sv.c revision 1.46 1 /* $NetBSD: sv.c,v 1.46 2011/11/24 03:35:58 mrg Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1998 Constantine Paul Sapuntzakis
35 * All rights reserved
36 *
37 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The author's name or those of the contributors may be used to
48 * endorse or promote products derived from this software without
49 * specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * S3 SonicVibes driver
66 * Heavily based on the eap driver by Lennart Augustsson
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.46 2011/11/24 03:35:58 mrg Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <sys/audioio.h>
83 #include <dev/audio_if.h>
84 #include <dev/mulaw.h>
85 #include <dev/auconv.h>
86
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/svreg.h>
89 #include <dev/pci/svvar.h>
90
91 #include <sys/bus.h>
92
93 /* XXX
94 * The SonicVibes DMA is broken and only works on 24-bit addresses.
95 * As long as bus_dmamem_alloc_range() is missing we use the ISA
96 * DMA tag on i386.
97 */
98 #if defined(i386)
99 #include "isa.h"
100 #if NISA > 0
101 #include <dev/isa/isavar.h>
102 #endif
103 #endif
104
105 #ifdef AUDIO_DEBUG
106 #define DPRINTF(x) if (svdebug) printf x
107 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
108 int svdebug = 0;
109 #else
110 #define DPRINTF(x)
111 #define DPRINTFN(n,x)
112 #endif
113
114 static int sv_match(device_t, cfdata_t, void *);
115 static void sv_attach(device_t, device_t, void *);
116 static int sv_intr(void *);
117
118 struct sv_dma {
119 bus_dmamap_t map;
120 void *addr;
121 bus_dma_segment_t segs[1];
122 int nsegs;
123 size_t size;
124 struct sv_dma *next;
125 };
126 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
127 #define KERNADDR(p) ((void *)((p)->addr))
128
129 CFATTACH_DECL(sv, sizeof(struct sv_softc),
130 sv_match, sv_attach, NULL, NULL);
131
132 static struct audio_device sv_device = {
133 "S3 SonicVibes",
134 "",
135 "sv"
136 };
137
138 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
139
140 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
141 struct sv_dma *);
142 static int sv_freemem(struct sv_softc *, struct sv_dma *);
143
144 static void sv_init_mixer(struct sv_softc *);
145
146 static int sv_open(void *, int);
147 static int sv_query_encoding(void *, struct audio_encoding *);
148 static int sv_set_params(void *, int, int, audio_params_t *,
149 audio_params_t *, stream_filter_list_t *,
150 stream_filter_list_t *);
151 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
152 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
153 void *, const audio_params_t *);
154 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
155 void *, const audio_params_t *);
156 static int sv_halt_output(void *);
157 static int sv_halt_input(void *);
158 static int sv_getdev(void *, struct audio_device *);
159 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
160 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
161 static int sv_query_devinfo(void *, mixer_devinfo_t *);
162 static void * sv_malloc(void *, int, size_t);
163 static void sv_free(void *, void *, size_t);
164 static size_t sv_round_buffersize(void *, int, size_t);
165 static paddr_t sv_mappage(void *, void *, off_t, int);
166 static int sv_get_props(void *);
167 static void sv_get_locks(void *, kmutex_t **, kmutex_t **);
168
169 #ifdef AUDIO_DEBUG
170 void sv_dumpregs(struct sv_softc *sc);
171 #endif
172
173 static const struct audio_hw_if sv_hw_if = {
174 sv_open,
175 NULL, /* close */
176 NULL,
177 sv_query_encoding,
178 sv_set_params,
179 sv_round_blocksize,
180 NULL,
181 NULL,
182 NULL,
183 NULL,
184 NULL,
185 sv_halt_output,
186 sv_halt_input,
187 NULL,
188 sv_getdev,
189 NULL,
190 sv_mixer_set_port,
191 sv_mixer_get_port,
192 sv_query_devinfo,
193 sv_malloc,
194 sv_free,
195 sv_round_buffersize,
196 sv_mappage,
197 sv_get_props,
198 sv_trigger_output,
199 sv_trigger_input,
200 NULL,
201 sv_get_locks,
202 };
203
204 #define SV_NFORMATS 4
205 static const struct audio_format sv_formats[SV_NFORMATS] = {
206 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
207 2, AUFMT_STEREO, 0, {2000, 48000}},
208 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
209 1, AUFMT_MONAURAL, 0, {2000, 48000}},
210 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
211 2, AUFMT_STEREO, 0, {2000, 48000}},
212 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
213 1, AUFMT_MONAURAL, 0, {2000, 48000}},
214 };
215
216
217 static void
218 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
219 {
220
221 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
222 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
223 }
224
225 static uint8_t
226 sv_read(struct sv_softc *sc, uint8_t reg)
227 {
228 uint8_t val;
229
230 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
231 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
232 return val;
233 }
234
235 static uint8_t
236 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
237 {
238 uint8_t val;
239
240 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
241 val = sv_read(sc, SV_CODEC_IDATA);
242 return val;
243 }
244
245 static void
246 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
247 {
248 uint8_t iaddr;
249
250 iaddr = reg & SV_IADDR_MASK;
251 if (reg == SV_DMA_DATA_FORMAT)
252 iaddr |= SV_IADDR_MCE;
253
254 sv_write(sc, SV_CODEC_IADDR, iaddr);
255 sv_write(sc, SV_CODEC_IDATA, val);
256 }
257
258 static int
259 sv_match(device_t parent, cfdata_t match, void *aux)
260 {
261 struct pci_attach_args *pa;
262
263 pa = aux;
264 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
265 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
266 return 1;
267
268 return 0;
269 }
270
271 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
272
273 static int
274 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
275 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
276 bus_size_t bound, int flags, bus_space_handle_t *ioh)
277 {
278 bus_addr_t addr;
279 int error;
280
281 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
282 size, align, bound, flags, &addr, ioh);
283 if (error)
284 return error;
285
286 pci_conf_write(pc, pt, pcioffs, addr);
287 return 0;
288 }
289
290 /*
291 * Allocate IO addresses when all other configuration is done.
292 */
293 static void
294 sv_defer(device_t self)
295 {
296 struct sv_softc *sc;
297 pci_chipset_tag_t pc;
298 pcitag_t pt;
299 pcireg_t dmaio;
300
301 sc = device_private(self);
302 pc = sc->sc_pa.pa_pc;
303 pt = sc->sc_pa.pa_tag;
304 DPRINTF(("sv_defer: %p\n", sc));
305
306 /* XXX
307 * Get a reasonable default for the I/O range.
308 * Assume the range around SB_PORTBASE is valid on this PCI bus.
309 */
310 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
311 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
312
313 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
314 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
315 0, &sc->sc_dmaa_ioh)) {
316 printf("sv_attach: cannot allocate DMA A range\n");
317 return;
318 }
319 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
320 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
321 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
322 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
323
324 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
325 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
326 0, &sc->sc_dmac_ioh)) {
327 printf("sv_attach: cannot allocate DMA C range\n");
328 return;
329 }
330 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
331 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
332 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
333 dmaio | SV_DMA_CHANNEL_ENABLE);
334
335 sc->sc_dmaset = 1;
336 }
337
338 static void
339 sv_attach(device_t parent, device_t self, void *aux)
340 {
341 struct sv_softc *sc;
342 struct pci_attach_args *pa;
343 pci_chipset_tag_t pc;
344 pcitag_t pt;
345 pci_intr_handle_t ih;
346 pcireg_t csr;
347 char const *intrstr;
348 uint8_t reg;
349 struct audio_attach_args arg;
350
351 sc = device_private(self);
352 pa = aux;
353 pc = pa->pa_pc;
354 pt = pa->pa_tag;
355 printf ("\n");
356
357 /* Map I/O registers */
358 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
359 PCI_MAPREG_TYPE_IO, 0,
360 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
361 aprint_error_dev(&sc->sc_dev, "can't map enhanced i/o space\n");
362 return;
363 }
364 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
365 PCI_MAPREG_TYPE_IO, 0,
366 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
367 aprint_error_dev(&sc->sc_dev, "can't map FM i/o space\n");
368 return;
369 }
370 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
371 PCI_MAPREG_TYPE_IO, 0,
372 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
373 aprint_error_dev(&sc->sc_dev, "can't map MIDI i/o space\n");
374 return;
375 }
376 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
377 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
378
379 #if defined(alpha)
380 /* XXX Force allocation through the SGMAP. */
381 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
382 #elif defined(i386) && NISA > 0
383 /* XXX
384 * The SonicVibes DMA is broken and only works on 24-bit addresses.
385 * As long as bus_dmamem_alloc_range() is missing we use the ISA
386 * DMA tag on i386.
387 */
388 sc->sc_dmatag = &isa_bus_dma_tag;
389 #else
390 sc->sc_dmatag = pa->pa_dmat;
391 #endif
392
393 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
394 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
395
396 /* Enable the device. */
397 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
398 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
399 csr | PCI_COMMAND_MASTER_ENABLE);
400
401 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
402 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
403
404 /* initialize codec registers */
405 reg = sv_read(sc, SV_CODEC_CONTROL);
406 reg |= SV_CTL_RESET;
407 sv_write(sc, SV_CODEC_CONTROL, reg);
408 delay(50);
409
410 reg = sv_read(sc, SV_CODEC_CONTROL);
411 reg &= ~SV_CTL_RESET;
412 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
413
414 /* This write clears the reset */
415 sv_write(sc, SV_CODEC_CONTROL, reg);
416 delay(50);
417
418 /* This write actually shoves the new values in */
419 sv_write(sc, SV_CODEC_CONTROL, reg);
420
421 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
422
423 /* Map and establish the interrupt. */
424 if (pci_intr_map(pa, &ih)) {
425 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
426 return;
427 }
428
429 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
430 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
431
432 intrstr = pci_intr_string(pc, ih);
433 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
434 if (sc->sc_ih == NULL) {
435 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
436 if (intrstr != NULL)
437 aprint_error(" at %s", intrstr);
438 aprint_error("\n");
439 mutex_destroy(&sc->sc_lock);
440 mutex_destroy(&sc->sc_intr_lock);
441 return;
442 }
443 printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
444 printf("%s: rev %d", device_xname(&sc->sc_dev),
445 sv_read_indirect(sc, SV_REVISION_LEVEL));
446 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
447 printf(", reverb SRAM present");
448 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
449 printf(", wavetable ROM present");
450 printf("\n");
451
452 /* Enable DMA interrupts */
453 reg = sv_read(sc, SV_CODEC_INTMASK);
454 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
455 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
456 sv_write(sc, SV_CODEC_INTMASK, reg);
457 sv_read(sc, SV_CODEC_STATUS);
458
459 sv_init_mixer(sc);
460
461 audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
462
463 arg.type = AUDIODEV_TYPE_OPL;
464 arg.hwif = 0;
465 arg.hdl = 0;
466 (void)config_found(&sc->sc_dev, &arg, audioprint);
467
468 sc->sc_pa = *pa; /* for deferred setup */
469 config_defer(self, sv_defer);
470 }
471
472 #ifdef AUDIO_DEBUG
473 void
474 sv_dumpregs(struct sv_softc *sc)
475 {
476 int idx;
477
478 #if 0
479 for (idx = 0; idx < 0x50; idx += 4)
480 printf ("%02x = %x\n", idx,
481 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
482 #endif
483
484 for (idx = 0; idx < 6; idx++)
485 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
486
487 for (idx = 0; idx < 0x32; idx++)
488 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
489
490 for (idx = 0; idx < 0x10; idx++)
491 printf ("DMA %02x = %02x\n", idx,
492 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
493 }
494 #endif
495
496 static int
497 sv_intr(void *p)
498 {
499 struct sv_softc *sc;
500 uint8_t intr;
501
502 sc = p;
503
504 mutex_spin_enter(&sc->sc_intr_lock);
505
506 intr = sv_read(sc, SV_CODEC_STATUS);
507 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
508
509 if (intr & SV_INTSTATUS_DMAA) {
510 if (sc->sc_pintr)
511 sc->sc_pintr(sc->sc_parg);
512 }
513
514 if (intr & SV_INTSTATUS_DMAC) {
515 if (sc->sc_rintr)
516 sc->sc_rintr(sc->sc_rarg);
517 }
518
519 mutex_spin_exit(&sc->sc_intr_lock);
520
521 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
522 }
523
524 static int
525 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
526 int direction, struct sv_dma *p)
527 {
528 int error;
529
530 p->size = size;
531 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
532 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
533 if (error)
534 return error;
535
536 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
537 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
538 if (error)
539 goto free;
540
541 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
542 0, BUS_DMA_WAITOK, &p->map);
543 if (error)
544 goto unmap;
545
546 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
547 BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
548 if (error)
549 goto destroy;
550 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
551 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
552 return 0;
553
554 destroy:
555 bus_dmamap_destroy(sc->sc_dmatag, p->map);
556 unmap:
557 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
558 free:
559 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
560 return error;
561 }
562
563 static int
564 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
565 {
566
567 bus_dmamap_unload(sc->sc_dmatag, p->map);
568 bus_dmamap_destroy(sc->sc_dmatag, p->map);
569 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
570 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
571 return 0;
572 }
573
574 static int
575 sv_open(void *addr, int flags)
576 {
577 struct sv_softc *sc;
578
579 sc = addr;
580 DPRINTF(("sv_open\n"));
581 if (!sc->sc_dmaset)
582 return ENXIO;
583
584 return 0;
585 }
586
587 static int
588 sv_query_encoding(void *addr, struct audio_encoding *fp)
589 {
590
591 switch (fp->index) {
592 case 0:
593 strcpy(fp->name, AudioEulinear);
594 fp->encoding = AUDIO_ENCODING_ULINEAR;
595 fp->precision = 8;
596 fp->flags = 0;
597 return 0;
598 case 1:
599 strcpy(fp->name, AudioEmulaw);
600 fp->encoding = AUDIO_ENCODING_ULAW;
601 fp->precision = 8;
602 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
603 return 0;
604 case 2:
605 strcpy(fp->name, AudioEalaw);
606 fp->encoding = AUDIO_ENCODING_ALAW;
607 fp->precision = 8;
608 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
609 return 0;
610 case 3:
611 strcpy(fp->name, AudioEslinear);
612 fp->encoding = AUDIO_ENCODING_SLINEAR;
613 fp->precision = 8;
614 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
615 return 0;
616 case 4:
617 strcpy(fp->name, AudioEslinear_le);
618 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
619 fp->precision = 16;
620 fp->flags = 0;
621 return 0;
622 case 5:
623 strcpy(fp->name, AudioEulinear_le);
624 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
625 fp->precision = 16;
626 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
627 return 0;
628 case 6:
629 strcpy(fp->name, AudioEslinear_be);
630 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
631 fp->precision = 16;
632 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
633 return 0;
634 case 7:
635 strcpy(fp->name, AudioEulinear_be);
636 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
637 fp->precision = 16;
638 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
639 return 0;
640 default:
641 return EINVAL;
642 }
643 }
644
645 static int
646 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
647 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
648 {
649 struct sv_softc *sc;
650 audio_params_t *p;
651 uint32_t val;
652
653 sc = addr;
654 p = NULL;
655 /*
656 * This device only has one clock, so make the sample rates match.
657 */
658 if (play->sample_rate != rec->sample_rate &&
659 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
660 if (setmode == AUMODE_PLAY) {
661 rec->sample_rate = play->sample_rate;
662 setmode |= AUMODE_RECORD;
663 } else if (setmode == AUMODE_RECORD) {
664 play->sample_rate = rec->sample_rate;
665 setmode |= AUMODE_PLAY;
666 } else
667 return EINVAL;
668 }
669
670 if (setmode & AUMODE_RECORD) {
671 p = rec;
672 if (auconv_set_converter(sv_formats, SV_NFORMATS,
673 AUMODE_RECORD, rec, FALSE, rfil) < 0)
674 return EINVAL;
675 }
676 if (setmode & AUMODE_PLAY) {
677 p = play;
678 if (auconv_set_converter(sv_formats, SV_NFORMATS,
679 AUMODE_PLAY, play, FALSE, pfil) < 0)
680 return EINVAL;
681 }
682
683 if (p == NULL)
684 return 0;
685
686 val = p->sample_rate * 65536 / 48000;
687 /*
688 * If the sample rate is exactly 48 kHz, the fraction would overflow the
689 * register, so we have to bias it. This causes a little clock drift.
690 * The drift is below normal crystal tolerance (.0001%), so although
691 * this seems a little silly, we can pretty much ignore it.
692 * (I tested the output speed with values of 1-20, just to be sure this
693 * register isn't *supposed* to have a bias. It isn't.)
694 * - mycroft
695 */
696 if (val > 65535)
697 val = 65535;
698
699 mutex_spin_enter(&sc->sc_intr_lock);
700 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
701 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
702 mutex_spin_exit(&sc->sc_intr_lock);
703
704 #define F_REF 24576000
705
706 #define ABS(x) (((x) < 0) ? (-x) : (x))
707
708 if (setmode & AUMODE_RECORD) {
709 /* The ADC reference frequency (f_out) is 512 * sample rate */
710
711 /* f_out is dervied from the 24.576MHz crystal by three values:
712 M & N & R. The equation is as follows:
713
714 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
715
716 with the constraint that:
717
718 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
719 and n, m >= 1
720 */
721
722 int goal_f_out;
723 int a, n, m, best_n, best_m, best_error;
724 int pll_sample;
725 int error;
726
727 goal_f_out = 512 * rec->sample_rate;
728 best_n = 0;
729 best_m = 0;
730 best_error = 10000000;
731 for (a = 0; a < 8; a++) {
732 if ((goal_f_out * (1 << a)) >= 80000000)
733 break;
734 }
735
736 /* a != 8 because sample_rate >= 2000 */
737
738 for (n = 33; n > 2; n--) {
739 m = (goal_f_out * n * (1 << a)) / F_REF;
740 if ((m > 257) || (m < 3))
741 continue;
742
743 pll_sample = (m * F_REF) / (n * (1 << a));
744 pll_sample /= 512;
745
746 /* Threshold might be good here */
747 error = pll_sample - rec->sample_rate;
748 error = ABS(error);
749
750 if (error < best_error) {
751 best_error = error;
752 best_n = n;
753 best_m = m;
754 if (error == 0) break;
755 }
756 }
757
758 best_n -= 2;
759 best_m -= 2;
760
761 mutex_spin_enter(&sc->sc_intr_lock);
762 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
763 sv_write_indirect(sc, SV_ADC_PLL_N,
764 best_n | (a << SV_PLL_R_SHIFT));
765 mutex_spin_exit(&sc->sc_intr_lock);
766 }
767
768 return 0;
769 }
770
771 static int
772 sv_round_blocksize(void *addr, int blk, int mode,
773 const audio_params_t *param)
774 {
775
776 return blk & -32; /* keep good alignment */
777 }
778
779 static int
780 sv_trigger_output(void *addr, void *start, void *end, int blksize,
781 void (*intr)(void *), void *arg, const audio_params_t *param)
782 {
783 struct sv_softc *sc;
784 struct sv_dma *p;
785 uint8_t mode;
786 int dma_count;
787
788 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
789 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
790 sc = addr;
791 sc->sc_pintr = intr;
792 sc->sc_parg = arg;
793
794 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
795 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
796 if (param->precision == 16)
797 mode |= SV_DMAA_FORMAT16;
798 if (param->channels == 2)
799 mode |= SV_DMAA_STEREO;
800 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
801
802 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
803 continue;
804 if (p == NULL) {
805 printf("sv_trigger_output: bad addr %p\n", start);
806 return EINVAL;
807 }
808
809 dma_count = ((char *)end - (char *)start) - 1;
810 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
811 (int)DMAADDR(p), dma_count));
812
813 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
814 DMAADDR(p));
815 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
816 dma_count);
817 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
818 DMA37MD_READ | DMA37MD_LOOP);
819
820 DPRINTF(("sv_trigger_output: current addr=%x\n",
821 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
822
823 dma_count = blksize - 1;
824
825 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
826 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
827
828 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
829 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
830
831 return 0;
832 }
833
834 static int
835 sv_trigger_input(void *addr, void *start, void *end, int blksize,
836 void (*intr)(void *), void *arg, const audio_params_t *param)
837 {
838 struct sv_softc *sc;
839 struct sv_dma *p;
840 uint8_t mode;
841 int dma_count;
842
843 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
844 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
845 sc = addr;
846 sc->sc_rintr = intr;
847 sc->sc_rarg = arg;
848
849 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
850 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
851 if (param->precision == 16)
852 mode |= SV_DMAC_FORMAT16;
853 if (param->channels == 2)
854 mode |= SV_DMAC_STEREO;
855 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
856
857 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
858 continue;
859 if (!p) {
860 printf("sv_trigger_input: bad addr %p\n", start);
861 return EINVAL;
862 }
863
864 dma_count = (((char *)end - (char *)start) >> 1) - 1;
865 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
866 (int)DMAADDR(p), dma_count));
867
868 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
869 DMAADDR(p));
870 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
871 dma_count);
872 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
873 DMA37MD_WRITE | DMA37MD_LOOP);
874
875 DPRINTF(("sv_trigger_input: current addr=%x\n",
876 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
877
878 dma_count = (blksize >> 1) - 1;
879
880 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
881 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
882
883 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
884 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
885
886 return 0;
887 }
888
889 static int
890 sv_halt_output(void *addr)
891 {
892 struct sv_softc *sc;
893 uint8_t mode;
894
895 DPRINTF(("sv: sv_halt_output\n"));
896 sc = addr;
897 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
898 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
899 sc->sc_pintr = 0;
900
901 return 0;
902 }
903
904 static int
905 sv_halt_input(void *addr)
906 {
907 struct sv_softc *sc;
908 uint8_t mode;
909
910 DPRINTF(("sv: sv_halt_input\n"));
911 sc = addr;
912 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
913 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
914 sc->sc_rintr = 0;
915
916 return 0;
917 }
918
919 static int
920 sv_getdev(void *addr, struct audio_device *retp)
921 {
922
923 *retp = sv_device;
924 return 0;
925 }
926
927
928 /*
929 * Mixer related code is here
930 *
931 */
932
933 #define SV_INPUT_CLASS 0
934 #define SV_OUTPUT_CLASS 1
935 #define SV_RECORD_CLASS 2
936
937 #define SV_LAST_CLASS 2
938
939 static const char *mixer_classes[] =
940 { AudioCinputs, AudioCoutputs, AudioCrecord };
941
942 static const struct {
943 uint8_t l_port;
944 uint8_t r_port;
945 uint8_t mask;
946 uint8_t class;
947 const char *audio;
948 } ports[] = {
949 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
950 SV_INPUT_CLASS, "aux1" },
951 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
952 SV_INPUT_CLASS, AudioNcd },
953 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
954 SV_INPUT_CLASS, AudioNline },
955 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
956 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
957 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
958 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
959 SV_INPUT_CLASS, "aux2" },
960 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
961 SV_INPUT_CLASS, AudioNdac },
962 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
963 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
964 };
965
966
967 static const struct {
968 int idx;
969 const char *name;
970 } record_sources[] = {
971 { SV_REC_CD, AudioNcd },
972 { SV_REC_DAC, AudioNdac },
973 { SV_REC_AUX2, "aux2" },
974 { SV_REC_LINE, AudioNline },
975 { SV_REC_AUX1, "aux1" },
976 { SV_REC_MIC, AudioNmicrophone },
977 { SV_REC_MIXER, AudioNmixerout }
978 };
979
980
981 #define SV_DEVICES_PER_PORT 2
982 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
983 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
984 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
985 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
986 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
987 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
988
989 static int
990 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
991 {
992 int i;
993
994 /* It's a class */
995 if (dip->index <= SV_LAST_CLASS) {
996 dip->type = AUDIO_MIXER_CLASS;
997 dip->mixer_class = dip->index;
998 dip->next = dip->prev = AUDIO_MIXER_LAST;
999 strcpy(dip->label.name, mixer_classes[dip->index]);
1000 return 0;
1001 }
1002
1003 if (dip->index >= SV_FIRST_MIXER &&
1004 dip->index <= SV_LAST_MIXER) {
1005 int off, mute ,idx;
1006
1007 off = dip->index - SV_FIRST_MIXER;
1008 mute = (off % SV_DEVICES_PER_PORT);
1009 idx = off / SV_DEVICES_PER_PORT;
1010 dip->mixer_class = ports[idx].class;
1011 strcpy(dip->label.name, ports[idx].audio);
1012
1013 if (!mute) {
1014 dip->type = AUDIO_MIXER_VALUE;
1015 dip->prev = AUDIO_MIXER_LAST;
1016 dip->next = dip->index + 1;
1017
1018 if (ports[idx].r_port != 0)
1019 dip->un.v.num_channels = 2;
1020 else
1021 dip->un.v.num_channels = 1;
1022
1023 strcpy(dip->un.v.units.name, AudioNvolume);
1024 } else {
1025 dip->type = AUDIO_MIXER_ENUM;
1026 dip->prev = dip->index - 1;
1027 dip->next = AUDIO_MIXER_LAST;
1028
1029 strcpy(dip->label.name, AudioNmute);
1030 dip->un.e.num_mem = 2;
1031 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1032 dip->un.e.member[0].ord = 0;
1033 strcpy(dip->un.e.member[1].label.name, AudioNon);
1034 dip->un.e.member[1].ord = 1;
1035 }
1036
1037 return 0;
1038 }
1039
1040 switch (dip->index) {
1041 case SV_RECORD_SOURCE:
1042 dip->mixer_class = SV_RECORD_CLASS;
1043 dip->prev = AUDIO_MIXER_LAST;
1044 dip->next = SV_RECORD_GAIN;
1045 strcpy(dip->label.name, AudioNsource);
1046 dip->type = AUDIO_MIXER_ENUM;
1047
1048 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1049 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1050 strcpy(dip->un.e.member[i].label.name,
1051 record_sources[i].name);
1052 dip->un.e.member[i].ord = record_sources[i].idx;
1053 }
1054 return 0;
1055
1056 case SV_RECORD_GAIN:
1057 dip->mixer_class = SV_RECORD_CLASS;
1058 dip->prev = SV_RECORD_SOURCE;
1059 dip->next = AUDIO_MIXER_LAST;
1060 strcpy(dip->label.name, "gain");
1061 dip->type = AUDIO_MIXER_VALUE;
1062 dip->un.v.num_channels = 1;
1063 strcpy(dip->un.v.units.name, AudioNvolume);
1064 return 0;
1065
1066 case SV_MIC_BOOST:
1067 dip->mixer_class = SV_RECORD_CLASS;
1068 dip->prev = AUDIO_MIXER_LAST;
1069 dip->next = AUDIO_MIXER_LAST;
1070 strcpy(dip->label.name, "micboost");
1071 goto on_off;
1072
1073 case SV_SRS_MODE:
1074 dip->mixer_class = SV_OUTPUT_CLASS;
1075 dip->prev = dip->next = AUDIO_MIXER_LAST;
1076 strcpy(dip->label.name, AudioNspatial);
1077
1078 on_off:
1079 dip->type = AUDIO_MIXER_ENUM;
1080 dip->un.e.num_mem = 2;
1081 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1082 dip->un.e.member[0].ord = 0;
1083 strcpy(dip->un.e.member[1].label.name, AudioNon);
1084 dip->un.e.member[1].ord = 1;
1085 return 0;
1086 }
1087
1088 return ENXIO;
1089 }
1090
1091 static int
1092 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1093 {
1094 struct sv_softc *sc;
1095 uint8_t reg;
1096 int idx;
1097
1098 sc = addr;
1099 if (cp->dev >= SV_FIRST_MIXER &&
1100 cp->dev <= SV_LAST_MIXER) {
1101 int off, mute;
1102
1103 off = cp->dev - SV_FIRST_MIXER;
1104 mute = (off % SV_DEVICES_PER_PORT);
1105 idx = off / SV_DEVICES_PER_PORT;
1106
1107 if (mute) {
1108 if (cp->type != AUDIO_MIXER_ENUM)
1109 return EINVAL;
1110
1111 mutex_spin_enter(&sc->sc_intr_lock);
1112 reg = sv_read_indirect(sc, ports[idx].l_port);
1113 if (cp->un.ord)
1114 reg |= SV_MUTE_BIT;
1115 else
1116 reg &= ~SV_MUTE_BIT;
1117 sv_write_indirect(sc, ports[idx].l_port, reg);
1118
1119 if (ports[idx].r_port) {
1120 reg = sv_read_indirect(sc, ports[idx].r_port);
1121 if (cp->un.ord)
1122 reg |= SV_MUTE_BIT;
1123 else
1124 reg &= ~SV_MUTE_BIT;
1125 sv_write_indirect(sc, ports[idx].r_port, reg);
1126 }
1127 mutex_spin_exit(&sc->sc_intr_lock);
1128 } else {
1129 int lval, rval;
1130
1131 if (cp->type != AUDIO_MIXER_VALUE)
1132 return EINVAL;
1133
1134 if (cp->un.value.num_channels != 1 &&
1135 cp->un.value.num_channels != 2)
1136 return (EINVAL);
1137
1138 if (ports[idx].r_port == 0) {
1139 if (cp->un.value.num_channels != 1)
1140 return (EINVAL);
1141 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1142 rval = 0; /* shut up GCC */
1143 } else {
1144 if (cp->un.value.num_channels != 2)
1145 return (EINVAL);
1146
1147 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1148 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1149 }
1150
1151 mutex_spin_enter(&sc->sc_intr_lock);
1152 reg = sv_read_indirect(sc, ports[idx].l_port);
1153 reg &= ~(ports[idx].mask);
1154 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1155 AUDIO_MAX_GAIN;
1156 reg |= lval;
1157 sv_write_indirect(sc, ports[idx].l_port, reg);
1158
1159 if (ports[idx].r_port != 0) {
1160 reg = sv_read_indirect(sc, ports[idx].r_port);
1161 reg &= ~(ports[idx].mask);
1162
1163 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1164 AUDIO_MAX_GAIN;
1165 reg |= rval;
1166
1167 sv_write_indirect(sc, ports[idx].r_port, reg);
1168 }
1169
1170 sv_read_indirect(sc, ports[idx].l_port);
1171 mutex_spin_exit(&sc->sc_intr_lock);
1172 }
1173
1174 return 0;
1175 }
1176
1177
1178 switch (cp->dev) {
1179 case SV_RECORD_SOURCE:
1180 if (cp->type != AUDIO_MIXER_ENUM)
1181 return EINVAL;
1182
1183 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1184 if (record_sources[idx].idx == cp->un.ord)
1185 goto found;
1186 }
1187
1188 return EINVAL;
1189
1190 found:
1191 mutex_spin_enter(&sc->sc_intr_lock);
1192 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1193 reg &= ~SV_REC_SOURCE_MASK;
1194 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1195 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1196
1197 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1198 reg &= ~SV_REC_SOURCE_MASK;
1199 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1200 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1201 mutex_spin_exit(&sc->sc_intr_lock);
1202 return 0;
1203
1204 case SV_RECORD_GAIN:
1205 {
1206 int val;
1207
1208 if (cp->type != AUDIO_MIXER_VALUE)
1209 return EINVAL;
1210
1211 if (cp->un.value.num_channels != 1)
1212 return EINVAL;
1213
1214 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1215 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1216
1217 mutex_spin_enter(&sc->sc_intr_lock);
1218 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1219 reg &= ~SV_REC_GAIN_MASK;
1220 reg |= val;
1221 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1222
1223 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1224 reg &= ~SV_REC_GAIN_MASK;
1225 reg |= val;
1226 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1227 mutex_spin_exit(&sc->sc_intr_lock);
1228 }
1229 return (0);
1230
1231 case SV_MIC_BOOST:
1232 if (cp->type != AUDIO_MIXER_ENUM)
1233 return EINVAL;
1234
1235 mutex_spin_enter(&sc->sc_intr_lock);
1236 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1237 if (cp->un.ord) {
1238 reg |= SV_MIC_BOOST_BIT;
1239 } else {
1240 reg &= ~SV_MIC_BOOST_BIT;
1241 }
1242
1243 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1244 mutex_spin_exit(&sc->sc_intr_lock);
1245 return 0;
1246
1247 case SV_SRS_MODE:
1248 if (cp->type != AUDIO_MIXER_ENUM)
1249 return EINVAL;
1250
1251 mutex_spin_enter(&sc->sc_intr_lock);
1252 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1253 if (cp->un.ord) {
1254 reg &= ~SV_SRS_SPACE_ONOFF;
1255 } else {
1256 reg |= SV_SRS_SPACE_ONOFF;
1257 }
1258
1259 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1260 mutex_spin_exit(&sc->sc_intr_lock);
1261 return 0;
1262 }
1263
1264 return EINVAL;
1265 }
1266
1267 static int
1268 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1269 {
1270 struct sv_softc *sc;
1271 int val, error;
1272 uint8_t reg;
1273
1274 sc = addr;
1275 error = 0;
1276
1277 mutex_spin_enter(&sc->sc_intr_lock);
1278
1279 if (cp->dev >= SV_FIRST_MIXER &&
1280 cp->dev <= SV_LAST_MIXER) {
1281 int off = cp->dev - SV_FIRST_MIXER;
1282 int mute = (off % 2);
1283 int idx = off / 2;
1284
1285 off = cp->dev - SV_FIRST_MIXER;
1286 mute = (off % 2);
1287 idx = off / 2;
1288 if (mute) {
1289 if (cp->type != AUDIO_MIXER_ENUM)
1290 error = EINVAL;
1291 else {
1292 reg = sv_read_indirect(sc, ports[idx].l_port);
1293 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1294 }
1295 } else {
1296 if (cp->type != AUDIO_MIXER_VALUE ||
1297 (cp->un.value.num_channels != 1 &&
1298 cp->un.value.num_channels != 2) ||
1299 ((ports[idx].r_port == 0 &&
1300 cp->un.value.num_channels != 1) ||
1301 (ports[idx].r_port != 0 &&
1302 cp->un.value.num_channels != 2)))
1303 error = EINVAL;
1304 else {
1305 reg = sv_read_indirect(sc, ports[idx].l_port);
1306 reg &= ports[idx].mask;
1307
1308 val = AUDIO_MAX_GAIN -
1309 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1310
1311 if (ports[idx].r_port != 0) {
1312 cp->un.value.level
1313 [AUDIO_MIXER_LEVEL_LEFT] = val;
1314
1315 reg = sv_read_indirect(sc,
1316 ports[idx].r_port);
1317 reg &= ports[idx].mask;
1318
1319 val = AUDIO_MAX_GAIN -
1320 ((reg * AUDIO_MAX_GAIN)
1321 / ports[idx].mask);
1322 cp->un.value.level
1323 [AUDIO_MIXER_LEVEL_RIGHT] = val;
1324 } else
1325 cp->un.value.level
1326 [AUDIO_MIXER_LEVEL_MONO] = val;
1327 }
1328 }
1329
1330 return error;
1331 }
1332
1333 switch (cp->dev) {
1334 case SV_RECORD_SOURCE:
1335 if (cp->type != AUDIO_MIXER_ENUM) {
1336 error = EINVAL;
1337 break;
1338 }
1339
1340 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1341 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1342
1343 break;
1344
1345 case SV_RECORD_GAIN:
1346 if (cp->type != AUDIO_MIXER_VALUE) {
1347 error = EINVAL;
1348 break;
1349 }
1350 if (cp->un.value.num_channels != 1) {
1351 error = EINVAL;
1352 break;
1353 }
1354
1355 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1356 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1357 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1358
1359 break;
1360
1361 case SV_MIC_BOOST:
1362 if (cp->type != AUDIO_MIXER_ENUM) {
1363 error = EINVAL;
1364 break;
1365 }
1366 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1367 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1368 break;
1369
1370 case SV_SRS_MODE:
1371 if (cp->type != AUDIO_MIXER_ENUM) {
1372 error = EINVAL;
1373 break;
1374 }
1375 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1376 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1377 break;
1378 default:
1379 error = EINVAL;
1380 break;
1381 }
1382
1383 mutex_spin_exit(&sc->sc_intr_lock);
1384 return error;
1385 }
1386
1387 static void
1388 sv_init_mixer(struct sv_softc *sc)
1389 {
1390 mixer_ctrl_t cp;
1391 int i;
1392
1393 cp.type = AUDIO_MIXER_ENUM;
1394 cp.dev = SV_SRS_MODE;
1395 cp.un.ord = 0;
1396
1397 sv_mixer_set_port(sc, &cp);
1398
1399 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1400 if (!strcmp(ports[i].audio, AudioNdac)) {
1401 cp.type = AUDIO_MIXER_ENUM;
1402 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1403 cp.un.ord = 0;
1404 sv_mixer_set_port(sc, &cp);
1405 break;
1406 }
1407 }
1408 }
1409
1410 static void *
1411 sv_malloc(void *addr, int direction, size_t size)
1412 {
1413 struct sv_softc *sc;
1414 struct sv_dma *p;
1415 int error;
1416
1417 sc = addr;
1418 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1419 if (p == NULL)
1420 return NULL;
1421 error = sv_allocmem(sc, size, 16, direction, p);
1422 if (error) {
1423 kmem_free(p, sizeof(*p));
1424 return 0;
1425 }
1426 p->next = sc->sc_dmas;
1427 sc->sc_dmas = p;
1428 return KERNADDR(p);
1429 }
1430
1431 static void
1432 sv_free(void *addr, void *ptr, size_t size)
1433 {
1434 struct sv_softc *sc;
1435 struct sv_dma **pp, *p;
1436
1437 sc = addr;
1438 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1439 if (KERNADDR(p) == ptr) {
1440 sv_freemem(sc, p);
1441 *pp = p->next;
1442 kmem_free(p, sizeof(*p));
1443 return;
1444 }
1445 }
1446 }
1447
1448 static size_t
1449 sv_round_buffersize(void *addr, int direction, size_t size)
1450 {
1451
1452 return size;
1453 }
1454
1455 static paddr_t
1456 sv_mappage(void *addr, void *mem, off_t off, int prot)
1457 {
1458 struct sv_softc *sc;
1459 struct sv_dma *p;
1460
1461 sc = addr;
1462 if (off < 0)
1463 return -1;
1464 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1465 continue;
1466 if (p == NULL)
1467 return -1;
1468 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1469 off, prot, BUS_DMA_WAITOK);
1470 }
1471
1472 static int
1473 sv_get_props(void *addr)
1474 {
1475 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1476 }
1477
1478 static void
1479 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1480 {
1481 struct sv_softc *sc;
1482
1483 sc = addr;
1484 *intr = &sc->sc_intr_lock;
1485 *thread = &sc->sc_lock;
1486 }
1487