Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.45
      1 /*      $NetBSD: sv.c,v 1.45 2011/11/23 23:07:36 jmcneill Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     35  * All rights reserved
     36  *
     37  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. The author's name or those of the contributors may be used to
     48  *    endorse or promote products derived from this software without
     49  *    specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 /*
     65  * S3 SonicVibes driver
     66  *   Heavily based on the eap driver by Lennart Augustsson
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.45 2011/11/23 23:07:36 jmcneill Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/kernel.h>
     75 #include <sys/kmem.h>
     76 #include <sys/device.h>
     77 
     78 #include <dev/pci/pcireg.h>
     79 #include <dev/pci/pcivar.h>
     80 #include <dev/pci/pcidevs.h>
     81 
     82 #include <sys/audioio.h>
     83 #include <dev/audio_if.h>
     84 #include <dev/mulaw.h>
     85 #include <dev/auconv.h>
     86 
     87 #include <dev/ic/i8237reg.h>
     88 #include <dev/pci/svreg.h>
     89 #include <dev/pci/svvar.h>
     90 
     91 #include <sys/bus.h>
     92 
     93 /* XXX
     94  * The SonicVibes DMA is broken and only works on 24-bit addresses.
     95  * As long as bus_dmamem_alloc_range() is missing we use the ISA
     96  * DMA tag on i386.
     97  */
     98 #if defined(i386)
     99 #include "isa.h"
    100 #if NISA > 0
    101 #include <dev/isa/isavar.h>
    102 #endif
    103 #endif
    104 
    105 #ifdef AUDIO_DEBUG
    106 #define DPRINTF(x)	if (svdebug) printf x
    107 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    108 int	svdebug = 0;
    109 #else
    110 #define DPRINTF(x)
    111 #define DPRINTFN(n,x)
    112 #endif
    113 
    114 static int	sv_match(device_t, cfdata_t, void *);
    115 static void	sv_attach(device_t, device_t, void *);
    116 static int	sv_intr(void *);
    117 
    118 struct sv_dma {
    119 	bus_dmamap_t map;
    120 	void *addr;
    121 	bus_dma_segment_t segs[1];
    122 	int nsegs;
    123 	size_t size;
    124 	struct sv_dma *next;
    125 };
    126 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    127 #define KERNADDR(p) ((void *)((p)->addr))
    128 
    129 CFATTACH_DECL(sv, sizeof(struct sv_softc),
    130     sv_match, sv_attach, NULL, NULL);
    131 
    132 static struct audio_device sv_device = {
    133 	"S3 SonicVibes",
    134 	"",
    135 	"sv"
    136 };
    137 
    138 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    139 
    140 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
    141 			    struct sv_dma *);
    142 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
    143 
    144 static void	sv_init_mixer(struct sv_softc *);
    145 
    146 static int	sv_open(void *, int);
    147 static int	sv_query_encoding(void *, struct audio_encoding *);
    148 static int	sv_set_params(void *, int, int, audio_params_t *,
    149 			      audio_params_t *, stream_filter_list_t *,
    150 			      stream_filter_list_t *);
    151 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
    152 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
    153 				  void *, const audio_params_t *);
    154 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
    155 				 void *, const audio_params_t *);
    156 static int	sv_halt_output(void *);
    157 static int	sv_halt_input(void *);
    158 static int	sv_getdev(void *, struct audio_device *);
    159 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
    160 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
    161 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
    162 static void *	sv_malloc(void *, int, size_t);
    163 static void	sv_free(void *, void *, size_t);
    164 static size_t	sv_round_buffersize(void *, int, size_t);
    165 static paddr_t	sv_mappage(void *, void *, off_t, int);
    166 static int	sv_get_props(void *);
    167 static void	sv_get_locks(void *, kmutex_t **, kmutex_t **);
    168 
    169 #ifdef AUDIO_DEBUG
    170 void    sv_dumpregs(struct sv_softc *sc);
    171 #endif
    172 
    173 static const struct audio_hw_if sv_hw_if = {
    174 	sv_open,
    175 	NULL,			/* close */
    176 	NULL,
    177 	sv_query_encoding,
    178 	sv_set_params,
    179 	sv_round_blocksize,
    180 	NULL,
    181 	NULL,
    182 	NULL,
    183 	NULL,
    184 	NULL,
    185 	sv_halt_output,
    186 	sv_halt_input,
    187 	NULL,
    188 	sv_getdev,
    189 	NULL,
    190 	sv_mixer_set_port,
    191 	sv_mixer_get_port,
    192 	sv_query_devinfo,
    193 	sv_malloc,
    194 	sv_free,
    195 	sv_round_buffersize,
    196 	sv_mappage,
    197 	sv_get_props,
    198 	sv_trigger_output,
    199 	sv_trigger_input,
    200 	NULL,
    201 	sv_get_locks,
    202 };
    203 
    204 #define SV_NFORMATS	4
    205 static const struct audio_format sv_formats[SV_NFORMATS] = {
    206 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    207 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    208 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    209 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    210 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    211 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    212 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    213 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    214 };
    215 
    216 
    217 static void
    218 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
    219 {
    220 
    221 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    222 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    223 }
    224 
    225 static uint8_t
    226 sv_read(struct sv_softc *sc, uint8_t reg)
    227 {
    228 	uint8_t val;
    229 
    230 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    231 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    232 	return val;
    233 }
    234 
    235 static uint8_t
    236 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
    237 {
    238 	uint8_t val;
    239 
    240 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    241 	val = sv_read(sc, SV_CODEC_IDATA);
    242 	return val;
    243 }
    244 
    245 static void
    246 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
    247 {
    248 	uint8_t iaddr;
    249 
    250 	iaddr = reg & SV_IADDR_MASK;
    251 	if (reg == SV_DMA_DATA_FORMAT)
    252 		iaddr |= SV_IADDR_MCE;
    253 
    254 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    255 	sv_write(sc, SV_CODEC_IDATA, val);
    256 }
    257 
    258 static int
    259 sv_match(device_t parent, cfdata_t match, void *aux)
    260 {
    261 	struct pci_attach_args *pa;
    262 
    263 	pa = aux;
    264 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    265 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    266 		return 1;
    267 
    268 	return 0;
    269 }
    270 
    271 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
    272 
    273 static int
    274 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
    275     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
    276     bus_size_t bound, int flags, bus_space_handle_t *ioh)
    277 {
    278 	bus_addr_t addr;
    279 	int error;
    280 
    281 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
    282 				size, align, bound, flags, &addr, ioh);
    283 	if (error)
    284 		return error;
    285 
    286 	pci_conf_write(pc, pt, pcioffs, addr);
    287 	return 0;
    288 }
    289 
    290 /*
    291  * Allocate IO addresses when all other configuration is done.
    292  */
    293 static void
    294 sv_defer(device_t self)
    295 {
    296 	struct sv_softc *sc;
    297 	pci_chipset_tag_t pc;
    298 	pcitag_t pt;
    299 	pcireg_t dmaio;
    300 
    301 	sc = device_private(self);
    302 	pc = sc->sc_pa.pa_pc;
    303 	pt = sc->sc_pa.pa_tag;
    304 	DPRINTF(("sv_defer: %p\n", sc));
    305 
    306 	/* XXX
    307 	 * Get a reasonable default for the I/O range.
    308 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
    309 	 */
    310 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
    311 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
    312 
    313 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    314 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    315 			  0, &sc->sc_dmaa_ioh)) {
    316 		printf("sv_attach: cannot allocate DMA A range\n");
    317 		return;
    318 	}
    319 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    320 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    321 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    322 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    323 
    324 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    325 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    326 			  0, &sc->sc_dmac_ioh)) {
    327 		printf("sv_attach: cannot allocate DMA C range\n");
    328 		return;
    329 	}
    330 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    331 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    332 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    333 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    334 
    335 	sc->sc_dmaset = 1;
    336 }
    337 
    338 static void
    339 sv_attach(device_t parent, device_t self, void *aux)
    340 {
    341 	struct sv_softc *sc;
    342 	struct pci_attach_args *pa;
    343 	pci_chipset_tag_t pc;
    344 	pcitag_t pt;
    345 	pci_intr_handle_t ih;
    346 	pcireg_t csr;
    347 	char const *intrstr;
    348 	uint8_t reg;
    349 	struct audio_attach_args arg;
    350 
    351 	sc = device_private(self);
    352 	pa = aux;
    353 	pc = pa->pa_pc;
    354 	pt = pa->pa_tag;
    355 	printf ("\n");
    356 
    357 	/* Map I/O registers */
    358 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    359 			   PCI_MAPREG_TYPE_IO, 0,
    360 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    361 		aprint_error_dev(&sc->sc_dev, "can't map enhanced i/o space\n");
    362 		return;
    363 	}
    364 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    365 			   PCI_MAPREG_TYPE_IO, 0,
    366 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    367 		aprint_error_dev(&sc->sc_dev, "can't map FM i/o space\n");
    368 		return;
    369 	}
    370 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    371 			   PCI_MAPREG_TYPE_IO, 0,
    372 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    373 		aprint_error_dev(&sc->sc_dev, "can't map MIDI i/o space\n");
    374 		return;
    375 	}
    376 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    377 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    378 
    379 #if defined(alpha)
    380 	/* XXX Force allocation through the SGMAP. */
    381 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    382 #elif defined(i386) && NISA > 0
    383 /* XXX
    384  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    385  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    386  * DMA tag on i386.
    387  */
    388 	sc->sc_dmatag = &isa_bus_dma_tag;
    389 #else
    390 	sc->sc_dmatag = pa->pa_dmat;
    391 #endif
    392 
    393 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    394 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    395 
    396 	/* Enable the device. */
    397 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    398 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    399 		       csr | PCI_COMMAND_MASTER_ENABLE);
    400 
    401 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    402 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    403 
    404 	/* initialize codec registers */
    405 	reg = sv_read(sc, SV_CODEC_CONTROL);
    406 	reg |= SV_CTL_RESET;
    407 	sv_write(sc, SV_CODEC_CONTROL, reg);
    408 	delay(50);
    409 
    410 	reg = sv_read(sc, SV_CODEC_CONTROL);
    411 	reg &= ~SV_CTL_RESET;
    412 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    413 
    414 	/* This write clears the reset */
    415 	sv_write(sc, SV_CODEC_CONTROL, reg);
    416 	delay(50);
    417 
    418 	/* This write actually shoves the new values in */
    419 	sv_write(sc, SV_CODEC_CONTROL, reg);
    420 
    421 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    422 
    423 	/* Map and establish the interrupt. */
    424 	if (pci_intr_map(pa, &ih)) {
    425 		aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
    426 		return;
    427 	}
    428 
    429 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    430 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
    431 
    432 	intrstr = pci_intr_string(pc, ih);
    433 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_SCHED, sv_intr, sc);
    434 	if (sc->sc_ih == NULL) {
    435 		aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
    436 		if (intrstr != NULL)
    437 			aprint_error(" at %s", intrstr);
    438 		aprint_error("\n");
    439 		mutex_destroy(&sc->sc_lock);
    440 		mutex_destroy(&sc->sc_intr_lock);
    441 		return;
    442 	}
    443 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
    444 	printf("%s: rev %d", device_xname(&sc->sc_dev),
    445 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    446 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    447 		printf(", reverb SRAM present");
    448 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    449 		printf(", wavetable ROM present");
    450 	printf("\n");
    451 
    452 	/* Enable DMA interrupts */
    453 	reg = sv_read(sc, SV_CODEC_INTMASK);
    454 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    455 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    456 	sv_write(sc, SV_CODEC_INTMASK, reg);
    457 	sv_read(sc, SV_CODEC_STATUS);
    458 
    459 	sv_init_mixer(sc);
    460 
    461 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    462 
    463 	arg.type = AUDIODEV_TYPE_OPL;
    464 	arg.hwif = 0;
    465 	arg.hdl = 0;
    466 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    467 
    468 	sc->sc_pa = *pa;	/* for deferred setup */
    469 	config_defer(self, sv_defer);
    470 }
    471 
    472 #ifdef AUDIO_DEBUG
    473 void
    474 sv_dumpregs(struct sv_softc *sc)
    475 {
    476 	int idx;
    477 
    478 #if 0
    479 	for (idx = 0; idx < 0x50; idx += 4)
    480 		printf ("%02x = %x\n", idx,
    481 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    482 #endif
    483 
    484 	for (idx = 0; idx < 6; idx++)
    485 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    486 
    487 	for (idx = 0; idx < 0x32; idx++)
    488 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    489 
    490 	for (idx = 0; idx < 0x10; idx++)
    491 		printf ("DMA %02x = %02x\n", idx,
    492 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    493 }
    494 #endif
    495 
    496 static int
    497 sv_intr(void *p)
    498 {
    499 	struct sv_softc *sc;
    500 	uint8_t intr;
    501 
    502 	sc = p;
    503 
    504 	mutex_spin_enter(&sc->sc_intr_lock);
    505 
    506 	intr = sv_read(sc, SV_CODEC_STATUS);
    507 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    508 
    509 	if (intr & SV_INTSTATUS_DMAA) {
    510 		if (sc->sc_pintr)
    511 			sc->sc_pintr(sc->sc_parg);
    512 	}
    513 
    514 	if (intr & SV_INTSTATUS_DMAC) {
    515 		if (sc->sc_rintr)
    516 			sc->sc_rintr(sc->sc_rarg);
    517 	}
    518 
    519 	mutex_spin_exit(&sc->sc_intr_lock);
    520 
    521 	return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
    522 }
    523 
    524 static int
    525 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
    526     int direction, struct sv_dma *p)
    527 {
    528 	int error;
    529 
    530 	p->size = size;
    531 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    532 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
    533 	if (error)
    534 		return error;
    535 
    536 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    537 	    &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
    538 	if (error)
    539 		goto free;
    540 
    541 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    542 	    0, BUS_DMA_WAITOK, &p->map);
    543 	if (error)
    544 		goto unmap;
    545 
    546 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    547 	    BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    548 	if (error)
    549 		goto destroy;
    550 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    551 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    552 	return 0;
    553 
    554 destroy:
    555 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    556 unmap:
    557 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    558 free:
    559 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    560 	return error;
    561 }
    562 
    563 static int
    564 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
    565 {
    566 
    567 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    568 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    569 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    570 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    571 	return 0;
    572 }
    573 
    574 static int
    575 sv_open(void *addr, int flags)
    576 {
    577 	struct sv_softc *sc;
    578 
    579 	sc = addr;
    580 	DPRINTF(("sv_open\n"));
    581 	if (!sc->sc_dmaset)
    582 		return ENXIO;
    583 
    584 	return 0;
    585 }
    586 
    587 static int
    588 sv_query_encoding(void *addr, struct audio_encoding *fp)
    589 {
    590 
    591 	switch (fp->index) {
    592 	case 0:
    593 		strcpy(fp->name, AudioEulinear);
    594 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    595 		fp->precision = 8;
    596 		fp->flags = 0;
    597 		return 0;
    598 	case 1:
    599 		strcpy(fp->name, AudioEmulaw);
    600 		fp->encoding = AUDIO_ENCODING_ULAW;
    601 		fp->precision = 8;
    602 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    603 		return 0;
    604 	case 2:
    605 		strcpy(fp->name, AudioEalaw);
    606 		fp->encoding = AUDIO_ENCODING_ALAW;
    607 		fp->precision = 8;
    608 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    609 		return 0;
    610 	case 3:
    611 		strcpy(fp->name, AudioEslinear);
    612 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    613 		fp->precision = 8;
    614 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    615 		return 0;
    616 	case 4:
    617 		strcpy(fp->name, AudioEslinear_le);
    618 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    619 		fp->precision = 16;
    620 		fp->flags = 0;
    621 		return 0;
    622 	case 5:
    623 		strcpy(fp->name, AudioEulinear_le);
    624 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    625 		fp->precision = 16;
    626 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    627 		return 0;
    628 	case 6:
    629 		strcpy(fp->name, AudioEslinear_be);
    630 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    631 		fp->precision = 16;
    632 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    633 		return 0;
    634 	case 7:
    635 		strcpy(fp->name, AudioEulinear_be);
    636 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    637 		fp->precision = 16;
    638 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    639 		return 0;
    640 	default:
    641 		return EINVAL;
    642 	}
    643 }
    644 
    645 static int
    646 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
    647     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    648 {
    649 	struct sv_softc *sc;
    650 	audio_params_t *p;
    651 	uint32_t val;
    652 
    653 	sc = addr;
    654 	p = NULL;
    655 	/*
    656 	 * This device only has one clock, so make the sample rates match.
    657 	 */
    658 	if (play->sample_rate != rec->sample_rate &&
    659 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    660 		if (setmode == AUMODE_PLAY) {
    661 			rec->sample_rate = play->sample_rate;
    662 			setmode |= AUMODE_RECORD;
    663 		} else if (setmode == AUMODE_RECORD) {
    664 			play->sample_rate = rec->sample_rate;
    665 			setmode |= AUMODE_PLAY;
    666 		} else
    667 			return EINVAL;
    668 	}
    669 
    670 	if (setmode & AUMODE_RECORD) {
    671 		p = rec;
    672 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    673 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
    674 			return EINVAL;
    675 	}
    676 	if (setmode & AUMODE_PLAY) {
    677 		p = play;
    678 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    679 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
    680 			return EINVAL;
    681 	}
    682 
    683 	if (p == NULL)
    684 		return 0;
    685 
    686 	val = p->sample_rate * 65536 / 48000;
    687 	/*
    688 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
    689 	 * register, so we have to bias it.  This causes a little clock drift.
    690 	 * The drift is below normal crystal tolerance (.0001%), so although
    691 	 * this seems a little silly, we can pretty much ignore it.
    692 	 * (I tested the output speed with values of 1-20, just to be sure this
    693 	 * register isn't *supposed* to have a bias.  It isn't.)
    694 	 * - mycroft
    695 	 */
    696 	if (val > 65535)
    697 		val = 65535;
    698 
    699 	mutex_spin_enter(&sc->sc_intr_lock);
    700 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    701 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    702 	mutex_spin_exit(&sc->sc_intr_lock);
    703 
    704 #define F_REF 24576000
    705 
    706 #define ABS(x) (((x) < 0) ? (-x) : (x))
    707 
    708 	if (setmode & AUMODE_RECORD) {
    709 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    710 
    711 		/* f_out is dervied from the 24.576MHz crystal by three values:
    712 		   M & N & R. The equation is as follows:
    713 
    714 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    715 
    716 		   with the constraint that:
    717 
    718 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
    719 		   and n, m >= 1
    720 		*/
    721 
    722 		int  goal_f_out;
    723 		int  a, n, m, best_n, best_m, best_error;
    724 		int  pll_sample;
    725 		int  error;
    726 
    727 		goal_f_out = 512 * rec->sample_rate;
    728 		best_n = 0;
    729 		best_m = 0;
    730 		best_error = 10000000;
    731 		for (a = 0; a < 8; a++) {
    732 			if ((goal_f_out * (1 << a)) >= 80000000)
    733 				break;
    734 		}
    735 
    736 		/* a != 8 because sample_rate >= 2000 */
    737 
    738 		for (n = 33; n > 2; n--) {
    739 			m = (goal_f_out * n * (1 << a)) / F_REF;
    740 			if ((m > 257) || (m < 3))
    741 				continue;
    742 
    743 			pll_sample = (m * F_REF) / (n * (1 << a));
    744 			pll_sample /= 512;
    745 
    746 			/* Threshold might be good here */
    747 			error = pll_sample - rec->sample_rate;
    748 			error = ABS(error);
    749 
    750 			if (error < best_error) {
    751 				best_error = error;
    752 				best_n = n;
    753 				best_m = m;
    754 				if (error == 0) break;
    755 			}
    756 		}
    757 
    758 		best_n -= 2;
    759 		best_m -= 2;
    760 
    761 		mutex_spin_enter(&sc->sc_intr_lock);
    762 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    763 		sv_write_indirect(sc, SV_ADC_PLL_N,
    764 				  best_n | (a << SV_PLL_R_SHIFT));
    765 		mutex_spin_exit(&sc->sc_intr_lock);
    766 	}
    767 
    768 	return 0;
    769 }
    770 
    771 static int
    772 sv_round_blocksize(void *addr, int blk, int mode,
    773     const audio_params_t *param)
    774 {
    775 
    776 	return blk & -32;	/* keep good alignment */
    777 }
    778 
    779 static int
    780 sv_trigger_output(void *addr, void *start, void *end, int blksize,
    781     void (*intr)(void *), void *arg, const audio_params_t *param)
    782 {
    783 	struct sv_softc *sc;
    784 	struct sv_dma *p;
    785 	uint8_t mode;
    786 	int dma_count;
    787 
    788 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
    789 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    790 	sc = addr;
    791 	sc->sc_pintr = intr;
    792 	sc->sc_parg = arg;
    793 
    794 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    795 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    796 	if (param->precision == 16)
    797 		mode |= SV_DMAA_FORMAT16;
    798 	if (param->channels == 2)
    799 		mode |= SV_DMAA_STEREO;
    800 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    801 
    802 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    803 		continue;
    804 	if (p == NULL) {
    805 		printf("sv_trigger_output: bad addr %p\n", start);
    806 		return EINVAL;
    807 	}
    808 
    809 	dma_count = ((char *)end - (char *)start) - 1;
    810 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
    811 	    (int)DMAADDR(p), dma_count));
    812 
    813 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    814 			  DMAADDR(p));
    815 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    816 			  dma_count);
    817 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    818 			  DMA37MD_READ | DMA37MD_LOOP);
    819 
    820 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    821 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    822 
    823 	dma_count = blksize - 1;
    824 
    825 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    826 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    827 
    828 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    829 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    830 
    831 	return 0;
    832 }
    833 
    834 static int
    835 sv_trigger_input(void *addr, void *start, void *end, int blksize,
    836     void (*intr)(void *), void *arg, const audio_params_t *param)
    837 {
    838 	struct sv_softc *sc;
    839 	struct sv_dma *p;
    840 	uint8_t mode;
    841 	int dma_count;
    842 
    843 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
    844 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    845 	sc = addr;
    846 	sc->sc_rintr = intr;
    847 	sc->sc_rarg = arg;
    848 
    849 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    850 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    851 	if (param->precision == 16)
    852 		mode |= SV_DMAC_FORMAT16;
    853 	if (param->channels == 2)
    854 		mode |= SV_DMAC_STEREO;
    855 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    856 
    857 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    858 		continue;
    859 	if (!p) {
    860 		printf("sv_trigger_input: bad addr %p\n", start);
    861 		return EINVAL;
    862 	}
    863 
    864 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    865 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
    866 	    (int)DMAADDR(p), dma_count));
    867 
    868 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    869 			  DMAADDR(p));
    870 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    871 			  dma_count);
    872 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    873 			  DMA37MD_WRITE | DMA37MD_LOOP);
    874 
    875 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    876 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    877 
    878 	dma_count = (blksize >> 1) - 1;
    879 
    880 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    881 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    882 
    883 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    884 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    885 
    886 	return 0;
    887 }
    888 
    889 static int
    890 sv_halt_output(void *addr)
    891 {
    892 	struct sv_softc *sc;
    893 	uint8_t mode;
    894 
    895 	DPRINTF(("sv: sv_halt_output\n"));
    896 	sc = addr;
    897 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    898 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    899 	sc->sc_pintr = 0;
    900 
    901 	return 0;
    902 }
    903 
    904 static int
    905 sv_halt_input(void *addr)
    906 {
    907 	struct sv_softc *sc;
    908 	uint8_t mode;
    909 
    910 	DPRINTF(("sv: sv_halt_input\n"));
    911 	sc = addr;
    912 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    913 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    914 	sc->sc_rintr = 0;
    915 
    916 	return 0;
    917 }
    918 
    919 static int
    920 sv_getdev(void *addr, struct audio_device *retp)
    921 {
    922 
    923 	*retp = sv_device;
    924 	return 0;
    925 }
    926 
    927 
    928 /*
    929  * Mixer related code is here
    930  *
    931  */
    932 
    933 #define SV_INPUT_CLASS 0
    934 #define SV_OUTPUT_CLASS 1
    935 #define SV_RECORD_CLASS 2
    936 
    937 #define SV_LAST_CLASS 2
    938 
    939 static const char *mixer_classes[] =
    940 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    941 
    942 static const struct {
    943 	uint8_t   l_port;
    944 	uint8_t   r_port;
    945 	uint8_t   mask;
    946 	uint8_t   class;
    947 	const char *audio;
    948 } ports[] = {
    949   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    950     SV_INPUT_CLASS, "aux1" },
    951   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    952     SV_INPUT_CLASS, AudioNcd },
    953   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    954     SV_INPUT_CLASS, AudioNline },
    955   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    956   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    957     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    958   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    959     SV_INPUT_CLASS, "aux2" },
    960   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    961     SV_INPUT_CLASS, AudioNdac },
    962   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
    963     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
    964 };
    965 
    966 
    967 static const struct {
    968 	int idx;
    969 	const char *name;
    970 } record_sources[] = {
    971 	{ SV_REC_CD, AudioNcd },
    972 	{ SV_REC_DAC, AudioNdac },
    973 	{ SV_REC_AUX2, "aux2" },
    974 	{ SV_REC_LINE, AudioNline },
    975 	{ SV_REC_AUX1, "aux1" },
    976 	{ SV_REC_MIC, AudioNmicrophone },
    977 	{ SV_REC_MIXER, AudioNmixerout }
    978 };
    979 
    980 
    981 #define SV_DEVICES_PER_PORT 2
    982 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
    983 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
    984 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
    985 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
    986 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
    987 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
    988 
    989 static int
    990 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
    991 {
    992 	int i;
    993 
    994 	/* It's a class */
    995 	if (dip->index <= SV_LAST_CLASS) {
    996 		dip->type = AUDIO_MIXER_CLASS;
    997 		dip->mixer_class = dip->index;
    998 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    999 		strcpy(dip->label.name, mixer_classes[dip->index]);
   1000 		return 0;
   1001 	}
   1002 
   1003 	if (dip->index >= SV_FIRST_MIXER &&
   1004 	    dip->index <= SV_LAST_MIXER) {
   1005 		int off, mute ,idx;
   1006 
   1007 		off = dip->index - SV_FIRST_MIXER;
   1008 		mute = (off % SV_DEVICES_PER_PORT);
   1009 		idx = off / SV_DEVICES_PER_PORT;
   1010 		dip->mixer_class = ports[idx].class;
   1011 		strcpy(dip->label.name, ports[idx].audio);
   1012 
   1013 		if (!mute) {
   1014 			dip->type = AUDIO_MIXER_VALUE;
   1015 			dip->prev = AUDIO_MIXER_LAST;
   1016 			dip->next = dip->index + 1;
   1017 
   1018 			if (ports[idx].r_port != 0)
   1019 				dip->un.v.num_channels = 2;
   1020 			else
   1021 				dip->un.v.num_channels = 1;
   1022 
   1023 			strcpy(dip->un.v.units.name, AudioNvolume);
   1024 		} else {
   1025 			dip->type = AUDIO_MIXER_ENUM;
   1026 			dip->prev = dip->index - 1;
   1027 			dip->next = AUDIO_MIXER_LAST;
   1028 
   1029 			strcpy(dip->label.name, AudioNmute);
   1030 			dip->un.e.num_mem = 2;
   1031 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1032 			dip->un.e.member[0].ord = 0;
   1033 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1034 			dip->un.e.member[1].ord = 1;
   1035 		}
   1036 
   1037 		return 0;
   1038 	}
   1039 
   1040 	switch (dip->index) {
   1041 	case SV_RECORD_SOURCE:
   1042 		dip->mixer_class = SV_RECORD_CLASS;
   1043 		dip->prev = AUDIO_MIXER_LAST;
   1044 		dip->next = SV_RECORD_GAIN;
   1045 		strcpy(dip->label.name, AudioNsource);
   1046 		dip->type = AUDIO_MIXER_ENUM;
   1047 
   1048 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1049 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1050 			strcpy(dip->un.e.member[i].label.name,
   1051 			       record_sources[i].name);
   1052 			dip->un.e.member[i].ord = record_sources[i].idx;
   1053 		}
   1054 		return 0;
   1055 
   1056 	case SV_RECORD_GAIN:
   1057 		dip->mixer_class = SV_RECORD_CLASS;
   1058 		dip->prev = SV_RECORD_SOURCE;
   1059 		dip->next = AUDIO_MIXER_LAST;
   1060 		strcpy(dip->label.name, "gain");
   1061 		dip->type = AUDIO_MIXER_VALUE;
   1062 		dip->un.v.num_channels = 1;
   1063 		strcpy(dip->un.v.units.name, AudioNvolume);
   1064 		return 0;
   1065 
   1066 	case SV_MIC_BOOST:
   1067 		dip->mixer_class = SV_RECORD_CLASS;
   1068 		dip->prev = AUDIO_MIXER_LAST;
   1069 		dip->next = AUDIO_MIXER_LAST;
   1070 		strcpy(dip->label.name, "micboost");
   1071 		goto on_off;
   1072 
   1073 	case SV_SRS_MODE:
   1074 		dip->mixer_class = SV_OUTPUT_CLASS;
   1075 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1076 		strcpy(dip->label.name, AudioNspatial);
   1077 
   1078 	on_off:
   1079 		dip->type = AUDIO_MIXER_ENUM;
   1080 		dip->un.e.num_mem = 2;
   1081 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1082 		dip->un.e.member[0].ord = 0;
   1083 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1084 		dip->un.e.member[1].ord = 1;
   1085 		return 0;
   1086 	}
   1087 
   1088 	return ENXIO;
   1089 }
   1090 
   1091 static int
   1092 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1093 {
   1094 	struct sv_softc *sc;
   1095 	uint8_t reg;
   1096 	int idx;
   1097 
   1098 	sc = addr;
   1099 	if (cp->dev >= SV_FIRST_MIXER &&
   1100 	    cp->dev <= SV_LAST_MIXER) {
   1101 		int off, mute;
   1102 
   1103 		off = cp->dev - SV_FIRST_MIXER;
   1104 		mute = (off % SV_DEVICES_PER_PORT);
   1105 		idx = off / SV_DEVICES_PER_PORT;
   1106 
   1107 		if (mute) {
   1108 			if (cp->type != AUDIO_MIXER_ENUM)
   1109 				return EINVAL;
   1110 
   1111 			mutex_spin_enter(&sc->sc_intr_lock);
   1112 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1113 			if (cp->un.ord)
   1114 				reg |= SV_MUTE_BIT;
   1115 			else
   1116 				reg &= ~SV_MUTE_BIT;
   1117 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1118 
   1119 			if (ports[idx].r_port) {
   1120 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1121 				if (cp->un.ord)
   1122 					reg |= SV_MUTE_BIT;
   1123 				else
   1124 					reg &= ~SV_MUTE_BIT;
   1125 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1126 			}
   1127 			mutex_spin_exit(&sc->sc_intr_lock);
   1128 		} else {
   1129 			int  lval, rval;
   1130 
   1131 			if (cp->type != AUDIO_MIXER_VALUE)
   1132 				return EINVAL;
   1133 
   1134 			if (cp->un.value.num_channels != 1 &&
   1135 			    cp->un.value.num_channels != 2)
   1136 				return (EINVAL);
   1137 
   1138 			if (ports[idx].r_port == 0) {
   1139 				if (cp->un.value.num_channels != 1)
   1140 					return (EINVAL);
   1141 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1142 				rval = 0; /* shut up GCC */
   1143 			} else {
   1144 				if (cp->un.value.num_channels != 2)
   1145 					return (EINVAL);
   1146 
   1147 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1148 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1149 			}
   1150 
   1151 			mutex_spin_enter(&sc->sc_intr_lock);
   1152 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1153 			reg &= ~(ports[idx].mask);
   1154 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1155 				AUDIO_MAX_GAIN;
   1156 			reg |= lval;
   1157 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1158 
   1159 			if (ports[idx].r_port != 0) {
   1160 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1161 				reg &= ~(ports[idx].mask);
   1162 
   1163 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1164 					AUDIO_MAX_GAIN;
   1165 				reg |= rval;
   1166 
   1167 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1168 			}
   1169 
   1170 			sv_read_indirect(sc, ports[idx].l_port);
   1171 			mutex_spin_exit(&sc->sc_intr_lock);
   1172 		}
   1173 
   1174 		return 0;
   1175 	}
   1176 
   1177 
   1178 	switch (cp->dev) {
   1179 	case SV_RECORD_SOURCE:
   1180 		if (cp->type != AUDIO_MIXER_ENUM)
   1181 			return EINVAL;
   1182 
   1183 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1184 			if (record_sources[idx].idx == cp->un.ord)
   1185 				goto found;
   1186 		}
   1187 
   1188 		return EINVAL;
   1189 
   1190 	found:
   1191 		mutex_spin_enter(&sc->sc_intr_lock);
   1192 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1193 		reg &= ~SV_REC_SOURCE_MASK;
   1194 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1195 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1196 
   1197 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1198 		reg &= ~SV_REC_SOURCE_MASK;
   1199 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1200 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1201 		mutex_spin_exit(&sc->sc_intr_lock);
   1202 		return 0;
   1203 
   1204 	case SV_RECORD_GAIN:
   1205 	{
   1206 		int val;
   1207 
   1208 		if (cp->type != AUDIO_MIXER_VALUE)
   1209 			return EINVAL;
   1210 
   1211 		if (cp->un.value.num_channels != 1)
   1212 			return EINVAL;
   1213 
   1214 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
   1215 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
   1216 
   1217 		mutex_spin_enter(&sc->sc_intr_lock);
   1218 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1219 		reg &= ~SV_REC_GAIN_MASK;
   1220 		reg |= val;
   1221 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1222 
   1223 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1224 		reg &= ~SV_REC_GAIN_MASK;
   1225 		reg |= val;
   1226 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1227 		mutex_spin_exit(&sc->sc_intr_lock);
   1228 	}
   1229 	return (0);
   1230 
   1231 	case SV_MIC_BOOST:
   1232 		if (cp->type != AUDIO_MIXER_ENUM)
   1233 			return EINVAL;
   1234 
   1235 		mutex_spin_enter(&sc->sc_intr_lock);
   1236 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1237 		if (cp->un.ord) {
   1238 			reg |= SV_MIC_BOOST_BIT;
   1239 		} else {
   1240 			reg &= ~SV_MIC_BOOST_BIT;
   1241 		}
   1242 
   1243 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1244 		mutex_spin_exit(&sc->sc_intr_lock);
   1245 		return 0;
   1246 
   1247 	case SV_SRS_MODE:
   1248 		if (cp->type != AUDIO_MIXER_ENUM)
   1249 			return EINVAL;
   1250 
   1251 		mutex_spin_enter(&sc->sc_intr_lock);
   1252 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1253 		if (cp->un.ord) {
   1254 			reg &= ~SV_SRS_SPACE_ONOFF;
   1255 		} else {
   1256 			reg |= SV_SRS_SPACE_ONOFF;
   1257 		}
   1258 
   1259 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1260 		mutex_spin_exit(&sc->sc_intr_lock);
   1261 		return 0;
   1262 	}
   1263 
   1264 	return EINVAL;
   1265 }
   1266 
   1267 static int
   1268 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1269 {
   1270 	struct sv_softc *sc;
   1271 	int val, error;
   1272 	uint8_t reg;
   1273 
   1274 	sc = addr;
   1275 	error = 0;
   1276 
   1277 	mutex_spin_enter(&sc->sc_intr_lock);
   1278 
   1279 	if (cp->dev >= SV_FIRST_MIXER &&
   1280 	    cp->dev <= SV_LAST_MIXER) {
   1281 		int off = cp->dev - SV_FIRST_MIXER;
   1282 		int mute = (off % 2);
   1283 		int idx = off / 2;
   1284 
   1285 		off = cp->dev - SV_FIRST_MIXER;
   1286 		mute = (off % 2);
   1287 		idx = off / 2;
   1288 		if (mute) {
   1289 			if (cp->type != AUDIO_MIXER_ENUM)
   1290 				error = EINVAL;
   1291 			else {
   1292 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1293 				cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1294 			}
   1295 		} else {
   1296 			if (cp->type != AUDIO_MIXER_VALUE ||
   1297 			    (cp->un.value.num_channels != 1 &&
   1298 			    cp->un.value.num_channels != 2) ||
   1299 			   ((ports[idx].r_port == 0 &&
   1300 			     cp->un.value.num_channels != 1) ||
   1301 			    (ports[idx].r_port != 0 &&
   1302 			     cp->un.value.num_channels != 2)))
   1303 				error = EINVAL;
   1304 			else {
   1305 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1306 				reg &= ports[idx].mask;
   1307 
   1308 				val = AUDIO_MAX_GAIN -
   1309 				    ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1310 
   1311 				if (ports[idx].r_port != 0) {
   1312 					cp->un.value.level
   1313 					    [AUDIO_MIXER_LEVEL_LEFT] = val;
   1314 
   1315 					reg = sv_read_indirect(sc,
   1316 					    ports[idx].r_port);
   1317 					reg &= ports[idx].mask;
   1318 
   1319 					val = AUDIO_MAX_GAIN -
   1320 					    ((reg * AUDIO_MAX_GAIN)
   1321 					    / ports[idx].mask);
   1322 					cp->un.value.level
   1323 					    [AUDIO_MIXER_LEVEL_RIGHT] = val;
   1324 				} else
   1325 					cp->un.value.level
   1326 					    [AUDIO_MIXER_LEVEL_MONO] = val;
   1327 			}
   1328 		}
   1329 
   1330 		return error;
   1331 	}
   1332 
   1333 	switch (cp->dev) {
   1334 	case SV_RECORD_SOURCE:
   1335 		if (cp->type != AUDIO_MIXER_ENUM) {
   1336 			error = EINVAL;
   1337 			break;
   1338 		}
   1339 
   1340 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1341 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1342 
   1343 		break;
   1344 
   1345 	case SV_RECORD_GAIN:
   1346 		if (cp->type != AUDIO_MIXER_VALUE) {
   1347 			error = EINVAL;
   1348 			break;
   1349 		}
   1350 		if (cp->un.value.num_channels != 1) {
   1351 			error = EINVAL;
   1352 			break;
   1353 		}
   1354 
   1355 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1356 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1357 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1358 
   1359 		break;
   1360 
   1361 	case SV_MIC_BOOST:
   1362 		if (cp->type != AUDIO_MIXER_ENUM) {
   1363 			error = EINVAL;
   1364 			break;
   1365 		}
   1366 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1367 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1368 		break;
   1369 
   1370 	case SV_SRS_MODE:
   1371 		if (cp->type != AUDIO_MIXER_ENUM) {
   1372 			error = EINVAL;
   1373 			break;
   1374 		}
   1375 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1376 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1377 		break;
   1378 	default:
   1379 		error = EINVAL;
   1380 		break;
   1381 	}
   1382 
   1383 	mutex_spin_exit(&sc->sc_intr_lock);
   1384 	return error;
   1385 }
   1386 
   1387 static void
   1388 sv_init_mixer(struct sv_softc *sc)
   1389 {
   1390 	mixer_ctrl_t cp;
   1391 	int i;
   1392 
   1393 	cp.type = AUDIO_MIXER_ENUM;
   1394 	cp.dev = SV_SRS_MODE;
   1395 	cp.un.ord = 0;
   1396 
   1397 	sv_mixer_set_port(sc, &cp);
   1398 
   1399 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1400 		if (!strcmp(ports[i].audio, AudioNdac)) {
   1401 			cp.type = AUDIO_MIXER_ENUM;
   1402 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1403 			cp.un.ord = 0;
   1404 			sv_mixer_set_port(sc, &cp);
   1405 			break;
   1406 		}
   1407 	}
   1408 }
   1409 
   1410 static void *
   1411 sv_malloc(void *addr, int direction, size_t size)
   1412 {
   1413 	struct sv_softc *sc;
   1414 	struct sv_dma *p;
   1415 	int error;
   1416 
   1417 	sc = addr;
   1418 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
   1419 	if (p == NULL)
   1420 		return NULL;
   1421 	error = sv_allocmem(sc, size, 16, direction, p);
   1422 	if (error) {
   1423 		kmem_free(p, sizeof(*p));
   1424 		return 0;
   1425 	}
   1426 	p->next = sc->sc_dmas;
   1427 	sc->sc_dmas = p;
   1428 	return KERNADDR(p);
   1429 }
   1430 
   1431 static void
   1432 sv_free(void *addr, void *ptr, size_t size)
   1433 {
   1434 	struct sv_softc *sc;
   1435 	struct sv_dma **pp, *p;
   1436 
   1437 	sc = addr;
   1438 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1439 		if (KERNADDR(p) == ptr) {
   1440 			sv_freemem(sc, p);
   1441 			*pp = p->next;
   1442 			kmem_free(p, sizeof(*p));
   1443 			return;
   1444 		}
   1445 	}
   1446 }
   1447 
   1448 static size_t
   1449 sv_round_buffersize(void *addr, int direction, size_t size)
   1450 {
   1451 
   1452 	return size;
   1453 }
   1454 
   1455 static paddr_t
   1456 sv_mappage(void *addr, void *mem, off_t off, int prot)
   1457 {
   1458 	struct sv_softc *sc;
   1459 	struct sv_dma *p;
   1460 
   1461 	sc = addr;
   1462 	if (off < 0)
   1463 		return -1;
   1464 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1465 		continue;
   1466 	if (p == NULL)
   1467 		return -1;
   1468 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1469 			       off, prot, BUS_DMA_WAITOK);
   1470 }
   1471 
   1472 static int
   1473 sv_get_props(void *addr)
   1474 {
   1475 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1476 }
   1477 
   1478 static void
   1479 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
   1480 {
   1481 	struct sv_softc *sc;
   1482 
   1483 	sc = addr;
   1484 	*intr = &sc->sc_intr_lock;
   1485 	*thread = &sc->sc_lock;
   1486 }
   1487