sv.c revision 1.48 1 /* $NetBSD: sv.c,v 1.48 2013/07/17 21:26:29 soren Exp $ */
2 /* $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
3
4 /*
5 * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Charles M. Hannum.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1998 Constantine Paul Sapuntzakis
35 * All rights reserved
36 *
37 * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. The author's name or those of the contributors may be used to
48 * endorse or promote products derived from this software without
49 * specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
52 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
53 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
54 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61 * POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 /*
65 * S3 SonicVibes driver
66 * Heavily based on the eap driver by Lennart Augustsson
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.48 2013/07/17 21:26:29 soren Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/kmem.h>
76 #include <sys/device.h>
77
78 #include <dev/pci/pcireg.h>
79 #include <dev/pci/pcivar.h>
80 #include <dev/pci/pcidevs.h>
81
82 #include <sys/audioio.h>
83 #include <dev/audio_if.h>
84 #include <dev/mulaw.h>
85 #include <dev/auconv.h>
86
87 #include <dev/ic/i8237reg.h>
88 #include <dev/pci/svreg.h>
89 #include <dev/pci/svvar.h>
90
91 #include <sys/bus.h>
92
93 /* XXX
94 * The SonicVibes DMA is broken and only works on 24-bit addresses.
95 * As long as bus_dmamem_alloc_range() is missing we use the ISA
96 * DMA tag on i386.
97 */
98 #if defined(amd64) || defined(i386)
99 #include <dev/isa/isavar.h>
100 #endif
101
102 #ifdef AUDIO_DEBUG
103 #define DPRINTF(x) if (svdebug) printf x
104 #define DPRINTFN(n,x) if (svdebug>(n)) printf x
105 int svdebug = 0;
106 #else
107 #define DPRINTF(x)
108 #define DPRINTFN(n,x)
109 #endif
110
111 static int sv_match(device_t, cfdata_t, void *);
112 static void sv_attach(device_t, device_t, void *);
113 static int sv_intr(void *);
114
115 struct sv_dma {
116 bus_dmamap_t map;
117 void *addr;
118 bus_dma_segment_t segs[1];
119 int nsegs;
120 size_t size;
121 struct sv_dma *next;
122 };
123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
124 #define KERNADDR(p) ((void *)((p)->addr))
125
126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
127 sv_match, sv_attach, NULL, NULL);
128
129 static struct audio_device sv_device = {
130 "S3 SonicVibes",
131 "",
132 "sv"
133 };
134
135 #define ARRAY_SIZE(foo) ((sizeof(foo)) / sizeof(foo[0]))
136
137 static int sv_allocmem(struct sv_softc *, size_t, size_t, int,
138 struct sv_dma *);
139 static int sv_freemem(struct sv_softc *, struct sv_dma *);
140
141 static void sv_init_mixer(struct sv_softc *);
142
143 static int sv_open(void *, int);
144 static int sv_query_encoding(void *, struct audio_encoding *);
145 static int sv_set_params(void *, int, int, audio_params_t *,
146 audio_params_t *, stream_filter_list_t *,
147 stream_filter_list_t *);
148 static int sv_round_blocksize(void *, int, int, const audio_params_t *);
149 static int sv_trigger_output(void *, void *, void *, int, void (*)(void *),
150 void *, const audio_params_t *);
151 static int sv_trigger_input(void *, void *, void *, int, void (*)(void *),
152 void *, const audio_params_t *);
153 static int sv_halt_output(void *);
154 static int sv_halt_input(void *);
155 static int sv_getdev(void *, struct audio_device *);
156 static int sv_mixer_set_port(void *, mixer_ctrl_t *);
157 static int sv_mixer_get_port(void *, mixer_ctrl_t *);
158 static int sv_query_devinfo(void *, mixer_devinfo_t *);
159 static void * sv_malloc(void *, int, size_t);
160 static void sv_free(void *, void *, size_t);
161 static size_t sv_round_buffersize(void *, int, size_t);
162 static paddr_t sv_mappage(void *, void *, off_t, int);
163 static int sv_get_props(void *);
164 static void sv_get_locks(void *, kmutex_t **, kmutex_t **);
165
166 #ifdef AUDIO_DEBUG
167 void sv_dumpregs(struct sv_softc *sc);
168 #endif
169
170 static const struct audio_hw_if sv_hw_if = {
171 sv_open,
172 NULL, /* close */
173 NULL,
174 sv_query_encoding,
175 sv_set_params,
176 sv_round_blocksize,
177 NULL,
178 NULL,
179 NULL,
180 NULL,
181 NULL,
182 sv_halt_output,
183 sv_halt_input,
184 NULL,
185 sv_getdev,
186 NULL,
187 sv_mixer_set_port,
188 sv_mixer_get_port,
189 sv_query_devinfo,
190 sv_malloc,
191 sv_free,
192 sv_round_buffersize,
193 sv_mappage,
194 sv_get_props,
195 sv_trigger_output,
196 sv_trigger_input,
197 NULL,
198 sv_get_locks,
199 };
200
201 #define SV_NFORMATS 4
202 static const struct audio_format sv_formats[SV_NFORMATS] = {
203 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
204 2, AUFMT_STEREO, 0, {2000, 48000}},
205 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
206 1, AUFMT_MONAURAL, 0, {2000, 48000}},
207 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
208 2, AUFMT_STEREO, 0, {2000, 48000}},
209 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
210 1, AUFMT_MONAURAL, 0, {2000, 48000}},
211 };
212
213
214 static void
215 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
216 {
217
218 DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
219 bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
220 }
221
222 static uint8_t
223 sv_read(struct sv_softc *sc, uint8_t reg)
224 {
225 uint8_t val;
226
227 val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
228 DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
229 return val;
230 }
231
232 static uint8_t
233 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
234 {
235 uint8_t val;
236
237 sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
238 val = sv_read(sc, SV_CODEC_IDATA);
239 return val;
240 }
241
242 static void
243 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
244 {
245 uint8_t iaddr;
246
247 iaddr = reg & SV_IADDR_MASK;
248 if (reg == SV_DMA_DATA_FORMAT)
249 iaddr |= SV_IADDR_MCE;
250
251 sv_write(sc, SV_CODEC_IADDR, iaddr);
252 sv_write(sc, SV_CODEC_IDATA, val);
253 }
254
255 static int
256 sv_match(device_t parent, cfdata_t match, void *aux)
257 {
258 struct pci_attach_args *pa;
259
260 pa = aux;
261 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
262 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
263 return 1;
264
265 return 0;
266 }
267
268 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
269
270 static int
271 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
272 bus_space_tag_t iot, bus_size_t size, bus_size_t align,
273 bus_size_t bound, int flags, bus_space_handle_t *ioh)
274 {
275 bus_addr_t addr;
276 int error;
277
278 error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
279 size, align, bound, flags, &addr, ioh);
280 if (error)
281 return error;
282
283 pci_conf_write(pc, pt, pcioffs, addr);
284 return 0;
285 }
286
287 /*
288 * Allocate IO addresses when all other configuration is done.
289 */
290 static void
291 sv_defer(device_t self)
292 {
293 struct sv_softc *sc;
294 pci_chipset_tag_t pc;
295 pcitag_t pt;
296 pcireg_t dmaio;
297
298 sc = device_private(self);
299 pc = sc->sc_pa.pa_pc;
300 pt = sc->sc_pa.pa_tag;
301 DPRINTF(("sv_defer: %p\n", sc));
302
303 /* XXX
304 * Get a reasonable default for the I/O range.
305 * Assume the range around SB_PORTBASE is valid on this PCI bus.
306 */
307 pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
308 pci_io_alloc_high = pci_io_alloc_low + 0x1000;
309
310 if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
311 sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
312 0, &sc->sc_dmaa_ioh)) {
313 printf("sv_attach: cannot allocate DMA A range\n");
314 return;
315 }
316 dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
317 DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
318 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
319 dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
320
321 if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
322 sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
323 0, &sc->sc_dmac_ioh)) {
324 printf("sv_attach: cannot allocate DMA C range\n");
325 return;
326 }
327 dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
328 DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
329 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
330 dmaio | SV_DMA_CHANNEL_ENABLE);
331
332 sc->sc_dmaset = 1;
333 }
334
335 static void
336 sv_attach(device_t parent, device_t self, void *aux)
337 {
338 struct sv_softc *sc;
339 struct pci_attach_args *pa;
340 pci_chipset_tag_t pc;
341 pcitag_t pt;
342 pci_intr_handle_t ih;
343 pcireg_t csr;
344 char const *intrstr;
345 uint8_t reg;
346 struct audio_attach_args arg;
347
348 sc = device_private(self);
349 pa = aux;
350 pc = pa->pa_pc;
351 pt = pa->pa_tag;
352 printf ("\n");
353
354 /* Map I/O registers */
355 if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
356 PCI_MAPREG_TYPE_IO, 0,
357 &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
358 aprint_error_dev(self, "can't map enhanced i/o space\n");
359 return;
360 }
361 if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
362 PCI_MAPREG_TYPE_IO, 0,
363 &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
364 aprint_error_dev(self, "can't map FM i/o space\n");
365 return;
366 }
367 if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
368 PCI_MAPREG_TYPE_IO, 0,
369 &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
370 aprint_error_dev(self, "can't map MIDI i/o space\n");
371 return;
372 }
373 DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
374 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
375
376 #if defined(alpha)
377 /* XXX Force allocation through the SGMAP. */
378 sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
379 #elif defined(amd64) || defined(i386)
380 /* XXX
381 * The SonicVibes DMA is broken and only works on 24-bit addresses.
382 * As long as bus_dmamem_alloc_range() is missing we use the ISA
383 * DMA tag on i386.
384 */
385 sc->sc_dmatag = &isa_bus_dma_tag;
386 #else
387 sc->sc_dmatag = pa->pa_dmat;
388 #endif
389
390 pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
391 pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
392
393 /* Enable the device. */
394 csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
395 pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
396 csr | PCI_COMMAND_MASTER_ENABLE);
397
398 sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
399 sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
400
401 /* initialize codec registers */
402 reg = sv_read(sc, SV_CODEC_CONTROL);
403 reg |= SV_CTL_RESET;
404 sv_write(sc, SV_CODEC_CONTROL, reg);
405 delay(50);
406
407 reg = sv_read(sc, SV_CODEC_CONTROL);
408 reg &= ~SV_CTL_RESET;
409 reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
410
411 /* This write clears the reset */
412 sv_write(sc, SV_CODEC_CONTROL, reg);
413 delay(50);
414
415 /* This write actually shoves the new values in */
416 sv_write(sc, SV_CODEC_CONTROL, reg);
417
418 DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
419
420 /* Map and establish the interrupt. */
421 if (pci_intr_map(pa, &ih)) {
422 aprint_error_dev(self, "couldn't map interrupt\n");
423 return;
424 }
425
426 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
427 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
428
429 intrstr = pci_intr_string(pc, ih);
430 sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
431 if (sc->sc_ih == NULL) {
432 aprint_error_dev(self, "couldn't establish interrupt");
433 if (intrstr != NULL)
434 aprint_error(" at %s", intrstr);
435 aprint_error("\n");
436 mutex_destroy(&sc->sc_lock);
437 mutex_destroy(&sc->sc_intr_lock);
438 return;
439 }
440 printf("%s: interrupting at %s\n", device_xname(self), intrstr);
441 printf("%s: rev %d", device_xname(self),
442 sv_read_indirect(sc, SV_REVISION_LEVEL));
443 if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
444 printf(", reverb SRAM present");
445 if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
446 printf(", wavetable ROM present");
447 printf("\n");
448
449 /* Enable DMA interrupts */
450 reg = sv_read(sc, SV_CODEC_INTMASK);
451 reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
452 reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
453 sv_write(sc, SV_CODEC_INTMASK, reg);
454 sv_read(sc, SV_CODEC_STATUS);
455
456 sv_init_mixer(sc);
457
458 audio_attach_mi(&sv_hw_if, sc, self);
459
460 arg.type = AUDIODEV_TYPE_OPL;
461 arg.hwif = 0;
462 arg.hdl = 0;
463 (void)config_found(self, &arg, audioprint);
464
465 sc->sc_pa = *pa; /* for deferred setup */
466 config_defer(self, sv_defer);
467 }
468
469 #ifdef AUDIO_DEBUG
470 void
471 sv_dumpregs(struct sv_softc *sc)
472 {
473 int idx;
474
475 #if 0
476 for (idx = 0; idx < 0x50; idx += 4)
477 printf ("%02x = %x\n", idx,
478 pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
479 #endif
480
481 for (idx = 0; idx < 6; idx++)
482 printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
483
484 for (idx = 0; idx < 0x32; idx++)
485 printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
486
487 for (idx = 0; idx < 0x10; idx++)
488 printf ("DMA %02x = %02x\n", idx,
489 bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
490 }
491 #endif
492
493 static int
494 sv_intr(void *p)
495 {
496 struct sv_softc *sc;
497 uint8_t intr;
498
499 sc = p;
500
501 mutex_spin_enter(&sc->sc_intr_lock);
502
503 intr = sv_read(sc, SV_CODEC_STATUS);
504 DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
505
506 if (intr & SV_INTSTATUS_DMAA) {
507 if (sc->sc_pintr)
508 sc->sc_pintr(sc->sc_parg);
509 }
510
511 if (intr & SV_INTSTATUS_DMAC) {
512 if (sc->sc_rintr)
513 sc->sc_rintr(sc->sc_rarg);
514 }
515
516 mutex_spin_exit(&sc->sc_intr_lock);
517
518 return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
519 }
520
521 static int
522 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
523 int direction, struct sv_dma *p)
524 {
525 int error;
526
527 p->size = size;
528 error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
529 p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
530 if (error)
531 return error;
532
533 error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
534 &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
535 if (error)
536 goto free;
537
538 error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
539 0, BUS_DMA_WAITOK, &p->map);
540 if (error)
541 goto unmap;
542
543 error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
544 BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
545 if (error)
546 goto destroy;
547 DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
548 (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
549 return 0;
550
551 destroy:
552 bus_dmamap_destroy(sc->sc_dmatag, p->map);
553 unmap:
554 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
555 free:
556 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
557 return error;
558 }
559
560 static int
561 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
562 {
563
564 bus_dmamap_unload(sc->sc_dmatag, p->map);
565 bus_dmamap_destroy(sc->sc_dmatag, p->map);
566 bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
567 bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
568 return 0;
569 }
570
571 static int
572 sv_open(void *addr, int flags)
573 {
574 struct sv_softc *sc;
575
576 sc = addr;
577 DPRINTF(("sv_open\n"));
578 if (!sc->sc_dmaset)
579 return ENXIO;
580
581 return 0;
582 }
583
584 static int
585 sv_query_encoding(void *addr, struct audio_encoding *fp)
586 {
587
588 switch (fp->index) {
589 case 0:
590 strcpy(fp->name, AudioEulinear);
591 fp->encoding = AUDIO_ENCODING_ULINEAR;
592 fp->precision = 8;
593 fp->flags = 0;
594 return 0;
595 case 1:
596 strcpy(fp->name, AudioEmulaw);
597 fp->encoding = AUDIO_ENCODING_ULAW;
598 fp->precision = 8;
599 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
600 return 0;
601 case 2:
602 strcpy(fp->name, AudioEalaw);
603 fp->encoding = AUDIO_ENCODING_ALAW;
604 fp->precision = 8;
605 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
606 return 0;
607 case 3:
608 strcpy(fp->name, AudioEslinear);
609 fp->encoding = AUDIO_ENCODING_SLINEAR;
610 fp->precision = 8;
611 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
612 return 0;
613 case 4:
614 strcpy(fp->name, AudioEslinear_le);
615 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
616 fp->precision = 16;
617 fp->flags = 0;
618 return 0;
619 case 5:
620 strcpy(fp->name, AudioEulinear_le);
621 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
622 fp->precision = 16;
623 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
624 return 0;
625 case 6:
626 strcpy(fp->name, AudioEslinear_be);
627 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
628 fp->precision = 16;
629 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
630 return 0;
631 case 7:
632 strcpy(fp->name, AudioEulinear_be);
633 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
634 fp->precision = 16;
635 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
636 return 0;
637 default:
638 return EINVAL;
639 }
640 }
641
642 static int
643 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
644 audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
645 {
646 struct sv_softc *sc;
647 audio_params_t *p;
648 uint32_t val;
649
650 sc = addr;
651 p = NULL;
652 /*
653 * This device only has one clock, so make the sample rates match.
654 */
655 if (play->sample_rate != rec->sample_rate &&
656 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
657 if (setmode == AUMODE_PLAY) {
658 rec->sample_rate = play->sample_rate;
659 setmode |= AUMODE_RECORD;
660 } else if (setmode == AUMODE_RECORD) {
661 play->sample_rate = rec->sample_rate;
662 setmode |= AUMODE_PLAY;
663 } else
664 return EINVAL;
665 }
666
667 if (setmode & AUMODE_RECORD) {
668 p = rec;
669 if (auconv_set_converter(sv_formats, SV_NFORMATS,
670 AUMODE_RECORD, rec, FALSE, rfil) < 0)
671 return EINVAL;
672 }
673 if (setmode & AUMODE_PLAY) {
674 p = play;
675 if (auconv_set_converter(sv_formats, SV_NFORMATS,
676 AUMODE_PLAY, play, FALSE, pfil) < 0)
677 return EINVAL;
678 }
679
680 if (p == NULL)
681 return 0;
682
683 val = p->sample_rate * 65536 / 48000;
684 /*
685 * If the sample rate is exactly 48 kHz, the fraction would overflow the
686 * register, so we have to bias it. This causes a little clock drift.
687 * The drift is below normal crystal tolerance (.0001%), so although
688 * this seems a little silly, we can pretty much ignore it.
689 * (I tested the output speed with values of 1-20, just to be sure this
690 * register isn't *supposed* to have a bias. It isn't.)
691 * - mycroft
692 */
693 if (val > 65535)
694 val = 65535;
695
696 mutex_spin_enter(&sc->sc_intr_lock);
697 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
698 sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
699 mutex_spin_exit(&sc->sc_intr_lock);
700
701 #define F_REF 24576000
702
703 #define ABS(x) (((x) < 0) ? (-x) : (x))
704
705 if (setmode & AUMODE_RECORD) {
706 /* The ADC reference frequency (f_out) is 512 * sample rate */
707
708 /* f_out is dervied from the 24.576MHz crystal by three values:
709 M & N & R. The equation is as follows:
710
711 f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
712
713 with the constraint that:
714
715 80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
716 and n, m >= 1
717 */
718
719 int goal_f_out;
720 int a, n, m, best_n, best_m, best_error;
721 int pll_sample;
722 int error;
723
724 goal_f_out = 512 * rec->sample_rate;
725 best_n = 0;
726 best_m = 0;
727 best_error = 10000000;
728 for (a = 0; a < 8; a++) {
729 if ((goal_f_out * (1 << a)) >= 80000000)
730 break;
731 }
732
733 /* a != 8 because sample_rate >= 2000 */
734
735 for (n = 33; n > 2; n--) {
736 m = (goal_f_out * n * (1 << a)) / F_REF;
737 if ((m > 257) || (m < 3))
738 continue;
739
740 pll_sample = (m * F_REF) / (n * (1 << a));
741 pll_sample /= 512;
742
743 /* Threshold might be good here */
744 error = pll_sample - rec->sample_rate;
745 error = ABS(error);
746
747 if (error < best_error) {
748 best_error = error;
749 best_n = n;
750 best_m = m;
751 if (error == 0) break;
752 }
753 }
754
755 best_n -= 2;
756 best_m -= 2;
757
758 mutex_spin_enter(&sc->sc_intr_lock);
759 sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
760 sv_write_indirect(sc, SV_ADC_PLL_N,
761 best_n | (a << SV_PLL_R_SHIFT));
762 mutex_spin_exit(&sc->sc_intr_lock);
763 }
764
765 return 0;
766 }
767
768 static int
769 sv_round_blocksize(void *addr, int blk, int mode,
770 const audio_params_t *param)
771 {
772
773 return blk & -32; /* keep good alignment */
774 }
775
776 static int
777 sv_trigger_output(void *addr, void *start, void *end, int blksize,
778 void (*intr)(void *), void *arg, const audio_params_t *param)
779 {
780 struct sv_softc *sc;
781 struct sv_dma *p;
782 uint8_t mode;
783 int dma_count;
784
785 DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
786 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
787 sc = addr;
788 sc->sc_pintr = intr;
789 sc->sc_parg = arg;
790
791 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
792 mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
793 if (param->precision == 16)
794 mode |= SV_DMAA_FORMAT16;
795 if (param->channels == 2)
796 mode |= SV_DMAA_STEREO;
797 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
798
799 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
800 continue;
801 if (p == NULL) {
802 printf("sv_trigger_output: bad addr %p\n", start);
803 return EINVAL;
804 }
805
806 dma_count = ((char *)end - (char *)start) - 1;
807 DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
808 (int)DMAADDR(p), dma_count));
809
810 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
811 DMAADDR(p));
812 bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
813 dma_count);
814 bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
815 DMA37MD_READ | DMA37MD_LOOP);
816
817 DPRINTF(("sv_trigger_output: current addr=%x\n",
818 bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
819
820 dma_count = blksize - 1;
821
822 sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
823 sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
824
825 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
826 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
827
828 return 0;
829 }
830
831 static int
832 sv_trigger_input(void *addr, void *start, void *end, int blksize,
833 void (*intr)(void *), void *arg, const audio_params_t *param)
834 {
835 struct sv_softc *sc;
836 struct sv_dma *p;
837 uint8_t mode;
838 int dma_count;
839
840 DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
841 "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
842 sc = addr;
843 sc->sc_rintr = intr;
844 sc->sc_rarg = arg;
845
846 mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
847 mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
848 if (param->precision == 16)
849 mode |= SV_DMAC_FORMAT16;
850 if (param->channels == 2)
851 mode |= SV_DMAC_STEREO;
852 sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
853
854 for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
855 continue;
856 if (!p) {
857 printf("sv_trigger_input: bad addr %p\n", start);
858 return EINVAL;
859 }
860
861 dma_count = (((char *)end - (char *)start) >> 1) - 1;
862 DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
863 (int)DMAADDR(p), dma_count));
864
865 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
866 DMAADDR(p));
867 bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
868 dma_count);
869 bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
870 DMA37MD_WRITE | DMA37MD_LOOP);
871
872 DPRINTF(("sv_trigger_input: current addr=%x\n",
873 bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
874
875 dma_count = (blksize >> 1) - 1;
876
877 sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
878 sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
879
880 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
881 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
882
883 return 0;
884 }
885
886 static int
887 sv_halt_output(void *addr)
888 {
889 struct sv_softc *sc;
890 uint8_t mode;
891
892 DPRINTF(("sv: sv_halt_output\n"));
893 sc = addr;
894 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
895 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
896 sc->sc_pintr = 0;
897
898 return 0;
899 }
900
901 static int
902 sv_halt_input(void *addr)
903 {
904 struct sv_softc *sc;
905 uint8_t mode;
906
907 DPRINTF(("sv: sv_halt_input\n"));
908 sc = addr;
909 mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
910 sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
911 sc->sc_rintr = 0;
912
913 return 0;
914 }
915
916 static int
917 sv_getdev(void *addr, struct audio_device *retp)
918 {
919
920 *retp = sv_device;
921 return 0;
922 }
923
924
925 /*
926 * Mixer related code is here
927 *
928 */
929
930 #define SV_INPUT_CLASS 0
931 #define SV_OUTPUT_CLASS 1
932 #define SV_RECORD_CLASS 2
933
934 #define SV_LAST_CLASS 2
935
936 static const char *mixer_classes[] =
937 { AudioCinputs, AudioCoutputs, AudioCrecord };
938
939 static const struct {
940 uint8_t l_port;
941 uint8_t r_port;
942 uint8_t mask;
943 uint8_t class;
944 const char *audio;
945 } ports[] = {
946 { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
947 SV_INPUT_CLASS, "aux1" },
948 { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
949 SV_INPUT_CLASS, AudioNcd },
950 { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
951 SV_INPUT_CLASS, AudioNline },
952 { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
953 { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
954 SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
955 { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
956 SV_INPUT_CLASS, "aux2" },
957 { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
958 SV_INPUT_CLASS, AudioNdac },
959 { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
960 SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
961 };
962
963
964 static const struct {
965 int idx;
966 const char *name;
967 } record_sources[] = {
968 { SV_REC_CD, AudioNcd },
969 { SV_REC_DAC, AudioNdac },
970 { SV_REC_AUX2, "aux2" },
971 { SV_REC_LINE, AudioNline },
972 { SV_REC_AUX1, "aux1" },
973 { SV_REC_MIC, AudioNmicrophone },
974 { SV_REC_MIXER, AudioNmixerout }
975 };
976
977
978 #define SV_DEVICES_PER_PORT 2
979 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
980 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
981 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
982 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
983 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
984 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
985
986 static int
987 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
988 {
989 int i;
990
991 /* It's a class */
992 if (dip->index <= SV_LAST_CLASS) {
993 dip->type = AUDIO_MIXER_CLASS;
994 dip->mixer_class = dip->index;
995 dip->next = dip->prev = AUDIO_MIXER_LAST;
996 strcpy(dip->label.name, mixer_classes[dip->index]);
997 return 0;
998 }
999
1000 if (dip->index >= SV_FIRST_MIXER &&
1001 dip->index <= SV_LAST_MIXER) {
1002 int off, mute ,idx;
1003
1004 off = dip->index - SV_FIRST_MIXER;
1005 mute = (off % SV_DEVICES_PER_PORT);
1006 idx = off / SV_DEVICES_PER_PORT;
1007 dip->mixer_class = ports[idx].class;
1008 strcpy(dip->label.name, ports[idx].audio);
1009
1010 if (!mute) {
1011 dip->type = AUDIO_MIXER_VALUE;
1012 dip->prev = AUDIO_MIXER_LAST;
1013 dip->next = dip->index + 1;
1014
1015 if (ports[idx].r_port != 0)
1016 dip->un.v.num_channels = 2;
1017 else
1018 dip->un.v.num_channels = 1;
1019
1020 strcpy(dip->un.v.units.name, AudioNvolume);
1021 } else {
1022 dip->type = AUDIO_MIXER_ENUM;
1023 dip->prev = dip->index - 1;
1024 dip->next = AUDIO_MIXER_LAST;
1025
1026 strcpy(dip->label.name, AudioNmute);
1027 dip->un.e.num_mem = 2;
1028 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1029 dip->un.e.member[0].ord = 0;
1030 strcpy(dip->un.e.member[1].label.name, AudioNon);
1031 dip->un.e.member[1].ord = 1;
1032 }
1033
1034 return 0;
1035 }
1036
1037 switch (dip->index) {
1038 case SV_RECORD_SOURCE:
1039 dip->mixer_class = SV_RECORD_CLASS;
1040 dip->prev = AUDIO_MIXER_LAST;
1041 dip->next = SV_RECORD_GAIN;
1042 strcpy(dip->label.name, AudioNsource);
1043 dip->type = AUDIO_MIXER_ENUM;
1044
1045 dip->un.e.num_mem = ARRAY_SIZE(record_sources);
1046 for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
1047 strcpy(dip->un.e.member[i].label.name,
1048 record_sources[i].name);
1049 dip->un.e.member[i].ord = record_sources[i].idx;
1050 }
1051 return 0;
1052
1053 case SV_RECORD_GAIN:
1054 dip->mixer_class = SV_RECORD_CLASS;
1055 dip->prev = SV_RECORD_SOURCE;
1056 dip->next = AUDIO_MIXER_LAST;
1057 strcpy(dip->label.name, "gain");
1058 dip->type = AUDIO_MIXER_VALUE;
1059 dip->un.v.num_channels = 1;
1060 strcpy(dip->un.v.units.name, AudioNvolume);
1061 return 0;
1062
1063 case SV_MIC_BOOST:
1064 dip->mixer_class = SV_RECORD_CLASS;
1065 dip->prev = AUDIO_MIXER_LAST;
1066 dip->next = AUDIO_MIXER_LAST;
1067 strcpy(dip->label.name, "micboost");
1068 goto on_off;
1069
1070 case SV_SRS_MODE:
1071 dip->mixer_class = SV_OUTPUT_CLASS;
1072 dip->prev = dip->next = AUDIO_MIXER_LAST;
1073 strcpy(dip->label.name, AudioNspatial);
1074
1075 on_off:
1076 dip->type = AUDIO_MIXER_ENUM;
1077 dip->un.e.num_mem = 2;
1078 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1079 dip->un.e.member[0].ord = 0;
1080 strcpy(dip->un.e.member[1].label.name, AudioNon);
1081 dip->un.e.member[1].ord = 1;
1082 return 0;
1083 }
1084
1085 return ENXIO;
1086 }
1087
1088 static int
1089 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1090 {
1091 struct sv_softc *sc;
1092 uint8_t reg;
1093 int idx;
1094
1095 sc = addr;
1096 if (cp->dev >= SV_FIRST_MIXER &&
1097 cp->dev <= SV_LAST_MIXER) {
1098 int off, mute;
1099
1100 off = cp->dev - SV_FIRST_MIXER;
1101 mute = (off % SV_DEVICES_PER_PORT);
1102 idx = off / SV_DEVICES_PER_PORT;
1103
1104 if (mute) {
1105 if (cp->type != AUDIO_MIXER_ENUM)
1106 return EINVAL;
1107
1108 mutex_spin_enter(&sc->sc_intr_lock);
1109 reg = sv_read_indirect(sc, ports[idx].l_port);
1110 if (cp->un.ord)
1111 reg |= SV_MUTE_BIT;
1112 else
1113 reg &= ~SV_MUTE_BIT;
1114 sv_write_indirect(sc, ports[idx].l_port, reg);
1115
1116 if (ports[idx].r_port) {
1117 reg = sv_read_indirect(sc, ports[idx].r_port);
1118 if (cp->un.ord)
1119 reg |= SV_MUTE_BIT;
1120 else
1121 reg &= ~SV_MUTE_BIT;
1122 sv_write_indirect(sc, ports[idx].r_port, reg);
1123 }
1124 mutex_spin_exit(&sc->sc_intr_lock);
1125 } else {
1126 int lval, rval;
1127
1128 if (cp->type != AUDIO_MIXER_VALUE)
1129 return EINVAL;
1130
1131 if (cp->un.value.num_channels != 1 &&
1132 cp->un.value.num_channels != 2)
1133 return (EINVAL);
1134
1135 if (ports[idx].r_port == 0) {
1136 if (cp->un.value.num_channels != 1)
1137 return (EINVAL);
1138 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
1139 rval = 0; /* shut up GCC */
1140 } else {
1141 if (cp->un.value.num_channels != 2)
1142 return (EINVAL);
1143
1144 lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1145 rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1146 }
1147
1148 mutex_spin_enter(&sc->sc_intr_lock);
1149 reg = sv_read_indirect(sc, ports[idx].l_port);
1150 reg &= ~(ports[idx].mask);
1151 lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
1152 AUDIO_MAX_GAIN;
1153 reg |= lval;
1154 sv_write_indirect(sc, ports[idx].l_port, reg);
1155
1156 if (ports[idx].r_port != 0) {
1157 reg = sv_read_indirect(sc, ports[idx].r_port);
1158 reg &= ~(ports[idx].mask);
1159
1160 rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
1161 AUDIO_MAX_GAIN;
1162 reg |= rval;
1163
1164 sv_write_indirect(sc, ports[idx].r_port, reg);
1165 }
1166
1167 sv_read_indirect(sc, ports[idx].l_port);
1168 mutex_spin_exit(&sc->sc_intr_lock);
1169 }
1170
1171 return 0;
1172 }
1173
1174
1175 switch (cp->dev) {
1176 case SV_RECORD_SOURCE:
1177 if (cp->type != AUDIO_MIXER_ENUM)
1178 return EINVAL;
1179
1180 for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
1181 if (record_sources[idx].idx == cp->un.ord)
1182 goto found;
1183 }
1184
1185 return EINVAL;
1186
1187 found:
1188 mutex_spin_enter(&sc->sc_intr_lock);
1189 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1190 reg &= ~SV_REC_SOURCE_MASK;
1191 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1192 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1193
1194 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1195 reg &= ~SV_REC_SOURCE_MASK;
1196 reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
1197 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1198 mutex_spin_exit(&sc->sc_intr_lock);
1199 return 0;
1200
1201 case SV_RECORD_GAIN:
1202 {
1203 int val;
1204
1205 if (cp->type != AUDIO_MIXER_VALUE)
1206 return EINVAL;
1207
1208 if (cp->un.value.num_channels != 1)
1209 return EINVAL;
1210
1211 val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
1212 * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
1213
1214 mutex_spin_enter(&sc->sc_intr_lock);
1215 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1216 reg &= ~SV_REC_GAIN_MASK;
1217 reg |= val;
1218 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1219
1220 reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
1221 reg &= ~SV_REC_GAIN_MASK;
1222 reg |= val;
1223 sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
1224 mutex_spin_exit(&sc->sc_intr_lock);
1225 }
1226 return (0);
1227
1228 case SV_MIC_BOOST:
1229 if (cp->type != AUDIO_MIXER_ENUM)
1230 return EINVAL;
1231
1232 mutex_spin_enter(&sc->sc_intr_lock);
1233 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1234 if (cp->un.ord) {
1235 reg |= SV_MIC_BOOST_BIT;
1236 } else {
1237 reg &= ~SV_MIC_BOOST_BIT;
1238 }
1239
1240 sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
1241 mutex_spin_exit(&sc->sc_intr_lock);
1242 return 0;
1243
1244 case SV_SRS_MODE:
1245 if (cp->type != AUDIO_MIXER_ENUM)
1246 return EINVAL;
1247
1248 mutex_spin_enter(&sc->sc_intr_lock);
1249 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1250 if (cp->un.ord) {
1251 reg &= ~SV_SRS_SPACE_ONOFF;
1252 } else {
1253 reg |= SV_SRS_SPACE_ONOFF;
1254 }
1255
1256 sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
1257 mutex_spin_exit(&sc->sc_intr_lock);
1258 return 0;
1259 }
1260
1261 return EINVAL;
1262 }
1263
1264 static int
1265 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1266 {
1267 struct sv_softc *sc;
1268 int val, error;
1269 uint8_t reg;
1270
1271 sc = addr;
1272 error = 0;
1273
1274 mutex_spin_enter(&sc->sc_intr_lock);
1275
1276 if (cp->dev >= SV_FIRST_MIXER &&
1277 cp->dev <= SV_LAST_MIXER) {
1278 int off = cp->dev - SV_FIRST_MIXER;
1279 int mute = (off % 2);
1280 int idx = off / 2;
1281
1282 off = cp->dev - SV_FIRST_MIXER;
1283 mute = (off % 2);
1284 idx = off / 2;
1285 if (mute) {
1286 if (cp->type != AUDIO_MIXER_ENUM)
1287 error = EINVAL;
1288 else {
1289 reg = sv_read_indirect(sc, ports[idx].l_port);
1290 cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
1291 }
1292 } else {
1293 if (cp->type != AUDIO_MIXER_VALUE ||
1294 (cp->un.value.num_channels != 1 &&
1295 cp->un.value.num_channels != 2) ||
1296 ((ports[idx].r_port == 0 &&
1297 cp->un.value.num_channels != 1) ||
1298 (ports[idx].r_port != 0 &&
1299 cp->un.value.num_channels != 2)))
1300 error = EINVAL;
1301 else {
1302 reg = sv_read_indirect(sc, ports[idx].l_port);
1303 reg &= ports[idx].mask;
1304
1305 val = AUDIO_MAX_GAIN -
1306 ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
1307
1308 if (ports[idx].r_port != 0) {
1309 cp->un.value.level
1310 [AUDIO_MIXER_LEVEL_LEFT] = val;
1311
1312 reg = sv_read_indirect(sc,
1313 ports[idx].r_port);
1314 reg &= ports[idx].mask;
1315
1316 val = AUDIO_MAX_GAIN -
1317 ((reg * AUDIO_MAX_GAIN)
1318 / ports[idx].mask);
1319 cp->un.value.level
1320 [AUDIO_MIXER_LEVEL_RIGHT] = val;
1321 } else
1322 cp->un.value.level
1323 [AUDIO_MIXER_LEVEL_MONO] = val;
1324 }
1325 }
1326
1327 return error;
1328 }
1329
1330 switch (cp->dev) {
1331 case SV_RECORD_SOURCE:
1332 if (cp->type != AUDIO_MIXER_ENUM) {
1333 error = EINVAL;
1334 break;
1335 }
1336
1337 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1338 cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
1339
1340 break;
1341
1342 case SV_RECORD_GAIN:
1343 if (cp->type != AUDIO_MIXER_VALUE) {
1344 error = EINVAL;
1345 break;
1346 }
1347 if (cp->un.value.num_channels != 1) {
1348 error = EINVAL;
1349 break;
1350 }
1351
1352 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
1353 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1354 (((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
1355
1356 break;
1357
1358 case SV_MIC_BOOST:
1359 if (cp->type != AUDIO_MIXER_ENUM) {
1360 error = EINVAL;
1361 break;
1362 }
1363 reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
1364 cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
1365 break;
1366
1367 case SV_SRS_MODE:
1368 if (cp->type != AUDIO_MIXER_ENUM) {
1369 error = EINVAL;
1370 break;
1371 }
1372 reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
1373 cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
1374 break;
1375 default:
1376 error = EINVAL;
1377 break;
1378 }
1379
1380 mutex_spin_exit(&sc->sc_intr_lock);
1381 return error;
1382 }
1383
1384 static void
1385 sv_init_mixer(struct sv_softc *sc)
1386 {
1387 mixer_ctrl_t cp;
1388 int i;
1389
1390 cp.type = AUDIO_MIXER_ENUM;
1391 cp.dev = SV_SRS_MODE;
1392 cp.un.ord = 0;
1393
1394 sv_mixer_set_port(sc, &cp);
1395
1396 for (i = 0; i < ARRAY_SIZE(ports); i++) {
1397 if (!strcmp(ports[i].audio, AudioNdac)) {
1398 cp.type = AUDIO_MIXER_ENUM;
1399 cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
1400 cp.un.ord = 0;
1401 sv_mixer_set_port(sc, &cp);
1402 break;
1403 }
1404 }
1405 }
1406
1407 static void *
1408 sv_malloc(void *addr, int direction, size_t size)
1409 {
1410 struct sv_softc *sc;
1411 struct sv_dma *p;
1412 int error;
1413
1414 sc = addr;
1415 p = kmem_alloc(sizeof(*p), KM_SLEEP);
1416 if (p == NULL)
1417 return NULL;
1418 error = sv_allocmem(sc, size, 16, direction, p);
1419 if (error) {
1420 kmem_free(p, sizeof(*p));
1421 return 0;
1422 }
1423 p->next = sc->sc_dmas;
1424 sc->sc_dmas = p;
1425 return KERNADDR(p);
1426 }
1427
1428 static void
1429 sv_free(void *addr, void *ptr, size_t size)
1430 {
1431 struct sv_softc *sc;
1432 struct sv_dma **pp, *p;
1433
1434 sc = addr;
1435 for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
1436 if (KERNADDR(p) == ptr) {
1437 sv_freemem(sc, p);
1438 *pp = p->next;
1439 kmem_free(p, sizeof(*p));
1440 return;
1441 }
1442 }
1443 }
1444
1445 static size_t
1446 sv_round_buffersize(void *addr, int direction, size_t size)
1447 {
1448
1449 return size;
1450 }
1451
1452 static paddr_t
1453 sv_mappage(void *addr, void *mem, off_t off, int prot)
1454 {
1455 struct sv_softc *sc;
1456 struct sv_dma *p;
1457
1458 sc = addr;
1459 if (off < 0)
1460 return -1;
1461 for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
1462 continue;
1463 if (p == NULL)
1464 return -1;
1465 return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
1466 off, prot, BUS_DMA_WAITOK);
1467 }
1468
1469 static int
1470 sv_get_props(void *addr)
1471 {
1472 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
1473 }
1474
1475 static void
1476 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
1477 {
1478 struct sv_softc *sc;
1479
1480 sc = addr;
1481 *intr = &sc->sc_intr_lock;
1482 *thread = &sc->sc_lock;
1483 }
1484