sv.c revision 1.2 1 /* $NetBSD: sv.c,v 1.2 1999/02/17 02:37:42 mycroft Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1998 Constantine Paul Sapuntzakis
6 * All rights reserved
7 *
8 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The author's name or those of the contributors may be used to
19 * endorse or promote products derived from this software without
20 * specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * S3 SonicVibes driver
37 * Heavily based on the eap driver by Lennart Augustsson
38 */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/device.h>
45
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pcidevs.h>
49
50 #include <sys/audioio.h>
51 #include <dev/audio_if.h>
52 #include <dev/mulaw.h>
53 #include <dev/auconv.h>
54
55 #include <dev/ic/i8237reg.h>
56 #include <dev/pci/svreg.h>
57 #include <dev/pci/svvar.h>
58
59 #include <machine/bus.h>
60
61 #ifdef AUDIO_DEBUG
62 #define DPRINTF(x) if (svdebug) printf x
63 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
64 int svdebug = 0;
65 #else
66 #define DPRINTF(x)
67 #define DPRINTFN(n,x)
68 #endif
69
70 int sv_match __P((struct device *, struct cfdata *, void *));
71 void sv_attach __P((struct device *, struct device *, void *));
72 int sv_intr __P((void *));
73
74 struct sv_dma {
75 bus_dmamap_t map;
76 caddr_t addr;
77 bus_dma_segment_t segs[1];
78 int nsegs;
79 size_t size;
80 struct sv_dma *next;
81 };
82 #define DMAADDR(map) ((map)->segs[0].ds_addr)
83 #define KERNADDR(map) ((void *)((map)->addr))
84
85
86 struct cfattach sv_ca = {
87 sizeof(struct sv_softc), sv_match, sv_attach
88 };
89
90 struct audio_device sv_device = {
91 "S3 SonicVibes",
92 "",
93 "sv"
94 };
95
96 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
97
98 int sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
99 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
100
101 int sv_open __P((void *, int));
102 void sv_close __P((void *));
103 int sv_query_encoding __P((void *, struct audio_encoding *));
104 int sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
105 int sv_round_blocksize __P((void *, int));
106 int sv_dma_init_output __P((void *, void *, int));
107 int sv_dma_init_input __P((void *, void *, int));
108 int sv_dma_output __P((void *, void *, int, void (*)(void *), void*));
109 int sv_dma_input __P((void *, void *, int, void (*)(void *), void*));
110 int sv_halt_in_dma __P((void *));
111 int sv_halt_out_dma __P((void *));
112 int sv_getdev __P((void *, struct audio_device *));
113 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
114 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
115 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
116 void *sv_malloc __P((void *, int, size_t, int, int));
117 void sv_free __P((void *, void *, int));
118 size_t sv_round_buffersize __P((void *, int, size_t));
119 int sv_mappage __P((void *, void *, int, int));
120 int sv_get_props __P((void *));
121
122 #ifdef AUDIO_DEBUG
123 void sv_dumpregs __P((struct sv_softc *sc));
124 #endif
125
126 struct audio_hw_if sv_hw_if = {
127 sv_open,
128 sv_close,
129 NULL,
130 sv_query_encoding,
131 sv_set_params,
132 sv_round_blocksize,
133 NULL,
134 sv_dma_init_output,
135 sv_dma_init_input,
136 sv_dma_output,
137 sv_dma_input,
138 sv_halt_out_dma,
139 sv_halt_in_dma,
140 NULL,
141 sv_getdev,
142 NULL,
143 sv_mixer_set_port,
144 sv_mixer_get_port,
145 sv_query_devinfo,
146 sv_malloc,
147 sv_free,
148 sv_round_buffersize,
149 sv_mappage,
150 sv_get_props,
151 };
152
153
154 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
155 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
156 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
157 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
158 static void sv_init_mixer __P((struct sv_softc *));
159
160 static void sv_defer __P((struct device *self));
161
162 static void
163 sv_write (sc, reg, val)
164 struct sv_softc *sc;
165 u_int8_t reg, val;
166
167 {
168 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
169 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
170 }
171
172 static u_int8_t
173 sv_read(sc, reg)
174 struct sv_softc *sc;
175 u_int8_t reg;
176
177 {
178 u_int8_t val;
179
180 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
181 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
182 return val;
183 }
184
185 static u_int8_t
186 sv_read_indirect(sc, reg)
187 struct sv_softc *sc;
188 u_int8_t reg;
189 {
190 u_int8_t val;
191 int s = splaudio();
192
193 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
194 val = sv_read(sc, SV_CODEC_IDATA);
195 splx(s);
196 return (val);
197 }
198
199 static void
200 sv_write_indirect(sc, reg, val)
201 struct sv_softc *sc;
202 u_int8_t reg, val;
203 {
204 u_int8_t iaddr = reg & SV_IADDR_MASK;
205 int s = splaudio();
206
207 if (reg == SV_DMA_DATA_FORMAT)
208 iaddr |= SV_IADDR_MCE;
209
210 sv_write(sc, SV_CODEC_IADDR, iaddr);
211 sv_write(sc, SV_CODEC_IDATA, val);
212 splx(s);
213 }
214
215 int
216 sv_match(parent, match, aux)
217 struct device *parent;
218 struct cfdata *match;
219 void *aux;
220 {
221 struct pci_attach_args *pa = aux;
222
223 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
224 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
225 return (1);
226
227 return (0);
228 }
229
230 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
231 int pcioffs,
232 bus_space_tag_t iot, bus_size_t size,
233 bus_size_t align, bus_size_t bound, int flags,
234 bus_space_handle_t *ioh));
235
236 #define PCI_IO_ALLOC_LOW 0xa000
237 #define PCI_IO_ALLOC_HIGH 0xb000
238 int
239 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
240 pci_chipset_tag_t pc;
241 pcitag_t pt;
242 int pcioffs;
243 bus_space_tag_t iot;
244 bus_size_t size;
245 bus_size_t align;
246 bus_size_t bound;
247 int flags;
248 bus_space_handle_t *ioh;
249 {
250 bus_addr_t addr;
251 int error;
252
253 error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
254 size, align, bound, flags, &addr, ioh);
255 if (error)
256 return(error);
257
258 pci_conf_write(pc, pt, pcioffs, addr);
259 return (0);
260 }
261
262 /*
263 * Allocate IO addresses when all other configuration is done.
264 */
265 void
266 sv_defer(self)
267 struct device *self;
268 {
269 struct sv_softc *sc = (struct sv_softc *)self;
270 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
271 pcitag_t pt = sc->sc_pa.pa_tag;
272 pcireg_t dmaio;
273
274 DPRINTF(("sv_defer: %p\n", sc));
275 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
276 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
277 0, &sc->sc_dmaa_ioh)) {
278 printf("sv_attach: cannot allocate DMA A range\n");
279 return;
280 }
281 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
282 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
283 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
284 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
285
286 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
287 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
288 0, &sc->sc_dmac_ioh)) {
289 printf("sv_attach: cannot allocate DMA C range\n");
290 return;
291 }
292 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
293 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
294 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
295 dmaio | SV_DMA_CHANNEL_ENABLE);
296
297 sc->sc_dmaset = 1;
298 }
299
300 void
301 sv_attach(parent, self, aux)
302 struct device *parent, *self;
303 void *aux;
304 {
305 struct sv_softc *sc = (struct sv_softc *)self;
306 struct pci_attach_args *pa = aux;
307 pci_chipset_tag_t pc = pa->pa_pc;
308 pcitag_t pt = pa->pa_tag;
309 pci_intr_handle_t ih;
310 pcireg_t csr;
311 char const *intrstr;
312 u_int8_t reg;
313 struct audio_attach_args arg;
314
315 printf ("\n");
316
317 /* Map I/O registers */
318 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
319 PCI_MAPREG_TYPE_IO, 0,
320 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
321 printf("%s: can't map enhanced i/o space\n",
322 sc->sc_dev.dv_xname);
323 return;
324 }
325 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
326 PCI_MAPREG_TYPE_IO, 0,
327 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
328 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
329 return;
330 }
331 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
332 PCI_MAPREG_TYPE_IO, 0,
333 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
334 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
335 return;
336 }
337 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
338 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
339
340 sc->sc_dmatag = pa->pa_dmat;
341
342 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, 0);
343 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
344
345 /* Enable the device. */
346 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
347 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
348 csr | PCI_COMMAND_MASTER_ENABLE);
349
350 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
351 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
352
353 /* initialize codec registers */
354 reg = sv_read(sc, SV_CODEC_CONTROL);
355 reg |= SV_CTL_RESET;
356 sv_write(sc, SV_CODEC_CONTROL, reg);
357 delay(50);
358
359 reg = sv_read(sc, SV_CODEC_CONTROL);
360 reg &= ~SV_CTL_RESET;
361 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
362
363 /* This write clears the reset */
364 sv_write(sc, SV_CODEC_CONTROL, reg);
365 delay(50);
366
367 /* This write actually shoves the new values in */
368 sv_write(sc, SV_CODEC_CONTROL, reg);
369
370 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
371
372 /* Enable DMA interrupts */
373 reg = sv_read(sc, SV_CODEC_INTMASK);
374 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
375 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
376 sv_write(sc, SV_CODEC_INTMASK, reg);
377
378 sv_read(sc, SV_CODEC_STATUS);
379
380 /* Map and establish the interrupt. */
381 if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
382 pa->pa_intrline, &ih)) {
383 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
384 return;
385 }
386 intrstr = pci_intr_string(pc, ih);
387 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
388 if (sc->sc_ih == NULL) {
389 printf("%s: couldn't establish interrupt",
390 sc->sc_dev.dv_xname);
391 if (intrstr != NULL)
392 printf(" at %s", intrstr);
393 printf("\n");
394 return;
395 }
396 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
397 printf("%s: rev %d", sc->sc_dev.dv_xname,
398 sv_read_indirect(sc, SV_REVISION_LEVEL));
399 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
400 printf(", reverb SRAM present");
401 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
402 printf(", wavetable ROM present");
403 printf("\n");
404
405 sv_init_mixer(sc);
406
407 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
408
409 arg.type = AUDIODEV_TYPE_OPL;
410 arg.hwif = 0;
411 arg.hdl = 0;
412 (void)config_found(&sc->sc_dev, &arg, audioprint);
413
414 sc->sc_pa = *pa; /* for deferred setup */
415 config_defer(self, sv_defer);
416 }
417
418 #ifdef AUDIO_DEBUG
419 void
420 sv_dumpregs(sc)
421 struct sv_softc *sc;
422 {
423 int idx;
424
425 #if 0
426 for (idx = 0; idx < 0x50; idx += 4)
427 printf ("%02x = %x\n", idx,
428 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
429 #endif
430
431 for (idx = 0; idx < 6; idx++)
432 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
433
434 for (idx = 0; idx < 0x32; idx++)
435 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
436
437 for (idx = 0; idx < 0x10; idx++)
438 printf ("DMA %02x = %02x\n", idx,
439 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
440 }
441 #endif
442
443 int
444 sv_intr(p)
445 void *p;
446 {
447 struct sv_softc *sc = p;
448 u_int8_t intr;
449
450 intr = sv_read(sc, SV_CODEC_STATUS);
451 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
452
453 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
454 return (0);
455
456 if (intr & SV_INTSTATUS_DMAA) {
457 if (sc->sc_pintr)
458 sc->sc_pintr(sc->sc_parg);
459 }
460
461 if (intr & SV_INTSTATUS_DMAC) {
462 if (sc->sc_rintr)
463 sc->sc_rintr(sc->sc_rarg);
464 }
465
466 return (1);
467 }
468
469 int
470 sv_allocmem(sc, size, align, p)
471 struct sv_softc *sc;
472 size_t size;
473 size_t align;
474 struct sv_dma *p;
475 {
476 int error;
477
478 p->size = size;
479 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
480 p->segs, ARRAY_SIZE(p->segs),
481 &p->nsegs, BUS_DMA_NOWAIT);
482 if (error)
483 return (error);
484
485 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
486 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
487 if (error)
488 goto free;
489
490 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
491 0, BUS_DMA_NOWAIT, &p->map);
492 if (error)
493 goto unmap;
494
495 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
496 BUS_DMA_NOWAIT);
497 if (error)
498 goto destroy;
499 return (0);
500
501 destroy:
502 bus_dmamap_destroy(sc->sc_dmatag, p->map);
503 unmap:
504 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
505 free:
506 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
507 return (error);
508 }
509
510 int
511 sv_freemem(sc, p)
512 struct sv_softc *sc;
513 struct sv_dma *p;
514 {
515 bus_dmamap_unload(sc->sc_dmatag, p->map);
516 bus_dmamap_destroy(sc->sc_dmatag, p->map);
517 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
518 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
519 return (0);
520 }
521
522 int
523 sv_open(addr, flags)
524 void *addr;
525 int flags;
526 {
527 struct sv_softc *sc = addr;
528
529 DPRINTF(("sv_open\n"));
530 if (!sc->sc_dmaset)
531 return (ENXIO);
532 sc->sc_pintr = 0;
533 sc->sc_rintr = 0;
534
535 return (0);
536 }
537
538 /*
539 * Close function is called at splaudio().
540 */
541 void
542 sv_close(addr)
543 void *addr;
544 {
545 struct sv_softc *sc = addr;
546
547 DPRINTF(("sv_close\n"));
548 sv_halt_in_dma(sc);
549 sv_halt_out_dma(sc);
550
551 sc->sc_pintr = 0;
552 sc->sc_rintr = 0;
553 }
554
555 int
556 sv_query_encoding(addr, fp)
557 void *addr;
558 struct audio_encoding *fp;
559 {
560 switch (fp->index) {
561 case 0:
562 strcpy(fp->name, AudioEulinear);
563 fp->encoding = AUDIO_ENCODING_ULINEAR;
564 fp->precision = 8;
565 fp->flags = 0;
566 return (0);
567 case 1:
568 strcpy(fp->name, AudioEmulaw);
569 fp->encoding = AUDIO_ENCODING_ULAW;
570 fp->precision = 8;
571 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
572 return (0);
573 case 2:
574 strcpy(fp->name, AudioEalaw);
575 fp->encoding = AUDIO_ENCODING_ALAW;
576 fp->precision = 8;
577 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
578 return (0);
579 case 3:
580 strcpy(fp->name, AudioEslinear);
581 fp->encoding = AUDIO_ENCODING_SLINEAR;
582 fp->precision = 8;
583 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
584 return (0);
585 case 4:
586 strcpy(fp->name, AudioEslinear_le);
587 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
588 fp->precision = 16;
589 fp->flags = 0;
590 return (0);
591 case 5:
592 strcpy(fp->name, AudioEulinear_le);
593 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
594 fp->precision = 16;
595 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
596 return (0);
597 case 6:
598 strcpy(fp->name, AudioEslinear_be);
599 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
600 fp->precision = 16;
601 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
602 return (0);
603 case 7:
604 strcpy(fp->name, AudioEulinear_be);
605 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
606 fp->precision = 16;
607 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
608 return (0);
609 default:
610 return (EINVAL);
611 }
612 }
613
614 int
615 sv_set_params(addr, setmode, usemode, p, r)
616 void *addr;
617 int setmode, usemode;
618 struct audio_params *p, *r;
619 {
620 struct sv_softc *sc = addr;
621 void (*pswcode) __P((void *, u_char *buf, int cnt));
622 void (*rswcode) __P((void *, u_char *buf, int cnt));
623 u_int32_t mode, val;
624 u_int8_t reg;
625
626 DPRINTF(("sv_set_params\n"));
627 pswcode = rswcode = 0;
628 switch (p->encoding) {
629 case AUDIO_ENCODING_SLINEAR_BE:
630 if (p->precision == 16)
631 rswcode = pswcode = swap_bytes;
632 else
633 pswcode = rswcode = change_sign8;
634 break;
635 case AUDIO_ENCODING_SLINEAR_LE:
636 if (p->precision != 16)
637 pswcode = rswcode = change_sign8;
638 break;
639 case AUDIO_ENCODING_ULINEAR_BE:
640 if (p->precision == 16) {
641 pswcode = swap_bytes_change_sign16;
642 rswcode = change_sign16_swap_bytes;
643 }
644 break;
645 case AUDIO_ENCODING_ULINEAR_LE:
646 if (p->precision == 16)
647 pswcode = rswcode = change_sign16;
648 break;
649 case AUDIO_ENCODING_ULAW:
650 pswcode = mulaw_to_ulinear8;
651 rswcode = ulinear8_to_mulaw;
652 break;
653 case AUDIO_ENCODING_ALAW:
654 pswcode = alaw_to_ulinear8;
655 rswcode = ulinear8_to_alaw;
656 break;
657 default:
658 return (EINVAL);
659 }
660
661 if (p->precision == 16)
662 mode = SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16;
663 else
664 mode = 0;
665 if (p->channels == 2)
666 mode |= SV_DMAA_STEREO | SV_DMAC_STEREO;
667 else if (p->channels != 1)
668 return (EINVAL);
669 if (p->sample_rate < 2000 || p->sample_rate > 48000)
670 return (EINVAL);
671
672 p->sw_code = pswcode;
673 r->sw_code = rswcode;
674
675 /* Set the encoding */
676 reg = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
677 reg &= ~(SV_DMAA_FORMAT16 | SV_DMAC_FORMAT16 | SV_DMAA_STEREO |
678 SV_DMAC_STEREO);
679 reg |= mode;
680 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, reg);
681
682 val = p->sample_rate * 65536 / 48000;
683
684 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, (val & 0xff));
685 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, (val >> 8));
686
687 #define F_REF 24576000
688
689 #define ABS(x) (((x) < 0) ? (-x) : (x))
690
691 if (setmode & AUMODE_RECORD) {
692 /* The ADC reference frequency (f_out) is 512 * sample rate */
693
694 /* f_out is dervied from the 24.576MHZ crystal by three values:
695 M & N & R. The equation is as follows:
696
697 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
698
699 with the constraint that:
700
701 80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
702 and n, m >= 1
703 */
704
705 int goal_f_out = 512 * r->sample_rate;
706 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
707 int pll_sample;
708 int error;
709
710 for (a = 0; a < 8; a++) {
711 if ((goal_f_out * (1 << a)) >= 80000000)
712 break;
713 }
714
715 /* a != 8 because sample_rate >= 2000 */
716
717 for (n = 33; n > 2; n--) {
718 m = (goal_f_out * n * (1 << a)) / F_REF;
719 if ((m > 257) || (m < 3)) continue;
720
721 pll_sample = (m * F_REF) / (n * (1 << a));
722 pll_sample /= 512;
723
724 /* Threshold might be good here */
725 error = pll_sample - r->sample_rate;
726 error = ABS(error);
727
728 if (error < best_error) {
729 best_error = error;
730 best_n = n;
731 best_m = m;
732 if (error == 0) break;
733 }
734 }
735
736 best_n -= 2;
737 best_m -= 2;
738
739 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
740 sv_write_indirect(sc, SV_ADC_PLL_N,
741 best_n | (a << SV_PLL_R_SHIFT));
742 }
743 return (0);
744 }
745
746 int
747 sv_round_blocksize(addr, blk)
748 void *addr;
749 int blk;
750 {
751 return (blk & -32); /* keep good alignment */
752 }
753
754 int
755 sv_dma_init_input(addr, buf, cc)
756 void *addr;
757 void *buf;
758 int cc;
759 {
760 struct sv_softc *sc = addr;
761 struct sv_dma *p;
762 int dma_count;
763
764 DPRINTF(("sv_dma_init_input: dma start loop input addr=%p cc=%d\n",
765 buf, cc));
766 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
767 ;
768 if (!p) {
769 printf("sv_dma_init_input: bad addr %p\n", buf);
770 return (EINVAL);
771 }
772
773 dma_count = (cc >> 1) - 1;
774
775 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
776 DMAADDR(p));
777 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
778 dma_count);
779 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
780 DMA37MD_WRITE | DMA37MD_LOOP);
781
782 return (0);
783 }
784
785 int
786 sv_dma_init_output(addr, buf, cc)
787 void *addr;
788 void *buf;
789 int cc;
790 {
791 struct sv_softc *sc = addr;
792 struct sv_dma *p;
793 int dma_count;
794
795 DPRINTF(("sv_dma_init_output: start loop output buf=%p cc=%d\n", buf, cc));
796 for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
797 ;
798 if (!p) {
799 printf("sv_dma_init_output: bad addr %p\n", buf);
800 return (EINVAL);
801 }
802
803 dma_count = cc - 1;
804
805 DPRINTF(("sv_dma_init_output: addr0=0x%08lx count0=0x%08x mode=0x%02x\n",
806 (u_long)DMAADDR(p), dma_count, DMA37MD_READ | DMA37MD_LOOP));
807 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
808 DMAADDR(p));
809 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
810 dma_count);
811 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
812 DMA37MD_READ | DMA37MD_LOOP);
813
814 return (0);
815 }
816
817 int
818 sv_dma_output(addr, p, cc, intr, arg)
819 void *addr;
820 void *p;
821 int cc;
822 void (*intr) __P((void *));
823 void *arg;
824 {
825 struct sv_softc *sc = addr;
826 u_int8_t mode;
827
828 DPRINTFN(1, ("sv_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
829 addr, p, cc, intr, arg));
830
831 sc->sc_pintr = intr;
832 sc->sc_parg = arg;
833 if (!(sc->sc_enable & SV_PLAY_ENABLE)) {
834 int dma_count = cc - 1;
835
836 DPRINTF(("sv_dma_output: set count=%d\n", dma_count));
837 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
838 sv_write_indirect(sc, SV_DMAA_COUNT0, (dma_count & 0xFF));
839
840 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
841 mode |= SV_PLAY_ENABLE;
842 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
843 sc->sc_enable |= SV_PLAY_ENABLE;
844 }
845 return (0);
846 }
847
848 int
849 sv_dma_input(addr, p, cc, intr, arg)
850 void *addr;
851 void *p;
852 int cc;
853 void (*intr) __P((void *));
854 void *arg;
855 {
856 struct sv_softc *sc = addr;
857 u_int8_t mode;
858
859 DPRINTFN(1, ("sv_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
860 addr, p, cc, intr, arg));
861 sc->sc_rintr = intr;
862 sc->sc_rarg = arg;
863 if (!(sc->sc_enable & SV_RECORD_ENABLE)) {
864 int dma_count = (cc >> 1) - 1;
865
866 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
867 sv_write_indirect(sc, SV_DMAC_COUNT0, (dma_count & 0xFF));
868
869 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
870 mode |= SV_RECORD_ENABLE;
871 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
872 sc->sc_enable |= SV_RECORD_ENABLE;
873 }
874 return (0);
875 }
876
877 int
878 sv_halt_out_dma(addr)
879 void *addr;
880 {
881 struct sv_softc *sc = addr;
882 u_int8_t mode;
883
884 DPRINTF(("sv: sv_halt_out_dma\n"));
885 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
886 mode &= ~SV_PLAY_ENABLE;
887 sc->sc_enable &= ~SV_PLAY_ENABLE;
888 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
889
890 return (0);
891 }
892
893 int
894 sv_halt_in_dma(addr)
895 void *addr;
896 {
897 struct sv_softc *sc = addr;
898 u_int8_t mode;
899
900 DPRINTF(("sv: sv_halt_in_dma\n"));
901 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
902 mode &= ~SV_RECORD_ENABLE;
903 sc->sc_enable &= ~SV_RECORD_ENABLE;
904 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode);
905
906 return (0);
907 }
908
909 int
910 sv_getdev(addr, retp)
911 void *addr;
912 struct audio_device *retp;
913 {
914 *retp = sv_device;
915 return (0);
916 }
917
918
919 /*
920 * Mixer related code is here
921 *
922 */
923
924 #define SV_INPUT_CLASS 0
925 #define SV_OUTPUT_CLASS 1
926 #define SV_RECORD_CLASS 2
927
928 #define SV_LAST_CLASS 2
929
930 static const char *mixer_classes[] =
931 { AudioCinputs, AudioCoutputs, AudioCrecord };
932
933 static const struct {
934 u_int8_t l_port;
935 u_int8_t r_port;
936 u_int8_t mask;
937 u_int8_t class;
938 const char *audio;
939 } ports[] = {
940 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
941 SV_INPUT_CLASS, "aux1" },
942 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
943 SV_INPUT_CLASS, AudioNcd },
944 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
945 SV_INPUT_CLASS, AudioNline },
946 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
947 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
948 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
949 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
950 SV_INPUT_CLASS, "aux2" },
951 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
952 SV_INPUT_CLASS, AudioNdac },
953 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
954 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
955 };
956
957
958 static const struct {
959 int idx;
960 const char *name;
961 } record_sources[] = {
962 { SV_REC_CD, AudioNcd },
963 { SV_REC_DAC, AudioNdac },
964 { SV_REC_AUX2, "aux2" },
965 { SV_REC_LINE, AudioNline },
966 { SV_REC_AUX1, "aux1" },
967 { SV_REC_MIC, AudioNmicrophone },
968 { SV_REC_MIXER, AudioNmixerout }
969 };
970
971
972 #define SV_DEVICES_PER_PORT 2
973 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
974 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
975 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
976 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
977 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
978 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
979
980 int
981 sv_query_devinfo(addr, dip)
982 void *addr;
983 mixer_devinfo_t *dip;
984 {
985 int i;
986
987 /* It's a class */
988 if (dip->index <= SV_LAST_CLASS) {
989 dip->type = AUDIO_MIXER_CLASS;
990 dip->mixer_class = dip->index;
991 dip->next = dip->prev = AUDIO_MIXER_LAST;
992 strcpy(dip->label.name,
993 mixer_classes[dip->index]);
994 return (0);
995 }
996
997 if (dip->index >= SV_FIRST_MIXER &&
998 dip->index <= SV_LAST_MIXER) {
999 int off = dip->index - SV_FIRST_MIXER;
1000 int mute = (off % SV_DEVICES_PER_PORT);
1001 int idx = off / SV_DEVICES_PER_PORT;
1002
1003 dip->mixer_class = ports[idx].class;
1004 strcpy(dip->label.name, ports[idx].audio);
1005
1006 if (!mute) {
1007 dip->type = AUDIO_MIXER_VALUE;
1008 dip->prev = AUDIO_MIXER_LAST;
1009 dip->next = dip->index + 1;
1010
1011 if (ports[idx].r_port != 0)
1012 dip->un.v.num_channels = 2;
1013 else
1014 dip->un.v.num_channels = 1;
1015
1016 strcpy(dip->un.v.units.name, AudioNvolume);
1017 } else {
1018 dip->type = AUDIO_MIXER_ENUM;
1019 dip->prev = dip->index - 1;
1020 dip->next = AUDIO_MIXER_LAST;
1021
1022 strcpy(dip->label.name, AudioNmute);
1023 dip->un.e.num_mem = 2;
1024 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1025 dip->un.e.member[0].ord = 0;
1026 strcpy(dip->un.e.member[1].label.name, AudioNon);
1027 dip->un.e.member[1].ord = 1;
1028 }
1029
1030 return (0);
1031 }
1032
1033 switch (dip->index) {
1034 case SV_RECORD_SOURCE:
1035 dip->mixer_class = SV_RECORD_CLASS;
1036 dip->prev = AUDIO_MIXER_LAST;
1037 dip->next = SV_RECORD_GAIN;
1038 strcpy(dip->label.name, AudioNsource);
1039 dip->type = AUDIO_MIXER_ENUM;
1040
1041 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1042 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1043 strcpy(dip->un.e.member[i].label.name,
1044 record_sources[i].name);
1045 dip->un.e.member[i].ord = record_sources[i].idx;
1046 }
1047 return (0);
1048
1049 case SV_RECORD_GAIN:
1050 dip->mixer_class = SV_RECORD_CLASS;
1051 dip->prev = SV_RECORD_SOURCE;
1052 dip->next = AUDIO_MIXER_LAST;
1053 strcpy(dip->label.name, "gain");
1054 dip->type = AUDIO_MIXER_VALUE;
1055 dip->un.v.num_channels = 1;
1056 strcpy(dip->un.v.units.name, AudioNvolume);
1057 return (0);
1058
1059 case SV_MIC_BOOST:
1060 dip->mixer_class = SV_RECORD_CLASS;
1061 dip->prev = AUDIO_MIXER_LAST;
1062 dip->next = AUDIO_MIXER_LAST;
1063 strcpy(dip->label.name, "micboost");
1064 goto on_off;
1065
1066 case SV_SRS_MODE:
1067 dip->mixer_class = SV_OUTPUT_CLASS;
1068 dip->prev = dip->next = AUDIO_MIXER_LAST;
1069 strcpy(dip->label.name, AudioNspatial);
1070
1071 on_off:
1072 dip->type = AUDIO_MIXER_ENUM;
1073 dip->un.e.num_mem = 2;
1074 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1075 dip->un.e.member[0].ord = 0;
1076 strcpy(dip->un.e.member[1].label.name, AudioNon);
1077 dip->un.e.member[1].ord = 1;
1078 return (0);
1079 }
1080
1081 return (ENXIO);
1082 }
1083
1084 int
1085 sv_mixer_set_port(addr, cp)
1086 void *addr;
1087 mixer_ctrl_t *cp;
1088 {
1089 struct sv_softc *sc = addr;
1090 u_int8_t reg;
1091 int idx;
1092
1093 if (cp->dev >= SV_FIRST_MIXER &&
1094 cp->dev <= SV_LAST_MIXER) {
1095 int off = cp->dev - SV_FIRST_MIXER;
1096 int mute = (off % SV_DEVICES_PER_PORT);
1097 idx = off / SV_DEVICES_PER_PORT;
1098
1099 if (mute) {
1100 if (cp->type != AUDIO_MIXER_ENUM)
1101 return (EINVAL);
1102
1103 reg = sv_read_indirect(sc, ports[idx].l_port);
1104 if (cp->un.ord)
1105 reg |= SV_MUTE_BIT;
1106 else
1107 reg &= ~SV_MUTE_BIT;
1108 sv_write_indirect(sc, ports[idx].l_port, reg);
1109
1110 if (ports[idx].r_port) {
1111 reg = sv_read_indirect(sc, ports[idx].r_port);
1112 if (cp->un.ord)
1113 reg |= SV_MUTE_BIT;
1114 else
1115 reg &= ~SV_MUTE_BIT;
1116 sv_write_indirect(sc, ports[idx].r_port, reg);
1117 }
1118 } else {
1119 int lval, rval;
1120
1121 if (cp->type != AUDIO_MIXER_VALUE)
1122 return (EINVAL);
1123
1124 if (cp->un.value.num_channels != 1 &&
1125 cp->un.value.num_channels != 2)
1126 return (EINVAL);
1127
1128 if (ports[idx].r_port == 0) {
1129 if (cp->un.value.num_channels != 1)
1130 return (EINVAL);
1131 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1132 rval = 0; /* shut up GCC */
1133 } else {
1134 if (cp->un.value.num_channels != 2)
1135 return (EINVAL);
1136
1137 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1138 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1139 }
1140
1141
1142 reg = sv_read_indirect(sc, ports[idx].l_port);
1143 reg &= ~(ports[idx].mask);
1144 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1145 AUDIO_MAX_GAIN;
1146 reg |= lval;
1147 sv_write_indirect(sc, ports[idx].l_port, reg);
1148
1149 if (ports[idx].r_port != 0) {
1150 reg = sv_read_indirect(sc, ports[idx].r_port);
1151 reg &= ~(ports[idx].mask);
1152
1153 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1154 AUDIO_MAX_GAIN;
1155 reg |= rval;
1156
1157 sv_write_indirect(sc, ports[idx].r_port, reg);
1158 }
1159
1160 sv_read_indirect(sc, ports[idx].l_port);
1161 }
1162
1163 return (0);
1164 }
1165
1166
1167 switch (cp->dev) {
1168 case SV_RECORD_SOURCE:
1169 if (cp->type != AUDIO_MIXER_ENUM)
1170 return (EINVAL);
1171
1172 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1173 if (record_sources[idx].idx == cp->un.ord)
1174 goto found;
1175 }
1176
1177 return (EINVAL);
1178
1179 found:
1180 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1181 reg &= ~SV_REC_SOURCE_MASK;
1182 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1183 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1184
1185 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1186 reg &= ~SV_REC_SOURCE_MASK;
1187 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1188 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1189 return (0);
1190
1191 case SV_RECORD_GAIN:
1192 {
1193 int val;
1194
1195 if (cp->type != AUDIO_MIXER_VALUE)
1196 return (EINVAL);
1197
1198 if (cp->un.value.num_channels != 1)
1199 return (EINVAL);
1200
1201 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1202 / AUDIO_MAX_GAIN;
1203
1204 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1205 reg &= ~SV_REC_GAIN_MASK;
1206 reg |= val;
1207 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1208
1209 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1210 reg &= ~SV_REC_GAIN_MASK;
1211 reg |= val;
1212 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1213 }
1214 return (0);
1215
1216 case SV_MIC_BOOST:
1217 if (cp->type != AUDIO_MIXER_ENUM)
1218 return (EINVAL);
1219
1220 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1221 if (cp->un.ord) {
1222 reg |= SV_MIC_BOOST_BIT;
1223 } else {
1224 reg &= ~SV_MIC_BOOST_BIT;
1225 }
1226
1227 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1228 return (0);
1229
1230 case SV_SRS_MODE:
1231 if (cp->type != AUDIO_MIXER_ENUM)
1232 return (EINVAL);
1233
1234 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1235 if (cp->un.ord) {
1236 reg &= ~SV_SRS_SPACE_ONOFF;
1237 } else {
1238 reg |= SV_SRS_SPACE_ONOFF;
1239 }
1240
1241 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1242 return (0);
1243 }
1244
1245 return (EINVAL);
1246 }
1247
1248 int
1249 sv_mixer_get_port(addr, cp)
1250 void *addr;
1251 mixer_ctrl_t *cp;
1252 {
1253 struct sv_softc *sc = addr;
1254 int val;
1255 u_int8_t reg;
1256
1257 if (cp->dev >= SV_FIRST_MIXER &&
1258 cp->dev <= SV_LAST_MIXER) {
1259 int off = cp->dev - SV_FIRST_MIXER;
1260 int mute = (off % 2);
1261 int idx = off / 2;
1262
1263 if (mute) {
1264 if (cp->type != AUDIO_MIXER_ENUM)
1265 return (EINVAL);
1266
1267 reg = sv_read_indirect(sc, ports[idx].l_port);
1268 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1269 } else {
1270 if (cp->type != AUDIO_MIXER_VALUE)
1271 return (EINVAL);
1272
1273 if (cp->un.value.num_channels != 1 &&
1274 cp->un.value.num_channels != 2)
1275 return (EINVAL);
1276
1277 if ((ports[idx].r_port == 0 &&
1278 cp->un.value.num_channels != 1) ||
1279 (ports[idx].r_port != 0 &&
1280 cp->un.value.num_channels != 2))
1281 return (EINVAL);
1282
1283 reg = sv_read_indirect(sc, ports[idx].l_port);
1284 reg &= ports[idx].mask;
1285
1286 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1287
1288 if (ports[idx].r_port != 0) {
1289 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1290
1291 reg = sv_read_indirect(sc, ports[idx].r_port);
1292 reg &= ports[idx].mask;
1293
1294 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1295 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1296 } else
1297 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1298 }
1299
1300 return (0);
1301 }
1302
1303 switch (cp->dev) {
1304 case SV_RECORD_SOURCE:
1305 if (cp->type != AUDIO_MIXER_ENUM)
1306 return (EINVAL);
1307
1308 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1309 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1310
1311 return (0);
1312
1313 case SV_RECORD_GAIN:
1314 if (cp->type != AUDIO_MIXER_VALUE)
1315 return (EINVAL);
1316 if (cp->un.value.num_channels != 1)
1317 return (EINVAL);
1318
1319 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1320 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1321 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1322
1323 return (0);
1324
1325 case SV_MIC_BOOST:
1326 if (cp->type != AUDIO_MIXER_ENUM)
1327 return (EINVAL);
1328 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1329 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1330 return (0);
1331
1332
1333 case SV_SRS_MODE:
1334 if (cp->type != AUDIO_MIXER_ENUM)
1335 return (EINVAL);
1336 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1337 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1338 return (0);
1339 }
1340
1341 return (EINVAL);
1342 }
1343
1344
1345 static void
1346 sv_init_mixer(sc)
1347 struct sv_softc *sc;
1348 {
1349 mixer_ctrl_t cp;
1350 int i;
1351
1352 cp.type = AUDIO_MIXER_ENUM;
1353 cp.dev = SV_SRS_MODE;
1354 cp.un.ord = 0;
1355
1356 sv_mixer_set_port(sc, &cp);
1357
1358 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1359 if (ports[i].audio == AudioNdac) {
1360 cp.type = AUDIO_MIXER_ENUM;
1361 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1362 cp.un.ord = 0;
1363 sv_mixer_set_port(sc, &cp);
1364 break;
1365 }
1366 }
1367 }
1368
1369 void *
1370 sv_malloc(addr, direction, size, pool, flags)
1371 void *addr;
1372 int direction;
1373 size_t size;
1374 int pool, flags;
1375 {
1376 struct sv_softc *sc = addr;
1377 struct sv_dma *p;
1378 int error;
1379
1380 p = malloc(sizeof(*p), pool, flags);
1381 if (!p)
1382 return (0);
1383 error = sv_allocmem(sc, size, 16, p);
1384 if (error) {
1385 free(p, pool);
1386 return (0);
1387 }
1388 p->next = sc->sc_dmas;
1389 sc->sc_dmas = p;
1390 return (KERNADDR(p));
1391 }
1392
1393 void
1394 sv_free(addr, ptr, pool)
1395 void *addr;
1396 void *ptr;
1397 int pool;
1398 {
1399 struct sv_softc *sc = addr;
1400 struct sv_dma **p;
1401
1402 for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
1403 if (KERNADDR(*p) == ptr) {
1404 sv_freemem(sc, *p);
1405 *p = (*p)->next;
1406 free(*p, pool);
1407 return;
1408 }
1409 }
1410 }
1411
1412 size_t
1413 sv_round_buffersize(addr, direction, size)
1414 void *addr;
1415 int direction;
1416 size_t size;
1417 {
1418 return (size);
1419 }
1420
1421 int
1422 sv_mappage(addr, mem, off, prot)
1423 void *addr;
1424 void *mem;
1425 int off;
1426 int prot;
1427 {
1428 struct sv_softc *sc = addr;
1429 struct sv_dma *p;
1430
1431 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1432 ;
1433 if (!p)
1434 return (-1);
1435 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1436 off, prot, BUS_DMA_WAITOK));
1437 }
1438
1439 int
1440 sv_get_props(addr)
1441 void *addr;
1442 {
1443 return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
1444 }
1445