sv.c revision 1.43 1 /* $NetBSD: sv.c,v 1.43 2009/08/18 11:12:05 drochner Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1998 Constantine Paul Sapuntzakis
35 * All rights reserved
36 *
37 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The author's name or those of the contributors may be used to
48 * endorse or promote products derived from this software without
49 * specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * S3 SonicVibes driver
66 * Heavily based on the eap driver by Lennart Augustsson
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.43 2009/08/18 11:12:05 drochner Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/malloc.h>
76 #include <sys/device.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <sys/audioio.h>
83 #include <dev/audio_if.h>
84 #include <dev/mulaw.h>
85 #include <dev/auconv.h>
86
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/svreg.h>
89 #include <dev/pci/svvar.h>
90
91 #include <sys/bus.h>
92
93 /* XXX
94 * The SonicVibes DMA is broken and only works on 24-bit addresses.
95 * As long as bus_dmamem_alloc_range() is missing we use the ISA
96 * DMA tag on i386.
97 */
98 #if defined(i386)
99 #include "isa.h"
100 #if NISA > 0
101 #include <dev/isa/isavar.h>
102 #endif
103 #endif
104
105 #ifdef AUDIO_DEBUG
106 #define DPRINTF(x) if (svdebug) printf x
107 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
108 int svdebug = 0;
109 #else
110 #define DPRINTF(x)
111 #define DPRINTFN(n,x)
112 #endif
113
114 static int sv_match(device_t, cfdata_t, void *);
115 static void sv_attach(device_t, device_t, void *);
116 static int sv_intr(void *);
117
118 struct sv_dma {
119 bus_dmamap_t map;
120 void *addr;
121 bus_dma_segment_t segs[1];
122 int nsegs;
123 size_t size;
124 struct sv_dma *next;
125 };
126 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
127 #define KERNADDR(p) ((void *)((p)->addr))
128
129 CFATTACH_DECL(sv, sizeof(struct sv_softc),
130 sv_match, sv_attach, NULL, NULL);
131
132 static struct audio_device sv_device = {
133 "S3 SonicVibes",
134 "",
135 "sv"
136 };
137
138 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
139
140 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
141 struct sv_dma *);
142 static int sv_freemem(struct sv_softc *, struct sv_dma *);
143
144 static void sv_init_mixer(struct sv_softc *);
145
146 static int sv_open(void *, int);
147 static int sv_query_encoding(void *, struct audio_encoding *);
148 static int sv_set_params(void *, int, int, audio_params_t *,
149 audio_params_t *, stream_filter_list_t *,
150 stream_filter_list_t *);
151 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
152 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
153 void *, const audio_params_t *);
154 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
155 void *, const audio_params_t *);
156 static int sv_halt_output(void *);
157 static int sv_halt_input(void *);
158 static int sv_getdev(void *, struct audio_device *);
159 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
160 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
161 static int sv_query_devinfo(void *, mixer_devinfo_t *);
162 static void * sv_malloc(void *, int, size_t, struct malloc_type *, int);
163 static void sv_free(void *, void *, struct malloc_type *);
164 static size_t sv_round_buffersize(void *, int, size_t);
165 static paddr_t sv_mappage(void *, void *, off_t, int);
166 static int sv_get_props(void *);
167
168 #ifdef AUDIO_DEBUG
169 void sv_dumpregs(struct sv_softc *sc);
170 #endif
171
172 static const struct audio_hw_if sv_hw_if = {
173 sv_open,
174 NULL, /* close */
175 NULL,
176 sv_query_encoding,
177 sv_set_params,
178 sv_round_blocksize,
179 NULL,
180 NULL,
181 NULL,
182 NULL,
183 NULL,
184 sv_halt_output,
185 sv_halt_input,
186 NULL,
187 sv_getdev,
188 NULL,
189 sv_mixer_set_port,
190 sv_mixer_get_port,
191 sv_query_devinfo,
192 sv_malloc,
193 sv_free,
194 sv_round_buffersize,
195 sv_mappage,
196 sv_get_props,
197 sv_trigger_output,
198 sv_trigger_input,
199 NULL,
200 NULL,
201 };
202
203 #define SV_NFORMATS 4
204 static const struct audio_format sv_formats[SV_NFORMATS] = {
205 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
206 2, AUFMT_STEREO, 0, {2000, 48000}},
207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
208 1, AUFMT_MONAURAL, 0, {2000, 48000}},
209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 2, AUFMT_STEREO, 0, {2000, 48000}},
211 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
212 1, AUFMT_MONAURAL, 0, {2000, 48000}},
213 };
214
215
216 static void
217 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
218 {
219
220 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
221 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
222 }
223
224 static uint8_t
225 sv_read(struct sv_softc *sc, uint8_t reg)
226 {
227 uint8_t val;
228
229 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
230 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
231 return val;
232 }
233
234 static uint8_t
235 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
236 {
237 uint8_t val;
238 int s;
239
240 s = splaudio();
241 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
242 val = sv_read(sc, SV_CODEC_IDATA);
243 splx(s);
244 return val;
245 }
246
247 static void
248 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
249 {
250 uint8_t iaddr;
251 int s;
252
253 iaddr = reg & SV_IADDR_MASK;
254 s = splaudio();
255 if (reg == SV_DMA_DATA_FORMAT)
256 iaddr |= SV_IADDR_MCE;
257
258 sv_write(sc, SV_CODEC_IADDR, iaddr);
259 sv_write(sc, SV_CODEC_IDATA, val);
260 splx(s);
261 }
262
263 static int
264 sv_match(device_t parent, cfdata_t match, void *aux)
265 {
266 struct pci_attach_args *pa;
267
268 pa = aux;
269 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
270 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
271 return 1;
272
273 return 0;
274 }
275
276 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
277
278 static int
279 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
280 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
281 bus_size_t bound, int flags, bus_space_handle_t *ioh)
282 {
283 bus_addr_t addr;
284 int error;
285
286 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
287 size, align, bound, flags, &addr, ioh);
288 if (error)
289 return error;
290
291 pci_conf_write(pc, pt, pcioffs, addr);
292 return 0;
293 }
294
295 /*
296 * Allocate IO addresses when all other configuration is done.
297 */
298 static void
299 sv_defer(device_t self)
300 {
301 struct sv_softc *sc;
302 pci_chipset_tag_t pc;
303 pcitag_t pt;
304 pcireg_t dmaio;
305
306 sc = device_private(self);
307 pc = sc->sc_pa.pa_pc;
308 pt = sc->sc_pa.pa_tag;
309 DPRINTF(("sv_defer: %p\n", sc));
310
311 /* XXX
312 * Get a reasonable default for the I/O range.
313 * Assume the range around SB_PORTBASE is valid on this PCI bus.
314 */
315 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
316 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
317
318 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
319 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
320 0, &sc->sc_dmaa_ioh)) {
321 printf("sv_attach: cannot allocate DMA A range\n");
322 return;
323 }
324 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
325 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
326 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
327 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
328
329 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
330 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
331 0, &sc->sc_dmac_ioh)) {
332 printf("sv_attach: cannot allocate DMA C range\n");
333 return;
334 }
335 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
336 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
337 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
338 dmaio | SV_DMA_CHANNEL_ENABLE);
339
340 sc->sc_dmaset = 1;
341 }
342
343 static void
344 sv_attach(device_t parent, device_t self, void *aux)
345 {
346 struct sv_softc *sc;
347 struct pci_attach_args *pa;
348 pci_chipset_tag_t pc;
349 pcitag_t pt;
350 pci_intr_handle_t ih;
351 pcireg_t csr;
352 char const *intrstr;
353 uint8_t reg;
354 struct audio_attach_args arg;
355
356 sc = device_private(self);
357 pa = aux;
358 pc = pa->pa_pc;
359 pt = pa->pa_tag;
360 printf ("\n");
361
362 /* Map I/O registers */
363 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
364 PCI_MAPREG_TYPE_IO, 0,
365 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
366 aprint_error_dev(&sc->sc_dev, "can't map enhanced i/o space\n");
367 return;
368 }
369 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
370 PCI_MAPREG_TYPE_IO, 0,
371 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
372 aprint_error_dev(&sc->sc_dev, "can't map FM i/o space\n");
373 return;
374 }
375 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
376 PCI_MAPREG_TYPE_IO, 0,
377 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
378 aprint_error_dev(&sc->sc_dev, "can't map MIDI i/o space\n");
379 return;
380 }
381 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
382 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
383
384 #if defined(alpha)
385 /* XXX Force allocation through the SGMAP. */
386 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
387 #elif defined(i386) && NISA > 0
388 /* XXX
389 * The SonicVibes DMA is broken and only works on 24-bit addresses.
390 * As long as bus_dmamem_alloc_range() is missing we use the ISA
391 * DMA tag on i386.
392 */
393 sc->sc_dmatag = &isa_bus_dma_tag;
394 #else
395 sc->sc_dmatag = pa->pa_dmat;
396 #endif
397
398 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
399 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
400
401 /* Enable the device. */
402 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
403 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
404 csr | PCI_COMMAND_MASTER_ENABLE);
405
406 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
407 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
408
409 /* initialize codec registers */
410 reg = sv_read(sc, SV_CODEC_CONTROL);
411 reg |= SV_CTL_RESET;
412 sv_write(sc, SV_CODEC_CONTROL, reg);
413 delay(50);
414
415 reg = sv_read(sc, SV_CODEC_CONTROL);
416 reg &= ~SV_CTL_RESET;
417 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
418
419 /* This write clears the reset */
420 sv_write(sc, SV_CODEC_CONTROL, reg);
421 delay(50);
422
423 /* This write actually shoves the new values in */
424 sv_write(sc, SV_CODEC_CONTROL, reg);
425
426 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
427
428 /* Enable DMA interrupts */
429 reg = sv_read(sc, SV_CODEC_INTMASK);
430 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
431 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
432 sv_write(sc, SV_CODEC_INTMASK, reg);
433
434 sv_read(sc, SV_CODEC_STATUS);
435
436 /* Map and establish the interrupt. */
437 if (pci_intr_map(pa, &ih)) {
438 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
439 return;
440 }
441 intrstr = pci_intr_string(pc, ih);
442 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
443 if (sc->sc_ih == NULL) {
444 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
445 if (intrstr != NULL)
446 printf(" at %s", intrstr);
447 printf("\n");
448 return;
449 }
450 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
451 printf("%s: rev %d", device_xname(&sc->sc_dev),
452 sv_read_indirect(sc, SV_REVISION_LEVEL));
453 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
454 printf(", reverb SRAM present");
455 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
456 printf(", wavetable ROM present");
457 printf("\n");
458
459 sv_init_mixer(sc);
460
461 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
462
463 arg.type = AUDIODEV_TYPE_OPL;
464 arg.hwif = 0;
465 arg.hdl = 0;
466 (void)config_found(&sc->sc_dev, &arg, audioprint);
467
468 sc->sc_pa = *pa; /* for deferred setup */
469 config_defer(self, sv_defer);
470 }
471
472 #ifdef AUDIO_DEBUG
473 void
474 sv_dumpregs(struct sv_softc *sc)
475 {
476 int idx;
477
478 #if 0
479 for (idx = 0; idx < 0x50; idx += 4)
480 printf ("%02x = %x\n", idx,
481 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
482 #endif
483
484 for (idx = 0; idx < 6; idx++)
485 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
486
487 for (idx = 0; idx < 0x32; idx++)
488 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
489
490 for (idx = 0; idx < 0x10; idx++)
491 printf ("DMA %02x = %02x\n", idx,
492 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
493 }
494 #endif
495
496 static int
497 sv_intr(void *p)
498 {
499 struct sv_softc *sc;
500 uint8_t intr;
501
502 sc = p;
503 intr = sv_read(sc, SV_CODEC_STATUS);
504 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
505
506 if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
507 return 0;
508
509 if (intr & SV_INTSTATUS_DMAA) {
510 if (sc->sc_pintr)
511 sc->sc_pintr(sc->sc_parg);
512 }
513
514 if (intr & SV_INTSTATUS_DMAC) {
515 if (sc->sc_rintr)
516 sc->sc_rintr(sc->sc_rarg);
517 }
518
519 return 1;
520 }
521
522 static int
523 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
524 int direction, struct sv_dma *p)
525 {
526 int error;
527
528 p->size = size;
529 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
530 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
531 if (error)
532 return error;
533
534 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
535 &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
536 if (error)
537 goto free;
538
539 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
540 0, BUS_DMA_NOWAIT, &p->map);
541 if (error)
542 goto unmap;
543
544 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
545 BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
546 if (error)
547 goto destroy;
548 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
549 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
550 return 0;
551
552 destroy:
553 bus_dmamap_destroy(sc->sc_dmatag, p->map);
554 unmap:
555 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
556 free:
557 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
558 return error;
559 }
560
561 static int
562 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
563 {
564
565 bus_dmamap_unload(sc->sc_dmatag, p->map);
566 bus_dmamap_destroy(sc->sc_dmatag, p->map);
567 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
568 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
569 return 0;
570 }
571
572 static int
573 sv_open(void *addr, int flags)
574 {
575 struct sv_softc *sc;
576
577 sc = addr;
578 DPRINTF(("sv_open\n"));
579 if (!sc->sc_dmaset)
580 return ENXIO;
581
582 return 0;
583 }
584
585 static int
586 sv_query_encoding(void *addr, struct audio_encoding *fp)
587 {
588
589 switch (fp->index) {
590 case 0:
591 strcpy(fp->name, AudioEulinear);
592 fp->encoding = AUDIO_ENCODING_ULINEAR;
593 fp->precision = 8;
594 fp->flags = 0;
595 return 0;
596 case 1:
597 strcpy(fp->name, AudioEmulaw);
598 fp->encoding = AUDIO_ENCODING_ULAW;
599 fp->precision = 8;
600 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
601 return 0;
602 case 2:
603 strcpy(fp->name, AudioEalaw);
604 fp->encoding = AUDIO_ENCODING_ALAW;
605 fp->precision = 8;
606 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
607 return 0;
608 case 3:
609 strcpy(fp->name, AudioEslinear);
610 fp->encoding = AUDIO_ENCODING_SLINEAR;
611 fp->precision = 8;
612 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
613 return 0;
614 case 4:
615 strcpy(fp->name, AudioEslinear_le);
616 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
617 fp->precision = 16;
618 fp->flags = 0;
619 return 0;
620 case 5:
621 strcpy(fp->name, AudioEulinear_le);
622 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
623 fp->precision = 16;
624 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
625 return 0;
626 case 6:
627 strcpy(fp->name, AudioEslinear_be);
628 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
629 fp->precision = 16;
630 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
631 return 0;
632 case 7:
633 strcpy(fp->name, AudioEulinear_be);
634 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
635 fp->precision = 16;
636 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
637 return 0;
638 default:
639 return EINVAL;
640 }
641 }
642
643 static int
644 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
645 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
646 {
647 struct sv_softc *sc;
648 audio_params_t *p;
649 uint32_t val;
650
651 sc = addr;
652 p = NULL;
653 /*
654 * This device only has one clock, so make the sample rates match.
655 */
656 if (play->sample_rate != rec->sample_rate &&
657 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
658 if (setmode == AUMODE_PLAY) {
659 rec->sample_rate = play->sample_rate;
660 setmode |= AUMODE_RECORD;
661 } else if (setmode == AUMODE_RECORD) {
662 play->sample_rate = rec->sample_rate;
663 setmode |= AUMODE_PLAY;
664 } else
665 return EINVAL;
666 }
667
668 if (setmode & AUMODE_RECORD) {
669 p = rec;
670 if (auconv_set_converter(sv_formats, SV_NFORMATS,
671 AUMODE_RECORD, rec, FALSE, rfil) < 0)
672 return EINVAL;
673 }
674 if (setmode & AUMODE_PLAY) {
675 p = play;
676 if (auconv_set_converter(sv_formats, SV_NFORMATS,
677 AUMODE_PLAY, play, FALSE, pfil) < 0)
678 return EINVAL;
679 }
680
681 if (p == NULL)
682 return 0;
683
684 val = p->sample_rate * 65536 / 48000;
685 /*
686 * If the sample rate is exactly 48 kHz, the fraction would overflow the
687 * register, so we have to bias it. This causes a little clock drift.
688 * The drift is below normal crystal tolerance (.0001%), so although
689 * this seems a little silly, we can pretty much ignore it.
690 * (I tested the output speed with values of 1-20, just to be sure this
691 * register isn't *supposed* to have a bias. It isn't.)
692 * - mycroft
693 */
694 if (val > 65535)
695 val = 65535;
696
697 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
698 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
699
700 #define F_REF 24576000
701
702 #define ABS(x) (((x) < 0) ? (-x) : (x))
703
704 if (setmode & AUMODE_RECORD) {
705 /* The ADC reference frequency (f_out) is 512 * sample rate */
706
707 /* f_out is dervied from the 24.576MHz crystal by three values:
708 M & N & R. The equation is as follows:
709
710 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
711
712 with the constraint that:
713
714 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
715 and n, m >= 1
716 */
717
718 int goal_f_out;
719 int a, n, m, best_n, best_m, best_error;
720 int pll_sample;
721 int error;
722
723 goal_f_out = 512 * rec->sample_rate;
724 best_n = 0;
725 best_m = 0;
726 best_error = 10000000;
727 for (a = 0; a < 8; a++) {
728 if ((goal_f_out * (1 << a)) >= 80000000)
729 break;
730 }
731
732 /* a != 8 because sample_rate >= 2000 */
733
734 for (n = 33; n > 2; n--) {
735 m = (goal_f_out * n * (1 << a)) / F_REF;
736 if ((m > 257) || (m < 3))
737 continue;
738
739 pll_sample = (m * F_REF) / (n * (1 << a));
740 pll_sample /= 512;
741
742 /* Threshold might be good here */
743 error = pll_sample - rec->sample_rate;
744 error = ABS(error);
745
746 if (error < best_error) {
747 best_error = error;
748 best_n = n;
749 best_m = m;
750 if (error == 0) break;
751 }
752 }
753
754 best_n -= 2;
755 best_m -= 2;
756
757 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
758 sv_write_indirect(sc, SV_ADC_PLL_N,
759 best_n | (a << SV_PLL_R_SHIFT));
760 }
761
762 return 0;
763 }
764
765 static int
766 sv_round_blocksize(void *addr, int blk, int mode,
767 const audio_params_t *param)
768 {
769
770 return blk & -32; /* keep good alignment */
771 }
772
773 static int
774 sv_trigger_output(void *addr, void *start, void *end, int blksize,
775 void (*intr)(void *), void *arg, const audio_params_t *param)
776 {
777 struct sv_softc *sc;
778 struct sv_dma *p;
779 uint8_t mode;
780 int dma_count;
781
782 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
783 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
784 sc = addr;
785 sc->sc_pintr = intr;
786 sc->sc_parg = arg;
787
788 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
789 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
790 if (param->precision == 16)
791 mode |= SV_DMAA_FORMAT16;
792 if (param->channels == 2)
793 mode |= SV_DMAA_STEREO;
794 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
795
796 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
797 continue;
798 if (p == NULL) {
799 printf("sv_trigger_output: bad addr %p\n", start);
800 return EINVAL;
801 }
802
803 dma_count = ((char *)end - (char *)start) - 1;
804 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
805 (int)DMAADDR(p), dma_count));
806
807 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
808 DMAADDR(p));
809 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
810 dma_count);
811 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
812 DMA37MD_READ | DMA37MD_LOOP);
813
814 DPRINTF(("sv_trigger_output: current addr=%x\n",
815 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
816
817 dma_count = blksize - 1;
818
819 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
820 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
821
822 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
823 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
824
825 return 0;
826 }
827
828 static int
829 sv_trigger_input(void *addr, void *start, void *end, int blksize,
830 void (*intr)(void *), void *arg, const audio_params_t *param)
831 {
832 struct sv_softc *sc;
833 struct sv_dma *p;
834 uint8_t mode;
835 int dma_count;
836
837 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
838 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
839 sc = addr;
840 sc->sc_rintr = intr;
841 sc->sc_rarg = arg;
842
843 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
844 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
845 if (param->precision == 16)
846 mode |= SV_DMAC_FORMAT16;
847 if (param->channels == 2)
848 mode |= SV_DMAC_STEREO;
849 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
850
851 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
852 continue;
853 if (!p) {
854 printf("sv_trigger_input: bad addr %p\n", start);
855 return EINVAL;
856 }
857
858 dma_count = (((char *)end - (char *)start) >> 1) - 1;
859 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
860 (int)DMAADDR(p), dma_count));
861
862 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
863 DMAADDR(p));
864 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
865 dma_count);
866 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
867 DMA37MD_WRITE | DMA37MD_LOOP);
868
869 DPRINTF(("sv_trigger_input: current addr=%x\n",
870 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
871
872 dma_count = (blksize >> 1) - 1;
873
874 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
875 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
876
877 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
878 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
879
880 return 0;
881 }
882
883 static int
884 sv_halt_output(void *addr)
885 {
886 struct sv_softc *sc;
887 uint8_t mode;
888
889 DPRINTF(("sv: sv_halt_output\n"));
890 sc = addr;
891 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
892 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
893 sc->sc_pintr = 0;
894
895 return 0;
896 }
897
898 static int
899 sv_halt_input(void *addr)
900 {
901 struct sv_softc *sc;
902 uint8_t mode;
903
904 DPRINTF(("sv: sv_halt_input\n"));
905 sc = addr;
906 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
907 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
908 sc->sc_rintr = 0;
909
910 return 0;
911 }
912
913 static int
914 sv_getdev(void *addr, struct audio_device *retp)
915 {
916
917 *retp = sv_device;
918 return 0;
919 }
920
921
922 /*
923 * Mixer related code is here
924 *
925 */
926
927 #define SV_INPUT_CLASS 0
928 #define SV_OUTPUT_CLASS 1
929 #define SV_RECORD_CLASS 2
930
931 #define SV_LAST_CLASS 2
932
933 static const char *mixer_classes[] =
934 { AudioCinputs, AudioCoutputs, AudioCrecord };
935
936 static const struct {
937 uint8_t l_port;
938 uint8_t r_port;
939 uint8_t mask;
940 uint8_t class;
941 const char *audio;
942 } ports[] = {
943 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
944 SV_INPUT_CLASS, "aux1" },
945 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
946 SV_INPUT_CLASS, AudioNcd },
947 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
948 SV_INPUT_CLASS, AudioNline },
949 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
950 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
951 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
952 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
953 SV_INPUT_CLASS, "aux2" },
954 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
955 SV_INPUT_CLASS, AudioNdac },
956 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
957 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
958 };
959
960
961 static const struct {
962 int idx;
963 const char *name;
964 } record_sources[] = {
965 { SV_REC_CD, AudioNcd },
966 { SV_REC_DAC, AudioNdac },
967 { SV_REC_AUX2, "aux2" },
968 { SV_REC_LINE, AudioNline },
969 { SV_REC_AUX1, "aux1" },
970 { SV_REC_MIC, AudioNmicrophone },
971 { SV_REC_MIXER, AudioNmixerout }
972 };
973
974
975 #define SV_DEVICES_PER_PORT 2
976 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
977 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
978 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
979 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
980 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
981 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
982
983 static int
984 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
985 {
986 int i;
987
988 /* It's a class */
989 if (dip->index <= SV_LAST_CLASS) {
990 dip->type = AUDIO_MIXER_CLASS;
991 dip->mixer_class = dip->index;
992 dip->next = dip->prev = AUDIO_MIXER_LAST;
993 strcpy(dip->label.name, mixer_classes[dip->index]);
994 return 0;
995 }
996
997 if (dip->index >= SV_FIRST_MIXER &&
998 dip->index <= SV_LAST_MIXER) {
999 int off, mute ,idx;
1000
1001 off = dip->index - SV_FIRST_MIXER;
1002 mute = (off % SV_DEVICES_PER_PORT);
1003 idx = off / SV_DEVICES_PER_PORT;
1004 dip->mixer_class = ports[idx].class;
1005 strcpy(dip->label.name, ports[idx].audio);
1006
1007 if (!mute) {
1008 dip->type = AUDIO_MIXER_VALUE;
1009 dip->prev = AUDIO_MIXER_LAST;
1010 dip->next = dip->index + 1;
1011
1012 if (ports[idx].r_port != 0)
1013 dip->un.v.num_channels = 2;
1014 else
1015 dip->un.v.num_channels = 1;
1016
1017 strcpy(dip->un.v.units.name, AudioNvolume);
1018 } else {
1019 dip->type = AUDIO_MIXER_ENUM;
1020 dip->prev = dip->index - 1;
1021 dip->next = AUDIO_MIXER_LAST;
1022
1023 strcpy(dip->label.name, AudioNmute);
1024 dip->un.e.num_mem = 2;
1025 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1026 dip->un.e.member[0].ord = 0;
1027 strcpy(dip->un.e.member[1].label.name, AudioNon);
1028 dip->un.e.member[1].ord = 1;
1029 }
1030
1031 return 0;
1032 }
1033
1034 switch (dip->index) {
1035 case SV_RECORD_SOURCE:
1036 dip->mixer_class = SV_RECORD_CLASS;
1037 dip->prev = AUDIO_MIXER_LAST;
1038 dip->next = SV_RECORD_GAIN;
1039 strcpy(dip->label.name, AudioNsource);
1040 dip->type = AUDIO_MIXER_ENUM;
1041
1042 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1043 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1044 strcpy(dip->un.e.member[i].label.name,
1045 record_sources[i].name);
1046 dip->un.e.member[i].ord = record_sources[i].idx;
1047 }
1048 return 0;
1049
1050 case SV_RECORD_GAIN:
1051 dip->mixer_class = SV_RECORD_CLASS;
1052 dip->prev = SV_RECORD_SOURCE;
1053 dip->next = AUDIO_MIXER_LAST;
1054 strcpy(dip->label.name, "gain");
1055 dip->type = AUDIO_MIXER_VALUE;
1056 dip->un.v.num_channels = 1;
1057 strcpy(dip->un.v.units.name, AudioNvolume);
1058 return 0;
1059
1060 case SV_MIC_BOOST:
1061 dip->mixer_class = SV_RECORD_CLASS;
1062 dip->prev = AUDIO_MIXER_LAST;
1063 dip->next = AUDIO_MIXER_LAST;
1064 strcpy(dip->label.name, "micboost");
1065 goto on_off;
1066
1067 case SV_SRS_MODE:
1068 dip->mixer_class = SV_OUTPUT_CLASS;
1069 dip->prev = dip->next = AUDIO_MIXER_LAST;
1070 strcpy(dip->label.name, AudioNspatial);
1071
1072 on_off:
1073 dip->type = AUDIO_MIXER_ENUM;
1074 dip->un.e.num_mem = 2;
1075 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1076 dip->un.e.member[0].ord = 0;
1077 strcpy(dip->un.e.member[1].label.name, AudioNon);
1078 dip->un.e.member[1].ord = 1;
1079 return 0;
1080 }
1081
1082 return ENXIO;
1083 }
1084
1085 static int
1086 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1087 {
1088 struct sv_softc *sc;
1089 uint8_t reg;
1090 int idx;
1091
1092 sc = addr;
1093 if (cp->dev >= SV_FIRST_MIXER &&
1094 cp->dev <= SV_LAST_MIXER) {
1095 int off, mute;
1096
1097 off = cp->dev - SV_FIRST_MIXER;
1098 mute = (off % SV_DEVICES_PER_PORT);
1099 idx = off / SV_DEVICES_PER_PORT;
1100
1101 if (mute) {
1102 if (cp->type != AUDIO_MIXER_ENUM)
1103 return EINVAL;
1104
1105 reg = sv_read_indirect(sc, ports[idx].l_port);
1106 if (cp->un.ord)
1107 reg |= SV_MUTE_BIT;
1108 else
1109 reg &= ~SV_MUTE_BIT;
1110 sv_write_indirect(sc, ports[idx].l_port, reg);
1111
1112 if (ports[idx].r_port) {
1113 reg = sv_read_indirect(sc, ports[idx].r_port);
1114 if (cp->un.ord)
1115 reg |= SV_MUTE_BIT;
1116 else
1117 reg &= ~SV_MUTE_BIT;
1118 sv_write_indirect(sc, ports[idx].r_port, reg);
1119 }
1120 } else {
1121 int lval, rval;
1122
1123 if (cp->type != AUDIO_MIXER_VALUE)
1124 return EINVAL;
1125
1126 if (cp->un.value.num_channels != 1 &&
1127 cp->un.value.num_channels != 2)
1128 return (EINVAL);
1129
1130 if (ports[idx].r_port == 0) {
1131 if (cp->un.value.num_channels != 1)
1132 return (EINVAL);
1133 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1134 rval = 0; /* shut up GCC */
1135 } else {
1136 if (cp->un.value.num_channels != 2)
1137 return (EINVAL);
1138
1139 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1140 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1141 }
1142
1143
1144 reg = sv_read_indirect(sc, ports[idx].l_port);
1145 reg &= ~(ports[idx].mask);
1146 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1147 AUDIO_MAX_GAIN;
1148 reg |= lval;
1149 sv_write_indirect(sc, ports[idx].l_port, reg);
1150
1151 if (ports[idx].r_port != 0) {
1152 reg = sv_read_indirect(sc, ports[idx].r_port);
1153 reg &= ~(ports[idx].mask);
1154
1155 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1156 AUDIO_MAX_GAIN;
1157 reg |= rval;
1158
1159 sv_write_indirect(sc, ports[idx].r_port, reg);
1160 }
1161
1162 sv_read_indirect(sc, ports[idx].l_port);
1163 }
1164
1165 return 0;
1166 }
1167
1168
1169 switch (cp->dev) {
1170 case SV_RECORD_SOURCE:
1171 if (cp->type != AUDIO_MIXER_ENUM)
1172 return EINVAL;
1173
1174 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1175 if (record_sources[idx].idx == cp->un.ord)
1176 goto found;
1177 }
1178
1179 return EINVAL;
1180
1181 found:
1182 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1183 reg &= ~SV_REC_SOURCE_MASK;
1184 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1185 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1186
1187 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1188 reg &= ~SV_REC_SOURCE_MASK;
1189 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1190 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1191 return 0;
1192
1193 case SV_RECORD_GAIN:
1194 {
1195 int val;
1196
1197 if (cp->type != AUDIO_MIXER_VALUE)
1198 return EINVAL;
1199
1200 if (cp->un.value.num_channels != 1)
1201 return EINVAL;
1202
1203 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1204 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1205
1206 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1207 reg &= ~SV_REC_GAIN_MASK;
1208 reg |= val;
1209 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1210
1211 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1212 reg &= ~SV_REC_GAIN_MASK;
1213 reg |= val;
1214 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1215 }
1216 return (0);
1217
1218 case SV_MIC_BOOST:
1219 if (cp->type != AUDIO_MIXER_ENUM)
1220 return EINVAL;
1221
1222 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1223 if (cp->un.ord) {
1224 reg |= SV_MIC_BOOST_BIT;
1225 } else {
1226 reg &= ~SV_MIC_BOOST_BIT;
1227 }
1228
1229 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1230 return 0;
1231
1232 case SV_SRS_MODE:
1233 if (cp->type != AUDIO_MIXER_ENUM)
1234 return EINVAL;
1235
1236 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1237 if (cp->un.ord) {
1238 reg &= ~SV_SRS_SPACE_ONOFF;
1239 } else {
1240 reg |= SV_SRS_SPACE_ONOFF;
1241 }
1242
1243 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1244 return 0;
1245 }
1246
1247 return EINVAL;
1248 }
1249
1250 static int
1251 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1252 {
1253 struct sv_softc *sc;
1254 int val;
1255 uint8_t reg;
1256
1257 sc = addr;
1258 if (cp->dev >= SV_FIRST_MIXER &&
1259 cp->dev <= SV_LAST_MIXER) {
1260 int off = cp->dev - SV_FIRST_MIXER;
1261 int mute = (off % 2);
1262 int idx = off / 2;
1263
1264 off = cp->dev - SV_FIRST_MIXER;
1265 mute = (off % 2);
1266 idx = off / 2;
1267 if (mute) {
1268 if (cp->type != AUDIO_MIXER_ENUM)
1269 return EINVAL;
1270
1271 reg = sv_read_indirect(sc, ports[idx].l_port);
1272 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1273 } else {
1274 if (cp->type != AUDIO_MIXER_VALUE)
1275 return EINVAL;
1276
1277 if (cp->un.value.num_channels != 1 &&
1278 cp->un.value.num_channels != 2)
1279 return EINVAL;
1280
1281 if ((ports[idx].r_port == 0 &&
1282 cp->un.value.num_channels != 1) ||
1283 (ports[idx].r_port != 0 &&
1284 cp->un.value.num_channels != 2))
1285 return EINVAL;
1286
1287 reg = sv_read_indirect(sc, ports[idx].l_port);
1288 reg &= ports[idx].mask;
1289
1290 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1291
1292 if (ports[idx].r_port != 0) {
1293 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
1294
1295 reg = sv_read_indirect(sc, ports[idx].r_port);
1296 reg &= ports[idx].mask;
1297
1298 val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
1299 / ports[idx].mask);
1300 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
1301 } else
1302 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
1303 }
1304
1305 return 0;
1306 }
1307
1308 switch (cp->dev) {
1309 case SV_RECORD_SOURCE:
1310 if (cp->type != AUDIO_MIXER_ENUM)
1311 return EINVAL;
1312
1313 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1314 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1315
1316 return 0;
1317
1318 case SV_RECORD_GAIN:
1319 if (cp->type != AUDIO_MIXER_VALUE)
1320 return EINVAL;
1321 if (cp->un.value.num_channels != 1)
1322 return EINVAL;
1323
1324 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1325 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1326 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1327
1328 return 0;
1329
1330 case SV_MIC_BOOST:
1331 if (cp->type != AUDIO_MIXER_ENUM)
1332 return EINVAL;
1333 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1334 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1335 return 0;
1336
1337 case SV_SRS_MODE:
1338 if (cp->type != AUDIO_MIXER_ENUM)
1339 return EINVAL;
1340 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1341 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1342 return 0;
1343 }
1344
1345 return EINVAL;
1346 }
1347
1348 static void
1349 sv_init_mixer(struct sv_softc *sc)
1350 {
1351 mixer_ctrl_t cp;
1352 int i;
1353
1354 cp.type = AUDIO_MIXER_ENUM;
1355 cp.dev = SV_SRS_MODE;
1356 cp.un.ord = 0;
1357
1358 sv_mixer_set_port(sc, &cp);
1359
1360 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1361 if (!strcmp(ports[i].audio, AudioNdac)) {
1362 cp.type = AUDIO_MIXER_ENUM;
1363 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1364 cp.un.ord = 0;
1365 sv_mixer_set_port(sc, &cp);
1366 break;
1367 }
1368 }
1369 }
1370
1371 static void *
1372 sv_malloc(void *addr, int direction, size_t size,
1373 struct malloc_type *pool, int flags)
1374 {
1375 struct sv_softc *sc;
1376 struct sv_dma *p;
1377 int error;
1378
1379 sc = addr;
1380 p = malloc(sizeof(*p), pool, flags);
1381 if (p == NULL)
1382 return NULL;
1383 error = sv_allocmem(sc, size, 16, direction, p);
1384 if (error) {
1385 free(p, pool);
1386 return 0;
1387 }
1388 p->next = sc->sc_dmas;
1389 sc->sc_dmas = p;
1390 return KERNADDR(p);
1391 }
1392
1393 static void
1394 sv_free(void *addr, void *ptr, struct malloc_type *pool)
1395 {
1396 struct sv_softc *sc;
1397 struct sv_dma **pp, *p;
1398
1399 sc = addr;
1400 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1401 if (KERNADDR(p) == ptr) {
1402 sv_freemem(sc, p);
1403 *pp = p->next;
1404 free(p, pool);
1405 return;
1406 }
1407 }
1408 }
1409
1410 static size_t
1411 sv_round_buffersize(void *addr, int direction, size_t size)
1412 {
1413
1414 return size;
1415 }
1416
1417 static paddr_t
1418 sv_mappage(void *addr, void *mem, off_t off, int prot)
1419 {
1420 struct sv_softc *sc;
1421 struct sv_dma *p;
1422
1423 sc = addr;
1424 if (off < 0)
1425 return -1;
1426 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1427 continue;
1428 if (p == NULL)
1429 return -1;
1430 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1431 off, prot, BUS_DMA_WAITOK);
1432 }
1433
1434 static int
1435 sv_get_props(void *addr)
1436 {
1437 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1438 }
1439