Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.50
      1 /*      $NetBSD: sv.c,v 1.50 2014/03/29 19:28:25 christos Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     35  * All rights reserved
     36  *
     37  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. The author's name or those of the contributors may be used to
     48  *    endorse or promote products derived from this software without
     49  *    specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 /*
     65  * S3 SonicVibes driver
     66  *   Heavily based on the eap driver by Lennart Augustsson
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.50 2014/03/29 19:28:25 christos Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/kernel.h>
     75 #include <sys/kmem.h>
     76 #include <sys/device.h>
     77 
     78 #include <dev/pci/pcireg.h>
     79 #include <dev/pci/pcivar.h>
     80 #include <dev/pci/pcidevs.h>
     81 
     82 #include <sys/audioio.h>
     83 #include <dev/audio_if.h>
     84 #include <dev/mulaw.h>
     85 #include <dev/auconv.h>
     86 
     87 #include <dev/ic/i8237reg.h>
     88 #include <dev/pci/svreg.h>
     89 #include <dev/pci/svvar.h>
     90 
     91 #include <sys/bus.h>
     92 
     93 /* XXX
     94  * The SonicVibes DMA is broken and only works on 24-bit addresses.
     95  * As long as bus_dmamem_alloc_range() is missing we use the ISA
     96  * DMA tag on i386.
     97  */
     98 #if defined(amd64) || defined(i386)
     99 #include <dev/isa/isavar.h>
    100 #endif
    101 
    102 #ifdef AUDIO_DEBUG
    103 #define DPRINTF(x)	if (svdebug) printf x
    104 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    105 int	svdebug = 0;
    106 #else
    107 #define DPRINTF(x)
    108 #define DPRINTFN(n,x)
    109 #endif
    110 
    111 static int	sv_match(device_t, cfdata_t, void *);
    112 static void	sv_attach(device_t, device_t, void *);
    113 static int	sv_intr(void *);
    114 
    115 struct sv_dma {
    116 	bus_dmamap_t map;
    117 	void *addr;
    118 	bus_dma_segment_t segs[1];
    119 	int nsegs;
    120 	size_t size;
    121 	struct sv_dma *next;
    122 };
    123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    124 #define KERNADDR(p) ((void *)((p)->addr))
    125 
    126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
    127     sv_match, sv_attach, NULL, NULL);
    128 
    129 static struct audio_device sv_device = {
    130 	"S3 SonicVibes",
    131 	"",
    132 	"sv"
    133 };
    134 
    135 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    136 
    137 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
    138 			    struct sv_dma *);
    139 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
    140 
    141 static void	sv_init_mixer(struct sv_softc *);
    142 
    143 static int	sv_open(void *, int);
    144 static int	sv_query_encoding(void *, struct audio_encoding *);
    145 static int	sv_set_params(void *, int, int, audio_params_t *,
    146 			      audio_params_t *, stream_filter_list_t *,
    147 			      stream_filter_list_t *);
    148 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
    149 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
    150 				  void *, const audio_params_t *);
    151 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
    152 				 void *, const audio_params_t *);
    153 static int	sv_halt_output(void *);
    154 static int	sv_halt_input(void *);
    155 static int	sv_getdev(void *, struct audio_device *);
    156 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
    157 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
    158 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
    159 static void *	sv_malloc(void *, int, size_t);
    160 static void	sv_free(void *, void *, size_t);
    161 static size_t	sv_round_buffersize(void *, int, size_t);
    162 static paddr_t	sv_mappage(void *, void *, off_t, int);
    163 static int	sv_get_props(void *);
    164 static void	sv_get_locks(void *, kmutex_t **, kmutex_t **);
    165 
    166 #ifdef AUDIO_DEBUG
    167 void    sv_dumpregs(struct sv_softc *sc);
    168 #endif
    169 
    170 static const struct audio_hw_if sv_hw_if = {
    171 	sv_open,
    172 	NULL,			/* close */
    173 	NULL,
    174 	sv_query_encoding,
    175 	sv_set_params,
    176 	sv_round_blocksize,
    177 	NULL,
    178 	NULL,
    179 	NULL,
    180 	NULL,
    181 	NULL,
    182 	sv_halt_output,
    183 	sv_halt_input,
    184 	NULL,
    185 	sv_getdev,
    186 	NULL,
    187 	sv_mixer_set_port,
    188 	sv_mixer_get_port,
    189 	sv_query_devinfo,
    190 	sv_malloc,
    191 	sv_free,
    192 	sv_round_buffersize,
    193 	sv_mappage,
    194 	sv_get_props,
    195 	sv_trigger_output,
    196 	sv_trigger_input,
    197 	NULL,
    198 	sv_get_locks,
    199 };
    200 
    201 #define SV_NFORMATS	4
    202 static const struct audio_format sv_formats[SV_NFORMATS] = {
    203 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    204 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    206 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    208 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    210 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    211 };
    212 
    213 
    214 static void
    215 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
    216 {
    217 
    218 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    219 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    220 }
    221 
    222 static uint8_t
    223 sv_read(struct sv_softc *sc, uint8_t reg)
    224 {
    225 	uint8_t val;
    226 
    227 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    228 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    229 	return val;
    230 }
    231 
    232 static uint8_t
    233 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
    234 {
    235 	uint8_t val;
    236 
    237 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    238 	val = sv_read(sc, SV_CODEC_IDATA);
    239 	return val;
    240 }
    241 
    242 static void
    243 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
    244 {
    245 	uint8_t iaddr;
    246 
    247 	iaddr = reg & SV_IADDR_MASK;
    248 	if (reg == SV_DMA_DATA_FORMAT)
    249 		iaddr |= SV_IADDR_MCE;
    250 
    251 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    252 	sv_write(sc, SV_CODEC_IDATA, val);
    253 }
    254 
    255 static int
    256 sv_match(device_t parent, cfdata_t match, void *aux)
    257 {
    258 	struct pci_attach_args *pa;
    259 
    260 	pa = aux;
    261 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    262 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    263 		return 1;
    264 
    265 	return 0;
    266 }
    267 
    268 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
    269 
    270 static int
    271 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
    272     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
    273     bus_size_t bound, int flags, bus_space_handle_t *ioh)
    274 {
    275 	bus_addr_t addr;
    276 	int error;
    277 
    278 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
    279 				size, align, bound, flags, &addr, ioh);
    280 	if (error)
    281 		return error;
    282 
    283 	pci_conf_write(pc, pt, pcioffs, addr);
    284 	return 0;
    285 }
    286 
    287 /*
    288  * Allocate IO addresses when all other configuration is done.
    289  */
    290 static void
    291 sv_defer(device_t self)
    292 {
    293 	struct sv_softc *sc;
    294 	pci_chipset_tag_t pc;
    295 	pcitag_t pt;
    296 	pcireg_t dmaio;
    297 
    298 	sc = device_private(self);
    299 	pc = sc->sc_pa.pa_pc;
    300 	pt = sc->sc_pa.pa_tag;
    301 	DPRINTF(("sv_defer: %p\n", sc));
    302 
    303 	/* XXX
    304 	 * Get a reasonable default for the I/O range.
    305 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
    306 	 */
    307 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
    308 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
    309 
    310 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    311 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    312 			  0, &sc->sc_dmaa_ioh)) {
    313 		printf("sv_attach: cannot allocate DMA A range\n");
    314 		return;
    315 	}
    316 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    317 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    318 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    319 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    320 
    321 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    322 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    323 			  0, &sc->sc_dmac_ioh)) {
    324 		printf("sv_attach: cannot allocate DMA C range\n");
    325 		return;
    326 	}
    327 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    328 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    329 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    330 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    331 
    332 	sc->sc_dmaset = 1;
    333 }
    334 
    335 static void
    336 sv_attach(device_t parent, device_t self, void *aux)
    337 {
    338 	struct sv_softc *sc;
    339 	struct pci_attach_args *pa;
    340 	pci_chipset_tag_t pc;
    341 	pcitag_t pt;
    342 	pci_intr_handle_t ih;
    343 	pcireg_t csr;
    344 	char const *intrstr;
    345 	uint8_t reg;
    346 	struct audio_attach_args arg;
    347 	char intrbuf[PCI_INTRSTR_LEN];
    348 
    349 	sc = device_private(self);
    350 	pa = aux;
    351 	pc = pa->pa_pc;
    352 	pt = pa->pa_tag;
    353 	printf ("\n");
    354 
    355 	/* Map I/O registers */
    356 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    357 			   PCI_MAPREG_TYPE_IO, 0,
    358 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    359 		aprint_error_dev(self, "can't map enhanced i/o space\n");
    360 		return;
    361 	}
    362 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    363 			   PCI_MAPREG_TYPE_IO, 0,
    364 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    365 		aprint_error_dev(self, "can't map FM i/o space\n");
    366 		return;
    367 	}
    368 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    369 			   PCI_MAPREG_TYPE_IO, 0,
    370 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    371 		aprint_error_dev(self, "can't map MIDI i/o space\n");
    372 		return;
    373 	}
    374 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    375 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    376 
    377 #if defined(alpha)
    378 	/* XXX Force allocation through the SGMAP. */
    379 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    380 #elif defined(amd64) || defined(i386)
    381 /* XXX
    382  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    383  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    384  * DMA tag on i386.
    385  */
    386 	sc->sc_dmatag = &isa_bus_dma_tag;
    387 #else
    388 	sc->sc_dmatag = pa->pa_dmat;
    389 #endif
    390 
    391 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    392 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    393 
    394 	/* Enable the device. */
    395 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    396 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    397 		       csr | PCI_COMMAND_MASTER_ENABLE);
    398 
    399 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    400 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    401 
    402 	/* initialize codec registers */
    403 	reg = sv_read(sc, SV_CODEC_CONTROL);
    404 	reg |= SV_CTL_RESET;
    405 	sv_write(sc, SV_CODEC_CONTROL, reg);
    406 	delay(50);
    407 
    408 	reg = sv_read(sc, SV_CODEC_CONTROL);
    409 	reg &= ~SV_CTL_RESET;
    410 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    411 
    412 	/* This write clears the reset */
    413 	sv_write(sc, SV_CODEC_CONTROL, reg);
    414 	delay(50);
    415 
    416 	/* This write actually shoves the new values in */
    417 	sv_write(sc, SV_CODEC_CONTROL, reg);
    418 
    419 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    420 
    421 	/* Map and establish the interrupt. */
    422 	if (pci_intr_map(pa, &ih)) {
    423 		aprint_error_dev(self, "couldn't map interrupt\n");
    424 		return;
    425 	}
    426 
    427 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    428 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
    429 
    430 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    431 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    432 	if (sc->sc_ih == NULL) {
    433 		aprint_error_dev(self, "couldn't establish interrupt");
    434 		if (intrstr != NULL)
    435 			aprint_error(" at %s", intrstr);
    436 		aprint_error("\n");
    437 		mutex_destroy(&sc->sc_lock);
    438 		mutex_destroy(&sc->sc_intr_lock);
    439 		return;
    440 	}
    441 	printf("%s: interrupting at %s\n", device_xname(self), intrstr);
    442 	printf("%s: rev %d", device_xname(self),
    443 	       sv_read_indirect(sc, SV_REVISION_LEVEL));
    444 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    445 		printf(", reverb SRAM present");
    446 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    447 		printf(", wavetable ROM present");
    448 	printf("\n");
    449 
    450 	/* Enable DMA interrupts */
    451 	reg = sv_read(sc, SV_CODEC_INTMASK);
    452 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    453 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    454 	sv_write(sc, SV_CODEC_INTMASK, reg);
    455 	sv_read(sc, SV_CODEC_STATUS);
    456 
    457 	sv_init_mixer(sc);
    458 
    459 	audio_attach_mi(&sv_hw_if, sc, self);
    460 
    461 	arg.type = AUDIODEV_TYPE_OPL;
    462 	arg.hwif = 0;
    463 	arg.hdl = 0;
    464 	(void)config_found(self, &arg, audioprint);
    465 
    466 	sc->sc_pa = *pa;	/* for deferred setup */
    467 	config_defer(self, sv_defer);
    468 }
    469 
    470 #ifdef AUDIO_DEBUG
    471 void
    472 sv_dumpregs(struct sv_softc *sc)
    473 {
    474 	int idx;
    475 
    476 #if 0
    477 	for (idx = 0; idx < 0x50; idx += 4)
    478 		printf ("%02x = %x\n", idx,
    479 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    480 #endif
    481 
    482 	for (idx = 0; idx < 6; idx++)
    483 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    484 
    485 	for (idx = 0; idx < 0x32; idx++)
    486 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    487 
    488 	for (idx = 0; idx < 0x10; idx++)
    489 		printf ("DMA %02x = %02x\n", idx,
    490 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    491 }
    492 #endif
    493 
    494 static int
    495 sv_intr(void *p)
    496 {
    497 	struct sv_softc *sc;
    498 	uint8_t intr;
    499 
    500 	sc = p;
    501 
    502 	mutex_spin_enter(&sc->sc_intr_lock);
    503 
    504 	intr = sv_read(sc, SV_CODEC_STATUS);
    505 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    506 
    507 	if (intr & SV_INTSTATUS_DMAA) {
    508 		if (sc->sc_pintr)
    509 			sc->sc_pintr(sc->sc_parg);
    510 	}
    511 
    512 	if (intr & SV_INTSTATUS_DMAC) {
    513 		if (sc->sc_rintr)
    514 			sc->sc_rintr(sc->sc_rarg);
    515 	}
    516 
    517 	mutex_spin_exit(&sc->sc_intr_lock);
    518 
    519 	return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
    520 }
    521 
    522 static int
    523 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
    524     int direction, struct sv_dma *p)
    525 {
    526 	int error;
    527 
    528 	p->size = size;
    529 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    530 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
    531 	if (error)
    532 		return error;
    533 
    534 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    535 	    &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
    536 	if (error)
    537 		goto free;
    538 
    539 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    540 	    0, BUS_DMA_WAITOK, &p->map);
    541 	if (error)
    542 		goto unmap;
    543 
    544 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    545 	    BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    546 	if (error)
    547 		goto destroy;
    548 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    549 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    550 	return 0;
    551 
    552 destroy:
    553 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    554 unmap:
    555 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    556 free:
    557 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    558 	return error;
    559 }
    560 
    561 static int
    562 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
    563 {
    564 
    565 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    566 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    567 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    568 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    569 	return 0;
    570 }
    571 
    572 static int
    573 sv_open(void *addr, int flags)
    574 {
    575 	struct sv_softc *sc;
    576 
    577 	sc = addr;
    578 	DPRINTF(("sv_open\n"));
    579 	if (!sc->sc_dmaset)
    580 		return ENXIO;
    581 
    582 	return 0;
    583 }
    584 
    585 static int
    586 sv_query_encoding(void *addr, struct audio_encoding *fp)
    587 {
    588 
    589 	switch (fp->index) {
    590 	case 0:
    591 		strcpy(fp->name, AudioEulinear);
    592 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    593 		fp->precision = 8;
    594 		fp->flags = 0;
    595 		return 0;
    596 	case 1:
    597 		strcpy(fp->name, AudioEmulaw);
    598 		fp->encoding = AUDIO_ENCODING_ULAW;
    599 		fp->precision = 8;
    600 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    601 		return 0;
    602 	case 2:
    603 		strcpy(fp->name, AudioEalaw);
    604 		fp->encoding = AUDIO_ENCODING_ALAW;
    605 		fp->precision = 8;
    606 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    607 		return 0;
    608 	case 3:
    609 		strcpy(fp->name, AudioEslinear);
    610 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    611 		fp->precision = 8;
    612 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    613 		return 0;
    614 	case 4:
    615 		strcpy(fp->name, AudioEslinear_le);
    616 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    617 		fp->precision = 16;
    618 		fp->flags = 0;
    619 		return 0;
    620 	case 5:
    621 		strcpy(fp->name, AudioEulinear_le);
    622 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    623 		fp->precision = 16;
    624 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    625 		return 0;
    626 	case 6:
    627 		strcpy(fp->name, AudioEslinear_be);
    628 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    629 		fp->precision = 16;
    630 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    631 		return 0;
    632 	case 7:
    633 		strcpy(fp->name, AudioEulinear_be);
    634 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    635 		fp->precision = 16;
    636 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    637 		return 0;
    638 	default:
    639 		return EINVAL;
    640 	}
    641 }
    642 
    643 static int
    644 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
    645     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    646 {
    647 	struct sv_softc *sc;
    648 	audio_params_t *p;
    649 	uint32_t val;
    650 
    651 	sc = addr;
    652 	p = NULL;
    653 	/*
    654 	 * This device only has one clock, so make the sample rates match.
    655 	 */
    656 	if (play->sample_rate != rec->sample_rate &&
    657 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    658 		if (setmode == AUMODE_PLAY) {
    659 			rec->sample_rate = play->sample_rate;
    660 			setmode |= AUMODE_RECORD;
    661 		} else if (setmode == AUMODE_RECORD) {
    662 			play->sample_rate = rec->sample_rate;
    663 			setmode |= AUMODE_PLAY;
    664 		} else
    665 			return EINVAL;
    666 	}
    667 
    668 	if (setmode & AUMODE_RECORD) {
    669 		p = rec;
    670 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    671 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
    672 			return EINVAL;
    673 	}
    674 	if (setmode & AUMODE_PLAY) {
    675 		p = play;
    676 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    677 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
    678 			return EINVAL;
    679 	}
    680 
    681 	if (p == NULL)
    682 		return 0;
    683 
    684 	val = p->sample_rate * 65536 / 48000;
    685 	/*
    686 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
    687 	 * register, so we have to bias it.  This causes a little clock drift.
    688 	 * The drift is below normal crystal tolerance (.0001%), so although
    689 	 * this seems a little silly, we can pretty much ignore it.
    690 	 * (I tested the output speed with values of 1-20, just to be sure this
    691 	 * register isn't *supposed* to have a bias.  It isn't.)
    692 	 * - mycroft
    693 	 */
    694 	if (val > 65535)
    695 		val = 65535;
    696 
    697 	mutex_spin_enter(&sc->sc_intr_lock);
    698 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    699 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    700 	mutex_spin_exit(&sc->sc_intr_lock);
    701 
    702 #define F_REF 24576000
    703 
    704 #define ABS(x) (((x) < 0) ? (-x) : (x))
    705 
    706 	if (setmode & AUMODE_RECORD) {
    707 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    708 
    709 		/* f_out is dervied from the 24.576MHz crystal by three values:
    710 		   M & N & R. The equation is as follows:
    711 
    712 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    713 
    714 		   with the constraint that:
    715 
    716 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
    717 		   and n, m >= 1
    718 		*/
    719 
    720 		int  goal_f_out;
    721 		int  a, n, m, best_n, best_m, best_error;
    722 		int  pll_sample;
    723 		int  error;
    724 
    725 		goal_f_out = 512 * rec->sample_rate;
    726 		best_n = 0;
    727 		best_m = 0;
    728 		best_error = 10000000;
    729 		for (a = 0; a < 8; a++) {
    730 			if ((goal_f_out * (1 << a)) >= 80000000)
    731 				break;
    732 		}
    733 
    734 		/* a != 8 because sample_rate >= 2000 */
    735 
    736 		for (n = 33; n > 2; n--) {
    737 			m = (goal_f_out * n * (1 << a)) / F_REF;
    738 			if ((m > 257) || (m < 3))
    739 				continue;
    740 
    741 			pll_sample = (m * F_REF) / (n * (1 << a));
    742 			pll_sample /= 512;
    743 
    744 			/* Threshold might be good here */
    745 			error = pll_sample - rec->sample_rate;
    746 			error = ABS(error);
    747 
    748 			if (error < best_error) {
    749 				best_error = error;
    750 				best_n = n;
    751 				best_m = m;
    752 				if (error == 0) break;
    753 			}
    754 		}
    755 
    756 		best_n -= 2;
    757 		best_m -= 2;
    758 
    759 		mutex_spin_enter(&sc->sc_intr_lock);
    760 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    761 		sv_write_indirect(sc, SV_ADC_PLL_N,
    762 				  best_n | (a << SV_PLL_R_SHIFT));
    763 		mutex_spin_exit(&sc->sc_intr_lock);
    764 	}
    765 
    766 	return 0;
    767 }
    768 
    769 static int
    770 sv_round_blocksize(void *addr, int blk, int mode,
    771     const audio_params_t *param)
    772 {
    773 
    774 	return blk & -32;	/* keep good alignment */
    775 }
    776 
    777 static int
    778 sv_trigger_output(void *addr, void *start, void *end, int blksize,
    779     void (*intr)(void *), void *arg, const audio_params_t *param)
    780 {
    781 	struct sv_softc *sc;
    782 	struct sv_dma *p;
    783 	uint8_t mode;
    784 	int dma_count;
    785 
    786 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
    787 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    788 	sc = addr;
    789 	sc->sc_pintr = intr;
    790 	sc->sc_parg = arg;
    791 
    792 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    793 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    794 	if (param->precision == 16)
    795 		mode |= SV_DMAA_FORMAT16;
    796 	if (param->channels == 2)
    797 		mode |= SV_DMAA_STEREO;
    798 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    799 
    800 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    801 		continue;
    802 	if (p == NULL) {
    803 		printf("sv_trigger_output: bad addr %p\n", start);
    804 		return EINVAL;
    805 	}
    806 
    807 	dma_count = ((char *)end - (char *)start) - 1;
    808 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
    809 	    (int)DMAADDR(p), dma_count));
    810 
    811 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    812 			  DMAADDR(p));
    813 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    814 			  dma_count);
    815 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    816 			  DMA37MD_READ | DMA37MD_LOOP);
    817 
    818 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    819 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    820 
    821 	dma_count = blksize - 1;
    822 
    823 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    824 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    825 
    826 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    827 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    828 
    829 	return 0;
    830 }
    831 
    832 static int
    833 sv_trigger_input(void *addr, void *start, void *end, int blksize,
    834     void (*intr)(void *), void *arg, const audio_params_t *param)
    835 {
    836 	struct sv_softc *sc;
    837 	struct sv_dma *p;
    838 	uint8_t mode;
    839 	int dma_count;
    840 
    841 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
    842 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    843 	sc = addr;
    844 	sc->sc_rintr = intr;
    845 	sc->sc_rarg = arg;
    846 
    847 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    848 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    849 	if (param->precision == 16)
    850 		mode |= SV_DMAC_FORMAT16;
    851 	if (param->channels == 2)
    852 		mode |= SV_DMAC_STEREO;
    853 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    854 
    855 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    856 		continue;
    857 	if (!p) {
    858 		printf("sv_trigger_input: bad addr %p\n", start);
    859 		return EINVAL;
    860 	}
    861 
    862 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    863 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
    864 	    (int)DMAADDR(p), dma_count));
    865 
    866 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    867 			  DMAADDR(p));
    868 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    869 			  dma_count);
    870 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    871 			  DMA37MD_WRITE | DMA37MD_LOOP);
    872 
    873 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    874 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    875 
    876 	dma_count = (blksize >> 1) - 1;
    877 
    878 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    879 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    880 
    881 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    882 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    883 
    884 	return 0;
    885 }
    886 
    887 static int
    888 sv_halt_output(void *addr)
    889 {
    890 	struct sv_softc *sc;
    891 	uint8_t mode;
    892 
    893 	DPRINTF(("sv: sv_halt_output\n"));
    894 	sc = addr;
    895 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    896 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    897 	sc->sc_pintr = 0;
    898 
    899 	return 0;
    900 }
    901 
    902 static int
    903 sv_halt_input(void *addr)
    904 {
    905 	struct sv_softc *sc;
    906 	uint8_t mode;
    907 
    908 	DPRINTF(("sv: sv_halt_input\n"));
    909 	sc = addr;
    910 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    911 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    912 	sc->sc_rintr = 0;
    913 
    914 	return 0;
    915 }
    916 
    917 static int
    918 sv_getdev(void *addr, struct audio_device *retp)
    919 {
    920 
    921 	*retp = sv_device;
    922 	return 0;
    923 }
    924 
    925 
    926 /*
    927  * Mixer related code is here
    928  *
    929  */
    930 
    931 #define SV_INPUT_CLASS 0
    932 #define SV_OUTPUT_CLASS 1
    933 #define SV_RECORD_CLASS 2
    934 
    935 #define SV_LAST_CLASS 2
    936 
    937 static const char *mixer_classes[] =
    938 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    939 
    940 static const struct {
    941 	uint8_t   l_port;
    942 	uint8_t   r_port;
    943 	uint8_t   mask;
    944 	uint8_t   class;
    945 	const char *audio;
    946 } ports[] = {
    947   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    948     SV_INPUT_CLASS, "aux1" },
    949   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    950     SV_INPUT_CLASS, AudioNcd },
    951   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    952     SV_INPUT_CLASS, AudioNline },
    953   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    954   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    955     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    956   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    957     SV_INPUT_CLASS, "aux2" },
    958   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    959     SV_INPUT_CLASS, AudioNdac },
    960   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
    961     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
    962 };
    963 
    964 
    965 static const struct {
    966 	int idx;
    967 	const char *name;
    968 } record_sources[] = {
    969 	{ SV_REC_CD, AudioNcd },
    970 	{ SV_REC_DAC, AudioNdac },
    971 	{ SV_REC_AUX2, "aux2" },
    972 	{ SV_REC_LINE, AudioNline },
    973 	{ SV_REC_AUX1, "aux1" },
    974 	{ SV_REC_MIC, AudioNmicrophone },
    975 	{ SV_REC_MIXER, AudioNmixerout }
    976 };
    977 
    978 
    979 #define SV_DEVICES_PER_PORT 2
    980 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
    981 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
    982 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
    983 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
    984 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
    985 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
    986 
    987 static int
    988 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
    989 {
    990 	int i;
    991 
    992 	/* It's a class */
    993 	if (dip->index <= SV_LAST_CLASS) {
    994 		dip->type = AUDIO_MIXER_CLASS;
    995 		dip->mixer_class = dip->index;
    996 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    997 		strcpy(dip->label.name, mixer_classes[dip->index]);
    998 		return 0;
    999 	}
   1000 
   1001 	if (dip->index >= SV_FIRST_MIXER &&
   1002 	    dip->index <= SV_LAST_MIXER) {
   1003 		int off, mute ,idx;
   1004 
   1005 		off = dip->index - SV_FIRST_MIXER;
   1006 		mute = (off % SV_DEVICES_PER_PORT);
   1007 		idx = off / SV_DEVICES_PER_PORT;
   1008 		dip->mixer_class = ports[idx].class;
   1009 		strcpy(dip->label.name, ports[idx].audio);
   1010 
   1011 		if (!mute) {
   1012 			dip->type = AUDIO_MIXER_VALUE;
   1013 			dip->prev = AUDIO_MIXER_LAST;
   1014 			dip->next = dip->index + 1;
   1015 
   1016 			if (ports[idx].r_port != 0)
   1017 				dip->un.v.num_channels = 2;
   1018 			else
   1019 				dip->un.v.num_channels = 1;
   1020 
   1021 			strcpy(dip->un.v.units.name, AudioNvolume);
   1022 		} else {
   1023 			dip->type = AUDIO_MIXER_ENUM;
   1024 			dip->prev = dip->index - 1;
   1025 			dip->next = AUDIO_MIXER_LAST;
   1026 
   1027 			strcpy(dip->label.name, AudioNmute);
   1028 			dip->un.e.num_mem = 2;
   1029 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1030 			dip->un.e.member[0].ord = 0;
   1031 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1032 			dip->un.e.member[1].ord = 1;
   1033 		}
   1034 
   1035 		return 0;
   1036 	}
   1037 
   1038 	switch (dip->index) {
   1039 	case SV_RECORD_SOURCE:
   1040 		dip->mixer_class = SV_RECORD_CLASS;
   1041 		dip->prev = AUDIO_MIXER_LAST;
   1042 		dip->next = SV_RECORD_GAIN;
   1043 		strcpy(dip->label.name, AudioNsource);
   1044 		dip->type = AUDIO_MIXER_ENUM;
   1045 
   1046 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1047 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1048 			strcpy(dip->un.e.member[i].label.name,
   1049 			       record_sources[i].name);
   1050 			dip->un.e.member[i].ord = record_sources[i].idx;
   1051 		}
   1052 		return 0;
   1053 
   1054 	case SV_RECORD_GAIN:
   1055 		dip->mixer_class = SV_RECORD_CLASS;
   1056 		dip->prev = SV_RECORD_SOURCE;
   1057 		dip->next = AUDIO_MIXER_LAST;
   1058 		strcpy(dip->label.name, "gain");
   1059 		dip->type = AUDIO_MIXER_VALUE;
   1060 		dip->un.v.num_channels = 1;
   1061 		strcpy(dip->un.v.units.name, AudioNvolume);
   1062 		return 0;
   1063 
   1064 	case SV_MIC_BOOST:
   1065 		dip->mixer_class = SV_RECORD_CLASS;
   1066 		dip->prev = AUDIO_MIXER_LAST;
   1067 		dip->next = AUDIO_MIXER_LAST;
   1068 		strcpy(dip->label.name, "micboost");
   1069 		goto on_off;
   1070 
   1071 	case SV_SRS_MODE:
   1072 		dip->mixer_class = SV_OUTPUT_CLASS;
   1073 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1074 		strcpy(dip->label.name, AudioNspatial);
   1075 
   1076 	on_off:
   1077 		dip->type = AUDIO_MIXER_ENUM;
   1078 		dip->un.e.num_mem = 2;
   1079 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1080 		dip->un.e.member[0].ord = 0;
   1081 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1082 		dip->un.e.member[1].ord = 1;
   1083 		return 0;
   1084 	}
   1085 
   1086 	return ENXIO;
   1087 }
   1088 
   1089 static int
   1090 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1091 {
   1092 	struct sv_softc *sc;
   1093 	uint8_t reg;
   1094 	int idx;
   1095 
   1096 	sc = addr;
   1097 	if (cp->dev >= SV_FIRST_MIXER &&
   1098 	    cp->dev <= SV_LAST_MIXER) {
   1099 		int off, mute;
   1100 
   1101 		off = cp->dev - SV_FIRST_MIXER;
   1102 		mute = (off % SV_DEVICES_PER_PORT);
   1103 		idx = off / SV_DEVICES_PER_PORT;
   1104 
   1105 		if (mute) {
   1106 			if (cp->type != AUDIO_MIXER_ENUM)
   1107 				return EINVAL;
   1108 
   1109 			mutex_spin_enter(&sc->sc_intr_lock);
   1110 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1111 			if (cp->un.ord)
   1112 				reg |= SV_MUTE_BIT;
   1113 			else
   1114 				reg &= ~SV_MUTE_BIT;
   1115 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1116 
   1117 			if (ports[idx].r_port) {
   1118 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1119 				if (cp->un.ord)
   1120 					reg |= SV_MUTE_BIT;
   1121 				else
   1122 					reg &= ~SV_MUTE_BIT;
   1123 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1124 			}
   1125 			mutex_spin_exit(&sc->sc_intr_lock);
   1126 		} else {
   1127 			int  lval, rval;
   1128 
   1129 			if (cp->type != AUDIO_MIXER_VALUE)
   1130 				return EINVAL;
   1131 
   1132 			if (cp->un.value.num_channels != 1 &&
   1133 			    cp->un.value.num_channels != 2)
   1134 				return (EINVAL);
   1135 
   1136 			if (ports[idx].r_port == 0) {
   1137 				if (cp->un.value.num_channels != 1)
   1138 					return (EINVAL);
   1139 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1140 				rval = 0; /* shut up GCC */
   1141 			} else {
   1142 				if (cp->un.value.num_channels != 2)
   1143 					return (EINVAL);
   1144 
   1145 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1146 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1147 			}
   1148 
   1149 			mutex_spin_enter(&sc->sc_intr_lock);
   1150 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1151 			reg &= ~(ports[idx].mask);
   1152 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1153 				AUDIO_MAX_GAIN;
   1154 			reg |= lval;
   1155 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1156 
   1157 			if (ports[idx].r_port != 0) {
   1158 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1159 				reg &= ~(ports[idx].mask);
   1160 
   1161 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1162 					AUDIO_MAX_GAIN;
   1163 				reg |= rval;
   1164 
   1165 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1166 			}
   1167 
   1168 			sv_read_indirect(sc, ports[idx].l_port);
   1169 			mutex_spin_exit(&sc->sc_intr_lock);
   1170 		}
   1171 
   1172 		return 0;
   1173 	}
   1174 
   1175 
   1176 	switch (cp->dev) {
   1177 	case SV_RECORD_SOURCE:
   1178 		if (cp->type != AUDIO_MIXER_ENUM)
   1179 			return EINVAL;
   1180 
   1181 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1182 			if (record_sources[idx].idx == cp->un.ord)
   1183 				goto found;
   1184 		}
   1185 
   1186 		return EINVAL;
   1187 
   1188 	found:
   1189 		mutex_spin_enter(&sc->sc_intr_lock);
   1190 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1191 		reg &= ~SV_REC_SOURCE_MASK;
   1192 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1193 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1194 
   1195 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1196 		reg &= ~SV_REC_SOURCE_MASK;
   1197 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1198 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1199 		mutex_spin_exit(&sc->sc_intr_lock);
   1200 		return 0;
   1201 
   1202 	case SV_RECORD_GAIN:
   1203 	{
   1204 		int val;
   1205 
   1206 		if (cp->type != AUDIO_MIXER_VALUE)
   1207 			return EINVAL;
   1208 
   1209 		if (cp->un.value.num_channels != 1)
   1210 			return EINVAL;
   1211 
   1212 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
   1213 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
   1214 
   1215 		mutex_spin_enter(&sc->sc_intr_lock);
   1216 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1217 		reg &= ~SV_REC_GAIN_MASK;
   1218 		reg |= val;
   1219 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1220 
   1221 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1222 		reg &= ~SV_REC_GAIN_MASK;
   1223 		reg |= val;
   1224 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1225 		mutex_spin_exit(&sc->sc_intr_lock);
   1226 	}
   1227 	return (0);
   1228 
   1229 	case SV_MIC_BOOST:
   1230 		if (cp->type != AUDIO_MIXER_ENUM)
   1231 			return EINVAL;
   1232 
   1233 		mutex_spin_enter(&sc->sc_intr_lock);
   1234 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1235 		if (cp->un.ord) {
   1236 			reg |= SV_MIC_BOOST_BIT;
   1237 		} else {
   1238 			reg &= ~SV_MIC_BOOST_BIT;
   1239 		}
   1240 
   1241 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1242 		mutex_spin_exit(&sc->sc_intr_lock);
   1243 		return 0;
   1244 
   1245 	case SV_SRS_MODE:
   1246 		if (cp->type != AUDIO_MIXER_ENUM)
   1247 			return EINVAL;
   1248 
   1249 		mutex_spin_enter(&sc->sc_intr_lock);
   1250 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1251 		if (cp->un.ord) {
   1252 			reg &= ~SV_SRS_SPACE_ONOFF;
   1253 		} else {
   1254 			reg |= SV_SRS_SPACE_ONOFF;
   1255 		}
   1256 
   1257 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1258 		mutex_spin_exit(&sc->sc_intr_lock);
   1259 		return 0;
   1260 	}
   1261 
   1262 	return EINVAL;
   1263 }
   1264 
   1265 static int
   1266 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1267 {
   1268 	struct sv_softc *sc;
   1269 	int val, error;
   1270 	uint8_t reg;
   1271 
   1272 	sc = addr;
   1273 	error = 0;
   1274 
   1275 	mutex_spin_enter(&sc->sc_intr_lock);
   1276 
   1277 	if (cp->dev >= SV_FIRST_MIXER &&
   1278 	    cp->dev <= SV_LAST_MIXER) {
   1279 		int off = cp->dev - SV_FIRST_MIXER;
   1280 		int mute = (off % 2);
   1281 		int idx = off / 2;
   1282 
   1283 		off = cp->dev - SV_FIRST_MIXER;
   1284 		mute = (off % 2);
   1285 		idx = off / 2;
   1286 		if (mute) {
   1287 			if (cp->type != AUDIO_MIXER_ENUM)
   1288 				error = EINVAL;
   1289 			else {
   1290 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1291 				cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1292 			}
   1293 		} else {
   1294 			if (cp->type != AUDIO_MIXER_VALUE ||
   1295 			    (cp->un.value.num_channels != 1 &&
   1296 			    cp->un.value.num_channels != 2) ||
   1297 			   ((ports[idx].r_port == 0 &&
   1298 			     cp->un.value.num_channels != 1) ||
   1299 			    (ports[idx].r_port != 0 &&
   1300 			     cp->un.value.num_channels != 2)))
   1301 				error = EINVAL;
   1302 			else {
   1303 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1304 				reg &= ports[idx].mask;
   1305 
   1306 				val = AUDIO_MAX_GAIN -
   1307 				    ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1308 
   1309 				if (ports[idx].r_port != 0) {
   1310 					cp->un.value.level
   1311 					    [AUDIO_MIXER_LEVEL_LEFT] = val;
   1312 
   1313 					reg = sv_read_indirect(sc,
   1314 					    ports[idx].r_port);
   1315 					reg &= ports[idx].mask;
   1316 
   1317 					val = AUDIO_MAX_GAIN -
   1318 					    ((reg * AUDIO_MAX_GAIN)
   1319 					    / ports[idx].mask);
   1320 					cp->un.value.level
   1321 					    [AUDIO_MIXER_LEVEL_RIGHT] = val;
   1322 				} else
   1323 					cp->un.value.level
   1324 					    [AUDIO_MIXER_LEVEL_MONO] = val;
   1325 			}
   1326 		}
   1327 
   1328 		return error;
   1329 	}
   1330 
   1331 	switch (cp->dev) {
   1332 	case SV_RECORD_SOURCE:
   1333 		if (cp->type != AUDIO_MIXER_ENUM) {
   1334 			error = EINVAL;
   1335 			break;
   1336 		}
   1337 
   1338 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1339 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1340 
   1341 		break;
   1342 
   1343 	case SV_RECORD_GAIN:
   1344 		if (cp->type != AUDIO_MIXER_VALUE) {
   1345 			error = EINVAL;
   1346 			break;
   1347 		}
   1348 		if (cp->un.value.num_channels != 1) {
   1349 			error = EINVAL;
   1350 			break;
   1351 		}
   1352 
   1353 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1354 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1355 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1356 
   1357 		break;
   1358 
   1359 	case SV_MIC_BOOST:
   1360 		if (cp->type != AUDIO_MIXER_ENUM) {
   1361 			error = EINVAL;
   1362 			break;
   1363 		}
   1364 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1365 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1366 		break;
   1367 
   1368 	case SV_SRS_MODE:
   1369 		if (cp->type != AUDIO_MIXER_ENUM) {
   1370 			error = EINVAL;
   1371 			break;
   1372 		}
   1373 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1374 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1375 		break;
   1376 	default:
   1377 		error = EINVAL;
   1378 		break;
   1379 	}
   1380 
   1381 	mutex_spin_exit(&sc->sc_intr_lock);
   1382 	return error;
   1383 }
   1384 
   1385 static void
   1386 sv_init_mixer(struct sv_softc *sc)
   1387 {
   1388 	mixer_ctrl_t cp;
   1389 	int i;
   1390 
   1391 	cp.type = AUDIO_MIXER_ENUM;
   1392 	cp.dev = SV_SRS_MODE;
   1393 	cp.un.ord = 0;
   1394 
   1395 	sv_mixer_set_port(sc, &cp);
   1396 
   1397 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1398 		if (!strcmp(ports[i].audio, AudioNdac)) {
   1399 			cp.type = AUDIO_MIXER_ENUM;
   1400 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1401 			cp.un.ord = 0;
   1402 			sv_mixer_set_port(sc, &cp);
   1403 			break;
   1404 		}
   1405 	}
   1406 }
   1407 
   1408 static void *
   1409 sv_malloc(void *addr, int direction, size_t size)
   1410 {
   1411 	struct sv_softc *sc;
   1412 	struct sv_dma *p;
   1413 	int error;
   1414 
   1415 	sc = addr;
   1416 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
   1417 	if (p == NULL)
   1418 		return NULL;
   1419 	error = sv_allocmem(sc, size, 16, direction, p);
   1420 	if (error) {
   1421 		kmem_free(p, sizeof(*p));
   1422 		return 0;
   1423 	}
   1424 	p->next = sc->sc_dmas;
   1425 	sc->sc_dmas = p;
   1426 	return KERNADDR(p);
   1427 }
   1428 
   1429 static void
   1430 sv_free(void *addr, void *ptr, size_t size)
   1431 {
   1432 	struct sv_softc *sc;
   1433 	struct sv_dma **pp, *p;
   1434 
   1435 	sc = addr;
   1436 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1437 		if (KERNADDR(p) == ptr) {
   1438 			sv_freemem(sc, p);
   1439 			*pp = p->next;
   1440 			kmem_free(p, sizeof(*p));
   1441 			return;
   1442 		}
   1443 	}
   1444 }
   1445 
   1446 static size_t
   1447 sv_round_buffersize(void *addr, int direction, size_t size)
   1448 {
   1449 
   1450 	return size;
   1451 }
   1452 
   1453 static paddr_t
   1454 sv_mappage(void *addr, void *mem, off_t off, int prot)
   1455 {
   1456 	struct sv_softc *sc;
   1457 	struct sv_dma *p;
   1458 
   1459 	sc = addr;
   1460 	if (off < 0)
   1461 		return -1;
   1462 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1463 		continue;
   1464 	if (p == NULL)
   1465 		return -1;
   1466 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1467 			       off, prot, BUS_DMA_WAITOK);
   1468 }
   1469 
   1470 static int
   1471 sv_get_props(void *addr)
   1472 {
   1473 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1474 }
   1475 
   1476 static void
   1477 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
   1478 {
   1479 	struct sv_softc *sc;
   1480 
   1481 	sc = addr;
   1482 	*intr = &sc->sc_intr_lock;
   1483 	*thread = &sc->sc_lock;
   1484 }
   1485