PRIx64
676 " invalid (%d)\n",
677 PCI_SBDF_FMT_ARGS(pr, pd),
678 pi->pi_base,
679 pi->pi_base + pi->pi_size - 1,
680 error);
681 }
682 continue;
683 }
684
685 KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
686 error = ERANGE;
687 if (pi->pi_mem.prefetch) {
688 /*
689 * Prefetchable memory must be allocated from the
690 * bridge's prefetchable region.
691 */
692 if (res_pmem != NULL) {
693 error = pci_resource_claim(res_pmem, pi->pi_base,
694 pi->pi_base + pi->pi_size - 1);
695 }
696 } else if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
697 /*
698 * Non-prefetchable 64-bit memory can be allocated from
699 * any range. Prefer allocations from the prefetchable
700 * region to save 32-bit only resources for 32-bit BARs.
701 */
702 if (res_pmem != NULL) {
703 error = pci_resource_claim(res_pmem, pi->pi_base,
704 pi->pi_base + pi->pi_size - 1);
705 }
706 if (error && res_mem != NULL) {
707 error = pci_resource_claim(res_mem, pi->pi_base,
708 pi->pi_base + pi->pi_size - 1);
709 }
710 } else {
711 /*
712 * Non-prefetchable 32-bit memory can be allocated from
713 * any range, provided that the range is below 4GB. Try
714 * the non-prefetchable range first, and if that fails,
715 * make one last attempt at allocating from the
716 * prefetchable range in case the platform provides
717 * memory below 4GB.
718 */
719 if (res_mem != NULL) {
720 error = pci_resource_claim(res_mem, pi->pi_base,
721 pi->pi_base + pi->pi_size - 1);
722 }
723 if (error && res_pmem != NULL) {
724 error = pci_resource_claim(res_pmem, pi->pi_base,
725 pi->pi_base + pi->pi_size - 1);
726 }
727 }
728 if (error) {
729 DPRINT("PCI: " PCI_SBDF_FMT " [device] mem"
730 " (%sprefetchable)"
731 " %#" PRIx64 "-%#" PRIx64
732 " invalid (%d)\n",
733 PCI_SBDF_FMT_ARGS(pr, pd),
734 pi->pi_mem.prefetch ? "" : "non-",
735 pi->pi_base,
736 pi->pi_base + pi->pi_size - 1,
737 error);
738 }
739 }
740
741 pd->pd_configured = (enabled & required) == required;
742
743 if (!pd->pd_configured) {
744 DPRINT("PCI: " PCI_SBDF_FMT " [device] "
745 "not configured by firmware\n",
746 PCI_SBDF_FMT_ARGS(pr, pd));
747 }
748 }
749
750 /*
751 * pci_resource_init_bus --
752 *
753 * Discover resources in use on a given bus, recursively.
754 */
755 static void
756 pci_resource_init_bus(struct pci_resources *pr, uint8_t busno)
757 {
758 struct pci_bus *pb, *parent_bus;
759 struct pci_device *pd, *bridge;
760 uint8_t devno, funcno;
761 uint8_t nfunc;
762 int error;
763
764 KASSERT(busno >= pr->pr_startbus);
765 KASSERT(busno <= pr->pr_endbus);
766
767 pb = PCICONF_RES_BUS(pr, busno);
768 bridge = pb->pb_bridge;
769
770 KASSERT(pb != NULL);
771 KASSERT((busno == pr->pr_startbus) == (bridge == NULL));
772
773 if (bridge == NULL) {
774 /* Use resources provided by firmware. */
775 PCI_RANGE_FOREACH(prtype) {
776 pb->pb_res[prtype] = pr->pr_res[prtype];
777 pr->pr_res[prtype] = NULL;
778 }
779 } else {
780 /*
781 * Using the resources configured in to the bridge by
782 * firmware, claim the resources on the parent bus and
783 * create a new vmem arena for the secondary bus.
784 */
785 KASSERT(bridge->pd_bus != NULL);
786 parent_bus = bridge->pd_bus;
787 PCI_RANGE_FOREACH(prtype) {
788 if (parent_bus->pb_res[prtype] == NULL ||
789 !bridge->pd_bridge.ranges[prtype].end) {
790 continue;
791 }
792 error = pci_resource_claim(
793 parent_bus->pb_res[prtype],
794 bridge->pd_bridge.ranges[prtype].start,
795 bridge->pd_bridge.ranges[prtype].end);
796 if (error == 0) {
797 pb->pb_res[prtype] = pci_create_vmem(
798 pci_resource_typename(prtype),
799 bridge->pd_bridge.ranges[prtype].start,
800 bridge->pd_bridge.ranges[prtype].end);
801 KASSERT(pb->pb_res[prtype] != NULL);
802 } else {
803 DPRINT("PCI: " PCI_SBDF_FMT " bridge (bus %u)"
804 " %-4s %#" PRIx64 "-%#" PRIx64
805 " invalid\n",
806 PCI_SBDF_FMT_ARGS(pr, bridge), busno,
807 pci_resource_typename(prtype),
808 bridge->pd_bridge.ranges[prtype].start,
809 bridge->pd_bridge.ranges[prtype].end);
810 }
811 }
812 }
813
814 for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
815 KASSERT(devno < PCI_MAX_DEVICE);
816 nfunc = pci_resource_device_functions(pr, busno, devno);
817 for (funcno = 0; funcno < nfunc; funcno++) {
818 pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
819 if (!pd->pd_present) {
820 continue;
821 }
822 if (pd->pd_ppb) {
823 uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
824 pd->pd_bridge.bridge_bus);
825 pci_resource_init_bus(pr, sec_bus);
826 }
827 pci_resource_init_device(pr, pd);
828 }
829 }
830 }
831
832 /*
833 * pci_resource_probe --
834 *
835 * Scan for PCI devices and initialize the resource manager.
836 */
837 static void
838 pci_resource_probe(struct pci_resources *pr,
839 const struct pci_resource_info *info)
840 {
841 uint8_t startbus = (uint8_t)info->ranges[PCI_RANGE_BUS].start;
842 uint8_t endbus = (uint8_t)info->ranges[PCI_RANGE_BUS].end;
843 u_int nbus;
844
845 KASSERT(startbus <= endbus);
846 KASSERT(pr->pr_bus == NULL);
847
848 nbus = endbus - startbus + 1;
849
850 pr->pr_pc = info->pc;
851 pr->pr_startbus = startbus;
852 pr->pr_endbus = endbus;
853 pr->pr_bus = kmem_zalloc(nbus * sizeof(struct pci_bus *), KM_SLEEP);
854 memcpy(pr->pr_ranges, info->ranges, sizeof(pr->pr_ranges));
855 PCI_RANGE_FOREACH(prtype) {
856 if (prtype == PCI_RANGE_BUS || info->ranges[prtype].end) {
857 pr->pr_res[prtype] = pci_create_vmem(
858 pci_resource_typename(prtype),
859 info->ranges[prtype].start,
860 info->ranges[prtype].end);
861 KASSERT(pr->pr_res[prtype] != NULL);
862 }
863 }
864
865 /* Scan devices */
866 pci_resource_scan_bus(pr, NULL, pr->pr_startbus);
867
868 /*
869 * Create per-bus resource pools and remove ranges that are already
870 * in use by devices and downstream bridges.
871 */
872 pci_resource_init_bus(pr, pr->pr_startbus);
873 }
874
875 /*
876 * pci_resource_alloc_device --
877 *
878 * Attempt to allocate resources for a given device.
879 */
880 static void
881 pci_resource_alloc_device(struct pci_resources *pr, struct pci_device *pd)
882 {
883 struct pci_iores *pi;
884 vmem_t *arena;
885 pcireg_t cmd, ocmd, base;
886 uint64_t addr;
887 u_int enabled;
888 u_int res;
889 u_int align;
890 int error;
891
892 enabled = 0;
893 ocmd = cmd = pci_conf_read(pr->pr_pc, pd->pd_tag,
894 PCI_COMMAND_STATUS_REG);
895 if ((cmd & PCI_COMMAND_MEM_ENABLE) != 0) {
896 enabled |= __BIT(PCI_MAPREG_TYPE_MEM);
897 }
898 if ((cmd & PCI_COMMAND_IO_ENABLE) != 0) {
899 enabled |= __BIT(PCI_MAPREG_TYPE_IO);
900 }
901
902 for (res = 0; res < pd->pd_niores; res++) {
903 pi = &pd->pd_iores[res];
904
905 if ((enabled & __BIT(pi->pi_type)) != 0) {
906 continue;
907 }
908
909 if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
910 arena = pd->pd_bus->pb_res[PCI_RANGE_IO];
911 align = uimax(pi->pi_size, 4);
912 } else {
913 KASSERT(pi->pi_type == PCI_MAPREG_TYPE_MEM);
914 arena = NULL;
915 align = uimax(pi->pi_size, 16);
916 if (pi->pi_mem.prefetch) {
917 arena = pd->pd_bus->pb_res[PCI_RANGE_PMEM];
918 }
919 if (arena == NULL) {
920 arena = pd->pd_bus->pb_res[PCI_RANGE_MEM];
921 }
922 }
923 if (arena == NULL) {
924 DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
925 " allocate %#" PRIx64 " bytes (no arena)\n",
926 PCI_SBDF_FMT_ARGS(pr, pd),
927 pi->pi_bar, pi->pi_size);
928 return;
929 }
930 error = pci_resource_alloc(arena, pi->pi_size, align, &addr);
931 if (error != 0) {
932 DPRINT("PCI: " PCI_SBDF_FMT " BAR%u failed to"
933 " allocate %#" PRIx64 " bytes (no space)\n",
934 PCI_SBDF_FMT_ARGS(pr, pd),
935 pi->pi_bar, pi->pi_size);
936 return;
937 }
938 DPRINT("PCI: " PCI_SBDF_FMT " BAR%u assigned range"
939 " 0x%#" PRIx64 "-0x%#" PRIx64 "\n",
940 PCI_SBDF_FMT_ARGS(pr, pd),
941 pi->pi_bar, addr, addr + pi->pi_size - 1);
942
943 if (pi->pi_type == PCI_MAPREG_TYPE_IO) {
944 cmd |= PCI_COMMAND_IO_ENABLE;
945 pci_conf_write(pr->pr_pc, pd->pd_tag,
946 PCI_BAR(pi->pi_bar),
947 PCI_MAPREG_IO_ADDR(addr) | PCI_MAPREG_TYPE_IO);
948 } else {
949 cmd |= PCI_COMMAND_MEM_ENABLE;
950 base = pci_conf_read(pr->pr_pc, pd->pd_tag,
951 PCI_BAR(pi->pi_bar));
952 base = PCI_MAPREG_MEM_ADDR(addr) |
953 PCI_MAPREG_MEM_TYPE(base);
954 pci_conf_write(pr->pr_pc, pd->pd_tag,
955 PCI_BAR(pi->pi_bar), base);
956 if (pi->pi_mem.memtype == PCI_MAPREG_MEM_TYPE_64BIT) {
957 base = (pcireg_t)
958 (PCI_MAPREG_MEM64_ADDR(addr) >> 32);
959 pci_conf_write(pr->pr_pc, pd->pd_tag,
960 PCI_BAR(pi->pi_bar + 1), base);
961 }
962 }
963 }
964
965 if (ocmd != cmd) {
966 pci_conf_write(pr->pr_pc, pd->pd_tag,
967 PCI_COMMAND_STATUS_REG, cmd);
968 }
969 }
970
971 /*
972 * pci_resource_alloc_bus --
973 *
974 * Attempt to assign resources to all devices on a given bus, recursively.
975 */
976 static void
977 pci_resource_alloc_bus(struct pci_resources *pr, uint8_t busno)
978 {
979 struct pci_bus *pb = PCICONF_RES_BUS(pr, busno);
980 struct pci_device *pd;
981 uint8_t devno, funcno;
982
983 for (devno = 0; devno <= pb->pb_lastdevno; devno++) {
984 for (funcno = 0; funcno < 8; funcno++) {
985 pd = PCICONF_BUS_DEVICE(pb, devno, funcno);
986 if (!pd->pd_present) {
987 if (funcno == 0) {
988 break;
989 }
990 continue;
991 }
992 if (!pd->pd_configured) {
993 pci_resource_alloc_device(pr, pd);
994 }
995 if (pd->pd_ppb) {
996 uint8_t sec_bus = PCI_BRIDGE_BUS_NUM_SECONDARY(
997 pd->pd_bridge.bridge_bus);
998 pci_resource_alloc_bus(pr, sec_bus);
999 }
1000 }
1001 }
1002 }
1003
1004 /*
1005 * pci_resource_init --
1006 *
1007 * Public interface to PCI resource manager. Scans for available devices
1008 * and assigns resources.
1009 */
1010 void
1011 pci_resource_init(const struct pci_resource_info *info)
1012 {
1013 struct pci_resources pr = {};
1014
1015 pci_resource_probe(&pr, info);
1016 pci_resource_alloc_bus(&pr, pr.pr_startbus);
1017 }
1018
1019 /*
1020 * pci_resource_typename --
1021 *
1022 * Return a string description of a PCI range type.
1023 */
1024 const char *
1025 pci_resource_typename(enum pci_range_type prtype)
1026 {
1027 KASSERT(prtype < NUM_PCI_RANGES);
1028 return pci_range_typenames[prtype];
1029 }
1030