Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.32
      1 /*      $NetBSD: sv.c,v 1.32 2006/03/08 23:46:27 lukem Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.32 2006/03/08 23:46:27 lukem Exp $");
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/kernel.h>
     82 #include <sys/malloc.h>
     83 #include <sys/device.h>
     84 
     85 #include <dev/pci/pcireg.h>
     86 #include <dev/pci/pcivar.h>
     87 #include <dev/pci/pcidevs.h>
     88 
     89 #include <sys/audioio.h>
     90 #include <dev/audio_if.h>
     91 #include <dev/mulaw.h>
     92 #include <dev/auconv.h>
     93 
     94 #include <dev/ic/i8237reg.h>
     95 #include <dev/pci/svreg.h>
     96 #include <dev/pci/svvar.h>
     97 
     98 #include <machine/bus.h>
     99 
    100 /* XXX
    101  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    102  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    103  * DMA tag on i386.
    104  */
    105 #if defined(i386)
    106 #include "isa.h"
    107 #if NISA > 0
    108 #include <dev/isa/isavar.h>
    109 #endif
    110 #endif
    111 
    112 #ifdef AUDIO_DEBUG
    113 #define DPRINTF(x)	if (svdebug) printf x
    114 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    115 int	svdebug = 0;
    116 #else
    117 #define DPRINTF(x)
    118 #define DPRINTFN(n,x)
    119 #endif
    120 
    121 static int	sv_match(struct device *, struct cfdata *, void *);
    122 static void	sv_attach(struct device *, struct device *, void *);
    123 static int	sv_intr(void *);
    124 
    125 struct sv_dma {
    126 	bus_dmamap_t map;
    127 	caddr_t addr;
    128 	bus_dma_segment_t segs[1];
    129 	int nsegs;
    130 	size_t size;
    131 	struct sv_dma *next;
    132 };
    133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    134 #define KERNADDR(p) ((void *)((p)->addr))
    135 
    136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
    137     sv_match, sv_attach, NULL, NULL);
    138 
    139 static struct audio_device sv_device = {
    140 	"S3 SonicVibes",
    141 	"",
    142 	"sv"
    143 };
    144 
    145 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    146 
    147 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
    148 			    struct sv_dma *);
    149 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
    150 
    151 static void	sv_init_mixer(struct sv_softc *);
    152 
    153 static int	sv_open(void *, int);
    154 static int	sv_query_encoding(void *, struct audio_encoding *);
    155 static int	sv_set_params(void *, int, int, audio_params_t *,
    156 			      audio_params_t *, stream_filter_list_t *,
    157 			      stream_filter_list_t *);
    158 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
    159 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
    160 				  void *, const audio_params_t *);
    161 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
    162 				 void *, const audio_params_t *);
    163 static int	sv_halt_output(void *);
    164 static int	sv_halt_input(void *);
    165 static int	sv_getdev(void *, struct audio_device *);
    166 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
    167 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
    168 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
    169 static void *	sv_malloc(void *, int, size_t, struct malloc_type *, int);
    170 static void	sv_free(void *, void *, struct malloc_type *);
    171 static size_t	sv_round_buffersize(void *, int, size_t);
    172 static paddr_t	sv_mappage(void *, void *, off_t, int);
    173 static int	sv_get_props(void *);
    174 
    175 #ifdef AUDIO_DEBUG
    176 void    sv_dumpregs(struct sv_softc *sc);
    177 #endif
    178 
    179 static const struct audio_hw_if sv_hw_if = {
    180 	sv_open,
    181 	NULL,			/* close */
    182 	NULL,
    183 	sv_query_encoding,
    184 	sv_set_params,
    185 	sv_round_blocksize,
    186 	NULL,
    187 	NULL,
    188 	NULL,
    189 	NULL,
    190 	NULL,
    191 	sv_halt_output,
    192 	sv_halt_input,
    193 	NULL,
    194 	sv_getdev,
    195 	NULL,
    196 	sv_mixer_set_port,
    197 	sv_mixer_get_port,
    198 	sv_query_devinfo,
    199 	sv_malloc,
    200 	sv_free,
    201 	sv_round_buffersize,
    202 	sv_mappage,
    203 	sv_get_props,
    204 	sv_trigger_output,
    205 	sv_trigger_input,
    206 	NULL,
    207 };
    208 
    209 #define SV_NFORMATS	4
    210 static const struct audio_format sv_formats[SV_NFORMATS] = {
    211 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    212 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    213 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    214 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    215 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    216 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    217 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    218 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    219 };
    220 
    221 
    222 static void
    223 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
    224 {
    225 
    226 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    227 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    228 }
    229 
    230 static uint8_t
    231 sv_read(struct sv_softc *sc, uint8_t reg)
    232 {
    233 	uint8_t val;
    234 
    235 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    236 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    237 	return val;
    238 }
    239 
    240 static uint8_t
    241 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
    242 {
    243 	uint8_t val;
    244 	int s;
    245 
    246 	s = splaudio();
    247 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    248 	val = sv_read(sc, SV_CODEC_IDATA);
    249 	splx(s);
    250 	return val;
    251 }
    252 
    253 static void
    254 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
    255 {
    256 	uint8_t iaddr;
    257 	int s;
    258 
    259 	iaddr = reg & SV_IADDR_MASK;
    260 	s = splaudio();
    261 	if (reg == SV_DMA_DATA_FORMAT)
    262 		iaddr |= SV_IADDR_MCE;
    263 
    264 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    265 	sv_write(sc, SV_CODEC_IDATA, val);
    266 	splx(s);
    267 }
    268 
    269 static int
    270 sv_match(struct device *parent, struct cfdata *match, void *aux)
    271 {
    272 	struct pci_attach_args *pa;
    273 
    274 	pa = aux;
    275 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    276 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    277 		return 1;
    278 
    279 	return 0;
    280 }
    281 
    282 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
    283 
    284 static int
    285 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
    286     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
    287     bus_size_t bound, int flags, bus_space_handle_t *ioh)
    288 {
    289 	bus_addr_t addr;
    290 	int error;
    291 
    292 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
    293 				size, align, bound, flags, &addr, ioh);
    294 	if (error)
    295 		return error;
    296 
    297 	pci_conf_write(pc, pt, pcioffs, addr);
    298 	return 0;
    299 }
    300 
    301 /*
    302  * Allocate IO addresses when all other configuration is done.
    303  */
    304 static void
    305 sv_defer(struct device *self)
    306 {
    307 	struct sv_softc *sc;
    308 	pci_chipset_tag_t pc;
    309 	pcitag_t pt;
    310 	pcireg_t dmaio;
    311 
    312 	sc = (struct sv_softc *)self;
    313 	pc = sc->sc_pa.pa_pc;
    314 	pt = sc->sc_pa.pa_tag;
    315 	DPRINTF(("sv_defer: %p\n", sc));
    316 
    317 	/* XXX
    318 	 * Get a reasonable default for the I/O range.
    319 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
    320 	 */
    321 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
    322 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
    323 
    324 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    325 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    326 			  0, &sc->sc_dmaa_ioh)) {
    327 		printf("sv_attach: cannot allocate DMA A range\n");
    328 		return;
    329 	}
    330 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    331 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    332 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    333 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    334 
    335 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    336 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    337 			  0, &sc->sc_dmac_ioh)) {
    338 		printf("sv_attach: cannot allocate DMA C range\n");
    339 		return;
    340 	}
    341 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    342 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    343 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    344 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    345 
    346 	sc->sc_dmaset = 1;
    347 }
    348 
    349 static void
    350 sv_attach(struct device *parent, struct device *self, void *aux)
    351 {
    352 	struct sv_softc *sc;
    353 	struct pci_attach_args *pa;
    354 	pci_chipset_tag_t pc;
    355 	pcitag_t pt;
    356 	pci_intr_handle_t ih;
    357 	pcireg_t csr;
    358 	char const *intrstr;
    359 	uint8_t reg;
    360 	struct audio_attach_args arg;
    361 
    362 	sc = (struct sv_softc *)self;
    363 	pa = aux;
    364 	pc = pa->pa_pc;
    365 	pt = pa->pa_tag;
    366 	printf ("\n");
    367 
    368 	/* Map I/O registers */
    369 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    370 			   PCI_MAPREG_TYPE_IO, 0,
    371 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    372 		printf("%s: can't map enhanced i/o space\n",
    373 		       sc->sc_dev.dv_xname);
    374 		return;
    375 	}
    376 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    377 			   PCI_MAPREG_TYPE_IO, 0,
    378 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    379 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    380 		return;
    381 	}
    382 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    383 			   PCI_MAPREG_TYPE_IO, 0,
    384 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    385 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    386 		return;
    387 	}
    388 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    389 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    390 
    391 #if defined(alpha)
    392 	/* XXX Force allocation through the SGMAP. */
    393 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    394 #elif defined(i386) && NISA > 0
    395 /* XXX
    396  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    397  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    398  * DMA tag on i386.
    399  */
    400 	sc->sc_dmatag = &isa_bus_dma_tag;
    401 #else
    402 	sc->sc_dmatag = pa->pa_dmat;
    403 #endif
    404 
    405 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    406 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    407 
    408 	/* Enable the device. */
    409 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    410 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    411 		       csr | PCI_COMMAND_MASTER_ENABLE);
    412 
    413 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    414 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    415 
    416 	/* initialize codec registers */
    417 	reg = sv_read(sc, SV_CODEC_CONTROL);
    418 	reg |= SV_CTL_RESET;
    419 	sv_write(sc, SV_CODEC_CONTROL, reg);
    420 	delay(50);
    421 
    422 	reg = sv_read(sc, SV_CODEC_CONTROL);
    423 	reg &= ~SV_CTL_RESET;
    424 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    425 
    426 	/* This write clears the reset */
    427 	sv_write(sc, SV_CODEC_CONTROL, reg);
    428 	delay(50);
    429 
    430 	/* This write actually shoves the new values in */
    431 	sv_write(sc, SV_CODEC_CONTROL, reg);
    432 
    433 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    434 
    435 	/* Enable DMA interrupts */
    436 	reg = sv_read(sc, SV_CODEC_INTMASK);
    437 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    438 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    439 	sv_write(sc, SV_CODEC_INTMASK, reg);
    440 
    441 	sv_read(sc, SV_CODEC_STATUS);
    442 
    443 	/* Map and establish the interrupt. */
    444 	if (pci_intr_map(pa, &ih)) {
    445 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    446 		return;
    447 	}
    448 	intrstr = pci_intr_string(pc, ih);
    449 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    450 	if (sc->sc_ih == NULL) {
    451 		printf("%s: couldn't establish interrupt",
    452 		       sc->sc_dev.dv_xname);
    453 		if (intrstr != NULL)
    454 			printf(" at %s", intrstr);
    455 		printf("\n");
    456 		return;
    457 	}
    458 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    459 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    460 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    461 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    462 		printf(", reverb SRAM present");
    463 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    464 		printf(", wavetable ROM present");
    465 	printf("\n");
    466 
    467 	sv_init_mixer(sc);
    468 
    469 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    470 
    471 	arg.type = AUDIODEV_TYPE_OPL;
    472 	arg.hwif = 0;
    473 	arg.hdl = 0;
    474 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    475 
    476 	sc->sc_pa = *pa;	/* for deferred setup */
    477 	config_defer(self, sv_defer);
    478 }
    479 
    480 #ifdef AUDIO_DEBUG
    481 void
    482 sv_dumpregs(struct sv_softc *sc)
    483 {
    484 	int idx;
    485 
    486 #if 0
    487 	for (idx = 0; idx < 0x50; idx += 4)
    488 		printf ("%02x = %x\n", idx,
    489 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    490 #endif
    491 
    492 	for (idx = 0; idx < 6; idx++)
    493 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    494 
    495 	for (idx = 0; idx < 0x32; idx++)
    496 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    497 
    498 	for (idx = 0; idx < 0x10; idx++)
    499 		printf ("DMA %02x = %02x\n", idx,
    500 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    501 }
    502 #endif
    503 
    504 static int
    505 sv_intr(void *p)
    506 {
    507 	struct sv_softc *sc;
    508 	uint8_t intr;
    509 
    510 	sc = p;
    511 	intr = sv_read(sc, SV_CODEC_STATUS);
    512 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    513 
    514 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    515 		return 0;
    516 
    517 	if (intr & SV_INTSTATUS_DMAA) {
    518 		if (sc->sc_pintr)
    519 			sc->sc_pintr(sc->sc_parg);
    520 	}
    521 
    522 	if (intr & SV_INTSTATUS_DMAC) {
    523 		if (sc->sc_rintr)
    524 			sc->sc_rintr(sc->sc_rarg);
    525 	}
    526 
    527 	return 1;
    528 }
    529 
    530 static int
    531 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
    532     int direction, struct sv_dma *p)
    533 {
    534 	int error;
    535 
    536 	p->size = size;
    537 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    538 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
    539 	if (error)
    540 		return error;
    541 
    542 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    543 	    &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    544 	if (error)
    545 		goto free;
    546 
    547 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    548 	    0, BUS_DMA_NOWAIT, &p->map);
    549 	if (error)
    550 		goto unmap;
    551 
    552 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    553 	    BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    554 	if (error)
    555 		goto destroy;
    556 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    557 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    558 	return 0;
    559 
    560 destroy:
    561 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    562 unmap:
    563 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    564 free:
    565 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    566 	return error;
    567 }
    568 
    569 static int
    570 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
    571 {
    572 
    573 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    574 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    575 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    576 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    577 	return 0;
    578 }
    579 
    580 static int
    581 sv_open(void *addr, int flags)
    582 {
    583 	struct sv_softc *sc;
    584 
    585 	sc = addr;
    586 	DPRINTF(("sv_open\n"));
    587 	if (!sc->sc_dmaset)
    588 		return ENXIO;
    589 
    590 	return 0;
    591 }
    592 
    593 static int
    594 sv_query_encoding(void *addr, struct audio_encoding *fp)
    595 {
    596 
    597 	switch (fp->index) {
    598 	case 0:
    599 		strcpy(fp->name, AudioEulinear);
    600 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    601 		fp->precision = 8;
    602 		fp->flags = 0;
    603 		return 0;
    604 	case 1:
    605 		strcpy(fp->name, AudioEmulaw);
    606 		fp->encoding = AUDIO_ENCODING_ULAW;
    607 		fp->precision = 8;
    608 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    609 		return 0;
    610 	case 2:
    611 		strcpy(fp->name, AudioEalaw);
    612 		fp->encoding = AUDIO_ENCODING_ALAW;
    613 		fp->precision = 8;
    614 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    615 		return 0;
    616 	case 3:
    617 		strcpy(fp->name, AudioEslinear);
    618 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    619 		fp->precision = 8;
    620 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    621 		return 0;
    622 	case 4:
    623 		strcpy(fp->name, AudioEslinear_le);
    624 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    625 		fp->precision = 16;
    626 		fp->flags = 0;
    627 		return 0;
    628 	case 5:
    629 		strcpy(fp->name, AudioEulinear_le);
    630 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    631 		fp->precision = 16;
    632 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    633 		return 0;
    634 	case 6:
    635 		strcpy(fp->name, AudioEslinear_be);
    636 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    637 		fp->precision = 16;
    638 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    639 		return 0;
    640 	case 7:
    641 		strcpy(fp->name, AudioEulinear_be);
    642 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    643 		fp->precision = 16;
    644 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    645 		return 0;
    646 	default:
    647 		return EINVAL;
    648 	}
    649 }
    650 
    651 static int
    652 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
    653     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    654 {
    655 	struct sv_softc *sc;
    656 	audio_params_t *p;
    657 	uint32_t val;
    658 
    659 	sc = addr;
    660 	p = NULL;
    661 	/*
    662 	 * This device only has one clock, so make the sample rates match.
    663 	 */
    664 	if (play->sample_rate != rec->sample_rate &&
    665 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    666 		if (setmode == AUMODE_PLAY) {
    667 			rec->sample_rate = play->sample_rate;
    668 			setmode |= AUMODE_RECORD;
    669 		} else if (setmode == AUMODE_RECORD) {
    670 			play->sample_rate = rec->sample_rate;
    671 			setmode |= AUMODE_PLAY;
    672 		} else
    673 			return EINVAL;
    674 	}
    675 
    676 	if (setmode & AUMODE_RECORD) {
    677 		p = rec;
    678 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    679 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
    680 			return EINVAL;
    681 	}
    682 	if (setmode & AUMODE_PLAY) {
    683 		p = play;
    684 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    685 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
    686 			return EINVAL;
    687 	}
    688 
    689 	if (p == NULL)
    690 		return 0;
    691 
    692 	val = p->sample_rate * 65536 / 48000;
    693 	/*
    694 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
    695 	 * register, so we have to bias it.  This causes a little clock drift.
    696 	 * The drift is below normal crystal tolerance (.0001%), so although
    697 	 * this seems a little silly, we can pretty much ignore it.
    698 	 * (I tested the output speed with values of 1-20, just to be sure this
    699 	 * register isn't *supposed* to have a bias.  It isn't.)
    700 	 * - mycroft
    701 	 */
    702 	if (val > 65535)
    703 		val = 65535;
    704 
    705 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    706 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    707 
    708 #define F_REF 24576000
    709 
    710 #define ABS(x) (((x) < 0) ? (-x) : (x))
    711 
    712 	if (setmode & AUMODE_RECORD) {
    713 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    714 
    715 		/* f_out is dervied from the 24.576MHz crystal by three values:
    716 		   M & N & R. The equation is as follows:
    717 
    718 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    719 
    720 		   with the constraint that:
    721 
    722 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
    723 		   and n, m >= 1
    724 		*/
    725 
    726 		int  goal_f_out;
    727 		int  a, n, m, best_n, best_m, best_error;
    728 		int  pll_sample;
    729 		int  error;
    730 
    731 		goal_f_out = 512 * rec->sample_rate;
    732 		best_n = 0;
    733 		best_m = 0;
    734 		best_error = 10000000;
    735 		for (a = 0; a < 8; a++) {
    736 			if ((goal_f_out * (1 << a)) >= 80000000)
    737 				break;
    738 		}
    739 
    740 		/* a != 8 because sample_rate >= 2000 */
    741 
    742 		for (n = 33; n > 2; n--) {
    743 			m = (goal_f_out * n * (1 << a)) / F_REF;
    744 			if ((m > 257) || (m < 3))
    745 				continue;
    746 
    747 			pll_sample = (m * F_REF) / (n * (1 << a));
    748 			pll_sample /= 512;
    749 
    750 			/* Threshold might be good here */
    751 			error = pll_sample - rec->sample_rate;
    752 			error = ABS(error);
    753 
    754 			if (error < best_error) {
    755 				best_error = error;
    756 				best_n = n;
    757 				best_m = m;
    758 				if (error == 0) break;
    759 			}
    760 		}
    761 
    762 		best_n -= 2;
    763 		best_m -= 2;
    764 
    765 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    766 		sv_write_indirect(sc, SV_ADC_PLL_N,
    767 				  best_n | (a << SV_PLL_R_SHIFT));
    768 	}
    769 
    770 	return 0;
    771 }
    772 
    773 static int
    774 sv_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
    775 {
    776 
    777 	return blk & -32;	/* keep good alignment */
    778 }
    779 
    780 static int
    781 sv_trigger_output(void *addr, void *start, void *end, int blksize,
    782     void (*intr)(void *), void *arg, const audio_params_t *param)
    783 {
    784 	struct sv_softc *sc;
    785 	struct sv_dma *p;
    786 	uint8_t mode;
    787 	int dma_count;
    788 
    789 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
    790 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    791 	sc = addr;
    792 	sc->sc_pintr = intr;
    793 	sc->sc_parg = arg;
    794 
    795 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    796 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    797 	if (param->precision == 16)
    798 		mode |= SV_DMAA_FORMAT16;
    799 	if (param->channels == 2)
    800 		mode |= SV_DMAA_STEREO;
    801 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    802 
    803 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    804 		continue;
    805 	if (p == NULL) {
    806 		printf("sv_trigger_output: bad addr %p\n", start);
    807 		return EINVAL;
    808 	}
    809 
    810 	dma_count = ((char *)end - (char *)start) - 1;
    811 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
    812 	    (int)DMAADDR(p), dma_count));
    813 
    814 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    815 			  DMAADDR(p));
    816 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    817 			  dma_count);
    818 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    819 			  DMA37MD_READ | DMA37MD_LOOP);
    820 
    821 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    822 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    823 
    824 	dma_count = blksize - 1;
    825 
    826 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    827 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    828 
    829 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    830 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    831 
    832 	return 0;
    833 }
    834 
    835 static int
    836 sv_trigger_input(void *addr, void *start, void *end, int blksize,
    837     void (*intr)(void *), void *arg, const audio_params_t *param)
    838 {
    839 	struct sv_softc *sc;
    840 	struct sv_dma *p;
    841 	uint8_t mode;
    842 	int dma_count;
    843 
    844 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
    845 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    846 	sc = addr;
    847 	sc->sc_rintr = intr;
    848 	sc->sc_rarg = arg;
    849 
    850 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    851 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    852 	if (param->precision == 16)
    853 		mode |= SV_DMAC_FORMAT16;
    854 	if (param->channels == 2)
    855 		mode |= SV_DMAC_STEREO;
    856 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    857 
    858 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    859 		continue;
    860 	if (!p) {
    861 		printf("sv_trigger_input: bad addr %p\n", start);
    862 		return EINVAL;
    863 	}
    864 
    865 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    866 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
    867 	    (int)DMAADDR(p), dma_count));
    868 
    869 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    870 			  DMAADDR(p));
    871 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    872 			  dma_count);
    873 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    874 			  DMA37MD_WRITE | DMA37MD_LOOP);
    875 
    876 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    877 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    878 
    879 	dma_count = (blksize >> 1) - 1;
    880 
    881 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    882 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    883 
    884 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    885 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    886 
    887 	return 0;
    888 }
    889 
    890 static int
    891 sv_halt_output(void *addr)
    892 {
    893 	struct sv_softc *sc;
    894 	uint8_t mode;
    895 
    896 	DPRINTF(("sv: sv_halt_output\n"));
    897 	sc = addr;
    898 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    899 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    900 	sc->sc_pintr = 0;
    901 
    902 	return 0;
    903 }
    904 
    905 static int
    906 sv_halt_input(void *addr)
    907 {
    908 	struct sv_softc *sc;
    909 	uint8_t mode;
    910 
    911 	DPRINTF(("sv: sv_halt_input\n"));
    912 	sc = addr;
    913 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    914 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    915 	sc->sc_rintr = 0;
    916 
    917 	return 0;
    918 }
    919 
    920 static int
    921 sv_getdev(void *addr, struct audio_device *retp)
    922 {
    923 
    924 	*retp = sv_device;
    925 	return 0;
    926 }
    927 
    928 
    929 /*
    930  * Mixer related code is here
    931  *
    932  */
    933 
    934 #define SV_INPUT_CLASS 0
    935 #define SV_OUTPUT_CLASS 1
    936 #define SV_RECORD_CLASS 2
    937 
    938 #define SV_LAST_CLASS 2
    939 
    940 static const char *mixer_classes[] =
    941 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    942 
    943 static const struct {
    944 	uint8_t   l_port;
    945 	uint8_t   r_port;
    946 	uint8_t   mask;
    947 	uint8_t   class;
    948 	const char *audio;
    949 } ports[] = {
    950   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    951     SV_INPUT_CLASS, "aux1" },
    952   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    953     SV_INPUT_CLASS, AudioNcd },
    954   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    955     SV_INPUT_CLASS, AudioNline },
    956   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    957   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    958     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    959   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    960     SV_INPUT_CLASS, "aux2" },
    961   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    962     SV_INPUT_CLASS, AudioNdac },
    963   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
    964     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
    965 };
    966 
    967 
    968 static const struct {
    969 	int idx;
    970 	const char *name;
    971 } record_sources[] = {
    972 	{ SV_REC_CD, AudioNcd },
    973 	{ SV_REC_DAC, AudioNdac },
    974 	{ SV_REC_AUX2, "aux2" },
    975 	{ SV_REC_LINE, AudioNline },
    976 	{ SV_REC_AUX1, "aux1" },
    977 	{ SV_REC_MIC, AudioNmicrophone },
    978 	{ SV_REC_MIXER, AudioNmixerout }
    979 };
    980 
    981 
    982 #define SV_DEVICES_PER_PORT 2
    983 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
    984 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
    985 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
    986 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
    987 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
    988 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
    989 
    990 static int
    991 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
    992 {
    993 	int i;
    994 
    995 	/* It's a class */
    996 	if (dip->index <= SV_LAST_CLASS) {
    997 		dip->type = AUDIO_MIXER_CLASS;
    998 		dip->mixer_class = dip->index;
    999 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1000 		strcpy(dip->label.name, mixer_classes[dip->index]);
   1001 		return 0;
   1002 	}
   1003 
   1004 	if (dip->index >= SV_FIRST_MIXER &&
   1005 	    dip->index <= SV_LAST_MIXER) {
   1006 		int off, mute ,idx;
   1007 
   1008 		off = dip->index - SV_FIRST_MIXER;
   1009 		mute = (off % SV_DEVICES_PER_PORT);
   1010 		idx = off / SV_DEVICES_PER_PORT;
   1011 		dip->mixer_class = ports[idx].class;
   1012 		strcpy(dip->label.name, ports[idx].audio);
   1013 
   1014 		if (!mute) {
   1015 			dip->type = AUDIO_MIXER_VALUE;
   1016 			dip->prev = AUDIO_MIXER_LAST;
   1017 			dip->next = dip->index + 1;
   1018 
   1019 			if (ports[idx].r_port != 0)
   1020 				dip->un.v.num_channels = 2;
   1021 			else
   1022 				dip->un.v.num_channels = 1;
   1023 
   1024 			strcpy(dip->un.v.units.name, AudioNvolume);
   1025 		} else {
   1026 			dip->type = AUDIO_MIXER_ENUM;
   1027 			dip->prev = dip->index - 1;
   1028 			dip->next = AUDIO_MIXER_LAST;
   1029 
   1030 			strcpy(dip->label.name, AudioNmute);
   1031 			dip->un.e.num_mem = 2;
   1032 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1033 			dip->un.e.member[0].ord = 0;
   1034 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1035 			dip->un.e.member[1].ord = 1;
   1036 		}
   1037 
   1038 		return 0;
   1039 	}
   1040 
   1041 	switch (dip->index) {
   1042 	case SV_RECORD_SOURCE:
   1043 		dip->mixer_class = SV_RECORD_CLASS;
   1044 		dip->prev = AUDIO_MIXER_LAST;
   1045 		dip->next = SV_RECORD_GAIN;
   1046 		strcpy(dip->label.name, AudioNsource);
   1047 		dip->type = AUDIO_MIXER_ENUM;
   1048 
   1049 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1050 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1051 			strcpy(dip->un.e.member[i].label.name,
   1052 			       record_sources[i].name);
   1053 			dip->un.e.member[i].ord = record_sources[i].idx;
   1054 		}
   1055 		return 0;
   1056 
   1057 	case SV_RECORD_GAIN:
   1058 		dip->mixer_class = SV_RECORD_CLASS;
   1059 		dip->prev = SV_RECORD_SOURCE;
   1060 		dip->next = AUDIO_MIXER_LAST;
   1061 		strcpy(dip->label.name, "gain");
   1062 		dip->type = AUDIO_MIXER_VALUE;
   1063 		dip->un.v.num_channels = 1;
   1064 		strcpy(dip->un.v.units.name, AudioNvolume);
   1065 		return 0;
   1066 
   1067 	case SV_MIC_BOOST:
   1068 		dip->mixer_class = SV_RECORD_CLASS;
   1069 		dip->prev = AUDIO_MIXER_LAST;
   1070 		dip->next = AUDIO_MIXER_LAST;
   1071 		strcpy(dip->label.name, "micboost");
   1072 		goto on_off;
   1073 
   1074 	case SV_SRS_MODE:
   1075 		dip->mixer_class = SV_OUTPUT_CLASS;
   1076 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1077 		strcpy(dip->label.name, AudioNspatial);
   1078 
   1079 	on_off:
   1080 		dip->type = AUDIO_MIXER_ENUM;
   1081 		dip->un.e.num_mem = 2;
   1082 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1083 		dip->un.e.member[0].ord = 0;
   1084 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1085 		dip->un.e.member[1].ord = 1;
   1086 		return 0;
   1087 	}
   1088 
   1089 	return ENXIO;
   1090 }
   1091 
   1092 static int
   1093 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1094 {
   1095 	struct sv_softc *sc;
   1096 	uint8_t reg;
   1097 	int idx;
   1098 
   1099 	sc = addr;
   1100 	if (cp->dev >= SV_FIRST_MIXER &&
   1101 	    cp->dev <= SV_LAST_MIXER) {
   1102 		int off, mute;
   1103 
   1104 		off = cp->dev - SV_FIRST_MIXER;
   1105 		mute = (off % SV_DEVICES_PER_PORT);
   1106 		idx = off / SV_DEVICES_PER_PORT;
   1107 
   1108 		if (mute) {
   1109 			if (cp->type != AUDIO_MIXER_ENUM)
   1110 				return EINVAL;
   1111 
   1112 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1113 			if (cp->un.ord)
   1114 				reg |= SV_MUTE_BIT;
   1115 			else
   1116 				reg &= ~SV_MUTE_BIT;
   1117 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1118 
   1119 			if (ports[idx].r_port) {
   1120 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1121 				if (cp->un.ord)
   1122 					reg |= SV_MUTE_BIT;
   1123 				else
   1124 					reg &= ~SV_MUTE_BIT;
   1125 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1126 			}
   1127 		} else {
   1128 			int  lval, rval;
   1129 
   1130 			if (cp->type != AUDIO_MIXER_VALUE)
   1131 				return EINVAL;
   1132 
   1133 			if (cp->un.value.num_channels != 1 &&
   1134 			    cp->un.value.num_channels != 2)
   1135 				return (EINVAL);
   1136 
   1137 			if (ports[idx].r_port == 0) {
   1138 				if (cp->un.value.num_channels != 1)
   1139 					return (EINVAL);
   1140 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1141 				rval = 0; /* shut up GCC */
   1142 			} else {
   1143 				if (cp->un.value.num_channels != 2)
   1144 					return (EINVAL);
   1145 
   1146 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1147 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1148 			}
   1149 
   1150 
   1151 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1152 			reg &= ~(ports[idx].mask);
   1153 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1154 				AUDIO_MAX_GAIN;
   1155 			reg |= lval;
   1156 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1157 
   1158 			if (ports[idx].r_port != 0) {
   1159 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1160 				reg &= ~(ports[idx].mask);
   1161 
   1162 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1163 					AUDIO_MAX_GAIN;
   1164 				reg |= rval;
   1165 
   1166 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1167 			}
   1168 
   1169 			sv_read_indirect(sc, ports[idx].l_port);
   1170 		}
   1171 
   1172 		return 0;
   1173 	}
   1174 
   1175 
   1176 	switch (cp->dev) {
   1177 	case SV_RECORD_SOURCE:
   1178 		if (cp->type != AUDIO_MIXER_ENUM)
   1179 			return EINVAL;
   1180 
   1181 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1182 			if (record_sources[idx].idx == cp->un.ord)
   1183 				goto found;
   1184 		}
   1185 
   1186 		return EINVAL;
   1187 
   1188 	found:
   1189 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1190 		reg &= ~SV_REC_SOURCE_MASK;
   1191 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1192 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1193 
   1194 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1195 		reg &= ~SV_REC_SOURCE_MASK;
   1196 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1197 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1198 		return 0;
   1199 
   1200 	case SV_RECORD_GAIN:
   1201 	{
   1202 		int val;
   1203 
   1204 		if (cp->type != AUDIO_MIXER_VALUE)
   1205 			return EINVAL;
   1206 
   1207 		if (cp->un.value.num_channels != 1)
   1208 			return EINVAL;
   1209 
   1210 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
   1211 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
   1212 
   1213 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1214 		reg &= ~SV_REC_GAIN_MASK;
   1215 		reg |= val;
   1216 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1217 
   1218 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1219 		reg &= ~SV_REC_GAIN_MASK;
   1220 		reg |= val;
   1221 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1222 	}
   1223 	return (0);
   1224 
   1225 	case SV_MIC_BOOST:
   1226 		if (cp->type != AUDIO_MIXER_ENUM)
   1227 			return EINVAL;
   1228 
   1229 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1230 		if (cp->un.ord) {
   1231 			reg |= SV_MIC_BOOST_BIT;
   1232 		} else {
   1233 			reg &= ~SV_MIC_BOOST_BIT;
   1234 		}
   1235 
   1236 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1237 		return 0;
   1238 
   1239 	case SV_SRS_MODE:
   1240 		if (cp->type != AUDIO_MIXER_ENUM)
   1241 			return EINVAL;
   1242 
   1243 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1244 		if (cp->un.ord) {
   1245 			reg &= ~SV_SRS_SPACE_ONOFF;
   1246 		} else {
   1247 			reg |= SV_SRS_SPACE_ONOFF;
   1248 		}
   1249 
   1250 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1251 		return 0;
   1252 	}
   1253 
   1254 	return EINVAL;
   1255 }
   1256 
   1257 static int
   1258 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1259 {
   1260 	struct sv_softc *sc;
   1261 	int val;
   1262 	uint8_t reg;
   1263 
   1264 	sc = addr;
   1265 	if (cp->dev >= SV_FIRST_MIXER &&
   1266 	    cp->dev <= SV_LAST_MIXER) {
   1267 		int off = cp->dev - SV_FIRST_MIXER;
   1268 		int mute = (off % 2);
   1269 		int idx = off / 2;
   1270 
   1271 		off = cp->dev - SV_FIRST_MIXER;
   1272 		mute = (off % 2);
   1273 		idx = off / 2;
   1274 		if (mute) {
   1275 			if (cp->type != AUDIO_MIXER_ENUM)
   1276 				return EINVAL;
   1277 
   1278 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1279 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1280 		} else {
   1281 			if (cp->type != AUDIO_MIXER_VALUE)
   1282 				return EINVAL;
   1283 
   1284 			if (cp->un.value.num_channels != 1 &&
   1285 			    cp->un.value.num_channels != 2)
   1286 				return EINVAL;
   1287 
   1288 			if ((ports[idx].r_port == 0 &&
   1289 			     cp->un.value.num_channels != 1) ||
   1290 			    (ports[idx].r_port != 0 &&
   1291 			     cp->un.value.num_channels != 2))
   1292 				return EINVAL;
   1293 
   1294 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1295 			reg &= ports[idx].mask;
   1296 
   1297 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1298 
   1299 			if (ports[idx].r_port != 0) {
   1300 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1301 
   1302 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1303 				reg &= ports[idx].mask;
   1304 
   1305 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
   1306 				    / ports[idx].mask);
   1307 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1308 			} else
   1309 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1310 		}
   1311 
   1312 		return 0;
   1313 	}
   1314 
   1315 	switch (cp->dev) {
   1316 	case SV_RECORD_SOURCE:
   1317 		if (cp->type != AUDIO_MIXER_ENUM)
   1318 			return EINVAL;
   1319 
   1320 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1321 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1322 
   1323 		return 0;
   1324 
   1325 	case SV_RECORD_GAIN:
   1326 		if (cp->type != AUDIO_MIXER_VALUE)
   1327 			return EINVAL;
   1328 		if (cp->un.value.num_channels != 1)
   1329 			return EINVAL;
   1330 
   1331 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1332 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1333 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1334 
   1335 		return 0;
   1336 
   1337 	case SV_MIC_BOOST:
   1338 		if (cp->type != AUDIO_MIXER_ENUM)
   1339 			return EINVAL;
   1340 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1341 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1342 		return 0;
   1343 
   1344 	case SV_SRS_MODE:
   1345 		if (cp->type != AUDIO_MIXER_ENUM)
   1346 			return EINVAL;
   1347 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1348 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1349 		return 0;
   1350 	}
   1351 
   1352 	return EINVAL;
   1353 }
   1354 
   1355 static void
   1356 sv_init_mixer(struct sv_softc *sc)
   1357 {
   1358 	mixer_ctrl_t cp;
   1359 	int i;
   1360 
   1361 	cp.type = AUDIO_MIXER_ENUM;
   1362 	cp.dev = SV_SRS_MODE;
   1363 	cp.un.ord = 0;
   1364 
   1365 	sv_mixer_set_port(sc, &cp);
   1366 
   1367 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1368 		if (ports[i].audio == AudioNdac) {
   1369 			cp.type = AUDIO_MIXER_ENUM;
   1370 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1371 			cp.un.ord = 0;
   1372 			sv_mixer_set_port(sc, &cp);
   1373 			break;
   1374 		}
   1375 	}
   1376 }
   1377 
   1378 static void *
   1379 sv_malloc(void *addr, int direction, size_t size,
   1380     struct malloc_type *pool, int flags)
   1381 {
   1382 	struct sv_softc *sc;
   1383 	struct sv_dma *p;
   1384 	int error;
   1385 
   1386 	sc = addr;
   1387 	p = malloc(sizeof(*p), pool, flags);
   1388 	if (p == NULL)
   1389 		return NULL;
   1390 	error = sv_allocmem(sc, size, 16, direction, p);
   1391 	if (error) {
   1392 		free(p, pool);
   1393 		return 0;
   1394 	}
   1395 	p->next = sc->sc_dmas;
   1396 	sc->sc_dmas = p;
   1397 	return KERNADDR(p);
   1398 }
   1399 
   1400 static void
   1401 sv_free(void *addr, void *ptr, struct malloc_type *pool)
   1402 {
   1403 	struct sv_softc *sc;
   1404 	struct sv_dma **pp, *p;
   1405 
   1406 	sc = addr;
   1407 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1408 		if (KERNADDR(p) == ptr) {
   1409 			sv_freemem(sc, p);
   1410 			*pp = p->next;
   1411 			free(p, pool);
   1412 			return;
   1413 		}
   1414 	}
   1415 }
   1416 
   1417 static size_t
   1418 sv_round_buffersize(void *addr, int direction, size_t size)
   1419 {
   1420 
   1421 	return size;
   1422 }
   1423 
   1424 static paddr_t
   1425 sv_mappage(void *addr, void *mem, off_t off, int prot)
   1426 {
   1427 	struct sv_softc *sc;
   1428 	struct sv_dma *p;
   1429 
   1430 	sc = addr;
   1431 	if (off < 0)
   1432 		return -1;
   1433 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1434 		continue;
   1435 	if (p == NULL)
   1436 		return -1;
   1437 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1438 			       off, prot, BUS_DMA_WAITOK);
   1439 }
   1440 
   1441 static int
   1442 sv_get_props(void *addr)
   1443 {
   1444 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1445 }
   1446