Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.5
      1 /*      $NetBSD: sv.c,v 1.5 1999/02/18 09:22:17 mycroft Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     42  * All rights reserved
     43  *
     44  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     45  *
     46  * Redistribution and use in source and binary forms, with or without
     47  * modification, are permitted provided that the following conditions
     48  * are met:
     49  * 1. Redistributions of source code must retain the above copyright
     50  *    notice, this list of conditions and the following disclaimer.
     51  * 2. Redistributions in binary form must reproduce the above copyright
     52  *    notice, this list of conditions and the following disclaimer in the
     53  *    documentation and/or other materials provided with the distribution.
     54  * 3. The author's name or those of the contributors may be used to
     55  *    endorse or promote products derived from this software without
     56  *    specific prior written permission.
     57  *
     58  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     59  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     60  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     61  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     68  * POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 /*
     72  * S3 SonicVibes driver
     73  *   Heavily based on the eap driver by Lennart Augustsson
     74  */
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/malloc.h>
     80 #include <sys/device.h>
     81 
     82 #include <dev/pci/pcireg.h>
     83 #include <dev/pci/pcivar.h>
     84 #include <dev/pci/pcidevs.h>
     85 
     86 #include <sys/audioio.h>
     87 #include <dev/audio_if.h>
     88 #include <dev/mulaw.h>
     89 #include <dev/auconv.h>
     90 
     91 #include <dev/ic/i8237reg.h>
     92 #include <dev/pci/svreg.h>
     93 #include <dev/pci/svvar.h>
     94 
     95 #include <machine/bus.h>
     96 
     97 #ifdef AUDIO_DEBUG
     98 #define DPRINTF(x)	if (svdebug) printf x
     99 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    100 int	svdebug = 0;
    101 #else
    102 #define DPRINTF(x)
    103 #define DPRINTFN(n,x)
    104 #endif
    105 
    106 int	sv_match __P((struct device *, struct cfdata *, void *));
    107 void	sv_attach __P((struct device *, struct device *, void *));
    108 int	sv_intr __P((void *));
    109 
    110 struct sv_dma {
    111 	bus_dmamap_t map;
    112 	caddr_t addr;
    113 	bus_dma_segment_t segs[1];
    114 	int nsegs;
    115 	size_t size;
    116 	struct sv_dma *next;
    117 };
    118 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    119 #define KERNADDR(p) ((void *)((p)->addr))
    120 
    121 struct cfattach sv_ca = {
    122 	sizeof(struct sv_softc), sv_match, sv_attach
    123 };
    124 
    125 struct audio_device sv_device = {
    126 	"S3 SonicVibes",
    127 	"",
    128 	"sv"
    129 };
    130 
    131 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    132 
    133 int	sv_allocmem __P((struct sv_softc *, size_t, size_t, struct sv_dma *));
    134 int	sv_freemem __P((struct sv_softc *, struct sv_dma *));
    135 
    136 int	sv_open __P((void *, int));
    137 void	sv_close __P((void *));
    138 int	sv_query_encoding __P((void *, struct audio_encoding *));
    139 int	sv_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
    140 int	sv_round_blocksize __P((void *, int));
    141 int	sv_trigger_output __P((void *, void *, void *, int, void (*)(void *),
    142 	    void *, struct audio_params *));
    143 int	sv_trigger_input __P((void *, void *, void *, int, void (*)(void *),
    144 	    void *, struct audio_params *));
    145 int	sv_halt_output __P((void *));
    146 int	sv_halt_input __P((void *));
    147 int	sv_getdev __P((void *, struct audio_device *));
    148 int	sv_mixer_set_port __P((void *, mixer_ctrl_t *));
    149 int	sv_mixer_get_port __P((void *, mixer_ctrl_t *));
    150 int	sv_query_devinfo __P((void *, mixer_devinfo_t *));
    151 void   *sv_malloc __P((void *, int, size_t, int, int));
    152 void	sv_free __P((void *, void *, int));
    153 size_t	sv_round_buffersize __P((void *, int, size_t));
    154 int	sv_mappage __P((void *, void *, int, int));
    155 int	sv_get_props __P((void *));
    156 
    157 #ifdef AUDIO_DEBUG
    158 void    sv_dumpregs __P((struct sv_softc *sc));
    159 #endif
    160 
    161 struct audio_hw_if sv_hw_if = {
    162 	sv_open,
    163 	sv_close,
    164 	NULL,
    165 	sv_query_encoding,
    166 	sv_set_params,
    167 	sv_round_blocksize,
    168 	NULL,
    169 	NULL,
    170 	NULL,
    171 	NULL,
    172 	NULL,
    173 	sv_halt_output,
    174 	sv_halt_input,
    175 	NULL,
    176 	sv_getdev,
    177 	NULL,
    178 	sv_mixer_set_port,
    179 	sv_mixer_get_port,
    180 	sv_query_devinfo,
    181 	sv_malloc,
    182 	sv_free,
    183 	sv_round_buffersize,
    184 	sv_mappage,
    185 	sv_get_props,
    186 	sv_trigger_output,
    187 	sv_trigger_input,
    188 };
    189 
    190 
    191 static u_int8_t sv_read __P((struct sv_softc *, u_int8_t));
    192 static u_int8_t sv_read_indirect __P((struct sv_softc *, u_int8_t));
    193 static void sv_write __P((struct sv_softc *, u_int8_t, u_int8_t ));
    194 static void sv_write_indirect __P((struct sv_softc *, u_int8_t, u_int8_t ));
    195 static void sv_init_mixer __P((struct sv_softc *));
    196 
    197 static void sv_defer __P((struct device *self));
    198 
    199 static void
    200 sv_write (sc, reg, val)
    201 	struct sv_softc *sc;
    202 	u_int8_t reg, val;
    203 
    204 {
    205 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    206 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    207 }
    208 
    209 static u_int8_t
    210 sv_read(sc, reg)
    211 	struct sv_softc *sc;
    212 	u_int8_t reg;
    213 
    214 {
    215 	u_int8_t val;
    216 
    217 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    218 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    219 	return val;
    220 }
    221 
    222 static u_int8_t
    223 sv_read_indirect(sc, reg)
    224 	struct sv_softc *sc;
    225 	u_int8_t reg;
    226 {
    227 	u_int8_t val;
    228 	int s = splaudio();
    229 
    230 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    231 	val = sv_read(sc, SV_CODEC_IDATA);
    232 	splx(s);
    233 	return (val);
    234 }
    235 
    236 static void
    237 sv_write_indirect(sc, reg, val)
    238 	struct sv_softc *sc;
    239 	u_int8_t reg, val;
    240 {
    241 	u_int8_t iaddr = reg & SV_IADDR_MASK;
    242 	int s = splaudio();
    243 
    244 	if (reg == SV_DMA_DATA_FORMAT)
    245 		iaddr |= SV_IADDR_MCE;
    246 
    247 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    248 	sv_write(sc, SV_CODEC_IDATA, val);
    249 	splx(s);
    250 }
    251 
    252 int
    253 sv_match(parent, match, aux)
    254 	struct device *parent;
    255 	struct cfdata *match;
    256 	void *aux;
    257 {
    258 	struct pci_attach_args *pa = aux;
    259 
    260 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    261 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    262 		return (1);
    263 
    264 	return (0);
    265 }
    266 
    267 int pci_alloc_io __P((pci_chipset_tag_t pc, pcitag_t pt,
    268 		      int pcioffs,
    269 		      bus_space_tag_t iot, bus_size_t size,
    270 		      bus_size_t align, bus_size_t bound, int flags,
    271 		      bus_space_handle_t *ioh));
    272 
    273 #define PCI_IO_ALLOC_LOW 0xa000
    274 #define PCI_IO_ALLOC_HIGH 0xb000
    275 int
    276 pci_alloc_io(pc, pt, pcioffs, iot, size, align, bound, flags, ioh)
    277 	pci_chipset_tag_t pc;
    278 	pcitag_t pt;
    279 	int pcioffs;
    280 	bus_space_tag_t iot;
    281 	bus_size_t size;
    282 	bus_size_t align;
    283 	bus_size_t bound;
    284 	int flags;
    285 	bus_space_handle_t *ioh;
    286 {
    287 	bus_addr_t addr;
    288 	int error;
    289 
    290 	error = bus_space_alloc(iot, PCI_IO_ALLOC_LOW, PCI_IO_ALLOC_HIGH,
    291 				size, align, bound, flags, &addr, ioh);
    292 	if (error)
    293 		return(error);
    294 
    295 	pci_conf_write(pc, pt, pcioffs, addr);
    296 	return (0);
    297 }
    298 
    299 /*
    300  * Allocate IO addresses when all other configuration is done.
    301  */
    302 void
    303 sv_defer(self)
    304 	struct device *self;
    305 {
    306 	struct sv_softc *sc = (struct sv_softc *)self;
    307 	pci_chipset_tag_t pc = sc->sc_pa.pa_pc;
    308 	pcitag_t pt = sc->sc_pa.pa_tag;
    309 	pcireg_t dmaio;
    310 
    311 	DPRINTF(("sv_defer: %p\n", sc));
    312 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    313 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    314 			  0, &sc->sc_dmaa_ioh)) {
    315 		printf("sv_attach: cannot allocate DMA A range\n");
    316 		return;
    317 	}
    318 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    319 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    320 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    321 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    322 
    323 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    324 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    325 			  0, &sc->sc_dmac_ioh)) {
    326 		printf("sv_attach: cannot allocate DMA C range\n");
    327 		return;
    328 	}
    329 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    330 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    331 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    332 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    333 
    334 	sc->sc_dmaset = 1;
    335 }
    336 
    337 void
    338 sv_attach(parent, self, aux)
    339 	struct device *parent, *self;
    340 	void *aux;
    341 {
    342 	struct sv_softc *sc = (struct sv_softc *)self;
    343 	struct pci_attach_args *pa = aux;
    344 	pci_chipset_tag_t pc = pa->pa_pc;
    345 	pcitag_t pt = pa->pa_tag;
    346 	pci_intr_handle_t ih;
    347 	pcireg_t csr;
    348 	char const *intrstr;
    349 	u_int8_t reg;
    350 	struct audio_attach_args arg;
    351 
    352 	printf ("\n");
    353 
    354 	/* Map I/O registers */
    355 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    356 			   PCI_MAPREG_TYPE_IO, 0,
    357 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    358 		printf("%s: can't map enhanced i/o space\n",
    359 		       sc->sc_dev.dv_xname);
    360 		return;
    361 	}
    362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    363 			   PCI_MAPREG_TYPE_IO, 0,
    364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    365 		printf("%s: can't map FM i/o space\n", sc->sc_dev.dv_xname);
    366 		return;
    367 	}
    368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    369 			   PCI_MAPREG_TYPE_IO, 0,
    370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    371 		printf("%s: can't map MIDI i/o space\n", sc->sc_dev.dv_xname);
    372 		return;
    373 	}
    374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    376 
    377 	sc->sc_dmatag = pa->pa_dmat;
    378 
    379 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    380 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    381 
    382 	/* Enable the device. */
    383 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    384 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    385 		       csr | PCI_COMMAND_MASTER_ENABLE);
    386 
    387 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    388 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    389 
    390 	/* initialize codec registers */
    391 	reg = sv_read(sc, SV_CODEC_CONTROL);
    392 	reg |= SV_CTL_RESET;
    393 	sv_write(sc, SV_CODEC_CONTROL, reg);
    394 	delay(50);
    395 
    396 	reg = sv_read(sc, SV_CODEC_CONTROL);
    397 	reg &= ~SV_CTL_RESET;
    398 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    399 
    400 	/* This write clears the reset */
    401 	sv_write(sc, SV_CODEC_CONTROL, reg);
    402 	delay(50);
    403 
    404 	/* This write actually shoves the new values in */
    405 	sv_write(sc, SV_CODEC_CONTROL, reg);
    406 
    407 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    408 
    409 	/* Enable DMA interrupts */
    410 	reg = sv_read(sc, SV_CODEC_INTMASK);
    411 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    412 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    413 	sv_write(sc, SV_CODEC_INTMASK, reg);
    414 
    415 	sv_read(sc, SV_CODEC_STATUS);
    416 
    417 	/* Map and establish the interrupt. */
    418 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
    419 			 pa->pa_intrline, &ih)) {
    420 		printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
    421 		return;
    422 	}
    423 	intrstr = pci_intr_string(pc, ih);
    424 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    425 	if (sc->sc_ih == NULL) {
    426 		printf("%s: couldn't establish interrupt",
    427 		       sc->sc_dev.dv_xname);
    428 		if (intrstr != NULL)
    429 			printf(" at %s", intrstr);
    430 		printf("\n");
    431 		return;
    432 	}
    433 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    434 	printf("%s: rev %d", sc->sc_dev.dv_xname,
    435 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    436 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    437 		printf(", reverb SRAM present");
    438 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    439 		printf(", wavetable ROM present");
    440 	printf("\n");
    441 
    442 	sv_init_mixer(sc);
    443 
    444 	audio_attach_mi(&sv_hw_if, sc, &sc->sc_dev);
    445 
    446 	arg.type = AUDIODEV_TYPE_OPL;
    447 	arg.hwif = 0;
    448 	arg.hdl = 0;
    449 	(void)config_found(&sc->sc_dev, &arg, audioprint);
    450 
    451 	sc->sc_pa = *pa;	/* for deferred setup */
    452 	config_defer(self, sv_defer);
    453 }
    454 
    455 #ifdef AUDIO_DEBUG
    456 void
    457 sv_dumpregs(sc)
    458 	struct sv_softc *sc;
    459 {
    460 	int idx;
    461 
    462 #if 0
    463 	for (idx = 0; idx < 0x50; idx += 4)
    464 		printf ("%02x = %x\n", idx,
    465 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    466 #endif
    467 
    468 	for (idx = 0; idx < 6; idx++)
    469 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    470 
    471 	for (idx = 0; idx < 0x32; idx++)
    472 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    473 
    474 	for (idx = 0; idx < 0x10; idx++)
    475 		printf ("DMA %02x = %02x\n", idx,
    476 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    477 }
    478 #endif
    479 
    480 int
    481 sv_intr(p)
    482 	void *p;
    483 {
    484 	struct sv_softc *sc = p;
    485 	u_int8_t intr;
    486 
    487 	intr = sv_read(sc, SV_CODEC_STATUS);
    488 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    489 
    490 	if (!(intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)))
    491 		return (0);
    492 
    493 	if (intr & SV_INTSTATUS_DMAA) {
    494 		if (sc->sc_pintr)
    495 			sc->sc_pintr(sc->sc_parg);
    496 	}
    497 
    498 	if (intr & SV_INTSTATUS_DMAC) {
    499 		if (sc->sc_rintr)
    500 			sc->sc_rintr(sc->sc_rarg);
    501 	}
    502 
    503 	return (1);
    504 }
    505 
    506 int
    507 sv_allocmem(sc, size, align, p)
    508 	struct sv_softc *sc;
    509 	size_t size;
    510 	size_t align;
    511 	struct sv_dma *p;
    512 {
    513 	int error;
    514 
    515 	p->size = size;
    516 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    517 				 p->segs, ARRAY_SIZE(p->segs),
    518 				 &p->nsegs, BUS_DMA_NOWAIT);
    519 	if (error)
    520 		return (error);
    521 
    522 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    523 			       &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
    524 	if (error)
    525 		goto free;
    526 
    527 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    528 				  0, BUS_DMA_NOWAIT, &p->map);
    529 	if (error)
    530 		goto unmap;
    531 
    532 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    533 				BUS_DMA_NOWAIT);
    534 	if (error)
    535 		goto destroy;
    536 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    537 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    538 	return (0);
    539 
    540 destroy:
    541 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    542 unmap:
    543 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    544 free:
    545 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    546 	return (error);
    547 }
    548 
    549 int
    550 sv_freemem(sc, p)
    551 	struct sv_softc *sc;
    552 	struct sv_dma *p;
    553 {
    554 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    555 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    556 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    557 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    558 	return (0);
    559 }
    560 
    561 int
    562 sv_open(addr, flags)
    563 	void *addr;
    564 	int flags;
    565 {
    566 	struct sv_softc *sc = addr;
    567 
    568 	DPRINTF(("sv_open\n"));
    569 	if (!sc->sc_dmaset)
    570 		return (ENXIO);
    571 	sc->sc_pintr = 0;
    572 	sc->sc_rintr = 0;
    573 
    574 	return (0);
    575 }
    576 
    577 /*
    578  * Close function is called at splaudio().
    579  */
    580 void
    581 sv_close(addr)
    582 	void *addr;
    583 {
    584 	struct sv_softc *sc = addr;
    585 
    586 	DPRINTF(("sv_close\n"));
    587 	sv_halt_output(sc);
    588 	sv_halt_input(sc);
    589 
    590 	sc->sc_pintr = 0;
    591 	sc->sc_rintr = 0;
    592 }
    593 
    594 int
    595 sv_query_encoding(addr, fp)
    596 	void *addr;
    597 	struct audio_encoding *fp;
    598 {
    599 	switch (fp->index) {
    600 	case 0:
    601 		strcpy(fp->name, AudioEulinear);
    602 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    603 		fp->precision = 8;
    604 		fp->flags = 0;
    605 		return (0);
    606 	case 1:
    607 		strcpy(fp->name, AudioEmulaw);
    608 		fp->encoding = AUDIO_ENCODING_ULAW;
    609 		fp->precision = 8;
    610 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    611 		return (0);
    612 	case 2:
    613 		strcpy(fp->name, AudioEalaw);
    614 		fp->encoding = AUDIO_ENCODING_ALAW;
    615 		fp->precision = 8;
    616 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    617 		return (0);
    618 	case 3:
    619 		strcpy(fp->name, AudioEslinear);
    620 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    621 		fp->precision = 8;
    622 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    623 		return (0);
    624 	case 4:
    625 		strcpy(fp->name, AudioEslinear_le);
    626 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    627 		fp->precision = 16;
    628 		fp->flags = 0;
    629 		return (0);
    630 	case 5:
    631 		strcpy(fp->name, AudioEulinear_le);
    632 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    633 		fp->precision = 16;
    634 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    635 		return (0);
    636 	case 6:
    637 		strcpy(fp->name, AudioEslinear_be);
    638 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    639 		fp->precision = 16;
    640 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    641 		return (0);
    642 	case 7:
    643 		strcpy(fp->name, AudioEulinear_be);
    644 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    645 		fp->precision = 16;
    646 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    647 		return (0);
    648 	default:
    649 		return (EINVAL);
    650 	}
    651 }
    652 
    653 int
    654 sv_set_params(addr, setmode, usemode, play, rec)
    655 	void *addr;
    656 	int setmode, usemode;
    657 	struct audio_params *play, *rec;
    658 {
    659 	struct sv_softc *sc = addr;
    660 	struct audio_params *p;
    661 	int mode;
    662 	u_int32_t val;
    663 
    664 	/*
    665 	 * This device only has one clock, so make the sample rates match.
    666 	 */
    667 	if (play->sample_rate != rec->sample_rate &&
    668 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    669 		if (setmode == AUMODE_PLAY) {
    670 			rec->sample_rate = play->sample_rate;
    671 			setmode |= AUMODE_RECORD;
    672 		} else if (setmode == AUMODE_RECORD) {
    673 			play->sample_rate = rec->sample_rate;
    674 			setmode |= AUMODE_PLAY;
    675 		} else
    676 			return (EINVAL);
    677 	}
    678 
    679 	for (mode = AUMODE_RECORD; mode != -1;
    680 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    681 		if ((setmode & mode) == 0)
    682 			continue;
    683 
    684 		p = mode == AUMODE_PLAY ? play : rec;
    685 
    686 		if (p->sample_rate < 2000 || p->sample_rate > 48000 ||
    687 		    (p->precision != 8 && p->precision != 16) ||
    688 		    (p->channels != 1 && p->channels != 2))
    689 			return (EINVAL);
    690 
    691 		p->factor = 1;
    692 		p->sw_code = 0;
    693 		switch (p->encoding) {
    694 		case AUDIO_ENCODING_SLINEAR_BE:
    695 			if (p->precision == 16)
    696 				p->sw_code = swap_bytes;
    697 			else
    698 				p->sw_code = change_sign8;
    699 			break;
    700 		case AUDIO_ENCODING_SLINEAR_LE:
    701 			if (p->precision != 16)
    702 				p->sw_code = change_sign8;
    703 			break;
    704 		case AUDIO_ENCODING_ULINEAR_BE:
    705 			if (p->precision == 16) {
    706 				if (mode == AUMODE_PLAY)
    707 					p->sw_code = swap_bytes_change_sign16;
    708 				else
    709 					p->sw_code = change_sign16_swap_bytes;
    710 			}
    711 			break;
    712 		case AUDIO_ENCODING_ULINEAR_LE:
    713 			if (p->precision == 16)
    714 				p->sw_code = change_sign16;
    715 			break;
    716 		case AUDIO_ENCODING_ULAW:
    717 			if (mode == AUMODE_PLAY) {
    718 				p->factor = 2;
    719 				p->sw_code = mulaw_to_slinear16;
    720 			} else
    721 				p->sw_code = ulinear8_to_mulaw;
    722 			break;
    723 		case AUDIO_ENCODING_ALAW:
    724 			if (mode == AUMODE_PLAY) {
    725 				p->factor = 2;
    726 				p->sw_code = alaw_to_slinear16;
    727 			} else
    728 				p->sw_code = ulinear8_to_alaw;
    729 			break;
    730 		default:
    731 			return (EINVAL);
    732 		}
    733 	}
    734 
    735 	val = p->sample_rate * 65536 / 48000;
    736 
    737 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    738 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    739 
    740 #define F_REF 24576000
    741 
    742 #define ABS(x) (((x) < 0) ? (-x) : (x))
    743 
    744 	if (setmode & AUMODE_RECORD) {
    745 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    746 
    747 		/* f_out is dervied from the 24.576MHZ crystal by three values:
    748 		   M & N & R. The equation is as follows:
    749 
    750 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    751 
    752 		   with the constraint that:
    753 
    754 		   80 MhZ < (m + 2) / (n + 2) * f_ref <= 150Mhz
    755 		   and n, m >= 1
    756 		*/
    757 
    758 		int  goal_f_out = 512 * rec->sample_rate;
    759 		int  a, n, m, best_n = 0, best_m = 0, best_error = 10000000;
    760 		int  pll_sample;
    761 		int  error;
    762 
    763 		for (a = 0; a < 8; a++) {
    764 			if ((goal_f_out * (1 << a)) >= 80000000)
    765 				break;
    766 		}
    767 
    768 		/* a != 8 because sample_rate >= 2000 */
    769 
    770 		for (n = 33; n > 2; n--) {
    771 			m = (goal_f_out * n * (1 << a)) / F_REF;
    772 			if ((m > 257) || (m < 3))
    773 				continue;
    774 
    775 			pll_sample = (m * F_REF) / (n * (1 << a));
    776 			pll_sample /= 512;
    777 
    778 			/* Threshold might be good here */
    779 			error = pll_sample - rec->sample_rate;
    780 			error = ABS(error);
    781 
    782 			if (error < best_error) {
    783 				best_error = error;
    784 				best_n = n;
    785 				best_m = m;
    786 				if (error == 0) break;
    787 			}
    788 		}
    789 
    790 		best_n -= 2;
    791 		best_m -= 2;
    792 
    793 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    794 		sv_write_indirect(sc, SV_ADC_PLL_N,
    795 				  best_n | (a << SV_PLL_R_SHIFT));
    796 	}
    797 
    798 	return (0);
    799 }
    800 
    801 int
    802 sv_round_blocksize(addr, blk)
    803 	void *addr;
    804 	int blk;
    805 {
    806 	return (blk & -32);	/* keep good alignment */
    807 }
    808 
    809 int
    810 sv_trigger_output(addr, start, end, blksize, intr, arg, param)
    811 	void *addr;
    812 	void *start, *end;
    813 	int blksize;
    814 	void (*intr) __P((void *));
    815 	void *arg;
    816 	struct audio_params *param;
    817 {
    818 	struct sv_softc *sc = addr;
    819 	struct sv_dma *p;
    820 	u_int8_t mode;
    821 	int dma_count;
    822 
    823 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    824 	    addr, start, end, blksize, intr, arg));
    825 	sc->sc_pintr = intr;
    826 	sc->sc_parg = arg;
    827 
    828 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    829 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    830 	if (param->precision * param->factor == 16)
    831 		mode |= SV_DMAA_FORMAT16;
    832 	if (param->channels == 2)
    833 		mode |= SV_DMAA_STEREO;
    834 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    835 
    836 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    837 		;
    838 	if (!p) {
    839 		printf("sv_trigger_output: bad addr %p\n", start);
    840 		return (EINVAL);
    841 	}
    842 
    843 	dma_count = ((char *)end - (char *)start) - 1;
    844 	DPRINTF(("sv_trigger_output: dma start loop input addr=%x cc=%d\n",
    845 	    (int)DMAADDR(p), dma_count));
    846 
    847 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    848 			  DMAADDR(p));
    849 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    850 			  dma_count);
    851 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    852 			  DMA37MD_READ | DMA37MD_LOOP);
    853 
    854 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    855 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    856 
    857 	dma_count = blksize - 1;
    858 
    859 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    860 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    861 
    862 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    863 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    864 
    865 	return (0);
    866 }
    867 
    868 int
    869 sv_trigger_input(addr, start, end, blksize, intr, arg, param)
    870 	void *addr;
    871 	void *start, *end;
    872 	int blksize;
    873 	void (*intr) __P((void *));
    874 	void *arg;
    875 	struct audio_params *param;
    876 {
    877 	struct sv_softc *sc = addr;
    878 	struct sv_dma *p;
    879 	u_int8_t mode;
    880 	int dma_count;
    881 
    882 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
    883 	    addr, start, end, blksize, intr, arg));
    884 	sc->sc_rintr = intr;
    885 	sc->sc_rarg = arg;
    886 
    887 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    888 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    889 	if (param->precision * param->factor == 16)
    890 		mode |= SV_DMAC_FORMAT16;
    891 	if (param->channels == 2)
    892 		mode |= SV_DMAC_STEREO;
    893 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    894 
    895 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    896 		;
    897 	if (!p) {
    898 		printf("sv_trigger_input: bad addr %p\n", start);
    899 		return (EINVAL);
    900 	}
    901 
    902 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    903 	DPRINTF(("sv_trigger_input: dma start loop input addr=%x cc=%d\n",
    904 	    (int)DMAADDR(p), dma_count));
    905 
    906 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    907 			  DMAADDR(p));
    908 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    909 			  dma_count);
    910 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    911 			  DMA37MD_WRITE | DMA37MD_LOOP);
    912 
    913 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    914 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    915 
    916 	dma_count = (blksize >> 1) - 1;
    917 
    918 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    919 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    920 
    921 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    922 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    923 
    924 	return (0);
    925 }
    926 
    927 int
    928 sv_halt_output(addr)
    929 	void *addr;
    930 {
    931 	struct sv_softc *sc = addr;
    932 	u_int8_t mode;
    933 
    934 	DPRINTF(("sv: sv_halt_output\n"));
    935 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    936 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    937 
    938 	return (0);
    939 }
    940 
    941 int
    942 sv_halt_input(addr)
    943 	void *addr;
    944 {
    945 	struct sv_softc *sc = addr;
    946 	u_int8_t mode;
    947 
    948 	DPRINTF(("sv: sv_halt_input\n"));
    949 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    950 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    951 
    952 	return (0);
    953 }
    954 
    955 int
    956 sv_getdev(addr, retp)
    957 	void *addr;
    958 	struct audio_device *retp;
    959 {
    960 	*retp = sv_device;
    961 	return (0);
    962 }
    963 
    964 
    965 /*
    966  * Mixer related code is here
    967  *
    968  */
    969 
    970 #define SV_INPUT_CLASS 0
    971 #define SV_OUTPUT_CLASS 1
    972 #define SV_RECORD_CLASS 2
    973 
    974 #define SV_LAST_CLASS 2
    975 
    976 static const char *mixer_classes[] =
    977 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    978 
    979 static const struct {
    980 	u_int8_t   l_port;
    981 	u_int8_t   r_port;
    982 	u_int8_t   mask;
    983 	u_int8_t   class;
    984 	const char *audio;
    985 } ports[] = {
    986   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    987     SV_INPUT_CLASS, "aux1" },
    988   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    989     SV_INPUT_CLASS, AudioNcd },
    990   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    991     SV_INPUT_CLASS, AudioNline },
    992   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    993   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    994     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    995   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    996     SV_INPUT_CLASS, "aux2" },
    997   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    998     SV_INPUT_CLASS, AudioNdac },
    999   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
   1000     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
   1001 };
   1002 
   1003 
   1004 static const struct {
   1005 	int idx;
   1006 	const char *name;
   1007 } record_sources[] = {
   1008 	{ SV_REC_CD, AudioNcd },
   1009 	{ SV_REC_DAC, AudioNdac },
   1010 	{ SV_REC_AUX2, "aux2" },
   1011 	{ SV_REC_LINE, AudioNline },
   1012 	{ SV_REC_AUX1, "aux1" },
   1013 	{ SV_REC_MIC, AudioNmicrophone },
   1014 	{ SV_REC_MIXER, AudioNmixerout }
   1015 };
   1016 
   1017 
   1018 #define SV_DEVICES_PER_PORT 2
   1019 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
   1020 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
   1021 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
   1022 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
   1023 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
   1024 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
   1025 
   1026 int
   1027 sv_query_devinfo(addr, dip)
   1028 	void *addr;
   1029 	mixer_devinfo_t *dip;
   1030 {
   1031 	int i;
   1032 
   1033 	/* It's a class */
   1034 	if (dip->index <= SV_LAST_CLASS) {
   1035 		dip->type = AUDIO_MIXER_CLASS;
   1036 		dip->mixer_class = dip->index;
   1037 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   1038 		strcpy(dip->label.name,
   1039 		       mixer_classes[dip->index]);
   1040 		return (0);
   1041 	}
   1042 
   1043 	if (dip->index >= SV_FIRST_MIXER &&
   1044 	    dip->index <= SV_LAST_MIXER) {
   1045 		int off = dip->index - SV_FIRST_MIXER;
   1046 		int mute = (off % SV_DEVICES_PER_PORT);
   1047 		int idx = off / SV_DEVICES_PER_PORT;
   1048 
   1049 		dip->mixer_class = ports[idx].class;
   1050 		strcpy(dip->label.name, ports[idx].audio);
   1051 
   1052 		if (!mute) {
   1053 			dip->type = AUDIO_MIXER_VALUE;
   1054 			dip->prev = AUDIO_MIXER_LAST;
   1055 			dip->next = dip->index + 1;
   1056 
   1057 			if (ports[idx].r_port != 0)
   1058 				dip->un.v.num_channels = 2;
   1059 			else
   1060 				dip->un.v.num_channels = 1;
   1061 
   1062 			strcpy(dip->un.v.units.name, AudioNvolume);
   1063 		} else {
   1064 			dip->type = AUDIO_MIXER_ENUM;
   1065 			dip->prev = dip->index - 1;
   1066 			dip->next = AUDIO_MIXER_LAST;
   1067 
   1068 			strcpy(dip->label.name, AudioNmute);
   1069 			dip->un.e.num_mem = 2;
   1070 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1071 			dip->un.e.member[0].ord = 0;
   1072 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1073 			dip->un.e.member[1].ord = 1;
   1074 		}
   1075 
   1076 		return (0);
   1077 	}
   1078 
   1079 	switch (dip->index) {
   1080 	case SV_RECORD_SOURCE:
   1081 		dip->mixer_class = SV_RECORD_CLASS;
   1082 		dip->prev = AUDIO_MIXER_LAST;
   1083 		dip->next = SV_RECORD_GAIN;
   1084 		strcpy(dip->label.name, AudioNsource);
   1085 		dip->type = AUDIO_MIXER_ENUM;
   1086 
   1087 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1088 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1089 			strcpy(dip->un.e.member[i].label.name,
   1090 			       record_sources[i].name);
   1091 			dip->un.e.member[i].ord = record_sources[i].idx;
   1092 		}
   1093 		return (0);
   1094 
   1095 	case SV_RECORD_GAIN:
   1096 		dip->mixer_class = SV_RECORD_CLASS;
   1097 		dip->prev = SV_RECORD_SOURCE;
   1098 		dip->next = AUDIO_MIXER_LAST;
   1099 		strcpy(dip->label.name, "gain");
   1100 		dip->type = AUDIO_MIXER_VALUE;
   1101 		dip->un.v.num_channels = 1;
   1102 		strcpy(dip->un.v.units.name, AudioNvolume);
   1103 		return (0);
   1104 
   1105 	case SV_MIC_BOOST:
   1106 		dip->mixer_class = SV_RECORD_CLASS;
   1107 		dip->prev = AUDIO_MIXER_LAST;
   1108 		dip->next = AUDIO_MIXER_LAST;
   1109 		strcpy(dip->label.name, "micboost");
   1110 		goto on_off;
   1111 
   1112 	case SV_SRS_MODE:
   1113 		dip->mixer_class = SV_OUTPUT_CLASS;
   1114 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1115 		strcpy(dip->label.name, AudioNspatial);
   1116 
   1117 	on_off:
   1118 		dip->type = AUDIO_MIXER_ENUM;
   1119 		dip->un.e.num_mem = 2;
   1120 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1121 		dip->un.e.member[0].ord = 0;
   1122 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1123 		dip->un.e.member[1].ord = 1;
   1124 		return (0);
   1125 	}
   1126 
   1127 	return (ENXIO);
   1128 }
   1129 
   1130 int
   1131 sv_mixer_set_port(addr, cp)
   1132 	void *addr;
   1133 	mixer_ctrl_t *cp;
   1134 {
   1135 	struct sv_softc *sc = addr;
   1136 	u_int8_t reg;
   1137 	int idx;
   1138 
   1139 	if (cp->dev >= SV_FIRST_MIXER &&
   1140 	    cp->dev <= SV_LAST_MIXER) {
   1141 		int off = cp->dev - SV_FIRST_MIXER;
   1142 		int mute = (off % SV_DEVICES_PER_PORT);
   1143 		idx = off / SV_DEVICES_PER_PORT;
   1144 
   1145 		if (mute) {
   1146 			if (cp->type != AUDIO_MIXER_ENUM)
   1147 				return (EINVAL);
   1148 
   1149 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1150 			if (cp->un.ord)
   1151 				reg |= SV_MUTE_BIT;
   1152 			else
   1153 				reg &= ~SV_MUTE_BIT;
   1154 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1155 
   1156 			if (ports[idx].r_port) {
   1157 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1158 				if (cp->un.ord)
   1159 					reg |= SV_MUTE_BIT;
   1160 				else
   1161 					reg &= ~SV_MUTE_BIT;
   1162 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1163 			}
   1164 		} else {
   1165 			int  lval, rval;
   1166 
   1167 			if (cp->type != AUDIO_MIXER_VALUE)
   1168 				return (EINVAL);
   1169 
   1170 			if (cp->un.value.num_channels != 1 &&
   1171 			    cp->un.value.num_channels != 2)
   1172 				return (EINVAL);
   1173 
   1174 			if (ports[idx].r_port == 0) {
   1175 				if (cp->un.value.num_channels != 1)
   1176 					return (EINVAL);
   1177 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1178 				rval = 0; /* shut up GCC */
   1179 			} else {
   1180 				if (cp->un.value.num_channels != 2)
   1181 					return (EINVAL);
   1182 
   1183 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1184 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1185       }
   1186 
   1187 
   1188 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1189 			reg &= ~(ports[idx].mask);
   1190 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1191 				AUDIO_MAX_GAIN;
   1192 			reg |= lval;
   1193 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1194 
   1195 			if (ports[idx].r_port != 0) {
   1196 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1197 				reg &= ~(ports[idx].mask);
   1198 
   1199 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1200 					AUDIO_MAX_GAIN;
   1201 				reg |= rval;
   1202 
   1203 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1204 			}
   1205 
   1206 			sv_read_indirect(sc, ports[idx].l_port);
   1207 		}
   1208 
   1209 		return (0);
   1210 	}
   1211 
   1212 
   1213 	switch (cp->dev) {
   1214 	case SV_RECORD_SOURCE:
   1215 		if (cp->type != AUDIO_MIXER_ENUM)
   1216 			return (EINVAL);
   1217 
   1218 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1219 			if (record_sources[idx].idx == cp->un.ord)
   1220 				goto found;
   1221 		}
   1222 
   1223 		return (EINVAL);
   1224 
   1225 	found:
   1226 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1227 		reg &= ~SV_REC_SOURCE_MASK;
   1228 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1229 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1230 
   1231 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1232 		reg &= ~SV_REC_SOURCE_MASK;
   1233 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1234 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1235 		return (0);
   1236 
   1237 	case SV_RECORD_GAIN:
   1238 	{
   1239 		int val;
   1240 
   1241 		if (cp->type != AUDIO_MIXER_VALUE)
   1242 			return (EINVAL);
   1243 
   1244 		if (cp->un.value.num_channels != 1)
   1245 			return (EINVAL);
   1246 
   1247 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] * SV_REC_GAIN_MASK)
   1248 			/ AUDIO_MAX_GAIN;
   1249 
   1250 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1251 		reg &= ~SV_REC_GAIN_MASK;
   1252 		reg |= val;
   1253 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1254 
   1255 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1256 		reg &= ~SV_REC_GAIN_MASK;
   1257 		reg |= val;
   1258 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1259 	}
   1260 	return (0);
   1261 
   1262 	case SV_MIC_BOOST:
   1263 		if (cp->type != AUDIO_MIXER_ENUM)
   1264 			return (EINVAL);
   1265 
   1266 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1267 		if (cp->un.ord) {
   1268 			reg |= SV_MIC_BOOST_BIT;
   1269 		} else {
   1270 			reg &= ~SV_MIC_BOOST_BIT;
   1271 		}
   1272 
   1273 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1274 		return (0);
   1275 
   1276 	case SV_SRS_MODE:
   1277 		if (cp->type != AUDIO_MIXER_ENUM)
   1278 			return (EINVAL);
   1279 
   1280 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1281 		if (cp->un.ord) {
   1282 			reg &= ~SV_SRS_SPACE_ONOFF;
   1283 		} else {
   1284 			reg |= SV_SRS_SPACE_ONOFF;
   1285 		}
   1286 
   1287 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1288 		return (0);
   1289 	}
   1290 
   1291 	return (EINVAL);
   1292 }
   1293 
   1294 int
   1295 sv_mixer_get_port(addr, cp)
   1296 	void *addr;
   1297 	mixer_ctrl_t *cp;
   1298 {
   1299 	struct sv_softc *sc = addr;
   1300 	int val;
   1301 	u_int8_t reg;
   1302 
   1303 	if (cp->dev >= SV_FIRST_MIXER &&
   1304 	    cp->dev <= SV_LAST_MIXER) {
   1305 		int off = cp->dev - SV_FIRST_MIXER;
   1306 		int mute = (off % 2);
   1307 		int idx = off / 2;
   1308 
   1309 		if (mute) {
   1310 			if (cp->type != AUDIO_MIXER_ENUM)
   1311 				return (EINVAL);
   1312 
   1313 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1314 			cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1315 		} else {
   1316 			if (cp->type != AUDIO_MIXER_VALUE)
   1317 				return (EINVAL);
   1318 
   1319 			if (cp->un.value.num_channels != 1 &&
   1320 			    cp->un.value.num_channels != 2)
   1321 				return (EINVAL);
   1322 
   1323 			if ((ports[idx].r_port == 0 &&
   1324 			     cp->un.value.num_channels != 1) ||
   1325 			    (ports[idx].r_port != 0 &&
   1326 			     cp->un.value.num_channels != 2))
   1327 				return (EINVAL);
   1328 
   1329 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1330 			reg &= ports[idx].mask;
   1331 
   1332 			val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1333 
   1334 			if (ports[idx].r_port != 0) {
   1335 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = val;
   1336 
   1337 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1338 				reg &= ports[idx].mask;
   1339 
   1340 				val = AUDIO_MAX_GAIN - ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1341 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = val;
   1342 			} else
   1343 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = val;
   1344 		}
   1345 
   1346 		return (0);
   1347   }
   1348 
   1349 	switch (cp->dev) {
   1350 	case SV_RECORD_SOURCE:
   1351 		if (cp->type != AUDIO_MIXER_ENUM)
   1352 			return (EINVAL);
   1353 
   1354 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1355 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1356 
   1357 		return (0);
   1358 
   1359 	case SV_RECORD_GAIN:
   1360 		if (cp->type != AUDIO_MIXER_VALUE)
   1361 			return (EINVAL);
   1362 		if (cp->un.value.num_channels != 1)
   1363 			return (EINVAL);
   1364 
   1365 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1366 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1367 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1368 
   1369 		return (0);
   1370 
   1371 	case SV_MIC_BOOST:
   1372 		if (cp->type != AUDIO_MIXER_ENUM)
   1373 			return (EINVAL);
   1374 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1375 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1376 		return (0);
   1377 
   1378 
   1379 	case SV_SRS_MODE:
   1380 		if (cp->type != AUDIO_MIXER_ENUM)
   1381 			return (EINVAL);
   1382 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1383 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1384 		return (0);
   1385 	}
   1386 
   1387 	return (EINVAL);
   1388 }
   1389 
   1390 
   1391 static void
   1392 sv_init_mixer(sc)
   1393 	struct sv_softc *sc;
   1394 {
   1395 	mixer_ctrl_t cp;
   1396 	int i;
   1397 
   1398 	cp.type = AUDIO_MIXER_ENUM;
   1399 	cp.dev = SV_SRS_MODE;
   1400 	cp.un.ord = 0;
   1401 
   1402 	sv_mixer_set_port(sc, &cp);
   1403 
   1404 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1405 		if (ports[i].audio == AudioNdac) {
   1406 			cp.type = AUDIO_MIXER_ENUM;
   1407 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1408 			cp.un.ord = 0;
   1409 			sv_mixer_set_port(sc, &cp);
   1410 			break;
   1411 		}
   1412 	}
   1413 }
   1414 
   1415 void *
   1416 sv_malloc(addr, direction, size, pool, flags)
   1417 	void *addr;
   1418 	int direction;
   1419 	size_t size;
   1420 	int pool, flags;
   1421 {
   1422 	struct sv_softc *sc = addr;
   1423 	struct sv_dma *p;
   1424 	int error;
   1425 
   1426 	p = malloc(sizeof(*p), pool, flags);
   1427 	if (!p)
   1428 		return (0);
   1429 	error = sv_allocmem(sc, size, 16, p);
   1430 	if (error) {
   1431 		free(p, pool);
   1432 		return (0);
   1433 	}
   1434 	p->next = sc->sc_dmas;
   1435 	sc->sc_dmas = p;
   1436 	return (KERNADDR(p));
   1437 }
   1438 
   1439 void
   1440 sv_free(addr, ptr, pool)
   1441 	void *addr;
   1442 	void *ptr;
   1443 	int pool;
   1444 {
   1445 	struct sv_softc *sc = addr;
   1446 	struct sv_dma **p;
   1447 
   1448 	for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
   1449 		if (KERNADDR(*p) == ptr) {
   1450 			sv_freemem(sc, *p);
   1451 			*p = (*p)->next;
   1452 			free(*p, pool);
   1453 			return;
   1454 		}
   1455 	}
   1456 }
   1457 
   1458 size_t
   1459 sv_round_buffersize(addr, direction, size)
   1460 	void *addr;
   1461 	int direction;
   1462 	size_t size;
   1463 {
   1464 	return (size);
   1465 }
   1466 
   1467 int
   1468 sv_mappage(addr, mem, off, prot)
   1469 	void *addr;
   1470 	void *mem;
   1471 	int off;
   1472 	int prot;
   1473 {
   1474 	struct sv_softc *sc = addr;
   1475 	struct sv_dma *p;
   1476 
   1477 	if (off < 0)
   1478 		return (-1);
   1479 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1480 		;
   1481 	if (!p)
   1482 		return (-1);
   1483 	return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1484 				off, prot, BUS_DMA_WAITOK));
   1485 }
   1486 
   1487 int
   1488 sv_get_props(addr)
   1489 	void *addr;
   1490 {
   1491 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
   1492 }
   1493