sv.c revision 1.32 1 /* $NetBSD: sv.c,v 1.32 2006/03/08 23:46:27 lukem Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.32 2006/03/08 23:46:27 lukem Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97
98 #include <machine/bus.h>
99
100 /* XXX
101 * The SonicVibes DMA is broken and only works on 24-bit addresses.
102 * As long as bus_dmamem_alloc_range() is missing we use the ISA
103 * DMA tag on i386.
104 */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (svdebug) printf x
114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
115 int svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 static int sv_match(struct device *, struct cfdata *, void *);
122 static void sv_attach(struct device *, struct device *, void *);
123 static int sv_intr(void *);
124
125 struct sv_dma {
126 bus_dmamap_t map;
127 caddr_t addr;
128 bus_dma_segment_t segs[1];
129 int nsegs;
130 size_t size;
131 struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137 sv_match, sv_attach, NULL, NULL);
138
139 static struct audio_device sv_device = {
140 "S3 SonicVibes",
141 "",
142 "sv"
143 };
144
145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
146
147 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
148 struct sv_dma *);
149 static int sv_freemem(struct sv_softc *, struct sv_dma *);
150
151 static void sv_init_mixer(struct sv_softc *);
152
153 static int sv_open(void *, int);
154 static int sv_query_encoding(void *, struct audio_encoding *);
155 static int sv_set_params(void *, int, int, audio_params_t *,
156 audio_params_t *, stream_filter_list_t *,
157 stream_filter_list_t *);
158 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
159 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
160 void *, const audio_params_t *);
161 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
162 void *, const audio_params_t *);
163 static int sv_halt_output(void *);
164 static int sv_halt_input(void *);
165 static int sv_getdev(void *, struct audio_device *);
166 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
167 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
168 static int sv_query_devinfo(void *, mixer_devinfo_t *);
169 static void * sv_malloc(void *, int, size_t, struct malloc_type *, int);
170 static void sv_free(void *, void *, struct malloc_type *);
171 static size_t sv_round_buffersize(void *, int, size_t);
172 static paddr_t sv_mappage(void *, void *, off_t, int);
173 static int sv_get_props(void *);
174
175 #ifdef AUDIO_DEBUG
176 void sv_dumpregs(struct sv_softc *sc);
177 #endif
178
179 static const struct audio_hw_if sv_hw_if = {
180 sv_open,
181 NULL, /* close */
182 NULL,
183 sv_query_encoding,
184 sv_set_params,
185 sv_round_blocksize,
186 NULL,
187 NULL,
188 NULL,
189 NULL,
190 NULL,
191 sv_halt_output,
192 sv_halt_input,
193 NULL,
194 sv_getdev,
195 NULL,
196 sv_mixer_set_port,
197 sv_mixer_get_port,
198 sv_query_devinfo,
199 sv_malloc,
200 sv_free,
201 sv_round_buffersize,
202 sv_mappage,
203 sv_get_props,
204 sv_trigger_output,
205 sv_trigger_input,
206 NULL,
207 };
208
209 #define SV_NFORMATS 4
210 static const struct audio_format sv_formats[SV_NFORMATS] = {
211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
212 2, AUFMT_STEREO, 0, {2000, 48000}},
213 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
214 1, AUFMT_MONAURAL, 0, {2000, 48000}},
215 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
216 2, AUFMT_STEREO, 0, {2000, 48000}},
217 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
218 1, AUFMT_MONAURAL, 0, {2000, 48000}},
219 };
220
221
222 static void
223 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
224 {
225
226 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
227 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
228 }
229
230 static uint8_t
231 sv_read(struct sv_softc *sc, uint8_t reg)
232 {
233 uint8_t val;
234
235 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
236 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
237 return val;
238 }
239
240 static uint8_t
241 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
242 {
243 uint8_t val;
244 int s;
245
246 s = splaudio();
247 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
248 val = sv_read(sc, SV_CODEC_IDATA);
249 splx(s);
250 return val;
251 }
252
253 static void
254 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
255 {
256 uint8_t iaddr;
257 int s;
258
259 iaddr = reg & SV_IADDR_MASK;
260 s = splaudio();
261 if (reg == SV_DMA_DATA_FORMAT)
262 iaddr |= SV_IADDR_MCE;
263
264 sv_write(sc, SV_CODEC_IADDR, iaddr);
265 sv_write(sc, SV_CODEC_IDATA, val);
266 splx(s);
267 }
268
269 static int
270 sv_match(struct device *parent, struct cfdata *match, void *aux)
271 {
272 struct pci_attach_args *pa;
273
274 pa = aux;
275 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
276 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
277 return 1;
278
279 return 0;
280 }
281
282 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
283
284 static int
285 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
286 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
287 bus_size_t bound, int flags, bus_space_handle_t *ioh)
288 {
289 bus_addr_t addr;
290 int error;
291
292 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
293 size, align, bound, flags, &addr, ioh);
294 if (error)
295 return error;
296
297 pci_conf_write(pc, pt, pcioffs, addr);
298 return 0;
299 }
300
301 /*
302 * Allocate IO addresses when all other configuration is done.
303 */
304 static void
305 sv_defer(struct device *self)
306 {
307 struct sv_softc *sc;
308 pci_chipset_tag_t pc;
309 pcitag_t pt;
310 pcireg_t dmaio;
311
312 sc = (struct sv_softc *)self;
313 pc = sc->sc_pa.pa_pc;
314 pt = sc->sc_pa.pa_tag;
315 DPRINTF(("sv_defer: %p\n", sc));
316
317 /* XXX
318 * Get a reasonable default for the I/O range.
319 * Assume the range around SB_PORTBASE is valid on this PCI bus.
320 */
321 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
322 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
323
324 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
325 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
326 0, &sc->sc_dmaa_ioh)) {
327 printf("sv_attach: cannot allocate DMA A range\n");
328 return;
329 }
330 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
331 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
332 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
333 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
334
335 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
336 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
337 0, &sc->sc_dmac_ioh)) {
338 printf("sv_attach: cannot allocate DMA C range\n");
339 return;
340 }
341 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
342 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
343 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
344 dmaio | SV_DMA_CHANNEL_ENABLE);
345
346 sc->sc_dmaset = 1;
347 }
348
349 static void
350 sv_attach(struct device *parent, struct device *self, void *aux)
351 {
352 struct sv_softc *sc;
353 struct pci_attach_args *pa;
354 pci_chipset_tag_t pc;
355 pcitag_t pt;
356 pci_intr_handle_t ih;
357 pcireg_t csr;
358 char const *intrstr;
359 uint8_t reg;
360 struct audio_attach_args arg;
361
362 sc = (struct sv_softc *)self;
363 pa = aux;
364 pc = pa->pa_pc;
365 pt = pa->pa_tag;
366 printf ("\n");
367
368 /* Map I/O registers */
369 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
370 PCI_MAPREG_TYPE_IO, 0,
371 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
372 printf("%s: can't map enhanced i/o space\n",
373 sc->sc_dev.dv_xname);
374 return;
375 }
376 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
377 PCI_MAPREG_TYPE_IO, 0,
378 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
379 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
380 return;
381 }
382 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
383 PCI_MAPREG_TYPE_IO, 0,
384 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
385 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
386 return;
387 }
388 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
389 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
390
391 #if defined(alpha)
392 /* XXX Force allocation through the SGMAP. */
393 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
394 #elif defined(i386) && NISA > 0
395 /* XXX
396 * The SonicVibes DMA is broken and only works on 24-bit addresses.
397 * As long as bus_dmamem_alloc_range() is missing we use the ISA
398 * DMA tag on i386.
399 */
400 sc->sc_dmatag = &isa_bus_dma_tag;
401 #else
402 sc->sc_dmatag = pa->pa_dmat;
403 #endif
404
405 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
406 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
407
408 /* Enable the device. */
409 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
410 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
411 csr | PCI_COMMAND_MASTER_ENABLE);
412
413 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
414 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
415
416 /* initialize codec registers */
417 reg = sv_read(sc, SV_CODEC_CONTROL);
418 reg |= SV_CTL_RESET;
419 sv_write(sc, SV_CODEC_CONTROL, reg);
420 delay(50);
421
422 reg = sv_read(sc, SV_CODEC_CONTROL);
423 reg &= ~SV_CTL_RESET;
424 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
425
426 /* This write clears the reset */
427 sv_write(sc, SV_CODEC_CONTROL, reg);
428 delay(50);
429
430 /* This write actually shoves the new values in */
431 sv_write(sc, SV_CODEC_CONTROL, reg);
432
433 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
434
435 /* Enable DMA interrupts */
436 reg = sv_read(sc, SV_CODEC_INTMASK);
437 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
438 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
439 sv_write(sc, SV_CODEC_INTMASK, reg);
440
441 sv_read(sc, SV_CODEC_STATUS);
442
443 /* Map and establish the interrupt. */
444 if (pci_intr_map(pa, &ih)) {
445 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
446 return;
447 }
448 intrstr = pci_intr_string(pc, ih);
449 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
450 if (sc->sc_ih == NULL) {
451 printf("%s: couldn't establish interrupt",
452 sc->sc_dev.dv_xname);
453 if (intrstr != NULL)
454 printf(" at %s", intrstr);
455 printf("\n");
456 return;
457 }
458 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
459 printf("%s: rev %d", sc->sc_dev.dv_xname,
460 sv_read_indirect(sc, SV_REVISION_LEVEL));
461 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
462 printf(", reverb SRAM present");
463 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
464 printf(", wavetable ROM present");
465 printf("\n");
466
467 sv_init_mixer(sc);
468
469 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
470
471 arg.type = AUDIODEV_TYPE_OPL;
472 arg.hwif = 0;
473 arg.hdl = 0;
474 (void)config_found(&sc->sc_dev, &arg, audioprint);
475
476 sc->sc_pa = *pa; /* for deferred setup */
477 config_defer(self, sv_defer);
478 }
479
480 #ifdef AUDIO_DEBUG
481 void
482 sv_dumpregs(struct sv_softc *sc)
483 {
484 int idx;
485
486 #if 0
487 for (idx = 0; idx < 0x50; idx += 4)
488 printf ("%02x = %x\n", idx,
489 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
490 #endif
491
492 for (idx = 0; idx < 6; idx++)
493 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
494
495 for (idx = 0; idx < 0x32; idx++)
496 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
497
498 for (idx = 0; idx < 0x10; idx++)
499 printf ("DMA %02x = %02x\n", idx,
500 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
501 }
502 #endif
503
504 static int
505 sv_intr(void *p)
506 {
507 struct sv_softc *sc;
508 uint8_t intr;
509
510 sc = p;
511 intr = sv_read(sc, SV_CODEC_STATUS);
512 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
513
514 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
515 return 0;
516
517 if (intr & SV_INTSTATUS_DMAA) {
518 if (sc->sc_pintr)
519 sc->sc_pintr(sc->sc_parg);
520 }
521
522 if (intr & SV_INTSTATUS_DMAC) {
523 if (sc->sc_rintr)
524 sc->sc_rintr(sc->sc_rarg);
525 }
526
527 return 1;
528 }
529
530 static int
531 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
532 int direction, struct sv_dma *p)
533 {
534 int error;
535
536 p->size = size;
537 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
538 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
539 if (error)
540 return error;
541
542 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
543 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
544 if (error)
545 goto free;
546
547 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
548 0, BUS_DMA_NOWAIT, &p->map);
549 if (error)
550 goto unmap;
551
552 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
553 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
554 if (error)
555 goto destroy;
556 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
557 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
558 return 0;
559
560 destroy:
561 bus_dmamap_destroy(sc->sc_dmatag, p->map);
562 unmap:
563 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
564 free:
565 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
566 return error;
567 }
568
569 static int
570 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
571 {
572
573 bus_dmamap_unload(sc->sc_dmatag, p->map);
574 bus_dmamap_destroy(sc->sc_dmatag, p->map);
575 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
576 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
577 return 0;
578 }
579
580 static int
581 sv_open(void *addr, int flags)
582 {
583 struct sv_softc *sc;
584
585 sc = addr;
586 DPRINTF(("sv_open\n"));
587 if (!sc->sc_dmaset)
588 return ENXIO;
589
590 return 0;
591 }
592
593 static int
594 sv_query_encoding(void *addr, struct audio_encoding *fp)
595 {
596
597 switch (fp->index) {
598 case 0:
599 strcpy(fp->name, AudioEulinear);
600 fp->encoding = AUDIO_ENCODING_ULINEAR;
601 fp->precision = 8;
602 fp->flags = 0;
603 return 0;
604 case 1:
605 strcpy(fp->name, AudioEmulaw);
606 fp->encoding = AUDIO_ENCODING_ULAW;
607 fp->precision = 8;
608 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
609 return 0;
610 case 2:
611 strcpy(fp->name, AudioEalaw);
612 fp->encoding = AUDIO_ENCODING_ALAW;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 return 0;
616 case 3:
617 strcpy(fp->name, AudioEslinear);
618 fp->encoding = AUDIO_ENCODING_SLINEAR;
619 fp->precision = 8;
620 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
621 return 0;
622 case 4:
623 strcpy(fp->name, AudioEslinear_le);
624 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
625 fp->precision = 16;
626 fp->flags = 0;
627 return 0;
628 case 5:
629 strcpy(fp->name, AudioEulinear_le);
630 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
631 fp->precision = 16;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 return 0;
634 case 6:
635 strcpy(fp->name, AudioEslinear_be);
636 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
637 fp->precision = 16;
638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 return 0;
640 case 7:
641 strcpy(fp->name, AudioEulinear_be);
642 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
643 fp->precision = 16;
644 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
645 return 0;
646 default:
647 return EINVAL;
648 }
649 }
650
651 static int
652 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
653 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
654 {
655 struct sv_softc *sc;
656 audio_params_t *p;
657 uint32_t val;
658
659 sc = addr;
660 p = NULL;
661 /*
662 * This device only has one clock, so make the sample rates match.
663 */
664 if (play->sample_rate != rec->sample_rate &&
665 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
666 if (setmode == AUMODE_PLAY) {
667 rec->sample_rate = play->sample_rate;
668 setmode |= AUMODE_RECORD;
669 } else if (setmode == AUMODE_RECORD) {
670 play->sample_rate = rec->sample_rate;
671 setmode |= AUMODE_PLAY;
672 } else
673 return EINVAL;
674 }
675
676 if (setmode & AUMODE_RECORD) {
677 p = rec;
678 if (auconv_set_converter(sv_formats, SV_NFORMATS,
679 AUMODE_RECORD, rec, FALSE, rfil) < 0)
680 return EINVAL;
681 }
682 if (setmode & AUMODE_PLAY) {
683 p = play;
684 if (auconv_set_converter(sv_formats, SV_NFORMATS,
685 AUMODE_PLAY, play, FALSE, pfil) < 0)
686 return EINVAL;
687 }
688
689 if (p == NULL)
690 return 0;
691
692 val = p->sample_rate * 65536 / 48000;
693 /*
694 * If the sample rate is exactly 48 kHz, the fraction would overflow the
695 * register, so we have to bias it. This causes a little clock drift.
696 * The drift is below normal crystal tolerance (.0001%), so although
697 * this seems a little silly, we can pretty much ignore it.
698 * (I tested the output speed with values of 1-20, just to be sure this
699 * register isn't *supposed* to have a bias. It isn't.)
700 * - mycroft
701 */
702 if (val > 65535)
703 val = 65535;
704
705 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
706 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
707
708 #define F_REF 24576000
709
710 #define ABS(x) (((x) < 0) ? (-x) : (x))
711
712 if (setmode & AUMODE_RECORD) {
713 /* The ADC reference frequency (f_out) is 512 * sample rate */
714
715 /* f_out is dervied from the 24.576MHz crystal by three values:
716 M & N & R. The equation is as follows:
717
718 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
719
720 with the constraint that:
721
722 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
723 and n, m >= 1
724 */
725
726 int goal_f_out;
727 int a, n, m, best_n, best_m, best_error;
728 int pll_sample;
729 int error;
730
731 goal_f_out = 512 * rec->sample_rate;
732 best_n = 0;
733 best_m = 0;
734 best_error = 10000000;
735 for (a = 0; a < 8; a++) {
736 if ((goal_f_out * (1 << a)) >= 80000000)
737 break;
738 }
739
740 /* a != 8 because sample_rate >= 2000 */
741
742 for (n = 33; n > 2; n--) {
743 m = (goal_f_out * n * (1 << a)) / F_REF;
744 if ((m > 257) || (m < 3))
745 continue;
746
747 pll_sample = (m * F_REF) / (n * (1 << a));
748 pll_sample /= 512;
749
750 /* Threshold might be good here */
751 error = pll_sample - rec->sample_rate;
752 error = ABS(error);
753
754 if (error < best_error) {
755 best_error = error;
756 best_n = n;
757 best_m = m;
758 if (error == 0) break;
759 }
760 }
761
762 best_n -= 2;
763 best_m -= 2;
764
765 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
766 sv_write_indirect(sc, SV_ADC_PLL_N,
767 best_n | (a << SV_PLL_R_SHIFT));
768 }
769
770 return 0;
771 }
772
773 static int
774 sv_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
775 {
776
777 return blk & -32; /* keep good alignment */
778 }
779
780 static int
781 sv_trigger_output(void *addr, void *start, void *end, int blksize,
782 void (*intr)(void *), void *arg, const audio_params_t *param)
783 {
784 struct sv_softc *sc;
785 struct sv_dma *p;
786 uint8_t mode;
787 int dma_count;
788
789 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
790 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
791 sc = addr;
792 sc->sc_pintr = intr;
793 sc->sc_parg = arg;
794
795 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
796 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
797 if (param->precision == 16)
798 mode |= SV_DMAA_FORMAT16;
799 if (param->channels == 2)
800 mode |= SV_DMAA_STEREO;
801 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
802
803 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
804 continue;
805 if (p == NULL) {
806 printf("sv_trigger_output: bad addr %p\n", start);
807 return EINVAL;
808 }
809
810 dma_count = ((char *)end - (char *)start) - 1;
811 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
812 (int)DMAADDR(p), dma_count));
813
814 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
815 DMAADDR(p));
816 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
817 dma_count);
818 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
819 DMA37MD_READ | DMA37MD_LOOP);
820
821 DPRINTF(("sv_trigger_output: current addr=%x\n",
822 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
823
824 dma_count = blksize - 1;
825
826 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
827 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
828
829 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
830 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
831
832 return 0;
833 }
834
835 static int
836 sv_trigger_input(void *addr, void *start, void *end, int blksize,
837 void (*intr)(void *), void *arg, const audio_params_t *param)
838 {
839 struct sv_softc *sc;
840 struct sv_dma *p;
841 uint8_t mode;
842 int dma_count;
843
844 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
845 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
846 sc = addr;
847 sc->sc_rintr = intr;
848 sc->sc_rarg = arg;
849
850 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
851 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
852 if (param->precision == 16)
853 mode |= SV_DMAC_FORMAT16;
854 if (param->channels == 2)
855 mode |= SV_DMAC_STEREO;
856 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
857
858 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
859 continue;
860 if (!p) {
861 printf("sv_trigger_input: bad addr %p\n", start);
862 return EINVAL;
863 }
864
865 dma_count = (((char *)end - (char *)start) >> 1) - 1;
866 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
867 (int)DMAADDR(p), dma_count));
868
869 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
870 DMAADDR(p));
871 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
872 dma_count);
873 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
874 DMA37MD_WRITE | DMA37MD_LOOP);
875
876 DPRINTF(("sv_trigger_input: current addr=%x\n",
877 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
878
879 dma_count = (blksize >> 1) - 1;
880
881 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
882 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
883
884 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
885 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
886
887 return 0;
888 }
889
890 static int
891 sv_halt_output(void *addr)
892 {
893 struct sv_softc *sc;
894 uint8_t mode;
895
896 DPRINTF(("sv: sv_halt_output\n"));
897 sc = addr;
898 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
899 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
900 sc->sc_pintr = 0;
901
902 return 0;
903 }
904
905 static int
906 sv_halt_input(void *addr)
907 {
908 struct sv_softc *sc;
909 uint8_t mode;
910
911 DPRINTF(("sv: sv_halt_input\n"));
912 sc = addr;
913 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
914 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
915 sc->sc_rintr = 0;
916
917 return 0;
918 }
919
920 static int
921 sv_getdev(void *addr, struct audio_device *retp)
922 {
923
924 *retp = sv_device;
925 return 0;
926 }
927
928
929 /*
930 * Mixer related code is here
931 *
932 */
933
934 #define SV_INPUT_CLASS 0
935 #define SV_OUTPUT_CLASS 1
936 #define SV_RECORD_CLASS 2
937
938 #define SV_LAST_CLASS 2
939
940 static const char *mixer_classes[] =
941 { AudioCinputs, AudioCoutputs, AudioCrecord };
942
943 static const struct {
944 uint8_t l_port;
945 uint8_t r_port;
946 uint8_t mask;
947 uint8_t class;
948 const char *audio;
949 } ports[] = {
950 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
951 SV_INPUT_CLASS, "aux1" },
952 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
953 SV_INPUT_CLASS, AudioNcd },
954 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
955 SV_INPUT_CLASS, AudioNline },
956 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
957 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
958 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
959 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
960 SV_INPUT_CLASS, "aux2" },
961 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
962 SV_INPUT_CLASS, AudioNdac },
963 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
964 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
965 };
966
967
968 static const struct {
969 int idx;
970 const char *name;
971 } record_sources[] = {
972 { SV_REC_CD, AudioNcd },
973 { SV_REC_DAC, AudioNdac },
974 { SV_REC_AUX2, "aux2" },
975 { SV_REC_LINE, AudioNline },
976 { SV_REC_AUX1, "aux1" },
977 { SV_REC_MIC, AudioNmicrophone },
978 { SV_REC_MIXER, AudioNmixerout }
979 };
980
981
982 #define SV_DEVICES_PER_PORT 2
983 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
984 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
985 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
986 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
987 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
988 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
989
990 static int
991 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
992 {
993 int i;
994
995 /* It's a class */
996 if (dip->index <= SV_LAST_CLASS) {
997 dip->type = AUDIO_MIXER_CLASS;
998 dip->mixer_class = dip->index;
999 dip->next = dip->prev = AUDIO_MIXER_LAST;
1000 strcpy(dip->label.name, mixer_classes[dip->index]);
1001 return 0;
1002 }
1003
1004 if (dip->index >= SV_FIRST_MIXER &&
1005 dip->index <= SV_LAST_MIXER) {
1006 int off, mute ,idx;
1007
1008 off = dip->index - SV_FIRST_MIXER;
1009 mute = (off % SV_DEVICES_PER_PORT);
1010 idx = off / SV_DEVICES_PER_PORT;
1011 dip->mixer_class = ports[idx].class;
1012 strcpy(dip->label.name, ports[idx].audio);
1013
1014 if (!mute) {
1015 dip->type = AUDIO_MIXER_VALUE;
1016 dip->prev = AUDIO_MIXER_LAST;
1017 dip->next = dip->index + 1;
1018
1019 if (ports[idx].r_port != 0)
1020 dip->un.v.num_channels = 2;
1021 else
1022 dip->un.v.num_channels = 1;
1023
1024 strcpy(dip->un.v.units.name, AudioNvolume);
1025 } else {
1026 dip->type = AUDIO_MIXER_ENUM;
1027 dip->prev = dip->index - 1;
1028 dip->next = AUDIO_MIXER_LAST;
1029
1030 strcpy(dip->label.name, AudioNmute);
1031 dip->un.e.num_mem = 2;
1032 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1033 dip->un.e.member[0].ord = 0;
1034 strcpy(dip->un.e.member[1].label.name, AudioNon);
1035 dip->un.e.member[1].ord = 1;
1036 }
1037
1038 return 0;
1039 }
1040
1041 switch (dip->index) {
1042 case SV_RECORD_SOURCE:
1043 dip->mixer_class = SV_RECORD_CLASS;
1044 dip->prev = AUDIO_MIXER_LAST;
1045 dip->next = SV_RECORD_GAIN;
1046 strcpy(dip->label.name, AudioNsource);
1047 dip->type = AUDIO_MIXER_ENUM;
1048
1049 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1050 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1051 strcpy(dip->un.e.member[i].label.name,
1052 record_sources[i].name);
1053 dip->un.e.member[i].ord = record_sources[i].idx;
1054 }
1055 return 0;
1056
1057 case SV_RECORD_GAIN:
1058 dip->mixer_class = SV_RECORD_CLASS;
1059 dip->prev = SV_RECORD_SOURCE;
1060 dip->next = AUDIO_MIXER_LAST;
1061 strcpy(dip->label.name, "gain");
1062 dip->type = AUDIO_MIXER_VALUE;
1063 dip->un.v.num_channels = 1;
1064 strcpy(dip->un.v.units.name, AudioNvolume);
1065 return 0;
1066
1067 case SV_MIC_BOOST:
1068 dip->mixer_class = SV_RECORD_CLASS;
1069 dip->prev = AUDIO_MIXER_LAST;
1070 dip->next = AUDIO_MIXER_LAST;
1071 strcpy(dip->label.name, "micboost");
1072 goto on_off;
1073
1074 case SV_SRS_MODE:
1075 dip->mixer_class = SV_OUTPUT_CLASS;
1076 dip->prev = dip->next = AUDIO_MIXER_LAST;
1077 strcpy(dip->label.name, AudioNspatial);
1078
1079 on_off:
1080 dip->type = AUDIO_MIXER_ENUM;
1081 dip->un.e.num_mem = 2;
1082 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1083 dip->un.e.member[0].ord = 0;
1084 strcpy(dip->un.e.member[1].label.name, AudioNon);
1085 dip->un.e.member[1].ord = 1;
1086 return 0;
1087 }
1088
1089 return ENXIO;
1090 }
1091
1092 static int
1093 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1094 {
1095 struct sv_softc *sc;
1096 uint8_t reg;
1097 int idx;
1098
1099 sc = addr;
1100 if (cp->dev >= SV_FIRST_MIXER &&
1101 cp->dev <= SV_LAST_MIXER) {
1102 int off, mute;
1103
1104 off = cp->dev - SV_FIRST_MIXER;
1105 mute = (off % SV_DEVICES_PER_PORT);
1106 idx = off / SV_DEVICES_PER_PORT;
1107
1108 if (mute) {
1109 if (cp->type != AUDIO_MIXER_ENUM)
1110 return EINVAL;
1111
1112 reg = sv_read_indirect(sc, ports[idx].l_port);
1113 if (cp->un.ord)
1114 reg |= SV_MUTE_BIT;
1115 else
1116 reg &= ~SV_MUTE_BIT;
1117 sv_write_indirect(sc, ports[idx].l_port, reg);
1118
1119 if (ports[idx].r_port) {
1120 reg = sv_read_indirect(sc, ports[idx].r_port);
1121 if (cp->un.ord)
1122 reg |= SV_MUTE_BIT;
1123 else
1124 reg &= ~SV_MUTE_BIT;
1125 sv_write_indirect(sc, ports[idx].r_port, reg);
1126 }
1127 } else {
1128 int lval, rval;
1129
1130 if (cp->type != AUDIO_MIXER_VALUE)
1131 return EINVAL;
1132
1133 if (cp->un.value.num_channels != 1 &&
1134 cp->un.value.num_channels != 2)
1135 return (EINVAL);
1136
1137 if (ports[idx].r_port == 0) {
1138 if (cp->un.value.num_channels != 1)
1139 return (EINVAL);
1140 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1141 rval = 0; /* shut up GCC */
1142 } else {
1143 if (cp->un.value.num_channels != 2)
1144 return (EINVAL);
1145
1146 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1147 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1148 }
1149
1150
1151 reg = sv_read_indirect(sc, ports[idx].l_port);
1152 reg &= ~(ports[idx].mask);
1153 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1154 AUDIO_MAX_GAIN;
1155 reg |= lval;
1156 sv_write_indirect(sc, ports[idx].l_port, reg);
1157
1158 if (ports[idx].r_port != 0) {
1159 reg = sv_read_indirect(sc, ports[idx].r_port);
1160 reg &= ~(ports[idx].mask);
1161
1162 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1163 AUDIO_MAX_GAIN;
1164 reg |= rval;
1165
1166 sv_write_indirect(sc, ports[idx].r_port, reg);
1167 }
1168
1169 sv_read_indirect(sc, ports[idx].l_port);
1170 }
1171
1172 return 0;
1173 }
1174
1175
1176 switch (cp->dev) {
1177 case SV_RECORD_SOURCE:
1178 if (cp->type != AUDIO_MIXER_ENUM)
1179 return EINVAL;
1180
1181 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1182 if (record_sources[idx].idx == cp->un.ord)
1183 goto found;
1184 }
1185
1186 return EINVAL;
1187
1188 found:
1189 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1190 reg &= ~SV_REC_SOURCE_MASK;
1191 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1192 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1193
1194 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1195 reg &= ~SV_REC_SOURCE_MASK;
1196 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1197 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1198 return 0;
1199
1200 case SV_RECORD_GAIN:
1201 {
1202 int val;
1203
1204 if (cp->type != AUDIO_MIXER_VALUE)
1205 return EINVAL;
1206
1207 if (cp->un.value.num_channels != 1)
1208 return EINVAL;
1209
1210 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1211 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1212
1213 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1214 reg &= ~SV_REC_GAIN_MASK;
1215 reg |= val;
1216 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1217
1218 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1219 reg &= ~SV_REC_GAIN_MASK;
1220 reg |= val;
1221 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1222 }
1223 return (0);
1224
1225 case SV_MIC_BOOST:
1226 if (cp->type != AUDIO_MIXER_ENUM)
1227 return EINVAL;
1228
1229 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1230 if (cp->un.ord) {
1231 reg |= SV_MIC_BOOST_BIT;
1232 } else {
1233 reg &= ~SV_MIC_BOOST_BIT;
1234 }
1235
1236 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1237 return 0;
1238
1239 case SV_SRS_MODE:
1240 if (cp->type != AUDIO_MIXER_ENUM)
1241 return EINVAL;
1242
1243 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1244 if (cp->un.ord) {
1245 reg &= ~SV_SRS_SPACE_ONOFF;
1246 } else {
1247 reg |= SV_SRS_SPACE_ONOFF;
1248 }
1249
1250 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1251 return 0;
1252 }
1253
1254 return EINVAL;
1255 }
1256
1257 static int
1258 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1259 {
1260 struct sv_softc *sc;
1261 int val;
1262 uint8_t reg;
1263
1264 sc = addr;
1265 if (cp->dev >= SV_FIRST_MIXER &&
1266 cp->dev <= SV_LAST_MIXER) {
1267 int off = cp->dev - SV_FIRST_MIXER;
1268 int mute = (off % 2);
1269 int idx = off / 2;
1270
1271 off = cp->dev - SV_FIRST_MIXER;
1272 mute = (off % 2);
1273 idx = off / 2;
1274 if (mute) {
1275 if (cp->type != AUDIO_MIXER_ENUM)
1276 return EINVAL;
1277
1278 reg = sv_read_indirect(sc, ports[idx].l_port);
1279 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1280 } else {
1281 if (cp->type != AUDIO_MIXER_VALUE)
1282 return EINVAL;
1283
1284 if (cp->un.value.num_channels != 1 &&
1285 cp->un.value.num_channels != 2)
1286 return EINVAL;
1287
1288 if ((ports[idx].r_port == 0 &&
1289 cp->un.value.num_channels != 1) ||
1290 (ports[idx].r_port != 0 &&
1291 cp->un.value.num_channels != 2))
1292 return EINVAL;
1293
1294 reg = sv_read_indirect(sc, ports[idx].l_port);
1295 reg &= ports[idx].mask;
1296
1297 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1298
1299 if (ports[idx].r_port != 0) {
1300 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1301
1302 reg = sv_read_indirect(sc, ports[idx].r_port);
1303 reg &= ports[idx].mask;
1304
1305 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
1306 / ports[idx].mask);
1307 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1308 } else
1309 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1310 }
1311
1312 return 0;
1313 }
1314
1315 switch (cp->dev) {
1316 case SV_RECORD_SOURCE:
1317 if (cp->type != AUDIO_MIXER_ENUM)
1318 return EINVAL;
1319
1320 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1321 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1322
1323 return 0;
1324
1325 case SV_RECORD_GAIN:
1326 if (cp->type != AUDIO_MIXER_VALUE)
1327 return EINVAL;
1328 if (cp->un.value.num_channels != 1)
1329 return EINVAL;
1330
1331 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1332 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1333 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1334
1335 return 0;
1336
1337 case SV_MIC_BOOST:
1338 if (cp->type != AUDIO_MIXER_ENUM)
1339 return EINVAL;
1340 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1341 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1342 return 0;
1343
1344 case SV_SRS_MODE:
1345 if (cp->type != AUDIO_MIXER_ENUM)
1346 return EINVAL;
1347 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1348 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1349 return 0;
1350 }
1351
1352 return EINVAL;
1353 }
1354
1355 static void
1356 sv_init_mixer(struct sv_softc *sc)
1357 {
1358 mixer_ctrl_t cp;
1359 int i;
1360
1361 cp.type = AUDIO_MIXER_ENUM;
1362 cp.dev = SV_SRS_MODE;
1363 cp.un.ord = 0;
1364
1365 sv_mixer_set_port(sc, &cp);
1366
1367 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1368 if (ports[i].audio == AudioNdac) {
1369 cp.type = AUDIO_MIXER_ENUM;
1370 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1371 cp.un.ord = 0;
1372 sv_mixer_set_port(sc, &cp);
1373 break;
1374 }
1375 }
1376 }
1377
1378 static void *
1379 sv_malloc(void *addr, int direction, size_t size,
1380 struct malloc_type *pool, int flags)
1381 {
1382 struct sv_softc *sc;
1383 struct sv_dma *p;
1384 int error;
1385
1386 sc = addr;
1387 p = malloc(sizeof(*p), pool, flags);
1388 if (p == NULL)
1389 return NULL;
1390 error = sv_allocmem(sc, size, 16, direction, p);
1391 if (error) {
1392 free(p, pool);
1393 return 0;
1394 }
1395 p->next = sc->sc_dmas;
1396 sc->sc_dmas = p;
1397 return KERNADDR(p);
1398 }
1399
1400 static void
1401 sv_free(void *addr, void *ptr, struct malloc_type *pool)
1402 {
1403 struct sv_softc *sc;
1404 struct sv_dma **pp, *p;
1405
1406 sc = addr;
1407 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1408 if (KERNADDR(p) == ptr) {
1409 sv_freemem(sc, p);
1410 *pp = p->next;
1411 free(p, pool);
1412 return;
1413 }
1414 }
1415 }
1416
1417 static size_t
1418 sv_round_buffersize(void *addr, int direction, size_t size)
1419 {
1420
1421 return size;
1422 }
1423
1424 static paddr_t
1425 sv_mappage(void *addr, void *mem, off_t off, int prot)
1426 {
1427 struct sv_softc *sc;
1428 struct sv_dma *p;
1429
1430 sc = addr;
1431 if (off < 0)
1432 return -1;
1433 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1434 continue;
1435 if (p == NULL)
1436 return -1;
1437 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1438 off, prot, BUS_DMA_WAITOK);
1439 }
1440
1441 static int
1442 sv_get_props(void *addr)
1443 {
1444 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1445 }
1446