sv.c revision 1.13 1 /* $NetBSD: sv.c,v 1.13 2001/07/19 17:47:18 kleink Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94
95 #include <machine/bus.h>
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (svdebug) printf x
99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
100 int svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 int sv_match __P((struct device *, struct cfdata *, void *));
107 void sv_attach __P((struct device *, struct device *, void *));
108 int sv_intr __P((void *));
109
110 struct sv_dma {
111 bus_dmamap_t map;
112 caddr_t addr;
113 bus_dma_segment_t segs[1];
114 int nsegs;
115 size_t size;
116 struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120
121 struct cfattach sv_ca = {
122 sizeof(struct sv_softc), sv_match, sv_attach
123 };
124
125 struct audio_device sv_device = {
126 "S3 SonicVibes",
127 "",
128 "sv"
129 };
130
131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
132
133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
134 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
135
136 int sv_open __P((void *, int));
137 void sv_close __P((void *));
138 int sv_query_encoding __P((void *, struct audio_encoding *));
139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int sv_round_blocksize __P((void *, int));
141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 void *, struct audio_params *));
143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 void *, struct audio_params *));
145 int sv_halt_output __P((void *));
146 int sv_halt_input __P((void *));
147 int sv_getdev __P((void *, struct audio_device *));
148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void *sv_malloc __P((void *, int, size_t, int, int));
152 void sv_free __P((void *, void *, int));
153 size_t sv_round_buffersize __P((void *, int, size_t));
154 paddr_t sv_mappage __P((void *, void *, off_t, int));
155 int sv_get_props __P((void *));
156
157 #ifdef AUDIO_DEBUG
158 void sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160
161 struct audio_hw_if sv_hw_if = {
162 sv_open,
163 sv_close,
164 NULL,
165 sv_query_encoding,
166 sv_set_params,
167 sv_round_blocksize,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 sv_halt_output,
174 sv_halt_input,
175 NULL,
176 sv_getdev,
177 NULL,
178 sv_mixer_set_port,
179 sv_mixer_get_port,
180 sv_query_devinfo,
181 sv_malloc,
182 sv_free,
183 sv_round_buffersize,
184 sv_mappage,
185 sv_get_props,
186 sv_trigger_output,
187 sv_trigger_input,
188 };
189
190
191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_init_mixer __P((struct sv_softc *));
196
197 static void sv_defer __P((struct device *self));
198
199 static void
200 sv_write (sc, reg, val)
201 struct sv_softc *sc;
202 u_int8_t reg, val;
203
204 {
205 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
206 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
207 }
208
209 static u_int8_t
210 sv_read(sc, reg)
211 struct sv_softc *sc;
212 u_int8_t reg;
213
214 {
215 u_int8_t val;
216
217 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
218 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
219 return val;
220 }
221
222 static u_int8_t
223 sv_read_indirect(sc, reg)
224 struct sv_softc *sc;
225 u_int8_t reg;
226 {
227 u_int8_t val;
228 int s = splaudio();
229
230 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
231 val = sv_read(sc, SV_CODEC_IDATA);
232 splx(s);
233 return (val);
234 }
235
236 static void
237 sv_write_indirect(sc, reg, val)
238 struct sv_softc *sc;
239 u_int8_t reg, val;
240 {
241 u_int8_t iaddr = reg & SV_IADDR_MASK;
242 int s = splaudio();
243
244 if (reg == SV_DMA_DATA_FORMAT)
245 iaddr |= SV_IADDR_MCE;
246
247 sv_write(sc, SV_CODEC_IADDR, iaddr);
248 sv_write(sc, SV_CODEC_IDATA, val);
249 splx(s);
250 }
251
252 int
253 sv_match(parent, match, aux)
254 struct device *parent;
255 struct cfdata *match;
256 void *aux;
257 {
258 struct pci_attach_args *pa = aux;
259
260 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
261 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
262 return (1);
263
264 return (0);
265 }
266
267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
268 int pcioffs,
269 bus_space_tag_t iot, bus_size_t size,
270 bus_size_t align, bus_size_t bound, int flags,
271 bus_space_handle_t *ioh));
272
273 #define PCI_IO_ALLOC_LOW 0xa000
274 #define PCI_IO_ALLOC_HIGH 0xb000
275 int
276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
277 pci_chipset_tag_t pc;
278 pcitag_t pt;
279 int pcioffs;
280 bus_space_tag_t iot;
281 bus_size_t size;
282 bus_size_t align;
283 bus_size_t bound;
284 int flags;
285 bus_space_handle_t *ioh;
286 {
287 bus_addr_t addr;
288 int error;
289
290 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
291 size, align, bound, flags, &addr, ioh);
292 if (error)
293 return(error);
294
295 pci_conf_write(pc, pt, pcioffs, addr);
296 return (0);
297 }
298
299 /*
300 * Allocate IO addresses when all other configuration is done.
301 */
302 void
303 sv_defer(self)
304 struct device *self;
305 {
306 struct sv_softc *sc = (struct sv_softc *)self;
307 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
308 pcitag_t pt = sc->sc_pa.pa_tag;
309 pcireg_t dmaio;
310
311 DPRINTF(("sv_defer: %p\n", sc));
312 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
313 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
314 0, &sc->sc_dmaa_ioh)) {
315 printf("sv_attach: cannot allocate DMA A range\n");
316 return;
317 }
318 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
319 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
320 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
321 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
322
323 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
324 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
325 0, &sc->sc_dmac_ioh)) {
326 printf("sv_attach: cannot allocate DMA C range\n");
327 return;
328 }
329 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
330 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
331 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
332 dmaio | SV_DMA_CHANNEL_ENABLE);
333
334 sc->sc_dmaset = 1;
335 }
336
337 void
338 sv_attach(parent, self, aux)
339 struct device *parent, *self;
340 void *aux;
341 {
342 struct sv_softc *sc = (struct sv_softc *)self;
343 struct pci_attach_args *pa = aux;
344 pci_chipset_tag_t pc = pa->pa_pc;
345 pcitag_t pt = pa->pa_tag;
346 pci_intr_handle_t ih;
347 pcireg_t csr;
348 char const *intrstr;
349 u_int8_t reg;
350 struct audio_attach_args arg;
351
352 printf ("\n");
353
354 /* Map I/O registers */
355 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
356 PCI_MAPREG_TYPE_IO, 0,
357 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
358 printf("%s: can't map enhanced i/o space\n",
359 sc->sc_dev.dv_xname);
360 return;
361 }
362 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
363 PCI_MAPREG_TYPE_IO, 0,
364 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
365 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
366 return;
367 }
368 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
369 PCI_MAPREG_TYPE_IO, 0,
370 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
371 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
372 return;
373 }
374 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
375 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
376
377 #ifdef alpha
378 /* XXX Force allocation through the SGMAP. */
379 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
380 #else
381 sc->sc_dmatag = pa->pa_dmat;
382 #endif
383
384 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
385 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
386
387 /* Enable the device. */
388 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
389 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
390 csr | PCI_COMMAND_MASTER_ENABLE);
391
392 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
393 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
394
395 /* initialize codec registers */
396 reg = sv_read(sc, SV_CODEC_CONTROL);
397 reg |= SV_CTL_RESET;
398 sv_write(sc, SV_CODEC_CONTROL, reg);
399 delay(50);
400
401 reg = sv_read(sc, SV_CODEC_CONTROL);
402 reg &= ~SV_CTL_RESET;
403 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
404
405 /* This write clears the reset */
406 sv_write(sc, SV_CODEC_CONTROL, reg);
407 delay(50);
408
409 /* This write actually shoves the new values in */
410 sv_write(sc, SV_CODEC_CONTROL, reg);
411
412 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
413
414 /* Enable DMA interrupts */
415 reg = sv_read(sc, SV_CODEC_INTMASK);
416 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
417 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
418 sv_write(sc, SV_CODEC_INTMASK, reg);
419
420 sv_read(sc, SV_CODEC_STATUS);
421
422 /* Map and establish the interrupt. */
423 if (pci_intr_map(pa, &ih)) {
424 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
425 return;
426 }
427 intrstr = pci_intr_string(pc, ih);
428 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
429 if (sc->sc_ih == NULL) {
430 printf("%s: couldn't establish interrupt",
431 sc->sc_dev.dv_xname);
432 if (intrstr != NULL)
433 printf(" at %s", intrstr);
434 printf("\n");
435 return;
436 }
437 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
438 printf("%s: rev %d", sc->sc_dev.dv_xname,
439 sv_read_indirect(sc, SV_REVISION_LEVEL));
440 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
441 printf(", reverb SRAM present");
442 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
443 printf(", wavetable ROM present");
444 printf("\n");
445
446 sv_init_mixer(sc);
447
448 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
449
450 arg.type = AUDIODEV_TYPE_OPL;
451 arg.hwif = 0;
452 arg.hdl = 0;
453 (void)config_found(&sc->sc_dev, &arg, audioprint);
454
455 sc->sc_pa = *pa; /* for deferred setup */
456 config_defer(self, sv_defer);
457 }
458
459 #ifdef AUDIO_DEBUG
460 void
461 sv_dumpregs(sc)
462 struct sv_softc *sc;
463 {
464 int idx;
465
466 #if 0
467 for (idx = 0; idx < 0x50; idx += 4)
468 printf ("%02x = %x\n", idx,
469 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
470 #endif
471
472 for (idx = 0; idx < 6; idx++)
473 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
474
475 for (idx = 0; idx < 0x32; idx++)
476 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
477
478 for (idx = 0; idx < 0x10; idx++)
479 printf ("DMA %02x = %02x\n", idx,
480 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
481 }
482 #endif
483
484 int
485 sv_intr(p)
486 void *p;
487 {
488 struct sv_softc *sc = p;
489 u_int8_t intr;
490
491 intr = sv_read(sc, SV_CODEC_STATUS);
492 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
493
494 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
495 return (0);
496
497 if (intr & SV_INTSTATUS_DMAA) {
498 if (sc->sc_pintr)
499 sc->sc_pintr(sc->sc_parg);
500 }
501
502 if (intr & SV_INTSTATUS_DMAC) {
503 if (sc->sc_rintr)
504 sc->sc_rintr(sc->sc_rarg);
505 }
506
507 return (1);
508 }
509
510 int
511 sv_allocmem(sc, size, align, direction, p)
512 struct sv_softc *sc;
513 size_t size;
514 size_t align;
515 int direction;
516 struct sv_dma *p;
517 {
518 int error;
519
520 p->size = size;
521 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
522 p->segs, ARRAY_SIZE(p->segs),
523 &p->nsegs, BUS_DMA_NOWAIT);
524 if (error)
525 return (error);
526
527 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
528 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
529 if (error)
530 goto free;
531
532 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
533 0, BUS_DMA_NOWAIT, &p->map);
534 if (error)
535 goto unmap;
536
537 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
538 BUS_DMA_NOWAIT |
539 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
540 if (error)
541 goto destroy;
542 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
543 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
544 return (0);
545
546 destroy:
547 bus_dmamap_destroy(sc->sc_dmatag, p->map);
548 unmap:
549 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
550 free:
551 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
552 return (error);
553 }
554
555 int
556 sv_freemem(sc, p)
557 struct sv_softc *sc;
558 struct sv_dma *p;
559 {
560 bus_dmamap_unload(sc->sc_dmatag, p->map);
561 bus_dmamap_destroy(sc->sc_dmatag, p->map);
562 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
563 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
564 return (0);
565 }
566
567 int
568 sv_open(addr, flags)
569 void *addr;
570 int flags;
571 {
572 struct sv_softc *sc = addr;
573
574 DPRINTF(("sv_open\n"));
575 if (!sc->sc_dmaset)
576 return (ENXIO);
577 sc->sc_pintr = 0;
578 sc->sc_rintr = 0;
579
580 return (0);
581 }
582
583 /*
584 * Close function is called at splaudio().
585 */
586 void
587 sv_close(addr)
588 void *addr;
589 {
590 struct sv_softc *sc = addr;
591
592 DPRINTF(("sv_close\n"));
593 sv_halt_output(sc);
594 sv_halt_input(sc);
595
596 sc->sc_pintr = 0;
597 sc->sc_rintr = 0;
598 }
599
600 int
601 sv_query_encoding(addr, fp)
602 void *addr;
603 struct audio_encoding *fp;
604 {
605 switch (fp->index) {
606 case 0:
607 strcpy(fp->name, AudioEulinear);
608 fp->encoding = AUDIO_ENCODING_ULINEAR;
609 fp->precision = 8;
610 fp->flags = 0;
611 return (0);
612 case 1:
613 strcpy(fp->name, AudioEmulaw);
614 fp->encoding = AUDIO_ENCODING_ULAW;
615 fp->precision = 8;
616 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
617 return (0);
618 case 2:
619 strcpy(fp->name, AudioEalaw);
620 fp->encoding = AUDIO_ENCODING_ALAW;
621 fp->precision = 8;
622 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
623 return (0);
624 case 3:
625 strcpy(fp->name, AudioEslinear);
626 fp->encoding = AUDIO_ENCODING_SLINEAR;
627 fp->precision = 8;
628 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
629 return (0);
630 case 4:
631 strcpy(fp->name, AudioEslinear_le);
632 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
633 fp->precision = 16;
634 fp->flags = 0;
635 return (0);
636 case 5:
637 strcpy(fp->name, AudioEulinear_le);
638 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
639 fp->precision = 16;
640 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
641 return (0);
642 case 6:
643 strcpy(fp->name, AudioEslinear_be);
644 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
645 fp->precision = 16;
646 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
647 return (0);
648 case 7:
649 strcpy(fp->name, AudioEulinear_be);
650 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
651 fp->precision = 16;
652 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
653 return (0);
654 default:
655 return (EINVAL);
656 }
657 }
658
659 int
660 sv_set_params(addr, setmode, usemode, play, rec)
661 void *addr;
662 int setmode, usemode;
663 struct audio_params *play, *rec;
664 {
665 struct sv_softc *sc = addr;
666 struct audio_params *p = NULL;
667 int mode;
668 u_int32_t val;
669
670 /*
671 * This device only has one clock, so make the sample rates match.
672 */
673 if (play->sample_rate != rec->sample_rate &&
674 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
675 if (setmode == AUMODE_PLAY) {
676 rec->sample_rate = play->sample_rate;
677 setmode |= AUMODE_RECORD;
678 } else if (setmode == AUMODE_RECORD) {
679 play->sample_rate = rec->sample_rate;
680 setmode |= AUMODE_PLAY;
681 } else
682 return (EINVAL);
683 }
684
685 for (mode = AUMODE_RECORD; mode != -1;
686 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
687 if ((setmode & mode) == 0)
688 continue;
689
690 p = mode == AUMODE_PLAY ? play : rec;
691
692 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
693 (p->precision != 8 && p->precision != 16) ||
694 (p->channels != 1 && p->channels != 2))
695 return (EINVAL);
696
697 p->factor = 1;
698 p->sw_code = 0;
699 switch (p->encoding) {
700 case AUDIO_ENCODING_SLINEAR_BE:
701 if (p->precision == 16)
702 p->sw_code = swap_bytes;
703 else
704 p->sw_code = change_sign8;
705 break;
706 case AUDIO_ENCODING_SLINEAR_LE:
707 if (p->precision != 16)
708 p->sw_code = change_sign8;
709 break;
710 case AUDIO_ENCODING_ULINEAR_BE:
711 if (p->precision == 16) {
712 if (mode == AUMODE_PLAY)
713 p->sw_code = swap_bytes_change_sign16_le;
714 else
715 p->sw_code = change_sign16_swap_bytes_le;
716 }
717 break;
718 case AUDIO_ENCODING_ULINEAR_LE:
719 if (p->precision == 16)
720 p->sw_code = change_sign16_le;
721 break;
722 case AUDIO_ENCODING_ULAW:
723 if (mode == AUMODE_PLAY) {
724 p->factor = 2;
725 p->sw_code = mulaw_to_slinear16_le;
726 } else
727 p->sw_code = ulinear8_to_mulaw;
728 break;
729 case AUDIO_ENCODING_ALAW:
730 if (mode == AUMODE_PLAY) {
731 p->factor = 2;
732 p->sw_code = alaw_to_slinear16_le;
733 } else
734 p->sw_code = ulinear8_to_alaw;
735 break;
736 default:
737 return (EINVAL);
738 }
739 }
740
741 val = p->sample_rate * 65536 / 48000;
742 /*
743 * If the sample rate is exactly 48KHz, the fraction would overflow the
744 * register, so we have to bias it. This causes a little clock drift.
745 * The drift is below normal crystal tolerance (.0001%), so although
746 * this seems a little silly, we can pretty much ignore it.
747 * (I tested the output speed with values of 1-20, just to be sure this
748 * register isn't *supposed* to have a bias. It isn't.)
749 * - mycroft
750 */
751 if (val > 65535)
752 val = 65535;
753
754 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
755 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
756
757 #define F_REF 24576000
758
759 #define ABS(x) (((x) < 0) ? (-x) : (x))
760
761 if (setmode & AUMODE_RECORD) {
762 /* The ADC reference frequency (f_out) is 512 * sample rate */
763
764 /* f_out is dervied from the 24.576MHZ crystal by three values:
765 M & N & R. The equation is as follows:
766
767 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
768
769 with the constraint that:
770
771 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
772 and n, m >= 1
773 */
774
775 int goal_f_out = 512 * rec->sample_rate;
776 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
777 int pll_sample;
778 int error;
779
780 for (a = 0; a < 8; a++) {
781 if ((goal_f_out * (1 << a)) >= 80000000)
782 break;
783 }
784
785 /* a != 8 because sample_rate >= 2000 */
786
787 for (n = 33; n > 2; n--) {
788 m = (goal_f_out * n * (1 << a)) / F_REF;
789 if ((m > 257) || (m < 3))
790 continue;
791
792 pll_sample = (m * F_REF) / (n * (1 << a));
793 pll_sample /= 512;
794
795 /* Threshold might be good here */
796 error = pll_sample - rec->sample_rate;
797 error = ABS(error);
798
799 if (error < best_error) {
800 best_error = error;
801 best_n = n;
802 best_m = m;
803 if (error == 0) break;
804 }
805 }
806
807 best_n -= 2;
808 best_m -= 2;
809
810 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
811 sv_write_indirect(sc, SV_ADC_PLL_N,
812 best_n | (a << SV_PLL_R_SHIFT));
813 }
814
815 return (0);
816 }
817
818 int
819 sv_round_blocksize(addr, blk)
820 void *addr;
821 int blk;
822 {
823 return (blk & -32); /* keep good alignment */
824 }
825
826 int
827 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
828 void *addr;
829 void *start, *end;
830 int blksize;
831 void (*intr) __P((void *));
832 void *arg;
833 struct audio_params *param;
834 {
835 struct sv_softc *sc = addr;
836 struct sv_dma *p;
837 u_int8_t mode;
838 int dma_count;
839
840 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
841 addr, start, end, blksize, intr, arg));
842 sc->sc_pintr = intr;
843 sc->sc_parg = arg;
844
845 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
846 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
847 if (param->precision * param->factor == 16)
848 mode |= SV_DMAA_FORMAT16;
849 if (param->channels == 2)
850 mode |= SV_DMAA_STEREO;
851 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
852
853 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
854 ;
855 if (!p) {
856 printf("sv_trigger_output: bad addr %p\n", start);
857 return (EINVAL);
858 }
859
860 dma_count = ((char *)end - (char *)start) - 1;
861 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
862 (int)DMAADDR(p), dma_count));
863
864 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
865 DMAADDR(p));
866 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
867 dma_count);
868 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
869 DMA37MD_READ | DMA37MD_LOOP);
870
871 DPRINTF(("sv_trigger_output: current addr=%x\n",
872 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
873
874 dma_count = blksize - 1;
875
876 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
877 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
878
879 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
880 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
881
882 return (0);
883 }
884
885 int
886 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
887 void *addr;
888 void *start, *end;
889 int blksize;
890 void (*intr) __P((void *));
891 void *arg;
892 struct audio_params *param;
893 {
894 struct sv_softc *sc = addr;
895 struct sv_dma *p;
896 u_int8_t mode;
897 int dma_count;
898
899 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
900 addr, start, end, blksize, intr, arg));
901 sc->sc_rintr = intr;
902 sc->sc_rarg = arg;
903
904 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
905 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
906 if (param->precision * param->factor == 16)
907 mode |= SV_DMAC_FORMAT16;
908 if (param->channels == 2)
909 mode |= SV_DMAC_STEREO;
910 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
911
912 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
913 ;
914 if (!p) {
915 printf("sv_trigger_input: bad addr %p\n", start);
916 return (EINVAL);
917 }
918
919 dma_count = (((char *)end - (char *)start) >> 1) - 1;
920 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
921 (int)DMAADDR(p), dma_count));
922
923 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
924 DMAADDR(p));
925 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
926 dma_count);
927 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
928 DMA37MD_WRITE | DMA37MD_LOOP);
929
930 DPRINTF(("sv_trigger_input: current addr=%x\n",
931 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
932
933 dma_count = (blksize >> 1) - 1;
934
935 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
936 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
937
938 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
939 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
940
941 return (0);
942 }
943
944 int
945 sv_halt_output(addr)
946 void *addr;
947 {
948 struct sv_softc *sc = addr;
949 u_int8_t mode;
950
951 DPRINTF(("sv: sv_halt_output\n"));
952 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
953 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
954
955 return (0);
956 }
957
958 int
959 sv_halt_input(addr)
960 void *addr;
961 {
962 struct sv_softc *sc = addr;
963 u_int8_t mode;
964
965 DPRINTF(("sv: sv_halt_input\n"));
966 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
967 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
968
969 return (0);
970 }
971
972 int
973 sv_getdev(addr, retp)
974 void *addr;
975 struct audio_device *retp;
976 {
977 *retp = sv_device;
978 return (0);
979 }
980
981
982 /*
983 * Mixer related code is here
984 *
985 */
986
987 #define SV_INPUT_CLASS 0
988 #define SV_OUTPUT_CLASS 1
989 #define SV_RECORD_CLASS 2
990
991 #define SV_LAST_CLASS 2
992
993 static const char *mixer_classes[] =
994 { AudioCinputs, AudioCoutputs, AudioCrecord };
995
996 static const struct {
997 u_int8_t l_port;
998 u_int8_t r_port;
999 u_int8_t mask;
1000 u_int8_t class;
1001 const char *audio;
1002 } ports[] = {
1003 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1004 SV_INPUT_CLASS, "aux1" },
1005 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1006 SV_INPUT_CLASS, AudioNcd },
1007 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1008 SV_INPUT_CLASS, AudioNline },
1009 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1010 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1011 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1012 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1013 SV_INPUT_CLASS, "aux2" },
1014 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1015 SV_INPUT_CLASS, AudioNdac },
1016 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1017 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1018 };
1019
1020
1021 static const struct {
1022 int idx;
1023 const char *name;
1024 } record_sources[] = {
1025 { SV_REC_CD, AudioNcd },
1026 { SV_REC_DAC, AudioNdac },
1027 { SV_REC_AUX2, "aux2" },
1028 { SV_REC_LINE, AudioNline },
1029 { SV_REC_AUX1, "aux1" },
1030 { SV_REC_MIC, AudioNmicrophone },
1031 { SV_REC_MIXER, AudioNmixerout }
1032 };
1033
1034
1035 #define SV_DEVICES_PER_PORT 2
1036 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1037 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1038 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1039 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1040 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1041 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1042
1043 int
1044 sv_query_devinfo(addr, dip)
1045 void *addr;
1046 mixer_devinfo_t *dip;
1047 {
1048 int i;
1049
1050 /* It's a class */
1051 if (dip->index <= SV_LAST_CLASS) {
1052 dip->type = AUDIO_MIXER_CLASS;
1053 dip->mixer_class = dip->index;
1054 dip->next = dip->prev = AUDIO_MIXER_LAST;
1055 strcpy(dip->label.name,
1056 mixer_classes[dip->index]);
1057 return (0);
1058 }
1059
1060 if (dip->index >= SV_FIRST_MIXER &&
1061 dip->index <= SV_LAST_MIXER) {
1062 int off = dip->index - SV_FIRST_MIXER;
1063 int mute = (off % SV_DEVICES_PER_PORT);
1064 int idx = off / SV_DEVICES_PER_PORT;
1065
1066 dip->mixer_class = ports[idx].class;
1067 strcpy(dip->label.name, ports[idx].audio);
1068
1069 if (!mute) {
1070 dip->type = AUDIO_MIXER_VALUE;
1071 dip->prev = AUDIO_MIXER_LAST;
1072 dip->next = dip->index + 1;
1073
1074 if (ports[idx].r_port != 0)
1075 dip->un.v.num_channels = 2;
1076 else
1077 dip->un.v.num_channels = 1;
1078
1079 strcpy(dip->un.v.units.name, AudioNvolume);
1080 } else {
1081 dip->type = AUDIO_MIXER_ENUM;
1082 dip->prev = dip->index - 1;
1083 dip->next = AUDIO_MIXER_LAST;
1084
1085 strcpy(dip->label.name, AudioNmute);
1086 dip->un.e.num_mem = 2;
1087 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1088 dip->un.e.member[0].ord = 0;
1089 strcpy(dip->un.e.member[1].label.name, AudioNon);
1090 dip->un.e.member[1].ord = 1;
1091 }
1092
1093 return (0);
1094 }
1095
1096 switch (dip->index) {
1097 case SV_RECORD_SOURCE:
1098 dip->mixer_class = SV_RECORD_CLASS;
1099 dip->prev = AUDIO_MIXER_LAST;
1100 dip->next = SV_RECORD_GAIN;
1101 strcpy(dip->label.name, AudioNsource);
1102 dip->type = AUDIO_MIXER_ENUM;
1103
1104 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1105 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1106 strcpy(dip->un.e.member[i].label.name,
1107 record_sources[i].name);
1108 dip->un.e.member[i].ord = record_sources[i].idx;
1109 }
1110 return (0);
1111
1112 case SV_RECORD_GAIN:
1113 dip->mixer_class = SV_RECORD_CLASS;
1114 dip->prev = SV_RECORD_SOURCE;
1115 dip->next = AUDIO_MIXER_LAST;
1116 strcpy(dip->label.name, "gain");
1117 dip->type = AUDIO_MIXER_VALUE;
1118 dip->un.v.num_channels = 1;
1119 strcpy(dip->un.v.units.name, AudioNvolume);
1120 return (0);
1121
1122 case SV_MIC_BOOST:
1123 dip->mixer_class = SV_RECORD_CLASS;
1124 dip->prev = AUDIO_MIXER_LAST;
1125 dip->next = AUDIO_MIXER_LAST;
1126 strcpy(dip->label.name, "micboost");
1127 goto on_off;
1128
1129 case SV_SRS_MODE:
1130 dip->mixer_class = SV_OUTPUT_CLASS;
1131 dip->prev = dip->next = AUDIO_MIXER_LAST;
1132 strcpy(dip->label.name, AudioNspatial);
1133
1134 on_off:
1135 dip->type = AUDIO_MIXER_ENUM;
1136 dip->un.e.num_mem = 2;
1137 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1138 dip->un.e.member[0].ord = 0;
1139 strcpy(dip->un.e.member[1].label.name, AudioNon);
1140 dip->un.e.member[1].ord = 1;
1141 return (0);
1142 }
1143
1144 return (ENXIO);
1145 }
1146
1147 int
1148 sv_mixer_set_port(addr, cp)
1149 void *addr;
1150 mixer_ctrl_t *cp;
1151 {
1152 struct sv_softc *sc = addr;
1153 u_int8_t reg;
1154 int idx;
1155
1156 if (cp->dev >= SV_FIRST_MIXER &&
1157 cp->dev <= SV_LAST_MIXER) {
1158 int off = cp->dev - SV_FIRST_MIXER;
1159 int mute = (off % SV_DEVICES_PER_PORT);
1160 idx = off / SV_DEVICES_PER_PORT;
1161
1162 if (mute) {
1163 if (cp->type != AUDIO_MIXER_ENUM)
1164 return (EINVAL);
1165
1166 reg = sv_read_indirect(sc, ports[idx].l_port);
1167 if (cp->un.ord)
1168 reg |= SV_MUTE_BIT;
1169 else
1170 reg &= ~SV_MUTE_BIT;
1171 sv_write_indirect(sc, ports[idx].l_port, reg);
1172
1173 if (ports[idx].r_port) {
1174 reg = sv_read_indirect(sc, ports[idx].r_port);
1175 if (cp->un.ord)
1176 reg |= SV_MUTE_BIT;
1177 else
1178 reg &= ~SV_MUTE_BIT;
1179 sv_write_indirect(sc, ports[idx].r_port, reg);
1180 }
1181 } else {
1182 int lval, rval;
1183
1184 if (cp->type != AUDIO_MIXER_VALUE)
1185 return (EINVAL);
1186
1187 if (cp->un.value.num_channels != 1 &&
1188 cp->un.value.num_channels != 2)
1189 return (EINVAL);
1190
1191 if (ports[idx].r_port == 0) {
1192 if (cp->un.value.num_channels != 1)
1193 return (EINVAL);
1194 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1195 rval = 0; /* shut up GCC */
1196 } else {
1197 if (cp->un.value.num_channels != 2)
1198 return (EINVAL);
1199
1200 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1201 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1202 }
1203
1204
1205 reg = sv_read_indirect(sc, ports[idx].l_port);
1206 reg &= ~(ports[idx].mask);
1207 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1208 AUDIO_MAX_GAIN;
1209 reg |= lval;
1210 sv_write_indirect(sc, ports[idx].l_port, reg);
1211
1212 if (ports[idx].r_port != 0) {
1213 reg = sv_read_indirect(sc, ports[idx].r_port);
1214 reg &= ~(ports[idx].mask);
1215
1216 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1217 AUDIO_MAX_GAIN;
1218 reg |= rval;
1219
1220 sv_write_indirect(sc, ports[idx].r_port, reg);
1221 }
1222
1223 sv_read_indirect(sc, ports[idx].l_port);
1224 }
1225
1226 return (0);
1227 }
1228
1229
1230 switch (cp->dev) {
1231 case SV_RECORD_SOURCE:
1232 if (cp->type != AUDIO_MIXER_ENUM)
1233 return (EINVAL);
1234
1235 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1236 if (record_sources[idx].idx == cp->un.ord)
1237 goto found;
1238 }
1239
1240 return (EINVAL);
1241
1242 found:
1243 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1244 reg &= ~SV_REC_SOURCE_MASK;
1245 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1246 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1247
1248 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1249 reg &= ~SV_REC_SOURCE_MASK;
1250 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1251 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1252 return (0);
1253
1254 case SV_RECORD_GAIN:
1255 {
1256 int val;
1257
1258 if (cp->type != AUDIO_MIXER_VALUE)
1259 return (EINVAL);
1260
1261 if (cp->un.value.num_channels != 1)
1262 return (EINVAL);
1263
1264 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1265 / AUDIO_MAX_GAIN;
1266
1267 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1268 reg &= ~SV_REC_GAIN_MASK;
1269 reg |= val;
1270 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1271
1272 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1273 reg &= ~SV_REC_GAIN_MASK;
1274 reg |= val;
1275 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1276 }
1277 return (0);
1278
1279 case SV_MIC_BOOST:
1280 if (cp->type != AUDIO_MIXER_ENUM)
1281 return (EINVAL);
1282
1283 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1284 if (cp->un.ord) {
1285 reg |= SV_MIC_BOOST_BIT;
1286 } else {
1287 reg &= ~SV_MIC_BOOST_BIT;
1288 }
1289
1290 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1291 return (0);
1292
1293 case SV_SRS_MODE:
1294 if (cp->type != AUDIO_MIXER_ENUM)
1295 return (EINVAL);
1296
1297 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1298 if (cp->un.ord) {
1299 reg &= ~SV_SRS_SPACE_ONOFF;
1300 } else {
1301 reg |= SV_SRS_SPACE_ONOFF;
1302 }
1303
1304 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1305 return (0);
1306 }
1307
1308 return (EINVAL);
1309 }
1310
1311 int
1312 sv_mixer_get_port(addr, cp)
1313 void *addr;
1314 mixer_ctrl_t *cp;
1315 {
1316 struct sv_softc *sc = addr;
1317 int val;
1318 u_int8_t reg;
1319
1320 if (cp->dev >= SV_FIRST_MIXER &&
1321 cp->dev <= SV_LAST_MIXER) {
1322 int off = cp->dev - SV_FIRST_MIXER;
1323 int mute = (off % 2);
1324 int idx = off / 2;
1325
1326 if (mute) {
1327 if (cp->type != AUDIO_MIXER_ENUM)
1328 return (EINVAL);
1329
1330 reg = sv_read_indirect(sc, ports[idx].l_port);
1331 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1332 } else {
1333 if (cp->type != AUDIO_MIXER_VALUE)
1334 return (EINVAL);
1335
1336 if (cp->un.value.num_channels != 1 &&
1337 cp->un.value.num_channels != 2)
1338 return (EINVAL);
1339
1340 if ((ports[idx].r_port == 0 &&
1341 cp->un.value.num_channels != 1) ||
1342 (ports[idx].r_port != 0 &&
1343 cp->un.value.num_channels != 2))
1344 return (EINVAL);
1345
1346 reg = sv_read_indirect(sc, ports[idx].l_port);
1347 reg &= ports[idx].mask;
1348
1349 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1350
1351 if (ports[idx].r_port != 0) {
1352 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1353
1354 reg = sv_read_indirect(sc, ports[idx].r_port);
1355 reg &= ports[idx].mask;
1356
1357 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1358 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1359 } else
1360 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1361 }
1362
1363 return (0);
1364 }
1365
1366 switch (cp->dev) {
1367 case SV_RECORD_SOURCE:
1368 if (cp->type != AUDIO_MIXER_ENUM)
1369 return (EINVAL);
1370
1371 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1372 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1373
1374 return (0);
1375
1376 case SV_RECORD_GAIN:
1377 if (cp->type != AUDIO_MIXER_VALUE)
1378 return (EINVAL);
1379 if (cp->un.value.num_channels != 1)
1380 return (EINVAL);
1381
1382 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1383 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1384 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1385
1386 return (0);
1387
1388 case SV_MIC_BOOST:
1389 if (cp->type != AUDIO_MIXER_ENUM)
1390 return (EINVAL);
1391 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1392 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1393 return (0);
1394
1395
1396 case SV_SRS_MODE:
1397 if (cp->type != AUDIO_MIXER_ENUM)
1398 return (EINVAL);
1399 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1400 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1401 return (0);
1402 }
1403
1404 return (EINVAL);
1405 }
1406
1407
1408 static void
1409 sv_init_mixer(sc)
1410 struct sv_softc *sc;
1411 {
1412 mixer_ctrl_t cp;
1413 int i;
1414
1415 cp.type = AUDIO_MIXER_ENUM;
1416 cp.dev = SV_SRS_MODE;
1417 cp.un.ord = 0;
1418
1419 sv_mixer_set_port(sc, &cp);
1420
1421 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1422 if (ports[i].audio == AudioNdac) {
1423 cp.type = AUDIO_MIXER_ENUM;
1424 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1425 cp.un.ord = 0;
1426 sv_mixer_set_port(sc, &cp);
1427 break;
1428 }
1429 }
1430 }
1431
1432 void *
1433 sv_malloc(addr, direction, size, pool, flags)
1434 void *addr;
1435 int direction;
1436 size_t size;
1437 int pool, flags;
1438 {
1439 struct sv_softc *sc = addr;
1440 struct sv_dma *p;
1441 int error;
1442
1443 p = malloc(sizeof(*p), pool, flags);
1444 if (!p)
1445 return (0);
1446 error = sv_allocmem(sc, size, 16, direction, p);
1447 if (error) {
1448 free(p, pool);
1449 return (0);
1450 }
1451 p->next = sc->sc_dmas;
1452 sc->sc_dmas = p;
1453 return (KERNADDR(p));
1454 }
1455
1456 void
1457 sv_free(addr, ptr, pool)
1458 void *addr;
1459 void *ptr;
1460 int pool;
1461 {
1462 struct sv_softc *sc = addr;
1463 struct sv_dma **pp, *p;
1464
1465 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1466 if (KERNADDR(p) == ptr) {
1467 sv_freemem(sc, p);
1468 *pp = p->next;
1469 free(p, pool);
1470 return;
1471 }
1472 }
1473 }
1474
1475 size_t
1476 sv_round_buffersize(addr, direction, size)
1477 void *addr;
1478 int direction;
1479 size_t size;
1480 {
1481 return (size);
1482 }
1483
1484 paddr_t
1485 sv_mappage(addr, mem, off, prot)
1486 void *addr;
1487 void *mem;
1488 off_t off;
1489 int prot;
1490 {
1491 struct sv_softc *sc = addr;
1492 struct sv_dma *p;
1493
1494 if (off < 0)
1495 return (-1);
1496 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1497 ;
1498 if (!p)
1499 return (-1);
1500 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1501 off, prot, BUS_DMA_WAITOK));
1502 }
1503
1504 int
1505 sv_get_props(addr)
1506 void *addr;
1507 {
1508 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1509 }
1510