Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.13
      1 /*      $NetBSD: sv.c,v 1.13 2001/07/19 17:47:18 kleink Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/malloc.h>
     80 #include <sys/device.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/pcidevs.h>
     85 
     86 #include <sys/audioio.h>
     87 #include <dev/audio_if.h>
     88 #include <dev/mulaw.h>
     89 #include <dev/auconv.h>
     90 
     91 #include <dev/ic/i8237reg.h>
     92 #include <dev/pci/svreg.h>
     93 #include <dev/pci/svvar.h>
     94 
     95 #include <machine/bus.h>
     96 
     97 #ifdef AUDIO_DEBUG
     98 #define DPRINTF(x)	if (svdebug) printf x
     99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    100 int	svdebug = 0;
    101 #else
    102 #define DPRINTF(x)
    103 #define DPRINTFN(n,x)
    104 #endif
    105 
    106 int	sv_match __P((struct device *, struct cfdata *, void *));
    107 void	sv_attach __P((struct device *, struct device *, void *));
    108 int	sv_intr __P((void *));
    109 
    110 struct sv_dma {
    111 	bus_dmamap_t map;
    112 	caddr_t addr;
    113 	bus_dma_segment_t segs[1];
    114 	int nsegs;
    115 	size_t size;
    116 	struct sv_dma *next;
    117 };
    118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    119 #define KERNADDR(p) ((void *)((p)->addr))
    120 
    121 struct cfattach sv_ca = {
    122 	sizeof(struct sv_softc), sv_match, sv_attach
    123 };
    124 
    125 struct audio_device sv_device = {
    126 	"S3 SonicVibes",
    127 	"",
    128 	"sv"
    129 };
    130 
    131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    132 
    133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
    134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
    135 
    136 int	sv_open __P((void *, int));
    137 void	sv_close __P((void *));
    138 int	sv_query_encoding __P((void *, struct audio_encoding *));
    139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    140 int	sv_round_blocksize __P((void *, int));
    141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    142 	    void *, struct audio_params *));
    143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    144 	    void *, struct audio_params *));
    145 int	sv_halt_output __P((void *));
    146 int	sv_halt_input __P((void *));
    147 int	sv_getdev __P((void *, struct audio_device *));
    148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
    149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
    150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
    151 void   *sv_malloc __P((void *, int, size_t, int, int));
    152 void	sv_free __P((void *, void *, int));
    153 size_t	sv_round_buffersize __P((void *, int, size_t));
    154 paddr_t	sv_mappage __P((void *, void *, off_t, int));
    155 int	sv_get_props __P((void *));
    156 
    157 #ifdef AUDIO_DEBUG
    158 void    sv_dumpregs __P((struct sv_softc *sc));
    159 #endif
    160 
    161 struct audio_hw_if sv_hw_if = {
    162 	sv_open,
    163 	sv_close,
    164 	NULL,
    165 	sv_query_encoding,
    166 	sv_set_params,
    167 	sv_round_blocksize,
    168 	NULL,
    169 	NULL,
    170 	NULL,
    171 	NULL,
    172 	NULL,
    173 	sv_halt_output,
    174 	sv_halt_input,
    175 	NULL,
    176 	sv_getdev,
    177 	NULL,
    178 	sv_mixer_set_port,
    179 	sv_mixer_get_port,
    180 	sv_query_devinfo,
    181 	sv_malloc,
    182 	sv_free,
    183 	sv_round_buffersize,
    184 	sv_mappage,
    185 	sv_get_props,
    186 	sv_trigger_output,
    187 	sv_trigger_input,
    188 };
    189 
    190 
    191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
    192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
    193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
    194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
    195 static void sv_init_mixer __P((struct sv_softc *));
    196 
    197 static void sv_defer __P((struct device *self));
    198 
    199 static void
    200 sv_write (sc, reg, val)
    201 	struct sv_softc *sc;
    202 	u_int8_t reg, val;
    203 
    204 {
    205 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    207 }
    208 
    209 static u_int8_t
    210 sv_read(sc, reg)
    211 	struct sv_softc *sc;
    212 	u_int8_t reg;
    213 
    214 {
    215 	u_int8_t val;
    216 
    217 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    218 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    219 	return val;
    220 }
    221 
    222 static u_int8_t
    223 sv_read_indirect(sc, reg)
    224 	struct sv_softc *sc;
    225 	u_int8_t reg;
    226 {
    227 	u_int8_t val;
    228 	int s = splaudio();
    229 
    230 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    231 	val = sv_read(sc, SV_CODEC_IDATA);
    232 	splx(s);
    233 	return (val);
    234 }
    235 
    236 static void
    237 sv_write_indirect(sc, reg, val)
    238 	struct sv_softc *sc;
    239 	u_int8_t reg, val;
    240 {
    241 	u_int8_t iaddr = reg & SV_IADDR_MASK;
    242 	int s = splaudio();
    243 
    244 	if (reg == SV_DMA_DATA_FORMAT)
    245 		iaddr |= SV_IADDR_MCE;
    246 
    247 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    248 	sv_write(sc, SV_CODEC_IDATA, val);
    249 	splx(s);
    250 }
    251 
    252 int
    253 sv_match(parent, match, aux)
    254 	struct device *parent;
    255 	struct cfdata *match;
    256 	void *aux;
    257 {
    258 	struct pci_attach_args *pa = aux;
    259 
    260 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    261 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    262 		return (1);
    263 
    264 	return (0);
    265 }
    266 
    267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
    268 		      int pcioffs,
    269 		      bus_space_tag_t iot, bus_size_t size,
    270 		      bus_size_t align, bus_size_t bound, int flags,
    271 		      bus_space_handle_t *ioh));
    272 
    273 #define PCI_IO_ALLOC_LOW 0xa000
    274 #define PCI_IO_ALLOC_HIGH 0xb000
    275 int
    276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
    277 	pci_chipset_tag_t pc;
    278 	pcitag_t pt;
    279 	int pcioffs;
    280 	bus_space_tag_t iot;
    281 	bus_size_t size;
    282 	bus_size_t align;
    283 	bus_size_t bound;
    284 	int flags;
    285 	bus_space_handle_t *ioh;
    286 {
    287 	bus_addr_t addr;
    288 	int error;
    289 
    290 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
    291 				size, align, bound, flags, &addr, ioh);
    292 	if (error)
    293 		return(error);
    294 
    295 	pci_conf_write(pc, pt, pcioffs, addr);
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Allocate IO addresses when all other configuration is done.
    301  */
    302 void
    303 sv_defer(self)
    304 	struct device *self;
    305 {
    306 	struct sv_softc *sc = (struct sv_softc *)self;
    307 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
    308 	pcitag_t pt = sc->sc_pa.pa_tag;
    309 	pcireg_t dmaio;
    310 
    311 	DPRINTF(("sv_defer: %p\n", sc));
    312 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    313 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    314 			  0, &sc->sc_dmaa_ioh)) {
    315 		printf("sv_attach: cannot allocate DMA A range\n");
    316 		return;
    317 	}
    318 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    319 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    320 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    321 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    322 
    323 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    324 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    325 			  0, &sc->sc_dmac_ioh)) {
    326 		printf("sv_attach: cannot allocate DMA C range\n");
    327 		return;
    328 	}
    329 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    330 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    331 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    332 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    333 
    334 	sc->sc_dmaset = 1;
    335 }
    336 
    337 void
    338 sv_attach(parent, self, aux)
    339 	struct device *parent, *self;
    340 	void *aux;
    341 {
    342 	struct sv_softc *sc = (struct sv_softc *)self;
    343 	struct pci_attach_args *pa = aux;
    344 	pci_chipset_tag_t pc = pa->pa_pc;
    345 	pcitag_t pt = pa->pa_tag;
    346 	pci_intr_handle_t ih;
    347 	pcireg_t csr;
    348 	char const *intrstr;
    349 	u_int8_t reg;
    350 	struct audio_attach_args arg;
    351 
    352 	printf ("\n");
    353 
    354 	/* Map I/O registers */
    355 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    356 			   PCI_MAPREG_TYPE_IO, 0,
    357 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    358 		printf("%s: can't map enhanced i/o space\n",
    359 		       sc->sc_dev.dv_xname);
    360 		return;
    361 	}
    362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    363 			   PCI_MAPREG_TYPE_IO, 0,
    364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    365 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    366 		return;
    367 	}
    368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    369 			   PCI_MAPREG_TYPE_IO, 0,
    370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    371 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    372 		return;
    373 	}
    374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    376 
    377 #ifdef alpha
    378 	/* XXX Force allocation through the SGMAP. */
    379 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    380 #else
    381 	sc->sc_dmatag = pa->pa_dmat;
    382 #endif
    383 
    384 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    385 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    386 
    387 	/* Enable the device. */
    388 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    389 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    390 		       csr | PCI_COMMAND_MASTER_ENABLE);
    391 
    392 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    393 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    394 
    395 	/* initialize codec registers */
    396 	reg = sv_read(sc, SV_CODEC_CONTROL);
    397 	reg |= SV_CTL_RESET;
    398 	sv_write(sc, SV_CODEC_CONTROL, reg);
    399 	delay(50);
    400 
    401 	reg = sv_read(sc, SV_CODEC_CONTROL);
    402 	reg &= ~SV_CTL_RESET;
    403 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    404 
    405 	/* This write clears the reset */
    406 	sv_write(sc, SV_CODEC_CONTROL, reg);
    407 	delay(50);
    408 
    409 	/* This write actually shoves the new values in */
    410 	sv_write(sc, SV_CODEC_CONTROL, reg);
    411 
    412 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    413 
    414 	/* Enable DMA interrupts */
    415 	reg = sv_read(sc, SV_CODEC_INTMASK);
    416 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    417 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    418 	sv_write(sc, SV_CODEC_INTMASK, reg);
    419 
    420 	sv_read(sc, SV_CODEC_STATUS);
    421 
    422 	/* Map and establish the interrupt. */
    423 	if (pci_intr_map(pa, &ih)) {
    424 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    425 		return;
    426 	}
    427 	intrstr = pci_intr_string(pc, ih);
    428 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    429 	if (sc->sc_ih == NULL) {
    430 		printf("%s: couldn't establish interrupt",
    431 		       sc->sc_dev.dv_xname);
    432 		if (intrstr != NULL)
    433 			printf(" at %s", intrstr);
    434 		printf("\n");
    435 		return;
    436 	}
    437 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    438 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    439 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    440 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    441 		printf(", reverb SRAM present");
    442 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    443 		printf(", wavetable ROM present");
    444 	printf("\n");
    445 
    446 	sv_init_mixer(sc);
    447 
    448 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    449 
    450 	arg.type = AUDIODEV_TYPE_OPL;
    451 	arg.hwif = 0;
    452 	arg.hdl = 0;
    453 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    454 
    455 	sc->sc_pa = *pa;	/* for deferred setup */
    456 	config_defer(self, sv_defer);
    457 }
    458 
    459 #ifdef AUDIO_DEBUG
    460 void
    461 sv_dumpregs(sc)
    462 	struct sv_softc *sc;
    463 {
    464 	int idx;
    465 
    466 #if 0
    467 	for (idx = 0; idx < 0x50; idx += 4)
    468 		printf ("%02x = %x\n", idx,
    469 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    470 #endif
    471 
    472 	for (idx = 0; idx < 6; idx++)
    473 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    474 
    475 	for (idx = 0; idx < 0x32; idx++)
    476 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    477 
    478 	for (idx = 0; idx < 0x10; idx++)
    479 		printf ("DMA %02x = %02x\n", idx,
    480 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    481 }
    482 #endif
    483 
    484 int
    485 sv_intr(p)
    486 	void *p;
    487 {
    488 	struct sv_softc *sc = p;
    489 	u_int8_t intr;
    490 
    491 	intr = sv_read(sc, SV_CODEC_STATUS);
    492 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    493 
    494 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    495 		return (0);
    496 
    497 	if (intr & SV_INTSTATUS_DMAA) {
    498 		if (sc->sc_pintr)
    499 			sc->sc_pintr(sc->sc_parg);
    500 	}
    501 
    502 	if (intr & SV_INTSTATUS_DMAC) {
    503 		if (sc->sc_rintr)
    504 			sc->sc_rintr(sc->sc_rarg);
    505 	}
    506 
    507 	return (1);
    508 }
    509 
    510 int
    511 sv_allocmem(sc, size, align, direction, p)
    512 	struct sv_softc *sc;
    513 	size_t size;
    514 	size_t align;
    515 	int direction;
    516 	struct sv_dma *p;
    517 {
    518 	int error;
    519 
    520 	p->size = size;
    521 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    522 				 p->segs, ARRAY_SIZE(p->segs),
    523 				 &p->nsegs, BUS_DMA_NOWAIT);
    524 	if (error)
    525 		return (error);
    526 
    527 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    528 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    529 	if (error)
    530 		goto free;
    531 
    532 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    533 				  0, BUS_DMA_NOWAIT, &p->map);
    534 	if (error)
    535 		goto unmap;
    536 
    537 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    538 				BUS_DMA_NOWAIT |
    539                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    540 	if (error)
    541 		goto destroy;
    542 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    543 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    544 	return (0);
    545 
    546 destroy:
    547 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    548 unmap:
    549 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    550 free:
    551 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    552 	return (error);
    553 }
    554 
    555 int
    556 sv_freemem(sc, p)
    557 	struct sv_softc *sc;
    558 	struct sv_dma *p;
    559 {
    560 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    561 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    562 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    563 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    564 	return (0);
    565 }
    566 
    567 int
    568 sv_open(addr, flags)
    569 	void *addr;
    570 	int flags;
    571 {
    572 	struct sv_softc *sc = addr;
    573 
    574 	DPRINTF(("sv_open\n"));
    575 	if (!sc->sc_dmaset)
    576 		return (ENXIO);
    577 	sc->sc_pintr = 0;
    578 	sc->sc_rintr = 0;
    579 
    580 	return (0);
    581 }
    582 
    583 /*
    584  * Close function is called at splaudio().
    585  */
    586 void
    587 sv_close(addr)
    588 	void *addr;
    589 {
    590 	struct sv_softc *sc = addr;
    591 
    592 	DPRINTF(("sv_close\n"));
    593 	sv_halt_output(sc);
    594 	sv_halt_input(sc);
    595 
    596 	sc->sc_pintr = 0;
    597 	sc->sc_rintr = 0;
    598 }
    599 
    600 int
    601 sv_query_encoding(addr, fp)
    602 	void *addr;
    603 	struct audio_encoding *fp;
    604 {
    605 	switch (fp->index) {
    606 	case 0:
    607 		strcpy(fp->name, AudioEulinear);
    608 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    609 		fp->precision = 8;
    610 		fp->flags = 0;
    611 		return (0);
    612 	case 1:
    613 		strcpy(fp->name, AudioEmulaw);
    614 		fp->encoding = AUDIO_ENCODING_ULAW;
    615 		fp->precision = 8;
    616 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    617 		return (0);
    618 	case 2:
    619 		strcpy(fp->name, AudioEalaw);
    620 		fp->encoding = AUDIO_ENCODING_ALAW;
    621 		fp->precision = 8;
    622 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    623 		return (0);
    624 	case 3:
    625 		strcpy(fp->name, AudioEslinear);
    626 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    627 		fp->precision = 8;
    628 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    629 		return (0);
    630 	case 4:
    631 		strcpy(fp->name, AudioEslinear_le);
    632 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    633 		fp->precision = 16;
    634 		fp->flags = 0;
    635 		return (0);
    636 	case 5:
    637 		strcpy(fp->name, AudioEulinear_le);
    638 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    639 		fp->precision = 16;
    640 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    641 		return (0);
    642 	case 6:
    643 		strcpy(fp->name, AudioEslinear_be);
    644 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    645 		fp->precision = 16;
    646 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    647 		return (0);
    648 	case 7:
    649 		strcpy(fp->name, AudioEulinear_be);
    650 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    651 		fp->precision = 16;
    652 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    653 		return (0);
    654 	default:
    655 		return (EINVAL);
    656 	}
    657 }
    658 
    659 int
    660 sv_set_params(addr, setmode, usemode, play, rec)
    661 	void *addr;
    662 	int setmode, usemode;
    663 	struct audio_params *play, *rec;
    664 {
    665 	struct sv_softc *sc = addr;
    666 	struct audio_params *p = NULL;
    667 	int mode;
    668 	u_int32_t val;
    669 
    670 	/*
    671 	 * This device only has one clock, so make the sample rates match.
    672 	 */
    673 	if (play->sample_rate != rec->sample_rate &&
    674 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    675 		if (setmode == AUMODE_PLAY) {
    676 			rec->sample_rate = play->sample_rate;
    677 			setmode |= AUMODE_RECORD;
    678 		} else if (setmode == AUMODE_RECORD) {
    679 			play->sample_rate = rec->sample_rate;
    680 			setmode |= AUMODE_PLAY;
    681 		} else
    682 			return (EINVAL);
    683 	}
    684 
    685 	for (mode = AUMODE_RECORD; mode != -1;
    686 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    687 		if ((setmode & mode) == 0)
    688 			continue;
    689 
    690 		p = mode == AUMODE_PLAY ? play : rec;
    691 
    692 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
    693 		    (p->precision != 8 && p->precision != 16) ||
    694 		    (p->channels != 1 && p->channels != 2))
    695 			return (EINVAL);
    696 
    697 		p->factor = 1;
    698 		p->sw_code = 0;
    699 		switch (p->encoding) {
    700 		case AUDIO_ENCODING_SLINEAR_BE:
    701 			if (p->precision == 16)
    702 				p->sw_code = swap_bytes;
    703 			else
    704 				p->sw_code = change_sign8;
    705 			break;
    706 		case AUDIO_ENCODING_SLINEAR_LE:
    707 			if (p->precision != 16)
    708 				p->sw_code = change_sign8;
    709 			break;
    710 		case AUDIO_ENCODING_ULINEAR_BE:
    711 			if (p->precision == 16) {
    712 				if (mode == AUMODE_PLAY)
    713 					p->sw_code = swap_bytes_change_sign16_le;
    714 				else
    715 					p->sw_code = change_sign16_swap_bytes_le;
    716 			}
    717 			break;
    718 		case AUDIO_ENCODING_ULINEAR_LE:
    719 			if (p->precision == 16)
    720 				p->sw_code = change_sign16_le;
    721 			break;
    722 		case AUDIO_ENCODING_ULAW:
    723 			if (mode == AUMODE_PLAY) {
    724 				p->factor = 2;
    725 				p->sw_code = mulaw_to_slinear16_le;
    726 			} else
    727 				p->sw_code = ulinear8_to_mulaw;
    728 			break;
    729 		case AUDIO_ENCODING_ALAW:
    730 			if (mode == AUMODE_PLAY) {
    731 				p->factor = 2;
    732 				p->sw_code = alaw_to_slinear16_le;
    733 			} else
    734 				p->sw_code = ulinear8_to_alaw;
    735 			break;
    736 		default:
    737 			return (EINVAL);
    738 		}
    739 	}
    740 
    741 	val = p->sample_rate * 65536 / 48000;
    742 	/*
    743 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
    744 	 * register, so we have to bias it.  This causes a little clock drift.
    745 	 * The drift is below normal crystal tolerance (.0001%), so although
    746 	 * this seems a little silly, we can pretty much ignore it.
    747 	 * (I tested the output speed with values of 1-20, just to be sure this
    748 	 * register isn't *supposed* to have a bias.  It isn't.)
    749 	 * - mycroft
    750 	 */
    751 	if (val > 65535)
    752 		val = 65535;
    753 
    754 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    755 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    756 
    757 #define F_REF 24576000
    758 
    759 #define ABS(x) (((x) < 0) ? (-x) : (x))
    760 
    761 	if (setmode & AUMODE_RECORD) {
    762 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    763 
    764 		/* f_out is dervied from the 24.576MHZ crystal by three values:
    765 		   M & N & R. The equation is as follows:
    766 
    767 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    768 
    769 		   with the constraint that:
    770 
    771 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
    772 		   and n, m >= 1
    773 		*/
    774 
    775 		int  goal_f_out = 512 * rec->sample_rate;
    776 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
    777 		int  pll_sample;
    778 		int  error;
    779 
    780 		for (a = 0; a < 8; a++) {
    781 			if ((goal_f_out * (1 << a)) >= 80000000)
    782 				break;
    783 		}
    784 
    785 		/* a != 8 because sample_rate >= 2000 */
    786 
    787 		for (n = 33; n > 2; n--) {
    788 			m = (goal_f_out * n * (1 << a)) / F_REF;
    789 			if ((m > 257) || (m < 3))
    790 				continue;
    791 
    792 			pll_sample = (m * F_REF) / (n * (1 << a));
    793 			pll_sample /= 512;
    794 
    795 			/* Threshold might be good here */
    796 			error = pll_sample - rec->sample_rate;
    797 			error = ABS(error);
    798 
    799 			if (error < best_error) {
    800 				best_error = error;
    801 				best_n = n;
    802 				best_m = m;
    803 				if (error == 0) break;
    804 			}
    805 		}
    806 
    807 		best_n -= 2;
    808 		best_m -= 2;
    809 
    810 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    811 		sv_write_indirect(sc, SV_ADC_PLL_N,
    812 				  best_n | (a << SV_PLL_R_SHIFT));
    813 	}
    814 
    815 	return (0);
    816 }
    817 
    818 int
    819 sv_round_blocksize(addr, blk)
    820 	void *addr;
    821 	int blk;
    822 {
    823 	return (blk & -32);	/* keep good alignment */
    824 }
    825 
    826 int
    827 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
    828 	void *addr;
    829 	void *start, *end;
    830 	int blksize;
    831 	void (*intr) __P((void *));
    832 	void *arg;
    833 	struct audio_params *param;
    834 {
    835 	struct sv_softc *sc = addr;
    836 	struct sv_dma *p;
    837 	u_int8_t mode;
    838 	int dma_count;
    839 
    840 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    841 	    addr, start, end, blksize, intr, arg));
    842 	sc->sc_pintr = intr;
    843 	sc->sc_parg = arg;
    844 
    845 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    846 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    847 	if (param->precision * param->factor == 16)
    848 		mode |= SV_DMAA_FORMAT16;
    849 	if (param->channels == 2)
    850 		mode |= SV_DMAA_STEREO;
    851 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    852 
    853 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    854 		;
    855 	if (!p) {
    856 		printf("sv_trigger_output: bad addr %p\n", start);
    857 		return (EINVAL);
    858 	}
    859 
    860 	dma_count = ((char *)end - (char *)start) - 1;
    861 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
    862 	    (int)DMAADDR(p), dma_count));
    863 
    864 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    865 			  DMAADDR(p));
    866 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    867 			  dma_count);
    868 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    869 			  DMA37MD_READ | DMA37MD_LOOP);
    870 
    871 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    872 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    873 
    874 	dma_count = blksize - 1;
    875 
    876 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    877 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    878 
    879 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    880 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    881 
    882 	return (0);
    883 }
    884 
    885 int
    886 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
    887 	void *addr;
    888 	void *start, *end;
    889 	int blksize;
    890 	void (*intr) __P((void *));
    891 	void *arg;
    892 	struct audio_params *param;
    893 {
    894 	struct sv_softc *sc = addr;
    895 	struct sv_dma *p;
    896 	u_int8_t mode;
    897 	int dma_count;
    898 
    899 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    900 	    addr, start, end, blksize, intr, arg));
    901 	sc->sc_rintr = intr;
    902 	sc->sc_rarg = arg;
    903 
    904 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    905 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    906 	if (param->precision * param->factor == 16)
    907 		mode |= SV_DMAC_FORMAT16;
    908 	if (param->channels == 2)
    909 		mode |= SV_DMAC_STEREO;
    910 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    911 
    912 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    913 		;
    914 	if (!p) {
    915 		printf("sv_trigger_input: bad addr %p\n", start);
    916 		return (EINVAL);
    917 	}
    918 
    919 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    920 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
    921 	    (int)DMAADDR(p), dma_count));
    922 
    923 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    924 			  DMAADDR(p));
    925 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    926 			  dma_count);
    927 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    928 			  DMA37MD_WRITE | DMA37MD_LOOP);
    929 
    930 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    931 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    932 
    933 	dma_count = (blksize >> 1) - 1;
    934 
    935 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    936 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    937 
    938 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    939 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    940 
    941 	return (0);
    942 }
    943 
    944 int
    945 sv_halt_output(addr)
    946 	void *addr;
    947 {
    948 	struct sv_softc *sc = addr;
    949 	u_int8_t mode;
    950 
    951 	DPRINTF(("sv: sv_halt_output\n"));
    952 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    953 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    954 
    955 	return (0);
    956 }
    957 
    958 int
    959 sv_halt_input(addr)
    960 	void *addr;
    961 {
    962 	struct sv_softc *sc = addr;
    963 	u_int8_t mode;
    964 
    965 	DPRINTF(("sv: sv_halt_input\n"));
    966 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    967 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    968 
    969 	return (0);
    970 }
    971 
    972 int
    973 sv_getdev(addr, retp)
    974 	void *addr;
    975 	struct audio_device *retp;
    976 {
    977 	*retp = sv_device;
    978 	return (0);
    979 }
    980 
    981 
    982 /*
    983  * Mixer related code is here
    984  *
    985  */
    986 
    987 #define SV_INPUT_CLASS 0
    988 #define SV_OUTPUT_CLASS 1
    989 #define SV_RECORD_CLASS 2
    990 
    991 #define SV_LAST_CLASS 2
    992 
    993 static const char *mixer_classes[] =
    994 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    995 
    996 static const struct {
    997 	u_int8_t   l_port;
    998 	u_int8_t   r_port;
    999 	u_int8_t   mask;
   1000 	u_int8_t   class;
   1001 	const char *audio;
   1002 } ports[] = {
   1003   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
   1004     SV_INPUT_CLASS, "aux1" },
   1005   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
   1006     SV_INPUT_CLASS, AudioNcd },
   1007   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
   1008     SV_INPUT_CLASS, AudioNline },
   1009   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
   1010   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
   1011     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
   1012   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
   1013     SV_INPUT_CLASS, "aux2" },
   1014   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
   1015     SV_INPUT_CLASS, AudioNdac },
   1016   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
   1017     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
   1018 };
   1019 
   1020 
   1021 static const struct {
   1022 	int idx;
   1023 	const char *name;
   1024 } record_sources[] = {
   1025 	{ SV_REC_CD, AudioNcd },
   1026 	{ SV_REC_DAC, AudioNdac },
   1027 	{ SV_REC_AUX2, "aux2" },
   1028 	{ SV_REC_LINE, AudioNline },
   1029 	{ SV_REC_AUX1, "aux1" },
   1030 	{ SV_REC_MIC, AudioNmicrophone },
   1031 	{ SV_REC_MIXER, AudioNmixerout }
   1032 };
   1033 
   1034 
   1035 #define SV_DEVICES_PER_PORT 2
   1036 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
   1037 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
   1038 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
   1039 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
   1040 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
   1041 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
   1042 
   1043 int
   1044 sv_query_devinfo(addr, dip)
   1045 	void *addr;
   1046 	mixer_devinfo_t *dip;
   1047 {
   1048 	int i;
   1049 
   1050 	/* It's a class */
   1051 	if (dip->index <= SV_LAST_CLASS) {
   1052 		dip->type = AUDIO_MIXER_CLASS;
   1053 		dip->mixer_class = dip->index;
   1054 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1055 		strcpy(dip->label.name,
   1056 		       mixer_classes[dip->index]);
   1057 		return (0);
   1058 	}
   1059 
   1060 	if (dip->index >= SV_FIRST_MIXER &&
   1061 	    dip->index <= SV_LAST_MIXER) {
   1062 		int off = dip->index - SV_FIRST_MIXER;
   1063 		int mute = (off % SV_DEVICES_PER_PORT);
   1064 		int idx = off / SV_DEVICES_PER_PORT;
   1065 
   1066 		dip->mixer_class = ports[idx].class;
   1067 		strcpy(dip->label.name, ports[idx].audio);
   1068 
   1069 		if (!mute) {
   1070 			dip->type = AUDIO_MIXER_VALUE;
   1071 			dip->prev = AUDIO_MIXER_LAST;
   1072 			dip->next = dip->index + 1;
   1073 
   1074 			if (ports[idx].r_port != 0)
   1075 				dip->un.v.num_channels = 2;
   1076 			else
   1077 				dip->un.v.num_channels = 1;
   1078 
   1079 			strcpy(dip->un.v.units.name, AudioNvolume);
   1080 		} else {
   1081 			dip->type = AUDIO_MIXER_ENUM;
   1082 			dip->prev = dip->index - 1;
   1083 			dip->next = AUDIO_MIXER_LAST;
   1084 
   1085 			strcpy(dip->label.name, AudioNmute);
   1086 			dip->un.e.num_mem = 2;
   1087 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1088 			dip->un.e.member[0].ord = 0;
   1089 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1090 			dip->un.e.member[1].ord = 1;
   1091 		}
   1092 
   1093 		return (0);
   1094 	}
   1095 
   1096 	switch (dip->index) {
   1097 	case SV_RECORD_SOURCE:
   1098 		dip->mixer_class = SV_RECORD_CLASS;
   1099 		dip->prev = AUDIO_MIXER_LAST;
   1100 		dip->next = SV_RECORD_GAIN;
   1101 		strcpy(dip->label.name, AudioNsource);
   1102 		dip->type = AUDIO_MIXER_ENUM;
   1103 
   1104 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1105 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1106 			strcpy(dip->un.e.member[i].label.name,
   1107 			       record_sources[i].name);
   1108 			dip->un.e.member[i].ord = record_sources[i].idx;
   1109 		}
   1110 		return (0);
   1111 
   1112 	case SV_RECORD_GAIN:
   1113 		dip->mixer_class = SV_RECORD_CLASS;
   1114 		dip->prev = SV_RECORD_SOURCE;
   1115 		dip->next = AUDIO_MIXER_LAST;
   1116 		strcpy(dip->label.name, "gain");
   1117 		dip->type = AUDIO_MIXER_VALUE;
   1118 		dip->un.v.num_channels = 1;
   1119 		strcpy(dip->un.v.units.name, AudioNvolume);
   1120 		return (0);
   1121 
   1122 	case SV_MIC_BOOST:
   1123 		dip->mixer_class = SV_RECORD_CLASS;
   1124 		dip->prev = AUDIO_MIXER_LAST;
   1125 		dip->next = AUDIO_MIXER_LAST;
   1126 		strcpy(dip->label.name, "micboost");
   1127 		goto on_off;
   1128 
   1129 	case SV_SRS_MODE:
   1130 		dip->mixer_class = SV_OUTPUT_CLASS;
   1131 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1132 		strcpy(dip->label.name, AudioNspatial);
   1133 
   1134 	on_off:
   1135 		dip->type = AUDIO_MIXER_ENUM;
   1136 		dip->un.e.num_mem = 2;
   1137 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1138 		dip->un.e.member[0].ord = 0;
   1139 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1140 		dip->un.e.member[1].ord = 1;
   1141 		return (0);
   1142 	}
   1143 
   1144 	return (ENXIO);
   1145 }
   1146 
   1147 int
   1148 sv_mixer_set_port(addr, cp)
   1149 	void *addr;
   1150 	mixer_ctrl_t *cp;
   1151 {
   1152 	struct sv_softc *sc = addr;
   1153 	u_int8_t reg;
   1154 	int idx;
   1155 
   1156 	if (cp->dev >= SV_FIRST_MIXER &&
   1157 	    cp->dev <= SV_LAST_MIXER) {
   1158 		int off = cp->dev - SV_FIRST_MIXER;
   1159 		int mute = (off % SV_DEVICES_PER_PORT);
   1160 		idx = off / SV_DEVICES_PER_PORT;
   1161 
   1162 		if (mute) {
   1163 			if (cp->type != AUDIO_MIXER_ENUM)
   1164 				return (EINVAL);
   1165 
   1166 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1167 			if (cp->un.ord)
   1168 				reg |= SV_MUTE_BIT;
   1169 			else
   1170 				reg &= ~SV_MUTE_BIT;
   1171 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1172 
   1173 			if (ports[idx].r_port) {
   1174 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1175 				if (cp->un.ord)
   1176 					reg |= SV_MUTE_BIT;
   1177 				else
   1178 					reg &= ~SV_MUTE_BIT;
   1179 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1180 			}
   1181 		} else {
   1182 			int  lval, rval;
   1183 
   1184 			if (cp->type != AUDIO_MIXER_VALUE)
   1185 				return (EINVAL);
   1186 
   1187 			if (cp->un.value.num_channels != 1 &&
   1188 			    cp->un.value.num_channels != 2)
   1189 				return (EINVAL);
   1190 
   1191 			if (ports[idx].r_port == 0) {
   1192 				if (cp->un.value.num_channels != 1)
   1193 					return (EINVAL);
   1194 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1195 				rval = 0; /* shut up GCC */
   1196 			} else {
   1197 				if (cp->un.value.num_channels != 2)
   1198 					return (EINVAL);
   1199 
   1200 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1201 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1202       }
   1203 
   1204 
   1205 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1206 			reg &= ~(ports[idx].mask);
   1207 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1208 				AUDIO_MAX_GAIN;
   1209 			reg |= lval;
   1210 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1211 
   1212 			if (ports[idx].r_port != 0) {
   1213 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1214 				reg &= ~(ports[idx].mask);
   1215 
   1216 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1217 					AUDIO_MAX_GAIN;
   1218 				reg |= rval;
   1219 
   1220 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1221 			}
   1222 
   1223 			sv_read_indirect(sc, ports[idx].l_port);
   1224 		}
   1225 
   1226 		return (0);
   1227 	}
   1228 
   1229 
   1230 	switch (cp->dev) {
   1231 	case SV_RECORD_SOURCE:
   1232 		if (cp->type != AUDIO_MIXER_ENUM)
   1233 			return (EINVAL);
   1234 
   1235 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1236 			if (record_sources[idx].idx == cp->un.ord)
   1237 				goto found;
   1238 		}
   1239 
   1240 		return (EINVAL);
   1241 
   1242 	found:
   1243 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1244 		reg &= ~SV_REC_SOURCE_MASK;
   1245 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1246 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1247 
   1248 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1249 		reg &= ~SV_REC_SOURCE_MASK;
   1250 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1251 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1252 		return (0);
   1253 
   1254 	case SV_RECORD_GAIN:
   1255 	{
   1256 		int val;
   1257 
   1258 		if (cp->type != AUDIO_MIXER_VALUE)
   1259 			return (EINVAL);
   1260 
   1261 		if (cp->un.value.num_channels != 1)
   1262 			return (EINVAL);
   1263 
   1264 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
   1265 			/ AUDIO_MAX_GAIN;
   1266 
   1267 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1268 		reg &= ~SV_REC_GAIN_MASK;
   1269 		reg |= val;
   1270 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1271 
   1272 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1273 		reg &= ~SV_REC_GAIN_MASK;
   1274 		reg |= val;
   1275 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1276 	}
   1277 	return (0);
   1278 
   1279 	case SV_MIC_BOOST:
   1280 		if (cp->type != AUDIO_MIXER_ENUM)
   1281 			return (EINVAL);
   1282 
   1283 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1284 		if (cp->un.ord) {
   1285 			reg |= SV_MIC_BOOST_BIT;
   1286 		} else {
   1287 			reg &= ~SV_MIC_BOOST_BIT;
   1288 		}
   1289 
   1290 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1291 		return (0);
   1292 
   1293 	case SV_SRS_MODE:
   1294 		if (cp->type != AUDIO_MIXER_ENUM)
   1295 			return (EINVAL);
   1296 
   1297 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1298 		if (cp->un.ord) {
   1299 			reg &= ~SV_SRS_SPACE_ONOFF;
   1300 		} else {
   1301 			reg |= SV_SRS_SPACE_ONOFF;
   1302 		}
   1303 
   1304 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1305 		return (0);
   1306 	}
   1307 
   1308 	return (EINVAL);
   1309 }
   1310 
   1311 int
   1312 sv_mixer_get_port(addr, cp)
   1313 	void *addr;
   1314 	mixer_ctrl_t *cp;
   1315 {
   1316 	struct sv_softc *sc = addr;
   1317 	int val;
   1318 	u_int8_t reg;
   1319 
   1320 	if (cp->dev >= SV_FIRST_MIXER &&
   1321 	    cp->dev <= SV_LAST_MIXER) {
   1322 		int off = cp->dev - SV_FIRST_MIXER;
   1323 		int mute = (off % 2);
   1324 		int idx = off / 2;
   1325 
   1326 		if (mute) {
   1327 			if (cp->type != AUDIO_MIXER_ENUM)
   1328 				return (EINVAL);
   1329 
   1330 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1331 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1332 		} else {
   1333 			if (cp->type != AUDIO_MIXER_VALUE)
   1334 				return (EINVAL);
   1335 
   1336 			if (cp->un.value.num_channels != 1 &&
   1337 			    cp->un.value.num_channels != 2)
   1338 				return (EINVAL);
   1339 
   1340 			if ((ports[idx].r_port == 0 &&
   1341 			     cp->un.value.num_channels != 1) ||
   1342 			    (ports[idx].r_port != 0 &&
   1343 			     cp->un.value.num_channels != 2))
   1344 				return (EINVAL);
   1345 
   1346 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1347 			reg &= ports[idx].mask;
   1348 
   1349 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1350 
   1351 			if (ports[idx].r_port != 0) {
   1352 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1353 
   1354 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1355 				reg &= ports[idx].mask;
   1356 
   1357 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1358 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1359 			} else
   1360 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1361 		}
   1362 
   1363 		return (0);
   1364   }
   1365 
   1366 	switch (cp->dev) {
   1367 	case SV_RECORD_SOURCE:
   1368 		if (cp->type != AUDIO_MIXER_ENUM)
   1369 			return (EINVAL);
   1370 
   1371 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1372 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1373 
   1374 		return (0);
   1375 
   1376 	case SV_RECORD_GAIN:
   1377 		if (cp->type != AUDIO_MIXER_VALUE)
   1378 			return (EINVAL);
   1379 		if (cp->un.value.num_channels != 1)
   1380 			return (EINVAL);
   1381 
   1382 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1383 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1384 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1385 
   1386 		return (0);
   1387 
   1388 	case SV_MIC_BOOST:
   1389 		if (cp->type != AUDIO_MIXER_ENUM)
   1390 			return (EINVAL);
   1391 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1392 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1393 		return (0);
   1394 
   1395 
   1396 	case SV_SRS_MODE:
   1397 		if (cp->type != AUDIO_MIXER_ENUM)
   1398 			return (EINVAL);
   1399 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1400 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1401 		return (0);
   1402 	}
   1403 
   1404 	return (EINVAL);
   1405 }
   1406 
   1407 
   1408 static void
   1409 sv_init_mixer(sc)
   1410 	struct sv_softc *sc;
   1411 {
   1412 	mixer_ctrl_t cp;
   1413 	int i;
   1414 
   1415 	cp.type = AUDIO_MIXER_ENUM;
   1416 	cp.dev = SV_SRS_MODE;
   1417 	cp.un.ord = 0;
   1418 
   1419 	sv_mixer_set_port(sc, &cp);
   1420 
   1421 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1422 		if (ports[i].audio == AudioNdac) {
   1423 			cp.type = AUDIO_MIXER_ENUM;
   1424 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1425 			cp.un.ord = 0;
   1426 			sv_mixer_set_port(sc, &cp);
   1427 			break;
   1428 		}
   1429 	}
   1430 }
   1431 
   1432 void *
   1433 sv_malloc(addr, direction, size, pool, flags)
   1434 	void *addr;
   1435 	int direction;
   1436 	size_t size;
   1437 	int pool, flags;
   1438 {
   1439 	struct sv_softc *sc = addr;
   1440 	struct sv_dma *p;
   1441 	int error;
   1442 
   1443 	p = malloc(sizeof(*p), pool, flags);
   1444 	if (!p)
   1445 		return (0);
   1446 	error = sv_allocmem(sc, size, 16, direction, p);
   1447 	if (error) {
   1448 		free(p, pool);
   1449 		return (0);
   1450 	}
   1451 	p->next = sc->sc_dmas;
   1452 	sc->sc_dmas = p;
   1453 	return (KERNADDR(p));
   1454 }
   1455 
   1456 void
   1457 sv_free(addr, ptr, pool)
   1458 	void *addr;
   1459 	void *ptr;
   1460 	int pool;
   1461 {
   1462 	struct sv_softc *sc = addr;
   1463 	struct sv_dma **pp, *p;
   1464 
   1465 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1466 		if (KERNADDR(p) == ptr) {
   1467 			sv_freemem(sc, p);
   1468 			*pp = p->next;
   1469 			free(p, pool);
   1470 			return;
   1471 		}
   1472 	}
   1473 }
   1474 
   1475 size_t
   1476 sv_round_buffersize(addr, direction, size)
   1477 	void *addr;
   1478 	int direction;
   1479 	size_t size;
   1480 {
   1481 	return (size);
   1482 }
   1483 
   1484 paddr_t
   1485 sv_mappage(addr, mem, off, prot)
   1486 	void *addr;
   1487 	void *mem;
   1488 	off_t off;
   1489 	int prot;
   1490 {
   1491 	struct sv_softc *sc = addr;
   1492 	struct sv_dma *p;
   1493 
   1494 	if (off < 0)
   1495 		return (-1);
   1496 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1497 		;
   1498 	if (!p)
   1499 		return (-1);
   1500 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1501 				off, prot, BUS_DMA_WAITOK));
   1502 }
   1503 
   1504 int
   1505 sv_get_props(addr)
   1506 	void *addr;
   1507 {
   1508 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1509 }
   1510