sv.c revision 1.11 1 /* $NetBSD: sv.c,v 1.11 2000/06/26 04:56:25 simonb Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94
95 #include <machine/bus.h>
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (svdebug) printf x
99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
100 int svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 int sv_match __P((struct device *, struct cfdata *, void *));
107 void sv_attach __P((struct device *, struct device *, void *));
108 int sv_intr __P((void *));
109
110 struct sv_dma {
111 bus_dmamap_t map;
112 caddr_t addr;
113 bus_dma_segment_t segs[1];
114 int nsegs;
115 size_t size;
116 struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120
121 struct cfattach sv_ca = {
122 sizeof(struct sv_softc), sv_match, sv_attach
123 };
124
125 struct audio_device sv_device = {
126 "S3 SonicVibes",
127 "",
128 "sv"
129 };
130
131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
132
133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
134 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
135
136 int sv_open __P((void *, int));
137 void sv_close __P((void *));
138 int sv_query_encoding __P((void *, struct audio_encoding *));
139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int sv_round_blocksize __P((void *, int));
141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 void *, struct audio_params *));
143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 void *, struct audio_params *));
145 int sv_halt_output __P((void *));
146 int sv_halt_input __P((void *));
147 int sv_getdev __P((void *, struct audio_device *));
148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void *sv_malloc __P((void *, int, size_t, int, int));
152 void sv_free __P((void *, void *, int));
153 size_t sv_round_buffersize __P((void *, int, size_t));
154 paddr_t sv_mappage __P((void *, void *, off_t, int));
155 int sv_get_props __P((void *));
156
157 #ifdef AUDIO_DEBUG
158 void sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160
161 struct audio_hw_if sv_hw_if = {
162 sv_open,
163 sv_close,
164 NULL,
165 sv_query_encoding,
166 sv_set_params,
167 sv_round_blocksize,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 sv_halt_output,
174 sv_halt_input,
175 NULL,
176 sv_getdev,
177 NULL,
178 sv_mixer_set_port,
179 sv_mixer_get_port,
180 sv_query_devinfo,
181 sv_malloc,
182 sv_free,
183 sv_round_buffersize,
184 sv_mappage,
185 sv_get_props,
186 sv_trigger_output,
187 sv_trigger_input,
188 };
189
190
191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_init_mixer __P((struct sv_softc *));
196
197 static void sv_defer __P((struct device *self));
198
199 static void
200 sv_write (sc, reg, val)
201 struct sv_softc *sc;
202 u_int8_t reg, val;
203
204 {
205 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
206 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
207 }
208
209 static u_int8_t
210 sv_read(sc, reg)
211 struct sv_softc *sc;
212 u_int8_t reg;
213
214 {
215 u_int8_t val;
216
217 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
218 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
219 return val;
220 }
221
222 static u_int8_t
223 sv_read_indirect(sc, reg)
224 struct sv_softc *sc;
225 u_int8_t reg;
226 {
227 u_int8_t val;
228 int s = splaudio();
229
230 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
231 val = sv_read(sc, SV_CODEC_IDATA);
232 splx(s);
233 return (val);
234 }
235
236 static void
237 sv_write_indirect(sc, reg, val)
238 struct sv_softc *sc;
239 u_int8_t reg, val;
240 {
241 u_int8_t iaddr = reg & SV_IADDR_MASK;
242 int s = splaudio();
243
244 if (reg == SV_DMA_DATA_FORMAT)
245 iaddr |= SV_IADDR_MCE;
246
247 sv_write(sc, SV_CODEC_IADDR, iaddr);
248 sv_write(sc, SV_CODEC_IDATA, val);
249 splx(s);
250 }
251
252 int
253 sv_match(parent, match, aux)
254 struct device *parent;
255 struct cfdata *match;
256 void *aux;
257 {
258 struct pci_attach_args *pa = aux;
259
260 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
261 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
262 return (1);
263
264 return (0);
265 }
266
267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
268 int pcioffs,
269 bus_space_tag_t iot, bus_size_t size,
270 bus_size_t align, bus_size_t bound, int flags,
271 bus_space_handle_t *ioh));
272
273 #define PCI_IO_ALLOC_LOW 0xa000
274 #define PCI_IO_ALLOC_HIGH 0xb000
275 int
276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
277 pci_chipset_tag_t pc;
278 pcitag_t pt;
279 int pcioffs;
280 bus_space_tag_t iot;
281 bus_size_t size;
282 bus_size_t align;
283 bus_size_t bound;
284 int flags;
285 bus_space_handle_t *ioh;
286 {
287 bus_addr_t addr;
288 int error;
289
290 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
291 size, align, bound, flags, &addr, ioh);
292 if (error)
293 return(error);
294
295 pci_conf_write(pc, pt, pcioffs, addr);
296 return (0);
297 }
298
299 /*
300 * Allocate IO addresses when all other configuration is done.
301 */
302 void
303 sv_defer(self)
304 struct device *self;
305 {
306 struct sv_softc *sc = (struct sv_softc *)self;
307 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
308 pcitag_t pt = sc->sc_pa.pa_tag;
309 pcireg_t dmaio;
310
311 DPRINTF(("sv_defer: %p\n", sc));
312 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
313 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
314 0, &sc->sc_dmaa_ioh)) {
315 printf("sv_attach: cannot allocate DMA A range\n");
316 return;
317 }
318 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
319 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
320 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
321 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
322
323 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
324 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
325 0, &sc->sc_dmac_ioh)) {
326 printf("sv_attach: cannot allocate DMA C range\n");
327 return;
328 }
329 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
330 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
331 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
332 dmaio | SV_DMA_CHANNEL_ENABLE);
333
334 sc->sc_dmaset = 1;
335 }
336
337 void
338 sv_attach(parent, self, aux)
339 struct device *parent, *self;
340 void *aux;
341 {
342 struct sv_softc *sc = (struct sv_softc *)self;
343 struct pci_attach_args *pa = aux;
344 pci_chipset_tag_t pc = pa->pa_pc;
345 pcitag_t pt = pa->pa_tag;
346 pci_intr_handle_t ih;
347 pcireg_t csr;
348 char const *intrstr;
349 u_int8_t reg;
350 struct audio_attach_args arg;
351
352 printf ("\n");
353
354 /* Map I/O registers */
355 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
356 PCI_MAPREG_TYPE_IO, 0,
357 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
358 printf("%s: can't map enhanced i/o space\n",
359 sc->sc_dev.dv_xname);
360 return;
361 }
362 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
363 PCI_MAPREG_TYPE_IO, 0,
364 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
365 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
366 return;
367 }
368 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
369 PCI_MAPREG_TYPE_IO, 0,
370 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
371 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
372 return;
373 }
374 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
375 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
376
377 #ifdef alpha
378 /* XXX Force allocation through the SGMAP. */
379 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
380 #else
381 sc->sc_dmatag = pa->pa_dmat;
382 #endif
383
384 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
385 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
386
387 /* Enable the device. */
388 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
389 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
390 csr | PCI_COMMAND_MASTER_ENABLE);
391
392 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
393 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
394
395 /* initialize codec registers */
396 reg = sv_read(sc, SV_CODEC_CONTROL);
397 reg |= SV_CTL_RESET;
398 sv_write(sc, SV_CODEC_CONTROL, reg);
399 delay(50);
400
401 reg = sv_read(sc, SV_CODEC_CONTROL);
402 reg &= ~SV_CTL_RESET;
403 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
404
405 /* This write clears the reset */
406 sv_write(sc, SV_CODEC_CONTROL, reg);
407 delay(50);
408
409 /* This write actually shoves the new values in */
410 sv_write(sc, SV_CODEC_CONTROL, reg);
411
412 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
413
414 /* Enable DMA interrupts */
415 reg = sv_read(sc, SV_CODEC_INTMASK);
416 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
417 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
418 sv_write(sc, SV_CODEC_INTMASK, reg);
419
420 sv_read(sc, SV_CODEC_STATUS);
421
422 /* Map and establish the interrupt. */
423 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
424 pa->pa_intrline, &ih)) {
425 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
426 return;
427 }
428 intrstr = pci_intr_string(pc, ih);
429 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
430 if (sc->sc_ih == NULL) {
431 printf("%s: couldn't establish interrupt",
432 sc->sc_dev.dv_xname);
433 if (intrstr != NULL)
434 printf(" at %s", intrstr);
435 printf("\n");
436 return;
437 }
438 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
439 printf("%s: rev %d", sc->sc_dev.dv_xname,
440 sv_read_indirect(sc, SV_REVISION_LEVEL));
441 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
442 printf(", reverb SRAM present");
443 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
444 printf(", wavetable ROM present");
445 printf("\n");
446
447 sv_init_mixer(sc);
448
449 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
450
451 arg.type = AUDIODEV_TYPE_OPL;
452 arg.hwif = 0;
453 arg.hdl = 0;
454 (void)config_found(&sc->sc_dev, &arg, audioprint);
455
456 sc->sc_pa = *pa; /* for deferred setup */
457 config_defer(self, sv_defer);
458 }
459
460 #ifdef AUDIO_DEBUG
461 void
462 sv_dumpregs(sc)
463 struct sv_softc *sc;
464 {
465 int idx;
466
467 #if 0
468 for (idx = 0; idx < 0x50; idx += 4)
469 printf ("%02x = %x\n", idx,
470 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
471 #endif
472
473 for (idx = 0; idx < 6; idx++)
474 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
475
476 for (idx = 0; idx < 0x32; idx++)
477 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
478
479 for (idx = 0; idx < 0x10; idx++)
480 printf ("DMA %02x = %02x\n", idx,
481 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
482 }
483 #endif
484
485 int
486 sv_intr(p)
487 void *p;
488 {
489 struct sv_softc *sc = p;
490 u_int8_t intr;
491
492 intr = sv_read(sc, SV_CODEC_STATUS);
493 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494
495 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
496 return (0);
497
498 if (intr & SV_INTSTATUS_DMAA) {
499 if (sc->sc_pintr)
500 sc->sc_pintr(sc->sc_parg);
501 }
502
503 if (intr & SV_INTSTATUS_DMAC) {
504 if (sc->sc_rintr)
505 sc->sc_rintr(sc->sc_rarg);
506 }
507
508 return (1);
509 }
510
511 int
512 sv_allocmem(sc, size, align, p)
513 struct sv_softc *sc;
514 size_t size;
515 size_t align;
516 struct sv_dma *p;
517 {
518 int error;
519
520 p->size = size;
521 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
522 p->segs, ARRAY_SIZE(p->segs),
523 &p->nsegs, BUS_DMA_NOWAIT);
524 if (error)
525 return (error);
526
527 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
528 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
529 if (error)
530 goto free;
531
532 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
533 0, BUS_DMA_NOWAIT, &p->map);
534 if (error)
535 goto unmap;
536
537 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
538 BUS_DMA_NOWAIT);
539 if (error)
540 goto destroy;
541 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
542 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
543 return (0);
544
545 destroy:
546 bus_dmamap_destroy(sc->sc_dmatag, p->map);
547 unmap:
548 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
549 free:
550 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
551 return (error);
552 }
553
554 int
555 sv_freemem(sc, p)
556 struct sv_softc *sc;
557 struct sv_dma *p;
558 {
559 bus_dmamap_unload(sc->sc_dmatag, p->map);
560 bus_dmamap_destroy(sc->sc_dmatag, p->map);
561 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
562 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
563 return (0);
564 }
565
566 int
567 sv_open(addr, flags)
568 void *addr;
569 int flags;
570 {
571 struct sv_softc *sc = addr;
572
573 DPRINTF(("sv_open\n"));
574 if (!sc->sc_dmaset)
575 return (ENXIO);
576 sc->sc_pintr = 0;
577 sc->sc_rintr = 0;
578
579 return (0);
580 }
581
582 /*
583 * Close function is called at splaudio().
584 */
585 void
586 sv_close(addr)
587 void *addr;
588 {
589 struct sv_softc *sc = addr;
590
591 DPRINTF(("sv_close\n"));
592 sv_halt_output(sc);
593 sv_halt_input(sc);
594
595 sc->sc_pintr = 0;
596 sc->sc_rintr = 0;
597 }
598
599 int
600 sv_query_encoding(addr, fp)
601 void *addr;
602 struct audio_encoding *fp;
603 {
604 switch (fp->index) {
605 case 0:
606 strcpy(fp->name, AudioEulinear);
607 fp->encoding = AUDIO_ENCODING_ULINEAR;
608 fp->precision = 8;
609 fp->flags = 0;
610 return (0);
611 case 1:
612 strcpy(fp->name, AudioEmulaw);
613 fp->encoding = AUDIO_ENCODING_ULAW;
614 fp->precision = 8;
615 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
616 return (0);
617 case 2:
618 strcpy(fp->name, AudioEalaw);
619 fp->encoding = AUDIO_ENCODING_ALAW;
620 fp->precision = 8;
621 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
622 return (0);
623 case 3:
624 strcpy(fp->name, AudioEslinear);
625 fp->encoding = AUDIO_ENCODING_SLINEAR;
626 fp->precision = 8;
627 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
628 return (0);
629 case 4:
630 strcpy(fp->name, AudioEslinear_le);
631 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
632 fp->precision = 16;
633 fp->flags = 0;
634 return (0);
635 case 5:
636 strcpy(fp->name, AudioEulinear_le);
637 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
638 fp->precision = 16;
639 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
640 return (0);
641 case 6:
642 strcpy(fp->name, AudioEslinear_be);
643 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
644 fp->precision = 16;
645 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
646 return (0);
647 case 7:
648 strcpy(fp->name, AudioEulinear_be);
649 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
650 fp->precision = 16;
651 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
652 return (0);
653 default:
654 return (EINVAL);
655 }
656 }
657
658 int
659 sv_set_params(addr, setmode, usemode, play, rec)
660 void *addr;
661 int setmode, usemode;
662 struct audio_params *play, *rec;
663 {
664 struct sv_softc *sc = addr;
665 struct audio_params *p = NULL;
666 int mode;
667 u_int32_t val;
668
669 /*
670 * This device only has one clock, so make the sample rates match.
671 */
672 if (play->sample_rate != rec->sample_rate &&
673 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
674 if (setmode == AUMODE_PLAY) {
675 rec->sample_rate = play->sample_rate;
676 setmode |= AUMODE_RECORD;
677 } else if (setmode == AUMODE_RECORD) {
678 play->sample_rate = rec->sample_rate;
679 setmode |= AUMODE_PLAY;
680 } else
681 return (EINVAL);
682 }
683
684 for (mode = AUMODE_RECORD; mode != -1;
685 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
686 if ((setmode & mode) == 0)
687 continue;
688
689 p = mode == AUMODE_PLAY ? play : rec;
690
691 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
692 (p->precision != 8 && p->precision != 16) ||
693 (p->channels != 1 && p->channels != 2))
694 return (EINVAL);
695
696 p->factor = 1;
697 p->sw_code = 0;
698 switch (p->encoding) {
699 case AUDIO_ENCODING_SLINEAR_BE:
700 if (p->precision == 16)
701 p->sw_code = swap_bytes;
702 else
703 p->sw_code = change_sign8;
704 break;
705 case AUDIO_ENCODING_SLINEAR_LE:
706 if (p->precision != 16)
707 p->sw_code = change_sign8;
708 break;
709 case AUDIO_ENCODING_ULINEAR_BE:
710 if (p->precision == 16) {
711 if (mode == AUMODE_PLAY)
712 p->sw_code = swap_bytes_change_sign16_le;
713 else
714 p->sw_code = change_sign16_swap_bytes_le;
715 }
716 break;
717 case AUDIO_ENCODING_ULINEAR_LE:
718 if (p->precision == 16)
719 p->sw_code = change_sign16_le;
720 break;
721 case AUDIO_ENCODING_ULAW:
722 if (mode == AUMODE_PLAY) {
723 p->factor = 2;
724 p->sw_code = mulaw_to_slinear16_le;
725 } else
726 p->sw_code = ulinear8_to_mulaw;
727 break;
728 case AUDIO_ENCODING_ALAW:
729 if (mode == AUMODE_PLAY) {
730 p->factor = 2;
731 p->sw_code = alaw_to_slinear16_le;
732 } else
733 p->sw_code = ulinear8_to_alaw;
734 break;
735 default:
736 return (EINVAL);
737 }
738 }
739
740 val = p->sample_rate * 65536 / 48000;
741 /*
742 * If the sample rate is exactly 48KHz, the fraction would overflow the
743 * register, so we have to bias it. This causes a little clock drift.
744 * The drift is below normal crystal tolerance (.0001%), so although
745 * this seems a little silly, we can pretty much ignore it.
746 * (I tested the output speed with values of 1-20, just to be sure this
747 * register isn't *supposed* to have a bias. It isn't.)
748 * - mycroft
749 */
750 if (val > 65535)
751 val = 65535;
752
753 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
754 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
755
756 #define F_REF 24576000
757
758 #define ABS(x) (((x) < 0) ? (-x) : (x))
759
760 if (setmode & AUMODE_RECORD) {
761 /* The ADC reference frequency (f_out) is 512 * sample rate */
762
763 /* f_out is dervied from the 24.576MHZ crystal by three values:
764 M & N & R. The equation is as follows:
765
766 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
767
768 with the constraint that:
769
770 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
771 and n, m >= 1
772 */
773
774 int goal_f_out = 512 * rec->sample_rate;
775 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
776 int pll_sample;
777 int error;
778
779 for (a = 0; a < 8; a++) {
780 if ((goal_f_out * (1 << a)) >= 80000000)
781 break;
782 }
783
784 /* a != 8 because sample_rate >= 2000 */
785
786 for (n = 33; n > 2; n--) {
787 m = (goal_f_out * n * (1 << a)) / F_REF;
788 if ((m > 257) || (m < 3))
789 continue;
790
791 pll_sample = (m * F_REF) / (n * (1 << a));
792 pll_sample /= 512;
793
794 /* Threshold might be good here */
795 error = pll_sample - rec->sample_rate;
796 error = ABS(error);
797
798 if (error < best_error) {
799 best_error = error;
800 best_n = n;
801 best_m = m;
802 if (error == 0) break;
803 }
804 }
805
806 best_n -= 2;
807 best_m -= 2;
808
809 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
810 sv_write_indirect(sc, SV_ADC_PLL_N,
811 best_n | (a << SV_PLL_R_SHIFT));
812 }
813
814 return (0);
815 }
816
817 int
818 sv_round_blocksize(addr, blk)
819 void *addr;
820 int blk;
821 {
822 return (blk & -32); /* keep good alignment */
823 }
824
825 int
826 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
827 void *addr;
828 void *start, *end;
829 int blksize;
830 void (*intr) __P((void *));
831 void *arg;
832 struct audio_params *param;
833 {
834 struct sv_softc *sc = addr;
835 struct sv_dma *p;
836 u_int8_t mode;
837 int dma_count;
838
839 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
840 addr, start, end, blksize, intr, arg));
841 sc->sc_pintr = intr;
842 sc->sc_parg = arg;
843
844 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
845 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
846 if (param->precision * param->factor == 16)
847 mode |= SV_DMAA_FORMAT16;
848 if (param->channels == 2)
849 mode |= SV_DMAA_STEREO;
850 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
851
852 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
853 ;
854 if (!p) {
855 printf("sv_trigger_output: bad addr %p\n", start);
856 return (EINVAL);
857 }
858
859 dma_count = ((char *)end - (char *)start) - 1;
860 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
861 (int)DMAADDR(p), dma_count));
862
863 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
864 DMAADDR(p));
865 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
866 dma_count);
867 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
868 DMA37MD_READ | DMA37MD_LOOP);
869
870 DPRINTF(("sv_trigger_output: current addr=%x\n",
871 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
872
873 dma_count = blksize - 1;
874
875 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
876 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
877
878 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
879 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
880
881 return (0);
882 }
883
884 int
885 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
886 void *addr;
887 void *start, *end;
888 int blksize;
889 void (*intr) __P((void *));
890 void *arg;
891 struct audio_params *param;
892 {
893 struct sv_softc *sc = addr;
894 struct sv_dma *p;
895 u_int8_t mode;
896 int dma_count;
897
898 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
899 addr, start, end, blksize, intr, arg));
900 sc->sc_rintr = intr;
901 sc->sc_rarg = arg;
902
903 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
904 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
905 if (param->precision * param->factor == 16)
906 mode |= SV_DMAC_FORMAT16;
907 if (param->channels == 2)
908 mode |= SV_DMAC_STEREO;
909 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
910
911 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
912 ;
913 if (!p) {
914 printf("sv_trigger_input: bad addr %p\n", start);
915 return (EINVAL);
916 }
917
918 dma_count = (((char *)end - (char *)start) >> 1) - 1;
919 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
920 (int)DMAADDR(p), dma_count));
921
922 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
923 DMAADDR(p));
924 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
925 dma_count);
926 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
927 DMA37MD_WRITE | DMA37MD_LOOP);
928
929 DPRINTF(("sv_trigger_input: current addr=%x\n",
930 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
931
932 dma_count = (blksize >> 1) - 1;
933
934 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
935 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
936
937 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
938 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
939
940 return (0);
941 }
942
943 int
944 sv_halt_output(addr)
945 void *addr;
946 {
947 struct sv_softc *sc = addr;
948 u_int8_t mode;
949
950 DPRINTF(("sv: sv_halt_output\n"));
951 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
952 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
953
954 return (0);
955 }
956
957 int
958 sv_halt_input(addr)
959 void *addr;
960 {
961 struct sv_softc *sc = addr;
962 u_int8_t mode;
963
964 DPRINTF(("sv: sv_halt_input\n"));
965 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
966 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
967
968 return (0);
969 }
970
971 int
972 sv_getdev(addr, retp)
973 void *addr;
974 struct audio_device *retp;
975 {
976 *retp = sv_device;
977 return (0);
978 }
979
980
981 /*
982 * Mixer related code is here
983 *
984 */
985
986 #define SV_INPUT_CLASS 0
987 #define SV_OUTPUT_CLASS 1
988 #define SV_RECORD_CLASS 2
989
990 #define SV_LAST_CLASS 2
991
992 static const char *mixer_classes[] =
993 { AudioCinputs, AudioCoutputs, AudioCrecord };
994
995 static const struct {
996 u_int8_t l_port;
997 u_int8_t r_port;
998 u_int8_t mask;
999 u_int8_t class;
1000 const char *audio;
1001 } ports[] = {
1002 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1003 SV_INPUT_CLASS, "aux1" },
1004 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1005 SV_INPUT_CLASS, AudioNcd },
1006 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1007 SV_INPUT_CLASS, AudioNline },
1008 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1009 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1010 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1011 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1012 SV_INPUT_CLASS, "aux2" },
1013 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1014 SV_INPUT_CLASS, AudioNdac },
1015 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1016 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1017 };
1018
1019
1020 static const struct {
1021 int idx;
1022 const char *name;
1023 } record_sources[] = {
1024 { SV_REC_CD, AudioNcd },
1025 { SV_REC_DAC, AudioNdac },
1026 { SV_REC_AUX2, "aux2" },
1027 { SV_REC_LINE, AudioNline },
1028 { SV_REC_AUX1, "aux1" },
1029 { SV_REC_MIC, AudioNmicrophone },
1030 { SV_REC_MIXER, AudioNmixerout }
1031 };
1032
1033
1034 #define SV_DEVICES_PER_PORT 2
1035 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1036 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1037 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1038 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1039 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1040 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1041
1042 int
1043 sv_query_devinfo(addr, dip)
1044 void *addr;
1045 mixer_devinfo_t *dip;
1046 {
1047 int i;
1048
1049 /* It's a class */
1050 if (dip->index <= SV_LAST_CLASS) {
1051 dip->type = AUDIO_MIXER_CLASS;
1052 dip->mixer_class = dip->index;
1053 dip->next = dip->prev = AUDIO_MIXER_LAST;
1054 strcpy(dip->label.name,
1055 mixer_classes[dip->index]);
1056 return (0);
1057 }
1058
1059 if (dip->index >= SV_FIRST_MIXER &&
1060 dip->index <= SV_LAST_MIXER) {
1061 int off = dip->index - SV_FIRST_MIXER;
1062 int mute = (off % SV_DEVICES_PER_PORT);
1063 int idx = off / SV_DEVICES_PER_PORT;
1064
1065 dip->mixer_class = ports[idx].class;
1066 strcpy(dip->label.name, ports[idx].audio);
1067
1068 if (!mute) {
1069 dip->type = AUDIO_MIXER_VALUE;
1070 dip->prev = AUDIO_MIXER_LAST;
1071 dip->next = dip->index + 1;
1072
1073 if (ports[idx].r_port != 0)
1074 dip->un.v.num_channels = 2;
1075 else
1076 dip->un.v.num_channels = 1;
1077
1078 strcpy(dip->un.v.units.name, AudioNvolume);
1079 } else {
1080 dip->type = AUDIO_MIXER_ENUM;
1081 dip->prev = dip->index - 1;
1082 dip->next = AUDIO_MIXER_LAST;
1083
1084 strcpy(dip->label.name, AudioNmute);
1085 dip->un.e.num_mem = 2;
1086 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1087 dip->un.e.member[0].ord = 0;
1088 strcpy(dip->un.e.member[1].label.name, AudioNon);
1089 dip->un.e.member[1].ord = 1;
1090 }
1091
1092 return (0);
1093 }
1094
1095 switch (dip->index) {
1096 case SV_RECORD_SOURCE:
1097 dip->mixer_class = SV_RECORD_CLASS;
1098 dip->prev = AUDIO_MIXER_LAST;
1099 dip->next = SV_RECORD_GAIN;
1100 strcpy(dip->label.name, AudioNsource);
1101 dip->type = AUDIO_MIXER_ENUM;
1102
1103 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1104 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1105 strcpy(dip->un.e.member[i].label.name,
1106 record_sources[i].name);
1107 dip->un.e.member[i].ord = record_sources[i].idx;
1108 }
1109 return (0);
1110
1111 case SV_RECORD_GAIN:
1112 dip->mixer_class = SV_RECORD_CLASS;
1113 dip->prev = SV_RECORD_SOURCE;
1114 dip->next = AUDIO_MIXER_LAST;
1115 strcpy(dip->label.name, "gain");
1116 dip->type = AUDIO_MIXER_VALUE;
1117 dip->un.v.num_channels = 1;
1118 strcpy(dip->un.v.units.name, AudioNvolume);
1119 return (0);
1120
1121 case SV_MIC_BOOST:
1122 dip->mixer_class = SV_RECORD_CLASS;
1123 dip->prev = AUDIO_MIXER_LAST;
1124 dip->next = AUDIO_MIXER_LAST;
1125 strcpy(dip->label.name, "micboost");
1126 goto on_off;
1127
1128 case SV_SRS_MODE:
1129 dip->mixer_class = SV_OUTPUT_CLASS;
1130 dip->prev = dip->next = AUDIO_MIXER_LAST;
1131 strcpy(dip->label.name, AudioNspatial);
1132
1133 on_off:
1134 dip->type = AUDIO_MIXER_ENUM;
1135 dip->un.e.num_mem = 2;
1136 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1137 dip->un.e.member[0].ord = 0;
1138 strcpy(dip->un.e.member[1].label.name, AudioNon);
1139 dip->un.e.member[1].ord = 1;
1140 return (0);
1141 }
1142
1143 return (ENXIO);
1144 }
1145
1146 int
1147 sv_mixer_set_port(addr, cp)
1148 void *addr;
1149 mixer_ctrl_t *cp;
1150 {
1151 struct sv_softc *sc = addr;
1152 u_int8_t reg;
1153 int idx;
1154
1155 if (cp->dev >= SV_FIRST_MIXER &&
1156 cp->dev <= SV_LAST_MIXER) {
1157 int off = cp->dev - SV_FIRST_MIXER;
1158 int mute = (off % SV_DEVICES_PER_PORT);
1159 idx = off / SV_DEVICES_PER_PORT;
1160
1161 if (mute) {
1162 if (cp->type != AUDIO_MIXER_ENUM)
1163 return (EINVAL);
1164
1165 reg = sv_read_indirect(sc, ports[idx].l_port);
1166 if (cp->un.ord)
1167 reg |= SV_MUTE_BIT;
1168 else
1169 reg &= ~SV_MUTE_BIT;
1170 sv_write_indirect(sc, ports[idx].l_port, reg);
1171
1172 if (ports[idx].r_port) {
1173 reg = sv_read_indirect(sc, ports[idx].r_port);
1174 if (cp->un.ord)
1175 reg |= SV_MUTE_BIT;
1176 else
1177 reg &= ~SV_MUTE_BIT;
1178 sv_write_indirect(sc, ports[idx].r_port, reg);
1179 }
1180 } else {
1181 int lval, rval;
1182
1183 if (cp->type != AUDIO_MIXER_VALUE)
1184 return (EINVAL);
1185
1186 if (cp->un.value.num_channels != 1 &&
1187 cp->un.value.num_channels != 2)
1188 return (EINVAL);
1189
1190 if (ports[idx].r_port == 0) {
1191 if (cp->un.value.num_channels != 1)
1192 return (EINVAL);
1193 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1194 rval = 0; /* shut up GCC */
1195 } else {
1196 if (cp->un.value.num_channels != 2)
1197 return (EINVAL);
1198
1199 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1200 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1201 }
1202
1203
1204 reg = sv_read_indirect(sc, ports[idx].l_port);
1205 reg &= ~(ports[idx].mask);
1206 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1207 AUDIO_MAX_GAIN;
1208 reg |= lval;
1209 sv_write_indirect(sc, ports[idx].l_port, reg);
1210
1211 if (ports[idx].r_port != 0) {
1212 reg = sv_read_indirect(sc, ports[idx].r_port);
1213 reg &= ~(ports[idx].mask);
1214
1215 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1216 AUDIO_MAX_GAIN;
1217 reg |= rval;
1218
1219 sv_write_indirect(sc, ports[idx].r_port, reg);
1220 }
1221
1222 sv_read_indirect(sc, ports[idx].l_port);
1223 }
1224
1225 return (0);
1226 }
1227
1228
1229 switch (cp->dev) {
1230 case SV_RECORD_SOURCE:
1231 if (cp->type != AUDIO_MIXER_ENUM)
1232 return (EINVAL);
1233
1234 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1235 if (record_sources[idx].idx == cp->un.ord)
1236 goto found;
1237 }
1238
1239 return (EINVAL);
1240
1241 found:
1242 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1243 reg &= ~SV_REC_SOURCE_MASK;
1244 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1245 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1246
1247 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1248 reg &= ~SV_REC_SOURCE_MASK;
1249 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1250 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1251 return (0);
1252
1253 case SV_RECORD_GAIN:
1254 {
1255 int val;
1256
1257 if (cp->type != AUDIO_MIXER_VALUE)
1258 return (EINVAL);
1259
1260 if (cp->un.value.num_channels != 1)
1261 return (EINVAL);
1262
1263 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1264 / AUDIO_MAX_GAIN;
1265
1266 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1267 reg &= ~SV_REC_GAIN_MASK;
1268 reg |= val;
1269 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1270
1271 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1272 reg &= ~SV_REC_GAIN_MASK;
1273 reg |= val;
1274 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1275 }
1276 return (0);
1277
1278 case SV_MIC_BOOST:
1279 if (cp->type != AUDIO_MIXER_ENUM)
1280 return (EINVAL);
1281
1282 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1283 if (cp->un.ord) {
1284 reg |= SV_MIC_BOOST_BIT;
1285 } else {
1286 reg &= ~SV_MIC_BOOST_BIT;
1287 }
1288
1289 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1290 return (0);
1291
1292 case SV_SRS_MODE:
1293 if (cp->type != AUDIO_MIXER_ENUM)
1294 return (EINVAL);
1295
1296 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1297 if (cp->un.ord) {
1298 reg &= ~SV_SRS_SPACE_ONOFF;
1299 } else {
1300 reg |= SV_SRS_SPACE_ONOFF;
1301 }
1302
1303 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1304 return (0);
1305 }
1306
1307 return (EINVAL);
1308 }
1309
1310 int
1311 sv_mixer_get_port(addr, cp)
1312 void *addr;
1313 mixer_ctrl_t *cp;
1314 {
1315 struct sv_softc *sc = addr;
1316 int val;
1317 u_int8_t reg;
1318
1319 if (cp->dev >= SV_FIRST_MIXER &&
1320 cp->dev <= SV_LAST_MIXER) {
1321 int off = cp->dev - SV_FIRST_MIXER;
1322 int mute = (off % 2);
1323 int idx = off / 2;
1324
1325 if (mute) {
1326 if (cp->type != AUDIO_MIXER_ENUM)
1327 return (EINVAL);
1328
1329 reg = sv_read_indirect(sc, ports[idx].l_port);
1330 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1331 } else {
1332 if (cp->type != AUDIO_MIXER_VALUE)
1333 return (EINVAL);
1334
1335 if (cp->un.value.num_channels != 1 &&
1336 cp->un.value.num_channels != 2)
1337 return (EINVAL);
1338
1339 if ((ports[idx].r_port == 0 &&
1340 cp->un.value.num_channels != 1) ||
1341 (ports[idx].r_port != 0 &&
1342 cp->un.value.num_channels != 2))
1343 return (EINVAL);
1344
1345 reg = sv_read_indirect(sc, ports[idx].l_port);
1346 reg &= ports[idx].mask;
1347
1348 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1349
1350 if (ports[idx].r_port != 0) {
1351 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1352
1353 reg = sv_read_indirect(sc, ports[idx].r_port);
1354 reg &= ports[idx].mask;
1355
1356 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1357 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1358 } else
1359 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1360 }
1361
1362 return (0);
1363 }
1364
1365 switch (cp->dev) {
1366 case SV_RECORD_SOURCE:
1367 if (cp->type != AUDIO_MIXER_ENUM)
1368 return (EINVAL);
1369
1370 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1371 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1372
1373 return (0);
1374
1375 case SV_RECORD_GAIN:
1376 if (cp->type != AUDIO_MIXER_VALUE)
1377 return (EINVAL);
1378 if (cp->un.value.num_channels != 1)
1379 return (EINVAL);
1380
1381 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1382 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1383 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1384
1385 return (0);
1386
1387 case SV_MIC_BOOST:
1388 if (cp->type != AUDIO_MIXER_ENUM)
1389 return (EINVAL);
1390 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1391 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1392 return (0);
1393
1394
1395 case SV_SRS_MODE:
1396 if (cp->type != AUDIO_MIXER_ENUM)
1397 return (EINVAL);
1398 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1399 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1400 return (0);
1401 }
1402
1403 return (EINVAL);
1404 }
1405
1406
1407 static void
1408 sv_init_mixer(sc)
1409 struct sv_softc *sc;
1410 {
1411 mixer_ctrl_t cp;
1412 int i;
1413
1414 cp.type = AUDIO_MIXER_ENUM;
1415 cp.dev = SV_SRS_MODE;
1416 cp.un.ord = 0;
1417
1418 sv_mixer_set_port(sc, &cp);
1419
1420 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1421 if (ports[i].audio == AudioNdac) {
1422 cp.type = AUDIO_MIXER_ENUM;
1423 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1424 cp.un.ord = 0;
1425 sv_mixer_set_port(sc, &cp);
1426 break;
1427 }
1428 }
1429 }
1430
1431 void *
1432 sv_malloc(addr, direction, size, pool, flags)
1433 void *addr;
1434 int direction;
1435 size_t size;
1436 int pool, flags;
1437 {
1438 struct sv_softc *sc = addr;
1439 struct sv_dma *p;
1440 int error;
1441
1442 p = malloc(sizeof(*p), pool, flags);
1443 if (!p)
1444 return (0);
1445 error = sv_allocmem(sc, size, 16, p);
1446 if (error) {
1447 free(p, pool);
1448 return (0);
1449 }
1450 p->next = sc->sc_dmas;
1451 sc->sc_dmas = p;
1452 return (KERNADDR(p));
1453 }
1454
1455 void
1456 sv_free(addr, ptr, pool)
1457 void *addr;
1458 void *ptr;
1459 int pool;
1460 {
1461 struct sv_softc *sc = addr;
1462 struct sv_dma **pp, *p;
1463
1464 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1465 if (KERNADDR(p) == ptr) {
1466 sv_freemem(sc, p);
1467 *pp = p->next;
1468 free(p, pool);
1469 return;
1470 }
1471 }
1472 }
1473
1474 size_t
1475 sv_round_buffersize(addr, direction, size)
1476 void *addr;
1477 int direction;
1478 size_t size;
1479 {
1480 return (size);
1481 }
1482
1483 paddr_t
1484 sv_mappage(addr, mem, off, prot)
1485 void *addr;
1486 void *mem;
1487 off_t off;
1488 int prot;
1489 {
1490 struct sv_softc *sc = addr;
1491 struct sv_dma *p;
1492
1493 if (off < 0)
1494 return (-1);
1495 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1496 ;
1497 if (!p)
1498 return (-1);
1499 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1500 off, prot, BUS_DMA_WAITOK));
1501 }
1502
1503 int
1504 sv_get_props(addr)
1505 void *addr;
1506 {
1507 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1508 }
1509