sv.c revision 1.14 1 /* $NetBSD: sv.c,v 1.14 2001/10/03 00:04:52 augustss Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/malloc.h>
80 #include <sys/device.h>
81
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/pcidevs.h>
85
86 #include <sys/audioio.h>
87 #include <dev/audio_if.h>
88 #include <dev/mulaw.h>
89 #include <dev/auconv.h>
90
91 #include <dev/ic/i8237reg.h>
92 #include <dev/pci/svreg.h>
93 #include <dev/pci/svvar.h>
94
95 #include <machine/bus.h>
96
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x) if (svdebug) printf x
99 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
100 int svdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105
106 int sv_match __P((struct device *, struct cfdata *, void *));
107 void sv_attach __P((struct device *, struct device *, void *));
108 int sv_intr __P((void *));
109
110 struct sv_dma {
111 bus_dmamap_t map;
112 caddr_t addr;
113 bus_dma_segment_t segs[1];
114 int nsegs;
115 size_t size;
116 struct sv_dma *next;
117 };
118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
119 #define KERNADDR(p) ((void *)((p)->addr))
120
121 struct cfattach sv_ca = {
122 sizeof(struct sv_softc), sv_match, sv_attach
123 };
124
125 struct audio_device sv_device = {
126 "S3 SonicVibes",
127 "",
128 "sv"
129 };
130
131 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
132
133 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
134 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
135
136 int sv_open __P((void *, int));
137 void sv_close __P((void *));
138 int sv_query_encoding __P((void *, struct audio_encoding *));
139 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
140 int sv_round_blocksize __P((void *, int));
141 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
142 void *, struct audio_params *));
143 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
144 void *, struct audio_params *));
145 int sv_halt_output __P((void *));
146 int sv_halt_input __P((void *));
147 int sv_getdev __P((void *, struct audio_device *));
148 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
149 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
150 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
151 void *sv_malloc __P((void *, int, size_t, int, int));
152 void sv_free __P((void *, void *, int));
153 size_t sv_round_buffersize __P((void *, int, size_t));
154 paddr_t sv_mappage __P((void *, void *, off_t, int));
155 int sv_get_props __P((void *));
156
157 #ifdef AUDIO_DEBUG
158 void sv_dumpregs __P((struct sv_softc *sc));
159 #endif
160
161 struct audio_hw_if sv_hw_if = {
162 sv_open,
163 sv_close,
164 NULL,
165 sv_query_encoding,
166 sv_set_params,
167 sv_round_blocksize,
168 NULL,
169 NULL,
170 NULL,
171 NULL,
172 NULL,
173 sv_halt_output,
174 sv_halt_input,
175 NULL,
176 sv_getdev,
177 NULL,
178 sv_mixer_set_port,
179 sv_mixer_get_port,
180 sv_query_devinfo,
181 sv_malloc,
182 sv_free,
183 sv_round_buffersize,
184 sv_mappage,
185 sv_get_props,
186 sv_trigger_output,
187 sv_trigger_input,
188 NULL,
189 };
190
191
192 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
193 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
194 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
195 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
196 static void sv_init_mixer __P((struct sv_softc *));
197
198 static void sv_defer __P((struct device *self));
199
200 static void
201 sv_write (sc, reg, val)
202 struct sv_softc *sc;
203 u_int8_t reg, val;
204
205 {
206 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
207 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
208 }
209
210 static u_int8_t
211 sv_read(sc, reg)
212 struct sv_softc *sc;
213 u_int8_t reg;
214
215 {
216 u_int8_t val;
217
218 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
219 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
220 return val;
221 }
222
223 static u_int8_t
224 sv_read_indirect(sc, reg)
225 struct sv_softc *sc;
226 u_int8_t reg;
227 {
228 u_int8_t val;
229 int s = splaudio();
230
231 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
232 val = sv_read(sc, SV_CODEC_IDATA);
233 splx(s);
234 return (val);
235 }
236
237 static void
238 sv_write_indirect(sc, reg, val)
239 struct sv_softc *sc;
240 u_int8_t reg, val;
241 {
242 u_int8_t iaddr = reg & SV_IADDR_MASK;
243 int s = splaudio();
244
245 if (reg == SV_DMA_DATA_FORMAT)
246 iaddr |= SV_IADDR_MCE;
247
248 sv_write(sc, SV_CODEC_IADDR, iaddr);
249 sv_write(sc, SV_CODEC_IDATA, val);
250 splx(s);
251 }
252
253 int
254 sv_match(parent, match, aux)
255 struct device *parent;
256 struct cfdata *match;
257 void *aux;
258 {
259 struct pci_attach_args *pa = aux;
260
261 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
262 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
263 return (1);
264
265 return (0);
266 }
267
268 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
269 int pcioffs,
270 bus_space_tag_t iot, bus_size_t size,
271 bus_size_t align, bus_size_t bound, int flags,
272 bus_space_handle_t *ioh));
273
274 #define PCI_IO_ALLOC_LOW 0xa000
275 #define PCI_IO_ALLOC_HIGH 0xb000
276 int
277 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
278 pci_chipset_tag_t pc;
279 pcitag_t pt;
280 int pcioffs;
281 bus_space_tag_t iot;
282 bus_size_t size;
283 bus_size_t align;
284 bus_size_t bound;
285 int flags;
286 bus_space_handle_t *ioh;
287 {
288 bus_addr_t addr;
289 int error;
290
291 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
292 size, align, bound, flags, &addr, ioh);
293 if (error)
294 return(error);
295
296 pci_conf_write(pc, pt, pcioffs, addr);
297 return (0);
298 }
299
300 /*
301 * Allocate IO addresses when all other configuration is done.
302 */
303 void
304 sv_defer(self)
305 struct device *self;
306 {
307 struct sv_softc *sc = (struct sv_softc *)self;
308 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
309 pcitag_t pt = sc->sc_pa.pa_tag;
310 pcireg_t dmaio;
311
312 DPRINTF(("sv_defer: %p\n", sc));
313 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
314 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
315 0, &sc->sc_dmaa_ioh)) {
316 printf("sv_attach: cannot allocate DMA A range\n");
317 return;
318 }
319 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
320 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
321 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
322 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
323
324 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
325 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
326 0, &sc->sc_dmac_ioh)) {
327 printf("sv_attach: cannot allocate DMA C range\n");
328 return;
329 }
330 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
331 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
332 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
333 dmaio | SV_DMA_CHANNEL_ENABLE);
334
335 sc->sc_dmaset = 1;
336 }
337
338 void
339 sv_attach(parent, self, aux)
340 struct device *parent, *self;
341 void *aux;
342 {
343 struct sv_softc *sc = (struct sv_softc *)self;
344 struct pci_attach_args *pa = aux;
345 pci_chipset_tag_t pc = pa->pa_pc;
346 pcitag_t pt = pa->pa_tag;
347 pci_intr_handle_t ih;
348 pcireg_t csr;
349 char const *intrstr;
350 u_int8_t reg;
351 struct audio_attach_args arg;
352
353 printf ("\n");
354
355 /* Map I/O registers */
356 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
357 PCI_MAPREG_TYPE_IO, 0,
358 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
359 printf("%s: can't map enhanced i/o space\n",
360 sc->sc_dev.dv_xname);
361 return;
362 }
363 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
364 PCI_MAPREG_TYPE_IO, 0,
365 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
366 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
367 return;
368 }
369 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
370 PCI_MAPREG_TYPE_IO, 0,
371 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
372 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
373 return;
374 }
375 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
376 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
377
378 #ifdef alpha
379 /* XXX Force allocation through the SGMAP. */
380 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
381 #else
382 sc->sc_dmatag = pa->pa_dmat;
383 #endif
384
385 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
386 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
387
388 /* Enable the device. */
389 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
390 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
391 csr | PCI_COMMAND_MASTER_ENABLE);
392
393 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
394 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
395
396 /* initialize codec registers */
397 reg = sv_read(sc, SV_CODEC_CONTROL);
398 reg |= SV_CTL_RESET;
399 sv_write(sc, SV_CODEC_CONTROL, reg);
400 delay(50);
401
402 reg = sv_read(sc, SV_CODEC_CONTROL);
403 reg &= ~SV_CTL_RESET;
404 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
405
406 /* This write clears the reset */
407 sv_write(sc, SV_CODEC_CONTROL, reg);
408 delay(50);
409
410 /* This write actually shoves the new values in */
411 sv_write(sc, SV_CODEC_CONTROL, reg);
412
413 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
414
415 /* Enable DMA interrupts */
416 reg = sv_read(sc, SV_CODEC_INTMASK);
417 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
418 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
419 sv_write(sc, SV_CODEC_INTMASK, reg);
420
421 sv_read(sc, SV_CODEC_STATUS);
422
423 /* Map and establish the interrupt. */
424 if (pci_intr_map(pa, &ih)) {
425 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
426 return;
427 }
428 intrstr = pci_intr_string(pc, ih);
429 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
430 if (sc->sc_ih == NULL) {
431 printf("%s: couldn't establish interrupt",
432 sc->sc_dev.dv_xname);
433 if (intrstr != NULL)
434 printf(" at %s", intrstr);
435 printf("\n");
436 return;
437 }
438 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
439 printf("%s: rev %d", sc->sc_dev.dv_xname,
440 sv_read_indirect(sc, SV_REVISION_LEVEL));
441 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
442 printf(", reverb SRAM present");
443 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
444 printf(", wavetable ROM present");
445 printf("\n");
446
447 sv_init_mixer(sc);
448
449 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
450
451 arg.type = AUDIODEV_TYPE_OPL;
452 arg.hwif = 0;
453 arg.hdl = 0;
454 (void)config_found(&sc->sc_dev, &arg, audioprint);
455
456 sc->sc_pa = *pa; /* for deferred setup */
457 config_defer(self, sv_defer);
458 }
459
460 #ifdef AUDIO_DEBUG
461 void
462 sv_dumpregs(sc)
463 struct sv_softc *sc;
464 {
465 int idx;
466
467 #if 0
468 for (idx = 0; idx < 0x50; idx += 4)
469 printf ("%02x = %x\n", idx,
470 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
471 #endif
472
473 for (idx = 0; idx < 6; idx++)
474 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
475
476 for (idx = 0; idx < 0x32; idx++)
477 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
478
479 for (idx = 0; idx < 0x10; idx++)
480 printf ("DMA %02x = %02x\n", idx,
481 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
482 }
483 #endif
484
485 int
486 sv_intr(p)
487 void *p;
488 {
489 struct sv_softc *sc = p;
490 u_int8_t intr;
491
492 intr = sv_read(sc, SV_CODEC_STATUS);
493 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
494
495 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
496 return (0);
497
498 if (intr & SV_INTSTATUS_DMAA) {
499 if (sc->sc_pintr)
500 sc->sc_pintr(sc->sc_parg);
501 }
502
503 if (intr & SV_INTSTATUS_DMAC) {
504 if (sc->sc_rintr)
505 sc->sc_rintr(sc->sc_rarg);
506 }
507
508 return (1);
509 }
510
511 int
512 sv_allocmem(sc, size, align, direction, p)
513 struct sv_softc *sc;
514 size_t size;
515 size_t align;
516 int direction;
517 struct sv_dma *p;
518 {
519 int error;
520
521 p->size = size;
522 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
523 p->segs, ARRAY_SIZE(p->segs),
524 &p->nsegs, BUS_DMA_NOWAIT);
525 if (error)
526 return (error);
527
528 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
529 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
530 if (error)
531 goto free;
532
533 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
534 0, BUS_DMA_NOWAIT, &p->map);
535 if (error)
536 goto unmap;
537
538 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
539 BUS_DMA_NOWAIT |
540 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
541 if (error)
542 goto destroy;
543 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
544 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
545 return (0);
546
547 destroy:
548 bus_dmamap_destroy(sc->sc_dmatag, p->map);
549 unmap:
550 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
551 free:
552 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
553 return (error);
554 }
555
556 int
557 sv_freemem(sc, p)
558 struct sv_softc *sc;
559 struct sv_dma *p;
560 {
561 bus_dmamap_unload(sc->sc_dmatag, p->map);
562 bus_dmamap_destroy(sc->sc_dmatag, p->map);
563 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
564 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
565 return (0);
566 }
567
568 int
569 sv_open(addr, flags)
570 void *addr;
571 int flags;
572 {
573 struct sv_softc *sc = addr;
574
575 DPRINTF(("sv_open\n"));
576 if (!sc->sc_dmaset)
577 return (ENXIO);
578 sc->sc_pintr = 0;
579 sc->sc_rintr = 0;
580
581 return (0);
582 }
583
584 /*
585 * Close function is called at splaudio().
586 */
587 void
588 sv_close(addr)
589 void *addr;
590 {
591 struct sv_softc *sc = addr;
592
593 DPRINTF(("sv_close\n"));
594 sv_halt_output(sc);
595 sv_halt_input(sc);
596
597 sc->sc_pintr = 0;
598 sc->sc_rintr = 0;
599 }
600
601 int
602 sv_query_encoding(addr, fp)
603 void *addr;
604 struct audio_encoding *fp;
605 {
606 switch (fp->index) {
607 case 0:
608 strcpy(fp->name, AudioEulinear);
609 fp->encoding = AUDIO_ENCODING_ULINEAR;
610 fp->precision = 8;
611 fp->flags = 0;
612 return (0);
613 case 1:
614 strcpy(fp->name, AudioEmulaw);
615 fp->encoding = AUDIO_ENCODING_ULAW;
616 fp->precision = 8;
617 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
618 return (0);
619 case 2:
620 strcpy(fp->name, AudioEalaw);
621 fp->encoding = AUDIO_ENCODING_ALAW;
622 fp->precision = 8;
623 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 return (0);
625 case 3:
626 strcpy(fp->name, AudioEslinear);
627 fp->encoding = AUDIO_ENCODING_SLINEAR;
628 fp->precision = 8;
629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 return (0);
631 case 4:
632 strcpy(fp->name, AudioEslinear_le);
633 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
634 fp->precision = 16;
635 fp->flags = 0;
636 return (0);
637 case 5:
638 strcpy(fp->name, AudioEulinear_le);
639 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
640 fp->precision = 16;
641 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
642 return (0);
643 case 6:
644 strcpy(fp->name, AudioEslinear_be);
645 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
646 fp->precision = 16;
647 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
648 return (0);
649 case 7:
650 strcpy(fp->name, AudioEulinear_be);
651 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
652 fp->precision = 16;
653 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
654 return (0);
655 default:
656 return (EINVAL);
657 }
658 }
659
660 int
661 sv_set_params(addr, setmode, usemode, play, rec)
662 void *addr;
663 int setmode, usemode;
664 struct audio_params *play, *rec;
665 {
666 struct sv_softc *sc = addr;
667 struct audio_params *p = NULL;
668 int mode;
669 u_int32_t val;
670
671 /*
672 * This device only has one clock, so make the sample rates match.
673 */
674 if (play->sample_rate != rec->sample_rate &&
675 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
676 if (setmode == AUMODE_PLAY) {
677 rec->sample_rate = play->sample_rate;
678 setmode |= AUMODE_RECORD;
679 } else if (setmode == AUMODE_RECORD) {
680 play->sample_rate = rec->sample_rate;
681 setmode |= AUMODE_PLAY;
682 } else
683 return (EINVAL);
684 }
685
686 for (mode = AUMODE_RECORD; mode != -1;
687 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
688 if ((setmode & mode) == 0)
689 continue;
690
691 p = mode == AUMODE_PLAY ? play : rec;
692
693 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
694 (p->precision != 8 && p->precision != 16) ||
695 (p->channels != 1 && p->channels != 2))
696 return (EINVAL);
697
698 p->factor = 1;
699 p->sw_code = 0;
700 switch (p->encoding) {
701 case AUDIO_ENCODING_SLINEAR_BE:
702 if (p->precision == 16)
703 p->sw_code = swap_bytes;
704 else
705 p->sw_code = change_sign8;
706 break;
707 case AUDIO_ENCODING_SLINEAR_LE:
708 if (p->precision != 16)
709 p->sw_code = change_sign8;
710 break;
711 case AUDIO_ENCODING_ULINEAR_BE:
712 if (p->precision == 16) {
713 if (mode == AUMODE_PLAY)
714 p->sw_code = swap_bytes_change_sign16_le;
715 else
716 p->sw_code = change_sign16_swap_bytes_le;
717 }
718 break;
719 case AUDIO_ENCODING_ULINEAR_LE:
720 if (p->precision == 16)
721 p->sw_code = change_sign16_le;
722 break;
723 case AUDIO_ENCODING_ULAW:
724 if (mode == AUMODE_PLAY) {
725 p->factor = 2;
726 p->sw_code = mulaw_to_slinear16_le;
727 } else
728 p->sw_code = ulinear8_to_mulaw;
729 break;
730 case AUDIO_ENCODING_ALAW:
731 if (mode == AUMODE_PLAY) {
732 p->factor = 2;
733 p->sw_code = alaw_to_slinear16_le;
734 } else
735 p->sw_code = ulinear8_to_alaw;
736 break;
737 default:
738 return (EINVAL);
739 }
740 }
741
742 val = p->sample_rate * 65536 / 48000;
743 /*
744 * If the sample rate is exactly 48KHz, the fraction would overflow the
745 * register, so we have to bias it. This causes a little clock drift.
746 * The drift is below normal crystal tolerance (.0001%), so although
747 * this seems a little silly, we can pretty much ignore it.
748 * (I tested the output speed with values of 1-20, just to be sure this
749 * register isn't *supposed* to have a bias. It isn't.)
750 * - mycroft
751 */
752 if (val > 65535)
753 val = 65535;
754
755 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
756 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
757
758 #define F_REF 24576000
759
760 #define ABS(x) (((x) < 0) ? (-x) : (x))
761
762 if (setmode & AUMODE_RECORD) {
763 /* The ADC reference frequency (f_out) is 512 * sample rate */
764
765 /* f_out is dervied from the 24.576MHZ crystal by three values:
766 M & N & R. The equation is as follows:
767
768 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
769
770 with the constraint that:
771
772 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
773 and n, m >= 1
774 */
775
776 int goal_f_out = 512 * rec->sample_rate;
777 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
778 int pll_sample;
779 int error;
780
781 for (a = 0; a < 8; a++) {
782 if ((goal_f_out * (1 << a)) >= 80000000)
783 break;
784 }
785
786 /* a != 8 because sample_rate >= 2000 */
787
788 for (n = 33; n > 2; n--) {
789 m = (goal_f_out * n * (1 << a)) / F_REF;
790 if ((m > 257) || (m < 3))
791 continue;
792
793 pll_sample = (m * F_REF) / (n * (1 << a));
794 pll_sample /= 512;
795
796 /* Threshold might be good here */
797 error = pll_sample - rec->sample_rate;
798 error = ABS(error);
799
800 if (error < best_error) {
801 best_error = error;
802 best_n = n;
803 best_m = m;
804 if (error == 0) break;
805 }
806 }
807
808 best_n -= 2;
809 best_m -= 2;
810
811 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
812 sv_write_indirect(sc, SV_ADC_PLL_N,
813 best_n | (a << SV_PLL_R_SHIFT));
814 }
815
816 return (0);
817 }
818
819 int
820 sv_round_blocksize(addr, blk)
821 void *addr;
822 int blk;
823 {
824 return (blk & -32); /* keep good alignment */
825 }
826
827 int
828 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
829 void *addr;
830 void *start, *end;
831 int blksize;
832 void (*intr) __P((void *));
833 void *arg;
834 struct audio_params *param;
835 {
836 struct sv_softc *sc = addr;
837 struct sv_dma *p;
838 u_int8_t mode;
839 int dma_count;
840
841 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
842 addr, start, end, blksize, intr, arg));
843 sc->sc_pintr = intr;
844 sc->sc_parg = arg;
845
846 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
847 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
848 if (param->precision * param->factor == 16)
849 mode |= SV_DMAA_FORMAT16;
850 if (param->channels == 2)
851 mode |= SV_DMAA_STEREO;
852 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
853
854 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
855 ;
856 if (!p) {
857 printf("sv_trigger_output: bad addr %p\n", start);
858 return (EINVAL);
859 }
860
861 dma_count = ((char *)end - (char *)start) - 1;
862 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
863 (int)DMAADDR(p), dma_count));
864
865 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
866 DMAADDR(p));
867 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
868 dma_count);
869 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
870 DMA37MD_READ | DMA37MD_LOOP);
871
872 DPRINTF(("sv_trigger_output: current addr=%x\n",
873 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
874
875 dma_count = blksize - 1;
876
877 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
878 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
879
880 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
881 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
882
883 return (0);
884 }
885
886 int
887 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
888 void *addr;
889 void *start, *end;
890 int blksize;
891 void (*intr) __P((void *));
892 void *arg;
893 struct audio_params *param;
894 {
895 struct sv_softc *sc = addr;
896 struct sv_dma *p;
897 u_int8_t mode;
898 int dma_count;
899
900 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
901 addr, start, end, blksize, intr, arg));
902 sc->sc_rintr = intr;
903 sc->sc_rarg = arg;
904
905 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
906 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
907 if (param->precision * param->factor == 16)
908 mode |= SV_DMAC_FORMAT16;
909 if (param->channels == 2)
910 mode |= SV_DMAC_STEREO;
911 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
912
913 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
914 ;
915 if (!p) {
916 printf("sv_trigger_input: bad addr %p\n", start);
917 return (EINVAL);
918 }
919
920 dma_count = (((char *)end - (char *)start) >> 1) - 1;
921 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
922 (int)DMAADDR(p), dma_count));
923
924 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
925 DMAADDR(p));
926 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
927 dma_count);
928 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
929 DMA37MD_WRITE | DMA37MD_LOOP);
930
931 DPRINTF(("sv_trigger_input: current addr=%x\n",
932 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
933
934 dma_count = (blksize >> 1) - 1;
935
936 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
937 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
938
939 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
940 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
941
942 return (0);
943 }
944
945 int
946 sv_halt_output(addr)
947 void *addr;
948 {
949 struct sv_softc *sc = addr;
950 u_int8_t mode;
951
952 DPRINTF(("sv: sv_halt_output\n"));
953 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
954 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
955
956 return (0);
957 }
958
959 int
960 sv_halt_input(addr)
961 void *addr;
962 {
963 struct sv_softc *sc = addr;
964 u_int8_t mode;
965
966 DPRINTF(("sv: sv_halt_input\n"));
967 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
968 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
969
970 return (0);
971 }
972
973 int
974 sv_getdev(addr, retp)
975 void *addr;
976 struct audio_device *retp;
977 {
978 *retp = sv_device;
979 return (0);
980 }
981
982
983 /*
984 * Mixer related code is here
985 *
986 */
987
988 #define SV_INPUT_CLASS 0
989 #define SV_OUTPUT_CLASS 1
990 #define SV_RECORD_CLASS 2
991
992 #define SV_LAST_CLASS 2
993
994 static const char *mixer_classes[] =
995 { AudioCinputs, AudioCoutputs, AudioCrecord };
996
997 static const struct {
998 u_int8_t l_port;
999 u_int8_t r_port;
1000 u_int8_t mask;
1001 u_int8_t class;
1002 const char *audio;
1003 } ports[] = {
1004 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1005 SV_INPUT_CLASS, "aux1" },
1006 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1007 SV_INPUT_CLASS, AudioNcd },
1008 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1009 SV_INPUT_CLASS, AudioNline },
1010 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1011 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1012 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1013 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1014 SV_INPUT_CLASS, "aux2" },
1015 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1016 SV_INPUT_CLASS, AudioNdac },
1017 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1018 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1019 };
1020
1021
1022 static const struct {
1023 int idx;
1024 const char *name;
1025 } record_sources[] = {
1026 { SV_REC_CD, AudioNcd },
1027 { SV_REC_DAC, AudioNdac },
1028 { SV_REC_AUX2, "aux2" },
1029 { SV_REC_LINE, AudioNline },
1030 { SV_REC_AUX1, "aux1" },
1031 { SV_REC_MIC, AudioNmicrophone },
1032 { SV_REC_MIXER, AudioNmixerout }
1033 };
1034
1035
1036 #define SV_DEVICES_PER_PORT 2
1037 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1038 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1039 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1040 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1041 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1042 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1043
1044 int
1045 sv_query_devinfo(addr, dip)
1046 void *addr;
1047 mixer_devinfo_t *dip;
1048 {
1049 int i;
1050
1051 /* It's a class */
1052 if (dip->index <= SV_LAST_CLASS) {
1053 dip->type = AUDIO_MIXER_CLASS;
1054 dip->mixer_class = dip->index;
1055 dip->next = dip->prev = AUDIO_MIXER_LAST;
1056 strcpy(dip->label.name,
1057 mixer_classes[dip->index]);
1058 return (0);
1059 }
1060
1061 if (dip->index >= SV_FIRST_MIXER &&
1062 dip->index <= SV_LAST_MIXER) {
1063 int off = dip->index - SV_FIRST_MIXER;
1064 int mute = (off % SV_DEVICES_PER_PORT);
1065 int idx = off / SV_DEVICES_PER_PORT;
1066
1067 dip->mixer_class = ports[idx].class;
1068 strcpy(dip->label.name, ports[idx].audio);
1069
1070 if (!mute) {
1071 dip->type = AUDIO_MIXER_VALUE;
1072 dip->prev = AUDIO_MIXER_LAST;
1073 dip->next = dip->index + 1;
1074
1075 if (ports[idx].r_port != 0)
1076 dip->un.v.num_channels = 2;
1077 else
1078 dip->un.v.num_channels = 1;
1079
1080 strcpy(dip->un.v.units.name, AudioNvolume);
1081 } else {
1082 dip->type = AUDIO_MIXER_ENUM;
1083 dip->prev = dip->index - 1;
1084 dip->next = AUDIO_MIXER_LAST;
1085
1086 strcpy(dip->label.name, AudioNmute);
1087 dip->un.e.num_mem = 2;
1088 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1089 dip->un.e.member[0].ord = 0;
1090 strcpy(dip->un.e.member[1].label.name, AudioNon);
1091 dip->un.e.member[1].ord = 1;
1092 }
1093
1094 return (0);
1095 }
1096
1097 switch (dip->index) {
1098 case SV_RECORD_SOURCE:
1099 dip->mixer_class = SV_RECORD_CLASS;
1100 dip->prev = AUDIO_MIXER_LAST;
1101 dip->next = SV_RECORD_GAIN;
1102 strcpy(dip->label.name, AudioNsource);
1103 dip->type = AUDIO_MIXER_ENUM;
1104
1105 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1106 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1107 strcpy(dip->un.e.member[i].label.name,
1108 record_sources[i].name);
1109 dip->un.e.member[i].ord = record_sources[i].idx;
1110 }
1111 return (0);
1112
1113 case SV_RECORD_GAIN:
1114 dip->mixer_class = SV_RECORD_CLASS;
1115 dip->prev = SV_RECORD_SOURCE;
1116 dip->next = AUDIO_MIXER_LAST;
1117 strcpy(dip->label.name, "gain");
1118 dip->type = AUDIO_MIXER_VALUE;
1119 dip->un.v.num_channels = 1;
1120 strcpy(dip->un.v.units.name, AudioNvolume);
1121 return (0);
1122
1123 case SV_MIC_BOOST:
1124 dip->mixer_class = SV_RECORD_CLASS;
1125 dip->prev = AUDIO_MIXER_LAST;
1126 dip->next = AUDIO_MIXER_LAST;
1127 strcpy(dip->label.name, "micboost");
1128 goto on_off;
1129
1130 case SV_SRS_MODE:
1131 dip->mixer_class = SV_OUTPUT_CLASS;
1132 dip->prev = dip->next = AUDIO_MIXER_LAST;
1133 strcpy(dip->label.name, AudioNspatial);
1134
1135 on_off:
1136 dip->type = AUDIO_MIXER_ENUM;
1137 dip->un.e.num_mem = 2;
1138 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1139 dip->un.e.member[0].ord = 0;
1140 strcpy(dip->un.e.member[1].label.name, AudioNon);
1141 dip->un.e.member[1].ord = 1;
1142 return (0);
1143 }
1144
1145 return (ENXIO);
1146 }
1147
1148 int
1149 sv_mixer_set_port(addr, cp)
1150 void *addr;
1151 mixer_ctrl_t *cp;
1152 {
1153 struct sv_softc *sc = addr;
1154 u_int8_t reg;
1155 int idx;
1156
1157 if (cp->dev >= SV_FIRST_MIXER &&
1158 cp->dev <= SV_LAST_MIXER) {
1159 int off = cp->dev - SV_FIRST_MIXER;
1160 int mute = (off % SV_DEVICES_PER_PORT);
1161 idx = off / SV_DEVICES_PER_PORT;
1162
1163 if (mute) {
1164 if (cp->type != AUDIO_MIXER_ENUM)
1165 return (EINVAL);
1166
1167 reg = sv_read_indirect(sc, ports[idx].l_port);
1168 if (cp->un.ord)
1169 reg |= SV_MUTE_BIT;
1170 else
1171 reg &= ~SV_MUTE_BIT;
1172 sv_write_indirect(sc, ports[idx].l_port, reg);
1173
1174 if (ports[idx].r_port) {
1175 reg = sv_read_indirect(sc, ports[idx].r_port);
1176 if (cp->un.ord)
1177 reg |= SV_MUTE_BIT;
1178 else
1179 reg &= ~SV_MUTE_BIT;
1180 sv_write_indirect(sc, ports[idx].r_port, reg);
1181 }
1182 } else {
1183 int lval, rval;
1184
1185 if (cp->type != AUDIO_MIXER_VALUE)
1186 return (EINVAL);
1187
1188 if (cp->un.value.num_channels != 1 &&
1189 cp->un.value.num_channels != 2)
1190 return (EINVAL);
1191
1192 if (ports[idx].r_port == 0) {
1193 if (cp->un.value.num_channels != 1)
1194 return (EINVAL);
1195 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1196 rval = 0; /* shut up GCC */
1197 } else {
1198 if (cp->un.value.num_channels != 2)
1199 return (EINVAL);
1200
1201 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1202 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1203 }
1204
1205
1206 reg = sv_read_indirect(sc, ports[idx].l_port);
1207 reg &= ~(ports[idx].mask);
1208 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1209 AUDIO_MAX_GAIN;
1210 reg |= lval;
1211 sv_write_indirect(sc, ports[idx].l_port, reg);
1212
1213 if (ports[idx].r_port != 0) {
1214 reg = sv_read_indirect(sc, ports[idx].r_port);
1215 reg &= ~(ports[idx].mask);
1216
1217 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1218 AUDIO_MAX_GAIN;
1219 reg |= rval;
1220
1221 sv_write_indirect(sc, ports[idx].r_port, reg);
1222 }
1223
1224 sv_read_indirect(sc, ports[idx].l_port);
1225 }
1226
1227 return (0);
1228 }
1229
1230
1231 switch (cp->dev) {
1232 case SV_RECORD_SOURCE:
1233 if (cp->type != AUDIO_MIXER_ENUM)
1234 return (EINVAL);
1235
1236 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1237 if (record_sources[idx].idx == cp->un.ord)
1238 goto found;
1239 }
1240
1241 return (EINVAL);
1242
1243 found:
1244 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1245 reg &= ~SV_REC_SOURCE_MASK;
1246 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1247 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1248
1249 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1250 reg &= ~SV_REC_SOURCE_MASK;
1251 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1252 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1253 return (0);
1254
1255 case SV_RECORD_GAIN:
1256 {
1257 int val;
1258
1259 if (cp->type != AUDIO_MIXER_VALUE)
1260 return (EINVAL);
1261
1262 if (cp->un.value.num_channels != 1)
1263 return (EINVAL);
1264
1265 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1266 / AUDIO_MAX_GAIN;
1267
1268 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1269 reg &= ~SV_REC_GAIN_MASK;
1270 reg |= val;
1271 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1272
1273 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1274 reg &= ~SV_REC_GAIN_MASK;
1275 reg |= val;
1276 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1277 }
1278 return (0);
1279
1280 case SV_MIC_BOOST:
1281 if (cp->type != AUDIO_MIXER_ENUM)
1282 return (EINVAL);
1283
1284 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1285 if (cp->un.ord) {
1286 reg |= SV_MIC_BOOST_BIT;
1287 } else {
1288 reg &= ~SV_MIC_BOOST_BIT;
1289 }
1290
1291 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1292 return (0);
1293
1294 case SV_SRS_MODE:
1295 if (cp->type != AUDIO_MIXER_ENUM)
1296 return (EINVAL);
1297
1298 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1299 if (cp->un.ord) {
1300 reg &= ~SV_SRS_SPACE_ONOFF;
1301 } else {
1302 reg |= SV_SRS_SPACE_ONOFF;
1303 }
1304
1305 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1306 return (0);
1307 }
1308
1309 return (EINVAL);
1310 }
1311
1312 int
1313 sv_mixer_get_port(addr, cp)
1314 void *addr;
1315 mixer_ctrl_t *cp;
1316 {
1317 struct sv_softc *sc = addr;
1318 int val;
1319 u_int8_t reg;
1320
1321 if (cp->dev >= SV_FIRST_MIXER &&
1322 cp->dev <= SV_LAST_MIXER) {
1323 int off = cp->dev - SV_FIRST_MIXER;
1324 int mute = (off % 2);
1325 int idx = off / 2;
1326
1327 if (mute) {
1328 if (cp->type != AUDIO_MIXER_ENUM)
1329 return (EINVAL);
1330
1331 reg = sv_read_indirect(sc, ports[idx].l_port);
1332 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1333 } else {
1334 if (cp->type != AUDIO_MIXER_VALUE)
1335 return (EINVAL);
1336
1337 if (cp->un.value.num_channels != 1 &&
1338 cp->un.value.num_channels != 2)
1339 return (EINVAL);
1340
1341 if ((ports[idx].r_port == 0 &&
1342 cp->un.value.num_channels != 1) ||
1343 (ports[idx].r_port != 0 &&
1344 cp->un.value.num_channels != 2))
1345 return (EINVAL);
1346
1347 reg = sv_read_indirect(sc, ports[idx].l_port);
1348 reg &= ports[idx].mask;
1349
1350 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1351
1352 if (ports[idx].r_port != 0) {
1353 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1354
1355 reg = sv_read_indirect(sc, ports[idx].r_port);
1356 reg &= ports[idx].mask;
1357
1358 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1359 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1360 } else
1361 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1362 }
1363
1364 return (0);
1365 }
1366
1367 switch (cp->dev) {
1368 case SV_RECORD_SOURCE:
1369 if (cp->type != AUDIO_MIXER_ENUM)
1370 return (EINVAL);
1371
1372 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1373 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1374
1375 return (0);
1376
1377 case SV_RECORD_GAIN:
1378 if (cp->type != AUDIO_MIXER_VALUE)
1379 return (EINVAL);
1380 if (cp->un.value.num_channels != 1)
1381 return (EINVAL);
1382
1383 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1384 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1385 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1386
1387 return (0);
1388
1389 case SV_MIC_BOOST:
1390 if (cp->type != AUDIO_MIXER_ENUM)
1391 return (EINVAL);
1392 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1393 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1394 return (0);
1395
1396
1397 case SV_SRS_MODE:
1398 if (cp->type != AUDIO_MIXER_ENUM)
1399 return (EINVAL);
1400 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1401 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1402 return (0);
1403 }
1404
1405 return (EINVAL);
1406 }
1407
1408
1409 static void
1410 sv_init_mixer(sc)
1411 struct sv_softc *sc;
1412 {
1413 mixer_ctrl_t cp;
1414 int i;
1415
1416 cp.type = AUDIO_MIXER_ENUM;
1417 cp.dev = SV_SRS_MODE;
1418 cp.un.ord = 0;
1419
1420 sv_mixer_set_port(sc, &cp);
1421
1422 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1423 if (ports[i].audio == AudioNdac) {
1424 cp.type = AUDIO_MIXER_ENUM;
1425 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1426 cp.un.ord = 0;
1427 sv_mixer_set_port(sc, &cp);
1428 break;
1429 }
1430 }
1431 }
1432
1433 void *
1434 sv_malloc(addr, direction, size, pool, flags)
1435 void *addr;
1436 int direction;
1437 size_t size;
1438 int pool, flags;
1439 {
1440 struct sv_softc *sc = addr;
1441 struct sv_dma *p;
1442 int error;
1443
1444 p = malloc(sizeof(*p), pool, flags);
1445 if (!p)
1446 return (0);
1447 error = sv_allocmem(sc, size, 16, direction, p);
1448 if (error) {
1449 free(p, pool);
1450 return (0);
1451 }
1452 p->next = sc->sc_dmas;
1453 sc->sc_dmas = p;
1454 return (KERNADDR(p));
1455 }
1456
1457 void
1458 sv_free(addr, ptr, pool)
1459 void *addr;
1460 void *ptr;
1461 int pool;
1462 {
1463 struct sv_softc *sc = addr;
1464 struct sv_dma **pp, *p;
1465
1466 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1467 if (KERNADDR(p) == ptr) {
1468 sv_freemem(sc, p);
1469 *pp = p->next;
1470 free(p, pool);
1471 return;
1472 }
1473 }
1474 }
1475
1476 size_t
1477 sv_round_buffersize(addr, direction, size)
1478 void *addr;
1479 int direction;
1480 size_t size;
1481 {
1482 return (size);
1483 }
1484
1485 paddr_t
1486 sv_mappage(addr, mem, off, prot)
1487 void *addr;
1488 void *mem;
1489 off_t off;
1490 int prot;
1491 {
1492 struct sv_softc *sc = addr;
1493 struct sv_dma *p;
1494
1495 if (off < 0)
1496 return (-1);
1497 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1498 ;
1499 if (!p)
1500 return (-1);
1501 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1502 off, prot, BUS_DMA_WAITOK));
1503 }
1504
1505 int
1506 sv_get_props(addr)
1507 void *addr;
1508 {
1509 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1510 }
1511