Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.17
      1 /*      $NetBSD: sv.c,v 1.17 2002/09/30 20:38:03 thorpej Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.17 2002/09/30 20:38:03 thorpej Exp $");
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/malloc.h>
     83 #include <sys/device.h>
     84 
     85 #include <dev/pci/pcireg.h>
     86 #include <dev/pci/pcivar.h>
     87 #include <dev/pci/pcidevs.h>
     88 
     89 #include <sys/audioio.h>
     90 #include <dev/audio_if.h>
     91 #include <dev/mulaw.h>
     92 #include <dev/auconv.h>
     93 
     94 #include <dev/ic/i8237reg.h>
     95 #include <dev/pci/svreg.h>
     96 #include <dev/pci/svvar.h>
     97 
     98 #include <machine/bus.h>
     99 
    100 #ifdef AUDIO_DEBUG
    101 #define DPRINTF(x)	if (svdebug) printf x
    102 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    103 int	svdebug = 0;
    104 #else
    105 #define DPRINTF(x)
    106 #define DPRINTFN(n,x)
    107 #endif
    108 
    109 int	sv_match __P((struct device *, struct cfdata *, void *));
    110 void	sv_attach __P((struct device *, struct device *, void *));
    111 int	sv_intr __P((void *));
    112 
    113 struct sv_dma {
    114 	bus_dmamap_t map;
    115 	caddr_t addr;
    116 	bus_dma_segment_t segs[1];
    117 	int nsegs;
    118 	size_t size;
    119 	struct sv_dma *next;
    120 };
    121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    122 #define KERNADDR(p) ((void *)((p)->addr))
    123 
    124 CFATTACH_DECL(sv, sizeof(struct sv_softc),
    125     sv_match, sv_attach, NULL, NULL)
    126 
    127 struct audio_device sv_device = {
    128 	"S3 SonicVibes",
    129 	"",
    130 	"sv"
    131 };
    132 
    133 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    134 
    135 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
    136 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
    137 
    138 int	sv_open __P((void *, int));
    139 void	sv_close __P((void *));
    140 int	sv_query_encoding __P((void *, struct audio_encoding *));
    141 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    142 int	sv_round_blocksize __P((void *, int));
    143 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    144 	    void *, struct audio_params *));
    145 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    146 	    void *, struct audio_params *));
    147 int	sv_halt_output __P((void *));
    148 int	sv_halt_input __P((void *));
    149 int	sv_getdev __P((void *, struct audio_device *));
    150 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
    151 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
    152 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
    153 void   *sv_malloc __P((void *, int, size_t, int, int));
    154 void	sv_free __P((void *, void *, int));
    155 size_t	sv_round_buffersize __P((void *, int, size_t));
    156 paddr_t	sv_mappage __P((void *, void *, off_t, int));
    157 int	sv_get_props __P((void *));
    158 
    159 #ifdef AUDIO_DEBUG
    160 void    sv_dumpregs __P((struct sv_softc *sc));
    161 #endif
    162 
    163 struct audio_hw_if sv_hw_if = {
    164 	sv_open,
    165 	sv_close,
    166 	NULL,
    167 	sv_query_encoding,
    168 	sv_set_params,
    169 	sv_round_blocksize,
    170 	NULL,
    171 	NULL,
    172 	NULL,
    173 	NULL,
    174 	NULL,
    175 	sv_halt_output,
    176 	sv_halt_input,
    177 	NULL,
    178 	sv_getdev,
    179 	NULL,
    180 	sv_mixer_set_port,
    181 	sv_mixer_get_port,
    182 	sv_query_devinfo,
    183 	sv_malloc,
    184 	sv_free,
    185 	sv_round_buffersize,
    186 	sv_mappage,
    187 	sv_get_props,
    188 	sv_trigger_output,
    189 	sv_trigger_input,
    190 	NULL,
    191 };
    192 
    193 
    194 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
    195 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
    196 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
    197 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
    198 static void sv_init_mixer __P((struct sv_softc *));
    199 
    200 static void sv_defer __P((struct device *self));
    201 
    202 static void
    203 sv_write (sc, reg, val)
    204 	struct sv_softc *sc;
    205 	u_int8_t reg, val;
    206 
    207 {
    208 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    209 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    210 }
    211 
    212 static u_int8_t
    213 sv_read(sc, reg)
    214 	struct sv_softc *sc;
    215 	u_int8_t reg;
    216 
    217 {
    218 	u_int8_t val;
    219 
    220 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    221 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    222 	return val;
    223 }
    224 
    225 static u_int8_t
    226 sv_read_indirect(sc, reg)
    227 	struct sv_softc *sc;
    228 	u_int8_t reg;
    229 {
    230 	u_int8_t val;
    231 	int s = splaudio();
    232 
    233 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    234 	val = sv_read(sc, SV_CODEC_IDATA);
    235 	splx(s);
    236 	return (val);
    237 }
    238 
    239 static void
    240 sv_write_indirect(sc, reg, val)
    241 	struct sv_softc *sc;
    242 	u_int8_t reg, val;
    243 {
    244 	u_int8_t iaddr = reg & SV_IADDR_MASK;
    245 	int s = splaudio();
    246 
    247 	if (reg == SV_DMA_DATA_FORMAT)
    248 		iaddr |= SV_IADDR_MCE;
    249 
    250 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    251 	sv_write(sc, SV_CODEC_IDATA, val);
    252 	splx(s);
    253 }
    254 
    255 int
    256 sv_match(parent, match, aux)
    257 	struct device *parent;
    258 	struct cfdata *match;
    259 	void *aux;
    260 {
    261 	struct pci_attach_args *pa = aux;
    262 
    263 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    264 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    265 		return (1);
    266 
    267 	return (0);
    268 }
    269 
    270 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
    271 		      int pcioffs,
    272 		      bus_space_tag_t iot, bus_size_t size,
    273 		      bus_size_t align, bus_size_t bound, int flags,
    274 		      bus_space_handle_t *ioh));
    275 
    276 #define PCI_IO_ALLOC_LOW 0xa000
    277 #define PCI_IO_ALLOC_HIGH 0xb000
    278 int
    279 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
    280 	pci_chipset_tag_t pc;
    281 	pcitag_t pt;
    282 	int pcioffs;
    283 	bus_space_tag_t iot;
    284 	bus_size_t size;
    285 	bus_size_t align;
    286 	bus_size_t bound;
    287 	int flags;
    288 	bus_space_handle_t *ioh;
    289 {
    290 	bus_addr_t addr;
    291 	int error;
    292 
    293 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
    294 				size, align, bound, flags, &addr, ioh);
    295 	if (error)
    296 		return(error);
    297 
    298 	pci_conf_write(pc, pt, pcioffs, addr);
    299 	return (0);
    300 }
    301 
    302 /*
    303  * Allocate IO addresses when all other configuration is done.
    304  */
    305 void
    306 sv_defer(self)
    307 	struct device *self;
    308 {
    309 	struct sv_softc *sc = (struct sv_softc *)self;
    310 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
    311 	pcitag_t pt = sc->sc_pa.pa_tag;
    312 	pcireg_t dmaio;
    313 
    314 	DPRINTF(("sv_defer: %p\n", sc));
    315 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    316 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    317 			  0, &sc->sc_dmaa_ioh)) {
    318 		printf("sv_attach: cannot allocate DMA A range\n");
    319 		return;
    320 	}
    321 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    322 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    323 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    324 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    325 
    326 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    327 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    328 			  0, &sc->sc_dmac_ioh)) {
    329 		printf("sv_attach: cannot allocate DMA C range\n");
    330 		return;
    331 	}
    332 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    333 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    334 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    335 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    336 
    337 	sc->sc_dmaset = 1;
    338 }
    339 
    340 void
    341 sv_attach(parent, self, aux)
    342 	struct device *parent, *self;
    343 	void *aux;
    344 {
    345 	struct sv_softc *sc = (struct sv_softc *)self;
    346 	struct pci_attach_args *pa = aux;
    347 	pci_chipset_tag_t pc = pa->pa_pc;
    348 	pcitag_t pt = pa->pa_tag;
    349 	pci_intr_handle_t ih;
    350 	pcireg_t csr;
    351 	char const *intrstr;
    352 	u_int8_t reg;
    353 	struct audio_attach_args arg;
    354 
    355 	printf ("\n");
    356 
    357 	/* Map I/O registers */
    358 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    359 			   PCI_MAPREG_TYPE_IO, 0,
    360 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    361 		printf("%s: can't map enhanced i/o space\n",
    362 		       sc->sc_dev.dv_xname);
    363 		return;
    364 	}
    365 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    366 			   PCI_MAPREG_TYPE_IO, 0,
    367 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    368 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    369 		return;
    370 	}
    371 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    372 			   PCI_MAPREG_TYPE_IO, 0,
    373 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    374 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    375 		return;
    376 	}
    377 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    378 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    379 
    380 #ifdef alpha
    381 	/* XXX Force allocation through the SGMAP. */
    382 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    383 #else
    384 	sc->sc_dmatag = pa->pa_dmat;
    385 #endif
    386 
    387 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    388 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    389 
    390 	/* Enable the device. */
    391 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    392 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    393 		       csr | PCI_COMMAND_MASTER_ENABLE);
    394 
    395 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    396 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    397 
    398 	/* initialize codec registers */
    399 	reg = sv_read(sc, SV_CODEC_CONTROL);
    400 	reg |= SV_CTL_RESET;
    401 	sv_write(sc, SV_CODEC_CONTROL, reg);
    402 	delay(50);
    403 
    404 	reg = sv_read(sc, SV_CODEC_CONTROL);
    405 	reg &= ~SV_CTL_RESET;
    406 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    407 
    408 	/* This write clears the reset */
    409 	sv_write(sc, SV_CODEC_CONTROL, reg);
    410 	delay(50);
    411 
    412 	/* This write actually shoves the new values in */
    413 	sv_write(sc, SV_CODEC_CONTROL, reg);
    414 
    415 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    416 
    417 	/* Enable DMA interrupts */
    418 	reg = sv_read(sc, SV_CODEC_INTMASK);
    419 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    420 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    421 	sv_write(sc, SV_CODEC_INTMASK, reg);
    422 
    423 	sv_read(sc, SV_CODEC_STATUS);
    424 
    425 	/* Map and establish the interrupt. */
    426 	if (pci_intr_map(pa, &ih)) {
    427 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    428 		return;
    429 	}
    430 	intrstr = pci_intr_string(pc, ih);
    431 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    432 	if (sc->sc_ih == NULL) {
    433 		printf("%s: couldn't establish interrupt",
    434 		       sc->sc_dev.dv_xname);
    435 		if (intrstr != NULL)
    436 			printf(" at %s", intrstr);
    437 		printf("\n");
    438 		return;
    439 	}
    440 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    441 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    442 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    443 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    444 		printf(", reverb SRAM present");
    445 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    446 		printf(", wavetable ROM present");
    447 	printf("\n");
    448 
    449 	sv_init_mixer(sc);
    450 
    451 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    452 
    453 	arg.type = AUDIODEV_TYPE_OPL;
    454 	arg.hwif = 0;
    455 	arg.hdl = 0;
    456 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    457 
    458 	sc->sc_pa = *pa;	/* for deferred setup */
    459 	config_defer(self, sv_defer);
    460 }
    461 
    462 #ifdef AUDIO_DEBUG
    463 void
    464 sv_dumpregs(sc)
    465 	struct sv_softc *sc;
    466 {
    467 	int idx;
    468 
    469 #if 0
    470 	for (idx = 0; idx < 0x50; idx += 4)
    471 		printf ("%02x = %x\n", idx,
    472 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    473 #endif
    474 
    475 	for (idx = 0; idx < 6; idx++)
    476 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    477 
    478 	for (idx = 0; idx < 0x32; idx++)
    479 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    480 
    481 	for (idx = 0; idx < 0x10; idx++)
    482 		printf ("DMA %02x = %02x\n", idx,
    483 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    484 }
    485 #endif
    486 
    487 int
    488 sv_intr(p)
    489 	void *p;
    490 {
    491 	struct sv_softc *sc = p;
    492 	u_int8_t intr;
    493 
    494 	intr = sv_read(sc, SV_CODEC_STATUS);
    495 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    496 
    497 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    498 		return (0);
    499 
    500 	if (intr & SV_INTSTATUS_DMAA) {
    501 		if (sc->sc_pintr)
    502 			sc->sc_pintr(sc->sc_parg);
    503 	}
    504 
    505 	if (intr & SV_INTSTATUS_DMAC) {
    506 		if (sc->sc_rintr)
    507 			sc->sc_rintr(sc->sc_rarg);
    508 	}
    509 
    510 	return (1);
    511 }
    512 
    513 int
    514 sv_allocmem(sc, size, align, direction, p)
    515 	struct sv_softc *sc;
    516 	size_t size;
    517 	size_t align;
    518 	int direction;
    519 	struct sv_dma *p;
    520 {
    521 	int error;
    522 
    523 	p->size = size;
    524 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    525 				 p->segs, ARRAY_SIZE(p->segs),
    526 				 &p->nsegs, BUS_DMA_NOWAIT);
    527 	if (error)
    528 		return (error);
    529 
    530 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    531 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    532 	if (error)
    533 		goto free;
    534 
    535 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    536 				  0, BUS_DMA_NOWAIT, &p->map);
    537 	if (error)
    538 		goto unmap;
    539 
    540 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    541 				BUS_DMA_NOWAIT |
    542                                 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    543 	if (error)
    544 		goto destroy;
    545 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    546 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    547 	return (0);
    548 
    549 destroy:
    550 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    551 unmap:
    552 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    553 free:
    554 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    555 	return (error);
    556 }
    557 
    558 int
    559 sv_freemem(sc, p)
    560 	struct sv_softc *sc;
    561 	struct sv_dma *p;
    562 {
    563 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    564 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    565 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    566 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    567 	return (0);
    568 }
    569 
    570 int
    571 sv_open(addr, flags)
    572 	void *addr;
    573 	int flags;
    574 {
    575 	struct sv_softc *sc = addr;
    576 
    577 	DPRINTF(("sv_open\n"));
    578 	if (!sc->sc_dmaset)
    579 		return (ENXIO);
    580 	sc->sc_pintr = 0;
    581 	sc->sc_rintr = 0;
    582 
    583 	return (0);
    584 }
    585 
    586 /*
    587  * Close function is called at splaudio().
    588  */
    589 void
    590 sv_close(addr)
    591 	void *addr;
    592 {
    593 	struct sv_softc *sc = addr;
    594 
    595 	DPRINTF(("sv_close\n"));
    596 	sv_halt_output(sc);
    597 	sv_halt_input(sc);
    598 
    599 	sc->sc_pintr = 0;
    600 	sc->sc_rintr = 0;
    601 }
    602 
    603 int
    604 sv_query_encoding(addr, fp)
    605 	void *addr;
    606 	struct audio_encoding *fp;
    607 {
    608 	switch (fp->index) {
    609 	case 0:
    610 		strcpy(fp->name, AudioEulinear);
    611 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    612 		fp->precision = 8;
    613 		fp->flags = 0;
    614 		return (0);
    615 	case 1:
    616 		strcpy(fp->name, AudioEmulaw);
    617 		fp->encoding = AUDIO_ENCODING_ULAW;
    618 		fp->precision = 8;
    619 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    620 		return (0);
    621 	case 2:
    622 		strcpy(fp->name, AudioEalaw);
    623 		fp->encoding = AUDIO_ENCODING_ALAW;
    624 		fp->precision = 8;
    625 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    626 		return (0);
    627 	case 3:
    628 		strcpy(fp->name, AudioEslinear);
    629 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    630 		fp->precision = 8;
    631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    632 		return (0);
    633 	case 4:
    634 		strcpy(fp->name, AudioEslinear_le);
    635 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    636 		fp->precision = 16;
    637 		fp->flags = 0;
    638 		return (0);
    639 	case 5:
    640 		strcpy(fp->name, AudioEulinear_le);
    641 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    642 		fp->precision = 16;
    643 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    644 		return (0);
    645 	case 6:
    646 		strcpy(fp->name, AudioEslinear_be);
    647 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    648 		fp->precision = 16;
    649 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    650 		return (0);
    651 	case 7:
    652 		strcpy(fp->name, AudioEulinear_be);
    653 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    654 		fp->precision = 16;
    655 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    656 		return (0);
    657 	default:
    658 		return (EINVAL);
    659 	}
    660 }
    661 
    662 int
    663 sv_set_params(addr, setmode, usemode, play, rec)
    664 	void *addr;
    665 	int setmode, usemode;
    666 	struct audio_params *play, *rec;
    667 {
    668 	struct sv_softc *sc = addr;
    669 	struct audio_params *p = NULL;
    670 	int mode;
    671 	u_int32_t val;
    672 
    673 	/*
    674 	 * This device only has one clock, so make the sample rates match.
    675 	 */
    676 	if (play->sample_rate != rec->sample_rate &&
    677 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    678 		if (setmode == AUMODE_PLAY) {
    679 			rec->sample_rate = play->sample_rate;
    680 			setmode |= AUMODE_RECORD;
    681 		} else if (setmode == AUMODE_RECORD) {
    682 			play->sample_rate = rec->sample_rate;
    683 			setmode |= AUMODE_PLAY;
    684 		} else
    685 			return (EINVAL);
    686 	}
    687 
    688 	for (mode = AUMODE_RECORD; mode != -1;
    689 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    690 		if ((setmode & mode) == 0)
    691 			continue;
    692 
    693 		p = mode == AUMODE_PLAY ? play : rec;
    694 
    695 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
    696 		    (p->precision != 8 && p->precision != 16) ||
    697 		    (p->channels != 1 && p->channels != 2))
    698 			return (EINVAL);
    699 
    700 		p->factor = 1;
    701 		p->sw_code = 0;
    702 		switch (p->encoding) {
    703 		case AUDIO_ENCODING_SLINEAR_BE:
    704 			if (p->precision == 16)
    705 				p->sw_code = swap_bytes;
    706 			else
    707 				p->sw_code = change_sign8;
    708 			break;
    709 		case AUDIO_ENCODING_SLINEAR_LE:
    710 			if (p->precision != 16)
    711 				p->sw_code = change_sign8;
    712 			break;
    713 		case AUDIO_ENCODING_ULINEAR_BE:
    714 			if (p->precision == 16) {
    715 				if (mode == AUMODE_PLAY)
    716 					p->sw_code = swap_bytes_change_sign16_le;
    717 				else
    718 					p->sw_code = change_sign16_swap_bytes_le;
    719 			}
    720 			break;
    721 		case AUDIO_ENCODING_ULINEAR_LE:
    722 			if (p->precision == 16)
    723 				p->sw_code = change_sign16_le;
    724 			break;
    725 		case AUDIO_ENCODING_ULAW:
    726 			if (mode == AUMODE_PLAY) {
    727 				p->factor = 2;
    728 				p->sw_code = mulaw_to_slinear16_le;
    729 			} else
    730 				p->sw_code = ulinear8_to_mulaw;
    731 			break;
    732 		case AUDIO_ENCODING_ALAW:
    733 			if (mode == AUMODE_PLAY) {
    734 				p->factor = 2;
    735 				p->sw_code = alaw_to_slinear16_le;
    736 			} else
    737 				p->sw_code = ulinear8_to_alaw;
    738 			break;
    739 		default:
    740 			return (EINVAL);
    741 		}
    742 	}
    743 
    744 	val = p->sample_rate * 65536 / 48000;
    745 	/*
    746 	 * If the sample rate is exactly 48KHz, the fraction would overflow the
    747 	 * register, so we have to bias it.  This causes a little clock drift.
    748 	 * The drift is below normal crystal tolerance (.0001%), so although
    749 	 * this seems a little silly, we can pretty much ignore it.
    750 	 * (I tested the output speed with values of 1-20, just to be sure this
    751 	 * register isn't *supposed* to have a bias.  It isn't.)
    752 	 * - mycroft
    753 	 */
    754 	if (val > 65535)
    755 		val = 65535;
    756 
    757 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    758 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    759 
    760 #define F_REF 24576000
    761 
    762 #define ABS(x) (((x) < 0) ? (-x) : (x))
    763 
    764 	if (setmode & AUMODE_RECORD) {
    765 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    766 
    767 		/* f_out is dervied from the 24.576MHZ crystal by three values:
    768 		   M & N & R. The equation is as follows:
    769 
    770 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    771 
    772 		   with the constraint that:
    773 
    774 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
    775 		   and n, m >= 1
    776 		*/
    777 
    778 		int  goal_f_out = 512 * rec->sample_rate;
    779 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
    780 		int  pll_sample;
    781 		int  error;
    782 
    783 		for (a = 0; a < 8; a++) {
    784 			if ((goal_f_out * (1 << a)) >= 80000000)
    785 				break;
    786 		}
    787 
    788 		/* a != 8 because sample_rate >= 2000 */
    789 
    790 		for (n = 33; n > 2; n--) {
    791 			m = (goal_f_out * n * (1 << a)) / F_REF;
    792 			if ((m > 257) || (m < 3))
    793 				continue;
    794 
    795 			pll_sample = (m * F_REF) / (n * (1 << a));
    796 			pll_sample /= 512;
    797 
    798 			/* Threshold might be good here */
    799 			error = pll_sample - rec->sample_rate;
    800 			error = ABS(error);
    801 
    802 			if (error < best_error) {
    803 				best_error = error;
    804 				best_n = n;
    805 				best_m = m;
    806 				if (error == 0) break;
    807 			}
    808 		}
    809 
    810 		best_n -= 2;
    811 		best_m -= 2;
    812 
    813 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    814 		sv_write_indirect(sc, SV_ADC_PLL_N,
    815 				  best_n | (a << SV_PLL_R_SHIFT));
    816 	}
    817 
    818 	return (0);
    819 }
    820 
    821 int
    822 sv_round_blocksize(addr, blk)
    823 	void *addr;
    824 	int blk;
    825 {
    826 	return (blk & -32);	/* keep good alignment */
    827 }
    828 
    829 int
    830 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
    831 	void *addr;
    832 	void *start, *end;
    833 	int blksize;
    834 	void (*intr) __P((void *));
    835 	void *arg;
    836 	struct audio_params *param;
    837 {
    838 	struct sv_softc *sc = addr;
    839 	struct sv_dma *p;
    840 	u_int8_t mode;
    841 	int dma_count;
    842 
    843 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    844 	    addr, start, end, blksize, intr, arg));
    845 	sc->sc_pintr = intr;
    846 	sc->sc_parg = arg;
    847 
    848 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    849 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    850 	if (param->precision * param->factor == 16)
    851 		mode |= SV_DMAA_FORMAT16;
    852 	if (param->channels == 2)
    853 		mode |= SV_DMAA_STEREO;
    854 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    855 
    856 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    857 		;
    858 	if (!p) {
    859 		printf("sv_trigger_output: bad addr %p\n", start);
    860 		return (EINVAL);
    861 	}
    862 
    863 	dma_count = ((char *)end - (char *)start) - 1;
    864 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
    865 	    (int)DMAADDR(p), dma_count));
    866 
    867 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    868 			  DMAADDR(p));
    869 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    870 			  dma_count);
    871 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    872 			  DMA37MD_READ | DMA37MD_LOOP);
    873 
    874 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    875 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    876 
    877 	dma_count = blksize - 1;
    878 
    879 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    880 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    881 
    882 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    883 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    884 
    885 	return (0);
    886 }
    887 
    888 int
    889 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
    890 	void *addr;
    891 	void *start, *end;
    892 	int blksize;
    893 	void (*intr) __P((void *));
    894 	void *arg;
    895 	struct audio_params *param;
    896 {
    897 	struct sv_softc *sc = addr;
    898 	struct sv_dma *p;
    899 	u_int8_t mode;
    900 	int dma_count;
    901 
    902 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    903 	    addr, start, end, blksize, intr, arg));
    904 	sc->sc_rintr = intr;
    905 	sc->sc_rarg = arg;
    906 
    907 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    908 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    909 	if (param->precision * param->factor == 16)
    910 		mode |= SV_DMAC_FORMAT16;
    911 	if (param->channels == 2)
    912 		mode |= SV_DMAC_STEREO;
    913 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    914 
    915 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    916 		;
    917 	if (!p) {
    918 		printf("sv_trigger_input: bad addr %p\n", start);
    919 		return (EINVAL);
    920 	}
    921 
    922 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    923 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
    924 	    (int)DMAADDR(p), dma_count));
    925 
    926 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    927 			  DMAADDR(p));
    928 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    929 			  dma_count);
    930 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    931 			  DMA37MD_WRITE | DMA37MD_LOOP);
    932 
    933 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    934 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    935 
    936 	dma_count = (blksize >> 1) - 1;
    937 
    938 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    939 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    940 
    941 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    942 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    943 
    944 	return (0);
    945 }
    946 
    947 int
    948 sv_halt_output(addr)
    949 	void *addr;
    950 {
    951 	struct sv_softc *sc = addr;
    952 	u_int8_t mode;
    953 
    954 	DPRINTF(("sv: sv_halt_output\n"));
    955 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    956 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    957 
    958 	return (0);
    959 }
    960 
    961 int
    962 sv_halt_input(addr)
    963 	void *addr;
    964 {
    965 	struct sv_softc *sc = addr;
    966 	u_int8_t mode;
    967 
    968 	DPRINTF(("sv: sv_halt_input\n"));
    969 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    970 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    971 
    972 	return (0);
    973 }
    974 
    975 int
    976 sv_getdev(addr, retp)
    977 	void *addr;
    978 	struct audio_device *retp;
    979 {
    980 	*retp = sv_device;
    981 	return (0);
    982 }
    983 
    984 
    985 /*
    986  * Mixer related code is here
    987  *
    988  */
    989 
    990 #define SV_INPUT_CLASS 0
    991 #define SV_OUTPUT_CLASS 1
    992 #define SV_RECORD_CLASS 2
    993 
    994 #define SV_LAST_CLASS 2
    995 
    996 static const char *mixer_classes[] =
    997 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    998 
    999 static const struct {
   1000 	u_int8_t   l_port;
   1001 	u_int8_t   r_port;
   1002 	u_int8_t   mask;
   1003 	u_int8_t   class;
   1004 	const char *audio;
   1005 } ports[] = {
   1006   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
   1007     SV_INPUT_CLASS, "aux1" },
   1008   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
   1009     SV_INPUT_CLASS, AudioNcd },
   1010   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
   1011     SV_INPUT_CLASS, AudioNline },
   1012   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
   1013   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
   1014     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
   1015   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
   1016     SV_INPUT_CLASS, "aux2" },
   1017   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
   1018     SV_INPUT_CLASS, AudioNdac },
   1019   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
   1020     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
   1021 };
   1022 
   1023 
   1024 static const struct {
   1025 	int idx;
   1026 	const char *name;
   1027 } record_sources[] = {
   1028 	{ SV_REC_CD, AudioNcd },
   1029 	{ SV_REC_DAC, AudioNdac },
   1030 	{ SV_REC_AUX2, "aux2" },
   1031 	{ SV_REC_LINE, AudioNline },
   1032 	{ SV_REC_AUX1, "aux1" },
   1033 	{ SV_REC_MIC, AudioNmicrophone },
   1034 	{ SV_REC_MIXER, AudioNmixerout }
   1035 };
   1036 
   1037 
   1038 #define SV_DEVICES_PER_PORT 2
   1039 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
   1040 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
   1041 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
   1042 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
   1043 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
   1044 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
   1045 
   1046 int
   1047 sv_query_devinfo(addr, dip)
   1048 	void *addr;
   1049 	mixer_devinfo_t *dip;
   1050 {
   1051 	int i;
   1052 
   1053 	/* It's a class */
   1054 	if (dip->index <= SV_LAST_CLASS) {
   1055 		dip->type = AUDIO_MIXER_CLASS;
   1056 		dip->mixer_class = dip->index;
   1057 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1058 		strcpy(dip->label.name,
   1059 		       mixer_classes[dip->index]);
   1060 		return (0);
   1061 	}
   1062 
   1063 	if (dip->index >= SV_FIRST_MIXER &&
   1064 	    dip->index <= SV_LAST_MIXER) {
   1065 		int off = dip->index - SV_FIRST_MIXER;
   1066 		int mute = (off % SV_DEVICES_PER_PORT);
   1067 		int idx = off / SV_DEVICES_PER_PORT;
   1068 
   1069 		dip->mixer_class = ports[idx].class;
   1070 		strcpy(dip->label.name, ports[idx].audio);
   1071 
   1072 		if (!mute) {
   1073 			dip->type = AUDIO_MIXER_VALUE;
   1074 			dip->prev = AUDIO_MIXER_LAST;
   1075 			dip->next = dip->index + 1;
   1076 
   1077 			if (ports[idx].r_port != 0)
   1078 				dip->un.v.num_channels = 2;
   1079 			else
   1080 				dip->un.v.num_channels = 1;
   1081 
   1082 			strcpy(dip->un.v.units.name, AudioNvolume);
   1083 		} else {
   1084 			dip->type = AUDIO_MIXER_ENUM;
   1085 			dip->prev = dip->index - 1;
   1086 			dip->next = AUDIO_MIXER_LAST;
   1087 
   1088 			strcpy(dip->label.name, AudioNmute);
   1089 			dip->un.e.num_mem = 2;
   1090 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1091 			dip->un.e.member[0].ord = 0;
   1092 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1093 			dip->un.e.member[1].ord = 1;
   1094 		}
   1095 
   1096 		return (0);
   1097 	}
   1098 
   1099 	switch (dip->index) {
   1100 	case SV_RECORD_SOURCE:
   1101 		dip->mixer_class = SV_RECORD_CLASS;
   1102 		dip->prev = AUDIO_MIXER_LAST;
   1103 		dip->next = SV_RECORD_GAIN;
   1104 		strcpy(dip->label.name, AudioNsource);
   1105 		dip->type = AUDIO_MIXER_ENUM;
   1106 
   1107 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1108 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1109 			strcpy(dip->un.e.member[i].label.name,
   1110 			       record_sources[i].name);
   1111 			dip->un.e.member[i].ord = record_sources[i].idx;
   1112 		}
   1113 		return (0);
   1114 
   1115 	case SV_RECORD_GAIN:
   1116 		dip->mixer_class = SV_RECORD_CLASS;
   1117 		dip->prev = SV_RECORD_SOURCE;
   1118 		dip->next = AUDIO_MIXER_LAST;
   1119 		strcpy(dip->label.name, "gain");
   1120 		dip->type = AUDIO_MIXER_VALUE;
   1121 		dip->un.v.num_channels = 1;
   1122 		strcpy(dip->un.v.units.name, AudioNvolume);
   1123 		return (0);
   1124 
   1125 	case SV_MIC_BOOST:
   1126 		dip->mixer_class = SV_RECORD_CLASS;
   1127 		dip->prev = AUDIO_MIXER_LAST;
   1128 		dip->next = AUDIO_MIXER_LAST;
   1129 		strcpy(dip->label.name, "micboost");
   1130 		goto on_off;
   1131 
   1132 	case SV_SRS_MODE:
   1133 		dip->mixer_class = SV_OUTPUT_CLASS;
   1134 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1135 		strcpy(dip->label.name, AudioNspatial);
   1136 
   1137 	on_off:
   1138 		dip->type = AUDIO_MIXER_ENUM;
   1139 		dip->un.e.num_mem = 2;
   1140 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1141 		dip->un.e.member[0].ord = 0;
   1142 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1143 		dip->un.e.member[1].ord = 1;
   1144 		return (0);
   1145 	}
   1146 
   1147 	return (ENXIO);
   1148 }
   1149 
   1150 int
   1151 sv_mixer_set_port(addr, cp)
   1152 	void *addr;
   1153 	mixer_ctrl_t *cp;
   1154 {
   1155 	struct sv_softc *sc = addr;
   1156 	u_int8_t reg;
   1157 	int idx;
   1158 
   1159 	if (cp->dev >= SV_FIRST_MIXER &&
   1160 	    cp->dev <= SV_LAST_MIXER) {
   1161 		int off = cp->dev - SV_FIRST_MIXER;
   1162 		int mute = (off % SV_DEVICES_PER_PORT);
   1163 		idx = off / SV_DEVICES_PER_PORT;
   1164 
   1165 		if (mute) {
   1166 			if (cp->type != AUDIO_MIXER_ENUM)
   1167 				return (EINVAL);
   1168 
   1169 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1170 			if (cp->un.ord)
   1171 				reg |= SV_MUTE_BIT;
   1172 			else
   1173 				reg &= ~SV_MUTE_BIT;
   1174 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1175 
   1176 			if (ports[idx].r_port) {
   1177 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1178 				if (cp->un.ord)
   1179 					reg |= SV_MUTE_BIT;
   1180 				else
   1181 					reg &= ~SV_MUTE_BIT;
   1182 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1183 			}
   1184 		} else {
   1185 			int  lval, rval;
   1186 
   1187 			if (cp->type != AUDIO_MIXER_VALUE)
   1188 				return (EINVAL);
   1189 
   1190 			if (cp->un.value.num_channels != 1 &&
   1191 			    cp->un.value.num_channels != 2)
   1192 				return (EINVAL);
   1193 
   1194 			if (ports[idx].r_port == 0) {
   1195 				if (cp->un.value.num_channels != 1)
   1196 					return (EINVAL);
   1197 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1198 				rval = 0; /* shut up GCC */
   1199 			} else {
   1200 				if (cp->un.value.num_channels != 2)
   1201 					return (EINVAL);
   1202 
   1203 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1204 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1205       }
   1206 
   1207 
   1208 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1209 			reg &= ~(ports[idx].mask);
   1210 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1211 				AUDIO_MAX_GAIN;
   1212 			reg |= lval;
   1213 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1214 
   1215 			if (ports[idx].r_port != 0) {
   1216 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1217 				reg &= ~(ports[idx].mask);
   1218 
   1219 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1220 					AUDIO_MAX_GAIN;
   1221 				reg |= rval;
   1222 
   1223 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1224 			}
   1225 
   1226 			sv_read_indirect(sc, ports[idx].l_port);
   1227 		}
   1228 
   1229 		return (0);
   1230 	}
   1231 
   1232 
   1233 	switch (cp->dev) {
   1234 	case SV_RECORD_SOURCE:
   1235 		if (cp->type != AUDIO_MIXER_ENUM)
   1236 			return (EINVAL);
   1237 
   1238 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1239 			if (record_sources[idx].idx == cp->un.ord)
   1240 				goto found;
   1241 		}
   1242 
   1243 		return (EINVAL);
   1244 
   1245 	found:
   1246 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1247 		reg &= ~SV_REC_SOURCE_MASK;
   1248 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1249 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1250 
   1251 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1252 		reg &= ~SV_REC_SOURCE_MASK;
   1253 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1254 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1255 		return (0);
   1256 
   1257 	case SV_RECORD_GAIN:
   1258 	{
   1259 		int val;
   1260 
   1261 		if (cp->type != AUDIO_MIXER_VALUE)
   1262 			return (EINVAL);
   1263 
   1264 		if (cp->un.value.num_channels != 1)
   1265 			return (EINVAL);
   1266 
   1267 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
   1268 			/ AUDIO_MAX_GAIN;
   1269 
   1270 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1271 		reg &= ~SV_REC_GAIN_MASK;
   1272 		reg |= val;
   1273 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1274 
   1275 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1276 		reg &= ~SV_REC_GAIN_MASK;
   1277 		reg |= val;
   1278 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1279 	}
   1280 	return (0);
   1281 
   1282 	case SV_MIC_BOOST:
   1283 		if (cp->type != AUDIO_MIXER_ENUM)
   1284 			return (EINVAL);
   1285 
   1286 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1287 		if (cp->un.ord) {
   1288 			reg |= SV_MIC_BOOST_BIT;
   1289 		} else {
   1290 			reg &= ~SV_MIC_BOOST_BIT;
   1291 		}
   1292 
   1293 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1294 		return (0);
   1295 
   1296 	case SV_SRS_MODE:
   1297 		if (cp->type != AUDIO_MIXER_ENUM)
   1298 			return (EINVAL);
   1299 
   1300 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1301 		if (cp->un.ord) {
   1302 			reg &= ~SV_SRS_SPACE_ONOFF;
   1303 		} else {
   1304 			reg |= SV_SRS_SPACE_ONOFF;
   1305 		}
   1306 
   1307 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1308 		return (0);
   1309 	}
   1310 
   1311 	return (EINVAL);
   1312 }
   1313 
   1314 int
   1315 sv_mixer_get_port(addr, cp)
   1316 	void *addr;
   1317 	mixer_ctrl_t *cp;
   1318 {
   1319 	struct sv_softc *sc = addr;
   1320 	int val;
   1321 	u_int8_t reg;
   1322 
   1323 	if (cp->dev >= SV_FIRST_MIXER &&
   1324 	    cp->dev <= SV_LAST_MIXER) {
   1325 		int off = cp->dev - SV_FIRST_MIXER;
   1326 		int mute = (off % 2);
   1327 		int idx = off / 2;
   1328 
   1329 		if (mute) {
   1330 			if (cp->type != AUDIO_MIXER_ENUM)
   1331 				return (EINVAL);
   1332 
   1333 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1334 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1335 		} else {
   1336 			if (cp->type != AUDIO_MIXER_VALUE)
   1337 				return (EINVAL);
   1338 
   1339 			if (cp->un.value.num_channels != 1 &&
   1340 			    cp->un.value.num_channels != 2)
   1341 				return (EINVAL);
   1342 
   1343 			if ((ports[idx].r_port == 0 &&
   1344 			     cp->un.value.num_channels != 1) ||
   1345 			    (ports[idx].r_port != 0 &&
   1346 			     cp->un.value.num_channels != 2))
   1347 				return (EINVAL);
   1348 
   1349 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1350 			reg &= ports[idx].mask;
   1351 
   1352 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1353 
   1354 			if (ports[idx].r_port != 0) {
   1355 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1356 
   1357 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1358 				reg &= ports[idx].mask;
   1359 
   1360 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1361 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1362 			} else
   1363 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1364 		}
   1365 
   1366 		return (0);
   1367   }
   1368 
   1369 	switch (cp->dev) {
   1370 	case SV_RECORD_SOURCE:
   1371 		if (cp->type != AUDIO_MIXER_ENUM)
   1372 			return (EINVAL);
   1373 
   1374 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1375 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1376 
   1377 		return (0);
   1378 
   1379 	case SV_RECORD_GAIN:
   1380 		if (cp->type != AUDIO_MIXER_VALUE)
   1381 			return (EINVAL);
   1382 		if (cp->un.value.num_channels != 1)
   1383 			return (EINVAL);
   1384 
   1385 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1386 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1387 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1388 
   1389 		return (0);
   1390 
   1391 	case SV_MIC_BOOST:
   1392 		if (cp->type != AUDIO_MIXER_ENUM)
   1393 			return (EINVAL);
   1394 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1395 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1396 		return (0);
   1397 
   1398 
   1399 	case SV_SRS_MODE:
   1400 		if (cp->type != AUDIO_MIXER_ENUM)
   1401 			return (EINVAL);
   1402 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1403 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1404 		return (0);
   1405 	}
   1406 
   1407 	return (EINVAL);
   1408 }
   1409 
   1410 
   1411 static void
   1412 sv_init_mixer(sc)
   1413 	struct sv_softc *sc;
   1414 {
   1415 	mixer_ctrl_t cp;
   1416 	int i;
   1417 
   1418 	cp.type = AUDIO_MIXER_ENUM;
   1419 	cp.dev = SV_SRS_MODE;
   1420 	cp.un.ord = 0;
   1421 
   1422 	sv_mixer_set_port(sc, &cp);
   1423 
   1424 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1425 		if (ports[i].audio == AudioNdac) {
   1426 			cp.type = AUDIO_MIXER_ENUM;
   1427 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1428 			cp.un.ord = 0;
   1429 			sv_mixer_set_port(sc, &cp);
   1430 			break;
   1431 		}
   1432 	}
   1433 }
   1434 
   1435 void *
   1436 sv_malloc(addr, direction, size, pool, flags)
   1437 	void *addr;
   1438 	int direction;
   1439 	size_t size;
   1440 	int pool, flags;
   1441 {
   1442 	struct sv_softc *sc = addr;
   1443 	struct sv_dma *p;
   1444 	int error;
   1445 
   1446 	p = malloc(sizeof(*p), pool, flags);
   1447 	if (!p)
   1448 		return (0);
   1449 	error = sv_allocmem(sc, size, 16, direction, p);
   1450 	if (error) {
   1451 		free(p, pool);
   1452 		return (0);
   1453 	}
   1454 	p->next = sc->sc_dmas;
   1455 	sc->sc_dmas = p;
   1456 	return (KERNADDR(p));
   1457 }
   1458 
   1459 void
   1460 sv_free(addr, ptr, pool)
   1461 	void *addr;
   1462 	void *ptr;
   1463 	int pool;
   1464 {
   1465 	struct sv_softc *sc = addr;
   1466 	struct sv_dma **pp, *p;
   1467 
   1468 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1469 		if (KERNADDR(p) == ptr) {
   1470 			sv_freemem(sc, p);
   1471 			*pp = p->next;
   1472 			free(p, pool);
   1473 			return;
   1474 		}
   1475 	}
   1476 }
   1477 
   1478 size_t
   1479 sv_round_buffersize(addr, direction, size)
   1480 	void *addr;
   1481 	int direction;
   1482 	size_t size;
   1483 {
   1484 	return (size);
   1485 }
   1486 
   1487 paddr_t
   1488 sv_mappage(addr, mem, off, prot)
   1489 	void *addr;
   1490 	void *mem;
   1491 	off_t off;
   1492 	int prot;
   1493 {
   1494 	struct sv_softc *sc = addr;
   1495 	struct sv_dma *p;
   1496 
   1497 	if (off < 0)
   1498 		return (-1);
   1499 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1500 		;
   1501 	if (!p)
   1502 		return (-1);
   1503 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1504 				off, prot, BUS_DMA_WAITOK));
   1505 }
   1506 
   1507 int
   1508 sv_get_props(addr)
   1509 	void *addr;
   1510 {
   1511 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1512 }
   1513