Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.15
      1 /*      $NetBSD: sv.c,v 1.15 2001/11/13 07:48:49 lukem Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.15 2001/11/13 07:48:49 lukem Exp $");
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/malloc.h>
     83 #include <sys/device.h>
     84 
     85 #include <dev/pci/pcireg.h>
     86 #include <dev/pci/pcivar.h>
     87 #include <dev/pci/pcidevs.h>
     88 
     89 #include <sys/audioio.h>
     90 #include <dev/audio_if.h>
     91 #include <dev/mulaw.h>
     92 #include <dev/auconv.h>
     93 
     94 #include <dev/ic/i8237reg.h>
     95 #include <dev/pci/svreg.h>
     96 #include <dev/pci/svvar.h>
     97 
     98 #include <machine/bus.h>
     99 
    100 #ifdef AUDIO_DEBUG
    101 #define DPRINTF(x)	if (svdebug) printf x
    102 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    103 int	svdebug = 0;
    104 #else
    105 #define DPRINTF(x)
    106 #define DPRINTFN(n,x)
    107 #endif
    108 
    109 int	sv_match __P((struct device *, struct cfdata *, void *));
    110 void	sv_attach __P((struct device *, struct device *, void *));
    111 int	sv_intr __P((void *));
    112 
    113 struct sv_dma {
    114 	bus_dmamap_t map;
    115 	caddr_t addr;
    116 	bus_dma_segment_t segs[1];
    117 	int nsegs;
    118 	size_t size;
    119 	struct sv_dma *next;
    120 };
    121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    122 #define KERNADDR(p) ((void *)((p)->addr))
    123 
    124 struct cfattach sv_ca = {
    125 	sizeof(struct sv_softc), sv_match, sv_attach
    126 };
    127 
    128 struct audio_device sv_device = {
    129 	"S3 SonicVibes",
    130 	"",
    131 	"sv"
    132 };
    133 
    134 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    135 
    136 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
    137 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
    138 
    139 int	sv_open __P((void *, int));
    140 void	sv_close __P((void *));
    141 int	sv_query_encoding __P((void *, struct audio_encoding *));
    142 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    143 int	sv_round_blocksize __P((void *, int));
    144 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    145 	    void *, struct audio_params *));
    146 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    147 	    void *, struct audio_params *));
    148 int	sv_halt_output __P((void *));
    149 int	sv_halt_input __P((void *));
    150 int	sv_getdev __P((void *, struct audio_device *));
    151 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
    152 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
    153 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
    154 void   *sv_malloc __P((void *, int, size_t, int, int));
    155 void	sv_free __P((void *, void *, int));
    156 size_t	sv_round_buffersize __P((void *, int, size_t));
    157 paddr_t	sv_mappage __P((void *, void *, off_t, int));
    158 int	sv_get_props __P((void *));
    159 
    160 #ifdef AUDIO_DEBUG
    161 void    sv_dumpregs __P((struct sv_softc *sc));
    162 #endif
    163 
    164 struct audio_hw_if sv_hw_if = {
    165 	sv_open,
    166 	sv_close,
    167 	NULL,
    168 	sv_query_encoding,
    169 	sv_set_params,
    170 	sv_round_blocksize,
    171 	NULL,
    172 	NULL,
    173 	NULL,
    174 	NULL,
    175 	NULL,
    176 	sv_halt_output,
    177 	sv_halt_input,
    178 	NULL,
    179 	sv_getdev,
    180 	NULL,
    181 	sv_mixer_set_port,
    182 	sv_mixer_get_port,
    183 	sv_query_devinfo,
    184 	sv_malloc,
    185 	sv_free,
    186 	sv_round_buffersize,
    187 	sv_mappage,
    188 	sv_get_props,
    189 	sv_trigger_output,
    190 	sv_trigger_input,
    191 	NULL,
    192 };
    193 
    194 
    195 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
    196 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
    197 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
    198 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
    199 static void sv_init_mixer __P((struct sv_softc *));
    200 
    201 static void sv_defer __P((struct device *self));
    202 
    203 static void
    204 sv_write (sc, reg, val)
    205 	struct sv_softc *sc;
    206 	u_int8_t reg, val;
    207 
    208 {
    209 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    210 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    211 }
    212 
    213 static u_int8_t
    214 sv_read(sc, reg)
    215 	struct sv_softc *sc;
    216 	u_int8_t reg;
    217 
    218 {
    219 	u_int8_t val;
    220 
    221 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    222 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    223 	return val;
    224 }
    225 
    226 static u_int8_t
    227 sv_read_indirect(sc, reg)
    228 	struct sv_softc *sc;
    229 	u_int8_t reg;
    230 {
    231 	u_int8_t val;
    232 	int s = splaudio();
    233 
    234 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    235 	val = sv_read(sc, SV_CODEC_IDATA);
    236 	splx(s);
    237 	return (val);
    238 }
    239 
    240 static void
    241 sv_write_indirect(sc, reg, val)
    242 	struct sv_softc *sc;
    243 	u_int8_t reg, val;
    244 {
    245 	u_int8_t iaddr = reg & SV_IADDR_MASK;
    246 	int s = splaudio();
    247 
    248 	if (reg == SV_DMA_DATA_FORMAT)
    249 		iaddr |= SV_IADDR_MCE;
    250 
    251 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    252 	sv_write(sc, SV_CODEC_IDATA, val);
    253 	splx(s);
    254 }
    255 
    256 int
    257 sv_match(parent, match, aux)
    258 	struct device *parent;
    259 	struct cfdata *match;
    260 	void *aux;
    261 {
    262 	struct pci_attach_args *pa = aux;
    263 
    264 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    265 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    266 		return (1);
    267 
    268 	return (0);
    269 }
    270 
    271 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
    272 		      int pcioffs,
    273 		      bus_space_tag_t iot, bus_size_t size,
    274 		      bus_size_t align, bus_size_t bound, int flags,
    275 		      bus_space_handle_t *ioh));
    276 
    277 #define PCI_IO_ALLOC_LOW 0xa000
    278 #define PCI_IO_ALLOC_HIGH 0xb000
    279 int
    280 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
    281 	pci_chipset_tag_t pc;
    282 	pcitag_t pt;
    283 	int pcioffs;
    284 	bus_space_tag_t iot;
    285 	bus_size_t size;
    286 	bus_size_t align;
    287 	bus_size_t bound;
    288 	int flags;
    289 	bus_space_handle_t *ioh;
    290 {
    291 	bus_addr_t addr;
    292 	int error;
    293 
    294 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
    295 				size, align, bound, flags, &addr, ioh);
    296 	if (error)
    297 		return(error);
    298 
    299 	pci_conf_write(pc, pt, pcioffs, addr);
    300 	return (0);
    301 }
    302 
    303 /*
    304  * Allocate IO addresses when all other configuration is done.
    305  */
    306 void
    307 sv_defer(self)
    308 	struct device *self;
    309 {
    310 	struct sv_softc *sc = (struct sv_softc *)self;
    311 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
    312 	pcitag_t pt = sc->sc_pa.pa_tag;
    313 	pcireg_t dmaio;
    314 
    315 	DPRINTF(("sv_defer: %p\n", sc));
    316 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    317 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    318 			  0, &sc->sc_dmaa_ioh)) {
    319 		printf("sv_attach: cannot allocate DMA A range\n");
    320 		return;
    321 	}
    322 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    323 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    324 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    325 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    326 
    327 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    328 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    329 			  0, &sc->sc_dmac_ioh)) {
    330 		printf("sv_attach: cannot allocate DMA C range\n");
    331 		return;
    332 	}
    333 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    334 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    335 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    336 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    337 
    338 	sc->sc_dmaset = 1;
    339 }
    340 
    341 void
    342 sv_attach(parent, self, aux)
    343 	struct device *parent, *self;
    344 	void *aux;
    345 {
    346 	struct sv_softc *sc = (struct sv_softc *)self;
    347 	struct pci_attach_args *pa = aux;
    348 	pci_chipset_tag_t pc = pa->pa_pc;
    349 	pcitag_t pt = pa->pa_tag;
    350 	pci_intr_handle_t ih;
    351 	pcireg_t csr;
    352 	char const *intrstr;
    353 	u_int8_t reg;
    354 	struct audio_attach_args arg;
    355 
    356 	printf ("\n");
    357 
    358 	/* Map I/O registers */
    359 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    360 			   PCI_MAPREG_TYPE_IO, 0,
    361 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    362 		printf("%s: can't map enhanced i/o space\n",
    363 		       sc->sc_dev.dv_xname);
    364 		return;
    365 	}
    366 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    367 			   PCI_MAPREG_TYPE_IO, 0,
    368 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    369 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    370 		return;
    371 	}
    372 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    373 			   PCI_MAPREG_TYPE_IO, 0,
    374 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    375 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    376 		return;
    377 	}
    378 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    379 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    380 
    381 #ifdef alpha
    382 	/* XXX Force allocation through the SGMAP. */
    383 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    384 #else
    385 	sc->sc_dmatag = pa->pa_dmat;
    386 #endif
    387 
    388 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    389 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    390 
    391 	/* Enable the device. */
    392 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    393 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    394 		       csr | PCI_COMMAND_MASTER_ENABLE);
    395 
    396 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    397 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    398 
    399 	/* initialize codec registers */
    400 	reg = sv_read(sc, SV_CODEC_CONTROL);
    401 	reg |= SV_CTL_RESET;
    402 	sv_write(sc, SV_CODEC_CONTROL, reg);
    403 	delay(50);
    404 
    405 	reg = sv_read(sc, SV_CODEC_CONTROL);
    406 	reg &= ~SV_CTL_RESET;
    407 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    408 
    409 	/* This write clears the reset */
    410 	sv_write(sc, SV_CODEC_CONTROL, reg);
    411 	delay(50);
    412 
    413 	/* This write actually shoves the new values in */
    414 	sv_write(sc, SV_CODEC_CONTROL, reg);
    415 
    416 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    417 
    418 	/* Enable DMA interrupts */
    419 	reg = sv_read(sc, SV_CODEC_INTMASK);
    420 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    421 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    422 	sv_write(sc, SV_CODEC_INTMASK, reg);
    423 
    424 	sv_read(sc, SV_CODEC_STATUS);
    425 
    426 	/* Map and establish the interrupt. */
    427 	if (pci_intr_map(pa, &ih)) {
    428 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    429 		return;
    430 	}
    431 	intrstr = pci_intr_string(pc, ih);
    432 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    433 	if (sc->sc_ih == NULL) {
    434 		printf("%s: couldn't establish interrupt",
    435 		       sc->sc_dev.dv_xname);
    436 		if (intrstr != NULL)
    437 			printf(" at %s", intrstr);
    438 		printf("\n");
    439 		return;
    440 	}
    441 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    442 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    443 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    444 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    445 		printf(", reverb SRAM present");
    446 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    447 		printf(", wavetable ROM present");
    448 	printf("\n");
    449 
    450 	sv_init_mixer(sc);
    451 
    452 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    453 
    454 	arg.type = AUDIODEV_TYPE_OPL;
    455 	arg.hwif = 0;
    456 	arg.hdl = 0;
    457 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    458 
    459 	sc->sc_pa = *pa;	/* for deferred setup */
    460 	config_defer(self, sv_defer);
    461 }
    462 
    463 #ifdef AUDIO_DEBUG
    464 void
    465 sv_dumpregs(sc)
    466 	struct sv_softc *sc;
    467 {
    468 	int idx;
    469 
    470 #if 0
    471 	for (idx = 0; idx < 0x50; idx += 4)
    472 		printf ("%02x = %x\n", idx,
    473 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    474 #endif
    475 
    476 	for (idx = 0; idx < 6; idx++)
    477 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    478 
    479 	for (idx = 0; idx < 0x32; idx++)
    480 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    481 
    482 	for (idx = 0; idx < 0x10; idx++)
    483 		printf ("DMA %02x = %02x\n", idx,
    484 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    485 }
    486 #endif
    487 
    488 int
    489 sv_intr(p)
    490 	void *p;
    491 {
    492 	struct sv_softc *sc = p;
    493 	u_int8_t intr;
    494 
    495 	intr = sv_read(sc, SV_CODEC_STATUS);
    496 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    497 
    498 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    499 		return (0);
    500 
    501 	if (intr & SV_INTSTATUS_DMAA) {
    502 		if (sc->sc_pintr)
    503 			sc->sc_pintr(sc->sc_parg);
    504 	}
    505 
    506 	if (intr & SV_INTSTATUS_DMAC) {
    507 		if (sc->sc_rintr)
    508 			sc->sc_rintr(sc->sc_rarg);
    509 	}
    510 
    511 	return (1);
    512 }
    513 
    514 int
    515 sv_allocmem(sc, size, align, direction, p)
    516 	struct sv_softc *sc;
    517 	size_t size;
    518 	size_t align;
    519 	int direction;
    520 	struct sv_dma *p;
    521 {
    522 	int error;
    523 
    524 	p->size = size;
    525 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    526 				 p->segs, ARRAY_SIZE(p->segs),
    527 				 &p->nsegs, BUS_DMA_NOWAIT);
    528 	if (error)
    529 		return (error);
    530 
    531 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    532 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    533 	if (error)
    534 		goto free;
    535 
    536 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    537 				  0, BUS_DMA_NOWAIT, &p->map);
    538 	if (error)
    539 		goto unmap;
    540 
    541 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    542 				BUS_DMA_NOWAIT |
    543                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    544 	if (error)
    545 		goto destroy;
    546 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    547 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    548 	return (0);
    549 
    550 destroy:
    551 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    552 unmap:
    553 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    554 free:
    555 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    556 	return (error);
    557 }
    558 
    559 int
    560 sv_freemem(sc, p)
    561 	struct sv_softc *sc;
    562 	struct sv_dma *p;
    563 {
    564 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    565 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    566 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    567 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    568 	return (0);
    569 }
    570 
    571 int
    572 sv_open(addr, flags)
    573 	void *addr;
    574 	int flags;
    575 {
    576 	struct sv_softc *sc = addr;
    577 
    578 	DPRINTF(("sv_open\n"));
    579 	if (!sc->sc_dmaset)
    580 		return (ENXIO);
    581 	sc->sc_pintr = 0;
    582 	sc->sc_rintr = 0;
    583 
    584 	return (0);
    585 }
    586 
    587 /*
    588  * Close function is called at splaudio().
    589  */
    590 void
    591 sv_close(addr)
    592 	void *addr;
    593 {
    594 	struct sv_softc *sc = addr;
    595 
    596 	DPRINTF(("sv_close\n"));
    597 	sv_halt_output(sc);
    598 	sv_halt_input(sc);
    599 
    600 	sc->sc_pintr = 0;
    601 	sc->sc_rintr = 0;
    602 }
    603 
    604 int
    605 sv_query_encoding(addr, fp)
    606 	void *addr;
    607 	struct audio_encoding *fp;
    608 {
    609 	switch (fp->index) {
    610 	case 0:
    611 		strcpy(fp->name, AudioEulinear);
    612 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    613 		fp->precision = 8;
    614 		fp->flags = 0;
    615 		return (0);
    616 	case 1:
    617 		strcpy(fp->name, AudioEmulaw);
    618 		fp->encoding = AUDIO_ENCODING_ULAW;
    619 		fp->precision = 8;
    620 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    621 		return (0);
    622 	case 2:
    623 		strcpy(fp->name, AudioEalaw);
    624 		fp->encoding = AUDIO_ENCODING_ALAW;
    625 		fp->precision = 8;
    626 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    627 		return (0);
    628 	case 3:
    629 		strcpy(fp->name, AudioEslinear);
    630 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    631 		fp->precision = 8;
    632 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    633 		return (0);
    634 	case 4:
    635 		strcpy(fp->name, AudioEslinear_le);
    636 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    637 		fp->precision = 16;
    638 		fp->flags = 0;
    639 		return (0);
    640 	case 5:
    641 		strcpy(fp->name, AudioEulinear_le);
    642 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    643 		fp->precision = 16;
    644 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    645 		return (0);
    646 	case 6:
    647 		strcpy(fp->name, AudioEslinear_be);
    648 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    649 		fp->precision = 16;
    650 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    651 		return (0);
    652 	case 7:
    653 		strcpy(fp->name, AudioEulinear_be);
    654 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    655 		fp->precision = 16;
    656 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    657 		return (0);
    658 	default:
    659 		return (EINVAL);
    660 	}
    661 }
    662 
    663 int
    664 sv_set_params(addr, setmode, usemode, play, rec)
    665 	void *addr;
    666 	int setmode, usemode;
    667 	struct audio_params *play, *rec;
    668 {
    669 	struct sv_softc *sc = addr;
    670 	struct audio_params *p = NULL;
    671 	int mode;
    672 	u_int32_t val;
    673 
    674 	/*
    675 	 * This device only has one clock, so make the sample rates match.
    676 	 */
    677 	if (play->sample_rate != rec->sample_rate &&
    678 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    679 		if (setmode == AUMODE_PLAY) {
    680 			rec->sample_rate = play->sample_rate;
    681 			setmode |= AUMODE_RECORD;
    682 		} else if (setmode == AUMODE_RECORD) {
    683 			play->sample_rate = rec->sample_rate;
    684 			setmode |= AUMODE_PLAY;
    685 		} else
    686 			return (EINVAL);
    687 	}
    688 
    689 	for (mode = AUMODE_RECORD; mode != -1;
    690 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    691 		if ((setmode & mode) == 0)
    692 			continue;
    693 
    694 		p = mode == AUMODE_PLAY ? play : rec;
    695 
    696 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
    697 		    (p->precision != 8 && p->precision != 16) ||
    698 		    (p->channels != 1 && p->channels != 2))
    699 			return (EINVAL);
    700 
    701 		p->factor = 1;
    702 		p->sw_code = 0;
    703 		switch (p->encoding) {
    704 		case AUDIO_ENCODING_SLINEAR_BE:
    705 			if (p->precision == 16)
    706 				p->sw_code = swap_bytes;
    707 			else
    708 				p->sw_code = change_sign8;
    709 			break;
    710 		case AUDIO_ENCODING_SLINEAR_LE:
    711 			if (p->precision != 16)
    712 				p->sw_code = change_sign8;
    713 			break;
    714 		case AUDIO_ENCODING_ULINEAR_BE:
    715 			if (p->precision == 16) {
    716 				if (mode == AUMODE_PLAY)
    717 					p->sw_code = swap_bytes_change_sign16_le;
    718 				else
    719 					p->sw_code = change_sign16_swap_bytes_le;
    720 			}
    721 			break;
    722 		case AUDIO_ENCODING_ULINEAR_LE:
    723 			if (p->precision == 16)
    724 				p->sw_code = change_sign16_le;
    725 			break;
    726 		case AUDIO_ENCODING_ULAW:
    727 			if (mode == AUMODE_PLAY) {
    728 				p->factor = 2;
    729 				p->sw_code = mulaw_to_slinear16_le;
    730 			} else
    731 				p->sw_code = ulinear8_to_mulaw;
    732 			break;
    733 		case AUDIO_ENCODING_ALAW:
    734 			if (mode == AUMODE_PLAY) {
    735 				p->factor = 2;
    736 				p->sw_code = alaw_to_slinear16_le;
    737 			} else
    738 				p->sw_code = ulinear8_to_alaw;
    739 			break;
    740 		default:
    741 			return (EINVAL);
    742 		}
    743 	}
    744 
    745 	val = p->sample_rate * 65536 / 48000;
    746 	/*
    747 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
    748 	 * register, so we have to bias it.  This causes a little clock drift.
    749 	 * The drift is below normal crystal tolerance (.0001%), so although
    750 	 * this seems a little silly, we can pretty much ignore it.
    751 	 * (I tested the output speed with values of 1-20, just to be sure this
    752 	 * register isn't *supposed* to have a bias.  It isn't.)
    753 	 * - mycroft
    754 	 */
    755 	if (val > 65535)
    756 		val = 65535;
    757 
    758 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    759 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    760 
    761 #define F_REF 24576000
    762 
    763 #define ABS(x) (((x) < 0) ? (-x) : (x))
    764 
    765 	if (setmode & AUMODE_RECORD) {
    766 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    767 
    768 		/* f_out is dervied from the 24.576MHZ crystal by three values:
    769 		   M & N & R. The equation is as follows:
    770 
    771 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    772 
    773 		   with the constraint that:
    774 
    775 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
    776 		   and n, m >= 1
    777 		*/
    778 
    779 		int  goal_f_out = 512 * rec->sample_rate;
    780 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
    781 		int  pll_sample;
    782 		int  error;
    783 
    784 		for (a = 0; a < 8; a++) {
    785 			if ((goal_f_out * (1 << a)) >= 80000000)
    786 				break;
    787 		}
    788 
    789 		/* a != 8 because sample_rate >= 2000 */
    790 
    791 		for (n = 33; n > 2; n--) {
    792 			m = (goal_f_out * n * (1 << a)) / F_REF;
    793 			if ((m > 257) || (m < 3))
    794 				continue;
    795 
    796 			pll_sample = (m * F_REF) / (n * (1 << a));
    797 			pll_sample /= 512;
    798 
    799 			/* Threshold might be good here */
    800 			error = pll_sample - rec->sample_rate;
    801 			error = ABS(error);
    802 
    803 			if (error < best_error) {
    804 				best_error = error;
    805 				best_n = n;
    806 				best_m = m;
    807 				if (error == 0) break;
    808 			}
    809 		}
    810 
    811 		best_n -= 2;
    812 		best_m -= 2;
    813 
    814 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    815 		sv_write_indirect(sc, SV_ADC_PLL_N,
    816 				  best_n | (a << SV_PLL_R_SHIFT));
    817 	}
    818 
    819 	return (0);
    820 }
    821 
    822 int
    823 sv_round_blocksize(addr, blk)
    824 	void *addr;
    825 	int blk;
    826 {
    827 	return (blk & -32);	/* keep good alignment */
    828 }
    829 
    830 int
    831 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
    832 	void *addr;
    833 	void *start, *end;
    834 	int blksize;
    835 	void (*intr) __P((void *));
    836 	void *arg;
    837 	struct audio_params *param;
    838 {
    839 	struct sv_softc *sc = addr;
    840 	struct sv_dma *p;
    841 	u_int8_t mode;
    842 	int dma_count;
    843 
    844 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    845 	    addr, start, end, blksize, intr, arg));
    846 	sc->sc_pintr = intr;
    847 	sc->sc_parg = arg;
    848 
    849 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    850 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    851 	if (param->precision * param->factor == 16)
    852 		mode |= SV_DMAA_FORMAT16;
    853 	if (param->channels == 2)
    854 		mode |= SV_DMAA_STEREO;
    855 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    856 
    857 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    858 		;
    859 	if (!p) {
    860 		printf("sv_trigger_output: bad addr %p\n", start);
    861 		return (EINVAL);
    862 	}
    863 
    864 	dma_count = ((char *)end - (char *)start) - 1;
    865 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
    866 	    (int)DMAADDR(p), dma_count));
    867 
    868 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    869 			  DMAADDR(p));
    870 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    871 			  dma_count);
    872 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    873 			  DMA37MD_READ | DMA37MD_LOOP);
    874 
    875 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    876 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    877 
    878 	dma_count = blksize - 1;
    879 
    880 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    881 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    882 
    883 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    884 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    885 
    886 	return (0);
    887 }
    888 
    889 int
    890 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
    891 	void *addr;
    892 	void *start, *end;
    893 	int blksize;
    894 	void (*intr) __P((void *));
    895 	void *arg;
    896 	struct audio_params *param;
    897 {
    898 	struct sv_softc *sc = addr;
    899 	struct sv_dma *p;
    900 	u_int8_t mode;
    901 	int dma_count;
    902 
    903 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    904 	    addr, start, end, blksize, intr, arg));
    905 	sc->sc_rintr = intr;
    906 	sc->sc_rarg = arg;
    907 
    908 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    909 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    910 	if (param->precision * param->factor == 16)
    911 		mode |= SV_DMAC_FORMAT16;
    912 	if (param->channels == 2)
    913 		mode |= SV_DMAC_STEREO;
    914 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    915 
    916 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    917 		;
    918 	if (!p) {
    919 		printf("sv_trigger_input: bad addr %p\n", start);
    920 		return (EINVAL);
    921 	}
    922 
    923 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    924 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
    925 	    (int)DMAADDR(p), dma_count));
    926 
    927 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    928 			  DMAADDR(p));
    929 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    930 			  dma_count);
    931 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    932 			  DMA37MD_WRITE | DMA37MD_LOOP);
    933 
    934 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    935 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    936 
    937 	dma_count = (blksize >> 1) - 1;
    938 
    939 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    940 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    941 
    942 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    943 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    944 
    945 	return (0);
    946 }
    947 
    948 int
    949 sv_halt_output(addr)
    950 	void *addr;
    951 {
    952 	struct sv_softc *sc = addr;
    953 	u_int8_t mode;
    954 
    955 	DPRINTF(("sv: sv_halt_output\n"));
    956 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    957 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    958 
    959 	return (0);
    960 }
    961 
    962 int
    963 sv_halt_input(addr)
    964 	void *addr;
    965 {
    966 	struct sv_softc *sc = addr;
    967 	u_int8_t mode;
    968 
    969 	DPRINTF(("sv: sv_halt_input\n"));
    970 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    971 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    972 
    973 	return (0);
    974 }
    975 
    976 int
    977 sv_getdev(addr, retp)
    978 	void *addr;
    979 	struct audio_device *retp;
    980 {
    981 	*retp = sv_device;
    982 	return (0);
    983 }
    984 
    985 
    986 /*
    987  * Mixer related code is here
    988  *
    989  */
    990 
    991 #define SV_INPUT_CLASS 0
    992 #define SV_OUTPUT_CLASS 1
    993 #define SV_RECORD_CLASS 2
    994 
    995 #define SV_LAST_CLASS 2
    996 
    997 static const char *mixer_classes[] =
    998 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    999 
   1000 static const struct {
   1001 	u_int8_t   l_port;
   1002 	u_int8_t   r_port;
   1003 	u_int8_t   mask;
   1004 	u_int8_t   class;
   1005 	const char *audio;
   1006 } ports[] = {
   1007   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
   1008     SV_INPUT_CLASS, "aux1" },
   1009   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
   1010     SV_INPUT_CLASS, AudioNcd },
   1011   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
   1012     SV_INPUT_CLASS, AudioNline },
   1013   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
   1014   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
   1015     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
   1016   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
   1017     SV_INPUT_CLASS, "aux2" },
   1018   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
   1019     SV_INPUT_CLASS, AudioNdac },
   1020   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
   1021     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
   1022 };
   1023 
   1024 
   1025 static const struct {
   1026 	int idx;
   1027 	const char *name;
   1028 } record_sources[] = {
   1029 	{ SV_REC_CD, AudioNcd },
   1030 	{ SV_REC_DAC, AudioNdac },
   1031 	{ SV_REC_AUX2, "aux2" },
   1032 	{ SV_REC_LINE, AudioNline },
   1033 	{ SV_REC_AUX1, "aux1" },
   1034 	{ SV_REC_MIC, AudioNmicrophone },
   1035 	{ SV_REC_MIXER, AudioNmixerout }
   1036 };
   1037 
   1038 
   1039 #define SV_DEVICES_PER_PORT 2
   1040 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
   1041 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
   1042 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
   1043 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
   1044 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
   1045 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
   1046 
   1047 int
   1048 sv_query_devinfo(addr, dip)
   1049 	void *addr;
   1050 	mixer_devinfo_t *dip;
   1051 {
   1052 	int i;
   1053 
   1054 	/* It's a class */
   1055 	if (dip->index <= SV_LAST_CLASS) {
   1056 		dip->type = AUDIO_MIXER_CLASS;
   1057 		dip->mixer_class = dip->index;
   1058 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1059 		strcpy(dip->label.name,
   1060 		       mixer_classes[dip->index]);
   1061 		return (0);
   1062 	}
   1063 
   1064 	if (dip->index >= SV_FIRST_MIXER &&
   1065 	    dip->index <= SV_LAST_MIXER) {
   1066 		int off = dip->index - SV_FIRST_MIXER;
   1067 		int mute = (off % SV_DEVICES_PER_PORT);
   1068 		int idx = off / SV_DEVICES_PER_PORT;
   1069 
   1070 		dip->mixer_class = ports[idx].class;
   1071 		strcpy(dip->label.name, ports[idx].audio);
   1072 
   1073 		if (!mute) {
   1074 			dip->type = AUDIO_MIXER_VALUE;
   1075 			dip->prev = AUDIO_MIXER_LAST;
   1076 			dip->next = dip->index + 1;
   1077 
   1078 			if (ports[idx].r_port != 0)
   1079 				dip->un.v.num_channels = 2;
   1080 			else
   1081 				dip->un.v.num_channels = 1;
   1082 
   1083 			strcpy(dip->un.v.units.name, AudioNvolume);
   1084 		} else {
   1085 			dip->type = AUDIO_MIXER_ENUM;
   1086 			dip->prev = dip->index - 1;
   1087 			dip->next = AUDIO_MIXER_LAST;
   1088 
   1089 			strcpy(dip->label.name, AudioNmute);
   1090 			dip->un.e.num_mem = 2;
   1091 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1092 			dip->un.e.member[0].ord = 0;
   1093 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1094 			dip->un.e.member[1].ord = 1;
   1095 		}
   1096 
   1097 		return (0);
   1098 	}
   1099 
   1100 	switch (dip->index) {
   1101 	case SV_RECORD_SOURCE:
   1102 		dip->mixer_class = SV_RECORD_CLASS;
   1103 		dip->prev = AUDIO_MIXER_LAST;
   1104 		dip->next = SV_RECORD_GAIN;
   1105 		strcpy(dip->label.name, AudioNsource);
   1106 		dip->type = AUDIO_MIXER_ENUM;
   1107 
   1108 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1109 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1110 			strcpy(dip->un.e.member[i].label.name,
   1111 			       record_sources[i].name);
   1112 			dip->un.e.member[i].ord = record_sources[i].idx;
   1113 		}
   1114 		return (0);
   1115 
   1116 	case SV_RECORD_GAIN:
   1117 		dip->mixer_class = SV_RECORD_CLASS;
   1118 		dip->prev = SV_RECORD_SOURCE;
   1119 		dip->next = AUDIO_MIXER_LAST;
   1120 		strcpy(dip->label.name, "gain");
   1121 		dip->type = AUDIO_MIXER_VALUE;
   1122 		dip->un.v.num_channels = 1;
   1123 		strcpy(dip->un.v.units.name, AudioNvolume);
   1124 		return (0);
   1125 
   1126 	case SV_MIC_BOOST:
   1127 		dip->mixer_class = SV_RECORD_CLASS;
   1128 		dip->prev = AUDIO_MIXER_LAST;
   1129 		dip->next = AUDIO_MIXER_LAST;
   1130 		strcpy(dip->label.name, "micboost");
   1131 		goto on_off;
   1132 
   1133 	case SV_SRS_MODE:
   1134 		dip->mixer_class = SV_OUTPUT_CLASS;
   1135 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1136 		strcpy(dip->label.name, AudioNspatial);
   1137 
   1138 	on_off:
   1139 		dip->type = AUDIO_MIXER_ENUM;
   1140 		dip->un.e.num_mem = 2;
   1141 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1142 		dip->un.e.member[0].ord = 0;
   1143 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1144 		dip->un.e.member[1].ord = 1;
   1145 		return (0);
   1146 	}
   1147 
   1148 	return (ENXIO);
   1149 }
   1150 
   1151 int
   1152 sv_mixer_set_port(addr, cp)
   1153 	void *addr;
   1154 	mixer_ctrl_t *cp;
   1155 {
   1156 	struct sv_softc *sc = addr;
   1157 	u_int8_t reg;
   1158 	int idx;
   1159 
   1160 	if (cp->dev >= SV_FIRST_MIXER &&
   1161 	    cp->dev <= SV_LAST_MIXER) {
   1162 		int off = cp->dev - SV_FIRST_MIXER;
   1163 		int mute = (off % SV_DEVICES_PER_PORT);
   1164 		idx = off / SV_DEVICES_PER_PORT;
   1165 
   1166 		if (mute) {
   1167 			if (cp->type != AUDIO_MIXER_ENUM)
   1168 				return (EINVAL);
   1169 
   1170 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1171 			if (cp->un.ord)
   1172 				reg |= SV_MUTE_BIT;
   1173 			else
   1174 				reg &= ~SV_MUTE_BIT;
   1175 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1176 
   1177 			if (ports[idx].r_port) {
   1178 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1179 				if (cp->un.ord)
   1180 					reg |= SV_MUTE_BIT;
   1181 				else
   1182 					reg &= ~SV_MUTE_BIT;
   1183 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1184 			}
   1185 		} else {
   1186 			int  lval, rval;
   1187 
   1188 			if (cp->type != AUDIO_MIXER_VALUE)
   1189 				return (EINVAL);
   1190 
   1191 			if (cp->un.value.num_channels != 1 &&
   1192 			    cp->un.value.num_channels != 2)
   1193 				return (EINVAL);
   1194 
   1195 			if (ports[idx].r_port == 0) {
   1196 				if (cp->un.value.num_channels != 1)
   1197 					return (EINVAL);
   1198 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1199 				rval = 0; /* shut up GCC */
   1200 			} else {
   1201 				if (cp->un.value.num_channels != 2)
   1202 					return (EINVAL);
   1203 
   1204 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1205 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1206       }
   1207 
   1208 
   1209 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1210 			reg &= ~(ports[idx].mask);
   1211 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1212 				AUDIO_MAX_GAIN;
   1213 			reg |= lval;
   1214 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1215 
   1216 			if (ports[idx].r_port != 0) {
   1217 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1218 				reg &= ~(ports[idx].mask);
   1219 
   1220 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1221 					AUDIO_MAX_GAIN;
   1222 				reg |= rval;
   1223 
   1224 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1225 			}
   1226 
   1227 			sv_read_indirect(sc, ports[idx].l_port);
   1228 		}
   1229 
   1230 		return (0);
   1231 	}
   1232 
   1233 
   1234 	switch (cp->dev) {
   1235 	case SV_RECORD_SOURCE:
   1236 		if (cp->type != AUDIO_MIXER_ENUM)
   1237 			return (EINVAL);
   1238 
   1239 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1240 			if (record_sources[idx].idx == cp->un.ord)
   1241 				goto found;
   1242 		}
   1243 
   1244 		return (EINVAL);
   1245 
   1246 	found:
   1247 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1248 		reg &= ~SV_REC_SOURCE_MASK;
   1249 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1250 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1251 
   1252 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1253 		reg &= ~SV_REC_SOURCE_MASK;
   1254 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1255 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1256 		return (0);
   1257 
   1258 	case SV_RECORD_GAIN:
   1259 	{
   1260 		int val;
   1261 
   1262 		if (cp->type != AUDIO_MIXER_VALUE)
   1263 			return (EINVAL);
   1264 
   1265 		if (cp->un.value.num_channels != 1)
   1266 			return (EINVAL);
   1267 
   1268 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
   1269 			/ AUDIO_MAX_GAIN;
   1270 
   1271 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1272 		reg &= ~SV_REC_GAIN_MASK;
   1273 		reg |= val;
   1274 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1275 
   1276 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1277 		reg &= ~SV_REC_GAIN_MASK;
   1278 		reg |= val;
   1279 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1280 	}
   1281 	return (0);
   1282 
   1283 	case SV_MIC_BOOST:
   1284 		if (cp->type != AUDIO_MIXER_ENUM)
   1285 			return (EINVAL);
   1286 
   1287 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1288 		if (cp->un.ord) {
   1289 			reg |= SV_MIC_BOOST_BIT;
   1290 		} else {
   1291 			reg &= ~SV_MIC_BOOST_BIT;
   1292 		}
   1293 
   1294 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1295 		return (0);
   1296 
   1297 	case SV_SRS_MODE:
   1298 		if (cp->type != AUDIO_MIXER_ENUM)
   1299 			return (EINVAL);
   1300 
   1301 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1302 		if (cp->un.ord) {
   1303 			reg &= ~SV_SRS_SPACE_ONOFF;
   1304 		} else {
   1305 			reg |= SV_SRS_SPACE_ONOFF;
   1306 		}
   1307 
   1308 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1309 		return (0);
   1310 	}
   1311 
   1312 	return (EINVAL);
   1313 }
   1314 
   1315 int
   1316 sv_mixer_get_port(addr, cp)
   1317 	void *addr;
   1318 	mixer_ctrl_t *cp;
   1319 {
   1320 	struct sv_softc *sc = addr;
   1321 	int val;
   1322 	u_int8_t reg;
   1323 
   1324 	if (cp->dev >= SV_FIRST_MIXER &&
   1325 	    cp->dev <= SV_LAST_MIXER) {
   1326 		int off = cp->dev - SV_FIRST_MIXER;
   1327 		int mute = (off % 2);
   1328 		int idx = off / 2;
   1329 
   1330 		if (mute) {
   1331 			if (cp->type != AUDIO_MIXER_ENUM)
   1332 				return (EINVAL);
   1333 
   1334 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1335 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1336 		} else {
   1337 			if (cp->type != AUDIO_MIXER_VALUE)
   1338 				return (EINVAL);
   1339 
   1340 			if (cp->un.value.num_channels != 1 &&
   1341 			    cp->un.value.num_channels != 2)
   1342 				return (EINVAL);
   1343 
   1344 			if ((ports[idx].r_port == 0 &&
   1345 			     cp->un.value.num_channels != 1) ||
   1346 			    (ports[idx].r_port != 0 &&
   1347 			     cp->un.value.num_channels != 2))
   1348 				return (EINVAL);
   1349 
   1350 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1351 			reg &= ports[idx].mask;
   1352 
   1353 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1354 
   1355 			if (ports[idx].r_port != 0) {
   1356 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1357 
   1358 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1359 				reg &= ports[idx].mask;
   1360 
   1361 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1362 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1363 			} else
   1364 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1365 		}
   1366 
   1367 		return (0);
   1368   }
   1369 
   1370 	switch (cp->dev) {
   1371 	case SV_RECORD_SOURCE:
   1372 		if (cp->type != AUDIO_MIXER_ENUM)
   1373 			return (EINVAL);
   1374 
   1375 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1376 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1377 
   1378 		return (0);
   1379 
   1380 	case SV_RECORD_GAIN:
   1381 		if (cp->type != AUDIO_MIXER_VALUE)
   1382 			return (EINVAL);
   1383 		if (cp->un.value.num_channels != 1)
   1384 			return (EINVAL);
   1385 
   1386 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1387 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1388 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1389 
   1390 		return (0);
   1391 
   1392 	case SV_MIC_BOOST:
   1393 		if (cp->type != AUDIO_MIXER_ENUM)
   1394 			return (EINVAL);
   1395 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1396 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1397 		return (0);
   1398 
   1399 
   1400 	case SV_SRS_MODE:
   1401 		if (cp->type != AUDIO_MIXER_ENUM)
   1402 			return (EINVAL);
   1403 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1404 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1405 		return (0);
   1406 	}
   1407 
   1408 	return (EINVAL);
   1409 }
   1410 
   1411 
   1412 static void
   1413 sv_init_mixer(sc)
   1414 	struct sv_softc *sc;
   1415 {
   1416 	mixer_ctrl_t cp;
   1417 	int i;
   1418 
   1419 	cp.type = AUDIO_MIXER_ENUM;
   1420 	cp.dev = SV_SRS_MODE;
   1421 	cp.un.ord = 0;
   1422 
   1423 	sv_mixer_set_port(sc, &cp);
   1424 
   1425 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1426 		if (ports[i].audio == AudioNdac) {
   1427 			cp.type = AUDIO_MIXER_ENUM;
   1428 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1429 			cp.un.ord = 0;
   1430 			sv_mixer_set_port(sc, &cp);
   1431 			break;
   1432 		}
   1433 	}
   1434 }
   1435 
   1436 void *
   1437 sv_malloc(addr, direction, size, pool, flags)
   1438 	void *addr;
   1439 	int direction;
   1440 	size_t size;
   1441 	int pool, flags;
   1442 {
   1443 	struct sv_softc *sc = addr;
   1444 	struct sv_dma *p;
   1445 	int error;
   1446 
   1447 	p = malloc(sizeof(*p), pool, flags);
   1448 	if (!p)
   1449 		return (0);
   1450 	error = sv_allocmem(sc, size, 16, direction, p);
   1451 	if (error) {
   1452 		free(p, pool);
   1453 		return (0);
   1454 	}
   1455 	p->next = sc->sc_dmas;
   1456 	sc->sc_dmas = p;
   1457 	return (KERNADDR(p));
   1458 }
   1459 
   1460 void
   1461 sv_free(addr, ptr, pool)
   1462 	void *addr;
   1463 	void *ptr;
   1464 	int pool;
   1465 {
   1466 	struct sv_softc *sc = addr;
   1467 	struct sv_dma **pp, *p;
   1468 
   1469 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1470 		if (KERNADDR(p) == ptr) {
   1471 			sv_freemem(sc, p);
   1472 			*pp = p->next;
   1473 			free(p, pool);
   1474 			return;
   1475 		}
   1476 	}
   1477 }
   1478 
   1479 size_t
   1480 sv_round_buffersize(addr, direction, size)
   1481 	void *addr;
   1482 	int direction;
   1483 	size_t size;
   1484 {
   1485 	return (size);
   1486 }
   1487 
   1488 paddr_t
   1489 sv_mappage(addr, mem, off, prot)
   1490 	void *addr;
   1491 	void *mem;
   1492 	off_t off;
   1493 	int prot;
   1494 {
   1495 	struct sv_softc *sc = addr;
   1496 	struct sv_dma *p;
   1497 
   1498 	if (off < 0)
   1499 		return (-1);
   1500 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1501 		;
   1502 	if (!p)
   1503 		return (-1);
   1504 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1505 				off, prot, BUS_DMA_WAITOK));
   1506 }
   1507 
   1508 int
   1509 sv_get_props(addr)
   1510 	void *addr;
   1511 {
   1512 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1513 }
   1514