sv.c revision 1.26 1 /* $NetBSD: sv.c,v 1.26 2005/01/10 22:01:37 kent Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.26 2005/01/10 22:01:37 kent Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97
98 #include <machine/bus.h>
99
100 /* XXX
101 * The SonicVibes DMA is broken and only works on 24-bit addresses.
102 * As long as bus_dmamem_alloc_range() is missing we use the ISA
103 * DMA tag on i386.
104 */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (svdebug) printf x
114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
115 int svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 int sv_match __P((struct device *, struct cfdata *, void *));
122 void sv_attach __P((struct device *, struct device *, void *));
123 int sv_intr __P((void *));
124
125 struct sv_dma {
126 bus_dmamap_t map;
127 caddr_t addr;
128 bus_dma_segment_t segs[1];
129 int nsegs;
130 size_t size;
131 struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137 sv_match, sv_attach, NULL, NULL);
138
139 struct audio_device sv_device = {
140 "S3 SonicVibes",
141 "",
142 "sv"
143 };
144
145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
146
147 int sv_allocmem __P((struct sv_softc *, size_t, size_t, int, struct sv_dma *));
148 int sv_freemem __P((struct sv_softc *, struct sv_dma *));
149
150 int sv_open __P((void *, int));
151 int sv_query_encoding __P((void *, struct audio_encoding *));
152 int sv_set_params __P((void *, int, int, audio_params_t *, audio_params_t *,
153 stream_filter_list_t *, stream_filter_list_t *));
154 int sv_round_blocksize __P((void *, int, int, const audio_params_t *));
155 int sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
156 void *, const audio_params_t *));
157 int sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
158 void *, const audio_params_t *));
159 int sv_halt_output __P((void *));
160 int sv_halt_input __P((void *));
161 int sv_getdev __P((void *, struct audio_device *));
162 int sv_mixer_set_port __P((void *, mixer_ctrl_t *));
163 int sv_mixer_get_port __P((void *, mixer_ctrl_t *));
164 int sv_query_devinfo __P((void *, mixer_devinfo_t *));
165 void *sv_malloc __P((void *, int, size_t, struct malloc_type *, int));
166 void sv_free __P((void *, void *, struct malloc_type *));
167 size_t sv_round_buffersize __P((void *, int, size_t));
168 paddr_t sv_mappage __P((void *, void *, off_t, int));
169 int sv_get_props __P((void *));
170
171 #ifdef AUDIO_DEBUG
172 void sv_dumpregs __P((struct sv_softc *sc));
173 #endif
174
175 const struct audio_hw_if sv_hw_if = {
176 sv_open,
177 NULL, /* close */
178 NULL,
179 sv_query_encoding,
180 sv_set_params,
181 sv_round_blocksize,
182 NULL,
183 NULL,
184 NULL,
185 NULL,
186 NULL,
187 sv_halt_output,
188 sv_halt_input,
189 NULL,
190 sv_getdev,
191 NULL,
192 sv_mixer_set_port,
193 sv_mixer_get_port,
194 sv_query_devinfo,
195 sv_malloc,
196 sv_free,
197 sv_round_buffersize,
198 sv_mappage,
199 sv_get_props,
200 sv_trigger_output,
201 sv_trigger_input,
202 NULL,
203 };
204
205 #define SV_NFORMATS 4
206 static const struct audio_format sv_formats[SV_NFORMATS] = {
207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
208 2, AUFMT_STEREO, 0, {2000, 48000}},
209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
210 1, AUFMT_MONAURAL, 0, {2000, 48000}},
211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
212 2, AUFMT_STEREO, 0, {2000, 48000}},
213 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
214 1, AUFMT_MONAURAL, 0, {2000, 48000}},
215 };
216
217
218 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
219 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
220 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
221 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
222 static void sv_init_mixer __P((struct sv_softc *));
223
224 static void sv_defer __P((struct device *self));
225
226 static void
227 sv_write (sc, reg, val)
228 struct sv_softc *sc;
229 u_int8_t reg, val;
230
231 {
232 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
233 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
234 }
235
236 static u_int8_t
237 sv_read(sc, reg)
238 struct sv_softc *sc;
239 u_int8_t reg;
240
241 {
242 u_int8_t val;
243
244 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
245 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
246 return val;
247 }
248
249 static u_int8_t
250 sv_read_indirect(sc, reg)
251 struct sv_softc *sc;
252 u_int8_t reg;
253 {
254 u_int8_t val;
255 int s = splaudio();
256
257 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
258 val = sv_read(sc, SV_CODEC_IDATA);
259 splx(s);
260 return (val);
261 }
262
263 static void
264 sv_write_indirect(sc, reg, val)
265 struct sv_softc *sc;
266 u_int8_t reg, val;
267 {
268 u_int8_t iaddr = reg & SV_IADDR_MASK;
269 int s = splaudio();
270
271 if (reg == SV_DMA_DATA_FORMAT)
272 iaddr |= SV_IADDR_MCE;
273
274 sv_write(sc, SV_CODEC_IADDR, iaddr);
275 sv_write(sc, SV_CODEC_IDATA, val);
276 splx(s);
277 }
278
279 int
280 sv_match(parent, match, aux)
281 struct device *parent;
282 struct cfdata *match;
283 void *aux;
284 {
285 struct pci_attach_args *pa = aux;
286
287 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
288 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
289 return (1);
290
291 return (0);
292 }
293
294 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
295 int pcioffs,
296 bus_space_tag_t iot, bus_size_t size,
297 bus_size_t align, bus_size_t bound, int flags,
298 bus_space_handle_t *ioh));
299
300 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
301
302 int
303 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
304 pci_chipset_tag_t pc;
305 pcitag_t pt;
306 int pcioffs;
307 bus_space_tag_t iot;
308 bus_size_t size;
309 bus_size_t align;
310 bus_size_t bound;
311 int flags;
312 bus_space_handle_t *ioh;
313 {
314 bus_addr_t addr;
315 int error;
316
317 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
318 size, align, bound, flags, &addr, ioh);
319 if (error)
320 return(error);
321
322 pci_conf_write(pc, pt, pcioffs, addr);
323 return (0);
324 }
325
326 /*
327 * Allocate IO addresses when all other configuration is done.
328 */
329 void
330 sv_defer(self)
331 struct device *self;
332 {
333 struct sv_softc *sc = (struct sv_softc *)self;
334 pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
335 pcitag_t pt = sc->sc_pa.pa_tag;
336 pcireg_t dmaio;
337
338 DPRINTF(("sv_defer: %p\n", sc));
339
340 /* XXX
341 * Get a reasonable default for the I/O range.
342 * Assume the range around SB_PORTBASE is valid on this PCI bus.
343 */
344 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
345 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
346
347 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
348 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
349 0, &sc->sc_dmaa_ioh)) {
350 printf("sv_attach: cannot allocate DMA A range\n");
351 return;
352 }
353 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
354 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
355 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
356 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
357
358 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
359 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
360 0, &sc->sc_dmac_ioh)) {
361 printf("sv_attach: cannot allocate DMA C range\n");
362 return;
363 }
364 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
365 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
366 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
367 dmaio | SV_DMA_CHANNEL_ENABLE);
368
369 sc->sc_dmaset = 1;
370 }
371
372 void
373 sv_attach(parent, self, aux)
374 struct device *parent, *self;
375 void *aux;
376 {
377 struct sv_softc *sc = (struct sv_softc *)self;
378 struct pci_attach_args *pa = aux;
379 pci_chipset_tag_t pc = pa->pa_pc;
380 pcitag_t pt = pa->pa_tag;
381 pci_intr_handle_t ih;
382 pcireg_t csr;
383 char const *intrstr;
384 u_int8_t reg;
385 struct audio_attach_args arg;
386
387 printf ("\n");
388
389 /* Map I/O registers */
390 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
391 PCI_MAPREG_TYPE_IO, 0,
392 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
393 printf("%s: can't map enhanced i/o space\n",
394 sc->sc_dev.dv_xname);
395 return;
396 }
397 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
398 PCI_MAPREG_TYPE_IO, 0,
399 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
400 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
401 return;
402 }
403 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
404 PCI_MAPREG_TYPE_IO, 0,
405 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
406 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
407 return;
408 }
409 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
410 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
411
412 #if defined(alpha)
413 /* XXX Force allocation through the SGMAP. */
414 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
415 #elif defined(i386) && NISA > 0
416 /* XXX
417 * The SonicVibes DMA is broken and only works on 24-bit addresses.
418 * As long as bus_dmamem_alloc_range() is missing we use the ISA
419 * DMA tag on i386.
420 */
421 sc->sc_dmatag = &isa_bus_dma_tag;
422 #else
423 sc->sc_dmatag = pa->pa_dmat;
424 #endif
425
426 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
427 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
428
429 /* Enable the device. */
430 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
431 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
432 csr | PCI_COMMAND_MASTER_ENABLE);
433
434 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
435 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
436
437 /* initialize codec registers */
438 reg = sv_read(sc, SV_CODEC_CONTROL);
439 reg |= SV_CTL_RESET;
440 sv_write(sc, SV_CODEC_CONTROL, reg);
441 delay(50);
442
443 reg = sv_read(sc, SV_CODEC_CONTROL);
444 reg &= ~SV_CTL_RESET;
445 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
446
447 /* This write clears the reset */
448 sv_write(sc, SV_CODEC_CONTROL, reg);
449 delay(50);
450
451 /* This write actually shoves the new values in */
452 sv_write(sc, SV_CODEC_CONTROL, reg);
453
454 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
455
456 /* Enable DMA interrupts */
457 reg = sv_read(sc, SV_CODEC_INTMASK);
458 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
459 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
460 sv_write(sc, SV_CODEC_INTMASK, reg);
461
462 sv_read(sc, SV_CODEC_STATUS);
463
464 /* Map and establish the interrupt. */
465 if (pci_intr_map(pa, &ih)) {
466 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
467 return;
468 }
469 intrstr = pci_intr_string(pc, ih);
470 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
471 if (sc->sc_ih == NULL) {
472 printf("%s: couldn't establish interrupt",
473 sc->sc_dev.dv_xname);
474 if (intrstr != NULL)
475 printf(" at %s", intrstr);
476 printf("\n");
477 return;
478 }
479 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
480 printf("%s: rev %d", sc->sc_dev.dv_xname,
481 sv_read_indirect(sc, SV_REVISION_LEVEL));
482 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
483 printf(", reverb SRAM present");
484 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
485 printf(", wavetable ROM present");
486 printf("\n");
487
488 sv_init_mixer(sc);
489
490 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
491
492 arg.type = AUDIODEV_TYPE_OPL;
493 arg.hwif = 0;
494 arg.hdl = 0;
495 (void)config_found(&sc->sc_dev, &arg, audioprint);
496
497 sc->sc_pa = *pa; /* for deferred setup */
498 config_defer(self, sv_defer);
499 }
500
501 #ifdef AUDIO_DEBUG
502 void
503 sv_dumpregs(sc)
504 struct sv_softc *sc;
505 {
506 int idx;
507
508 #if 0
509 for (idx = 0; idx < 0x50; idx += 4)
510 printf ("%02x = %x\n", idx,
511 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
512 #endif
513
514 for (idx = 0; idx < 6; idx++)
515 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
516
517 for (idx = 0; idx < 0x32; idx++)
518 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
519
520 for (idx = 0; idx < 0x10; idx++)
521 printf ("DMA %02x = %02x\n", idx,
522 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
523 }
524 #endif
525
526 int
527 sv_intr(p)
528 void *p;
529 {
530 struct sv_softc *sc = p;
531 u_int8_t intr;
532
533 intr = sv_read(sc, SV_CODEC_STATUS);
534 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
535
536 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
537 return (0);
538
539 if (intr & SV_INTSTATUS_DMAA) {
540 if (sc->sc_pintr)
541 sc->sc_pintr(sc->sc_parg);
542 }
543
544 if (intr & SV_INTSTATUS_DMAC) {
545 if (sc->sc_rintr)
546 sc->sc_rintr(sc->sc_rarg);
547 }
548
549 return (1);
550 }
551
552 int
553 sv_allocmem(sc, size, align, direction, p)
554 struct sv_softc *sc;
555 size_t size;
556 size_t align;
557 int direction;
558 struct sv_dma *p;
559 {
560 int error;
561
562 p->size = size;
563 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
564 p->segs, ARRAY_SIZE(p->segs),
565 &p->nsegs, BUS_DMA_NOWAIT);
566 if (error)
567 return (error);
568
569 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
570 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
571 if (error)
572 goto free;
573
574 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
575 0, BUS_DMA_NOWAIT, &p->map);
576 if (error)
577 goto unmap;
578
579 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
580 BUS_DMA_NOWAIT |
581 (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
582 if (error)
583 goto destroy;
584 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
585 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
586 return (0);
587
588 destroy:
589 bus_dmamap_destroy(sc->sc_dmatag, p->map);
590 unmap:
591 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
592 free:
593 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
594 return (error);
595 }
596
597 int
598 sv_freemem(sc, p)
599 struct sv_softc *sc;
600 struct sv_dma *p;
601 {
602 bus_dmamap_unload(sc->sc_dmatag, p->map);
603 bus_dmamap_destroy(sc->sc_dmatag, p->map);
604 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
605 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
606 return (0);
607 }
608
609 int
610 sv_open(addr, flags)
611 void *addr;
612 int flags;
613 {
614 struct sv_softc *sc = addr;
615
616 DPRINTF(("sv_open\n"));
617 if (!sc->sc_dmaset)
618 return (ENXIO);
619
620 return (0);
621 }
622
623 int
624 sv_query_encoding(addr, fp)
625 void *addr;
626 struct audio_encoding *fp;
627 {
628 switch (fp->index) {
629 case 0:
630 strcpy(fp->name, AudioEulinear);
631 fp->encoding = AUDIO_ENCODING_ULINEAR;
632 fp->precision = 8;
633 fp->flags = 0;
634 return (0);
635 case 1:
636 strcpy(fp->name, AudioEmulaw);
637 fp->encoding = AUDIO_ENCODING_ULAW;
638 fp->precision = 8;
639 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
640 return (0);
641 case 2:
642 strcpy(fp->name, AudioEalaw);
643 fp->encoding = AUDIO_ENCODING_ALAW;
644 fp->precision = 8;
645 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
646 return (0);
647 case 3:
648 strcpy(fp->name, AudioEslinear);
649 fp->encoding = AUDIO_ENCODING_SLINEAR;
650 fp->precision = 8;
651 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
652 return (0);
653 case 4:
654 strcpy(fp->name, AudioEslinear_le);
655 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
656 fp->precision = 16;
657 fp->flags = 0;
658 return (0);
659 case 5:
660 strcpy(fp->name, AudioEulinear_le);
661 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
662 fp->precision = 16;
663 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
664 return (0);
665 case 6:
666 strcpy(fp->name, AudioEslinear_be);
667 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
668 fp->precision = 16;
669 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
670 return (0);
671 case 7:
672 strcpy(fp->name, AudioEulinear_be);
673 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
674 fp->precision = 16;
675 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
676 return (0);
677 default:
678 return (EINVAL);
679 }
680 }
681
682 int
683 sv_set_params(addr, setmode, usemode, play, rec, pfil, rfil)
684 void *addr;
685 int setmode, usemode;
686 audio_params_t *play, *rec;
687 stream_filter_list_t *pfil, *rfil;
688 {
689 struct sv_softc *sc = addr;
690 audio_params_t *p = NULL;
691 u_int32_t val;
692
693 /*
694 * This device only has one clock, so make the sample rates match.
695 */
696 if (play->sample_rate != rec->sample_rate &&
697 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
698 if (setmode == AUMODE_PLAY) {
699 rec->sample_rate = play->sample_rate;
700 setmode |= AUMODE_RECORD;
701 } else if (setmode == AUMODE_RECORD) {
702 play->sample_rate = rec->sample_rate;
703 setmode |= AUMODE_PLAY;
704 } else
705 return (EINVAL);
706 }
707
708 if (setmode & AUMODE_RECORD) {
709 p = rec;
710 if (auconv_set_converter(sv_formats, SV_NFORMATS,
711 AUMODE_RECORD, rec, FALSE, rfil) < 0)
712 return EINVAL;
713 }
714 if (setmode & AUMODE_PLAY) {
715 p = play;
716 if (auconv_set_converter(sv_formats, SV_NFORMATS,
717 AUMODE_PLAY, play, FALSE, pfil) < 0)
718 return EINVAL;
719 }
720
721 val = p->sample_rate * 65536 / 48000;
722 /*
723 * If the sample rate is exactly 48KHz, the fraction would overflow the
724 * register, so we have to bias it. This causes a little clock drift.
725 * The drift is below normal crystal tolerance (.0001%), so although
726 * this seems a little silly, we can pretty much ignore it.
727 * (I tested the output speed with values of 1-20, just to be sure this
728 * register isn't *supposed* to have a bias. It isn't.)
729 * - mycroft
730 */
731 if (val > 65535)
732 val = 65535;
733
734 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
735 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
736
737 #define F_REF 24576000
738
739 #define ABS(x) (((x) < 0) ? (-x) : (x))
740
741 if (setmode & AUMODE_RECORD) {
742 /* The ADC reference frequency (f_out) is 512 * sample rate */
743
744 /* f_out is dervied from the 24.576MHz crystal by three values:
745 M & N & R. The equation is as follows:
746
747 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
748
749 with the constraint that:
750
751 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
752 and n, m >= 1
753 */
754
755 int goal_f_out = 512 * rec->sample_rate;
756 int a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
757 int pll_sample;
758 int error;
759
760 for (a = 0; a < 8; a++) {
761 if ((goal_f_out * (1 << a)) >= 80000000)
762 break;
763 }
764
765 /* a != 8 because sample_rate >= 2000 */
766
767 for (n = 33; n > 2; n--) {
768 m = (goal_f_out * n * (1 << a)) / F_REF;
769 if ((m > 257) || (m < 3))
770 continue;
771
772 pll_sample = (m * F_REF) / (n * (1 << a));
773 pll_sample /= 512;
774
775 /* Threshold might be good here */
776 error = pll_sample - rec->sample_rate;
777 error = ABS(error);
778
779 if (error < best_error) {
780 best_error = error;
781 best_n = n;
782 best_m = m;
783 if (error == 0) break;
784 }
785 }
786
787 best_n -= 2;
788 best_m -= 2;
789
790 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
791 sv_write_indirect(sc, SV_ADC_PLL_N,
792 best_n | (a << SV_PLL_R_SHIFT));
793 }
794
795 return (0);
796 }
797
798 int
799 sv_round_blocksize(addr, blk, mode, param)
800 void *addr;
801 int blk;
802 int mode;
803 const audio_params_t *param;
804 {
805 return (blk & -32); /* keep good alignment */
806 }
807
808 int
809 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
810 void *addr;
811 void *start, *end;
812 int blksize;
813 void (*intr) __P((void *));
814 void *arg;
815 const audio_params_t *param;
816 {
817 struct sv_softc *sc = addr;
818 struct sv_dma *p;
819 u_int8_t mode;
820 int dma_count;
821
822 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
823 addr, start, end, blksize, intr, arg));
824 sc->sc_pintr = intr;
825 sc->sc_parg = arg;
826
827 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
828 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
829 if (param->precision == 16)
830 mode |= SV_DMAA_FORMAT16;
831 if (param->channels == 2)
832 mode |= SV_DMAA_STEREO;
833 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
834
835 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
836 ;
837 if (!p) {
838 printf("sv_trigger_output: bad addr %p\n", start);
839 return (EINVAL);
840 }
841
842 dma_count = ((char *)end - (char *)start) - 1;
843 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
844 (int)DMAADDR(p), dma_count));
845
846 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
847 DMAADDR(p));
848 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
849 dma_count);
850 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
851 DMA37MD_READ | DMA37MD_LOOP);
852
853 DPRINTF(("sv_trigger_output: current addr=%x\n",
854 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
855
856 dma_count = blksize - 1;
857
858 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
859 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
860
861 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
862 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
863
864 return (0);
865 }
866
867 int
868 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
869 void *addr;
870 void *start, *end;
871 int blksize;
872 void (*intr) __P((void *));
873 void *arg;
874 const audio_params_t *param;
875 {
876 struct sv_softc *sc = addr;
877 struct sv_dma *p;
878 u_int8_t mode;
879 int dma_count;
880
881 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
882 addr, start, end, blksize, intr, arg));
883 sc->sc_rintr = intr;
884 sc->sc_rarg = arg;
885
886 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
887 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
888 if (param->precision == 16)
889 mode |= SV_DMAC_FORMAT16;
890 if (param->channels == 2)
891 mode |= SV_DMAC_STEREO;
892 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
893
894 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
895 ;
896 if (!p) {
897 printf("sv_trigger_input: bad addr %p\n", start);
898 return (EINVAL);
899 }
900
901 dma_count = (((char *)end - (char *)start) >> 1) - 1;
902 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
903 (int)DMAADDR(p), dma_count));
904
905 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
906 DMAADDR(p));
907 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
908 dma_count);
909 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
910 DMA37MD_WRITE | DMA37MD_LOOP);
911
912 DPRINTF(("sv_trigger_input: current addr=%x\n",
913 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
914
915 dma_count = (blksize >> 1) - 1;
916
917 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
918 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
919
920 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
921 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
922
923 return (0);
924 }
925
926 int
927 sv_halt_output(addr)
928 void *addr;
929 {
930 struct sv_softc *sc = addr;
931 u_int8_t mode;
932
933 DPRINTF(("sv: sv_halt_output\n"));
934 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
935 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
936 sc->sc_pintr = 0;
937
938 return (0);
939 }
940
941 int
942 sv_halt_input(addr)
943 void *addr;
944 {
945 struct sv_softc *sc = addr;
946 u_int8_t mode;
947
948 DPRINTF(("sv: sv_halt_input\n"));
949 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
950 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
951 sc->sc_rintr = 0;
952
953 return (0);
954 }
955
956 int
957 sv_getdev(addr, retp)
958 void *addr;
959 struct audio_device *retp;
960 {
961 *retp = sv_device;
962 return (0);
963 }
964
965
966 /*
967 * Mixer related code is here
968 *
969 */
970
971 #define SV_INPUT_CLASS 0
972 #define SV_OUTPUT_CLASS 1
973 #define SV_RECORD_CLASS 2
974
975 #define SV_LAST_CLASS 2
976
977 static const char *mixer_classes[] =
978 { AudioCinputs, AudioCoutputs, AudioCrecord };
979
980 static const struct {
981 u_int8_t l_port;
982 u_int8_t r_port;
983 u_int8_t mask;
984 u_int8_t class;
985 const char *audio;
986 } ports[] = {
987 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
988 SV_INPUT_CLASS, "aux1" },
989 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
990 SV_INPUT_CLASS, AudioNcd },
991 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
992 SV_INPUT_CLASS, AudioNline },
993 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
994 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
995 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
996 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
997 SV_INPUT_CLASS, "aux2" },
998 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
999 SV_INPUT_CLASS, AudioNdac },
1000 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
1001 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
1002 };
1003
1004
1005 static const struct {
1006 int idx;
1007 const char *name;
1008 } record_sources[] = {
1009 { SV_REC_CD, AudioNcd },
1010 { SV_REC_DAC, AudioNdac },
1011 { SV_REC_AUX2, "aux2" },
1012 { SV_REC_LINE, AudioNline },
1013 { SV_REC_AUX1, "aux1" },
1014 { SV_REC_MIC, AudioNmicrophone },
1015 { SV_REC_MIXER, AudioNmixerout }
1016 };
1017
1018
1019 #define SV_DEVICES_PER_PORT 2
1020 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
1021 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
1022 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
1023 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
1024 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
1025 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
1026
1027 int
1028 sv_query_devinfo(addr, dip)
1029 void *addr;
1030 mixer_devinfo_t *dip;
1031 {
1032 int i;
1033
1034 /* It's a class */
1035 if (dip->index <= SV_LAST_CLASS) {
1036 dip->type = AUDIO_MIXER_CLASS;
1037 dip->mixer_class = dip->index;
1038 dip->next = dip->prev = AUDIO_MIXER_LAST;
1039 strcpy(dip->label.name,
1040 mixer_classes[dip->index]);
1041 return (0);
1042 }
1043
1044 if (dip->index >= SV_FIRST_MIXER &&
1045 dip->index <= SV_LAST_MIXER) {
1046 int off = dip->index - SV_FIRST_MIXER;
1047 int mute = (off % SV_DEVICES_PER_PORT);
1048 int idx = off / SV_DEVICES_PER_PORT;
1049
1050 dip->mixer_class = ports[idx].class;
1051 strcpy(dip->label.name, ports[idx].audio);
1052
1053 if (!mute) {
1054 dip->type = AUDIO_MIXER_VALUE;
1055 dip->prev = AUDIO_MIXER_LAST;
1056 dip->next = dip->index + 1;
1057
1058 if (ports[idx].r_port != 0)
1059 dip->un.v.num_channels = 2;
1060 else
1061 dip->un.v.num_channels = 1;
1062
1063 strcpy(dip->un.v.units.name, AudioNvolume);
1064 } else {
1065 dip->type = AUDIO_MIXER_ENUM;
1066 dip->prev = dip->index - 1;
1067 dip->next = AUDIO_MIXER_LAST;
1068
1069 strcpy(dip->label.name, AudioNmute);
1070 dip->un.e.num_mem = 2;
1071 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1072 dip->un.e.member[0].ord = 0;
1073 strcpy(dip->un.e.member[1].label.name, AudioNon);
1074 dip->un.e.member[1].ord = 1;
1075 }
1076
1077 return (0);
1078 }
1079
1080 switch (dip->index) {
1081 case SV_RECORD_SOURCE:
1082 dip->mixer_class = SV_RECORD_CLASS;
1083 dip->prev = AUDIO_MIXER_LAST;
1084 dip->next = SV_RECORD_GAIN;
1085 strcpy(dip->label.name, AudioNsource);
1086 dip->type = AUDIO_MIXER_ENUM;
1087
1088 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1089 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1090 strcpy(dip->un.e.member[i].label.name,
1091 record_sources[i].name);
1092 dip->un.e.member[i].ord = record_sources[i].idx;
1093 }
1094 return (0);
1095
1096 case SV_RECORD_GAIN:
1097 dip->mixer_class = SV_RECORD_CLASS;
1098 dip->prev = SV_RECORD_SOURCE;
1099 dip->next = AUDIO_MIXER_LAST;
1100 strcpy(dip->label.name, "gain");
1101 dip->type = AUDIO_MIXER_VALUE;
1102 dip->un.v.num_channels = 1;
1103 strcpy(dip->un.v.units.name, AudioNvolume);
1104 return (0);
1105
1106 case SV_MIC_BOOST:
1107 dip->mixer_class = SV_RECORD_CLASS;
1108 dip->prev = AUDIO_MIXER_LAST;
1109 dip->next = AUDIO_MIXER_LAST;
1110 strcpy(dip->label.name, "micboost");
1111 goto on_off;
1112
1113 case SV_SRS_MODE:
1114 dip->mixer_class = SV_OUTPUT_CLASS;
1115 dip->prev = dip->next = AUDIO_MIXER_LAST;
1116 strcpy(dip->label.name, AudioNspatial);
1117
1118 on_off:
1119 dip->type = AUDIO_MIXER_ENUM;
1120 dip->un.e.num_mem = 2;
1121 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1122 dip->un.e.member[0].ord = 0;
1123 strcpy(dip->un.e.member[1].label.name, AudioNon);
1124 dip->un.e.member[1].ord = 1;
1125 return (0);
1126 }
1127
1128 return (ENXIO);
1129 }
1130
1131 int
1132 sv_mixer_set_port(addr, cp)
1133 void *addr;
1134 mixer_ctrl_t *cp;
1135 {
1136 struct sv_softc *sc = addr;
1137 u_int8_t reg;
1138 int idx;
1139
1140 if (cp->dev >= SV_FIRST_MIXER &&
1141 cp->dev <= SV_LAST_MIXER) {
1142 int off = cp->dev - SV_FIRST_MIXER;
1143 int mute = (off % SV_DEVICES_PER_PORT);
1144 idx = off / SV_DEVICES_PER_PORT;
1145
1146 if (mute) {
1147 if (cp->type != AUDIO_MIXER_ENUM)
1148 return (EINVAL);
1149
1150 reg = sv_read_indirect(sc, ports[idx].l_port);
1151 if (cp->un.ord)
1152 reg |= SV_MUTE_BIT;
1153 else
1154 reg &= ~SV_MUTE_BIT;
1155 sv_write_indirect(sc, ports[idx].l_port, reg);
1156
1157 if (ports[idx].r_port) {
1158 reg = sv_read_indirect(sc, ports[idx].r_port);
1159 if (cp->un.ord)
1160 reg |= SV_MUTE_BIT;
1161 else
1162 reg &= ~SV_MUTE_BIT;
1163 sv_write_indirect(sc, ports[idx].r_port, reg);
1164 }
1165 } else {
1166 int lval, rval;
1167
1168 if (cp->type != AUDIO_MIXER_VALUE)
1169 return (EINVAL);
1170
1171 if (cp->un.value.num_channels != 1 &&
1172 cp->un.value.num_channels != 2)
1173 return (EINVAL);
1174
1175 if (ports[idx].r_port == 0) {
1176 if (cp->un.value.num_channels != 1)
1177 return (EINVAL);
1178 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1179 rval = 0; /* shut up GCC */
1180 } else {
1181 if (cp->un.value.num_channels != 2)
1182 return (EINVAL);
1183
1184 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1185 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1186 }
1187
1188
1189 reg = sv_read_indirect(sc, ports[idx].l_port);
1190 reg &= ~(ports[idx].mask);
1191 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1192 AUDIO_MAX_GAIN;
1193 reg |= lval;
1194 sv_write_indirect(sc, ports[idx].l_port, reg);
1195
1196 if (ports[idx].r_port != 0) {
1197 reg = sv_read_indirect(sc, ports[idx].r_port);
1198 reg &= ~(ports[idx].mask);
1199
1200 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1201 AUDIO_MAX_GAIN;
1202 reg |= rval;
1203
1204 sv_write_indirect(sc, ports[idx].r_port, reg);
1205 }
1206
1207 sv_read_indirect(sc, ports[idx].l_port);
1208 }
1209
1210 return (0);
1211 }
1212
1213
1214 switch (cp->dev) {
1215 case SV_RECORD_SOURCE:
1216 if (cp->type != AUDIO_MIXER_ENUM)
1217 return (EINVAL);
1218
1219 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1220 if (record_sources[idx].idx == cp->un.ord)
1221 goto found;
1222 }
1223
1224 return (EINVAL);
1225
1226 found:
1227 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1228 reg &= ~SV_REC_SOURCE_MASK;
1229 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1230 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1231
1232 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1233 reg &= ~SV_REC_SOURCE_MASK;
1234 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1235 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1236 return (0);
1237
1238 case SV_RECORD_GAIN:
1239 {
1240 int val;
1241
1242 if (cp->type != AUDIO_MIXER_VALUE)
1243 return (EINVAL);
1244
1245 if (cp->un.value.num_channels != 1)
1246 return (EINVAL);
1247
1248 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
1249 / AUDIO_MAX_GAIN;
1250
1251 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1252 reg &= ~SV_REC_GAIN_MASK;
1253 reg |= val;
1254 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1255
1256 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1257 reg &= ~SV_REC_GAIN_MASK;
1258 reg |= val;
1259 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1260 }
1261 return (0);
1262
1263 case SV_MIC_BOOST:
1264 if (cp->type != AUDIO_MIXER_ENUM)
1265 return (EINVAL);
1266
1267 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1268 if (cp->un.ord) {
1269 reg |= SV_MIC_BOOST_BIT;
1270 } else {
1271 reg &= ~SV_MIC_BOOST_BIT;
1272 }
1273
1274 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1275 return (0);
1276
1277 case SV_SRS_MODE:
1278 if (cp->type != AUDIO_MIXER_ENUM)
1279 return (EINVAL);
1280
1281 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1282 if (cp->un.ord) {
1283 reg &= ~SV_SRS_SPACE_ONOFF;
1284 } else {
1285 reg |= SV_SRS_SPACE_ONOFF;
1286 }
1287
1288 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1289 return (0);
1290 }
1291
1292 return (EINVAL);
1293 }
1294
1295 int
1296 sv_mixer_get_port(addr, cp)
1297 void *addr;
1298 mixer_ctrl_t *cp;
1299 {
1300 struct sv_softc *sc = addr;
1301 int val;
1302 u_int8_t reg;
1303
1304 if (cp->dev >= SV_FIRST_MIXER &&
1305 cp->dev <= SV_LAST_MIXER) {
1306 int off = cp->dev - SV_FIRST_MIXER;
1307 int mute = (off % 2);
1308 int idx = off / 2;
1309
1310 if (mute) {
1311 if (cp->type != AUDIO_MIXER_ENUM)
1312 return (EINVAL);
1313
1314 reg = sv_read_indirect(sc, ports[idx].l_port);
1315 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1316 } else {
1317 if (cp->type != AUDIO_MIXER_VALUE)
1318 return (EINVAL);
1319
1320 if (cp->un.value.num_channels != 1 &&
1321 cp->un.value.num_channels != 2)
1322 return (EINVAL);
1323
1324 if ((ports[idx].r_port == 0 &&
1325 cp->un.value.num_channels != 1) ||
1326 (ports[idx].r_port != 0 &&
1327 cp->un.value.num_channels != 2))
1328 return (EINVAL);
1329
1330 reg = sv_read_indirect(sc, ports[idx].l_port);
1331 reg &= ports[idx].mask;
1332
1333 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1334
1335 if (ports[idx].r_port != 0) {
1336 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1337
1338 reg = sv_read_indirect(sc, ports[idx].r_port);
1339 reg &= ports[idx].mask;
1340
1341 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1342 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1343 } else
1344 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1345 }
1346
1347 return (0);
1348 }
1349
1350 switch (cp->dev) {
1351 case SV_RECORD_SOURCE:
1352 if (cp->type != AUDIO_MIXER_ENUM)
1353 return (EINVAL);
1354
1355 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1356 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1357
1358 return (0);
1359
1360 case SV_RECORD_GAIN:
1361 if (cp->type != AUDIO_MIXER_VALUE)
1362 return (EINVAL);
1363 if (cp->un.value.num_channels != 1)
1364 return (EINVAL);
1365
1366 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1367 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1368 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1369
1370 return (0);
1371
1372 case SV_MIC_BOOST:
1373 if (cp->type != AUDIO_MIXER_ENUM)
1374 return (EINVAL);
1375 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1376 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1377 return (0);
1378
1379
1380 case SV_SRS_MODE:
1381 if (cp->type != AUDIO_MIXER_ENUM)
1382 return (EINVAL);
1383 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1384 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1385 return (0);
1386 }
1387
1388 return (EINVAL);
1389 }
1390
1391
1392 static void
1393 sv_init_mixer(sc)
1394 struct sv_softc *sc;
1395 {
1396 mixer_ctrl_t cp;
1397 int i;
1398
1399 cp.type = AUDIO_MIXER_ENUM;
1400 cp.dev = SV_SRS_MODE;
1401 cp.un.ord = 0;
1402
1403 sv_mixer_set_port(sc, &cp);
1404
1405 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1406 if (ports[i].audio == AudioNdac) {
1407 cp.type = AUDIO_MIXER_ENUM;
1408 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1409 cp.un.ord = 0;
1410 sv_mixer_set_port(sc, &cp);
1411 break;
1412 }
1413 }
1414 }
1415
1416 void *
1417 sv_malloc(addr, direction, size, pool, flags)
1418 void *addr;
1419 int direction;
1420 size_t size;
1421 struct malloc_type *pool;
1422 int flags;
1423 {
1424 struct sv_softc *sc = addr;
1425 struct sv_dma *p;
1426 int error;
1427
1428 p = malloc(sizeof(*p), pool, flags);
1429 if (!p)
1430 return (0);
1431 error = sv_allocmem(sc, size, 16, direction, p);
1432 if (error) {
1433 free(p, pool);
1434 return (0);
1435 }
1436 p->next = sc->sc_dmas;
1437 sc->sc_dmas = p;
1438 return (KERNADDR(p));
1439 }
1440
1441 void
1442 sv_free(addr, ptr, pool)
1443 void *addr;
1444 void *ptr;
1445 struct malloc_type *pool;
1446 {
1447 struct sv_softc *sc = addr;
1448 struct sv_dma **pp, *p;
1449
1450 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1451 if (KERNADDR(p) == ptr) {
1452 sv_freemem(sc, p);
1453 *pp = p->next;
1454 free(p, pool);
1455 return;
1456 }
1457 }
1458 }
1459
1460 size_t
1461 sv_round_buffersize(addr, direction, size)
1462 void *addr;
1463 int direction;
1464 size_t size;
1465 {
1466 return (size);
1467 }
1468
1469 paddr_t
1470 sv_mappage(addr, mem, off, prot)
1471 void *addr;
1472 void *mem;
1473 off_t off;
1474 int prot;
1475 {
1476 struct sv_softc *sc = addr;
1477 struct sv_dma *p;
1478
1479 if (off < 0)
1480 return (-1);
1481 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1482 ;
1483 if (!p)
1484 return (-1);
1485 return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1486 off, prot, BUS_DMA_WAITOK));
1487 }
1488
1489 int
1490 sv_get_props(addr)
1491 void *addr;
1492 {
1493 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
1494 }
1495