Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.11
      1 /*      $NetBSD: sv.c,v 1.11 2000/06/26 04:56:25 simonb Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/malloc.h>
     80 #include <sys/device.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/pcidevs.h>
     85 
     86 #include <sys/audioio.h>
     87 #include <dev/audio_if.h>
     88 #include <dev/mulaw.h>
     89 #include <dev/auconv.h>
     90 
     91 #include <dev/ic/i8237reg.h>
     92 #include <dev/pci/svreg.h>
     93 #include <dev/pci/svvar.h>
     94 
     95 #include <machine/bus.h>
     96 
     97 #ifdef AUDIO_DEBUG
     98 #define DPRINTF(x)	if (svdebug) printf x
     99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    100 int	svdebug = 0;
    101 #else
    102 #define DPRINTF(x)
    103 #define DPRINTFN(n,x)
    104 #endif
    105 
    106 int	sv_match __P((struct device *, struct cfdata *, void *));
    107 void	sv_attach __P((struct device *, struct device *, void *));
    108 int	sv_intr __P((void *));
    109 
    110 struct sv_dma {
    111 	bus_dmamap_t map;
    112 	caddr_t addr;
    113 	bus_dma_segment_t segs[1];
    114 	int nsegs;
    115 	size_t size;
    116 	struct sv_dma *next;
    117 };
    118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    119 #define KERNADDR(p) ((void *)((p)->addr))
    120 
    121 struct cfattach sv_ca = {
    122 	sizeof(struct sv_softc), sv_match, sv_attach
    123 };
    124 
    125 struct audio_device sv_device = {
    126 	"S3 SonicVibes",
    127 	"",
    128 	"sv"
    129 };
    130 
    131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    132 
    133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
    134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
    135 
    136 int	sv_open __P((void *, int));
    137 void	sv_close __P((void *));
    138 int	sv_query_encoding __P((void *, struct audio_encoding *));
    139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    140 int	sv_round_blocksize __P((void *, int));
    141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    142 	    void *, struct audio_params *));
    143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    144 	    void *, struct audio_params *));
    145 int	sv_halt_output __P((void *));
    146 int	sv_halt_input __P((void *));
    147 int	sv_getdev __P((void *, struct audio_device *));
    148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
    149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
    150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
    151 void   *sv_malloc __P((void *, int, size_t, int, int));
    152 void	sv_free __P((void *, void *, int));
    153 size_t	sv_round_buffersize __P((void *, int, size_t));
    154 paddr_t	sv_mappage __P((void *, void *, off_t, int));
    155 int	sv_get_props __P((void *));
    156 
    157 #ifdef AUDIO_DEBUG
    158 void    sv_dumpregs __P((struct sv_softc *sc));
    159 #endif
    160 
    161 struct audio_hw_if sv_hw_if = {
    162 	sv_open,
    163 	sv_close,
    164 	NULL,
    165 	sv_query_encoding,
    166 	sv_set_params,
    167 	sv_round_blocksize,
    168 	NULL,
    169 	NULL,
    170 	NULL,
    171 	NULL,
    172 	NULL,
    173 	sv_halt_output,
    174 	sv_halt_input,
    175 	NULL,
    176 	sv_getdev,
    177 	NULL,
    178 	sv_mixer_set_port,
    179 	sv_mixer_get_port,
    180 	sv_query_devinfo,
    181 	sv_malloc,
    182 	sv_free,
    183 	sv_round_buffersize,
    184 	sv_mappage,
    185 	sv_get_props,
    186 	sv_trigger_output,
    187 	sv_trigger_input,
    188 };
    189 
    190 
    191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
    192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
    193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
    194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
    195 static void sv_init_mixer __P((struct sv_softc *));
    196 
    197 static void sv_defer __P((struct device *self));
    198 
    199 static void
    200 sv_write (sc, reg, val)
    201 	struct sv_softc *sc;
    202 	u_int8_t reg, val;
    203 
    204 {
    205 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    207 }
    208 
    209 static u_int8_t
    210 sv_read(sc, reg)
    211 	struct sv_softc *sc;
    212 	u_int8_t reg;
    213 
    214 {
    215 	u_int8_t val;
    216 
    217 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    218 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    219 	return val;
    220 }
    221 
    222 static u_int8_t
    223 sv_read_indirect(sc, reg)
    224 	struct sv_softc *sc;
    225 	u_int8_t reg;
    226 {
    227 	u_int8_t val;
    228 	int s = splaudio();
    229 
    230 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    231 	val = sv_read(sc, SV_CODEC_IDATA);
    232 	splx(s);
    233 	return (val);
    234 }
    235 
    236 static void
    237 sv_write_indirect(sc, reg, val)
    238 	struct sv_softc *sc;
    239 	u_int8_t reg, val;
    240 {
    241 	u_int8_t iaddr = reg & SV_IADDR_MASK;
    242 	int s = splaudio();
    243 
    244 	if (reg == SV_DMA_DATA_FORMAT)
    245 		iaddr |= SV_IADDR_MCE;
    246 
    247 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    248 	sv_write(sc, SV_CODEC_IDATA, val);
    249 	splx(s);
    250 }
    251 
    252 int
    253 sv_match(parent, match, aux)
    254 	struct device *parent;
    255 	struct cfdata *match;
    256 	void *aux;
    257 {
    258 	struct pci_attach_args *pa = aux;
    259 
    260 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    261 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    262 		return (1);
    263 
    264 	return (0);
    265 }
    266 
    267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
    268 		      int pcioffs,
    269 		      bus_space_tag_t iot, bus_size_t size,
    270 		      bus_size_t align, bus_size_t bound, int flags,
    271 		      bus_space_handle_t *ioh));
    272 
    273 #define PCI_IO_ALLOC_LOW 0xa000
    274 #define PCI_IO_ALLOC_HIGH 0xb000
    275 int
    276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
    277 	pci_chipset_tag_t pc;
    278 	pcitag_t pt;
    279 	int pcioffs;
    280 	bus_space_tag_t iot;
    281 	bus_size_t size;
    282 	bus_size_t align;
    283 	bus_size_t bound;
    284 	int flags;
    285 	bus_space_handle_t *ioh;
    286 {
    287 	bus_addr_t addr;
    288 	int error;
    289 
    290 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
    291 				size, align, bound, flags, &addr, ioh);
    292 	if (error)
    293 		return(error);
    294 
    295 	pci_conf_write(pc, pt, pcioffs, addr);
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Allocate IO addresses when all other configuration is done.
    301  */
    302 void
    303 sv_defer(self)
    304 	struct device *self;
    305 {
    306 	struct sv_softc *sc = (struct sv_softc *)self;
    307 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
    308 	pcitag_t pt = sc->sc_pa.pa_tag;
    309 	pcireg_t dmaio;
    310 
    311 	DPRINTF(("sv_defer: %p\n", sc));
    312 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    313 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    314 			  0, &sc->sc_dmaa_ioh)) {
    315 		printf("sv_attach: cannot allocate DMA A range\n");
    316 		return;
    317 	}
    318 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    319 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    320 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    321 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    322 
    323 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    324 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    325 			  0, &sc->sc_dmac_ioh)) {
    326 		printf("sv_attach: cannot allocate DMA C range\n");
    327 		return;
    328 	}
    329 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    330 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    331 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    332 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    333 
    334 	sc->sc_dmaset = 1;
    335 }
    336 
    337 void
    338 sv_attach(parent, self, aux)
    339 	struct device *parent, *self;
    340 	void *aux;
    341 {
    342 	struct sv_softc *sc = (struct sv_softc *)self;
    343 	struct pci_attach_args *pa = aux;
    344 	pci_chipset_tag_t pc = pa->pa_pc;
    345 	pcitag_t pt = pa->pa_tag;
    346 	pci_intr_handle_t ih;
    347 	pcireg_t csr;
    348 	char const *intrstr;
    349 	u_int8_t reg;
    350 	struct audio_attach_args arg;
    351 
    352 	printf ("\n");
    353 
    354 	/* Map I/O registers */
    355 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    356 			   PCI_MAPREG_TYPE_IO, 0,
    357 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    358 		printf("%s: can't map enhanced i/o space\n",
    359 		       sc->sc_dev.dv_xname);
    360 		return;
    361 	}
    362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    363 			   PCI_MAPREG_TYPE_IO, 0,
    364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    365 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    366 		return;
    367 	}
    368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    369 			   PCI_MAPREG_TYPE_IO, 0,
    370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    371 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    372 		return;
    373 	}
    374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    376 
    377 #ifdef alpha
    378 	/* XXX Force allocation through the SGMAP. */
    379 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    380 #else
    381 	sc->sc_dmatag = pa->pa_dmat;
    382 #endif
    383 
    384 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    385 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    386 
    387 	/* Enable the device. */
    388 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    389 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    390 		       csr | PCI_COMMAND_MASTER_ENABLE);
    391 
    392 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    393 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    394 
    395 	/* initialize codec registers */
    396 	reg = sv_read(sc, SV_CODEC_CONTROL);
    397 	reg |= SV_CTL_RESET;
    398 	sv_write(sc, SV_CODEC_CONTROL, reg);
    399 	delay(50);
    400 
    401 	reg = sv_read(sc, SV_CODEC_CONTROL);
    402 	reg &= ~SV_CTL_RESET;
    403 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    404 
    405 	/* This write clears the reset */
    406 	sv_write(sc, SV_CODEC_CONTROL, reg);
    407 	delay(50);
    408 
    409 	/* This write actually shoves the new values in */
    410 	sv_write(sc, SV_CODEC_CONTROL, reg);
    411 
    412 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    413 
    414 	/* Enable DMA interrupts */
    415 	reg = sv_read(sc, SV_CODEC_INTMASK);
    416 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    417 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    418 	sv_write(sc, SV_CODEC_INTMASK, reg);
    419 
    420 	sv_read(sc, SV_CODEC_STATUS);
    421 
    422 	/* Map and establish the interrupt. */
    423 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    424 			 pa->pa_intrline, &ih)) {
    425 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    426 		return;
    427 	}
    428 	intrstr = pci_intr_string(pc, ih);
    429 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    430 	if (sc->sc_ih == NULL) {
    431 		printf("%s: couldn't establish interrupt",
    432 		       sc->sc_dev.dv_xname);
    433 		if (intrstr != NULL)
    434 			printf(" at %s", intrstr);
    435 		printf("\n");
    436 		return;
    437 	}
    438 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    439 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    440 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    441 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    442 		printf(", reverb SRAM present");
    443 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    444 		printf(", wavetable ROM present");
    445 	printf("\n");
    446 
    447 	sv_init_mixer(sc);
    448 
    449 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    450 
    451 	arg.type = AUDIODEV_TYPE_OPL;
    452 	arg.hwif = 0;
    453 	arg.hdl = 0;
    454 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    455 
    456 	sc->sc_pa = *pa;	/* for deferred setup */
    457 	config_defer(self, sv_defer);
    458 }
    459 
    460 #ifdef AUDIO_DEBUG
    461 void
    462 sv_dumpregs(sc)
    463 	struct sv_softc *sc;
    464 {
    465 	int idx;
    466 
    467 #if 0
    468 	for (idx = 0; idx < 0x50; idx += 4)
    469 		printf ("%02x = %x\n", idx,
    470 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    471 #endif
    472 
    473 	for (idx = 0; idx < 6; idx++)
    474 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    475 
    476 	for (idx = 0; idx < 0x32; idx++)
    477 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    478 
    479 	for (idx = 0; idx < 0x10; idx++)
    480 		printf ("DMA %02x = %02x\n", idx,
    481 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    482 }
    483 #endif
    484 
    485 int
    486 sv_intr(p)
    487 	void *p;
    488 {
    489 	struct sv_softc *sc = p;
    490 	u_int8_t intr;
    491 
    492 	intr = sv_read(sc, SV_CODEC_STATUS);
    493 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    494 
    495 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    496 		return (0);
    497 
    498 	if (intr & SV_INTSTATUS_DMAA) {
    499 		if (sc->sc_pintr)
    500 			sc->sc_pintr(sc->sc_parg);
    501 	}
    502 
    503 	if (intr & SV_INTSTATUS_DMAC) {
    504 		if (sc->sc_rintr)
    505 			sc->sc_rintr(sc->sc_rarg);
    506 	}
    507 
    508 	return (1);
    509 }
    510 
    511 int
    512 sv_allocmem(sc, size, align, p)
    513 	struct sv_softc *sc;
    514 	size_t size;
    515 	size_t align;
    516 	struct sv_dma *p;
    517 {
    518 	int error;
    519 
    520 	p->size = size;
    521 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    522 				 p->segs, ARRAY_SIZE(p->segs),
    523 				 &p->nsegs, BUS_DMA_NOWAIT);
    524 	if (error)
    525 		return (error);
    526 
    527 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    528 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    529 	if (error)
    530 		goto free;
    531 
    532 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    533 				  0, BUS_DMA_NOWAIT, &p->map);
    534 	if (error)
    535 		goto unmap;
    536 
    537 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    538 				BUS_DMA_NOWAIT);
    539 	if (error)
    540 		goto destroy;
    541 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    542 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    543 	return (0);
    544 
    545 destroy:
    546 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    547 unmap:
    548 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    549 free:
    550 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    551 	return (error);
    552 }
    553 
    554 int
    555 sv_freemem(sc, p)
    556 	struct sv_softc *sc;
    557 	struct sv_dma *p;
    558 {
    559 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    560 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    561 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    562 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    563 	return (0);
    564 }
    565 
    566 int
    567 sv_open(addr, flags)
    568 	void *addr;
    569 	int flags;
    570 {
    571 	struct sv_softc *sc = addr;
    572 
    573 	DPRINTF(("sv_open\n"));
    574 	if (!sc->sc_dmaset)
    575 		return (ENXIO);
    576 	sc->sc_pintr = 0;
    577 	sc->sc_rintr = 0;
    578 
    579 	return (0);
    580 }
    581 
    582 /*
    583  * Close function is called at splaudio().
    584  */
    585 void
    586 sv_close(addr)
    587 	void *addr;
    588 {
    589 	struct sv_softc *sc = addr;
    590 
    591 	DPRINTF(("sv_close\n"));
    592 	sv_halt_output(sc);
    593 	sv_halt_input(sc);
    594 
    595 	sc->sc_pintr = 0;
    596 	sc->sc_rintr = 0;
    597 }
    598 
    599 int
    600 sv_query_encoding(addr, fp)
    601 	void *addr;
    602 	struct audio_encoding *fp;
    603 {
    604 	switch (fp->index) {
    605 	case 0:
    606 		strcpy(fp->name, AudioEulinear);
    607 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    608 		fp->precision = 8;
    609 		fp->flags = 0;
    610 		return (0);
    611 	case 1:
    612 		strcpy(fp->name, AudioEmulaw);
    613 		fp->encoding = AUDIO_ENCODING_ULAW;
    614 		fp->precision = 8;
    615 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    616 		return (0);
    617 	case 2:
    618 		strcpy(fp->name, AudioEalaw);
    619 		fp->encoding = AUDIO_ENCODING_ALAW;
    620 		fp->precision = 8;
    621 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    622 		return (0);
    623 	case 3:
    624 		strcpy(fp->name, AudioEslinear);
    625 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    626 		fp->precision = 8;
    627 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    628 		return (0);
    629 	case 4:
    630 		strcpy(fp->name, AudioEslinear_le);
    631 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    632 		fp->precision = 16;
    633 		fp->flags = 0;
    634 		return (0);
    635 	case 5:
    636 		strcpy(fp->name, AudioEulinear_le);
    637 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    638 		fp->precision = 16;
    639 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    640 		return (0);
    641 	case 6:
    642 		strcpy(fp->name, AudioEslinear_be);
    643 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    644 		fp->precision = 16;
    645 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    646 		return (0);
    647 	case 7:
    648 		strcpy(fp->name, AudioEulinear_be);
    649 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    650 		fp->precision = 16;
    651 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    652 		return (0);
    653 	default:
    654 		return (EINVAL);
    655 	}
    656 }
    657 
    658 int
    659 sv_set_params(addr, setmode, usemode, play, rec)
    660 	void *addr;
    661 	int setmode, usemode;
    662 	struct audio_params *play, *rec;
    663 {
    664 	struct sv_softc *sc = addr;
    665 	struct audio_params *p = NULL;
    666 	int mode;
    667 	u_int32_t val;
    668 
    669 	/*
    670 	 * This device only has one clock, so make the sample rates match.
    671 	 */
    672 	if (play->sample_rate != rec->sample_rate &&
    673 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    674 		if (setmode == AUMODE_PLAY) {
    675 			rec->sample_rate = play->sample_rate;
    676 			setmode |= AUMODE_RECORD;
    677 		} else if (setmode == AUMODE_RECORD) {
    678 			play->sample_rate = rec->sample_rate;
    679 			setmode |= AUMODE_PLAY;
    680 		} else
    681 			return (EINVAL);
    682 	}
    683 
    684 	for (mode = AUMODE_RECORD; mode != -1;
    685 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    686 		if ((setmode & mode) == 0)
    687 			continue;
    688 
    689 		p = mode == AUMODE_PLAY ? play : rec;
    690 
    691 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
    692 		    (p->precision != 8 && p->precision != 16) ||
    693 		    (p->channels != 1 && p->channels != 2))
    694 			return (EINVAL);
    695 
    696 		p->factor = 1;
    697 		p->sw_code = 0;
    698 		switch (p->encoding) {
    699 		case AUDIO_ENCODING_SLINEAR_BE:
    700 			if (p->precision == 16)
    701 				p->sw_code = swap_bytes;
    702 			else
    703 				p->sw_code = change_sign8;
    704 			break;
    705 		case AUDIO_ENCODING_SLINEAR_LE:
    706 			if (p->precision != 16)
    707 				p->sw_code = change_sign8;
    708 			break;
    709 		case AUDIO_ENCODING_ULINEAR_BE:
    710 			if (p->precision == 16) {
    711 				if (mode == AUMODE_PLAY)
    712 					p->sw_code = swap_bytes_change_sign16_le;
    713 				else
    714 					p->sw_code = change_sign16_swap_bytes_le;
    715 			}
    716 			break;
    717 		case AUDIO_ENCODING_ULINEAR_LE:
    718 			if (p->precision == 16)
    719 				p->sw_code = change_sign16_le;
    720 			break;
    721 		case AUDIO_ENCODING_ULAW:
    722 			if (mode == AUMODE_PLAY) {
    723 				p->factor = 2;
    724 				p->sw_code = mulaw_to_slinear16_le;
    725 			} else
    726 				p->sw_code = ulinear8_to_mulaw;
    727 			break;
    728 		case AUDIO_ENCODING_ALAW:
    729 			if (mode == AUMODE_PLAY) {
    730 				p->factor = 2;
    731 				p->sw_code = alaw_to_slinear16_le;
    732 			} else
    733 				p->sw_code = ulinear8_to_alaw;
    734 			break;
    735 		default:
    736 			return (EINVAL);
    737 		}
    738 	}
    739 
    740 	val = p->sample_rate * 65536 / 48000;
    741 	/*
    742 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
    743 	 * register, so we have to bias it.  This causes a little clock drift.
    744 	 * The drift is below normal crystal tolerance (.0001%), so although
    745 	 * this seems a little silly, we can pretty much ignore it.
    746 	 * (I tested the output speed with values of 1-20, just to be sure this
    747 	 * register isn't *supposed* to have a bias.  It isn't.)
    748 	 * - mycroft
    749 	 */
    750 	if (val > 65535)
    751 		val = 65535;
    752 
    753 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    754 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    755 
    756 #define F_REF 24576000
    757 
    758 #define ABS(x) (((x) < 0) ? (-x) : (x))
    759 
    760 	if (setmode & AUMODE_RECORD) {
    761 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    762 
    763 		/* f_out is dervied from the 24.576MHZ crystal by three values:
    764 		   M & N & R. The equation is as follows:
    765 
    766 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    767 
    768 		   with the constraint that:
    769 
    770 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
    771 		   and n, m >= 1
    772 		*/
    773 
    774 		int  goal_f_out = 512 * rec->sample_rate;
    775 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
    776 		int  pll_sample;
    777 		int  error;
    778 
    779 		for (a = 0; a < 8; a++) {
    780 			if ((goal_f_out * (1 << a)) >= 80000000)
    781 				break;
    782 		}
    783 
    784 		/* a != 8 because sample_rate >= 2000 */
    785 
    786 		for (n = 33; n > 2; n--) {
    787 			m = (goal_f_out * n * (1 << a)) / F_REF;
    788 			if ((m > 257) || (m < 3))
    789 				continue;
    790 
    791 			pll_sample = (m * F_REF) / (n * (1 << a));
    792 			pll_sample /= 512;
    793 
    794 			/* Threshold might be good here */
    795 			error = pll_sample - rec->sample_rate;
    796 			error = ABS(error);
    797 
    798 			if (error < best_error) {
    799 				best_error = error;
    800 				best_n = n;
    801 				best_m = m;
    802 				if (error == 0) break;
    803 			}
    804 		}
    805 
    806 		best_n -= 2;
    807 		best_m -= 2;
    808 
    809 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    810 		sv_write_indirect(sc, SV_ADC_PLL_N,
    811 				  best_n | (a << SV_PLL_R_SHIFT));
    812 	}
    813 
    814 	return (0);
    815 }
    816 
    817 int
    818 sv_round_blocksize(addr, blk)
    819 	void *addr;
    820 	int blk;
    821 {
    822 	return (blk & -32);	/* keep good alignment */
    823 }
    824 
    825 int
    826 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
    827 	void *addr;
    828 	void *start, *end;
    829 	int blksize;
    830 	void (*intr) __P((void *));
    831 	void *arg;
    832 	struct audio_params *param;
    833 {
    834 	struct sv_softc *sc = addr;
    835 	struct sv_dma *p;
    836 	u_int8_t mode;
    837 	int dma_count;
    838 
    839 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    840 	    addr, start, end, blksize, intr, arg));
    841 	sc->sc_pintr = intr;
    842 	sc->sc_parg = arg;
    843 
    844 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    845 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    846 	if (param->precision * param->factor == 16)
    847 		mode |= SV_DMAA_FORMAT16;
    848 	if (param->channels == 2)
    849 		mode |= SV_DMAA_STEREO;
    850 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    851 
    852 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    853 		;
    854 	if (!p) {
    855 		printf("sv_trigger_output: bad addr %p\n", start);
    856 		return (EINVAL);
    857 	}
    858 
    859 	dma_count = ((char *)end - (char *)start) - 1;
    860 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
    861 	    (int)DMAADDR(p), dma_count));
    862 
    863 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    864 			  DMAADDR(p));
    865 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    866 			  dma_count);
    867 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    868 			  DMA37MD_READ | DMA37MD_LOOP);
    869 
    870 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    871 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    872 
    873 	dma_count = blksize - 1;
    874 
    875 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    876 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    877 
    878 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    879 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    880 
    881 	return (0);
    882 }
    883 
    884 int
    885 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
    886 	void *addr;
    887 	void *start, *end;
    888 	int blksize;
    889 	void (*intr) __P((void *));
    890 	void *arg;
    891 	struct audio_params *param;
    892 {
    893 	struct sv_softc *sc = addr;
    894 	struct sv_dma *p;
    895 	u_int8_t mode;
    896 	int dma_count;
    897 
    898 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    899 	    addr, start, end, blksize, intr, arg));
    900 	sc->sc_rintr = intr;
    901 	sc->sc_rarg = arg;
    902 
    903 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    904 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    905 	if (param->precision * param->factor == 16)
    906 		mode |= SV_DMAC_FORMAT16;
    907 	if (param->channels == 2)
    908 		mode |= SV_DMAC_STEREO;
    909 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    910 
    911 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    912 		;
    913 	if (!p) {
    914 		printf("sv_trigger_input: bad addr %p\n", start);
    915 		return (EINVAL);
    916 	}
    917 
    918 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    919 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
    920 	    (int)DMAADDR(p), dma_count));
    921 
    922 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    923 			  DMAADDR(p));
    924 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    925 			  dma_count);
    926 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    927 			  DMA37MD_WRITE | DMA37MD_LOOP);
    928 
    929 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    930 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    931 
    932 	dma_count = (blksize >> 1) - 1;
    933 
    934 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    935 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    936 
    937 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    938 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    939 
    940 	return (0);
    941 }
    942 
    943 int
    944 sv_halt_output(addr)
    945 	void *addr;
    946 {
    947 	struct sv_softc *sc = addr;
    948 	u_int8_t mode;
    949 
    950 	DPRINTF(("sv: sv_halt_output\n"));
    951 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    952 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    953 
    954 	return (0);
    955 }
    956 
    957 int
    958 sv_halt_input(addr)
    959 	void *addr;
    960 {
    961 	struct sv_softc *sc = addr;
    962 	u_int8_t mode;
    963 
    964 	DPRINTF(("sv: sv_halt_input\n"));
    965 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    966 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    967 
    968 	return (0);
    969 }
    970 
    971 int
    972 sv_getdev(addr, retp)
    973 	void *addr;
    974 	struct audio_device *retp;
    975 {
    976 	*retp = sv_device;
    977 	return (0);
    978 }
    979 
    980 
    981 /*
    982  * Mixer related code is here
    983  *
    984  */
    985 
    986 #define SV_INPUT_CLASS 0
    987 #define SV_OUTPUT_CLASS 1
    988 #define SV_RECORD_CLASS 2
    989 
    990 #define SV_LAST_CLASS 2
    991 
    992 static const char *mixer_classes[] =
    993 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    994 
    995 static const struct {
    996 	u_int8_t   l_port;
    997 	u_int8_t   r_port;
    998 	u_int8_t   mask;
    999 	u_int8_t   class;
   1000 	const char *audio;
   1001 } ports[] = {
   1002   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
   1003     SV_INPUT_CLASS, "aux1" },
   1004   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
   1005     SV_INPUT_CLASS, AudioNcd },
   1006   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
   1007     SV_INPUT_CLASS, AudioNline },
   1008   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
   1009   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
   1010     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
   1011   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
   1012     SV_INPUT_CLASS, "aux2" },
   1013   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
   1014     SV_INPUT_CLASS, AudioNdac },
   1015   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
   1016     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
   1017 };
   1018 
   1019 
   1020 static const struct {
   1021 	int idx;
   1022 	const char *name;
   1023 } record_sources[] = {
   1024 	{ SV_REC_CD, AudioNcd },
   1025 	{ SV_REC_DAC, AudioNdac },
   1026 	{ SV_REC_AUX2, "aux2" },
   1027 	{ SV_REC_LINE, AudioNline },
   1028 	{ SV_REC_AUX1, "aux1" },
   1029 	{ SV_REC_MIC, AudioNmicrophone },
   1030 	{ SV_REC_MIXER, AudioNmixerout }
   1031 };
   1032 
   1033 
   1034 #define SV_DEVICES_PER_PORT 2
   1035 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
   1036 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
   1037 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
   1038 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
   1039 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
   1040 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
   1041 
   1042 int
   1043 sv_query_devinfo(addr, dip)
   1044 	void *addr;
   1045 	mixer_devinfo_t *dip;
   1046 {
   1047 	int i;
   1048 
   1049 	/* It's a class */
   1050 	if (dip->index <= SV_LAST_CLASS) {
   1051 		dip->type = AUDIO_MIXER_CLASS;
   1052 		dip->mixer_class = dip->index;
   1053 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1054 		strcpy(dip->label.name,
   1055 		       mixer_classes[dip->index]);
   1056 		return (0);
   1057 	}
   1058 
   1059 	if (dip->index >= SV_FIRST_MIXER &&
   1060 	    dip->index <= SV_LAST_MIXER) {
   1061 		int off = dip->index - SV_FIRST_MIXER;
   1062 		int mute = (off % SV_DEVICES_PER_PORT);
   1063 		int idx = off / SV_DEVICES_PER_PORT;
   1064 
   1065 		dip->mixer_class = ports[idx].class;
   1066 		strcpy(dip->label.name, ports[idx].audio);
   1067 
   1068 		if (!mute) {
   1069 			dip->type = AUDIO_MIXER_VALUE;
   1070 			dip->prev = AUDIO_MIXER_LAST;
   1071 			dip->next = dip->index + 1;
   1072 
   1073 			if (ports[idx].r_port != 0)
   1074 				dip->un.v.num_channels = 2;
   1075 			else
   1076 				dip->un.v.num_channels = 1;
   1077 
   1078 			strcpy(dip->un.v.units.name, AudioNvolume);
   1079 		} else {
   1080 			dip->type = AUDIO_MIXER_ENUM;
   1081 			dip->prev = dip->index - 1;
   1082 			dip->next = AUDIO_MIXER_LAST;
   1083 
   1084 			strcpy(dip->label.name, AudioNmute);
   1085 			dip->un.e.num_mem = 2;
   1086 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1087 			dip->un.e.member[0].ord = 0;
   1088 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1089 			dip->un.e.member[1].ord = 1;
   1090 		}
   1091 
   1092 		return (0);
   1093 	}
   1094 
   1095 	switch (dip->index) {
   1096 	case SV_RECORD_SOURCE:
   1097 		dip->mixer_class = SV_RECORD_CLASS;
   1098 		dip->prev = AUDIO_MIXER_LAST;
   1099 		dip->next = SV_RECORD_GAIN;
   1100 		strcpy(dip->label.name, AudioNsource);
   1101 		dip->type = AUDIO_MIXER_ENUM;
   1102 
   1103 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1104 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1105 			strcpy(dip->un.e.member[i].label.name,
   1106 			       record_sources[i].name);
   1107 			dip->un.e.member[i].ord = record_sources[i].idx;
   1108 		}
   1109 		return (0);
   1110 
   1111 	case SV_RECORD_GAIN:
   1112 		dip->mixer_class = SV_RECORD_CLASS;
   1113 		dip->prev = SV_RECORD_SOURCE;
   1114 		dip->next = AUDIO_MIXER_LAST;
   1115 		strcpy(dip->label.name, "gain");
   1116 		dip->type = AUDIO_MIXER_VALUE;
   1117 		dip->un.v.num_channels = 1;
   1118 		strcpy(dip->un.v.units.name, AudioNvolume);
   1119 		return (0);
   1120 
   1121 	case SV_MIC_BOOST:
   1122 		dip->mixer_class = SV_RECORD_CLASS;
   1123 		dip->prev = AUDIO_MIXER_LAST;
   1124 		dip->next = AUDIO_MIXER_LAST;
   1125 		strcpy(dip->label.name, "micboost");
   1126 		goto on_off;
   1127 
   1128 	case SV_SRS_MODE:
   1129 		dip->mixer_class = SV_OUTPUT_CLASS;
   1130 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1131 		strcpy(dip->label.name, AudioNspatial);
   1132 
   1133 	on_off:
   1134 		dip->type = AUDIO_MIXER_ENUM;
   1135 		dip->un.e.num_mem = 2;
   1136 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1137 		dip->un.e.member[0].ord = 0;
   1138 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1139 		dip->un.e.member[1].ord = 1;
   1140 		return (0);
   1141 	}
   1142 
   1143 	return (ENXIO);
   1144 }
   1145 
   1146 int
   1147 sv_mixer_set_port(addr, cp)
   1148 	void *addr;
   1149 	mixer_ctrl_t *cp;
   1150 {
   1151 	struct sv_softc *sc = addr;
   1152 	u_int8_t reg;
   1153 	int idx;
   1154 
   1155 	if (cp->dev >= SV_FIRST_MIXER &&
   1156 	    cp->dev <= SV_LAST_MIXER) {
   1157 		int off = cp->dev - SV_FIRST_MIXER;
   1158 		int mute = (off % SV_DEVICES_PER_PORT);
   1159 		idx = off / SV_DEVICES_PER_PORT;
   1160 
   1161 		if (mute) {
   1162 			if (cp->type != AUDIO_MIXER_ENUM)
   1163 				return (EINVAL);
   1164 
   1165 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1166 			if (cp->un.ord)
   1167 				reg |= SV_MUTE_BIT;
   1168 			else
   1169 				reg &= ~SV_MUTE_BIT;
   1170 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1171 
   1172 			if (ports[idx].r_port) {
   1173 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1174 				if (cp->un.ord)
   1175 					reg |= SV_MUTE_BIT;
   1176 				else
   1177 					reg &= ~SV_MUTE_BIT;
   1178 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1179 			}
   1180 		} else {
   1181 			int  lval, rval;
   1182 
   1183 			if (cp->type != AUDIO_MIXER_VALUE)
   1184 				return (EINVAL);
   1185 
   1186 			if (cp->un.value.num_channels != 1 &&
   1187 			    cp->un.value.num_channels != 2)
   1188 				return (EINVAL);
   1189 
   1190 			if (ports[idx].r_port == 0) {
   1191 				if (cp->un.value.num_channels != 1)
   1192 					return (EINVAL);
   1193 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1194 				rval = 0; /* shut up GCC */
   1195 			} else {
   1196 				if (cp->un.value.num_channels != 2)
   1197 					return (EINVAL);
   1198 
   1199 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1200 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1201       }
   1202 
   1203 
   1204 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1205 			reg &= ~(ports[idx].mask);
   1206 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1207 				AUDIO_MAX_GAIN;
   1208 			reg |= lval;
   1209 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1210 
   1211 			if (ports[idx].r_port != 0) {
   1212 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1213 				reg &= ~(ports[idx].mask);
   1214 
   1215 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1216 					AUDIO_MAX_GAIN;
   1217 				reg |= rval;
   1218 
   1219 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1220 			}
   1221 
   1222 			sv_read_indirect(sc, ports[idx].l_port);
   1223 		}
   1224 
   1225 		return (0);
   1226 	}
   1227 
   1228 
   1229 	switch (cp->dev) {
   1230 	case SV_RECORD_SOURCE:
   1231 		if (cp->type != AUDIO_MIXER_ENUM)
   1232 			return (EINVAL);
   1233 
   1234 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1235 			if (record_sources[idx].idx == cp->un.ord)
   1236 				goto found;
   1237 		}
   1238 
   1239 		return (EINVAL);
   1240 
   1241 	found:
   1242 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1243 		reg &= ~SV_REC_SOURCE_MASK;
   1244 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1245 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1246 
   1247 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1248 		reg &= ~SV_REC_SOURCE_MASK;
   1249 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1250 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1251 		return (0);
   1252 
   1253 	case SV_RECORD_GAIN:
   1254 	{
   1255 		int val;
   1256 
   1257 		if (cp->type != AUDIO_MIXER_VALUE)
   1258 			return (EINVAL);
   1259 
   1260 		if (cp->un.value.num_channels != 1)
   1261 			return (EINVAL);
   1262 
   1263 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
   1264 			/ AUDIO_MAX_GAIN;
   1265 
   1266 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1267 		reg &= ~SV_REC_GAIN_MASK;
   1268 		reg |= val;
   1269 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1270 
   1271 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1272 		reg &= ~SV_REC_GAIN_MASK;
   1273 		reg |= val;
   1274 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1275 	}
   1276 	return (0);
   1277 
   1278 	case SV_MIC_BOOST:
   1279 		if (cp->type != AUDIO_MIXER_ENUM)
   1280 			return (EINVAL);
   1281 
   1282 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1283 		if (cp->un.ord) {
   1284 			reg |= SV_MIC_BOOST_BIT;
   1285 		} else {
   1286 			reg &= ~SV_MIC_BOOST_BIT;
   1287 		}
   1288 
   1289 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1290 		return (0);
   1291 
   1292 	case SV_SRS_MODE:
   1293 		if (cp->type != AUDIO_MIXER_ENUM)
   1294 			return (EINVAL);
   1295 
   1296 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1297 		if (cp->un.ord) {
   1298 			reg &= ~SV_SRS_SPACE_ONOFF;
   1299 		} else {
   1300 			reg |= SV_SRS_SPACE_ONOFF;
   1301 		}
   1302 
   1303 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1304 		return (0);
   1305 	}
   1306 
   1307 	return (EINVAL);
   1308 }
   1309 
   1310 int
   1311 sv_mixer_get_port(addr, cp)
   1312 	void *addr;
   1313 	mixer_ctrl_t *cp;
   1314 {
   1315 	struct sv_softc *sc = addr;
   1316 	int val;
   1317 	u_int8_t reg;
   1318 
   1319 	if (cp->dev >= SV_FIRST_MIXER &&
   1320 	    cp->dev <= SV_LAST_MIXER) {
   1321 		int off = cp->dev - SV_FIRST_MIXER;
   1322 		int mute = (off % 2);
   1323 		int idx = off / 2;
   1324 
   1325 		if (mute) {
   1326 			if (cp->type != AUDIO_MIXER_ENUM)
   1327 				return (EINVAL);
   1328 
   1329 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1330 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1331 		} else {
   1332 			if (cp->type != AUDIO_MIXER_VALUE)
   1333 				return (EINVAL);
   1334 
   1335 			if (cp->un.value.num_channels != 1 &&
   1336 			    cp->un.value.num_channels != 2)
   1337 				return (EINVAL);
   1338 
   1339 			if ((ports[idx].r_port == 0 &&
   1340 			     cp->un.value.num_channels != 1) ||
   1341 			    (ports[idx].r_port != 0 &&
   1342 			     cp->un.value.num_channels != 2))
   1343 				return (EINVAL);
   1344 
   1345 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1346 			reg &= ports[idx].mask;
   1347 
   1348 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1349 
   1350 			if (ports[idx].r_port != 0) {
   1351 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1352 
   1353 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1354 				reg &= ports[idx].mask;
   1355 
   1356 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1357 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1358 			} else
   1359 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1360 		}
   1361 
   1362 		return (0);
   1363   }
   1364 
   1365 	switch (cp->dev) {
   1366 	case SV_RECORD_SOURCE:
   1367 		if (cp->type != AUDIO_MIXER_ENUM)
   1368 			return (EINVAL);
   1369 
   1370 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1371 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1372 
   1373 		return (0);
   1374 
   1375 	case SV_RECORD_GAIN:
   1376 		if (cp->type != AUDIO_MIXER_VALUE)
   1377 			return (EINVAL);
   1378 		if (cp->un.value.num_channels != 1)
   1379 			return (EINVAL);
   1380 
   1381 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1382 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1383 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1384 
   1385 		return (0);
   1386 
   1387 	case SV_MIC_BOOST:
   1388 		if (cp->type != AUDIO_MIXER_ENUM)
   1389 			return (EINVAL);
   1390 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1391 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1392 		return (0);
   1393 
   1394 
   1395 	case SV_SRS_MODE:
   1396 		if (cp->type != AUDIO_MIXER_ENUM)
   1397 			return (EINVAL);
   1398 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1399 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1400 		return (0);
   1401 	}
   1402 
   1403 	return (EINVAL);
   1404 }
   1405 
   1406 
   1407 static void
   1408 sv_init_mixer(sc)
   1409 	struct sv_softc *sc;
   1410 {
   1411 	mixer_ctrl_t cp;
   1412 	int i;
   1413 
   1414 	cp.type = AUDIO_MIXER_ENUM;
   1415 	cp.dev = SV_SRS_MODE;
   1416 	cp.un.ord = 0;
   1417 
   1418 	sv_mixer_set_port(sc, &cp);
   1419 
   1420 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1421 		if (ports[i].audio == AudioNdac) {
   1422 			cp.type = AUDIO_MIXER_ENUM;
   1423 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1424 			cp.un.ord = 0;
   1425 			sv_mixer_set_port(sc, &cp);
   1426 			break;
   1427 		}
   1428 	}
   1429 }
   1430 
   1431 void *
   1432 sv_malloc(addr, direction, size, pool, flags)
   1433 	void *addr;
   1434 	int direction;
   1435 	size_t size;
   1436 	int pool, flags;
   1437 {
   1438 	struct sv_softc *sc = addr;
   1439 	struct sv_dma *p;
   1440 	int error;
   1441 
   1442 	p = malloc(sizeof(*p), pool, flags);
   1443 	if (!p)
   1444 		return (0);
   1445 	error = sv_allocmem(sc, size, 16, p);
   1446 	if (error) {
   1447 		free(p, pool);
   1448 		return (0);
   1449 	}
   1450 	p->next = sc->sc_dmas;
   1451 	sc->sc_dmas = p;
   1452 	return (KERNADDR(p));
   1453 }
   1454 
   1455 void
   1456 sv_free(addr, ptr, pool)
   1457 	void *addr;
   1458 	void *ptr;
   1459 	int pool;
   1460 {
   1461 	struct sv_softc *sc = addr;
   1462 	struct sv_dma **pp, *p;
   1463 
   1464 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1465 		if (KERNADDR(p) == ptr) {
   1466 			sv_freemem(sc, p);
   1467 			*pp = p->next;
   1468 			free(p, pool);
   1469 			return;
   1470 		}
   1471 	}
   1472 }
   1473 
   1474 size_t
   1475 sv_round_buffersize(addr, direction, size)
   1476 	void *addr;
   1477 	int direction;
   1478 	size_t size;
   1479 {
   1480 	return (size);
   1481 }
   1482 
   1483 paddr_t
   1484 sv_mappage(addr, mem, off, prot)
   1485 	void *addr;
   1486 	void *mem;
   1487 	off_t off;
   1488 	int prot;
   1489 {
   1490 	struct sv_softc *sc = addr;
   1491 	struct sv_dma *p;
   1492 
   1493 	if (off < 0)
   1494 		return (-1);
   1495 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1496 		;
   1497 	if (!p)
   1498 		return (-1);
   1499 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1500 				off, prot, BUS_DMA_WAITOK));
   1501 }
   1502 
   1503 int
   1504 sv_get_props(addr)
   1505 	void *addr;
   1506 {
   1507 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1508 }
   1509