sv.c revision 1.15 1 /* $NetBSD: sv.c,v 1.15 2001/11/13 07:48:49 lukem Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.15 2001/11/13 07:48:49 lukem Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97
98 #include <machine/bus.h>
99
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x) if (svdebug) printf x
102 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
103 int svdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108
109 int sv_match __P((struct device *, struct cfdata *, void *));
110 void sv_attach __P((struct device *, struct device *, void *));
111 int sv_intr __P((void *));
112
113 struct sv_dma {
114 bus_dmamap_t map;
115 caddr_t addr;
116 bus_dma_segment_t segs[1];
117 int nsegs;
118 size_t size;
119 struct sv_dma *next;
120 };
121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
122 #define KERNADDR(p) ((void *)((p)->addr))
123
124 struct cfattach sv_ca = {
125 sizeof(struct sv_softc), sv_match, sv_attach
126 };
127
128 struct audio_device sv_device = {
129 "S3 SonicVibes",
130 "",
131 "sv"
132 };
133
134 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
135
136 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
137 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
138
139 int sv_open __P((void *, int));
140 void sv_close __P((void *));
141 int sv_query_encoding __P((void *, struct audio_encoding *));
142 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
143 int sv_round_blocksize __P((void *, int));
144 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
145 void *, struct audio_params *));
146 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
147 void *, struct audio_params *));
148 int sv_halt_output __P((void *));
149 int sv_halt_input __P((void *));
150 int sv_getdev __P((void *, struct audio_device *));
151 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
152 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
153 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
154 void *sv_malloc __P((void *, int, size_t, int, int));
155 void sv_free __P((void *, void *, int));
156 size_t sv_round_buffersize __P((void *, int, size_t));
157 paddr_t sv_mappage __P((void *, void *, off_t, int));
158 int sv_get_props __P((void *));
159
160 #ifdef AUDIO_DEBUG
161 void sv_dumpregs __P((struct sv_softc *sc));
162 #endif
163
164 struct audio_hw_if sv_hw_if = {
165 sv_open,
166 sv_close,
167 NULL,
168 sv_query_encoding,
169 sv_set_params,
170 sv_round_blocksize,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 NULL,
176 sv_halt_output,
177 sv_halt_input,
178 NULL,
179 sv_getdev,
180 NULL,
181 sv_mixer_set_port,
182 sv_mixer_get_port,
183 sv_query_devinfo,
184 sv_malloc,
185 sv_free,
186 sv_round_buffersize,
187 sv_mappage,
188 sv_get_props,
189 sv_trigger_output,
190 sv_trigger_input,
191 NULL,
192 };
193
194
195 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
196 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
197 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
198 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
199 static void sv_init_mixer __P((struct sv_softc *));
200
201 static void sv_defer __P((struct device *self));
202
203 static void
204 sv_write (sc, reg, val)
205 struct sv_softc *sc;
206 u_int8_t reg, val;
207
208 {
209 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
210 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
211 }
212
213 static u_int8_t
214 sv_read(sc, reg)
215 struct sv_softc *sc;
216 u_int8_t reg;
217
218 {
219 u_int8_t val;
220
221 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
222 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
223 return val;
224 }
225
226 static u_int8_t
227 sv_read_indirect(sc, reg)
228 struct sv_softc *sc;
229 u_int8_t reg;
230 {
231 u_int8_t val;
232 int s = splaudio();
233
234 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
235 val = sv_read(sc, SV_CODEC_IDATA);
236 splx(s);
237 return (val);
238 }
239
240 static void
241 sv_write_indirect(sc, reg, val)
242 struct sv_softc *sc;
243 u_int8_t reg, val;
244 {
245 u_int8_t iaddr = reg & SV_IADDR_MASK;
246 int s = splaudio();
247
248 if (reg == SV_DMA_DATA_FORMAT)
249 iaddr |= SV_IADDR_MCE;
250
251 sv_write(sc, SV_CODEC_IADDR, iaddr);
252 sv_write(sc, SV_CODEC_IDATA, val);
253 splx(s);
254 }
255
256 int
257 sv_match(parent, match, aux)
258 struct device *parent;
259 struct cfdata *match;
260 void *aux;
261 {
262 struct pci_attach_args *pa = aux;
263
264 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
265 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
266 return (1);
267
268 return (0);
269 }
270
271 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
272 int pcioffs,
273 bus_space_tag_t iot, bus_size_t size,
274 bus_size_t align, bus_size_t bound, int flags,
275 bus_space_handle_t *ioh));
276
277 #define PCI_IO_ALLOC_LOW 0xa000
278 #define PCI_IO_ALLOC_HIGH 0xb000
279 int
280 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
281 pci_chipset_tag_t pc;
282 pcitag_t pt;
283 int pcioffs;
284 bus_space_tag_t iot;
285 bus_size_t size;
286 bus_size_t align;
287 bus_size_t bound;
288 int flags;
289 bus_space_handle_t *ioh;
290 {
291 bus_addr_t addr;
292 int error;
293
294 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
295 size, align, bound, flags, &addr, ioh);
296 if (error)
297 return(error);
298
299 pci_conf_write(pc, pt, pcioffs, addr);
300 return (0);
301 }
302
303 /*
304 * Allocate IO addresses when all other configuration is done.
305 */
306 void
307 sv_defer(self)
308 struct device *self;
309 {
310 struct sv_softc *sc = (struct sv_softc *)self;
311 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
312 pcitag_t pt = sc->sc_pa.pa_tag;
313 pcireg_t dmaio;
314
315 DPRINTF(("sv_defer: %p\n", sc));
316 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
317 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
318 0, &sc->sc_dmaa_ioh)) {
319 printf("sv_attach: cannot allocate DMA A range\n");
320 return;
321 }
322 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
323 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
324 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
325 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
326
327 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
328 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
329 0, &sc->sc_dmac_ioh)) {
330 printf("sv_attach: cannot allocate DMA C range\n");
331 return;
332 }
333 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
334 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
335 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
336 dmaio | SV_DMA_CHANNEL_ENABLE);
337
338 sc->sc_dmaset = 1;
339 }
340
341 void
342 sv_attach(parent, self, aux)
343 struct device *parent, *self;
344 void *aux;
345 {
346 struct sv_softc *sc = (struct sv_softc *)self;
347 struct pci_attach_args *pa = aux;
348 pci_chipset_tag_t pc = pa->pa_pc;
349 pcitag_t pt = pa->pa_tag;
350 pci_intr_handle_t ih;
351 pcireg_t csr;
352 char const *intrstr;
353 u_int8_t reg;
354 struct audio_attach_args arg;
355
356 printf ("\n");
357
358 /* Map I/O registers */
359 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
360 PCI_MAPREG_TYPE_IO, 0,
361 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
362 printf("%s: can't map enhanced i/o space\n",
363 sc->sc_dev.dv_xname);
364 return;
365 }
366 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
367 PCI_MAPREG_TYPE_IO, 0,
368 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
369 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
370 return;
371 }
372 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
373 PCI_MAPREG_TYPE_IO, 0,
374 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
375 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
376 return;
377 }
378 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
379 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
380
381 #ifdef alpha
382 /* XXX Force allocation through the SGMAP. */
383 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
384 #else
385 sc->sc_dmatag = pa->pa_dmat;
386 #endif
387
388 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
389 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
390
391 /* Enable the device. */
392 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
393 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
394 csr | PCI_COMMAND_MASTER_ENABLE);
395
396 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
397 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
398
399 /* initialize codec registers */
400 reg = sv_read(sc, SV_CODEC_CONTROL);
401 reg |= SV_CTL_RESET;
402 sv_write(sc, SV_CODEC_CONTROL, reg);
403 delay(50);
404
405 reg = sv_read(sc, SV_CODEC_CONTROL);
406 reg &= ~SV_CTL_RESET;
407 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
408
409 /* This write clears the reset */
410 sv_write(sc, SV_CODEC_CONTROL, reg);
411 delay(50);
412
413 /* This write actually shoves the new values in */
414 sv_write(sc, SV_CODEC_CONTROL, reg);
415
416 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
417
418 /* Enable DMA interrupts */
419 reg = sv_read(sc, SV_CODEC_INTMASK);
420 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
421 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
422 sv_write(sc, SV_CODEC_INTMASK, reg);
423
424 sv_read(sc, SV_CODEC_STATUS);
425
426 /* Map and establish the interrupt. */
427 if (pci_intr_map(pa, &ih)) {
428 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
429 return;
430 }
431 intrstr = pci_intr_string(pc, ih);
432 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
433 if (sc->sc_ih == NULL) {
434 printf("%s: couldn't establish interrupt",
435 sc->sc_dev.dv_xname);
436 if (intrstr != NULL)
437 printf(" at %s", intrstr);
438 printf("\n");
439 return;
440 }
441 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
442 printf("%s: rev %d", sc->sc_dev.dv_xname,
443 sv_read_indirect(sc, SV_REVISION_LEVEL));
444 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
445 printf(", reverb SRAM present");
446 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
447 printf(", wavetable ROM present");
448 printf("\n");
449
450 sv_init_mixer(sc);
451
452 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
453
454 arg.type = AUDIODEV_TYPE_OPL;
455 arg.hwif = 0;
456 arg.hdl = 0;
457 (void)config_found(&sc->sc_dev, &arg, audioprint);
458
459 sc->sc_pa = *pa; /* for deferred setup */
460 config_defer(self, sv_defer);
461 }
462
463 #ifdef AUDIO_DEBUG
464 void
465 sv_dumpregs(sc)
466 struct sv_softc *sc;
467 {
468 int idx;
469
470 #if 0
471 for (idx = 0; idx < 0x50; idx += 4)
472 printf ("%02x = %x\n", idx,
473 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
474 #endif
475
476 for (idx = 0; idx < 6; idx++)
477 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
478
479 for (idx = 0; idx < 0x32; idx++)
480 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
481
482 for (idx = 0; idx < 0x10; idx++)
483 printf ("DMA %02x = %02x\n", idx,
484 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
485 }
486 #endif
487
488 int
489 sv_intr(p)
490 void *p;
491 {
492 struct sv_softc *sc = p;
493 u_int8_t intr;
494
495 intr = sv_read(sc, SV_CODEC_STATUS);
496 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
497
498 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
499 return (0);
500
501 if (intr & SV_INTSTATUS_DMAA) {
502 if (sc->sc_pintr)
503 sc->sc_pintr(sc->sc_parg);
504 }
505
506 if (intr & SV_INTSTATUS_DMAC) {
507 if (sc->sc_rintr)
508 sc->sc_rintr(sc->sc_rarg);
509 }
510
511 return (1);
512 }
513
514 int
515 sv_allocmem(sc, size, align, direction, p)
516 struct sv_softc *sc;
517 size_t size;
518 size_t align;
519 int direction;
520 struct sv_dma *p;
521 {
522 int error;
523
524 p->size = size;
525 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
526 p->segs, ARRAY_SIZE(p->segs),
527 &p->nsegs, BUS_DMA_NOWAIT);
528 if (error)
529 return (error);
530
531 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
532 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
533 if (error)
534 goto free;
535
536 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
537 0, BUS_DMA_NOWAIT, &p->map);
538 if (error)
539 goto unmap;
540
541 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
542 BUS_DMA_NOWAIT |
543 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
544 if (error)
545 goto destroy;
546 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
547 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
548 return (0);
549
550 destroy:
551 bus_dmamap_destroy(sc->sc_dmatag, p->map);
552 unmap:
553 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
554 free:
555 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
556 return (error);
557 }
558
559 int
560 sv_freemem(sc, p)
561 struct sv_softc *sc;
562 struct sv_dma *p;
563 {
564 bus_dmamap_unload(sc->sc_dmatag, p->map);
565 bus_dmamap_destroy(sc->sc_dmatag, p->map);
566 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
567 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
568 return (0);
569 }
570
571 int
572 sv_open(addr, flags)
573 void *addr;
574 int flags;
575 {
576 struct sv_softc *sc = addr;
577
578 DPRINTF(("sv_open\n"));
579 if (!sc->sc_dmaset)
580 return (ENXIO);
581 sc->sc_pintr = 0;
582 sc->sc_rintr = 0;
583
584 return (0);
585 }
586
587 /*
588 * Close function is called at splaudio().
589 */
590 void
591 sv_close(addr)
592 void *addr;
593 {
594 struct sv_softc *sc = addr;
595
596 DPRINTF(("sv_close\n"));
597 sv_halt_output(sc);
598 sv_halt_input(sc);
599
600 sc->sc_pintr = 0;
601 sc->sc_rintr = 0;
602 }
603
604 int
605 sv_query_encoding(addr, fp)
606 void *addr;
607 struct audio_encoding *fp;
608 {
609 switch (fp->index) {
610 case 0:
611 strcpy(fp->name, AudioEulinear);
612 fp->encoding = AUDIO_ENCODING_ULINEAR;
613 fp->precision = 8;
614 fp->flags = 0;
615 return (0);
616 case 1:
617 strcpy(fp->name, AudioEmulaw);
618 fp->encoding = AUDIO_ENCODING_ULAW;
619 fp->precision = 8;
620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 return (0);
622 case 2:
623 strcpy(fp->name, AudioEalaw);
624 fp->encoding = AUDIO_ENCODING_ALAW;
625 fp->precision = 8;
626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 return (0);
628 case 3:
629 strcpy(fp->name, AudioEslinear);
630 fp->encoding = AUDIO_ENCODING_SLINEAR;
631 fp->precision = 8;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 return (0);
634 case 4:
635 strcpy(fp->name, AudioEslinear_le);
636 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
637 fp->precision = 16;
638 fp->flags = 0;
639 return (0);
640 case 5:
641 strcpy(fp->name, AudioEulinear_le);
642 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
643 fp->precision = 16;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 return (0);
646 case 6:
647 strcpy(fp->name, AudioEslinear_be);
648 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
649 fp->precision = 16;
650 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
651 return (0);
652 case 7:
653 strcpy(fp->name, AudioEulinear_be);
654 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
655 fp->precision = 16;
656 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
657 return (0);
658 default:
659 return (EINVAL);
660 }
661 }
662
663 int
664 sv_set_params(addr, setmode, usemode, play, rec)
665 void *addr;
666 int setmode, usemode;
667 struct audio_params *play, *rec;
668 {
669 struct sv_softc *sc = addr;
670 struct audio_params *p = NULL;
671 int mode;
672 u_int32_t val;
673
674 /*
675 * This device only has one clock, so make the sample rates match.
676 */
677 if (play->sample_rate != rec->sample_rate &&
678 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
679 if (setmode == AUMODE_PLAY) {
680 rec->sample_rate = play->sample_rate;
681 setmode |= AUMODE_RECORD;
682 } else if (setmode == AUMODE_RECORD) {
683 play->sample_rate = rec->sample_rate;
684 setmode |= AUMODE_PLAY;
685 } else
686 return (EINVAL);
687 }
688
689 for (mode = AUMODE_RECORD; mode != -1;
690 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
691 if ((setmode & mode) == 0)
692 continue;
693
694 p = mode == AUMODE_PLAY ? play : rec;
695
696 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
697 (p->precision != 8 && p->precision != 16) ||
698 (p->channels != 1 && p->channels != 2))
699 return (EINVAL);
700
701 p->factor = 1;
702 p->sw_code = 0;
703 switch (p->encoding) {
704 case AUDIO_ENCODING_SLINEAR_BE:
705 if (p->precision == 16)
706 p->sw_code = swap_bytes;
707 else
708 p->sw_code = change_sign8;
709 break;
710 case AUDIO_ENCODING_SLINEAR_LE:
711 if (p->precision != 16)
712 p->sw_code = change_sign8;
713 break;
714 case AUDIO_ENCODING_ULINEAR_BE:
715 if (p->precision == 16) {
716 if (mode == AUMODE_PLAY)
717 p->sw_code = swap_bytes_change_sign16_le;
718 else
719 p->sw_code = change_sign16_swap_bytes_le;
720 }
721 break;
722 case AUDIO_ENCODING_ULINEAR_LE:
723 if (p->precision == 16)
724 p->sw_code = change_sign16_le;
725 break;
726 case AUDIO_ENCODING_ULAW:
727 if (mode == AUMODE_PLAY) {
728 p->factor = 2;
729 p->sw_code = mulaw_to_slinear16_le;
730 } else
731 p->sw_code = ulinear8_to_mulaw;
732 break;
733 case AUDIO_ENCODING_ALAW:
734 if (mode == AUMODE_PLAY) {
735 p->factor = 2;
736 p->sw_code = alaw_to_slinear16_le;
737 } else
738 p->sw_code = ulinear8_to_alaw;
739 break;
740 default:
741 return (EINVAL);
742 }
743 }
744
745 val = p->sample_rate * 65536 / 48000;
746 /*
747 * If the sample rate is exactly 48KHz, the fraction would overflow the
748 * register, so we have to bias it. This causes a little clock drift.
749 * The drift is below normal crystal tolerance (.0001%), so although
750 * this seems a little silly, we can pretty much ignore it.
751 * (I tested the output speed with values of 1-20, just to be sure this
752 * register isn't *supposed* to have a bias. It isn't.)
753 * - mycroft
754 */
755 if (val > 65535)
756 val = 65535;
757
758 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
759 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
760
761 #define F_REF 24576000
762
763 #define ABS(x) (((x) < 0) ? (-x) : (x))
764
765 if (setmode & AUMODE_RECORD) {
766 /* The ADC reference frequency (f_out) is 512 * sample rate */
767
768 /* f_out is dervied from the 24.576MHZ crystal by three values:
769 M & N & R. The equation is as follows:
770
771 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
772
773 with the constraint that:
774
775 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
776 and n, m >= 1
777 */
778
779 int goal_f_out = 512 * rec->sample_rate;
780 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
781 int pll_sample;
782 int error;
783
784 for (a = 0; a < 8; a++) {
785 if ((goal_f_out * (1 << a)) >= 80000000)
786 break;
787 }
788
789 /* a != 8 because sample_rate >= 2000 */
790
791 for (n = 33; n > 2; n--) {
792 m = (goal_f_out * n * (1 << a)) / F_REF;
793 if ((m > 257) || (m < 3))
794 continue;
795
796 pll_sample = (m * F_REF) / (n * (1 << a));
797 pll_sample /= 512;
798
799 /* Threshold might be good here */
800 error = pll_sample - rec->sample_rate;
801 error = ABS(error);
802
803 if (error < best_error) {
804 best_error = error;
805 best_n = n;
806 best_m = m;
807 if (error == 0) break;
808 }
809 }
810
811 best_n -= 2;
812 best_m -= 2;
813
814 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
815 sv_write_indirect(sc, SV_ADC_PLL_N,
816 best_n | (a << SV_PLL_R_SHIFT));
817 }
818
819 return (0);
820 }
821
822 int
823 sv_round_blocksize(addr, blk)
824 void *addr;
825 int blk;
826 {
827 return (blk & -32); /* keep good alignment */
828 }
829
830 int
831 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
832 void *addr;
833 void *start, *end;
834 int blksize;
835 void (*intr) __P((void *));
836 void *arg;
837 struct audio_params *param;
838 {
839 struct sv_softc *sc = addr;
840 struct sv_dma *p;
841 u_int8_t mode;
842 int dma_count;
843
844 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
845 addr, start, end, blksize, intr, arg));
846 sc->sc_pintr = intr;
847 sc->sc_parg = arg;
848
849 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
850 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
851 if (param->precision * param->factor == 16)
852 mode |= SV_DMAA_FORMAT16;
853 if (param->channels == 2)
854 mode |= SV_DMAA_STEREO;
855 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
856
857 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
858 ;
859 if (!p) {
860 printf("sv_trigger_output: bad addr %p\n", start);
861 return (EINVAL);
862 }
863
864 dma_count = ((char *)end - (char *)start) - 1;
865 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
866 (int)DMAADDR(p), dma_count));
867
868 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
869 DMAADDR(p));
870 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
871 dma_count);
872 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
873 DMA37MD_READ | DMA37MD_LOOP);
874
875 DPRINTF(("sv_trigger_output: current addr=%x\n",
876 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
877
878 dma_count = blksize - 1;
879
880 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
881 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
882
883 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
884 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
885
886 return (0);
887 }
888
889 int
890 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
891 void *addr;
892 void *start, *end;
893 int blksize;
894 void (*intr) __P((void *));
895 void *arg;
896 struct audio_params *param;
897 {
898 struct sv_softc *sc = addr;
899 struct sv_dma *p;
900 u_int8_t mode;
901 int dma_count;
902
903 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
904 addr, start, end, blksize, intr, arg));
905 sc->sc_rintr = intr;
906 sc->sc_rarg = arg;
907
908 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
909 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
910 if (param->precision * param->factor == 16)
911 mode |= SV_DMAC_FORMAT16;
912 if (param->channels == 2)
913 mode |= SV_DMAC_STEREO;
914 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
915
916 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
917 ;
918 if (!p) {
919 printf("sv_trigger_input: bad addr %p\n", start);
920 return (EINVAL);
921 }
922
923 dma_count = (((char *)end - (char *)start) >> 1) - 1;
924 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
925 (int)DMAADDR(p), dma_count));
926
927 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
928 DMAADDR(p));
929 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
930 dma_count);
931 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
932 DMA37MD_WRITE | DMA37MD_LOOP);
933
934 DPRINTF(("sv_trigger_input: current addr=%x\n",
935 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
936
937 dma_count = (blksize >> 1) - 1;
938
939 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
940 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
941
942 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
943 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
944
945 return (0);
946 }
947
948 int
949 sv_halt_output(addr)
950 void *addr;
951 {
952 struct sv_softc *sc = addr;
953 u_int8_t mode;
954
955 DPRINTF(("sv: sv_halt_output\n"));
956 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
957 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
958
959 return (0);
960 }
961
962 int
963 sv_halt_input(addr)
964 void *addr;
965 {
966 struct sv_softc *sc = addr;
967 u_int8_t mode;
968
969 DPRINTF(("sv: sv_halt_input\n"));
970 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
971 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
972
973 return (0);
974 }
975
976 int
977 sv_getdev(addr, retp)
978 void *addr;
979 struct audio_device *retp;
980 {
981 *retp = sv_device;
982 return (0);
983 }
984
985
986 /*
987 * Mixer related code is here
988 *
989 */
990
991 #define SV_INPUT_CLASS 0
992 #define SV_OUTPUT_CLASS 1
993 #define SV_RECORD_CLASS 2
994
995 #define SV_LAST_CLASS 2
996
997 static const char *mixer_classes[] =
998 { AudioCinputs, AudioCoutputs, AudioCrecord };
999
1000 static const struct {
1001 u_int8_t l_port;
1002 u_int8_t r_port;
1003 u_int8_t mask;
1004 u_int8_t class;
1005 const char *audio;
1006 } ports[] = {
1007 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1008 SV_INPUT_CLASS, "aux1" },
1009 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1010 SV_INPUT_CLASS, AudioNcd },
1011 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1012 SV_INPUT_CLASS, AudioNline },
1013 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1014 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1015 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1016 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1017 SV_INPUT_CLASS, "aux2" },
1018 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1019 SV_INPUT_CLASS, AudioNdac },
1020 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1021 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1022 };
1023
1024
1025 static const struct {
1026 int idx;
1027 const char *name;
1028 } record_sources[] = {
1029 { SV_REC_CD, AudioNcd },
1030 { SV_REC_DAC, AudioNdac },
1031 { SV_REC_AUX2, "aux2" },
1032 { SV_REC_LINE, AudioNline },
1033 { SV_REC_AUX1, "aux1" },
1034 { SV_REC_MIC, AudioNmicrophone },
1035 { SV_REC_MIXER, AudioNmixerout }
1036 };
1037
1038
1039 #define SV_DEVICES_PER_PORT 2
1040 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1041 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1042 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1043 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1044 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1045 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1046
1047 int
1048 sv_query_devinfo(addr, dip)
1049 void *addr;
1050 mixer_devinfo_t *dip;
1051 {
1052 int i;
1053
1054 /* It's a class */
1055 if (dip->index <= SV_LAST_CLASS) {
1056 dip->type = AUDIO_MIXER_CLASS;
1057 dip->mixer_class = dip->index;
1058 dip->next = dip->prev = AUDIO_MIXER_LAST;
1059 strcpy(dip->label.name,
1060 mixer_classes[dip->index]);
1061 return (0);
1062 }
1063
1064 if (dip->index >= SV_FIRST_MIXER &&
1065 dip->index <= SV_LAST_MIXER) {
1066 int off = dip->index - SV_FIRST_MIXER;
1067 int mute = (off % SV_DEVICES_PER_PORT);
1068 int idx = off / SV_DEVICES_PER_PORT;
1069
1070 dip->mixer_class = ports[idx].class;
1071 strcpy(dip->label.name, ports[idx].audio);
1072
1073 if (!mute) {
1074 dip->type = AUDIO_MIXER_VALUE;
1075 dip->prev = AUDIO_MIXER_LAST;
1076 dip->next = dip->index + 1;
1077
1078 if (ports[idx].r_port != 0)
1079 dip->un.v.num_channels = 2;
1080 else
1081 dip->un.v.num_channels = 1;
1082
1083 strcpy(dip->un.v.units.name, AudioNvolume);
1084 } else {
1085 dip->type = AUDIO_MIXER_ENUM;
1086 dip->prev = dip->index - 1;
1087 dip->next = AUDIO_MIXER_LAST;
1088
1089 strcpy(dip->label.name, AudioNmute);
1090 dip->un.e.num_mem = 2;
1091 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1092 dip->un.e.member[0].ord = 0;
1093 strcpy(dip->un.e.member[1].label.name, AudioNon);
1094 dip->un.e.member[1].ord = 1;
1095 }
1096
1097 return (0);
1098 }
1099
1100 switch (dip->index) {
1101 case SV_RECORD_SOURCE:
1102 dip->mixer_class = SV_RECORD_CLASS;
1103 dip->prev = AUDIO_MIXER_LAST;
1104 dip->next = SV_RECORD_GAIN;
1105 strcpy(dip->label.name, AudioNsource);
1106 dip->type = AUDIO_MIXER_ENUM;
1107
1108 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1109 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1110 strcpy(dip->un.e.member[i].label.name,
1111 record_sources[i].name);
1112 dip->un.e.member[i].ord = record_sources[i].idx;
1113 }
1114 return (0);
1115
1116 case SV_RECORD_GAIN:
1117 dip->mixer_class = SV_RECORD_CLASS;
1118 dip->prev = SV_RECORD_SOURCE;
1119 dip->next = AUDIO_MIXER_LAST;
1120 strcpy(dip->label.name, "gain");
1121 dip->type = AUDIO_MIXER_VALUE;
1122 dip->un.v.num_channels = 1;
1123 strcpy(dip->un.v.units.name, AudioNvolume);
1124 return (0);
1125
1126 case SV_MIC_BOOST:
1127 dip->mixer_class = SV_RECORD_CLASS;
1128 dip->prev = AUDIO_MIXER_LAST;
1129 dip->next = AUDIO_MIXER_LAST;
1130 strcpy(dip->label.name, "micboost");
1131 goto on_off;
1132
1133 case SV_SRS_MODE:
1134 dip->mixer_class = SV_OUTPUT_CLASS;
1135 dip->prev = dip->next = AUDIO_MIXER_LAST;
1136 strcpy(dip->label.name, AudioNspatial);
1137
1138 on_off:
1139 dip->type = AUDIO_MIXER_ENUM;
1140 dip->un.e.num_mem = 2;
1141 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1142 dip->un.e.member[0].ord = 0;
1143 strcpy(dip->un.e.member[1].label.name, AudioNon);
1144 dip->un.e.member[1].ord = 1;
1145 return (0);
1146 }
1147
1148 return (ENXIO);
1149 }
1150
1151 int
1152 sv_mixer_set_port(addr, cp)
1153 void *addr;
1154 mixer_ctrl_t *cp;
1155 {
1156 struct sv_softc *sc = addr;
1157 u_int8_t reg;
1158 int idx;
1159
1160 if (cp->dev >= SV_FIRST_MIXER &&
1161 cp->dev <= SV_LAST_MIXER) {
1162 int off = cp->dev - SV_FIRST_MIXER;
1163 int mute = (off % SV_DEVICES_PER_PORT);
1164 idx = off / SV_DEVICES_PER_PORT;
1165
1166 if (mute) {
1167 if (cp->type != AUDIO_MIXER_ENUM)
1168 return (EINVAL);
1169
1170 reg = sv_read_indirect(sc, ports[idx].l_port);
1171 if (cp->un.ord)
1172 reg |= SV_MUTE_BIT;
1173 else
1174 reg &= ~SV_MUTE_BIT;
1175 sv_write_indirect(sc, ports[idx].l_port, reg);
1176
1177 if (ports[idx].r_port) {
1178 reg = sv_read_indirect(sc, ports[idx].r_port);
1179 if (cp->un.ord)
1180 reg |= SV_MUTE_BIT;
1181 else
1182 reg &= ~SV_MUTE_BIT;
1183 sv_write_indirect(sc, ports[idx].r_port, reg);
1184 }
1185 } else {
1186 int lval, rval;
1187
1188 if (cp->type != AUDIO_MIXER_VALUE)
1189 return (EINVAL);
1190
1191 if (cp->un.value.num_channels != 1 &&
1192 cp->un.value.num_channels != 2)
1193 return (EINVAL);
1194
1195 if (ports[idx].r_port == 0) {
1196 if (cp->un.value.num_channels != 1)
1197 return (EINVAL);
1198 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1199 rval = 0; /* shut up GCC */
1200 } else {
1201 if (cp->un.value.num_channels != 2)
1202 return (EINVAL);
1203
1204 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1205 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1206 }
1207
1208
1209 reg = sv_read_indirect(sc, ports[idx].l_port);
1210 reg &= ~(ports[idx].mask);
1211 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1212 AUDIO_MAX_GAIN;
1213 reg |= lval;
1214 sv_write_indirect(sc, ports[idx].l_port, reg);
1215
1216 if (ports[idx].r_port != 0) {
1217 reg = sv_read_indirect(sc, ports[idx].r_port);
1218 reg &= ~(ports[idx].mask);
1219
1220 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1221 AUDIO_MAX_GAIN;
1222 reg |= rval;
1223
1224 sv_write_indirect(sc, ports[idx].r_port, reg);
1225 }
1226
1227 sv_read_indirect(sc, ports[idx].l_port);
1228 }
1229
1230 return (0);
1231 }
1232
1233
1234 switch (cp->dev) {
1235 case SV_RECORD_SOURCE:
1236 if (cp->type != AUDIO_MIXER_ENUM)
1237 return (EINVAL);
1238
1239 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1240 if (record_sources[idx].idx == cp->un.ord)
1241 goto found;
1242 }
1243
1244 return (EINVAL);
1245
1246 found:
1247 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1248 reg &= ~SV_REC_SOURCE_MASK;
1249 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1250 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1251
1252 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1253 reg &= ~SV_REC_SOURCE_MASK;
1254 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1255 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1256 return (0);
1257
1258 case SV_RECORD_GAIN:
1259 {
1260 int val;
1261
1262 if (cp->type != AUDIO_MIXER_VALUE)
1263 return (EINVAL);
1264
1265 if (cp->un.value.num_channels != 1)
1266 return (EINVAL);
1267
1268 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1269 / AUDIO_MAX_GAIN;
1270
1271 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1272 reg &= ~SV_REC_GAIN_MASK;
1273 reg |= val;
1274 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1275
1276 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1277 reg &= ~SV_REC_GAIN_MASK;
1278 reg |= val;
1279 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1280 }
1281 return (0);
1282
1283 case SV_MIC_BOOST:
1284 if (cp->type != AUDIO_MIXER_ENUM)
1285 return (EINVAL);
1286
1287 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1288 if (cp->un.ord) {
1289 reg |= SV_MIC_BOOST_BIT;
1290 } else {
1291 reg &= ~SV_MIC_BOOST_BIT;
1292 }
1293
1294 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1295 return (0);
1296
1297 case SV_SRS_MODE:
1298 if (cp->type != AUDIO_MIXER_ENUM)
1299 return (EINVAL);
1300
1301 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1302 if (cp->un.ord) {
1303 reg &= ~SV_SRS_SPACE_ONOFF;
1304 } else {
1305 reg |= SV_SRS_SPACE_ONOFF;
1306 }
1307
1308 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1309 return (0);
1310 }
1311
1312 return (EINVAL);
1313 }
1314
1315 int
1316 sv_mixer_get_port(addr, cp)
1317 void *addr;
1318 mixer_ctrl_t *cp;
1319 {
1320 struct sv_softc *sc = addr;
1321 int val;
1322 u_int8_t reg;
1323
1324 if (cp->dev >= SV_FIRST_MIXER &&
1325 cp->dev <= SV_LAST_MIXER) {
1326 int off = cp->dev - SV_FIRST_MIXER;
1327 int mute = (off % 2);
1328 int idx = off / 2;
1329
1330 if (mute) {
1331 if (cp->type != AUDIO_MIXER_ENUM)
1332 return (EINVAL);
1333
1334 reg = sv_read_indirect(sc, ports[idx].l_port);
1335 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1336 } else {
1337 if (cp->type != AUDIO_MIXER_VALUE)
1338 return (EINVAL);
1339
1340 if (cp->un.value.num_channels != 1 &&
1341 cp->un.value.num_channels != 2)
1342 return (EINVAL);
1343
1344 if ((ports[idx].r_port == 0 &&
1345 cp->un.value.num_channels != 1) ||
1346 (ports[idx].r_port != 0 &&
1347 cp->un.value.num_channels != 2))
1348 return (EINVAL);
1349
1350 reg = sv_read_indirect(sc, ports[idx].l_port);
1351 reg &= ports[idx].mask;
1352
1353 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1354
1355 if (ports[idx].r_port != 0) {
1356 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1357
1358 reg = sv_read_indirect(sc, ports[idx].r_port);
1359 reg &= ports[idx].mask;
1360
1361 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1362 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1363 } else
1364 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1365 }
1366
1367 return (0);
1368 }
1369
1370 switch (cp->dev) {
1371 case SV_RECORD_SOURCE:
1372 if (cp->type != AUDIO_MIXER_ENUM)
1373 return (EINVAL);
1374
1375 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1376 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1377
1378 return (0);
1379
1380 case SV_RECORD_GAIN:
1381 if (cp->type != AUDIO_MIXER_VALUE)
1382 return (EINVAL);
1383 if (cp->un.value.num_channels != 1)
1384 return (EINVAL);
1385
1386 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1387 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1388 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1389
1390 return (0);
1391
1392 case SV_MIC_BOOST:
1393 if (cp->type != AUDIO_MIXER_ENUM)
1394 return (EINVAL);
1395 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1396 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1397 return (0);
1398
1399
1400 case SV_SRS_MODE:
1401 if (cp->type != AUDIO_MIXER_ENUM)
1402 return (EINVAL);
1403 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1404 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1405 return (0);
1406 }
1407
1408 return (EINVAL);
1409 }
1410
1411
1412 static void
1413 sv_init_mixer(sc)
1414 struct sv_softc *sc;
1415 {
1416 mixer_ctrl_t cp;
1417 int i;
1418
1419 cp.type = AUDIO_MIXER_ENUM;
1420 cp.dev = SV_SRS_MODE;
1421 cp.un.ord = 0;
1422
1423 sv_mixer_set_port(sc, &cp);
1424
1425 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1426 if (ports[i].audio == AudioNdac) {
1427 cp.type = AUDIO_MIXER_ENUM;
1428 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1429 cp.un.ord = 0;
1430 sv_mixer_set_port(sc, &cp);
1431 break;
1432 }
1433 }
1434 }
1435
1436 void *
1437 sv_malloc(addr, direction, size, pool, flags)
1438 void *addr;
1439 int direction;
1440 size_t size;
1441 int pool, flags;
1442 {
1443 struct sv_softc *sc = addr;
1444 struct sv_dma *p;
1445 int error;
1446
1447 p = malloc(sizeof(*p), pool, flags);
1448 if (!p)
1449 return (0);
1450 error = sv_allocmem(sc, size, 16, direction, p);
1451 if (error) {
1452 free(p, pool);
1453 return (0);
1454 }
1455 p->next = sc->sc_dmas;
1456 sc->sc_dmas = p;
1457 return (KERNADDR(p));
1458 }
1459
1460 void
1461 sv_free(addr, ptr, pool)
1462 void *addr;
1463 void *ptr;
1464 int pool;
1465 {
1466 struct sv_softc *sc = addr;
1467 struct sv_dma **pp, *p;
1468
1469 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1470 if (KERNADDR(p) == ptr) {
1471 sv_freemem(sc, p);
1472 *pp = p->next;
1473 free(p, pool);
1474 return;
1475 }
1476 }
1477 }
1478
1479 size_t
1480 sv_round_buffersize(addr, direction, size)
1481 void *addr;
1482 int direction;
1483 size_t size;
1484 {
1485 return (size);
1486 }
1487
1488 paddr_t
1489 sv_mappage(addr, mem, off, prot)
1490 void *addr;
1491 void *mem;
1492 off_t off;
1493 int prot;
1494 {
1495 struct sv_softc *sc = addr;
1496 struct sv_dma *p;
1497
1498 if (off < 0)
1499 return (-1);
1500 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1501 ;
1502 if (!p)
1503 return (-1);
1504 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1505 off, prot, BUS_DMA_WAITOK));
1506 }
1507
1508 int
1509 sv_get_props(addr)
1510 void *addr;
1511 {
1512 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1513 }
1514