Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.43
      1 /*      $NetBSD: sv.c,v 1.43 2009/08/18 11:12:05 drochner Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     35  * All rights reserved
     36  *
     37  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. The author's name or those of the contributors may be used to
     48  *    endorse or promote products derived from this software without
     49  *    specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 /*
     65  * S3 SonicVibes driver
     66  *   Heavily based on the eap driver by Lennart Augustsson
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.43 2009/08/18 11:12:05 drochner Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/kernel.h>
     75 #include <sys/malloc.h>
     76 #include <sys/device.h>
     77 
     78 #include <dev/pci/pcireg.h>
     79 #include <dev/pci/pcivar.h>
     80 #include <dev/pci/pcidevs.h>
     81 
     82 #include <sys/audioio.h>
     83 #include <dev/audio_if.h>
     84 #include <dev/mulaw.h>
     85 #include <dev/auconv.h>
     86 
     87 #include <dev/ic/i8237reg.h>
     88 #include <dev/pci/svreg.h>
     89 #include <dev/pci/svvar.h>
     90 
     91 #include <sys/bus.h>
     92 
     93 /* XXX
     94  * The SonicVibes DMA is broken and only works on 24-bit addresses.
     95  * As long as bus_dmamem_alloc_range() is missing we use the ISA
     96  * DMA tag on i386.
     97  */
     98 #if defined(i386)
     99 #include "isa.h"
    100 #if NISA > 0
    101 #include <dev/isa/isavar.h>
    102 #endif
    103 #endif
    104 
    105 #ifdef AUDIO_DEBUG
    106 #define DPRINTF(x)	if (svdebug) printf x
    107 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    108 int	svdebug = 0;
    109 #else
    110 #define DPRINTF(x)
    111 #define DPRINTFN(n,x)
    112 #endif
    113 
    114 static int	sv_match(device_t, cfdata_t, void *);
    115 static void	sv_attach(device_t, device_t, void *);
    116 static int	sv_intr(void *);
    117 
    118 struct sv_dma {
    119 	bus_dmamap_t map;
    120 	void *addr;
    121 	bus_dma_segment_t segs[1];
    122 	int nsegs;
    123 	size_t size;
    124 	struct sv_dma *next;
    125 };
    126 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    127 #define KERNADDR(p) ((void *)((p)->addr))
    128 
    129 CFATTACH_DECL(sv, sizeof(struct sv_softc),
    130     sv_match, sv_attach, NULL, NULL);
    131 
    132 static struct audio_device sv_device = {
    133 	"S3 SonicVibes",
    134 	"",
    135 	"sv"
    136 };
    137 
    138 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    139 
    140 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
    141 			    struct sv_dma *);
    142 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
    143 
    144 static void	sv_init_mixer(struct sv_softc *);
    145 
    146 static int	sv_open(void *, int);
    147 static int	sv_query_encoding(void *, struct audio_encoding *);
    148 static int	sv_set_params(void *, int, int, audio_params_t *,
    149 			      audio_params_t *, stream_filter_list_t *,
    150 			      stream_filter_list_t *);
    151 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
    152 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
    153 				  void *, const audio_params_t *);
    154 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
    155 				 void *, const audio_params_t *);
    156 static int	sv_halt_output(void *);
    157 static int	sv_halt_input(void *);
    158 static int	sv_getdev(void *, struct audio_device *);
    159 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
    160 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
    161 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
    162 static void *	sv_malloc(void *, int, size_t, struct malloc_type *, int);
    163 static void	sv_free(void *, void *, struct malloc_type *);
    164 static size_t	sv_round_buffersize(void *, int, size_t);
    165 static paddr_t	sv_mappage(void *, void *, off_t, int);
    166 static int	sv_get_props(void *);
    167 
    168 #ifdef AUDIO_DEBUG
    169 void    sv_dumpregs(struct sv_softc *sc);
    170 #endif
    171 
    172 static const struct audio_hw_if sv_hw_if = {
    173 	sv_open,
    174 	NULL,			/* close */
    175 	NULL,
    176 	sv_query_encoding,
    177 	sv_set_params,
    178 	sv_round_blocksize,
    179 	NULL,
    180 	NULL,
    181 	NULL,
    182 	NULL,
    183 	NULL,
    184 	sv_halt_output,
    185 	sv_halt_input,
    186 	NULL,
    187 	sv_getdev,
    188 	NULL,
    189 	sv_mixer_set_port,
    190 	sv_mixer_get_port,
    191 	sv_query_devinfo,
    192 	sv_malloc,
    193 	sv_free,
    194 	sv_round_buffersize,
    195 	sv_mappage,
    196 	sv_get_props,
    197 	sv_trigger_output,
    198 	sv_trigger_input,
    199 	NULL,
    200 	NULL,
    201 };
    202 
    203 #define SV_NFORMATS	4
    204 static const struct audio_format sv_formats[SV_NFORMATS] = {
    205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    206 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    208 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    210 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    211 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    212 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    213 };
    214 
    215 
    216 static void
    217 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
    218 {
    219 
    220 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    221 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    222 }
    223 
    224 static uint8_t
    225 sv_read(struct sv_softc *sc, uint8_t reg)
    226 {
    227 	uint8_t val;
    228 
    229 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    230 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    231 	return val;
    232 }
    233 
    234 static uint8_t
    235 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
    236 {
    237 	uint8_t val;
    238 	int s;
    239 
    240 	s = splaudio();
    241 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    242 	val = sv_read(sc, SV_CODEC_IDATA);
    243 	splx(s);
    244 	return val;
    245 }
    246 
    247 static void
    248 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
    249 {
    250 	uint8_t iaddr;
    251 	int s;
    252 
    253 	iaddr = reg & SV_IADDR_MASK;
    254 	s = splaudio();
    255 	if (reg == SV_DMA_DATA_FORMAT)
    256 		iaddr |= SV_IADDR_MCE;
    257 
    258 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    259 	sv_write(sc, SV_CODEC_IDATA, val);
    260 	splx(s);
    261 }
    262 
    263 static int
    264 sv_match(device_t parent, cfdata_t match, void *aux)
    265 {
    266 	struct pci_attach_args *pa;
    267 
    268 	pa = aux;
    269 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    270 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    271 		return 1;
    272 
    273 	return 0;
    274 }
    275 
    276 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
    277 
    278 static int
    279 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
    280     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
    281     bus_size_t bound, int flags, bus_space_handle_t *ioh)
    282 {
    283 	bus_addr_t addr;
    284 	int error;
    285 
    286 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
    287 				size, align, bound, flags, &addr, ioh);
    288 	if (error)
    289 		return error;
    290 
    291 	pci_conf_write(pc, pt, pcioffs, addr);
    292 	return 0;
    293 }
    294 
    295 /*
    296  * Allocate IO addresses when all other configuration is done.
    297  */
    298 static void
    299 sv_defer(device_t self)
    300 {
    301 	struct sv_softc *sc;
    302 	pci_chipset_tag_t pc;
    303 	pcitag_t pt;
    304 	pcireg_t dmaio;
    305 
    306 	sc = device_private(self);
    307 	pc = sc->sc_pa.pa_pc;
    308 	pt = sc->sc_pa.pa_tag;
    309 	DPRINTF(("sv_defer: %p\n", sc));
    310 
    311 	/* XXX
    312 	 * Get a reasonable default for the I/O range.
    313 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
    314 	 */
    315 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
    316 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
    317 
    318 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    319 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    320 			  0, &sc->sc_dmaa_ioh)) {
    321 		printf("sv_attach: cannot allocate DMA A range\n");
    322 		return;
    323 	}
    324 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    325 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    326 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    327 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    328 
    329 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    330 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    331 			  0, &sc->sc_dmac_ioh)) {
    332 		printf("sv_attach: cannot allocate DMA C range\n");
    333 		return;
    334 	}
    335 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    336 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    337 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    338 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    339 
    340 	sc->sc_dmaset = 1;
    341 }
    342 
    343 static void
    344 sv_attach(device_t parent, device_t self, void *aux)
    345 {
    346 	struct sv_softc *sc;
    347 	struct pci_attach_args *pa;
    348 	pci_chipset_tag_t pc;
    349 	pcitag_t pt;
    350 	pci_intr_handle_t ih;
    351 	pcireg_t csr;
    352 	char const *intrstr;
    353 	uint8_t reg;
    354 	struct audio_attach_args arg;
    355 
    356 	sc = device_private(self);
    357 	pa = aux;
    358 	pc = pa->pa_pc;
    359 	pt = pa->pa_tag;
    360 	printf ("\n");
    361 
    362 	/* Map I/O registers */
    363 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    364 			   PCI_MAPREG_TYPE_IO, 0,
    365 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    366 		aprint_error_dev(&sc->sc_dev, "can't map enhanced i/o space\n");
    367 		return;
    368 	}
    369 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    370 			   PCI_MAPREG_TYPE_IO, 0,
    371 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    372 		aprint_error_dev(&sc->sc_dev, "can't map FM i/o space\n");
    373 		return;
    374 	}
    375 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    376 			   PCI_MAPREG_TYPE_IO, 0,
    377 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    378 		aprint_error_dev(&sc->sc_dev, "can't map MIDI i/o space\n");
    379 		return;
    380 	}
    381 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    382 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    383 
    384 #if defined(alpha)
    385 	/* XXX Force allocation through the SGMAP. */
    386 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    387 #elif defined(i386) && NISA > 0
    388 /* XXX
    389  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    390  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    391  * DMA tag on i386.
    392  */
    393 	sc->sc_dmatag = &isa_bus_dma_tag;
    394 #else
    395 	sc->sc_dmatag = pa->pa_dmat;
    396 #endif
    397 
    398 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    399 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    400 
    401 	/* Enable the device. */
    402 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    403 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    404 		       csr | PCI_COMMAND_MASTER_ENABLE);
    405 
    406 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    407 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    408 
    409 	/* initialize codec registers */
    410 	reg = sv_read(sc, SV_CODEC_CONTROL);
    411 	reg |= SV_CTL_RESET;
    412 	sv_write(sc, SV_CODEC_CONTROL, reg);
    413 	delay(50);
    414 
    415 	reg = sv_read(sc, SV_CODEC_CONTROL);
    416 	reg &= ~SV_CTL_RESET;
    417 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    418 
    419 	/* This write clears the reset */
    420 	sv_write(sc, SV_CODEC_CONTROL, reg);
    421 	delay(50);
    422 
    423 	/* This write actually shoves the new values in */
    424 	sv_write(sc, SV_CODEC_CONTROL, reg);
    425 
    426 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    427 
    428 	/* Enable DMA interrupts */
    429 	reg = sv_read(sc, SV_CODEC_INTMASK);
    430 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    431 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    432 	sv_write(sc, SV_CODEC_INTMASK, reg);
    433 
    434 	sv_read(sc, SV_CODEC_STATUS);
    435 
    436 	/* Map and establish the interrupt. */
    437 	if (pci_intr_map(pa, &ih)) {
    438 		aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
    439 		return;
    440 	}
    441 	intrstr = pci_intr_string(pc, ih);
    442 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    443 	if (sc->sc_ih == NULL) {
    444 		aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
    445 		if (intrstr != NULL)
    446 			printf(" at %s", intrstr);
    447 		printf("\n");
    448 		return;
    449 	}
    450 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    451 	printf("%s: rev %d", device_xname(&sc->sc_dev),
    452 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    453 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    454 		printf(", reverb SRAM present");
    455 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    456 		printf(", wavetable ROM present");
    457 	printf("\n");
    458 
    459 	sv_init_mixer(sc);
    460 
    461 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    462 
    463 	arg.type = AUDIODEV_TYPE_OPL;
    464 	arg.hwif = 0;
    465 	arg.hdl = 0;
    466 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    467 
    468 	sc->sc_pa = *pa;	/* for deferred setup */
    469 	config_defer(self, sv_defer);
    470 }
    471 
    472 #ifdef AUDIO_DEBUG
    473 void
    474 sv_dumpregs(struct sv_softc *sc)
    475 {
    476 	int idx;
    477 
    478 #if 0
    479 	for (idx = 0; idx < 0x50; idx += 4)
    480 		printf ("%02x = %x\n", idx,
    481 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    482 #endif
    483 
    484 	for (idx = 0; idx < 6; idx++)
    485 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    486 
    487 	for (idx = 0; idx < 0x32; idx++)
    488 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    489 
    490 	for (idx = 0; idx < 0x10; idx++)
    491 		printf ("DMA %02x = %02x\n", idx,
    492 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    493 }
    494 #endif
    495 
    496 static int
    497 sv_intr(void *p)
    498 {
    499 	struct sv_softc *sc;
    500 	uint8_t intr;
    501 
    502 	sc = p;
    503 	intr = sv_read(sc, SV_CODEC_STATUS);
    504 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    505 
    506 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    507 		return 0;
    508 
    509 	if (intr & SV_INTSTATUS_DMAA) {
    510 		if (sc->sc_pintr)
    511 			sc->sc_pintr(sc->sc_parg);
    512 	}
    513 
    514 	if (intr & SV_INTSTATUS_DMAC) {
    515 		if (sc->sc_rintr)
    516 			sc->sc_rintr(sc->sc_rarg);
    517 	}
    518 
    519 	return 1;
    520 }
    521 
    522 static int
    523 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
    524     int direction, struct sv_dma *p)
    525 {
    526 	int error;
    527 
    528 	p->size = size;
    529 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    530 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_NOWAIT);
    531 	if (error)
    532 		return error;
    533 
    534 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    535 	    &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    536 	if (error)
    537 		goto free;
    538 
    539 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    540 	    0, BUS_DMA_NOWAIT, &p->map);
    541 	if (error)
    542 		goto unmap;
    543 
    544 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    545 	    BUS_DMA_NOWAIT | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    546 	if (error)
    547 		goto destroy;
    548 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    549 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    550 	return 0;
    551 
    552 destroy:
    553 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    554 unmap:
    555 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    556 free:
    557 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    558 	return error;
    559 }
    560 
    561 static int
    562 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
    563 {
    564 
    565 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    566 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    567 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    568 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    569 	return 0;
    570 }
    571 
    572 static int
    573 sv_open(void *addr, int flags)
    574 {
    575 	struct sv_softc *sc;
    576 
    577 	sc = addr;
    578 	DPRINTF(("sv_open\n"));
    579 	if (!sc->sc_dmaset)
    580 		return ENXIO;
    581 
    582 	return 0;
    583 }
    584 
    585 static int
    586 sv_query_encoding(void *addr, struct audio_encoding *fp)
    587 {
    588 
    589 	switch (fp->index) {
    590 	case 0:
    591 		strcpy(fp->name, AudioEulinear);
    592 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    593 		fp->precision = 8;
    594 		fp->flags = 0;
    595 		return 0;
    596 	case 1:
    597 		strcpy(fp->name, AudioEmulaw);
    598 		fp->encoding = AUDIO_ENCODING_ULAW;
    599 		fp->precision = 8;
    600 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    601 		return 0;
    602 	case 2:
    603 		strcpy(fp->name, AudioEalaw);
    604 		fp->encoding = AUDIO_ENCODING_ALAW;
    605 		fp->precision = 8;
    606 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    607 		return 0;
    608 	case 3:
    609 		strcpy(fp->name, AudioEslinear);
    610 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    611 		fp->precision = 8;
    612 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    613 		return 0;
    614 	case 4:
    615 		strcpy(fp->name, AudioEslinear_le);
    616 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    617 		fp->precision = 16;
    618 		fp->flags = 0;
    619 		return 0;
    620 	case 5:
    621 		strcpy(fp->name, AudioEulinear_le);
    622 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    623 		fp->precision = 16;
    624 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    625 		return 0;
    626 	case 6:
    627 		strcpy(fp->name, AudioEslinear_be);
    628 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    629 		fp->precision = 16;
    630 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    631 		return 0;
    632 	case 7:
    633 		strcpy(fp->name, AudioEulinear_be);
    634 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    635 		fp->precision = 16;
    636 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    637 		return 0;
    638 	default:
    639 		return EINVAL;
    640 	}
    641 }
    642 
    643 static int
    644 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
    645     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    646 {
    647 	struct sv_softc *sc;
    648 	audio_params_t *p;
    649 	uint32_t val;
    650 
    651 	sc = addr;
    652 	p = NULL;
    653 	/*
    654 	 * This device only has one clock, so make the sample rates match.
    655 	 */
    656 	if (play->sample_rate != rec->sample_rate &&
    657 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    658 		if (setmode == AUMODE_PLAY) {
    659 			rec->sample_rate = play->sample_rate;
    660 			setmode |= AUMODE_RECORD;
    661 		} else if (setmode == AUMODE_RECORD) {
    662 			play->sample_rate = rec->sample_rate;
    663 			setmode |= AUMODE_PLAY;
    664 		} else
    665 			return EINVAL;
    666 	}
    667 
    668 	if (setmode & AUMODE_RECORD) {
    669 		p = rec;
    670 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    671 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
    672 			return EINVAL;
    673 	}
    674 	if (setmode & AUMODE_PLAY) {
    675 		p = play;
    676 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    677 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
    678 			return EINVAL;
    679 	}
    680 
    681 	if (p == NULL)
    682 		return 0;
    683 
    684 	val = p->sample_rate * 65536 / 48000;
    685 	/*
    686 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
    687 	 * register, so we have to bias it.  This causes a little clock drift.
    688 	 * The drift is below normal crystal tolerance (.0001%), so although
    689 	 * this seems a little silly, we can pretty much ignore it.
    690 	 * (I tested the output speed with values of 1-20, just to be sure this
    691 	 * register isn't *supposed* to have a bias.  It isn't.)
    692 	 * - mycroft
    693 	 */
    694 	if (val > 65535)
    695 		val = 65535;
    696 
    697 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    698 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    699 
    700 #define F_REF 24576000
    701 
    702 #define ABS(x) (((x) < 0) ? (-x) : (x))
    703 
    704 	if (setmode & AUMODE_RECORD) {
    705 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    706 
    707 		/* f_out is dervied from the 24.576MHz crystal by three values:
    708 		   M & N & R. The equation is as follows:
    709 
    710 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    711 
    712 		   with the constraint that:
    713 
    714 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
    715 		   and n, m >= 1
    716 		*/
    717 
    718 		int  goal_f_out;
    719 		int  a, n, m, best_n, best_m, best_error;
    720 		int  pll_sample;
    721 		int  error;
    722 
    723 		goal_f_out = 512 * rec->sample_rate;
    724 		best_n = 0;
    725 		best_m = 0;
    726 		best_error = 10000000;
    727 		for (a = 0; a < 8; a++) {
    728 			if ((goal_f_out * (1 << a)) >= 80000000)
    729 				break;
    730 		}
    731 
    732 		/* a != 8 because sample_rate >= 2000 */
    733 
    734 		for (n = 33; n > 2; n--) {
    735 			m = (goal_f_out * n * (1 << a)) / F_REF;
    736 			if ((m > 257) || (m < 3))
    737 				continue;
    738 
    739 			pll_sample = (m * F_REF) / (n * (1 << a));
    740 			pll_sample /= 512;
    741 
    742 			/* Threshold might be good here */
    743 			error = pll_sample - rec->sample_rate;
    744 			error = ABS(error);
    745 
    746 			if (error < best_error) {
    747 				best_error = error;
    748 				best_n = n;
    749 				best_m = m;
    750 				if (error == 0) break;
    751 			}
    752 		}
    753 
    754 		best_n -= 2;
    755 		best_m -= 2;
    756 
    757 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    758 		sv_write_indirect(sc, SV_ADC_PLL_N,
    759 				  best_n | (a << SV_PLL_R_SHIFT));
    760 	}
    761 
    762 	return 0;
    763 }
    764 
    765 static int
    766 sv_round_blocksize(void *addr, int blk, int mode,
    767     const audio_params_t *param)
    768 {
    769 
    770 	return blk & -32;	/* keep good alignment */
    771 }
    772 
    773 static int
    774 sv_trigger_output(void *addr, void *start, void *end, int blksize,
    775     void (*intr)(void *), void *arg, const audio_params_t *param)
    776 {
    777 	struct sv_softc *sc;
    778 	struct sv_dma *p;
    779 	uint8_t mode;
    780 	int dma_count;
    781 
    782 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
    783 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    784 	sc = addr;
    785 	sc->sc_pintr = intr;
    786 	sc->sc_parg = arg;
    787 
    788 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    789 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    790 	if (param->precision == 16)
    791 		mode |= SV_DMAA_FORMAT16;
    792 	if (param->channels == 2)
    793 		mode |= SV_DMAA_STEREO;
    794 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    795 
    796 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    797 		continue;
    798 	if (p == NULL) {
    799 		printf("sv_trigger_output: bad addr %p\n", start);
    800 		return EINVAL;
    801 	}
    802 
    803 	dma_count = ((char *)end - (char *)start) - 1;
    804 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
    805 	    (int)DMAADDR(p), dma_count));
    806 
    807 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    808 			  DMAADDR(p));
    809 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    810 			  dma_count);
    811 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    812 			  DMA37MD_READ | DMA37MD_LOOP);
    813 
    814 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    815 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    816 
    817 	dma_count = blksize - 1;
    818 
    819 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    820 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    821 
    822 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    823 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    824 
    825 	return 0;
    826 }
    827 
    828 static int
    829 sv_trigger_input(void *addr, void *start, void *end, int blksize,
    830     void (*intr)(void *), void *arg, const audio_params_t *param)
    831 {
    832 	struct sv_softc *sc;
    833 	struct sv_dma *p;
    834 	uint8_t mode;
    835 	int dma_count;
    836 
    837 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
    838 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    839 	sc = addr;
    840 	sc->sc_rintr = intr;
    841 	sc->sc_rarg = arg;
    842 
    843 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    844 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    845 	if (param->precision == 16)
    846 		mode |= SV_DMAC_FORMAT16;
    847 	if (param->channels == 2)
    848 		mode |= SV_DMAC_STEREO;
    849 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    850 
    851 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    852 		continue;
    853 	if (!p) {
    854 		printf("sv_trigger_input: bad addr %p\n", start);
    855 		return EINVAL;
    856 	}
    857 
    858 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    859 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
    860 	    (int)DMAADDR(p), dma_count));
    861 
    862 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    863 			  DMAADDR(p));
    864 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    865 			  dma_count);
    866 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    867 			  DMA37MD_WRITE | DMA37MD_LOOP);
    868 
    869 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    870 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    871 
    872 	dma_count = (blksize >> 1) - 1;
    873 
    874 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    875 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    876 
    877 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    878 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    879 
    880 	return 0;
    881 }
    882 
    883 static int
    884 sv_halt_output(void *addr)
    885 {
    886 	struct sv_softc *sc;
    887 	uint8_t mode;
    888 
    889 	DPRINTF(("sv: sv_halt_output\n"));
    890 	sc = addr;
    891 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    892 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    893 	sc->sc_pintr = 0;
    894 
    895 	return 0;
    896 }
    897 
    898 static int
    899 sv_halt_input(void *addr)
    900 {
    901 	struct sv_softc *sc;
    902 	uint8_t mode;
    903 
    904 	DPRINTF(("sv: sv_halt_input\n"));
    905 	sc = addr;
    906 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    907 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    908 	sc->sc_rintr = 0;
    909 
    910 	return 0;
    911 }
    912 
    913 static int
    914 sv_getdev(void *addr, struct audio_device *retp)
    915 {
    916 
    917 	*retp = sv_device;
    918 	return 0;
    919 }
    920 
    921 
    922 /*
    923  * Mixer related code is here
    924  *
    925  */
    926 
    927 #define SV_INPUT_CLASS 0
    928 #define SV_OUTPUT_CLASS 1
    929 #define SV_RECORD_CLASS 2
    930 
    931 #define SV_LAST_CLASS 2
    932 
    933 static const char *mixer_classes[] =
    934 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    935 
    936 static const struct {
    937 	uint8_t   l_port;
    938 	uint8_t   r_port;
    939 	uint8_t   mask;
    940 	uint8_t   class;
    941 	const char *audio;
    942 } ports[] = {
    943   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    944     SV_INPUT_CLASS, "aux1" },
    945   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    946     SV_INPUT_CLASS, AudioNcd },
    947   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    948     SV_INPUT_CLASS, AudioNline },
    949   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    950   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    951     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    952   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    953     SV_INPUT_CLASS, "aux2" },
    954   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    955     SV_INPUT_CLASS, AudioNdac },
    956   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
    957     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
    958 };
    959 
    960 
    961 static const struct {
    962 	int idx;
    963 	const char *name;
    964 } record_sources[] = {
    965 	{ SV_REC_CD, AudioNcd },
    966 	{ SV_REC_DAC, AudioNdac },
    967 	{ SV_REC_AUX2, "aux2" },
    968 	{ SV_REC_LINE, AudioNline },
    969 	{ SV_REC_AUX1, "aux1" },
    970 	{ SV_REC_MIC, AudioNmicrophone },
    971 	{ SV_REC_MIXER, AudioNmixerout }
    972 };
    973 
    974 
    975 #define SV_DEVICES_PER_PORT 2
    976 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
    977 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
    978 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
    979 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
    980 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
    981 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
    982 
    983 static int
    984 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
    985 {
    986 	int i;
    987 
    988 	/* It's a class */
    989 	if (dip->index <= SV_LAST_CLASS) {
    990 		dip->type = AUDIO_MIXER_CLASS;
    991 		dip->mixer_class = dip->index;
    992 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    993 		strcpy(dip->label.name, mixer_classes[dip->index]);
    994 		return 0;
    995 	}
    996 
    997 	if (dip->index >= SV_FIRST_MIXER &&
    998 	    dip->index <= SV_LAST_MIXER) {
    999 		int off, mute ,idx;
   1000 
   1001 		off = dip->index - SV_FIRST_MIXER;
   1002 		mute = (off % SV_DEVICES_PER_PORT);
   1003 		idx = off / SV_DEVICES_PER_PORT;
   1004 		dip->mixer_class = ports[idx].class;
   1005 		strcpy(dip->label.name, ports[idx].audio);
   1006 
   1007 		if (!mute) {
   1008 			dip->type = AUDIO_MIXER_VALUE;
   1009 			dip->prev = AUDIO_MIXER_LAST;
   1010 			dip->next = dip->index + 1;
   1011 
   1012 			if (ports[idx].r_port != 0)
   1013 				dip->un.v.num_channels = 2;
   1014 			else
   1015 				dip->un.v.num_channels = 1;
   1016 
   1017 			strcpy(dip->un.v.units.name, AudioNvolume);
   1018 		} else {
   1019 			dip->type = AUDIO_MIXER_ENUM;
   1020 			dip->prev = dip->index - 1;
   1021 			dip->next = AUDIO_MIXER_LAST;
   1022 
   1023 			strcpy(dip->label.name, AudioNmute);
   1024 			dip->un.e.num_mem = 2;
   1025 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1026 			dip->un.e.member[0].ord = 0;
   1027 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1028 			dip->un.e.member[1].ord = 1;
   1029 		}
   1030 
   1031 		return 0;
   1032 	}
   1033 
   1034 	switch (dip->index) {
   1035 	case SV_RECORD_SOURCE:
   1036 		dip->mixer_class = SV_RECORD_CLASS;
   1037 		dip->prev = AUDIO_MIXER_LAST;
   1038 		dip->next = SV_RECORD_GAIN;
   1039 		strcpy(dip->label.name, AudioNsource);
   1040 		dip->type = AUDIO_MIXER_ENUM;
   1041 
   1042 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1043 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1044 			strcpy(dip->un.e.member[i].label.name,
   1045 			       record_sources[i].name);
   1046 			dip->un.e.member[i].ord = record_sources[i].idx;
   1047 		}
   1048 		return 0;
   1049 
   1050 	case SV_RECORD_GAIN:
   1051 		dip->mixer_class = SV_RECORD_CLASS;
   1052 		dip->prev = SV_RECORD_SOURCE;
   1053 		dip->next = AUDIO_MIXER_LAST;
   1054 		strcpy(dip->label.name, "gain");
   1055 		dip->type = AUDIO_MIXER_VALUE;
   1056 		dip->un.v.num_channels = 1;
   1057 		strcpy(dip->un.v.units.name, AudioNvolume);
   1058 		return 0;
   1059 
   1060 	case SV_MIC_BOOST:
   1061 		dip->mixer_class = SV_RECORD_CLASS;
   1062 		dip->prev = AUDIO_MIXER_LAST;
   1063 		dip->next = AUDIO_MIXER_LAST;
   1064 		strcpy(dip->label.name, "micboost");
   1065 		goto on_off;
   1066 
   1067 	case SV_SRS_MODE:
   1068 		dip->mixer_class = SV_OUTPUT_CLASS;
   1069 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1070 		strcpy(dip->label.name, AudioNspatial);
   1071 
   1072 	on_off:
   1073 		dip->type = AUDIO_MIXER_ENUM;
   1074 		dip->un.e.num_mem = 2;
   1075 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1076 		dip->un.e.member[0].ord = 0;
   1077 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1078 		dip->un.e.member[1].ord = 1;
   1079 		return 0;
   1080 	}
   1081 
   1082 	return ENXIO;
   1083 }
   1084 
   1085 static int
   1086 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1087 {
   1088 	struct sv_softc *sc;
   1089 	uint8_t reg;
   1090 	int idx;
   1091 
   1092 	sc = addr;
   1093 	if (cp->dev >= SV_FIRST_MIXER &&
   1094 	    cp->dev <= SV_LAST_MIXER) {
   1095 		int off, mute;
   1096 
   1097 		off = cp->dev - SV_FIRST_MIXER;
   1098 		mute = (off % SV_DEVICES_PER_PORT);
   1099 		idx = off / SV_DEVICES_PER_PORT;
   1100 
   1101 		if (mute) {
   1102 			if (cp->type != AUDIO_MIXER_ENUM)
   1103 				return EINVAL;
   1104 
   1105 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1106 			if (cp->un.ord)
   1107 				reg |= SV_MUTE_BIT;
   1108 			else
   1109 				reg &= ~SV_MUTE_BIT;
   1110 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1111 
   1112 			if (ports[idx].r_port) {
   1113 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1114 				if (cp->un.ord)
   1115 					reg |= SV_MUTE_BIT;
   1116 				else
   1117 					reg &= ~SV_MUTE_BIT;
   1118 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1119 			}
   1120 		} else {
   1121 			int  lval, rval;
   1122 
   1123 			if (cp->type != AUDIO_MIXER_VALUE)
   1124 				return EINVAL;
   1125 
   1126 			if (cp->un.value.num_channels != 1 &&
   1127 			    cp->un.value.num_channels != 2)
   1128 				return (EINVAL);
   1129 
   1130 			if (ports[idx].r_port == 0) {
   1131 				if (cp->un.value.num_channels != 1)
   1132 					return (EINVAL);
   1133 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1134 				rval = 0; /* shut up GCC */
   1135 			} else {
   1136 				if (cp->un.value.num_channels != 2)
   1137 					return (EINVAL);
   1138 
   1139 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1140 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1141 			}
   1142 
   1143 
   1144 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1145 			reg &= ~(ports[idx].mask);
   1146 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1147 				AUDIO_MAX_GAIN;
   1148 			reg |= lval;
   1149 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1150 
   1151 			if (ports[idx].r_port != 0) {
   1152 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1153 				reg &= ~(ports[idx].mask);
   1154 
   1155 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1156 					AUDIO_MAX_GAIN;
   1157 				reg |= rval;
   1158 
   1159 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1160 			}
   1161 
   1162 			sv_read_indirect(sc, ports[idx].l_port);
   1163 		}
   1164 
   1165 		return 0;
   1166 	}
   1167 
   1168 
   1169 	switch (cp->dev) {
   1170 	case SV_RECORD_SOURCE:
   1171 		if (cp->type != AUDIO_MIXER_ENUM)
   1172 			return EINVAL;
   1173 
   1174 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1175 			if (record_sources[idx].idx == cp->un.ord)
   1176 				goto found;
   1177 		}
   1178 
   1179 		return EINVAL;
   1180 
   1181 	found:
   1182 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1183 		reg &= ~SV_REC_SOURCE_MASK;
   1184 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1185 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1186 
   1187 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1188 		reg &= ~SV_REC_SOURCE_MASK;
   1189 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1190 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1191 		return 0;
   1192 
   1193 	case SV_RECORD_GAIN:
   1194 	{
   1195 		int val;
   1196 
   1197 		if (cp->type != AUDIO_MIXER_VALUE)
   1198 			return EINVAL;
   1199 
   1200 		if (cp->un.value.num_channels != 1)
   1201 			return EINVAL;
   1202 
   1203 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
   1204 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
   1205 
   1206 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1207 		reg &= ~SV_REC_GAIN_MASK;
   1208 		reg |= val;
   1209 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1210 
   1211 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1212 		reg &= ~SV_REC_GAIN_MASK;
   1213 		reg |= val;
   1214 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1215 	}
   1216 	return (0);
   1217 
   1218 	case SV_MIC_BOOST:
   1219 		if (cp->type != AUDIO_MIXER_ENUM)
   1220 			return EINVAL;
   1221 
   1222 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1223 		if (cp->un.ord) {
   1224 			reg |= SV_MIC_BOOST_BIT;
   1225 		} else {
   1226 			reg &= ~SV_MIC_BOOST_BIT;
   1227 		}
   1228 
   1229 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1230 		return 0;
   1231 
   1232 	case SV_SRS_MODE:
   1233 		if (cp->type != AUDIO_MIXER_ENUM)
   1234 			return EINVAL;
   1235 
   1236 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1237 		if (cp->un.ord) {
   1238 			reg &= ~SV_SRS_SPACE_ONOFF;
   1239 		} else {
   1240 			reg |= SV_SRS_SPACE_ONOFF;
   1241 		}
   1242 
   1243 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1244 		return 0;
   1245 	}
   1246 
   1247 	return EINVAL;
   1248 }
   1249 
   1250 static int
   1251 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1252 {
   1253 	struct sv_softc *sc;
   1254 	int val;
   1255 	uint8_t reg;
   1256 
   1257 	sc = addr;
   1258 	if (cp->dev >= SV_FIRST_MIXER &&
   1259 	    cp->dev <= SV_LAST_MIXER) {
   1260 		int off = cp->dev - SV_FIRST_MIXER;
   1261 		int mute = (off % 2);
   1262 		int idx = off / 2;
   1263 
   1264 		off = cp->dev - SV_FIRST_MIXER;
   1265 		mute = (off % 2);
   1266 		idx = off / 2;
   1267 		if (mute) {
   1268 			if (cp->type != AUDIO_MIXER_ENUM)
   1269 				return EINVAL;
   1270 
   1271 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1272 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1273 		} else {
   1274 			if (cp->type != AUDIO_MIXER_VALUE)
   1275 				return EINVAL;
   1276 
   1277 			if (cp->un.value.num_channels != 1 &&
   1278 			    cp->un.value.num_channels != 2)
   1279 				return EINVAL;
   1280 
   1281 			if ((ports[idx].r_port == 0 &&
   1282 			     cp->un.value.num_channels != 1) ||
   1283 			    (ports[idx].r_port != 0 &&
   1284 			     cp->un.value.num_channels != 2))
   1285 				return EINVAL;
   1286 
   1287 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1288 			reg &= ports[idx].mask;
   1289 
   1290 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1291 
   1292 			if (ports[idx].r_port != 0) {
   1293 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1294 
   1295 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1296 				reg &= ports[idx].mask;
   1297 
   1298 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN)
   1299 				    / ports[idx].mask);
   1300 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1301 			} else
   1302 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1303 		}
   1304 
   1305 		return 0;
   1306 	}
   1307 
   1308 	switch (cp->dev) {
   1309 	case SV_RECORD_SOURCE:
   1310 		if (cp->type != AUDIO_MIXER_ENUM)
   1311 			return EINVAL;
   1312 
   1313 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1314 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1315 
   1316 		return 0;
   1317 
   1318 	case SV_RECORD_GAIN:
   1319 		if (cp->type != AUDIO_MIXER_VALUE)
   1320 			return EINVAL;
   1321 		if (cp->un.value.num_channels != 1)
   1322 			return EINVAL;
   1323 
   1324 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1325 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1326 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1327 
   1328 		return 0;
   1329 
   1330 	case SV_MIC_BOOST:
   1331 		if (cp->type != AUDIO_MIXER_ENUM)
   1332 			return EINVAL;
   1333 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1334 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1335 		return 0;
   1336 
   1337 	case SV_SRS_MODE:
   1338 		if (cp->type != AUDIO_MIXER_ENUM)
   1339 			return EINVAL;
   1340 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1341 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1342 		return 0;
   1343 	}
   1344 
   1345 	return EINVAL;
   1346 }
   1347 
   1348 static void
   1349 sv_init_mixer(struct sv_softc *sc)
   1350 {
   1351 	mixer_ctrl_t cp;
   1352 	int i;
   1353 
   1354 	cp.type = AUDIO_MIXER_ENUM;
   1355 	cp.dev = SV_SRS_MODE;
   1356 	cp.un.ord = 0;
   1357 
   1358 	sv_mixer_set_port(sc, &cp);
   1359 
   1360 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1361 		if (!strcmp(ports[i].audio, AudioNdac)) {
   1362 			cp.type = AUDIO_MIXER_ENUM;
   1363 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1364 			cp.un.ord = 0;
   1365 			sv_mixer_set_port(sc, &cp);
   1366 			break;
   1367 		}
   1368 	}
   1369 }
   1370 
   1371 static void *
   1372 sv_malloc(void *addr, int direction, size_t size,
   1373     struct malloc_type *pool, int flags)
   1374 {
   1375 	struct sv_softc *sc;
   1376 	struct sv_dma *p;
   1377 	int error;
   1378 
   1379 	sc = addr;
   1380 	p = malloc(sizeof(*p), pool, flags);
   1381 	if (p == NULL)
   1382 		return NULL;
   1383 	error = sv_allocmem(sc, size, 16, direction, p);
   1384 	if (error) {
   1385 		free(p, pool);
   1386 		return 0;
   1387 	}
   1388 	p->next = sc->sc_dmas;
   1389 	sc->sc_dmas = p;
   1390 	return KERNADDR(p);
   1391 }
   1392 
   1393 static void
   1394 sv_free(void *addr, void *ptr, struct malloc_type *pool)
   1395 {
   1396 	struct sv_softc *sc;
   1397 	struct sv_dma **pp, *p;
   1398 
   1399 	sc = addr;
   1400 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1401 		if (KERNADDR(p) == ptr) {
   1402 			sv_freemem(sc, p);
   1403 			*pp = p->next;
   1404 			free(p, pool);
   1405 			return;
   1406 		}
   1407 	}
   1408 }
   1409 
   1410 static size_t
   1411 sv_round_buffersize(void *addr, int direction, size_t size)
   1412 {
   1413 
   1414 	return size;
   1415 }
   1416 
   1417 static paddr_t
   1418 sv_mappage(void *addr, void *mem, off_t off, int prot)
   1419 {
   1420 	struct sv_softc *sc;
   1421 	struct sv_dma *p;
   1422 
   1423 	sc = addr;
   1424 	if (off < 0)
   1425 		return -1;
   1426 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1427 		continue;
   1428 	if (p == NULL)
   1429 		return -1;
   1430 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1431 			       off, prot, BUS_DMA_WAITOK);
   1432 }
   1433 
   1434 static int
   1435 sv_get_props(void *addr)
   1436 {
   1437 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1438 }
   1439