sv.c revision 1.33 1 /* $NetBSD: sv.c,v 1.33 2006/09/03 06:26:27 christos Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1998 Constantine Paul Sapuntzakis
42 * All rights reserved
43 *
44 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The author's name or those of the contributors may be used to
55 * endorse or promote products derived from this software without
56 * specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
59 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * S3 SonicVibes driver
73 * Heavily based on the eap driver by Lennart Augustsson
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.33 2006/09/03 06:26:27 christos Exp $");
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/malloc.h>
83 #include <sys/device.h>
84
85 #include <dev/pci/pcireg.h>
86 #include <dev/pci/pcivar.h>
87 #include <dev/pci/pcidevs.h>
88
89 #include <sys/audioio.h>
90 #include <dev/audio_if.h>
91 #include <dev/mulaw.h>
92 #include <dev/auconv.h>
93
94 #include <dev/ic/i8237reg.h>
95 #include <dev/pci/svreg.h>
96 #include <dev/pci/svvar.h>
97
98 #include <machine/bus.h>
99
100 /* XXX
101 * The SonicVibes DMA is broken and only works on 24-bit addresses.
102 * As long as bus_dmamem_alloc_range() is missing we use the ISA
103 * DMA tag on i386.
104 */
105 #if defined(i386)
106 #include "isa.h"
107 #if NISA > 0
108 #include <dev/isa/isavar.h>
109 #endif
110 #endif
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (svdebug) printf x
114 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
115 int svdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 static int sv_match(struct device *, struct cfdata *, void *);
122 static void sv_attach(struct device *, struct device *, void *);
123 static int sv_intr(void *);
124
125 struct sv_dma {
126 bus_dmamap_t map;
127 caddr_t addr;
128 bus_dma_segment_t segs[1];
129 int nsegs;
130 size_t size;
131 struct sv_dma *next;
132 };
133 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
134 #define KERNADDR(p) ((void *)((p)->addr))
135
136 CFATTACH_DECL(sv, sizeof(struct sv_softc),
137 sv_match, sv_attach, NULL, NULL);
138
139 static struct audio_device sv_device = {
140 "S3 SonicVibes",
141 "",
142 "sv"
143 };
144
145 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
146
147 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
148 struct sv_dma *);
149 static int sv_freemem(struct sv_softc *, struct sv_dma *);
150
151 static void sv_init_mixer(struct sv_softc *);
152
153 static int sv_open(void *, int);
154 static int sv_query_encoding(void *, struct audio_encoding *);
155 static int sv_set_params(void *, int, int, audio_params_t *,
156 audio_params_t *, stream_filter_list_t *,
157 stream_filter_list_t *);
158 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
159 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
160 void *, const audio_params_t *);
161 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
162 void *, const audio_params_t *);
163 static int sv_halt_output(void *);
164 static int sv_halt_input(void *);
165 static int sv_getdev(void *, struct audio_device *);
166 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
167 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
168 static int sv_query_devinfo(void *, mixer_devinfo_t *);
169 static void * sv_malloc(void *, int, size_t, struct malloc_type *, int);
170 static void sv_free(void *, void *, struct malloc_type *);
171 static size_t sv_round_buffersize(void *, int, size_t);
172 static paddr_t sv_mappage(void *, void *, off_t, int);
173 static int sv_get_props(void *);
174
175 #ifdef AUDIO_DEBUG
176 void sv_dumpregs(struct sv_softc *sc);
177 #endif
178
179 static const struct audio_hw_if sv_hw_if = {
180 sv_open,
181 NULL, /* close */
182 NULL,
183 sv_query_encoding,
184 sv_set_params,
185 sv_round_blocksize,
186 NULL,
187 NULL,
188 NULL,
189 NULL,
190 NULL,
191 sv_halt_output,
192 sv_halt_input,
193 NULL,
194 sv_getdev,
195 NULL,
196 sv_mixer_set_port,
197 sv_mixer_get_port,
198 sv_query_devinfo,
199 sv_malloc,
200 sv_free,
201 sv_round_buffersize,
202 sv_mappage,
203 sv_get_props,
204 sv_trigger_output,
205 sv_trigger_input,
206 NULL,
207 NULL,
208 };
209
210 #define SV_NFORMATS 4
211 static const struct audio_format sv_formats[SV_NFORMATS] = {
212 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
213 2, AUFMT_STEREO, 0, {2000, 48000}},
214 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
215 1, AUFMT_MONAURAL, 0, {2000, 48000}},
216 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
217 2, AUFMT_STEREO, 0, {2000, 48000}},
218 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
219 1, AUFMT_MONAURAL, 0, {2000, 48000}},
220 };
221
222
223 static void
224 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
225 {
226
227 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
228 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
229 }
230
231 static uint8_t
232 sv_read(struct sv_softc *sc, uint8_t reg)
233 {
234 uint8_t val;
235
236 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
237 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
238 return val;
239 }
240
241 static uint8_t
242 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
243 {
244 uint8_t val;
245 int s;
246
247 s = splaudio();
248 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
249 val = sv_read(sc, SV_CODEC_IDATA);
250 splx(s);
251 return val;
252 }
253
254 static void
255 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
256 {
257 uint8_t iaddr;
258 int s;
259
260 iaddr = reg & SV_IADDR_MASK;
261 s = splaudio();
262 if (reg == SV_DMA_DATA_FORMAT)
263 iaddr |= SV_IADDR_MCE;
264
265 sv_write(sc, SV_CODEC_IADDR, iaddr);
266 sv_write(sc, SV_CODEC_IDATA, val);
267 splx(s);
268 }
269
270 static int
271 sv_match(struct device *parent, struct cfdata *match, void *aux)
272 {
273 struct pci_attach_args *pa;
274
275 pa = aux;
276 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
277 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
278 return 1;
279
280 return 0;
281 }
282
283 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
284
285 static int
286 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
287 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
288 bus_size_t bound, int flags, bus_space_handle_t *ioh)
289 {
290 bus_addr_t addr;
291 int error;
292
293 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
294 size, align, bound, flags, &addr, ioh);
295 if (error)
296 return error;
297
298 pci_conf_write(pc, pt, pcioffs, addr);
299 return 0;
300 }
301
302 /*
303 * Allocate IO addresses when all other configuration is done.
304 */
305 static void
306 sv_defer(struct device *self)
307 {
308 struct sv_softc *sc;
309 pci_chipset_tag_t pc;
310 pcitag_t pt;
311 pcireg_t dmaio;
312
313 sc = (struct sv_softc *)self;
314 pc = sc->sc_pa.pa_pc;
315 pt = sc->sc_pa.pa_tag;
316 DPRINTF(("sv_defer: %p\n", sc));
317
318 /* XXX
319 * Get a reasonable default for the I/O range.
320 * Assume the range around SB_PORTBASE is valid on this PCI bus.
321 */
322 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
323 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
324
325 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
326 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
327 0, &sc->sc_dmaa_ioh)) {
328 printf("sv_attach: cannot allocate DMA A range\n");
329 return;
330 }
331 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
332 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
333 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
334 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
335
336 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
337 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
338 0, &sc->sc_dmac_ioh)) {
339 printf("sv_attach: cannot allocate DMA C range\n");
340 return;
341 }
342 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
343 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
344 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
345 dmaio | SV_DMA_CHANNEL_ENABLE);
346
347 sc->sc_dmaset = 1;
348 }
349
350 static void
351 sv_attach(struct device *parent, struct device *self, void *aux)
352 {
353 struct sv_softc *sc;
354 struct pci_attach_args *pa;
355 pci_chipset_tag_t pc;
356 pcitag_t pt;
357 pci_intr_handle_t ih;
358 pcireg_t csr;
359 char const *intrstr;
360 uint8_t reg;
361 struct audio_attach_args arg;
362
363 sc = (struct sv_softc *)self;
364 pa = aux;
365 pc = pa->pa_pc;
366 pt = pa->pa_tag;
367 printf ("\n");
368
369 /* Map I/O registers */
370 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
371 PCI_MAPREG_TYPE_IO, 0,
372 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
373 printf("%s: can't map enhanced i/o space\n",
374 sc->sc_dev.dv_xname);
375 return;
376 }
377 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
378 PCI_MAPREG_TYPE_IO, 0,
379 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
380 printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
381 return;
382 }
383 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
384 PCI_MAPREG_TYPE_IO, 0,
385 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
386 printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
387 return;
388 }
389 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
390 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
391
392 #if defined(alpha)
393 /* XXX Force allocation through the SGMAP. */
394 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
395 #elif defined(i386) && NISA > 0
396 /* XXX
397 * The SonicVibes DMA is broken and only works on 24-bit addresses.
398 * As long as bus_dmamem_alloc_range() is missing we use the ISA
399 * DMA tag on i386.
400 */
401 sc->sc_dmatag = &isa_bus_dma_tag;
402 #else
403 sc->sc_dmatag = pa->pa_dmat;
404 #endif
405
406 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
407 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
408
409 /* Enable the device. */
410 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
411 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
412 csr | PCI_COMMAND_MASTER_ENABLE);
413
414 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
415 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
416
417 /* initialize codec registers */
418 reg = sv_read(sc, SV_CODEC_CONTROL);
419 reg |= SV_CTL_RESET;
420 sv_write(sc, SV_CODEC_CONTROL, reg);
421 delay(50);
422
423 reg = sv_read(sc, SV_CODEC_CONTROL);
424 reg &= ~SV_CTL_RESET;
425 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
426
427 /* This write clears the reset */
428 sv_write(sc, SV_CODEC_CONTROL, reg);
429 delay(50);
430
431 /* This write actually shoves the new values in */
432 sv_write(sc, SV_CODEC_CONTROL, reg);
433
434 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
435
436 /* Enable DMA interrupts */
437 reg = sv_read(sc, SV_CODEC_INTMASK);
438 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
439 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
440 sv_write(sc, SV_CODEC_INTMASK, reg);
441
442 sv_read(sc, SV_CODEC_STATUS);
443
444 /* Map and establish the interrupt. */
445 if (pci_intr_map(pa, &ih)) {
446 printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
447 return;
448 }
449 intrstr = pci_intr_string(pc, ih);
450 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
451 if (sc->sc_ih == NULL) {
452 printf("%s: couldn't establish interrupt",
453 sc->sc_dev.dv_xname);
454 if (intrstr != NULL)
455 printf(" at %s", intrstr);
456 printf("\n");
457 return;
458 }
459 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
460 printf("%s: rev %d", sc->sc_dev.dv_xname,
461 sv_read_indirect(sc, SV_REVISION_LEVEL));
462 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
463 printf(", reverb SRAM present");
464 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
465 printf(", wavetable ROM present");
466 printf("\n");
467
468 sv_init_mixer(sc);
469
470 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
471
472 arg.type = AUDIODEV_TYPE_OPL;
473 arg.hwif = 0;
474 arg.hdl = 0;
475 (void)config_found(&sc->sc_dev, &arg, audioprint);
476
477 sc->sc_pa = *pa; /* for deferred setup */
478 config_defer(self, sv_defer);
479 }
480
481 #ifdef AUDIO_DEBUG
482 void
483 sv_dumpregs(struct sv_softc *sc)
484 {
485 int idx;
486
487 #if 0
488 for (idx = 0; idx < 0x50; idx += 4)
489 printf ("%02x = %x\n", idx,
490 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
491 #endif
492
493 for (idx = 0; idx < 6; idx++)
494 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
495
496 for (idx = 0; idx < 0x32; idx++)
497 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
498
499 for (idx = 0; idx < 0x10; idx++)
500 printf ("DMA %02x = %02x\n", idx,
501 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
502 }
503 #endif
504
505 static int
506 sv_intr(void *p)
507 {
508 struct sv_softc *sc;
509 uint8_t intr;
510
511 sc = p;
512 intr = sv_read(sc, SV_CODEC_STATUS);
513 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
514
515 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
516 return 0;
517
518 if (intr & SV_INTSTATUS_DMAA) {
519 if (sc->sc_pintr)
520 sc->sc_pintr(sc->sc_parg);
521 }
522
523 if (intr & SV_INTSTATUS_DMAC) {
524 if (sc->sc_rintr)
525 sc->sc_rintr(sc->sc_rarg);
526 }
527
528 return 1;
529 }
530
531 static int
532 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
533 int direction, struct sv_dma *p)
534 {
535 int error;
536
537 p->size = size;
538 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
539 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
540 if (error)
541 return error;
542
543 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
544 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
545 if (error)
546 goto free;
547
548 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
549 0, BUS_DMA_NOWAIT, &p->map);
550 if (error)
551 goto unmap;
552
553 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
554 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
555 if (error)
556 goto destroy;
557 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
558 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
559 return 0;
560
561 destroy:
562 bus_dmamap_destroy(sc->sc_dmatag, p->map);
563 unmap:
564 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
565 free:
566 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
567 return error;
568 }
569
570 static int
571 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
572 {
573
574 bus_dmamap_unload(sc->sc_dmatag, p->map);
575 bus_dmamap_destroy(sc->sc_dmatag, p->map);
576 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
577 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
578 return 0;
579 }
580
581 static int
582 sv_open(void *addr, int flags)
583 {
584 struct sv_softc *sc;
585
586 sc = addr;
587 DPRINTF(("sv_open\n"));
588 if (!sc->sc_dmaset)
589 return ENXIO;
590
591 return 0;
592 }
593
594 static int
595 sv_query_encoding(void *addr, struct audio_encoding *fp)
596 {
597
598 switch (fp->index) {
599 case 0:
600 strcpy(fp->name, AudioEulinear);
601 fp->encoding = AUDIO_ENCODING_ULINEAR;
602 fp->precision = 8;
603 fp->flags = 0;
604 return 0;
605 case 1:
606 strcpy(fp->name, AudioEmulaw);
607 fp->encoding = AUDIO_ENCODING_ULAW;
608 fp->precision = 8;
609 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
610 return 0;
611 case 2:
612 strcpy(fp->name, AudioEalaw);
613 fp->encoding = AUDIO_ENCODING_ALAW;
614 fp->precision = 8;
615 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
616 return 0;
617 case 3:
618 strcpy(fp->name, AudioEslinear);
619 fp->encoding = AUDIO_ENCODING_SLINEAR;
620 fp->precision = 8;
621 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
622 return 0;
623 case 4:
624 strcpy(fp->name, AudioEslinear_le);
625 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
626 fp->precision = 16;
627 fp->flags = 0;
628 return 0;
629 case 5:
630 strcpy(fp->name, AudioEulinear_le);
631 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
632 fp->precision = 16;
633 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
634 return 0;
635 case 6:
636 strcpy(fp->name, AudioEslinear_be);
637 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
638 fp->precision = 16;
639 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
640 return 0;
641 case 7:
642 strcpy(fp->name, AudioEulinear_be);
643 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
644 fp->precision = 16;
645 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
646 return 0;
647 default:
648 return EINVAL;
649 }
650 }
651
652 static int
653 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
654 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
655 {
656 struct sv_softc *sc;
657 audio_params_t *p;
658 uint32_t val;
659
660 sc = addr;
661 p = NULL;
662 /*
663 * This device only has one clock, so make the sample rates match.
664 */
665 if (play->sample_rate != rec->sample_rate &&
666 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
667 if (setmode == AUMODE_PLAY) {
668 rec->sample_rate = play->sample_rate;
669 setmode |= AUMODE_RECORD;
670 } else if (setmode == AUMODE_RECORD) {
671 play->sample_rate = rec->sample_rate;
672 setmode |= AUMODE_PLAY;
673 } else
674 return EINVAL;
675 }
676
677 if (setmode & AUMODE_RECORD) {
678 p = rec;
679 if (auconv_set_converter(sv_formats, SV_NFORMATS,
680 AUMODE_RECORD, rec, FALSE, rfil) < 0)
681 return EINVAL;
682 }
683 if (setmode & AUMODE_PLAY) {
684 p = play;
685 if (auconv_set_converter(sv_formats, SV_NFORMATS,
686 AUMODE_PLAY, play, FALSE, pfil) < 0)
687 return EINVAL;
688 }
689
690 if (p == NULL)
691 return 0;
692
693 val = p->sample_rate * 65536 / 48000;
694 /*
695 * If the sample rate is exactly 48 kHz, the fraction would overflow the
696 * register, so we have to bias it. This causes a little clock drift.
697 * The drift is below normal crystal tolerance (.0001%), so although
698 * this seems a little silly, we can pretty much ignore it.
699 * (I tested the output speed with values of 1-20, just to be sure this
700 * register isn't *supposed* to have a bias. It isn't.)
701 * - mycroft
702 */
703 if (val > 65535)
704 val = 65535;
705
706 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
707 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
708
709 #define F_REF 24576000
710
711 #define ABS(x) (((x) < 0) ? (-x) : (x))
712
713 if (setmode & AUMODE_RECORD) {
714 /* The ADC reference frequency (f_out) is 512 * sample rate */
715
716 /* f_out is dervied from the 24.576MHz crystal by three values:
717 M & N & R. The equation is as follows:
718
719 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
720
721 with the constraint that:
722
723 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
724 and n, m >= 1
725 */
726
727 int goal_f_out;
728 int a, n, m, best_n, best_m, best_error;
729 int pll_sample;
730 int error;
731
732 goal_f_out = 512 * rec->sample_rate;
733 best_n = 0;
734 best_m = 0;
735 best_error = 10000000;
736 for (a = 0; a < 8; a++) {
737 if ((goal_f_out * (1 << a)) >= 80000000)
738 break;
739 }
740
741 /* a != 8 because sample_rate >= 2000 */
742
743 for (n = 33; n > 2; n--) {
744 m = (goal_f_out * n * (1 << a)) / F_REF;
745 if ((m > 257) || (m < 3))
746 continue;
747
748 pll_sample = (m * F_REF) / (n * (1 << a));
749 pll_sample /= 512;
750
751 /* Threshold might be good here */
752 error = pll_sample - rec->sample_rate;
753 error = ABS(error);
754
755 if (error < best_error) {
756 best_error = error;
757 best_n = n;
758 best_m = m;
759 if (error == 0) break;
760 }
761 }
762
763 best_n -= 2;
764 best_m -= 2;
765
766 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
767 sv_write_indirect(sc, SV_ADC_PLL_N,
768 best_n | (a << SV_PLL_R_SHIFT));
769 }
770
771 return 0;
772 }
773
774 static int
775 sv_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
776 {
777
778 return blk & -32; /* keep good alignment */
779 }
780
781 static int
782 sv_trigger_output(void *addr, void *start, void *end, int blksize,
783 void (*intr)(void *), void *arg, const audio_params_t *param)
784 {
785 struct sv_softc *sc;
786 struct sv_dma *p;
787 uint8_t mode;
788 int dma_count;
789
790 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
791 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
792 sc = addr;
793 sc->sc_pintr = intr;
794 sc->sc_parg = arg;
795
796 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
797 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
798 if (param->precision == 16)
799 mode |= SV_DMAA_FORMAT16;
800 if (param->channels == 2)
801 mode |= SV_DMAA_STEREO;
802 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
803
804 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
805 continue;
806 if (p == NULL) {
807 printf("sv_trigger_output: bad addr %p\n", start);
808 return EINVAL;
809 }
810
811 dma_count = ((char *)end - (char *)start) - 1;
812 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
813 (int)DMAADDR(p), dma_count));
814
815 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
816 DMAADDR(p));
817 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
818 dma_count);
819 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
820 DMA37MD_READ | DMA37MD_LOOP);
821
822 DPRINTF(("sv_trigger_output: current addr=%x\n",
823 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
824
825 dma_count = blksize - 1;
826
827 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
828 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
829
830 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
831 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
832
833 return 0;
834 }
835
836 static int
837 sv_trigger_input(void *addr, void *start, void *end, int blksize,
838 void (*intr)(void *), void *arg, const audio_params_t *param)
839 {
840 struct sv_softc *sc;
841 struct sv_dma *p;
842 uint8_t mode;
843 int dma_count;
844
845 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
846 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
847 sc = addr;
848 sc->sc_rintr = intr;
849 sc->sc_rarg = arg;
850
851 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
852 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
853 if (param->precision == 16)
854 mode |= SV_DMAC_FORMAT16;
855 if (param->channels == 2)
856 mode |= SV_DMAC_STEREO;
857 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
858
859 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
860 continue;
861 if (!p) {
862 printf("sv_trigger_input: bad addr %p\n", start);
863 return EINVAL;
864 }
865
866 dma_count = (((char *)end - (char *)start) >> 1) - 1;
867 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
868 (int)DMAADDR(p), dma_count));
869
870 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
871 DMAADDR(p));
872 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
873 dma_count);
874 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
875 DMA37MD_WRITE | DMA37MD_LOOP);
876
877 DPRINTF(("sv_trigger_input: current addr=%x\n",
878 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
879
880 dma_count = (blksize >> 1) - 1;
881
882 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
883 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
884
885 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
886 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
887
888 return 0;
889 }
890
891 static int
892 sv_halt_output(void *addr)
893 {
894 struct sv_softc *sc;
895 uint8_t mode;
896
897 DPRINTF(("sv: sv_halt_output\n"));
898 sc = addr;
899 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
900 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
901 sc->sc_pintr = 0;
902
903 return 0;
904 }
905
906 static int
907 sv_halt_input(void *addr)
908 {
909 struct sv_softc *sc;
910 uint8_t mode;
911
912 DPRINTF(("sv: sv_halt_input\n"));
913 sc = addr;
914 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
915 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
916 sc->sc_rintr = 0;
917
918 return 0;
919 }
920
921 static int
922 sv_getdev(void *addr, struct audio_device *retp)
923 {
924
925 *retp = sv_device;
926 return 0;
927 }
928
929
930 /*
931 * Mixer related code is here
932 *
933 */
934
935 #define SV_INPUT_CLASS 0
936 #define SV_OUTPUT_CLASS 1
937 #define SV_RECORD_CLASS 2
938
939 #define SV_LAST_CLASS 2
940
941 static const char *mixer_classes[] =
942 { AudioCinputs, AudioCoutputs, AudioCrecord };
943
944 static const struct {
945 uint8_t l_port;
946 uint8_t r_port;
947 uint8_t mask;
948 uint8_t class;
949 const char *audio;
950 } ports[] = {
951 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
952 SV_INPUT_CLASS, "aux1" },
953 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
954 SV_INPUT_CLASS, AudioNcd },
955 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
956 SV_INPUT_CLASS, AudioNline },
957 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
958 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
959 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
960 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
961 SV_INPUT_CLASS, "aux2" },
962 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
963 SV_INPUT_CLASS, AudioNdac },
964 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
965 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
966 };
967
968
969 static const struct {
970 int idx;
971 const char *name;
972 } record_sources[] = {
973 { SV_REC_CD, AudioNcd },
974 { SV_REC_DAC, AudioNdac },
975 { SV_REC_AUX2, "aux2" },
976 { SV_REC_LINE, AudioNline },
977 { SV_REC_AUX1, "aux1" },
978 { SV_REC_MIC, AudioNmicrophone },
979 { SV_REC_MIXER, AudioNmixerout }
980 };
981
982
983 #define SV_DEVICES_PER_PORT 2
984 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
985 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
986 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
987 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
988 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
989 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
990
991 static int
992 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
993 {
994 int i;
995
996 /* It's a class */
997 if (dip->index <= SV_LAST_CLASS) {
998 dip->type = AUDIO_MIXER_CLASS;
999 dip->mixer_class = dip->index;
1000 dip->next = dip->prev = AUDIO_MIXER_LAST;
1001 strcpy(dip->label.name, mixer_classes[dip->index]);
1002 return 0;
1003 }
1004
1005 if (dip->index >= SV_FIRST_MIXER &&
1006 dip->index <= SV_LAST_MIXER) {
1007 int off, mute ,idx;
1008
1009 off = dip->index - SV_FIRST_MIXER;
1010 mute = (off % SV_DEVICES_PER_PORT);
1011 idx = off / SV_DEVICES_PER_PORT;
1012 dip->mixer_class = ports[idx].class;
1013 strcpy(dip->label.name, ports[idx].audio);
1014
1015 if (!mute) {
1016 dip->type = AUDIO_MIXER_VALUE;
1017 dip->prev = AUDIO_MIXER_LAST;
1018 dip->next = dip->index + 1;
1019
1020 if (ports[idx].r_port != 0)
1021 dip->un.v.num_channels = 2;
1022 else
1023 dip->un.v.num_channels = 1;
1024
1025 strcpy(dip->un.v.units.name, AudioNvolume);
1026 } else {
1027 dip->type = AUDIO_MIXER_ENUM;
1028 dip->prev = dip->index - 1;
1029 dip->next = AUDIO_MIXER_LAST;
1030
1031 strcpy(dip->label.name, AudioNmute);
1032 dip->un.e.num_mem = 2;
1033 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1034 dip->un.e.member[0].ord = 0;
1035 strcpy(dip->un.e.member[1].label.name, AudioNon);
1036 dip->un.e.member[1].ord = 1;
1037 }
1038
1039 return 0;
1040 }
1041
1042 switch (dip->index) {
1043 case SV_RECORD_SOURCE:
1044 dip->mixer_class = SV_RECORD_CLASS;
1045 dip->prev = AUDIO_MIXER_LAST;
1046 dip->next = SV_RECORD_GAIN;
1047 strcpy(dip->label.name, AudioNsource);
1048 dip->type = AUDIO_MIXER_ENUM;
1049
1050 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1051 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1052 strcpy(dip->un.e.member[i].label.name,
1053 record_sources[i].name);
1054 dip->un.e.member[i].ord = record_sources[i].idx;
1055 }
1056 return 0;
1057
1058 case SV_RECORD_GAIN:
1059 dip->mixer_class = SV_RECORD_CLASS;
1060 dip->prev = SV_RECORD_SOURCE;
1061 dip->next = AUDIO_MIXER_LAST;
1062 strcpy(dip->label.name, "gain");
1063 dip->type = AUDIO_MIXER_VALUE;
1064 dip->un.v.num_channels = 1;
1065 strcpy(dip->un.v.units.name, AudioNvolume);
1066 return 0;
1067
1068 case SV_MIC_BOOST:
1069 dip->mixer_class = SV_RECORD_CLASS;
1070 dip->prev = AUDIO_MIXER_LAST;
1071 dip->next = AUDIO_MIXER_LAST;
1072 strcpy(dip->label.name, "micboost");
1073 goto on_off;
1074
1075 case SV_SRS_MODE:
1076 dip->mixer_class = SV_OUTPUT_CLASS;
1077 dip->prev = dip->next = AUDIO_MIXER_LAST;
1078 strcpy(dip->label.name, AudioNspatial);
1079
1080 on_off:
1081 dip->type = AUDIO_MIXER_ENUM;
1082 dip->un.e.num_mem = 2;
1083 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1084 dip->un.e.member[0].ord = 0;
1085 strcpy(dip->un.e.member[1].label.name, AudioNon);
1086 dip->un.e.member[1].ord = 1;
1087 return 0;
1088 }
1089
1090 return ENXIO;
1091 }
1092
1093 static int
1094 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1095 {
1096 struct sv_softc *sc;
1097 uint8_t reg;
1098 int idx;
1099
1100 sc = addr;
1101 if (cp->dev >= SV_FIRST_MIXER &&
1102 cp->dev <= SV_LAST_MIXER) {
1103 int off, mute;
1104
1105 off = cp->dev - SV_FIRST_MIXER;
1106 mute = (off % SV_DEVICES_PER_PORT);
1107 idx = off / SV_DEVICES_PER_PORT;
1108
1109 if (mute) {
1110 if (cp->type != AUDIO_MIXER_ENUM)
1111 return EINVAL;
1112
1113 reg = sv_read_indirect(sc, ports[idx].l_port);
1114 if (cp->un.ord)
1115 reg |= SV_MUTE_BIT;
1116 else
1117 reg &= ~SV_MUTE_BIT;
1118 sv_write_indirect(sc, ports[idx].l_port, reg);
1119
1120 if (ports[idx].r_port) {
1121 reg = sv_read_indirect(sc, ports[idx].r_port);
1122 if (cp->un.ord)
1123 reg |= SV_MUTE_BIT;
1124 else
1125 reg &= ~SV_MUTE_BIT;
1126 sv_write_indirect(sc, ports[idx].r_port, reg);
1127 }
1128 } else {
1129 int lval, rval;
1130
1131 if (cp->type != AUDIO_MIXER_VALUE)
1132 return EINVAL;
1133
1134 if (cp->un.value.num_channels != 1 &&
1135 cp->un.value.num_channels != 2)
1136 return (EINVAL);
1137
1138 if (ports[idx].r_port == 0) {
1139 if (cp->un.value.num_channels != 1)
1140 return (EINVAL);
1141 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1142 rval = 0; /* shut up GCC */
1143 } else {
1144 if (cp->un.value.num_channels != 2)
1145 return (EINVAL);
1146
1147 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1148 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1149 }
1150
1151
1152 reg = sv_read_indirect(sc, ports[idx].l_port);
1153 reg &= ~(ports[idx].mask);
1154 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1155 AUDIO_MAX_GAIN;
1156 reg |= lval;
1157 sv_write_indirect(sc, ports[idx].l_port, reg);
1158
1159 if (ports[idx].r_port != 0) {
1160 reg = sv_read_indirect(sc, ports[idx].r_port);
1161 reg &= ~(ports[idx].mask);
1162
1163 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1164 AUDIO_MAX_GAIN;
1165 reg |= rval;
1166
1167 sv_write_indirect(sc, ports[idx].r_port, reg);
1168 }
1169
1170 sv_read_indirect(sc, ports[idx].l_port);
1171 }
1172
1173 return 0;
1174 }
1175
1176
1177 switch (cp->dev) {
1178 case SV_RECORD_SOURCE:
1179 if (cp->type != AUDIO_MIXER_ENUM)
1180 return EINVAL;
1181
1182 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1183 if (record_sources[idx].idx == cp->un.ord)
1184 goto found;
1185 }
1186
1187 return EINVAL;
1188
1189 found:
1190 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1191 reg &= ~SV_REC_SOURCE_MASK;
1192 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1193 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1194
1195 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1196 reg &= ~SV_REC_SOURCE_MASK;
1197 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1198 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1199 return 0;
1200
1201 case SV_RECORD_GAIN:
1202 {
1203 int val;
1204
1205 if (cp->type != AUDIO_MIXER_VALUE)
1206 return EINVAL;
1207
1208 if (cp->un.value.num_channels != 1)
1209 return EINVAL;
1210
1211 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1212 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1213
1214 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1215 reg &= ~SV_REC_GAIN_MASK;
1216 reg |= val;
1217 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1218
1219 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1220 reg &= ~SV_REC_GAIN_MASK;
1221 reg |= val;
1222 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1223 }
1224 return (0);
1225
1226 case SV_MIC_BOOST:
1227 if (cp->type != AUDIO_MIXER_ENUM)
1228 return EINVAL;
1229
1230 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1231 if (cp->un.ord) {
1232 reg |= SV_MIC_BOOST_BIT;
1233 } else {
1234 reg &= ~SV_MIC_BOOST_BIT;
1235 }
1236
1237 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1238 return 0;
1239
1240 case SV_SRS_MODE:
1241 if (cp->type != AUDIO_MIXER_ENUM)
1242 return EINVAL;
1243
1244 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1245 if (cp->un.ord) {
1246 reg &= ~SV_SRS_SPACE_ONOFF;
1247 } else {
1248 reg |= SV_SRS_SPACE_ONOFF;
1249 }
1250
1251 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1252 return 0;
1253 }
1254
1255 return EINVAL;
1256 }
1257
1258 static int
1259 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1260 {
1261 struct sv_softc *sc;
1262 int val;
1263 uint8_t reg;
1264
1265 sc = addr;
1266 if (cp->dev >= SV_FIRST_MIXER &&
1267 cp->dev <= SV_LAST_MIXER) {
1268 int off = cp->dev - SV_FIRST_MIXER;
1269 int mute = (off % 2);
1270 int idx = off / 2;
1271
1272 off = cp->dev - SV_FIRST_MIXER;
1273 mute = (off % 2);
1274 idx = off / 2;
1275 if (mute) {
1276 if (cp->type != AUDIO_MIXER_ENUM)
1277 return EINVAL;
1278
1279 reg = sv_read_indirect(sc, ports[idx].l_port);
1280 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1281 } else {
1282 if (cp->type != AUDIO_MIXER_VALUE)
1283 return EINVAL;
1284
1285 if (cp->un.value.num_channels != 1 &&
1286 cp->un.value.num_channels != 2)
1287 return EINVAL;
1288
1289 if ((ports[idx].r_port == 0 &&
1290 cp->un.value.num_channels != 1) ||
1291 (ports[idx].r_port != 0 &&
1292 cp->un.value.num_channels != 2))
1293 return EINVAL;
1294
1295 reg = sv_read_indirect(sc, ports[idx].l_port);
1296 reg &= ports[idx].mask;
1297
1298 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1299
1300 if (ports[idx].r_port != 0) {
1301 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1302
1303 reg = sv_read_indirect(sc, ports[idx].r_port);
1304 reg &= ports[idx].mask;
1305
1306 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
1307 / ports[idx].mask);
1308 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1309 } else
1310 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1311 }
1312
1313 return 0;
1314 }
1315
1316 switch (cp->dev) {
1317 case SV_RECORD_SOURCE:
1318 if (cp->type != AUDIO_MIXER_ENUM)
1319 return EINVAL;
1320
1321 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1322 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1323
1324 return 0;
1325
1326 case SV_RECORD_GAIN:
1327 if (cp->type != AUDIO_MIXER_VALUE)
1328 return EINVAL;
1329 if (cp->un.value.num_channels != 1)
1330 return EINVAL;
1331
1332 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1333 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1334 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1335
1336 return 0;
1337
1338 case SV_MIC_BOOST:
1339 if (cp->type != AUDIO_MIXER_ENUM)
1340 return EINVAL;
1341 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1342 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1343 return 0;
1344
1345 case SV_SRS_MODE:
1346 if (cp->type != AUDIO_MIXER_ENUM)
1347 return EINVAL;
1348 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1349 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1350 return 0;
1351 }
1352
1353 return EINVAL;
1354 }
1355
1356 static void
1357 sv_init_mixer(struct sv_softc *sc)
1358 {
1359 mixer_ctrl_t cp;
1360 int i;
1361
1362 cp.type = AUDIO_MIXER_ENUM;
1363 cp.dev = SV_SRS_MODE;
1364 cp.un.ord = 0;
1365
1366 sv_mixer_set_port(sc, &cp);
1367
1368 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1369 if (ports[i].audio == AudioNdac) {
1370 cp.type = AUDIO_MIXER_ENUM;
1371 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1372 cp.un.ord = 0;
1373 sv_mixer_set_port(sc, &cp);
1374 break;
1375 }
1376 }
1377 }
1378
1379 static void *
1380 sv_malloc(void *addr, int direction, size_t size,
1381 struct malloc_type *pool, int flags)
1382 {
1383 struct sv_softc *sc;
1384 struct sv_dma *p;
1385 int error;
1386
1387 sc = addr;
1388 p = malloc(sizeof(*p), pool, flags);
1389 if (p == NULL)
1390 return NULL;
1391 error = sv_allocmem(sc, size, 16, direction, p);
1392 if (error) {
1393 free(p, pool);
1394 return 0;
1395 }
1396 p->next = sc->sc_dmas;
1397 sc->sc_dmas = p;
1398 return KERNADDR(p);
1399 }
1400
1401 static void
1402 sv_free(void *addr, void *ptr, struct malloc_type *pool)
1403 {
1404 struct sv_softc *sc;
1405 struct sv_dma **pp, *p;
1406
1407 sc = addr;
1408 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1409 if (KERNADDR(p) == ptr) {
1410 sv_freemem(sc, p);
1411 *pp = p->next;
1412 free(p, pool);
1413 return;
1414 }
1415 }
1416 }
1417
1418 static size_t
1419 sv_round_buffersize(void *addr, int direction, size_t size)
1420 {
1421
1422 return size;
1423 }
1424
1425 static paddr_t
1426 sv_mappage(void *addr, void *mem, off_t off, int prot)
1427 {
1428 struct sv_softc *sc;
1429 struct sv_dma *p;
1430
1431 sc = addr;
1432 if (off < 0)
1433 return -1;
1434 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1435 continue;
1436 if (p == NULL)
1437 return -1;
1438 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1439 off, prot, BUS_DMA_WAITOK);
1440 }
1441
1442 static int
1443 sv_get_props(void *addr)
1444 {
1445 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1446 }
1447