sv.c revision 1.19 1 /* $NetBSD: sv.c,v 1.19 2003/02/01 06:23:39 thorpej Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.19 2003/02/01 06:23:39 thorpej Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97
98 #include <machine/bus.h>
99
100 #ifdef AUDIO_DEBUG
101 #define DPRINTF(x) if (svdebug) printf x
102 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
103 int svdebug = 0;
104 #else
105 #define DPRINTF(x)
106 #define DPRINTFN(n,x)
107 #endif
108
109 int sv_match __P((struct device *, struct cfdata *, void *));
110 void sv_attach __P((struct device *, struct device *, void *));
111 int sv_intr __P((void *));
112
113 struct sv_dma {
114 bus_dmamap_t map;
115 caddr_t addr;
116 bus_dma_segment_t segs[1];
117 int nsegs;
118 size_t size;
119 struct sv_dma *next;
120 };
121 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
122 #define KERNADDR(p) ((void *)((p)->addr))
123
124 CFATTACH_DECL(sv, sizeof(struct sv_softc),
125 sv_match, sv_attach, NULL, NULL);
126
127 struct audio_device sv_device = {
128 "S3 SonicVibes",
129 "",
130 "sv"
131 };
132
133 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
134
135 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
136 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
137
138 int sv_open __P((void *, int));
139 void sv_close __P((void *));
140 int sv_query_encoding __P((void *, struct audio_encoding *));
141 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
142 int sv_round_blocksize __P((void *, int));
143 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
144 void *, struct audio_params *));
145 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
146 void *, struct audio_params *));
147 int sv_halt_output __P((void *));
148 int sv_halt_input __P((void *));
149 int sv_getdev __P((void *, struct audio_device *));
150 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
151 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
152 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
153 void *sv_malloc __P((void *, int, size_t, struct malloc_type *, int));
154 void sv_free __P((void *, void *, struct malloc_type *));
155 size_t sv_round_buffersize __P((void *, int, size_t));
156 paddr_t sv_mappage __P((void *, void *, off_t, int));
157 int sv_get_props __P((void *));
158
159 #ifdef AUDIO_DEBUG
160 void sv_dumpregs __P((struct sv_softc *sc));
161 #endif
162
163 struct audio_hw_if sv_hw_if = {
164 sv_open,
165 sv_close,
166 NULL,
167 sv_query_encoding,
168 sv_set_params,
169 sv_round_blocksize,
170 NULL,
171 NULL,
172 NULL,
173 NULL,
174 NULL,
175 sv_halt_output,
176 sv_halt_input,
177 NULL,
178 sv_getdev,
179 NULL,
180 sv_mixer_set_port,
181 sv_mixer_get_port,
182 sv_query_devinfo,
183 sv_malloc,
184 sv_free,
185 sv_round_buffersize,
186 sv_mappage,
187 sv_get_props,
188 sv_trigger_output,
189 sv_trigger_input,
190 NULL,
191 };
192
193
194 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
195 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
196 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
197 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
198 static void sv_init_mixer __P((struct sv_softc *));
199
200 static void sv_defer __P((struct device *self));
201
202 static void
203 sv_write (sc, reg, val)
204 struct sv_softc *sc;
205 u_int8_t reg, val;
206
207 {
208 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
209 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
210 }
211
212 static u_int8_t
213 sv_read(sc, reg)
214 struct sv_softc *sc;
215 u_int8_t reg;
216
217 {
218 u_int8_t val;
219
220 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
221 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
222 return val;
223 }
224
225 static u_int8_t
226 sv_read_indirect(sc, reg)
227 struct sv_softc *sc;
228 u_int8_t reg;
229 {
230 u_int8_t val;
231 int s = splaudio();
232
233 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
234 val = sv_read(sc, SV_CODEC_IDATA);
235 splx(s);
236 return (val);
237 }
238
239 static void
240 sv_write_indirect(sc, reg, val)
241 struct sv_softc *sc;
242 u_int8_t reg, val;
243 {
244 u_int8_t iaddr = reg & SV_IADDR_MASK;
245 int s = splaudio();
246
247 if (reg == SV_DMA_DATA_FORMAT)
248 iaddr |= SV_IADDR_MCE;
249
250 sv_write(sc, SV_CODEC_IADDR, iaddr);
251 sv_write(sc, SV_CODEC_IDATA, val);
252 splx(s);
253 }
254
255 int
256 sv_match(parent, match, aux)
257 struct device *parent;
258 struct cfdata *match;
259 void *aux;
260 {
261 struct pci_attach_args *pa = aux;
262
263 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
264 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
265 return (1);
266
267 return (0);
268 }
269
270 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
271 int pcioffs,
272 bus_space_tag_t iot, bus_size_t size,
273 bus_size_t align, bus_size_t bound, int flags,
274 bus_space_handle_t *ioh));
275
276 #define PCI_IO_ALLOC_LOW 0xa000
277 #define PCI_IO_ALLOC_HIGH 0xb000
278 int
279 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
280 pci_chipset_tag_t pc;
281 pcitag_t pt;
282 int pcioffs;
283 bus_space_tag_t iot;
284 bus_size_t size;
285 bus_size_t align;
286 bus_size_t bound;
287 int flags;
288 bus_space_handle_t *ioh;
289 {
290 bus_addr_t addr;
291 int error;
292
293 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
294 size, align, bound, flags, &addr, ioh);
295 if (error)
296 return(error);
297
298 pci_conf_write(pc, pt, pcioffs, addr);
299 return (0);
300 }
301
302 /*
303 * Allocate IO addresses when all other configuration is done.
304 */
305 void
306 sv_defer(self)
307 struct device *self;
308 {
309 struct sv_softc *sc = (struct sv_softc *)self;
310 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
311 pcitag_t pt = sc->sc_pa.pa_tag;
312 pcireg_t dmaio;
313
314 DPRINTF(("sv_defer: %p\n", sc));
315 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
316 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
317 0, &sc->sc_dmaa_ioh)) {
318 printf("sv_attach: cannot allocate DMA A range\n");
319 return;
320 }
321 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
322 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
323 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
324 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
325
326 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
327 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
328 0, &sc->sc_dmac_ioh)) {
329 printf("sv_attach: cannot allocate DMA C range\n");
330 return;
331 }
332 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
333 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
334 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
335 dmaio | SV_DMA_CHANNEL_ENABLE);
336
337 sc->sc_dmaset = 1;
338 }
339
340 void
341 sv_attach(parent, self, aux)
342 struct device *parent, *self;
343 void *aux;
344 {
345 struct sv_softc *sc = (struct sv_softc *)self;
346 struct pci_attach_args *pa = aux;
347 pci_chipset_tag_t pc = pa->pa_pc;
348 pcitag_t pt = pa->pa_tag;
349 pci_intr_handle_t ih;
350 pcireg_t csr;
351 char const *intrstr;
352 u_int8_t reg;
353 struct audio_attach_args arg;
354
355 printf ("\n");
356
357 /* Map I/O registers */
358 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
359 PCI_MAPREG_TYPE_IO, 0,
360 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
361 printf("%s: can't map enhanced i/o space\n",
362 sc->sc_dev.dv_xname);
363 return;
364 }
365 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
366 PCI_MAPREG_TYPE_IO, 0,
367 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
368 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
369 return;
370 }
371 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
372 PCI_MAPREG_TYPE_IO, 0,
373 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
374 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
375 return;
376 }
377 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
378 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
379
380 #ifdef alpha
381 /* XXX Force allocation through the SGMAP. */
382 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
383 #else
384 sc->sc_dmatag = pa->pa_dmat;
385 #endif
386
387 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
388 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
389
390 /* Enable the device. */
391 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
392 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
393 csr | PCI_COMMAND_MASTER_ENABLE);
394
395 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
396 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
397
398 /* initialize codec registers */
399 reg = sv_read(sc, SV_CODEC_CONTROL);
400 reg |= SV_CTL_RESET;
401 sv_write(sc, SV_CODEC_CONTROL, reg);
402 delay(50);
403
404 reg = sv_read(sc, SV_CODEC_CONTROL);
405 reg &= ~SV_CTL_RESET;
406 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
407
408 /* This write clears the reset */
409 sv_write(sc, SV_CODEC_CONTROL, reg);
410 delay(50);
411
412 /* This write actually shoves the new values in */
413 sv_write(sc, SV_CODEC_CONTROL, reg);
414
415 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
416
417 /* Enable DMA interrupts */
418 reg = sv_read(sc, SV_CODEC_INTMASK);
419 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
420 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
421 sv_write(sc, SV_CODEC_INTMASK, reg);
422
423 sv_read(sc, SV_CODEC_STATUS);
424
425 /* Map and establish the interrupt. */
426 if (pci_intr_map(pa, &ih)) {
427 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
428 return;
429 }
430 intrstr = pci_intr_string(pc, ih);
431 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
432 if (sc->sc_ih == NULL) {
433 printf("%s: couldn't establish interrupt",
434 sc->sc_dev.dv_xname);
435 if (intrstr != NULL)
436 printf(" at %s", intrstr);
437 printf("\n");
438 return;
439 }
440 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
441 printf("%s: rev %d", sc->sc_dev.dv_xname,
442 sv_read_indirect(sc, SV_REVISION_LEVEL));
443 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
444 printf(", reverb SRAM present");
445 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
446 printf(", wavetable ROM present");
447 printf("\n");
448
449 sv_init_mixer(sc);
450
451 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
452
453 arg.type = AUDIODEV_TYPE_OPL;
454 arg.hwif = 0;
455 arg.hdl = 0;
456 (void)config_found(&sc->sc_dev, &arg, audioprint);
457
458 sc->sc_pa = *pa; /* for deferred setup */
459 config_defer(self, sv_defer);
460 }
461
462 #ifdef AUDIO_DEBUG
463 void
464 sv_dumpregs(sc)
465 struct sv_softc *sc;
466 {
467 int idx;
468
469 #if 0
470 for (idx = 0; idx < 0x50; idx += 4)
471 printf ("%02x = %x\n", idx,
472 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
473 #endif
474
475 for (idx = 0; idx < 6; idx++)
476 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
477
478 for (idx = 0; idx < 0x32; idx++)
479 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
480
481 for (idx = 0; idx < 0x10; idx++)
482 printf ("DMA %02x = %02x\n", idx,
483 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
484 }
485 #endif
486
487 int
488 sv_intr(p)
489 void *p;
490 {
491 struct sv_softc *sc = p;
492 u_int8_t intr;
493
494 intr = sv_read(sc, SV_CODEC_STATUS);
495 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
496
497 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
498 return (0);
499
500 if (intr & SV_INTSTATUS_DMAA) {
501 if (sc->sc_pintr)
502 sc->sc_pintr(sc->sc_parg);
503 }
504
505 if (intr & SV_INTSTATUS_DMAC) {
506 if (sc->sc_rintr)
507 sc->sc_rintr(sc->sc_rarg);
508 }
509
510 return (1);
511 }
512
513 int
514 sv_allocmem(sc, size, align, direction, p)
515 struct sv_softc *sc;
516 size_t size;
517 size_t align;
518 int direction;
519 struct sv_dma *p;
520 {
521 int error;
522
523 p->size = size;
524 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
525 p->segs, ARRAY_SIZE(p->segs),
526 &p->nsegs, BUS_DMA_NOWAIT);
527 if (error)
528 return (error);
529
530 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
531 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
532 if (error)
533 goto free;
534
535 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
536 0, BUS_DMA_NOWAIT, &p->map);
537 if (error)
538 goto unmap;
539
540 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
541 BUS_DMA_NOWAIT |
542 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
543 if (error)
544 goto destroy;
545 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
546 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
547 return (0);
548
549 destroy:
550 bus_dmamap_destroy(sc->sc_dmatag, p->map);
551 unmap:
552 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
553 free:
554 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
555 return (error);
556 }
557
558 int
559 sv_freemem(sc, p)
560 struct sv_softc *sc;
561 struct sv_dma *p;
562 {
563 bus_dmamap_unload(sc->sc_dmatag, p->map);
564 bus_dmamap_destroy(sc->sc_dmatag, p->map);
565 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
566 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
567 return (0);
568 }
569
570 int
571 sv_open(addr, flags)
572 void *addr;
573 int flags;
574 {
575 struct sv_softc *sc = addr;
576
577 DPRINTF(("sv_open\n"));
578 if (!sc->sc_dmaset)
579 return (ENXIO);
580 sc->sc_pintr = 0;
581 sc->sc_rintr = 0;
582
583 return (0);
584 }
585
586 /*
587 * Close function is called at splaudio().
588 */
589 void
590 sv_close(addr)
591 void *addr;
592 {
593 struct sv_softc *sc = addr;
594
595 DPRINTF(("sv_close\n"));
596 sv_halt_output(sc);
597 sv_halt_input(sc);
598
599 sc->sc_pintr = 0;
600 sc->sc_rintr = 0;
601 }
602
603 int
604 sv_query_encoding(addr, fp)
605 void *addr;
606 struct audio_encoding *fp;
607 {
608 switch (fp->index) {
609 case 0:
610 strcpy(fp->name, AudioEulinear);
611 fp->encoding = AUDIO_ENCODING_ULINEAR;
612 fp->precision = 8;
613 fp->flags = 0;
614 return (0);
615 case 1:
616 strcpy(fp->name, AudioEmulaw);
617 fp->encoding = AUDIO_ENCODING_ULAW;
618 fp->precision = 8;
619 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
620 return (0);
621 case 2:
622 strcpy(fp->name, AudioEalaw);
623 fp->encoding = AUDIO_ENCODING_ALAW;
624 fp->precision = 8;
625 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
626 return (0);
627 case 3:
628 strcpy(fp->name, AudioEslinear);
629 fp->encoding = AUDIO_ENCODING_SLINEAR;
630 fp->precision = 8;
631 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
632 return (0);
633 case 4:
634 strcpy(fp->name, AudioEslinear_le);
635 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
636 fp->precision = 16;
637 fp->flags = 0;
638 return (0);
639 case 5:
640 strcpy(fp->name, AudioEulinear_le);
641 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
642 fp->precision = 16;
643 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
644 return (0);
645 case 6:
646 strcpy(fp->name, AudioEslinear_be);
647 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
648 fp->precision = 16;
649 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
650 return (0);
651 case 7:
652 strcpy(fp->name, AudioEulinear_be);
653 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
654 fp->precision = 16;
655 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
656 return (0);
657 default:
658 return (EINVAL);
659 }
660 }
661
662 int
663 sv_set_params(addr, setmode, usemode, play, rec)
664 void *addr;
665 int setmode, usemode;
666 struct audio_params *play, *rec;
667 {
668 struct sv_softc *sc = addr;
669 struct audio_params *p = NULL;
670 int mode;
671 u_int32_t val;
672
673 /*
674 * This device only has one clock, so make the sample rates match.
675 */
676 if (play->sample_rate != rec->sample_rate &&
677 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
678 if (setmode == AUMODE_PLAY) {
679 rec->sample_rate = play->sample_rate;
680 setmode |= AUMODE_RECORD;
681 } else if (setmode == AUMODE_RECORD) {
682 play->sample_rate = rec->sample_rate;
683 setmode |= AUMODE_PLAY;
684 } else
685 return (EINVAL);
686 }
687
688 for (mode = AUMODE_RECORD; mode != -1;
689 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
690 if ((setmode & mode) == 0)
691 continue;
692
693 p = mode == AUMODE_PLAY ? play : rec;
694
695 if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
696 (p->precision != 8 && p->precision != 16) ||
697 (p->channels != 1 && p->channels != 2))
698 return (EINVAL);
699
700 p->factor = 1;
701 p->sw_code = 0;
702 switch (p->encoding) {
703 case AUDIO_ENCODING_SLINEAR_BE:
704 if (p->precision == 16)
705 p->sw_code = swap_bytes;
706 else
707 p->sw_code = change_sign8;
708 break;
709 case AUDIO_ENCODING_SLINEAR_LE:
710 if (p->precision != 16)
711 p->sw_code = change_sign8;
712 break;
713 case AUDIO_ENCODING_ULINEAR_BE:
714 if (p->precision == 16) {
715 if (mode == AUMODE_PLAY)
716 p->sw_code = swap_bytes_change_sign16_le;
717 else
718 p->sw_code = change_sign16_swap_bytes_le;
719 }
720 break;
721 case AUDIO_ENCODING_ULINEAR_LE:
722 if (p->precision == 16)
723 p->sw_code = change_sign16_le;
724 break;
725 case AUDIO_ENCODING_ULAW:
726 if (mode == AUMODE_PLAY) {
727 p->factor = 2;
728 p->sw_code = mulaw_to_slinear16_le;
729 } else
730 p->sw_code = ulinear8_to_mulaw;
731 break;
732 case AUDIO_ENCODING_ALAW:
733 if (mode == AUMODE_PLAY) {
734 p->factor = 2;
735 p->sw_code = alaw_to_slinear16_le;
736 } else
737 p->sw_code = ulinear8_to_alaw;
738 break;
739 default:
740 return (EINVAL);
741 }
742 }
743
744 val = p->sample_rate * 65536 / 48000;
745 /*
746 * If the sample rate is exactly 48KHz, the fraction would overflow the
747 * register, so we have to bias it. This causes a little clock drift.
748 * The drift is below normal crystal tolerance (.0001%), so although
749 * this seems a little silly, we can pretty much ignore it.
750 * (I tested the output speed with values of 1-20, just to be sure this
751 * register isn't *supposed* to have a bias. It isn't.)
752 * - mycroft
753 */
754 if (val > 65535)
755 val = 65535;
756
757 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
758 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
759
760 #define F_REF 24576000
761
762 #define ABS(x) (((x) < 0) ? (-x) : (x))
763
764 if (setmode & AUMODE_RECORD) {
765 /* The ADC reference frequency (f_out) is 512 * sample rate */
766
767 /* f_out is dervied from the 24.576MHZ crystal by three values:
768 M & N & R. The equation is as follows:
769
770 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
771
772 with the constraint that:
773
774 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
775 and n, m >= 1
776 */
777
778 int goal_f_out = 512 * rec->sample_rate;
779 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
780 int pll_sample;
781 int error;
782
783 for (a = 0; a < 8; a++) {
784 if ((goal_f_out * (1 << a)) >= 80000000)
785 break;
786 }
787
788 /* a != 8 because sample_rate >= 2000 */
789
790 for (n = 33; n > 2; n--) {
791 m = (goal_f_out * n * (1 << a)) / F_REF;
792 if ((m > 257) || (m < 3))
793 continue;
794
795 pll_sample = (m * F_REF) / (n * (1 << a));
796 pll_sample /= 512;
797
798 /* Threshold might be good here */
799 error = pll_sample - rec->sample_rate;
800 error = ABS(error);
801
802 if (error < best_error) {
803 best_error = error;
804 best_n = n;
805 best_m = m;
806 if (error == 0) break;
807 }
808 }
809
810 best_n -= 2;
811 best_m -= 2;
812
813 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
814 sv_write_indirect(sc, SV_ADC_PLL_N,
815 best_n | (a << SV_PLL_R_SHIFT));
816 }
817
818 return (0);
819 }
820
821 int
822 sv_round_blocksize(addr, blk)
823 void *addr;
824 int blk;
825 {
826 return (blk & -32); /* keep good alignment */
827 }
828
829 int
830 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
831 void *addr;
832 void *start, *end;
833 int blksize;
834 void (*intr) __P((void *));
835 void *arg;
836 struct audio_params *param;
837 {
838 struct sv_softc *sc = addr;
839 struct sv_dma *p;
840 u_int8_t mode;
841 int dma_count;
842
843 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
844 addr, start, end, blksize, intr, arg));
845 sc->sc_pintr = intr;
846 sc->sc_parg = arg;
847
848 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
849 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
850 if (param->precision * param->factor == 16)
851 mode |= SV_DMAA_FORMAT16;
852 if (param->channels == 2)
853 mode |= SV_DMAA_STEREO;
854 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
855
856 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
857 ;
858 if (!p) {
859 printf("sv_trigger_output: bad addr %p\n", start);
860 return (EINVAL);
861 }
862
863 dma_count = ((char *)end - (char *)start) - 1;
864 DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
865 (int)DMAADDR(p), dma_count));
866
867 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
868 DMAADDR(p));
869 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
870 dma_count);
871 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
872 DMA37MD_READ | DMA37MD_LOOP);
873
874 DPRINTF(("sv_trigger_output: current addr=%x\n",
875 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
876
877 dma_count = blksize - 1;
878
879 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
880 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
881
882 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
883 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
884
885 return (0);
886 }
887
888 int
889 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
890 void *addr;
891 void *start, *end;
892 int blksize;
893 void (*intr) __P((void *));
894 void *arg;
895 struct audio_params *param;
896 {
897 struct sv_softc *sc = addr;
898 struct sv_dma *p;
899 u_int8_t mode;
900 int dma_count;
901
902 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
903 addr, start, end, blksize, intr, arg));
904 sc->sc_rintr = intr;
905 sc->sc_rarg = arg;
906
907 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
908 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
909 if (param->precision * param->factor == 16)
910 mode |= SV_DMAC_FORMAT16;
911 if (param->channels == 2)
912 mode |= SV_DMAC_STEREO;
913 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
914
915 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
916 ;
917 if (!p) {
918 printf("sv_trigger_input: bad addr %p\n", start);
919 return (EINVAL);
920 }
921
922 dma_count = (((char *)end - (char *)start) >> 1) - 1;
923 DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
924 (int)DMAADDR(p), dma_count));
925
926 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
927 DMAADDR(p));
928 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
929 dma_count);
930 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
931 DMA37MD_WRITE | DMA37MD_LOOP);
932
933 DPRINTF(("sv_trigger_input: current addr=%x\n",
934 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
935
936 dma_count = (blksize >> 1) - 1;
937
938 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
939 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
940
941 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
942 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
943
944 return (0);
945 }
946
947 int
948 sv_halt_output(addr)
949 void *addr;
950 {
951 struct sv_softc *sc = addr;
952 u_int8_t mode;
953
954 DPRINTF(("sv: sv_halt_output\n"));
955 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
956 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
957
958 return (0);
959 }
960
961 int
962 sv_halt_input(addr)
963 void *addr;
964 {
965 struct sv_softc *sc = addr;
966 u_int8_t mode;
967
968 DPRINTF(("sv: sv_halt_input\n"));
969 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
970 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
971
972 return (0);
973 }
974
975 int
976 sv_getdev(addr, retp)
977 void *addr;
978 struct audio_device *retp;
979 {
980 *retp = sv_device;
981 return (0);
982 }
983
984
985 /*
986 * Mixer related code is here
987 *
988 */
989
990 #define SV_INPUT_CLASS 0
991 #define SV_OUTPUT_CLASS 1
992 #define SV_RECORD_CLASS 2
993
994 #define SV_LAST_CLASS 2
995
996 static const char *mixer_classes[] =
997 { AudioCinputs, AudioCoutputs, AudioCrecord };
998
999 static const struct {
1000 u_int8_t l_port;
1001 u_int8_t r_port;
1002 u_int8_t mask;
1003 u_int8_t class;
1004 const char *audio;
1005 } ports[] = {
1006 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
1007 SV_INPUT_CLASS, "aux1" },
1008 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
1009 SV_INPUT_CLASS, AudioNcd },
1010 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
1011 SV_INPUT_CLASS, AudioNline },
1012 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
1013 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
1014 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
1015 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
1016 SV_INPUT_CLASS, "aux2" },
1017 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
1018 SV_INPUT_CLASS, AudioNdac },
1019 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1020 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1021 };
1022
1023
1024 static const struct {
1025 int idx;
1026 const char *name;
1027 } record_sources[] = {
1028 { SV_REC_CD, AudioNcd },
1029 { SV_REC_DAC, AudioNdac },
1030 { SV_REC_AUX2, "aux2" },
1031 { SV_REC_LINE, AudioNline },
1032 { SV_REC_AUX1, "aux1" },
1033 { SV_REC_MIC, AudioNmicrophone },
1034 { SV_REC_MIXER, AudioNmixerout }
1035 };
1036
1037
1038 #define SV_DEVICES_PER_PORT 2
1039 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1040 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1041 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1042 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1043 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1044 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1045
1046 int
1047 sv_query_devinfo(addr, dip)
1048 void *addr;
1049 mixer_devinfo_t *dip;
1050 {
1051 int i;
1052
1053 /* It's a class */
1054 if (dip->index <= SV_LAST_CLASS) {
1055 dip->type = AUDIO_MIXER_CLASS;
1056 dip->mixer_class = dip->index;
1057 dip->next = dip->prev = AUDIO_MIXER_LAST;
1058 strcpy(dip->label.name,
1059 mixer_classes[dip->index]);
1060 return (0);
1061 }
1062
1063 if (dip->index >= SV_FIRST_MIXER &&
1064 dip->index <= SV_LAST_MIXER) {
1065 int off = dip->index - SV_FIRST_MIXER;
1066 int mute = (off % SV_DEVICES_PER_PORT);
1067 int idx = off / SV_DEVICES_PER_PORT;
1068
1069 dip->mixer_class = ports[idx].class;
1070 strcpy(dip->label.name, ports[idx].audio);
1071
1072 if (!mute) {
1073 dip->type = AUDIO_MIXER_VALUE;
1074 dip->prev = AUDIO_MIXER_LAST;
1075 dip->next = dip->index + 1;
1076
1077 if (ports[idx].r_port != 0)
1078 dip->un.v.num_channels = 2;
1079 else
1080 dip->un.v.num_channels = 1;
1081
1082 strcpy(dip->un.v.units.name, AudioNvolume);
1083 } else {
1084 dip->type = AUDIO_MIXER_ENUM;
1085 dip->prev = dip->index - 1;
1086 dip->next = AUDIO_MIXER_LAST;
1087
1088 strcpy(dip->label.name, AudioNmute);
1089 dip->un.e.num_mem = 2;
1090 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1091 dip->un.e.member[0].ord = 0;
1092 strcpy(dip->un.e.member[1].label.name, AudioNon);
1093 dip->un.e.member[1].ord = 1;
1094 }
1095
1096 return (0);
1097 }
1098
1099 switch (dip->index) {
1100 case SV_RECORD_SOURCE:
1101 dip->mixer_class = SV_RECORD_CLASS;
1102 dip->prev = AUDIO_MIXER_LAST;
1103 dip->next = SV_RECORD_GAIN;
1104 strcpy(dip->label.name, AudioNsource);
1105 dip->type = AUDIO_MIXER_ENUM;
1106
1107 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1108 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1109 strcpy(dip->un.e.member[i].label.name,
1110 record_sources[i].name);
1111 dip->un.e.member[i].ord = record_sources[i].idx;
1112 }
1113 return (0);
1114
1115 case SV_RECORD_GAIN:
1116 dip->mixer_class = SV_RECORD_CLASS;
1117 dip->prev = SV_RECORD_SOURCE;
1118 dip->next = AUDIO_MIXER_LAST;
1119 strcpy(dip->label.name, "gain");
1120 dip->type = AUDIO_MIXER_VALUE;
1121 dip->un.v.num_channels = 1;
1122 strcpy(dip->un.v.units.name, AudioNvolume);
1123 return (0);
1124
1125 case SV_MIC_BOOST:
1126 dip->mixer_class = SV_RECORD_CLASS;
1127 dip->prev = AUDIO_MIXER_LAST;
1128 dip->next = AUDIO_MIXER_LAST;
1129 strcpy(dip->label.name, "micboost");
1130 goto on_off;
1131
1132 case SV_SRS_MODE:
1133 dip->mixer_class = SV_OUTPUT_CLASS;
1134 dip->prev = dip->next = AUDIO_MIXER_LAST;
1135 strcpy(dip->label.name, AudioNspatial);
1136
1137 on_off:
1138 dip->type = AUDIO_MIXER_ENUM;
1139 dip->un.e.num_mem = 2;
1140 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1141 dip->un.e.member[0].ord = 0;
1142 strcpy(dip->un.e.member[1].label.name, AudioNon);
1143 dip->un.e.member[1].ord = 1;
1144 return (0);
1145 }
1146
1147 return (ENXIO);
1148 }
1149
1150 int
1151 sv_mixer_set_port(addr, cp)
1152 void *addr;
1153 mixer_ctrl_t *cp;
1154 {
1155 struct sv_softc *sc = addr;
1156 u_int8_t reg;
1157 int idx;
1158
1159 if (cp->dev >= SV_FIRST_MIXER &&
1160 cp->dev <= SV_LAST_MIXER) {
1161 int off = cp->dev - SV_FIRST_MIXER;
1162 int mute = (off % SV_DEVICES_PER_PORT);
1163 idx = off / SV_DEVICES_PER_PORT;
1164
1165 if (mute) {
1166 if (cp->type != AUDIO_MIXER_ENUM)
1167 return (EINVAL);
1168
1169 reg = sv_read_indirect(sc, ports[idx].l_port);
1170 if (cp->un.ord)
1171 reg |= SV_MUTE_BIT;
1172 else
1173 reg &= ~SV_MUTE_BIT;
1174 sv_write_indirect(sc, ports[idx].l_port, reg);
1175
1176 if (ports[idx].r_port) {
1177 reg = sv_read_indirect(sc, ports[idx].r_port);
1178 if (cp->un.ord)
1179 reg |= SV_MUTE_BIT;
1180 else
1181 reg &= ~SV_MUTE_BIT;
1182 sv_write_indirect(sc, ports[idx].r_port, reg);
1183 }
1184 } else {
1185 int lval, rval;
1186
1187 if (cp->type != AUDIO_MIXER_VALUE)
1188 return (EINVAL);
1189
1190 if (cp->un.value.num_channels != 1 &&
1191 cp->un.value.num_channels != 2)
1192 return (EINVAL);
1193
1194 if (ports[idx].r_port == 0) {
1195 if (cp->un.value.num_channels != 1)
1196 return (EINVAL);
1197 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1198 rval = 0; /* shut up GCC */
1199 } else {
1200 if (cp->un.value.num_channels != 2)
1201 return (EINVAL);
1202
1203 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1204 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1205 }
1206
1207
1208 reg = sv_read_indirect(sc, ports[idx].l_port);
1209 reg &= ~(ports[idx].mask);
1210 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1211 AUDIO_MAX_GAIN;
1212 reg |= lval;
1213 sv_write_indirect(sc, ports[idx].l_port, reg);
1214
1215 if (ports[idx].r_port != 0) {
1216 reg = sv_read_indirect(sc, ports[idx].r_port);
1217 reg &= ~(ports[idx].mask);
1218
1219 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1220 AUDIO_MAX_GAIN;
1221 reg |= rval;
1222
1223 sv_write_indirect(sc, ports[idx].r_port, reg);
1224 }
1225
1226 sv_read_indirect(sc, ports[idx].l_port);
1227 }
1228
1229 return (0);
1230 }
1231
1232
1233 switch (cp->dev) {
1234 case SV_RECORD_SOURCE:
1235 if (cp->type != AUDIO_MIXER_ENUM)
1236 return (EINVAL);
1237
1238 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1239 if (record_sources[idx].idx == cp->un.ord)
1240 goto found;
1241 }
1242
1243 return (EINVAL);
1244
1245 found:
1246 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1247 reg &= ~SV_REC_SOURCE_MASK;
1248 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1249 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1250
1251 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1252 reg &= ~SV_REC_SOURCE_MASK;
1253 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1254 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1255 return (0);
1256
1257 case SV_RECORD_GAIN:
1258 {
1259 int val;
1260
1261 if (cp->type != AUDIO_MIXER_VALUE)
1262 return (EINVAL);
1263
1264 if (cp->un.value.num_channels != 1)
1265 return (EINVAL);
1266
1267 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1268 / AUDIO_MAX_GAIN;
1269
1270 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1271 reg &= ~SV_REC_GAIN_MASK;
1272 reg |= val;
1273 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1274
1275 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1276 reg &= ~SV_REC_GAIN_MASK;
1277 reg |= val;
1278 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1279 }
1280 return (0);
1281
1282 case SV_MIC_BOOST:
1283 if (cp->type != AUDIO_MIXER_ENUM)
1284 return (EINVAL);
1285
1286 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1287 if (cp->un.ord) {
1288 reg |= SV_MIC_BOOST_BIT;
1289 } else {
1290 reg &= ~SV_MIC_BOOST_BIT;
1291 }
1292
1293 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1294 return (0);
1295
1296 case SV_SRS_MODE:
1297 if (cp->type != AUDIO_MIXER_ENUM)
1298 return (EINVAL);
1299
1300 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1301 if (cp->un.ord) {
1302 reg &= ~SV_SRS_SPACE_ONOFF;
1303 } else {
1304 reg |= SV_SRS_SPACE_ONOFF;
1305 }
1306
1307 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1308 return (0);
1309 }
1310
1311 return (EINVAL);
1312 }
1313
1314 int
1315 sv_mixer_get_port(addr, cp)
1316 void *addr;
1317 mixer_ctrl_t *cp;
1318 {
1319 struct sv_softc *sc = addr;
1320 int val;
1321 u_int8_t reg;
1322
1323 if (cp->dev >= SV_FIRST_MIXER &&
1324 cp->dev <= SV_LAST_MIXER) {
1325 int off = cp->dev - SV_FIRST_MIXER;
1326 int mute = (off % 2);
1327 int idx = off / 2;
1328
1329 if (mute) {
1330 if (cp->type != AUDIO_MIXER_ENUM)
1331 return (EINVAL);
1332
1333 reg = sv_read_indirect(sc, ports[idx].l_port);
1334 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1335 } else {
1336 if (cp->type != AUDIO_MIXER_VALUE)
1337 return (EINVAL);
1338
1339 if (cp->un.value.num_channels != 1 &&
1340 cp->un.value.num_channels != 2)
1341 return (EINVAL);
1342
1343 if ((ports[idx].r_port == 0 &&
1344 cp->un.value.num_channels != 1) ||
1345 (ports[idx].r_port != 0 &&
1346 cp->un.value.num_channels != 2))
1347 return (EINVAL);
1348
1349 reg = sv_read_indirect(sc, ports[idx].l_port);
1350 reg &= ports[idx].mask;
1351
1352 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1353
1354 if (ports[idx].r_port != 0) {
1355 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1356
1357 reg = sv_read_indirect(sc, ports[idx].r_port);
1358 reg &= ports[idx].mask;
1359
1360 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1361 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1362 } else
1363 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1364 }
1365
1366 return (0);
1367 }
1368
1369 switch (cp->dev) {
1370 case SV_RECORD_SOURCE:
1371 if (cp->type != AUDIO_MIXER_ENUM)
1372 return (EINVAL);
1373
1374 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1375 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1376
1377 return (0);
1378
1379 case SV_RECORD_GAIN:
1380 if (cp->type != AUDIO_MIXER_VALUE)
1381 return (EINVAL);
1382 if (cp->un.value.num_channels != 1)
1383 return (EINVAL);
1384
1385 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1386 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1387 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1388
1389 return (0);
1390
1391 case SV_MIC_BOOST:
1392 if (cp->type != AUDIO_MIXER_ENUM)
1393 return (EINVAL);
1394 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1395 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1396 return (0);
1397
1398
1399 case SV_SRS_MODE:
1400 if (cp->type != AUDIO_MIXER_ENUM)
1401 return (EINVAL);
1402 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1403 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1404 return (0);
1405 }
1406
1407 return (EINVAL);
1408 }
1409
1410
1411 static void
1412 sv_init_mixer(sc)
1413 struct sv_softc *sc;
1414 {
1415 mixer_ctrl_t cp;
1416 int i;
1417
1418 cp.type = AUDIO_MIXER_ENUM;
1419 cp.dev = SV_SRS_MODE;
1420 cp.un.ord = 0;
1421
1422 sv_mixer_set_port(sc, &cp);
1423
1424 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1425 if (ports[i].audio == AudioNdac) {
1426 cp.type = AUDIO_MIXER_ENUM;
1427 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1428 cp.un.ord = 0;
1429 sv_mixer_set_port(sc, &cp);
1430 break;
1431 }
1432 }
1433 }
1434
1435 void *
1436 sv_malloc(addr, direction, size, pool, flags)
1437 void *addr;
1438 int direction;
1439 size_t size;
1440 struct malloc_type *pool;
1441 int flags;
1442 {
1443 struct sv_softc *sc = addr;
1444 struct sv_dma *p;
1445 int error;
1446
1447 p = malloc(sizeof(*p), pool, flags);
1448 if (!p)
1449 return (0);
1450 error = sv_allocmem(sc, size, 16, direction, p);
1451 if (error) {
1452 free(p, pool);
1453 return (0);
1454 }
1455 p->next = sc->sc_dmas;
1456 sc->sc_dmas = p;
1457 return (KERNADDR(p));
1458 }
1459
1460 void
1461 sv_free(addr, ptr, pool)
1462 void *addr;
1463 void *ptr;
1464 struct malloc_type *pool;
1465 {
1466 struct sv_softc *sc = addr;
1467 struct sv_dma **pp, *p;
1468
1469 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1470 if (KERNADDR(p) == ptr) {
1471 sv_freemem(sc, p);
1472 *pp = p->next;
1473 free(p, pool);
1474 return;
1475 }
1476 }
1477 }
1478
1479 size_t
1480 sv_round_buffersize(addr, direction, size)
1481 void *addr;
1482 int direction;
1483 size_t size;
1484 {
1485 return (size);
1486 }
1487
1488 paddr_t
1489 sv_mappage(addr, mem, off, prot)
1490 void *addr;
1491 void *mem;
1492 off_t off;
1493 int prot;
1494 {
1495 struct sv_softc *sc = addr;
1496 struct sv_dma *p;
1497
1498 if (off < 0)
1499 return (-1);
1500 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1501 ;
1502 if (!p)
1503 return (-1);
1504 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1505 off, prot, BUS_DMA_WAITOK));
1506 }
1507
1508 int
1509 sv_get_props(addr)
1510 void *addr;
1511 {
1512 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1513 }
1514