Home | History | Annotate | Line # | Download | only in pci
sv.c revision 1.51
      1 /*      $NetBSD: sv.c,v 1.51 2016/07/14 10:19:06 msaitoh Exp $ */
      2 /*      $OpenBSD: sv.c,v 1.2 1998/07/13 01:50:15 csapuntz Exp $ */
      3 
      4 /*
      5  * Copyright (c) 1999, 2008 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Charles M. Hannum.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1998 Constantine Paul Sapuntzakis
     35  * All rights reserved
     36  *
     37  * Author: Constantine Paul Sapuntzakis (csapuntz (at) cvs.openbsd.org)
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. The author's name or those of the contributors may be used to
     48  *    endorse or promote products derived from this software without
     49  *    specific prior written permission.
     50  *
     51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTORS
     52  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     53  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     54  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     55  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     56  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     57  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     58  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     59  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     60  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     61  * POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 /*
     65  * S3 SonicVibes driver
     66  *   Heavily based on the eap driver by Lennart Augustsson
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: sv.c,v 1.51 2016/07/14 10:19:06 msaitoh Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/kernel.h>
     75 #include <sys/kmem.h>
     76 #include <sys/device.h>
     77 
     78 #include <dev/pci/pcireg.h>
     79 #include <dev/pci/pcivar.h>
     80 #include <dev/pci/pcidevs.h>
     81 
     82 #include <sys/audioio.h>
     83 #include <dev/audio_if.h>
     84 #include <dev/mulaw.h>
     85 #include <dev/auconv.h>
     86 
     87 #include <dev/ic/i8237reg.h>
     88 #include <dev/pci/svreg.h>
     89 #include <dev/pci/svvar.h>
     90 
     91 #include <sys/bus.h>
     92 
     93 /* XXX
     94  * The SonicVibes DMA is broken and only works on 24-bit addresses.
     95  * As long as bus_dmamem_alloc_range() is missing we use the ISA
     96  * DMA tag on i386.
     97  */
     98 #if defined(amd64) || defined(i386)
     99 #include <dev/isa/isavar.h>
    100 #endif
    101 
    102 #ifdef AUDIO_DEBUG
    103 #define DPRINTF(x)	if (svdebug) printf x
    104 #define DPRINTFN(n,x)	if (svdebug>(n)) printf x
    105 int	svdebug = 0;
    106 #else
    107 #define DPRINTF(x)
    108 #define DPRINTFN(n,x)
    109 #endif
    110 
    111 static int	sv_match(device_t, cfdata_t, void *);
    112 static void	sv_attach(device_t, device_t, void *);
    113 static int	sv_intr(void *);
    114 
    115 struct sv_dma {
    116 	bus_dmamap_t map;
    117 	void *addr;
    118 	bus_dma_segment_t segs[1];
    119 	int nsegs;
    120 	size_t size;
    121 	struct sv_dma *next;
    122 };
    123 #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr)
    124 #define KERNADDR(p) ((void *)((p)->addr))
    125 
    126 CFATTACH_DECL_NEW(sv, sizeof(struct sv_softc),
    127     sv_match, sv_attach, NULL, NULL);
    128 
    129 static struct audio_device sv_device = {
    130 	"S3 SonicVibes",
    131 	"",
    132 	"sv"
    133 };
    134 
    135 #define ARRAY_SIZE(foo)  ((sizeof(foo)) / sizeof(foo[0]))
    136 
    137 static int	sv_allocmem(struct sv_softc *, size_t, size_t, int,
    138 			    struct sv_dma *);
    139 static int	sv_freemem(struct sv_softc *, struct sv_dma *);
    140 
    141 static void	sv_init_mixer(struct sv_softc *);
    142 
    143 static int	sv_open(void *, int);
    144 static int	sv_query_encoding(void *, struct audio_encoding *);
    145 static int	sv_set_params(void *, int, int, audio_params_t *,
    146 			      audio_params_t *, stream_filter_list_t *,
    147 			      stream_filter_list_t *);
    148 static int	sv_round_blocksize(void *, int, int, const audio_params_t *);
    149 static int	sv_trigger_output(void *, void *, void *, int, void (*)(void *),
    150 				  void *, const audio_params_t *);
    151 static int	sv_trigger_input(void *, void *, void *, int, void (*)(void *),
    152 				 void *, const audio_params_t *);
    153 static int	sv_halt_output(void *);
    154 static int	sv_halt_input(void *);
    155 static int	sv_getdev(void *, struct audio_device *);
    156 static int	sv_mixer_set_port(void *, mixer_ctrl_t *);
    157 static int	sv_mixer_get_port(void *, mixer_ctrl_t *);
    158 static int	sv_query_devinfo(void *, mixer_devinfo_t *);
    159 static void *	sv_malloc(void *, int, size_t);
    160 static void	sv_free(void *, void *, size_t);
    161 static size_t	sv_round_buffersize(void *, int, size_t);
    162 static paddr_t	sv_mappage(void *, void *, off_t, int);
    163 static int	sv_get_props(void *);
    164 static void	sv_get_locks(void *, kmutex_t **, kmutex_t **);
    165 
    166 #ifdef AUDIO_DEBUG
    167 void    sv_dumpregs(struct sv_softc *sc);
    168 #endif
    169 
    170 static const struct audio_hw_if sv_hw_if = {
    171 	sv_open,
    172 	NULL,			/* close */
    173 	NULL,
    174 	sv_query_encoding,
    175 	sv_set_params,
    176 	sv_round_blocksize,
    177 	NULL,
    178 	NULL,
    179 	NULL,
    180 	NULL,
    181 	NULL,
    182 	sv_halt_output,
    183 	sv_halt_input,
    184 	NULL,
    185 	sv_getdev,
    186 	NULL,
    187 	sv_mixer_set_port,
    188 	sv_mixer_get_port,
    189 	sv_query_devinfo,
    190 	sv_malloc,
    191 	sv_free,
    192 	sv_round_buffersize,
    193 	sv_mappage,
    194 	sv_get_props,
    195 	sv_trigger_output,
    196 	sv_trigger_input,
    197 	NULL,
    198 	sv_get_locks,
    199 };
    200 
    201 #define SV_NFORMATS	4
    202 static const struct audio_format sv_formats[SV_NFORMATS] = {
    203 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    204 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    205 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
    206 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    207 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    208 	 2, AUFMT_STEREO, 0, {2000, 48000}},
    209 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
    210 	 1, AUFMT_MONAURAL, 0, {2000, 48000}},
    211 };
    212 
    213 
    214 static void
    215 sv_write(struct sv_softc *sc, uint8_t reg, uint8_t val)
    216 {
    217 
    218 	DPRINTFN(8,("sv_write(0x%x, 0x%x)\n", reg, val));
    219 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, reg, val);
    220 }
    221 
    222 static uint8_t
    223 sv_read(struct sv_softc *sc, uint8_t reg)
    224 {
    225 	uint8_t val;
    226 
    227 	val = bus_space_read_1(sc->sc_iot, sc->sc_ioh, reg);
    228 	DPRINTFN(8,("sv_read(0x%x) = 0x%x\n", reg, val));
    229 	return val;
    230 }
    231 
    232 static uint8_t
    233 sv_read_indirect(struct sv_softc *sc, uint8_t reg)
    234 {
    235 	uint8_t val;
    236 
    237 	sv_write(sc, SV_CODEC_IADDR, reg & SV_IADDR_MASK);
    238 	val = sv_read(sc, SV_CODEC_IDATA);
    239 	return val;
    240 }
    241 
    242 static void
    243 sv_write_indirect(struct sv_softc *sc, uint8_t reg, uint8_t val)
    244 {
    245 	uint8_t iaddr;
    246 
    247 	iaddr = reg & SV_IADDR_MASK;
    248 	if (reg == SV_DMA_DATA_FORMAT)
    249 		iaddr |= SV_IADDR_MCE;
    250 
    251 	sv_write(sc, SV_CODEC_IADDR, iaddr);
    252 	sv_write(sc, SV_CODEC_IDATA, val);
    253 }
    254 
    255 static int
    256 sv_match(device_t parent, cfdata_t match, void *aux)
    257 {
    258 	struct pci_attach_args *pa;
    259 
    260 	pa = aux;
    261 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_S3 &&
    262 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_S3_SONICVIBES)
    263 		return 1;
    264 
    265 	return 0;
    266 }
    267 
    268 static pcireg_t pci_io_alloc_low, pci_io_alloc_high;
    269 
    270 static int
    271 pci_alloc_io(pci_chipset_tag_t pc, pcitag_t pt, int pcioffs,
    272     bus_space_tag_t iot, bus_size_t size, bus_size_t align,
    273     bus_size_t bound, int flags, bus_space_handle_t *ioh)
    274 {
    275 	bus_addr_t addr;
    276 	int error;
    277 
    278 	error = bus_space_alloc(iot, pci_io_alloc_low, pci_io_alloc_high,
    279 				size, align, bound, flags, &addr, ioh);
    280 	if (error)
    281 		return error;
    282 
    283 	pci_conf_write(pc, pt, pcioffs, addr);
    284 	return 0;
    285 }
    286 
    287 /*
    288  * Allocate IO addresses when all other configuration is done.
    289  */
    290 static void
    291 sv_defer(device_t self)
    292 {
    293 	struct sv_softc *sc;
    294 	pci_chipset_tag_t pc;
    295 	pcitag_t pt;
    296 	pcireg_t dmaio;
    297 
    298 	sc = device_private(self);
    299 	pc = sc->sc_pa.pa_pc;
    300 	pt = sc->sc_pa.pa_tag;
    301 	DPRINTF(("sv_defer: %p\n", sc));
    302 
    303 	/* XXX
    304 	 * Get a reasonable default for the I/O range.
    305 	 * Assume the range around SB_PORTBASE is valid on this PCI bus.
    306 	 */
    307 	pci_io_alloc_low = pci_conf_read(pc, pt, SV_SB_PORTBASE_SLOT);
    308 	pci_io_alloc_high = pci_io_alloc_low + 0x1000;
    309 
    310 	if (pci_alloc_io(pc, pt, SV_DMAA_CONFIG_OFF,
    311 			  sc->sc_iot, SV_DMAA_SIZE, SV_DMAA_ALIGN, 0,
    312 			  0, &sc->sc_dmaa_ioh)) {
    313 		printf("sv_attach: cannot allocate DMA A range\n");
    314 		return;
    315 	}
    316 	dmaio = pci_conf_read(pc, pt, SV_DMAA_CONFIG_OFF);
    317 	DPRINTF(("sv_attach: addr a dmaio=0x%lx\n", (u_long)dmaio));
    318 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF,
    319 		       dmaio | SV_DMA_CHANNEL_ENABLE | SV_DMAA_EXTENDED_ADDR);
    320 
    321 	if (pci_alloc_io(pc, pt, SV_DMAC_CONFIG_OFF,
    322 			  sc->sc_iot, SV_DMAC_SIZE, SV_DMAC_ALIGN, 0,
    323 			  0, &sc->sc_dmac_ioh)) {
    324 		printf("sv_attach: cannot allocate DMA C range\n");
    325 		return;
    326 	}
    327 	dmaio = pci_conf_read(pc, pt, SV_DMAC_CONFIG_OFF);
    328 	DPRINTF(("sv_attach: addr c dmaio=0x%lx\n", (u_long)dmaio));
    329 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF,
    330 		       dmaio | SV_DMA_CHANNEL_ENABLE);
    331 
    332 	sc->sc_dmaset = 1;
    333 }
    334 
    335 static void
    336 sv_attach(device_t parent, device_t self, void *aux)
    337 {
    338 	struct sv_softc *sc;
    339 	struct pci_attach_args *pa;
    340 	pci_chipset_tag_t pc;
    341 	pcitag_t pt;
    342 	pci_intr_handle_t ih;
    343 	pcireg_t csr;
    344 	char const *intrstr;
    345 	uint8_t reg;
    346 	struct audio_attach_args arg;
    347 	char intrbuf[PCI_INTRSTR_LEN];
    348 
    349 	sc = device_private(self);
    350 	pa = aux;
    351 	pc = pa->pa_pc;
    352 	pt = pa->pa_tag;
    353 	aprint_naive("\n");
    354 	aprint_normal("\n");
    355 
    356 	/* Map I/O registers */
    357 	if (pci_mapreg_map(pa, SV_ENHANCED_PORTBASE_SLOT,
    358 			   PCI_MAPREG_TYPE_IO, 0,
    359 			   &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
    360 		aprint_error_dev(self, "can't map enhanced i/o space\n");
    361 		return;
    362 	}
    363 	if (pci_mapreg_map(pa, SV_FM_PORTBASE_SLOT,
    364 			   PCI_MAPREG_TYPE_IO, 0,
    365 			   &sc->sc_opliot, &sc->sc_oplioh, NULL, NULL)) {
    366 		aprint_error_dev(self, "can't map FM i/o space\n");
    367 		return;
    368 	}
    369 	if (pci_mapreg_map(pa, SV_MIDI_PORTBASE_SLOT,
    370 			   PCI_MAPREG_TYPE_IO, 0,
    371 			   &sc->sc_midiiot, &sc->sc_midiioh, NULL, NULL)) {
    372 		aprint_error_dev(self, "can't map MIDI i/o space\n");
    373 		return;
    374 	}
    375 	DPRINTF(("sv: IO ports: enhanced=0x%x, OPL=0x%x, MIDI=0x%x\n",
    376 		 (int)sc->sc_ioh, (int)sc->sc_oplioh, (int)sc->sc_midiioh));
    377 
    378 #if defined(alpha)
    379 	/* XXX Force allocation through the SGMAP. */
    380 	sc->sc_dmatag = alphabus_dma_get_tag(pa->pa_dmat, ALPHA_BUS_ISA);
    381 #elif defined(amd64) || defined(i386)
    382 /* XXX
    383  * The SonicVibes DMA is broken and only works on 24-bit addresses.
    384  * As long as bus_dmamem_alloc_range() is missing we use the ISA
    385  * DMA tag on i386.
    386  */
    387 	sc->sc_dmatag = &isa_bus_dma_tag;
    388 #else
    389 	sc->sc_dmatag = pa->pa_dmat;
    390 #endif
    391 
    392 	pci_conf_write(pc, pt, SV_DMAA_CONFIG_OFF, SV_DMAA_EXTENDED_ADDR);
    393 	pci_conf_write(pc, pt, SV_DMAC_CONFIG_OFF, 0);
    394 
    395 	/* Enable the device. */
    396 	csr = pci_conf_read(pc, pt, PCI_COMMAND_STATUS_REG);
    397 	pci_conf_write(pc, pt, PCI_COMMAND_STATUS_REG,
    398 		       csr | PCI_COMMAND_MASTER_ENABLE);
    399 
    400 	sv_write_indirect(sc, SV_ANALOG_POWER_DOWN_CONTROL, 0);
    401 	sv_write_indirect(sc, SV_DIGITAL_POWER_DOWN_CONTROL, 0);
    402 
    403 	/* initialize codec registers */
    404 	reg = sv_read(sc, SV_CODEC_CONTROL);
    405 	reg |= SV_CTL_RESET;
    406 	sv_write(sc, SV_CODEC_CONTROL, reg);
    407 	delay(50);
    408 
    409 	reg = sv_read(sc, SV_CODEC_CONTROL);
    410 	reg &= ~SV_CTL_RESET;
    411 	reg |= SV_CTL_INTA | SV_CTL_ENHANCED;
    412 
    413 	/* This write clears the reset */
    414 	sv_write(sc, SV_CODEC_CONTROL, reg);
    415 	delay(50);
    416 
    417 	/* This write actually shoves the new values in */
    418 	sv_write(sc, SV_CODEC_CONTROL, reg);
    419 
    420 	DPRINTF(("sv_attach: control=0x%x\n", sv_read(sc, SV_CODEC_CONTROL)));
    421 
    422 	/* Map and establish the interrupt. */
    423 	if (pci_intr_map(pa, &ih)) {
    424 		aprint_error_dev(self, "couldn't map interrupt\n");
    425 		return;
    426 	}
    427 
    428 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    429 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
    430 
    431 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    432 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, sv_intr, sc);
    433 	if (sc->sc_ih == NULL) {
    434 		aprint_error_dev(self, "couldn't establish interrupt");
    435 		if (intrstr != NULL)
    436 			aprint_error(" at %s", intrstr);
    437 		aprint_error("\n");
    438 		mutex_destroy(&sc->sc_lock);
    439 		mutex_destroy(&sc->sc_intr_lock);
    440 		return;
    441 	}
    442 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    443 	aprint_normal_dev(self, "rev %d",
    444 	    sv_read_indirect(sc, SV_REVISION_LEVEL));
    445 	if (sv_read(sc, SV_CODEC_CONTROL) & SV_CTL_MD1)
    446 		aprint_normal(", reverb SRAM present");
    447 	if (!(sv_read_indirect(sc, SV_WAVETABLE_SOURCE_SELECT) & SV_WSS_WT0))
    448 		aprint_normal(", wavetable ROM present");
    449 	aprint_normal("\n");
    450 
    451 	/* Enable DMA interrupts */
    452 	reg = sv_read(sc, SV_CODEC_INTMASK);
    453 	reg &= ~(SV_INTMASK_DMAA | SV_INTMASK_DMAC);
    454 	reg |= SV_INTMASK_UD | SV_INTMASK_SINT | SV_INTMASK_MIDI;
    455 	sv_write(sc, SV_CODEC_INTMASK, reg);
    456 	sv_read(sc, SV_CODEC_STATUS);
    457 
    458 	sv_init_mixer(sc);
    459 
    460 	audio_attach_mi(&sv_hw_if, sc, self);
    461 
    462 	arg.type = AUDIODEV_TYPE_OPL;
    463 	arg.hwif = 0;
    464 	arg.hdl = 0;
    465 	(void)config_found(self, &arg, audioprint);
    466 
    467 	sc->sc_pa = *pa;	/* for deferred setup */
    468 	config_defer(self, sv_defer);
    469 }
    470 
    471 #ifdef AUDIO_DEBUG
    472 void
    473 sv_dumpregs(struct sv_softc *sc)
    474 {
    475 	int idx;
    476 
    477 #if 0
    478 	for (idx = 0; idx < 0x50; idx += 4)
    479 		printf ("%02x = %x\n", idx,
    480 			pci_conf_read(pa->pa_pc, pa->pa_tag, idx));
    481 #endif
    482 
    483 	for (idx = 0; idx < 6; idx++)
    484 		printf ("REG %02x = %02x\n", idx, sv_read(sc, idx));
    485 
    486 	for (idx = 0; idx < 0x32; idx++)
    487 		printf ("IREG %02x = %02x\n", idx, sv_read_indirect(sc, idx));
    488 
    489 	for (idx = 0; idx < 0x10; idx++)
    490 		printf ("DMA %02x = %02x\n", idx,
    491 			bus_space_read_1(sc->sc_iot, sc->sc_dmaa_ioh, idx));
    492 }
    493 #endif
    494 
    495 static int
    496 sv_intr(void *p)
    497 {
    498 	struct sv_softc *sc;
    499 	uint8_t intr;
    500 
    501 	sc = p;
    502 
    503 	mutex_spin_enter(&sc->sc_intr_lock);
    504 
    505 	intr = sv_read(sc, SV_CODEC_STATUS);
    506 	DPRINTFN(5,("sv_intr: intr=0x%x\n", intr));
    507 
    508 	if (intr & SV_INTSTATUS_DMAA) {
    509 		if (sc->sc_pintr)
    510 			sc->sc_pintr(sc->sc_parg);
    511 	}
    512 
    513 	if (intr & SV_INTSTATUS_DMAC) {
    514 		if (sc->sc_rintr)
    515 			sc->sc_rintr(sc->sc_rarg);
    516 	}
    517 
    518 	mutex_spin_exit(&sc->sc_intr_lock);
    519 
    520 	return (intr & (SV_INTSTATUS_DMAA | SV_INTSTATUS_DMAC)) != 0;
    521 }
    522 
    523 static int
    524 sv_allocmem(struct sv_softc *sc, size_t size, size_t align,
    525     int direction, struct sv_dma *p)
    526 {
    527 	int error;
    528 
    529 	p->size = size;
    530 	error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
    531 	    p->segs, ARRAY_SIZE(p->segs), &p->nsegs, BUS_DMA_WAITOK);
    532 	if (error)
    533 		return error;
    534 
    535 	error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
    536 	    &p->addr, BUS_DMA_WAITOK|BUS_DMA_COHERENT);
    537 	if (error)
    538 		goto free;
    539 
    540 	error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
    541 	    0, BUS_DMA_WAITOK, &p->map);
    542 	if (error)
    543 		goto unmap;
    544 
    545 	error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
    546 	    BUS_DMA_WAITOK | (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
    547 	if (error)
    548 		goto destroy;
    549 	DPRINTF(("sv_allocmem: pa=%lx va=%lx pba=%lx\n",
    550 	    (long)p->segs[0].ds_addr, (long)KERNADDR(p), (long)DMAADDR(p)));
    551 	return 0;
    552 
    553 destroy:
    554 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    555 unmap:
    556 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    557 free:
    558 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    559 	return error;
    560 }
    561 
    562 static int
    563 sv_freemem(struct sv_softc *sc, struct sv_dma *p)
    564 {
    565 
    566 	bus_dmamap_unload(sc->sc_dmatag, p->map);
    567 	bus_dmamap_destroy(sc->sc_dmatag, p->map);
    568 	bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
    569 	bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
    570 	return 0;
    571 }
    572 
    573 static int
    574 sv_open(void *addr, int flags)
    575 {
    576 	struct sv_softc *sc;
    577 
    578 	sc = addr;
    579 	DPRINTF(("sv_open\n"));
    580 	if (!sc->sc_dmaset)
    581 		return ENXIO;
    582 
    583 	return 0;
    584 }
    585 
    586 static int
    587 sv_query_encoding(void *addr, struct audio_encoding *fp)
    588 {
    589 
    590 	switch (fp->index) {
    591 	case 0:
    592 		strcpy(fp->name, AudioEulinear);
    593 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    594 		fp->precision = 8;
    595 		fp->flags = 0;
    596 		return 0;
    597 	case 1:
    598 		strcpy(fp->name, AudioEmulaw);
    599 		fp->encoding = AUDIO_ENCODING_ULAW;
    600 		fp->precision = 8;
    601 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    602 		return 0;
    603 	case 2:
    604 		strcpy(fp->name, AudioEalaw);
    605 		fp->encoding = AUDIO_ENCODING_ALAW;
    606 		fp->precision = 8;
    607 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    608 		return 0;
    609 	case 3:
    610 		strcpy(fp->name, AudioEslinear);
    611 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    612 		fp->precision = 8;
    613 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    614 		return 0;
    615 	case 4:
    616 		strcpy(fp->name, AudioEslinear_le);
    617 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    618 		fp->precision = 16;
    619 		fp->flags = 0;
    620 		return 0;
    621 	case 5:
    622 		strcpy(fp->name, AudioEulinear_le);
    623 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    624 		fp->precision = 16;
    625 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    626 		return 0;
    627 	case 6:
    628 		strcpy(fp->name, AudioEslinear_be);
    629 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    630 		fp->precision = 16;
    631 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    632 		return 0;
    633 	case 7:
    634 		strcpy(fp->name, AudioEulinear_be);
    635 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    636 		fp->precision = 16;
    637 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    638 		return 0;
    639 	default:
    640 		return EINVAL;
    641 	}
    642 }
    643 
    644 static int
    645 sv_set_params(void *addr, int setmode, int usemode, audio_params_t *play,
    646     audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    647 {
    648 	struct sv_softc *sc;
    649 	audio_params_t *p;
    650 	uint32_t val;
    651 
    652 	sc = addr;
    653 	p = NULL;
    654 	/*
    655 	 * This device only has one clock, so make the sample rates match.
    656 	 */
    657 	if (play->sample_rate != rec->sample_rate &&
    658 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    659 		if (setmode == AUMODE_PLAY) {
    660 			rec->sample_rate = play->sample_rate;
    661 			setmode |= AUMODE_RECORD;
    662 		} else if (setmode == AUMODE_RECORD) {
    663 			play->sample_rate = rec->sample_rate;
    664 			setmode |= AUMODE_PLAY;
    665 		} else
    666 			return EINVAL;
    667 	}
    668 
    669 	if (setmode & AUMODE_RECORD) {
    670 		p = rec;
    671 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    672 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
    673 			return EINVAL;
    674 	}
    675 	if (setmode & AUMODE_PLAY) {
    676 		p = play;
    677 		if (auconv_set_converter(sv_formats, SV_NFORMATS,
    678 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
    679 			return EINVAL;
    680 	}
    681 
    682 	if (p == NULL)
    683 		return 0;
    684 
    685 	val = p->sample_rate * 65536 / 48000;
    686 	/*
    687 	 * If the sample rate is exactly 48 kHz, the fraction would overflow the
    688 	 * register, so we have to bias it.  This causes a little clock drift.
    689 	 * The drift is below normal crystal tolerance (.0001%), so although
    690 	 * this seems a little silly, we can pretty much ignore it.
    691 	 * (I tested the output speed with values of 1-20, just to be sure this
    692 	 * register isn't *supposed* to have a bias.  It isn't.)
    693 	 * - mycroft
    694 	 */
    695 	if (val > 65535)
    696 		val = 65535;
    697 
    698 	mutex_spin_enter(&sc->sc_intr_lock);
    699 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_0, val & 0xff);
    700 	sv_write_indirect(sc, SV_PCM_SAMPLE_RATE_1, val >> 8);
    701 	mutex_spin_exit(&sc->sc_intr_lock);
    702 
    703 #define F_REF 24576000
    704 
    705 #define ABS(x) (((x) < 0) ? (-x) : (x))
    706 
    707 	if (setmode & AUMODE_RECORD) {
    708 		/* The ADC reference frequency (f_out) is 512 * sample rate */
    709 
    710 		/* f_out is dervied from the 24.576MHz crystal by three values:
    711 		   M & N & R. The equation is as follows:
    712 
    713 		   f_out = (m + 2) * f_ref / ((n + 2) * (2 ^ a))
    714 
    715 		   with the constraint that:
    716 
    717 		   80 MHz < (m + 2) / (n + 2) * f_ref <= 150MHz
    718 		   and n, m >= 1
    719 		*/
    720 
    721 		int  goal_f_out;
    722 		int  a, n, m, best_n, best_m, best_error;
    723 		int  pll_sample;
    724 		int  error;
    725 
    726 		goal_f_out = 512 * rec->sample_rate;
    727 		best_n = 0;
    728 		best_m = 0;
    729 		best_error = 10000000;
    730 		for (a = 0; a < 8; a++) {
    731 			if ((goal_f_out * (1 << a)) >= 80000000)
    732 				break;
    733 		}
    734 
    735 		/* a != 8 because sample_rate >= 2000 */
    736 
    737 		for (n = 33; n > 2; n--) {
    738 			m = (goal_f_out * n * (1 << a)) / F_REF;
    739 			if ((m > 257) || (m < 3))
    740 				continue;
    741 
    742 			pll_sample = (m * F_REF) / (n * (1 << a));
    743 			pll_sample /= 512;
    744 
    745 			/* Threshold might be good here */
    746 			error = pll_sample - rec->sample_rate;
    747 			error = ABS(error);
    748 
    749 			if (error < best_error) {
    750 				best_error = error;
    751 				best_n = n;
    752 				best_m = m;
    753 				if (error == 0) break;
    754 			}
    755 		}
    756 
    757 		best_n -= 2;
    758 		best_m -= 2;
    759 
    760 		mutex_spin_enter(&sc->sc_intr_lock);
    761 		sv_write_indirect(sc, SV_ADC_PLL_M, best_m);
    762 		sv_write_indirect(sc, SV_ADC_PLL_N,
    763 				  best_n | (a << SV_PLL_R_SHIFT));
    764 		mutex_spin_exit(&sc->sc_intr_lock);
    765 	}
    766 
    767 	return 0;
    768 }
    769 
    770 static int
    771 sv_round_blocksize(void *addr, int blk, int mode,
    772     const audio_params_t *param)
    773 {
    774 
    775 	return blk & -32;	/* keep good alignment */
    776 }
    777 
    778 static int
    779 sv_trigger_output(void *addr, void *start, void *end, int blksize,
    780     void (*intr)(void *), void *arg, const audio_params_t *param)
    781 {
    782 	struct sv_softc *sc;
    783 	struct sv_dma *p;
    784 	uint8_t mode;
    785 	int dma_count;
    786 
    787 	DPRINTFN(1, ("sv_trigger_output: sc=%p start=%p end=%p blksize=%d "
    788 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    789 	sc = addr;
    790 	sc->sc_pintr = intr;
    791 	sc->sc_parg = arg;
    792 
    793 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    794 	mode &= ~(SV_DMAA_FORMAT16 | SV_DMAA_STEREO);
    795 	if (param->precision == 16)
    796 		mode |= SV_DMAA_FORMAT16;
    797 	if (param->channels == 2)
    798 		mode |= SV_DMAA_STEREO;
    799 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    800 
    801 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    802 		continue;
    803 	if (p == NULL) {
    804 		printf("sv_trigger_output: bad addr %p\n", start);
    805 		return EINVAL;
    806 	}
    807 
    808 	dma_count = ((char *)end - (char *)start) - 1;
    809 	DPRINTF(("sv_trigger_output: DMA start loop input addr=%x cc=%d\n",
    810 	    (int)DMAADDR(p), dma_count));
    811 
    812 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0,
    813 			  DMAADDR(p));
    814 	bus_space_write_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_COUNT0,
    815 			  dma_count);
    816 	bus_space_write_1(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_MODE,
    817 			  DMA37MD_READ | DMA37MD_LOOP);
    818 
    819 	DPRINTF(("sv_trigger_output: current addr=%x\n",
    820 	    bus_space_read_4(sc->sc_iot, sc->sc_dmaa_ioh, SV_DMA_ADDR0)));
    821 
    822 	dma_count = blksize - 1;
    823 
    824 	sv_write_indirect(sc, SV_DMAA_COUNT1, dma_count >> 8);
    825 	sv_write_indirect(sc, SV_DMAA_COUNT0, dma_count & 0xFF);
    826 
    827 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    828 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_PLAY_ENABLE);
    829 
    830 	return 0;
    831 }
    832 
    833 static int
    834 sv_trigger_input(void *addr, void *start, void *end, int blksize,
    835     void (*intr)(void *), void *arg, const audio_params_t *param)
    836 {
    837 	struct sv_softc *sc;
    838 	struct sv_dma *p;
    839 	uint8_t mode;
    840 	int dma_count;
    841 
    842 	DPRINTFN(1, ("sv_trigger_input: sc=%p start=%p end=%p blksize=%d "
    843 	    "intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
    844 	sc = addr;
    845 	sc->sc_rintr = intr;
    846 	sc->sc_rarg = arg;
    847 
    848 	mode = sv_read_indirect(sc, SV_DMA_DATA_FORMAT);
    849 	mode &= ~(SV_DMAC_FORMAT16 | SV_DMAC_STEREO);
    850 	if (param->precision == 16)
    851 		mode |= SV_DMAC_FORMAT16;
    852 	if (param->channels == 2)
    853 		mode |= SV_DMAC_STEREO;
    854 	sv_write_indirect(sc, SV_DMA_DATA_FORMAT, mode);
    855 
    856 	for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
    857 		continue;
    858 	if (!p) {
    859 		printf("sv_trigger_input: bad addr %p\n", start);
    860 		return EINVAL;
    861 	}
    862 
    863 	dma_count = (((char *)end - (char *)start) >> 1) - 1;
    864 	DPRINTF(("sv_trigger_input: DMA start loop input addr=%x cc=%d\n",
    865 	    (int)DMAADDR(p), dma_count));
    866 
    867 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0,
    868 			  DMAADDR(p));
    869 	bus_space_write_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_COUNT0,
    870 			  dma_count);
    871 	bus_space_write_1(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_MODE,
    872 			  DMA37MD_WRITE | DMA37MD_LOOP);
    873 
    874 	DPRINTF(("sv_trigger_input: current addr=%x\n",
    875 	    bus_space_read_4(sc->sc_iot, sc->sc_dmac_ioh, SV_DMA_ADDR0)));
    876 
    877 	dma_count = (blksize >> 1) - 1;
    878 
    879 	sv_write_indirect(sc, SV_DMAC_COUNT1, dma_count >> 8);
    880 	sv_write_indirect(sc, SV_DMAC_COUNT0, dma_count & 0xFF);
    881 
    882 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    883 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode | SV_RECORD_ENABLE);
    884 
    885 	return 0;
    886 }
    887 
    888 static int
    889 sv_halt_output(void *addr)
    890 {
    891 	struct sv_softc *sc;
    892 	uint8_t mode;
    893 
    894 	DPRINTF(("sv: sv_halt_output\n"));
    895 	sc = addr;
    896 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    897 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_PLAY_ENABLE);
    898 	sc->sc_pintr = 0;
    899 
    900 	return 0;
    901 }
    902 
    903 static int
    904 sv_halt_input(void *addr)
    905 {
    906 	struct sv_softc *sc;
    907 	uint8_t mode;
    908 
    909 	DPRINTF(("sv: sv_halt_input\n"));
    910 	sc = addr;
    911 	mode = sv_read_indirect(sc, SV_PLAY_RECORD_ENABLE);
    912 	sv_write_indirect(sc, SV_PLAY_RECORD_ENABLE, mode & ~SV_RECORD_ENABLE);
    913 	sc->sc_rintr = 0;
    914 
    915 	return 0;
    916 }
    917 
    918 static int
    919 sv_getdev(void *addr, struct audio_device *retp)
    920 {
    921 
    922 	*retp = sv_device;
    923 	return 0;
    924 }
    925 
    926 
    927 /*
    928  * Mixer related code is here
    929  *
    930  */
    931 
    932 #define SV_INPUT_CLASS 0
    933 #define SV_OUTPUT_CLASS 1
    934 #define SV_RECORD_CLASS 2
    935 
    936 #define SV_LAST_CLASS 2
    937 
    938 static const char *mixer_classes[] =
    939 	{ AudioCinputs, AudioCoutputs, AudioCrecord };
    940 
    941 static const struct {
    942 	uint8_t   l_port;
    943 	uint8_t   r_port;
    944 	uint8_t   mask;
    945 	uint8_t   class;
    946 	const char *audio;
    947 } ports[] = {
    948   { SV_LEFT_AUX1_INPUT_CONTROL, SV_RIGHT_AUX1_INPUT_CONTROL, SV_AUX1_MASK,
    949     SV_INPUT_CLASS, "aux1" },
    950   { SV_LEFT_CD_INPUT_CONTROL, SV_RIGHT_CD_INPUT_CONTROL, SV_CD_MASK,
    951     SV_INPUT_CLASS, AudioNcd },
    952   { SV_LEFT_LINE_IN_INPUT_CONTROL, SV_RIGHT_LINE_IN_INPUT_CONTROL, SV_LINE_IN_MASK,
    953     SV_INPUT_CLASS, AudioNline },
    954   { SV_MIC_INPUT_CONTROL, 0, SV_MIC_MASK, SV_INPUT_CLASS, AudioNmicrophone },
    955   { SV_LEFT_SYNTH_INPUT_CONTROL, SV_RIGHT_SYNTH_INPUT_CONTROL,
    956     SV_SYNTH_MASK, SV_INPUT_CLASS, AudioNfmsynth },
    957   { SV_LEFT_AUX2_INPUT_CONTROL, SV_RIGHT_AUX2_INPUT_CONTROL, SV_AUX2_MASK,
    958     SV_INPUT_CLASS, "aux2" },
    959   { SV_LEFT_PCM_INPUT_CONTROL, SV_RIGHT_PCM_INPUT_CONTROL, SV_PCM_MASK,
    960     SV_INPUT_CLASS, AudioNdac },
    961   { SV_LEFT_MIXER_OUTPUT_CONTROL, SV_RIGHT_MIXER_OUTPUT_CONTROL,
    962     SV_MIXER_OUT_MASK, SV_OUTPUT_CLASS, AudioNmaster }
    963 };
    964 
    965 
    966 static const struct {
    967 	int idx;
    968 	const char *name;
    969 } record_sources[] = {
    970 	{ SV_REC_CD, AudioNcd },
    971 	{ SV_REC_DAC, AudioNdac },
    972 	{ SV_REC_AUX2, "aux2" },
    973 	{ SV_REC_LINE, AudioNline },
    974 	{ SV_REC_AUX1, "aux1" },
    975 	{ SV_REC_MIC, AudioNmicrophone },
    976 	{ SV_REC_MIXER, AudioNmixerout }
    977 };
    978 
    979 
    980 #define SV_DEVICES_PER_PORT 2
    981 #define SV_FIRST_MIXER (SV_LAST_CLASS + 1)
    982 #define SV_LAST_MIXER (SV_DEVICES_PER_PORT * (ARRAY_SIZE(ports)) + SV_LAST_CLASS)
    983 #define SV_RECORD_SOURCE (SV_LAST_MIXER + 1)
    984 #define SV_MIC_BOOST (SV_LAST_MIXER + 2)
    985 #define SV_RECORD_GAIN (SV_LAST_MIXER + 3)
    986 #define SV_SRS_MODE (SV_LAST_MIXER + 4)
    987 
    988 static int
    989 sv_query_devinfo(void *addr, mixer_devinfo_t *dip)
    990 {
    991 	int i;
    992 
    993 	/* It's a class */
    994 	if (dip->index <= SV_LAST_CLASS) {
    995 		dip->type = AUDIO_MIXER_CLASS;
    996 		dip->mixer_class = dip->index;
    997 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    998 		strcpy(dip->label.name, mixer_classes[dip->index]);
    999 		return 0;
   1000 	}
   1001 
   1002 	if (dip->index >= SV_FIRST_MIXER &&
   1003 	    dip->index <= SV_LAST_MIXER) {
   1004 		int off, mute ,idx;
   1005 
   1006 		off = dip->index - SV_FIRST_MIXER;
   1007 		mute = (off % SV_DEVICES_PER_PORT);
   1008 		idx = off / SV_DEVICES_PER_PORT;
   1009 		dip->mixer_class = ports[idx].class;
   1010 		strcpy(dip->label.name, ports[idx].audio);
   1011 
   1012 		if (!mute) {
   1013 			dip->type = AUDIO_MIXER_VALUE;
   1014 			dip->prev = AUDIO_MIXER_LAST;
   1015 			dip->next = dip->index + 1;
   1016 
   1017 			if (ports[idx].r_port != 0)
   1018 				dip->un.v.num_channels = 2;
   1019 			else
   1020 				dip->un.v.num_channels = 1;
   1021 
   1022 			strcpy(dip->un.v.units.name, AudioNvolume);
   1023 		} else {
   1024 			dip->type = AUDIO_MIXER_ENUM;
   1025 			dip->prev = dip->index - 1;
   1026 			dip->next = AUDIO_MIXER_LAST;
   1027 
   1028 			strcpy(dip->label.name, AudioNmute);
   1029 			dip->un.e.num_mem = 2;
   1030 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1031 			dip->un.e.member[0].ord = 0;
   1032 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   1033 			dip->un.e.member[1].ord = 1;
   1034 		}
   1035 
   1036 		return 0;
   1037 	}
   1038 
   1039 	switch (dip->index) {
   1040 	case SV_RECORD_SOURCE:
   1041 		dip->mixer_class = SV_RECORD_CLASS;
   1042 		dip->prev = AUDIO_MIXER_LAST;
   1043 		dip->next = SV_RECORD_GAIN;
   1044 		strcpy(dip->label.name, AudioNsource);
   1045 		dip->type = AUDIO_MIXER_ENUM;
   1046 
   1047 		dip->un.e.num_mem = ARRAY_SIZE(record_sources);
   1048 		for (i = 0; i < ARRAY_SIZE(record_sources); i++) {
   1049 			strcpy(dip->un.e.member[i].label.name,
   1050 			       record_sources[i].name);
   1051 			dip->un.e.member[i].ord = record_sources[i].idx;
   1052 		}
   1053 		return 0;
   1054 
   1055 	case SV_RECORD_GAIN:
   1056 		dip->mixer_class = SV_RECORD_CLASS;
   1057 		dip->prev = SV_RECORD_SOURCE;
   1058 		dip->next = AUDIO_MIXER_LAST;
   1059 		strcpy(dip->label.name, "gain");
   1060 		dip->type = AUDIO_MIXER_VALUE;
   1061 		dip->un.v.num_channels = 1;
   1062 		strcpy(dip->un.v.units.name, AudioNvolume);
   1063 		return 0;
   1064 
   1065 	case SV_MIC_BOOST:
   1066 		dip->mixer_class = SV_RECORD_CLASS;
   1067 		dip->prev = AUDIO_MIXER_LAST;
   1068 		dip->next = AUDIO_MIXER_LAST;
   1069 		strcpy(dip->label.name, "micboost");
   1070 		goto on_off;
   1071 
   1072 	case SV_SRS_MODE:
   1073 		dip->mixer_class = SV_OUTPUT_CLASS;
   1074 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1075 		strcpy(dip->label.name, AudioNspatial);
   1076 
   1077 	on_off:
   1078 		dip->type = AUDIO_MIXER_ENUM;
   1079 		dip->un.e.num_mem = 2;
   1080 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   1081 		dip->un.e.member[0].ord = 0;
   1082 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   1083 		dip->un.e.member[1].ord = 1;
   1084 		return 0;
   1085 	}
   1086 
   1087 	return ENXIO;
   1088 }
   1089 
   1090 static int
   1091 sv_mixer_set_port(void *addr, mixer_ctrl_t *cp)
   1092 {
   1093 	struct sv_softc *sc;
   1094 	uint8_t reg;
   1095 	int idx;
   1096 
   1097 	sc = addr;
   1098 	if (cp->dev >= SV_FIRST_MIXER &&
   1099 	    cp->dev <= SV_LAST_MIXER) {
   1100 		int off, mute;
   1101 
   1102 		off = cp->dev - SV_FIRST_MIXER;
   1103 		mute = (off % SV_DEVICES_PER_PORT);
   1104 		idx = off / SV_DEVICES_PER_PORT;
   1105 
   1106 		if (mute) {
   1107 			if (cp->type != AUDIO_MIXER_ENUM)
   1108 				return EINVAL;
   1109 
   1110 			mutex_spin_enter(&sc->sc_intr_lock);
   1111 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1112 			if (cp->un.ord)
   1113 				reg |= SV_MUTE_BIT;
   1114 			else
   1115 				reg &= ~SV_MUTE_BIT;
   1116 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1117 
   1118 			if (ports[idx].r_port) {
   1119 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1120 				if (cp->un.ord)
   1121 					reg |= SV_MUTE_BIT;
   1122 				else
   1123 					reg &= ~SV_MUTE_BIT;
   1124 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1125 			}
   1126 			mutex_spin_exit(&sc->sc_intr_lock);
   1127 		} else {
   1128 			int  lval, rval;
   1129 
   1130 			if (cp->type != AUDIO_MIXER_VALUE)
   1131 				return EINVAL;
   1132 
   1133 			if (cp->un.value.num_channels != 1 &&
   1134 			    cp->un.value.num_channels != 2)
   1135 				return (EINVAL);
   1136 
   1137 			if (ports[idx].r_port == 0) {
   1138 				if (cp->un.value.num_channels != 1)
   1139 					return (EINVAL);
   1140 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   1141 				rval = 0; /* shut up GCC */
   1142 			} else {
   1143 				if (cp->un.value.num_channels != 2)
   1144 					return (EINVAL);
   1145 
   1146 				lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   1147 				rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   1148 			}
   1149 
   1150 			mutex_spin_enter(&sc->sc_intr_lock);
   1151 			reg = sv_read_indirect(sc, ports[idx].l_port);
   1152 			reg &= ~(ports[idx].mask);
   1153 			lval = (AUDIO_MAX_GAIN - lval) * ports[idx].mask /
   1154 				AUDIO_MAX_GAIN;
   1155 			reg |= lval;
   1156 			sv_write_indirect(sc, ports[idx].l_port, reg);
   1157 
   1158 			if (ports[idx].r_port != 0) {
   1159 				reg = sv_read_indirect(sc, ports[idx].r_port);
   1160 				reg &= ~(ports[idx].mask);
   1161 
   1162 				rval = (AUDIO_MAX_GAIN - rval) * ports[idx].mask /
   1163 					AUDIO_MAX_GAIN;
   1164 				reg |= rval;
   1165 
   1166 				sv_write_indirect(sc, ports[idx].r_port, reg);
   1167 			}
   1168 
   1169 			sv_read_indirect(sc, ports[idx].l_port);
   1170 			mutex_spin_exit(&sc->sc_intr_lock);
   1171 		}
   1172 
   1173 		return 0;
   1174 	}
   1175 
   1176 
   1177 	switch (cp->dev) {
   1178 	case SV_RECORD_SOURCE:
   1179 		if (cp->type != AUDIO_MIXER_ENUM)
   1180 			return EINVAL;
   1181 
   1182 		for (idx = 0; idx < ARRAY_SIZE(record_sources); idx++) {
   1183 			if (record_sources[idx].idx == cp->un.ord)
   1184 				goto found;
   1185 		}
   1186 
   1187 		return EINVAL;
   1188 
   1189 	found:
   1190 		mutex_spin_enter(&sc->sc_intr_lock);
   1191 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1192 		reg &= ~SV_REC_SOURCE_MASK;
   1193 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1194 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1195 
   1196 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1197 		reg &= ~SV_REC_SOURCE_MASK;
   1198 		reg |= (((cp->un.ord) << SV_REC_SOURCE_SHIFT) & SV_REC_SOURCE_MASK);
   1199 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1200 		mutex_spin_exit(&sc->sc_intr_lock);
   1201 		return 0;
   1202 
   1203 	case SV_RECORD_GAIN:
   1204 	{
   1205 		int val;
   1206 
   1207 		if (cp->type != AUDIO_MIXER_VALUE)
   1208 			return EINVAL;
   1209 
   1210 		if (cp->un.value.num_channels != 1)
   1211 			return EINVAL;
   1212 
   1213 		val = (cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]
   1214 		    * SV_REC_GAIN_MASK) / AUDIO_MAX_GAIN;
   1215 
   1216 		mutex_spin_enter(&sc->sc_intr_lock);
   1217 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1218 		reg &= ~SV_REC_GAIN_MASK;
   1219 		reg |= val;
   1220 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1221 
   1222 		reg = sv_read_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL);
   1223 		reg &= ~SV_REC_GAIN_MASK;
   1224 		reg |= val;
   1225 		sv_write_indirect(sc, SV_RIGHT_ADC_INPUT_CONTROL, reg);
   1226 		mutex_spin_exit(&sc->sc_intr_lock);
   1227 	}
   1228 	return (0);
   1229 
   1230 	case SV_MIC_BOOST:
   1231 		if (cp->type != AUDIO_MIXER_ENUM)
   1232 			return EINVAL;
   1233 
   1234 		mutex_spin_enter(&sc->sc_intr_lock);
   1235 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1236 		if (cp->un.ord) {
   1237 			reg |= SV_MIC_BOOST_BIT;
   1238 		} else {
   1239 			reg &= ~SV_MIC_BOOST_BIT;
   1240 		}
   1241 
   1242 		sv_write_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL, reg);
   1243 		mutex_spin_exit(&sc->sc_intr_lock);
   1244 		return 0;
   1245 
   1246 	case SV_SRS_MODE:
   1247 		if (cp->type != AUDIO_MIXER_ENUM)
   1248 			return EINVAL;
   1249 
   1250 		mutex_spin_enter(&sc->sc_intr_lock);
   1251 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1252 		if (cp->un.ord) {
   1253 			reg &= ~SV_SRS_SPACE_ONOFF;
   1254 		} else {
   1255 			reg |= SV_SRS_SPACE_ONOFF;
   1256 		}
   1257 
   1258 		sv_write_indirect(sc, SV_SRS_SPACE_CONTROL, reg);
   1259 		mutex_spin_exit(&sc->sc_intr_lock);
   1260 		return 0;
   1261 	}
   1262 
   1263 	return EINVAL;
   1264 }
   1265 
   1266 static int
   1267 sv_mixer_get_port(void *addr, mixer_ctrl_t *cp)
   1268 {
   1269 	struct sv_softc *sc;
   1270 	int val, error;
   1271 	uint8_t reg;
   1272 
   1273 	sc = addr;
   1274 	error = 0;
   1275 
   1276 	mutex_spin_enter(&sc->sc_intr_lock);
   1277 
   1278 	if (cp->dev >= SV_FIRST_MIXER &&
   1279 	    cp->dev <= SV_LAST_MIXER) {
   1280 		int off = cp->dev - SV_FIRST_MIXER;
   1281 		int mute = (off % 2);
   1282 		int idx = off / 2;
   1283 
   1284 		off = cp->dev - SV_FIRST_MIXER;
   1285 		mute = (off % 2);
   1286 		idx = off / 2;
   1287 		if (mute) {
   1288 			if (cp->type != AUDIO_MIXER_ENUM)
   1289 				error = EINVAL;
   1290 			else {
   1291 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1292 				cp->un.ord = ((reg & SV_MUTE_BIT) ? 1 : 0);
   1293 			}
   1294 		} else {
   1295 			if (cp->type != AUDIO_MIXER_VALUE ||
   1296 			    (cp->un.value.num_channels != 1 &&
   1297 			    cp->un.value.num_channels != 2) ||
   1298 			   ((ports[idx].r_port == 0 &&
   1299 			     cp->un.value.num_channels != 1) ||
   1300 			    (ports[idx].r_port != 0 &&
   1301 			     cp->un.value.num_channels != 2)))
   1302 				error = EINVAL;
   1303 			else {
   1304 				reg = sv_read_indirect(sc, ports[idx].l_port);
   1305 				reg &= ports[idx].mask;
   1306 
   1307 				val = AUDIO_MAX_GAIN -
   1308 				    ((reg * AUDIO_MAX_GAIN) / ports[idx].mask);
   1309 
   1310 				if (ports[idx].r_port != 0) {
   1311 					cp->un.value.level
   1312 					    [AUDIO_MIXER_LEVEL_LEFT] = val;
   1313 
   1314 					reg = sv_read_indirect(sc,
   1315 					    ports[idx].r_port);
   1316 					reg &= ports[idx].mask;
   1317 
   1318 					val = AUDIO_MAX_GAIN -
   1319 					    ((reg * AUDIO_MAX_GAIN)
   1320 					    / ports[idx].mask);
   1321 					cp->un.value.level
   1322 					    [AUDIO_MIXER_LEVEL_RIGHT] = val;
   1323 				} else
   1324 					cp->un.value.level
   1325 					    [AUDIO_MIXER_LEVEL_MONO] = val;
   1326 			}
   1327 		}
   1328 
   1329 		return error;
   1330 	}
   1331 
   1332 	switch (cp->dev) {
   1333 	case SV_RECORD_SOURCE:
   1334 		if (cp->type != AUDIO_MIXER_ENUM) {
   1335 			error = EINVAL;
   1336 			break;
   1337 		}
   1338 
   1339 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1340 		cp->un.ord = ((reg & SV_REC_SOURCE_MASK) >> SV_REC_SOURCE_SHIFT);
   1341 
   1342 		break;
   1343 
   1344 	case SV_RECORD_GAIN:
   1345 		if (cp->type != AUDIO_MIXER_VALUE) {
   1346 			error = EINVAL;
   1347 			break;
   1348 		}
   1349 		if (cp->un.value.num_channels != 1) {
   1350 			error = EINVAL;
   1351 			break;
   1352 		}
   1353 
   1354 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL) & SV_REC_GAIN_MASK;
   1355 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1356 			(((unsigned int)reg) * AUDIO_MAX_GAIN) / SV_REC_GAIN_MASK;
   1357 
   1358 		break;
   1359 
   1360 	case SV_MIC_BOOST:
   1361 		if (cp->type != AUDIO_MIXER_ENUM) {
   1362 			error = EINVAL;
   1363 			break;
   1364 		}
   1365 		reg = sv_read_indirect(sc, SV_LEFT_ADC_INPUT_CONTROL);
   1366 		cp->un.ord = ((reg & SV_MIC_BOOST_BIT) ? 1 : 0);
   1367 		break;
   1368 
   1369 	case SV_SRS_MODE:
   1370 		if (cp->type != AUDIO_MIXER_ENUM) {
   1371 			error = EINVAL;
   1372 			break;
   1373 		}
   1374 		reg = sv_read_indirect(sc, SV_SRS_SPACE_CONTROL);
   1375 		cp->un.ord = ((reg & SV_SRS_SPACE_ONOFF) ? 0 : 1);
   1376 		break;
   1377 	default:
   1378 		error = EINVAL;
   1379 		break;
   1380 	}
   1381 
   1382 	mutex_spin_exit(&sc->sc_intr_lock);
   1383 	return error;
   1384 }
   1385 
   1386 static void
   1387 sv_init_mixer(struct sv_softc *sc)
   1388 {
   1389 	mixer_ctrl_t cp;
   1390 	int i;
   1391 
   1392 	cp.type = AUDIO_MIXER_ENUM;
   1393 	cp.dev = SV_SRS_MODE;
   1394 	cp.un.ord = 0;
   1395 
   1396 	sv_mixer_set_port(sc, &cp);
   1397 
   1398 	for (i = 0; i < ARRAY_SIZE(ports); i++) {
   1399 		if (!strcmp(ports[i].audio, AudioNdac)) {
   1400 			cp.type = AUDIO_MIXER_ENUM;
   1401 			cp.dev = SV_FIRST_MIXER + i * SV_DEVICES_PER_PORT + 1;
   1402 			cp.un.ord = 0;
   1403 			sv_mixer_set_port(sc, &cp);
   1404 			break;
   1405 		}
   1406 	}
   1407 }
   1408 
   1409 static void *
   1410 sv_malloc(void *addr, int direction, size_t size)
   1411 {
   1412 	struct sv_softc *sc;
   1413 	struct sv_dma *p;
   1414 	int error;
   1415 
   1416 	sc = addr;
   1417 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
   1418 	if (p == NULL)
   1419 		return NULL;
   1420 	error = sv_allocmem(sc, size, 16, direction, p);
   1421 	if (error) {
   1422 		kmem_free(p, sizeof(*p));
   1423 		return 0;
   1424 	}
   1425 	p->next = sc->sc_dmas;
   1426 	sc->sc_dmas = p;
   1427 	return KERNADDR(p);
   1428 }
   1429 
   1430 static void
   1431 sv_free(void *addr, void *ptr, size_t size)
   1432 {
   1433 	struct sv_softc *sc;
   1434 	struct sv_dma **pp, *p;
   1435 
   1436 	sc = addr;
   1437 	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
   1438 		if (KERNADDR(p) == ptr) {
   1439 			sv_freemem(sc, p);
   1440 			*pp = p->next;
   1441 			kmem_free(p, sizeof(*p));
   1442 			return;
   1443 		}
   1444 	}
   1445 }
   1446 
   1447 static size_t
   1448 sv_round_buffersize(void *addr, int direction, size_t size)
   1449 {
   1450 
   1451 	return size;
   1452 }
   1453 
   1454 static paddr_t
   1455 sv_mappage(void *addr, void *mem, off_t off, int prot)
   1456 {
   1457 	struct sv_softc *sc;
   1458 	struct sv_dma *p;
   1459 
   1460 	sc = addr;
   1461 	if (off < 0)
   1462 		return -1;
   1463 	for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
   1464 		continue;
   1465 	if (p == NULL)
   1466 		return -1;
   1467 	return bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
   1468 			       off, prot, BUS_DMA_WAITOK);
   1469 }
   1470 
   1471 static int
   1472 sv_get_props(void *addr)
   1473 {
   1474 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
   1475 }
   1476 
   1477 static void
   1478 sv_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
   1479 {
   1480 	struct sv_softc *sc;
   1481 
   1482 	sc = addr;
   1483 	*intr = &sc->sc_intr_lock;
   1484 	*thread = &sc->sc_lock;
   1485 }
   1486